
Optimized Network Data Storage and Topology

Control

Thesis by

Anxiao Jiang

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2004

(Submitted May 27, 2004)

ii

c© 2004

Anxiao Jiang

All Rights Reserved

iii

Acknowledgements

I am grateful to my advisor, Prof. Jehoshua (Shuki) Bruck, for his enormous help

over the years. He has offered valuable advice on all aspects of research, and allowed

me complete freedom in exploring new fields. I have received endless support from

Shuki in everything.

I am grateful to Prof. Robert J. McEliece, Prof. K. Mani Chandy and Prof. Steven

Low. I have learned a lot from them, both inside and outside classes. Prof. McEliece

and Prof. Low have been indulgent in letting me attend their group meetings, where

I listened, talked, and made friends with their students.

I am grateful to Dr. Mario Blaum, from whom I have received lots of help. One

of my favorite papers was sparked by his influential work.

I am grateful to Prof. Richard M. Wilson and Prof. Yaser S. Abu-Mostafa,

for serving on my candidacy committee despite their very busy schedules, and for

providing valuable feedback.

I am grateful to Prof. Chris Umans and Prof. Leonard Schulman. Attending

their theoretical computer science reading groups has been a most stimulating and

enjoyable experience — a highlight in my final year at Caltech.

I am grateful to Matthew Cook, for the many very helpful discussions on research

we have had.

I am grateful to my wonderful friends at Caltech: Vince Koosh, Marc Riedel, and

many others. I am also grateful to Caltech itself, where I have spent the happiest

years of my life.

Finally, I am grateful to my dear parents, for their endless love and for being

strong; and to my dear sister, Dan, for accompanying me while I was growing up.

iv

Contents

Acknowledgements iii

Abstract x

1 Introduction 1

1.1 Facing the Challenges of Network Data Storage 1

1.2 Background . 4

1.2.1 Prior Work . 4

1.2.1.1 Data Placement . 4

1.2.1.2 Topology Control . 5

1.2.2 Our Approach . 6

1.3 Problem 1: Maximum Interleaving and Memory Allocation on Trees . 7

1.4 Problem 2. Optimal t-Interleaving on Tori 8

1.5 Problem 3: Multi-Cluster Interleaving on Paths and Cycles 10

1.6 Problem 4: Monotone Percolation and Topology Control 11

1.7 Summary . 12

2 Maximum Interleaving and Memory Allocation in Tree Networks 14

2.1 The Data Placement Problem . 14

2.2 K-Diversity Interleaving and Maximum Interleaving 17

2.2.1 Definitions . 17

2.2.2 A General K-Diversity Interleaving Algorithm 18

2.2.3 Generality of K-Diversity Interleaving Algorithm 2.1 22

2.2.4 An Efficient K-Diversity Interleaving Algorithm 25

v

2.3 Memory Allocation . 33

2.3.1 Definitions . 33

2.3.2 A Memory Allocation Algorithm 34

2.3.3 Memory Allocation for Trees without Upper Bounds on Mem-

ory Sizes . 42

2.3.4 Minimizing the Greatest Memory Size of Single Vertices . . . 44

2.4 Summary . 45

2.5 Appendix I: Complexity Analysis of Algorithm 2.1 46

2.6 Appendix II: Proving the Generality of Algorithm 2.1 46

2.7 Appendix III: Complexity Analysis of Algorithm 2.2 50

2.8 Appendix IV: Pseudo-Code of Algorithm 3.1 52

3 Optimal t-Interleaving on Tori 54

3.1 Introduction . 54

3.2 Perfect t-Interleaving . 61

3.2.1 Perfect t-Interleaving and Sphere Packing 61

3.2.2 Perfect t-Interleaving and Its Construction 66

3.3 Achieving an Interleaving Degree within One of the Optimal 78

3.3.1 Interleaving Construction . 78

3.3.2 Existence of Offset Sequences 83

3.3.3 Interleaving with Degree within One of the Optimal 85

3.4 Optimal Interleaving on Large Tori 89

3.4.1 Removing a Zigzag Row in a Torus 89

3.4.2 Constructing the Zigzag Row 93

3.4.3 Optimal Interleaving When t Is Odd 98

3.4.4 Optimal Interleaving When t Is Even 103

3.5 General Bounds on Interleaving Numbers 103

3.6 Brief Discussions . 107

3.7 Appendix I . 107

3.8 Appendix II . 112

vi

4 Multi-Cluster Interleaving on Paths and Cycles 116

4.1 Introduction . 116

4.2 Upper Bounds . 120

4.3 Optimal Construction for MCI on Paths with Constraints L = 2 and

K = 3 . 128

4.4 MCI on Paths with Constraint K = L + 1 131

4.5 MCI on Cycles . 142

4.6 Appendix I . 145

4.7 Appendix II . 146

5 Monotone Percolation and Topology Control 154

5.1 Preface . 154

5.2 Introduction . 155

5.3 Basic Terms . 160

5.4 Algorithm I . 162

5.4.1 Definition . 162

5.4.2 Routing Property . 162

5.4.3 Node Degree . 163

5.4.4 Coverage Radius . 166

5.4.5 Expansion and Connectivity 166

5.5 Algorithm II . 168

5.5.1 Definition . 168

5.5.2 Connectivity and Routing Property 169

5.5.3 Coverage Radius and Node Degree 169

5.6 Algorithm III . 172

5.6.1 Definition . 172

5.6.2 Connectivity and Routing Property 172

5.6.3 Length Distortion and Routing Property 172

5.6.4 Hop Distortion, Node Degree and Coverage Radius 175

5.7 Algorithm IV . 176

vii

5.7.1 Definition . 176

5.7.2 Hop Distortion . 176

5.7.3 Node Degree and Coverage Radius 182

5.8 Algorithm V . 182

5.8.1 Definition . 182

5.8.2 Hop Distortion and Other Performance Measurements 182

5.9 Appendix: The One-Hop Progress in a Network Constructed Using

Algorithm I . 183

6 Future Directions 189

Bibliography 191

viii

List of Figures

1.1 3-Interleaving a 6× 5 torus. 9

1.2 An example of multi-cluster interleaving on a cycle. 10

2.1 An example of K-diversity interleaving and maximum interleaving. . . 18

2.2 Different K-diversity interleavings on the same tree. 22

2.3 An example of K-diversity interleaving using Algorithm 2.2. 27

2.4 An example of the memory allocation problem. 34

3.1 A qualitative illustration of the t-interleaving numbers. 60

3.2 Examples of the sphere St. 62

3.3 A sphere in a torus. 68

3.4 Relative positions of spheres and vertices. 69

3.5 The packing of spheres in a torus. 70

3.6 Example of perfect t-interleaving using Construction 2.2. 77

3.7 An example of t-interleaving of special features. 80

3.8 Examples of tiling tori . 85

3.9 Examples of Construction 3.2. 86

3.10 Removing a zigzag row {(3, 0), (2, 1), (1, 2), (3, 3), (1, 4)} in T 90

3.11 An example of Construction 4.1. 97

3.12 See G as being tiled by small blocks. 105

3.13 Using modules for 3-interleaving. (a) The 6 modules; (b) Tiling the

modules. 109

3.14 Two modules used for 3-interleaving an l1 × 19 torus, where l1 ≥ 20. . 111

4.1 Examples of interleaving for data retrieving 117

ix

4.2 An example of multi-cluster interleaving (MCI) 119

4.3 (a) The graph H = (VH , EH) (b) MCI on the path G = (V, E) . . . 130

4.4 Illustrations of three operations on paths. 132

4.5 An example of Algorithm 2. 135

4.6 (a) The graph H = (VH , EH) (b) MCI on the cycle G = (V, E) . . . 145

5.1 Coverage radius and outgoing edges. 160

5.2 The cones and cone angles of v. 161

5.3 Projecting u’s neighbors onto the Unit Circle. 164

5.4 (a) The faces caused by the edges reachable from node u. (b) A face

that cannot possibly exist. 167

5.5 Maximum competitive ratio in a sector. 173

5.6 The maximum competitive ratio of points on the line segment OA. . . 174

5.7 Two consecutive edges in a routing path. 177

5.8 Two consecutive edges in a routing path, when CD intersects OA. . . 177

5.9 Two consecutive edges in a routing path, when CD intersects the arc ÂB.178

5.10 Two consecutive edges in a routing path, when CD intersects OB. . . 178

5.11 Two consecutive edges in a routing path, when CD intersects OB. . . 179

5.12 Two consecutive edges in a routing path, when CD intersects OB. . . 180

5.13 Two consecutive edges in a routing path, when CD intersects OB. . . 180

5.14 O’s neighbors . 185

x

Abstract

This thesis addresses two key challenges for network data-storage systems: optimizing

data placement for highly efficient and robust data access, and constructing network

topologies that facilitate data transmission scalable to both network sizes and network

dynamics. It focuses on two new topics — data placement using erasure-correcting

codes, and topology control for nodes in normed spaces. The first topic generalizes

traditional file-assignment problems, and has the distinct feature of interleavingly

placing data in networks. The second topic emphasizes the construction of network

topologies that achieve excellent global performance in comprehensive measurements,

through purely local decisions on connectivity. The results of the thesis deepen the

current understanding on these important and intriguing topics, and follow a math-

ematically rigorous approach.

1

Chapter 1

Introduction

1.1 Facing the Challenges of Network Data Stor-

age

Network data storage for large-scale information sharing is becoming a reality. The

method of data replication for the access of distributed users has progressed from mir-

roring file servers, to commercial content-distribution networks (CDNs) (e.g., Aka-

mai), then to peer-to-peer type of networks. The trend has been a shift from the

traditional file management model, where a user’s or company’s files are stored and

maintained on its own computers, to jointly storing many individual owners’ files in

the same distributed network; from the traditional memory usage model, where each

piece of memory can only be used by its owner, to the formation of a network of mem-

ories owned by many individuals that can be publicly accessed and utilized; from the

traditional server-client service model, to the model where every computer is not only

a server providing data, but also a client requesting data stored elsewhere, and even a

router in the data-storage network (which may be an overlay network, a self-deployed

wireless network, etc.). The driving force behind these transitions is the increasingly

wide sharing of information, and the very large number of freely available memories

of ordinary users. As a result, we are getting a network that removes unnecessary

redundancy in data replicas, that is more efficient for data access, and more robust

for data loss and network failures.

2

There are two fundamental challenges facing such emerging data storage networks,

for both of which the research and practice are at their young stage.

The first challenge is the optimized placement of data. In nearly all systems so far,

files are replicated in their entirety in the network — a computer either stores the

entire copy of the file or none of it. From an information-theory point of view, the

files are stored using a simple repetition code. A more general approach will be to

store files using erasure-correcting codes — encode a file with an erasure-correcting

code, and store copies of the codeword components distributively in the network.

(Here we emphasize the use of erasure-correcting codes, instead of error-correcting

codes, because erasures happen more often at the file level in computer networks.)

Clearly, by using a strong erasure-correcting code, significantly better performance

can be achieved — smaller data-access delay because an erasure-correcting code is

a more general way to represent a file and leads to more freedom in determining

the placement of data; more balanced memory usage and data flow because a file

is now stored in smaller pieces on more computers, and a client can access several

computers for different components of the codeword; higher data availability when

the network faces loss of data on some computers, topological changes, or regional

failures, because of the strong erasure-correcting ability of the code. All the benefits

come at no cost of increased memory requirement — in fact, less data might need to

be stored. We emphasize that the last point of performance improvement — higher

data availability — is not just useful in the case of emergence. In the peer-to-peer

type of data-storage networks, each user can freely turn on and off its computer, and

a computer may move (physically or logically) to other areas of the network. So loss

of some stored data and changes in the network topology happen all the time; and

high availability of data needs to be ensured all the time.

The performance improvement of storing files using erasure-correcting codes does

come at a cost — the complexity of decoding the codeword. Every time a user re-

trieves some components of the codeword, one needs to perform decoding to recover

the original file. One obvious way to reduce that cost is to develop better codes

and decoding algorithms. Another important method to solve this problem is to

3

find the placement of codeword components that minimizes the requirement on the

codeword length while satisfying other performance requirements, therefore allowing

the maximum freedom in selecting the erasure-correcting code of the minimum de-

coding complexity. In this thesis we study the placement of files in networks using

erasure-correcting codes; and our results manifest that sometimes the requirement on

codeword length can be reduced to be minimal.

The second challenge is the optimized construction of network topology. A peer-to-

peer type of data-storage network may be an overlay network, or a wireless network

that is possibly mobile. The network topology is how the nodes in the network are

connected to each other. A good topology not only needs to prevent network parti-

tioning and have short distance between node pairs, but also needs to have localized

construction algorithms — meaning that every node determines its connectivity to

other nodes using only very local information — and to enable routing methods

scalable to both network size and network dynamics. That is because the emerging

peer-to-peer type networks have two common features — they tend to be very large,

and their nodes can dynamically join, leave or move around. For such networks, ge-

ographic routing — the method of routing messages greedily by trying to reduce the

geographic distance to the destination with every hop — appears to be the scalable

routing method.

While geographic routing is natural for wireless networks, how can it be applied

to overlay networks? The idea is to embed the overlay network into a normed space.

More details on this idea will be introduced in the next section. Current peer-to-peer

type of networks (including both overlay networks and wireless networks) either do

not support geographic routing (e.g., the Gnutella network), or support geographic

routing but have large stretches in the lengths of routing paths. In this thesis, we will

show how to construct network topologies to support efficient geographic routing.

This thesis studies two new topics — data placement using erasure-correcting

codes, and localized topology control that ensures high performance in geographic

routing and other comprehensive aspects. It opens new research directions for the

two fundamental tasks of a data-storage network — the storage and transmission of

4

information.

1.2 Background

1.2.1 Prior Work

1.2.1.1 Data Placement

The placement of replicas of data in a network is often known as the File Assignment

Problem (FAP). There has been extensive work on this topic dating back to the 1970s.

In the well known paper [19] published in 1982, Dowdy and Foster summarized many

kinds of file assignment problems based on different system models and optimization

objectives, and reviewed the numerous techniques used to solve them. Research on

FAP continues to be popular [9], [41], [47], while the focus has been nearly exclusively

on file replication without using erasure-correcting codes. A lot of FAPs essentially

belong to the family of general problems called Facility Location, while other FAPs

are quite different due to their specialized settings.

Data placement using erasure-correcting codes is a new topic. A major result

was derived by Naor and Roth in [63], but other than that research has been very

limited. In [63], Naor and Roth studied how to place components of a codeword on

a general graph, such that every vertex can reconstruct the codeword by accessing

components stored on itself and its direct neighbors. They presented a solution that

is asymptotically optimal in minimizing the total number of stored bits, when the

original information in the codeword has a length much larger than the logarithm of

the graph’s degree.

Data placement using erasure-correcting codes generalizes the traditional file as-

signment problems. Besides the common element that it shares with traditional FAPs

— deciding how much data to store on each node of the network — it also has a dis-

tinct factor that makes it very different from traditional FAPs. That is, when data are

placed in a network using erasure-correcting codes, the codeword components need

to be interleaved on the network so that for every node, it can find enough different

5

codeword components from nearby.

Data storage using erasure-correcting codes has been applied to disks, such as

CDs and the RAID disk arrays [67], as well as to server clusters [55]. In recent years

erasure-correcting codes have also been applied to data streaming schemes, such as

Digital Fountain [17]. The usage of erasure-correcting codes for network data storage

is a topic of this thesis.

1.2.1.2 Topology Control

Peer-to-peer networks residing in the Internet often employ a logic structure called

overlay network, which represents the logic connections among its nodes and is the

basis for routing. Some of them do not enable geographic routing, such as Gnutella

[25] which uses limited flooding; but many others essentially use geographic routing,

including Chord [81], CAN [70], Viceroy [53], Pastry [74], Butterflies [18], etc. As an

example, the overlay network of Chord is a ring along which messages are routed; the

overlay network of CAN is embedded in a multi-dimensional torus, and the routing

path from a source to a destination approximates the straight line between those

two nodes in the torus. However those overlay networks are constructed without

considering the ‘real ’ distance among nodes (the real distance between two nodes can

be measured by the delay of the shortest path between them); and as a result, the

routing is scalable in the sense of keeping small routing tables but is not scalable in

the sense of having short routing paths. If we use k to denote the average number of

logic hops a routing path has in the overlay network, then on average the real length

of a routing path is about k times that of the shortest path that can actually be used.

A good solution to the above problem is to embed the nodes into a normed space,

in such a way that the real distance between any two nodes approximately equals the

distance between their images in the normed space. An overlay network constructed

using the images in the normed space not only enables geographic routing, but also

has routing paths whose lengths are close to the real distance between sources and

destinations. Embedding graphs into normed spaces has been a very popular topic

in the theoretical computer science society and the mathematics society in recent

6

years [34], [51], [58], [64]; embedding Internet nodes into the Euclidean space has

been studied lately [65], [78], and its usage for constructing overlay networks has

been suggested. However no overlay network based on such embeddings for efficient

geographic routing has been constructed.

For a wireless network, the positions of its nodes can be determined by using

GPS. If GPS is not available, then the positions can be recovered by using embedding

algorithms [69], [77] with reasonably low overhead in computation and flow.

How to perform geographic routing for nodes in a normed space is quite obvious;

however, the performance of the routing depends on the network topology. Geo-

graphic routing typically faces two major problems: the existence of ‘dead-end’ nodes

that have no neighbors closer to the destination, which prohibits the greedy progress

of routing; and the large deviation of the routing path from the straight line between

the source and destination, which results in long routing delays. For wireless networks

(which are assumed to be on a two-dimensional plane), the method of routing on a

planar subgraph is proposed to solve the first problem [6], [43]; however the second

problem remains unsolved. For nodes in higher-dimensional spaces, neither problem

has known solutions. It is very important to study how to efficiently construct net-

work topologies for nodes in normed spaces that solve both of the above problems.

This is another topic of this thesis.

1.2.2 Our Approach

Both data placement using erasure-correcting codes and network topology control for

nodes in normed spaces are new and broad topics. Our approach is to gain a deep

theoretical understanding of these topics, through the exploration of original ideas

and the discovering of novel solutions. We believe the intriguing findings here not

only are valuable from the viewpoint of science, but also lay a solid basis for the real

applications.

This thesis studies several data placement problems, with a special focus on the

interleaving placement of data — the feature that distinguishes data placement using

7

erasure-correcting codes in the generalized file assignment problem, from the tradi-

tional FAP. It displays, for the first time, a data-placement construction suitable for

users that can access a network through multiple access-points. It presents a new

idea of topology control that leads to substantially improved system performance,

measured by routing efficiency and many other criteria.

The mathematics developed in the thesis often has relations to topics beyond

network data-storage systems. For example, the interleaving problem for tori has

applications not only to data placement but also to error-burst correction, and is

closely related to Lee-metric codes. We do not hesitate to show such relations when

they exist, because that is the beauty of mathematics.

In the following we introduce the four problems studied in this thesis. For each

problem, we extract and demonstrate its key result, and leave its less critical aspects

to later chapters. We hope in this way the essence of the results can be made easier

to grasp.

1.3 Problem 1: Maximum Interleaving and Mem-

ory Allocation on Trees

Imagine that we are assigned the following task:

“We are asked to color the vertices of a graph with a set of colors. For every

vertex, we would like there to be as many different colors as possible within a distance

that is as small as possible from that vertex. How well can we do it?”

The answer depends on the graph. If the graph is a cycle with 4 vertices and we

are given 3 colors, then there will be at least 2 vertices for which there are only 2

(instead of 3) different colors within one hop. However, if the graph is a tree, then we

can actually achieve the best possible result — say there are n colors, then for every

vertex, the n nearest colors around it are all different.

The above finding is what we call the maximum interleaving on a tree. It can be

achieved for a more general scenario: when the edges in the tree have different lengths

8

and the vertices need to be assigned different numbers of colors (i.e., multi-coloring),

the tree can still be colored with the best possible result.

Maximum interleaving comes as part of a technique that we use to solve a rather

general data storage problem on tree networks. It is a problem of placing the compo-

nents of a codeword in the network such that every node can retrieve enough different

components for recovering the codeword from nearby. Clearly the colors correspond

to the codeword components. Besides this application, maximum interleaving itself

is a very basic (and intriguing) property of trees.

As mentioned earlier, a data placement problem using erasure-correcting codes

always consists of two parts — deciding how many codeword components to store

on each vertex (which we call memory allocation), and deciding how to map the

codeword components to the vertices. Maximum interleaving not only solves the

second part, but also enables the first part to become a totally separate problem

— because as long as enough codeword components (regardless of whether they are

different or not) can be placed around a node, the maximum-interleaving solution

can place enough different components around it. In Chapter II, we will present the

maximum-interleaving algorithm and the memory-allocation algorithm, and study

deeper aspects of them.

Traditionally, trees have been adopted by many data-storage networks, such as the

Internet caching systems [72], [83], because they can naturally represent a hierarchical

structure as well as the shortest paths toward a central node. In recent years, the

use of trees for data storage in peer-to-peer type of networks has attracted a lot of

interest [42], [46], [68]. For example, in [68], Plaxton et al. showed in a growth-

restricted network (a good model for overlay networks in the Internet and for wireless

networks), how to store a file (or a set of files) on a randomly chosen tree with nearly

optimal data storage and access costs.

1.4 Problem 2. Optimal t-Interleaving on Tori

Imagine that we are assigned a new task:

9

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

Figure 1.1: 3-Interleaving a 6× 5 torus.

“We are asked to color the vertices of an l1 × l2 torus in such a way that for

any two vertices of the same color, the shortest path between them contains at least t

edges. How can we minimize the number of colors used?”

The above problem is called t-interleaving on a torus. As an example, Fig. 1.1

shows how to color a 6× 5 torus with the parameter t = 3 — that is, a 3-interleaving

on a 6× 5 torus. (The integers on vertices represent the colors.)

t-Interleaving generalizes the traditional one-dimensional interleaving used often

in telecommunications, and was originally defined by Blaum et al. in [11] for arrays.

t-Interleaving on tori has applications on network data storage, error-burst correction,

and Lee-metric codes.

This thesis firstly considers those two-dimensional tori that have at least t rows

and t-columns. Let us define |St| as |St| = t2+1
2

if t is odd, and |St| = t2

2
if t is even;

then it can be shown that |St| is a lower bound for the number of colors that need to

be used for t-interleaving a torus. In this thesis, the necessary and sufficient condition

for tori to meet that lower bound is derived; and it is shown that for tori sufficiently

large in both dimensions, at most |St|+ 1 colors are needed. For both cases, optimal

interleaving algorithms are presented. Then this thesis studies the problem for other

cases, thus completing a general picture for t-interleaving on 2-dimensional tori.

The t-interleaving problem has been studied in a number of settings over the

10

9 1 2 3 1 8 7

1

655

8 27

93

5

4

72

4

n=21, K=5, m=2, L=3

Figure 1.2: An example of multi-cluster interleaving on a cycle.

years [11], [21], [62], [75], [80]. All those works study infinite-array type of graphs.

Interleaving infinite-array type of graphs is quite different from interleaving wrapping-

around graphs such as tori — for the former, the optimal interleaving can usually be

found by studying how to color just a small area of the graph, and then repeating

the color-pattern of the small area to cover the whole graph; for the latter, however,

the coloring process needs to always take into account the global structure of the

graph. Our results show, for the first time, how to t-interleave graphs that have

‘wrapping-around’ structures.

1.5 Problem 3: Multi-Cluster Interleaving on Paths

and Cycles

In a path or a cycle, we call every L consecutive vertices a cluster. Assume we are

now assigned a third task:

“We are asked to color a path (or cycle) of n vertices, in such a way that any

m non-overlapping clusters are assigned at least K different colors. How can we

minimize the number of colors used?”

We call the above problem multi-cluster interleaving (MCI). As an example,

Fig. 1.2 shows a multi-cluster interleaving on a cycle of 21 vertices, where every

2 clusters (of size L = 3) are assigned at least 5 different colors. (For instance, the

two clusters in dashed circles have the colors ‘9, 1, 2, 7 and 6’.)

11

The number of colors needed for MCI generally grows with the length of the path

or cycle. For example, when L = 2 and K = 3, a path can be interleaved with N

colors if and only if it has no more than (N − 1)[(m − 1)N − 1] + 2 vertices; and

when K = L + 1, a path that can be interleaved with N colors can have at most

m−1
(L−1)!

NL + O(NL−1) vertices (here N is seen as the variable).

For a client outside a data-storage network, it can connect to the network through

an access point and retrieve the data around that point (a connected subgraph of the

network). Multi-cluster interleaving is for clients that have multiple access points.

Retrieving data in parallel through multiple access points is a model studied in re-

cent years [16], [73]; and our results demonstrate the first non-trivial data-placement

construction for such a data-access model.

1.6 Problem 4: Monotone Percolation and Topol-

ogy Control

Let us model the nodes in a large wireless network as points that follow a Poisson

point process on an infinite 2-dimensional plane. We require every node to select

its coverage radius based on only local information — the positions of their nearby

neighbors. We ask the question: when nodes make only such local and autonomous

decisions, how good a network can we get?

The answer may sound surprising — a network with many good global proper-

ties can be constructed. In particular, we can construct a network that is strongly

connected, has small average degree, has small average coverage radius and power con-

sumption, for which the routing path between any two nodes has a length (whether

it is measured by hops or by its Euclidean distance) that is only a constant times the

length of the straight line between those two nodes, which enables geographic routing

without having any dead-ends, etc. · · · · · ·
This is the first time a topology-control algorithm is proposed that achieves such

comprehensive performance guarantees. The key new idea in our algorithm is a

12

concept that we call monotone percolation. In classical percolation theory, we are

interested in the emergence of an infinitely large connected component. In contrast,

in monotone percolation we are interested in the existence of a relatively short path

that makes monotonic progress between any pair of source and destination nodes. To

achieve monotone percolation, we require every node to have a set of neighbors that

can make effective progress along any direction.

The algorithm can be naturally extended for points in high-dimensional normed

spaces. And in fact the points do not have to follow the Poisson point process —

unless the points are placed in very ill positions (such as having many big ‘holes’ in

the space with no node inside), similar performance can be achieved. As a result, the

algorithm is not only useful for wireless networks, but also for overlay networks.

1.7 Summary

This thesis studies two topics: data placement using erasure-correcting codes, and

localized topology control with good global performance. They aim at the two funda-

mental challenges of the emerging data-storage networks — the efficient and robust

storage and transmission of data. The thesis endeavors to deepen our understanding

of these new topics, and to open new directions for future research. During that

course, novel algorithms have been developed, basic graph properties have been dis-

covered, and a traditional research problem has been generalized.

There are a number of publications associated with the thesis. The work on

maximum interleaving and memory allocation for trees has been presented at the 2002

[35] and the 2003 [36] IEEE International Symposiums on Information Theory, and

is currently under review for journal publication. The work on t-interleaving for tori

will be presented at the 2004 IEEE International Symposium on Information Theory

[39], and will be submitted to a journal. The work on multi-cluster interleaving

has been presented at the 7th International Symposium on Communication Theory

and Applications, and will appear in the journal IEEE Transactions on Information

Theory. The work on monotone percolation and topology control [40] is under review

13

by the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS

2004).

Here we have given a glimpse of our results. Now let us begin the real adventure....

14

Chapter 2

Maximum Interleaving and
Memory Allocation in Tree
Networks

2.1 The Data Placement Problem

We consider a data placement problem using erasure-correcting codes, which bounds

the file-retrieving delays in a heterogeneous data-storage network, under both fault-

free and faulty circumstances. Let G = (V,E) be a graph representing a data-storage

network, where each edge e ∈ E has a length l(e). We can understand l(e) as the delay

of transmitting a message across the link e. We encode a file into an erasure-correcting

codeword that has N codeword components, and store replicas of those components

in the network. For any two vertices u ∈ V and v ∈ V , we define d(u, v) as the length

of the shortest path between vertices u and v, and call it the ‘distance between u

and v’. For any vertex u ∈ V and any real number r, we define N (u, r) as the set of

vertices within distance r from u — namely, N (u, r) = {v|v ∈ V, d(u, v) ≤ r}, and call

N (u, r) the ‘neighborhood of u of radius r’. For every vertex u ∈ V , it is associated

with a natural number Wmin(u) (which is called the ‘minimum memory size’ of u), a

natural number Wmax(u) (which is called the ‘maximum memory size’ of u), and a set

R(u) = {(ri(u), ki(u))|1 ≤ i ≤ nu} (which is called the ‘requirement set ’ of u). (Note:

each element in a ‘requirement set’ R(u) is a pair of numbers written in the form as

(ri(u), ki(u)), where ri(u) is a non-negative real number and ki(u) is a positive integer.

15

nu is the cardinality of the set R(u). We call each element (ri(u), ki(u)) ∈ R(u) a

requirement of u. As an example, R(u) = {(2.0, 5), (3.6, 8), (11.1, 12)} is a requirement

set of vertex u that contains 3 requirements.) The data placement problem is defined

as follows:

Definition 2.1 Data Placement Problem: Place replicas of the codeword compo-

nents on the vertices of G = (V, E). We use w(u) to denote the number of codeword

components placed on each vertex u ∈ V . The following two requirements need to

be satisfied: (1) for each vertex u ∈ V , Wmin(u) ≤ w(u) ≤ Wmax(u); (2) for each

vertex u ∈ V and for 1 ≤ i ≤ nu, there are at least ki(u) different codeword com-

ponents stored on vertices in the set N (u, ri(u)). The objective is to minimize the

value
∑

u∈V w(u). (A solution that minimizes
∑

u∈V w(u) is called an ‘optimal data-

placement solution’.) 2

We need to explain what the above problem means and why it is formulated

this way. With the codeword components stored in the network, when a vertex

wants to get the file, it will retrieve enough different codeword components for file-

recovery from a neighborhood as small as possible. The radius of the neighborhood

is the file-retrieving delay. We allow different vertices to have different requirements

on their file-retrieving delays for generality. What’s more, it is desirable that the

number of distinct codeword components within a certain distance from a vertex

grows steadily when that distance increases — so that the file-retrieving delay will

degrade gracefully when more and more symbols become inaccessible (e.g., because

of data loss or busy processors) — and we allow different vertices to have different

specifications on such a relationship. We use he requirement sets to represent those

specifications. (For example, if a vertex u requires there to be ‘at least 5 different

codeword components within distance 2.0, at least 8 different codeword components

within distance 3.6, and at least 12 different codeword components within distance

11.1’, then u’s requirement set is R(u) = {(2.0, 5), (3.6, 8), (11.1, 12)}.) We also allow

each vertex to have an upper bound and a lower bound on the numbers of codeword

components it can store. (The lower bound can exist for various reasons, e.g., a Web

16

server typically always stores a copy of each file it generates.) Therefore, the meaning

of the data placement problem is to store the codeword components in the network

such that all the requirements on file-retrieving delays and the constraints on vertices’

storage sizes are respected, with the objective of storing as few codeword components

as possible in the network.

The data placement problem is NP-hard for general graphs because the NP-

complete dominating set problem [23] can be reduced to it. In this paper we study the

data placement problem for trees. The problem for trees has a very special optimal

solution due to a basic graph-theoretic property of tree, which we call the Maximum

Interleaving. Maximum interleaving means that the n codeword components can be

stored in the tree network such that for every vertex, the n closest components are

all different. (A more rigorous definition of maximum interleaving will be presented

in Section 2.2.) As we mentioned earlier in the thesis, a solution to a data-placement

problem consists of two parts — deciding how many codeword components to store

on each vertex (which we call a memory allocation problem), and deciding how to

map the codeword components to the vertices (an interleaving problem). For general

graphs these two problems are inseparable; however for trees, the maximum inter-

leaving property enables them to be solved separately — because as long as enough

codeword components (whether they are different or not) can be placed in a ver-

tex’s neighborhood, the maximum-interleaving algorithm will place enough distinct

codeword components in the neighborhood.

In the next section, we introduce the maximum interleaving property and two

algorithms that construct K-diversity interleaving — a generalized concept of max-

imum interleaving – on trees. The first algorithm is general in the sense that every

K-diversity interleaving that exists is a possible output of the algorithm. The sec-

ond algorithm is more efficient but not general. Then in Section 2.3, we introduce

three memory allocation algorithms. By combining the above algorithms, we find an

optimal solution to the data placement problem.

17

2.2 K-Diversity Interleaving and Maximum Inter-

leaving

2.2.1 Definitions

In this section we will study maximum interleaving and its generalized concept —

K-diversity interleaving. They are basic properties of trees; and this chapter is a self-

containing introduction on this topic. We phrase them as graph coloring problems,

and it is easy to see that the colors correspond to the ‘codeword components’ in the

data placement problem.

Let us first define some terms. Let G = (V,E) be a tree, where every edge e ∈ E

has a length l(e). A point in G is defined as a point on an edge (including the two

vertices incident to the edge). If p is a point on an edge e ∈ E, then p is at distance

l(e) · λ from one of e’s endpoints and is at distance l(e) · (1 − λ) from the other

endpoint of e, for some λ ∈ [0, 1]. For any two points p1 and p2, d(p1, p2) is defined as

the length of the shortest path between p1 and p2, and is called the ‘distance between

p1 and p2’. For any point p and any real number r, N (p, r) is defined as the set of

vertices within distance r from p, namely, N (p, r) = {v|v ∈ V, d(v, p) ≤ r}. Every

vertex v ∈ V is associated with a natural number w(v). We color the tree G with n

colors, where each vertex is assigned w(v) colors.

Definition 2.2 We color the vertices of tree G using n colors, where every vertex

v ∈ V is assigned w(v) colors. Let K be an integer, where 1 ≤ K ≤ n. The

coloring is called a K-Diversity Interleaving if and only if the following condition

is satisfied: for every point p and every non-negative real number r, some color is

assigned more than once to the vertices in N (p, r) only if at least K different colors

are assigned to the vertices in N (p, r). The K-diversity interleaving is also called

Maximum Interleaving when K = n.

The following is an example.

18

v2

v1

v3

v5v4 v6

v7 v8

w(v) = 32

w(v) = 23

w(v) = 24

w(v) = 15

w(v) = 16

w(v) = 27

w(v) = 08

w(v) = 41

0.8

1.0

0.81.0 1.0

1.2 0.7

0.8

p

{2,4,6,8}

{1,5,7}

{3,4}

{2,6}

{1,5}

{8} {7} n = 8
K = 8

Figure 2.1: An example of K-diversity interleaving and maximum interleaving.

Example 2.1 Fig. 2.1 shows an example of K-diversity interleaving and maximum

interleaving. The parameters w(v) for all vertices v are shown in the figure, and

n = K = 8. The real number beside each edge e is its length l(e). We denote the 8

colors by the numbers 1, 2, · · · , 8. The colors assigned to every vertex are shown in

the set beside that vertex (e.g., vertex v1 has colors 2, 4, 6 and 8). It can be verified

that for every point p and any non-negative real number r, either all the 8 different

colors are assigned to the vertices in N (p, r), or every color is assigned at most once

to the vertices in N (p, r). (For example, if we let p be the point on the edge between v3

and v4 which is at distance 0.8 to v4 — as shown in the figure — and let r = 0.9, then

the colors assigned to N (p, r) are 3, 4 and 2, 6 with each color assigned only once.)

So the coloring is a maximum interleaving (8-diversity interleaving). Clearly it is also

a 7-diversity interleaving, 6-diversity interleaving, · · · , 1-diversity interleaving.

2

2.2.2 A General K-Diversity Interleaving Algorithm

We are going to present a general K-diversity interleaving algorithm. The algorithm

is called ‘general ’ in the sense that every K-diversity interleaving that exists for the

tree G is a possible output of the algorithm. (The algorithm is allowed to make some

19

random choices during its execution, so it has more than 1 possible output.) First let

us define some new terms.

For any two points p1 and p2, we define C(p1, p2) as the unique point at distance

d(p1,p2)
2

from both p1 and p2 — that is, C(p1, p2) is the middle-point of the path between

p1 and p2. Define S(p1, p2) as the set of vertices within distance d(p1,p2)
2

from C(p1, p2),

namely, S(p1, p2) = N (C(p1, p2),
d(p1,p2)

2
).

We know that each vertex v ∈ V is to be assigned w(v) colors. We say that each

vertex v has w(v) color-slots ; and assigning w(v) colors to v is understood as assigning

one color to each of v’s color-slots. By convention, if S ⊆ V is a set of vertices and

v ∈ S, then we also say each of v’s color-slots is in S. Also by convention, we say the

distance between two color-slots s′ and s′′ is the distance between the two vertices that

the two color-slots respectively belong to, and denote it by d(s′, s′′); and similarly,

the distance between a color-slot s and a point p is the distance between p and the

vertex that s belongs to, and is denoted by d(s, p) or d(p, s).

We let G be a rooted tree, and denote its root by γ. We define W as W =
∑

v∈V w(v). G has W color-slots, which we label by s1, s2, · · · , sW following this rule:

d(γ, si) ≤ d(γ, sj) for any 1 ≤ i < j ≤W. The algorithm is as follows.

Algorithm 2.1: A General K-Diversity Interleaving Algorithm for Tree G = (V, E)

1. Assign K distinct colors to the following K color-slots: s1, s2, · · · , sK , such

that no two color-slots among them are assigned the same color. (If there are less than

K color-slots in the tree, then simply assign W distinct colors to all the color-slots,

such that no two color-slots are assigned the same color.)

2. For i = K + 1 to W do

{ Let rmin denote the smallest value of r such that the set {sj|1 ≤ j ≤ i −
1, d(si, sj) ≤ r} contains no less than K color-slots.

Assign a color to si, such that no color-slot in the set {sj|1 ≤ j ≤ i −
1, d(si, sj) < rmin} is assigned the same color as si.

}
2

20

Analysis shows that Algorithm 2.1 can be implemented with time complexity

O(|V |2 +W|V |+WK). We present the complexity analysis in Appendix I.

Below we start proving the correctness of Algorithm 2.1.

Lemma 2.1 We use Algorithm 2.1 to color the tree G = (V,E). Let’s say sa is a

color-slot of vertex vA, and sb is a color-slot of vertex vB. (Here 1 ≤ a 6= b ≤W.) If

sa and sb are assigned the same color, then the color slots in S(vA, vB) are assigned

no less than K distinct colors.

Proof: Without loss of generality, we assume a < b. We’ll prove by induction that

the lemma holds for any b ≤W.

The K color-slots s1, s2, · · · , sK are all assigned distinct colors. As a null case,

the lemma holds when b ≤ K. We use this as the base case for the induction.

Let i be an integer such that K +1 ≤ i ≤W. Assume that when b < i, the lemma

holds. Let’s prove that the lemma also holds when b = i.

Assume b = i; and assume sa and sb are assigned the same color. Let r̂min denote

the smallest value of r such that the set {sj|1 ≤ j ≤ b − 1, d(sb, sj) ≤ r} contains

no less than K color slots. According to Algorithm 2.1, no color-slot in the set

{sj|1 ≤ j ≤ b − 1, d(sb, sj) < r̂min} is assigned the same color as sb is. Therefore

d(sa, sb) ≥ r̂min. Since a < b, the distance between the root and vA is no greater

than the distance between the root and vB. Therefore the unique point at distance

d(vA,vB)
2

from both vA and vB, C(vA, vB), lies on the path between the root and vB.

Define Q as Q = {sj|1 ≤ j ≤ b − 1, d(sb, sj) ≤ r̂min}. Consider any color-slot in Q

— say it’s sc and is a color-slot of vertex vC . Clearly c < b. If C(vA, vB) lies on the

path between the root and vC , then d(C(vA, vB), vC) ≤ d(C(vA, vB), vB) = d(vA,vB)
2

,

because the distance between the root and vC is no greater than the distance between

the root and vB. If C(vA, vB) doesn’t lie on the path between the root and vC ,

then again d(C(vA, vB), vC) ≤ d(vA,vB)
2

, because d(vC , vB) ≤ r̂min ≤ d(vA, vB) and

d(vC , vB) = d(vC , C(vA, vB)) + d(C(vA, vB), vB) = d(vC , C(vA, vB)) + d(vA,vB)
2

. So sc is

in the set S(vA, vB). So all the color-slots in Q are in S(vA, vB).

There are at least K color-slots in Q. If all the color-slots in Q have distinct

21

colors, then clearly the color-slots in S(vA, vB) are assigned no less than K dis-

tinct colors. Now consider the case where there are two color-slots in Q that have

the same color — say those two color-slots are sf and sh, which belong to ver-

tex vF and vH , respectively. Clearly f < b, h < b, and both vF and vH are

in S(vA, vB). Let vT denote the unique vertex that lies on the following three

paths: the path between C(vA, vB) and vF , the path between C(vA, vB) and vH ,

and the path between vF and vH . The point C(vF , vH) lies on the path between

vF and vH ; without loss of generality, let’s say C(vF , vH) lies on the path between

vF and vT . For any color-slot in S(vF , vH) — say it’s sj, which belongs to ver-

tex vJ — we have d(C(vA, vB), vJ) ≤ d(C(vA, vB), C(vF , vH)) + d(C(vF , vH), vJ) ≤
d(C(vA, vB), C(vF , vH))+d(vF ,vH)

2
= d(C(vA, vB), vT)+d(vT , C(vF , vH))+d(C(vF , vH), vF) =

d(C(vA, vB), vF) ≤ d(vA,vB)
2

, and therefore sj is in S(vA, vB). By the induction assump-

tion, the color-slots in S(vF , vH) are assigned no less than K distinct colors. So the

color-slots in S(vA, vB) are also assigned no less than K distinct colors.

So the lemma holds when b = i. And the proof is completed.

2

Lemma 2.2 Assume there is a coloring on the tree G = (V, E), which uses n different

colors and assigns w(v) colors to every vertex v ∈ V . The coloring is a K-diversity

interleaving if and only if the following is true: for any two color-slots sa and sb —

say they are color-slots of vertex vA and vB, respectively — if sa and sb are assigned

the same color, then the color slots in S(vA, vB) are assigned no less than K distinct

colors. (Here 1 ≤ a 6= b ≤W.)

Proof: First let’s prove one direction. Assume the coloring is a K-diversity interleav-

ing, and assume sa and sb are assigned the same color. S(vA, vB) = N (C(vA, vB), d(vA,vB)
2

),

and both sa and sb are in S(vA, vB). So by the definition of K-diversity interleaving,

the color-slots in S(vA, vB) are assigned no less than K distinct color.

Next let’s prove the other direction. Assume that for any two color-slots sa and sb,

which belong to vertex vA and vB, respectively, if sa and sb are assigned the same color,

then the color-slots in S(vA, vB) are assigned no less than K distinct colors. Let p be

22

v2

v1

v3

v5v4 v6

v7 v8

v2

v1

v3

v5v4 v6

v7 v8

v2

v1

v3

v5v4 v6

v7 v8

(a) (b) (c)
1

3

2

1 2 1

2 3

1

2

3

1 1 1

2 2

2

3

1

2 22

3 3

Figure 2.2: Different K-diversity interleavings on the same tree.

an arbitrary point in G, and let r be an arbitrary real number. If not all the color-slots

in N (p, r) are assigned distinct colors, then let sa and sb be two color-slots of the same

color in N (p, r). For any vertex v ∈ S(vA, vB), we have d(v, p) ≤ d(v, C(vA, vB)) +

d(C(vA, vB), p) ≤ d(vA,vB)
2

+ d(C(vA, vB), p) = max{d(vA, p), d(vB, p)} ≤ r. Therefore

S(vA, vB) ⊆ N (p, r). So the color-slots in N (p, r) are assigned at least K distinct

colors. So by definition, the coloring is a K-diversity interleaving.

2

Lemma 2.1 and Lemma 2.2 together naturally establish the following conclusion.

Theorem 2.1 Algorithm 2.1 correctly outputs a K-diversity interleaving for the tree

G = (V, E).

Since Algorithm 2.1 always has an output, we have the following corollary.

Corollary 2.1 K-diversity interleaving exists for all trees.

2.2.3 Generality of K-Diversity Interleaving Algorithm 2.1

Different K-diversity interleavings can exist for the same tree, as the following exam-

ple shows.

23

Example 2.2 Fig. 2.2 (a), (b) and (c) show the same tree G = (V,E). In the tree,

all edges have the same length, and w(v) = 1 for any vertex v ∈ V . n = 3 colors

— denoted by the numbers ‘1’, ‘2’ and ‘3’ — are used to color the tree, and three

colorings are shown in (a), (b) and (c), respectively. (The number beside each vertex

is the color assigned to it.) It is simple to verify that each coloring is a K-diversity

interleaving for K = 3. Clearly the colorings in (a) and (b) can’t be derived from

each other through permutation of colors; but the colorings in (b) and (c) can, e.g.,

the coloring in (c) can be got by changing the colors ‘1’, ‘2’ and ’3’ in (b) into colors

‘2’, ‘3’ and ‘1’, respectively. 2

When Algorithm 2.1 colors a tree, firstly it needs to label the W color-slots as s1,

s2, · · · , sW, and then it assigns colors to those color-slots in order. The labelling is

usually not unique; and every time the algorithm assigns a color to a color-slot, the

color can usually be chosen from a set of more than one color. By labelling the color-

slots in different ways and by choosing the color differently while coloring a color-slot,

Algorithm 2.1 can output different K-diversity interleavings. The following theorem

shows that in fact, every K-diversity interleaving that exists is a possible output of

Algorithm 2.1, — namely, the set of possible outputs of Algorithm 2.1 is exactly the

set of K-diversity interleavings that exist, — and that property holds even if the root

of the tree is fixed. (Fixing the root of the tree lessens the number of ways to label

the color-slots.)

Theorem 2.2 The set of possible outputs of Algorithm 2.1 is exactly the set of K-

diversity interleavings that exist for the tree G = (V, E), even if the root of the tree

is fixed.

Proof: We present a sketch of the proof here. A detailed proof for this theorem is

presented in Appendix II. By Theorem 2.1, the set of possible outputs of Algorithm

2.1 is a subset of the set of K-diversity interleavings that exist. So the only thing left

to prove is that every K-diversity interleaving is a possible output of Algorithm 2.1,

even if the root of the tree is fixed.

24

Assume the root of the tree is fixed. Assume a fixed K-diversity interleaving

for the tree G = (V,E) is given. If
∑

v∈V w(v) ≤ K, it’s simple to see that the

K-diversity interleaving must have assigned W distinct colors to the W color-slots,

which is clearly a possible output of Algorithm 2.1. So from now on we only consider

the case where W > K. We’ll prove by induction that for 1 ≤ i ≤W, there is a set of

i color-slots that Algorithm 2.1 can label as s1, s2, · · · , si and assign the same colors

to as the given K-diversity interleaving does.

Let γ denote the fixed root of the tree. For 1 ≤ j ≤ W, let Rmin(γ, j) denote

the minimum value of r such that
∑

v∈N (γ,r) w(v) ≥ j. It is simple to see that there

exist a set of K color-slots that are assigned distinct colors in the given K-diversity

interleaving and are at distance no greater than Rmin(γ, K) from γ, and that every

color-slot at distance less than Rmin(γ,K) from γ is contained in that set. Clearly it

is feasible for Algorithm 2.1 to label those color-slots as s1, s2, · · · , sK , and assign

them the same colors as the given K-diversity interleaving does. So the induction is

true for 1 ≤ i ≤ K.

Let I be a fixed integer such that K ≤ I < W. Assume the following induction

assumption is true: when i = I, there is a set C of i color-slots which Algorithm

2.1 can label as s1, s2, · · · , si and assign the same colors to as the given K-diversity

interleaving does. We will prove that this induction assumption is also true when

i = I + 1.

Let D denote the set of all the W color-slots in the tree. Let H denote the set of

color-slots in D−C at distance Rmin(γ, I + 1) from γ. (There are I color-slots in C.

Clearly H 6= ∅.) Denote the color-slots in H as c1, c2, · · · , c|H|. For 1 ≤ p ≤ |H|,
define rmin(p) as the smallest value of r such that there are no less than K color-slots

in C at distance no greater than r from cp.

Randomly pick a color-slot cj1 from H. (Here 1 ≤ j1 ≤ |H|.) If at least one color-

slot in C at distance less than rmin(j1) from cj1 is assigned the same color as cj1 in

the given K-diversity interleaving, then let tk1 ∈ C denote the color-slot closest to cj1

which is assigned the same color as cj1 in the given K-diversity interleaving. Say cj1

is a color-slot of vertex u1, and tk1 is a color-slot of vertex v1. Let J denote the set of

25

color-slots in S(u1, v1). The given K-diversity interleaving assigns at least K distinct

colors to the color slots in J ; and J = (J ∩ C) ∪ (J ∩ H). Any color-slot in J ∩ C

is at distance less than rmin(j1) from cj1 , so there exists a color-slot in J ∩H which

has a color different from any color-slot in J ∩C in the given K-diversity interleaving

— and we denote that color-slot by cj2 . If at least one color-slot in C at distance

less than rmin(j2) from cj2 is assigned the same color as cj2 in the given K-diversity

interleaving, then some color-slot cj3 can be found through cj2 in the same way the

color-slot cj2 is found through cj1 . This process can keep going on and a series of color

slots cj1 , cj2 , cj3 , cj4 , · · · will be found. It can be shown that all those color-slots are

distinct. Therefore this series is not infinitely long, and eventually some color-slot cjx

(x ≥ 1) will be found such that no color-slot in C at distance less than rmin(jx) from

cjx is assigned the same color as cjx in the given K-diversity interleaving. Then it’s

simple to see that it is feasible for Algorithm 2.1 to label cjx as the color-slot sI+1 and

assign sI+1 the same color as the given K-diversity interleaving does, after labelling

the color-slots in C as s1, s2, · · · , sI and assigning the same colors to them as the

given K-diversity interleaving does. So the induction is also true when i = I + 1.

The proof by induction is complete here. Now it’s clear that Algorithm 2.1 can

assign the same colors to all the W color-slots as the arbitrarily given K-diversity

interleaving does. So any K-diversity interleaving is a possible output of Algorithm

2.1, even if the root of the tree is fixed. Therefore this theorem is proved.

2

2.2.4 An Efficient K-Diversity Interleaving Algorithm

The general K-diversity interleaving algorithm shown in Section III has complexity

O(|V |2 +W|V |+WK). In this subsection we present an algorithm that is less general

but has a lower complexity. What’s more, the algorithm is very suitable for parallel

computation.

Algorithm 2.2: An Efficient K-Diversity Interleaving Algorithm for Tree G =

(V, E)

26

1. Denote the root of G by γ. Label the vertices in G as v1, v2, · · · , v|V | following

this rule: for any 1 ≤ i < j ≤ |V |, d(γ, vi) ≤ d(γ, vj).

2. Label the color-slots of G as s1, s2, · · · , sW in the following way: for 1 ≤ i ≤ |V |,
label the w(vi) color-slots of vertex vi as sWi+1, sWi+2, · · · , sWi+w(vi), where Wi is

defined as Wi =
∑

1≤j≤i−1 w(vj).

3. If W ≤ K, then assign W distinct colors to the W color-slots in the tree such

that no two color-slots are assigned the same color, and exit this algorithm. Otherwise

go to Step 4.

4. For i = 1 to K, Ci ← {si}.
5. For i = K + 1 to W do

{ Let sx be the unique color-slot that satisfies the following 2 conditions:

(i) 1 ≤ x ≤ i− 1;

(ii) The set S defined as follows contains exactly K − 1 color-slots. S is

defined in this way: a color-slot sj is in S if and only if 1 ≤ j ≤ i − 1 and either

‘d(si, sj) < d(si, sx)’, or ‘d(si, sj) = d(si, sx) and j < x’.

