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Abstract

Recent advances in nanotechnology have shrunk the size of mesoscopic structures.

This allows us to investigate the quantum mechanics of mechanical oscillators. In

this thesis we focus on two aspects.

In Part I, an individual discrete mode structure of an oscillator and its effect to

thermal conductance have been thoroughly examined: Specifically, we investigated

the reduction in the thermal conductance in the quantum limit due to phonon scat-

tering by surface roughness, first using scalar waves, then using full three dimensional

elasticity theory for an elastic beam with a rectangular cross section. At low fre-

quencies, we find power laws for the scattering coefficients that are strongly mode

dependent, and different from the results deriving from Rayleigh scattering of scalar

waves, that is often assumed. The scattering gives temperature dependent contribu-

tions to the reduction in thermal conductance with the same power laws. At higher

frequencies, the scattering coefficient becomes large at the onset frequency of each

mode due to the flat dispersion. We use our results to attempt a quantitative un-

derstanding of the suppression of the thermal conductance from the universal value

observed in experiment.

As individual phonon energy becomes comparable to or greater than the thermal

energy, the individual phonon dynamics within each mode can be resolved. In Part II,

we examine a possibility of detecting individual quanta of a system: We investigate a

scheme that makes a quantum non-demolition measurement of the excitation level of

a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two

bending modes of an elastic beam. The non-linear coupling between the two modes

shifts the resonant frequency of the readout oscillator proportionate to the excitation



vii

of the system oscillator. This frequency shift may be detected as a phase shift of the

readout oscillation when driven on resonance. We show that in an appropriate regime

this measurement approaches a quantum non-demolition measurement of the phonon

number of the system oscillator. As a result it should be possible to monitor jumps

between Fock states caused by the coupling of the system to the thermal reservoirs.
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Part I

Quantum transport of phonons in

disordered systems
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Chapter 1

Introduction and preliminary
calculations

Landauer’s formulation of quantum transport showed that when elastic scattering

dominates, the electrical conductance can be related to the transmission coefficient

of the electron waves [1]. In the ideal case of no scattering, this leads to a universal

conductance that is quantized in units of e2/h at low temperatures, where e is the

electron charge and h Planck’s constant, with an additional quantum of conductance

added as each channel or mode of the conductance pathway opens up. The application

of similar ideas to the phonon counterpart, namely, thermal conductance, was recently

derived by a number of authors [2, 3, 4], and is now recognized [5] to be related to

earlier work on the entropy transport at low temperatures [6]. Rego and Kirczenow

have extended the concept of the universality of the thermal conductance to particles

of arbitrary statistics (anyons) [7].

The thermal conductance K of a suspended mesoscopic beam connecting two

thermal reservoirs has been derived by three groups simultaneously [2, 3, 4] and the

expression is

K =
~

2

kBT 2

∑

m

1

2π

∫ ∞

ωm

Tm(ω)
ω2eβ~ω

(eβ~ω − 1)2
dω, (1.1)

where the integration is over the frequency ω of the modes m propagating in the

beam, ωm is the cutoff frequency of the m-th mode, β = 1/(kBT ), T is the temper-

ature, kB Boltzmann constant, the factor (eβ~ω − 1)
−1

is the Bose distribution for
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n (ω), and Tm (ω) is the transmission coefficient, which equals 1 in the ideal case of

no scattering, i.e., Tm (ω) = 1. Scattering reduces the thermal conductance, and

scattering of the lowest modes can reduce the conductance below the universal value,

Ku = (π2/3)k2
BT/h, at low temperatures.

In the case of electrical resistance, the chemical potential or the number of con-

ducting modes can be varied at very low temperatures, giving sharp jumps between

various quantized values of the resistance. On the other hand, since thermal transport

by phonons necessarily requires nonzero temperatures to populate the modes of the

conducting pathway, the width of the Bose distribution function smears out the quan-

tization of the conductance. Only at very low temperatures, where just the modes

of the conducting pathway with zero frequency at long wavelengths contribute to

the thermal conductance, the quantization of the ideal conductance becomes appar-

ent in a universal thermal conductance N0Ku with Ku = (π2/3)k2
BT/h the universal

conductance per mode, with N0 the number of modes with zero frequency at long

wavelengths, which is four for a freely suspended elastic beam connecting the two

thermal reservoirs. Note that this value of the low temperature conductance in the

absence of scattering is independent of the dimensions and elastic properties of the

thermal pathway.

