Maximum Drawdown of a Brownian Motion
and
AlphaBoost: A Boosting Algorithm

Thesis by

Amrit Pratap

In Partial Fulfillment of the Requirements
for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2004
(Submitted May 28, 2004)

i

© 2004
Amrit Pratap
All Rights Reserved

il

Acknowledgements

I'd like to thank my advisor, Yaser Abu-Mostafa for his assistance and guidance
throughout my research and studies. I'd also like to thank Alexander Nicholson, Ling
Li, Malik Magdon-Ismail, Amir Atiya, Gentian Buzi, Dustin Boswell, Carl Gold and
Nathan Gray for valuable discussions and meetings.

The work on in chapter 2 on Maximal Drawdown was done in collaboration with
Malik Magdon-Ismail and Amir Atiya. I’d especially like to thank Ling Li for a lot
of helpful discussions and suggestions on AlphaBoost. Finally I’d like to thank my
family and friends for their continuing love and support.

This work was supported by Caltech Center for Neuromorphic Systems Engineer-
ing, a National Science Foundation supported Engineering Research Center, under

NSF Cooperative Agreement EEC-9402726

v

Abstract

We study two problems, one in the field of computational finance and the other one
in machine learning.

Firstly we study the Maximal drawdown statistics of the Brownian random walk.
We give the infinite series representation of its distribution and consider its expected
value. For the case when drift is zero, we give an exact expression of the expected
value and for the other cases, we give an infinite series representation. For all the
cases, we compute the limiting behavior of the expected value.

Secondly, we propose a new algorithm for boosting, AlphaBoost, which does better
than AdaBoost in reducing the cost function. We study its generalization properties
and compare it to AdaBoost. However, this algorithm does not always give better

out-of-sample performance.

Contents

Acknowledgements
Abstract

1 Introduction
1.1 Maximum Drawdown of a Brownian Random Walk

1.2 AlphaBoost

2 Maximum Drawdown of a Brownian Random Walk

2.1 Maximum Drawdown Lo
2.2 Notation
2.2.1 Continuous timeo
2.2.2 Discrete time Lo
2.3 Drawdown of a Discrete Random Walk
2.4 Expected Drawdown Lo
2401 p=0. .
242 p< 0. .
243 pu>0. 0 e
2.5 Sterling Ratio
26 Conclusion

3 AlphaBoost
3.1 Notation
3.2 AdaBoost

iii

iv

- O Ot Ot R

12
12
13
14
18
19

vi

3.3 AnyBoost: Boosting as Gradient Descent 23
3.4 AlphaBoost 25
3.4.1 Algorithm 25

3.4.2 Generalization Performance 27

3.4.3 Experimental Results 28

3.5 Conclusion e 30

4 Conclusions 34
A Table of Numerical values for Q(.) 35
B Generalization Performance of AlphaBoost 36

Bibliography 39

vil

List of Figures

2.1 Maximum Drawdown Lo)
3.1 Performance of AlphaBoost and AdaBoost on a random target 29
3.2 Pima Indian Diabetes oL 30
3.3 Wisconsin Breast Cancer 31
3.4 SONAr 31
3.5 Ionosphere 31
3.6 Vote84 Dataset 32

3.7 Cleveland Heart Dataset 32

viil

List of Tables

3.1
3.2

B.1
B.2
B.3

Voting Methods seen as special case of AnyBoost 25
Experimental Results on UCI Data Sets 30
Generalization Performance on NNet Model 37
Generalization Performance on SVM Model 37

Generalization Performance on SVM2 Model

X

List of Algorithms

1 AdaBoost(S,T)[7]
2 AnyBoost(C,S,T)[12]
3 AlphaBoost(C, ST, A)

Chapter 1

Introduction

1.1 Maximum Drawdown of a Brownian Random

Walk

The maximum drawdown of a series is defined as the maximum drop from a peak to
bottom during a specified period of time. For any trading strategy, the maximum
drawdown represents a risk measure. Here we consider the maximum drawdown of a
Brownian motion. Let W (t), 0 <t < T, be a standard Wiener process and let X ()
be a Brownian motion given by X(t) = oW (t) + ut, where p € R is the drift and

o > 0 is the diffusion parameter. The maximum drawdown is defined as

MDD(T; pu,0) = max (max X(r) — X(s)) (1.1)

s€[0,T] rel0,s]

The maximum drawdown is a very commonly used risk measure for evaluating the
performances of funds. It represents the maximum loss that someone can incur if they
invest in a stock at the worst possible time. The drawdown can be computed from the
historical values of the series. However, it depends on a lot of factors such as the mean
return, standard deviation, frequency at which the values are recorded and the time
period over which it is computed. These factors have to be taken into consideration
while comparing two strategies. Despite its popularity as a risk measure, there is
no known theoretical analysis of Maximum Drawdown. Since its a single number

computed from the historical data, it’ll have a large error associated with it. So in

2
this thesis, we derive the expected maximum drawdown in a specific period for a given
return and standard deviation. This will provide guidelines as to what maximum
drawdown to expect and to analyze the observed maximum drawdown.
We've computed the distribution of M DD, if we denote Gy pp(h) = Pr[MDD >
h], we get that

> 0, sinb, _nh _o%RT 2T
Gupp(h) = 2042 o2 1 2h? — UQMhe % (1 —e wre gﬂ) + L (1.2)
n=1 n

where L is given by

0 u<”—h2

L= §<1—653) n="5 (1.3)
- e h :

2 2 2
202nsinh 7 —ih B A/ o2
— h2 g
CZh—rZh o) € ° l—e 227¢ 2 >

\

and 6, are the positive solution of

o2
tand,, = —0, 1.4
an o (1.4)
We've also computed the expected value of MDD as E[MDD] = %QMDD(OF)

where o = p1y/T/20?% and

.
Qp(z) >0
Qupp(r) = W2x pu=0
|@n(@) p<0

where v = \/7/8 is a constant and Q),and @, are functions whose exact expression

are given in Section 2.4
This gives the exact dependence of the expected value of MDD on the drift and

diffusion parameter and also on the time period over which it was computed.

1.2 AlphaBoost

Boosting|14] is general technique to improve the accuracy of any weak learning al-
gorithm. It iteratively generates a linear combination of hypothesis from the weak
learning algorithm. AdaBoost is the most popular of the boosting methods and in
each iteration, it emphasizes the wrongly classified examples from the previous iter-
ation thereby forcing the weak learner to focus on the “difficult” examples. Under
some restrictions on the base classifier, AdaBoost is guaranteed to produce a final
hypothesis with zero training error after a finite number of iterations.

In practice, AdaBoost has been observed to decrease the out-of-sample error even
when the in-sample error is zero. This is contrary to the traditional belief that since
AdaBoost is producing increasingly complex hypothesis, it should quickly “overfit”
the training data and the out-of-sample performance should go down.