Let Ct (1 ≤ t ≤ K) be the unique set such that sx ∈ Ct. Ct ← Ct ∪ {si}.
}

6. Assign K distinct colors to the color-slots in the K sets C1, C2, · · · , CK , such

that any two color-slots are assigned the same color if and only if they are in the same

set.

2

Example 2.3 The following example is used to illustrate how Algorithm 2.2 com-

putes. In the example, the tree G = (V, E) is as shown in Fig. 2.3. The number

beside each edge is the edge’s length. The vertex at the top is selected as the root.

The 13 vertices in G are labelled as v1, v2, · · · , v13 which is consistent with the way

Algorithm 2.2 labels vertices — namely, for any 1 ≤ i < j ≤ |V |, the distance be-

tween the root and vi is no greater than the distance between the root and vj. For

1 ≤ i ≤ 13, w(vi) is shown in Fig. 2.3. Algorithm 2.2 is used to compute a K-diversity

interleaving for the tree using n distinct colors, where n = 6 and K = 5.

27

v2

v1

v3 v4

v5

) = 1v1w(

v2w() = 2

v3w() = 1

v4w() = 1

v5w() = 3

v7w() = 1

v9w() = 1

v6 7v

v8

v9

10v v11

v12 v13

v6w() = 2

) = 18w(v

w(13v) = 0

v12w() = 0

w(v11) = 1

v10w() = 1

1.0 1.0
1.0

1.0

1.2 1.8

1.0 1.0

1.0 1.0

0.3 0.3

Figure 2.3: An example of K-diversity interleaving using Algorithm 2.2.

There are W =
∑

v∈V w(v) = 15 color-slots in G. Algorithm 2.2 labels them as

s1, s2, · · · , s15 as shown in the table below.

Vertex v v1 v2 v3 v4 v5 v6 v7 v8 v9

Color-slots of vertex v s1 s2, s3 s4 s5 s6, s7, s8 s9, s10 s11 s12 s13

Vertex v v10 v11 v12 v13

Color-slots of vertex v s14 s15

Table 1: The labelling of the color-slots

Algorithm 2.2 then assigns values to 5 sets C1, C2, · · · , C5 as follows: Ci = {si}
for i = 1, 2, · · · , 5.

Next, for i = 6 to 15, Algorithm 2.2 finds the color-slot sx corresponding to i

(This is the step 5 in Algorithm 2.2. Note that sx changes when i changes.); then si

is inserted into the set Ct, where Ct (1 ≤ t ≤ 5) is the set that sx is in (Note that

the value of t changes when i changes). This process is illustrated by the table below.

(As an example, in the second column of Table 2, i = 6, si = s6, sx = s5, Ct = C5.

It means when i = 6, the corresponding sx is s5. s5 ∈ C5, so Ct = C5. As a result,

Algorithm 2.2 inserts si — which is s6 — into C5; then both s5 and s6 are in C5.)

28

i 6 7 8 9 10 11 12 13 14 15

si s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

sx s5 s4 s1 s4 s3 s2 s7 s7 s10 s9

Ct C5 C4 C1 C4 C3 C2 C4 C4 C3 C4

Table 2: The execution of the step 5 in Algorithm 2.2

After the above computing, the values of the 5 sets C1, C2, · · · , C5 become as fol-

lows: C1 = {s1, s8}, C2 = {s2, s11}, C3 = {s3, s10, s14}, C4 = {s4, s7, s9, s12, s13, s15},
C5 = {s5, s6}. Then Algorithm 2.2 arbitrarily selects 5 distinct colors — without loss

of generality, say they are color 1, 2, 3, 4 and 5, respectively — and colors the tree

with those 5 colors in the following way: for 1 ≤ i ≤ 5, assign color i to all the

color-slots in Ci. It can be verified that such a coloring is a K-diversity interleaving

with K=5.

2

It’s simple to see that with a K-diversity interleaving output by Algorithm 2.2,

the tree G = (V, E) has exactly K distinct colors.

Analysis shows that Algorithm 2.2 can be implemented with time complexity

O(|V |2 + W). And it can be shown that Algorithm 2.2 is indeed more efficient

than Algorithm 2.1, the general K-diversity interleaving algorithm. The complexity

analysis is presented in Appendix III.

The major computation in Algorithm 2.2 is its step 5, where for each color-slot

si (K + 1 ≤ i ≤ W), a corresponding color-slot sx is searched for. Given the tree

structure and si, the corresponding sx can be uniquely determined without knowing

the coloring on any part of the tree. So Algorithm 2.2’s step 5 can be computed in

parallel by up to W−K computing machines, and then its computational time will

be reduced by a factor of W−K.2

Below we start proving the correctness of Algorithm 2.2.

2Processing the color-slots one by one is one straightforward way to implement Algorithm 2.2’s
step 5. As shown in Appendix III, a more efficient way to compute is to process all the color-slots
of each vertex together. If that method is used, then step 5 can be computed by N0 computing
machines in parallel, and the computational time can be reduced by a factor of approximately N0,
where N0 denotes the number of vertices each of which has at least one color-slot.

29

Lemma 2.3 Assume Algorithm 2.2 is used to produce a K-diversity interleaving for

the tree G = (V, E). Algorithm 2.2 labels the vertices in G as v1, v2, · · · , v|V |, and

labels the color-slots in G as s1, s2, · · · , sW. AssumeW > K. At the end of Algorithm

2.2, the K sets C1, C2, · · · , CK is a partition of all the color-slots in G.

For K + 1 ≤ i ≤ W, define Li as an ordered set that sorts the i − 1 color-slots

s1, s2, · · · , si−1 in the following way: for any 1 ≤ j 6= k ≤ i− 1, sj is placed before sk

in the ordered set Li if ‘d(si, sj) < d(si, sk)’ or if ‘d(si, sj) = d(si, sk) and j < k’.

Then the following conclusion is true: for any K + 1 ≤ i ≤W, the first K color-

slots in Li are evenly distributed in the K sets C1, C2, · · · , CK — that is, for any

two color-slots sj and sk among the first K color-slots in Li, if sj ∈ Cj0 and sk ∈ Ck0,

then j0 6= k0.

Proof: For K + 1 ≤ i ≤ W, define h(i) as a variable that satisfies the following two

conditions: (1) sh(i) is one of the first K color-slots in Li; (2) for any color-slot sj that

is one of the first K color-slots in Li, h(i) ≥ j.

First we consider the case where i is a fixed integer such that K + 1 ≤ i ≤W and

1 ≤ h(i) ≤ K. By the definition of h(i), it’s simple to see that h(i) = K and the first

K color-slots in Li is just a permutation of s1, s2, · · · , sK . s1, s2, · · · , sK are evenly

distributed in the K sets C1, C2, · · · , CK . Therefore Lemma 2.3 is true in this case.

Now we start proving Lemma 2.3 by induction.

When i = K + 1, 1 ≤ h(i) ≤ K. By the above result, the first K color-slots in Li

are evenly distributed in the K sets C1, C2, · · · , CK . We use this as the base case.

Assume i is a fixed integer such that K + 1 < i ≤W; and for K + 1 ≤ j < i, the

first K color-slots in Lj are evenly distributed in the K sets C1, C2, · · · , CK . We need

to prove that the first K color-slots in Li are also evenly distributed in the K sets C1,

C2, · · · , CK . Clearly, we only need to consider the case where K + 1 ≤ h(i) ≤ i− 1.

Assume sh(i) is the k0-th color-slot in Li. (Here 1 ≤ k0 ≤ K.) Let B denote

the set defined in this way: a color-slot sk is in B if and only if 1 ≤ k ≤ i − 1

and one of the following two conditions is satisfied: (1) d(si, sk) < d(si, sh(i)), (2)

d(si, sk) = d(si, sh(i)) and k < h(i). Clearly B contains k0 − 1 color-slots, each of

30

which is one of the first k0 − 1 color-slots in Li; and each color-slot in B is also in

Lh(i).

Let u0 be the unique vertex on all of the following three paths: the path between

the root and the vertex that si belongs to, the path between the root and the vertex

that sh(i) belongs to, and the path between the vertex that si belongs to and the

vertex that sh(i) belongs to. Let sy be an arbitrary color-slot in B. Since sy is

one of the first K color-slots in Li and y 6= h(i), y < h(i). According to the way

Algorithm 2.2 labels color-slots, we know the distance between the root and sy is no

greater than the distance between the root and sh(i) — so if u0 is on the path between

the root and sy, then d(u0, sy) ≤ d(u0, sh(i)). If u0 is not on the path between

the root and sy, we also have d(u0, sy) ≤ d(u0, sh(i)) because d(si, sy) ≤ d(si, sh(i)),

d(si, sy) = d(si, u0) + d(u0, sy) and d(si, sh(i)) = d(si, u0) + d(u0, sh(i)).

Let sz be an arbitrary color-slot in Lh(i) but not in B. It’s not hard to see

that u0 is not on the path between the root and the vertex that sz belongs to,

and d(u0, sz) > d(u0, sh(i)). So d(sh(i), sz) = d(sh(i), u0) + d(u0, sz) > d(sh(i), u0) +

d(u0, sh(i)) ≥ d(sh(i), u0) + d(u0, sy) ≥ d(sh(i), sy). Since sy is an arbitrary color-slot

in B, all the color-slots in B are placed before sz in the ordered set Lh(i). Since sz

is an arbitrary color-slot in Lh(i) but not in B, the color-slots in B are just the first

k0 − 1 color-slots in Lh(i) (but the ordering is not specified here). So the first k0 − 1

color-slots in Li is a permutation of the first k0 − 1 color-slots in Lh(i).

Consider the following two cases.

Case 1: In this case, k0 = K. Then sh(i) is the K-th color-slot in Li. Let Ct

(1 ≤ t ≤ K) be the set that the K-th color-slot in Lh(i) is in. It’s simple to see

from Algorithm 2.2 that sh(i) is also in Ct. By the indiction assumption, the first K

color-slots in Lh(i) are evenly distributed in the K sets C1, C2, · · · , CK . So the first

K color-slots in Li are also evenly distributed in the K sets C1, C2, · · · , CK .

Case 2: In this case, k0 < K. Let sq0 denote the (k0 +1)-th color-slot in Li. Then

d(si, sq0) ≥ d(si, sh(i)), and q0 < h(i). It’s not hard to see that u0 can’t be on the

path between the root and the vertex that sq0 belongs to, and d(si, sq0) > d(si, sh(i)).

Define Di to be an ordered set defined as follows: Di contains K− k0 color-slots, and

31

for 1 ≤ j ≤ K − k0, the j-th color-slot in D is the (k0 + j)-th color-slot in Li.

Clearly for any color-slot sq in D, q < h(i), and d(si, sq) ≥ d(si, sq0) > d(si, sh(i)).

Let sq1 denote the K-th color-slot in Li, which is also the (K − k0)-th color-slot in

D. It’s simple to see that a color-slot sj (1 ≤ j ≤ W) is in D if and only if the

following three conditions are true: (1) j < h(i); (2) d(si, sj) > d(si, sh(i)); (3) either

‘d(si, sj) < d(si, sq1)’ or ‘d(si, sj) = d(si, sq1) and j ≤ q1’. For any color-slot sq in D,

clearly u0 can’t be on the path between the root and the vertex that sq belongs to.

So a color-slot sj (1 ≤ j ≤ W) is in D if and only if the following three conditions

are true: (1) j < h(i); (2) d(u0, sj) > d(u0, sh(i)); (3) either ‘d(u0, sj) < d(u0, sq1)’ or

‘d(u0, sj) = d(u0, sq1) and j ≤ q1’.

It’s been proven that for any color-slot sz in Lh(i) but not in B, u0 is not on the

path between the root and the vertex that sz belongs to, and d(u0, sz) > d(u0, sh(i)).

Now it’s simple to see that for 1 ≤ j ≤ K − k0, the j-th color-slot in D is the

(k0 − 1 + j)-th color-slot in Lh(i).

Let’s summarize our results. It’s proven that the first k0 − 1 color-slots in Li is a

permutation of the first k0 − 1 color-slots in Lh(i). Also clearly for k0 + 1 ≤ j ≤ K,

the j-th color-slot in Li is the (j − 1)-th color-slot in Lh(i), since they are both the

same as the (j − k0)-th color-slot in D. Let Ct̂ (1 ≤ t̂ ≤ K) be the set that the K-th

color-slot in Lh(i) is in. It’s simple to see from Algorithm 2.2 that sh(i) is also in Ct̂

— so the k0-th color-slot in Li is in Ct̂. By the indiction assumption, the first K

color-slots in Lh(i) are evenly distributed in the K sets C1, C2, · · · , CK . So the first

K color-slots in Li are also evenly distributed in the K sets C1, C2, · · · , CK . The

analysis of Case 2 ends here.

The proof by induction is complete here. So Lemma 2.3 is proved.

2

Theorem 2.3 Algorithm 2.2 correctly outputs a K-diversity interleaving for the tree

G = (V, E).

Proof: This theorem can be proved by showing that Algorithm 2.2 is a special case

of Algorithm 2.1, namely, all the computation in Algorithm 2.1 is also implemented

32

in Algorithm 2.2.

Assume Algorithm 2.2 is used to produce a K-diversity interleaving for a tree

G = (V, E). Algorithm 2.2 labels the vertices in G as v1, v2, · · · , v|V |, and labels the

color-slots in G as s1, s2, · · · , sW. At the end of Algorithm 2.2, the K sets C1, C2,

· · · , CK is a partition of all the color-slots in G.

Let γ denote the root of G. By the way Algorithm 2.2 labels vertices and color-

slots, it’s simple to see that for 1 ≤ i < j ≤ W, d(γ, si) ≤ d(γ, sj). So the rule on

labelling color-slots in Algorithm 2.1 is also followed in Algorithm 2.2.

If W ≤ K, then Algorithm 2.2 assigns W distinct colors to the W color-slots in

G such that no two color-slots are assigned the same color, which is what Algorithm

2.1 does, too. So if W ≤ K, Algorithm 2.2 will correctly output a K-interleaving for

the tree G = (V, E). From now on we only consider the case where W > K.

For 1 ≤ i ≤ K, si ∈ Ci. For any 1 ≤ i 6= j ≤ K, no color-slot in Ci is assigned

the same color as any color-slot in Cj. So Algorithm 2.2 assigns K distinct colors to

the following K color-slots: s1, s2, · · · , sK , such that no two color-slots among them

are assigned the same color, which is what Algorithm 2.1’s step 1 does, too.

Let y be a fixed integer such that K + 1 ≤ y ≤ W. Let rmin denote the smallest

value of r such that the set {sj|1 ≤ j ≤ y − 1, d(sy, sj) ≤ r} contains no less than K

color-slots. Define Ly as an ordered set that sorts the y−1 color-slots s1, s2, · · · , sy−1

in the following way: for any 1 ≤ j 6= k ≤ y− 1, sj is placed before sk in the ordered

set Ly if ‘d(sy, sj) < d(sy, sk)’ or if ‘d(sy, sj) = d(sy, sk) and j < k’. Clearly, the

distance between sy and the K-th color-slot in Ly equals rmin, and any color-slot in

the set {sj|1 ≤ j ≤ y − 1, d(sy, sj) < rmin} is one of the first K − 1 color-slots in Ly.

Assume Ct (1 ≤ t ≤ K) is the set that the K-th color-slot in Ly is in. It’s

simple to see from Algorithm 2.2 that sy ∈ Ct. Let sq be any color-slot in the set

{sj|1 ≤ j ≤ y − 1, d(sy, sj) < rmin}. sq is one of the first K − 1 color-slots in Ly.

By Lemma 2.3, sq /∈ Ct. So sy and sq are assigned different colors by Algorithm 2.2,

which is what Algorithm 2.1’s step 2 does, too.

By now it’s proven that all the computation in Algorithm 2.1 is also implemented

in Algorithm 2.2. Therefore Algorithm 2.2 is a special case of Algorithm 2.1. So

33

Algorithm 2.2 will correctly output a K-diversity interleaving for the tree G = (V, E),

just as Algorithm 2.1 does.

2

2.3 Memory Allocation

2.3.1 Definitions

The result on maximum interleaving (or more generally, the K-diversity interleaving)

has essentially solved one part of the data placement problem defined in Section 2.1

— how to map the codeword components to the vertices once how many components

to place on each vertex is known. Then clearly, for the data placement problem, the

question of how many codeword components should be placed on each vertex for an

optimal data-placement solution is reduced to the following problem:

Definition 2.3 Memory Allocation Problem

INSTANCE: A tree G = (V,E). Every edge e ∈ E has a length l(e). Every vertex

v ∈ V is associated with a set R(v) = {(ri(v), ki(v))|1 ≤ i ≤ nv}, which is called

the ‘ requirement set’ of v. Each vertex v ∈ V is also associated with a parameter

Wmin(v), which is called the ‘minimum memory size’ of v, and a parameter Wmax(v),

which is called the ‘maximum memory size’ of v.

QUESTION: How to assign a natural number w(v) (Wmin(v) ≤ w(v) ≤ Wmax(v))

to each vertex v ∈ V , with the value of
∑

v∈V w(v) minimized, such that for any

vertex u ∈ V and for 1 ≤ i ≤ nu,
∑

v∈N (u,ri(u)) w(v) ≥ ki(u)? (Here w(v) is called

the ‘memory size of v’. A solution to this memory allocation problem is called an

optimal memory allocation.)

2

Example 2.4 Fig. 2.4 shows an example of the memory allocation problem. The

graph G = (V, E) has 6 vertices; the number beside each edge is its length. A solution

is also given: w(v1) = 3, w(v2) = 2, w(v3) = 2, w(v4) = 5, w(v5) = 7, w(v6) = 3,

34

v1

v2 v3

v4

v5

v6

v1w() = 3

w() = 2v2 v3w() = 2

v5w() = 7

v6w() = 3

v4w() = 5

v1R() = { (1.0, 7), (1.2, 11) }

v2R() = { (1.2, 5) }

R()v3 = { (1.3, 5) }

v4R() = { (0.6, 5) }

v5R() = { (1.6, 12) }

v6R() = { (1.0, 3) }

Wmin(v1) = 0

Wmin(v2) = 0

Wmin(v3) = 1

Wmin(v4) = 0

Wmax(v1) = 3

v2Wmax() = 5

Wmax(v3) = 6

Wmax(v4) = 5

) = 3Wmin(v5 Wmax(v5) = 10

Wmin(v6) = 0 v6Wmax() = 8

1.0 1.0

0.8
1.5

1.2

Figure 2.4: An example of the memory allocation problem.

which is shown in the figure. We claim without proof that no other solution has a

smaller value of
∑

v∈V w(v); readers can verify that the claim is true. 2

In the following subsections, we present three polynomial-time algorithms. The

first two algorithms respectively solve the memory allocation problem with and with-

out upper bounds on vertices’ memory sizes. They have complexities of O(q|V |3) and

O(q|V |2), where q is the average cardinality of a requirement set. The third algorithm

finds a solution that minimizes the greatest memory size of single vertices, among all

the optimal solutions. It’s complexity is O(q|V |3log(Y − X
|V |)), where Y is the greatest

memory size of single vertices in some memory-allocation solution, and X is the total

memory size in that solution.

2.3.2 A Memory Allocation Algorithm

In this subsection, we present an algorithm for the memory allocation problem.

The following proposition is self-evident.

Proposition 2.1 The memory allocation problem has a solution if and only if for

any v ∈ V and for 1 ≤ i ≤ nv,
∑

u∈N (v,ri(v)) Wmax(u) ≥ ki(v).

35

From now on we always assume a solution exists for the memory allocation prob-

lem.

For any two vertices v1 and v2 in a tree G = (V, E), we say ‘v1 is a descendant

of v2’ or ‘v2 is an ancestor of v1’ if v2 6= v1 and v2 is on the shortest path between v1

and the root. We say ‘v1 is a child of v2’ or ‘v2 is the parent of v1’ if v1 and v2 are

adjacent and v1 is a descendant of v2. For any vertex v ∈ V , we use Des(v) to denote

the set of descendants of v.

Definition 2.4 An Optimal Memory Basis: A set {w(v)|v ∈ V } is called an

optimal memory basis if there exists an optimal memory allocation for the tree G =

(V, E) which assigns memory size wopt(v) to every vertex v ∈ V , such that for any

v ∈ V , Wmin(v) ≤ w(v) ≤ wopt(v). 2

The following lemma shows how one can get a new optimal memory basis from

an old optimal memory basis by increasing memory sizes.

Lemma 2.4 Let u1 be a child of u2 in the tree G = (V, E). And let {w1(v)|v ∈ V } be

an optimal memory basis. Assume the following conditions are true for the memory

allocation problem: “for any vertex v ∈ Des(u1), the ‘requirement set’ R(v) = ∅;
R(u1) has an element (r, k), namely, (r, k) ∈ R(u1).”

We define S1 as S1 = N (u2, r − d(u1, u2)), and define S2 as S2 = N (u1, r)− S1.

We compute the elements of a set {w2(v)|v ∈ V } in the following way (step 1 to step

3):

Step 1: for all v ∈ V , let w2(v) ← w1(v).

Step 2: Let

X ← max{0, k −
∑
v∈S1

Wmax(v)−
∑
v∈S2

w1(v)},

and let C ← S2.

Step 3: Let v0 be the vertex in C that is the closest to u1—namely, d(v0, u1) =

minv∈C d(v, u1). Let w2(v0) ← min{Wmax(v0), w1(v0) + X}. Let X ← X − (w2(v0)−
w1(v0)), and let C ← C − {v0}. Repeat Step 3 until X equals 0.

36

Then the following conclusion is true: {w2(v)|v ∈ V } is also an optimal memory

basis.

Proof: The following three conclusions can be easily seen to be true:

Conclusion (1): S1 ∪ S2 = N(u1, r), and S1 ∩ S2 = ∅.
Conclusion (2): For any v ∈ S2, Wmin(v) ≤ w1(v) ≤ w2(v) ≤ Wmax(v). For any

v ∈ V − S2, Wmin(v) ≤ w1(v) = w2(v) ≤ Wmax(v). And

∑
v∈V

w2(v)−
∑
v∈V

w1(v) = max{0, k −
∑
v∈S1

Wmax(v)−
∑
v∈S2

w1(v)}

Conclusion (3):
∑
v∈S1

Wmax(v) +
∑
v∈S2

w2(v) ≥ k

Now let’s use them to prove Lemma 2.4.

{w1(v)|v ∈ V } is an optimal memory basis. So there exists an optimal memory

allocation that assigns memory size wopt(v) to every vertex v ∈ V , such that w1(v) ≤
wopt(v) for any v ∈ V . By Definition 2.3 we know

∑
v∈N (u1,r) wopt(v) ≥ k. Since

∑
v∈N (u1,r) wopt(v) =

∑
v∈S1

wopt(v)+
∑

v∈S2
wopt(v) ≤ ∑

v∈S1
Wmax(v)+

∑
v∈S2

wopt(v),

we get
∑

v∈S2
wopt(v) ≥ k−∑

v∈S1
Wmax(v). And clearly

∑
v∈S2

wopt(v) ≥ ∑
v∈S2

w1(v).

By conclusion (2),
∑

v∈S2
w2(v) =

∑
v∈S2

w2(v) +
∑

v∈V−S2
w2(v)−∑

v∈V−S2
w1(v)−

∑
v∈S2

w1(v)+
∑

v∈S2
w1(v) =

∑
v∈V w2(v)−∑

v∈V w1(v)+
∑

v∈S2
w1(v) = max{0, k−

∑
v∈S1

Wmax(v)−∑
v∈S2

w1(v)}+∑
v∈S2

w1(v) = max{∑v∈S2
w1(v), k−∑

v∈S1
Wmax(v)}.

So
∑

v∈S2
wopt(v) ≥ ∑

v∈S2
w2(v).

We compute the elements of a set {wo(v)|v ∈ V } in the following way (step 1 to

step 3):

Step 1: for all v ∈ V −S2, let wo(v) ← wopt(v). For all v ∈ S2, let wo(v) ← w1(v).

Step 2: Let Y ← ∑
v∈S2

wopt(v)−∑
v∈S2

w1(v), and let C ← S2.

Step 3: Let v0 be the vertex in C that is the closest to u1—namely, d(v0, u1) =

minv∈C d(v, u1). Let wo(v0) ← min{Wmax(v0), w1(v0) + Y }. Let Y ← Y − (wo(v0) −
w1(v0)), and let C ← C − {v0}. Repeat Step 3 until X equals 0.

From the above three steps, it’s simple to see that the following must be true: for

37

any v ∈ V , wo(v) ≥ w2(v); for any v ∈ V − S2, wo(v) = wopt(v); for any v ∈ S2,

Wmin(v) ≤ wo(v) ≤ Wmax(v);
∑

v∈V wo(v) =
∑

v∈V wopt(v), and
∑

v∈S2
wo(v) =

∑
v∈S2

wopt(v). It’s easy to see that the following must also be true: if there ex-

ists a vertex v1 ∈ S2 such that wo(v1) > w1(v1), then for any v ∈ S2 such that

d(v, u1) < d(v1, u1), wo(v) = Wmax(v); if there exists a vertex v2 ∈ S2 such that

wo(v2) < Wmax(v2), then for any v ∈ S2 such that d(v, u1) > d(v2, u1), wo(v) = w1(v).

Therefore for any real number L, if we define Q as Q = {v|v ∈ S2, d(v, u1) ≤ L)},
then

∑
v∈Q wo(v) ≥ ∑

v∈Q wopt(v).

Let v0 ∈ V be any vertex such that R(v0) 6= ∅, and let (r0, k0) be any element

in R(v0). Clearly v0 /∈ Des(u1). Since S2 ⊆ Des(u1) ∪ {u1}, N (v0, r0) = {v|v ∈
N (v0, r0), v /∈ S2} ∪ {v|v ∈ N (v0, r0), v ∈ S2} = {v|v ∈ N (v0, r0), v /∈ S2} ∪ {v|v ∈
S2, d(v, v0) ≤ r0} = {v|v ∈ N (v0, r0), v /∈ S2} ∪ {v|v ∈ S2, d(v, u1) ≤ r0 − d(u1, v0)}.
So

∑
v∈N (v0,r0) wo(v) ≥ ∑

v∈N (v0,r0) wopt(v). Clearly
∑

v∈N (v0,r0) wopt(v) ≥ k0. So
∑

v∈N (v0,r0) wo(v) ≥ k0. Since
∑

v∈V wo(v) =
∑

v∈V wopt(v), the memory allocation

which assigns memory size wo(v) to every vertex v ∈ V is also an optimal memory

allocation.

For any v ∈ V , Wmin(v) ≤ w2(v) ≤ wo(v). So {w2(v)|v ∈ V } is an optimal

memory basis.

2

The following lemma shows how one can transform one memory allocation problem

into another by modifying the ‘requirement sets’ and the ‘minimum memory sizes’.

Lemma 2.5 u1 is a child of u2 in the tree G = (V, E). And {w0(v)|v ∈ V } is an

optimal memory basis. Assume the following conditions are true for the memory allo-

cation problem: “for any vertex v ∈ Des(u1), the ‘requirement set’ R(v) = ∅; for any

element in R(u1)—say the element is (r, k)—we have
∑

u∈N (u2,r−d(u1,u2)) Wmax(u) +
∑

u∈N (u1,r)−N (u2,r−d(u1,u2)) w0(u) ≥ k.”

We compute the elements of a set {R̂(v)|v ∈ V } in the following way (step 1 and

step 2):

Step 1: for all v ∈ V , let R̂(v) ← R(v).

38

Step 2: let (r, k) be an element in R̂(u1). If
∑

v∈N (u1,r) w0(v) < k, then add an

element (r− d(u1, u2), k−
∑

v∈N (u1,r)−N (u2,r−d(u1,u2)) w0(v)) to the set R̂(u2). Remove

the element (r, k) from R̂(u1). Repeat Step 2 until R̂(u1) becomes an empty set.

Let’s call the original memory allocation problem, in which the ‘requirement set’

of each vertex v ∈ V is R(v), the ‘old problem’. We derive a new memory alloca-

tion problem—which we call the ‘new problem’—in the following way: in the ‘new

problem’ everything is the same as in the ‘old problem’, except that for each vertex

v ∈ V , its ‘requirement set’ is R̂(v) instead of R(v), and its ‘minimum memory size’

is w0(v) instead of Wmin(v).

Then the following conclusions are true:

(1) The ‘new problem’ has a solution (an optimal memory allocation).

(2) An optimal memory allocation for the ‘new problem’ is also an optimal mem-

ory allocation for the ‘old problem’.

Proof: Conclusion (1) can be easily proved by using Proposition 2.1 and the assump-

tion we have here that the ‘old problem’ has a solution. Below we give the proof of

conclusion (2).

Consider an optimal memory allocation for the ‘new problem’ which assigns ‘mem-

ory size’ ŵopt(v) to each vertex v ∈ V . Let v̄ ∈ V be any vertex such that R(v̄) 6= ∅,
and let (r̄, k̄) be any element in R(v̄). Either (r̄, k̄) ∈ R̂(v̄) or (r̄, k̄) /∈ R̂(v̄). If

(r̄, k̄) ∈ R̂(v̄), then clearly
∑

u∈N (v̄,r̄) ŵopt(u) ≥ k̄. Now consider the case where

(r̄, k̄) /∈ R̂(v̄). Clearly in this case v̄ = u1, and either
∑

u∈N (u1,r̄) w0(u) ≥ k̄, or
∑

u∈N (u1,r̄) w0(u) < k̄. If
∑

u∈N (u1,r̄) w0(u) ≥ k̄, since ŵopt(u) ≥ w0(u) for any

u ∈ V , we have
∑

u∈N (v̄,r̄) ŵopt(u) ≥ k̄. We define S1 as S1 = N (u2, r̄ − d(u1, u2)),

and define S2 as S2 = N (u1, r̄) − S1. Then if
∑

u∈N (u1,r̄) w0(u) < k̄, its sim-

ple to see that (r̄ − d(u1, u2), k̄ −
∑

u∈S2
w0(u)) ∈ R̂(u2). So

∑
u∈N (v̄,r̄) ŵopt(u) =

∑
u∈S1

ŵopt(u) +
∑

u∈S2
ŵopt(u) ≥ k̄ − ∑

u∈S2
w0(u) +

∑
u∈S2

ŵopt(u) ≥ k̄. Therefore
∑

u∈N (v̄,r̄) ŵopt(u) ≥ k̄ in all cases.

{w0(v)|v ∈ V } is an optimal memory basis for the ‘old problem’. So there exists an

optimal memory allocation for the ‘old problem’ which assigns ‘memory size’ wopt(v)

39

to each vertex v ∈ V , such that for any v ∈ V , w0(v) ≤ wopt(v).

We compute the elements of four sets — {w1(v)|v ∈ V }, {w2(v)|v ∈ V }, {w3(v)|v ∈
V }, and {w4(v)|v ∈ V } — in the following way (step 1 to step 5):

Step 1: for any v ∈ Des(u2), let w1(v) ← w0(v). For any v ∈ V − Des(u2), let

w1(v) ← wopt(v).

Step 2: for any v ∈ Des(u2), let w2(v) ← wopt(v)−w0(v). For any v ∈ V −Des(u2),

let w2(v) ← 0.

Step 3: for any v ∈ V , let w3(v) ← 0. Let Z ← ∑
v∈V w2(v), and let C ← V .

Step 4: Let v0 be the vertex in C that is the closest to u2—namely, d(v0, u2) =

minv∈C d(v, u2). Let w3(v0) ← min{Wmax(v0)−w1(v0), Z}. Let Z ← Z−w3(v0), and

let C ← C − {v0}. Repeat Step 4 until Z equals 0.

Step 5: for any v ∈ V , let w4(v) ← w1(v) + w3(v).

From the above five steps, it’s simple to see that the following must be true:

“
∑

v∈V wopt(v) =
∑

v∈V w1(v) +
∑

v∈V w2(v) =
∑

v∈V w4(v), and
∑

v∈V w2(v) =
∑

v∈V w3(v); for any v ∈ V , w0(v) ≤ w4(v) ≤ Wmax(v); for any real number L,
∑

v∈N(u2,L) w3(v) ≥ ∑
v∈N(u2,L) w2(v); for any v ∈ V , if w4(v) < Wmax(v), then

∑
u∈N(u2,d(v,u2)) w3(u) =

∑
u∈V w2(u).”

Let v̂ ∈ V be any vertex such that R̂(v̂) 6= ∅, and let (r̂, k̂) be any element in

R̂(v̂). Clearly v̂ ∈ V − Des(u2). Either (r̂, k̂) ∈ R(v̂) or (r̂, k̂) /∈ R(v̂). If (r̂, k̂) ∈
R(v̂), then

∑
v∈N (v̂,r̂) w4(v) =

∑
v∈N (v̂,r̂) w1(v) +

∑
v∈N (v̂,r̂) w3(v) ≥ ∑

v∈N (v̂,r̂) w1(v) +
∑

v∈N (u2,r̂−d(v̂,u2)) w3(v) ≥ ∑
v∈N (v̂,r̂) w1(v)+

∑
v∈N (u2,r̂−d(v̂,u2)) w2(v) =

∑
v∈N (v̂,r̂) w1(v)+

∑
v∈N (v̂,r̂) w2(v) =

∑
v∈N (v̂,r̂) wopt(v) ≥ k̂.

Now consider the case where (r̂, k̂) /∈ R(v̂). We define r̃ as r̃ = r̂ + d(u1, u2),

define Ŝ1 as Ŝ1 = N(u2, r̂), define Ŝ2 as Ŝ2 = N (u1, r̃) − Ŝ1, and define k̃ as

k̃ = k̂+
∑

v∈Ŝ2
w0(v). It’s easy to see in this case v̂ = u2, and (r̃, k̃) ∈ R(u1). If w4(v) =

Wmax(v) for any v ∈ N (u2, r̂), then clearly
∑

v∈N (v̂,r̂) w4(v) ≥ k̂ because the new prob-

lem has a solution. If there exists v0 ∈ N (u2, r̂) such that w4(v0) < Wmax(v0), then
∑

v∈N (v̂,r̂) w4(v) =
∑

v∈Ŝ1
w1(v) +

∑
v∈V w2(v) ≥ ∑

v∈N (u1,r̃) w1(v) − ∑
v∈Ŝ2

w1(v) +
∑

v∈N (u1,r̃) w2(v) =
∑

v∈N (u1,r̃) wopt(v)−∑
v∈Ŝ2

w1(v) ≥ k̃ −∑
v∈Ŝ2

w1(v) = k̂.

So
∑

v∈N (v̂,r̂) w4(v) ≥ k̂ in all cases. So
∑

v∈V ŵopt(v) ≤ ∑
v∈V w4(v). Since

40

we also have
∑

v∈V w4(v) =
∑

v∈V wopt(v) and
∑

v∈V wopt(v) ≤ ∑
v∈V ŵopt(v), we

get
∑

v∈V ŵopt(v) =
∑

v∈V wopt(v). So the optimal memory allocation for the ‘new

problem’, which assigns ‘memory size’ ŵopt(v) to every vertex v ∈ V , is also an optimal

memory allocation for the ‘old problem’. So conclusion (2) is proved.

2

Based on the above two lemmas, we naturally get the following memory allocation

algorithm. The algorithm processes all the vertices one by one. Every time a vertex

is processed, it uses the method in Lemma 2.4 to update the memory sizes , and

uses the method in Lemma 2.5 to transform the memory allocation problem, until a

solution is found.

Algorithm 3.1: Memory Allocation on Tree G = (V, E)

1. Initially, for every vertex v ∈ V , let w(v) ← Wmin(v).

2. Process all the vertices one by one in an order that follows the following rule:

“every vertex is processed before any of its ancestors.” For each vertex ṽ ∈ V that is

not the root, it is processed with the following two steps:

“Step 1: Treat ṽ, the parent of ṽ and the set {w(v)|v ∈ V } as the vertex ‘u1’,

the vertex ‘u2’ and the set ‘{w1(v)|v ∈ V }’ in Lemma 2.4, respectively, and for each

element in R(ṽ) do the following two things: (1) treat this element in R(ṽ) as the

element ‘(r, k)’ in Lemma 2.4, and compute the set ‘{w2(v)|v ∈ V }’ as in Lemma 2.4;

(2) for every vertex v ∈ V , let w(v) get the value of w2(v) — namely, w(v) ← w2(v).

Step 2: Treat ṽ, the parent of ṽ and the set {w(v)|v ∈ V } as the vertex ‘u1’,

the vertex ‘u2’ and the set ‘{w0(v)|v ∈ V }’ in Lemma 2.5, respectively, and do the

following two things: (1) compute the set ‘{R̂(v)|v ∈ V }’ as in Lemma 2.5; (2) for

every vertex v ∈ V , let R(v) ← R̂(v), and let Wmin(v) ← w(v).”

Denote the root by vroot. The vertex vroot is processed in the following way:

“Pretend that the root vroot has a parent that is infinitely far away. Treat vroot,

the parent of vroot and the set {w(v)|v ∈ V } as the vertex ‘u1’, the vertex ‘u2’ and

the set ‘{w1(v)|v ∈ V }’ in Lemma 2.4, respectively, and for each element in R(vroot)

do the following two things: (1) treat this element in R(vroot) as the element ‘(r, k)’

41

in Lemma 2.4, and compute the set ‘{w2(v)|v ∈ V }’ as in Lemma 2.4; (2) for every

vertex v ∈ V , let w(v) get the value of w2(v) — namely, w(v) ← w2(v).”

3. Output the following solution as the solution to the memory allocation problem:

for each vertex v ∈ V , assign w(v) to it as its ‘memory size’.

2

A pseudo-code of Algorithm 3.1 is presented in Appendix IV for interested readers.

Theorem 2.4 Algorithm 3.1 is correct.

Proof: At the beginning of Algorithm 3.1, the value of each w(v) (v ∈ V) is set to be

Wmin(v). Clearly at this moment, {w(v)|v ∈ V } = {Wmin(v)|v ∈ V } is an ‘optimal

memory basis.’

Then Algorithm 3.1 processes all the vertices one by one. Each vertex — including

the root, in fact — is processed with the following two steps:

Step 1: Modify the value of the set {w(v)|v ∈ V }, using the method in Lemma

2.4.

Step 2: Modify the values of {R(v)|v ∈ V } and {Wmin(v)|v ∈ V }, using the

method in Lemma 2.5. (Therefore the parameters in the memory allocation problem

are changed. Using the terms in Lemma 2.5, the memory allocation problem is

changed from an ‘old problem’ to a ‘new problem’.)

It’s easy to prove by induction that the following two assertions are true:

Assertion 1: Every time a vertex is processed, after step 1, the set {w(v)|v ∈ V }
is still an ‘optimal memory basis.’

Assertion 2: Every time a vertex is processed, after step 2, the ‘new problem’

still has a solution, and any solution of the ‘new problem’ is also a solution of the

original memory allocation problem.

When all the vertices are processed, all the ‘requirement sets’ become empty sets,

so at this moment the ‘optimal memory basis’, which is {w(v)|v ∈ V }, is also an

optimal memory allocation. So Algorithm 1 finds the correct solution.

2

Analysis shows that Algorithm 3.1 has complexity O(q|V |3), where |V | is the

42

number of vertices and q is the average cardinality of a requirement set, namely,

q = 1
|V |

∑
v∈V |R(v)|.

2.3.3 Memory Allocation for Trees without Upper Bounds

on Memory Sizes

In the memory allocation problem, every vertex v ∈ V has a ‘maximum memory size’

Wmax(v). If for every v ∈ V , Wmax(v) is infinitely large, then we say that there are

no upper bounds on memory sizes. For such a special case, some techniques can be

used to get a memory allocation algorithm of complexity less than O(q|V |3), which

we will present in this subsection.

The new algorithm is very similar to Algorithm 3.1, except that in this new

algorithm, a new notion named ‘residual requirement set ’ is adopted. The notion is

defined as follows. For any vertex v ∈ V , we denote the ‘residual requirement set of v’

by Res(v). Say at some moment, each vertex v ∈ V is temporarily assigned a memory

size w(v), and its ‘requirement set’ is R(v). For every element (r, k) ∈ R(v), there

is a corresponding element (r̄, k̄) in the ‘residual requirement set of v’, computed as

follows: “r̄ = r, and k̄ = max{k −∑
u∈N (v,r) w(u), 0}.” (The meaning of the element

(r̄, k̄) is that the memories of the nodes in N (v, r) needs to be increased by k̄ so that
∑

u∈N (v,r) w(u) will be no less than k.)

Because of the similarity between the new algorithm and Algorithm 3.1, we di-

rectly present the pseudo-code of the new algorithm below.

Algorithm 3.2: Memory Allocation on Tree G = (V,E) without Upper Bounds on

Memory Sizes

1. Label the vertices in V as v1, v2, · · · , v|V | according to the following rule: if vi is

an ancestor of vj, then i > j. Let w(vi) ← Wmin(vi) for 1 ≤ i ≤ |V |. Let Res(vi) ← ∅
for 1 ≤ i ≤ |V |. For 1 ≤ i ≤ |V |, and for each element (r, k) ∈ R(vi), do the following:

“if k−∑
v∈N (vi,r)

w(v) > 0, then let Res(vi) ← Res(vi)∪ {(r, k−
∑

v∈N (vi,r)
w(v))}.”

2. For i = 1 to |V | − 1 do:

{ Let vP denote the parent of vi. Let Q(vi) ← Res(vi), and let x ← 0.

43

While Q(vi) 6= ∅ do:

{ Let (r, k) be any element in Q(vi). If r < d(vi, vP), then let x ← max{x, k} and

remove the element (r, k) from the set Res(vi). Remove the element (r, k) from Q(vi).

}
Let w(vi) ← w(vi) + x.

For j = i + 1 to |V |, and for every element (r, k) ∈ Res(vj), do the following: “if

r ≥ d(vi, vj), then let (r, k) ← (r, k−x); if k ≤ 0, then remove the element (r, k) from

Res(vj).”

For every element (r, k) ∈ Res(vi) do the following: “if k > x, then let Res(vP) ←
Res(vP) ∪ {(r − d(vi, vP), k − x)}.”

Let Res(vi) ← ∅.
}

3. Let x ← 0.

While Res(v|V |) 6= ∅ do:

{ Let (r, k) be any element in Res(v|V |). Let x ← max{x, k}. Remove the element

(r, k) from Res(v|V |).

}
Let w(v|V |) ← w(v|V |) + x.

4. Output w(v1), w(v2), · · · , w(v|V |) as the solution to the memory allocation

problem.

2

The complexity of Algorithm 3.1, which is O(q|V |3), is dominated by the com-

plexity of updating memory sizes — the memory sizes can be updated up to O(q|V |2)
times, and each time up to O(|V |) memory sizes might change. When there are no

upper bounds on the memory sizes, with the help of ‘residual requirement sets’, each

time only one memory size will need to be updated, which has complexity O(1).

So the complexity of updating memory sizes is reduced from O(q|V |3) to O(q|V |2).
Maintaining the ‘residual requirement sets’ also has a total complexity of O(q|V |2).
So the complexity of Algorithm 3.2 is O(q|V |2).

44

2.3.4 Minimizing the Greatest Memory Size of Single Ver-

tices

Minimizing the maximum amount of resource assigned to a single place often has

engineering importance in resource assignment problems. In this section, we present

an algorithm which finds, among all the solutions to the memory allocation problem,

a solution that minimizes the greatest memory size of single vertices. That is, the

algorithm finds an ‘optimal memory allocation’ whose value of maxv∈V w(v) is mini-

mized. The key idea is to use binary search to set an appropriate upper limit on the

memory sizes.

Algorithm 3.3 Memory Allocation on Tree G = (V, E) with Minimized Greatest

Memory Size

1. Use Algorithm 3.1 to find an optimal memory allocation. Say the optimal

memory allocation assigns memory size wopt(v) to each vertex v ∈ V . We let X ←
∑

v∈V wopt(v), and let Y ← maxv∈V wopt(v).

In this algorithm we use ‘L’ and ‘U ’ to represent the lower limit and the upper

limit for the minimized greatest memory size of single nodes; and we use ‘Mmin−max’

to denote the minimized greatest memory size (which is unknown yet). Since every

optimal memory allocation’s total memory size of all vertices equals X, Mmin−max

must be no less than d X
|V |e. Since we’ve already found an optimal memory allocation

whose greatest memory size is Y , Wmin−max must be no greater than Y . So initially,

we let L ← d X
|V |e, and let U ← Y .

2. Use a binary search to find out the exactly value of Wmin−max in the following

way. Let m ← bL+U
2
c. Use Algorithm 3.1 to find an optimal memory allocation

for such a memory allocation problem: everything in this problem is the same as in

the original memory allocation problem, except that in this problem, the ‘maximum

memory size’ of each vertex v ∈ V is min{m,Wmin(v)} instead of Wmin(v). If this

problem has a solution and in the solution the total memory size equals X, then it

means that Mmin−max is no greater than m, so we let U ← m; otherwise, it means

that Mmin−max is greater than m, so we let L ← m + 1. Repeat this procedure until

45

L and U become equal.

Now we have Wmin−max = L = U . Use Algorithm 3.1 to find a solution to the

following memory allocation problem: in the problem everything is the same as in

the original memory allocation problem, except that in this problem, the ‘maximum

memory size’ of each vertex v ∈ V is min{Wmin−max,Wmin(v)} instead of Wmin(v).

The solution found is the solution whose greatest memory size is minimized.

2

The binary search has O(log(Y −d X
|V |e)) steps; in every step Algorithm 3.1 is exe-

cuted once. So Algorithm 3.3 has complexity O(q|V |3 log(Y − X
|V |)). (To see how large

Y can be, note that Y is never greater than maxv∈V,1≤i≤nv ki(v) or maxv∈V Wmax(v).)

2.4 Summary

An optimal solution to the data placement problem can be found through the follow-

ing two steps when the graph G = (V, E) is a tree: firstly, use a memory allocation

algorithm in Section 2.2.3 to determine the number of codeword components to place

on each vertex; next, use a maximum interleaving algorithm (or a K-diversity inter-

leaving algorithm for K ≥ maxu∈V,1≤i≤nu ki(u)) to determine which set of codeword

components to place on each vertex.

The maximum-interleaving property of trees has three important implications for

the data placement practice using erasure-correcting codes. Firstly, it makes memory

allocation a problem that is separate from the mapping from codeword components

to vertices, thus providing us with the maximum freedom in minimizing the total

amount of data to store in the network. Secondly, since by using maximum interleav-

ing, for every vertex the n distinct codeword components can be placed as close as

possible around it, that enables us to minimize the file-retrieving delays for all vertices

simultaneously. Thirdly, maximum interleaving reduces the requirement on the code-

word length, n, to be the minimum. That is because with maximum-interleaving, n

only needs to be as large as the maximum number of different codeword components

that a vertex would actually ask for.

46

2.5 Appendix I: Complexity Analysis of Algo-

rithm 2.1

In this appendix we analyze the complexity of Algorithm 2.1.

Complexity Analysis: To implement Algorithm 2.1, it’s first necessary to label all

the color-slots as s1, s2, · · · , sW based on their distance to the root. This has time

complexity O(|V | log |V |+W).

Assigning colors to the first K color-slots, which are s1, s2, · · · , sK , has time

complexity O(K). For any of the remaining W−K color-slots, say it’s si, in order to

assign a color to it, it’s necessary to find out the colors of all the color-slots in the set

{s1, s2, · · · , si−1} that are at distance less than rmin from si. (Here rmin, as in Algo-

rithm 2.1, is defined as the smallest value of r such that in the set {s1, s2, · · · , si−1},
there are no less than K color-slots at distance no greater than r from si. Note that

the value of rmin changes if the value of i changes.) To do that, the algorithm needs

to inspect the color-slots of the tree in the order of their distance to si — which re-

quires the ordering of the vertices in the tree based on their distance to si — until K

color-slots are inspected and the value of rmin is determined. Making a list for every

vertex in the tree which orders vertices according to their distance to that vertex has

a total complexity of O(|V |2). Then to color si, up to O(|V |) vertices and O(K)

color-slots need to be inspected. Therefore coloring the remaining W−K color-slots

has a total complexity of O(|V |2 +W · |V |+W ·K).

By combining the above results, the time complexity of Algorithm 2.1 is found to

be O(|V |2 +W|V |+WK).

2.6 Appendix II: Proving the Generality of Al-

gorithm 2.1

In this appendix we present the proof of Theorem 2.2.

Proof: By Theorem 2.1, the set of possible outputs of Algorithm 2.1 is a subset

47

of the set of K-diversity interleavings. So the only thing left to prove is that every

K-diversity interleaving is a possible output of Algorithm 2.1, even if the root of the

tree is fixed.

Assume the root of the tree is fixed. Assume a fixed K-diversity interleaving for

the tree G = (V, E) is given. There are totally W =
∑

v∈V w(v) color-slots in the

tree. If
∑

v∈V w(v) ≤ K, it’s simple to see that the K-diversity interleaving must have

assigned W distinct colors to the W color-slots, which is clearly a possible output of

Algorithm 2.1. So from now on we only consider the case where W > K. We’ll prove

by induction that for 1 ≤ i ≤ W, there is a set of i color-slots that Algorithm 2.1

can label as s1, s2, · · · , si and assign the same colors to as the given K-diversity

interleaving does.

Let γ denote the fixed root of the tree. For 1 ≤ j ≤W, let Rmin(γ, j) denote the

minimum value of r such that
∑

v∈N (γ,r) w(v) ≥ j. Let A0 denote the set of color-slots

at distance less than Rmin(γ, K) from γ. It is simple to see that all the color-slots in

A0 are assigned distinct colors in the given K-diversity interleaving, and there exists

a set B0 of K − |A0| color-slots at distance Rmin(γ,K) from γ such that all the K

color-slots in A0∪B0 are assigned distinct colors in the given K-diversity interleaving.

Clearly it’s feasible for Algorithm 2.1 to label the color-slots in A0∪B0 as s1, s2, · · · ,
sK , and assign the same colors to them as the given K-diversity interleaving does.

Therefore the induction is true for 1 ≤ i ≤ K. We’ll use this as the base case.

Assume the following induction assumption is true: for some fixed i such that

K ≤ i < W, there is a set C of i color-slots which Algorithm 2.1 can label as s1, s2,

· · · , si and assign the same colors to as the given K-diversity interleaving does. We

will prove that this induction assumption is also true if i is replaced by i + 1.

Since Algorithm 2.1 always assigns colors to color-slots in the order of their in-

creasing distance to the root γ, it’s simple to see that no color-slot in C is at distance

greater than Rmin(γ, i) from γ; and for any color-slot not in C, it is at distance no

less than Rmin(γ, i + 1) from γ.

Let D denote the set of all the W color-slots in the tree. Let H denote the set of

color-slots in D−C at distance Rmin(γ, i+1) from γ. (Clearly H must be non-empty.)

48

Denote the color-slots in H as c1, c2, · · · , c|H|. Randomly pick a color-slot cj1 from H.

(Here 1 ≤ j1 ≤ |H|.) Let rmin(j1) denote the smallest value of r such that there are

no less than K color-slots in C at distance no greater than r from cj1 . We consider

the following two cases.

Case 1: In this case, no color-slot in C at distance less than rmin(j1) from cj1 is

assigned the same color as cj1 in the given K-diversity interleaving. Then it’s simple

to see that it is feasible for Algorithm 2.1 to label cj1 as the color-slot si+1 and assign

si+1 the same color as the given K-diversity interleaving does, after labelling the

color-slots in C as s1, s2, · · · , si and assigning the same colors to them as the given

K-diversity interleaving does.