A low temperature thermal conductance consistent with the predicted universal

value was measured by Schwab et al. [8] in experiments on a lithographically defined

mesoscopic suspended beam of dimensions about 1 µm × 200 nm × 60 nm. Whilst

their elegant experiment displays the universality of ballistic phonon transport, the

experiment also showed a decrease in the thermal conductance below the universal

value in the temperature range of 0.08 K < T < 0.4 K that cannot be explained

by the ballistic theory, since in this theory an increase in the thermal conductance

is expected as the temperature is raised and more modes are excited. The decrease

in thermal conductance is presumably associated with the scattering of the thermal

phonons, and can be understood using the ideas of Landauer in terms of the scattering

coefficient of the vibrational waves. This is the topic of the present part of the thesis.

We theoretically investigate a likely cause of the low temperature thermal conduc-
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tance decrease. We suggest that the conductance decrease is caused by scattering due

to rough surfaces. Recent advanced crystal growth technology guarantees very few

impurities in the material during substrate growth, thus eliminating the possibility of

impurity scattering. On the other hand, chemical etching can produce surface rough-

ness on a scale of tens of nanometres, large enough to cause significant scattering.

In Part I we examine the surface scattering effect on thermal conductance using

two different models. The scalar model discussed in Chapter 2 uses scalar waves for

the acoustic waves. This model is not only being simple and presents a complete

analytical solution to the problem, but also provides much of insight to the nature

of rough surface scattering. The elasticity model discussed in Chapter 3 expands the

scattering concept to a full 3-D elasticity theory and re-examines the scattering effect.
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1.1 Ideal thermal conductance

For the rest of this chapter, we consider a mesoscopic beam with rectangular cross

section and its dimensions: length L, width W , and depth d.

1.1.1 Analytical method using density of states

To evaluate Eq. (1.1), for small m, we need to evaluate the sum mode by mode,

but for large m the modes become closely spaced and we can replace the sum by

an integral. The density of states (i.e., the number of mode cutoffs per frequency

increment) in a continuous form is

dN

dω
=

Wd

2π

(

2

c2
t

+
1

c2
l

)

ω, (1.2)

where c2
t and c2

l are transverse and longitudinal wave speeds, respectively. Let us now

evaluate the whole expression using the continuum approximation:

K =
~

2

kBT 2

dW

4π2

(

2

c2
t

+
1

c2
l

) ∫ ∞

0

dωc ωc

∫ ∞

ωc

ω2eβ~ω

(eβ~ω − 1)2
dω. (1.3)

Changing the order of integration gives

K =
~

2

kBT 2

dW

4π2

(

2

c2
t

+
1

c2
l

) ∫ ∞

0

ω2eβ~ω

(eβ~ω − 1)2
dω

∫ ω

0

dωc ωc. (1.4)

The ωc integral is easily done and then introducing the scaled frequency, y = xβ~πct/W

gives

K =
k4

BT 3

~3

dW

8π2

(

2

c2
t

+
1

c2
l

) ∫ ∞

0

y4ey

(ey − 1)2
dy. (1.5)

The value of the last integral is 25.976. Note that K has T 3 dependence.

There may be a correction for the discreteness of the mode at small m. This can

be estimated by evaluating the sum up to some limit M , and doing the rest as an
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integral:

K =
~

2

kBT 2

M
∑

m=0

1

2π

∫ ∞

ωm

ω2eβ~ω

(eβ~ω−1)2
dω

+
~

2

kBT 2

dW

4π2

(

2

c2
t

+
1

c2
l

) ∫ ∞

ωM

dωc ωc

∫ ∞

ωc

ω2eβ~ω

(eβ~ω − 1)2
dω. (1.6)

We can evaluate the integral part in the same way to give

K =
~

2

kBT 2

M
∑

m=0

1

2π

∫ ∞

ωm

ω2eβ~ω

(eβ~ω−1)2
dω

+
k4

BT 3

~3

dW

8π2

(

2

c2
t

+
1

c2
l

) ∫ ∞

yM

y2(y2 − y2
M)ey

(ey − 1)2
dy (1.7)

with yM = β~ωM , Convergence can be checked by choosing various values of M .

