Investigations into the Enzymology and Biotechnology of the Hyperthermophilic Carboxypeptidase (PfuCP) from the Archaeon Pyrococcus furiosus

Thesis by

Timothy C. Cheng

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, CA

2003

(Defended September 27, 2002)
© 2003

Timothy C. Cheng

All Rights Reserved
Acknowledgements

There are many people to thank.

My parents, who have always been there... for all the times I can remember, all the times that I don’t, and all the times I never knew about. The day is fast approaching when two round-the-world cruise tickets will magically appear on their doorstep...

My advisor, Sunney Chan...

Patience. Generosity. Unflagging support.

Vision. Wisdom.

For taking a chance on a project that was risky, but which ultimately taught more than could be expected, and for having that rare combination of encouragement and trust that young scientists need to grow and develop as individuals. It is both an honor and a privilege to be his final graduate student at Caltech as he ends an illustrious and prolific research career that spanned many projects and many interests.

Shao-Ching Hung, for showing me how to handle an EPR machine and for good company and good conversation on many an occasion. Brian Schultz for never tiring of being a sounding board that didn’t just bounce back noise but which filtered and added music to the mix. Good friends, Andrew Yeh, Lance Christensen, Jeremy Kua, Bac Hoang... the time at Caltech was made all the better by their company. Hung-Kay Lee, Sean Elliot, David Zhang and other labmates past who were always ready to lend an ear or a hand. Drs. Gary Hathaway and Mona Shahgholi for their generous advice on matters mass spect, and Dr. Peter Snow for his heroic efforts in the original cloning of the PfuCP gene. Prof. Michael Chan and his trusty grad student Joseph Arndt, for their spectacular
work on the crystal structure. Profs. Judy Campbell, Douglas Rees, Jack Beauchamp, and Mitchio Okumura for sitting on yet another thesis committee and for their kind words of encouragement.

And last but not least, the scores of scientists both present and long gone, who put something of themselves into the ever changing fabric of knowledge and understanding, and who have provided both ample inspiration and rich working material to which future generations can add their own humble contributions.
Abstract

A novel metallocarboxypeptidase (PfuCP) from the hyperthermophilic archaeon *Pyrococcus furiosus* was purified and characterized to investigate its dependence on metal ion cofactors and to evaluate its suitability as a biotechnological tool for protein sequencing at elevated temperatures.

The crystal structure reveals a dimer of primarily α-helical subunits that bears no resemblance to the α/β-hydrolase morphology of typical carboxypeptidases and which defines a new family of HEXXH metalloproteases (M32) based on primary sequence alignments. A deep active site groove appears to function not only in size-selection of substrates but also in modulating the activity and substrate affinity through complicated allosteric effects involving ambient ligands which may play a role in regulatory metabolism.

Two forms of the enzyme were observed; one which retains stabilizing metal(s) that confer structural thermostability and a remarkable retention of activity to the dimer, and another demetallated form which has lost stability with regards to both dimeric integrity and activity. Difficulties in expressing a properly folded recombinant necessitated refolding of the expressed clone from inclusion bodies and further suggest that *in vivo* the stabilizing metal(s) may participate in folding a metastable enzyme.

The apparent paradox of activation by only Co$^{2+}$ and not Zn$^{2+}$ is resolved into two issues, uncompetitive inhibition by the latter as seen in steady-state kinetic experiments, and intrinsic, electronic aspects of a catalytic Co$^{2+}$. Several explanations are proposed for the intrinsic rate enhancement of Co$^{2+}$ over Zn$^{2+}$ including the ability of Co$^{2+}$ to modulate
the potential energy surface for both reactants and transition states by virtue of its greater mobility within the protein framework.

The broad amino acid specificity and rapid digestion by PfuCP in peptide sequencing trials show promise, and high-temperature protein sequencing has now been demonstrated for the first time.
Table of Contents

Acknowledgements ... iii

Abstract ... v

List of Figures and Tables ... x

Abbreviations ... xiii

Chapter 1

Introduction ... 1

Chapter 2

Purification, Cloning, Expression, and Refolding of Native and Recombinant PfuCP .. 11

- Purification of Native Protein ... 14
- Cloning, Subcloning, and Expression in Insect and Bacterial Systems ... 16
- Refolding of Recombinant from Inclusion Bodies 20

Biochemical Characterization and Metal Dependence 25

- Substrate Specificity ... 25
- pH Dependence of Activity for Native PfuCP 27
- Temperature Dependence of Activity (Native and Recombinant) ... 28
- Thermostability and Thermoinactivation 29
- Oligomeric State .. 31
- Metal Ion Specificity and Binding 34
Chapter 3
Crystal Structure and Sequence Analysis ... 41
 Structure of PfuCP .. 47
 Sequence Analysis .. 49
 Structure of Neurolysin ... 50
 Sequence Alignment of PfuCP ... 53

Chapter 4
Steady-State Kinetics (Activity) and Simulations 57
 S Profiles ... 61
 M Profiles ... 62
 Monomer Model ... 64
 Dimer Model .. 81
 Zn\(^{2+}\) Inhibition ... 84
 Steady-State Kinetics for the Recombinant (rPfuCP) 92
 Conclusions .. 94

Chapter 5
Implications for Mechanism, Specificity, and Rate Theory 98
 Anhydride Pathway .. 100
 Activated Carbonyl and Water Promoted Pathway 101
 Reverse Protonation ... 103
 Mechanism of PfuCP ... 109
 Theories of Enzyme Catalysis .. 111
 Implications for Co\(^{2+}\) and Zn\(^{2+}\) Activated Metallohydrolases 114
Chapter 6