Case 2: In this case, at least one color-slot in C at distance less than rmin(j1)

from cj1 is assigned the same color as cj1 in the given K-diversity interleaving. Let

tk1 denote such a color-slot: tk1 ∈ C; tk1 and cj1 are assigned the same color in

the given K-diversity interleaving; for any color-slot z ∈ C that is assigned the

same as cj1 in the given K-diversity interleaving, d(tk1 , cj1) ≤ d(z, cj1). Clearly,

d(tk1 , cj1) < rmin(j1). Say cj1 is a color-slot of vertex u1, and tk1 is a color-slot of

vertex v1. d(u1, γ) = d(cj1 , γ) = Rmin(γ, i + 1) ≥ Rmin(γ, i) ≥ d(tk1 , γ) = d(v1, γ), so

C(u1, v1) is on the path between u1 and γ.

Let J denote the set of color-slots of the vertices in S(u1, v1). For any color-

slot z ∈ J , z ∈ C ∪ H because otherwise d(z, γ) > Rmin(γ, i + 1) and therefore

d(z, C(u1, v1)) > d(u1, C(u1, v1)) = d(u1,v1)
2

, which implies z /∈ J . So J ⊆ C ∪ H.

Therefore, J = (J ∩ C) ∪ (J ∩H), and (J ∩ C) ∩ (J ∩H) = ∅.
By Lemma 2.2, the color-slots in J are assigned at least K distinct colors in the

given K-diversity interleaving. For any color-slot z ∈ J∩C, d(u1, z) ≤ d(u1, C(u1, v1))+

d(C(u1, v1), z) ≤ d(u1,v1)
2

+ d(u1,v1)
2

= d(u1, v1) = d(cj1 , tk1) < rmin(j1). There are fewer

than K color-slots in C at distance less than rmin(j1) from cj1 , so there are fewer than

K color-slots in J ∩ C. Therefore there is a color-slot in J ∩H (which we denote by

cj2) such that in the given K-diversity interleaving, neither cj1 nor any color-slot in

J ∩ C is assigned the same color as cj2 .

We can replace cj1 with cj2 and consider (go through) the above two cases again.

49

(All the parameters need to change accordingly when we replace cj1 with cj2 .) If case

1 becomes true when we replace cj1 with cj2 , then it’s feasible for Algorithm 2.1 to

label cj2 as the color-slot si+1 and assign si+1 the same color as the given K-diversity

interleaving does. Otherwise case 2 is true when we replace cj1 with cj2 , and then

we can find such parameters ‘tk2 , u2, v2 and cj3 ’: ‘tk2 , u2, v2 and cj3 ’ are to cj2 just

as ‘tk1 , u1, v1 and cj2 ’ are to cj1 . Then we can replace cj1 with cj3 and consider (go

through) the above two cases again, and so on Notice that C(u1, v1) lies on the

path between γ and u2, because otherwise d(C(u1, v1), u2) > d(C(u1, v1), u1) = d(u1,v1)
2

and that would imply that cj2 /∈ J , which is false. Then it’s simple to see that a

color-slot in C is within distance d(u1, v1) from cj2 if and only if this color-slot is

in J ∩ C. No color-slot in J ∩ C is assigned the same color as cj2 in the given K-

diversity interleaving, but tk2 and cj2 are assigned the same color, and tk2 ∈ C. So

d(v2, u2) = d(tk2 , cj2) > d(u1, v1). C(u2, v2) lies on the path between γ and u2 just as

C(u1, v1) lies on the path between γ and u1. So both C(u2, v2) and C(u1, v1) lie on the

path between γ and u2. Since d(C(u2, v2), u2) = d(v2,u2)
2

> d(u1,v1)
2

= d(C(u1, vv), u2),

the point C(u2, v2) must be lying on the path between γ and C(u1, v1), and C(u2, v2)

and C(u1, v1) can’t be the same point. Similarly, let ‘u3 and v3’ be the parameters

which are to cj3 just as ‘u2 and v2’ are to cj2 and just as ‘u1 and v1’ are to cj1 ; then

the point C(u3, v3) must be lying on the path between γ and C(u2, v2), and C(u3, v3),

C(u2, v2) and C(u1, v1) must all be distinct points. And so on So cj1 , cj2 , cj3

· · · are all distinct color-slots. There are a limited number of color-slots in H. So

eventually we’ll find some cjx ∈ H (1 ≤ x ≤ |H|) such that it’s feasible for Algorithm

2.1 to label cjx as the color-slot si+1 and assign si+1 the same color as the given K-

diversity interleaving does, after labelling the color-slots in C as s1, s2, · · · , si and

assigning the same colors to them as the given K-diversity interleaving does.

So by now it has been shown that in all cases, some color-slot cjx ∈ H can be found

such that it’s feasible for Algorithm 2.1 to label the color-slots in C ∪ {cjx} as s1, s2,

· · · , si+1, and assign the same colors to them as the given K-diversity interleaving

does. Since C∪{cjx} contains i+1 color-slots, the induction assumption is true when

i is replaced by i + 1.

50

The proof by induction is complete here. Now it’s clear that Algorithm 2.1 can

assign the same colors to all the W color-slots as the arbitrarily given K-diversity

interleaving does. So any K-diversity interleaving is a possible output of Algorithm

2.1, even if the root of the tree is fixed. Therefore this theorem is proved.

2

2.7 Appendix III: Complexity Analysis of Algo-

rithm 2.2

In this appendix we analyze the time complexity of Algorithm 2.2, and show that

Algorithm 2.2 is more efficient than Algorithm 2.1.

Complexity Analysis: Algorithm 2.2 first labels the vertices as v1, v2, · · · , v|V |

according to the vertices’ distance to the root, and labels the color-slots as s1, s2, · · · ,
sW based on the labelling of the vertices. This has complexity O(|V | log |V |+W).

Initializing the values of the K sets C1, C2, · · · , CK — namely, to let Ci = {si} for

1 ≤ i ≤ K — has complexity O(K). Then for i = K+1 toW, the step 5 in Algorithm

2.2 searches for the color-slot sx and the set Ct corresponding to i, and inserts si into

Ct. (For the meaning of sx and Ct, see the step 5 in the Algorithm 2.2.) To do that, we

can process the vertices one by one, with the method described below. For simplicity,

we only describe the process of processing one vertex vi. (Also for simplicity, we

assume all vi’s color-slots are in {sK+1, sK+2, · · · , sW}, and 1 ≤ w(vi) ≤ K. It’s

simple to see that the following method only needs to be modified slightly when

w(vi) > K or some of vi’s color-slots are not in {sK+1, sK+2, · · · , sW}. And when

w(vi) = 0, there is no need to process vi.)

The process of processing vi is as follows. Make a list which sorts the vertices v1,

v2, · · · , vi−1 according to the following two rules: (1) for any 1 ≤ j1 6= j2 ≤ i − 1,

if d(vi, vj1) < d(vi, vj2), then vj1 is placed before vj2 in the list; (2) for any 1 ≤ j1 6=
j2 ≤ i − 1, if d(vi, vj1) = d(vi, vj2) and j1 < j2, then vj1 is placed before vj2 in the

list. (Making |V | such lists for all the |V | vertices in the tree has a total complexity

51

of O(|V |2).) Say in the list, the vertices are ordered as (vk1 , vk2 , · · · , vki−1
). (Here

(k1, k2, · · · , ki−1) is a permutation of (1, 2, · · · , i − 1).) Find four variables a, b, c

and d that satisfy the following conditions:
∑

1≤j≤a−1 w(vkj
) + b = K − w(vi) + 1,

∑
1≤j≤c−1 w(vkj

) + d = K, 1 ≤ a ≤ i − 1, 1 ≤ b ≤ w(vka), 1 ≤ c ≤ i − 1, and

1 ≤ d ≤ w(vkc).

For p = 1, 2, · · · , |V |, define Wp as Wp =
∑

1≤q≤p−1 w(vq). (By convention, W1 =

0.) For p = 1, 2, · · · , |V | and q = 1, 2, · · · , w(vp), define ŝp,q as the color-slot sWp+q.

(So for any 1 ≤ p ≤ |V |, the w(vp) color-slots of vertex vp are ŝp,1, ŝp,2, · · · , ŝp,w(vp).)

Define Ŝ as an ordered set of color-slots that satisfies the following two conditions:

(1) the only color-slots in Ŝ are these w(vka) − b + 1 color-slots of vertex vka —

ŝka,b, ŝka,b+1, · · · , ŝka,w(vka), and all the color-slots of vertices vka+1, vka+2, · · · , vkc−1,

and these d color-slots of vertex vkc — ŝkc,1, ŝkc,2, · · · , ŝkc,d; (2) for any two color-slots

ŝkx,y and ŝkz ,u in Ŝ, ŝkx,y is placed before ŝkz ,u in Ŝ if and only if ‘x > z’ or ‘x = z

and y > u’. (It can be verified that Ŝ contains w(vi) color-slots.)

Now for j = 1 to w(vi), insert the color-slot ŝi,j into the set Ct, where Ct (1 ≤ t ≤
K) is the set that the j-th color-slot of Ŝ is in. (Note that t changes when j changes.)

And the process of processing vertex vi ends here.

If the complexity of making the list which sorts the vertices v1, v2, · · · , vi−1 into

(vk1 , vk2 , · · · , vki−1
) is not counted, then the process of processing vertex vi simply has

complexity O(|V | + w(vi)). Therefore the complexity of processing all the W − K

vertices vK+1, vK+2, · · · , vW, without excluding the complexity of any computation,

is O(|V |2 +W).

By combining the above results, the time complexity of Algorithm 2.2 is found to

be O(|V |2 +W).

Comparison between Algorithm 2.1 and Algorithm 2.2: There are two significant

differences between the implementation of Algorithm 2.1 and Algorithm 2.2.

Difference 1: In Algorithm 2.1, the color-slots are colored one by one. Except

for the first K color-slots, to color a color-slot, some vertices that K other color-

slots belong to need to be inspected. However in Algorithm 2.2, as described in the

previous complexity analysis, the vertices — instead of the color-slots — are processed

52

one by one; every time a vertex vi is processed (here w(i) > 0), the vertices that K

other color-slots belong to are inspected for all the w(vi) color-slots of vi — instead

of for just one color-slot — in a very similar manner. So when the processing of all

the color-slots of a vertex vi is considered, for the above computation, compared to

Algorithm 2.1, Algorithm 2.2 reduces the complexity by a factor of w(vi).

Difference 2: In Algorithm 2.1, except for the first K color-slots, to color a color-

slot, approximately K colors needs to be checked to determine the set of colors that

can possibly be assigned to that color-slot. However, in Algorithm 2.2, the counter-

part operation is simply to insert the color-slot into some set Ct. So for the above

computation, compared to Algorithm 2.1, Algorithm 2.2 reduces the complexity by

a factor which is approximately K.

The operations in Algorithm 2.1 and the operations in Algorithm 2.2, except for

the ones specified in ‘Difference 1’ and ‘Difference 2’, are very similar and have the

same complexity. Therefore, Algorithm 2.2 is more efficient than Algorithm 2.1.

2.8 Appendix IV: Pseudo-Code of Algorithm 3.1

In this appendix we present the pseudo-code of Algorithm 3.1.

Pseudo-code of Algorithm 3.1: Memory Allocation on Tree G = (V, E)

1. Label the vertices in V as v1, v2, · · · , v|V | according to the following rule: if vi

is an ancestor of vj, then i > j. Let w(vi) ← Wmin(vi) for 1 ≤ i ≤ |V |.
2. For i = 1 to |V | − 1 do:

{ Let vP denote the parent of vi. Let R̃(vi) ← R(vi).

While R̃(vi) 6= ∅ do:

{ Let (r, k) be any element in R̃(vi). Define S1 as S1 = N (vP , r − d(vi, vP)), and

define S2 as S2 = N (vi, r)−S1. Update the elements in {w(v)|v ∈ V } in the following

way (step 1 and step 2):

Step 1: Let

X ← max{0, k −
∑
v∈S1

Wmax(v)−
∑
v∈S2

w(v)}

53

, and let C ← S2.

Step 2: Let u0 be the vertex in C that is the closest to vi—namely, d(u0, vi) =

minu∈C d(u, vi). Let Temp ← min{Wmax(u0), w(u0) + X}. Let X ← X − (Temp −
w(u0)), let w(u0) ← Temp, and let C ← C − {u0}. Repeat Step 2 until X equals 0.

Remove the element (r, k) from R̃(vi).

}
While R(vi) 6= ∅ do:

{ Let (r, k) be any element in R(vi). If
∑

u∈N (vi,r)
w(u) < k, then add an element (r−

d(vi, vP), k −∑
u∈N (vi,r)−N (vP ,r−d(vi,vP)) w(u)) to the set R(vP). Remove the element

(r, k) from R(vi).

}
}

3. While R(v|V |) 6= ∅ do:

{ Let (r, k) be any element in R(v|V |). Update the elements in {w(v)|v ∈ V } in the

following way (step 1 and step 2):

Step 1: Let

X ← max{0, k −
∑

u∈N (v|V |,r)

w(v)}

, and let C ← V .

Step 2: Let u0 be the vertex in C that is the closest to v|V |—namely, d(u0, v|V |) =

minu∈C d(u, v|V |). Let Temp ← min{Wmax(u0), w(u0) + X}. Let X ← X − (Temp−
w(u0)), let w(u0) ← Temp, and let C ← C − {u0}. Repeat Step 2 until X equals 0.

Remove the element (r, k) from R(v|V |).

}
Output w(v1), w(v2), · · · , w(v|V |) as the solution to the memory allocation prob-

lem.

2

54

Chapter 3

Optimal t-Interleaving on Tori

3.1 Introduction

Interleaving is an important technique used for network data storage and error burst

correction. A most common example is the interleaving of n codewords in the form

of ‘1− 2− 3− · · · − n− 1− 2− 3− · · · − n− · · · · · · ’ for combatting one-dimensional

error bursts in communication channels [60]. The concept of one-dimensional error

burst was generalized to high dimensions by Blaum, Bruck and Vardy in [11], where

an error burst of size t is a set of errors confined to a connected subgraph with t

vertices in a multi-dimensional linear array. Accordingly, the concept of t-interleaving

was defined in [11], which is a scheme to label the vertices of a multi-dimensional

linear array with integers such that any subgraph with t vertices in the array are

labelled by t distinct integers. t-interleaving schemes on two- and three-dimensional

linear arrays were presented in [11], with applications in combatting error bursts in

holographic storage systems and optical recording systems. Subsequent work on t-

interleaving includes [80], where t-interleaving on circulant graphs with two offsets

was studied. Two-dimensional interleaving with repetitions was studied by Etzion and

Vardy in [21], where integers were interleaved on a two-dimensional mesh (linear array

or its variation) such that in any connected subgraph with t vertices, every integer

appears at most r times. Here t and r are given parameters, and the concept of

interleaving with repetitions defined in [21] is a generalization of t-interleaving. More

work on interleaving with repetitions includes [62] and [75]. Interleaving schemes

55

on two-dimensional linear arrays achieving the Reiger bound was studied by Abdel-

Ghaffar in [1], where error bursts of both rectangular shapes and arbitrary connected

shapes were concerned. More examples of interleaving for coping with error bursts

include [5], where the error burst is of a ‘circular’ type, and [15], where linear binary

array codes that can correct three-dimensional error bursts were designed based on

interleaving. As to interleaving schemes for network data storage, in Chapter II,

we have presented a Maximum-Interleaving algorithm that interleaves N integers on

a tree such that for every point of the tree (including a vertex or a point on an

edge), the smallest sphere centered at the point that contains N integers contains

all the N distinct integers. That algorithm is useful for distributed data storage in

hierarchical or peer-to-peer networks that minimizes data retrieval delay. And in

Chapter III, a scheme called Multi-Cluster Interleaving will be studied, which is a

scheme to interleave integers on a path or cycle such that any m disjoint intervals

of length L in the path or cycle together contain at least K distinct integers, where

K > L. Multi-cluster interleaving can be used for data storage on array-networks,

ring-networks or disks where data are accessed through multiple access points.

In this chapter, we study t-interleaving on two-dimensional tori. First we present

the necessary definitions. The notion of ‘t-interleaving’ was originally defined in [11]

for arrays. We generalize its definition to be for general graphs straightforwardly.

Definition 3.1 Let G be a graph. We say that G is interleaved (or there is an

interleaving on G) if every vertex of G is labelled by one integer. We say that G is

t-interleaved (or there is a t-interleaving on G) if for every connected subgraph of G

that contains t or fewer vertices, the integers on it are all distinct. 2

Definition 3.2 An l1 × l2 torus is a graph containing l1l2 vertices and 2l1l2 edges.

We denote its vertices by ‘(i, j)’ for 0 ≤ i ≤ l1 − 1 and 0 ≤ j ≤ l2 − 1, in the way

shown in the figure below:

56

(0, 0) (0, 1) · · · (0, l2 − 1)

(1, 0) (1, 1) · · · (1, l2 − 1)
...

...
...

...

(l1 − 1, 0) (l1 − 1, 1) · · · (l1 − 1, l2 − 1)

Each vertex (i, j) is incident to four edges, which connect it to its four neighbors

((i− 1) mod l1, j), ((i + 1) mod l1, j), (i, (j − 1) mod l2) and (i, (j + 1) mod l2). 2

Definition 3.3 Given a t-interleaved torus G, the number of distinct integers used

to label the vertices of G is called the degree of this given t-interleaving scheme.

The minimum degree of all the possible t-interleaving schemes for G is called the t-

interleaving number of G. A t-interleaving on a torus whose degree equals the torus’

t-interleaving number is called an optimal t-interleaving. 2

An l1 × l2 torus is two-dimensional.

Example 3.1 The following 5× 5 torus is 3-interleaved with the degree of 6.

0 3 1 4 2

1 4 2 0 3

2 0 3 1 5

3 1 5 2 0

4 2 0 3 1

If we replace the two integers ‘5’ with ‘4’, we will get a 3-interleaving with the

degree of 5. Observe the vertex (1, 1) and its four neighbors (0, 1), (2, 1), (1, 0) and

(1, 2), and we can see that any two of them are contained in a subgraph of size at most

3 — therefore any 3-interleaving scheme has to label those 5 vertices with 5 distinct

integers. So the 3-interleaving number of this torus actually equals 5. 2

Important applications of t-interleaving on tori include both distributed data stor-

age and error-burst correction. Torus has traditionally been a popular network struc-

ture for parallel machines, such as the CRAY [66], the iWarp [13], the Tera parallel

57

computer [84] and the Mosaic [76]. Its simple and regular structure makes it conve-

nient for multi-processor computing and message transmission. The usage of torus

networks in wearable computing [57] and ambient intelligent systems [50] looks also

promising, where massive interconnected micro processors, memories and sensors are

embedded in fabrics of clothes, carpets, etc. We briefly explain the two applications

of t-interleaving in these torus networks below.

• Distributed data storage. Let G be a torus network, whose vertices are proces-

sors with memory. Say a file F is to be distributively stored in G; and there

is the requirement that every processor should be able to reconstruct F by

accessing the data stored within the distance of r units, where a ‘unit’ is the

distance between any two adjacent processors. We use t-interleaving to solve

this problem. Let Br denote the number of vertices in G that are within the dis-

tance of r units from a given vertex (including the given vertex itself). And let

n0 denote the (2r + 1)-interleaving number of G. Select an erasure-correcting

code of length n which can tolerate at least n − Br erasures, where n ≥ n0.

Encode F with the code to get a codeword; then see the n components of the

codeword as n distinct integers, and assign them to the processors according to

a (2r + 1)-interleaving scheme for G. With a (2r + 1)-interleaving, given any

vertex v, the distance between any two vertices within the distance of r units

from v is at most 2r, so they must be labelled by distinct integers. So every

processor can find Br distinct codeword components within the distance of r

units and decode them to recover the file F , satisfying the requirement. Such a

data storage method balances the memory usage for all processors well. If an

MDS (maximum distance separable) code is used, the total memory of G as well

as the maximum single-processor memory used for storing F can be minimized

over all the possible methods.

• Error-burst correction. For wearable computing systems and ambient intelli-

gent systems, the networks embedded in fabrics are prone to physical damage,

such as tearing or punching. It is necessary to achieve reliability through re-

58

dundancy [57] for such systems. We can see physical damage such as tearing

or punching as error-bursts, and use t-interleaving to reliably store files. Here,

as in traditional interleaving for error-burst correction, vertices labelled by the

same integer store components of the same codeword (which corresponds to

a file). Different integers represent different codewords. With a t-interleaving

scheme, if a codeword can correct e errors, then any e error-bursts of size up to

t can be corrected.

Besides the above applications, t-interleaving on tori is also closely related to a

research topic in coding theory called Lee metric codes [4], [3], [7], [8], [10],

[12], [26], [27], [28], [29], [32], [48], [52], [71]. In a t-interleaved n-dimensional

torus, every set of vertices labelled by the same integer is a Lee metric code of length

n whose minimum distance is t; and the set of Lee metric codes corresponding to

different integers partition the whole code space. Furthermore, if a torus admits a

perfect Lee metric code of covering radius r, then the torus’ (2r + 1)-interleaving

number is no greater than that of any reasonably large torus. (Here a reasonably

large torus is defined to be a torus whose size in each dimension is at least 2r + 1.)

A fundamental question on the problem of t-interleaving on tori is: for each integer

t, how does the t-interleaving number of an l1× l2 torus depend on the values of l1 and

l2, and how to construct optimal t-interleaving? To the best of our knowledge, the

only related results were covered in [11]. [11] presented, for two-dimensional linear

array, one optimal t-interleaving construction for odd t and two optimal t-interleaving

constructions for even t, all based on lattice interleavers. Those three constructions

all produce interleaving of periodic patterns; and if they are applied to tori, they can,

respectively, optimally t-interleave an l1 × l2 torus if (1) t is odd, t2+1
2
|l1 and t2+1

2
|l2,

or if (2) t is even, t2

2
|l1 and t2

2
|l2, or if (3) t is even, t|l1 and t|l2. However, tori whose

sizes satisfy one of those three conditions are very special. And as we will show later,

the constructions in [11] are not the only optimal ones.

In this chapter, we address the above fundamental question, and provide a general

picture of the answers.

59

Our main results include:

• Let |St| = t2+1
2

if t is odd, and let |St| = t2

2
if t is even. |St| is a lower bound

for the t-interleaving number of any reasonably large l1× l2 torus (which means

l1 ≥ t and l2 ≥ t). For a reasonably large torus, we say that it can be per-

fectly t-interleaved if its t-interleaving number equals |St|. We prove that a

reasonably large l1 × l2 torus can be perfectly t-interleaved if and only if the

following condition is satisfied: |St| divides both l1 and l2 if t is odd, and t

divides both l1 and l2 if t is even. We reveal the very close relationship between

perfect t-interleaving and perfect sphere packing, and present the complete set

of perfect sphere packing constructions. Based on that, we get a set of efficient

perfect t-interleaving constructions, which includes the lattice interleaver (the

interleaving method used in [11]) as a special case.

• Define a post-threshold size (for a given parameter t) to be a pair (θ1, θ2) such

that whenever l1 ≥ θ1 and l2 ≥ θ2, the t-interleaving number of an l1 × l2

torus is either |St|+ 1 or |St|. We prove that such post-threshold sizes exist for

every t. The set of post-threshold sizes we found are shown in Theorem 3.10

and Theorem 3.11. We present optimal t-interleaving constructions for tori

whose sizes exceed the found post-threshold sizes. (And we comment that those

constructions, as a general interleaving method, can also be used to optimally

t-interleave tori of many other sizes.)

• We study upper bounds for t-interleaving numbers. Every l1 × l2 torus’ t-

interleaving number is |St| + O(t2). And that upper bound is tight, even if

l1 → +∞ or l2 → +∞. When both l1 and l2 are of the order Ω(t2), the

t-interleaving number of an l1 × l2 torus is |St|+ O(t).

The results can be illustrated qualitatively as Fig. 3.1. (The figure is not quan-

titative. The coordinates of points, such as the shape of the curve, are not exact.)

Fig. 3.1 shows for any given ‘t’, how the l1×l2 tori can be divided into different classes

based on their t-interleaving numbers.

60

l1

l2

12

2

1

t2

t2

Region II

Region III

Region I

Boundary curve of Region I

Figure 3.1: A qualitative illustration of the t-interleaving numbers.

The uniform lattice of dots in Fig. 3.1 are the sizes of all the reasonably large

tori that can be perfectly t-interleaved. The region labelled as ‘Region I ’ consists of

all the post-threshold sizes. The boundary curve of Region I is non-increasing, and

symmetric with respect to the line l2 = l1. (So if the point (θ1, θ2) is on the boundary

curve, then so is (θ2, θ1).) We note that the area of Region I is (100 − δ)% of the

total area of the figure with δ approaching 0; and we know the exact t-interleaving

number of every torus in this region — |St| if it is one of the lattice dots, and |St|+ 1

otherwise. The most important contribution of this paper is to prove the existence of

Region I, and present the corresponding optimal interleaving constructions. Region

II is the region where l1 = Ω(t2) and l2 = Ω(t2), in which the tori’s t-interleaving

numbers are upper-bounded by |St| + O(t). Region III includes every torus, where

the t-interleaving number is upper-bounded by |St| + O(t2). That upper bound for

Region III is tight, even if l1 or l2 approaches +∞. (So increasing a torus’ size in

only one dimension does not help reduce the t-interleaving number very effectively in

general.)

The engineering importance of Region I can be shown, as an example, with the

61

t-interleaving’s application in distributed data storage. It means for a large torus

network (which falls in Region I), we can simply split the file into |St| segments, then

add one parity-check segment which is the exclusive-OR of the |St| segments. The

data-storage scheme using such a simple erasure-correcting code can be implemented

very efficiently.

The rest of the chapter is organized as follows. In Section 3.2, we show the neces-

sary and sufficient conditions for tori that can be perfectly t-interleaved, and present

perfect t-interleaving constructions based on perfect sphere packing. In Section 3.3,

we present a t-interleaving method, with which we can t-interleave large tori with a

degree within one of the optimal. In Section 3.4, we improve upon the t-interleaving

method shown in Section 3.3, and present optimal t-interleaving constructions for tori

whose sizes are large in both dimensions. As a parallel result, the existence of Re-

gion I is proved. In Section 3.5, we prove some general bounds for the t-interleaving

numbers. In Section 3.6, we provide some brief discussions.

3.2 Perfect t-Interleaving

In this section, we formally define the concept of perfect t-interleaving, and reveal its

close relationship with perfect sphere packing. We show the necessary and sufficient

conditions for tori that can be perfectly t-interleaved. After presenting the complete

set of perfect sphere packing constructions, we present efficient perfect t-interleaving

constructions based on them. The interleaving constructions cover previously known

t-interleaving methods as special cases; and they prove that lattice interleavers are

not the only method for perfect t-interleaving.

3.2.1 Perfect t-Interleaving and Sphere Packing

Definition 3.4 The Lee distance between two vertices in a torus is the number

of edges in the shortest path connecting those two vertices. For two vertices in

an l1 × l2 torus G, (a1, b1) and (a2, b2), the Lee distance between them is denoted

by d((a1, b1), (a2, b2)). (Therefore, d((a1, b1), (a2, b2)) = min{(a1 − a2) mod l1, (a2 −

62

S 1 S 2
S 3 S 4

S 5
S 6

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���
�����
�����
�����

�����
�����
�����

	�	
	�	
	�	

�

�

�
 S3

(0,2)

S4
(0,2)

���
���
���
���

�
�
���
������
���
���
��������
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

(a) (b)

Figure 3.2: Examples of the sphere St.

a1) mod l1}+ min{(b1 − b2) mod l2, (b2 − b1) mod l2}.) Occasionally, in order to em-

phasize that the two vertices are in G, we also denote it by dG((a1, b1), (a2, b2)). 2

Clearly, an interleaving on a torus is a t-interleaving if and only if the Lee distance

between any two vertices labelled by the same integer is at least t.

Definition 3.5 Let G be an l1 × l2 torus where l1 ≥ t and l2 ≥ t, and let (a, b) be

a vertex in G. When t is odd, the sphere centered at (a, b), S
(a,b)
t , is defined to be

the set of vertices whose Lee distance to (a, b) is less than or equal to t−1
2

. When t is

even, the sphere left-centered at (a, b), S
(a,b)
t , is defined to be the set of vertices whose

Lee distance to either (a, b) or (a, (b + 1) mod l2) is less than or equal to t
2
− 1. (a, b)

is called the center of S
(a,b)
t if t is odd; and (a, b) is called the left-center of S

(a,b)
t if

t is even. If we do not care where the sphere is centered or left-centered, then the

sphere is simply denoted by St. The number of vertices in the sphere is denoted by

|St|. 2

Example 3.2 Fig. 3.2 (a) shows the spheres S1 to S6. Fig. 3.2 (b) shows two spheres,

S3(0, 2) and S4(0, 2), in a 3× 5 torus. 2

The sphere St was originally defined in [11], where it was also shown that |St| =

t2+1
2

if t is odd, and |St| = t2

2
if t is even. For any l1 × l2 torus where l1 ≥ t and

l2 ≥ t, its t-interleaving number is at least |St|. That is because such a torus contains

a complete sphere St, and the Lee distance between any two vertices in St is less than

63

t — so any t-interleaving needs to use |St| distinct integers to label the vertices in St.

This lower bound for t-interleaving numbers, |St|, is called the sphere packing lower

bound. The relationship between this bound and sphere packing will become clearer

soon.

Definition 3.6 Let G be an l1×l2 torus, where l1 ≥ t and l2 ≥ t. If the t-interleaving

number of G equals the sphere packing lower bound |St|, then we say that G can be

perfectly t-interleaved. A t-interleaving on G that uses exactly |St| distinct integers

will be called a perfect t-interleaving. 2

Definition 3.7 A torus G is said to have a perfect packing of spheres St if spheres

St are packed in G such that every vertex of G belongs to one sphere, and no two

spheres share any common vertex. 2

Lemma 3.1 (1) Let t be an odd positive integer. An interleaving on an l1 × l2 torus

(l1 ≥ t, l2 ≥ t) is a t-interleaving if and only if for any two vertices (a1, b1) and

(a2, b2) that are labelled by the same integer, the two spheres centered at them, S
(a1,b1)
t

and S
(a2,b2)
t , do not share any common vertex.

(2) Let t be an even positive integer. An interleaving on an l1× l2 torus

(l1 ≥ t − 1, l2 ≥ t) is a t-interleaving if and only if for any two vertices (a1, b1)

and (a2, b2) that are labelled by the same integer, the two spheres with them as left-

centers, S
(a1,b1)
t and S

(a2,b2)
t , do not share any common vertex and what’s more, b1 6= b2

or (a1 − a2) 6= ±(t− 1) mod l1.

Proof: (1) Let t be odd. Both S
(a1,b1)
t and S

(a2,b2)
t are classic spheres with radius

t−1
2

. If the interleaving is a t-interleaving, then the Lee distance between (a1, b1) and

(a2, b2) is at least t = 2 · t−1
2

+1, so S
(a1,b1)
t and S

(a2,b2)
t must have no intersection. The

converse is clearly also true.

(2) Let t be even. We consider two cases — b1 = b2 and b1 6= b2.

First consider the case ‘b1 = b2’. In this case, S
(a1,b1)
t and S

(a2,b2)
t have no intersec-

tion if and only if d((a1, b1), (a2, b2)) ≥ 2 ·(t
2
−1)+1 = t−1. And d((a1, b1), (a2, b2)) =

64

t− 1 if and only if (a1 − a2) ≡ ±(t− 1) mod l1. So the Lee distance between (a1, b1)

and (a2, b2) is at least t if and only if S
(a1,b1)
t and S

(a2,b2)
t have no intersection and

(a1 − a2) 6= ±(t− 1) mod l1, which is the conclusion we want.

Now consider the case ‘b1 6= b2’. In this case, the Lee distance between (a1, b1)

and (a2, b2) is at least t ⇐⇒ both the Lee distance between (a1, (b1 + 1) mod l2) and

(a2, b2) and the Lee distance between (a2, (b2+1) mod l2) and (a1, b1) are at least t−1

⇐⇒ S
(a1,(b1+1) mod l2)
t−1 does not intersect S

(a2,b2)
t−1 and S

(a2,(b2+1) mod l2)
t−1 does not intersect

S
(a1,b1)
t−1 ⇐⇒ S

(a1,b1)
t and S

(a2,b2)
t have no intersection. (Note that S

(a1,b1)
t is the union of

S
(a1,b1)
t−1 and S

(a1,(b1+1) mod l2)
t−1 , and S

(a2,b2)
t is the union of S

(a2,b2)
t−1 and S

(a2,(b2+1) mod l2)
t−1 .)

So we get the conclusion we want.

2

Theorem 3.1 When t 6= 2, an interleaving on an l1 × l2 torus (l1 ≥ t, l2 ≥ t) is

a perfect t-interleaving if and only if for any integer, the spheres St centered or left-

centered at the vertices labelled by that integer form a perfect sphere packing in the

torus.

When t = 2, if an interleaving on an l1 × l2 torus (l1 ≥ t, l2 ≥ t) is a perfect

t-interleaving, then for any integer, the spheres St left-centered at the vertices labelled

by that integer form a perfect sphere packing in the torus.

Proof: We used I to denote the set of distinct integers used by the interleaving on

the torus. For any integer i ∈ I, let Ni denote the number of vertices labelled by i.

Firstly, we prove one direction. Assume the interleaving on the l1 × l2 torus

(l1 ≥ t, l2 ≥ t) is a perfect t-interleaving. Then |I| = |St|. By Lemma 3.1, for any

i ∈ I, the spheres St centered or left-centered at vertices labelled by i do not overlap.

By counting the number of vertices in the torus and in each sphere St, we get that

Ni ≤ l1l2
|St| for any i ∈ I. Since

∑
i∈I Ni = l1l2, we get that Ni = l1l2

|St| for any i ∈ I. So

for any integer i ∈ I, the spheres St centered or left-centered at the vertices labelled

by i form a perfect sphere packing in the torus.

65

Next, we prove the other direction. Assume t 6= 2, and for any integer, the spheres

St centered or left-centered at the vertices labelled by that integer form a perfect

sphere packing in the torus. Then Ni = l1l2
|St| for any i ∈ I. Since

∑
i∈I Ni = l1l2,

we find that |I|, the number of distinct integers used by the interleaving, equals |St|.
What is left is to prove that the interleaving is a t-interleaving. From Lemma 3.1,

we can see that the interleaving would not be a t-interleaving only if the following

situation becomes true: t is even, and there exist two vertices — (a1, b1) and (a2, b2)

— labelled by the same integer such that b1 = b2 and (a1 − a2) ≡ δ(t − 1) mod l1,

where δ = 1 or −1. We will show such a situation cannot happen.

Suppose that situation happens. WLOG, we assume (a1 − a2) ≡ (t − 1) mod l1.

When t is even and t 6= 2, it is straightforward to verify that the following four vertices

— (a1−(t
2
−1) mod l1, b1), (a2+(t

2
−1) mod l1, b1), (a1−(t

2
−2) mod l1, b1−1 mod l2),

(a2 + (t
2
− 2) mod l1, b1− 1 mod l2) — are contained in either S

(a1,b1)
t or S

(a2,b2)
t , while

the following two vertices — (a1 − (t
2
− 1) mod l1, b1 − 1 mod l2) and (a2 + (t

2
−

1) mod l1, b1 − 1 mod l2) — are neither contained in S
(a1,b1)
t nor in S

(a2,b2)
t . The two

vertices, (a1− (t
2
− 1) mod l1, b1− 1 mod l2) and (a2 + (t

2
− 1) mod l1, b1− 1 mod l2),

cannot both be contained in some spheres St that are left-centered at vertices labelled

by the same integer which labels (a1, b1) and (a2, b2), because they are vertically

adjacent, and the vertices directly above them, below them or to the right of them

are all contained in two spheres that do not contain them. (Observe the shape of a

sphere.) That contradicts that fact that all the spheres St left-centered at the vertices

labelled by the integer which labels (a1, b1) form a perfect sphere packing in the torus.

So the assumed situation cannot happen. By summarizing the above results, we see

that the interleaving must be a perfect t-interleaving.

2

Theorem 3.2 When t 6= 2, an l1 × l2 torus (l1 ≥ t, l2 ≥ t) can be perfectly t-

interleaved if and only if the spheres St can be perfectly packed in it.

When t = 2, if an l1 × l2 torus (l1 ≥ t, l2 ≥ t) can be perfectly t-interleaved, then

the spheres St can be perfectly packed in it.

66

Proof: Let G be an l1 × l2 torus. For any t, Theorem 3.1 has shown that if G can

be perfectly t-interleaved, then the spheres St can be perfectly packed in it. Now

we prove the other direction. Assume t 6= 2, and the spheres St can be perfectly

packed in G. Let (x1, y1), (x2, y2), · · · , (xn, yn) be a set of vertices such that the

spheres St centered or left-centered at them form a perfect packing in G. The proof

of Theorem 3.1 has essentially showed that for any i and j (i 6= j), the Lee distance

between (xi, yi) and (xj, yj) is at least t. Now we can interleave G is this way: label

each sphere St with |St| distinct integers such that every integer is used exactly once

in every sphere, and make all the spheres to be labelled in the same way (namely, all

the spheres have the same ‘interleaving pattern’). Clearly, for any two integers a and

b, the two sets of vertices respectively labelled by a and b are cosets of each other in

the torus. Therefore the Lee distance between any two vertices labelled by the same

integer is at least t. So G has a perfect t-interleaving.

2

3.2.2 Perfect t-Interleaving and Its Construction

The following lemma is an important property of perfect sphere packing. It will help

us derive the necessary and sufficient conditions for perfect t-interleaving.

Lemma 3.2 Let t be an even integer and t ≥ 4. When spheres St are perfectly packed

in an l1× l2 torus, there exists an integer a ∈ {+1,−1}, such that if there is a sphere

left-centered at the vertex (x, y), then there are two spheres respectively left-centered

at ((x− t
2
) mod l1, (y − a · t

2
) mod l2) and ((x + t

2
) mod l1, (y + a · t

2
) mod l2).

Proof: Assume spheres St are perfectly packed in an l1 × l2 torus, where t ≥ 4 and

t is even. First, we need to show that l1 ≥ t. When t is even, a sphere St spans

t − 1 rows. So l1 ≥ t − 1. Now we show why l1 6= t − 1. Fig. 3.3 (a) shows two

examples — the first example shows a sphere S4 in a torus of 3 rows, and the second

example shows a sphere S6 in a torus of 5 rows. (The vertices in the two spheres are

indicated by relatively large black dots in the figure.) Considering the shapes of the

67

spheres, we can easily see that the two adjacent vertices in each dashed circle cannot

be both contained in non-overlapping spheres. Such a phenomenon always happens

when l1 = t−1. Since here spheres St are perfectly packed in the torus, we get l1 ≥ t.

Clearly, one of the following two cases must be true:

• Case 1: whenever there is a sphere left-centered at a vertex (x, y), there are

four spheres respectively left-centered at the four vertices ((x− t
2
) mod l1, (y −

t
2
) mod l2), ((x− t

2
) mod l1, (y+ t

2
) mod l2), ((x+ t

2
) mod l1, (y− t

2
) mod l2) and

((x + t
2
) mod l1, (y + t

2
) mod l2).

• Case 2: there exists a sphere left-centered at a vertex (x0, y0), such that there

is no sphere left-centered at at least one of the following four vertices — ((x0−
t
2
) mod l1, (y0 − t

2
) mod l2), ((x0 − t

2
) mod l1, (y0 + t

2
) mod l2), ((x0 + t

2
) mod

l1, (y0 − t
2
) mod l2) and ((x0 + t

2
) mod l1, (y0 + t

2
) mod l2).

If Case 1 is true, then the conclusion of this lemma obviously holds. From now

on, let us assume that Case 2 is true. WLOG (without loss of generality), we assume

that there is one sphere left-centered at (x0, y0), but there is no sphere left-centered

at ((x0 − t
2
) mod l1, (y0 + t

2
) mod l2). (All the other possible instances can be proved

with the same method.)

Since l1 ≥ t, the vertex ((x − t
2
) mod l1, (y + 1) mod l2) — which we shall call

‘vertex A’ — is not contained in the sphere left-centered at (x0, y0). (An example is

shown in Fig. 3.3 (b), where the sphere in consideration is an S8, whose left-center

(x0, y0) is labelled by ‘C’. The vertex A is labelled by ‘A’.) The vertex A is contained

in one of the perfectly packed spheres, which we shall call ‘sphere B’. The relatively

position of vertex A in sphere B can only be one of the following two possibilities:

• Possibility 1: the vertex A is the right-most vertex in the bottom row of the

sphere B. (See Fig. 3.4 (a).)

• Possibility 2: the vertex A is in the down-left diagonal of the border of the

sphere B, but it is not the left-most vertex of the sphere B. (See Fig. 3.4 (b),

68

(a) (b)

A

C

Figure 3.3: A sphere in a torus.

(c) and (d).)

Possibility 1, however, can be easily found to be impossible, since otherwise the

neighboring vertex to the right of vertex A and the vertex below it cannot both be

contained in non-overlapping spheres. (See the two nodes in the dashed circle in

Fig. 3.4 (a).) So only possibility 2 is true. In the following proof we use the example

of t = 8 for illustration, and assume that the relative position of the sphere B is as

shown in Fig. 3.4 (b). We comment that when t takes other values or when the sphere

B takes other relative positions, the following argument still holds, which is easy to

see.

Let the sphere left-centered at (x0, y0) be the sphere denoted by ‘L1’ in Fig. 3.5,

and let sphere B be the sphere now denoted by ‘R1’ in Fig. 3.5. We immediately

see that the vertex denoted by ‘E’ must be the right-most vertex of a sphere, so

the sphere containing the vertex ‘E’ must be the sphere denoted by ‘L2’. Then we

immediately see that the vertex denoted by ‘F ’ must be the right-most vertex in the

bottom row of a sphere, so the sphere containing the vertex ‘F ’ must be the sphere

denoted by ‘R2’. With the same method we can fix the positions of a series of spheres

L1, L2, L3, L4, · · · and a series of spheres R1, R2, R3, R4, · · · . Since the torus is

finite, we will get a series of spheres L1, L2, L3, L4, · · · , Ln such that the relative

position of Ln to L1 is the same as the relative position of L1 to L2 (see Fig. 3.5

for an illustration) — so such a series of spheres form a ‘cycle’ in the torus. Since

69

A

C

(a)

A

C

(b)

C

A

C

(c)

A

(d)

Figure 3.4: Relative positions of spheres and vertices.

the spheres are perfectly packed in the torus, no two spheres in this ‘cycle’ overlap.

Similarly, the spheres R1, R2, · · · , Rn also form a ‘cycle’ in the torus. (Note that we

do not make any assumption about whether these two ‘cycles’ overlap or not.)

If those two ‘cycles’ contain all the spheres in the torus, then we are already very

close to the end of this proof. If those two ‘cycles’ do not contain all the spheres in

the torus, then there must be some spheres outside the two ‘cycles’ that are directly

attached to the down-left side of the ‘cycle’ formed by L1, L2, · · · , Ln. (Consider the

very regular way the ‘cycle’ is formed, and the resulting shape of the ‘cycle’ which is

invariant to horizontal and vertical shifts.) Let D1 be a sphere directly attached to

the ‘cycle’ formed by L1, L2, · · · , Ln, as shown in Fig. 3.5. (Note that we do not care

about the exact position of D1, as long as it is directly attached to the down-left side

of the ‘cycle’.) Then the node ‘I’ immediately determines that the sphere containing

it must be ‘D2’; similarly the node ‘J ’ determines the position of the sphere ‘D3’; and

so on · · · · · · So we will get a series of spheres D1, D2, D3, · · · , Dn which will again

70

R 1

L 1
D 1

A

L 2

R 2

L 3

R 3

L 4

R 4

R n

C

L n

D 2

D 3

D n

E

FG

H

I

J

Figure 3.5: The packing of spheres in a torus.

form a ‘cycle’. (It is easy to see that this ‘cycle’ does not overlap the previous two

‘cycles’.) With the same method as above, we will find more and more ‘cycles’, until

they together contain all the spheres in the torus.

We can easily see that in each of the ‘cycles’ here, if there is a sphere left-centered

at a vertex (x, y), then there are two spheres respectively left-centered at ((x− t
2
) mod

l1, (y − t
2
) mod l2) and ((x + t

2
) mod l1, (y + t

2
) mod l2). When other instances of

Case 2 are true (see the definition of ‘Case 2’ in previous text), it can be shown

in the same way that whenever there is a sphere left-centered at a vertex (x, y),

there are two spheres respectively left-centered at ((x − t
2
) mod l1, (y + t

2
) mod l2)

and ((x + t
2
) mod l1, (y − t

2
) mod l2). By summarizing the above conclusions, we see

that this lemma is proved.

2

Definition 3.8 Let t be an even positive integer, let a be either +1 or −1, and let

G be an l1 × l2 torus. Let (x, y) be an arbitrary vertex in G. We define “the cycle

71

containing (x, y) (corresponding to the parameter a)” to be the set of spheres St that

are respectively left-centered at the vertices (x, y), ((x + t
2
) mod l1, (y + a · t

2
) mod l2),

((x + 2 · t
2
) mod l1, (y + 2a · t

2
) mod l2), ((x + 3 · t

2
) mod l1, (y + 3a · t

2
) mod l2), · · · · · ·

2

The proof of the following lemma is omitted due to its simplicity.

Lemma 3.3 Let t be an even positive integer, let a be either +1 or −1, and let G be

an l1× l2 torus. For any vertex (x, y) in G, the cycle containing it (corresponding to

the parameter a) consists of
lcm(l1,l2, t

2
)

t
2

distinct spheres St.

The following theorem shows the necessary and sufficient condition for tori that

can be perfectly t-interleaved.

Theorem 3.3 Let G be an l1 × l2 torus where l1 ≥ t and l2 ≥ t. If t is odd, then G

can be perfectly t-interleaved if and only if both l1 and l2 are multiples of t2+1
2

. If t is

even, then G can be perfectly t-interleaved if and only if both l1 and l2 are multiples

of t.

Proof: We consider the following three cases one by one:

• Case 1: t = 2.

• Case 2: t is even but t 6= 2.

• Case 3: t is odd.

Case 1: t = 2. In this case, we note that 2-interleaving is equivalent to vertex

coloring, so the 2-interleaving number of G equals G’s chromatic number χ(G). Let

R1 and R2 be two rings which respectively have l1 and l2 vertices. Then G is the

Cartesian product of those two rings, namely, G = R1⊗R2. It is well known [86] that

for any two graphs H1 and H2, χ(H1 ⊗H2) = max{χ(H1), χ(H2)}. Since l1 ≥ t = 2

(respectively, l2 ≥ t = 2), we get that χ(R1) ≥ 2 (respectively, χ(R2) ≥ 2); and

χ(R1) = 2 (respectively, χ(R2) = 2) if and only if l1 (respectively, l2) is a multiple of

72

2. So χ(G) = 2 if and only if both l1 and l2 are multiples of 2. Since |S2| = 2, we get

the conclusion in this lemma.

Case 2: t is even but t 6= 2. Firstly, we prove one direction. Assume G can

be perfectly t-interleaved. Let i be an integer used by a perfect t-interleaving on

G. Then by Theorem 3.1, the spheres St left-centered at the vertices labelled by

i form a perfect sphere packing in G. By Lemma 3.2, there exists an integer a ∈
{+1,−1} such that for any cycle containing a vertex labelled by i (corresponding to

the parameter a), the spheres St in the cycle are all left-centered at vertices labelled

by i — and therefore they do not overlap. By Lemma 3.3, the cycle containing a

vertex labelled by i consists of
lcm(l1,l2, t

2
)

t
2

distinct spheres St. So such a cycle consists

of
lcm(l1,l2, t

2
)

t
2

· |St| =
lcm(l1,l2, t

2
)

t
2

· t2

2
= lcm(l1, l2,

t
2
) · t vertices. Let (x1, y1) and (x2, y2)

be any two vertices labelled by i. We can see that for the cycle containing (x1, y1)

and the cycle containing (x2, y2), they either do not overlap, or they are the same

cycle. Therefore, the vertices in G can be partitioned into several such cycles — so

l1 · l2 is a multiple of lcm(l1, l2,
t
2
) · t. Since lcm(l1, l2,

t
2
) is a multiple of l1, l2 must

be a multiple of t. Similarly, l1 must be a multiple of t, too. So if G can be perfectly

t-interleaved, then both l1 and l2 are multiples of t.

Now we prove the other direction. Assume both l1 and l2 are multiples of t. Let

W be such a set of vertices in G: W = {(x, y)|x ≡ 0 mod t
2
, y ≡ 0 mod t

2
, x + y ≡

0 mod t}. It is easy to verify that the Lee distance between any two vertices in W is

at least t. Now for i = 0, 1, · · · , t
2
− 1 and for j = 0, 1, · · · , t − 1, define W i,j to be

W i,j = {((x + i) mod l1, (y + j) mod l2)|(x, y) ∈ W}. Clearly those t
2
· t = |St| sets

— W 0,0, W 0,1, · · · , W
t
2
−1,t−1 — is a partition of the vertices in G. For each W i,j,

we label the vertices in it with one distinct integer. Clearly such an interleaving is a

perfect t-interleaving. So if both l1 and l2 are multiples of t, then G can be perfectly

t-interleaved.

Case 3: t is odd. Firstly, we prove one direction. Assume both l1 and l2 are

multiples of t2+1
2

. Golomb and Welch have shown in [27] that a t2+1
2
× t2+1

2
torus can be

perfectly packed by the spheres St for odd t. Therefore, G can also be perfectly packed

73

by St because a torus has a toroidal topology and G can be ‘folded’ into a t2+1
2
× t2+1

2

torus. Let C be a set of vertices in G such that the spheres St centered at the vertices

in C form a perfect sphere packing. Then the Lee distance between any two vertices

in C is at least t. Let (x0, y0) be an arbitrary vertex in C. Define M to be such a set of

integer-pairs: M = {[i, j]|0 ≤ i ≤ l1−1, 0 ≤ j ≤ l2−1, ((x+ i) mod l1, (y+ j) mod l2)

is a vertex in the sphere S
(x0,y0)
t . }. Clearly |M | = |St|. For every [i, j] ∈ M , define C i,j

to be such a set of vertices in G: Ci,j = {((x + i) mod l1, (y + j) mod l2)|(x, y) ∈ C}.
We see that the sets C i,j, for all the elements [i, j] ∈ M , partition the vertices in G;

and for every [i, j] ∈ M , the Lee distance between any two vertices in Ci,j is at least

t. For every [i, j] ∈ M , we label the vertices in Ci,j with a distinct integer. Such an

interleaving is clearly a perfect t-interleaving. So if both l1 and l2 are multiples of

t2+1
2

, then G can be perfectly t-interleaved.

Now we prove the other direction. Assume G can be perfectly t-interleaved. Let i

be an integer used by a perfect t-interleaving on G. Then by Theorem 3.1, the spheres

St centered at the vertices labelled by i form a perfect sphere packing in G. Golomb

and Welch presented in [27] a way to perfectly pack spheres St in a torus when t is odd,

which can be described as “either of the following two conditions is true: (1) whenever

there is a sphere St centered at a vertex (x, y), there are two spheres respectively

centered at ((x+ t+1
2

) mod l1, (y+ t−1
2

) mod l2) and ((x− t−1
2

) mod l1, (y+ t+1
2

) mod l2);

(2) whenever there is a sphere St centered at a vertex (x, y), there are two spheres

respectively centered at ((x+ t−1
2

) mod l1, (y+ t+1
2

) mod l2) and ((x− t+1
2

) mod l1, (y+

t−1
2

) mod l2)”. It is well known that that way of packing is in fact the only way to

perfectly pack St for odd t, whose feasibility requires both l1 and l2 to be multiples of

t2+1
2

. So if G can be perfectly t-interleaved, then both l1 and l2 are multiples of t2+1
2

.

