Robotic Manipulation with Flexible Link Fingers

Thesis by
Sudipto Sur

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1997

(Defended January 20, 1997)



i

© 1997
Sudipto Sur
All rights Reserved



iii
Acknowledgements

Looking back upon the years during which the work culminating in this thesis was
being done, I cannot help but feel fortunate in having been surrounded by people
who have supported me academically and spiritually. I have had the chance to work
with very gifted people who have inspired me and an atmosphere most conducive
to research. For this T am grateful to Caltech and the Division of Engineering
and Applied Sciences. The administrative staff who did so much to shelter us
from having to deal with everyday matters and the “outside world”—Jackie Beard,
Maria Koepler, Connie Yehle and Dana Young—all incredibly helpful people. To
Charmaine Boyd, who managed to not only to get all the things we needed but also
to get them in by yesterday, I am especially grateful (though she never did like the
voodoo doll in my office).

Friends and peers who kept my spirits up and provided much needed entertain-
ment, hope, suggestions, discussions, coffee and sometimes brief and intense lessons
in American, Dutch or Chinese culture~—Robert Behnken, Francesco Bullo, Vic-
tor Burnley, Celene Chang, Deborah Gregory, Anna Karion, Rajesh Kedia, Robert
McCloskey, Mark Milam, Michiel and Line van Nieuwstadt, N. Venkata V. Ra-
jan, Muruhan Rathinam, Clancy Rowley, Willem Sluis, Robert Uy, Carl and Sarah
Wassgren, Simon Yeung, Roberto Zenit and many others. I thank you all. You are
all ultimately responsible for my continuing sanity (or insanity).

In my work I have benefited from discussions with Prof. Joel Burdick and (now
Prof.) Robert McCloskey. 1 am also thankful to Robert Behnken for working
with me on initial versions of the experimental setup. Eric Jan constructed the
instrumented object for the grasping setup. I am grateful to him for the great job
he did which allowed me to finish in time. Rodney Rojas and John Van Duesen at
the ME shop put up with a lot of “is it possible to do these now” requests, usually
made in desperation on Friday afternoons, with complete good humor and did an
excellent job besides.

I am indebted in particular to Prof. Richard Murray, my research advisor. He
truly was a guiding force, a motivator and an inspirer. I have rarely come away from
a meeting with him without feeling a boost of energy. In addition he has also served
as the answerer of obscure C, UNIX and other computer related questions which
a rt*m failed to answer. I feel very fortunate in having had him as my research
advisor.

There are those who have not only been the source of my inner strength, but are
also finally the reason that all this is worthwhile. Tricia Waniewski, a friend and
much more, whose joy in being with me and belief in me continues to be a source of
the greatest happiness to me. Though separated by half a world, I have always felt
my family around me, nurturing, supporting, inspiring and loving. To my sister,
Dr. Saumya Adhicary, my father Saradindu Sur and my mother Suprabha Sur, 1
am grateful beyond expression. Finally to my nephew Shamik Adhicary, who made
it into this world at the same time as the first draft of my thesis, thank you for
making me an uncle for the first time.



iv
Abstract

Robots with structural flexibility provide an attractive alternative to rigid robots for
many of the new and evolving applications in robotics. In certain applications their
use is unavoidable. The increased complexity in modeling and control of such robots
is offset by desirable performance enhancements in some respects. In this thesis we
present a singular perturbation approach for modeling, analysis and control of robots
with flexibility. As our singular perturbation approach does not treat the flexible
manipulator as a perturbation of the rigid manipulator, it can treat significant
flexibility, beyond the linear range. Analysis based on this approach leads to some
provably stable control laws for the hybrid position and force control of flexible-link
manipulators. The analysis is done in the framework of a single robot manipulator
in a constrained motion task. Simulations and experimental results are presented
for this case. To show applicability of the results to more general and complex
systems with flexibilities we also present experimental data from a planar, two-
fingered, reconfigurable grasping setup which allows rigid and flexible configurations.
The aim of the experimentation is to show the applicability of the control laws
and analysis developed, and to determine the performance enhancements resulting
from the introduction of flexibility. Experimental data is analysed to show the
tradeoffs between controller complexity and performance enhancement as we deal
with greater flexibility. Various performance criteria are set up and experimental
results are discussed within their framework. We conclude that large flexibility can
be controlled without too much additional effort, has performance comparable to
that of rigid robots, and possesses enhancing properties which make it appealing for
use in certain types of applications.
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Chapter 1

Introduction

A robot manipulator is a spatial mechanism consisting essentially of a series of
bodies, called “links”, connected to each other at “joints”. The joints can be of
various types: revolute, rotary, planar, prismatic, telescopic or combinations of
these. A serial connection of the links results in an open-chain manipulator. Closed-
chain manipulators result from non-serial (or parallel) connections between links.
Actuators at the joints of the manipulator provide power for motion.

A robot is usually not designed for a very specific or repetitive task which can be
done equally well by task-specific machines. Its strength lies in its ability to handle
a range of tasks by virtue of being “re-programmable”. Therefore, in addition to the
mechanical hardware two other elements are integral to the description of a robot:
sensors and control. With the advent of micro-electronics and digital computers the
availability of sensors is ever increasing and the control is usually done by software
executed by computers which also collect the sensory data. It is possible to model
quite accurately, the dynamics of robot manipulators for purposes of control. How-
ever, for most practical robots the models are complex and numerically intensive to
calculate in real-time.

Traditional analyses of robot manipulators consider the whole mechanism to be
rigid. Relaxation of the assumption of rigidity leads to further complication of the
dynamics of the manipulator, leading to more difficulties in control. The overall
motion of the manipulator is augmented by additional motion due to the dynamics
of flexibility which must be considered. Sensing is also made more difficult. How-
ever, the ability to control robots with significant structural flexibilities, referred to
as flexible robots in the rest of this thesis, influences robotics in many ways. It al-
lows for consideration of new applications, observance of less conservative structural
design and performance enhancements in certain classes of robotic tasks, which will
be addressed in greater detail in the sections which follow.

1.1 Motivation

Our original motivation for doing work on flexible manipulators comes from the
field of medicine. Endoscopes, used for surgically non-invasive examination of the
alimentary canal could be enormously enhanced by attaching robotic fingers at their
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Figure 1.1 A possible “telesurgery” setup.

tip, controlled teleoperatically by a surgeon wearing a “dataglove” (see Figure 1.1).
This would not only aid in examination but could conceivably be used for manip-
ulation of bodies like tumors and polyps and even in the performance of surgical
procedures. It is estimated that a lumen 3 mm in diameter would be available to
accommodate these fingers at the tip of the endoscope into which the fingers would
have to fit during insertion of the device to prevent snagging and interference. If
we consider a set of three fingers, which would be the minimum required for suf-
ficient dexterity, the dimensions of the fingers make it difficult to ensure sufficient
rigidity. This is a scenario in which flexibility is unovoidable. Flexible manipulators
can perform better than rigid manipulators in certain tasks where control of both
positions and forces are desired. Being that the nature of the manipulation task
for the endoscopic fingers requires simultaneous force and position control, it may
indeed be that in this case, additionally, flexibility is desirable. This work addresses
both these aspects of flexible robotics.

There are more commonplace scenarios than the fairly esoteric one mentioned
above that encounter flexibility. With improvements in electric motor technology
modern manipulators can not only carry or move bigger loads, but can do so with
faster accelerations. This can cause flexure even in nominally rigid manipulators,
thus creating performance shortcomings. To avoid dealing with flexibilities robots
are usually over-designed. Thus present generation manipulators are limited to
carrying loads no more that 5-10% of their weight. As an example the Cincinatti-



Milacron T3R3 robot weighs 1800 kg but can carry no more than 23 kg [9]. The
ability to control flexibility immediately translates to a reduction in weight. Reduc-
tion in weight of manipulators is beneficial for the reasons mentioned below.

s Lower energy consumption: reduced inertias of the lighter robots require less
power to produce the same accelerations and load-carrying capacity as heavier
robots.

e Smaller actuators: reduced power requirements can be satisfied by smaller
actuators, which are generally cheaper.

o Safer operation: collision of the smaller inertia causes lesser damage.
o Lower mounting strength: this is relevant to gantry and wall mounted robots.

¢ Simplification of drive mechanism: lighter links can be direct-driven, given
the improving power to weight (or size) ratios for electric motors. This would
eliminate the need for drive elements like gears, which introduce backlash.

o Faster operation: greater accelerations can be achieved for lighter robots.
For certain modern applications of robots, for example, the testing of micro-
chip and printed circuit contacts, a high speed of operation is very important
because of the large number of operations needed to be carried out. As the
task does not require a rigid robot (there being no loads to carry) the overhead
incurred due to the inability to control flexibility is significant.

¢ Significant cost reduction in deployment of space robots: robots like the space
shuttle arm and the robots envisaged for the construction and maintenance
of the international space station have to be boosted into orbit. Considering
that about 95% of the takeoff weight of the space shuttle is the weight of the
fuel, it is evident that the savings in fuel due to any reduction in the weight
of the payload are significant.

From the above discussion it is clear that there are a variety of applications
which would benefit significantly from the ability to control robots which are light
and fast, and therefore naturally flexible. There is also a class of applications where
flexibility is not optional. One such is the endoscopic robot finger example men-
tioned previously. Micro-robots, which are robots crafted out of polysilicon wafers
by techniques similar to the fabrication of integrated circuits [43, 44] are another
example of robots which are necessarily flexible. The sizes of these robots is of the
order of one cubic pm. Micro-robots contain micro-motors, micro-sensors and inte-
grated circuits all in a work space which can be only made visible by microscopes.
The forces due to surface-tension, pressure-impact as well as magneto- and electro-
static forces can be very significant at these scales, and can cause large flexure. The
range of applications envisaged for micro-robots is vast. Use in medicine ranges from
drug delivery [19] to delicate operations in neurosurgery and opthalmology which
need to be done with extreme precision [12]. In bio-technology micro-robots will
provide a potent tool to manipulate individual cells. In industry micro-robots could



be used for integrated circuit production, for finding errors on semiconductor dice,
fabrication and maintenance of high precision tools and even for the fabrication of
even smaller robots—the nanorobots.

Increasingly, the tasks performed by robots involve physical interaction with
their environment. This naturally gives rise to interactive forces between the robot
and its environment. The task of the controller increases from merely position
control to simultaneous force and position control—called hybrid control. The me-
chanical compliance introduced by flexibility is useful in hybrid control in two re-
spects. First, the flexible links can themselves be used for sensing the forces and
torques. Second and more importantly, the compliance in the structure increases
the robustness properties of the manipulator. This can be very significant because
it is difficult, if not impossible to predict all events which might happen in the real
working environment of the robot, and which will have an effect on the robot. Re-
lated to this is the issue of contact transition—the transition from a free state to
a state where the robot is in physical contact with some component of its environ-
ment. This process often exhibits large jitter, which is difficult to control. Jitter
causes wear and tear on the mechanism and its environment, and large force tran-
sients. Structural compliance in the manipulator is one method which can be used
for attenuating jitter.

Tasks involving multi-robot cooperation is another area of interest in modern
robotics to which many elements of the foregoing discussion are relevant. Control
of multiple interacting robots typically requires tools from hybrid control. Robotic
grasping, a special case of multi-robot cooperation, is a subject of ongoing research
in the robotics community. In addition to its many practical applications, multi-
fingered hands are an excellent application for developing new ideas in intelligent
control of complex dynamical systems. Teleoperated robotic hands are an impor-
tant example of man-machine systems which requires research in user-interfaces,
hierarchical control and control of complex systems with a human in the loop.

The work described in this thesis is an effort to incorporate flexibility into
the robot dynamics and control. Tt is motivated by the need to decrease the size
and weight of robot manipulators, while at the same time increasing performance.
Rather than try to design away flexibilities because of their complexity, it is impor-
tant to gain an understanding of how to use flexibilities to increase the performance
of a system. Examples of applications to which this work applies include space
manipulation tasks, non-invasive surgical techniques and micro-robots.

1.2 Aspects of the Problem and Previous Work

Robotic manipulation with flexible fingers requires the blending together of concepts
from a multitude of different disciplines. The theoretical analysis in this thesis draws
on ideas from research on hybrid force/position control, grasping with multi-fingered
hands, flexible structures, modeling and control of joint and link flexibility in robots
and singular perturbation theory. Fabrication of apparatus for the experimental
implementation required a multistage evolution of design ideas, consideration of
sensing technology and issues in real-time computer control.
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Figure 1.2 The Jameson Hand (JH-2). (Courtesy of NASA Johnson
Space Center)

There are many robotic tasks which cannot be defined solely in terms of the
motion of the end-effector (or tip), one such being tasks which are characterized by
physical contact between the end-effector and a constraint surface. Combining force
and motion (or position) control in an unknown environment was first proposed by
Craig and Raibert [5, 45]. This was termed hybrid force/position control. Zhang and
Paul [61] modified the control scheme from a Cartesian to a joint space formulation.
In both cases it was always possible to independently analyze the force information
and the position information and then combine them at the final stage when they
had already been converted to joint torques. Since then there have been many
modifications, enhancements and interpretations of the basic hybrid control scheme
proposed by Craig and Raibert. Some of the better known variants are referred to as
impedance control [13, 14, 15], compliance control [31, 35] and stiffness control [48].
Though the field has been actively researched for close to twenty years there is still
disagreement among researchers about the proper formulation of the problem [§]
and as yet there is no global formulation.

Multi-fingered robot hands have been an active research area for over ten years.
Farly designs included a three-fingered hand built by Okada which was capable
of manipulating a bar using a pre-programmed sequence of motions [41]. The
JPL/Stanford hand [57], the Utah/MIT hand [20] and the Jameson hand (refer
to Figure 1.2) are more recent designs. Both these mechanisms were roughly an-
thropomorphic with tendon driven fingers. Control was implemented by individual
joint servos which move the fingers to specified joint configurations.

Analysis of the kinematics, dynamics and control of multi-fingered hands is a ma-
ture field. Fundamental work in grasping was done by Salisbury [47] and Kerr [21].
Derivations of the dynamics of manipulation and formulation of controller were given
by Li et al. [29, 30]. Most work in grasping consider very simple contact models;



extensions to finger rolling and compliant contacts can be found in [4, 37, 38]. All
the work in grasping mentioned assumes that the object and the fingers are rigid
and their geometry is completely known.

Control of robots with flexible links has concentrated primarily on position con-
trol of the end-effector of a flexible robot in a point-to-point positioning task. A
single link flexible robot was investigated at the theoretical as well as experimen-
tal level by Cannon and Schmitz [2] in 1984. The control of multiple-link, flexible
robots is considerably more difficult and is an area of active research (see [9] for a
survey). Experimental work in this area is particularly difficult to find, in part due
to some of the theoretical difficulties inherent in the problem.

Considerably less work is available on the dynamics and control of flexible link
robots in contact with the environment. Some initial work has been performed
by Latornell and Cherchas, who have studied force and motion control of a single
flexible manipulator link [26]. In addition, Kozel, Koivo and Mahil have studied
the force relationships between flexible manipulators in contact with their environ-
ment [25], Mills has studied the stability of a flexible link manipulator during con-
strained motion tasks using a singular perturbation approach [36], and Matsuno,
Sakawa, and Asano have studied hybrid position/force control under quasi-static
assumptions [32].

Considerable research effort has also been expended on the modeling of struc-
tural flexibility in a form suitable for application to flexible robot modeling and
control. Most models of flexible links are finite dimensional models, either derived
from truncating the number of modes of an infinite dimensional model [9], or by
discretizing the links [59, 60]. Cetinkunt and Yu have addressed the issue of select-
ing the shape and number of mode functions in developing finite order models for
control of a flexible robot arm [3].

Modeling however is only the first step in the study. Analysis of the model is
as important and essential to the ultimate goal of controller design, and often more
difficult than constructing the model itself. Mechanical systems with flexibilities
have often been analysed using tools from singular perturbation theory. The per-
turbation parameters (¢) in these analyses are typically the inverse of the stiffness of
the flexible mechanism or the inverse of the stiffness weighted by a factor depending
on the mass (see for example [22]). Singular perturbation techniques have been used
previously to deal with joint flexibility in robotic manipulators [52]. In the literature
there is also discussion of perturbation techniques for flexible link manipulators [9].
Again, the perturbation parameters used in these analyses has always been scaled
from the inverse of the stiffness associated with the manipulator. Thus the reduced
system (¢ = 0) is rigid. Small values of the perturbation parameter correspond to
systems which have a “small” amount of flexibility. Thus these analyses present
results useful for systems which have a small amount of flexibility. The analysis of
systems exhibiting significant flexibilities has not so far been undertaken.

Singular perturbation theory has been used in the past for application to control
problems. The most notable contribution of singular perturbation theory to control
efforts has been the simplification of dynamic models. It has been used to rigorously
justify the neglect of small time constants, masses, capacitances and other parasitic



parameters. Furthermore, the separation into a reduced, slow, outer system and a
boundary layer, fast inner system which is a contribution of singular perturbation
analysis can be used to design stages of a control system depending on the per-
formance desired. Kokotovic discusses typical applications of singular perturbation
techniques to control problems and provides a review of the technique in [24].

1.3 Contributions of this Work

Introducing flexibility in robots introduces two main problems:

e The kinematics of the robot become a function of the state of the forces acting
on the robot, including most importantly, those being applied by the robot
itself. Deformations in the robots mechanical structure caused by the forces
have to be considered.

¢ Controllers must be extended to not only achieve the primary manipulation
task, but also to stabilize flexible modes in the structure of the system. The
nonlinear nature of the problem requires use of techniques in nonlinear control
theory to provide a useful analysis of the system.

Given the above points this thesis answers the following questions:

1. Are there provably stable control laws which can be used to control flexible link
robots with significant flexibility (beyond the linear range) in tasks requiring
physical interaction with the environment?

2. Can these laws be implemented on real systems with current technology?

3. Are there guidelines for design which make it easier to control flexible link
robots?

4. Given that flexible robots are more difficult to control than rigid robots is
there a case for using flexible robots?

5. What are the tradeoffs in using flexible robots instead of rigid robots?
6. How much flexibility is good?

The first three questions are answered by the theory developed during the course
of the research on which this thesis is based. We develop control laws which are
provably stable, and which can be used to control flexible link robots in hybrid
force /position control tasks. The tool of analysis is singular perturbation theory and
we are able to formulate the flexibility in a way which allows us to treat significant
flexibility. These laws can be implemented on real systems with current technology
and are indeed implemented in the experimental part of our research. The process
of modeling and proving stability also provides some pointers which can be used
to design flexible robots which are easier to control. This fits in with the general
trend in design and development of new products where the control system must



be considered part of the design process rather than an accessory after the design
is complete.

The last three questions are answered by the experimental part of this research.
A planar, two fingered hand, with the last link flexible in each finger, was fabricated
for the experimentation. The setup itself is novel in that it is reconfigurable and
can be used as a test bed for experiments in robotics. Experiments in human-
robot interaction and the effect of flexible tendon actuation have been conducted
on the same setup. The setup was designed to be scalable in line with our original
motivation of endoscopic robot fingers.

From experiments it is clear that in case of grasping there are advantages to be
gained by using flexible manipulators. A framework for evaluation of performance
is set up allowing us to quantify to some extent the performance gains in force regu-
lation versus performance degradation in position tracking due to the use of flexible
links. It is also clear from the experimental work that the controllers developed
in theory are indeed applicable to the real situation and can be implemented with
current technology.

We also present data from simulations to supplement the experimental data.

1.4 Organization of the Thesis

In the succeeding chapters we present first the basics of robot dynamics and control,
the more complex analysis used for treating multi-robot cooperation and modeling
of flexibilities in Chapter 2. Singular perturbation theory basics and its application
by us to the modeling of flexible robots is presented in Chapter 3. In Chapter 4 we
describe and prove the stability of the controllers developed for controlling flexible
robots. Chapter 5 is a compilation of simulation results. In Chapter 6 we present
experimental data and discuss the results. Chapter 7 is a summary of the work
presented in this thesis and a collection of ideas for future work. Appendix A is a
description of the reconfigurable, multi-robot testbed designed and fabricated during
the course of this work, and used for the experimental work.



Chapter 2

Dynamics and Control of Cooperative
Multirobot Systems in Contact Tasks

Dealing with multiple robots in cooperative tasks is more involved than being able
to deal with multiple individual robots separately. Interactions between robots
lead naturally to situations where we need to control both the relative positions of
the robots and the forces of interaction between them. The ability to deal with
workspace constraints and resolve kinematic redundancy is required to analyse and
control such systems. In this chapter we describe the dynamic equations for multiple
robots in contact tasks. We start with the dynamics and control of individual robots
which form the simplest robot control problems. The much harder problem of
modeling of constraints and simultaneous force-position hybrid control are discussed
next. The kinematics and dynamics of multirobot systems follow. Finally, we set
up the equations for robots with flexibilities.

2.1 Simple Robot Dynamics and Control

There are many different methods for deriving the dynamics of mechanical systems.
The method we outline in this section stems from a Lagrangian analysis. The ad-
vantage of this approach is that Lagrangian theory deals with constrained systems,
and is able to formulate the problem completely without knowledge of the precise
form of the constraints. It also reduces the problem to the smallest possible set
of equations, of motion and of constraint, by the introduction of generalized coor-
dinates. As a result we get dynamic equations which are in the most convenient
form for our further analysis. Lagrange’s method is based on the energy properties
of the system. The resulting equations can be computed in closed form, allowing
detailed analysis of the system. A thorough discussion of the general principles of
Lagrangian analysis in mechanics can be found in Rosenberg [46] or Goldstein [11].
Their use in robotics is described in Murray, Li and Sastry [40].

2.1.1 The Lagrangian approach for deriving robot dynamics

Lagrange’s equations for mechanical systems are derived by considering the con-
straints on the system very explicitly. This has obvious advantages for deriving the
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dynamics of manipulators, each link of the manipulator giving a set of constraints
for the system. The following concepts are basic to the Lagrangian approach.