One explanation of the effectiveness of AdaBoost is that it generates large margin
classifiers [15]. It has been observed that even after zero training error has been
achieved, AdaBoost tends to increase the vote it gives to the correct label which leads
to better generalization performance. The out-of-sample error of the final hypothesis
produced by AdaBoost can be bounded in terms of the margin of the training points.

Mason et al. [12] present a generalized view of Boosting as a gradient descent
procedure on a cost functional. They bound the out-of-sample performance of the
final hypothesis in terms of the in-sample value of the cost function. In Chapter 3,
we present a more aggressive scheme of optimizing the cost function which leads to

smaller in-sample values and then study its out-of-sample performance.

Chapter 2

Maximum Drawdown of a Brownian
Random Walk

Maximum Drawdown is an essential aspect of risk assessment in any trading strategy.
It offers a more natural measure of the real market risk as it refers to a physical reality,

and is less abstract than other measures of risk like variance.

2.1 Maximum Drawdown

The maximum drawdown is defined as the largest drop from a peak to a bottom
during a specified period. Figure 2.1 shows the drawdown for a hypothetical Brownian
motion.

Nakou et al. [5] discuss the features of Maximum Drawdown as a measure of risk.
The two main factors which will affect drawdown are the return u of the strategy and
its variability . The value of a strategy which has a high positive return will drift
upwards over time. This upward drift will contain some stochastic variations which
will cause the value of the strategy to fall from time to time. So, if the upward drift
is large or if the variability of the process is low, then the drawdown will be small.
So, drawdown is a function of the drift and variability of the underlying process.

Another important factor which affects the drawdown is the frequency of the
measurements taken and the time period over which the drawdown is computed.
The maximum drawdown will be greater for a longer time series. So if we want to

compare the drawdown of two strategies which are reported over different time period,

MDD

X(1) Y

Figure 2.1: Maximum Drawdown

we would need to scale the value of the drawdown appropriately.
Thus, to make drawdown a more informative statistic, we must correct for the
length of measurement, volatility and the measurement interval and also know the

statistical behavior of the drawdown.

2.2 Notation

Let X (t) be a random walk with drift parameter ;1 and standard deviation o. Here
t is either discrete of continuous time and we’re interested in the drawdown of this
random walk in the interval ¢ € [0,7]. We've X (0) = 0 and X (¢) follows the a path

given by an dynamical equation.

2.2.1 Continuous time

A standard Brownian motion with a drift parameter x4 and variance parameter o will

have the following dynamics

dX (t) = pdt + odW (1) (2.1)

6

here W (t) is the standard wiener process with the following properties

BI=— =] =0 (2.2)
AW () dW (s),
Bl =] = (t =) (2.3)

here §(.) is the Dirac delta function. Usually dWW(¢)is chosen as normally dis-
tributed white noise with E[dW (t)] = 0 and E[dW (t)?] = dt. Under these assump-
tions, the expectations of X (¢) can be computed as E[X (t)] = ut and V[X (¢)] = .

2.2.2 Discrete time

In this case, the interval of interest [0,7] is broken into n intervals of equal length
At = T/n. Defining X; = X (iAt) for i = 0,1, ..n, and we assume that X; follows the

dynamics

X;+ 46 with prob p
Xi+1 - (24:)
X; — 0 with prob. ¢=1-p

We choose the parameters ¢ and p such that the random walk converges, in the
limit At — 0, to a Brownian motion on [0, 7] with drift 4 and diffusion parameter o.

For this, the parameters dand p must satisfy the following constraints

E[X, —Xo] =n(p—q)d=uT (2.5)

VX, — Xo] =06 =no?AT (2.6)

Solving these two equations, we get

0\/1_5(1—1-
(el

o
1(
1=
2

o2

,U?At) 1/2

(14
(1+

(2.7)
ujﬁt) 1/2) (2.8)
u?t) 1/2> (2.9)

JIRVAAN
o
Asymptotically, as At — 0, p — 0.5 and 6 — 0, both at a rate vV At. So, in any
statistic of the random walk, to get the corresponding statistic of the continuous case,

we take the limit as At goes to zero. So asymptotically, we have

5 — oVAt (2.10)
o) o

2.3 Drawdown of a Discrete Random Walk

Corresponding to the random walk X;, we define an associated walk for the drawdown
Dy, the drawdown from the previous maximum value with Dy = 0. D, has dynamics
very similar to X;. If X; goes down, then D, goes up, and if X; goes up, then D, goes
down, with the exception that D; cannot go below zero. So, if X; follows a random
walk with probability p, then D, follows a random walk with probability 1 —p and a
reflective barrier at 0. The maximum drawdown is then given by

MDD = Hl?XDt (2.12)

To compute the probability that M DD is greater than h, we add an absorbing
barrier at h. So, the random walk D, will get absorbed if D; > h for some ¢ in [0, .
So, the probability that M DD > h is the same as the absorption probability of the
random walk. Let G(h|T) be the probability that MDD > h. Let f(i|h) be the

8

probability that the random walk gets absorbed in the i’* time step, then

T/At

G(h|T) = Plabsorbtion € [0,T]] Z f(i|h)

(2.13)

f(ilh) was computed by Weesakul [19] for a special case when p/q < (1 + 1/N)?,

the more general case was computed by Blasi 3], which after some corrections is given

by

) 2
o i)
1, 1
. . ~ 3 2ipz (i=N) (3 (i+N) = L)?
f(ilh) = f(2)+§w =)
1 1 1 i
~ 21p§(1*N)q§(l+N)q§ cosh’"! Bsinh?B3 p 1 1)?
\f(g) + (NH)q% cosh(NJrl)ﬁ*Np% coshNg 4 g ! N>
where N = h/§ and
N q? cosi~! a, sin?
_ L1 1
fk) = =2pa=ga 0y 7 0, - N

— (N+1))q2 cos(N + 1)a, — Np2 cos Nay,

¢z sin(N + 1)o, — p?sin Nay, = 0

and [satisfies

¢z sinh(N + 1)3 — p2 sinh N3 = 0

(2.14)

(2.15)

(2.16)

(2.17)

Substituting 2.14 and 2.15 in 2.13, we get the distribution function in the discrete

case. Using ¢ and p as given in 2.11, and taking the limit as At — 0, will give us

the continuous case. Suppose we let fT(t|h) be the corresponding density function of

absorption in [t,t 4+ At] defined by f,(t|h)At = f(t/At|h), then

T/At
G(AT) =Y Atf.(iAt|h) (2.18)

Since in the limit as At — 0, we have f,(t|h) — f-(t|h), the continuous time

absorption density, we have in the limit At — 0

G(R|T) = /OT dt £ (t|h) (2.19)

1/2
Denote A = ’“(/TE <1 + “;At) , S0 p = %(1 +) and in the limit At — 0, we have
A\ — /At

Using the identity lim, . (1 + %)x = e, we get
(1= 2 %
2ip2 (=N ga (V) — (1 —)?)3 <1+—A) — e ool (2.20)
Expanding the eigen value condition for o, in 2.16 to the first order in A\, and on
simplification, we get
2 QO

1
tan (N + 5) Qtyy COS (v = Xsin?