2

Below we present the complete set of perfect sphere packing constructions. But

first let’s explain a few concepts. Let G be an l1 × l2 torus that is perfectly packed

by spheres St — there are l1l2
|St| such spheres. Define e as e = l1l2

|St| , and let’s say

those spheres are centered (or left-centered) at the vertices (x1, y1), (x2, y2), · · · ,

74

(xe, ye). By vertically (respectively, horizontally) shifting the spheres in G, we mean

to select some integer s, and get a new set of perfectly packed spheres that are centered

(or left-centered) at (x1 + s mod l1, y1), (x2 + s mod l1, y2), · · · , (xe + s mod l1, ye)

(respectively, at (x1, y1 + s mod l2), (x2, y2 + s mod l2), · · · , (xe, ye + s mod l2)). By

vertically reversing the spheres in G, we mean to get a new set of perfectly packed

spheres that are centered (or left-centered) at (−x1 mod l1, y1), (−x2 mod l1, y2), · · · ,
(−xe mod l1, ye). After such a ‘shift’ or ‘reverse’ operation, technically speaking, the

way the spheres are perfectly packed in G are changed — however, the ‘pattern of

the sphere packing’ essentially remains the same.

Construction 2.1: The complete set of perfect sphere packing constructions

Input: A positive integer t. An l1× l2 torus G, where (1) both l1 and l2 are multiples

of t if t is even and t 6= 2, (2) l2 is even if t = 2, and (3) both l1 and l2 are multiples

of t2+1
2

if t is odd.

Output: A perfect packing of the spheres St in G.

Construction:

1. If t is even and t 6= 2, then do the following:

• Let A1, A2, · · · , A
gcd(

l1
t

,
l2
t

)−1
be gcd(l1

t
, l2

t
) − 1 integers, where Ai can be any

integer in the set {0, 1, · · · , t
2
− 1} for i = 1, 2, · · · , gcd(l1

t
, l2

t
)− 1.

• Find the gcd(l1
t
, l2

t
) cycles in G (corresponding to the parameter 1) respectively

containing the vertex (0, 0), (
∑1

i=1 Ai,
∑1

i=1(t + Ai)), (
∑2

i=1 Ai,
∑2

i=1(t + Ai)),

· · · , (
∑gcd(

l1
t

,
l2
t

)−1

i=1 Ai,
∑gcd(

l1
t

,
l2
t

)−1

i=1 (t + Ai)). The spheres St in those gcd(l1
t
, l2

t
)

cycles form a perfect sphere packing in the torus.

2. If t = 2, the do the following:

• The l1× l2 torus G has l1 rows, each of which can be seen as a ring of l2 vertices.

When t = 2, the sphere St simply consists of two horizontally adjacent vertices.

Split each row of G into l2
2

spheres in any way. The resulting l1l2
2

spheres form

a perfect sphere packing in the torus.

75

3. If t is odd, then do the following:

• Find such a set of l1l2
|St| spheres St: each of the spheres is centered at a vertex

(i(m + 1) + j · (−m) mod l1, i ·m + j(m + 1) mod l2) for some integers i and j.

Those spheres form a perfect sphere packing in the torus.

4. Horizontally shift, vertically shift, and/or vertically reverse the spheres in G in

any way.

2

Theorem 3.4 Construction 2.1 is the complete set of perfect sphere packing con-

structions.

Proof: We consider the following three cases. For each case, we need to prove two

things: firstly, the ‘Input’ part of Construction 2.1 sets the necessary and sufficient

condition for a torus to have perfect sphere packing; secondly, the ‘Construction’

part of Construction 2.1 generates perfect sphere packing correctly, and every perfect

sphere packing that exists is a possible output of it.

Case 1: t is even and t 6= 2. In this case, since a sphere St occupies t − 1 rows

and t columns, for the l1 × l2 torus G to have perfect sphere packing, it must be

that l1 ≥ t − 1 and l2 ≥ t. We can show that l1 6= t − 1 in the following way —

assume l1 = t − 1 and spheres St are perfectly packed in G; say a sphere St is left-

centered at (x, y) in G; then the two vertices, (x− (t
2
− 1) mod l1, y − 1 mod l2) and

(x+(t
2
− 1) mod l1, y− 1 mod l2), cannot both be contained in spheres (see the proof

of Theorem 3.1 for a very similar argument), and that contradicts the statement that

spheres are perfectly packed in G. Therefore, if G can be perfectly packed by spheres,

l1 ≥ t and l2 ≥ t. Then, from Theorem 3.2 and Theorem 3.3, we see that G can be

perfectly packed by spheres if and only if both l1 and l2 are multiples of t. So the

‘Input’ part of Construction 2.1 correctly sets of the necessary and sufficient condition

for a torus to have perfect sphere packing.

Lemma 3.2 and its proof have shown that when spheres are perfectly packed in

a torus, those spheres can be partitioned into cycles. By observing the shape of

76

the border of a cycle, we see that two adjacent cycles can freely ‘slide’ along each

other’s border — and there are t
2

possible relative positions between two adjacent

cycles. In Construction 2.1, the t
2

possible relative positions are determined by Ai,

a variable that can take t
2

possible values. Now it is easy to see that Step 1 of

Construction 2.1 provides a perfect sphere packing (which takes one of many possible

forms, depending on the value of the ‘Ai’s), and its Step 4 changes the positions of

the spheres to furthermore cover all the possible cases of perfect sphere packing.

(2) Case 2: t = 2. This case is simple, so we skip its analysis.

(3) Case 3: t is odd. In this case, Construction 2.1 re-produces the sphere-

packing method presented in [27], which is commonly known as the unique way to

pack spheres for odd t (see the final paragraph of the proof of Theorem 3.3 for more

detailed introduction).

2

Now we present perfect t-interleaving constructions that are based on perfect

sphere packing.

Construction 2.2: Perfect t-interleaving constructions

Input: A positive integer t. An l1× l2 torus G, where both l1 and l2 are multiples of

t if t is even, and both l1 and l2 are multiples of t2+1
2

if t is odd.

Output: A perfect t-interleaving on G.

Construction:

(1) If t 6= 2, then do the following:

• Use Construction 2.1 to get a perfect sphere packing in G. Label each of those

spheres with |St| distinct integers, in such a way that all the spheres have the

same interleaving pattern, and every integer is used exactly once in each sphere.

(2) If t = 2, then do the following:

• For every vertex (i, j) of G (0 ≤ i ≤ l1− 1, 0 ≤ j ≤ l2− 1), if i+ j is even, label

it with the integer ‘0’, otherwise label it with the integer ‘1’.

2

77

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8 1 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

3

21 2

6

4 5 6

7 8

3 4 5 6

7 8

1 2

4 5

7 8

3

3

1

3 4

7

4 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5 61 2

1 2

3 4 5 61 2

3 4 5 6

7 8

1 2

3 4 5 6

7 8

1 2

3 4 5

7 8

7 87 8

2

5 6

8

6

1 2

4 5 6

7 8

1

3 5

������������������������������������
������������������������������������

������������������������������������
������������������������������������

������������������������������������
������������������������������������

������������������������������������
������������������������������������

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������������������������������������
������������������������������������

����������������
������������������������������������

������������������������������������
������������������������������������

���������������������������
���������������������������

������������������������ ��������������
����������

���������������������������
���������������������������

������������

����������������������������
���������������������������� ������������������������������������

������������������������������������

������������������������������������
 � � � � � � � � � � � � � � � �

!�!�!�!�!�!!�!�!�!�!�!!�!�!�!�!�!!�!�!�!�!�!
"�"�"�"�""�"�"�"�""�"�"�"�""�"�"�"�"

#�#�#�#�##�#�#�#�##�#�#�#�##�#�#�#�#
$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$

%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%
&�&�&�&�&&�&�&�&�&&�&�&�&�&&�&�&�&�&

'�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�'
(�(�(�(�((�(�(�(�((�(�(�(�((�(�(�(�(

)�)�)�)�)�))�)�)�)�)�))�)�)�)�)�))�)�)�)�)�)
��*�*�**�*�*�*�**�*�*�*�**�*�*�*�*

+�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�+
,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,

-�-�-�-�-�--�-�-�-�-�--�-�-�-�-�--�-�-�-�-�-
.�.�.�.�..�.�.�.�..�.�.�.�..�.�.�.�.

/�/�//�/�/0�0�00�0�0

1�1�1�11�1�1�11�1�1�11�1�1�1
2�2�22�2�22�2�22�2�2

3�3�3�3�33�3�3�3�33�3�3�3�3
4�4�4�4�44�4�4�4�44�4�4�4�4

5�5�5�5�55�5�5�5�55�5�5�5�5
6�6�6�6�66�6�6�6�66�6�6�6�6

7�7�77�7�78�8�88�8�8

9�9�99�9�99�9�99�9�9
:�:�::�:�::�:�::�:�:

;�;�;�;;�;�;�;;�;�;�;;�;�;�;
<�<�<�<<�<�<�<<�<�<�<<�<�<�<

=�=�==�=�=>�>>�>

(a) G

(b) G

Figure 3.6: Example of perfect t-interleaving using Construction 2.2.

Example 3.3 Let t = 4, and let G be an 12×24 torus. Firstly, we use Construction

2.1 to find a perfect sphere packing in G. Since t is even, the Step 1 of Construction

2.1 is executed. We choose A1, A2, · · · , A
gcd(

l1
t

,
l2
t

)−1
to be A1 = 0, A2 = 1. (Note

that here gcd(l1
t
, l2

t
) − 1 = 2.) Then the gcd(l1

t
, l2

t
) = 3 cycles in G are as shown in

Fig. 3.6 (a), which are three sets of spheres St respectively of three different background

patterns. The spheres in those 3 cycles form a perfect packing in G.

Next, we use Construction 2.2 to perfectly t-interleave G. Let the perfect sphere

packing remain as it is; and label all the spheres with the same interleaving pattern,

using |St| = 8 distinct integers. The resulting perfect t-interleaving on G is shown in

Fig. 3.6 (b). 2

We comment that Construction 2.2 provides the complete set of perfect t-interleaving

constructions that have the following property: for any two integers, the two sets of

78

vertices respectively labelled by those two integers are cosets of each other in the

torus. What is more, in [11], three t-interleaving constructions were presented, all

based on lattice interleavers. Our Construction 2.2 generalizes the results in [11] in

two ways: firstly, it covers more constructions based on lattice interleavers, with the

results of [11] included as special cases; secondly, when t is even, it also covers con-

structions that do not use lattice interleavers, which we can make happen by simply

letting any Ai and Aj take different values.

3.3 Achieving an Interleaving Degree within One

of the Optimal

In this section, we present a t-interleaving construction, with which we can t-interleave

any large enough torus with a degree within one of the optimal. The construction

presented here will also be used as a building block in Section IV.

3.3.1 Interleaving Construction

Definition 3.9 :

• Given a positive integer t, if t is odd, then P is defined to be a string of integers

‘a1, a2, · · · , a t−1
2

’, where a t−1
2

= t + 1 and ai = t for 1 ≤ i < t−1
2

; if t is even,

then P is defined to be a string of integers ‘a1, a2, · · · , a t
2
’, where a t

2
= t and

ai = t − 1 for 1 ≤ i < t
2
. (For example, if t = 3, then P =‘4’; if t = 4, then

P =‘3,4’; if t = 5, then P =‘5,6’.)

• Given a positive integer t, if t is odd, then Q is defined to be a string of integers

‘b1, b2, · · · , b t+1
2

’, where b t+1
2

= t + 1 and bi = t for 1 ≤ i < t+1
2

; if t is even,

then Q is defined to be a string of integers ‘b1, b2, · · · , b t
2
+1’, where b t

2
+1 = t

and bi = t− 1 for 1 ≤ i < t
2

+ 1.

• Given a positive integer t, an offset sequence is a string of ‘P ’s and ‘Q’s. (As

an example, an offset sequence consisting of 1 ‘P ’ and 2 ‘Q’s can be ‘PQQ’,

79

‘QPQ’ or ‘QQP ’.) The offset sequence is also naturally seen as a string of

integers which is the union of the integers in its ‘P ’s and ‘Q’s. (For example,

when t = 3, if an offset sequence consisting of 1 ‘P ’ and 2 ‘Q’s is ‘PQQ’, then

the offset sequence is also seen as ‘4,3,4,3,4’; when t = 4, if an offset sequence

consisting of 3 ‘P ’s and 2 ‘Q’s is ‘PQPPQ’, then the offset sequence is also

seen as ‘3,4,3,3,4,3,4,3,4,3,3,4’.) The number of integers in an offset sequence

is called its length.

2

In this section, we are particularly interested in one kind of t-interleaving on an

l1 × l2 torus, which has the following features:

• Feature 1: l1 = |St| + 1. (In other words, if t is odd, then l1 = t2+1
2

+ 1; if t is

even, then l1 = t2

2
+ 1.)

• Feature 2: The degree of the t-interleaving equals l1. And in every column of

the torus, each of the l1 integers is assigned to exactly one vertex.

• Feature 3: If the vertex (a1, b1) and the vertex (a2, b2) are labelled by the same

integer, then for i = 1, 2, · · · , l1 − 1, the vertex ((a1 + i) mod l1, b1) and the

vertex ((a2 + i) mod l1, b2) are labelled by the same integer.

Example 3.4 Fig. 3.7 shows a t-interleaving on an l1× l2 torus which has the above

three features. There t = 3, l1 = |St|+ 1 = 6 and l2 = 8.

Now let’s fixed an integer ‘i’, where 0 ≤ i ≤ 5, and say the set of vertices labelled

by ‘i’ are ‘(x0, 0), (x1, 1), · · · , (xl2−1, l2 − 1)’. Then the following string of integers:

‘(x1 − x0) mod l1, (x2 − x1) mod l1, · · · , (x7 − x6) mod l1, (x0 − x7) mod l1’, equals

‘4,4,4,3,4,4,3,4’. Since when t = 3, P =‘4’ and Q =‘3,4’, the above string of integers

actually equals ‘PPPQPQ’, which is an offset sequence of length l2. We comment

that this phenomenon is not a pure coincidence — offset sequences do help us find

t-interleavings that have the above three features. In fact, we can prove that in many

cases (e.g., when t = 5 or 7), for any t-interleaving on a torus that has the above

80

2

1

4

3

5

2

3

4

0

1

5

1

3

5

4

0

2

0 3 5

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

5

0

1

2

0 41

3

Figure 3.7: An example of t-interleaving of special features.

three features, after horizontally shifting and/or vertically reversing the interleaving

pattern, the resulting interleaving will have the same phenomenon as the example

shown here.

2

The following construction outputs t-interleaving that has the three features.

Construction 3.1:

Input: A positive integer t. An l1 × l2 torus, where l1 = |St|+ 1. An integer m that

equals b t
2
c. Two integers p and q that satisfy the following equation set if t is odd:

pm + q(m + 1) = l2

p(2m2 + m + 1) + q(2m2 + 3m + 2) ≡ 0 mod (2m2 + 2m + 2)

p and q are non-negative integers, p + q > 0.

(3.1)

and satisfy the following equation set if t is even:

pm + q(m + 1) = l2

p(2m2 −m + 1) + q(2m2 + m) ≡ 0 mod (2m2 + 1)

p and q are non-negative integers, p + q > 0.

(3.2)

Output: A t-interleaving on the l1 × l2 torus.

Construction: Let S =‘s0, s1, · · · , sl2−1’ be an arbitrary offset sequence consisting

of p ‘P ’s and q ‘Q’s. For j = 1, 2, · · · , l2 and for i = 0, 1, · · · , l1 − 1, label the vertex

81

((
∑j−1

k=0 sk + i) mod l1, j mod l2) with the integer ‘i’.

2

Example 3.5 Let t = 3, l1 = 6, l2 = 8, m = 1, p = 4, and q = 2. We use

Construction 3.1 to t-interleave an l1×l2 torus. Say the offset sequence S is chosen to

be ‘PPPQPQ’. Then Construction 3.1 outputs the t-interleaving shown in Fig. 3.7.

2

We explain Construction 3.1 a little bit. The Equation Set (1) (for odd t) and the

Equation Set (2) (for even t) ensure that the offset sequence S, which consists of p

‘P ’s and q ‘Q’s, exists. Furthermore, for any integer j (0 ≤ j ≤ l2 − 1), if (a, j) and

(b, (j+1) mod l2) are two vertices labelled by the same integer, then b−a ≡ sj mod l1

— namely, the offset sequence S indicates the vertical offsets of any two vertices in

adjacent columns that are labelled by the same integer. It is simple to verify that the

t-interleaving output by Construction 3.1 satisfies all the three features — Feature 1,

2 and 3 — listed earlier in this subsection.

The following lemma will be used to prove the correctness of Construction 3.1 and

also in future analysis.

Lemma 3.4 Let i ∈ {0, 1, · · · , |St|} be any of the integers used by Construction 3.1

to interleave the l1 × l2 torus. Let {(b0, 0), (b1, 1), · · · , (bl2−1, l2 − 1)} be the set of

vertices in the torus that are labelled by i. Let m and S have the same meaning as in

Construction 3.1 (namely, m = b t
2
c, and S =‘s0, s1, · · · , sl2−1’ is the offset sequence

consisting of p ‘P ’s and q ‘Q’s utilized by Construction 3.1). For any two integers

j1 and j2 (0 ≤ j1 6= j2 ≤ l2 − 1), we define Lj1→j2 as Lj1→j2 = [(j2 − j1) mod l2] +

min{(bj2 − bj1) mod l1, (bj1 − bj2) mod l1}. Then we have the following conclusions:

• Case 1: if t is odd, j2 − j1 ≡ m mod l2, and sj1 , s(j1+1) mod l2 , s(j1+2) mod l2 , · · · ,
s(j2−1) mod l2 do not all equal t, then bj2 − bj1 ≡ −(m+1) mod l1 and Lj1→j2 = t.

• Case 2: if t is odd, j2 − j1 ≡ m + 1 mod l2, and exactly one of sj1 , s(j1+1) mod l2,

s(j1+2) mod l2 , · · · , s(j2−1) mod l2 equals t+1, then bj2−bj1 ≡ m mod l1 and Lj1→j2 =

t.

82

• Case 3: if t is even, j2 − j1 ≡ 1 mod l2, and sj1 = t − 1, then bj2 − bj1 ≡
t− 1 mod l1 and Lj1→j2 = t.

• Case 4: if t is even, j2 − j1 ≡ m mod l2, and sj1 , s(j1+1) mod l2 , s(j1+2) mod l2 , · · · ,
s(j2−1) mod l2 do not all equal t− 1, then bj2 − bj1 ≡ −m mod l1 and Lj1→j2 = t.

• Case 5: if t is even, j2− j1 ≡ m+1 mod l2, and exactly one of sj1 , s(j1+1) mod l2,

s(j1+2) mod l2 , · · · , s(j2−1) mod l2 equals t, then bj2−bj1 ≡ m−1 mod l1 and Lj1→j2 =

t.

• Case 6: if none of the above five cases is true, and j2 − j1 6= t mod l2, then

Lj1→j2 > t. If none of the above five cases is true, and j2 − j1 ≡ t mod l2, then

Lj1→j2 ≥ t.

Proof: Let ∆ = t+1 if t is odd, and let ∆ = t if t is even. The offset sequence S consists

of ‘P ’s and ‘Q’s, so it has the following property: for any i ∈ {0, 1, · · · , l2 − 1} such

that si = ∆, the following m−1 integers — s(i+1) mod l2 , s(i+2) mod l2 , · · · , s(i+m−1) mod l2

— all equal ∆− 1, and either s(i+m) mod l2 or s(i+m+1) mod l2 equals ∆. Also note that

bj2 − bj1 ≡ sj1 + s(j1+1) mod l2 + s(j1+2) mod l2 + · · ·+ s(j2−1) mod l2 mod l1. Based on those

two observations, this lemma can be proved with straightforward computation.

2

Theorem 3.5 Construction 3.1 is correct.

Proof: Let (bj1 , j1) and (bj2 , j2) be any two vertices labelled by the same integer in

the l1 × l2 torus that was interleaved by Construction 3.1. The Lee distance between

them is d((bj1 , j1), (bj2 , j2)) = min{(j2 − j1) mod l2, (j1 − j2) mod l2} + min{(bj2 −
bj1) mod l1, (bj1 − bj2) mod l1} = min{Lj1→j2 , Lj2→j1}. From Lemma 3.4, it is clearly

that both Lj1→j2 and Lj2→j1 are no less than t. Therefore d((bj1 , j1), (bj2 , j2)) ≥ t. So

Construction 3.1 t-interleaved the torus. And as mentioned before, this t-interleaving

satisfies Feature 1, Feature 2 and Feature 3.

2

83

3.3.2 Existence of Offset Sequences

The feasibility of Construction 3.1 depends only on one thing — whether the two

input parameters ‘p’ and ‘q’ exist or not. The following theorem shows that when the

width of the torus, l2, exceeds a threshold, ‘p’ and ‘q’ are guaranteed to exist.

Theorem 3.6 Let t be an odd (respectively, even) positive integer. When l2 ≥
b t

2
c(b t

2
c + 1)(|St| + 1), there exists at least one solution (p, q) to the equation set

(1) (respectively, equation set (2)), which is shown in the ‘Input’ part of Construction

3.1.

Proof : Firstly, let’s assume t is odd. The equation set (1) is as follows:

pm + q(m + 1) = l2

p(2m2 + m + 1) + q(2m2 + 3m + 2) ≡ 0 mod (2m2 + 2m + 2)

p and q are non-negative integers, p + q > 0.

where m = b t
2
c. We introduce a new variable z, and transform the above equation

set equivalently to be:

 m m + 1

2m2 + m + 1 2m2 + 3m + 2

 p

q

 =

 l2

z(2m2 + 2m + 2)

p and q are non-negative integers; z is a positive integer.

which is the same as:

 p

q

 =

 m m + 1

2m2 + m + 1 2m2 + 3m + 2

−1

 l2

z(2m2 + 2m + 2)

p and q are non-negative integers; z is a positive integer.

which equals:

84

p = 2(m + 1)(m2 + m + 1)z − (2m2 + 3m + 2)l2

q = (2m2 + m + 1)l2 − 2m(m2 + m + 1)z

p and q are non-negative integers; z is a positive integer.

There exists a solution for the variables p, q and z in the above equation set if

and only if the following conditions can be satisfied:

2(m + 1)(m2 + m + 1)z − (2m2 + 3m + 2)l2 ≥ 0

(2m2 + m + 1)l2 − 2m(m2 + m + 1)z ≥ 0

z is a positive integer.

which is equivalent to:

(2m2+3m+2)l2
2(m+1)(m2+m+1)

≤ z ≤ (2m2+m+1)l2
2m(m2+m+1)

z is a positive integer.

To enable a value for z to exist that satisfies the above conditions, it is sufficient

to make (2m2+m+1)l2
2m(m2+m+1)

− (2m2+3m+2)l2
2(m+1)(m2+m+1)

≥ 1 — that is, to make l2 ≥ 2m(m + 1)(m2 +

m + 1) = b t
2
c(b t

2
c + 1)(|St| + 1). Therefore when l2 ≥ b t

2
c(b t

2
c + 1)(|St| + 1), there

exists at least one solution (p, q) to the equation set (1).

When t is even, the conclusion can be proved in a very similar way. We skip its

details.

2

Corollary 3.1 When l2 ≥ b t
2
c(b t

2
c + 1)(|St| + 1), Construction 3.1 can be used to

output a t-interleaving on an (|St|+ 1)× l2 torus.

Proof: When l2 ≥ b t
2
c(b t

2
c + 1)(|St| + 1), all the parameters in the ‘Input’ part of

Construction 3.1 exist, including p and q.

2

85

0 0 0 0

1 1 1 1

2 2 2 2

1 2

3 4

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1 0

0 0 0 0

1 1 1 1

2 2 2 2

1 2

3 4

1 2

3 4

0 1 2 3

3 2 1 0

(a) (b)
A B C D E

Figure 3.8: Examples of tiling tori

3.3.3 Interleaving with Degree within One of the Optimal

We define the simple term of tiling tori here. By tiling several interleaved tori verti-

cally or horizontally, we get a larger torus, whose interleaving is the straightforward

combination of the interleaving on the smaller tori. It is best explained with an

example.

Example 3.6 Three interleaved tori— A, B and C — are shown in Fig.3.8. The

torus D is a 5× 4 torus, got by tiling A and B vertically in the form of

 A

B

. The

torus E is a 2× 8 torus, got by tiling one copy of A and two copies of C horizontally

in the form of
[

C A C
]
.

2

The following construction t-interleaves a large enough torus with at most |St|+2

distinct integers.

Construction 3.2: t-interleave an l1 × l2 torus G, where l1 ≥ |St|(|St| + 1) and

l2 ≥ b t
2
c(b t

2
c+ 1)(|St|+ 1), using at most |St|+ 2 distinct integers.

1. Let G1 be an (|St| + 1) × l2 torus that is t-interleaved by Construction 3.1,

using the integers ‘0’,‘1’, · · · , ‘|St|’. Let {(c0, 0), (c1, 1), · · · , (cl2−1, l2 − 1)} be the set

of vertices in G1 labelled by the integer ‘0’.

2. Let G2 be an (|St|+2)×l2 torus. Label the nodes {(c0, 0), (c1, 1), · · · , (cl2−1, l2−
1)} in G2 with the integer ‘|St|+ 1’.

86

0

1

2

2

0

1

0

1

2

2

0

1

0

1

2

2

0

1

0

1

2

2

0

1

0

1

2

2

0

1

0

1

2

2

0

1

2 1 2

3

3

3

3

3

30

1 0

2

0

1 0

1

2

0

1

2

0

1

22 1 2

3

3

3

3

3

30

1 0

2

0

1 0

1

2

0

1

2

0

1

2

G 1 G 2 G

Figure 3.9: Examples of Construction 3.2.

3. For j = 0, 1, · · · , l2 − 1 and for i = 1, 2, · · · , |St| + 1, label the node ((cj +

i) mod (|St|+ 2), j) with the integer ‘i− 1’.

4. Let x and y be two non-negative integers such that l1 = x(|St|+1)+y(|St|+2).

Tile x copies of G1 and y copies of G2 vertically to get an l1 × l2 torus G, which is

t-interleaved using at most |St|+ 2 distinct integers.

2

Example 3.7 We use Construction 3.2 to t-interleave a 7× 6 torus G, where t = 2.

The first step is to use Construction 3.1 to t-interleave a 3 × 6 torus G1. Say the

offset sequence selected in Construction 3.1 is S = ‘QQQ′ = ‘1, 2, 1, 2, 1, 2′, then G1 is

as shown in Fig. 3.9. Then the 4×6 torus G2 is as shown in the figure. By tiling one

copy of G1 and one copy of G2 vertically, we get the t-interleaved torus G. |St|+2 = 4

distinct integers are used to interleave G.

2

Theorem 3.7 Construction 3.2 is correct.

Proof: It is a known fact that for any two relatively prime positive integers A and B,

any integer C no less than (A−1)(B−1) can be expressed as C = xA+yB where x and

y are non-negative integers. Therefore in Construction 3.2, since l1 ≥ |St|(|St| + 1),

l1 indeed can be expressed as l1 = x(|St| + 1) + y(|St| + 2), as shown in the last

step of Construction 3.2. So the construction can be executed from beginning to

87

end successfully. Now we prove that the construction does t-interleave G — that is,

for any two nodes (a1, b1) and (a2, b2) labelled by the same integer i in G, the Lee

distance between them is at least t. We consider three cases.

Case 1: b1 = b2, which means that (a1, b1) and (a2, b2) are in the same column of

G. We see every column of G as a ring of length l1 (because it is toroidal). Then,

observe the integers labelling a column of G, and we can see that on the column,

the integers following an integer ‘|St|+ 1’ and before the next integer ‘|St|+ 1’ must

be ‘0, 1, · · · , |St|, 0, 1, · · · , |St|, · · · · · · , 0, 1, · · · , |St|’, where the pattern 0, 1, · · · , |St|
appears at least once. Therefore since (a1, b1) and (a2, b2) are labelled by the same

integer, the Lee distance between them must be at least |St|+ 1 > t.

Case 2: b1 6= b2, and i 6= |St|+ 1. In this case, let’s first observe two conclusions:

• The interleaving on G2 is t-interleaving. (See Construction 3.2 for the definition

of G2.) This can be proved as follows: any two vertices labelled by the same

integer in G2 can be expressed as ((cj1 +i0) mod (|St|+2), j1) and ((cj2 +i0) mod

(|St|+ 2), j2) (see the Step 2 and Step 3 of Construction 3.2); then, dG2(((cj1 +

i0) mod (|St| + 2), j1), ((cj2 + i0) mod (|St| + 2), j2)) = dG2((cj1 , j1), (cj2 , j2)) ≥
dG1((cj1 , j1), (cj2 , j2)) ≥ t.

• Let (α, j) and (β, j) be two vertices respectively in G1 and G2 both of which are

labelled by the same integer. Then it is simple to see that β = α or β = α + 1.

Since G1 has |St|+1 rows and G2 has |St|+2 rows, we have dG2((β, j), (0, j)) ≥
dG1((α, j), (0, j)) and dG2((β, j), (|St| + 1, j)) ≥ dG1((α, j), (|St|, j)). That is, if

u and v are two vertices respectively in G1 and G2 both of which are in the

j-th column and labelled by the same integer, the vertical distance from v to

the two ‘borders’ of G2 is no less than the vertical distance from u to the two

‘borders’ of G1.

According to Construction 3.2, G is got by vertically tiling x copies of G1 and y

copies of G2. Let’s call each of those x+y tori a component torus of G. Now, if (a1, b1)

and (a2, b2) are in the same component torus of G, we know the Lee distance between

88

them in G is no less than the Lee distance between them in that component torus,

which is at least t because that component torus is t-interleaved. If (a1, b1) and (a2, b2)

are not in the same component torus of G, we do the following. We firstly construct

a torus G′ which is got by vertically tiling x + y copies of G1. It is simple to see that

G′ is t-interleaved. We call each of the x + y copies of G1 in G′ a component torus of

G′. Let’s say (a1, b1) and (a2, b2) are respectively in the k1-th and k2-th component

torus of G. Let (c1, b1) and (c2, b2) be the two vertices labelled by the integer i that

are respectively in the k1-th and k2-th component torus of G′. Observe the shortest

path between (a1, b1) and (a2, b2) in G, and we see that it can be split into such three

intervals: from (a1, b1) to a border of the k1-th component torus, from the border

of the k1-th component torus to the border of the k2-th component torus, and from

the border of the k2-th component torus to (a2, b2). There is a corresponding (not

necessarily shortest) path connecting (c1, b1) and (c2, b2) in G′, which can be split into

such three intervals similarly. And each of the three intervals of the first path is at

least as long as the corresponding interval of the second path. G′ is t-interleaved, so

the second path’s length is at least t. So the Lee distance between (a1, b1) and (a2, b2)

in G is at least t.

Case 3: b1 6= b2, and i = |St| + 1. In this case, it is simple to see that the two

vertices in G, (a1+1 mod l1, b1) and (a2+1 mod l1, b2), are both labelled by the integer

0. Based on the conclusion of Case 2, dG((a1 + 1 mod l1, b1), (a2 + 1 mod l1, b2)) ≥ t.

So dG((a1, b1), (a2, b2)) = dG((a1 + 1 mod l1, b1), (a2 + 1 mod l1, b2)) ≥ t.

So Construction 3.2 correctly t-interleaved G.

2

As a result of Construction 3.2, we get the following theorem.

Theorem 3.8 When l1 ≥ |St|(|St|+ 1) and l2 ≥ b t
2
c(b t

2
c+ 1)(|St|+ 1), an l1× l2 (or

equivalently, l2 × l1) torus’ t-interleaving number is at most |St|+ 2.

By combining Construction 2.2 (the construction for perfect t-interleaving) and

Construction 3.2, we can t-interleave any sufficiently large torus with a degree within

one of the optimal.

89

3.4 Optimal Interleaving on Large Tori

In the previous section, it is shown that when l2 is large enough, an (|St| + 1) × l2

torus can be t-interleaved using |St|+1 integers. In this section, we will construct an

[k(|St|+1)−1]× l2 torus which is also t-interleaved using |St|+1 integers, by using an

operation we call ‘removing a zigzag row ’. (‘k’ is some integer.) Those two tori have

a special property: when they (or multiple copies of them) are tiled vertically to get

a larger torus, the larger torus is also t-interleaved with degree |St|+ 1. |St|+ 1 and

k(|St|+1)− 1 are relatively prime, so a large enough l1 must be a linear combination

of those two numbers with non-negative integral coefficients — therefore an l1 × l2

torus can be t-interleaved using |St|+1 integers in this way. We present constructions

to optimally t-interleave such tori; and as a parallel result, the existence of Region I

(see Section I: Introduction) is proved.

All the results of this section can be split into two parts: one for the case ‘t is

odd’, and the other for the case ‘t is even’. Those two cases can be analyzed with very

similar methods; however their analysis and results differ in details. For succinctness,

in this section, we only analyze in detail the case ‘t is odd’, which should suffice for

illustrating all the ideas. So in the first three subsections here — Subsection A, B,

and C, we always assume that t is odd. In Subsection D, we present just the final

result for the case ‘t is even’. We list the major intermediate results for the case ‘t is

even’ in Appendix II.

3.4.1 Removing a Zigzag Row in a Torus

Definition 3.10 A zigzag row in an l1 × l2 torus is a set of l2 vertices of the torus:

{(a0, 0), (a1, 1), · · · , (al2−1, l2−1)}, where 0 ≤ ai ≤ l1−1 for i = 0, 1, · · · , l2−1. (For

example, {(2, 0), (3, 1), (0, 2), (0, 3), (3, 4)} is a zigzag row in a 4× 5 torus.) 2

Definition 3.11 Let T be an l1× l2 torus. Let {(a0, 0), (a1, 1), · · · , (al2−1, l2− 1)} be

a zigzag row in T . Let there be an interleaving on T , which labels T ’s vertex (b, c)

with the integer I(b, c), for b = 0, 1, · · · , l1 − 1 and c = 0, 1, · · · , l2 − 1. Then a torus

90

4

4 6

1 3 5 2 4

2 4 6 3 5

3 5 1

6 2 5 1

5 1 3 6 2

6 2 4 1 3

T

2

3

5

6

3

4

6

1

2

5

1

2

3

4

2

3

4

6

1

4

6

1

2

3

1

G

Figure 3.10: Removing a zigzag row {(3, 0), (2, 1), (1, 2), (3, 3), (1, 4)} in T .

G is said to be ‘got by removing the zigzag row {(a0, 0), (a1, 1), · · · , (al2−1, l2 − 1)} in

T ’ if and only if these two conditions are satisfied:

• G is an (l1 − 1)× l2 torus.

• For i = 0, 1, · · · , l1 − 2 and j = 0, 1, · · · , l2 − 1, the node (i, j) in G is labelled

by the integer I(i, j) if i < aj, and by the integer I(i + 1, j) if i ≥ aj.

2

Example 3.8 In Fig. 3.10, a 6×5 torus T is shown. A zigzag row {(3, 0), (2, 1), (1, 2),

(3, 3), (1, 4)} in T is circled in the figure. Fig. 3.10 shows a torus G got by removing

the zigzag row {(3, 0), (2, 1), (1, 2), (3, 3), (1, 4)} in T .

It can be readily observed that G can be seen as being derived from T in the

following way: firstly, delete the zigzag row in T that is circled in Fig. 3.10; then in

each column of T , move the vertices below the circled vertex upward. 2

We present three rules to follow for devising a zigzag row. Let B be an l0 × l2

torus which is t-interleaved by Construction 3.1. (That means l0 = |St| + 1.) Let

S =‘s0, s1, · · · , sl2−1’ be the offset sequence utilized by Construction 3.1 when it

was t-interleaving B. Let H be an l1 × l2 torus got by tiling several copies of B

vertically. Let m = b t
2
c. Then the three rules for devising a zigzag row in H —

{(a0, 0), (a1, 1), · · · , (al2−1, l2 − 1)} — are:

91

• Rule 1: For any j such that 0 ≤ j ≤ l2 − 1, if the integers sj, s(j+1) mod l2 , · · · ,

s(j+m−1) mod l2 do not all equal t, then aj ≥ a(j+m) mod l2 + m.

• Rule 2: For any j such that 0 ≤ j ≤ l2 − 1, if exactly one of the integers

sj, s(j+1) mod l2 , · · · , s(j+m) mod l2 equals t + 1, then aj ≤ a(j+m+1) mod l2 − (m− 1).

• Rule 3: For any j such that 0 ≤ j ≤ l2 − 1, m ≤ aj ≤ l1 −m− 1.

Lemma 3.5 Let B be a torus t-interleaved by Construction 3.1. Let H be a torus

got by tiling copies of B vertically, and let T be a torus got by removing a zigzag row

in H, where the zigzag row in H follows the three rules — Rule 1, Rule 2 and Rule

3. Let G be a torus got by tiling copies of B and T vertically. Then, both T and G

are t-interleaved.

Proof : When t = 1, the proof is trivial. So we assume t ≥ 3 in the rest of the proof.

It is simple to see that H is t-interleaved, because H is got by tiling B, a t-interleaved

torus. We assume B is an l0 × l2 torus (where l0 = |St| + 1), H is an l1 × l2 torus

(where l1 is a multiple of l0), T is an lT × l2 torus (where lT = l1 − 1), and G is an

lG × l2 torus. Let m = b t
2
c. Let S =‘s0, s1, · · · , sl2−1’ be the offset sequence utilized

by Construction 3.1 when it was t-interleaving B.

(1) In this part, we will prove that T is t-interleaved. Let (x1, y1) and (x2, y2)

be two vertices in T both labelled by some integer ‘r’. We need to prove that

dT ((x1, y1), (x2, y2)) ≥ t.

Let {(a0, 0), (a1, 1), · · · , (al2−1, l2− 1)} denote the zigzag row removed in H to get

T . If ay1 ≤ x1, then let z1 = x1 + 1; otherwise let z1 = x1. Similarly, if ay2 ≤ x2, then

let z2 = x2 + 1; otherwise let z2 = x2. Clearly, the two vertices in H, (z1, y1) and

(z2, y2), are also labelled by ‘r’.

We only need to consider the following three cases:

Case 1: y1 = y2. In this case, dH((z1, y1), (z2, y2)) is a multiple of |St| + 1 (the

number of rows in B); and dT ((x1, y1), (x2, y2)) ≥ dH((z1, y1), (z2, y2)) − 1 ≥ |St| =

t2+1
2

> t.

92

Case 2: y1 6= y2 and dT ((x1, y1), (x2, y2)) ≤ dH((z1, y1), (z2, y2)) − 2. Without

loss of generality (WLOG), we assume x1 ≥ x2. Then, based on the definition of

the ‘removing a zigzag row’, it is simple to verify that the following must be true:

dT ((x1, y1), (x2, y2)) = dH((z1, y1), (z2, y2))−2, ay2 < z2 < z1 < ay1 , (z2−z1 mod l1) ≤
(z1 − z2 mod l1). By Rule 3, any vertex in the removed zigzag row is neither in

the first m rows nor in the last m rows of H, so (z2 − z1 mod l1) ≥ 2m + 3. So

dT ((x1, y1), (x2, y2)) = dH((z1, y1), (z2, y2))− 2 > (z2 − z1 mod l1)− 2 ≥ 2m + 1 = t.

Case 3: y1 6= y2 and dT ((x1, y1), (x2, y2)) ≥ dH((z1, y1), (z2, y2))−1. We know that

dH((z1, y1), (z2, y2)) ≥ t. So to show that dT ((x1, y1), (x2, y2)) ≥ t, we just need to

prove that if dH((z1, y1), (z2, y2)) = t, then dT ((x1, y1), (x2, y2)) ≥ dH((z1, y1), (z2, y2)).

By Lemma 3.4, there are only two non-trivial sub-cases to consider WLOG:

Sub-case 3.1: y2−y1 ≡ m mod l2, z2−z1 ≡ −(m+1) mod l1, dH((z1, y1), (z2, y2)) =

(y2 − y1 mod l2) + (z1 − z2 mod l1) = t, and sy1 , s(y1+1) mod l2 , s(y1+2) mod l2 , · · · ,
s(y1+m−1) mod l2 do not all equal t. If z1 > z2 (which means z1 = z2 + (m + 1)), then

from Rule 1, it is simple to see that x1 − x2 = z1 − z2 — so dT ((x1, y1), (x2, y2)) =

dH((z1, y1), (z2, y2)) = t. If z1 < z2 (which means that (z1, y1) and (z2, y2) are respec-

tively in the first and last m + 1 rows of H), since the first and last m rows of H and

T must be the same, we get that (x1 − x2 mod lT) = (z1 − z2 mod l1) = m + 1 – so

dT ((x1, y1), (x2, y2)) = dH((z1, y1), (z2, y2)) = t.

Sub-case 3.2: y2 − y1 ≡ m + 1 mod l2, z2 − z1 ≡ m mod l1, dH((z1, y1), (z2, y2)) =

(y2−y1 mod l2)+(z2−z1 mod l1) = t, and exactly one of sy1 , s(y1+1) mod l2 , s(y1+2) mod l2 ,

· · · , s(y1+m) mod l2 equals t + 1. If z1 < z2 (which means z1 = z2 − m), then from

Rule 2, it is simple to see that x2 − x1 = z2 − z1 — so dT ((x1, y1), (x2, y2)) =

dH((z1, y1), (z2, y2)) = t. If z1 > z2 (which means that (z1, y1) and (z2, y2) are re-

spectively in the last and first m rows of H), since the first and last m rows of H

and T must be the same, we get that (x2 − x1 mod lT) = (z2 − z1 mod l1) = m — so

dT ((x1, y1), (x2, y2)) = dH((z1, y1), (z2, y2)) = t.

So T is t-interleaved.

(2) In this part, we will prove that G is t-interleaved. First let’s have an obser-

93

vation: when a t-interleaved torus K is tiled with other tori vertically to get a larger

torus Ĝ, for any two vertices µ and ν in K (which are now also in Ĝ) labelled by the

same integer, the Lee distance between them in Ĝ, dĜ(µ, ν), is clearly no less than

t. Let’s also notice that the torus got by tiling one copy of B and one copy of T

vertically is t-interleaved, which can be proved with exactly the same proof as in part

(1).

G is got by tiling multiple copies of B and T . Let’s call each copy of B or T in

G a component torus. Let (x1, y1) and (x2, y2) be two vertices in G labelled by the

same integer. Assume dG((x1, y1), (x2, y2)) ≤ t. Then since both B and T have more

than t rows, (x1, y1) and (x2, y2) must be either in the same component torus or in

two adjacent component tori. Now if (x1, y1) and (x2, y2) are in the same component

torus, let K denote that component torus; if (x1, y1) and (x2, y2) are in two adjacent

component tori, let K be the torus got by vertically tiling those two component tori;

let Ĝ be the same as G. By using the observation in the previous paragraph, we can

readily prove that dG((x1, y1), (x2, y2)) ≥ t. So G is t-interleaved.

2

3.4.2 Constructing the Zigzag Row

We presented three rules on devising a zigzag row in the previous subsection. But

specifically, how to construct a zigzag row that follows all those rules? In this sub-

section, we present such constructions.

Before the formal presentation, let us go over a few concepts. An offset sequence

is a string of ‘P ’s and ‘Q’s, where P and Q are strings of integers depending on t.

For example, when t = 5, P =‘5, 6’ and Q =‘5, 5, 6’. Then an offset sequence ‘PPQ’

can also be written as ‘5, 6, 5, 6, 5, 5, 6’. Let’s also express the offset sequence ‘PPQ’

as ‘s0, s1, s2, s3, s4, s5, s6’, where s0 = 5, s1 = 6, · · · , s6 = 6. Then for i = 0, 1, · · · , 6,

si is called the ‘(i + 1)-th element’ of the offset sequence. s2 is also called the ‘first

element of a P ’, because it is the first element of the second P in the offset sequence.

For the same reason, s0 is the first element of a P (the first P in the offset sequence),

94

s1 is the second (or last) element of a P (the first P in the offset sequence), s4 is the

first element of a Q (the first/last/only Q in the offset sequence), and so on.

Now we begin the formal presentation of the constructions. Let B be an l0 × l2

torus that is t-interleaved by Construction 3.1. (Therefore l0 = |St|+1.) Let H be an

l1×l2 torus got by tiling z copies of B vertically. (Therefore l1 = zl0 = z(|St|+1).) Let

S =‘s0, s1, · · · , sl2−1’ be the offset sequence utilized by Construction 3.1 when it was

t-interleaving B. We say that the offset sequence S consists of p ‘P ’s and q ‘Q’s, where

we require p > 0 and q > 0. We require that in the offset sequence, the ‘P ’s and ‘Q’s

are interleaved very evenly — to be specific, in the offset sequence, between any two

nearby ‘P ’s (including between the last ‘P ’ and the first ‘P ’, because we see the offset

sequence as being toroidal, so the last ‘P ’ and the first ‘P ’ are also nearby ‘P ’s), there

are either d q
p
e or b q

p
c consecutive ‘Q’s; and between any two nearby ‘Q’s (including

between the last ‘Q’ and the first ‘Q’), there are either dp
q
e or bp

q
c consecutive ‘P ’s.

Also, we require the offset sequence to start with a ‘P ’ and to end with a ‘Q’. (For

example, an offset sequence consisting of 3 ‘P ’s and 5 ‘Q’s that satisfies the above

requirements is ‘PQQPQQPQ’.) Let m = t−1
2

. Let L = m + mdp
q
e if p ≥ q, and

let L = m + (m − 1)d q
p
e if p < q. We require that l1 ≥ (dp

q
e + 1)m2 + 2m + 1

if p ≥ q, and require that l1 ≥ (d q
p
e + 1)m2 + m + (2 − d q

p
e) if p < q. Below we

present two constructions for constructing a zigzag row in H, applicable respectively

when p ≥ q and when p < q. Note that the constructed zigzag row is denoted by

{(a0, 0), (a1, 1), · · · , (al2−1, l2 − 1)}. Also note that both constructions require t > 3.

(The analysis for the case ‘t = 3’, as a somewhat special case, will be presented in

Appendix I.)

Construction 4.1: Constructing a zigzag row in H, when t is odd, t > 3, and

p ≥ q > 0

1. Let sx1 , sx2 , · · · , sxp+q be the integers such that 0 = x1 < x2 < · · · < xp+q =

l2 − m − 1, and each sxi
(1 ≤ i ≤ p + q) is the first element of a ‘P ’ or ‘Q’ in the

offset sequence S.

Let ax1 = L. For i = 2 to p+q, if sxi−1
is the first element of a ‘Q’, let axi

= L.

95

For i = 2 to p+ q, if sxi−1
is the first element of a ‘P ’, then let axi

= axi−1
−m.

2. For i = 2 to m and for j = 1 to p + q, let axj+i−1 = axj+i−2 + L.

3. Let sy1 , sy2 , · · · , syq be the integers such that y1 < y2 < · · · < yq = l2 − 1, and

each syi
(1 ≤ i ≤ q) is the last element of a ‘Q’ in the offset sequence S.

For i = 1 to q, let ayi
= mL + m.

Now we have fully determined the zigzag row, {(a0, 0), (a1, 1), · · · , (al2−1, l2 −
1)}, in the torus H.

2

The zigzag row constructed by Construction 4.1 has a quite regular structure. We

show it with an example.

Example 3.9 We use this example to illustrate Construction 4.1. In this example,

t = 5, and B is an 14× 18 torus as shown in Fig. 3.11(a). B is t-interleaved by Con-

struction 3.1 by using the offset sequence S =‘PPPQPPPQ’=‘5, 6, 5, 6, 5, 6, 5, 5, 6, 5,

6, 5, 6, 5, 6, 5, 5, 6’. The torus H is shown in Fig. 3.11(b). H is an 28 × 18 torus got

by tiling 2 copies of B vertically. The rest of the parameters used by Construc-

tion 4.1 are p = 6, q = 2, m = 2 and L = 8. It is not difficult to verify that

the zigzag row in H constructed by Construction 4.1 is {(8, 0), (16, 1), (6, 2), (14, 3),

(4, 4), (12, 5), (2, 6), (10, 7), (18, 8), (8, 9), (16, 10), (6, 11), (14, 12), (4, 13), (12, 14),

(2, 15), (10, 16), (18, 17)}. In Fig.3.11(b), the vertices in the zigzag row are shown in

solid-line circles, solid-line hexagons, or dashed-line circles.

Now we briefly analyze the structure of the zigzag row in H. Let us write the

offset sequence S as S =‘s0, s1, · · · , s17’. Then for i = 0, 1, · · · , 17, we can see that si

actually shows the ‘offset’ between the i-th column and the (i + 1)-th column of H —

in other words, if we shift the integers in the i-th column of H down (toroidally) by

si units, we get the (i + 1)-th column of H. So we can think of si as ‘spanning from

the i-th column to the (i + 1)-th column of H’. And let’s say a P or Q in the offset

sequence spans the columns that all its elements span. Then, since the offset sequence

here is ‘PPPQPPPQ’, the ranges each of them spans is as indicated in Fig. 3.11(b).

Let us observe the vertices in the zigzag row that are in solid-line circles. If we

96

indicate them by (ax1 , x1), (ax2 , x2), · · · , (axp+q , xp+q), where x1 < x2 · · · < xp+q, then

we can see that sx1 , sx2 , · · · , sxp+q are the ‘first elements’ of the ‘P ’s and ‘Q’s in the

offset sequence (namely, each of them is the first element of a ‘P ’ or a ‘Q’ in the

offset sequence). And we can see that the vertices in solid-line circles have a regular

structure — basically, it climbs up by m = 2 units from one vertex to the next, and

drops to a base-position if it is between the spanned ranges of a Q and a P . Now

let us observe the vertices in solid-line hexagons. We can see that they correspond to

those ‘second elements of the ‘P ’s and ‘Q’s in the offset sequence’, and they also have

a regular structure. To be specific, the positions of the vertices in solid-line hexagons

can be got by shifting the positions of the vertices in solid-line circles horizontally

by 1 unit and then down by L = 8 units. In general, those vertices in a zigzag row

that correspond to the (i + 1)-th elements of ‘P ’s and ‘Q’s can be got by shifting

the positions of the vertices that correspond to the i-th elements of ‘P ’s and ‘Q’s

horizontally by 1 unit and down by L unit (here 0 ≤ i < m). As for the vertices

in dashed-line circles, they correspond to the ‘last elements of the ‘Q’s in the offset

sequence’, and they are all in the same row. The above observations can be extended

in an obvious way to the general outputs of Construction 4.1.

2

Now we present the second construction.

Construction 4.2: Constructing a zigzag row in H, when t is odd, t > 3, and

0 < p < q

1. Let sx1 , sx2 , · · · , sxp+q be the integers such that 0 = x1 < x2 < · · · < xp+q =

l2 − m − 1, and each sxi
(1 ≤ i ≤ p + q) is the first element of a ‘P ’ or ‘Q’ in the

offset sequence S.

Let ax1 = L.

For i = 2 to p + q, if sxi
is the first element of a ‘P ’, let axi

= L; if sxi−1
is the

first element of a ‘P ’, let axi
= L− d q

p
e(m− 1); otherwise, let axi

= axi−1
+ (m− 1).