Scaled with the universal value Ku = (π2/3) (k2
BT/h)

K

Ku

=
π2

3

k2
BT

2π~

~
2

kBT 2

M
∑

m=0

1

2π

∫ ∞

ωm

ω2eβ~ω

(eβ~ω−1)2
dω

+
k2

BT 2

~2

3dW

4π3

(

2

c2
t

+
1

c2
l

) ∫ ∞

yM

y2(y2 − y2
M)ey

(ey − 1)2
dy. (1.8)

This expression can be evaluated numerically. When the temperature is high enough,

we can neglect the cutoff frequency and obtain an analytical expression:

K

Ku

=
k2

BT 2

~2

3dW

4π3

(

2

c2
t

+
1

c2
l

) ∫ ∞

0

y4ey

(ey − 1)2
dy. (1.9)

1.2 Approximation methods to obtain cutoff fre-

quencies

As seen in Eq. (1.1), the thermal conductance depends on the cutoff frequencies of

the modes, thus it is important to calculate cutoff frequencies. Within full elasticity

theory, the modes can be obtained only numerically. Below, we examine several

approximation methods for obtaining the cutoff frequencies in order to determine the
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validity range of these approximations (c.f. Fig. 1.1). We present two approximation

methods: a method based on the properties of the bulk modes (§ 1.2.2), and a method

based on thin plate theory (§ 1.2.1). Then we compare these methods with the fully

numerical solution of the exact method using the “xyz algorithm” that was developed

by Nishiguchi, Ando, and Wybourne [9]. This algorithm can calculate the full elastic

modes, obtaining the dispersion relation of any geometry.

1.2.1 Thin plate elastic theory method

Whilst the exact solution from the 3-D elasticity theory requires full numerical ap-

proach, the thin plate theory allows to obtain some analytical expressions that can

be evaluated fairly easily with a lesser programming power. In addition to the com-

putational reason, using the range of modes that can be approximated by the thin

elastic theory, we can estimate the temperature range where the thin plate limit is

applicable for a given experimental structure. This is essential information to us

since our quantitative calculation of the scattering coefficient in Chapter 3 relies on

the analytic expressions for the elastic modes available only in the thin plate limit.

The cutoff frequencies for each mode can be determined from the dispersion relations.

There are a total of four modes in a thin plate: inplane even and odd modes, and

flexural even and odd modes. The dispersion relations of these four modes have been

derived by Cross and Lifshitz [10]. For inplane modes,

(k2 − χ2
T )2 tan

χT W

2
+ 4k2χT χL tan

χLW

2
= 0, (1.10)

4k2χT χL tan
χT W

2
+ (k2 − χ2

T )2 tan
χLW

2
= 0, (1.11)

and for flexural modes,

[K̄2 + (1 − σ)k2]2χ− tanh(χ−W/2) = [K̄2 − (1 − σ)k2]2χ+ tanh(χ+W/2), (1.12)

[K̄2 + (1 − σ)k2]2χ− coth(χ−W/2) = [K̄2 − (1 − σ)k2]2χ+ coth(χ+W/2), (1.13)
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where

K̄ =
E

3(1 − 2σ)
, µ =

E

2(1 + σ)
, (1.14)

cl =

√

E

ρ(1 − σ2)
, ct =

√

E

2ρ(1 + σ)
, (1.15)

and E Young’s modulus, σ Poisson ratio , ρ the mass density, ω2/c2
t = k2 + χ2

T =

r2(k2+χ2
L), and r = cl/ct, D = Ed3/12(1−σ2),

√

ρd/D ω = K̄2, and χ± =
√

k2 ± K̄2.

The cutoff frequencies can be obtained by solving these transcendental equations.

1.2.2 Bulk mode method

As the wavelength becomes much smaller than the dimensions of the structure, we

should be able to treat the waves in terms of separate longitudinal and transverse

waves in the bulk of the material, without worrying too much about the complicated

standing wave transverse mode structure important for the long wavelength modes.

In this regime, which we refer to as the bulk mode limit, the counting of the modes is

insensitive to the details of the boundary conditions, and bulk mode approximation

becomes valid. This approximation is essentially the discrete case of § 1.1.1.

For the bulk mode calculation, there are three polarizations (one longitudinal and

two transverse) with propagation velocities c
3l

and ct, respectively, with ct as in the

2-D thin plate elasticity theory in § 1.2.1, and c
3l

is according to 3-D elasticity theory

c3l =

√

E (1 − σ)

ρ (1 + σ) (1 − 2σ)
. (1.16)

The precise details of the boundary conditions are unimportant in the mode counting

for large mode numbers. If we assume standing waves in the transverse direction

corresponding to zero normal derivative boundary conditions on the wave functions,

the cutoff frequencies are

ωt,mn = ct

√

(mπ

W

)2

+
(nπ

d

)2

, (twofold degenerate) (1.17)
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for the transverse waves, and

ωl,mn = c3l

√

(mπ

W

)2

+
(nπ

d

)2

, (non degenerate) (1.18)

for the longitudinal waves, with m,n = 0, 1, 2 . . .. As mentioned before, for large m,n

we can use the continuous form for the frequency ωN of the N -th mode.