Since «, € <A§’f1, (1]’:[71)1”), let 6, = (N—i— %) a,. For fixed v, o, — 0, so we take

the first order expansion in «, to get

2

o
tanf, = —0,
an o

1 1
with 6, € (mr]1\\[:% , (v + 1)7TN) — (vmr, (v+ 1)7]. Similarly analyzing the eigen

3
N-1

value condition for 3, we get

B

1 2 .
tanh (N + 5) B cosh B = 3 smh§

Defining n = (N + %) [, and taking the limit, we get

2

tanhn = —
anh n ,uhn

10

% the summand becomes

Consider the summand in f. Since sina, — + "
2

62 cos—L v,
. 2 cos 104 : (2.21)
(N + 1)2(N + 1) [cos(b,, + 3ev,) — Acos(b, — 3a,)]
1
where A = Lﬂl Using the identity lim, o cos*/* = = e~'/2, we get that
RESETESE:
282t

cos' ', — e =2 . Thus, after simplifications and taking the limit, we have that

the summand in f becomes

292

Ato? 62e” _ —0,sin 0,002 + p*h?]
h? (1- “h) cosl, —0,sin6, [0+ u2h? — pho?]

(2.22)

Plugging all these results into 2.15 and dividing by At, we get the continuous time
limit of f,
2 2

~ _u? _un g2 0, sin 0,[c10% + p?h*e” SR
f(/f) — e 202%2e o2 72 Z 0492 _i_thQ uhaQ]

(2.23)

The three cases in 2.14, correspond in the limit to the conditions u < %2, W= %2

and p > %
The last two cases have an additional term whose limits can be computed using
2.20. For the second case, when i (1 + %)2, using 2.20 and dividing by At, we get

the limit of the extra term as

_ w2 30?
262
2eh?

(2.24)

For the third case, § > (1 + %)2, defining n = (N + %) (3, the identity lim,_, cosh'/*" 7 =

. o t
el/2 we get cosh’™' B — e“37 . So, we get the additional term in this case as

02n2t

Ato? nle” m? _ ysinhp[p®h? — o'n?]
h? N(1— A)coshncosh 33 — N(1+ A)sinhnsinh 30 ~ [o'n? — p2h? + pho?
(2.25)

Again using 2.20 and dividing by At, we get the limit of the extra term as

11

_ w2 o? (uPh? — ot)psinhny _un o202

e 202 e o2¢e 2hn2

" h? (02ph — p?h? + on?)

(2.26)

Combining 2.23 ,2.24 and 2.26 in 2.14 , we compute the continuous limit of the

discrete time density as

2t | 02 o= (0402 + k)0, sin b, _un o263
T tlh) = e 202 | — n n n i e K
f=(tlh) = e hz(a‘lg%—l—u?lﬂ—a?uh)e e

n=0

where 6, are the positive solutions to the eigen value condition

2
o
tand,, = —0,

wh
and K is given by

,

2

0 p< 5

K = { 302 _a

2eh? K="y

. 2 2
0-_2(u2h2—0'4772)77$1nh77 7%6702:27& ILL > 0_2
h2 (02ph—p2h2+01n?) h

\

where 7) is the positive solution to the eigen value condition

2

g
tanhny = —
animn Mhn

Substituting 2.27 in 2.19, and taking the integration, we get

oo

6,,sin b, _uh 020217 21
GMDD(h‘T) = 2042 gy u2h2 - UQIuhe) (1 —e w2 e 202) + L

n=1

where L is given by

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

12

M)

0 <z

wir
L: (1—6%"2) lL[/:

2 2 2
2027 sinh 7 7”—}21 7% -2 7’2T
(UQMh*M2h2+U4772)e i 1 € 2°¢e 2k > h

=%

(2.32)

[

q

\

2.4 Expected Drawdown

To get the expectation of the maximum drawdown, we use the identity E[M DD|T| =
J° G(h|t)dh, which holds for positive valued random variables. The behavior of the
expectation is different depending on the sign on u. We will analyze the expectation

under the following three cases on the sign of pu.

241 p=0

For the case when p = 0, the eigen value condition 2.28 is solved by 6, = (n — 5)7.

Thus, we have

oo . 1 o2(n—1)2x272
GhT) = 2)° sin(n — 3)m (1 —e T T) (2.33)

~ (n— T
> —1\" 02(71 l)27r2T2
_ 2 (13 (1 N el’iz) (2.34)
T (n+)T

The expected value of the maximum drawdown can then be calculated as

EMDD] — /OOG(h|T)dh (2.35)

9) o2(nt 1)2272
= —/ E CEe (1 —e T o) dh (2.36)
s 0 n + 5

(n+35)2

= za\/T/O EW (1—e 20)dh (2.37)

Defining the constant v by

13

(n+3)2

oo X (_1)71 C(n+d)?
= ——(1- 212 dh ~ 0.6276 2.38
=) Do -

we have that E[MDD|T] = 20y+/T. The value of v was obtained by numerical
integration. Alternatively, the value of v was computed analytically by Greg Bond

[4], as v = /7/8 ~ 0.6267.

24.2 pu<0

Taking the eigen condition

E[MDD] = /OOG(h\T)dh (2.39)

o h b SiIl3 0 N
_ 2 7572 n 1 _ 202 cos2 Op, dh 240
/0 ¢ ; 6, — cosb, sin b, (‘) ()

making change of variables to u = —uh/o?, we get

o2 [* & sin® 6 P
E[MDD]| = —2— v n 1 — e 20%cos?on | d 2.41
|) M/o ¢ ;HH—COSOnsin9n< ¢) Y ()

where tan6,, = —6,,/u. So we get
202 9
E[MDD] = ———Q,(a”) (2.42)
i
where a = p % and for some function @,(.). The numerical computation of

Q. (z) is not straightforward. The summation in the integrand is a function of u that
decreases faster than e~*. Since the magnitude of the n'" term is approximately 1/n,
we need to take Q(e") terms in the summation to make sure that the next term left
out has a magnitude less than the size of the sum. Appendix A gives the approximate
values of @Q,(x) for various values of x, computed using numerical integration.

We know that @, (z) — vv22z when z — 07, since in the limit, we must recover

14
the ;4 — 0 behavior. For the behavior of (), as * — oo, we first bound the M DD in
terms of the Range R and the Low L of the Brownian motion. The range R is defined
as the difference between the maximum value and the minimum value attained by

the random walk. We’ve

R> MDD > L (2.43)

The range and low were analyzed by Malik et al. [10]. From this we get

C 20 (@) < Qul-a) (2.44

where Qg(z) = erf(z) (% + xQ) + ﬁxe‘xz. Asymptotically, as o — oo, this gives

1
o +) < Qna®) <a?+ = (2.45)

So, Qu(z) — x + e(z) where ; < e(z) < 3. Since Q,(z) is a monotonically

1)

Asymptotically, since p < 0, we'll have that E[M DD| = E[R] and so, Do, = % This

increasing function of x, we conclude that e(x) — D4, for some constant D, € |

fact can be verified numerically.