2. For i = 2 to m and for j = 1 to p + q, let axj+i−1 = axj+i−2 + L.

3. Let sy1 , sy2 , · · · , syq be the integers such that y1 < y2 < · · · < yq = l2 − 1, and

97

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

H(b)

P P P Q P P P Q

10

11

12

13

10

11

12

13

9

0

1

2

3

4

5

6

7

8

9

11

12

13

10

0

1

2

3

4

5

6 0

1

2

4

5

6

0

1

2

3

4

5

6 0

1

3

4

5

1

2

3

4

5

6 0

1

2

3

4

5 0

1

2

3

4

5

7

8

9

10

11

12

13

3

7

8

9

10

11

12

13

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

2

7

8

9

11

12

13

10

6

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

9

0

0

1

2

3

4

5

6

7

8

9

11

12

13

10

0

1

2

3

4

5

6 0

1

2

4

5

6

0

1

2

3

4

5

6 0

1

3

4

5

1

2

3

4

5

6 0

1

2

3

4

5 0

1

2

3

4

5

7

8

9

10

11

12

13

3

7

8

9

10

11

12

13

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

2

7

8

9

11

12

13

10

6

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

0

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

10

11

12

13

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

(a) B

9

10

11

12

130

1

2

3

4

5

6

7

8

9

11

12

13

10

0

1

2

3

4

5

6 0

1

2

4

5

6

0

1

2

3

4

5

6 0

1

3

4

5

1

2

3

4

5

6 0

1

2

3

4

5 0

1

2

3

4

5

7

8

9

10

11

12

13

3

7

8

9

10

11

12

13

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

2

7

8

9

11

12

13

10

6

7

8

9

10

11

12

13

6

7

8

9

10

11

12

13

0

Figure 3.11: An example of Construction 4.1.

98

each syi
(1 ≤ i ≤ q) is the last element of a ‘Q’ in the offset sequence S.

For i = 1 to q, let ayi
= ayi−1 + L.

Now we have fully determined the zigzag row, {(a0, 0), (a1, 1), · · · , (al2−1, l2 −
1)}, in the torus H.

2

Like Construction 4.1, the zigzag row constructed by Construction 4.2 also has a

regular (and similar) structure.

Theorem 3.9 The zigzag rows constructed by Construction 4.1 and Construction

4.2 follow all the three rules — Rule 1, Rule 2 and Rule 3.

The above theorem can be proved with straightforward verification. So we skip

its proof.

3.4.3 Optimal Interleaving When t Is Odd

In this subsection, we prove that when t is odd, for a torus whose size is large enough

in both dimensions, its t-interleaving number is at most one more than the sphere

packing lower bound, |St|. We also present the corresponding optimal t-interleaving

construction.

Lemma 3.6 In Equation Set (1) (the equation set in Construction 3.1), let the values

of t, m and l2 be fixed. Let ‘p = p0, q = q0’ be a solution that satisfies the Equation

Set (1). Then, another solution ‘p = p1, q = q1’ also satisfies the Equation Set (1) if

and only if there exists an integer c such that p1 = p0 + c(m + 1)(2m2 + 2m + 2) ≥ 0

and q1 = q0 − cm(2m2 + 2m + 2) ≥ 0.

Proof: We can easily prove that “‘p = p1, q = q1’ is a solution that satisfies the

Equation Set (1) if p1 = p0 + c(m + 1)(2m2 + 2m + 2) ≥ 0 and q1 = q0 − cm(2m2 +

2m + 2) ≥ 0 for some integer c”, by plugging ‘p = p1, q = q1’ into the Equation Set

(1). Now let’s prove the other direction.

99

Assume ‘p = p1, q = q1’ is a solution that satisfies the Equation Set (1). Let

x = p1− p0 and y = q1− q0. By the first equation in Equation Set (1), p1m + q1(m +

1) = l2 = p0m + q0(m + 1) — therefore (p1 − p0)m = −(q1 − q0)(m + 1), which is

xm = −y(m + 1). So x is a multiple of m + 1 and y is a multiple of m. So there

exists an integer a such that x = a(m + 1) and y = −am.

Now let us look at the second equation in Equation Set (1), p1(2m
2 + m + 1) +

q1(2m
2 + 3m + 2) ≡ 0 mod (2m2 + 2m + 2). Note that 2m2 + m + 1 ≡ −(m + 1) mod

(2m2 +2m+2) and 2m2 +3m+2 ≡ m mod (2m2 +2m+2). So −p1(m+1)+ q1m ≡
0 mod (2m2+2m+2). Since p1 = p0+x = p0+a(m+1) and q1 = q0+y = q0−am, we

get −[p0 +a(m+1)](m+1)+(q0−am)m ≡ [−p0(m+1)+q0m]− [a(m+1)2 +am2] ≡
−a(2m2 + 2m + 1) ≡ 0 mod (2m2 + 2m + 2). Since 2m2 + 2m + 1 and 2m2 + 2m + 2

must be relatively prime, we get 2m2 +2m+2|a. So there exist an integer c such that

a = c(2m2+2m+2). Then p1 = p0+x = p0+a(m+1) = p0+c(m+1)(2m2+2m+2) ≥ 0

and q1 = q0 + y = q0 − am = q0 − cm(2m2 + 2m + 2) ≥ 0.(The two inequalities come

from the last condition in Equation Set (1).) That completes the proof of the other

direction of this lemma.

2

Lemma 3.7 In Equation Set (1) (the equation set in Construction 3.1), let the values

of t, m and l2 be fixed. Let ∆P = (m+1)(2m2 +2m+2) and ∆Q = m(2m2 +2m+2).

If there exists a solution of p and q that satisfies the Equation Set (1), then there

exists a solution ‘p = p∗, q = q∗’ that satisfies not only the Equation Set (1) but also

one of the following two inequalities:

l2
2m + 1

− ∆Q

2
< q∗ ≤ p∗ <

l2
2m + 1

+
∆P

2
(3.3)

l2
2m + 1

− ∆P

2
≤ p∗ < q∗ ≤ l2

2m + 1
+

∆Q

2
(3.4)

Proof: Assume there is a solution ‘p = p0, q = q0’ that satisfies Equation Set (1).

Trivially, either p0 ≥ q0 or p0 < q0. Firstly, let us assume that p0 ≥ q0. If p0 ≥

100

l2
2m+1

+ ∆P , then q0 = l2−p0m
m+1

≤ l2−[l2/(2m+1)+∆P]m
m+1

= l2−[l2/(2m+1)+(m+1)(2m2+2m+2)]m
m+1

=

l2
2m+1

−∆Q (and vice versa) — so then by Lemma 3.6, ‘p = p0−∆P , q = q0+∆Q’ is also

a solution to Equation Set (1), and what’s more, p0−∆P ≥ l1
2m+1

≥ q0+∆Q. Based on

the above observation, we can see that there must exist a solution ‘p = p1, q = q1’ such

that l2
2m+1

−∆Q < q1 ≤ p1 < l2
2m+1

+ ∆P . If p1 < l2
2m+1

+ ∆P

2
, then q1 > l2

2m+1
− ∆Q

2
—

then we can simply let p∗ = p1 and let q∗ = q1. If p1 ≥ l2
2m+1

+∆P

2
, then q1 ≤ l2

2m+1
−∆Q

2

— then we will let p∗ = p1 − ∆P and let q∗ = q1 + ∆Q, in which case we will have

l2
2m+1

− ∆P

2
≤ p∗ < l2

2m+1
< q∗ ≤ l2

2m+1
+

∆Q

2
. So when p0 ≥ q0, this lemma holds. The

case that ‘p0 < q0’ can be analyzed similarly.

2

Theorem 3.10 Let t be a positive odd integer. Let m = t−1
2

. Define A as

A = max{ (d l2+(m+1)(2m+1)(m2+m+1)
l2−m(2m+1)(m2+m+1)

e+ 1)m2 + 2m + 1,

(d l2+m(2m+1)(m2+m+1)
l2−(m+1)(2m+1)(m2+m+1)

e+ 1)m2 + m + 2− d l2+m(2m+1)(m2+m+1)
l2−(m+1)(2m+1)(m2+m+1)

e}.

Then when

l2 ≥ (m + 1)(2m + 1)(m2 + m + 1) + 1

and

l1 ≥ (2m2 + 2m + 1)

(
d A

2m2 + 2m + 2
e(2m2 + 2m + 2)− 2

)
,

an l1× l2 (or equivalently, l2× l1) torus’ t-interleaving number is either |St| or |St|+1.

Proof : This theorem is trivially correct when t = 1. When t = 3, by the result of

Appendix I (Theorem 3.13), we can also easily verify that this theorem is correct. So

in the following analysis, we assume that t > 3.

Let’s first define a few variables for the ease of expression. Let ∆P = (m +

1)(2m2 + 2m + 2), ∆Q = m(2m2 + 2m + 2), B = l2+(m+1)(2m+1)(m2+m+1)
l2−m(2m+1)(m2+m+1)

, C =

l2+m(2m+1)(m2+m+1)
l2−(m+1)(2m+1)(m2+m+1)

, D = (dBe+1)m2+2m+1, and E = (dCe+1)m2+m+2−dCe.
Then clearly A = max{D, E}.

When l2 ≥ (m+1)(2m+1)(m2 +m+1)+1 = (m+ 1
2
)(m+1)(2m2 +2m+2)+1 >

m(m+1)(2m2+2m+2) = b t
2
c(b t

2
c+1)(|St|+1), by Theorem 3.6, there exists at least

101

one solution of p and q that satisfies Equation Set (1). Then by Lemma 3.7, there

exists a solution ‘p = p∗, q = q∗’ to Equation Set (1) that satisfies either the condition

l2
2m+1

−∆Q

2
< q∗ ≤ p∗ < l2

2m+1
+ ∆P

2
or the condition l2

2m+1
−∆P

2
≤ p∗ < q∗ ≤ l2

2m+1
+

∆Q

2
.

We analyze the two cases below.

• Case 1: there is a solution ‘p = p∗, q = q∗’ to Equation Set (1) that satisfies

the condition l2
2m+1

− ∆Q

2
< q∗ ≤ p∗ < l2

2m+1
+ ∆P

2
. We use Construction 3.1 to

t-interleave an (|St|+1)×l2 torus G1. Note that when l2 ≥ (m+1)(2m+1)(m2+

m + 1) + 1, l2
2m+1

− ∆Q

2
> 0, so q∗ > 0. Also note that p∗

q∗ < l2/(2m+1)+∆P /2
l2/(2m+1)−∆Q/2

= B,

so D ≥ (dp∗
q∗ e+1)m2 +2m+1. Let G2 be an [d D

|St|+1
e(|St|+1)]× l2 torus got by

tiling d D
|St|+1

e copies of G1 vertically. We use Construction 4.1 to find a zigzag

row in G2; then by removing the zigzag row in G2, we get a torus G3 whose

size is [d D
|St|+1

e(|St| + 1) − 1] × l2. Clearly the number of rows in G1, |St| + 1,

and the number of rows in G3, d D
|St|+1

e(|St| + 1) − 1, are relatively prime. So

for any l0 × l2 torus G where l0 ≥ (|St| + 1 − 1)(d D
|St|+1

e(|St| + 1) − 1 − 1) =

|St|(d D
|St|+1

e(|St|+1)−2), it can be got by tiling copies of G1 and G3 vertically —

and by Lemma 3.5, G is t-interleaved, with the t-interleaving degree of |St|+ 1.

• Case 2: there is a solution ‘p = p∗, q = q∗’ to Equation Set (1) that satisfies

the condition l2
2m+1

− ∆P

2
≤ p∗ < q∗ ≤ l2

2m+1
+

∆Q

2
. We use Construction

3.1 to t-interleave an (|St| + 1) × l2 torus G1. Note that when l2 ≥ (m +

1)(2m + 1)(m2 + m + 1) + 1, l2
2m+1

− ∆P

2
> 0, so p∗ > 0. Also note that

q∗
p∗ ≤

l2/(2m+1)+∆Q/2

l2/(2m+1)−∆P /2
= C, so E ≥ (d q∗

p∗ e + 1)m2 + m + (2 − d q∗
p∗ e). Let G2 be

an [d E
|St|+1

e(|St| + 1)] × l2 torus got by tiling d E
|St|+1

e copies of G1 vertically.

We use Construction 4.2 to find a zigzag row in G2; then by removing the

zigzag row in G2, we get a torus G3 whose size is [d E
|St|+1

e(|St| + 1) − 1] × l2.

Clearly the number of rows in G1, |St| + 1, and the number of rows in G3,

d E
|St|+1

e(|St| + 1) − 1, are relatively prime. So for any l0 × l2 torus G where

l0 ≥ (|St| + 1 − 1)(d E
|St|+1

e(|St| + 1) − 1 − 1) = |St|(d E
|St|+1

e(|St| + 1) − 2), it

can be got by tiling copies of G1 and G3 vertically — and by Lemma 3.5, G is

t-interleaved, with the t-interleaving degree of |St|+ 1.

102

Now let G be an l1 × l2 torus where l2 ≥ (m + 1)(2m + 1)(m2 + m + 1) + 1 and

l1 ≥ (2m2 + 2m + 1)(d A
2m2+2m+2

e(2m2 + 2m + 2)− 2) = |St|(dmax{D,E}
|St|+1

e(|St|+ 1)− 2).

Based on the analysis for Case (1) and Case (2), we know that G’s t-interleaving

number is at most |St| + 1. By the sphere packing lower bound, G’s t-interleaving

number is at least |St|. So G’s t-interleaving number is either |St| or |St|+ 1.

2

For easy reference, we show the method for optimally t-interleaving a large torus as

a construction below. Note that the construction below is applicable only when t ≥ 5

(and by default, t is odd). When t = 1, any torus can be t-interleaved with 1 integer

in a trivial way. When t = 3, the torus can be t-interleaved with the construction to

be presented in Appendix I.

Construction 4.3: Optimal t-Interleaving on a Large Torus

Input: An odd integer t such that t ≥ 5. An integer m such that m = t−1
2

. An l1× l2

torus, where

l2 ≥ (m + 1)(2m + 1)(m2 + m + 1) + 1

and

l1 ≥ (2m2 + 2m + 1)

(
d A

2m2 + 2m + 2
e(2m2 + 2m + 2)− 2

)

. (The parameter A is as defined in Theorem 3.10.)

Output: An optimal t-interleaving on the l1 × l2 torus.

Construction:

1. If both l1 and l2 are multiples of |St|, then the l1 × l2 torus’ t-interleaving

number is |St|. In this case, we use Construction 2.2 to t-interleave the l1 × l2 torus

with |St| distinct integers.

2. If either l1 or l2 is not a multiple of |St|, then the l1 × l2 torus’ t-interleaving

number is |St|+ 1. In this case, we t-interleave the torus with |St|+ 1 integers in the

following way: firstly, we t-interleave an (|St|+1)× l2 torus, B, by using Construction

3.1 (note that |St|+ 1 = 2m2 + 2m + 2); secondly, let H be an [d A
|St|+1

e(|St|+ 1)]× l2

torus which is got by tiling d A
|St|+1

e copies of B vertically, and use Construction 4.1

103

or Construction 4.2 (depending on which is applicable) to find a zigzag row in H;

thirdly, remove the zigzag row in H to get a [d A
|St|+1

e(|St|+1)−1]× l2 torus T ; finally,

find non-negative integers x and y such that l1 = x(|St|+1)+ y[d A
|St|+1

e(|St|+1)− 1],

and get an l1 × l2 torus by tiling x copies of B and y copies of T vertically. The

resulting interleaving on the l1 × l2 torus is a t-interleaving.

2

3.4.4 Optimal Interleaving When t Is Even

When t is even, the optimal t-interleaving on large tori can be analyzed in a very

similar way as in the case of odd t. The main result for even t is shown in the following

theorem. For succinctness, we leave the major steps and intermediate results of the

corresponding analysis in Appendix II.

Theorem 3.11 Let t be a positive even integer. Let m = t
2
. Define A as

A = max{ (d2l2+(m+1)(2m+1)(2m2+1)
2l2−m(2m+1)(2m2+1)

e+ 1)m2 + (3− d2l2+(m+1)(2m+1)(2m2+1)
2l2−m(2m+1)(2m2+1)

e)m− 3,

(d 2l2+m(2m+1)(2m2+1)
2l2−(m+1)(2m+1)(2m2+1)

e+ 1)m2 + (3− d 2l2+m(2m+1)(2m2+1)
2l2−(m+1)(2m+1)(2m2+1)

e)m− 1

−2d 2l2+m(2m+1)(2m2+1)
2l2−(m+1)(2m+1)(2m2+1)

e}

. Then when

l2 >
(m + 1)(2m + 1)(2m2 + 1)

2

and

l1 ≥ 2m2

(
d A

2m2 + 1
e(2m2 + 1)− 2

)

, an l1 × l2 (or equivalently, l2 × l1) torus’ t-interleaving number is either |St| or

|St|+ 1.

3.5 General Bounds on Interleaving Numbers

We have shown that for a torus whose size is large enough in both dimensions (The-

orem 3.10 and Theorem 3.11), its t-interleaving number is at most |St| + 1. If the

104

requirement on the torus’ size is loosened to some extent (Theorem 3.8), then its

t-interleaving number is at most |St|+ 2. Does that mean for a torus of any size, its

t-interleaving number is always at most |St| plus a small constant? The answer is no.

The following theorem shows bounds on t-interleaving numbers.

Theorem 3.12 (1) The t-interleaving numbers of two-dimensional tori are |St| +
O(t2) in general. And that upper bound is tight, even if the following restriction is

enforced on the tori — the number of rows or the number of columns of the torus

approaches infinity. (2) When both l1 and l2 are of the order Ω(t2), the t-interleaving

number of an l1 × l2 torus is |St|+ O(t).

Proof: (1) Firstly, let’s show that the t-interleaving numbers of two-dimensional

tori are |St| + O(t2) in general. Let G be an l1 × l2 torus. First we assume that

t is even and l1 ≥ t, l2 ≥ t. Let K1 = b l1
t
c, K2 = b l2

t
c. We see G as being

tiled by small blocks in the way shown in Fig. 3.12, where the blocks are labelled

by ‘A’ or ‘B’. (Note that two blocks both labelled as ‘A’ are not necessary of the

same size. And two blocks both labelled as ‘B’ are not necessary of the same size,

either.) For every block labelled as ‘A’ (respectively, ‘B’), the four blocks around it

(to its left, right, up and down) are all labelled as ‘B’ (respectively, ‘A’). Each block

consists of either d l1
2K1
e or b l1

2K1
c rows, and either d l2

2K2
e or b l2

2K2
c columns. (Note that

d l1
2K1
e = dK1t+(l1 mod t)

2K1
e = t

2
+ d l1 mod t

2K1
e, b l1

2K1
c = t

2
+ b l1 mod t

2K1
c, d l2

2K2
e = t

2
+ d l2 mod t

2K2
e,

b l2
2K2
c = t

2
+ b l2 mod t

2K2
c.) We see each block as a torus of its corresponding size. (So

for a block whose size is α× β, it vertices are denoted by (i, j) for i = 0, 1, · · · , α− 1

and j = 0, 1, · · · , β, in the same way a torus’ vertices are normally denoted.) Now

we interleave all the blocks following these two rules: (i) only integers in the set

{1, 2, · · · , d l1
2K1
e · d l2

2K2
e} are used to interleave any block ‘A’, and only integers in the

set {d l1
2K1
e · d l2

2K2
e + 1, d l1

2K1
e · d l2

2K2
e + 2, · · · , 2 · d l1

2K1
e · d l2

2K2
e} are used to interleave

any block ‘B’; (ii) for all the blocks labelled by ‘A’ (respectively, ‘B’) and for any

i and j, the vertices denoted by (i, j) in them (provided they exist) are all labelled

by the same integer. It is very easy to see that G is t-interleaved in this way, using

2 · d l1
2K1
e · d l2

2K2
e = 2(t

2
+ d l1 mod t

2K1
e)(t

2
+ d l2 mod t

2K2
e) ≤ 2(t

2
+ d t−1

2
e)(t

2
+ d t−1

2
e) = 2t2 =

105

A B A A B

B A B A B

B

B A A

B

A

A B A A B

B A B

1l

l2

G

Figure 3.12: See G as being tiled by small blocks.

|St|+ 3
2
t2 distinct integers. So G’s t-interleaving number is |St|+ O(t2).

Now we assume t is even, and l1 < t or l2 < t. Without loss of generality, let’s

say l1 < t. Then we see G as being tiled horizontally by smaller tori A1, A2, · · · , An,

where each Ai — for i = 1, 2, · · · , n−1 — is an l1×t torus, and An is an l1×(l2 mod t)

torus. We interleave A1, A2, · · · , An−1 in exactly the same way, and assign l1 × t

distinct integers to each of them. We interleave An with a disjoint set of l1×(l2 mod t)

integers. Clearly G is t-interleaved in this way, using l1 ·t+l1 ·(l2 mod t) = |St|+O(t2)

distinct integers. So again, G’s t-interleaving number is |St|+ O(t2).

Finally we assume t is odd. We can (t+1)-interleave G using |St+1|+O((t+1)2) =

(t+1)2

2
+ O((t + 1)2) = t2+1

2
+ O(t2) = |St|+ O(t2) distinct integers. t + 1 is even, and

a (t + 1)-interleaving is also a t-interleaving. So G’s t-interleaving number is still

|St|+ O(t2).

Now let’s show that the above bound on t-interleaving numbers, |St| + O(t2), is

tight, no matter if t is even or odd. Consider an l1 × l2 torus where l1 is the largest

even integer that is no greater than b3
2
tc, and l2 is any integer greater than or equal

to b3
4
tc. We are firstly going to show that a t-interleaving can place an integer at

most twice in any b3
4
tc consecutive columns of the torus.

Assume a t-interleaving places an integer on three vertices in b3
4
tc consecutive

columns of the torus. Without loss of generality, let’s say those three nodes are v0,0,

vi1,j1 and vi2,j2 , where 0 ≤ j1 ≤ b3
4
tc− 1 and 0 ≤ j2 ≤ b3

4
tc− 1. Since the interleaving

106

is a t-interleaving, the Lee distance between any two of those three vertices is at least

t. Let a = l1
2

and b = b3
4
tc− 1. It is not difficult to see that the Lee distance between

vi1,j1 and va,b is at most min{(a−i1) mod l1, (i1−a) mod l1}+(b−j1) = l1
2
−min{(0−

i1) mod l1, (i1−0) mod l1}+(b−j1) = l1
2
+b−[min{(0−i1) mod l1, (i1−0) mod l1}+j1].

Since the Lee distance between v0,0 and vi1,j1 is at most min{(0 − i1) mod l1, (i1 −
0) mod l1}+j1, we know that min{(0−i1) mod l1, (i1−0) mod l1}+j1 ≥ t. Therefore

the Lee distance between vi1,j1 and va,b is at most l1
2

+ b− t ≤ b3
2
tc/2 + b3

4
tc − 1− t

< t
2
. Similarly, the Lee distance between vi2,j2 and va,b is also less than t

2
. Therefore

the Lee distance between vi1,j1 and vi2,j2 is less than t, which is a contradiction. So a

t-interleaving cannot place an integer on more than two vertices in b3
4
tc consecutive

columns of the torus.

Any b3
4
tc consecutive columns of the l1×l2 torus contain l1×b3

4
tc ≥ (3

2
t−2)×(3

4
t−1)

= 9
8
t2− 3t+2 vertices, where each integer can be placed on at most two vertices by a

t-interleaving. Therefore the t-interleaving number of the torus is at least
9
8
t2−3t+2

2
=

9
16

t2− 3
2
t+1 = t2+1

2
+ 1

16
t2− 3

2
t+ 1

2
≥ |St|+ 1

16
t2− 3

2
t+ 1

2
= |St|+Θ(t2), which matches

the upper bound |St| + O(t2). Since here l2 can be any integer that is no less than

b3
4
tc, the upper bound is tight even if the number of columns (or equivalently, the

number of rows) of the torus approaches infinity. The first part of this theorem has

been proved by now.

(2) Let’s prove the second part of this theorem. In the previous part of this proof,

a method for t-interleaving an l1 × l2 torus has been proposed for the case ‘t is even

and l1 ≥ t, l2 ≥ t’. That method uses 2(t
2
+ d l1 mod t

2K1
e)(t

2
+ d l2 mod t

2K2
e) distinct integers.

(Note that K1 = b l1
t
c and K2 = b l2

t
c.) When both l1 and l2 are of the order Ω(t2),

both K1 and K2 are of the order of Ω(t) — and then 2(t
2
+ d l1 mod t

2K1
e)(t

2
+ d l2 mod t

2K2
e) =

2(t
2

+ O(1))(t
2

+ O(1)) = t2

2
+ O(t) = |St|+ O(t). When t is odd, we can t-interleave

an l1 × l2 torus, where l1 = Ω(t2) = Ω((t + 1)2) and l2 = Ω(t2) = Ω((t + 1)2), by

(t+1)-interleaving it using |St+1|+O(t+1) = (t+1)2

2
+O(t) = t2+1

2
+O(t) = |St|+O(t)

distinct integers. So no matter if t is even or odd, when both l1 and l2 are of the

order Ω(t2), the t-interleaving number of an l1 × l2 torus is |St|+ O(t).

107

2

3.6 Brief Discussions

In this chapter, we study the t-interleaving problem for two-dimensional tori. The

necessary and sufficient conditions for tori that can be perfectly t-interleaved are

proven, and the corresponding perfect t-interleaving construction is presented, based

on the method of sphere packing. The most important contribution of this paper is

to prove that for tori whose sizes are large in both dimensions, which constitute by

far the majority of all existing cases, their t-interleaving numbers are at most one

more than the sphere packing lower bound. Optimal t-interleaving constructions for

such tori are presented, based on the method of removing-a-zigzag-row and tori-tiling.

Then, some bounds on the t-interleaving numbers are shown. Those results together

give a general picture for the t-interleaving problem for two-dimensional tori.

The importance of the t-interleaving method based on removing-a-zigzag-row and

tori-tiling is not limited to the results in Theorem 3.10 and Theorem 3.11. Those two

theorems should be seen as a lower bound for the performance of the t-interleaving

method. By analyzing the performance of the corresponding t-interleaving construc-

tions more carefully, and furthermore, by keeping the main idea of the t-interleaving

method but tuning its specific parameters on a case-by-case basis, we can improve

the bounds derived in Theorem 3.10 and Theorem 3.11. The content of Appendix I

can serve as an example in this aspect. What’s more, the t-interleaving method can

be used to optimally t-interleave some tori whose sizes do not fall within the derived

bounds.

3.7 Appendix I

The optimal t-interleaving construction for odd t, Construction 4.3, if applicable only

when t ≥ 5. In this appendix, we present the optimal t-interleaving construction

when t = 3, thus completing the result for t-interleaving on large tori while t being

108

odd. We also use this case, t = 3, as an example to show how previous results can be

improved if the t-interleaving problem is analyzed case by case and more carefully.

We will show that when l1 ≥ 20 and l2 ≥ 15 (or equivalently, when l1 ≥ 15 and

l2 ≥ 20), an l1× l2 torus’ 3-interleaving number is either 5 or 6. (Note that |S3| = 5.)

Below we present an construction that can optimally 3-interleaves any l1 × l2 torus

where l1 ≥ 20 and l2 ≥ 15, except when l2 = 19.

Construction 4.4: Optimally 3-Interleave an l1 × l2 torus, where l1 ≥ 20, l2 ≥ 15,

and l2 6= 19.

1. If both l1 and l2 are multiples of 5, then the l1× l2 torus’ 3-interleaving number

is |St| = 5. In this case, 3-interleave the l1 × l2 torus with 5 integers by using

Construction 2.2.

If l1 or l2 is not a multiple of 5, then use the following 3 steps to 3-interleave

the l1 × l2 torus with 6 integers.

2. Find non-negative integers x1 and x2 such that l1 = 5x1 + 6x2. Find non-

negative integers y1, y2 and y3 such that l2 = 5y1 + 8y2 + 12y3.

3. There are 6 tori shown in Fig. 3.13(a)— an 5× 5 torus ‘A’, an 5× 8 torus ‘B’,

an 5× 12 torus ‘C’, an 6× 5 torus ‘A′’, an 6× 8 torus ‘B′’ and an 6× 12 torus ‘C ′’.

Get a 5× l2 torus M1 by tiling horizontally y1 copies of ‘A’, y2 copies of ‘B’ and

y3 copies of ‘C’ (whose order can be arbitrary).

Get a 6 × l2 torus M2 by tiling horizontally y1 copies of ‘A′’, y2 copies of ‘B′’

and y3 copies of ‘C ′’, whose order needs to satisfy this rule: for i = 1 to y1 + y2 + y3,

if the i-th module-torus in M1 is an ‘A’ (respectively, a ‘B’ or a ‘C’), then the i-th

module in M2 is an ‘A′’ (respectively, a ‘B′’ or a ‘C ′’).

4. Get an l1 × l2 torus by tiling x1 copies of M1 and x2 copies of M2 vertically

(whose order can be arbitrary). The interleaving on the l1×l2 torus is a 3-interleaving.

2

Example 3.10 We use Construction 4.4 to 3-interleave an l1×l2 torus where l1 = 11

and l2 = 25. l1 is not a multiple of |St|, so the torus’ 3-interleaving number is greater

109

1

2

2

3

4 1

2

3

30

4

5

5

0

1

0

1

2

3

5

0

5

0

1

2

A

2

1

3

2

3

4

1

5

1

3

4

2

0 3 5 1 3

2

3

4

5

4

5

0

2

0

1

3

4

2

4

5

0

5

0

1

2

0

5

0

B

5

4

2

1

0 2 5 1 4 0 3 5 2 4 1 3

3

5

0

1

0

1

3

4

2

5

0

5

0

2

3

1

3

4

5

4

5

1

2

0

2

3

4

3

4

0

1

5

1

2

3

2

3

5

0

4

0

1

2

4

C

1

2

3

4

5

2

3

4

5

0

1

4

5

0

1

2

3

1

2

3

4

5

0

3

4

5

0

1

2

0

A
,

2

1

4

3

5

2

3

4

0

1

5

1

3

5

4

0

2

0 3 5 1 3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

4

5

0

1

2

0

B
,

5

4

3

2

1

0 2 5 1 4 0 3 5 2 4 1 3

3

4

5

0

1

0

1

2

3

4

2

3

5

0

5

0

1

2

3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

3

4

5

0

1

5

0

1

2

3

2

3

4

5

0

4

5

0

1

2

4

C
,

1

2

2

3

4 1

2

3

30

4

5

5

0

1

0

1

2

3

5

0

5

0

1

2

2

1

3

2

3

4

1

5

1

3

4

2

0 3 5 1 3

2

3

4

5

4

5

0

2

0

1

3

4

2

4

5

0

5

0

1

2

0

5

0

5

4

2

1

0 2 5 1 4 0 3 5 2 4 1 3

3

5

0

1

0

1

3

4

2

5

0

5

0

2

3

1

3

4

5

4

5

1

2

0

2

3

4

3

4

0

1

5

1

2

3

2

3

5

0

4

0

1

2

4

1

2

3

4

5

2

3

4

5

0

1

4

5

0

1

2

3

1

2

3

4

5

0

3

4

5

0

1

2

0

5

4

3

2

1

0 2 5 1 4 0 3 5 2 4 1 3

3

4

5

0

1

0

1

2

3

4

2

3

5

0

5

0

1

2

3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

3

4

5

0

1

5

0

1

2

3

2

3

4

5

0

4

5

0

1

2

4

2

1

4

3

5

2

3

4

0

1

5

1

3

5

4

0

2

0 3 5 1 3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

4

5

0

1

2

0

(a) Modules

(b) Tiling of modules

Figure 3.13: Using modules for 3-interleaving. (a) The 6 modules; (b) Tiling the
modules.

110

than 5. Since l1 = 5 + 6 and l2 = 5 + 8 + 12, the variables in Construction 4.4 can be

set as follows: x1 = 1, x2 = 1, y1 = 1, y2 = 1 and y3 = 1. And we can let the torus

M1 have the form of [ABC], and let the torus M2 have the form of [A′B′C ′]. We

then tile M1 and M2 to get the l1 × l2 torus, which is of the form

 A B C

A′ B′ C ′

.

This 3-interleaved torus is shown in Fig. 3.13(b). The interleaving used 6 = |S3|+ 1

integers.

Clearly, since 25 = 5× 5 + 8× 0 + 12× 0, another choice to tile the 11× 25 torus

is

 A A A A A

A′ A′ A′ A′ A′

.

2

Construction 4.4 constructs a 3-interleaved l1×l2 torus by tiling copies of 6 module-

tori — the 6 tori shown in Fig. 3.13(a). It can be readily verified that when those 6

tori are tiled following the rule in Construction 4.4, the resulting interleaving on the

l1 × l2 torus is indeed a 3-interleaving. There are only a limited number of cases to

analyze for the verification, so we skip the details. We comment that Construction

4.4 does not work for the case l2 = 19, because 19 cannot be written as a linear

combination of 5, 8 and 12 with non-negative coefficients — therefore an l1×19 torus

cannot be got by tiling the module-tori. We present the construction for the case

l2 = 19 below.

Construction 4.5: Optimally 3-Interleave an l1 × 19 torus, where l1 ≥ 20.

Construction: Find non-negative integers x1 and x2 such that l1 = 5x1 + 6x2. There

are 2 tori shown in Fig. 3.14 — a 5 × 19 torus F and a 6 × 19 torus F ′. Get an

l1 × 19 torus by tiling x1 copies of F and x2 copies of F ′ vertically (whose order can

be arbitrary). The resulting interleaving on the l1 × 19 torus is a 3-interleaving. 2

The correctness of Construction 4.5 can be easily verified, so we skip the details.

Based on the previous two constructions, we readily get the following conclusion for

3-interleaving.

Theorem 3.13 When l1 ≥ 20 and l2 ≥ 15, or when l1 ≥ 15 and l2 ≥ 20, an l1 × l2

111

0

1

2

4

5

2 4 3 5 1 3 4 0 2 1 3 5 1 4

3

5

0

1

0

1

2

3

1

2

3

4

5

4

5

0

2

0

1

3

4

2

4

5

0

5

0

1

2

0

1

2

3

4

4

5

1

5

0

2

3

2

3

1

3

4

5

4

5

0

1

5

0

1

2

3

2

3

4

0

4

5

1

2

0

2

3

4

3

4

5

0

5

0

1

3

0

1

2

3

4

5

2 4 0 3 5 1 3 5 4 0 2 4 1 3 5 1 4

3

4

5

0

1

5

0

1

2

3

1

2

3

4

5

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

4

5

0

1

2

0

1

2

3

4

4

5

0

1

5

0

1

2

3

2

3

1

2

3

4

5

3

4

5

0

1

5

0

1

2

3

2

3

4

5

0

4

5

0

1

2

0

1

2

3

4

2

3

4

5

0

5

0

1

2

3

F

F

,

Figure 3.14: Two modules used for 3-interleaving an l1 × 19 torus, where l1 ≥ 20.

torus’ 3-interleaving number is either |S3| or |S3|+ 1.

We comment that the result we got here is comparatively better than the result

derived in Section IV. (For example, if Theorem 3.10 is applied for the case t = 3,

then the bound for l2 would be 19. However here our bound for l2 is 15.) However, we

should notice that the t-interleaving method used here is the same as the method used

for t > 3 per se. (We can see that the module-tori ‘A’, ‘B’, ‘C’ in Fig. 3.13(a) and ‘F ’

in Fig. 3.14 are got by removing a zigzag row from ‘A′’, ‘B′’, ‘C ′’ and ‘F ′’. The zigzag

rows are shown in circles in those two figures. Both the interleaving method here and

the method in Section IV are based on torus tiling.) The improvement is made by

better tuning of construction parameters and more careful analysis of the bounds.

The construction used for t = 3 does not follow all the requirements used in Section

IV. (For example, the zigzag row in Fig. 3.14 does not follow Rule 3.) In Section

IV, while endeavoring to optimally tune all the parameters, we also need to ensure

that the construction will work for all the cases of t > 3. If the interleaving problem

is analyzed case by case (specifically, for each value of t, l1 and l2), the interleaving

construction has room for further optimization.

112

3.8 Appendix II

In this appendix, we show how to optimally t-interleave large tori when t is even. The

process is similar to the case where t is odd, differing only in details. For this reason,

we just present a succinct description of the process and results. This appendix’s

content is parallel to that of the first three subsections of Section IV, so comparative

reading should help the understanding greatly.

We assume t is even throughout the remainder of this appendix. The definitions

of ‘a zigzag row ’ and ‘removing a zigzag row ’ are the same as in Definition 4.1 and

4.2.

Let B be an l0 × l2 torus which is t-interleaved by Construction 3.1 utilizing the

offset sequence S = ‘s0, s1, · · · , sl2−1’. Let H be an l1 × l2 torus got by tiling several

copies of B vertically. Let m = t
2
. There are four rules to follow for devising a zigzag

row — denoted by {(a0, 0), (a1, 1), · · · , (al2−1, l2 − 1)} — in H:

• Rule 1: For any j such that 0 ≤ j ≤ l2 − 1, if the integers sj, s(j+1) mod l2 , · · · ,
s(j+m−1) mod l2 do not all equal t− 1, then aj ≥ a(j+m) mod l2 + m− 1.

• Rule 2: For any j such that 0 ≤ j ≤ l2 − 1, if exactly one of the integers

sj, s(j+1) mod l2 , · · · , s(j+m) mod l2 equals t, then aj ≤ a(j+m+1) mod l2 − (m− 2).

• Rule 3: For any j such that 0 ≤ j ≤ l2−1, if sj = t−1, then aj ≤ a(j+1) mod l2−
(2m− 2).

• Rule 4: For any j such that 0 ≤ j ≤ l2 − 1, 2m− 2 ≤ aj ≤ l1 − 1− (2m− 2).

Lemma 3.8 Let B be a torus t-interleaved by Construction 3.1. Let H be a torus

got by tiling copies of B vertically, and let T be a torus got by removing a zigzag row

in H, where the zigzag row in H follows the four rules — Rule 1, Rule 2, Rule 3 and

Rule 4. Let G be a torus got by tiling copies of B and T vertically. Then, both T and

G are t-interleaved.

Now we present two constructions for finding a zigzag row, which are the coun-

terparts of Construction 4.1 and 4.2. Let B be an l0 × l2 torus which is t-interleaved

113

by Construction 3.1 utilizing the offset sequence S = ‘s0, s1, · · · , sl2−1’. Let H be an

l1×l2 torus got by tiling z copies of G vertically. We say the offset sequence S consists

of p ‘P ’s and q ‘Q’s, where p > 0 and q > 0. We require that in S, the ‘P ’s and

‘Q’s are interleaved very evenly, and that S starts with a P and ends with a Q. Let

m = t
2
. Let L = (2m−2)+(m−1)dp

q
e if p ≥ q, and let L = (2m−2)+(m−2)d q

p
e+1

if p < q. We require that l1 ≥ (dp
q
e+1)m2 +(3−dp

q
e)m− 3 if p ≥ q, and require that

l1 ≥ (d q
p
e+1)m2+(3−d q

p
e)m−(2d q

p
e+1) if p < q. Below we present two constructions

for constructing a zigzag row, which is denoted by {(a0, 0), (a1, 1), · · · , (al2−1, l2−1)},
in H, applicable respectively when p ≥ q and p < q.

Construction 4.6: Constructing a zigzag row in H, when t is even, t > 2, and

p ≥ q > 0

1. Let sx1 , sx2 , · · · , sxp+q be the integers such that 0 = x1 < x2 < · · · < xp+q =

l2 − m − 1, and each sxi
(1 ≤ i ≤ p + q) is the first element of a ‘P ’ or ‘Q’ in the

offset sequence S.

Let ax1 = L. For i = 2 to p+ q, if sxi−1
is the first element of a ‘Q’, let axi

= L.

For i = 2 to p + q, if sxi−1
is the first element of a ‘P ’, then let axi

= axi−1
−

(m− 1).

2. For i = 2 to m and for j = 1 to p + q, let axj+i−1 = axj+i−2 + L−m + 1.

3. Let sy1 , sy2 , · · · , syq be the integers such that y1 < y2 < · · · < yq = l2 − 1, and

each syi
(1 ≤ i ≤ q) is the last element of a ‘Q’ in the offset sequence S.

For i = 1 to q, ayi
= L + (m− 1)(L−m + 1) + (m− 1).

Now we have fully determined the zigzag row, {(a0, 0), (a1, 1), · · · , (al2−1, l2 −
1)}, in the torus H.

2

Construction 4.7: Constructing a zigzag row in H, when t is even, t > 2, and

0 < p < q

1. Let sx1 , sx2 , · · · , sxp+q be the integers such that 0 = x1 < x2 < · · · < xp+q =

l2 − m − 1, and each sxi
(1 ≤ i ≤ p + q) is the first element of a ‘P ’ or ‘Q’ in the

offset sequence S.

114

Let ax1 = L. For i = 2 to p + q, if sxi
is the first element of a ‘P ’, then let

axi
= L; if sxi−1

is the first element of a ‘P ’, then let axi
= L − d q

p
e(m − 2) − 1;

otherwise, let axi
= axi−1

+ (m− 2).

2. For i = 2 to m and for j = 1 to p + q, let axj+i−1 = axj+i−2 + L−m + 1.

3. Let sy1 , sy2 , · · · , syq be the integers such that y1 < y2 < · · · < yq = l2 − 1, and

each syi
is the last element of a ‘Q’ in the offset sequence S.

For i = 1 to q, ayi
= ayi−1 + L−m + 1.

Now we have fully determined the zigzag row, {(a0, 0), (a1, 1), · · · , (al2−1, l2 −
1)}, in the torus H.

2

Theorem 3.14 The zigzag rows constructed by Construction 4.6 and Construction

4.7 follow all the four rules — Rule 1, Rule 2, Rule 3 and Rule 4.

Lemma 3.9 In Equation Set (2) (which is in Construction 3.1), let the values of t,

m and l2 be fixed. Let ‘p = p0, q = q0’ be a solution that satisfies the Equation Set

(2). Then, another solution ‘p = p1, q = q1’ also satisfies the Equation Set (2) if

and only if there exists an integer c such that p1 = p0 + c(m + 1)(2m2 + 1) ≥ 0 and

q1 = q0 − cm(2m2 + 1) ≥ 0.

Lemma 3.10 In Equation Set (2) (which is in Construction 3.1), let the values of

t, m and l2 be fixed. Let ∆P = (m + 1)(2m2 + 1) and ∆Q = m(2m2 + 1). If there

exists a solution of p and q that satisfies the Equation Set (2), then there exists a

solution ‘p = p∗, q = q∗’ that satisfies not only the Equation Set (2) but also one of

the following two inequalities:

l2
2m + 1

− ∆Q

2
< q∗ ≤ p∗ <

l2
2m + 1

+
∆P

2
(3.5)

l2
2m + 1

− ∆P

2
≤ p∗ < q∗ ≤ l2

2m + 1
+

∆Q

2
(3.6)

115

Theorem 3.11 Let t be a positive even integer. Let m = t
2
. Define A as

A = max{ (d2l2+(m+1)(2m+1)(2m2+1)
2l2−m(2m+1)(2m2+1)

e+ 1)m2 + (3− d2l2+(m+1)(2m+1)(2m2+1)
2l2−m(2m+1)(2m2+1)

e)m− 3,

(d 2l2+m(2m+1)(2m2+1)
2l2−(m+1)(2m+1)(2m2+1)

e+ 1)m2 + (3− d 2l2+m(2m+1)(2m2+1)
2l2−(m+1)(2m+1)(2m2+1)

e)m− 1

−2d 2l2+m(2m+1)(2m2+1)
2l2−(m+1)(2m+1)(2m2+1)

e}

. Then when

l2 >
(m + 1)(2m + 1)(2m2 + 1)

2

and

l1 ≥ 2m2

(
d A

2m2 + 1
e(2m2 + 1)− 2

)

, an l1 × l2 (or equivalently, l2 × l1) torus’ t-interleaving number is either |St| or

|St|+ 1.

We skip the specific construction of optimally t-interleaving large tori here, be-

cause of its similarity to Construction 4.3. But we present its sketch. Basically, if

the torus can be perfectly t-interleaved, then it can be optimally t-interleaved using

Construction 2.2; if the torus cannot be perfectly t-interleaved and t ≥ 4, then it can

be optimally t-interleaved using the tori-tiling method. The only remaining case is

‘the torus cannot be perfectly t-interleaved and t = 2’. In that case, we can optimally

t-interleave the torus (say it is an l1 × l2 torus) using |St| + 1 = 3 distinct integers

in the following way: interleave a ring of l1 vertices and a ring of l2 vertices using 3

integers — 0, 1 and 2 — such that no two adjacent vertices in those two rings are

assigned the same integer; for i = 1, 2, · · · , l1 (respectively, for i = 1, 2, · · · , l2), use

I(i) (respectively, use J(i)) to denote the integer assigned to the i-th vertex in the

ring of l1 (respectively, l2) vertices; for i = 0, 1, · · · , l1 − 1 and j = 0, 1, · · · , l2 − 1,

label the vertex (i, j) in the l1 × l2 torus with the integer (I(i + 1) + J(j + 1)) mod 3

— and then the torus is optimally 2-interleaved.

116

Chapter 4

Multi-Cluster Interleaving on
Paths and Cycles

4.1 Introduction

As we have discussed before, interleaving codewords is an important method not

only for error-correction, but also for data storage and retrieval. For instance, data-

streaming and broadcast schemes using erasure-correcting codes have received ex-

tensive interest in both academia and industry, where interleaved components of a

codeword are transmitted in sequence, and every client can listen to this data flow

for a while until enough codeword components are received for recovering the in-

formation [17], [54]. (An example is shown in Fig. 4.1 (a), where a codeword of 7

components is broadcast repeatedly. We assume that the codeword can tolerate 2

erasures. Therefore every client only needs to receive 5 different components.) An-

other instance is file storage in networks, where a file is encoded into a codeword,

and components of the codeword are interleavingly placed on a network, such that

every node in the network can retrieve enough distinct codeword components from

its proximity for recovering the file [35], [63]. (An example is shown in Fig. 4.1 (b),

where the codeword again has length 7 and can tolerate 2 erasures. We assume that

all edges have length 1. Then every network node can retrieve 5 distinct codeword

components from its proximity of radius 2 for recovering the file.) In all the above

cases, the codeword components are interleaved on some graph structure. For exam-

117

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3

client 1 client 2

4

5

7

35

6

2

6

1

(a) Broadcast (b) File storage in a network

Figure 4.1: Examples of interleaving for data retrieving

ple, in the data streaming and broadcast case, the codeword components can be seen

as interleaved on a path, because they are sequentially transmitted along the time

axis. (If the sequence of data are transmitted repeatedly — e.g., using a broadcast

disk — then they can be seen as interleaved on a cycle.) For the network file storage

case, the codeword components are interleaved on more general graphs. We see that

a client (or a network node) usually retrieves data from a connected subgraph of the

graph. We call every such connected subgraph a cluster.

By using interleaving, the above schemes all enable ‘flexible’ data-retrieving, in

the sense that the information contained in the interleaved data can be recovered

by accessing any reasonably large cluster. The data-retrieving performance can be

further improved if multiple clusters can be accessed in parallel. Accessing data placed

in different parts of a graph in parallel has the benefits of balancing load and reducing

access time, and has been studied to some extent [16], [73]. Then, it is natural to

ask the following question: what is the appropriate form of interleaving for parallel

data-retrieving?

If it is required that for any m (m ≥ 2) non-overlapping clusters, the interleaved

codeword components on them are all distinct, then each codeword component can be

placed only once on the graph, even if m is as small as 2. Such an interleaving scheme,

although minimizing the total size of the clusters that each client needs to access, is

118

not scalable because it requires the number of components in the codeword to equal

the size of the graph, which would imply very high encoding/decoding complexity or

even non-existence of the code if the graph is huge. So in an interleaving scheme for

parallel data-retrieving, a tradeoff is needed between the scheme’s scalability and the

amount of overlapping among codeword components on different clusters.

In this chapter, we only study interleaving for parallel data-retrieving on paths and

cycles, which seems to have natural applications in data-streaming and broadcasting.

Imagine that codeword components interleaved the same way are transmitted asyn-

chronously in several channels. Then a client can simultaneously listen to multiple

channels in order to get data faster, which is equivalent to retrieving data from mul-

tiple clusters. Another possible application is data storage on disks, where we assume

multiple heads can read different parts of a disk in parallel to accelerate I/O speed.

Now assume the codeword in consideration contains N components, and assume

this codeword can be decoded by using any K (K ≤ N) distinct codeword compo-

nents. Assume every client can access m (m ≥ 2) clusters in the path or cycle in

parallel, where a cluster is defined to be a connected subgraph of the path or cycle

containing L vertices. The only constraint on the m clusters a client can access is that

those m clusters don’t overlap each other. That constraint is for guaranteeing that

each client can access no less than mL vertices. Then to enable clients to decode the

codeword, there need to be at least K distinct codeword components placed on any

m non-overlapping clusters. Therefore we define the following general interleaving

problem for parallel data-retrieving:

Definition 4.1 Let G = (V,E) be a path (or cycle) of n vertices. Let N , K, m and

L be positive integers such that N ≥ K > L and m ≥ 2. A cluster is defined to be

a connected subgraph of the path (or cycle) containing L vertices. Assign one integer

in the set {1, 2, · · · , N} to each vertex. Such an assignment is called a Multi-Cluster

Interleaving (MCI) if and only if any m clusters that are non-overlapping are assigned

no less than K distinct integers.

From the above definition, it can be seen that an MCI problem is fully charac-

119

9 1 2 3 1 8 7

1

655

8 27

93

5

4

72

4

n=21, N=9, K=5, m=2, L=3

Figure 4.2: An example of multi-cluster interleaving (MCI)

terized by the five parameters n, N , K, m, L and the graph G = (V, E). For the

ease of explanation later on, we note that throughout this chapter, the parameters n,

N , K, m, L and the graph G = (V,E) will always have the meanings as defined in

Definition 4.1.

Clearly if we let m = 1 in Definition 4.1 (and then let K = L), then it becomes

the traditional 1-dimensional interleaving. And if an interleaving on a path (or cycle)

is an MCI for some given value of m, then it is an MCI for larger values of m as well.

The following is an example of MCI.

Example 4.1 A cycle G = (V, E) of n = 21 vertices is shown in Fig. 4.2. The

parameters are N = 9, K = 5, m = 2 and L = 3. An interleaving is shown in the

figure, where the integer on every vertex is the integer assigned to it. It can be verified

that any 2 clusters of size 3 that don’t overlap have at least 5 distinct integers. For

example, the two clusters in circle in Fig. 4.2 have integers ‘9, 1, 2’ and ‘7, 1, 6’

respectively, so they together have no less than 5 distinct integers. So the interleaving

is a multi-cluster interleaving on the cycle G.

If we remove an edge in the cycle, then G will become a path. Clearly if all other

parameters remain the same, the interleaving shown in Fig. 4.2 will be a multi-cluster

interleaving on the path.

2

The general MCI problem can be divided into smaller problems according to the

120

values of the parameters. The key results in this chapter are:

• The family of problems with constraints that L = 2 and K = 3 are solved for

both paths and cycles. We show that when L = 2 and K = 3, an MCI exists

on a path if and only if the number of vertices in the path is no greater than

(N−1)[(m−1)N−1]+2, and an MCI exists on a cycle if and only if the number

of vertices in the cycle is no greater than (N − 1)[(m − 1)N − 1]. Structural

properties of MCIs in this case are analyzed, and algorithms are presented which

output MCIs on paths or cycles as long as the MCIs exist.