Generalized coordinates: A set of coordinates {q1,¢2,... ,g,} € R" are called
the generalized coordinates for a system if all n of them are necessary and sufficient
to define the configuration of the system uniquely. In other words this is a minimal
set of coordinates for a system.

A system with N particles and no constraints has 3V independent coordinates
(or degrees of freedom). The imposition of L holonomic constraints on this system
reduces the number of required coordinates (or generalized coordinates) by L. (For
the moment we will use this as a definition of holonomic constraints.) The 3N — L
remaining coordinates contain the constraints implicitly in them. This is only true
in the case of holonomic constraints, and imposition of nonholonomic constraints
will not in general cause a reduction.

For a revolute jointed open-chain robot (see Figure 2.1), the set of joint angles
(© say) forms a set of convenient generalized coordinates. Here we use the term
joint angles in a broader sense to include also the displacements in Cartesian ma-
nipulators. In the case of manipulators with workspace constraints it is usually
extremely difficult to find generalized coordinates. As will be shown later in this
chapter we use a slightly modified approach in that case.

Virtual displacements and virtual work: Consider L holonomic constraints
on a system of N particles:

f,«(ul,,UQ,...,UN,t):O, (7’21,27... 7L)a

where wu; is the position of the ith particle and t represents time. The differential
form of this system is

N
=1

which is a set of L first-order differential equations. We can write these as

Ofr . Of . o
BuiduZ+ atdt—O, (r=1,2,...,L),

N
> Ajpdu; + Agdt =0, (r=1,2,....L). (2.1)

=1

This is the Pfaffian form of the constraint equations. Note that this is the general
form of equality constraints in classical mechanics. If they are integrable then the
constraints are holonomic; else they are nonholonomic.

The set of infinitesimal quantities du; (¢ = 1,... , N) which satisfy the equations

]\/T
ZAis5uz =0, (r=12,...,L),
=1

are called virtual displacements, and du = (du;,... ,dup) is called the virtual dis-
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placement vector. Virtual displacements are consistent with the forces and the
constraints imposed on the system at a given instant t.
The virtual work done by a force is the work it does in a virtual displacement.

D’Alembert’s principle of virtual work: This principle states that the net
virtual work done by the forces of constraint is zero.

We denote by ¢ = (g1, g2, - .. ,qn) a set of generalized coordinates for the system.
The Lagrangian for a mechanical system is defined to be

where, T' is the kinetic energy of the system and V the potential energy.
For constrained systems satisfying D’Alembert’s principle we can write in gen-
eralized coordinates

" [doT

; [a% - Ql] dgi = 0, (2.2)
where the (); are generalized forces. Note that because g; need not in general have
units of length, (); also does not necessarily have units of force. However, the product
(Q2:g; always has units of power. If we restrict the constraints to be holonomic, it is
possible (though very difficult sometimes) to find sets of independent coordinates
that contain the constraint conditions implicitly. The joint angles of open-chain
manipulators are such coordinates. Considering ¢ to be such a set any virtual
displacement dg; is independent of any other dgj. Therefore equation (2.2) leads to

doT 0T
— - = Q. 2.
dt (’)ql qu- Ql ( 3)

We now split the generalized forces (); into two components: (,, derived from the
scalar potential energy field V and )., which make up the remaining magnitude of
the force. Therefore

Qpl' = —VZV,
and equation (2.3) becomes

dor—v)_ar-v) _,
dt  9q; doq 7

From our definition of the Lagrangian we can write this as

d oL oL
dt 0¢;  Oqi

For the whole system we can write a vector equation
d oL 0L

T = Q.. (2.5)
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Figure 2.1 An open-chain manipulator.

In the sequel we shall call equations (2.4, 2.5) Lagrange’s equation.

2.1.2 Dynamics of open-chain manipulators

We consider a n-link open-chain manipulator with joint angles © € R*, © =
(61,...,0,). Denoting the manipulator inertia matriz by M(©), the kinetic energy
of the manipulator can be written as

) 1. )
T(0,0) = 5@TM(@)@.
We use the above as a definition for the inertia matrix. We write the potential

energy as V(0©). If, for example, we considered only a gravitational field giving rise
to the potential, then we could write

V(e) = Z migh;(©),
1=1

where m; is the mass of the 7th link, £; the height of its center of mass and g the
gravitational constant. The Lagrangian can now be written

L(©,0) = %(;)TM(@)G) —V(©).
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It is more convenient to write the kinetic energy as a sum,

L(©,0) Z M;;(©)6,0; — V(0). (2.6)

i,y=1

To get the equations of motion we substitute the above into Lagranges’ equa-
tions (2.4). We will use ., in that equation to represent actuator torques and
other non-conservative, generalized forces acting on the ith joint. The terms in
Lagranges’ equations are (for joint )

d oL _ M6, _y M;.0; + M, ;0
dt 96, dt Z v _Z( Chch i“)
7=1
aLwl N OMy; o OV

90, 2 20, T be;
7,k=1

M;; is the (¢, 7)th element of the mass matrix. M” can be written as

M = Z M;j ek

Using the above we get

n n ;
3 s OMij; +  10My L
=1 Jk=1 Z

which can be rearranged as

n ov
;Ml’j( 6 + ]Zkrgjke Ok +oa- 30 ( ) - Q€i7 (27)
Lijk = 5 ( B T o8, ) (2.8)

Equation (2.7) is one of the n second order differential equations required to
describe the dynamics of the robot. The first term arises due to the acceleration of
the joints and is called the inertial term of the dynamics. It accounts for the inertial
forces in the robot.

The terms quadratic in the joint velocities are due to centrifugal and Coriolis
forces. These forces exist because of non-inertial frames which arise naturally from
the use of generalized coordinates. The cross-terms (9 HJ i # j) are the Coriolis
terms and the others (02) are the centrifugal terms. The functions I';;; are called
Christoffel symbols corresponding to the inertia matrix M(O).

The last term on the left hand side of equation (2.7) are the potential forces.
Finally, )¢, represents the external forces on the joint.
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To make explicit the actuator forces we represent the actuator generated gen-
eralized forces at the ¢th joint by 7;. All other generalized forces acting on the ith
joint, including conservative forces arising from a potential and frictional forces are
represented by —N;(©, @) For example, for a manipulator with viscous friction in
the ¢th joint

ov

~ kpib;,

where kj; is the damping coefficient.
To write the equations of motion for the whole manipulator in vector form we
define the Coriolis matriz, C(0,0) € R"*" elements of which are given by

Ci;(©,0) erke,c (2.9)

Now we can write equation (2.7) for all the joints in one vector equation
M(©)0+C(0,0)0+N(O,0)=r1 (2.10)

where 7 is the vector of actuator generalized forces, and N (O, @) includes all the
left over generalized forces. In the sequel we shall refer to 7 as the vector of joint
torques and it will mean exactly the same thing (i.e. actuator applied generalized
forces at the joints). This second-order, vector differential equation for the motion
of a manipulator as a function of the applied joint torques will be called the dynamic
equation of the manipulator in the rest of this thesis. We now state without proof
the following properties of the matrices M and C which is the reason to derive them
in the particular form we have.

Lemma 2.1 (Manipulator dynamic equations: structural properties)
Equation (2.10) has the following properties:

1. M(©) is symmetric and positive definite.

2. M —2C € R™" js a skew-symmetric matrix.

The reader is referred to Murray, Li and Sastry [40] for a proof of the above state-
ments. These properties of the dynamic equation are extremely important for their
further analysis, and we will have cause to refer to them again when we discuss
the stability of control laws for manipulators. Property 2 is sometimes called the
passivity property of a manipulator. Note that the above properties are true for our
derivation of the dynamics, in particular, our choice of the definition of matrix C.

2.1.3 Control of robotic manipulators

In this section we discuss basic robot control methods. We will build on the ideas
in this section in more complicated robot control tasks. To begin, we briefly review



some tools used to analyze stability of dynamical systems which will be used exten-
sively throughout the rest of this thesis. These topics are covered in detail in texts
like Vidyasagar [58] and Khalil [23] and we will only present the results here.

Stability of dynamical systems

Consider a dynamical system
= flxz,t) x(tg) = xo r e R (2.11)
f(x,t) is assumed Lipschitz continuous with respect to x, uniformly in .

Definition 2.1 (Asymptotic stability)
An equilibrium point z* (i.e. f(z*,t) = 0) of equation (2.11) is asymptotically stable
at t =1y if

1. For any € > 0 there exists a d(tg, €) > 0 such that

lz(to) —2*] <8 =  |lz(t)| <e Vit (2.12)

2. There exists ((tg) > 0 such that

lz(tg) —z¥|| < B = lim () = 0. (2.13)

t—>00

Systems satisfying only the first of the above two properties (equation (2.12)) are
called Lyapunov stable. The above defines stability only at an instant of time 4.
To ensure that the equilibrium point z* does not lose stability at any time, we
require that 0 in equation (2.12) and ( in equation (2.13) be independent of ¢y so
equations (2.12) and (2.13) may hold for all ¢y. If this is true the system is said to
be uniformly asymptotically stable. For autonomous systems (i.e., systems which do
not have an explicit time dependence) asymptotic stability is the same as uniform
asymptotic stability. Further, the above definition is a local definition in that it
describes the behavior of a system near an equilibrium point. The equilibrium
point z* is said to be globally asymptotically stable if it is asymptotically stable for
all initial conditions xg € R™.

Usually we perform a simple change of coordinates to move the equilibrium point
x* to the origin, that is z* = 0, and then talk about stability around the origin.
In the sequel when we talk about the stability of the origin this is exactly what we
have done.

Lyapunov’s direct method (the second method of Lyapunov) is a general proce-
dure used to determine a systems’ stability, without explicit integration of the differ-
ential equation. Before we present the theorem we need to state a few definitions. In
what follows B, denotes a ball of size ¢ around the origin, B, = {z € R"|[z] < €}.
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Definition 2.2 (Locally positive definite functions)
A continuous function V : R* x R, — R is locally positive definite if for some € > 0
and some continuous, strictly increasing function a : R, — R,

V(0,t) =0 and V(x,t) > a(]|z|]) Vo € Be,Vt > 0.

A positive definite function is a locally positive function with the additional condition
that a(p) — oo as p — oo.

Definition 2.3 (Decresent functions)
A continuous function V : R" x Ry — R is decresent if for some ¢ > 0 and some
continuous, strictly increasing function g : R, — R,

Viz,t) < p(llzl])  Vze B,Vt=0.

We also need to define the following terminology. The time derivative of a scalar
continuous function V(z,t),V : R" x Ry — R, along the trajectory of the system
given by equation (2.11) is the quantity

: v av
Vli=riwn = 57 + 55 f

We will use V to mean V lgb:f(m) in what follows.

Theorem 2.1 (Lyapunov’s theorem for stability) Consider a non-negative func-
tion V(z,t),V : R" x Ry — R with V its time derivative along the trajectories of
the system given by equation (2.11). Then,

1. IfV is locally positive definite and V < 0 locally in x for all t, then the origin
of the system is locally Lyapunov stable.

2. If V is locally positive definite and decrescent, and —V is locally positive defi-
nite, then the origin of the system is uniformly locally asymptotically stable.

8. If V is locally positive definite and decrescent, and —V is positive definite,
then the origin of the system is globally uniformly asymptotically stable.

V is called a Lyapunov function for the system.

These are sufficient conditions for the stability of the origin. Though the converse
is also true, that is stable systems have Lyapunov functions, as we shall see later,
the search for a Lyapunov function is often operose.

The last result we require is a principle which applies to autonomous systems of
the form

&= f(x). (2.14)

We denote the solution of this at a time ¢ starting from ¢ at tg by s(t, zg, tg).



17

Theorem 2.2 (LaSalle’s invariance principle) Let V(z),V : R* — R be a lo-
cally positive definite function such that on the compact set Q. = {z € R" : V(z) <
ct, V(z) <0. Define

S={ze€Q.:V(z)=0.

Then, as t — oo, the trajectory s(t, xo,ty) tends to the largest invariant set in S. In
particular, if S contains no invariant sets other than x = 0 then 0 is asymptotically
stable.

The use of this principle is to conclude asymptotic stability when the derivative
of the Lyapunov function is only negative semi-definite, locally, instead of negative
definite.

Controlling basic manipulator tasks

We derived the dynamics of a manipulator in equation (2.10). The elementary
robot control problem is to track a given joint trajectory ©4(t) by application of
the appropriate actuator forces, 7 in equation (2.10). The error in the configuration
of the robot is denoted by e = ©4 — ©. The simplest controller which will do the
job—if we discount open-loop control laws which will fail unless we have a perfect
model of the robot—is the basic joint level PD control law given by

T = Kpe + Kyé, (2.15)

where K, and K, are positive definite matrices. That the PD controller achieves
asymptotic set-point (©, = 0) stabilization can be proved using

. . . 1
V(©,0) = %@TM((-B)@ + -2~®TKp@

as a candidate Lyapunov function and then using LaSalle’s principle. To achieve
tracking the above PD control law needs to be augmented as

7= M(0)0,+ C(0,0)04 + N(0,0) + Kye + K,é.

The augmented portion of the control law is a variant of the so called a computed
torque control law. Exponentially stable trajectory tracking can be proved for this
controller for K,, K; > 0 by using the candidate Lyapunov function V{e.é,t) =
%éTM(@)é + sl Kye + ee M (©)é, with € sufficiently small.

Control of workspace trajectories

We call the space inhabited by the end-effector of the manipulator, the workspace of
the manipulator. Let SE(3) denote the special Euclidean group of three-dimensional
space. We define

9:Q—SE@B),9(0)=X
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which maps the configuration of the manipulator to the configuration of the end-
effector in workspace coordinates. () is called the configuration space of the manip-
ulator and ¢(©) is called the forward kinematics of the manipulator. In the most
general three-dimensional case X € SE(3). The forward kinematics can be derived
by various different methods. One of the best known uses the Denavit-Hartenberg
parameters [7]. A more geometric description is the product of exponentials deriva-
tion of the kinematics [40].

It is natural to prescribe robot trajectories in workspace coordinates. A desired
path gq{t) € SE(3) prescribes the configuration of the end-effector as a function of
time. One way of solving this problem is to solve the inverse kinematics, that is
find ©4(t) such that g(©4(t)) = gq(t), and then use the methods described previ-
ously to achieve tracking in the joint space. However, the inverse kinematics is not
very tractable for manipulators with multiple joints. There are multiple solutions
to the inverse kinematics problem. A more appealing solution to the problem is to
transform the dynamic equations to workspace coordinates. We use local coordi-
nates R? instead of SE(3) to parameterize the workspace. (Note that this works
only for the fully-actuated non-redundant case, that is when p = n, where n is
the number of independent actuators in the manipulator.) The forward kinematics,
g:Q — R" g(0) = X, is assumed to be a smooth, invertible mapping. The means
of transformation is via the manipulator Jacobian J(©):

) dg
r=J(0)e J(O) = —=. 2.1
i=J©)06  JO) =55 (216)
As we have assumed ¢ smooth and invertible we can write
: e " e d o
O=J"'X and 0=/J )&+aJ X.
Using these we can write the dynamic equations in workspace coordinates
M@)X +C(0,0)X + N(©,0) =F, (2.17)
where,
M = JTMmi ™,
. d
c = J7t (Crl + M;E(J“l)> J
N = J_TN, and,
F = JTrn

The matrices M and C have the structural properties attributed to the M and C
in equation (2.10). (Refer to Lemma 2.1.)

These properties allow us to extend the control laws mentioned previously from
the configuration space to the workspace. Given a trajectory X,(¢) in the workspace,
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we can use the workspace PD control law

F =K, Xg—X)+ Ky(Xy - X),
r=J'F,

for set-point regulation. The workspace augmented PD control law

F=M©)X;+C(0,0)X,+ N(©,0) + K,(Xg — X) 4+ K4(Xy4 — X),
r=J'F,

achieves exponentially stable workspace trajectory tracking.

2.1.4 Modeling constraints in the workspace

Some advanced robotic tasks involve interactions of the manipulator with its en-
vironment. Physical interactions of the robot with objects in its environment, in-
cluding possibly other robots, is usually modeled as a constraint in the robot’s
workspace. As we shall talk extensively of constrained manipulators in the sequel,
we provide a somewhat detailed outline of modeling of workspace constraints within
the scope of Lagrangian mechanics.

Before we talk further of workspace constraints we present the following aside on
holonomic constraints . Holonomic constraints are defined to be those which restrict
the motion of the system to a smooth hyper-surface in the configuration space Q.
This implies that we can represent a holonomically constrained system using a new,
smaller set of unconstrained variables which have the constraints implicitly in them.
However, we may not always be able to find a reduced set. We were able to use
the joint angles of the manipulator as a reduced set for a free manipulator, but
for constraints in the workspace it is not usually possible to find the reduced set
of unconstrained coordinates. Locally, we can represent & holonomic constraints as
algebraic constraints in the configuration space,

hilg) =0, i=1,...k (2.18)

where h; : () — R. We assume that the constraints are smooth and linearly inde-
pendent and hence the matrix

ohy ... Ol
. IZ] Oqn
dh; q1 ' q
% en, . om

oq Ign

is full row rank.

A constraint surface opposes the motion of the system against the constraint.
Therefore, an intuitive way of incorporating the effects of the constraint surface is to
postulate the existence of forces intrinsic to the surface which oppose motion against
the constraint. These are the constraint forces we talked about earlier. Constraint
surfaces may, in general, have multiple “preferred directions.” Since we need to
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define the constraint force direction for all surfaces, and planes (or hyper-planes)
and spherical surfaces have the surface normal as the unique preferred direction, the
direction of the gradient of the surface is taken to be the direction of the constraint
force. For a single scalar constraint [(g) = 0 the constraint force is given by

Jie = (VDA

The gradient sets the direction of the constraint. The undetermined scalar factor A
sets the magnitude of the constraint force and is called a Lagrange multiplier. For
the set of holonomic constraints, h;(¢) = 0,7 = 1,... ,k, the constraint force is a
linear combination of the forces due to each constraint,

onT

p

ic:

A,

where A € R¥ is the vector of the Lagrange multipliers. Note that this setup for
constraint forces is consistent with D’Alembert’s principle and no work is done by
the constraint forces. Also note the following property which will be extremely
useful in the sequel:

; dh  Oh

h=0=— = —q. 2.19
2~ 9g¢ (2.19)

As mentioned earlier (refer equation (2.1)) we can write a set of constraints,

more generally, in the Pfaffian form

A(q)g =0,

(the constraints are assumed to independent of time here), where A(q) € R¢*?
represents a set of & velocity constraints. The Pfafian form of the holonomic con-
straints h;(q) = 0,4 = 1,...k, is %%(j = {). Nonholonomic constraints can also be
represented as Pfaffian constraints, but they cannot be integrated to obtain alge-
braic constraints in the configuration space. We noted that holonomic constraints
implicitly satisfy D’Alembert’s principle. Constraint forces for nonholonomic con-
straints which satisfy D’Alembert’s principle can be written identically to those for

holonomic constraints:
F‘A = AT(Q))‘

where A € RF is, as before, the vector of Lagrange multipliers.
We can incorporate smooth, linearly independent constraints, written in the
Pfaffian form

Alg)g=0.  A(g) e RF" (2.20)

by considering the constraint forces as an additional force affecting the motion of the
system. Adding these forces to Lagrange’s equations (2.5) we get the constrained
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dynamics

dJdL OL T
4t dq  Oq + A" (A = Qe. (2.21)
The Lagrange multipliers are determined by simultaneously solving equations (2.20)
and (2.21) for the n + k variables ¢ and A. This guarantees that there will be no
motion in the constrained directions.

In case of a robotic manipulator, we can obtain an explicit formula for the cal-
culation of X as follows. The dynamics (equation (2.10)) with constraints A(@)@ =
0, A(©) € R¥*™ embedded in it can be written

M(©)6 +(C(0,0)0 + N(©,0) + ATe =7, (2.22)
The constraint equation in the Pfaffian form can be differentiated to obtain
A(©)6 + A(©)6 = 0.

Substituting © from equation (2.22) into the above equation and rearranging terms
we get for A

A= (AM~1AT) (AM_l(T ~CO - N) + A@) . (2.23)

The Lagrange multipliers can now be computed as a function of the current state, ©
and O, of the manipulator and the applied external torque 7. Once computed these
can be substituted into the equation (2.22) to compute the motion of the system.

2.1.5 Hybrid force-position control

A question which naturally arises from the above discussion is that of control of
forces of constraint. In applications which involve constrained manipulators, it is
very likely that the force of interaction (against the constraint surface) needs to
be regulated in addition to the position of the manipulator “along” the constraint
surface. This is the problem addressed by hybrid force-position control. There
are quite a few technical difficulties in not only trying to synthesise hybrid control
methods and proving their stability, but even in posing the problem, globally, in a
universally acceptable framework.

We now describe a hybrid control methodology for manipulators. In what follows
we assume a local, Fuclidean coordinate representation of the workspace. We also
assume that the constraints are holonomic. Therefore, if there are &k constraints
hi(©) =0.i=1,...,k, we can use a set of n—Fk coordinates, say, & = (¢1,... ,dn_i)
to parameterize the constraints. There is a smooth injective map f : R*™% — R
such that

hi(f(®)) = 0.

. §f —1 . . . . .
Letting J = g_q> we can rewrite the dynamics exactly as in equation (2.17) with



the X replaced by :
M(©)d +C(0,0)d + N(©,0) = F.