So, we have

W2 x—0F
Qn(z) — (2.46)

x+% r — 00

243 pu>0

In this case, for h > % in the integral, the third case for L adds another term. So

have have

15

E[MDD] = / G(h|T)dh (247)
0
o0 B sin3) ST
_ 2 70% n 1 — 202 cos 6, dh —
/o ¢ ; 0,, — cos b, sin b, (‘)
00 u i h3 __wr?®
2/ 67:’21 Sin 7] (1 — e 202 cfshQri) dh (248)
o2 /h 1n — coshnsinhn

The second integral can be reduced by a change of variables u = n(h). Since

tanhu = o%u/uh, we have

dh U_QCOShusinhu —u

°or 2.49
du p sinh? u (2.49)
So, the integral reduces to
2 oo u _ 27
—‘7—/ o~ (1 —e 2—2“7) du (2.50)
- Jo

Changing variable in the first integral to u = ph/o?, we get

2 > = i 3‘9 p?T
E[MDD)] = 20—/ et P Un (1 _ ee) n
wJo — 6,, — cos b, sin b,

w27

e~ wmiw sinh (1 — 6_202‘3051’2“) du (2.51)

0

where tan 6, = . So, we have

E[MDD] = Q%QQP(M) (2.52)

for some function @, and a = p+/T/202. We know that Q,(z) — 7v/2x when
x — 0%, For the case when z — 0o, we will evaluate the two terms in @), separately.

Consider I;(x) given by

16

00 00 .. 3 en .
Ii(z) = / e = <1 — e*cosf)n> du (2.53)
0

- 6, — cos6,sinb,
n=

Since 0 < cos?x < 1 and # — o0, the term in the brackets is rapidly approaching 1.
Since e~ is rapidly decreasing, we can interchange the summation and the integration.
Using the change of variable v = 6,,(u) and the identity

cosvsinv — v

du =LY TV, (2.54)

sin? v

we get

e n—l—%ﬂ N
Ii(z) = Z/ e T sin v (1 — e*m> dv (2.55)
n=0 v "7

By translating each integral by nm and bringing the summation inside the integral,

the summation becomes a geometric series which can be evaluated in closed form to

get
7/2 e Tanv Sin v <1 — e_ﬁ)
L(z) = / v (2.56)
0 14 e fanv
So, we have
(]_ — e_x)ﬁl S Il(l') S ﬁl (257)
where
/2 o~ Tan si
By = / €Y g (2.58)
0 14+ e fno

So, we'll have that I, (z) — (5 as x — oo. (1 can be evaluated numerically to give
(1 = 0.4575.
Consider the second term in @),

w27

Ly(z) = / e~ wmiw sinh (1 - 6_202C°Sh2“) du (2.59)
0

17
The term in the brackets is the only place where x appears. When z is large,
this term is very close to 1 until u gets large enough so that cosh u ~ x, from which
point, the term quickly decays to 0. The term e~ wntu sinh u is always less than % and

rapidly increases from 0 to % So, we write

x> 11 .
L(x) = / (e_tanhu sinhu — 5 + 5) <1 — efcosh%) du (2.60)
0
1 [x * 71 u
fry — / (1 — eicosh2u> du — / (— — eitanhu Slnh /U/) du +
2 J, o \2

o0 x]_ u
/ € coshZu (5 — ¢ tanhu ginh u) du (2.61)
0

The third integral approaches 0 as x — oo since the first term is small when u is
small and the second term is small when u is large. The second integral is a constant
independent of z and can be evaluated numerically to give 35 =~ 0.4575, which is
numerically equal to (3.

For bounding the first integral, we use the fact that coshu > %e“ and for u > A,

e—2A

coshu < 1eAA" where A(A) =1+ &

. Denoting the first integral by F'(z), we get
the following bound

oo oo

A(l—e’7c0s52A)—|— / (1 — e Yy < 2F (z) < / (1— e ™ Ydu (2.62)
A

A

—2X(A)u

which holds for any A. A change of variable v = ze in the lower bound and

v = xe~2* in the upper bound, gives the following bound

—2x(A)
. xe 1 » T q »
- Ccos - v < < - — v
A<1 e h2A>+/o 2)\(A)v(1 e)dv_QF(x)_/O 21}(1 e *")dv
(2.63)

Now suppose x > 1, then the following identity holds

18

“1 "1 v d
/ —(1—e™*)dv = / —(1 —e™)dv +logz — / e (2.64)
oV o v 1 v

As © — oo, the last term converges to —FEi(—4) which can be computed nu-
merically. The first term can also be evaluated numerically and so as * — oo, we

get

“1
/ —(1—e™*)dv =logz + C
o U

where C' =~ 1.9635. Applying this identity to the bounds, we get

2 C
(logz + C) — Ae w2 < 2F(z) < —logx + 5 (2.65)

N —

1
2)A(A)
Since A is arbitrary, it can be chosen to grow with z. If we take A = %(1 +e¢)logx,

then A(A) — 1 and the second term goes to 0. So, asymptotically as x — oo,we have

1
F(X) — Jlogz + D (2.66)
where D = £ ~ 0.49088.

Combining all the asymptotic behaviors, we get the behavior of @),

V2 r—0F

ilogm—i—D T — 00

Qp(z) —

here we’ve used the fact that §; = (.

2.5 Sterling Ratio

A commonly used performance measure which uses the maximum drawdown is the
Sterling Ratio
1

Sterling(T) = EMDD] (2.67)

19
It basically measures how much return to expect for every unit of drawdown risk.
This is similar to the widely used Sharpe Ratio which uses the standard deviation as

a measure of risk.

Shape(T) = r (2.68)

o
For the case p > 0, using equation 2.52 we have
(Sharpe(T))?

Sterling(T) = O ((Sharpe(T)T) (2.69)

In the asymptotic case as T" — 0o, we have

(Sharpe)?
—0.5416 + 0.5log(T") + log(Sharpe)

Sterling(T — o0) = (2.70)

These indicate a direct relationship between the Sterling Ratio and the Sharpe
Ratio.

2.6 Conclusion

The Maximum Drawdown is an important risk measure. For it to be an effective
indicator of the risk, its analytical properties have to be studied. We’ve presented the
distribution and the expected value of Maximum drawdown. We found that in the
limiting case, the drawdown statistic scales in three different ways (log(T), VT, T)
depending on the sign of y. This can be used as a way of testing the hypothesis : is

the return positive, zero or negative.

20

Chapter 3

AlphaBoost

In any learning scenario, the main goal is to find a hypothesis that performs well on
the unseen examples. In recent years, there has been a growing interest in voting
algorithms, which combine the output of many hypothesis to produce a final output.
These algorithms take a given “base” learning algorithm and apply it repeatedly to re-
weighted versions of the original dataset, thus producing an ensemble of hypothesis
which are then combined via a weighted voting scheme to form a final aggregate
hypothesis.