1.2.3 Comparison of the different methods

Figure 1.1 shows the cutoff frequencies as a function of mode number for the thickness

to width ratio d/W = 0.38, σ = 0.24 (the choice of these parameters has been made

based on the experimental structure of Schwab et al.) The thin plate theory gives a

good approximation to the cutoff frequency determined by the exact xyz algorithm

at lower frequencies. The accuracy of thin plate theory becomes better as d/W gets

smaller. For example, in the case of d/W = 0.1 (not shown), the error in the cutoff

frequencies of the first 13 modes is less than 3%, whilst the error is as large as 5%

for the first 7 modes for the case d/W = 0.38 shown in the figure. In terms of the

ideal (no-scattering) thermal conductance (Eq. (1.1) with the transmission coefficient

set to unity), we find that for d/W = 0.38 the error in the thermal conductance is

less than 4% up to T ∼ 0.4 K. Thus the thin plate limit is adequate to examine

the scattering effects in this temperature range. At large frequencies, ωW/ct > 30,

the cutoff frequencies calculated from discrete bulk mode method (and its continuum

form as well) approach the exact numerical results the continuum. The thin plate

approximation clearly fails in this limit, since it predicts N ∝ ω corresponding to a

2-D structure.
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Figure 1.1: Mode cutoff frequency ωN as a function of mode number N . crosses:
thin plate theory; circles: xyz algorithm; solid line: density of states calculation. A
thickness to width ratio d/W = 0.38 was used. Bulk mode calculation is not shown
here.
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Chapter 2

Surface scattering of phonons - the
scalar model

In this chapter we use a simple scalar model for the elastic waves. The scalar model is

a simple and useful tool to obtain analytical solutions, grasps the scattering behaviour,

and assesses for our reason for the thermal conductance at low temperatures. This

work forms the basis for a published paper [11].

We use a two dimensional approximation for the following reasons: (1) We assume

that the important roughness is on the sides of the beam, rather than the top and

bottom surfaces, since the horizontal surfaces are MBE grown and have roughness

at a scale of a few atomic layers, while the side faces are chemically etched and

anisotropic. Thus the roughness is a function of the longitudinal direction but not

of the transverse (depth) direction. (2) We assume temperatures low enough that

modes with structure across the depth of the beam—the smallest dimension in the

experimental geometry—are not excited. We also consider the case of weak scattering.

We refer the reader to Appendix A.1 for a brief introduction to the scattering

matrix and the Green function method. In the following, the details of the 2-D scalar

model are discussed. Then the calculation of the scattered field using a Green func-

tion approach is presented. In § 2.1.6, the scattering probabilities and transmission

coefficients are calculated and the latter is incorporated into the modified Landauer

formula for thermal conductance. In § 2.2, the thermal conductance is evaluated

numerically and compared to the experiments of Schwab et al.
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y=f-(x)

y=f+(x)+W

x

y

L

x=0 x=L

incident

back scattering

forward scattering

Figure 2.1: 2-D model used for calculation of the scattering of elastic waves by rough
surfaces.

2.1 Scattering formalism

2.1.1 The model

The expression for the thermal conductance K of a suspended mesoscopic beam

connecting two thermal reservoirs is already given in the previous chapter (Eq. (1.1)).

We repeat it here for convenience

K =
~

2

kBT 2

∑

m

1

2π

∫ ∞

ωm

Tm(ω)
ω2eβ~ω

(eβ~ω − 1)2
dω. (2.1)

and refer the reader to the beginning of § 1.1 for an explanation of the notation

used. The change of the thermal conductivity due to the rough surface is obtained

by finding the transmission coefficient.