Biotechnological Applications and C-terminal Protein Sequencing 124

Chapter 7

Conclusions and Future Directions .. 132

Appendix A (Cloning and Subcloning of PfuCP) 137

Appendix B (Refolding of rPfuCP from Inclusion Bodies) 140

Appendix C (Assorted Calculations) .. 142

Appendix D (EPR Methods) .. 144

Appendix E (Methods for Simulations of Steady-State Kinetics) 145

References ... 149
List of Illustrations and Tables

Tables

Table 1 Metalloprotease families and subfamilies 4
Table 2 Representative proteases in disease ... 7
Table 3 Proteins and enzymes with presumed native cobalt 35
Table 4 Relative peptidase and esterase activities for different metal-substituted isoforms ... 37
Table 5 Residual peptidase activity in the presence of different divalent metals ... 38
Table 6 Kinetic parameters from simulations of activity dependence on substrate, ‘S’ profiles ... 68
Table 7 Kinetic parameters from simulations of activity dependence on Co$^{2+}$, ‘M’ profiles ... 71
Table 8 Kinetic parameters from simulations of uncompetitive inhibition of PfuCP by Zn$^{2+}$... 88
Table 9 Kinetic parameters for Term 5 altered by Zn$^{2+}$ 88
Table 10 Peptides C-terminally sequenced by PfuCP 130

Figures

Figure 1 SDS-PAGE of native PfuCP purification and MALDI-TOF MS of purified enzyme ... 15
Figure 2 SDS-PAGE of induction trials to reduce inclusion body formation ... 18
Figure 3 SDS-PAGE of induction trials to maximize expression of RPfuCP ... 19
Figure 4 Solubilization of inclusion bodies (pellet) with 10 M urea 20
Figure 5 Refolding of rPfuCP by gel filtration 22
Figure 6 Refolding of rPfuCP on-resin (Co$^{2+}$ IMAC) 24
Figure 7 C-terminal amino acid specificities of PfuCP25
Figure 8 pH dependence of native PfuCP 27
Figure 9 Temperature dependence of native and recombinant PfuCP ..28
Figure 10 Thermal inactivation of PfuCP 30
Figure 11 Far-UV circular dichroism of apoPfuCP30
Figure 12 Oligomeric behavior of PfuCP in SDS-PAGE31
Figure 13 Early thermostability time course for PfuCP33
Figure 14 Optical spectrum of CoPfuCP39
Figure 15 Generalized metalloprotease mechanism43
Figure 16 Active site core of PfuCP ..44
Figure 17 Dimer structure of PfuCP47
Figure 18 Overall topology of PfuCP48
Figure 19 Overall topology and active site of neurolysin (Rattus norvegicus) ..50
Figure 20 Sequence alignment of the M32 ‘PfuCP’ family of metalloproteases ..53
Figure 21 Activity profiles of PfuCP (concentration dependence on substrate and metal) ...60
Figure 22 Basic Monomer Model of PfuCP steady-state kinetic behavior .64
Figure 23 Core populations of active species in activity profiles78
Figure 24 Basic Dimer Model of PfuCP steady-state kinetic behavior81
Figure 25 Steady-state kinetics of Zn$^{2+}$ inhibition86
Figure 26 Steady-state kinetics of recombinant PfuCP92
Figure 27 Reverse Protonation Mechanism103
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 28</td>
<td>k_{cat}/K_m vs pH activity profile for thermolysin</td>
<td>104</td>
</tr>
<tr>
<td>Figure 29</td>
<td>Phenolic inhibitors of thermolysin</td>
<td>105</td>
</tr>
<tr>
<td>Figure 30</td>
<td>pH dependence of phenolic inhibitor strength</td>
<td>105</td>
</tr>
<tr>
<td>Figure 31</td>
<td>Reverse Protonation mechanism for CPA</td>
<td>106</td>
</tr>
<tr>
<td>Figure 32</td>
<td>Cyanamide substrates for CPA</td>
<td>106</td>
</tr>
<tr>
<td>Figure 33</td>
<td>Sulfoximine inhibitors for CPA</td>
<td>107</td>
</tr>
<tr>
<td>Figure 34</td>
<td>Generalized mechanism for PfuCP</td>
<td>109</td>
</tr>
<tr>
<td>Figure 35</td>
<td>Polanyi formalism for activation barriers</td>
<td>112</td>
</tr>
<tr>
<td>Figure 36</td>
<td>Marcus formalism for activation barriers</td>
<td>113</td>
</tr>
<tr>
<td>Figure 37</td>
<td>Schematic of a broadened transition state surface (TSS)</td>
<td>120</td>
</tr>
<tr>
<td>Figure 38</td>
<td>C-terminal sequencing methodology for a hyperthermophilic CP</td>
<td>129</td>
</tr>
<tr>
<td>Figure 39</td>
<td>C-terminal sequencing of N-acetyl renin substrate by PfuCP</td>
<td>131</td>
</tr>
</tbody>
</table>
Abbreviations and Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Carboxypeptidase</td>
</tr>
<tr>
<td>ICPMS</td>
<td>Inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>IMAC</td>
<td>Immobilized metal affinity chromatography</td>
</tr>
<tr>
<td>PES</td>
<td>Potential Energy Surface</td>
</tr>
<tr>
<td>Pf</td>
<td>Pyrococcus furiosus</td>
</tr>
<tr>
<td>Standard Assay Conditions</td>
<td>0.1 M KMes pH 6.5, 2 mM substrate, 400 µM Co^{2+}, 4 µL enzyme</td>
</tr>
<tr>
<td>TSS</td>
<td>Transition State (Hyper)Surface</td>
</tr>
<tr>
<td>ZAX</td>
<td>N-Carbobenzoxy-Alanyl-Xaa (X amino acid, N-blocked dipeptide)</td>
</tr>
</tbody>
</table>