• The family of problems with the constraint that K = L+1 are studied for paths.

A scheme using a ‘hierarchical-chain’ structure is presented for constructing

MCI on paths. It is shown that the scheme solves the MCI problem for paths

that are asymptotically as long as the longest path on which MCIs exist, and

clearly, for shorter paths as well.

The rest of the chapter is organized as follows. In Section 4.2, we firstly derive an

upper bound for the lengths of paths and cycles on which MCIs exist. We then prove

a tighter upper bound for paths for the case of L = 2 and K = 3. In Section 4.3, we

present an optimal construction for MCI on paths for the case of L = 2 and K = 3,

which meets the upper bound presented in Section 4.2. In Section 4.4, we study the

MCI problem for paths when K = L + 1. In Section 4.5 we generalize our results on

MCI from paths to cycles.

4.2 Upper Bounds

While the traditional interleaving exists on infinitely long paths, that is no longer

true for MCI. The following proposition derives a very simple upper bound for the

lengths of paths and cycles on which MCIs exist.

Proposition 4.1 If an MCI exists on a path (or cycle) of n vertices, then n ≤
(m− 1)L

(
N
L

)
+ (L− 1).

121

Proof : Let G = (V,E) be a path (or cycle) of n vertices with an MCI on it. We

can find at most bn
L
c non-overlapping clusters in G. Let S ⊆ {1, 2, · · · , N} be an

arbitrary set of L distinct integers. Then since the interleaving on G is an MCI,

among those bn
L
c non-overlapping clusters, at most m− 1 of them are assigned only

(all or part of the) integers in S and no integers in {1, 2, · · · , N} − S. S can be one

of
(

N
L

)
possible sets. So bn

L
c ≤ (m− 1)

(
N
L

)
. So we get n ≤ (m− 1)L

(
N
L

)
+ (L− 1).

2

We comment that for the same set of parameters N , K, m and L, if an MCI exists

on a path of n = n0 vertices, then an MCI also exists on any path of n < n0 vertices.

That is because given an MCI on a path, the interleaving on the path’s connected

subgraph (which is a shorter path) is also an MCI for the same set of parameters N ,

K, m and L. However, such an argument does not necessarily hold for cycles.

The upper bound of Proposition 4.1 is in fact loose. In the remainder of this

section, we shall prove a tighter upper bound for MCI on paths for the case of L = 2

and K = 3. We present it as the following theorem. Later study will show that this

upper bound is exact.

Theorem 4.1 When L = 2 and K = 3, if there exists an MCI on a path of n vertices,

then n ≤ (N − 1)[(m− 1)N − 1] + 2.

Before proving the above theorem, we firstly define some notations that will be

used throughout this chapter as follows. Let G = (V,E) be a path. We denote the n

vertices in the path G by v1, v2, · · · , vn. For 2 ≤ i ≤ n− 1, the two vertices adjacent

to vi are vi−1 and vi+1. A connected subgraph of G induced by vertices vi, vi+1, · · · , vj

(j ≥ i) is denoted by (vi, vi+1, · · · , vj). If a set of integers are interleaved on G, then

c(vi) denotes the integer assigned to vertex vi. The integers assigned to a connected

subgraph of G, (vi, vi+1, · · · , vj), are denoted by [c(vi)− c(vi+1)− · · · − c(vj)].

The following lemma reveals a certain relationship between the structure of MCIs

and the lengths of paths.

Lemma 4.1 Let the values of N , K, m and L be fixed, where N ≥ 4, K = 3, m ≥ 2

and L = 2. Let nmax denote the maximum value of n such that an MCI exists on

122

a path of n vertices. Then in any MCI on a path of nmax vertices, no two adjacent

vertices are assigned the same integer.

Proof : Let G = (V,E) be a path of nmax vertices. Assume that there is an MCI on

G. We’ll prove this lemma by showing that in this MCI, if two adjacent vertices of G

are assigned the same integer, then there exists a longer path that also has an MCI,

which would clearly contradict the definition of nmax.

Assume that in the MCI on G, there are two adjacent vertices that are assigned

the same integer. Then without loss of generality (WLOG), one of the following four

cases must be true (because we can always get one of the four cases by permuting the

names of the integers and by reversing the indices of the vertices):

Case 1: There exist 4 consecutive vertices in G — vi, vi+1, vi+2, vi+3 — such that

c(vi) = 1, c(vi+1) = c(vi+2) = 2, and c(vi+3) = 1 or 3.

Case 2: There exist x+2 ≥ 5 consecutive vertices in G — vi, vi+1, · · · , vi+x, vi+x+1

— such that c(vi) = 1, c(vi+1) = c(vi+2) = · · · = c(vi+x) = 2, and c(vi+x+1) = 1 or 3.

Case 3: c(v1) = c(v2) = 1, and c(v3) = 2.

Case 4: c(v1) = c(v2) = · · · = c(vx) = 1 and c(vx+1) = 2, where x ≥ 3.

We analyze the four cases one by one.

Case 1: In this case, we insert a vertex v′ between vi+1 and vi+2, and get a new

path of nmax + 1 vertices. Call this new path H, and assign the integer ‘4’ to v′.

Consider any m non-overlapping clusters in H. If none of those m clusters contains

v′, then clearly they are also m non-overlapping clusters in the path G, and therefore

have been assigned at least K = 3 distinct integers. If the m clusters contain all

the three vertices vi+1, v′ and vi+2, then either vi or vi+3 is also contained in the m

clusters because each cluster contains L = 2 vertices, and therefore the m clusters

have been assigned at least K = 3 distinct integers: ‘1,2,4’ or ‘2,3,4’. WLOG, the

only remaining possibility is that one of the m clusters contains vi+1 and v′ while

none of them contains vi+2. Note that among the m clusters, the m − 1 of them

which don’t contain v′ are also m− 1 clusters in the path G, and they together with

(vi+1, vi+2) are m non-overlapping clusters in G and therefore are assigned at least

123

K = 3 distinct integers. Since c(vi+1) = c(vi+2), the original m clusters including

(vi+1, v
′) must also have been assigned at least K = 3 distinct integers. Now we can

conclude that the interleaving on H is also an MCI. But H’s length is greater than

nmax, which contradicts the definition of nmax.

Case 2: In this case, we insert a vertex v′ between vi+1 and vi+2, and insert a

vertex v′′ between vi+x−1 and vi+x, and get a new path of nmax + 2 vertices. Call this

new path H, assign the integer ‘4’ to v′, and assign the integer ‘3’ to v′′. Consider any

m non-overlapping clusters in H. If neither v′ nor v′′ is contained in the m clusters,

then clearly those m clusters are also m non-overlapping clusters in the path G, and

therefore are assigned at least K = 3 distinct integers. If both v′ and v′′ are contained

in the m clusters, then at least one vertex in the set {vi+1, vi+2, · · · , vi+x−1, vi+x} is

also in the m clusters, and therefore the m clusters have at least these 3 integers:

‘2’, ‘3’ and ‘4’. WLOG, the only remaining possibility is that the m clusters con-

tain v′ but not v′′. (Note that the cluster containing v′ is assigned integers ‘2’ and

‘4’.) When that possibility is true, if the m clusters contain vi+x+1, then they are

assigned at least 3 distinct integers — ‘1,2,4’ or ‘2,3,4’; if the m clusters don’t contain

vi+x+1, then they don’t contain vi+x either — then we divide the m clusters into two

groups A and B, where A is the set of clusters none of which contains any vertex

in {v′, vi+2, vi+3, · · · , vi+x−1}, and B is the set of clusters none of which is in A. Say

there are y clusters in B. Then, if the cluster containing v′ also contains vi+1 (respec-

tively, vi+2), there exist a set C of y clusters in the path G that only contain vertices

in {vi+1, vi+2, · · · , vi+x−1, vi+x} (respectively, {vi+2, vi+3, · · · , vi+x−1, vi+x}), such that

(in both cases) the m clusters in A∪C are non-overlapping in G. Those m clusters in

A ∪ C are assigned at least K = 3 distinct integers since the interleaving on G is an

MCI; and they are assigned no more distinct integers than the original m clusters in

A ∪ B are, because c(vi+1) = c(vi+2) = · · · = c(vi+x) and either vi+1 or vi+2 is in the

same clusters as v′. So the m clusters in A ∪ B are assigned at least K = 3 distinct

integers. Now we can conclude that the interleaving on H is also an MCI. And that

again contradicts the definition of nmax.

124

Case 3: In this case, we insert a vertex v′ between v1 and v2, and assign the integer

‘3’ to v′. The rest of the analysis is very similar to that for Case 1.

Case 4: In this case, we insert a vertex v′ between v1 and v2, and insert a vertex

v′′ between vx−1 and vx, assign the integer ‘3’ to v′, and assign the integer ‘2’ to v′′.

The rest of the analysis is very similar to that for Case 2.

So a contradiction exists in all four cases. Therefore, this lemma is proved.

2

The next two lemmas derive upper bounds on the lengths of paths, respectively

for the case of N ≥ 4 and N = 3.

Lemma 4.2 Let the values of N , K, m and L be fixed, where N ≥ 4, K = 3, m ≥ 2

and L = 2. Let nmax denote the maximum value of n such that an MCI exists on a

path of n vertices. Then nmax ≤ (N − 1)[(m− 1)N − 1] + 2.

Proof : Let G = (V, E) be a path of nmax vertices. Assume there is an MCI on G. By

Lemma 4.1, no two adjacent vertices in G are assigned the same integer. We color the

vertices in G with three colors — ‘red’, ‘yellow’ and ‘green’ — through the following

three steps:

Step 1, for 2 ≤ i ≤ nmax − 1, if c(vi−1) = c(vi+1), then color vi with the ‘red’

color;

Step 2, for 2 ≤ i ≤ nmax, color vi with the ‘yellow’ color if vi is not colored

‘red’ and there exists j such that these four conditions are satisfied: (1) 1 ≤ j < i,

(2) vj is not colored ‘red’, (3) c(vj) = c(vi), (4) the vertices between vj and vi — that

is, vj+1, vj+2, · · · , vi−1 — are all colored ‘red’;

Step 3, for 1 ≤ i ≤ nmax, if vi is neither colored ‘red’ nor colored ‘yellow’, then

color vi with the ‘green’ color.

Clearly, each vertex of G is assigned exactly one of the three colors.

If we arbitrarily pick two different integers — say ‘i’ and ‘j’ — from the set

{1, 2, · · · , N}, then we get a pair [i, j] (or [j, i], equivalently). There are totally
(

N
2

)

such un-ordered pairs. We partition those
(

N
2

)
pairs into four groups ‘A’, ‘B’, ‘C’

and ‘D’ in the following way:

125

(1) A pair [i, j] belongs to group A if and only if the following two conditions

are satisfied: (i) at least one ‘green’ vertex is assigned the integer ‘i’ and at least

one ‘green’ vertex is assigned the integer ‘j’, (ii) for any two ‘green’ vertices that are

assigned integers ‘i’ and ‘j’ respectively, there is at least one ‘green’ vertex between

them.

(2) A pair [i, j] belongs to group B if and only if the following two conditions are

satisfied: (i) at least one ‘green’ vertex is assigned the integer ‘i’ and at least one

‘green’ vertex is assigned the integer ‘j’, (ii) there exist two ‘green’ vertices that are

assigned integers ‘i’ and ‘j’, respectively, such that there is no ‘green’ vertex between

them.

(3) A pair [i, j] belongs to group C if and only if one of the following two conditions

is satisfied: (i) at least one ‘green’ vertex is assigned the integer ‘i’ and no ‘green’

vertex is assigned the integer ‘j’, (ii) at least one ‘green’ vertex is assigned the integer

‘j’ and no ‘green’ vertex is assigned the integer ‘i’.

(4) A pair [i, j] belongs to group D if and only if no ‘green’ vertex is assigned the

integer ‘i’ or ‘j’.

E is the set of edges in G = (V,E). For any 1 ≤ i 6= j ≤ N , let E(i, j) ⊆ E denote

such a subset of edges of G: an edge of G is in E(i, j) if and only if one endpoint of

the edge is assigned the integer ‘i’ and the other endpoint of the edge is assigned the

integer ‘j’. Let z(i, j) denote the number of edges in E(i, j). Upper bounds for z(i, j)

are derived below.

For any pair [i, j] in group A or group C, z(i, j) ≤ 2m − 2. That’s because

otherwise there would exist m non-overlapping clusters in G — note that a cluster

contains exactly one edge — each of which is assigned only integers ‘i’ and ‘j’, which

would contradict the assumption that the interleaving on G is an MCI.

Now consider a pair [i, j] in group B. z(i, j) ≤ 2m− 2 for the same reason as in

the previous case. Assume z(i, j) = 2m− 2. Then in order to avoid the existence of

m non-overlapping clusters in G each of which is assigned only integers ‘i’ and ‘j’,

the z(i, j) = 2m−2 edges in E(i, j) must be consecutive in the path G, which means,

WLOG, that there are 2m − 1 consecutive vertices vy+1, vy+2, · · · , vy+2m−1 (y ≥ 0)

126

whose assigned integers are in the form of [c(vy+1) − c(vy+2) − · · · − c(vy+2m−1)] =

[i− j − i− j − · · · − i− j − i]. According to the definition of ‘group B’, there exist

a ‘green’ vertex vk1 and a ‘green’ vertex vk2 , such that vk1 is assigned the integer ‘i’,

vk2 is assigned the integer ‘j’, and there is no ‘green’ vertex between them. Therefore

every vertex between vk1 and vk2 is either ‘red’ or ‘yellow’. By the way the vertices

are colored, it’s not difficult to see that either ‘k1 < k2 and vk2−1 is assigned the

integer c(vk1) = i’ (let’s call this ‘case 1’), or ‘k2 < k1 and vk1−1 is assigned the

integer c(vk2) = j’ (let’s call this ‘case 2’). If ‘case 1’ is true, then since there is

an edge between vk2−1 (which is assigned the integer ‘i’) and vk2 (which is assigned

the integer ‘j’), vk2 is in the set {vy+1, vy+2, · · · , vy+2m−1}. However, it’s simple to

see that every vertex in the set {vy+1, vy+2, · · · , vy+2m−1} that is assigned the integer

‘j’ must have the color ‘red’ — so vk2 must be ‘red’ instead of ‘green’ — therefore

a contradiction exists. Now if ‘case 2’ is true, since there is an edge between vk1−1

(which is assigned the integer ‘j’) and vk1 (which is assigned the integer ‘i’), both

vk1−1 and vk1 are in the set {vy+2, vy+3, · · · , vy+2m−1}. Then again since every vertex

in the set {vy+1, vy+2, · · · , vy+2m−1} that is assigned the integer ‘j’ must have the

color ‘red’, and since the color of vk1 is ‘green’, it is simple to see that all the vertices

in the set {vy+1, vy+2, · · · , vk1−1} that is assigned the integer ‘i’ must have the color

‘red’. Then since the color of vy+1 is ‘red’, the vertex vy exists and it must have

been assigned the integer ‘j’ — and that contradicts the statement that all the edges

in E(i, j) are in the subgraph (vy+1, vy+2, · · · , vy+2m−1). Therefore a contradiction

always exists when z(i, j) = 2m − 2. So z(i, j) 6= 2m − 2. So for any pair [i, j] in

group B, z(i, j) ≤ 2m− 3.

Now consider a pair [i, j] in group D. By the definition of ‘group D’, no ‘green’

vertex is assigned the integer ‘i’ or ‘j’. Let {vk1 , vk2 , · · · , vkt} denote the set of vertices

that are assigned the integer ‘i’, where k1 < k2 < · · · < kt. If {vk1 , vk2 , · · · , vkt} 6= ∅,
by the way vertices are colored, it’s simple to see that vk1 cannot be ‘yellow’ — so

vk1 must be ‘red’. Then similarly, vk2 , vk3 , · · · , vkt must be ‘red’, too. Therefore all

the vertices that are assigned the integer ‘i’ are of the color ‘red’. Similarly, all the

vertices that are assigned the integer ‘j’ are of the color ‘red’. Assume there is an

127

edge whose two endpoints are assigned the integer ‘i’ and the integer ‘j’, respectively.

Then since the two vertices adjacent to a ‘red’ vertex must be assigned the same

integer, there exists an infinitely long segment (subgraph) of the path G to which

the assigned integers are in the form of ‘· · · − i − j − i − j − i − j − · · · ’, which is

certainly impossible. Therefore a contradiction exists. So for any pair [i, j] in group

D, z(i, j) = 0.

Let ‘x’ denote the number of distinct integers assigned to ‘green’ vertices, and let

‘X’ denote the set of those x distinct integers. It’s simple to see that exactly
(

x
2

)

pairs [i, j] are in group A or group B, where i ∈ X and j ∈ X — and among them

at least x − 1 pairs are in group B. It’s also simple to see that exactly x(N − x)

pairs are in group C and exactly
(

N−x
2

)
pairs are in group D. By using the upper

bounds we’ve derived for z(i, j), we see that the number of edges in G is at most

[
(

x
2

) − (x − 1)] · (2m − 2) + (x − 1) · (2m − 3) + x(N − x) · (2m − 2) +
(

N−x
2

) · 0 =

(1−m)x2 + (2mN − 2N −m)x + 1, whose maximum value (at integer solutions) is

achieved when x = N − 1 — and that maximum value is (N − 1)[(m− 1)N − 1] + 1.

So nmax, the number of vertices in G, is at most (N − 1)[(m− 1)N − 1] + 2.

2

Lemma 4.3 Let the values of N , K, m and L be fixed, where N = 3, K = 3, m ≥ 2

and L = 2. Let nmax denote the maximum value of n such that an MCI exists on a

path of n vertices. Then nmax ≤ (N − 1)[(m− 1)N − 1] + 2.

Proof : Let G = (V,E) be a path of n vertices that has an MCI on it. We need to

show that n ≤ (N − 1)[(m− 1)N − 1] + 2.

If in the MCI on G, no two adjacent vertices are assigned the same integer, then

with the same argument as in the proof of Lemma 4.2, it can be shown that n ≤
(N − 1)[(m− 1)N − 1] + 2.

Now assume there are two adjacent vertices in G that are assigned the same

integer. Clearly we can find t non-overlapping clusters in G, such that n ≤ 2t + 2

and at least one of the t clusters contains two vertices that are assigned the same

integer. Among those t non-overlapping clusters, let x, y, z, a, b and c respectively

128

denote the number of clusters that are assigned only the integer ‘1’, only the integer

‘2’, only the integer ‘3’, both the integers ‘1’ and ‘2’, both the integers ‘2’ and ‘3’, and

both the integers ‘1’ and ‘3’. Since the interleaving is an MCI, any m non-overlapping

clusters are assigned at least K = 3 distinct integers. Therefore x + y + a ≤ m − 1,

y + z + b ≤ m − 1, z + x + c ≤ m − 1. So 2x + 2y + 2z + a + b + c ≤ 3m − 3. So

x+y+z+a+b+c ≤ 3m−3−(x+y+z). Since x+y+z ≥ 1, t = x+y+z+a+b+c,

and n ≤ 2t+2, we get n ≤ 2(x+ y + z +a+ b+ c+1) ≤ 2[3m− 3− (x+ y + z)+1] ≤
6m− 6 = (N − 1)[(m− 1)N − 1] + 2.

Therefore this lemma is proved.

2

So with Lemma 4.2 and Lemma 4.3 proved, we see that Theorem 4.1 becomes a

natural conclusion.

4.3 Optimal Construction for MCI on Paths with

Constraints L = 2 and K = 3

In this section, we present a construction for MCIs on paths whose lengths attain the

upper bound of Theorem 4.1, therefore proving the exactness of that bound. The

construction is shown as the following algorithm.

Algorithm 1: MCI on the longest path with constraints L = 2 and K = 3

Input: Parameters N , K, m and L, where N ≥ 3, K = 3, m ≥ 2 and L = 2. A path

G = (V, E) of n = (N − 1)[(m− 1)N − 1] + 2 vertices.

Output: An MCI on G.

Algorithm:

Let H = (VH , EH) be a multi-graph. The vertex set of H, VH , is {u1, u2, · · · , uN}.
For any two vertices ui and uj (i 6= j), there are 2m − 3 edges between them if

2 ≤ i = j + 1 ≤ N − 1 or 2 ≤ j = i + 1 ≤ N − 1, and there are 2m− 2 edges between

them otherwise. There is no loop in H. (Therefore H has exactly n− 1 edges.)

Find a walk in H, uk1 → uk2 → · · · → ukn , that satisfies the following two

129

requirements: (1) the walk starts with u1 and ends with uN−1 — namely, uk1 = u1

and ukn = uN−1 — and passes every edge in H exactly once; (2) for any two vertices

of H, the walk passes all the edges between them consecutively.

For i = 1, 2, · · · , n, assign the integer ‘ki’ to the vertex vi in G, and we get an

MCI on G.

2

Here is an example of the above algorithm.

Example 4.2 Assume G = (V, E) is a path of n = 11 vertices, and the parameters

are N = 4, K = 3, m = 2 and L = 2. Therefore n = (N − 1)[(m − 1)N − 1] + 2.

Algorithm 1 constructs a graph H = (VH , EH), which is shown in Fig. 4.3(a). The

walk in H, uk1 → uk2 → · · · → ukn, can be easily found. For example, we can let the

walk be u1 → u3 → u1 → u4 → u1 → u2 → u4 → u2 → u3 → u4 → u3. Corresponding

to that walk, we get the interleaving on G as shown in Fig. 4.3(b). It can be easily

verified that the interleaving is indeed an MCI.

2

Theorem 4.2 Algorithm 1 correctly outputs an MCI on the path G.

Proof: The interleaving on G that Algorithm 1 outputs corresponds to a walk in the

graph H = (VH , EH). The N vertices of H correspond to the N integers interleaved

on G. First let us assume such a walk exists and show that the interleaving on G is

indeed an MCI. Every cluster in G is assigned two different integers since there is no

loop in H. For any two vertices in H, there are at most 2m− 2 edges between them,

and those edges are passed consecutively in the walk. So there do not exist m or more

than m non-overlapping clusters in G that are assigned the same two integers. So

every m non-overlapping clusters in G are assigned at least K = 3 different integers.

So the interleaving on G is an MCI.

Now we show that the walk in H exists. The following is a simple way to find a

valid walk. Note that the graph H has the following property: only the number of

edges between u1 and u2, or u2 and u3, · · · , or uN−2 and uN−1, is odd; the number

130

u 4

u 1 u 2 u 3

(a)

v 4v 1 v 2 v 3 v 5

v 8

v 6

v 7v 9v11 v10

(b) 31

43 3

1 4 1

2

4
2

N = 4 , K = 3 , m = 2 , L = 2n = 11 ,

Figure 4.3: (a) The graph H = (VH , EH) (b) MCI on the path G = (V, E)

of edges between any two other vertices is even. So we first get the following walk:

u1 → u2 → u3 → · · · → uN−2 → uN−1. Then, for i = 1, 2, · · · , N − 2, replace

the segment ‘ui → ui+1’ in the walk with the segment ‘ui → ui+1 → ui → ui+1 →
· · · → ui → ui+1’, where in the latter segment, each of the 2m − 3 edges between

ui and ui+1 is passed exactly once. Next, for any vertex ui and vertex uj such

that the edges between them have not been passed by the walk, we make the walk

pass the edges between them by replacing a node ‘ui’ in the walk with a segment

‘ui → uj → ui → uj → · · · → ui → uj → ui’, where in the segment, each of the

2m−2 edges between ui and uj is passed exactly once. When doing the replacement,

ensure that the edges between any other two vertices are still passed consecutively. It

is simple to verify that the final walk we get satisfies all the requirements in Algorithm

1. And that completes our proof.

2

The graph H = (VH , EH) in Algorithm 1 has either 2m−2 or 2m−3 edges between

any two of its vertices. H has the same number of edges as the path for which the

MCI is computed. If we reduce the number of edges between the vertices of H, then

the walk in H will correspond to an MCI on a shorter path (since the walk will pass

fewer edges). Based on this idea, we get an algorithm that can find MCIs for any path

131

on which MCIs exist, instead of just for the longest path. We present it as Algorithm

4, and leave it in Appendix I for simplicity. Obviously, an MCI on a short path can

be got by simply taking a segment of the interleaving on the longest path computed

by Algorithm 1. However such a method has some unnecessary computation and

becomes inefficient when the path is substantially shorter than the longest path.

The following theorem presents the necessary and sufficient condition for there to

exist an MCI on a path, when L = 2 and K = 3. Equivalently, it shows that the

upper bound given in Theorem 4.1 is exact.

Theorem 4.3 When L = 2 and K = 3, there exists an MCI on a path of n vertices

if and only if n ≤ (N − 1)[(m− 1)N − 1] + 2.

Proof : By Theorem 4.1 and Theorem 4.2. 2

4.4 MCI on Paths with Constraint K = L + 1

In this section we study the MCI problem on paths with the constraint that K = L+1.

It covers the MCI problem with constraints that L = 2 and K = 3, which is studied

in the previous sections, as a special case.

We define three operations on paths — ‘remove a vertex,’ ‘insert a vertex’ and

‘combine two paths.’ Let G be a path of n vertices: (v1, v2, · · · , vn). By ‘removing

the vertex vi’ from G (1 ≤ i ≤ n), we get a new path ‘(v1, v2, · · · , vi−1, vi+1, · · · , vn)’.

By ‘inserting a vertex v̂’ in front of the vertex vi in G (1 ≤ i ≤ n), we get a new path

‘(v1, v2, · · · vi−1, v̂, vi, · · · , vn)’. (Similarly we can define ‘inserting a vertex v̂ behind

the vertex vi in G’ and ‘inserting a vertex v̂ between the vertices vi and vi+1 in G’.)

Let H be a path of n′ vertices: (u1, u2, · · · , un′). Assume for 1 ≤ i ≤ n, vi is assigned

the integer c(vi); and assume for 1 ≤ i ≤ n′, ui is assigned the integer c(ui). Also,

let l be a positive integer between 1 and min(n, n′), and assume for 1 ≤ i ≤ l,

c(vi) = c(un′−l+i). Then by saying ‘combining H with G such that the last l vertices

of H overlap the first l vertices of G’, we mean to construct a path of n′+n−l vertices

whose assigned integers are [c(u1)−c(u2)−· · ·−c(un′)−c(vl+1)−c(vl+2)−· · ·−c(vn)]

132

v 1 v 4 v 5v 2
v 3

1 314 2
v 4 v 5v 2

v 3

4 1 2 3

v 2v 1 v v 4 v 5
v 3

1 4 1 2 3
u 1

u 3 u 4u 2

2 4 41

2 4 1 4 1 2 3

(a)

G :

(b)

(c) (d)

H :

(e)

Figure 4.4: Illustrations of three operations on paths.

(which is the same as [c(u1)− c(u2)− · · · − c(un′−l)− c(v1)− c(v2)− · · · − c(vn)]).

Examples of those operations are shown below.

Example 4.3 Let G be a path as shown in Fig. 4.4(a), where the integer above each

vertex is the integer assigned to it. (So there is an interleaving on G.) By removing

the vertex v1 from G, we get the path shown in Fig. 4.4(b). By inserting a vertex v̂

in front of the vertex v3 in G (or equivalently, behind the vertex v2 in G, or between

the vertex v2 and v3 in G), we get the path shown in Fig. 4.4(c).

Let H be a path as shown in Fig. 4.4(d), where the integer above each vertex is

the integer assigned to it. (So there is an interleaving on H, too.) By combining H

with G such that the last 2 vertices of H overlap the first 2 vertices of G, we get the

path shown in Fig. 4.4(e).

2

Now we present an algorithm which computes an MCI on a path. Being different

from Algorithm 1, in this algorithm the length of the path is unknown. The algorithm

tries to find the longest path that has an MCI, and computes an MCI for it. Thus

the output of this algorithm not only provides an MCI solution, but also gives a lower

bound on the maximum length of the path on which MCIs exist.

133

Algorithm 2: MCI on a path with the constraint K = L + 1

Input: Parameters N , K, m and L, where N ≥ K = L + 1 ≥ 3 and m ≥ 2.

Output: An MCI on a path G = (V,E) of n vertices, with the value of n as large as

possible.

Algorithm:

1. If L = 2, then let G = (V, E) be a path of n = (N − 1)[(m − 1)N − 1] + 2

vertices, and use Algorithm 1 to find an MCI on G. Output G and the MCI on it,

then exit. (So step 2 to step 4 will be executed only if L ≥ 3.)

2. Find a path BL+1 as long as possible that satisfies the following two conditions:

(1) Each vertex of BL+1 is assigned an integer in {1, 2, · · · , L}, namely, there

is an interleaving of the integers in {1, 2, · · · , L} on BL+1;

(2) Define a segment of a path to be a connected subgraph of the path. Then

any m non-overlapping segments of BL+1 each of which contains L − 1 vertices are

assigned at least L distinct integers.

To find the path BL+1, (recursively) call Algorithm 2 in the following way:

when calling Algorithm 2, replace the inputs of the algorithm — N , K, m and L —

respectively with L, L, m and L− 1; then let the output of Algorithm 2 be the path

BL+1 with an interleaving on it.

Scan the vertices in BL+1 backward (from the last vertex to the first vertex),

and insert a new vertex after every L − 1 vertices in BL+1. (In other words, if the

vertices in BL+1 are v1, v2, · · · , vn̂, then after inserting vertices into BL+1 in the

way described above, we get a new path of n̂ + b n̂
L−1

c vertices; and if we look at

the new path in the reverse order — from the last vertex to the first vertex — then

the path is of the form (vn̂, vn̂−1, · · · , vn̂+1−(L−1), a new vertex, vn̂−(L−1), vn̂−(L−1)−1,

· · · , vn̂+1−2(L−1), a new vertex, vn̂−2(L−1), vn̂−2(L−1)−1, · · · , vn̂+1−3(L−1), a new vertex,

· · · · · ·). In this new path, every connected subgraph of L vertices contains exactly

one newly inserted vertex.) Assign the integer ‘L + 1’ to every newly inserted vertex

in the new path, and denote this new path by ‘AL+1’.

3. for i = L + 2 to N do

{ Find a path Bi as long as possible that satisfies the following three conditions:

134

(1) Each vertex of Bi is assigned an integer in {1, 2, · · · , i − 1}, namely,

there is an interleaving of the integers in {1, 2, · · · , i− 1} on Bi;

(2) Define a segment of a path to be a connected subgraph of the path.

Then any m non-overlapping segments of Bi each of which contains L − 1 vertices

are assigned at least L distinct integers;

(3) for j = 1 to L−1, the j-th last vertex of Bi is assigned the same integer

as the (L− j)-th vertex of Ai−1.

To find the path Bi, (recursively) call Algorithm 2 in the following way:

when calling Algorithm 2, replace the inputs of the algorithm — N , K, m and L —

respectively with i − 1, L, m and L − 1; then let the output of Algorithm 2 be the

path Bi with an interleaving on it.

Scan the vertices in Bi backward (from the last vertex to the first vertex), and

insert a new vertex after every L − 1 vertices in Bi. Assign the integer ‘i’ to every

newly inserted vertex in the new path, and denote this new path by ‘Ai’.

}
4. Get a new path by combining the paths AN , AN−1, · · · , AL+1 in the following

way: combine AN with AN−1, combine AN−1 with AN−2, · · · , and combine AL+2 with

AL+1 such that the last L− 1 vertices of AN overlap the first L− 1 vertices of AN−1,

the last L− 1 vertices of AN−1 overlap the first L− 1 vertices of AN−2, · · · , and the

last L− 1 vertices of AL+2 overlap the first L− 1 vertices of AL+1. (In other words,

if we denote the number of vertices in Ai by li, for L + 1 ≤ i ≤ N , then the new path

we get has
∑N

i=L+1 li− (L−1)(N−L−1) vertices.) Let this new path be G = (V, E).

Output G and the interleaving (which is an MCI) on it, then exit.

2

The following is an example of Algorithm 2.

Example 4.4 In this example, the input parameters for Algorithm 2 are N = 6,

K = 4, m = 2 and L = 3. That is, we use Algorithm 2 to compute an path that

is as long as possible and interleave 6 integers on it, such that in the path, any 2

non-overlapping clusters of length 3 are assigned at least 4 distinct integers.

135

B 4

1 3 1 2 3 2

A 4

B 5

3 34 1 3 2 4 2 1 4 1

A 5

6B

1 3 1 4 1 5 1 2 3 2

52434535

A 6

6 1 3 6 1 4 6 1 5 6

1263265264

6 1 3 6 1 4 6 1 5 6

1263265264

63 4 5 6 3 5

63 4 5 6 3 5

3 5 4 3 5 1 3 5 2 4

521541

4 3 5

1352452154

1

4 1 3 4 1 2 4 3 2

3 4 1 2 4 3 2

N=6, K=4, m=2, L=3

(a)

(b)

(c)

(d)

(e)

(f)

(g) G=(V,E)

Figure 4.5: An example of Algorithm 2.

136

Algorithm 2 firstly computes a linear path B4 as long as possible that satisfies the

following two conditions: (1) each vertex of B4 is assigned an integer in {1, 2, 3};
(2) any m = 2 non-overlapping segments of B4 each of which contains L − 1 = 2

vertices are assigned at least L = 3 distinct integers. To compute B4, Algorithm 2

calls itself in a recursive way, by setting the inputs of the algorithm — N , K, m

and L — to be 3, 3, 2 and 2; during that call, it uses Algorithm 1 to compute B4.

There are more than 1 possible outcomes of Algorithm 1; without loss of generality

(WLOG), let us assume the output here is that B4 is assigned integers in the form of

[1− 3− 1− 2− 3− 2]. The path B4 is shown in Figure 4.5 (a).

Algorithm 2 then scans B4 backward, inserts a new vertex into B4 after every L−
1 = 2 vertices, and assigns the integer ‘4’ to every newly inserted vertex. As a result,

we get a path whose assigned integers are in the form of [4−1−3−4−1−2−4−3−2].

We call this new path A4. A4 is shown in Figure 4.5 (b).

Algorithm 2 then computes a path B5 as long as possible that satisfies the following

three conditions: (1) each vertex of B5 is assigned an integer in {1, 2, 3, 4}; (2) any

m = 2 non-overlapping segments of B5 each of which contains L− 1 = 2 vertices are

assigned at least L = 3 distinct integers; (3) the last vertex of B5 is assigned the same

integer as the 2nd vertex of A4 (which is the integer ‘1’), and the 2nd last vertex of

B5 is assigned the same integer as the 1st vertex of A4 (which is the integer ‘4’).

Algorithm 2 computes B5 by once again calling itself. Algorithm 2 can use the

following method to find a path that satisfies all the above 3 conditions. Firstly,

use Algorithm 1 to find a path that satisfies the first 2 conditions, which is easy,

and call this path C5. All the integers assigned to C5 are in the set {1, 2, 3, 4}; and

from Algorithm 1, it is simple to see that the last two vertices in C5 are assigned

two different integers. (Note that the first two vertices in A4 are also assigned two

different integers.) So by permuting the names of the integers assigned to C5, we can

get a path that satisfies not only the first 2 conditions but also the 3rd condition. Call

this path B5. There are more than 1 possible result of B5. WLOG, we assume the

integers assigned to B5 are in the form of [3− 4− 3− 1− 3− 2− 4− 2− 1− 4− 1].

B5 is shown in Figure 4.5 (c). Then Algorithm 2 inserts vertices into B5 and gets a

137

new path A5, whose assigned integers are in the form of [3− 5− 4− 3− 5− 1− 3−
5− 2− 4− 5− 2− 1− 5− 4− 1]. A5 is shown in Figure 4.5 (d).

Next, Algorithm 2 computes a path B6, by calling itself again. WLOG, we assume

the integers assigned to B6 are in the form of [1− 3− 1− 4− 1− 5− 1− 2− 3− 2−
5−2−4−3−4−5−3−5]. B6 is shown in Figure 4.5 (e). Then Algorithm 2 inserts

vertices into B6 and gets a new path A6, whose assigned integers are in the form of

[6−1−3−6−1−4−6−1−5−6−1−2−6−3−2−6−5−2−6−4−3−6−4−5−6−3−5].

A6 is shown in Figure 4.5 (f).

Finally, Algorithm 2 combines A6, A5 and A4 such that the last L−1 = 2 vertices

of A6 overlap the first 2 vertices of A5, and the last L− 1 = 2 vertices of A5 overlap

the first 2 vertices of A4. As a result, we get a path G = (V, E) of 48 vertices which is

assigned the integers [6−1−3−6−1−4−6−1−5−6−1−2−6−3−2−6−5−2−6−4−
3−6−4−5−6−3−5−4−3−5−1−3−5−2−4−5−2−1−5−4−1−3−4−1−2−4−3−2].

G is shown in Figure 4.5 (g). This is the output of Algorithm 2. It can be verified

that the interleaving on G is indeed an MCI.

2

Algorithm 2 outputs a path G, which is as long as the algorithm can find, and

an MCI on G. The MCI on G has a ‘hierarchical-chain’ structure, because G is a

chain of the sub-paths AL+1, AL+2, · · · , AN , and these sub-paths form the horizontal

hierarchy because on them more and more integers are interleaved and they have

increasing lengths. Each Ai (L + 1 ≤ i ≤ N) is derived from a path Bi. Since Bi is

got by recursively calling Algorithm 2, it also is a chain of its own sub-paths — and

the same analysis can be performed for the sub-paths in Bi · · · · · · So such sub-paths

form the vertical hierarchy in the MCI. G’s length, n, is unknown before Algorithm 2

ends. But if we can use n to evaluate the complexity of Algorithm 2, then Algorithm

2 can be easily seen to have complexity O(n). Algorithm 2 constructs the path G

piece by piece. So it is simple to see that the algorithm can be easily modified to

efficiently compute MCIs on any path of less than n vertices.

Below we prove the correctness of Algorithm 2.

138

Theorem 4.4 Algorithm 2 is correct.

Proof: We prove this theorem by induction. If L = 2, then Algorithm 2 uses Algo-

rithm 1 to compute the MCI — so the result is clearly correct. Also, we notice that

for any MCI output by Algorithm 1, any two adjacent vertices are assigned different

integers. We use those as the base case.

Let I be an integer such that 2 < I ≤ L. Let’s assume the following statement is

true: if we replace the inputs of Algorithm 2 — parameters N , K, m and L — with

any other set of valid inputs N̂ , K̂ = i + 1, m̂ and i such that 2 ≤ i < I, Algorithm 2

will correctly output an MCI on a path; and in that MCI, any i consecutive vertices

are assigned i different integers. (This is our induction assumption.)

Now let’s replace the inputs of Algorithm 2 — parameters N , K, m and L — with

a set of valid inputs N ′, K ′ = I + 1,m′ and I. Then Algorithm 2 needs to compute

(in its step 2 and step 3) N ′− I paths: BI+1, BI+2, · · · , BN ′ . For I + 1 ≤ j ≤ N ′, Bj

is (recursively) computed by calling Algorithm 2. The interleaving on Bj is in fact

an MCI where the size of each cluster is I − 1 — so by the induction assumption,

Algorithm 2 will correctly output the interleaving on Bj. Bj is assigned the integers in

{1, 2, · · · , j−1}; and by the induction assumption, any I−1 consecutive vertices in Bj

are assigned I−1 different integers. The path AI+1 is constructed by inserting vertices

into BI+1 such that every I consecutive vertices in AI+1 contains exactly one newly

inserted vertex, and all the newly inserted vertices are assigned the integer ‘I + 1’.

So any I consecutive vertices in AI+1 are assigned I different integers. Therefore it

is always feasible to adjust the interleaving on BI+2 to make the last I − 1 vertices

of BI+2 be assigned the same integers as the first I − 1 vertices of AI+1. Noticing

that the last I − 1 vertices of BI+2 are assigned the same integers as the last I − 1

vertices of AI+2, we see that AI+2 and AI+1 can be successfully combined with I − 1

overlapping vertices by Algorithm 2. Similarly, for I + 3 ≤ t ≤ N ′, At and At−1 can

be successfully combined by Algorithm 2; and for I + 2 ≤ t ≤ N ′, any I consecutive

vertices in At are assigned I different integers. Algorithm 2 uses G to denote the

path got by combining AL+1, AL+2, · · · , AN . Clearly any I consecutive vertices in

139

G are also I consecutive vertices in Aj for some j (I + 1 ≤ j ≤ N ′), therefore are

assigned I different integers. And for any m′ non-overlapping clusters in G — each

cluster here contains I vertices — either they are all contained in Aj for some j

(I + 1 ≤ j ≤ N ′), or at least one cluster is contained in Aj′ for some j′ and one other

cluster is contained in Aj′′ for some j′′ 6= j′ (I + 1 ≤ j′, j′′ ≤ N ′). In the former

case, by removing those vertices that are assigned the integer ‘j’ in those m′ clusters,

we get m′ non-overlapping connected subgraphs in Bj each of which contains I − 1

vertices, which are assigned at least I different integers not including ‘j’ — so the m′

clusters in G (which are also in Aj) are assigned at least I + 1 different integers. In

the latter case, without loss of generality, let’s say j′ < j′′. Then the cluster in Aj′

are assigned I different integers not including ‘j′′’, and the cluster in Aj′′ is assigned

an integer ‘j′′’ — so the m′ clusters in G are assigned at least I +1 different integers.

Therefore the interleaving on G is an MCI (with parameters N ′, K ′,m′ and I). So

the induction assumption also holds when i = I.

Algorithm 2 computes the result for the original problem by recursively calling

itself. By the above induction, every intermediate time Algorithm 2 is called, the

output is correct. So the final output of Algorithm 2 is also correct.

2

The length of the longest path on which an MCI exists increases when N , the

number of integers that are interleaved, increases. The performance of Algorithm 2

can be evaluated by the difference between the length of the path constructed by

Algorithm 2 and the length of the longest path on which an MCI exists. We’re inter-

ested in studying how the difference goes when N increases. The following theorem

shows the result.

Theorem 4.5 Fix the values of the parameters K, m and L, where K = L + 1 ≥ 3

and m ≥ 2, and let N be a variable (N ≥ K). Then the longest path on which an

MCI exists has m−1
(L−1)!

NL + O(NL−1) vertices. And the path output by Algorithm 2

also has m−1
(L−1)!

NL + O(NL−1) vertices.

Proof: Let G = (V, E) be a path of n vertices with an MCI on it. Then by Proposi-

140

tion 4.1, n ≤ (m− 1)L
(

N
L

)
+ (L− 1). So n ≤ m−1

(L−1)!
NL + O(NL−1).

When L = 2, Algorithm 2 outputs a path of (N − 1)[(m− 1)N − 1] + 2 vertices.

When L ≥ 3, to get the output, Algorithm 2 needs to construct the paths AL+1,

AL+2, · · · , AN ; and for L + 1 ≤ i ≤ N , Ai is got by inserting vertices into the path

Bi. Bi is again an output of Algorithm 2, which is assigned i − 1 distinct integers,

and in which an corresponding ‘cluster’ has L − 1 vertices. Let’s use F (N, m, L) to

denote the number of vertices in the path output by Algorithm 2, and use A(i,m, L)

to denote the number of vertices in the path Ai. Then based on the above observed

relations, we get the following 3 equations:

(1) F (N,m, 2) = (N − 1)[(m− 1)N − 1] + 2;

(2) when L ≥ 3, F (N, m, L) =
∑N

i=L+1 A(i,m, L)− (N − L− 1)(L− 1);

(3) when i ≥ L + 1 ≥ 4, A(i,m, L) = b L
L−1

· F (i − 1,m, L − 1)c. (Note that

F (i− 1,m, L− 1) is the number of vertices in the path Bi.)

By solving the above equations, we get F (N, m,L) = m−1
(L−1)!

NL + O(NL−1), which

meets the upper bound on the path’s length we’ve derived. So the longest path

on which an MCI exists has m−1
(L−1)!

NL + O(NL−1) vertices; and the path output by

Algorithm 2 also has m−1
(L−1)!

NL + O(NL−1) vertices.

2

Theorem 4.5 shows that the path output by Algorithm 2 is asymptotically as long

as the longest path on which an MCI exists. What’s more, the lengths of those two

paths have the same highest-degree term (in N).

We end this part of discussion with some numerical results which are representa-

tive. In Table 1, the length of the path output by Algorithm 2 (denoted by ‘Output

of Algorithm 2’ in the table) is compared with the upper bound on path lengths of

Theorem 4.1 (denoted by ‘Upper bound’ in the table), for four different sets of pa-

rameters — m = 2 and L = 3, m = 2 and L = 5, m = 5 and L = 3, and m = 5 and

L = 5. (Note that here K = L + 1, so the value of parameter K is determined by

L. The length of a path is defined to be the number of vertices in it.) If we use n to

denote the length of the path output by Algorithm 2, and use Ubound to denote the

upper bound of Theorem 4.1, then the ‘relative difference’ in the table is defined to

141

be Ubound−n
Ubound

= 1− n
Ubound

. Table 1 shows how the ‘relative difference’ decreases when N

increases. With Theorem 4.5, we can prove that as N approaches +∞, the ‘relative

difference’ becomes arbitrarily close to 0 — the optimal value. We comment that

Ubound is a quite loose upper bound, so the relative difference between the length of

the path output by Algorithm 2 and the true length of the longest path on which an

MCI exists is even smaller than that shown in the table.

m = 2 and L = 3 m = 2 and L = 5

N Output of Upper Relative Output of Upper Relative

Algorithm 2 bound difference Algorithm 2 bound difference

10 312 362 0.1381 930 1264 0.2642

20 3177 3422 0.0716 68265 77524 0.1194

50 57072 58802 0.0294 10081020 10593804 0.0484

100 477897 485102 0.0149 367196445 376437604 0.0245

150 1637472 1653902 0.0099 2.9093× 109 2.9580× 109 0.0165

200 3910797 3940202 0.0075 1.2521× 1010 1.2678× 1010 0.0124

m = 5 and L = 3 m = 5 and L = 5

N Output of Upper Relative Output of Upper Relative

Algorithm 2 bound difference Algorithm 2 bound difference

10 1383 1442 0.0409 4395 5044 0.1287

20 13428 13682 0.0186 298785 310084 0.0364

50 233463 235202 0.0074 41846205 42375204 0.0125

100 1933188 1940402 0.0037 1.4964× 109 1.5058× 109 0.0062

150 6599163 6615602 0.0025 1.1783× 1010 1.1832× 1010 0.0041

200 15731388 15760802 0.0019 5.0556× 1010 5.0713× 1010 0.0031

Table 1: Comparison between the length of the path output by Algorithm 2 and an upper bound,

and their relative difference.

142

4.5 MCI on Cycles

In this section, we generalize our results on MCI from paths to cycles, for the case of

L = 2 and K = 3. The analysis for the two kinds of graphs bears plenty of similarity,

even though the ‘circular’ structure of the cycle leads to certain difference sometimes.

Let G = (V, E) be a cycle. The following notations will be used in this section and

the appendices of this chapter. We denote the n vertices in the cycle G = (V, E) by v1,

v2, · · · , vn. For 2 ≤ i ≤ n−1, the two vertices adjacent to vi are vi−1 and vi+1. Vertex

v1 and vn are adjacent to each other. A connected subgraph of G induced by vertices

vi, vi+1, · · · , vj is denoted by (vi, vi+1, · · · , vj). If a set of integers are interleaved on

G, then c(vi) denotes the integer assigned to vertex vi. The integers assigned to a

connected subgraph of G, (vi, vi+1, · · · , vj), are denoted by [c(vi)−c(vi+1)−· · ·−c(vj)].

The following three lemmas reveal some structural properties of MCI on cycles

and present an upper bound on the cycles’ lengths.

Lemma 4.4 Let the values of N , K, m and L be fixed, where N ≥ 4, K = 3, m ≥ 2

and L = 2. Let nmax denote the maximum value of n such that an MCI exists on a

cycle of n vertices. Then in any MCI on a cycle G = (V, E) of nmax vertices, no two

adjacent vertices are assigned the same integer.

Lemma 4.5 Let the values of N , K, m and L be fixed, where N ≥ 4, K = 3, m ≥ 2

and L = 2. Let nmax denote the maximum value of n such that an MCI exists on a

cycle of n vertices. Then nmax ≤ (N − 1)[(m− 1)N − 1].

Lemma 4.6 Let the values of N , K, m and L be fixed, where N = 3, K = 3, m ≥ 2

and L = 2. Let nmax denote the maximum value of n such that an MCI exists on a

cycle of n vertices. Then nmax ≤ (N − 1)[(m− 1)N − 1].

The techniques used to prove the above three lemmas are similar to the proofs

of Lemma 4.1, 4.2 and 4.3 (but also have difference, especially for Lemma 4.5 and

Lemma 4.6). For simplicity, we present the proofs of the above three lemmas in

Appendix II.

143

Below we present an algorithm for finding MCIs on cycles. Note that a Eulerian

walk in a graph is a closed walk that passes every edge of the graph exactly once.

Algorithm 3: MCI on a cycle with constraints L = 2 and K = 3

Input: A cycle G = (V,E) of n vertices. Parameters N , K, m and L, where N ≥ 3,

K = 3, m ≥ 2 and L = 2.

Output: An MCI on G.

Algorithm:

1. If n > (N − 1)[(m − 1)N − 1], there does not exist an MCI on G, so exit the

algorithm.

2. If n ≤ N , arbitrarily select n integers in the set {1, 2, · · · , N}, and assign one

distinct integer to each vertex, then exit the algorithm.

3. If N < n ≤ (N − 1)[(m− 1)N − 1] and n− {(N − 1)[(m− 1)N − 1]} is even,

then let H = (VH , EH) be such a multi-graph: its vertex set VH = {u1, u2, · · · , uN};
for any 1 ≤ i < j ≤ N , there are xi,j undirected edges between ui and uj; there is no

loop in H. The integers xi,j (1 ≤ i < j ≤ N) satisfy the following four requirements:

(1) for 1 ≤ i ≤ N − 1, xi,N is even and 0 ≤ xi,N ≤ 2m− 2;

(2) for 1 ≤ i ≤ N − 2 and j = i + 1, xi,j is odd and 1 ≤ xi,j ≤ 2m− 3; also,

x1,N−1 is odd and 1 ≤ x1,N−1 ≤ 2m− 3;

(3) for 1 ≤ i ≤ N−4 and i+2 ≤ j ≤ N−2, xi,j is even and 0 ≤ xi,j ≤ 2m−2;

also, for 2 ≤ i ≤ N − 3 and j = N − 1, xi,j is even and 0 ≤ xi,j ≤ 2m− 2;

(4) if we define S as S = {xi,j|i = 1, 2, · · · , N ; j = 1, 2, · · · , N ; i < j}, then
∑

x∈S x = n.

Find a Eulerian walk in H, uk1 → uk2 → · · · → ukn (and finally back to uk1),

that satisfies the following condition: for any 1 ≤ i < j ≤ N , the walk passes all the

xi,j edges between ui and uj consecutively.

For i = 1, 2, · · · , n, assign the integer ‘ki’ to the vertex vi in G, then exit the

algorithm.