As discussed in the introduction, we use a scalar model for the elastic waves, and

model a thin geometry at low temperatures so that a two-dimensional calculation

is adequate. Thus we consider a 2-D waveguide-like structure extended in the x-

direction and bounded at y = 0,W in the absence of roughness (see Fig. 2.1). The

waves satisfy the scalar wave equation, and we assume Neumann boundary conditions

at the edges of the wave guide, corresponding to a stress-free boundary condition for

the elastic waves. Note that Dirichlet boundaries do not support modes with zero

cutoff frequency that are a crucial feature of the elastic problem. We calculate the
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scattering process by considering an elastic wave propagating in the waveguide in the

+x direction with wave vector k0 and entering a rough surface region of length L

(0 < x < L), where the rough boundaries are at y = W + f+(x) and y = f−(x) so

that the roughness is characterized by the functions f± (x). We assume that the top

and the bottom roughness functions are uncorrelated, and that f± (x) is small and

is differentiable. The incident wave Ψin interacts with the rough surface, is scattered

into other modes Ψsc, and leaves the rough region. The total field Ψ is the sum of

the incident field and the scattered field

Ψ = Ψin + Ψsc. (2.2)

Our task is to find an expression for Ψsc and hence calculate the transmission coeffi-

cients. As said before, we do this by using Green functions.

2.1.2 Green function method

2.1.2.1 Scattering amplitude and Green function

In terms of fields, the S-matrix formulation S = 1+iT can be written with an incident

field and scattering field. The matrix 1 corresponds to the incident field as explained

previously and T matrix corresponds to a scattered field. The easiest and clearest way

to obtain the scattered field, Ψsc, is to use a Green function. The Green function is a

solution to the Helmholtz equation with a point source. The description of scattering

in terms of scattering amplitudes and that in terms of Green functions are equivalent

in a far-field regime [12].

2.1.2.2 Green function

We start with the Helmholtz equation for a scalar wave at frequency ω

∇2Ψ (x, y) + K2Ψ (x, y) = 0, (2.3)
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where K is ω/c with c the wave speed. Define the Green function as a solution to

the point sources

∇2G (x, y; x′, y′) + K2G (x, y; x′, y′) = −δ (x − x′) δ(y − y′) (2.4)

with (x′, y′) the source coordinates and (x, y) the observation coordinates. It is con-

venient to define G (x, y; x′y′) such that it satisfies Neumann boundary conditions at

the smoothed boundaries, y = 0,W

∂G/∂n|y=0,W = 0, (2.5)

where n̂ is the outward-pointing normal to the surface. We then project the physical

boundary conditions at the rough surfaces onto the smoothed boundaries to calculate

the scattering.

Multiplying Eq. (2.3) by G(x, y; x′, y′) and Eq. (2.4) by Ψ(x, y) then subtracting

one from the other, and integrating over a volume bounded by the position of the

smoothed surfaces yields the result of Green’s theorem

Ψ (x, y) =

∫

smooth

dx′∂Ψ (x′, y′)

∂n′
G (x′, y′; x, y)

±
∫

x→±∞

dy′

[

∂Ψ (x′, y′)

∂x′
G (x′, y′; x, y) − Ψ (x′, y′)

∂G (x′, y′; x, y)

∂x′

]

, (2.6)

where the first integral is the integration along the smoothed edges and the second

over the distant ends taken at x → ±∞, each with its proper sign. We have used the

boundary condition Eq. (2.5) for G to eliminate a second term in the first integral.

We now need to calculate the Green function. The Green function G (x, y; x′, y′)

satisfies Eq. (2.4). Using the completeness relation, the right hand side can be written

− 1

2π

∫ ∞

−∞

eik(x−x′)dk
∑

n

φn(y)φn(y′), (2.7)
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where φn is the normalized transverse eigenfunction for smooth boundaries

φn = Nn cos χny (2.8)

with χn = nπ/W, n = 0, 1, 2, .., and Nn the normalization factor: Nn =
√

2/W for

n 6= 0 and Nn =
√

1/W for n = 0. The Green function is then given by Fourier

transforming

G (x, y; x′, y′) =
1

2π

∫ ∞

−∞

dk
∑

n

eik(x−x′)φn(y)φn(y′)

k2 + (nπ/W )2 − K2
. (2.9)

The k integral in Eq. (2.9) is now evaluated by contour integration. The poles cor-

responding to propagating waves at k =
√

K2 − (nπ/W )2 for K > nπ/W must be

given infinitesimal imaginary parts ±iε to yield outgoing waves. We then have

G (x, y; x′, y′) =
∑

n

ieikn|x−x′|φn(y)φn(y′)

2kn

, (2.10)

where

kn =







√

K2 − n2π2/W 2 nπ/W < K

i
√

n2π2/W 2 − K2 nπ/W > K
. (2.11)

The second term in Eq. (2.6) is just the incoming wave Ψin (x, y) as will be dis-

cussed below, so that

Ψsc (x, y) =

∫

smooth

dx′∂Ψ (x′, y′)

∂n′
G (x′, y′; x, y) . (2.12)

In Appendix A.2, it is shown that evaluating the second term in Eq. (2.6) results

in the incident field.