We are assuming that the manipulator remains in contact with the constraint at
all times. Consider a path on the constraint surface given by ®4(¢) and a normal
force to be applied to it specified by the Lagrange multipliers Ai(f),... , Ax(t). A
controller which achieves position control of the manipulator is

— (M(@)(ii»d + Kpea + Kqea) + C(0,0)d + N (O, (4))) ,

with e = ®4 — ®. This control moves the manipulator so it tracks the correct
trajectory on the constraint without applying any force against it. This means if the
manipulator is started off with its end-effector touching the constraint surface, it
will track the required trajectory, without pushing against the constraint. To make
the manipulator apply the constraint force we add on the torque required for the
normal force

k
™= N(t)Vh,.
i=1

The full control law is therefore
T=7T¢ + TN

We will discuss more general cases of control of constrained manipulators when we
talk about controllers for grasping.

2.2 Grasping Kinematics, Dynamics and Control

Grasping with robotic manipulators is an application where multiple robots interact
with each other. Each finger in a grasping setup is a manipulator. Seeing that this
work is motivated, partially, by applications of robotic grasping, and that there is a
large amount of experimental data we present from a grasping setup, we describe in
this section how we extend our tools to the study and control of grasping. Note that
most of what we describe applies to any setup with interacting robots and is not
specific to grasping. Our development of grasping follows that presented in Murray,
Li and Sastry [40], and the reader is referred to that publication for details.

2.2.1 Robotic hand kinematics

To be able to grasp with robotic fingers (each of which is a manipulator in its
own right), we need to be able to find out the relationships between the forces and
motions of the whole finger-object system. We assume as given the models of the
robotic fingers, the object and a description of the contact points as well as the
nature of the contacts themselves. The desirable properties of a grasp include:
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Figure 2.2 Coordinate frames for grasping.

1. The ability to resist external forces.
2. The ability to manipulate the object.

Determination of a set of contact points satisfying these criteria, is the problem of
grasp planning, and is a field of research in itself. Having noted this, we will always
assume in the sequel that the planning process has been accomplished.

The kinematics equations for grasping are derived under the assumption that the
finger never lose contact with the object being manipulated at the point of contact.
Equivalently, we can require that the relative velocity between the tip of each finger
and the point of contact of the finger with the object be zero at every contact point.
Before going further we describe the following coordinate frames for grasping (refer
to Figure 2.2).

Palm frame: All the fingers of the “robot hand” are attached to a common
base—“the palm.” The palm frame, P, is attached rigidly to the palm.

Finger base frame: FEach finger has a frame, S;, attached to its base. This frame
is stationary with respect to the palm frame.
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Finger tip frame: FEach finger has a frame, Fj, attached to its tip. This finger
moves with the tip of the finger.

Contact frame: FEach contact has a frame, C;, which has its origin at the point
of contact and is attached to (and moves with) the grasped object. As a matter
of convention, the inward pointing normal to the contact surface, at the point of
contact will be along the y axis of the contact frame.

Object frame: The object has a frame, O attached rigidly to it. This is the object
frame.

We shall find the following two constructs very useful for describing grasp kine-
matics and dynamics:

The grasp map G: The grasp map is used to transform the forces applied at
each contact of the object, in the contact frame, to the resulting wrench on the
grasped object in the body frame. If the object is in a p-dimensional space, and
m,; independent forces/torques can be applied at the ith contact point, then we can
use G; € RP*™ 3 linear map to transform the contact force, f,;, at the ith contact
point to the body frame, i.e.

Foi = Gifc:i‘

Define for a grasp with & fingers, G : R™ — RP, m = my + - - - + my,

G=[G Gy - Gy
and
e
fo= !
fo

As the wrench mapping is linear we can add together the wrenches at the object
frame for each contact force to get the total wrench at the body frame as

F, = Gf.. (2.24)

Given the above we can deduce from the principle of conservation of work the
following relation between the velocity of the object in the object frame, V, (its
body velocity) and the velocity of each contact frame with respect to the contact
frame, Xciz

X,
X.=1|:| =6, (2.25)

The hand Jacobian J: The hand Jacobian is used to transform joint velocities
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of the finger to the velocities of the tip frames in the contact frame. If J; represents
the mapping of the joint velocities to the tip velocity in the contact frame for each
finger, then,

Jy 0
Jp = . (2.26)
0 Ji
Note that J; are different from the usual manipulator Jacobian, because we are

representing the tip velocity in the contact frame and not the finger base frame as
would be the case for the usual manipulator Jacobian. With

0
O=]:
O
we can write
X = J,0, (2.27)

for the velocity of the finger tips in their respective contact frames. The force
relation that holds is

1

Tk

where 7; are the joint torques for the ith finger.
Now we can state the grasping kinematics in terms of the fundamental grasping
constraint as

Jn(©,X,)0 =GV, (2.29)

Here X, is the position of the object. The above equation (2.29) is just the mathe-
matical expression for the assumption stated at the beginning of this section.

To clarify the kinematics further we present an example here for the case of
planar grasping. This example resembles our experimental grasping setup.

Example 2.1 (Grasping kinematics for a two-finger planar hand)

The finger setup is as shown in Figure 2.3. We derive the kinematic equations
for grasping for this two-dimensional setup. The contact points are assumed to
be non-slipping, point contacts with friction. Therefore at each contact point the
manipulator can apply forces normal to and parallel to the surface of contact, while
staying within the friction cone. We use V,, € R? to denote the velocity of the object
frame with respect to the palm frame. V, has as its elements the linear velocities in
the = and y directions and the angular velocity about the z direction respectively.
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51 2
Finger 1 Finger 2

Figure 2.3 A planar, two-finger grasping setup.

Now we can write for the velocity of the object in the object frame

R, 017!
Voz[od) 1} Vop

with the notation that R, denotes the rotation matrix for an angle o about the z
axis perpendicular to the zy plane:

—sina  cosc

cosa  sina
Ro— [ } |

The velocity of the points of contact can now be written as

X, =G, = GTAdS 'V,

}f)‘b (1)] and G is the grasp map which

where we have denoted by Ad, the quantity {
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Countact frame

Frame aligned with

palm frame

Figure 2.4 Contact point magnified.

for our setup (see Figure 2.3) is

0 1 0 -1
G=|-10 1 0
1/2 0 1/2 0

Its transpose maps the body velocity of the grasped object V, to the velocities of
the points of contact in the contact frame. It is useful to get the velocities in the
contact frame because the null forces—that is forces resulting in no motion of the
object—are always along the y-axes of the contact frames (see Figure 2.4). In the
palm frame the tip velocity of each finger is given by

X; = J;6;,

with J; the usual manipulator Jacobian of the ith robot. In the contact frame these
velocities can be written as

X, = R;.lJz‘@zv

where R, is the rotation matrix between the frame aligned with the palm frame
and the contact frame at the point of contact. For our setup

R(ﬁ1 - R(J)—— %
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and
The kinematic equations are given by equating the velocities:

[R;llJl 0

N T -1
5 R;JJ 6 = GTAd, 'V,

or in the notation of the previous section,

. jl 0] »
Jh0~[0 j2j|@—G ‘/07

where J; = R, 1 J;.

We point out here that the above example is one of the simplest possible. The
equations for three-dimensional grasping, with multiple fingers and rolling allowed
at the points of contact would be vastly more complicated.

2.2.2 Robot hand dynamics

The dynamics for a robot hand grasping an object are obtained by combining to-
gether the dynamic equations of the fingers and the object. We write the dynamics
of the ith finger (refer equation (2.10)) as

M;(0,)0; + C;(0,,0,)0; + N;(0,,6;) = 7,.

Combining the equations together, we can write for the entire hand with & fingers

M;(©7)05 + Cy(04,0,)0; + Ny(07,0;) = 77, (2.30)
where
M, 0 Cy 0 Ny 1 O
My = Oy = Np=| i smp= 1509 = |
0 My, 0 Ck N Tk O

We write the dynamics of the object in local coordinates as
M,(X)X + C,(X, X)X + N,(X,X) =0, (2.31)

with X € R, a set of local coordinates for SE(3). Elements of this equation satisfy
the same structural properties as those in equation (2.10). Additionally we have the
grasping constraint (equation (2.29)):

Jn(©,X,)0 =GV,

We need to make three assumptions about the grasp to derive its dynamics:
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1. The grasp s force closure and manipulable. Force closure implies that the
grasp is able to resist all applied wrenches to the object (assuming that the
fingers have no limits on the forces they can apply). Mathematically this is
equivalent to stating that given any external wrench F, € RP on the object,
we have a f. € F'C, (FC denotes the friction cone) such that

Gf.= —F..

Manipulability implies the ability of the fingers to follow any object motion
while grasping it. Mathematically, this can be stated as R(G) C R(J,), where
R(-) denotes the range of the mapping.

2. The hand Jacobian is invertible. This ensures that we have no redundant
degrees of freedom.

3. The contact forces remawn in the friction cone at all times. This ensures that
the grasp constraints are always satisfied.

Under these conditions and letting ¢ € R™ x RP represent the variables (0, X), we
get the dynamic equations of the grasp (refer to [40] for details) as

Me(9)X + Cclg, )X + Ng(q.q) = F, (2.32)
where
Mg = M,+GJ Mg 6T
Co = CotGJ" (CfJ;ZlGT - Mf%J,;lGT>
Ne¢ = N,+GJ, "Ny
F = GJ,;—TT(;.

These equations have the same form as the equations for a single open-chain ma-
nipulator in equation (2.10) and satisfy the same structural properties.

2.2.3 Control of robot hands

Controlling a grasp is an exercise in hybrid force-position control. We are required
to control the trajectory of the object and in addition maintain a desired internal
force. An internal force in a grasp is a force which by itself does not cause any
motion of the object. In one sense the internal force determines “how hard” the
object is being grasped. Mathematically, a contact force, fn is an internal or null
force if fy € N(G), where N (+) denotes the null space of a linear operator.

To achieve control we first compute the forces required to move the body towards
the desired trajectory. Given a trajectory X, the required object wrench required
for a computed torque control law would be

F = Ma(q)(Xq+ Kpe + K4é) + Calq, §) Xq + Ne(q, ).
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The proof of asymptotic convergence to the desired trajectory follows directly from
those for the simple open-chain manipulator case. The required joint torques can
now be chosen to satisfy

-7
GJ, = =F

Note that because of our assumptions, the map GJh“T is surjective and therefore
the above equation always has a solution. Indeed there are multiple solutions,
which reflect the existence of the internal forces. The general solution assuming Jj,
invertible is therefore

16 =JIGTF + Jl fy, (2.33)

where GT = GT(GGT)™! is the pseudo-inverse of G and fy € N(G). We can
select fy to satisfy our internal force requirements without affecting the trajectory
tracking, because G annihilates these forces. Hence, we can use the control law

76 =JLGTF + Jl fu,,

where fy, is the desired internal force. Note that the dynamics of the system will
tend to change the real internal force experienced by the object. This is a hard
problem to solve in general and we assume that the internal force is high enough
that the other forces are small compared to it. Sensing of the finger tip forces and a
feedback adjustment of the forces is also a possibility, but we must be careful to not
get into algebraic loops doing this. There is also the distinction between internal
forces and “squeezing forces” [28] which we will not discuss here.

2.3 Structural Flexibility in Robotic Manipulators

Incorporation of structural flexibility into the kinematic and dynamic equations of
robotic manipulators is a subject of ongoing research. In this section we present
an overview of some ideas proposed for introducing flexibility into the manipulator
equations.

Structural flexibility can manifest itself in manipulators in two forms: joint
flexibility and link flexibility. Joint flexibility is usually easier to model and control
because it is localized at a joint of the manipulator. Link flexibility is rather harder
to deal with. We will only discuss link flexibility in this section. Fraser and Daniel [9]
is a good reference for the material in this section.

2.3.1 Link flexibility

The flexible behavior of links is modeled by the theory of flexible beams [10].
Bernoulli’s law for bending beams states that bending moment at any point of a
beam is proportional to the change in curvature caused at that point by action of
the load. If M is the bending moment and r the radius of curvature at a point
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Figure 2.5 Cantilever under load.

(refer to Figure 2.5) then we can write

m=E,
,

with C a constant. In the Cartesian coordinates shown, the radius of curvature r is

given by
p 3
2
(1+ (2
r= e
dz?
The full bending equation therefore becomes
cay
M= dz® (2.34)
d; 3
(1+(42)
This equation is the

This equation is called the Bernoulli-FEuler beam equation.
basis of analysis of deflection of planar beams. It is a second order nonlinear dif-

ferential equation which cannot be solved in general. In engineering applications
equation (2.34) is linearized by neglecting the (dy/dr)? term in the denominator.
However, this works well only for deflections which are small in comparison to the
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length of the beam. Further, the above equations are for a statically loaded beam.
When the loading is varied the equations become vastly more complicated. We have
to solve fourth-order partial differential equations, which for the linear case are of
the form

oty 2y
Y Y, 2.35
ot o " (2.35)

with boundary conditions dependent on the loading and constraints at the ends of
the beam.

2.3.2 Modeling alternatives

As should be evident from the foregoing discussion a closed form solution for the
flexibility is not realizable. Equation (2.35) can be solved by separation of variables
giving individual solutions of the form

yi(x,t) = ¢i(z)ni(t), (2.36)

with 7; purely a function of time (and includes an arbitrary constant) and ¢; purely
a function of the displacement along the beam. The ¢; are called the mode shapes
of the beam and the 7; are the time-dependent amplitudes. The full solution is the
infinite sum

oG

y(l‘,t) - Zyi($7t)

i=0
>0
= > gila)mi1). (2.37)
2=0
The zeroth mode is the rigid body mode.
Once the mode shapes and the time dependent amplitude functions have been
determined, we can use these to derive the dynamics by introducing the energy

due to the flexibility into the Lagrangian. The kinetic energy is given by (refer to
Figure 2.5)

1 /! ‘
Ty = 5/ y(x, ) mdz, (2.38)
0

where m is the mass per unit length of the beam. The potential energy is given by
1 {

Vit=3 / Cy' (z,t)%dz, (2.39)
J0

where we have denoted differentiation with respect to « by . Using orthogonality
properties of the modes and substituting in the solution for y from equation (2.37)
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the kinetic and potential energies of the system can be written as

I,

Ty = 5> I} (2.40)
i=1
1 oo

o= §folwi277izv (2.41)
=1

where we have used

I
/0 mei(z)¢;(z)dr = I,

and 0;; is the Kronecker delta. The 7, form a set of generalized coordinates for a
Lagrangian analysis of the system. To make the problem manageable a truncation
of the number of modes is carried out and only the first few modes (usually <
10) are used. This is one of the most widely used methods used for modeling
flexibility. It is also called the assumed modes method for modeling flexibility.
Flexible manipulators can be adequately modeled with this technique using a finite
number of modes. The number of modes required depends on the frequencies of
interest and the performance goal for the manipulator. In general finding the mode
shapes and the time dependent amplitudes is a nontrivial endeavor, especially in
the case of multi-link, constrained manipulators where the boundary conditions can
be fairly complicated.

Another way of modeling flexibility within the Lagrangian setup is to use finite
elements. A set of displacement and/or slope values at certain points on the flexible
beam (nodes) are used as generalized coordinates and the shape of the beam in
between these is given by shape functions dependent on z. Expressions for kinetic
and potential energies of the system are developed from these. Usoro et al. [56] use
this approach for modeling of flexible manipulators.

2.3.3 The rigid sub-link model

We wish to consider deflections in excess of those to which the linear model
applies, but the full nonlinear beam model is not very tractable. The assumed modes
method is difficult to extend to multiple links because of complicated boundary
conditions. The finite element based methods are usually computationally intensive.
Therefore, for our analysis and simulation, we choose to use a finite link model for
the flexible link. This model replaces a flexible link with a series of rigid sub-links
connected through linear torsional springs and dampers, such that the lengths of
the sub-links add up to that of the original link (see Figure 2.6). With appropriate
values for the spring constants this model can estimate the actual modes of a flexible
beam. Larger numbers of sub-links improve the approximation.

In contrast to the assumed modes methods, the modeling of links as a series of
masses and springs does not require the a priori assumption of mode shapes. This
has the advantage that the model parameters can be identified and verified from
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Original flexible beam Rigid sub-link model

Figure 2.6 The rigid sub-link model of flexibility.

experimental data and the model can be tuned to agree closely with the actual robot
link. The number and stiffness values of the springs can be selected appropriately
to represent a realistic model. Zaki and El Maraghi in [60] state for a cantilever
beam, that treating the links as Bernoulli-Euler beams and matching the end point
deflection of the actual beam to the discrete link approximation the, appropriate
spring stiffness to use in the sublink model is given by

_ 3EI(n—1)2n—1)

k
t L 6n

where n is the number of sublinks in the model and ET and L are the flexural rigidity
and the length of the continuous model respectively. Note that the expression for
the spring constant grows unboundedly as the number of sublinks is increased.
Representing a cantilever beam with three segments the first mode of the beam
could be estimated correctly. However, it was found that the estimation of the
second mode was below the actual second mode of the beam [60]. The number of
sub-links required to get good estimates for higher modes would of course be larger.
Yoshikawa and Hosoda in [59] present one technique of getting the model pa-
rameters for an actual robot manipulator and verify its accuracy against a real
experiment. They derive the dynamic model of the beam using virtual rigid links
and passive joints consisting of springs and dampers. The parameters of the virtual
links and passive joints are identified from measured data of the real flexible link.
Instead of basing the model on just one characteristic they select several static
(e.g., deformation of the tip under load) and dynamic (e.g., natural frequency)
characteristics of the real link and measure their values. The parameters of the
model are then tuned to minimize the weighted error between the characteristics of
the real link and the model. Denoting the characteristics of the real arm by «, and

Springs



those of the model by «,,, parameters for the model are selected to minimize

(i, =t )?
J = Zuji—z-f.‘—l7
T

i

where w; is the weight accorded to each characteristic. The characteristics for the
model can be calculated quite easily from the dynamic equations of the sublink
model.

For example, in Figure 2.6 if we consider the link to be a planar cantilever with
no joint flexibility (i.e., the first link is fixed), and disregard damping the dynamic

equation is

mo1 Moz |do 0 ko [¢2 /
with ¢1,¢2 the angles at the passive joints, the m the inertia terms and the &
the springs constants at the joints. Note that mjs = mo;. Disregarding second

and higher order terms of vibration, the first and second natural frequencies of the
sublink model are the solutions of the equation

kiks — w? (maoks + murks) + w(myimay — m2y) = 0.

The static deformations at the tip due to the action of forces or moments are de-
termined as follows. The angles ¢, ¢o at the passive joints are solutions of the
equations

{quﬁl] _ [—ll sin¢gy — losin(¢y + ¢2) 11 cos py + o cos(Py + ¢2) 1 1;“17
kogo —~lysin(¢1 + ¢2) I3 cos(¢1 + o) 1 ]\/3

where lg, 11,3 are the lengths of the three sublinks and P,, P,, M are the forces in
the z and y directions and the moment respectively. The static linear and angular
deflection of the tip are given by

Uy Iy cos ¢y + lp cos(1 + ¢2) — 11 — Iy
uy e l] Sin ¢1 + 12 Sill(¢] + ng)
bm P1 + P2

where u, and u, are deflections in the z and y directions respectively and ¢,, is the
angular deflection.

The incorporation of the rigid sub-link approach into the Lagrangian setup is
extremely straightforward. Once the parameters of the sublink model for each
flexible link are computed these links are connected for the full manipulator. The
original flexible manipulator is replaced by a rigid manipulator with greater number
of links and with passive, unactuated joints. The dynamic equations follow exactly
as shown before for the rigid case. The extra parameters introduced are the angles
at the unactuated joints. These serve as additional generalized coordinates in the
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equations for flexible manipulators. The form of the equations for a free manipulator
(compare with equation (2.10)) is

M1y M2 @ n c11 €19 @ N 0 0110 + kg O &) T
mo1 oot |U o1 Co| | P 0 ks |W 0 ky, ol ol
(2.42)

The © are the angles at the actuated joints (the real joints of the robot) and the
VU are the joint angles for the passive joints from the sublink model. The spring
constants for the sublink model are given by kg and the damping at the joints are
modeled by ky, and ky,. We have not considered any other nonlinear effects. Note
that on the right hand side of the equations there are no external torques applied
directly to the passive joints as they cannot be directly actuated. The structure of
these equations is important for our analysis and we shall have occasion to refer to
them in the sequel.

We present an example here, which again is from our experimental setup, to
clarify the dynamic modeling using the rigid sub-link model.

Example 2.2 (Dynamics of a manipulator, with the last link flexible)
The example system is shown in Figure 2.7. The manipulator is a planar, two-degree
of freedom, revolute jointed robot with the last link flexible. In what follows g € R”
is used to denote the vector of all joint angles, © the vector of actuated joint angles
and ¥ the vector of unactuated joint angles (refer to Figure 2.7), i.e.,

0 61 ?/)1J
4 [‘I’] [92} [%
The usual manipulator dynamics equation is obtained by carrying out the procedure
outlined previously

M(q)i+ Cl(q,4)¢+ N{q,q) =7,

with,

the Inertia matrix,

the Coriolis matrix,

the applied joint torques, and

the vector of other generalized forces.

zv Qg

The vector N is split into two components, one of which is related to the springs on
the passive joints and the other to the damping. We assume a viscoelastic model
for the beam flexibility. The equation obtained is therefore,

M(q)i + Clq.d)q + Kyq + K g = M ,

where the bottom zeroes in the torque vector are due to the unactuated joints. The
matrix K, is a diagonal matrix of spring constants with the elements corresponding
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Figure 2.7 Manipulator with last link flexible.

to the actuated joints (without springs) equal to zero:

0 0 0
0 0
K, =

g kg, 0

s
0 kg,

o OO o

0
0
0

Ky is similar to K, but with diagonal elements corresponding to the damping coeffi-
cients. Ky can also hold the values of frictional damping coefficients for the actuated
joints.
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Chapter 3

Singular Perturbation Analysis

Singular perturbation analysis is often used as a means of reducing the order of a
system by using its time-scale properties, a generalization of the concept of invariant
subspaces in linear systems to nonlinear systems. For control purposes singular
perturbation methods are both, a set of tools for modeling and a framework for
controller design. However their key contribution is in the realm of modeling and
model simplification.