It is believed that the reason for their good performance is that they tend to
produce hypothesis with large margins, however it has been seen that directly max-
imizing the margin doesn’t always lead to better performance. Another explanation
is that they really are a gradient descent procedure in a functional space. In this
chapter, we present an algorithm which aggressively minimizes the cost functional to

see if that really leads to a better out-of-sample performance.

3.1 Notation

We assume that the examples (z,y) are randomly generated from some unknown
probability distribution D on X x Y where X is the input space and Y is the output
space. We’'ll only be dealing with binary classifiers, so in general we’ll have YV =
{—1,1}. Boosting algorithms produce a voted combination of classifiers of the form

sgn(F(z)) where

21

F(x) = Z@tft(x)

where f; : X — {—1,1} are base classifiers from some fixed hypothesis class F
and oy € RTand Zthl a; = 1 are the weights of the classifiers. The class of all convex
combinations of functions from the base classifiers will be called con(F).

The margin(A) of an example (x,y) for the classifier sgn(F(z)) is defined as
yF(x). Margin is a measure of the confidence on the decision. A large positive
margin implies a confident correct decision.

Given a set S = {(z1,91), ..., (xn, yn)} of examples drawn from D, the goal of
learning is to construct an hypothesis, in our case a voted combination of classifier so
that it minimizes the out-of-sample error which is defined as Pp[sgn(F(x)) # y], i.e.
the probability that F' wrongly classifies a random point drawn from the distribution

D.

3.2 AdaBoost

AdaBoost is one of the most popular boosting algorithms. It has been shown to work
very well in a number of real world situations|[17, 18, 16, 9, 6]. It takes a base learning
algorithm and repeatedly applies it to re-weighted versions of the original training
sample, producing a linear combination of hypothesis from the base learner. At each
iteration, AdaBoost emphasizes the misclassified examples from the previous iteration
thereby forcing the weak learner to focus on the “difficult” examples. Algorithm 1
gives the pseudo-code of AdaBoost.

The effectiveness of AdaBoost has been attributed to the fact that it tends to
produce classifiers with large margins on the training points. Theorem 1 bounds the
generalization error of an voted classifier in terms of the fraction of points with small

margin.

Theorem 1 Let S be a sample of N examples chosen independently at random ac-

cording to D. Assume that the base hypothesis space F has VC-dimension d, and let

22

Algorithm 1 AdaBoost(S,T)[7]

e Input: S = (z1,%1), ..., (N, yn)
e Input: T the number of iterations
o Initialize w; = % fori=1,..,.N

e Fort=1to T do

— Train the weak learner on the weighted dataset (S,w) and obtain hy. :
X —{-1,1}

Calculate the weighted training error €; of hy:

N
€ = sz‘f[ht(fi) # Yil

Calculate the weight o, as:

]_—Et

Oét—QOg o

Update weights
w = w; exp{—awynhi(xn) Y/ Zs
where Z; is a normalization constant

—ifet:(]oretz%thenbreakandsetT:t—l

e Output Fp(z) = 321, ashy(z)

0 > 0. Then with probability at least 1 — § over the random choice of the training set
S, every weighted function F € lin(F) satisfies the following bound for all v > 0

Pplsgn(F(z)) #y] < PslyF(z) <]+ 0 (\/V—leog(N/;\if) + IOg(l/é))

AdaBoost has been found to be particularly effective in increasing the margin
of “difficult” examples (those with small margin), even at the price of reducing the
margin of other examples. So, it seems that the effectiveness of AdaBoost comes from

maximizing the minimum margin. Grove and Schuurmans [8] devised an algorithm

23
LPBoost which maximizes the minimum margin, and achieve better minimum margin
than AdaBoost. However, this lead to a worse out-of-sample performance. They

concluded that no simple version of the minimum margin explanation can be complete.

3.3 AnyBoost: Boosting as Gradient Descent

Mason et al.[12] presents a generalized view of boosting algorithms as a gradient
descent procedure in the functional space. Their algorithm AnyBoost iteratively
minimizes the cost function by gradient descent in the functional space.

The base hypothesis and their linear combinations can be viewed as elements of
an inner product space (X, (,)) where X is a linear space of functions that contain
lin(F). The algorithm AnyBoost starts with the zero function F' and iteratively finds
a function f € F to add to F so as to minimize the cost C'(F + ef) for some small
€. The new function added f is chosen such that the cost function is maximally
decreased. The desired “direction” is the negative of the functional derivative of C' at
F, =VC(F), where

OC(F +61,)

VO(F)(a) = =5

where 1, is the indicator function of z. In general it is not possible to choose the
new function as the negative of the gradient since we’re restricted to picking from F,
so instead AnyBoost searches for f which maximizes the inner product (f, —=VC(F))

Most of the boosting algorithms use a cost function of the margin of points.

N

where ¢ : ® — RTis a monotonically nondecreasing function. In this case, the

inner product can be defined as

N

(F.9) = D fwdolr) (3.1)

i=1

24

Algorithm 2 AnyBoost(C, S, T)[12]
Requires:

e An inner product space (X, (,))containing functions mapping X to Y

A class of base classifier F

A differentiable cost functional C' : lin(F) — R

A weak learner L£(F') that accepts F' € lin(F) and returns f € F with a large
value of — (VC(F), f)
)

Input: S = (x1,y1 y e (QUN,?JN)

Input: 7T is the number of iterations

— Let Fo(z) :=0
—fort=0to T do

Let ft+1 = E(Ft)

if —(f,—-VC(F)) <0

- return F}

*

*

*

Choose a1
Let Fip1 = Fy + o fina

*

— return Frpy

25
So,

(~VO(F),) = 37 S pF @) (1F () 32)

So, maximizing (—VC(F), f) is equivalent to minimizing the training error with
examples weights, D(i) o —c/(y; F(x;))

AdaBoost can be seen as a special case of AnyBoost with the cost function
c(yF(z)) = e ¥"@and the inner product (F(z),G(z)) = + SN F(2;)G(x;). Many

of the most successful voting methods are special cases of AnyBoost with the appro-

priate cost function and step size.

Table 3.1: Voting Methods seen as special case of AnyBoost

‘ Algorithm ‘ Cost Function ‘ Step Size ‘
| AdaBoost | e v (@) | Line Search |
| ARC-X4 | (1—yF(2))” | 1/t |

|

| LogitBoost | In(1 + e #"@) | Newton-Rapson

3.4 AlphaBoost

AlphaBoost improves on AnyBoost by minimizing the cost function more aggressively.

It can achieve significantly lower values of cost function, much faster than AnyBoost.