2.1.3 Boundary perturbation

In the absence of roughness the field Ψ satisfies Neumann boundary conditions at the

smooth boundary, and so the scattered field would be identically zero as expected.

Correspondingly, for a rough surface with small f±(x) we can calculate ∂Ψ/∂n at
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the smoothed surface appearing in the integral by expanding about the stress-free

rough surface [13]. We will present the calculation for the rough lower surface, and

simply double the scattering probabilities assuming uncorrelated roughness on the

two surfaces.

Firstly, we express the unit normal vector as

n̂ = −ŷ + f ′
− (x) x̂. (2.13)

Then we impose the Neumann boundary condition at y = f−(x)

(

−∂Ψ (x, y)

∂y
+ f ′

−(x)
∂Ψ (x, y)

∂x

)∣

∣

∣

∣

y=f−(x)

= 0. (2.14)

Now we expand this equation about y = 0 in terms of f− and retain only terms that

are first order in f and f ′. This gives the normal derivative at the smooth surface up

to first order in f, f ′ as

∂nΨ (x, y)|y=0 =
[

f ′
−∂xΨ (x, y) − f−∂2

yΨ (x, y)
]∣

∣

y=0
. (2.15)

Thus the scattered field to first order in the roughness amplitude is

Ψsc (x, y) '
∫

dx′G (x′, y′; x, y)
[

−f− (x′) ∂2
y′Ψin (x′, y′) + f ′

− (x′) ∂x′Ψin (x′, y′)
]∣

∣

y′=0
,

(2.16)

where we can replace the field appearing in the integral by the incident field Ψin at

this order.

It is now straightforward to insert the explicit expression for the Green function

Eq. (2.10) to calculate the scattering from a normalized incident wave entering in the

m-th mode Ψin (x, y) = Ψm(x, y) = Nm cos (χmy) eikmx:

Ψsc (x, y) '
∫

dx′
∑

n

iN2
nNm

2kn

cos (χny) eikn|x−x′|
[

f− (x′) χ2
m + ikmf ′

− (x′)
]

eikmx′

.

(2.17)
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2.1.4 Scattered field

Outside the scattering region, Eq. (2.17) takes the form for the scattered field

Ψsc (x → +∞, y)

=
∑

n

eiknx cos (χny)

∫ ∞

−∞

dx′ iN
2
nNm

2kn

[

χ2
mf− (x′) + ikmf ′

− (x′)
]

ei(km−kn)x′

, (2.18)

Ψsc (x → −∞, y)

=
∑

n

e−iknx cos (χny)

∫ ∞

−∞

dx′i
iN2

nNm

2kn

[

χ2
mf− (x′) + ikmf ′

− (x′)
]

ei(km+kn)x′

, (2.19)

giving the forward scattered field and back scattered fields respectively. The terms

in f ′
− can be simplified by integration by parts.

∫ ∞

−∞

dx′if ′
− (x′) kmei(km∓kn)x′

= km (km ∓ kn) f̃− (km ∓ kn) , (2.20)

where f̃− is the Fourier transform of f−, i.e. f̃− =
∫ ∞

−∞
dx′f−eikx′

, and we have used

the fact that the roughness is confined to 0 < x < L, so that f−(±∞) = 0.

Now using K =
√

χ2
m + k2

m, we get

Ψsc (x → ±∞, y) =
∑

n

iNnNm

2kn

f̃− (km ∓ kn)
(

K2 ∓ knkm

)

Ψn (x, y) , (2.21)

for the forward and backward scattered waves, expressed as a sum over normalized

waves Ψn.

2.1.5 Roughness characterisation

Previously we have defined two surface profile functions by f± (c.f. Fig. 2.1) Since they

are rough surface functions, we treat them statistically. Then f+ (x) and f− (x) have

the same statistical properties and we can drop the subscript and write as f (x). The

first and second moments of the probability distribution function for the roughness
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correlation function are

〈f (x)〉 = 0, (2.22)

〈f (x) f (x′)〉 = δ2g (|x − x′|) , (2.23)

where δ is the root mean square (rms) roughness and g (|x − x′|) is the roughness

correlation function, which only depends on the distance between x and x′. 〈 〉 denotes

an average over the ensemble of realizations of the function. The correlation for