In this chapter we discuss the basis of singular perturbation analysis. The stan-
dard form of the mathematical exposition of the theory of singular perturbations is
presented next. We then extend and modify the theory to a form most convenient
for our analysis. The reader is referred to the publications of Tikhonov [53, 54]
and Hoppensteadt [16, 17, 18] and the book by Khalil [23] for greater details on
the standard singular perturbation theory. A review of singular perturbations in
control problems is provided by Kokotovic [24].

3.1 Standard Singular Perturbation Analysis

In the systems analysis and modeling literature, singular perturbation theory is
generally presented for a system of first-order ODEs. Though we can convert the
dynamic equations of the robot to a system of first-order ODEs, it is attractive to
preserve their second-order form for intuitive clarity. In this section we present the
theory in its first order form first. A discussion of the time-scale properties of the
system follows. We then present a modification of the approach for second-order
ODEs.

3.1.1 The standard model

In the first order presentation of singular perturbation theory, the standard singular
perturbation model denotes the system of (possibly vector) dynamic equations

i‘ = .f(t7 ‘T7 y? 6)7 ‘I‘. E R7ﬂ
ey = g(t,z,y,e), yeR" (3.1)
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where € is a positive scalar parameter multiplying some of the states. When ¢ is
set to zero, it causes a fundamental and abrupt change in the dynamic properties
of the system. Instead of having a set of equations which are purely differential,
we are left with the set of combined differential and algebraic (or transcendental)
equations

[, z,y,0)
0 = g(t,z,y,0). (3.2)

The system of equation (3.2) is a lower order system than the one described by
equation (3.1) and in many cases would be easier to analyze: a motivation for per-
forming this operation. However, the two systems may be very different because
of the discontinuity introduced by setting € to zero. Singular perturbation theory
surmounts that problem by analyzing the standard model in different time-scales.
Informally stated, the differing time-scales argument considers the reduced system
given by equation (3.2) to be the slow response of the full system given by equa-
tion (3.1). The discrepancy between the response of the full model and the reduced
model is the fast transient and is modeled by the boundary-layer system. The as-
sumption is that the reduced system approaches the original full system as they
evolve beyond the initial boundary-layer interval. The formal exposition of these
ideas requires the introduction of the concept of the integral manifold.

Definition 3.1 (Integral manifold)
A smooth manifold § C R x R" is called an integral manifold for the equation

z=X(t,x), r e R

if for all (tg,z0) € S, the solution (¢,z(t)) € S, z(ty) = g, for t € R. If this is true
only for a restricted ¢ then S is a local integral manifold for the equation.

We will use the terms integral manifold and invariant manifold interchangeably in
the sequel. The following theorem sets up the necessary conditions for the existence
of an integral manifold for the standard model [51].

Theorem 3.1 (Existence of an integral manifold for the standard model)
Let the system of equations

&= f(t,z,y,¢€) x e R™, (3.3)
ey =g(t,z,y,¢) yeR"

where t € R and ¢ is a small positive parameter satisfy the following conditions:
1. g(t,r,y,0) = 0 has an isolated solution yy = ho(t,z) fort € R,z € R™.

2. The functions f, g and hy are twice continuously differentiable in t and z,
teR zeR™, |y—ho(t,z)| <p, 0<e<e, for some p,eg > 0.
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3. The eigenvalues N\; = \j(t,x),1 = 1,2,...,n, of the matriz
0
Bl(t,z) = b—‘g(t,z,ho(t,m),())

satisfy the inequality
Re(\) € —26<0, tcRazeR™,

for some 3 > 0.

Under these assumptions the system of equations (5.3, 3.4) has the integral manifold
ye = h(t,z,€) on which the flow of the system is governed by the m-dimensional
equations & = f(t,z,h(t,z,€),€). The function h is continuously differentiable and
h(t,.T,O) = h().

Using the definition of the integral manifold y. = h(t, z, €), we can get a condition
to verify if the manifold given by y = h(t, z) is actually an integral manifold:

oh 4 oh
— +e—1%
ot “ox”
oh oh . .
= €5 + E%f(t, x,h,€), (on the integral manifold).

€y = eh =¢

Therefore for the manifold to be an integral manifold it must satisfy

oh oh ,
- + e%j(t,x, h,e) = g(t,z, h,e).
When f and g are sufficiently smooth then by algebraic operations on the above
relation we can also find the asymptotic expansion h = ho(t, z) + ehy(t, ) + €%. ..
for h (for details refer to [23]).
The existence of an integral manifold for a system implies that there is a reduced

order system which evolves on the manifold and is governed by
= f(t,z,h(t,x,€),€). (3.5)

Thus the integral manifold provides a way of model simplification. However, the
reduced order model is a correct description of the full dynamic system only when
the initial state is on the reduced manifold. When the initial state is not on the
integral manifold we can still use to advantage the concept of the integral manifold
by making a change of coordinates from y to the so called off-manifold coordinates
z,

z=1y—h(t, z,e).

The description of the system in these coordinates leads to the simple manifold
condition

z =0,
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and on the manifold surface the “z-subsystem” is at an equilibrium in the sense that
z(to) = 0 implies z(¢) = 0 for all ¢ greater than ty for which the solution is defined.
The off-manifold coordinates in a sense measure how far away the system is from
being on the integral manifold. If our primary interest is in the reduced system, the
off-manifold variable can be treated as a correction term or a perturbation of the
“main system” represented by equation (3.5).

3.1.2 Time-scale properties of the standard model

In the singular perturbation approach the parameter ¢ which appears in our state-
ment of Theorem 3.1 is the perturbation parameter. The structure of the standard
model causes a multi-time-scale response of the system characterized by the presence
of fast transients and slower long term behavior. As e — 0, y = £ — oco. Thus the
y variables change very rapidly compared to the z variables. On the introduction
of a fast-time variable which is scaled from the regular time variable by the inverse
of €, the slow subsystem appears to change very slowly for small ¢ and is in fact
stationary when € is 0. If the other (fast) subsystem is stable about the integral
manifold (which is to say that the off-manifold coordinates go to 0) in the fast time,
then the whole system very soon (in terms of the slow time) “hits” the integral
manifold and starts evolving on it. Thus if the slow subsystem (which at this point
is the only non-stationary subsystem) has a unique solution and is stable the whole
system is essentially stable. Note that this argument is for the case when ¢ = 0. If
€ 1s not zero but is small then the conditions of Theorem 3.1 are sufficient to ensure
that the evolution of the system on the integral manifold defined by y. = h(t, z, ¢)
is only O(¢) away from that on the integral manifold hg obtained with e = 0.

We state the foregoing ideas mathematically now. In what follows we assume
0 < € < g, as in Theorem 3.1, and the subscript , denotes variables on the reduced
manifold with e = 0. Note that the specified initial condition y(ty) can be arbitrarily
far from y.(tg) = h(to,z.(to)). Thus in a time interval of interest [to, T], T > to,
which is sufficiently long we can have at best

with T" > ¢;. However z can start from its specified initial value z(tg) and
z =1x.(t)+ Ole), te€]ty,T) (3.7)

The time interval [tg, ¢;] is the boundary-layer interval. during this time interval y
approaches y, and from #; on remains close to it. Defining the fast time variable

t— 1ty dy dy
5= = € = —,
€ dt  ds

the equation for the fast, boundary-layer subsystem in the fast time is obtained



from equation (3.4):

dy ) ‘
I = g(to. z(to). 4(s).0), (3.8)
/s

with initial condition §(0) = y(to) and z(tg),ty as fixed parameters. A uniform

approximation of y can now be given as
y = ys(t) + 9(s) — y«(to) + Ole). (3.9)

To satisfy the assumptions of Theorem 3.1 we require that the boundary-layer sys-
tem be asymptotically stable uniformly in z(¢g) and #;. The boundary-layer interval
[to, t1] can be made arbitrarily small by making e sufficiently small. The following
theorem by Hoppensteadt [16] summarises and extends the foregoing discussion.

Theorem 3.2 (Singular perturbations on the infinite interval) Given suffi-
ciently small initial conditions and € > 0, the solution of the full system, equa-
tion (3.1), exists for tg <t < oo, and this solution converges to the solution of the
reduced system given by equation (3.2) as € — 07 uniformly on all closed subsets of
to < t < oo if the following conditions are satisfied:

1. The reduced system has solutions x = x(t), y = y(t) which ezist for all tg <
t < oc.

2. The functions f, g and their first partial derivatives f,, fy, g1, 9. and g, are
continuous.

3. The function yo = ho(t,z), is an isolated solution of g(t,z,vy,0) = 0 for all
te R and z € R" and is bounded and twice continuously differentiable.

4. The function f is continuous at y = 0, ¢ = 0 wuniformly in ¢t and x, and
f(t,2,0,0) and f.(t,2,0,0) are bounded on R x R™.

&

The function g is continuous at € = 0 uniformly in t, z and y and g(t,x,y,0)
and its derivatives with respect to t, x and y are bounded on R x R™+™,

6. The reduced system given by equation (3.2) is uniformly asymptotically stable.

7. The boundary layer system given by equation (3.8) is uniformly asymptotically
stable uniformly in tg € R and z(ty) € R'™

The following theorem from Khalil [23] discusses requirements for asymptotic sta-
bility:

Theorem 3.3 (Asymptotic stability) Consider the autonomous singularly per-
turbed system

i = flx,y), z e R™
ey =glr,y), yeR" (3.10)
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and assume that the origin, x = 0, y = 0, is an isolated equilibrium for it. Let y.(x)
be y variable on the reduced manifold and z = y — y. the off-manifold coordinates.
The reduced system can be written as

i = fz,.) (3.11)

and the boundary layer system can be written as

% —gla x4y, (3.12)

Assume there exists a Lyapunov function W (x,z) for the boundary layer system
such that its origin is asymptotically stable uniformly in x and a Lyapunov function
V(x) for the reduced system such that ils origin is asymptotically stable. Let the
following conditions be satisfied for oy, s, By, B2,y = 0:

1. V< —ayp2(x), where py : R™ — R is a positive definite function.
2. W' < —aop3(2), where ps : R* — R is a positive definite function.

3Gzl € Wiz, 2) < G(|lz]]) for (1 and (o strictly increasing functions with

(1(0) = ¢2(0) = 0.

4o (fwoz + ) — flay)) < Bupi(a)pa(2).

2 (%ﬂ- - %L%)ﬂ 2+ ) < Bopi(2)p2(2) + 703(2).
Then for
_ (82K 8D]
ayy + B

the origin of the autonomous singularly perturbed system, equation 3.10, s asymp-
totically stable for 0 < e < €*.

The foregoing discussion sets up our use of singular perturbation as a tool for analysis
and control. Of course, the model has to be first cast into the framework of the
standard model, which means a perturbation parameter has to be chosen. This is
nontrivial task in many cases. Once in the framework, if the fast, boundary-layer
dynamics are asymptotically stable we can restrict our attention to the reduced
system to determine stability or other system properties.

3.1.3 Singular perturbation of second-order ODEs

The standard singular perturbation model is set up in the framework of first-order
ODE’s. However, dynamic equations for robot manipulators are usually derived in
the form of second-order equations, and are intuitively more attractive to manip-
ulate in this form. This section addresses the problem of modifying the approach
presented above to handle second-order equations.
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One possible way of dealing with second-order equations which cannot be ex-
pressed directly in the standard form (equation (3.1)) is that of Hoppensteadt in [17].
The problem addressed is

r = f(t:I“yl 7y’n36)7
5/’!/] = gj(tv:l’)ayl-,-” -,2/7256)7 7 = 1 5 T2,

with, z,y; and f, g; respectively € R",R", |e] = 0. ¢; >0, €;11/¢; = 0 as |e] — 0.
Conditions for the solutions of the above equation to converge to those of

= f(tv$aylv"'7yn70)ﬂ
= gj(tvg”ayla”"/ynvo)‘/ J=1...,n,

require the consideration of a hierarchy of boundary-layer equations. However, this
approach need not be used in our problem because we are able to frame our problem
in a way which can easily be transformed to the standard model.

A set of second-order ODE’s can be written as

§=clt.q.q), QeR"

-9

the second order equations can be written as

If

0 = f(t,0,0,9,9), ©OcR™
d = ¢(t,0,0,9,9), dcR",

with £ = m +n. On introduction of the perturbation parameter €, assume that the
equations can be expressed in terms of © and a new variable ¥ as

(:) = f(t/@, @7 @,6@76), SRS R™
9

&0 (1,0,0,0,el,¢), UeR. (3.13)

[l

Using

0 v
X = [@j' and, Y = [6\11] s

we can write equation (3.13) as

X = f(t.X.Y.e), XeR™,
&Y = §(t.X.Y,e), Y eR™, (3.14)

which is in the form of the standard model, equation (3.1).



Obviously, this approach works only if we can find the correct perturation pa-
rameter € to convert the second-order equations to the rather special form required.

3.2 Treating Flexibility Using Singular Perturbation

Mechanical systems with flexibilities have been analyzed using tools from singular
perturbation analysis for a long time. Analysis of flexibility using singular pertur-
bation is based on the assumption that the system modes can be separated into two
distinct groups; low frequency modes, which can be considered the slow modes, and
high frequency modes which are fast modes.

3.2.1 Traditional singular perturbation approach for flexibility

Traditionally, the perturbation parameters (e), used for the analysis of flexibility are
typically the inverse of the stiffuess of the flexible mechanism or the inverse of the
stiffness weighted by a factor depending on the mass (see for example [22]). This
framework results in the reduced system being rigid. As the full system is only
a perturbation away from the reduced system, this approach can handle relatively
little flexibility.

In the case of robot manipulators, singular perturbation techniques have been
used previously to deal with joint flexibility [52]. The problem of joint flexibility is
significantly easier than that of link flexibility due to the localized nature of joint
flexibility. In the method presented in [52] the dynamic model of the robot is ex-
tended with the inclusion of an additional configuration variable at each joint to
allow the actuator and the link angle to be different due to the flexibility. Tor-
sional springs at the joints are used to model the flexibility. The reduced system
is obtained by setting the torsional spring constant to be infinite (the perturbation
parameter is the inverse of the spring constant). The flexible joint robot is therefore
a perturbation of the rigid robot.

In the literature there is also discussion of perturbation techniques (both regular
and singular) for flexible link manipulators [9]. The starting point for the singular
perturbation approach is a dynamic model of the arm. As the ultimate aim in these
analyses is to separate the rigid and the flexible dynamics, the modeling is done so
as to be able to distinguish between the two effects. Such an analysis is carried out
in [49, 50], and controllers are designed for the rigid and the flexible subsystems.
This model is usually written as [50]

O R E e AR |

where, the © are the joint angles and the ¥ are the variables introduced for modeling
flexibility. The KW term is a measure of the flexibility. The 0 on the right hand
side of the equation denotes that forces/torques may not be applied directly to the
flexible variables. To carry out the singular perturbation argument the assumption
is made that the dynamics of the arm can be partitioned into the fast dynamics,
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which are due to the flexibility and the slow dynamics, which are due to the rigid-
body modes. To enforce the high frequency dynamics of the flexibility, the stiffness
of the manipulator has to be high (high K'). Thus, the perturbation parameters used
in these analyses have always been scaled from the inverse of the stiffness associated
with the manipulator. The reduced system (e = 0, or, K — 00) is rigid. Small values
of the perturbation parameter correspond to systems which have a “small” amount
of flexibility. Thus these analyses present results useful for systems which are “close
to” being rigid. Even so it is doubtful that the assumption of separation is justified,
particularly for high speed motion [9]. The assumption is even more questionable
when we consider constrained motion of the manipulator. Due to the constraint,
any motion of the “rigid variables” has to be matched by the motion of the “flexible
variables” so as to maintain the constraint. Thus, the separation of the frequencies
does not seem to hold.

3.2.2 Singular perturbation approach for treating relatively large
flexibility

Given that our stated aim is to model relatively large flexibility in constrained
motion robotic tasks, the traditional approach to singular perturbation modeling
and analysis of flexible systems is clearly inadequate. In this section we present
our alternative approach to singular perturbation analysis of flexible robots which
is capable of handling significant flexibility.

Before embarking on a description of our approach we present the following as a
motivation and an illustration of the ideas which form its basis. Consider a scalar,
linear, mechanical system

mi + ct + kx = f(t).

The damping factor (or damping ratio) of the system is given by

(= —c (3.15)
2vVkm

The value of ¢ is very important in determining the transient response of a system.
If { = 1 the system is critically damped, ¢ > 1 is an over-damped system and ¢ < 1
is an under-damped system. Critically and over-damped systems do not exhibit
oscillatory behavior. We assume that the transient response of the flexible beam is
its most important characteristic and therefore must be preserved in any analysis.
To conserve the value of ( irrespective of m, the damping coefficient ¢ must be of
the form

¢ = by/m, (3.16)

where b is a constant. Figure 3.1 shows the behavior of this system as the mass is
varied. The step response becomes faster with decreasing mass. However, the over-
shoot of the system remains a constant. The Bode plot shows that with decrease in
mass the natural frequency of the system increases, however the maximum response
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(a) Step response. (b) Bode plot.

Figure 3.1 Spring-mass-damper system with varying mass and con-
stant damping ratio.

does not change. Note that k, which models the flexibility, has been kept a con-
stant. In this system if the mass of the system — 0 the system responds infinitely
fast to any input, however, the extent of its response is not affected. This behavior
is the rationale behind the singular perturbation setup we use for analyzing flexible
manipulators.

Our approach for singular perturbation of flexible link robots does not use the
inverse of the flexibility as the perturbation parameter. Instead we choose the mass
of the flexible sublinks as the square of the perturbation parameter, that is,

e =my, (3.17)

where, m g is the mass of the flexible sublinks. All sublinks do not have to have the
same mass. Their masses must however be scaled by €?. As we want to preserve the
quality of the transient response of the system, we make the additional assumption
that the damping ratio (or factor) for the flexible links is a constant irrespective of
the change in mass. Therefore the damping at the unactuated joints in the sublink
model of the manipulator, k7, in equation (2.42), is scaled by the perturbation
parameter (from equation (3.16)). Hence as the perturbation parameter € goes to 0
we have a simultaneous reduction in the mass and the damping. The extent of the
response is however not affected.

Comments on the new approach

The singular perturbation approach described above is different from the usual
singular perturbation that has been used so far for the treatment of flexible me-
chanical systems. This approach offers significant advantages for the analysis of
flexible robots. The most important advantage we gain is the ability to consider
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significant flexibility. We do not have to assume that the reduced system is a rigid
robot, indeed the reduced robot has exactly the same flexibility as the original flex-
ible robot, and flexes to the same extent. For hybrid force/position tasks this is
very important because the forces to be applied at the end effector depend greatly
on the geometry of the system. The preservation of the damping factor preserves
the qualitative transient behavior of the manipulator. We shall discuss later the
dynamic properties of the reduced, singularly perturbed system and its behavior.

Another feature of this approach is its suitability for application to real systems.
In Chapter 1 it was pointed out that one of the primary reasons for wanting to
design and operate flexible robots is to benefit from the reduction in mass. An
analysis based on our approach should work very well for lightweight robots. The
linking together of the variation in mass and the damping of the flexibility results
in a system for which we can analytically prove the existence of stable control laws.
Thus it provides guidelines for the design of light flexible manipulators. Control
laws designed for flexible robots under our singular perturbation framework will
perform qualitatively similarly for classes of flexible robots with different masses, if
the damping present in the flexibility is varied as in our approach. The parameters
available during design include choice of material, geometry and actuation methods.
Materials differ in their densities and viscoelastic properties. The flexibility of links
are also affected greatly by the geometric distribution of the material. Actuation,
especially with the advent of smart materials like shape-memory alloys can be used
to change properties of links even in real-time and with feedback. Given these
choices during the design stage, it is possible to preserve, the relation between the
mass and the viscous damping of flexible links.

3.3 Singular Perturbation Based Reduction of the Flex-
ible Manipulator System

Similar to equation (2.42), we can write the dynamic equation of a constrained
flexible robot (compare equation (2.22)) as

my Mo (:":)+C'11 Cho (":)+0 0 @+
My Mas| | W Coy Coo| | T 0 kol |
kfg 0 @ Ag I K
[ 0 Kft,:’r:l [\I}] * {AJ A= [0} - (3.18)

As in equation (2.42), we have used © to represent the actual angular variables of
the robot and W to represent the passive joint angles of the sublink model. The
constraint condition is

h(O.T) =0, (3.19)
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and

onT A = onT

The spring constants modeling the flexibility are the diagonal submatrix k,; and the
viscous damping of the active and passive joints are the diagonal submatrices kg
and Ky, respectively. We have written the dynamic equations in the above form
to facilitate the application of our singular perturbation approach. The significance
of uppercase and lowercase symbols will be apparent in the sequel, when the per-
turbation parameter is introduced. The structural properties of the robot dynamic
equations, set out in Lemma 2.1 are valid for the quantities in this equation. Hence,

. i Mg Cn Cho .
M-20 =" . -9 3.21
I:MQ] MZQ:I [021 CQ‘Z:} ( )

is skew symmetric. Therefore, the diagonal submatrix blocks r; —2C; and MQQ —
2C95 must also be skew-symmetric.

We assume that the masses of all the flexible links are scaled by the parameter
€2 and the viscous damping at the passive joints is scaled by e, i.e.,

Ky = ekypy. (3.22)

Using the definition of the Coriolis matrix (equation (2.9)) and substituting in the
assumptions made above we can rewrite the dynamic equations of the flexible ma-
nipulator as

miy 62717,12 @ + Cu@ 620126 (") + 0 0 O] +

mo,  €mos| | T e U eyl | T 0 kep| |V
ki 0 ][0]  [40], _[7 ‘
5w L= (i) e

where we have used

M;; = €*my;  (except for ij = 11)
Cii = 10

C12 = 626129

ij = 62(31"7"1/ (fOI 1 == 2.,]' = 1, 2) and
Ky = ¢€kypy.