4. If N < n ≤ (N − 1)[(m − 1)N − 1] and n − {(N − 1)[(m − 1)N − 1]} is odd,

then let H = (VH , EH) be such a multi-graph: its vertex set VH = {u1, u2, · · · , uN};

144

for any 1 ≤ i < j ≤ N , there are xi,j undirected edges between ui and uj; there is no

loop in H. The integers xi,j (1 ≤ i < j ≤ N) satisfy the following three requirements:

(1) for 1 ≤ i ≤ N − 1 and j = i + 1, xi,j is odd and 1 ≤ xi,j ≤ 2m− 3; also,

x1,N is odd and 1 ≤ x1,N ≤ 2m− 3;

(2) for 1 ≤ i ≤ N−3 and i+2 ≤ j ≤ N−1, xi,j is even and 0 ≤ xi,j ≤ 2m−2;

also, for 2 ≤ i ≤ N − 2 and j = N , xi,j is even and 0 ≤ xi,j ≤ 2m− 2;

(3) if we define S as S = {xi,j|i = 1, 2, · · · , N ; j = 1, 2, · · · , N ; i < j}, then
∑

x∈S x = n.

Find a Eulerian walk in H, uk1 → uk2 → · · · → ukn (and finally back to uk1),

that satisfies the following condition: for any 1 ≤ i < j ≤ N , the walk passes all the

xi,j edges between ui and uj consecutively.

For i = 1, 2, · · · , n, assign the integer ‘ki’ to the vertex vi in G, then exit the

algorithm.

2

The following is an example of Algorithm 3.

Example 4.5 Assume G = (V,E) is a cycle of n = 12 vertices, and the parameters

are N = 4, K = 3, m = 3 and L = 2. Therefore N < n ≤ (N − 1)[(m − 1)N − 1]

and n − {(N − 1)[(m − 1)N − 1]} = −9 is odd. So Algorithm 3’s step 4 is used

to compute the interleaving. We can (easily) choose the following values for xi,j:

x1,2 = 3, x1,3 = 2, x1,4 = x2,3 = x3,4 = 1, x2,4 = 4. Then the graph H = (VH , EH) is

as shown in Fig. 4.6(a). We can then (easily) find the following Eulerian walk in H:

u1 → u3 → u1 → u2 → u1 → u2 → u4 → u2 → u4 → u2 → u3 → u4 (then back to

u1). Corresponding to that walk, we get the MCI as shown in Fig. 4.6(b).

2

Theorem 4.6 Algorithm 3 correctly outputs an MCI on the cycle G.

Theorem 4.7 When L = 2 and K = 3, there exists an MCI on a cycle of n vertices

if and only if n ≤ (N − 1)[(m− 1)N − 1].

145

u 1 u 2
u 4u 3

(a)

1 3 1

2
2

2 4

1

3

4

4
2

v 1 v 2
v 3

v 5 v 4v 6

v 7 v 8 v 9

v10v11v12

(b)

N = 4 , K = 3 , m = 3 , L = 2n = 12 ,

Figure 4.6: (a) The graph H = (VH , EH) (b) MCI on the cycle G = (V, E)

For simplicity, we skip the proofs of the above two theorems. (The correctness

of these two theorems should be very clear once the proofs for Theorem 4.2 and

Theorem 4.3 are understood.)

4.6 Appendix I

In this appendix, we present Algorithm 4, which computes MCIs for linear paths

when L = 2 and K = 3.

Algorithm 4: MCI on linear path with constraints L = 2 and K = 3

Input: A path G = (V,E) of n vertices. Parameters N , K, m and L, where N ≥ 3,

K = 3, m ≥ 2 and L = 2.

Output: An MCI on G.

Algorithm:

1. If n > (N − 1)[(m − 1)N − 1] + 2, there does not exist an MCI on G, so exit

the algorithm.

2. If n ≤ N , arbitrarily select n integers in the set {1, 2, · · · , N}, and assign one

distinct integer to each vertex, then exit the algorithm.

146

3. If N < n ≤ (N−1)[(m−1)N−1]+2 and n−{(N−1)[(m−1)N−1]+2} is even,

then let H = (VH , EH) be such a multi-graph: its vertex set VH = {u1, u2, · · · , uN};
for any 1 ≤ i < j ≤ N , there are xi,j undirected edges between ui and uj; there is no

loop in H. The integers xi,j (1 ≤ i < j ≤ N) satisfy the following four requirements:

(1) for 1 ≤ i ≤ N − 1, xi,N is even and 0 ≤ xi,N ≤ 2m− 2;

(2) for 1 ≤ i ≤ N − 2 and j = i + 1, xi,j is odd and 1 ≤ xi,j ≤ 2m− 3;

(3) for 1 ≤ i ≤ N−3 and i+2 ≤ j ≤ N−1, xi,j is even and 0 ≤ xi,j ≤ 2m−2;

(4) if we define S as S = {xi,j|i = 1, 2, · · · , N ; j = 1, 2, · · · , N ; i < j}, then
∑

x∈S x = n− 1.

Find a walk in H, uk1 → uk2 → · · · → ukn , that satisfies the following two

requirements:

(1) the walk starts with u1 and ends with uN−1 — namely, uk1 = u1 and

ukn = uN−1 — and passes every edge in H exactly once;

(2) for any 1 ≤ i < j ≤ N , the walk passes all the xi,j edges between ui and

uj consecutively.

For i = 1, 2, · · · , n, assign the integer ‘ki’ to the vertex vi in G, then exit the

algorithm.

4. If N < n ≤ (N − 1)[(m− 1)N − 1] + 2 and n− {(N − 1)[(m− 1)N − 1] + 2}
is odd, then use step 3 to find an interleaving on a path of n + 1 vertices. Remove

one vertex from an end of that path, and we get an interleaving on G. Then exit the

algorithm.

2

We comment that in step 3 of the above algorithm, the numbers of edges between

the vertices of H, xi,j (1 ≤ i < j ≤ N), can be easily determined using just elementary

methods, since the constraints there are very simple.

4.7 Appendix II

In this appendix, we present the proofs of Lemma 4.4, 4.5 and 4.6.

147

Lemma 4.4 Let the values of N , K, m and L be fixed, where N ≥ 4, K = 3,

m ≥ 2 and L = 2. Let nmax denote the maximum value of n such that an MCI exists

on a cycle of n vertices. Then in any MCI on a cycle G = (V, E) of nmax vertices,

no two adjacent vertices are assigned the same integer.

Proof : The proof is by contradiction. Let G = (V, E) be a cycle of nmax vertices.

Assume there is an MCI on G; and assume two adjacent vertices of G are assigned

the same integer. Then WLOG, one of the following two cases must be true (because

we can always get one of the two cases by permuting the names of the integers and

by shifting the indices of the vertices):

Case 1: There exist 4 consecutive vertices in G — vi, vi+1, vi+2, vi+3 — such that

c(vi) = 1, c(vi+1) = c(vi+2) = 2, and c(vi+3) = 1 or 3.

Case 2: There exist x+2 ≥ 5 consecutive vertices in G — vi, vi+1, · · · , vi+x, vi+x+1

— such that c(vi) = 1, c(vi+1) = c(vi+2) = · · · = c(vi+x) = 2, and c(vi+x+1) = 1 or 3.

With the same argument as for the case 1 and case 2 in Lemma 4.1’s proof, we can

show that for both cases here, there is a cycle of more than nmax vertices on which

an MCI exists. And that contradicts the definition of nmax. So this lemma is proved.

2

Lemma 4.5 Let the values of N , K, m and L be fixed, where N ≥ 4, K = 3,

m ≥ 2 and L = 2. Let nmax denote the maximum value of n such that an MCI exists

on a cycle of n vertices. Then nmax ≤ (N − 1)[(m− 1)N − 1].

Proof : Let G = (V, E) be a cycle of nmax vertices. Assume there is an MCI on G. By

Lemma 4.4, no two adjacent vertices in G are assigned the same integer. And clearly,

each one of the N ≥ 4 integers is assigned to at least one vertex in G. We color the

vertices in G with three colors — ‘red’, ‘yellow’ and ‘green’ — through the following

three steps:

Step 1, for 1 ≤ i ≤ nmax, if the two vertices adjacent to vi are assigned the

same integer, then we color vi with the ‘red’ color;

Step 2, for 1 ≤ i ≤ nmax, we color vi with the ‘yellow’ color if vi is not colored

‘red’ and there exists j such that these four conditions are satisfied: (1) j 6= i, (2)

148

vj is not colored ‘red’, (3) c(vj) = c(vi), (3) the following vertices between vj and vi

— vj+1, vj+2, · · · , vi−1 (note that if a lower index exceeds nmax, it is subtracted by

nmax, so that the lower index is always between 1 and nmax) — are all colored ‘red’;

Step 3, for 1 ≤ i ≤ nmax, if vi is neither colored ‘red’ nor colored ‘yellow’,

then we color vi with the ‘green’ color.

Clearly, each vertex in G is assigned exactly one of the three colors.

If we arbitrarily pick two different integers — say ‘i’ and ‘j’ — from the set

{1, 2, · · · , N}, then we get a pair [i, j] (or [j, i], equivalently). There are totally
(

N
2

)

such un-ordered pairs. We partition those
(

N
2

)
pairs into four groups ‘A’, ‘B’, ‘C’

and ‘D’ in the following way:

(1) A pair [i, j] is placed in group A if and only if the following two conditions

are satisfied: (i) at least one ‘green’ vertex is assigned the integer ‘i’ and at least one

‘green’ vertex is assigned the integer ‘j’, (ii) there doesn’t exist a connected subgraph

of G such that the subgraph contains exactly two green vertices (and possibly also

vertices of other colors), where one of the green vertices is assigned the integer ‘i’ and

the other green vertex is assigned the integer ‘j’.

(2) A pair [i, j] is placed in group B if and only if the following two conditions

are satisfied: (i) at least one ‘green’ vertex is assigned the integer ‘i’ and at least one

‘green’ vertex is assigned the integer ‘j’, (ii) there exists a connected subgraph of G

such that the subgraph contains exactly two green vertices (and possible also vertices

of other colors), where one of the green vertices is assigned the integer ‘i’ and the

other green vertex is assigned the integer ‘j’.

(3) A pair [i, j] is placed in group C if and only if one of the following two

conditions is satisfied: (i) at least one ‘green’ vertex is assigned the integer ‘i’ and no

‘green’ vertex is assigned the integer ‘j’, (ii) at least one ‘green’ vertex is assigned the

integer ‘j’ and no ‘green’ vertex is assigned the integer ‘i’.

(4) A pair [i, j] is placed in group D if and only if no ‘green’ vertex is assigned

the integer ‘i’ or ‘j’.

E is the set of edges in G = (V, E). For any 1 ≤ i 6= j ≤ N , let E(i, j) ⊆ E

denote such a subset of edges of G: an edge of G is in E(i, j) if and only if the two

149

endpoints of the edge are assigned the integer ‘i’ and the integer ‘j’ respectively. Let

z(i, j) denote the number of edges in E(i, j). Upper bounds for z(i, j) are derived

below.

For any pair [i, j] in group A or group C, z(i, j) ≤ 2m − 2. That is because

otherwise there would exist m non-overlapping clusters in G — note that a cluster

contains exactly one edge — each of which is assigned only integers ‘i’ and ‘j’, which

would contradict the assumption that the interleaving on G is an MCI.

Now consider a pair [i, j] in group B. z(i, j) ≤ 2m− 2 for the same reason as in

the previous case. Assume z(i, j) = 2m− 2. Then in order to avoid the existence of

m non-overlapping clusters in G each of which is assigned only integers ‘i’ and ‘j’, the

z(i, j) = 2m − 2 edges in E(i, j) must be consecutive in the cycle G, which means,

WLOG, that there are 2m − 1 consecutive vertices vy+1, vy+2, · · · , vy+2m−1 (y ≥ 0)

whose assigned integers are in the form of [c(vy+1)−c(vy+2)−· · ·−c(vy+2m−1)] = [i−j−
i−j−· · ·−i−j−i]. According to the definition of ‘group B’, there exist a ‘green’ vertex

vk1 and a ‘green’ vertex vk2 , such that vk1 is assigned the integer ‘i’, vk2 is assigned the

integer ‘j’, and either all the vertices in the subgraph (vk1+1, vk1+2, · · · , vk2−1) (note

that if an index is greater than nmax, then it is subtracted by nmax so that the index

for a vertex is always between 1 and nmax; the same applies to the following contexts)

are ‘yellow’ or ‘red’, or all the vertices in the subgraph (vk2+1, vk2+2, · · · , vk1−1) are

‘yellow’ or ‘red’. By the way the vertices are colored, it’s not difficult to see that either

‘vk2−1 is assigned the integer c(vk1) = i’ (let’s call this ‘case 1’), or ‘vk1−1 is assigned

the integer c(vk2) = j’ (let’s call this ‘case 2’). If ‘case 1’ is true, then since there is

an edge between vk2−1 (which is assigned the integer ‘i’) and vk2 (which is assigned

the integer ‘j’), vk2 is in the set {vy+1, vy+2, · · · , vy+2m−1}. However, it’s simple to

see that every vertex in the set {vy+1, vy+2, · · · , vy+2m−1} that is assigned the integer

‘j’ must have the color ‘red’ — so vk2 must be ‘red’ instead of ‘green’ — therefore

a contradiction exists. Now if ‘case 2’ is true, since there is an edge between vk1−1

(which is assigned the integer ‘j’) and vk1 (which is assigned the integer ‘i’), both

vk1−1 and vk1 are in the set {vy+2, vy+3, · · · , vy+2m−1}. Then again since every vertex

in the set {vy+1, vy+2, · · · , vy+2m−1} that is assigned the integer ‘j’ must have the

150

color ‘red’, and since the color of vk1 is ‘green’, it is simple to see that all the vertices

in the set {vy+1, vy+2, · · · , vk1−1} that is assigned the integer ‘i’ must have the color

‘red’. Then since the color of vy+1 is ‘red’, the vertex vy must have been assigned the

integer ‘j’ — and that contradicts the statement that all the edges in E(i, j) are in

the subgraph (vy+1, vy+2, · · · , vy+2m−1). Therefore a contradiction always exists when

z(i, j) = 2m−2. So z(i, j) 6= 2m−2. So for any pair [i, j] in group B, z(i, j) ≤ 2m−3.

Now consider a pair [i, j] in group D. By the definition of ‘group D’, no ‘green’

vertex is assigned the integer ‘i’ or ‘j’. Let {vk1 , vk2 , · · · , vkt} denote the set of

‘yellow’ vertices that are assigned the integer ‘i’, where k1 < k2 < · · · < kt. If

{vk1 , vk2 , · · · , vkt} 6= ∅, by the way vertices are colored, it’s simple to see that every

vertex of G that is not in the set {vk1 , vk2 , · · · , vkt} is ‘red’. And if {vk1 , vk2 , · · · , vkt} =

∅, then all the vertices that are assigned the integer ‘i’ are ‘red’. Similarly, we can

show that either all the vertices that are assigned the integer ‘j’ are ‘red’, or there is

no ‘green’ vertex in G and every ‘yellow’ vertex is assigned the integer ‘j’. Together,

there are three possible cases in total — case 1, every vertex that is assigned the in-

teger ‘i’ or ‘j’ is ‘red’; case 2, there is no ‘green’ vertex in G and every ‘yellow’ vertex

is assigned the integer ‘i’; case 3, there is no ‘green’ vertex in G and every ‘yellow’

vertex is assigned the integer ‘j’. If case 1 is true, assume there is an edge whose

two endpoints are assigned the integer ‘i’ and the integer ‘j’, respectively. Then since

the two vertices adjacent to a ‘red’ vertex must be assigned the same integer, every

vertex in G is assigned either the integer ‘i’ or the integer ‘j’, which contradicts the

fact that all the N ≥ 4 integers must have been assigned to the vertices in G. So for

any pair [i, j] in group D, if case 1 is true, then z(i, j) = 0. If case 2 is true, then for

any k 6= i, there are at most 2m− 2 edges in E(i, k); and for any k1 6= i and k2 6= i,

since every vertex that is assigned the integer ‘k1’ or ‘k2’ is ‘red’, there is no edge in

E(k1, k2) — therefore, there are at most (N − 1) · (2m− 2) < (N − 1)[(m− 1)N − 1]

edges in G. So when case 2 is true, there are less than (N − 1)[(m− 1)N − 1] vertices

in G, and this lemma is proved. Similarly, when case 3 is true, there are also less

than (N − 1)[(m − 1)N − 1] vertices in G, and this lemma is also proved. For this

reason, in the following paragraph, we’ll simply assume that case 1 is always true —

151

and therefore z(i, j) = 0 is true for any pair [i, j] in group D.

Let the number of distinct integers assigned to ‘green’ vertices be denoted by

‘x’, and let ‘X’ denote the set of those x distinct integers. It’s simple to see that

exactly
(

x
2

)
pairs [i, j] are in group A and group B, where i ∈ X and j ∈ X — and

among them at least x pairs are in group B. It’s also simple to see that exactly

x(N − x) pairs are in group C and exactly
(

N−x
2

)
pairs are in group D. By using

the upper bounds we’ve derived on z(i, j), we see that the number of edges in G

is at most [
(

x
2

) − x] · (2m − 2) + x · (2m − 3) + x(N − x) · (2m − 2) +
(

N−x
2

) · 0 =

(1−m)x2+(2mN−2N−m)x, whose maximum value (at integer solutions) is achieved

when x = N − 1 — and that maximum value is (N − 1)[(m− 1)N − 1]. So nmax, the

number of vertices in G, is at most (N − 1)[(m− 1)N − 1].

2

Lemma 4.6 Let the values of N , K, m and L be fixed, where N = 3, K = 3,

m ≥ 2 and L = 2. Let nmax denote the maximum value of n such that an MCI exists

on a cycle of n vertices. Then nmax ≤ (N − 1)[(m− 1)N − 1].

Proof : Let G = (V, E) be a cycle of nmax vertices that has an MCI on it. We need to

show that nmax ≤ (N − 1)[(m− 1)N − 1]. It’s simple to see that G is assigned N = 3

distinct integers. If in the MCI on G, no two adjacent vertices are assigned the same

integer, then with the same argument as in the proof of Lemma 4.5, it can be shown

that nmax ≤ (N − 1)[(m− 1)N − 1]. Now assume there are two adjacent vertices in

G that are assigned the same integer. Then there are three possible cases.

Case 1: nmax is even.

Case 2: nmax is odd, and there are at least 2 non-overlapping clusters in G each

of which is assigned only 1 distinct integer.

Case 3: nmax is odd, and there don’t exist 2 non-overlapping clusters in G each of

which is assigned only 1 distinct integer.

We consider the three cases one by one.

Case 1: nmax is even. In this case, clearly we can find nmax

2
non-overlapping clusters

(of size L = 2) such that at least one of them contains two vertices that are assigned

152

the same integer. Among those nmax

2
non-overlapping clusters, let x, y, z, a, b and

c respectively denote the number of clusters that are assigned only integer ‘1’, only

integer ‘2’, only integer ‘3’, both integers ‘1’ and ‘2’, both integers ‘2’ and ‘3’, and

both integers ‘1’ and ‘3’. Since the interleaving is an MCI, clearly x + y + a ≤ m− 1,

y + z + b ≤ m − 1, z + x + c ≤ m − 1. So 2x + 2y + 2z + a + b + c ≤ 3m − 3.

So x + y + z + a + b + c ≤ 3m − 3 − (x + y + z). Since x + y + z ≥ 1 and

nmax = 2(x + y + z + a + b + c), we get nmax ≤ 2[3m− 3− (x + y + z)] ≤ 6m− 8 =

(N − 1)[(m− 1)N − 1].

Case 2: nmax is odd, and there are at least 2 non-overlapping clusters in G each

of which is assigned only 1 integer. In this case, clearly we can find nmax−1
2

non-

overlapping clusters (of size L = 2) among which there are at least two clusters

each of which is assigned only one integer. Among those nmax−1
2

non-overlapping

clusters, let x, y, z, a, b and c respectively denote the number of clusters that are

assigned only integer ‘1’, only integer ‘2’, only integer ‘3’, both integers ‘1’ and ‘2’,

both integers ‘2’ and ‘3’, and both integers ‘1’ and ‘3’. Since the interleaving is an

MCI, clearly x + y + a ≤ m − 1, y + z + b ≤ m − 1, z + x + c ≤ m − 1. So

2x + 2y + 2z + a + b + c ≤ 3m− 3. So x + y + z + a + b + c ≤ 3m− 3− (x + y + z).

Since x + y + z ≥ 2 and nmax = 2(x + y + z + a + b + c) + 1, we get nmax ≤
2[3m− 3− (x + y + z)] + 1 ≤ 6m− 9 < (N − 1)[(m− 1)N − 1].

Case 3: nmax is odd, and there don’t exist 2 non-overlapping clusters in G each

of which is assigned only 1 integer. Let x′, y′, z′, a′, b′ and c′ respectively denote the

number of edges in G whose two endpoints are both assigned integer ‘1’, are both

assigned integer ‘2’, are both assigned integer ‘3’, are assigned integers ‘1’ and ‘2’, are

assigned integers ‘2’ and ‘3’, are assigned integers ‘1’ and ‘3’. (Then x′+ y′+ z′+a′+

b′ + c′ = nmax.) It’s simple to see that among x′, y′ and z′, two of them equal 0, and

the other one is either 1 or 2. So without loss of generality, we consider the following

two sub-cases.

Sub-case 1: x′ = 1, and y′ = z′ = 0. In this case, a′ ≤ 2m− 3, because otherwise

there will be m non-overlapping clusters in G that are assigned only integers ‘1’ and

‘2’. Similarly, c′ ≤ 2m− 3. Also clearly, b′ ≤ 2m− 2. If a′ = 2m− 3 and c′ = 2m− 3,

153

then since there don’t exist m non-overlapping clusters in G that are assigned only

1 or 2 distinct integers, the MCI on G can only take the following form: in G, there

are a′ = 2m − 3 consecutive edges each of which has integers ‘1’ and ‘2’ assigned

to its endpoints (the segment of the cycle G consisting of these edges begins with

a vertex that is assigned the integer ‘2’ and ends with a vertex that is assigned the

integer ‘1’), followed by an edge whose two endpoints both are assigned the integer

‘1’, then followed by c′ = 2m− 3 consecutive edges each of which has the integers ‘1’

and ‘3’ assigned to its endpoints (the segment of the cycle G consisting of these edges

begins with a vertex that is assigned the integer ‘1’ and ends with a vertex that is

assigned the integer ‘3’), then followed by b′ consecutive edges each of which has the

integers ‘2’ and ‘3’ assigned to its endpoints (the segment of the cycle G consisting

of these edges begins with a vertex that is assigned the integer ‘3’ and ends with

a vertex that is assigned the integer ‘2’) — then it’s simple to see that b′ can’t be

even, which implies that b′ < 2m − 2 here. So in any case, we have a′ + b′ + c′ <

(2m−3)+(2m−2)+(2m−3) = 6m−8. So nmax = x′+y′+z′+a′+b′+c′ < 6m−7.

So nmax ≤ 6m− 8 = (N − 1)[(m− 1)N − 1].

Sub-case 2: x′ = 2, and y′ = z′ = 0. In this case, with arguments similar

to those in sub-case 1, we get a′ ≤ 2m − 4, c′ ≤ 2m − 4, and b′ ≤ 2m − 2. So

nmax = x′ + y′ + z′ + a′ + b′ + c′ ≤ 2 + (2m− 4) + (2m− 2) + (2m− 4) = 6m− 8 =

(N − 1)[(m− 1)N − 1].

So it’s proved that in any case, nmax ≤ (N − 1)[(m− 1)N − 1]. And this lemma

is proved.

2

154

Chapter 5

Monotone Percolation and
Topology Control

5.1 Preface

As discussed at the beginning of the thesis, the topological construction is a most

fundamental challenge for peer-to-peer type of networks, including overlay networks

and wireless networks. The topology-control method should be localized, in order

to be scalable to the size and dynamics of the network; however, at the same time,

the derived topology needs to achieve good global performance, including enabling

geographic routing and many other performance requirements.

In this chapter, we present a novel topology-control algorithm for wireless net-

works, which accomplish the above objectives. The nodes in the wireless networks

are modelled by a Poisson point process on a 2-dimensional Euclidean plane. For

nodes in higher-dimensional normed spaces, our algorithm can be naturally extended

to achieve similar performance — unless the nodes follow some very ill point pro-

cess (such as having many big ‘holes’ in the normed space with no nodes inside).

Therefore, the algorithm provides a very promising solution for the topology control

of overlay networks as well.

155

5.2 Introduction

The topology of a wireless network is the basis for its performance. Nearly all the

important properties — e.g., routing efficiency, capacity — are relying on it. The

topology control of a wireless network is for every node to determine its connectivity

to other nodes by selecting its coverage radius (transmission range). In this chapter,

we always consider the wireless nodes to be a Poisson point process on an infinite

2-dimensional Euclidean plane; and we consider all the nodes to have omnidirectional

coverage — namely, if a node v selects its coverage radius to be r, then there is a

directed link (edge) from v to every other node within distance r.

Many topology control algorithms have been proposed, and the study on their

performance has been extensive [20], [24], [31], [33], [56], [79], [82], [87]. They are

generally using different tradeoffs among the design parameters, including coverage

radius, node degree, connectivity, etc. Here we briefly introduce some most represen-

tative algorithms — the unit-disk graph scheme, the nearest-neighbors scheme, the

Bluetooth scheme, and the nearest-with-forward-progress scheme:

• Unit-disk graph (UDG) scheme [24]: in this scheme, all the nodes have the

same coverage radius. The network has no strong connectivity with probability

1. However, if the coverage radius is big enough, the network percolates —

namely, there exists an infinite strongly-connected component in the network

whose size is a positive (instead of 0) percentage of the network.

• Nearest-neighbors (NN) scheme [87]: in this scheme, all the nodes connect

themselves to the same number of nearest neighbors. (Then the edges are made

bidirectional.) It is shown that if we use n to denote the total number of nodes

in the network (where n → ∞), in order to make the network asymptotically

connected, it is sufficient and necessary for every node to have Θ(log n) neigh-

bors.

• Bluetooth (BT) scheme [20]: in this scheme, the network has n nodes (where

n →∞) and is confined in a [0, 1]2 square. Every node connects itself to c other

nodes chosen randomly within distance r, where c and r are constants. (Then

156

the edges are made bidirectional.) It is proven that when r > 0 and c ≥ 2, the

network is asymptotically connected.

• Nearest-with-forward-progress (NFP) scheme [33]: every node v connects itself

to enough neighbors such that for every infinitely faraway point, the nearest

node that is closer to the point than v is is included as a neighbor of v. (In

the original definition of this scheme, the coverage radius of a node was assume

to be dynamically changing. Here we’ll regard a node’s coverage radius as the

maximum value it can be.)

In wireless networking, routing is probably the most extensively studied topic. For

a large-scale wireless (and possibly mobile) network, the control messages for finding

and maintaining routing paths can easily consume most of the network capacity.

Currently geographic routing [14], [43], [45], [44], [59], or at least compact routing

schemes similar to geographic routing, seem to be the way to make routing scalable. In

geographic routing, when a node needs to forward a message to a destination, it tries

to select a neighbor that is geographically closer to the destination as the next hop.

The potential of geographic routing depends on the network’s topology. In a general

topology, geographic routing will meet many dead-ends (a dead-end is a node whose

Euclidean distance to the destination is smaller than all its neighbors’); and to counter

that problem, path-recovery mechanisms need to be used, where a well known method

is to route on a planar sub-graph [6], [14], [43] . Such methods ensure correct delivery

at the cost of extra routing length, under-utilization of communication links and

possibly load un-balancing. Topologies more appropriate for geographic routing can

be got by using schemes such as NFP [33], where dead-ends are eliminated with high

probability for faraway destinations. The ideal topology will be one that eliminates

dead-ends for all destinations.

The great value of the topology control algorithms proposed so far is evident,

and some of their results are very deep. Their performance, however, is not yet

satisfactory. The objectives that a good topology control algorithm should try to

achieve include:

157

• Localized construction: every node determines its own coverage radius and

connectivity to other nodes using only the information of its nearby nodes.

• Strong connectivity: a network is strongly connected if there is a directed

path from any node to any other node.

• Good expansion: a wireless network has good expansion if for any connected

area in the 2-dimensional plane, when the size of the area increases, the proba-

bility that all the nodes can reach the area (through directed paths) approaches

1.

• Small node degree: the degree of a node v is the number of other nodes within

the coverage radius (transmission range) of v. (Namely, here ‘degree’ means out-

degree.) A small degree of v means that when v transmits a message, its signal

interferes with only a small number of other nodes.

• Small node degree for utilization: in some schemes, a node does not use all

its links to forward messages. Instead, it uses only a subset of its links, whose

cardinality we call the ‘degree for utilization’. Such an action is sometimes

useful, e.g., for simplifying link-usage control mechanisms.

• Small coverage radius: it leads to small power consumption.

• Small hop distortion: for any two nodes u and v, we define the hop distortion

for them to be the ratio between the minimum number of hops (edges) it takes

to travel from u to v and the Euclidean distance between them. (But we only

consider the cases where the number of hops is at least 2, because otherwise

it’s neither necessary nor possible to bound this ratio.) The hop distortion of a

network is the supreme value of the hop distortions for all the node pairs.

• Small length distortion: for any two nodes u and v, we define the length

distortion for them to be the ratio between the length of the shortest path (in

length) from u to v and the Euclidean distance between them. The length

distortion of a network is the supreme value of the length distortions for all the

node pairs.

158

The hop distortion and the length distortion together reflect the optimality of

transmission delay and power usage.

• Enabling geographic routing with no dead-ends: such a property will

greatly facilitate scalable, compact and efficient routing.

In this chapter, we present an adaptive topology control algorithm. More specifi-

cally, it includes a family of algorithms that incrementally achieve many or all of the

above objectives. These are the first algorithms that achieve such comprehensive per-

formance guarantees, to the best of our knowledge. We call the algorithms we present

Monotone Percolation algorithms, because they all share these common features: for

every node, it can reach infinitely many other nodes, which span every (big enough)

area of the 2-dimensional plane; and for any pair of source and destination nodes,

there exists a path that makes monotonic progress in the direction of the destination

and maybe also in reducing the distance to the destination. (When we say ‘one node

can reach another node’, it means there exists a directed path from the first node to the

second one.) Such a percolation model bears both clear similarity and distinction

when compared to classic percolation processes; in particular, it should be contrasted

with the oriented percolation studied previously [30], [61].

We present 5 related algorithms, which we shall call Algorithms I, II, III, IV and

V. We summarize and compare their performance with that of the four representative

algorithms that we introduced — UDG, NN, BT and NFP — in the Table 1 below.

(In Table 1, ‘A-I ’, ‘A-II ’, · · · , ‘A-V ’ mean the 5 algorithms we present. Both the

‘Hop distortion’ and the ‘Length distortion’ are for the whole network. We assume the

nodes in the network follow a Poisson point process on an infinite 2-dimensional plane,

whose density is 1 node per unit area. To better explain the asymptotic performance

of the previous algorithms, we use n to denote the total number of nodes in the

network — and of course, n →∞. For the BT algorithm, in its original definition all

the nodes are confined in a [0, 1]2 square; since now we are enforcing the density to

be 1, we scale up the lengths in the square at a rate of
√

n.)

From the table, we can clearly see that the algorithms we present make substantial

improvements.

159

UDG NN BT NFP A-I A-II A-III A-IV A-V

Localized Yes Yes No Yes Yes Yes Yes Yes Yes

construction

Strong No Yes Yes — — Yes Yes Yes Yes

connectivity

Good No Yes Yes Yes Yes Yes Yes Yes Yes

expansion

Average Note* Ω(log(n)) Θ(n) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

degree →∞ →∞

Average Note* Ω(log(n)) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

degree for →∞

utilization

Average Note* Ω(
p

log(n)) Ω(
√

n) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

coverage →∞ →∞

radius

Hop ∞ — ∞ ∞ ∞ ∞ ∞ Θ(1) Θ(1)

distortion

Length ∞ — ∞ ∞ ∞ — Θ(1) Θ(1) Θ(1)

distortion

Enabling No — No Far Far Far Yes Yes Yes

geographic only* only* only*

routing

with no

dead-ends

Note* : for UDG, its average node degree (which is the same as average node degree for utilization)

depends on the uniform coverage radius. For percolation to happen, the average degree needs to be

at least 4.51258 — or equivalently, the coverage radius needs to be at least 1.1985.

Far only* : geographic routing is enabled with no dead-ends with high probability only for faraway

destinations.

Table 1: Summary and comparison of topology control algorithms.

160

Our contribution is in presenting these novel algorithms and their performance

analysis, which uses some new techniques. And these algorithms demonstrate how

good global connectivity-, expansion- and distortion-objectives can be achieved using

purely local constructions.

The rest of the chapter is organized as follows. In Section 5.3, we define some basic

terms. Section 5.4 through Section 5.8 respectively introduce the 5 related topology

control algorithms and analyze their performance.

5.3 Basic Terms

The wireless network we consider consists of nodes on an infinite 2-dimensional Eu-

clidean plane that follow a Poisson point process, whose density is 1 node per unit

area. (All the results here can be modified very easily for a more general density λ.)

We assume the nodes know their coordinates on the plane. Every node determines

its coverage radius using the given topology control algorithm. If a node v chooses

its coverage radius to be r, then there is a directed edge from v to every other node

whose distance to v is less than or equal to r (and such a node is called a neighbor

of v). (See Fig. 5.1.) As a result, we get a network that is a directed graph. The

number of outgoing-edges of v is called the degree of v.

v

r

Figure 5.1: Coverage radius and outgoing edges.

Given a network, for any two nodes u and v, d(u, v) denotes the Euclidean distance

between them. Given a directed path from u to v, we use H(u, v) to denote the number

of edges (namely, hops) in that path. h(u, v) denotes the minimum number of edges in

161

a directed path from u to v — that is, h(u, v) = minpaths from u to v H(u, v). Given a

directed path from u to v that consists of nodes ‘u, w1, w2, · · · , wk, v’, we use L(u, v)

to denote the length of that path, where L(u, v) = d(u,w1)+d(w1, w2)+ · · ·+d(wk, v).

l(u, v) denotes the minimum length of a directed path from u to v.

Given a directed path from node u to node v, we call H(u,v)
d(u,v)

the hop distortion of

that path. In this chapter, we only consider those cases where the number of edges in

the path is at least 2, because if it is 1, then the hop distortion of the path is simply

1
d(u,v)

— then if d(u, v) → 0, it becomes neither necessary nor possible to bound the

hop distortion for any topology control method. We define the hop distortion of the

network to be maxu,v
h(u,v)
d(u,v)

— that is, the worst hop distortion we may suffer even if

the shortest-path routing (measured in hops) is always used.

Similarly, given a directed path from u to v, we define L(u,v)
d(u,v)

to be the length dis-

tortion of that path. We define the length distortion of the network to be maxu,v
l(u,v)
d(u,v)

.

Now we define cones. Assume a node v has m neighbors. Then the rays starting

at v and respectively crossing those neighbors cut the plane into m disjoint areas,

which we call the cones of v. (For example, in Fig. 5.2, node v has 5 cones, whose

cone angles are A1, A2, · · · , A5. Certainly A1 + A2 + · · · + A5 = 2π.) We say that

those cones (or cone angles) of v are caused by those neighbors.

A1

A2

A3
A4

A5
v

r

Figure 5.2: The cones and cone angles of v.

We would like to mention the difference between our work and two previously

published algorithms, the cone-based algorithm [85], [49] and NFP [33]. The cone-

162

based algorithm and our algorithms both use the concept of ‘cones’, but other than

that they have very different components and constructions; NFP bears some limited

similarity with our Algorithm I, but the similarity quickly diminishes as we move on to

Algorithms II, III, IV and IV — and even for NFP and Algorithm I, they have totally

different node-connection and routing methods. In both the cone-based algorithm

and NFP, the nodes’ coverage radii change over time, while our algorithms use a

static-coverage model (where the coverage radii are fixed once they are determined).

The studied performance aspects are also distinct — for the cone-based algorithm,

connectivity preservation, power-usage competitive analysis and power minimization

were studied; for NFP, signal interference, throughput and forward progress were

studied; while for our algorithms, the performance aspects we study are as listed in

Section 5.2. So as a result, the algorithms, analysis and results are all very different.

5.4 Algorithm I

5.4.1 Definition

Algorithm I is defined as follows: “every node chooses its coverage radius to be the

minimum value such that its cone angles are all smaller than π.”

5.4.2 Routing Property

Say a node u needs to forward a message to a destination node v. With the network

topology constructed using Algorithm I, u must have a neighbor w such that the

angle ∠wuv < π
2
. If d(u, v) = ∞, then it is not difficult to see that d(w, v) < d(u, v)

— so by relaying the message to w, u makes the message geographically closer to

the destination. Now for destinations not infinitely far away, the farther away the

destination is, the more likely u will have a neighbor that gets closer to the destination.

So the network enables geographic routing without dead-ends with high probability

for faraway destinations.

163

5.4.3 Node Degree

It is natural to think that when a node u uses Algorithm I to determine its coverage

radius r, u does it in the following way: u firstly lets r = 0; then u gradually increases

r, and as a result, u covers (connects itself to) more and more neighbors; when r

reaches a particular value — let’s call it r0, — one more new neighbor is covered and

suddenly all u’s cone angles become smaller than π, and u knows that its coverage

radius should be equal to r0.

For the ease of analysis, let’s do a little imagination: let’s imagine that node u

keeps increasing r for ever — even after r has exceeded r0. (u will always remember

that r0 is what its coverage radius should be, though. So such an imagination won’t

hurt our analysis.)

Let’s now understand the above process in another way. Let’s imagine there is a

circle centered at u whose circumference has length 1, which we shall call the ‘Unit

Circle’. We denote the neighbors of u by v0, v1, v2 · · · , where d(u, v0) < d(u, v1) <

d(u, v2) < · · · . (In this chapter we always only consider the nodes to be in general

positions, because in the probabilistic analysis, the probability that several nodes are

not in general positions equals 0. Please keep this in mind also for analysis elsewhere.)

For each vi, the ray starting at u and going through vi intersects the Unit Circle, and

we denote the intersection point by wi. (See Fig. 5.3 for an example.) We assign

a coordinate to each point on the Unit Circle in the following way: for point p, its

coordinate equals the distance one needs to cover when one moves from w0 to p

clockwise on the Unit Circle. (So the coordinate is in the range [0, 1).)

When u is increasing its coverage radius r to cover more neighbors, every time a

new neighbor — say it’s vi — is covered, vi can be anywhere on the circle of radius r

with the same probability; so wi’s coordinate has a uniform distribution in the range

[0, 1). We would like to think that the points w0, w1, w2 · · · cut the Unit Circle into

pieces. (For example, in Fig. 5.3, when u has 4 neighbors, the Unit Circle is cut into

4 pieces, whose endpoints are respectively w0 and w1, w1 and w3, w3 and w2, w2 and

w0.) Clearly, all u’s cone angles are smaller than π if and only if all the pieces

164

v 0

v 1

v 2

v 3

w0
w1

w2
w3

r

u Unit Circle

Figure 5.3: Projecting u’s neighbors onto the Unit Circle.

of the Unit Circle have lengths smaller than 0.5.

Theorem 5.1 Let Z denote the degree of a node in a network constructed using

Algorithm I. Then Pr{Z ≤ n} = 1− n
2n−1 for n = 1, 2, 3, · · · ; and Pr{Z = n} = n−2

2n−1

for n = 2, 3, 4, · · · .

Proof: We consider the node u in the previous discussion, and let Z be its degree. The

probability that ‘Z ≤ n’ equals the probability of the following event — “n uniformly

distributed points w0, w1, · · · , wn−1 on the Unit Circle cut the Unit Circle into n

pieces whose lengths are all smaller than 0.5”, which then equals the probability of

this event — “among those n uniformly distributed points w0, w1, · · · , wn−1, there

exist two points wi and wj (1 ≤ i 6= j ≤ n−1) such that the following three conditions

are satisfied: (i) wi’s coordinate x is in the range (0, 0.5), (ii) wj’s coordinate y is in

the range (0.5, x + 0.5), (iii) for each of the n− 3 points excluding w0, wi and wj, its

coordinate is either in the range (0, x) or in the range (y, 1).”

There are (n− 1)(n− 2) ways to select the two points xi and xj. The probability

that ‘a point wk (k 6= 0, i, j) is in the range (0, x) or (y, 1)’ equals (x− 0) + (1− y) =

1 + x − y. So Pr{Z ≤ n} =
∫ 1

2

0

∫ x+ 1
2

1
2

(n − 1)(n − 2)(1 + x − y)n−3dydx = 1 − n
2n−1 .

(Here n ≥ 3.) The rest of the proof is straightforward. 2

Next we compute the expectation and variance of the node degree and show

that they are small. In principle they can, certainly, be computed by using the

distribution of node degree derived in Theorem 5.1. However we present here an

165

alternative solution for the following reasons: the solution is intriguing and makes

the degree’s expectation and variance significantly easier to compute; it provides a

more ‘combinatorial’ analysis that can be extended for many generalized forms of

Algorithm I.

Theorem 5.2 Let Z denote the degree of a node in a network constructed using

Algorithm I. Then E(Z) = 5, V ar(Z) = 4.

Proof: Let’s once more consider the generic node u in the previous analysis, and

let Z be its degree. Assume at some moment, the Unit Circle is cut into n pieces

by n points — w0, w1, · · · , wn−1. For i = 1, · · · , n − 1, let’s use Ci to denote the

coordinate of wi; and we write Ci in the binary form: Ci = (0.ci1ci2ci3 · · ·)2. (For

example, if Ci = 0.75, then its binary form is Ci = (0.ci1ci2ci3 · · ·)2 = (0.110 · · ·)2.) Let’s

re-order C1, C2, · · · , Cn−1 according to this rule: “Ci is placed in front of Cj if

(0.0ci2ci3 · · ·)2 < (0.0cj2cj3 · · ·)2.” Let’s call those re-ordered numbers D1, D2, · · · ,
Dn−1. (For example, if n = 4 and C1 = (0.010 · · ·)2, C2 = (0.111 · · ·)2, C3 = (0.101 · · ·)2,
then we re-order them as: D1 = (0.101 · · ·)2, D2 = (0.010 · · ·)2, D3 = (0.111 · · ·)2.)

For i = 1, 2, · · · , n− 1, we denote the binary form of Di by (0.di1di2di3 · · ·)2. Now

let’s observe the following sequence of bits: d11, d21, · · · , d(n−1)1. It’s not difficult to

realize that “the n points — w0, w1, · · · , wn−1 — cut the Unit Circle into n pieces

all shorter than 0.5” if and only if “in the sequence of bits — d11, d21, · · · , d(n−1)1 —

there is a 0 that appears behind a 1”. We can also see that even if the permutation

(re-ordering) from ‘C1, C2, · · · , Cn−1’ to ‘D1, D2, · · · , Dn−1’ is fixed, ‘d11, d21, · · · ,
d(n−1)1’ are still n− 1 i.i.d. random variables with the equal probability to be 0 or 1

(because the permutation has nothing to do with the sequence ‘d11, d21, · · · , d(n−1)1’).

We define the following game: “we throw a fair coin at discrete times 1, 2, 3 · · · ; if

at time i, the coin shows side 1 (or, ‘HEADS ’) for the first time, then we let x = i; if at

time j (j > i), the coin shows side 0 (or, ‘TAILS ’) for the first time after time i, then

we let y = j−i.” From the analysis, we can see that Pr{Z ≤ n} = Pr{x+y ≤ n−1}.
So for any m, Pr{Z = m} = Pr{x + y + 1 = m}. So E(Z) = E(x + y + 1) and

V ar(Z) = V ar(x + y + 1). x and y both have the geometric distribution and they

166

are clearly independent. So E(x) = E(y) = V ar(x) = V ar(y) = 1/(1
2
) = 2. So

E(Z) = E(x) + E(y) + 1 = 5 and V ar(Z) = V ar(x) + V ar(y) = 4. 2

5.4.4 Coverage Radius

Theorem 5.3 Let R denote the coverage radius of a node in a network constructed

using Algorithm I. Then the cumulative distribution function of R is FR(x) = Pr{R ≤
x} = 1 − e−πx2 − πx2e−

πx2

2 for x ≥ 0. And the probability density function of R is

fR(x) = dFR(x)
dx

= 2πxe−πx2
+π2x3e−

πx2

2 − 2πxe−
πx2

2 for x ≥ 0; E(R) =
√

2+1
2

≈ 1.207;

and V ar(R) = 5
π
− 3+2

√
2

4
≈ 0.1344.

Proof: Let u be the node whose coverage radius we are studying here, and let Z denote

its degree. Let n denote the number of nodes (except u itself) whose distance to u is

less than or equal to x. Then, FR(x) = Pr{R ≤ x} = Pr{Z ≤ n} = Pr{ the n cone

angles caused by the n nearest neighbors of u are all smaller than π} =
∑∞

i=3 Pr{n =

i}Pr{ the i cone angles caused by the i nearest neighbors of u are all smaller than

π}. n is a Poisson variable; and it’s not hard to see that the event “the n cone angles

caused by the n nearest neighbors of u are all smaller than π” is independent of x,

even though n itself depends on x, because the nodes are distributed uniformly with

respect to directions — so that event’s probability simply equals Pr{Z ≤ n} (whose

expression is shown in Theorem 5.1). Therefore FR(x) =
∑∞

i=3
(πx2)i

i!
e−πx2

Pr{Z ≤
i} =

∑∞
i=3

(πx2)i

i!
e−πx2

(1 − i
2i−1) = 1 − e−πx2 − πx2e−

πx2

2 . The rest of the proof is

straightforward. 2

5.4.5 Expansion and Connectivity

Theorem 5.4 A network constructed using Algorithm I has good expansion.What’s

more, it contains a strongly-connected subgraph that every node can reach. Such a

subgraph is infinitely large and unique.

Proof: Let u be an arbitrary node in a network constructed using Algorithm I. Let

E(u) denote the set of edges of the network that u can reach. The edges in E(u) cut

167

F1

F2

F3

F4

F5

F6

F7

F8

F9

u

p

a face

(a) (b)

Figure 5.4: (a) The faces caused by the edges reachable from node u. (b) A face that
cannot possibly exist.

the 2-dimensional plane into disjoint areas, which we shall call faces. (See Fig. 5.4

(a) for an example, where the faces are labelled as F1, F2, · · · .) Each of the faces

must have the shape of a convex polygon. To see that, let’s assume there is a face

which is a concave polygon, as shown in Fig. 5.4 (b). Then the face has an inner

angle θ that is greater than π. It is easy to see that there must be a node located at

the point p, and the cone-angles of that node are not all smaller than π — and that

contradicts the fact that the network is constructed using Algorithm I. Each of the

faces must also be a closed polygon — because otherwise, the boundary of the face

would contain an infinitely long edge, which is impossible. So all the faces are closed

convex polygons. With the fact that the nodes in the network follow a Poisson point

process, it is not difficult to see that the network has good expansion.

Let’s call a maximal strongly-connected subgraph a component, and call a com-

ponent that has no directed edges going into other components a sink component.

The network constructed using Algorithm I must have one or more sink components.

Assume there exist two sink components A and B, which respectively contain a node

u and a node v. It is simple to see that the set of nodes and edges in A (respectively,

B) are exactly the set of nodes and edges in the network that u (respectively, v) can

reach. Both the edges in A and the edges in B cut the plane into faces that are closed

convex polygons of finite areas. So the edges in A and in B must intersect each other

168

somewhere. Without loss of generality (WLOG), we assume there is an edge in A,

which starts at node x1 and ends at node x2, and an edge in B, which starts at node y1

and ends at node y2, which intersect each other at a point s. Also WLOG, we assume

d(s, x2) ≥ d(s, y2). Then d(x1, x2) = d(x1, s)+d(s, x2) ≥ d(x1, s)+d(s, y2) ≥ d(x1, y2).

Since x2 is within the coverage radius of x1, so is y2. So there is a directed edge start-

ing at x1 and ending at y2, which contradicts the facts that component A is a sink

component. So there is only one sink component. It is simple to see that all the

nodes of the network can reach the unique sink component, and the sink component

is infinitely large.

2

The strongly-connected subgraph that all nodes can reach spans the plane well.

That makes long-range communication feasible.

5.5 Algorithm II

5.5.1 Definition

Algorithm II is an enhanced version of Algorithm I. Compared to Algorithm I, Al-

gorithm II further increases nodes’ coverage radii so that for any two nodes, if Algo-

rithm I would create a directed edge between them, then Algorithm II will create a

bi-directional edge between them. The reason for doing this is that in engineering,

it’s often desirable to use bi-directional links for the ease of medium-access control

and 2-way communication (although in principal, having short loops instead may also

work).

Algorithm II has two steps, and it is defined as follows: “step 1, use Algorithm I to

determine the coverage radius of every node; step 2, for every node v, if its coverage

radius was r and the maximum length of its incoming edges was t in step 1, then v

makes its coverage radius to be max{r, t}.”

169

5.5.2 Connectivity and Routing Property

All the good routing and connectivity properties that Algorithm I can achieve is also

achieved by Algorithm II. Moreover, Algorithm II guarantees the strong connectivity

of the network:

Theorem 5.5 A network constructed using Algorithm II is strongly connected.

Proof: For a fixed set of nodes on the 2-dimensional plane, let’s use Algorithm I

(Algorithm II) to construct a network which we shall call Network I (Network II).

Clearly for any two nodes p and q, if there is a directed path from p to q or from q to

p in Network I, then in Network II, all the edges in that path become bi-directional

— so p can q can reach each other. Now consider two arbitrary nodes u1 and u2. By

Theorem 5.4, in Network I there is a strongly-connected subgraph that u1 and u2 can

both reach. Then it’s not hard to see that in Network II, u1 and u2 can reach each

other. So Network II is strongly connected. 2

5.5.3 Coverage Radius and Node Degree

The distribution of a node’s coverage radius is hard to compute for Algorithm II.

Nevertheless, we can show that its expectation and variance are upper bounded by

small constants.

Lemma 5.1 In a network constructed using Algorithm I, randomly and uniformly

select an edge, and denote the edge’s length by L. Then the probability density function

of L is fL(x) = 2π
5

x(e−πx2
+ πx2e−

πx2

2), for x ≥ 0.

Proof: Without loss of generality, we assume there is a node u at the origin point of

the 2-dimensional plane, and consider its outgoing edges. Let’s use ∆(x) to denote the

probability that “u has an outgoing edge whose length is between x and x+dx”, where

dx → 0. Then ∆(x) = Pr{the cone-angles of u caused by the nodes within distance

x are not all smaller than π}Pr{there exists a node whose distance to u is between x

and x+dx} = Pr{the cone-angles of u caused by the nodes within distance x are not

170

all smaller than π}[π(x+dx)2−πx2][1+o(1)] = Pr{the cone-angles of u caused by the

nodes within distance x are not all smaller than π}[2πxdx+o(dx)]. From Theorem 5.3,

we can see that Pr{the cone-angles of u caused by the nodes within distance x are not

all smaller than π} = e−πx2
+πx2e−

πx2

2 . So ∆(x) = (e−πx2
+πx2e−

πx2

2)[2πxdx+o(dx)].

It is not hard to see that fL(x) = [limdx→0
∆(x)
dx

] · C = (e−πx2
+ πx2e−

πx2

2) · 2πx · C,

where C is some appropriate scaling factor. From
∫∞
0

fL(x)dx = 1, we find that

C = 1
5
. So fL(x) = 2π

5
x(e−πx2

+ πx2e−
πx2

2), for x ≥ 0.

2

Theorem 5.6 Let R denote the coverage radius of a node in a network constructed

using Algorithm II. Then E(R) ≤ 1.6585, and V ar(R) ≤ 1.338.

Proof: Imagine we have a very large bag, and let’s play the following game: “generate

the nodes following the Poisson point process and use Algorithm I to construct a

network; corresponding to each node u of the network, we put a red stick whose

length equals the coverage radius of u into the bag; corresponding to each directed

edge of the network, we put a green stick whose length equals the length of the edge

into the bag; repeat all the above steps.”