Fourier transform of this function
〈

f̃ (k) f̃ ∗ (k)
〉

is

〈

f̃ (k) f̃ ∗ (k)
〉

=

〈∫

dxf (x) eikx

∫

dx′f (x′) e−ikx′

〉

=

∫ ∫

dxdx′ 〈f (x) f (x′)〉 eik(x−x′)

=

∫

dx′

∫

d (x − x′) δ2g (|x − x′|) eik(x−x′)

= δ2L

∫

d (x − x′) g (|x − x′|) eik(x−x′)

= g̃ (k) δ2L, (2.24)

where g̃ (k) is the roughness correlation function in Fourier space and L is the length

of the rough surface is the flat surface. Thus the roughness fluctuation is characterised

by

〈

∣

∣

∣
f̃−(k)

∣

∣

∣

2
〉

= δ2g̃(k)L, (2.25)

where δ2g̃(k) is the Fourier transform of the surface roughness correlation function

with δ the roughness amplitude. As we mentioned before, we have assumed that the

roughness function, f̃−, is stochastic (spatial not temporal) and treat it statistically.

We also assume that the correlation function of the roughness function is Gaussian

g(x) = e−x2/a2
with the correlation length a. Since the Fourier transform of a Gaussian

is a Gaussian, we obtain

g̃(k) =
√

πa exp

[

−a2k2

4

]

. (2.26)
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Now we apply this correlation function to calculate the scattering probability using

the result from Eq. (2.21). Let t±n,m be the scattering amplitude from mode m to ±n,

where the plus sign is for forward scattering and the minus sign is for back scattering.

Then from Eq. (2.21) we have the scattering amplitude

t±n,m =
iNnNm

2kn

(

K2 ∓ knkm

)

f̃− (km ∓ kn) . (2.27)

To calculate the transmission coefficient appearing in the expression for the thermal

conductance we need the energy flux scattering probabilities σ±n,m, given by multi-

plying |tn,m|2 by the ratio of the group velocities

σ±n,m =
kn

km

〈

|t±n,m|2
〉

. (2.28)

The angular brackets denote the average of the rough surface. This finally gives

σ±nm =
N2

nN2
m

4knkm

[

K2 ∓ knkm

]2
δ2g̃(km ∓ kn)L , (2.29)

where g̃ is the correlation function in Fourier space g̃(km ∓ kn) =

〈

∣

∣

∣
f̃− (km ∓ kn)

∣

∣

∣

2
〉

.

2.1.6 Thermal conductance

To calculate the thermal conductance we must recognize that not all scattering pro-

cesses decrease the heat transport. A wave entering in mode m has four possible

outcomes: after the scattering events it may stay in mode m propagating forward; it

may be converted to mode n also propagating forward; it may stay in mode m but

propagating backward (call this mode −m); and finally it may be converted to mode

n and propagating backward (call this −n). The former two cases do not change the

heat transport, since each mode at frequency ω contributes the same amount to the

conductance. The two back-scattering events do reduce the heat transport, however.

Thus the backward scattering rate σ−n,m contributes to the reduction of the thermal

conductance, while σ+n,m, the rate for forward scattering, leaves the conductance un-
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Figure 2.2: Scaled attenuation coefficients (W 4/δ2aL) |σ−n,m|2 as a function of re-
duced frequency, ω/∆ where ∆ = πc/W with c the velocity of the waves: solid—from
mode m = 0 to mode −n, n = 0 . . . 3 and dashed—mode m to mode −m, m = 1 . . . 3.
A value of the roughness correlation length a = 0.75W was used.

changed. We therefore define the conductance attenuation coefficient per unit length

of the rough surface waveguide as γm ≡ (2/L)
∑

n σ−n,m. The factor of two accounts

for scattering off the top surface. We have

γm =
∑

n

(K2 + knkm)2

knkm

√
πN2

nN2
mδ2a

2
e−a2(kn+km)2/4. (2.30)

The conductance attenuation coefficient γm gives the exponential decay rate of

the wave in mode m, so that over a length L the transmission is

Tm = e−γmL. (2.31)

To calculate the thermal conductance at a given temperature, we insert Eqs. (2.30,
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2.31) into Eq. (2.1):

K =
~

2

kBT 2

∑

m

1

2π

×
∫ ∞

ωm

dω
ω2eβ~ω

(eβ~ω − 1)2
exp[−

∑

n

(K2 + knkm)2

knkm

N2
nN2

m

√
πδ2aL

2
e−a2(kn+km)2/4].