Equations (3.18) and (3.23) are identical equations. Transforming the above to the
form of equation (3.13) we get

mip o M2 (—) T 110 O (") n 0 0 © L
emaor mos| |20 T |0 62(,721\11 e2eo | | W 0 Eey| |V

F o 0 s} Ay .
[ 0 ek;ﬂ,} M + { Aw] A>, (3.24)



or,

@ — | T a2 L _ 01,1(;)‘ 62612@ o] [0 o][e]
V] [Fmy ma 0 eV enpl| |V 0 FKgp| |¥
kf() 0 (") B Ay 0 or
5w - L) e

Equation (3.25) is the dynamic equations of the flexible manipulator transformed
to the standard form for second-order ODE’s described in equation (3.13). We will
not convert it further to the first-order standard form of equation (3.14), but will
manipulate it in its second-order form. In equation (3.25) the singular perturbation
parameter is €, the fast variables are the ¥ and the variables governing the evolution
on the reduced manifold are the ©.

3.3.1 Reduced order system

The reduced order system is obtained by setting ¢ = 0 in equation (3.25):

vn,1]é+011(;)+kf9(;)+A9>\: T (3.26)
kW + ApA =0 (3.27)
h(©,T) = 0. (3.28)

Consider the equations (3.27) and (3.28). Applying the implicit function theorem
to these equations we can say that if the matrix

AL
Q= Pt T Au
AT 0

is nonsingular then we can express ¥ and A as functions of ©. This is assured at all
nousingular configurations of the flexible links of the manipulator by the presence
of A, at the anti-diagonal positions of 2. Therefore, in the reduced system we can
use

U = J(0) and
A= A(O). (3.29)

The reduced order system is the system for which we shall design some of our
control laws. Stability of the laws will be proven for the reduced order system.
The theory of singular perturbations presented earlier will be then be used to draw
conclusions about the full system.

3.3.2 Boundary-layer system

We define the fast time variable s = f Differentiation with respect to this time

variable is denoted by . The derivatives of the “slow” variables () in the new
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time, s are small and disappear entirely at € = 0. In the boundary layer system
therefore © are stationary. Hence,

O =0 and, ©"=0.

Thus we have the following relation which holds for the constraints in the boundary
layer system:

h(O©,T) =0,
dh .
= T4+ 04, =0,
e v 4, = 0. (3.30)

Setting € = 0 in equation (3.25) and using the following identity for the inverse of a
matrix in terms of its block sub-matrices:

A DI7' _[A' —A-'DB™!
0o Bl ~|o B!

the boundary layer system is

Mo’V + (eczg\il)e\if + /(.:fwe\i/ + kg U+ Ay A =0,
h(0,V) = 0. (3.31)

In the fast time variable this can be written as

WLQQ‘IJ” + 522\11/ + /‘wa U /i‘st‘/j\l’ + Alx’5)‘ = (),

v, =0, (3.32)
where we have used
d d
€ = e
dt ds’
,d> P
g and

€ 5 = TG
dt?  ds?
622 = CQQG\I/.

Theorem 3.4 (Equilibrium of the boundary-layer system) Assuming kg, >
0, the system defined by the dynamic equations (3.32) converges asymptotically to

ksw W -+ AU’)\ = O,

and at equilibrium is restricted to it.



Proof: To prove stability of the boundary layer system we use the candidate Lya-
punov function

1 1 o
V e 5\1//1 77122\11, + T?‘\I/I ksw‘l!

As discussed previously (equation (3.21)) May — 205, is skew-symmetric. Seeing
that

M22 — 2022 = 627"7222 — 262622\11
= emby — 2ecoreW
= ¢(mby — 2622),

we can conclude mby, — 2¢9 is also skew-symmetric.
The time derivative of the candidate Lyapunov function in the fast time is

1
V= \I/’T(—2~mf22\11' — oW — ki, U — kg U — ApA + kg U)
= T(—k: fw\Il’ — kopV — Ay X + kg V), (skew-symmetry of 77’1,{22 — 2C99)
= —‘I/’Tk‘fwllf" (using equation (3.30))

Assuming positive definiteness of k¢ , the boundary-layer subsystem stops moving
in the fast time scale, i.e.

U =0 and, ¥"=0.

Substituting the above in equation (3.32) we find that on cessation of motion in the
fast time the dynamics are restricted to the submanifold given by

As we have seen, this is exactly the manifold on which the reduced order subsystem
evolves. O

3.3.3 Comments on the two subsystems

The division into the fast and slow subsystems shows some interesting properties
of the flexible manipulator system. In our singular perturbation approach the dy-
namic effects of the flexibility are only seen during the operation of the boundary
layer system. This system is not affected by the control torques at all. Tt is how-
ever stable by itself. Indeed, we can use skewing terms in the Lyapunov function
to prove its exponential stabilization to the reduced manifold. This is because of
the particular way in which the damping of the system is introduced into the sys-
tem. That elastic material do exhibit viscous damping is well documented. Modern
treatments of flexibility model flexible elements in the viscoelastic framework. It is
further observed that flexible links under load. for example a flexible link pushing
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against a wall, exhibit much higher effective damping than when free; vibrations
die out much more rapidly. This fits in favorably with hybrid force/position control
applications where links are always under load.

The reduced order system is not a rigid system. It exhibits the full flexibility
of the original system. However, the perturbation technique we use results in the
flexible dynamics becoming infinitely fast, and therefore they are no longer dynamic.
The shape of the beam changes infinitely fast to adjust to the force condition at the
tip through the algebraic relation

This is different from the beam shape not changing at all, as would be the case for
the rigid manipulator. The assumption of the fast change in shape is not a very
bad assumption for lightweight links. We shall exploit this property of the reduced
system when we design controllers.



Chapter 4

Control of Flexible Link Manipulators

Initial studies of flexible link manipulator control concentrated mainly on uncon-
strained trajectories [6, 34, 60]. The control task was to follow a specified end-
effector trajectory using a robot with flexible links. The primary consideration
was the suppression of vibrations induced by the flexible dynamics, thus improv-
ing the tracking performance of the robot. More recently the problem of hy-
brid force/position control using flexible link manipulators has been considered
in [27, 32, 33].

In this chapter we propose controllers for the control of significantly flexible
robotic manipulators in hybrid force/position control tasks. Our model, outlined
in the previous chapters, allows the consideration of significant flexibility. We pro-
pose workspace controllers based on the full dynamic model and on the singular
perturbation model respectively.

4.1 Problem Setup

Our final aim in developing controllers for flexible robots is to be able to imple-
ment grasping with multiple flexible fingers. The setup we aim to control (and which
resembles our experimental setup) is shown in Figure 4.1. Treating the full flexible
grasping problem is very complex due to the complicated interaction between the
multiple subsystems involved. However, as shown in Chapter 2, the modeling and
the dynamics associated with the grasping problem are very similar to those of in-
dividual constrained robots. The grasping constraints (equation (2.29)) enter the
dynamic equations of the grasping system very similarly to workspace constraints
for a single robot (equation (2.20)). Thus, analysis carried out with individual
robots in constrained workspaces will extend to the grasping situation. Indeed, for
each individual finger involved in the grasping task, manipulation of the grasped
object appears little different from applying forces against workspace constraints,
other than the dynamics of the object being grasped. In the above discussion we
are considering stable, grasping without finger rolling only. The argument will not
extend to systems undergoing regrasping maneuvers or finger rolling.

Consequent to the above discussion, we consider for our analysis the simpler
system shown in Figure 4.2: a single manipulator in a constrained motion task
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Figure 4.1 Planar grasping setup with last link flexible.

Figure 4.2 Single finger with last link flexible pushing against a wall.
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(shown in the figure as pushing against a wall). This results in a simplification of
the analysis. Note that though the setup in Figure 4.2 has only the last link flexible
resembling our experimental setup, the analysis to follow applies equally to the case
of manipulators with all links flexible.

The kinematics of rigid link robots are dependent solely on the joint space vari-
ables. The Jacobian transformation (defined in equation (2.16)), derived from the
kinematics, relates the workspace and joint space generalized forces (under quasi-
static conditions) by

r=JY(O)F (4.1)

3

where we have

© the actuated joint variables,

7 the actuated joint space generalized forces,
F the workspace generalized forces, and
J the workspace Jacobian.

If the current Jacobian is known, the robot actuator forces required to produce
the desired workspace forces can be calculated using the above relation. Note that
this calculation is true only for the static case. Hence, feedback linearization tech-
niques, like computed torque, are used to compensate for the dynamic forces. All
workspace control methods use the workspace Jacobian in some form to convert
between workspace and joint space generalized forces.

In the case of robots with flexible links, the kinematics are no longer solely a
function of the actuated joint variables. At any configuration of the robot, the
application of a workspace force by the robot causes a reaction force on the robot
itself, thus changing the “shape” of the robot and therefore its kinematics. The
kinematics can therefore no longer be stated independent of the forces acting on
the robot. Hence, the application of forces using flexible link robots requires other
considerations in addition to those for rigid link robots. For the flexible case we can
write

r=J(O,V)F, (4.2)

where U are the internal states of the robot associated with its flexibility. Note that
in this equation 7 represents both the actuated forces as well as the unactuated
(flexibility provided) forces. In essence W represents the shape of the flexible links
and is dependent not only on the current forces acting on the robot but also on its
current configuration. Therefore, for the equilibrium solution

Y =v(0,71F).

If we use the full nonlinear beam model for the flexible link, ¥ is the solution
of a system of partial differential equations and is therefore infinite dimensional.
The usual modeling methods, described in Chapter 2, reduce the system to a finite
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Figure 4.3 Single finger pushing against a wall: sublink model.

dimensional system. However, there still remains the problem of finding the ¥. The
© are usually sensed by angle encoders at the joints of the robot. Solutions of the
flexibility modeling equations are complex and even assuming that unique, closed
form solutions exist (which is not true in general) would be hard to compute in
real-time. The other solution would be to have sensors to measure the state of the
flexible beam. Such sensors do not yet exist.

For our analysis we use the sublink model of the flexibility described in sec-
tion 2.3. Figure 4.3 shows the system analyzed. The control objective is to regulate
the end-position of the manipulator to the desired point (Xg) and to apply a desired
force (Ag) against the constraint at the desired point. Both the goals are prescribed
in the workspace and must be consistent with the constraints on the system. In
what follows we use K, to represent a positive definite, constant, diagonal matrix
of proportional gains and K, to represent a positive definite, constant, diagonal
matrix of derivative gains. We also use the subscript 0 to denote quantities at the
final equilibrium state. We use the vector

- [3

as the vector of all joint angles. The dynamic equations of the constrained flexible



robot are therefore given by (see equation (2.22))

M@M+0M@M+Kw+Km+AA:EJ

hig) = 0. (4.3)

We show that under certain conditions, it is not required that we know the full state
of the flexible robot to be able to control it. We also address issues of applicability
of the control laws developed to real systems. Experimental and simulation results
for a finger pushing against a wall are presented in this chapter. In later chapters
we provide much more detailed simulation results as well as results obtained from
using our control laws on an experimental grasping setup.

4.2 Joint PD Controller

The joint PD controller applies control actuation based on the values of the actuated
joint angles of the flexible robot. This strategy requires no feedback of the tip
position of the finger. However, it does require precomputed values of the actuated
joint angles and torques at the final equilibrium position desired. It should be
pointed out that the computation of the equilibrium torques and angles is relatively
simple as it is the solution to a problem of static equilibrium. Even so the procedure
for solution is recursive.

The controller action is PD control on the joint angles with an additional feed
forward torque on each actuated joint equal to the precomputed equilibrium torque.
In joint space the control function is given by

[@z&m—w—mw[ﬂ, (4.4)

where K, and K, are diagonal with the bottom two rows of each consisting entirely
of zeroes and qq is the desired equilibrium position in joint space. Note that torques
cannot be applied to the passive joints. The equilibrium torque required to hold
the manipulator at its equilibrium position is 7. Before proving that this controller
performs the required task we need to state and prove the following lemma.

Lemma 4.1 (Generalized coordinates for constrained manipulator)
The equations for the constrained robotic manipulator

.- N . T
M(q)i+Cl(q,q)¢+ Keqg+ Kpg+ AN = [0] ;
h(Q) = 07

q € B, hiq) : B* — R*, can be written equivalently in generalized coordinates
a € Rn—k: as

Mé+ Ci+ K, f(a) + Kpa = 7,



where, M is the mass matrix, C' is the Coriolis matrix, K, is the matrix of spring
constants, K s Is the damping matrix and T is the vector of joint torques in the
new («) coordinates, obtained by applying the proper coordinate transformations
to these quantities in the old (q) coordinates.

Proof: We give a constructive proof of the above. Given k& smooth, independent,
holonomic constraints h(g) = 0, h(g) : R* — R on a dynamical system with
configuration variables ¢ € R” it is always possible to find generalized coordinates o
such that o € R*™¥. Further, it is easy to see that 0 € R* will be a regular value of
the map h(q), i.e., g satisfying h(q) = 0 lie on a smooth submanifold of dimension
n — k. From this we can conclude that there must exist a mapping f(a) = ¢
which when its range is restricted to the submanifold satisfying the constraint, is
one-to-one and such that f(0) = go.
From the constraints we get the following relation

Oh Oq 70f
=0 = 55 - g =0
We shall use
_9f
“ T da’

We now reformat the dynamic equations of the robot in terms of the new coordinates
«. Note that

fla) =g,
Ja =gq, and
Ja+ Jéi = g.

Substituting the above in the dynamic equation 4.6 we get
M(q)Jé + (Clq,4)J + M(g)J)é& + K f(a) + KpJé + AX = m .

Premultiplying the above equation by JT we get the dynamic equation for the robot
in terms of the new coordinates «:

Méa+Cé+ K f(o) + Kpéo = 7, (4.5)

where we have used
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M=J"MJ,

C=JNCT +MJ),
K, =J'K,
Ky=J"K;J

~ 4T |7

T=J [O]

O
We now prove the stability of the proposed joint PD based control law.

Theorem 4.1 (Stability of the joint PD controller) Given K,,K; > 0 and
that the stiffness of the manipulator is sufficient to apply the desired external force
Ao, the controller given in equation (4.4) asymptotically stabilizes the system given

by

0
h(g) = 0, (4.6)

M(q)j + Clq.0)q + Koq + Kpg+ AN = H 7

to the desired position and applying the desired external force.

Proof: From the dynamic equation (4.3) we have

m = Apho + Ksqo.

The right-hand side in the above equation will yield the zeroes in the left-hand side
at equilibrium. With the joint PD control law the equation of motion of the system
becomes

M(q)G+Clq,4)q + Keq+ Kpg+ AN = Aoho + Ksqo + Kp(qo — q) — Kag.  (4.7)

To prove stability of the control law we use the direct method of Lyapunov with the
candidate function
1

1 . 1
V= §q7Mq+ 5(a- q0) Ks(qg—q0) + 50— 90) Kp(q—q0)

y ,
+/ (Adg — Agho)Tdg. (4.8)

q0
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Counsider the last term in the above equation.

/‘%A/\O — Aoro)dg = Mo(hlq) — hlas) — Aolq — @)
q

O
T (()Qh,

el (g — qo)

qo

=\ <h(qa) + Aolg — qo) + (¢ — qo)

10 ((g— a0)*) — hgo) — Aolq — qo>>

T (92}L

=\ ((61 —qo) el

(g—q0) +O((g— Q0)3)>‘

q0

The first three terms in the equation (4.8) are all positive definite. Hence the total
3%h
g 0
compared to K + K. Physically this means that to apply larger forces we require
sufficiently large stiffness of the springs at the spring joints and a sufficiently large
proportional gain.

The time derivative of the Lyapunov function is

function is positive definite irrespective of the sign of if Ag is sufficiently small
P I 0 Yy

ol TG
= ¢ (M 257+ Kia = a0)+ Kola = ) + A~ dodo).

Substituting for M ¢ from equation (4.7) in the above equation, the time derivative
of the candidate Lyapunov function along the trajectories of the system becomes

V=q" <A0>\0 + Koqo + Kplqo —q) — Kag — Cq— K — Kyg— AX

M.
e __2_9’_ + Ks(q —qo) + Kp(q — qo) + AXo — AO/\O)«

which can be simplified as follows:

V= —¢"(AN) + ¢" (ANg) + qT(-; ~O)g—d" (Kj + Kg)g
= —¢" (K; + Kq)d.

where we have used the dynamic equation of the robot, the nature of the constraints
and the structural properties of the robot dynamic equation to simplify the obtained
expression. Clearly

—¢" (Kf + Kg)g <0

if K;+ Ky is positive definite. Therefore, using the Lyapunov stability theorem we
can say that the robot reaches an equilibrium state under the action of the applied
control at which all the joint velocities are identically zero. We have to further
prove that the equilibrium state obtained is the desired one. We shall use LaSalle’s
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invariance principle to prove convergence to the desired state.

It is convenient at this point to convert from the ¢ coordinates to the generalized
coordinates « in Lemma 4.1. At equilibrium at ¢y, we have o = 0, and from
equation (4.5) the equilibrium torque is given by

In the new coordinates therefore the control law is
F=J K f(0)+ J K, (f(0) = f(a) — JTKyJé (4.9)

At equilibrium under the control law ¢, § = 0 and therefore ¢, & = 0. Now we apply
LaSalle’s principle to the dynamic equations in the new coordinates and try to find
the largest invariant set
T K fe) = T K f(0) + T K, (f(0) = fa))
= JH (K, + Kp)(f(e) = f(0)) =0

Using a Taylor series expansion about a = 0 we get
T K + Kp)(f(e) = f(0) = JT (K + Kp) (F(0) + T |,y + O () = £(0))
= JH(e)(K, + Kp)J|,_yo+ O (o)
= J| K+ Kp)J| _ e+ 0 (?)
= ().

a=0

In the above we note that K, + K, is full rank and J(0) has full column rank.
Therefore using the implicit function theorem and ignoring the higher order terms in
o we can say that a = 0 is the unique solution to the equilibrium conditions. Thus
the largest invariant set counsists of the desired equilibrium point and the controller
will therefore asymptotically stabilize the finger to the desired equilibrium point. O

There are some points to be noted about the above proof. Tt is a local proof and
it does not depend on only the last link being flexible. Therefore it will also hold
for a robot with both the links flexible. Further, the same proof holds independent
of the number of sub-links into which the flexible link is divided.

The simulation data presented in this chapter is for the setup shown in Figure 4.3.
The length of the base link in the figure is 10 cm and the sublinks modeling the
flexible link are each a third of that. The initial and final position of the manipulator
are shown in Figure 4.4. Note that the manipulator undergoes significant flexible
distortion at the final position due to application of the external force.

Simulation results for this controller are presented in Figure 4.5. The control
law converged either to the desired equilibrium point or to some other equilibrium
point depending on the initial conditions applied to the finger (as noted, the proof
only guarantees local stability). An example of each is given in Figure 4.5. In both
the simulations the properties and the parameters of the controller and the finger
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A=1024N
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Initial Position Final Position

Figure 4.4 Simulation task for controller task.

were exactly the same. The only difference was the initial point from which each
simulation was started. In the simulation data we see the contact force achieving
negative values, which are clearly not possible in the real case. This is due to the
particular way in which the simulation enforces the constraint condition.

The experiments for a finger pushing against a wall were done using a planar,
two degree of freedom finger with the last link flexible and pushing against a wall
instrumented with a force/torque sensor. For the experimental run of a finger push-
ing against a wall with the joint PD controller, the equilibrium position values were
determined by using a simple joint PD based controller to push against the wall
and noting the values of the torques and the joint angles at equilibrium. These
values were then used by the joint PD and feedforward force controller. Figure 4.6
shows two runs (one from either side of the desired equilibrium position on the wall)
of the controller. The control on position is better than the control on the force
applied. The error in the desired force during experimentation could be due to the
zero friction assumption in the analysis and the simulations. In the experimental
setup we could not eliminate friction totally and the action of pushing against the
wall resulted in significant friction. The other factors which contribute to the er-
ror in tracking the force are inherent in the tendon actuation scheme. It is very
difficult to model the friction present due to the sliding of the tendons on various
surfaces. In addition the coupling matrix holds for a limited range of configurations
and gives rise to inaccuracies in the torque being transmitted to the joints during
experimentation. As previously noted the practicality of this controller is limited
because equilibrium configurations and torques must be precomputed.
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Figure 4.5 Simulation results for joint PD with feedforward force.
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4.3 Controller Ideas from Analysis of the Reduced Sys-
tem

The reduced system was developed from the singular perturbation analysis of the
preceding chapter. We rewrite the equations (3.26), (3.27) and (3.28) here for ease
of referral. The reduced order system which we will use as the centerpiece of the
following analysis is

7n11é + CH@ + k’/g@ + Agh =71
]{?SU’}\I} + AL;‘;/\ =0 (410)
h(O,¥) = 0.

We discuss two controllers in this section. Recall that we wish to regulate the
end-position of the manipulator to the desired point (Xy) and to apply a desired
force(A\g) against the constraint at the desired point. Both the goals are prescribed
in the workspace and must be consistent with the constraints on the system. In
what follows we use K, to represent a positive definite, constant, diagonal matrix
of proportional gains and K, to represent a positive definite, constant, diagonal
matrix of derivative gains. We also use the subscript 0 to denote quantities at the
final equilibrium state. The stability of the joint PD controller described in the
previous section can also be proved in the singular perturbation framework. We
will however not present that proof here.

We introduce the following additional notation. In the rest of this chapter we
shall represent the Jacobian mapping as

da
Jaﬂ = EE

Further, we will denote the mapping between the configuration space and the
workspace by

g(©,0): ¢ — X.