3.4.1 Algorithm

AlphaBoost starts out by calling AnyBoost to obtain a linear combination of hypoth-
esis from the base learner. It then optimizes the weights given to each of the classifier
in the combination to further reduce the cost function. This is done by doing a conju-
gate gradient descent [13] in the weight space. Algorithm 3 gives the pseudo code of
AlphaBoost. We used conjugate gradient instead of normal gradient descent because
it uses the second order information of the cost function and so the cost is reduced

faster.

26

The first step is to visualize the cost function as a function of the weight of the
hypothesis instead of the aggregate hypothesis. So once we’ve fixed the weak learners
which will vote to form the aggregate hypothesis, we've a cost function C'(«) which
depends on the weight which each hypothesis gets in the aggregate. We can then do
a conjugate gradient descent in the weight space to minimize the cost function and
thus find the optimal weights.

Suppose AnyBoost returns Fr(z)=Y",_, a;hi(z) as the final hypothesis. Then we

have,

n

Cla) =Y e(yiFr(z)) (3.3)

=1

and so, the gradient can be computed as

0C(« &
CL) S () (wiFr() (3.4)
O i=1
So the descent direction at stage ¢ is computed as d; = —V (o). Instead of using

this direction directly, we choose the search direction as

dt = —VC(C(t) -+ ﬂtdtfl (35)

where 3, € ® and d;_; is the last search direction. The value of 3; controls how
much of the previous direction affects the current direction. It is computed using the

Polak-Ribiere formula

<dt: dy — dt71>
<dt717 dt71>

Algorithm 3 uses a fixed step size to perform conjugate descent. We can also do

Br = (3.6)

a line search to find an optimal step size at each iteration.

27

Algorithm 3 AlphaBoost(C, S,T, A)
Requires:

e An inner product space (X, (,))containing functions mapping X to Y

A class of base classifier F

Input: S = (x1,y1), e (l'Ny?JN)

Input : T the number of iterations of AnyBoost and A is the number of conjugate
gradient steps

Input: C'is a differentiable cost functional C': lin(F) — R

— Let Fr(x)=a.H(x) be the output of AnyBoost(C,S,T)

—dp=0and ap = &«

—Fort=1to A
* dt = —VC(C(t)
* ﬂt _ (¢, dy—di—1)

(dt—1,de—1)
day = —dy + Brdayg o

ap = ay_1 + nday_y

*

*

3.4.2 Generalization Performance

For analyzing the out-of-sample performance of AlphaBoost, we used AdaBoost’s
exponential cost function. Once we fix a cost function, AnyBoost/AdaBoost and Al-
phaBoost are essentially two algorithms which try to optimize the same cost function.
For comparing the generalization performance improvement that AlphaBoost obtains
by decreasing the cost function further, we generated random target function using
the Caltech Data Engine [1].Targets were chosen at varying levels of complexity and
from different models. For each target, 50 random training and testing datasets of
size 500 and 5000 were generated. Decision stumps were used as the base learner in
both the algorithms. For AlphaBoost, AdaBoost was first run for 100 iterations to
get the initial hypothesis and then conjugate gradient descent with line search was
done for 50 steps on «'s. This was compared with running AdaBoost for 150 itera-

tions. All the results were averaged over 100 independent trials. The cost function

28
and out-of-sample error at each iteration for one such run is shown in figure 3.1.
The cost function at the end of AlphaBoost is significantly lower than the cost
function at the end of AdaBoost. However, the out-of-sample error achieved by Ad-
aBoost is significantly lower. The results on other random functions are summarized

in Appendix B.

3.4.3 Experimental Results

We tested AlphaBoost on six datasets from the UCI machine learning repository|2].
The datasets chosen were Pima Indians Diabetes Database, Sonar database, heart
disease diagnosis database from V.A. Medical Center, Long Beach and Cleveland
Clinic Foundation collected by Robert Detrano, M.D., Ph.D., John Hopkins Univer-
sity Tonosphere database, 1984 United States Congressional Voting Records Database
and breast cancer databases from the University of Wisconsin Hospitals [11]. Decision
stumps were used as the base learner in all the experiments. For the experiments, the
dataset was randomly divided into two sets of size 80% and 20% and they were used
for training and testing the algorithms. AlphaBoost was composed of 100 steps of
AdaBoost followed 50 steps of conjugate gradient with line search as in the previous
section and it was compared with AdaBoost running for 150 iterations. All the results
were averaged over 50 runs.

Table 3.2 shows the final values obtained by the two algorithms. As expected,
AlphaBoost was able to achieve significantly lower value of the cost function. Though
AdaBoost achieved better out-of-sample error than AlphaBoost, the error bars are
high in these limited datasets to make any statistically significant conclusions. Figures
3.2-3.7 show the cost function value and out-of-sample error as a function of the
number of iterations. For the first 100 iterations, AdaBoost and AlphaBoost perform
exactly the same thing, so the curves coincide for this period. The cost function
takes a steep dip around iteration 101 for AlphaBoost when it starts doing conjugate
gradient descent. The out-of-sample error increases during this stage. Also shown are

the distribution of the margins at the end of 100 iterations of AdaBoost and at the end

Out of Sample Error

Cost Value

Figure 3.1: Performance of AlphaBoost and AdaBoost on a random target

29

l T T T T
AlphaBoost
AdaBoost --------
0.9 - :
\
\
0.8 -\ g
0.7 \\ B
\
0.6 \\ B
05 | -
04 — B
03| \\ i
\\
02 \\ .
0.1} ~ |
0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Iteration#
(a) Cost function Value at each iteration
04 T T T T T T T
AlphaBoost
‘ AdaBoost --------
|
\
0.35 J‘ i
|
]
\
\
03} i
\
1
\
|
0.25 | | i
W
1
'\4 - o
\ =
0.2 | \\ 4 .
T)
015 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Iteration#

(b) Out of sample error at each iteration

30

Table 3.2: Experimental Results on UCI Data Sets

| Data Set | Algorithm | Cost | OOS Error | min(A) [A

Pima Indian | AlphaBoost | 0.5139 0.2638 —0.0979 | 0.0658
AdaBoost | 0.5763 0.2463 —0.1576 | 0.1023

Sonar AlphaBoost 0 0.1833 0.1099 | 0.2128
AdaBoost | 0.0003 0.167 0.1088 | 0.2099

Cleveland | AlphaBoost | 0.0386 0.2421 —0.183 | 0.0979
AdaBoost | 0.0651 0.2047 —0.0747 | 0.1366

Ionosphere | AlphaBoost 0 0.1 0.0652 | 0.1849
AdaBoost | 0.0094 0.0894 0.0459 | 0.1886

Vote AlphaBoost | 0.3576 0.2222 —0.1359 | 0.2724
AdaBoost | 0.3756 0.2155 —0.1757 | 0.3104

Cancer AlphaBoost | 0.0015 0.0483 —0.0052 | 0.2377
AdaBoost | 0.0509 0.0419 —0.0511 | 0.2638

\

~
0 20 40 60 8 100 120 140 160 0 20 40 6 8 100 120 140 160 0
Iteration Iteration &

05 0 05 1

(a) Cost Function (b) Out of Sample Error (c) Margin CDF

Figure 3.2: Pima Indian Diabetes

of 150 iterations of AdaBoost and 50 iterations of conjugate gradient descent. The
distribution of the margins at the end of 100 iterations of AdaBoost is the starting
point for both the algorithms and from there on, they do different things for the
next 50 iterations. AlphaBoost tends to maximize the minimum margin better than

AdaBoost at the expense of lowering the maximum margin.