Clearly there will be infinitely many sticks in the bag, because each network has

infinite nodes and we generate the network infinitely many times. Nevertheless, if we

use LR to denote the length of a red stick and use LG to denote the length of a green

stick, we know the probability density functions of LR and LG: fLR
(x) = 2πxe−πx2

+

π2x3e−
πx2

2 − 2πxe−
πx2

2 (by Theorem 5.3), and fLG
(x) = 2π

5
x(e−πx2

+ πx2e−
πx2

2) (by

Lemma 5.1). Also, Theorem 5.2 tells us that the average degree of a node is 5, so the

number of green sticks is 5 times the number of red sticks. Therefore, if we use L to

denote the length of a stick in the bag (regardless of its color), then the probability

density function of L is fL(x) = [fLR
(x) + 5fLG

(x)] · 1
6

= 2π
3

xe−πx2
+ π2

2
x3e−

πx2

2 −
π
3
xe−

πx2

2 .

For Algorithm II, we see (from its definition) that a node determines its coverage

radius through these two steps: “firstly, Algorithm I is used to construct a network;

next, every node sets its coverage radius to be the larger value of its old coverage

171

radius and the length of its longest old incoming edge.” Equivalently, we can also

see the nodes as using the following method to determine their coverage radii: “every

node picks a red stick and a green stick (not necessarily uniformly) from the bag, and

sets its coverage radius to be the maximum length of these two sticks.”. Clearly, no

two nodes need to, or should, pick the same red stick or green stick.

We can see that the average coverage radius for Algorithm II cannot exceed the

average coverage radius for the following scheme: “pick just one stick out of the bag

for each node (one by one), and set the node’s coverage radius to be equal to that

stick’s length; for every node, we always pick the longest stick that is still available

(regardless of its color).” What is the average length of the sticks picked out in the

above scheme? The number of sticks in the bag is 6 times the number of nodes. So

if we are picking out exactly those sticks longer than a value z, then
∫∞

z
fL(x)dx = 1

6

— so we find z ≈ 1.4115. Then the average length of the sticks picked out in the

above scheme is [
∫∞

z
xfL(x)dx] · 6 = 1.6585. So E(R) ≤ 1.6585.

With the same method we can prove that E(R2) ≤ 2.7948. The average coverage

radius for Algorithm II is no less than that of algorithm I, so E(R) ≥
√

2+1
2

≈ 1.207

(by Theorem 5.3). So V ar(R) = E(R2)− E2(R) ≤ 2.7948− 1.2072 = 1.338.

2

From the proof of Theorem 5.6, it is easy to realize that, in fact, all the moments

of the coverage radius (not just its expectation and second moment) in a network

constructed using Algorithm II are finite constants (instead of ∞). As to the node

degree, we can see that in such a network, the neighbors within a node’s coverage

range do not follow a Poisson point process, because the node’s coverage radius is

dependent on the positions of the neighbors. Nevertheless, it is not hard to see that

the expectation of the node degree is also a finite constant.

172

5.6 Algorithm III

5.6.1 Definition

Algorithm III is defined as follows: “every node chooses its coverage radius to be the

minimum value such that its cone angles are all smaller than or equal to θ, where θ

is a fixed number and 0 < θ < 2π
3

.”

5.6.2 Connectivity and Routing Property

Lemma 5.2 In a network constructed using Algorithm III, let u and v be any two

nodes. Then u has a neighbor w such that d(w, v) < d(u, v).

Proof: Let r be the coverage radius of u. We just need to consider the case where

d(u, v) > r. Since all u’s cone angles are smaller than or equal to θ, u must have a

neighbor w such that the angle ∠wuv ≤ θ
2

< π
3

— then since d(u,w) ≤ r < d(u, v),

we get d(w, v) < d(u, v).

2

If in Algorithm III we make θ > 2π
3

, then the statement in Lemma 5.2 no longer

holds (however it holds if θ = 2π
3

). So in this sense 2π
3

is a threshold for θ. From the

above lemma we can also see that for any source and destination, we can use geo-

graphic routing to find a path between them without meeting any dead-end (because

every intermediate node can use a neighbor closer to the destination as the next node

in the routing path). So we get:

Theorem 5.7 A network constructed using Algorithm III is strongly connected. And

it enables geographic routing with no dead-ends.

5.6.3 Length Distortion and Routing Property

Lemma 5.3 Let O and P be two nodes, and let OAE be a sector centered at O

as shown in Fig. 5.5, where ∠AOP ≤ π
3

and d(O, P) > d(O,A). For every point

t in the sector (including the boundary of the sector), we define η(t) as η(t) =

173

d(O,t)
d(O,P)−d(t,P)

, and call η(t) the ‘competitive ratio of t’. Then, in the sector, A is

the unique point that maximizes the competitive ratio — and that value is η(A) =
d(O,A)

d(O,P)−
√

d2(O,P)+d2(O,A)−2d(O,P)d(O,A) cos\AOP
. What’s more, η(A) is a strictly decreas-

ing function in d(O,P).

AOP
O

A

E P

Figure 5.5: Maximum competitive ratio in a sector.

Proof: Draw a circle C centered at P that intersects the sector. If we move a point

c on C, the value d(O, P) − d(c, P) clearly remains constant. If C intersects the

arc ÂE, then clearly for points on C that are also in the sector, the intersection of

C and ÂE is the only point that maximizes the competitive ratio. If C does not

intersect the arc ÂE, then it intersects the line segment OA; then it’s also clear that

for points on C that are also in the sector, the intersection of C and OA is the only

point that maximizes the competitive ratio. So the point (or points) in the sector

that maximizes the competitive ratio is either on the arc ÂE or on the line segment

OA. But then since all the points on the arc ÂE have the same distance to O, it is

simple to see that A has a greater competitive ratio than any other point on the arc

ÂE. So the point (or points) in the sector that maximizes the competitive ratio is on

the line segment OA.

Now let’s find out which point on the line segment OA maximizes the competitive

ratio. We draw a circle centered at point P whose radius is d(P, A), which is shown

as the solid circle in Fig. 5.6 — let’s denote the intersection of the circle and the line

segment OA by ‘D’. Let B be an arbitrary point on the line segment DA. Draw a

circle centered at point P whose radius is d(P, B), which intersects the arc ÂE at

point C, as shown in Fig. 5.6. It is simple to see that the competitive ratio of B is

smaller than that of C, which is in turn smaller than that of A. So the competitive

174

ratio of A is greater than any other point on the line segment DA.

AOP
O

A

E
P

C

BD
Y

X

Figure 5.6: The maximum competitive ratio of points on the line segment OA.

Now consider points on the line segment OD. Let X and Y be two points on OD,

and let the distance between X and Y be extremely small — namely, d(X,Y) → 0.

Y is closer to P than X is by d(X, Y) cos ∠Y XO — and that value is a strictly

decreasing function of ∠Y XO. So it is not difficult to see that for a point on the line

segment OD, the further away it is from O, the greater its competitive ratio is. So

the competitive ratio of point D is greater than any other point on the line segment

OD.

By combining the above results, we can see that in the sector OAE, A is the

unique point that maximizes the competitive ratio. Clearly, A’s competitive ratio

is η(A) = d(O,A)

d(O,P)−
√

d2(O,P)+d2(O,A)−2d(O,P)d(O,A) cos\AOP
. Let’s define f as f = d(O,P) −

√
d2(O,P) + d2(O, A)− 2d(O, P)d(O,A) cos ∠AOP . We take the derivative of η(A), and

find that ∂η(A)
∂d(O,P) = −d(O,A)

f2 · ∂f
∂d(O,P) . Since ∂f

∂d(O,P) =

1− 1
2 · 1√

d2(O,P)+d2(O,A)−2d(O,P)d(O,A) cos\AOP
· (2d(O, P)− 2d(O, A) cos∠AOP) =

1− d(O,P)−d(O,A) cos\AOP√
(d(O,P)−d(O,A) cos\AOP)2+(d(O,A) sin\AOP)2

> 0, we find that ∂η(A)
∂d(O,P) < 0. So η(A) is

a strictly decreasing function in d(O,P).

2

We derive a routing method, which we call Routing Method I as follows: “when a

node u needs to forward a message to a destination node v, u sends the message to

a neighbor w such that ∠wuv ≤ θ
2

< π
3
.” (With Algorithm III, such a neighbor w is

175

guaranteed to exist.)

Theorem 5.8 In a network constructed by using Algorithm III, the length distortion

of the network is at most 1

1−
√

2−2 cos θ
2

.

Proof: First let’s take a look at Lemma 5.3. In that lemma, it is said that η(A) is

strictly decreasing in d(O, P), so η(A) < d(O,A)

d(O,A)−
√

d2(O,A)+d2(O,A)−2d(O,A)d(O,A) cos\AOP
=

1
1−√2−2 cos\AOP

.

For any two nodes u and v, we use Routing Method I to get a path from u to v.

Let’s say the path consists of nodes ‘u = w1, w2, w3, · · · , wk+1 = v’. Then the length

distortion of this path is
Pk

i=1 d(wi,wi+1)
d(w1,wk+1)

=
Pk

i=1 d(wi,wi+1)Pk
i=1[d(wi,wk+1)−d(wi+1,wk+1)]

. From Lemma 5.3

and our analysis at the beginning of this proof, we can see that for every i (1 ≤ i ≤ k),

d(wi,wi+1)
d(wi,wk+1)−d(wi+1,wk+1)

< 1

1−
q

2−2 cos θ
2

. So both the length distortion of this path, and

the length distortion of the network, is at most 1

1−
q

2−2 cos θ
2

.

2

The proof of Theorem 5.8 shows that even by using Routing Method I, a geo-

graphic routing scheme, the length distortions of the routing paths can still be upper

bounded by 1

1−
q

2−2 cos θ
2

.

5.6.4 Hop Distortion, Node Degree and Coverage Radius

The hop distortion for networks constructed using Algorithm III is∞. That’s because

even though the node density is 1 node per unit area, the following phenomenon is

still certainly going to happen somewhere in the network: ‘for two nodes u and v, the

nodes between and around them are so dense that they all have very small coverage

radii; as a result, every routing path from u to v consists of a very large number of

edges (which is impossible to bound from above).’

The distributions of the node degree and the coverage radius can be computed in

similar ways as for Algorithm I. Clearly, both of them are functions with an expo-

nentially decreasing tail. Therefore both the expectations and variances of the node

degree and the coverage radius are constants (instead of ∞) (that depend on θ).

176

5.7 Algorithm IV

5.7.1 Definition

Algorithm IV consists of two steps, and it is defined as follows: “step 1, every node

chooses its coverage radius to be the minimum value such that its cone angles are all

smaller than or equal to θ, where θ is a fixed number and 0 < θ < 2π
3

; step 2, for

those nodes whose coverage radii in step 1 were small than δ, they set their coverage

radii to be δ. Here δ is a fixed number and δ > 0.”

5.7.2 Hop Distortion

Algorithm IV is an enhanced version of Algorithm III, so all the good connectivity,

length-distortion and routing properties that Algorithm III can achieve can also be

achieved by Algorithm IV. Now we show that Algorithm III can achieve more: for

a network constructed using Algorithm IV, its hop distortion is upper-bounded by a

constant.

Firstly we present a new routing method, which we shall call Routing Method II :

“when a node u needs to forward a message to a destination node v, u sends the

message to its neighbor w that satisfies the following two conditions: (1) if we define

S as S = {p |p is a neighbor of u, and ∠puv ≤ θ
2

< π
3
}, then w ∈ S; (2) for every node

p ∈ S, d(w, v) ≤ d(p, v).” Routing method II is a special case of Routing Method I.

Lemma 5.4 In a network constructed using Algorithm IV, if we use Routing Method

II to do routing, then for any two consecutive edges in any routing path, the total

length of those two edges is greater than δ.

Proof: We assume Routing Method II is used for routing. Now consider the following

scenario: “node O needs to forward a message to destination node P , and it sends

the message to its neighbor C; node C sends the message to its neighbor D.” Then

to prove this lemma, we need to prove that d(O, C) + d(C, D) > δ.

We assume that the coverage radius of node O is R. See Fig. 5.7. Clearly, node

C must be in the sector OAB; since d(D,P) < d(C, P) and C is the closest to P

177

than all the the other nodes in the sector OAB, D must be out of the sector OAB.

Then there are three possibilities: Possibility 1, the line segment CD intersects OA;

Possibility 2, CD intersects the arc ÂB; Possibility 3, CD intersects BO. We consider

them one by one. Without loss of generality, from now on we assume node C is in

the sector OAE.

2

2

PO

R

A

B

C

D

E

Figure 5.7: Two consecutive edges in a routing path.

(1) Firstly, assume CD intersects OA. Then it is as shown in Fig. 5.8.

2

2

PO

R

A

B

C

E

D

Figure 5.8: Two consecutive edges in a routing path, when CD intersects OA.

Imagine there is a circle that passes through these three points — O, A and E

— which we shall denote by ‘circle OAE’. All the three inner angles in the triangle

∆OAE are smaller than π
2
, so the center of the ‘circle OAE’ is inside the triangle

∆OAE — so the sector OAE is totally contained inside the ‘circle OAE’; then since

178

node C lies in the sector OAE, C is in the ‘circle OAE’ — so ∠OCE ≥ OAE. Then

∠DCP ≥ ∠OCE ≥ ∠OAE = ∠OEA = π−\AOE
2

=
π− θ

2

2
>

π− 2π/3
2

2
= π

3
> θ

2
. Also,

2π − ∠DCP ≥ ∠ACP > ∠AOP = θ
2
. That contradicts the fact that C decided to

send the message to D based on the Routing Method II. So the case we are considering

here is impossible.

(2) Secondly, assume CD intersects the arc ÂB, as shown in Fig. 5.9. In this case,

clearly d(O, C) + d(C,D) > R ≥ δ, which is the conclusion we need.

2

2

PO

R

A

B

C

D

Figure 5.9: Two consecutive edges in a routing path, when CD intersects the arc ÂB.

(3) Thirdly, assume CD intersects OB. Then it is as shown in Fig. 5.10.

2

2

PO

R

A

B

C

D

E

F

G

Figure 5.10: Two consecutive edges in a routing path, when CD intersects OB.

Let’s see how we can adjust the positions of all the nodes to minimize the value of

d(O, C) + d(C,D). The following are the 2 steps for that adjustment: “(i) We make

179

node D to be infinitely close to the point F . (ii) We know ∠PCF = ∠PCD ≤ θ
2

< π
3
,

so ∠OFC = π − ∠FOP − ∠OGF ≤ π − ∠PCF − ∠CGP = ∠CPO < ∠CEO < π
2
.

So to minimize the value of d(C, F) (which now equals d(C, D)), we need to make

∠PCF = θ
2
, and make node P be infinitely close to the point E.” After the above

two adjustment steps, the situation becomes as shown in Fig. 5.11.

2

2

2
O

R

A

B

C

G

D

P

Figure 5.11: Two consecutive edges in a routing path, when CD intersects OB.

Now let’s temporarily assume that the position of node D is fixed, and let’s see

where node C needs to be in order to minimize d(O, C) + d(C,D). Imagine there

is a circle that passes through these three nodes — O, P and D — which we shall

call ‘circle OPD’. (Circle OPD is the dashed circle in Fig. 5.12.) Since ∠POD =

∠PCD = θ
2
, C must be on the circle OPD. C is also in the sector OAP , so node C

can only lie on the arc ĤP . (The arc ĤP is part of the circle OPD, and H is the

intersection point of OA and the circle OPD.) But at which position on the arc ĤP

should node C be in order to minimize d(O, C) + d(C, D)?

On the two-dimensional plane, given any number s such that s > d(O, D), if we

find out those points p such that d(O, p) + d(p,D) = s, then we’ll see that those

points form an ellipse with O and D as its foci. (Such an ellipse is shown in dotted

line in Fig. 5.12.) Let’s gradually increase the value of s, and as a result the ellipse

grows. Once the ellipse intersects the arc ĤP , the first intersection point is where

node C should be in order to minimize d(O, C) + d(C, D). Clearly this intersection

point is either point H or point P . If the intersection point is P , then we already

180

2

2

2

A

B

G

D

P

C

H

O

Figure 5.12: Two consecutive edges in a routing path, when CD intersects OB.

have d(O, C) + d(C, D) = d(O, P) + d(C, D) > d(O, P) ≥ δ. So in the rest of the

proof, we assume that node C lies where point H is, and we’ll prove that even in this

case, we still have d(O, C) + d(C, D) > δ.

Since now node C lies where H is, the situation becomes as shown in Fig. 5.13.

From now on we no longer assume that node D’s position is fixed. Instead, we let node

C take different positions on the line segment OA; and the position of D becomes

uniquely determined by C.

2

2

2

A

B

G

D

P
O

C

Figure 5.13: Two consecutive edges in a routing path, when CD intersects OB.

Let’s define t as t = d(O,C), and define f(t) as f(t) = d(O, C) + d(C,D). (Here

0 < t ≤ d(O, A) = R.) Then f(t) = d(O, C) + d(C, D) = t + d(C,D) sin\CDO
sin\CDO

= t +

d(O,C) sin\COD
sin\CPO

= t+ t sin θ
sin\CPO

= t+ d(C,P)·t sin θ
d(C,P) sin\CPO

= t+ d(C,P)·t sin θ
d(O,C) sin\COP

= t+ d(C,P)·t sin θ

t sin θ
2

=

181

t + 2 cos θ
2d(C, P) = t + 2 cos θ

2

√
d2(O,C) + d2(O, P)− 2d(O, C)d(O, P) cos∠COP = t +

2 cos θ
2

√
t2 + R2 − 2tR cos θ

2 .

Let’s see when f(t) takes its minimum value. Assume that there is a value t0

(0 < t0 ≤ R) such that the derivative of f(t) at t = t0 — namely, df(t)
dt
|t=t0 — equals 0.

By solving the equation df(t)
dt

= 0, we find that t0 = R cos θ
2
− R sin θ

2√
4 cos2 θ

2
−1

. By using the

fact that t0 > 0 and the above formula, we find that θ < π
2
. Then we find that f(t0) =

R cos θ
2
+R sin θ

2

√
4 cos2 θ

2
− 1 > R cos θ

2
+R sin θ

2
= R

√
cos2 θ

2
+ sin2 θ

2
+ 2 cos θ

2
sin θ

2
=

R
√

1 + sin θ > R ≥ δ. (Note that 0 < θ < 2π
3

.) So f(t0) > δ. Now let’s check the

boundary values. When t = d(O,A) = R, clearly f(t) > R ≥ δ. When t approaches

0, the value of f(t) approaches 2R cos θ
2

> 2R cos π
3

= R ≥ δ. Then it’s not difficult

to see that f(t) > δ for any 0 < t ≤ R. So we have proved the conclusion in this case.

2

Theorem 5.9 In a network constructed using Algorithm IV, we use Routing Method

II to do routing. For any two nodes O and P , let’s use H(O, P) to denote the

number of edges in the routing path from O to P . Assume H(O,P) ≥ 2. Then the

hop distortion for that routing path, H(O,P)
d(O,P)

, is upper bounded as follows: H(O,P)
d(O,P)

<

2
d(O,P)

+ 2

δ(1−
√

2−2 cos θ
2
)
.

Proof: According to Theorem 5.8, the length of the routing path from O to P is

at most d(O, P) · 1

1−
q

2−2 cos θ
2

. The total length of any two consecutive edges in the

routing path is more than δ (by Lemma 5.4), so the first 2bH(O,P)−1
2

c edges in the

routing path have a total length of more than δbH(O,P)−1
2

c — but that total length is

less than the length of the routing path. So δbH(O,P)−1
2 c < d(O, P) · 1

1−
q

2−2 cos θ
2

. As a

result, H(O,P)
d(O,P)

≤ 2bH(O,P)−1
2

c+2

d(O,P)
< 2

d(O,P)
+ 2

δ(1−
√

2−2 cos θ
2
)
.

2

In Theorem 5.9, clearly d(O,P) > δ. So we get the following conclusion:

Theorem 5.10 The hop distortion for a network constructed using Algorithm IV is

less than 2
δ
(1 + 1

1−
√

2−2 cos θ
2

).

182

We see that even when Routing Method II — a geographic routing method — is

used, the hop distortion and length distortion for the routing paths are still upper-

bounded by constants.

5.7.3 Node Degree and Coverage Radius

The distributions of node degree and coverage radius for Algorithm IV can be com-

puted by using the corresponding distributions for Algorithm III. They are again

functions with exponential decreasing tails, so both the expectations and the vari-

ances of the node degree and the coverage radius are constants (instead of ∞) that

depend on θ and δ.

5.8 Algorithm V

5.8.1 Definition

Algorithm V is defined as follows: “for every node u, it disregards those nodes whose

distance to u is less than ∆, and chooses its coverage radius to be the minimum value

such that its cone angles (which are caused only by those neighbors whose distance

to u is at least ∆) are all smaller than or equal to θ. Here θ and ∆ are fixed numbers,

0 < θ < 2π
3

, and ∆ > 0.”

Please note that although a node disregards its neighbors within distance ∆ when

determining its coverage radius, it still connects itself to all the nodes within its

coverage radius.

5.8.2 Hop Distortion and Other Performance Measurements

We can easily see that the upper bound for length distortion shown in Theorem 5.8

also holds for Algorithm V. In a network constructed using Algorithm V, we present

the following routing method which we shall call Routing Method III : “when u needs

to forward a message to a destination node v, if v is not a neighbor of u, then u sends

the message to a neighbor w such that d(u,w) ≥ ∆ and ∠wuv ≤ θ
2
; otherwise, u

183

directly sends the message to v.” Routing Method III is a special case of Routing

Method I. The routing path from u to v based on Routing Method III has a length

that is at most d(u, v) · 1

1−
q

2−2 cos θ
2

(see the proof of Theorem 5.8); and in that routing

path the length of every edge except the last one is at least ∆. So similar to the

proofs of Theorem 5.9 and Theorem 5.10, we can prove the following:

Theorem 5.11 In a network constructed using Algorithm V, we use Routing Method

III to do routing. For any two nodes O and P , let’s use H(O, P) to denote the

number of edges in the routing path from O to P . Assume H(O,P) ≥ 2. Then the

hop distortion for that routing path, H(O,P)
d(O,P)

, is upper bounded as follows: H(O,P)
d(O,P)

≤
1

d(O,P)
+ 1

∆(1−
√

2−2 cos θ
2
)
.

Theorem 5.12 The hop distortion for a network constructed using Algorithm V is

at most 1
∆

(1 + 1

1−
√

2−2 cos θ
2

).

The distributions of node degree and coverage radius for Algorithm V can be com-

puted by using the corresponding distributions for Algorithm III (and the methods

here are simpler than those for Algorithm IV). The expectations and variances of

those two random variables are also constants (instead of ∞) that depend on θ and

∆. We comment that although the proofs for Algorithm V are simpler than their

counterparts for Algorithm IV, it is at the cost of its performance — when a node

is determining its coverage radius, it disregards its closest neighbors, and that may

make its coverage radius a little larger than necessary.

5.9 Appendix: The One-Hop Progress in a Net-

work Constructed Using Algorithm I

In this appendix, we show how to compute the distribution of the one-hop progress

for a network constructed using Algorithm I. When a node u needs to forward a

message to a destination node v, u sends the message to one of its neighbors w —

then d(u, v) − d(w, v) is called the one-hop progress. One-hop progress shows how

184

effectively messages can be routed in a network; and it is a topic studied frequently

[33], [56], [82], [88]. The solution we present here uses novel analysis techniques that

have not appeared in previous publications; and it can be generalized to compute the

one-hop progress for extended versions of Algorithm I (e.g., Algorithm III).

We assume here that a node always forwards the message to the neighbor that

makes the most one-hop progress. And we assume the destination is infinitely far

away. This is a basic model used in many works [33], [82]. And for very large networks

it is a good approximation — two randomly sampled source and destination nodes

are most likely to be very far away from each other, and the distance from most of

the intermediate nodes on the routing path to the destination will be large.

We impose an x− y coordinate system on the 2-dimensional plane. And without

loss of generality, we assume there is a node O at the original point, which needs

to forward a message to the destination node whose coordinates are (+∞, 0). Then

among the neighbors of O, the one that makes the most progress is the one with

the greatest x-coordinate. Let’s use ζ to denote the maximum x-coordinate of the

neighbors of O. Then ζ is the one-hop progress for O.

Let’s use vL to denote the farthest neighbor of O. Then d(O, vL) is the coverage

radius of O. We define C as the disk centered at O whose radius is d(O, vL). From

the definition of Algorithm I, we know that if we disregard vL, then the cone-angles

caused by the rest of the neighbors of O would not be all smaller than π — then let’s

use vA and vB to denote the two neighbors whose corresponding cone-angle is no less

than π. (See Fig. 5.14 for an illustration. The node at the origin is O.) We define

M as the sector in C with O, E, F as its three extreme points (see Fig. 5.14 for the

illustration), whose angle ∠EOF = ∠vAOvB ≤ π. Clearly, vL /∈ M , and all the other

neighbors of O are in M .

The one-hop progress for O — that is, ζ — has to be in the range of (0, d(O, vL)].

Let x be a number where 0 < x ≤ d(O, vL). Our goal in this appendix is to compute

Pr{ζ ≤ x}, namely, the cumulative distribution function of ζ.

For the sake of explanation, let’s define some more notations that will be used

later on. Please see Fig. 5.14 for the illustration. X is a point whose x-coordinate

185

v
L

v
A

v
B

v
LXO

v
LOE

EOF
X axis

Y axis

x

Q

E

P

F

X

sector M

disk C

Figure 5.14: O’s neighbors

is positive and whose y-coordinate is 0. We can think of X as the point whose

coordinates are (+∞, 0). We partition the disk C into two parts — P and Q. P

contains all those points in C whose x-coordinates are no greater than x; and Q

contains all those points in C whose x-coordinates are greater than x. So if ζ ≤ x,

then all the neighbors of O are in P .

How large can the three angles — ∠XOvL, ∠vLOE and ∠EOF — be, if ζ ≤ x?

Since vL is on the circumference of C, we get arccos x
d(O,vL)

≤ ∠XOvL ≤ 2π −
arccos x

d(O,vL)
. From the definition of Algorithm I, we see that 0 < ∠vLOE < π,

∠EOF ≤ π, and ∠vLOE + ∠EOF > π. Therefore π − ∠vLOE < ∠EOF ≤ π.

So in summary, there exist three constraints: (1) arccos x
d(O,vL)

≤ ∠XOvL ≤ 2π −
arccos x

d(O,vL)
; (2) 0 < ∠vLOE < π; (3) π − ∠vLOE < ∠EOF ≤ π.

Let’s use ε to denote the following event: “ζ ≤ x; r ≤ d(O, vL) < r + dr, β ≤
∠XOvL < β + dβ, θ ≤ ∠vLOE < θ + dθ, ϕ ≤ ∠EOF < ϕ + dϕ.” (Here r, β, θ and

ϕ are positive numbers, and dr → 0, dβ → 0, dθ → 0, dϕ → 0.) Also, let’s define fε

as fε = Pr{ε}
dϕdθdβdr

. Then the cumulative distribution function of ζ is:

Fζ(x) = Pr{ζ ≤ x}

=

∫ ∞

x

∫ 2π−arccos x
r

arccos x
r

∫ π

0

∫ π

π−θ

fεdϕdθdβdr

Everything we are considering here is symmetric in respect to the x-axis, so we

186

can simplify the above formula to be:

Fζ(x) = Pr{ζ ≤ x}
= 2

∫ ∞

x

∫ π

arccos x
r

∫ π

0

∫ π

π−θ

fεdϕdθdβdr

· · · · · ·Formula(1)

All we need to know now is how to compute Pr{ε} (which equals fεdϕdθdβdr).

When the event ε is true, node vL needs to exist in such a tiny space: “when

vL is in that space, d(O, vL) ∈ [r, r + dr), and ∠XOvL ∈ [β, β + dβ).” Let’s use T1

to denote the area of that tiny space. Then T1 = rdβdr. So the probability that a

node (which is vL) exists in that space is rdβdr. (Remember that the nodes follow a

Poisson point process.)

When the event ε is true, node vA needs to exist in such a tiny space: “firstly, that

tiny space is inside P ; secondly, when vA is in that tiny space, ∠vLOvA = ∠vLOE ∈
[θ, θ + dθ).” Let’s use T2 to denote the area of that tiny space. It is not difficult to

find out that T2’s value is as follows:

• If arccos x
r
≤ β + θ < 2π − arccos x

r
, then T2 = 1

2
r2dθ.

• If 2π − arccos x
r
≤ β + θ < 2π, then T2 = 1

2
[x
cos(β+θ)

]2dθ.

The probability that a node (which is vA) exists in that space of area T2 is just

T2.

When the event ε is true, node vB needs to exist in such a tiny space: “firstly, that

tiny space is inside P ; secondly, when vB is in that tiny space, ∠vAOvB = ∠EOF ∈
[ϕ, ϕ + dϕ).” Let’s use T3 to denote the area of that tiny space. It is not difficult to

find out that T3’s value is as follows:

• If 2π − arccos x
r
≤ β + θ + ϕ < 2π + arccos x

r
, then T3 = 1

2
[x
cos(β+θ+ϕ)

]2dϕ;

otherwise, T3 = 1
2
r2dϕ.

187

The probability that a node (which is vB) exists in that space of area T3 is just

T3.

Let’s define S as the intersection of P and M — namely, S = P ∩M . Let’s use

|S| to denote the area of S. Then, a straightforward geometric analysis tells us that

when ε is true, the value of |S| is:

• If β + θ < 2π − arccos x
r

and β + θ + ϕ < 2π − arccos x
r
, then |S| = 1

2
r2ϕ.

• If β + θ < 2π − arccos x
r

and 2π − arccos x
r
≤ β + θ + ϕ < 2π + arccos x

r
, then

|S| = 1
2
r2(2π − arccos x

r
− β − θ) + 1

2
x
√

r2 − x2 + 1
2
x2 tan(β + θ + ϕ).

• If β + θ < 2π − arccos x
r

and 2π + arccos x
r
≤ β + θ + ϕ, then |S| = 1

2
r2ϕ −

r2 arccos x
r

+ x
√

r2 − x2.

• If 2π − arccos x
r
≤ β + θ < 2π and 2π − arccos x

r
≤ β + θ + ϕ < 2π + arccos x

r
,

then |S| = 1
2
x2 tan(2π − β − θ) + 1

2
x2 tan(β + θ + ϕ).

• If 2π − arccos x
r
≤ β + θ < 2π and 2π + arccos x

r
≤ β + θ + ϕ, then |S| =

1
2
x2 tan(2π − β − θ) + 1

2
x
√

r2 − x2 + 1
2
r2(β + θ + ϕ− 2π).

When the event ε is true, all the neighbors of O excluding vL, vA and vB are

inside S. When we exclude S from the disk C, the area of the remaining space is

πr2 − |S|, and the probability that ‘the Poisson point process places no node inside

that remaining space’ is e−πr2+|S|. So the probability that ‘all the neighbors of O

excluding vL, vA and vB are inside S’ equals e−πr2+|S|.

The event ε happens if and only if the following events happen: “the nodes vL,

vA and vB exist in those tiny spaces we discussed above, and all the neighbors of O

excluding vL, vA and vB are inside S.” Since the nodes on the 2-dimensional plane

follow the Poisson point process, the above events are all independent. Therefore, we

get:

Pr{ε} = T1T2T3e
−πr2+|S|

Again, note that Pr{ε} = fεdϕdθdβdr. So by plugging the above equation into

Formula (1), we get the integral formula that computes the cumulative distribution

188

function of the one-hop progress.

189

Chapter 6

Future Directions

This thesis has studied two new topics — data placement using erasure-correcting

codes and localized topology control for nodes in normed spaces — and opened several

new research directions (such as multi-cluster interleaving). All those are very broad

fields and much more related work is still left to be done. The numerous areas very

worth exploring include:

• Algorithms for data placement on general graphs and graphs with special fea-

tures. Data placement problems for general graphs are often NP-hard to op-

timize. How to find approximation solutions to data placement using erasure-

correcting codes needs considerably more study. Also, for graphs with special

features (such as graphs with power-law distributions of degrees and unit-disk

graphs), it is interesting to know how the features will influence the data place-

ment performance and the complexity of the corresponding algorithms.

• Multi-cluster interleaving on general graphs, and multi-cluster interleaving on

paths and cycles for K ≥ L + 2.

• Cooperative data access. Having users cooperatively download data saves band-

width. One example is using a multicast tree for users accessing the same data.

When data are stored distributively in the network using erasure-correcting

codes, cooperative data access becomes even more practical, because now users

have the freedom to join any set of the many multicast trees corresponding

190

to different codeword components, at the time of their choosing. How to effi-

ciently implement such cooperative data access schemes, however, still needs to

be known.

• Incremental embedding algorithms for peer-to-peer type networks. Currently

proposed methods for embedding peer-to-peer type networks into normed spaces

usually assume that all the nodes are embedded at the same time. However,

peer-to-peer type networks typically have dynamic membership; so how to in-

crementally embed newly joined nodes is an intriguing open problem.

• The topology control for overlay networks. The topology-control algorithm pre-

sented in this thesis can be extended for overlay networks in the Internet. And

the topology constructed using the algorithm can be further optimized by adding

some long edges for each node. How to select the long edges to shorten the rout-

ing paths is very related to the topic of random graph constructions.

• Relationship between topology-control algorithms and the evolution of networks.

There has been work on studying the evolution of networks under certain topol-

ogy control models, such as preferential attachment or random attachment.

Comparatively, the topology control algorithm presented in this thesis allows

much fewer random or greedy decisions on connectivity. Study on the relation-

ship between different types of topology control algorithms and the evolution

of networks will be influential for the network design theory.

Research on the above areas concerns both theories and practical systems. And

that is where the author of this thesis stores his never ending interest.

191

Bibliography

[1] K. A. S. Abdel-Ghaffar, “Achieving the Reiger Bound for Burst Errors Using

Two-dimensional Interleaving Schemes”, in Proceedings of the IEEE International

Symposium on Information Theory, pp. 425, Germany, 1997.

[2] Akamai, http://www.akamai.com.

[3] B. F. AlBdaiwi and B. Bose, “Quasi-Perfect Lee Distance Codes”, IEEE Trans-

actions on Information Theory, vol. 49, no. 6, pp. 1535-1539, 2003.

[4] B. F. AlBdaiwi and B. Bose, “On Resource Placements in 3D Tori”, Journal of

Parallel and Distributed Computing, vol. 63, pp. 838-845, 2003.

[5] C. Almeida and R. Palazzo, “Two-dimensional Interleaving Using the Set Parti-

tion Technique”, in Proceedings of the IEEE International Symposium on Infor-

mation Theory, pp. 505, Trondheim, Norway, 1994.

[6] K. Alzoubi, X. Li, Y. Wang, P. Wan and O Frieder, “Geometric Spanners for Wire-

less Ad Hoc Networks”, IEEE Transactions on Parallel and Distributed Systems,

vol. 14, no. 4, pp. 408–421, 2003.

[7] J. Astola, “A Note on Perfect Lee-codes over Small Alphabets”, Discrete Applied

Mathematics, vol. 4, pp. 227-228, 1982.

[8] J. Astola, “An Elias-Type Bound for Lee Codes over Large Alphabets and Its

Applications to Perfect Codes”, IEEE Transactions on Information Theory, vol.

IT-28, no. 1, pp. 111-113, 1982.

192

[9] B. Awerbuch, Y. Bartal and A. Fiat, “Competitive Distributed File Allocation”,

in Proceedings of the 25th Annual ACM Symposium on the Theory of Computing,

pp. 164–173, 1993.

[10] M. M. Bae and B. Bose, “Resource Placement in Torus-based Networks”, IEEE

Transactions on Computers, vol. 46, no. 10, pp. 1083–1092, 1997.

[11] M. Blaum, J. Bruck and A. Vardy, “Interleaving Schemes for Multidimensional

Cluster Errors”, IEEE Transactions on Information Theory, vol. 44, no. 2, pp.

730–743, 1998.

[12] E. R. Berlekamp, Algebraic Coding Theory, Aegean Park Press, 1984.

[13] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B.

Moore, C. Perterson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski

and J. Webb, “iWarp: An Integrated Solution to High-Speed Parallel Computing”,

in Proceedings of IEEE Supercomputing’88, pp. 330–339, 1988.

[14] P. Bose, P. Morin, I. Stojmenovic and J. Urrutia, “Routing with Guaranteed

Delivery in Ad Hoc Wireless Networks”, in Proceedings of the 3rd ACM Intl.

Workshop on Discrete Algorithms and Methods for Mobile Computing and Com-

munications DIAL M99, pp. 48–55, 1999.

[15] I. M. Boyarinov, “Three-dimensional Cluster Error-Correcting Array Codes”, in

Proceedings of the IEEE International Symposium on Information Theory, pp.

118, Lausanne, Switzerland, 2002.

[16] J. W. Byers, M. Luby and M. Mitzenmacher, “Accessing Multiple Mirror Sites in

Parallel: Using Tornado Codes to Speed Up Downloads”, in Proceedings of IEEE

Infocom’99, pp. 275-283, Boston Univ., MA, USA, 1999.

[17] J. W. Byers, M. Luby, M. Mitzenmacher and A. Rege, “A Digital Fountain

Approach to Reliable Distribution of Bulk Data”, in Proceedings of ACM SIG-

COMM’98, Vancouver, Canada, Sep., 1998.

193

[18] Mayur Datar, “Butterflies and Peer-to-Peer Networks”, in Proceedings of Euro-

pean Symposium of Algorithms, 2002.

[19] L. W. Dowdy and D. V. Foster, “Comparative Models of the File Assignment

Problem”, Computing Surveys, vol. 14, no. 2, pp. 287–313, 1982.

[20] D. Dubhashi, O. Haggstrom and A. Panconesi, “Connectivity Properties of Blue-

tooth Wireless Networks”, manuscript, 2003.

[21] T. Etzion and A. Vardy, “Two-dimensional Interleaving Schemes with Repeti-

tions: Constructions and Bounds”, IEEE Transactions on Information Theory,

vol. 48, no. 2, pp. 428–457, 2002.

[22] P. Ganesan, Q. Sun and H. Garcia-Molina, “YAPPERS: A Peer-to-Peer Lookup

Service over Arbitrary Topology”, in Proceedings of IEEE Infocom, pp. 1250–1260,

2003.

[23] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, New York and San

Francisco, 1979.

[24] E. N. Gilbert, “Random Plane Networks”, Journal of SIAM, vol. 9, pp. 533–543,

1961.

[25] Gnutella, http://www.gnutella.com.

[26] S. W. Golomb and E. C. Posner, “Rook Domains, Latin Squares, Affine Planes,

and Error-Distributing Codes”, IEEE Transactions on Information Theory, vol.

10, pp. 196-208, July, 1964.

[27] S. W. Golomb and L. R. Welch, “Perfect Codes in the Lee Metric and the Packing

of Polyominoes”, SIAM J. Appl. Math., vol. 18, no. 2, pp. 302–317, 1970.

[28] S. Gravier, M. Mollard and C. Payan, “On the Non-existence of 3-Dimensional

Tiling in the Lee Metric”, Europ. J. Combinatorics, vol. 19, pp. 567-572, 1998.

194

[29] S. Gravier, M. Mollard and C. Payan, “Variations on Tilings in the Manhattan

Metric”, Geometriae Dedicata, vol. 79, pp. 265-273, 1999.

[30] G. Grimmett, Percolation, Springer-Verlag, Berlin Heidelberg, 1999.

[31] O. Haggstrom and R. Meester, “Nearest Neighbor and Hard Sphere Models in

Continuum Percolation”, Random Structures and Algorithms, vol. 9, no. 3, pp.

295–315, 1996

[32] D. B. Holdridge and J. A. Davis, “Comment on ‘A Note on Perfect Lee-Codes’

”, Discrete Applied Mathematics, vol. 3, pp. 221, 1981.

[33] T.-C. Hou and V. O. K. Li, “Transmission Range Control in Multihop Packet

Radio Networks”, IEEE Transactions on Communications, vol. COM-34, no. 1,

pp. 38–44, 1986.

[34] P. Indyk, “Algorithmic Applications of Low-distortion Geometric Embeddings”,

in Proceedings of the Annual Symposium on Foundations of Computer Science,

pp. 10–33, 2001.

[35] A. Jiang and J. Bruck, “Diversity Coloring for Information Storage in Networks”,

in Proceedings of the 2002 IEEE International Symposium on Information Theory,

pp. 381, Lausanne, Switzerland, 2002.

[36] A. Jiang and J. Bruck, “Memory Allocation in Information Storage Networks”,

in Proceedings of the 2003 IEEE International Symposium on Information Theory,

pp. 453, Yokohama, Japan, 2003.

[37] A. Jiang and J. Bruck, “Diversity Coloring for Distributed Data Storage in Net-

works”, submitted to IEEE Transactions on Information Theory.

[38] A. Jiang and J. Bruck, “Multi-cluster Interleaving on Linear Arrays and Rings”,

in Proceedings of the Seventh International Symposium on Communication Theory

and Applications (ISCTA’03), pp. 112-117, Ambleside, Lake District, UK, July,

2003.

195

[39] A. Jiang, M. Cook and J. Bruck, “Optimal t-Interleaving on Tori”, to appear

in Proceedings of the IEEE International Symposium on Information Theory,

Chicago, USA, 2004.

[40] A. Jiang and J. Bruck, “Monotone Percolation and the Topology Control of Wire-

less Networks”, submitted to the 45th Annual IEEE Symposium on Foundations

of Computer Science (FOCS 2004).

[41] K. Kalpakis, K. Dasgupta and O. Wolfson, “Optimal Placement of Replicas in

Trees with Read, Write, and Storage Costs”, IEEE Transactions on Parallel and

Distributed Systems, vol. 12, no. 6, pp. 628–637, 2001.

[42] D. Karger and M. Ruhl, “Finding Nearest Neighbors in Growth-restricted Met-

rics”, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing

(STOC’02), pp. 741–750, 2002.

[43] B. Karp and H. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless

Networks”, in Proceedings of Mobicom’00, Aug., 2000.

[44] Y. Ko and N. Vaidya, “Location-aided Routing LAR in Mobile Ad Hoc Net-

works”, in Proceedings of Mobicom’98, Oct., 1998.

[45] E. Kranakis, H. Singh and J. Urrutia, “Compass Routing on Geogmetric Net-

works”, in Proceedings of 11th Canadian Conference on Computational Geometry,

Vancouver, Canada, Aug., 1999.

[46] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-

madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells and B. Zhao, “OceanStore:

An Architecture for Global-scale Persistent Storage”, in Proceedings of the 9th

Internatinal Conference Architectural Support for Programming Languages and

Operating Systems (ASPLOS’00), pp. 190–201, 2000.

[47] J. F. Kurose and R. Simha, “A Microeconomic Approach to Optimal Resource

Allocation in Distributed Computer Systems”, IEEE Transactions on Computers,

vol. 38, no. 5, pp. 705–717, 1989.

196

[48] T. Lepisto, “A Note on Perfect Lee-codes over Small Alphabets”, Discrete Ap-

plied Mathematics, vol. 3, pp. 73–74, 1981.

[49] L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang and R. Wattenhofer, “Analysis of

a Cone-based Distributed Topology Control Algorithm for Wireless Multi-hop

Networks”, in Proceedings of the Annual ACM Symposium on Principles of Dis-

tributed Computing, pp. 264-273, New Port, Rhode Island, USA, Aug., 2001.

[50] M. Lindwer, D. Marculescu, T. Basten, R. Zimmermann, R. Marculescu, S.

Jung and E. Cantatore, “Ambient Intelligence Visions and Achievements: Linking

Abstract Ideas to Real-World Concepts”, in Proceedings of the IEEE Design,

Automation and Test in Europe Conf. (DATE), Munich, Germany, Mar., 2003.

[51] N. Linial, E. London and Y. Rabinovich, “The Geometry of Graphs and Some

of Its Algorithmic Applications”, Combinatorica, vol. 15, pp. 215–245, 1995.

[52] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,

Elsevier Science B. V., 1977.

[53] D. Malkhi, M. Naor and D. Ratajczak, “Viceroy: A Scalable and Dynamic Emu-

lation of the Butterfly”, in Proceedings of the 21st ACM Symposium on Principles

of Distributed Computing (PODC ’02), pp. 183-192, 2002.

[54] A. Mahanti, D. L. Eager, M. K. Vernon and D. Sundaram-Stukel, “Scalable On-

demand Media Streaming with Packet Loss Recovery”, in Proceedings of ACM

SIGCOMM 2001, pp. 97-108, San Diego, Aug., 2001.

[55] Q. M. Malluhi and W. E. Johnston, “Coding for High Availability of a

Distributed-Parallel Storage System”, IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 9, no. 12, pp. 1237–1252, 1998.

[56] A. Mann and J. Ruckert, “Transmission Range Control for Packet Radio Net-

works or Why Magic Numbers Are Distance Dependent”, Lecture Notes in Control

and Information Sciences, vol. 143, pp. 818-830, 1990.

197

[57] D. Marculescu, R. Marculescu, S. Park and S. Jayaraman, “Ready to Ware”,

IEEE Spectrum, pp. 28–32, Oct., 2003.

[58] J. Matousek, “Embedding Finite Metric Spaces into Euclidean Spaces”, Chapter

15 of Lectures on Discrete Geometry, Springer, 2002.

[59] M. Mauve, J. Widmer and H. Hartenstein, “A Survey on Position-based Routing

in Mobile Ad-hoc Networks”, IEEE Network, vol. 15, no. 6, pp. 30–39, 2001.

[60] R. J. McEliece, The Theory of Information and Coding, Cambridge University

Press, 2002.

[61] R. Meester and R. Roy, Continuum Percolation, Cambridge University Press,

1996.

[62] Y. Merksamer and T. Etzion, “On the Optimality of Coloring with a Lattice”,

manuscript.

[63] M. Naor and R. M. Roth, “Optimal File Sharing in Distributed Networks”, SIAM

J. Comput., vol. 24, no. 1, pp. 158–183, 1995.

[64] I. Newman and Y. Rabinovich, “A Lower Bound on the Distortion of Embedding

Planar Metrics into Euclidean Space”, in Proceedings of the Annual Symposium

on Computational Geometry, pp. 94–96, Barcelona, Spain, 2002.

[65] T. Ng and H. Zhang, “Predicting Internet Network Distance with Coordinates-

based Approaches”, in Proceedings of the IEEE Infocom, pp. 170-179, June, 2002.

[66] W. Oed, “Massively Parallel Processor System CRAY T3D”, Technical Report,

Cray Research GmbH, Nov., 1993.

[67] D. A. Patterson, G. A. Gibson and R. Katz, “A Case for Redundant Arrays of

Inexpensive Disks”, in Proceedings of SIGMOD Int. Conf. Data Management, pp.

109–116, 1988.

198

[68] C. G. Plaxton, R. Rajaraman and A. W. Richa, “Accessing Nearby Copies of

Replicated Objects in a Distributed Environment”, in Proceedings of the 9th An-

nual ACM Symposium on Parallel Algorithms and Architectures (SPAA’97), pp.

311–320, New York, NY, USA, June, 1997.

[69] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker and I. Stoica, “Geographic

Routing without Location Information”, in Proceedings of Mobicom 2003, pp.

96–108, 2003.

[70] S. Ratnasamy and P. Francis and M. Handley and R. Karp and S. Shenker, “A

Scalable Content-Addressable Network”, in Proceedings of ACM SIGCOMM, pp.

161–172, Aug., 2001.

[71] A. I. Riihonen, “A Note on Perfect Lee-Codes”, Discrete Applied Mathematics,

vol. 2, pp. 259-260, 1980.

[72] P. Rodriguez, C. Spanner and E. W. Biersack, “Analysis of Web Caching Ar-

chitectures: Hierarchical and Distributed Caching”, IEEE/ACM Transactions on

Networking, vol. 9, no. 4, pp. 404–418, 2001.

[73] P. Rodriguez and E. W. Biersack, “Dynamic Parallel Access to Replicated Con-

tent in The Internet”, IEEE/ACM Transactions on Networking, vol. 10, no. 4,

pp. 455–465, 2002.

[74] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Location

and Routing for Large-scale Peer-to-Peer Systems”, in Proceedings of the 18th

IFIP/ACM International Conference on Distributed Systems Platforms (Middle-

ware 2001), Heidelberg, Germany, Nov. 2001.

[75] M. Schwartz and T. Etzion, “Optimal 2-Dimensional 3-Dispersion Lattices”,

Lecture notes in Computer Science 2643, pp. 216–225, 2003.

[76] C. L. Seitz et al., “Submicron Systems Architecture Project Semi-Annual Techni-

cal Report”, Technical Report Caltech-CS-TR-88-18, California Institute of Tech-

nology, Nov., 1988.

199

[77] Y. Shang, W. Ruml, Y. Zhang and M. Fromherz, “Localization from Mere Con-

nectivity”, in Proceedings of the International Symposium on Mobile Ad Hoc Net-

working and Computing (MobiHoc), pp. 201–212, 2003.

[78] Y. Shavitt and T. Tankel, “Big-bang Simulation for Embedding Network Dis-

tances in Euclidean Space”, in Proceedings of IEEE Infocom, pp. 1922-1932, San

Francisco, CA, USA, 2003.

[79] C.-C. Shen, C. Srisathapornphat, R. Liu, Z. Huang, C. Jaikaeo and E. L. Lloyd,

“CLTC: a Cluster-based Topology Control Framework for Ad Hoc Networks”,

IEEE Transactions on Mobile Computing, vol. 3, no. 1, pp. 18–32, 2004.

[80] A. Slivkins and J. Bruck, “Interleaving Schemes on Circulant Graphs with Two

Offsets”, to appear in IEEE Transactions on Information Theory.

[81] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans

Kaashoek, Frank Dabek and Hari Balakrishnan, “Chord: A Scalable Peer-to-

peer Look-up Protocol for Internet Applications”, IEEE/ACM Transactions on

Networking, vol. 11, no. 1, pp. 17–32, 2003.

[82] H. Takagi and L. Kleinrock, “Optimal Transmission Ranges for Randomly Dis-

tributed Packet Radio Terminals”, IEEE Transactions on Communications, vol.

COM-32, no. 3, pp. 246–257, 1984.

[83] X. Tang and S. T. Chanson, “Coordinated En-route Web Caching”, IEEE Trans-

actions on Computers, vol. 51, no. 6, pp. 595–607, 2002.

[84] Tera Computer Systems, “Overview of the Tera Parallel Computer”, 1993.

[85] R. Wattenhofer, L. Li, P. Bahl and Y.-M. Wang, “Distributed Topology Con-

trol for Power Efficient Operation in Multihop Wireless Ad Hoc Networks”, in

Proceedings of IEEE Infocom 2001, pp. 1388-1397, Apr., 2001.

[86] D. B. West, Introduction to Graph Theory, Englewood Cliffs, NJ: Prentice-Hall,

1996.

200

[87] F. Xue and P. R. Kumar, “The Number of Neighbors Needed for Connectivity

of Wireless Networks”, Wireless Networks, vol. 10, no. 2, pp. 169–181, 2004.

[88] M. Zorzi and R. R. Rao, “Geographic Random Forwarding (GeRaF) for Ad Hoc

and Sensor Networks: Multihop Performance”, IEEE Transactions on Mobile

Computing, vol. 2, no. 4, pp. 337–348, 2003.