As usual, the constrained finger can be treated as a free finger with additional forces
applied to ensure that the constraint conditions are met. Denoting the constraint
in the workspace by

s5(X) =0,
we have

s(g(q)) =0,

which is the same as h(q) = h(©,¥) = 0. The generalized forces of constraint are
always in the direction orthogonal to the constraint, which is given by Vh. In our



67
case the torques generated by the constraint surface (the wall) are given by

T = (VA = (Jox Jxg) A = AN,

where A is the Lagrange multiplier to be found from the dynamic equation. In this
notation we can also write

oh
g = 9‘:)‘ = (JyxJye)' and
g;z o
I Y
Ap =55 = [axJxe)".

In the actual system we expect to have sensors for the location of the end-point
of the manipulator and for the applied force at the tip. The experimental setup
on which these controllers were tried out were instrumented to provide this data in
addition to the data on joint angles (refer to Appendix A).

4.3.1 The J, controller

The reduced system is completely known by knowing the © variables as was shown
in equation (3.29). The Jacobian between the configuration space and the workspace
can be derived as follows for the reduced order system

X =g(0,¥(0))
therefore,
X = JX@("“) + J‘\’\p\i/ = (JX(.) -+ JX\I;J\;,@)(;) = ]*@ (4.12)

Note that J, is a square matrix for a manipulator with number of actuated joints

equal to the the number of workspace coordinates (which is the case we are dealing

with) and we assume it is invertible in what follows (this is a reasonable assumption).

In a real system we can compute J, ouline from the knowledge of @ and A using the

flexible-sublink model. Note further that Jgx is known and Jxeo can be computed

from the knowledge of the manipulator tip and the positions of its actuated joints.
Consider the workspace control law

7= JN(Kp(Xo — X) — K4X) + 70, (4.13)

where

70 = (Jsx, JX@O)F)\(% (4.14)

This is a workspace PD control law with the transpose of the Jacobian J,. being
used to map the workspace forces to the joint space. In addition the law does
a feedforward of the constraint torque required at the final equilibrium. We will
discuss this in more detail later.
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Theorem 4.2 (Reduced system stability with J. control law) Assuming
K,., Kq > 0, the controller given in equation (4.13) asymptotically stabilizes the re-
duced system given by equation (4.10) to the desired end-point position and applying
the desired external force.

Proof: (Reduced system.) We rewrite the system with its controller as

7TL]1(;) + 011@ -+ k’f@@ + (JS)(JXG))T/\ =7
= JI(K,(Xo — X) — KgX) + (JsxoIxeo) Ao,
(4.15)

h(©) = 0.
To prove stability we use a Lyapunov approach with the candidate Lyapunov func-
tion
67my,0 N (X — Xo)TK,(X — Xy) . (U — W)k (U — W)
2 2 2

© T
+ / <(J.9XJ*)T/\0 — (JsxodIx o0 + Jsxo Ix vy Jwe)’ Ao) do. (4.16)
J O

V=

The positive definiteness of this Lyapunov function is evident except for the last
integral term. However we show that this term is identical to the integral term in
Lyapunov function in the proof of stability of the joint PD controller. The integral
term in equation (4.8) is

q el
[ (20 - a2}
Jaqo
in which we can use

o] [ de I I
=[] = [gtoe] = 2] =[] 0

and we can write from equation (4.11)

. {Ag} _ [(Js/\w]/\'@)j]
Ay (JoxIxw)"]

Substituting the above into the integral we get the integral term of equation (4.16).
The time derivative of the function along the system trajectory is

7'7L11®
2

V o= (“)1 (71111@ -+ + (JSXJ*)TAO - (‘].‘:'1\'0‘]4'\'60 + JS‘YOJ/\'WOJWG))T/\()) "
XTKp(X — Xo) + Ul k(U = Tp).  (4.17)

We simplify the above by noting some relations between quantities involved. First
we have from the constraint,
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s(X)=0 = XTJL = = ol J)t =o. (4.18)

Also,

7';2/1 1 e

ef <mu(¥> + — (Joxy JX@O)T/\O> + XTK, (X — Xy)

=7 <J§£‘Kp(Xo = X) = I KX + (Joxo Ixe,) Ao = C1u® +

iy © : i 4.19
121 —kfo© = (JoxJxo) A+ JIKy(X — Xo) — (4.19)
(Jsxo JX@O>’1"A0>
= -XTK X —0TK; 0 - 0T (J,xJyo) A,
and
Uk (U — Ug) = O T ko (U — W) = XTI T g by (8 — W), (4.20)

Substituting into equation (4.17) we get,
V= -XTK;X —0"K,0 — 07 ((JixJxe) A = (JoxoTxwo Jwo) Ao +
Jg;@ksw(q} - \DO))

The following relations are true in the reduced system (and follow from the reduced
system equations):
(JSXJX‘JI)T/\ - _ksw\l}a
(Joxodxwo)" Ao = —kgy T (4.21)
(Jix Ixe) A = Jioksy V.
Therefore,
~(JaxJxe) A = (Joxo Ixwedve) Ao + Jheksy (¥ — W)
= ~JhokayU + T ok Vo + JE ok ¥ — JLoksy ¥
=0,
giving,
V= —XTK.X - 67K, 0.
The derivative of the Lyapunov function is therefore negative semi-definite. Using

Lyapunov’s theorem we can say that the manipulator reaches an equilibrium under
the action of the control law. To prove asymptotic stability we use LaSalle’s theo-
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rem, similarly to the case of the joint PD controller. O

The above theorem proves that the J, controller is successful in stabilizing the
reduced system to the desired position and applying the desired external force. The
behavior of the full system under this control law must now be determined. This
follows readily from what has been presented so far and is formalized in the following
theorem.

Theorem 4.3 (Full system behavior with J, control) For small ¢ and assum-
ing Ky, Kg >0, the J, control law described in equation (4.13)

7= JN KXo — X) — K4X) + 7o,
with
T
70 = (JsxoIx00) Aoy

causes the response of the constrained flexible manipulator system given by equa-
tion (3.24)

miy mi9o @ T (311(;) 62612@ © 0 0 C)
€My Mmool €20 0 e U €cnl| | 0 kg |V
kg 0 ][0 Ag
5w o]+ [ e

to remain within O(€) of the reduced system which is asymptotically stabilized to the
desired position and applying the desired force.

Proof: We proved in Theorem 3.4 that the boundary layer subsystem of the above
system, equation (4.22), obtained by setting € to zero, was asymptotically stable.
This being an autonomous system, this is equivalent to proving uniform asymptotic
stability for the system. The conditions set out in Theorem 3.1 are therefore sat-
isfied, hence assuring the existence of the reduced system for which Theorem 4.2
proves uniform asymptotic stability with the J. controller. Restricting © to a com-
pact set and using Theorem 3.2 we can therefore state that the response of the full
system will remain within O(e) of the response of the reduced system and for € = 0
(the reduced system) the J,. control law will asymptotically stabilize the system. O

Remarks on system behavior: To prove asymptotic stability for the full system
we need to use Theorem 3.3. We can prove exponential stability of the boundary
layer system (by using results in Murray, Li and Sastry [40]). For the autonomous
system uniformity in time follows directly. Uniformity in © is achieved by restrict-
ing © to a compact set. Uniform asymptotic stability of the reduced system under
the J, control law has been proved. Using converse Lyapunov theorems (refer to
Khalil [23]) it is immediately true that there exist Lyapunov functions V(©) and
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W(©, ®) (refer to Theorems 3.3 and 3.4) which satisfy the first three and fifth condi-
tions of Theorem 3.3. The fourth condition is harder to prove. It requires knowledge
of the Lyapunov function V(©). Note that we do not have the Lyapunov function
V as we could only prove stability by invoking LaSalle’s principle. O

In an actual experimental or simulation setup to avoid precomputation of the
final constraint torque we use (Jsx Jxo)! Ao instead of 75 in equation (4.14). It might
seem at first glance that (Jsx J*)T)\o can be used instead of 73. However, since we
derive J, from the constraint equations its effect is restricted to the unconstrained
directions. Therefore, its transpose cannot be used to transform static forces against
the constraint, between the workspace and the joint space (like Jacobians for fully
actuated non-redundant manipulators can). These issues are basic to the Jacobian
mapping and a discussion of these is beyond the scope of this thesis.

From the last two relations in equation (4.10) (which define the reduced mani-
fold) we can write

. . ) oy NT —1 - T
[/\} _ (JSXJX\IJ)[ gy + d(Js_xaé;xw) by d(v]sg(]—jx w) A o
v 0 Jox JIxw JsxJIyve
= [JA@} o. (4.23)
Jye

As Jox is known and Jye can be computed we can compute J, from the above.
Figure 4.7 shows the simulation results for the J, controller. We could not perform
experiments with the J, controller because of drift in our force sensor. However, we
present detailed simulation results in the next chapter.

4.3.2 The instantaneous Jacobian controller

We call Jxe the instantaneous Jacobian of the flexible manipulator because it
is the Jacobian of a rigid link robot with the same number of links as the original,
with joints at the current actuated joint positions of the flexible robot, and endpoint
coinciding with the endpoint of the flexible robot. Jyg is a Jacobian computable
once the endpoint and the joint positions of the manipulator are known. Not only
is the shape of the flexible beam not required, neither is a model of the flexibility
required.

Consider a control method in which the instantaneous Jacobian is constructed
at each configuration of the finger based on feedback of the endpoint and joint
positions of the finger. It is then used to calculate the joint torques required to
apply the desired force against the wall and to move the tip towards the goal point.
The control law is given by

7= JEg(K,(Xo — X) = KgX + Jox Ao). (4.24)

Figure 4.8 shows the motivation for the control law. At each instant the actual
robot is replaced by a “virtual rigid robot” (shown by the dotted line in the figure)



y-position (m)

Force (N)

0.16

0.15

0.14

0.13

0.12

0.11

0.35

0.3

0.25

0.2

0.1

0.05

0

72

(b) Force Regulation

Figure 4.7 Simulation results for the J,. controller.
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Equivalent “virtaal rigid” robot

Flexible Robot

Figure 4.8 Motivation for a instantaneous Jacobian based controller.

and the torques are calculated based on that. Note that in any robot the application
of joint torques based on the Jacobian calculation does not require the shape of the
links to be known. Knowledge of the positions of the joints suffices. Therefore, there
is some intuitive sense in this control law. Recall also the discussion on the reduced
system presented at the end of the previous chapter. If the flexible shape change
happens so fast as to be almost instantaneous and stabilizes itself, there is little to
be gained from trying to control the transient, especially in the face of controller
bandwidth limitations.

In simulations and in actual experimental tests a controller based on this Jaco-
bian was found to work very well. However, we could prove its stability only after
making additional assumptions. We have

Jo = Jyo + JxvJvo

from equation (4.12). If we assume that the contribution from JyyJye is small
compared to that of Jyg in the reduced system, under the action of the instanta-
neous Jacobian based control law then we can ignore this term. In that case the
proof of stability of the instantaneous Jacobian based control law is identical to the
one for J,.

Figure 4.9 shows the simulation results for the instantaneous Jacobian based
controller. The instantaneous Jacobian based controller is particular easy to imple-
ment in an experimental setup. We present experimental data for a instantaneous
Jacobian controlled flexible finger pushing against a wall in Figure 4.10.
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Figure 4.9 Simulation results for the instantaneocus Jacobian controller.
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4.4 Implementation Issues

Mathematical analysis and simulations, no matter how detailed, cannot capture all
the subtleties of the real problem. Further, there is the issue of an implementable
control law for a real system. A control idea may exhibit very desirable properties on
paper, but if it cannot be implemented on a real system its usefulness for engineering
purposes is severely limited. In this section we consider issues of implementation of
the controllers developed earlier in this chapter.

The joint PD controller clearly has limited applicability due to the requirement
of precalculation. If we cannot perform the calculation in real-time, the only way of
implementation is to set up lookup tables calculated offline. In certain applications
this may not be a very bad solution. For example, in the automotive industry robots
which paint cars often have a training mode in which they are “led” by hand to store
the painting trajectory. During regular operation the robot retraces the trajectory
from data stored during the training run. A similar approach could very well work
for the joint PD based controller. The method is attractive in itself, because barring
the precalculation it is a control law which can be readily implemented with existing
hardware. From our simulations it also appears that this controller is the fastest to
converge to the desired state. We delay the discussion of those issues till the next
chapter.

The J. controller does not have the problem of precalculation which the joint PD
controller does. It does require more sensing. The types of sensing devices required
for feedback to this control law do exist, therefore this law is implementable in real
setups. This is the only one of the controllers which depends on the model of the
flexible beam. For the sublink model which we have used, equation (4.23) can be
used to calculate J,. We have also discussed previously the procedure for identifying
parameters for our modeling approach. Also note that for the joint PD approach,
if we want to have a real-time computation of the precalculations then we do need
to have a model for the flexibility.

The instantaneous Jacobian controller does not have the precalculation problem
and at the same time requires less sensing than the J, controller. It does not depend
on a model of beam flexibility for calculating the control. Thus, it is possible that
the instantaneous Jacobian-based controller will be able to control fingers made of
non-metallic material which may be hard to model. The sensing of the end-points
and the joints can be done in various ways. One possible approach, using fairly
new electronic technology, is deseribed in the chapter on experimentation. However,
there does exist literature on the estimation of the end-point position and orientation
of flexible links using strain gages [42]. Inspite of these perceived advantages, the
lack of a formal proof of stability is a major hindrance to its application.

We summarize these observations in Table 4.1. We point out that the instan-
taneous Jacobian and J, can be used in place of the usual robot Jacobian in any
workspace control law. Their use is not limited to the PD control law we have dealt
with in this chapter. Their applicability is therefore very general and should be
considered an augmentation or modification of existing workspace control laws for
rigid robots for the control of flexible robots.
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Controller

Comntrol
calculations

Sensors

Remarks

Joint PD with

Equilibrium joint

Angle encoders

Training mode to

feedforward torques(actuated), avoid
force equilibrium joint precalculation
angles(actuated)
J J. from flexibility | Angle encoders, Requires
model endpoint force flexibility model
Sensors
Instantaneous | Standard Actuated joint Model
Jacobian Jacobian position sensors independent

calculation

Table 4.1 Summary of implementation issues for flexible robot con-

trollers.
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Chapter 5

Parametric Studies using Numerically
Simulated System

Simulations provide a bridge between mathematical analysis and experimentation.
They can be used to identify system properties not evident from the analysis and
difficult to implement in experiments. In addition, in the case of control applications,
it is important to know how precisely the system to be controlled must adhere to
the assumptions made during analysis for the control laws developed as a result
of the analysis to hold. This can be determined much more easily in simulations
where we have strict control on the parameters affecting the system. In this chapter
we present results of simulations of the exact system analyzed. The alms of the
simulation are to determine the properties of the flexible manipulator system as
well as to test our assumptions. In addition we gain an insight into the tradeoffs
involved in using flexible manipulators for constrained motion tasks.

5.1 Simulation Setup and Aim of Simulation

For all the simulations carried out, the model is the same as that used in the previous
chapter. The simulation was therefore of the exact system which has been analyzed.
The dynamic model of the manipulator is derived considering the mass of the links
and the sub-links to be concentrated at their midpoints.

The constraints were were enforced using the so-called “Baumgarte method” [1].
We briefly describe the method here. To incorporate the effect of a holonomic
constraint, h(g,t) = 0, we differentiate the constraint twice to get a second order
differential equation h = 0 which can then be incorporated into the differential
equation using Lagrange multipliers. This is what we did previously when deriving
the equation of motion of a constrained manipulator. Numerical integration of
these equations without further imposition of the constraints is unstable, in that
if the integration yields h = ¢, h = e, at the nth step (due to simulation noise
and precision errors), then at the next time step (assuming a simulation step of ¢
seconds), we can expect h = et+9. This behavior will in general not be compensated
and the constraint will be allowed to “drift.” Omne possibility of getting around
this is to use a differential-algebraic equation (DAE) solver and solve the algebraic
constraint simultaneously. These are however difficult to imnplement and much slower



79

y = 15.2 cmj
A=024 N
= 12.0 cnl

10 cm

Y
T__’ ./.l:

Initial Position Final Position

Figure 5.1 Simulation task for controllers.

in execution. In Baumgarte’s method a PD control is imposed on the constraint:

h=—ah— Gh.

For «, 3 > 0 this serves to decrease the error in the constraint. Baumgarte in [1]
proves that the original equations are not modified by the introduction of these
“computational control terms.”

The dynamic equations themselves are quite lengthy and complicated, as we
are essentially simulating a four link robot, and there are a large number of cross-
coupling terms. Hence, the dynamics were calculated using a symbolic mathematics
package. The initial and final task for the controllers were identical to that for the
simulations in the last chapter and are reproduced in Figure 5.1 for ease of reference.
The simulations were programmed in C and performed on various SUN Sparc based
UNIX workstations.

The analysis in the foregoing chapters was done under certain assumptions made
about the nature of the dynamics of a flexible manipulator system performing con-
strained motion tasks. The successful implementation in our experiments of the con-
trol laws developed as a result of the analysis points towards the essential soundness
of the approach and the practicability of the ensuing control laws. These results
are presented in the next chapter. Our simulations are intended to supplement the
experimental results. They are partly an effort to determine the behavior of flexible
manipulators performing tasks requiring interaction with the environment, as very
little data is available in the literature which describes such systems. The simula-
tions also enable us to characterize the different controllers by their behavior and
their performance under varying conditions.
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5.2 Simulation Data

We have presented simulation data in the previous chapter for the controllers we
proposed. In this section we take a closer look at the dynamic behavior and perfor-
mance of the controllers. Unless otherwise stated, the final conditions for the joint
PD controller are determined from the final state of the instantaneous Jacobian
controller performing the same task.

5.2.1 Configurations of the flexible manipulator

Even when performing the same task the controllers execute significantly different
control action. This is made evident when we consider the intermediate configura-
tions of the manipulator between the same initial and final states. We present the
configurations undergone by the flexible manipulator in Figures 5.2, 5.3 and 5.4.
These correspond respectively to the simulation results presented in the previous
chapter, Figures 4.5, 4.7 and 4.9. Figure 5.2 shows the sequence of configurations
for the joint PD based controller. Compared to the other simulations it is evident
that this controller achieves its final position very rapidly. Also notable is the fact
that while the joint PD based controller starts flexing the flexible link almost from
the beginning of its downward motion, the other two controllers seem to apply the
compression after the end point has been achieved. This is partly due to the greater
accelerations that the manipulator is subjected to by the joint PD controller. An-
other interesting thing to note is that the configuration of the manipulator changes
even after the final position is achieved. These are internal motions of the manipu-
lator, made possible due to the extra degrees of freedom bestowed by the flexibility.
The J, and the instantaneous Jacobian based controllers were simulated with identi-
cal gains. This might explain the similarity of the configurations of the manipulator
while being controlled by either. However, note that they behave significantly differ-
ently in terms of the forces they apply against the constraint (Figures 4.7 and 4.9).
These observations must be discussed within a larger framework, and we will discuss
these further after we present other observations from simulations.
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Initial 0.01s 0.02 s

0.04 s 0.05 s

0.09 s 0.1s Final

Figure 5.2 Joint PD controller (m = 0.005 kg, & = 0.01 N/rad).



Initial 0.1s 0.2s
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0.3 s 04s 0.5s

0.6 s 0.7s 0.9s

1.0s 128 Final

Figure 5.3 J. controller {m = 0.005 kg, k = 0.01 N/rad).
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Initial 0.1s 0.2
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0.3s 04s 0.5s
0.6 s 0.7s 0.9 s
1.0s 1.2s Final

Figure 5.4 Instantaneous Jacobian controller (m = 0.005 kg, & = 0.01
N/rad).
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Figure 5.5 A “too flexible” manipulator (k = 0.0001 N/rad).

5.2.2 Effect of changing flexibility

The flexibility of the simulated model is parameterized by the spring constants
of the unactuated joints. As the spring constants are reduced the effective flexibility
of the links decreases. The controller gains are set constant for all the simulations
for each controller. In addition, the J, and instantaneous Jacobian controllers have
the same workspace gains. The joint PD controller behaves significantly differently
from the other two, and therefore we do not present the data for that controller on
the same axes as the other two (see Figure 5.6). Obviously the two most flexible
links are too flexible and cannot apply the force required at the tip. Recall that
the proof of stability of the controllers required the assumption that the beams
were stiff enough to apply the required end-effector force. Figure 5.5 shows the
final configuration of the manipulator with spring constant & = 0.0001 and the
instantaneous Jacobian controller. It might seem from the graphs in Figure 5.6 that
the joint PD controller manages to control both the position and the force of the
two most flexible manipulators. This is not true. As the equilibrium could not be
calculated for these we used the equilibrium data for the next stiffest manipulator.
As the actuated joint angles of the manipulator are controlled to values which are
correct for one possible solution to the kinematic problem, and the beam bends only
in its first mode, the manipulator converges to the correct kinematic solution. The
force regulation however does not converge to the correct value. Similarly to the
other controllers the force is much lower than that commanded (and is obfuscated
by the scale of the graph).

It is interesting to note that the behavior of the system controlled by the instan-
taneous Jacobian and the J, controllers are very similar for all the flexibilities for
which they could be stabilized. The joint PD controller shows a relatively larger
variation in its behavior for differing flexibilities. Disregarding the two most flexible
manipulators, the final position is achieved earlier with increasing stiffness. In the
force response though the initial force excursion also increases with the stiffness.
This exhibits the effect of stiffer links, and in the limit rigid links. The ability
of the compliance to absorb the initial force excursion is what makes it attractive
for contact tasks. The workspace controllers are able to greatly ameliorate the
initial transient. Note that even in the case of instantaneous Jacobian controller,
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the £ = 0.01 N/rad manipulator shows force excursions (both above and below the
commanded force) slightly smaller than the more stiff manipulators. The J, and the
instantaneous Jacobian controllers perform very similarly as far as position tracking
is concerned when we have sufficient stiffness. Recall that they have identical gains.
However, they show very different behavior in force regulation. The J, controller
achieves much better force regulation, with no initial overshoot in the force applied.