3.5 Conclusion

We've presented an improved algorithm for optimizing the cost function used in many

boosting algorithms. AlphaBoost was able to achieve significantly lower values of

Cost

31

0.6 0.085 1
AlphaBoost AlphaBoost 65t(100) ——
e 0.08 o AdaBoost
05
0.075 08
04 0.07
% \ E 0.065 06
& osff o
\ g oosr|
\ 0.4
0.2 0.055 |
\]
0.05
01 \\\\ W‘“W‘ o 02
T S 0.045 M [
AN S op o,
0 0 20 40 60 80 100 120 140 160 004 0 20 40 60 80 100 120 140 160 0 L L
Iteration Iteration 1 05 05
(a) Cost Function (b) Out of Sample Error (¢) Margin CDF
Figure 3.3: Wisconsin Breast Cancer
0.9 03 1 _
AlphaBoost AlphaBoost As#Bo0st(100) ——
08} o o8 l) o " Rdaoost
I
o7 f} \ 08
\ 026 |
06\ \
\ \
05|\ 5 o024l | 06
g \ & \
3 \ @ A
oap |\ S o022 ‘\/
\ \ 0.4
03t \ \
0.2
02 \\W\
01 0.18 “\/VWM /7 0.2
' ~__ A Jorn
0 0 20 40 60 80 100 120 140 160 018 0 20 40 60 80 100 120 140 160 0 L . L
Iteration Iteration 1 05 0 05 1
(a) Cost Function (b) Out of Sample Error (c) Margin CDF
Figure 3.4: Sonar
08 0.1 1 _
AlphaBoost AlphaBoost 005((100) ——
07 o 017 o AdaBoost
| 0.16 08
06 f
\ 0.5
05 |
5 014 I 06
04 o o3|
\ S onl |
03\ o1z ‘\\M 04
/
oarf |
02 \\ W
0.1 /S |
" ~ N 02
0.1 S~ M Y \J
— 0.09 (A WaTy At %
\\‘ . (VAW
0 0.08
o 20 4 6 8 100 120 140 160 0o 20 40 6 8 100 120 140 160 0
Iteration Iteration 1 058 0 05 S

(a) Cost Function

(b) Out of Sample Error

Figure 3.5: Ionosphere

(c) Margin CDF

Cost

Cost

32

08 T T T T T T T 0.28 T T T T T T T 1 T T v —
AlphaBoost AlphaBoost A(iaBUObl(lOfY —
075 o 027 o Adatiogst
0.7 0.26 08
065 025
06 5 o024 06
l 2
0.55 “ 8 023 .
- 4
05 | 0.22 W TIAANTT
M’”\M e N/»WWMWWMN\/
045 021 ‘g !
~— 0.2
04 \\\ o2 {f|
N
035 019
0 20 40 60 8 100 120 140 160 20 40 60 8 100 120 140 160 0O
Iteration Iteration 1 05
(a) Cost Function (b) Out of Sample Error (¢) Margin CDF
09 027 1
AlphaBoost AlphaBoost faBo0s((100) ——
daBo daBo phaBo
08 026 AdaBoost
i
08
o7 0.25
06 _
_ 024 //‘/"“”
0.5 g / 0.6
~ o 023 /
0.4 — <] I
o /
T 0.22 (04
03 \ o |
\ |
02 021 |
‘M%J‘ . 02
0.1 0.2 ‘W/X‘MM/ m(\f\,«m/» \
0 019
0 20 40 60 8 100 120 140 160 0 20 40 60 8 100 120 140 160 0O
Iteration 1 05 05

Iteration

(a) Cost Function

Figure 3.7: Cleveland Heart Dataset

(b) Out of Sample Error

(c) Margin CDF

33
cost function. However, in terms of out-of-sample performance, AdaBoost was still
the better algorithm. This shows that aggressive optimization of the exponential cost

function can lead to overfitting.

34

Chapter 4

Conclusions

We'’ve addressed two problems, one in the field of computational finance and another
in the field of machine learning. In Chapter 2, we addressed the problem of estimating
the distribution of the maximum drawdown of a Brownian motion. We also computed
the expected value of the maximum drawdown and determined its limiting behavior.

In Chapter 3, we presented a new boosting algorithm AlphaBoost which is an
extension of the popular AdaBoost algorithm, and does a better job of optimizing the
exponential cost function. We tested the new algorithm using Caltech Data Engine
and datasets from UCI machine learning repository, and found that it achieved lower
values of cost function. We also found that the exponential cost function used in
AdaBoost is vulnerable to overfitting, so AlphaBoost achieved worse out-of-sample

performance than AdaBoost.

35

Appendix A

Table of Numerical values for Q(.)

T Qp(z), >0 x Qn(z),p <0
x—0 ’y\/% x—0 ’yx/ﬁ
0.0005 0.019690 0.0005 0.019965
0.0010 0.027694 0.0010 0.028394
0.0020 0.038896 0.0015 0.034874
0.0050 0.060721 0.0020 0.040369
0.0100 0.084693 0.0025 0.045256
0.0200 0.117503 0.0050 0.064633
0.0300 0.141842 0.0075 0.079746
0.0400 0.161817 0.0100 0.092708
0.0500 0.179015 0.0150 0.114814
0.0600 0.194248 0.0200 0.133772
0.0700 0.207999 0.0300 0.166229
0.0800 0.220581 0.0400 0.194489
0.0900 0.232212 0.0500 0.220056
0.1000 0.243050 0.0600 0.243374
0.2000 0.325071 0.0700 0.265472
0.3000 0.382016 0.0800 0.286406
0.4000 0.426452 0.0900 0.306393
0.5000 0.463159 0.0950 0.316066
1.5000 0.668992 0.1000 0.325585
2.5000 0.775976 0.1500 0.413136
3.5000 0.849298 0.2000 0.491599
4.5000 0.905305 0.2500 0.564333
10.000 1.088998 0.3000 0.633007
20.000 1.253794 0.3500 0.698849
30.000 1.351794 0.4000 0.762455
40.000 1.421860 0.5000 0.884593
50.000 1.476457 1.0000 1.445520

150.0000 1.747485 2.0000 2.483960
250.0000 1.874323 5.0000 5.498820
T — 00 ilogm+0.49088 T — 00 :E-f—%

36

Appendix B

(Generalization Performance of
AlphaBoost

To compare the generalization performance of AlphaBoost, we used the Caltech Data
Engine to generate random target functions. The Caltech Data Engine is a com-
puter program that contains several predefined data models, such as neural networks,
support vector machines (SVM), and radial basis functions (RBF). When requested
for data, it randomly picks a model, generates (also randomly) parameters for that
model, and produces random examples according to the generated model. A com-
plexity factor can be specified which controls the complexity of the generated model.
The engine can be prompted repeatedly to generate independent data sets from the
same model to achieve small error bars in testing and comparing learning algorithms.