5.2.3 Effect of changing mass and damping

The effect of changing mass is illustrated in Figure 5.7. For these simulations
the damping of the unactuated joints was varied as y/m, in accordance with our
singular perturbation analysis setup. The damping factor used was a constant for
all the simulations and equal to 7 = 0.1. The damping at the unactuated joints is
given by ny/m.

The most interesting observation from the simulation is the operation of the
boundary layer system. For the lighter manipulators the applied force very rapidly
approaches that demanded and then stays close to it. The initial rapid approach
to the commanded force is the boundary-layer system in action. As the mass is
increased this effect decreases significantly and we see an increasingly gradual ap-
proach to the final force. Also of note is the fact that there is an initial negative
force excursion for the heavier manipulators which is not present for the lighter
manipulators.

The joint PD controller again behaves significantly differently than the workspace
based controllers. It is unable to regulate position for the heavier manipulators while
the other two controllers always manage to regulate position. Position tracking be-
havior of the J, and the instantaneous Jacobian based controller are very similar.
Both perform better with lighter links. Force regulation is different though, and the
J,. controller achieves less overshoot in almost all the simulations.

5.2.4 Effect of changing mass keeping damping constant

In our analysis we proposed that damping of the unactuated joints (flexibility) be
changed in proportion to the square-root of the mass. We performed simulations
of the instantaneous Jacobian and the J, based controllers in which we changed
the mass of the sublinks keeping the damping of the unactuated joints a constant.
This was done to test how crucial the assumption of the coupled mass and damping
scaling was to the performance of the controllers. The results are shown in Figure 5.8
and 5.9. For the simulations in Figure 5.8 the damping ratio was made lower than the
lowest damping ratio (for the lightest manipulator) in Figure 5.7. 1t is evident that
the performance for the heavier manipulators deteriorates significantly. For a higher
value of the damping ratio (Figure 5.9), equal to the damping ratio for the lightest
manipulator in Figure 5.7 the performance is somewhat better. The performance
however is still significantly worse than the performance for the manipulators with
the damping factor scaled from the square-root of the mass. It is interesting to
note that the deterioration in force regulation is more acute than that in position
regulation. This shows that scaling the damping ratio with the mass in the manner
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of our analysis, does play an important part in the control of the manipulator. This
reinforces the design guideline mentioned, for ease of controllability of a flexible

manipulator at the end of Section 3.2.2.
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5.3 Discussion of Simulations

The simulation results point at the significantly different character of the three con-
trollers we proposed. The joint PD based controller showed the fastest convergence
time, at the expense of a much greater force transient (by an order of magnitude).
Further, it also showed poorer convergence properties for heavy manipulators. All
the controllers were able to control the stiffer manipulators, and therefore by ex-
tension it would appear that they would all be able to control rigid manipulators.
The J, and the instantaneous Jacobian based controllers were able to achieve very
similar performance over a wide range of flexibility. The joint PD based controller
showed a more varied behavior. The .J, and instantaneous Jacobian controller were
able to control heavier manipulators, beyond the assumption of lightness which was
implicit in their analysis.

The J, and the instantaneous Jacobian based controllers differ slightly but sig-
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nificantly in the control law they implement. The additional assumption required
to be made to prove the stability of the instantaneous Jacobian control law is the
insensitivity of the tip position to the change in the flexibility state variables (the
U’s) in the reduced order system. The position regulation behavior of both the
controllers is very similar. Figures 5.3 and 5.4 show that during the initial phase of
motion under either control law the flexion of the beam is very small. However, once
the tip of the beam is close to the final position the tip moves relatively little as the
beam is flexed to its final shape. Therefore the assumption required for the stability
of the instantaneous Jacobian based controller is largely satisfied. It is interesting
to note the difference in the force regulation behavior of the two controllers. The
better performance of the J, controller is due to the incorporation of the flexibility
model in its control action. In one sense, the J, controller computes out the values
of the flexibility state variables, almost like an observer, and uses that knowledge
in its computation of the control action.

The variation of performance with the mass of the manipulator, keeping the
damping of the system constant, showed the importance of the scaling procedure
for the damping. The performance of the controllers deteriorated significantly when
the damping ratio was not scaled. This reinforces the design guideline for ease of
controllability of flexible manipulators mentioned at the end of Section 3.2.2.

Taken with the discussion presented at the end of the last chapter regarding
issues of implementation of the the three controllers, the instantaneous Jacobian
based controller seems to be the most attractive for experimental implementation.
In the next chapter we present experimental data from an implementation of the
instantaneous Jacobian based controller for grasping with flexible link robots.
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Chapter 6

Experimental Evaluation

Analysis and simulations, no matter how detailed cannot fully model the realities
of actual experiments. The uncertainties and complexities of real systems are very
difficult to frame completely in the mathematics of the analysis and simulation.
Therefore, we used our control methods in experiments to verify their validity on
a real system. This chapter presents experimental results obtained using a planar,
reconfigurable, two-finger robot hand, in grasping experiments. Rigid and flexible
link robots with different flexibilities were used for experimentation.
The experimental testbed is described in Appendix A.

6.1 Experiments on Robotic Grasping

The theory developed for control of flexible robots was developed in the setting of
a single robot manipulator in a constrained motion task. To show that the theory
extends to the case of robot manipulation in general (and grasping in particular) we
performed grasping experiments with rigid and flexible links on our reconfigurable
robotic setup. Figure 6.1 is a picture of the robotic setup performing flexible grasp-
ing. The steel rule in the picture is 6 inches long. In this section we present the aims
of our experimentation and details of the procedure used for its implementation.

6.1.1 Aims of experimental work
Our experimentation had two main aims.

Validation of control method: Though mathematical analysis and simulation
are important tools for determining the viability of a control method, its practi-
cality is best demonstrated by actual experimentation. Another very important
conclusion that can be drawn qualitatively from experimentation is that of robust-
ness of the control methodology. Robustness issues due to errors in modeling and
unmodeled dynamics, which are very difficult to extract from mathematical and
numerical treatments, especially for complex nonlinear systems, can be observed in
experimentation.

Effect of flexibility: One of the aims of our work is to show the advantages of
flexibility in certain manipulation tasks. This is most naturally exhibited through



Figure 6.1 Grasping with flexible links.

experimentation, because the advantages we claim for flexibility are related to ro-
bustness of the force of manipulation in a hybrid force-position control scheme.

6.1.2 Experimental implementation of controllers.

A detailed description of the experimental setup is provided in Appendix A of
this thesis. The experimental implementation of the controllers for the grasping
experiments is shown in Figure 6.2. The workspace trajectory for the object is
generated in software. The actual position of the object is determined from the
Polhemus™ six degree of freedom position sensor. The force required for posi-
tion correction in the workspace is calculated. The values of the forces depend on
workspace control implemented. We implemented a simple workspace PD controller
to determine the position correction forces in the workspace for the experimental
data reported. Any other control method would work as well. We did try a LQR
controller but were unable to get much performance with the implementation be-
cause of difficulty in modeling the experimental setup accurately. The internal force
specified is added to the corrective force to make up the total workspace force re-
quired.

The corrective joint torques required are calculated from the workspace forces by
using the workspace Jacobian of each finger. The Jacobian is a kinematic calculation
and depends on the joint angles and the link lengths of the fingers. In case of



Workspace Commanded
trajectory _‘—“‘_37 + internal force
generator 4
- [ Position Corrective
___densors _ _ e errér workspace +
! ' force
Polhemus |
t
6-DOF !
. . '.1— y.
position | N Virtual
SenSOT i |angle and length - =
. calculation
i
Angle |
I
. G i
encoders L Workspace
for : = Jacobian
joints |
{
{
_ 1
1-DOF | Real
internal || angle and Tength i
force :
sensor :
l
|
. . , i
Fingertip |, Experimental .Cf)I rective
4 | A N,
contact |, || two finger jomt space
force : grasping setup torque
I
sensor |
~~~~~~~~~~ ! | A
~____|___Actuators
i
: .
| H
: DC PWM ;
. Motors | amplifiers |
: 1
| i
1

Figure 6.2 Experimental implementation of controllers



94

[ Controller ) Execution time (ms) ]
Workspace PD (Rigid) 1.320
Workspace PD with Instantaneous Jacobian (Flexible) 1.392

Table 6.1 Execution time.

[ Finger Bases (cm) I Circle Parameters (cm) (

Finger 1 Finger 2 | Center | Diameter | Frequency(Hz)
x:—1097 | z: 10.84 } z:0.0
y:—10.60 | y:—1031 § y:8.5

3.0 !

Table 6.2 Parameters for tracking experiments.

the rigid robot, the link lengths are constants and the joint angles are directly
obtained from the angle encoders at the joints. For the flexible robots the “virtual”
lengths and angles of the flexible link are calculated from the information about the
joints and endpoints of the robot. In our setup this information was obtained from
the angle encoders and the object position sensor. Note that in general it is not
required that we have an object position sesnsor. We only used the knowledge of
the object position to calculate the positions of the finger tips. In an application
where arbitrary objects are to be manipulated, the tip sensors would be at the tips
of each finger. The routines for the calculation of the Jacobian are provided with
the actual link lengths and angles for the rigid robot, while the virtual lengths and
angles are provided for the flexible calculation. Note that the Jacobian calculation
is done by the same routine for both cases.

The joint space torques are translated to motor currents through PWM am-
plifiers. Due to the tendon drive the two motor torques for each finger are not
independent, and we have to use a transformation matrix to calculate the motor
torques from the joint torques. This extra transformation would not be required for
direct drive robots.

The computational platform used was a IBM-PC compatible, with an Intel-80486
processor, running at 66 MHz. The real-time software used for implementation
was Sparrow-2.1 [39]. Sensor data is collected at 150 Hz. and filtered digitally in
software. The controller was operated at 50 Hz. The bandwidth of each finger
was measured to be of the order of 5 Hz. The computation times required for the
controllers is given in Table 6.1.

6.1.3 Description of experiments

In this section we provide an overview of the experimental procedure followed to
gather data. As the aim of the experiments includes comparisons of performance of
different setups, the experimental procedure is itself of importance in interpretation
of the data.

Data was collected while the grasping setup described earlier in this chapter
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was trying to track a circle. The particulars of the setup and the circular path are
presented in Table 6.2. For each experiment, data capture was turned on with the
grasping setup tracking the object and regulating the internal force. For the first
twelve seconds of data capture (two traverses of the circular path) both the position
tracking and the force regulation were kept on (subcycle-A). At the end of the
twelve seconds the position tracking was switched off, however the force regulation
was maintained for a further two seconds (subcycle-B). At the end of the additional
two seconds (fourteen seconds from the beginning of the data capture) the force
regulation was turned off too and data was captured for an additional two seconds
(subcycle-C). A graphical representation of the data cycle is presented in Figure 6.3.
Subcycle-C of the data cycle was used to calculate the “zero”-force for that data
run. This was required because of the shift in the zero force position of the force
sensor being used between data runs. Subcycle-B was used to find out the internal
force (Fp) in the absence of any position correction forces. This was used as the
correct internal force demanded during the data run. Note that due to the presence
of significant friction and stiction in the tendon drives and between the object and
the supporting plate and due to the flexibility of the tendons themselves the actual
internal force achieved was not identical to the desired internal force. Further, the
force transducer only detected part of the internal force due to the construction of
the object. Subcycle-A was then used to compute both the error in tracking position
and the errors in regulating the internal force. A typical data cycle is presented in
Figure 6.4.

During experimentation, the parameters of the circle to be tracked were kept
constant. The internal force desired was changed between experimental runs. The
actual internal force achieved by the grasping setup varied from run to run due to
the nature of the experimental setup. This was however accounted for as described
in the foregoing paragraph. At each setting of the internal force, data was taken for
multiple sets of gains each of which provided reasonable performance. We present
the effect of change in gain in our section on presentation of data. Note that only the
proportional gain was changed. The derivative gain was related to the proportional
gain by a time-constant, which was kept at a constant of 0.02 % throughout the
experimentation.

During experimentation, it was observed that there was significant stiction be-
tween the object being grasped and the lucite base plate on which the experimental
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setup is constructed (refer to Appendix A). To ameliorate these effects we used a
Teflon sheet between the lucite plate and the object. Graphite powder was also
used as a dry lubricant on the Teflon sheet. Though this resulted in noticeable
improvements, the effects of friction and stiction were still significant. However, as
all the controllers had to surmount this and modeling of the effect was very difficult,
the problem was treated as an unmodeled behavior of the system that was one test
of controller robustness.

6.2 Performance Measurement from Experimental Data

To determine performance a few performance indices were defined. Comparison
of controller/flexibility combinations was treated in the framework of these perfor-
mance indices. We present the performance indices used in what follows.

Root-mean-square error in position (F.,)}: This is the averaged 2-norm of the
e

positional error during subcycle-A. This was used as a measure of position tracking

performance. A lower P,., denotes better performance in position tracking.

Averaged high frequency 2-norm of position (F,p,): This is the averaged
2-norm of the high frequency component of the position signals. The actual method
of computation is to take the average 2-norm of the difference of the original x and
y position signals and their low-pass zero-phase forward and reverse digital filtered
versions. The filtering is done using the £iltfilt command in MATLAB and results
in zero phase distortion of the signal. The filter used was a 5th order Butterworth
filter, with cutoft at 7.5 Hz. A lower Py, denotes more steady tracking.

Root-mean-square error in internal force (F.,): This is the averaged 2-norm
of the error in internal force during subcycle-A. The error in internal force is defined
as the difference between the force during subcycle-A and the average force during
subcycle-B (after discarding datapoints at either end of subcycle-B). A lower F,
should denote a better performance in force regulation.

Averaged high frequency 2-norm of force (F}y): This is the averaged 2-
norm of the high frequency component of the force signal. The actual method of
computation is to take the average 2-norm of the difference of the original force signal
and a low-pass zero-phase forward and reverse digital filtered version of the force
signal. The filtering is done using the filtfilt command in MATLAB and results
in zero phase distortion of the signal. The filter used was a 5th order Butterworth
filter, with cutoff at 7.5 Hz. A lower Fj, denotes less fluctuation in the applied
force.

Averaged 2-norm of negative force (F_,): This is the average (over the data
subcycle A) of the 2-norm of the force below zero applied by the fingers. A F 5
of zero denotes that the fingers were able to maintain a positive internal force on
the object through out the motion. Any value above zero indicates that there were
times when the fingers were not able to apply any internal force on the object and
if unrestrained would have dropped the object.
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] Index description ' Symbol { Units |
RMS position error P, cm
Averaged high frequency 2-norm of position Py, cm
RMS force error Fe, N
Averaged high frequency 2-norm of force Fyy, N
Averaged 2-norm of negative force F_y N
Minimum force Foin N
Maximum force Finax N
Force range (Finga — Finin) Fran N
Internal force Fy N
Average tracking force Fi, N
Average proportional gain Grp N/cm

Table 6.3 Defined quantities for experimental results.

Minimum applied force (F;;): This is the minimum force applied during
subcycle A of the data run. A negative value denotes that the internal force was
relaxed completely and the magnitude of the negative force points out the extent of
the error. Conversely, a positive value denotes that internal force was maintained
and its magnitude is a measure of the minimum robustness of the grasp.

Average proportional gain (Gy,): This is the average of the workspace propor-
tional error gain used during the experiment. The corrective force applied during
the experiment is proportional to the G, as the derivative gain is scaled from this by
a time-constant. We used a constant time-constant throughout all the experiments.

Average tracking force (F},): This is the average tracking force applied during
the experiment. It is the product of P, and G},. It gives an idea of the force
required solely for the tracking part of the control. As real systems have actuator
limitations it is important that the tracking force be as low as possible to avoid
saturation of the actuators.

For ease of referral the indices defined above and some other quantities we use
in presenting experimental data, their symbols and units are presented in Table 6.3.
In experimental work dimensionless numbers are often sought to characterize data
such that it may hold for systems other than the experiment itself. We found the
dimensionless numbers given in Table 6.4 useful for characterizing our data.

6.3 Experimental Results and Discussion

In this section we present our experimental results and discuss them within the
framework of the performance indices mentioned in the previous section. We per-
formed experiments with four different sets of links with different flexure. Data was
collected for different internal forces and multiple runs were made for each inter-
nal force, link set combination. The particulars of the link sets are presented in
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Name Description Symbol
Normalized RMS position error Hx——%lﬁj P,
Normalized averaged high frequency 2-norm of position m;zl 1"5‘; :n_u;;f? };}: - Py,
Normalized RMS force error PF‘O F,,
Normalized averaged high frequency 2-norm of force f—%—’- Fry,
Normalized averaged 2-norm of negative force P;TO? oy
Normalized minimum force L ﬁ;” Froin
Normalized force range f—ﬁf Fron
Normalized tracking force %— Iy

Table 6.4 Dimensionless numbers for experimental results.

[ Link set ‘ Thickness (cm) [ Length (cm) ]

Rigid 0.1651 11.42
Flexible 1 0.0508 11.56
Flexible 2 0.0381 11.53
Flexible 3 0.0254 11.53

Table 6.5 Link sets used in experimentation.

Table 6.5, in order of increasing flexibility. The last link is extremely flexible and
during grasping we could bend it much beyond the linear range. None of the flexible
link robots (including Flexible 1) could be controlled by the rigid robot controller,

at any setting of the internal force.
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Figure 6.5 Effect of internal force on relative force errors.

6.3.1 Overall trends in tracking data

We first present the full data for all the link sets together to determine the overall
trends. It is important to keep in mind the conditions under which the experiments
were done. There was significant friction and stiction in the tendon drives as well
as between the object and the base plates. The stiction was specially bothersome
for the flexible links as they tended to excite the flexible modes.

The effects of increasing internal force are presented in Figure 6.5. As can be
seen, the errors in force, as measured by any of the performance indices, relative
to the internal force being applied decrease significantly as the internal force is
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Figure 6.6 Comparison of position performance indices.

increased. However, the trend is very well behaved in case of the flexible fingers.
The rigid fingers do as good a job of regulation of force in terms of the absolute
error (as measured by F,,) but can do significantly worse in all the other measures.
This means that though they might on the average control the force as well as the
flexible robots, the contact forces they apply can be very erratic, thereby leading to
the chance of dropping the object.

Figure 6.6 is a comparison of the two position performance indices. The normal-
ized dimensionless versions are used, to make the comparison more meaningful. Tt is
interesting to note that the best performances in both the indices were attained by
the rigid robot (a zero in either index indicates the best performance, not a perfect
performance). As is evident, good performance in one index leads to worse perfor-
mance in the other. Thus the question of better position tracking performance can
only be answered in an application specific context. There is an area in the middle
of the graph which we can consider acceptable performance in terms of both indices.
The rigid fingers can provide much better than acceptable performance in the two
norm error at the expense of being more erratic (increased jittery tracking). Notice
that the flexible fingers tend to clhump around the region of acceptable performance
in both and exhibit performance very similar to the rigid fingers in the region in
which they work. Indeed, from this figure it is evident that depending on what
exactly our specification of position performance is we can get a different answer to
the question of the better setup for the task.

The proportional gain in the workspace PD control provides the workspace po-
sition error correction force. In our control laws (as mentioned previously) the
proportional gain was used to scale the derivative gain too, via a time-constant
which was kept constant for all the data collected. The graphs of the effect of
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Figure 6.8 Error correction force.

changing gain (Figure 6.7) show that P,, performance gets better with increasing
gain, as expected. Further, as the gain was increased the flexible fingers achieved
better I, performance relative to the rigid fingers at the same value of the gain. Of
course, the rigid fingers were able to achieve a much better overall P, performance
with very high gains. The Py, performance is degraded for all the link sets with
increasing gain. At low gains the rigid fingers outperform the flexible. The Fy,
force performance shows a slight worsening with increasing gain. However, at high
gains the rigid fingers can do extremely poorly indeed. In actual experimentation
the flexible fingers could not be operated at very high gains. The maximum gain
which could be applied to the flexible link fingers increased with increase in stiffness
of the links.

Another perspective of the overall performance of the grasping setup is obtained
by considering the position error correction force. The separation between the rigid
and the flexible fingers is very apparent in Figure 6.8. A lower [}, is preferable
because in real systems we always have actuator saturations. From the graphs it is
quite evident that the rigid robot consistently required more position correction force
than the flexible. Note that this did not always translate to better position control
performance for the rigid robots (Figure 6.9), especially in terms of W Also
interesting to note is the somewhat layered appearance of the graph in Figure 6.8,
in that the more flexible links appear at lower positions in the graph. Partly, this
reflects the lower gains used for the flexible links. However, the performance in
position tracking also matters.

We shall discuss these results further at the end of this chapter.
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6.3.2 Experimental results for a single link set

In addition to the comparative presentation of data, it is interesting to look at the
behavior of flexible links in hybrid force/position control tasks. In this section we
present results for the link set “Flexible 2” (refer to Table 6.5), during one data
cycle.

Figure 6.10 and 6.11 show the behavior of the flexible beam during an exper-
imental run. Data is presented at one second intervals. The data used for the
calculations was the original, unflexed beam length and the virtual length, which
was calculated from the sensed data of the object position and orientation. It was
assumed that the beam bent symmetrically in a circular arc. In actual practice
this is not true and the beam bends much more at its base than at its tip. The
lightly shaded bent link in Figure 6.10a exhibits the case when the base of the beam
bends more (smaller radius of curvature) than the tip, for the same virtual length.
Therefore the data for deflection presented here must be considered conservative.

It is observed that the virtual length of the link does not change by very much and
is close to the original length of the unflexed link. However the resultant deflection
of the tip suffered by the flexible link is substantial, up to 90% of its length. The
linear beam theory does not apply in this regime. The amount of the deflection
makes clear the reason why a “rigid controller” will not suffice. The rigid controller
would work under the assumption that the tip of the flexible link was at the tip of
the unflexed link, which in reality can be very far away from the actual tip. In our
experiments, the rigid controller was not able to control even the “Flexible 17 link
set: the stiffest of the flexible link sets. Therefore, to be able to control flexible links
of the order of flexibility we have used and experimented with, the controller has
to consider the flexibility in its control action. The effect of the flexibility is severe
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Figure 6.10 Behavior of “Flexible 2” link set.

enough to render it uncontrollable using the rigid controller. Figure 6.11 depicts
the approximate shape and the orientation of one of the flexible links during the
controlled part of the data cycle at one second intervals.

6.4 The Case for Flexibility

We have demonstrated through experiments that significant structural flexibility in
manipulators can be controlled. The control methodology based on our analysis of a
flexible manipulator pushing against a wall and described in previous chapters is able
to perform satisfactorily in grasping situations as well. The flexibilities considered
and experimented with are significant, and beyond the ability of the rigid controller
to control. The additional requirements for the flexible controller to work are a
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Figure 6.11 Bending of the “Flexible 2” link set.

sensor for the object position (or finger tip positions) and a marginally increased
computation time on typical computation hardware.

Analysis of experimental data shows that rigid link robots can perform better
than flexible ones in reducing absolute error in position. However, this is achieved
only at high position correction forces. At these high position correction gains
the performance of rigid link robots is not very robust and there is degradation in
internal force regulation. At comparable values of position control gains flexible link
robots perform better than rigid link robots in control of absolute position errors.
With increase in the internal force there is a strong trend of improvement in force
regulation performance relative to the internal force. Lowering of the internal force
can cause force performance of rigid link robots to become unpredictable, in terms
of any of the performance measures. At any value of the internal force the rigid
robot outperforms the flexible in terms of the absolute position error, but can show
variable relative performance. The flexible link robots perform better in the high
frequency measure at almost all internal forces.

In light of the above, flexibility seems to be most advantageous in low internal
force grasping tasks, in which rigid link robots show unpredictable behavior. In
general flexible link robots show more robust behavior and follow trends more reli-
ably. Actuator saturation is another scenario where the use of flexible link robots
is attractive, as they achieve comparable absolute position tracking and better high
frequency position tracking with lower actuation effort.

Coupled with the advantages mentioned in the introductory chapter of this the-
sis. the above makes a strong case for using flexible link robots in manipulation
tasks. especially, as control of these robots in hybrid force/position tasks can be
achieved with relatively simple, non computationally intensive modifications to ex-
isting workspace control laws.
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Chapter 7

Conclusions and Future Work

We have tried to put forward a point of view about doing robotics using flexible
manipulators. We believe that manipulators with flexible links can not only be con-
trolled for hybrid force/position manipulation tasks, but can provide performance
comparable to, and in some cases better than that of rigid manipulators.

7.1 Summary of Work Done

In this thesis, we have dealt with the problem of manipulation with flexible robots
at different levels. We have analyzed the dynamics of single flexible manipulators in
constrained motion tasks, mathematically, and have been able to set up a framework
which can address significant flexibility in robotic manipulators. As a result of this
analysis we were able to propose control laws which were provably stable. The
analysis also provided a guideline for design of flexible manipulators to make control
of these manipulators easier.

Simulations have been performed to test the performance of the controllers pro-
posed and to determine the behavior of flexible manipulators in constrained motion
tasks. In addition we have tested the effect on the flexible manipulator system, of
the assumptions made during analysis.

The third part of the work presented was experimentation with rigid and flexible
fingers in grasping tasks. The control laws used were developed during the analysis
for individual manipulators in constrained motion tasks. One of the goals of the
grasping experiments was to exhibit the applicability of the results of our analysis
to an advanced hybrid force/position control task. The other major goal of the
grasping experiments was to determine the tradeoffs inherent in the use of flexible
manipulators as against rigid ones. This necessitated the development of a frame-
work for measuring the performance of manipulators in constrained motion tasks.
The analysis of experimental data within this framework provided insights into the
tradeoffs involved in using flexible manipulators.

In summary we are able to state the following:

e Singular perturbation tools can be used to analyze significantly flexible ma-
nipulators in constrained motion tasks.
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s Provably stable control laws for control of flexible robots in constrained motion
tasks exist, and can be used to control robots with significant link flexibility.

e These control laws and their modifications can be implemented using existing
technology on real setups.

e The modified Jacobians introduced can be used for mapping workspace control
forces for flexible robots in the same way that the usual Jacobian is used for
rigid robots. The workspace control law, which determines the workspace
control force to be applied, can remain unchanged. Therefore the applicability
of this work is quite general.

¢ Guidelines followed during robot design can make control easier. Scaling the
damping coeflicient of the flexibility of a flexible robot by the square-root of
the mass of the flexible link is one such guideline. Material properties like
density and viscoelasticity, as well as more esoteric strategies utilizing new
materials like shape-memory alloys can be used to achieve the design.

o The extra effort of control of flexible manipulators can be offset by their en-
hanced performance in certain types of robotic tasks. Though rigid link robots
can achieve better absolute tracking performance, flexible link robots exhibit
better robustness properties in grasping tasks and their performance shows
more reliable trends with changes in operating parameters. Flexible robots
can achieve absolute tracking performance comparable to rigid robots and bet-
ter high-frequency performance with lower actuation effort. Therefore, they
are most suited for force/position tasks which require low forces to be applied
steadily during motion.

7.2 Future Work

There are many avenues of fruitful research which can be followed for the control of
flexible manipulators for robotic manipulation. We have been unable to prove the
stability of the instantaneous Jacobian control law without making extra assump-
tions. However, this law works very well in practice. It would be interesting to
investigate the properties of the system which ensure the success of this law. The
insight gained would not only delineate the limits of applicability of this law but
could potentially reveal more about the behavior of flexible manipulator systems.
Design guidelines arising from such investigation would be a gratifying addition to
current knowledge. Proof of asymptotic stability of the .J, controller is another
avenue which could be explored.

Further experimentation geared towards implementing the .J, control law would
also be welcome. We were unable to implement it due to the lack of dependable force
sensors for the fingertips of our robot fingers. The basic control laws used during the
experimentation reported in this thesis were quite simple. It would be interesting
to experiment with more sophisticated control laws which push the performance of
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the experimental setup to higher levels. The performance trends arising from such
experimentation would be clearer than those obtained.

The picture which emerges from the experimentation carried out is still not very
clear though certain trends are evident. More experimentation needs to be done to
determine the behavior of flexible manipulators in constrained motion tasks. The
framework for determination of performance should also be considered a first cut.
As properties of such systems are determined, a standardised framework should
evolve for performance measurement.

In our experimentation we used links of different flexibilities. The links were
stainless steel feeler gages of different thicknesses and were purchased off-the-shelf.
It would be an interesting exercise to explore using different materials, cross-sections
and other design parameters, including the use of smart materials, the extent to
which the scaling law proposed in our singular perturbation method holds in prac-
tice. It is worthwhile to know the additional design effort required to conform to
the scaling law.

The general field of flexible robotics must be considered relatively young, and
a lot remains to be done. The issues dealt with in this thesis are basic to a better
understanding of the field and the problems that need to be addressed, as well as
a justification for continuing work. The need for the future is diverse. More pow-
erful analytical tools, a better understanding of the behavior of constrained flexible
manipulators, improvements in sensing and actuation technology are all required
before practical systems can be designed and built for real world applications.
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Appendix A

A Reconfigurable Multi-Robot Testbed

The experimentation reported in this thesis was performed on a workbench designed
and fabricated during the course of this work. The setup allows the use of multiple
robots and is intended to be a testbed for performing various types of experiments
in robotics. Each robot is a tendon driven, two degree of freedom manipulator.
Reconfiguration of the construction of individual robots, as well as reconfiguration
of robots in a multirobot setup are easily undertaken. Actuation is via DC motors
driven by PWM amplifiers. Sensing of joint angles is through optical encoders. A
six degree of freedom position and orientation sensor is available for sensing grasped
objects. Strain and force measurement hardware and software is available as well.
The whole setup is interfaced to a IBM-PC compatible for sensing, control and
data-acquisition through commercial as well as custom designed interface hardware.
Different control laws can be easily implemented on the setup by attaching con-
trollers to the existing software base. This testbed has been used in the past for
flexible-link robotics, flexible-actuation robotics, rigid and flexible grasping and for
experiments in human-robot interaction.

A.1 Introduction and Overview

The motivation for building the robotic testbed was to provide a small-scale robotic
setup, which allowed the possibility of reconfiguration for different types of exper-
imentation, without large downtime or refabrication. The testbed went through
multiple design cycles and evolved in both concept and design from the initial de-
sign goals.

One of the major design goals was scalability. We required the setup to be
scalable to very small dimensions. This was due to a perceived potential application
in medical/surgical endoscopy, where the space available for a finger like device is
limited to the lumen of the endoscope, approximately a 3 mm diameter (please refer
to Chapter 1). To ensure scalability the initial versions of the fingers had no non
scalable parts. There were no metallic bearings at the joints. The material used to
build the robot was delrin which has the frictional properties of teflon with better
machining properties. This allows for finer tolerances in the actual building of the
device. In later modifications we did introduce metallic bearings due to the stiction
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Figure A.1 Overview of experimental setup.

at the joints. Another of the main design goals was reconfigurability, to allow more
than one set of experiments to be performed simultaneously. To achieve this the
manipulators are modular, and a new manipulator can be pieced together from the
parts in a very short time. Parts of the manipulators can be exchanged for other
parts, for example, replacement of links with links of different flexibilities, can be
done in minutes.

We have used this test-bed for experiments in hybrid force-position control of
individual robots, and for multi-robot grasping:; for the study of link compliance
reported in this thesis and for the study of actuation compliance. This experimental
setup has also been used for experimenting with human-robot interaction.

Figure A.1 shows the overall experimental setup. The two basic parts of the setup
are the hardware and the software which runs the hardware. The hardware itself
consists of two parts: the mechanical hardware comprising the fingers themselves,
the tendon drive mechanism, the motors and the object being grasped and the
electronic and computation hardware comprising the sensors. the amplifiers, the
interface cards and the IBM compatible PC. The software is layered. The heart
of the software is the scheduler servo, which runs the controller at the required
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frequency. This is implemented in the Sparrow library [39]. The other layers of
software are the libraries which implement primitives for fingers and for controllers.
The user application is the top layer of the software which uses all others for actually
running the experiment. In what follows we describe these in detail.

A.2 Hardware

Y Y
Motor Motor
PWM set set
Amplifiers 1 2
IBM PC
(486-66)
________ YooY
Optical |
Angle 1| Finger 2 Finger 1
AAA Encoders|
A A
y Y
6-DOF sensor |~
Object
Force sensor |-

Figure A.2 Hardware setup.

The experimental setup used for our grasping experiments consists of two two-
degree-of-freedom, revolute-jointed robot fingers. Figure A.2 is a block diagram of
the hardware setup. The fingers are tendon driven with one motor driving each joint,
a 1-n configuration. The motors are driven using pulse-width-modulation (PWM)
amplifiers. The fingers themselves have optical encoders at the joints for sensing
the configuration of each finger. The object used for grasping is also instrumented
with a 6-DOF position and orientation sensor to get independent measurements of
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the object configuration. In addition there are force sensors on the grasped object
to detect forces at the tips of the fingers as well as the internal force on the object.
In what follows we describe various components of the setup in greater detail.

Base Plates: The testbed is erected on a set of two base plates which all together
offer an area of size 26" x 24”. The entire mechanical hardware for the setup is
constructed on these base plates.

Metallic optical plate:  One of the base plates is a standard, metallic optical plate
with a grid of 1”7 x 1”, %—20 tapped holes. It is % inch thick. This plate has self
leveling feet. The motors and finger base joints are mounted on this base plate (refer
to Figure A.3), with optical bench type screwed down fixtures. Due to the use of
this plate and the fixtures, the mechanical components can be relocated fairly easily
to new locations.

(a) Front view.

(b) Back view.

Figure A.3 Mechanical hardware on base plates.

Non-metallic plate:  The second base plate is a made of 3 inch thick acrylic and

B e
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has a pattern of calibration holes drilled into it with high precision. It mounts the
transmitter of the Polhemus 3SPACE, InsideTRAK ™, 6-DOF position sensor. The
Polhemus sensor is sensitive to metal and hence the requirement for a non-metallic
mounting plate for this part of the setup. This plate is rigidly attached to the optical
plate at its base and is leveled using leveling screws at its corners. The function of
both these plates is to provide a stable, flat and level datum for the robotic setup.
The non-metallic plate is also used to calibrate the position sensor.

The most important part of the robotic setup are the robots themselves. Each
robot is a tendon actuated finger, with two revolute joints. In what follows we
describe in detail the construction of the fingers.

Robotic fingers: Each finger is modular and is constructed by putting together
joints and links in order. Though we use only two degree of freedom fingers, with
two joints and two links for our experimentation, more complex robots can be built
by using larger numbers of joints.

Links:  For links any stock of rectangular cross-section, with the cross-sectional
height %” and thickness less than %” can be used. The rigid link used during our
experimentation was %”(0‘065" ) thick and the most flexible link was 0.010” thick.
The length of the link can vary.

Joint Assembly: The joints are the crucial components in the make-up of the
robotic fingers. They are not only the site where the macro internal movement of
the fingers takes place, but are also the site of actuation. In addition, for tendon
actuated fingers they are used for tendon routing. Each joint of the experimental
setup is assembled from four different pieces.

Agzle: The central axle is made of delrin. It has grooves at the top and the bottom
to carry the tendons (Figure A.4a). The tendon routing is described later. The
tendon actuating a joint makes a loop around the axle and through a slanted hole
in the body of the axle, so that the two sides of the tendon do not rub against each
other when being actuated. The base joints also guide the tendons for the next
joint. For insertion of the link, the axle has a groove cut longitudinally into it. The
link is fastened to the axle by means of a pair of set-screws. In the assembled joint
the optical encoder is attached to the top shaft of the axle.

Base Plate: The axle rests on the base plate (refer Figure A.4b). The bottom
shaft of the axle is inserted into the hole in the base plate. The base plate was
originally designed without a bearing as we thought the delrin surfaces would provide
sufficiently low friction. Later however bearings were put in to achieve the least
possible amount of friction.

Back Plate:  The back plate is the same height as central portion of the axle
and serves to separate the base and the top plate. Additionally, the link from the
previous joint is affixed to the back plate at a longitudinal groove and fastened by
a pair of set-screws. It has apertures in it to allow the tendons to pass through.
(Figure A.4c.)

Top Plate: The top plate is similar to the base plate but in addition it provides
the attachment surface for the optical encoders (Figure A.4d). The top shaft of the
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axle protrudes through the top plate, and the optical encoder is attached between
the top plate and the shaft.

Figure A.4e shows the assembled joint with a link inserted into the axle. The
optical encoders are attached at the top, over the protruding shaft in the figure.

Tendon driven manipulators are classified according to their actuation configu-
ration. The more common configurations are 1-n configuration, in which there is
one motor actuating each joint, the 2-n configuration which requires two motors
for each joint and the n41 configuration which requires one motor more than the
total number of actuated joints. It is important to realize that tendons can only
transmit force in tension, which is why the various configurations are important. In
the 1-n configuration, for each joint the tendons essentially make an endless loop
between the joint and the motor pulley. For this configuration the length of the
closed loop cannot change by very much during the motion of the finger. Tendon
flexibility can make up for some change. The motor applies torque while moving
both in the clockwise and anti-clockwise directions. In the 2-n configuration each
motor for a joint applies torques in one direction only. When the joint rotates in
a direction in which the motor is not applying torque, the motor is back-driven.
This configuration also has no restriction on the change of length of the tendon
path during motion, as the tendons do not form a closed loop. The disadvantage
is the requirement of double the number of actuators, therefore requiring double
the number of electronic hardware channels for control and amplification. The n+1
configuration uses one motor to apply torque in one direction to all the joints. The
other motors apply torques on each joint in the direction opposite to that applied
by the common motor. The effective torque is the difference in the torques applied
by these motors. We used a 1-n configuration with the tendon routing described in
what follows.

Tendon Routing: The tendon routing for the outer joint is done as shown in
Figure A.5a. The tendons cross multiple times to increase the angle of wrap. They
are staggered in height to avoid rubbing against each other at the crossing points.
The routing for the base joint is similar (except for the last crossover as shown in
Figure A.5b). The tendons are continuous loops from the motor pulley to the joint
axle. At each joint axle, the tendons go over the grooves of the axle, through a
slanted hole in the body of the axle and cross within the exit hole in the backplate
of the joint as shown in Figure A.5¢. Our tendon routing setup allows the tendons
to be re-strung without requiring that fingers or motors be disassembled.

Tendon actuation introduces an additional transformation between the joint
torques and the motor torques, parametrized by the configuration of the robot
itself. The tendon routing we have used causes a coupling of the joint torques such
that the motor torques required for each joint depends on the torque required by
the other joints too. In Figure A.5a, the first three pulleys from the left are fixed
relative to each other. However, the last pulley (the second joint) moves and can
move far enough for the tendon to come off the base joint pulley on that side. The
torque mapping changes when this happens, and must be taken into consideration
during implementation of the experiment.

The remaining component of the fingers are the set of motors used to actuate
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them. These must be matched to the specifics of the task required to be performed.
Our setup allows changing motors quite easily, without having to disassemble the
fingers themselves.

Motors: In grasping and hybrid force/position control tasks the usual scenario is
one in which there are relatively small motions with relatively large forces. Thus
the motors used to drive the fingers are usually stalled. However, they have large
currents running through them to supply the torque necessary to maintain the end-
effector force. This is potentially harmful to most DC motors and causes overheating
and eventually burnout of the motor coils. The motors we used for our experiments
were Maxon™ precision motors with precision, low backlash, single stage, planetary
gearheads with a reduction ratio of 5.2. The motor/gearhead system delivered a
stall torque of 2410 mNm and a load torque of 245 mNm. The voltage of operation
was 24 volts and the maximum power was 90 watts. The motors were driven by
Technology-80™ PWM amplifiers.

The other piece of mechanical hardware required for our experimentation was an
instrumented object. For the grasping experiments it was required that the position
and orientation of the grasped object be sensed independently of the configuration
of the fingers, especially in case of the flexible fingers. Further, the internal force
and the forces at the contact points were required to be known.

Figure A.6 Instrumented object.

Instrumented object: The instrumented object is made of lucite. It is con-
structed by joining together two vertical side plates with two horizontal struts. The
top horizontal strut bears the receiver of the Polhemus 3PSACE, InsideTRAK™ six
degree of freedom position and orientation sensor receiver. The lower strut was
instrumented with a Sensotec™ one degree of freedom load cell for measurement of
internal forces. Note that because of the presence of two struts the internal force
detected by this sensor was not the total internal force, but a scaled version of it.
To detect the forces of contact at the tips of the finger each contact point on the
object was instrumented with a UniForce™ force sensor. The instrumented object
is shown in Figure A.6.
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In addition to the mechanical hardware described above, sensory hardware was
required to sense the state of the experiment. We describe briefly the sensors used
for experimentation.

Sensors and interface hardware: Three main types of sensors were used for
experimentation. Each finger joint was instrumented with a HEDS™ optical encoder
with 512 slits, a resolution of 0.1758°. Quadrature decoding for these sensors was
done using HCTL-2016™ integrated circuits. The 3SPACE, InsideTRAK™ position
and orientation sensing system, used for independently tracking the position and
orientation of the object had a resolution of 0.0003 cmns/cm in position measurement,
0.03" in angular measurement and a maximum update rate of 60 Hz. This sensor
was interfaced to the computer with a manufacturer supplied DSP based interface
card. The Sensotec™ single degree of freedom, analog load cell had a range of 0—
1 kgf. The load cell had its own manufacturer supplied amplifier which conditioned
and amplified the load cell voltage to £5 volts. The UniForce™ force sensors had a
range of 0-2 Ibf. These sensors were based on force sensitive resistor technology and
electronic hardware was required to be built for driving and amplifying the signals.
Both types of force sensors were interfaced to the computer through a Keithley-
Metrabyte DAS-1600™ 1/0 board with 8 differential (16 single ended) A/D inputs,
2 D/A outputs and 24 bits of parallel port. The A/D inputs had 12 bits of resolution
and an overall bandwidth of 100kHz for all channels. A custom interface board was
designed and built for interfacing the optical encoders and for generating the PWM
signals for the motor amplifiers. This board was capable of reading and decoding
9 optical encoders and provided 8 channels of PWM output. The PWM carrier
frequency was 10 kHz. The interface board was also capable of running multilevel
scheduling loops for running nested or hierarchical controllers.

Photographs of the real setup are in Figure A.7.

In general tendon driven fingers are harder to control than direct drive fingers.
However, there is a saving in weight of the manipulator which can lead to better
performance. Additionally, tendon driven robots can be scaled down to small sizes
more easily than direct drive robots because the actuators do not have to be scaled
down.

A.3 Software

We will only briefly discuss the software setup for experimentation. A detailed
discussion is beyond the scope of this document and the reader is referred to [39]
for details.

The software used for control of the robotic setup is based on the Sparrow real-
time computation package [39] for IBM compatible PCs. The core of Sparrow is a
scheduler which can be used to run the control loop at a very fixed frequency. In
use the scheduler operates to execute the control function at the highest priority.
Therefore, the control loop will interrupt every other “background” task which
the computer is performing. The result is that the control loop is able to run
exactly when called, without any latency (in principle). During a typical control
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(a) Top view of fingers.

(b) View of experimental setup.
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