The two algorithms were compared using function of varying complexity and from
different models. For each target, 100 independent training sets of size 500 were
generated. The algorithms were tested on a independently generated test set of size
5000. In all the runs, AlphaBoost obtained significantly lower values of cost function.
However, the out-of-sample performance of AdaBoost was significantly better. The
final cost and out-of-sample error obtained by the two algorithms on different models
of Data Engine are given in Tables B.1 to B.3. For each model, results for 10 different
target functions are shown. The error bar on all the runs was less than 1073 of the

values, and so are not reported in the tables.

37

Table B.1: Generalization Performance on NNet Model

‘ ‘ AlphaBoost Cost ‘ AlphaBoost OOS error ‘ AdaBoost Cost ‘ AdaBoost OOS error ‘

1 | 9.3565888¢ — 14 3.0266667e — 02 2.7597247e — 03 2.9089333¢e — 02
2 | 1.2035998e — 13 4.4191011e — 02 1.8804671e — 02 4.2529333e — 02
3 | 1.6344770e — 14 4.4392500e — 02 2.0653736e — 02 4.3245333¢ — 02
4 | 4.2481317e¢ — 17 4.1800000e — 02 1.7477263¢ — 02 4.0553333e — 02
5 | 4.2698023¢ — 18 3.8835088¢e — 02 1.0045108¢ — 02 3.8081333e — 02
6 | 4.3135297¢ — 14 3.2375000e — 02 6.5214255¢ — 03 3.2469333¢ — 02
7 | 1.0915530e — 15 4.6779747¢ — 02 2.1924053e — 02 4.4280000e — 02
8 | 1.0915530e — 15 4.5810959¢ — 02 2.0753478e — 02 4.4768000e — 02
9 | 3.8035720e — 18 2.8975000e — 02 5.0236339¢ — 03 2.8206667e — 02
10 | 4.7306306e — 15 4.5177778e — 02 1.7291558¢ — 02 4.3353333e — 02
Table B.2: Generalization Performance on SVM Model
‘ ‘ AlphaBoost Cost ‘ AlphaBoost OOS error ‘ AdaBoost Cost ‘ AdaBoost OOS error ‘
1 | 1.5322601e — 04 8.2038202¢ — 02 7.6928569¢ — 02 7.7200000e — 02
2 | 1.3788141e — 13 4.2930612¢ — 02 1.9828926e¢ — 02 4.1520000e — 02
3 | 4.8592162e — 15 4.9562963e — 02 2.8406560e — 02 4.8784000e — 02
4 | 5.3670424e — 04 9.5224490e — 02 9.5785479¢ — 02 8.6446000e — 02
5 | 5.0031784e — 05 7.3665116e — 02 7.2252861e — 02 6.8764000e — 02
6 | 4.8371905¢ — 10 6.3383721e — 02 4.4560837e — 02 5.9480000e — 02
7 | 1.0375764e — 04 6.6155056e — 02 4.4763318e — 02 6.2090000e — 02
8 | 1.0375764e — 04 7.4686420e — 02 5.9636413e — 02 6.7576000e — 02
9 | 2.2833023e¢ — 11 5.8356962¢e — 02 3.7523566e — 02 5.4996000e — 02
10 | 1.2634642¢ — 03 9.4135556e — 02 1.0156811e — 01 8.3704000e — 02

Table B.3: Generalization Performance on SVM2 Model

38

‘ AlphaBoost Cost ‘ AlphaBoost OOS error ‘ AdaBoost Cost ‘ AdaBoost OOS error ‘

1 0.517253 0.3126293 0.62887978 0.263594
2 0.5031718 0.3200826 0.61548533 0.285921
3 0.5391776 0.3443026 0.6450533 0.314052
4 0.438985 0.2986720 0.552395 0.272044
5 0.7194488 0.455278 0.8077336 0.4283666
6 0.5417086 0.33590 0.645625 0.299938
7 0.7265202 0.2355866 0.8178936 0.452702
8 0.4332155 0.2620933 0.55019133 0.212585
9 0.555306 0.337778 0.66236691 0.2949906
10 0.65321 0.25642 0.76012 0.20311

39

Bibliography

1]
2]
3]

4]

5]

6]

17l

18]

9]

Pratap A. Caltech data engine. Technical report.
C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

Blasi. On a random walk between a reflecting and an absorbing barrier. Annals

of Probability, 4(4):695-696, 1976.

Greg C. Bond. Green’s function for a zero drift reflected brownian motion and

the expected maximum drawdown. 2003. Submitted to Baker Investment Group.

Georgia Nakou David Harding and Ali Nejjar. The pros and cons
of '"drawdown" as a statistical measure of risk for investments.

http://www.wintoncapital.com /pdfs/Drawdown.pdf.

Gerard Escudero, Lluis Marquez, and German Rigau. Boosting applied to word
sense disambiguation. In Ramon Lopez de Méantaras and Enric Plaza, editors,
Proceedings of ECML-00, 11th European Conference on Machine Learning, pages
129-141, Barcelona, ES, 2000. Springer Verlag, Heidelberg, DE.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. In Furopean Conference on

Computational Learning Theory, pages 23-37, 1995.

Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the

margin of learned ensembles. In AAAI/TAAI pages 692-699, 1998.

G. Guo and H. Zhang. Boosting for fast face recognition, 2001.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

40
Amrit Pratap Malik Magdon-Ismail, Amir F. Atiya and Yaser S. Abu-Mostafa.

The sharpe ratio, range and maximal drawdown of a brownian motion. Technical

Report TR 02-13, RPI Computer Science, September 2002.

O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming.

SIAM News, 23(5), September 1990.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient
descent, 2000.

Fletcher R. and Reeves C.V. Function minimization by conjugate gradients.

Computer Journal, pages 149-154, 1964.

Robert E. Schapire. A brief introduction to boosting. In IJCAI, pages 1401-1406,
1999.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting
the margin: a new explanation for the effectiveness of voting methods. In Proc.
14th International Conference on Machine Learning, pages 322-330. Morgan
Kaufmann, 1997.

Robert E. Schapire and Yoram Singer. Boostexter: A boosting-based system for
text categorization. Machine Learning, 39(2/3):135-168, 2000.

H. Schwenk. Using boosting to improve a hybrid hmm /neural network speech

recogniser, 1999.

Holger Schwenk and Yoshua Bengio. Adaboosting neural networks: Application
to on-line character recognition. In ICANN, pages 967-972, 1997.

B. Weesakul. The random walk between a reflecting and an absorbing barrier.

Annals of Mathematical Statistics, 32(3):765-769, 1961.