(2.32)

The contributions to the conductance attenuation coefficients per unit length γm

for the first few modes are shown as a function of the mode frequency in Fig. 2.2. A

scattering correlation length of a/W = 0.75 was used in the figure. The backscattering

amplitude from the lowest mode (mode 0) to its reverse is

γ00 (ω, a, δ) = 2π
1
2
aδ2

W 2

ω2

c2
e−a2ω2/c2 . (2.33)

This expression is finite for all frequencies. It has a maximum at a frequency ω = c/a

depending on the roughness correlation length, with a peak value of order (δ2/aW 2).

The higher modes have a divergent back-scattering proportional to (ω−ωm)−1 at the

cutoff frequencies ωm. In addition each γm has a contribution diverging as (ω−ωn)−1/2

at the onset of the n-th mode. These divergences are due to the flat spectrum at the

mode cutoff frequencies, and will also be found in the full elastic wave calculation.

At low enough temperatures only the lowest mode with k0 = ω/c contributes

to the thermal conductance, and only the backscattering of this mode given by Eq.

(2.33) reduces the conductance below the universal value. This reduction is plotted

as a function of the temperature scaled by kBT/~∆ in Fig. 2.3. The temperature of

maximum reduction depends on the roughness correlation length a, whereas both the

roughness amplitude and correlation length change the magnitude of the reduction.

For small roughness, we can expand the exponential term in Eq. (2.32). At low

temperatures only small ω contributes to the integral so that the Gaussian factor
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Figure 2.3: Reduction in the thermal conductance divided by temperature due to back
scattering of the lowest mode, expressed as the ratio to the universal conductance
divided by temperature and then scaled by aW 2/δ2L, as a function of temperature
scaled by kBT/~∆.

may be replaced by unity, exp[ − a2ω2/c2] ' 1. This leads to

K

T
' π2k2

B

3h

[

1 − 8π9/2

5

δ2aL

W 4

(

kBT

~∆

)2
]

, (2.34)

where ∆ = πc/W is the spacing between the mode cutoff frequencies. Thus at

low temperatures, the conductance divided by temperature should show a quadratic

temperature decrease with an amplitude depending on the combination of roughness

parameters aδ2/W 3.

2.2 Comparison with the experiment of Schwab et

al.

To compare with the experiments of Schwab et al. [8], we use the following geometry

and material parameters. We take a waveguide structure of rectangular cross section
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with width W = 160 nm and length L = 1 µm. In the experimental geometry the

width varied along the length to provide smooth junctions with the reservoirs. This

was done to eliminate scattering off abrupt changes in the geometry. We use the

width at the narrowest point as our estimate of the size of the structure. For the

length we use the length of the central portion over which the width is constant.

Since the length only occurs in the combination δ2L, changing the value of L used

will only change the fitted value of δ. We use a wave propagation speed c = 8250 m/s

which is the reciprocal average of the velocity of longitudinal and transverse elastic

waves in silicon nitride.

The roughness parameters are not known a priori. As a first attempt, we might

try to estimate the combination aδ2L/W 4 from a quadratic fit to the decrease in

the thermal conductance data at low temperatures, Eq. (2.34). This would give

the value aδ2L/W 4 ∼ 0.05. However, from Fig. 2.3 we see that the quadratic low

temperature fit is only good up to about a quarter of the temperature of the maximum

backscattering of the first mode. If we estimate this temperature from the minimum

in the measured conductance, we find that the data does not extend to low enough

temperatures to provide a reliable fit, and so this value can only be used as an order of

magnitude. In fact our “best fit” (see below) over temperatures up to 1 K corresponds

to a value aδ2L/W 4 about a factor of 4 larger.

It is interesting to use this value of the roughness parameters to estimate the

strength of the scattering of the higher modes. For example, for the first mode, with

cutoff frequency ∆, and at a wave vector π/W corresponding to a frequency
√

2∆,

we find for the backscattering into the same mode

γ1(k1 = π/W )L ∼ 16 exp
(

−π2a2/W 2
)

. (2.35)

The scattering increases for smaller wave vectors, diverging at onset as shown in Fig.

2.2. Remember that the transmission amplitude is e−γ1L. This means that the scat-

tering of the higher modes is strong over the 1 µm length, unless sufficiently reduced

by the exponential factor arising from the reduced roughness at short length scales.
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To fit the higher temperature data using Eq. (2.32) we will find that we need a value

of a comparable to W . Although this strongly reduces the value of γ1(k1 = π/W ),

there remain frequency ranges where the scattering of this mode and other modes

is strong. An interesting consequence is that a significant fraction of the thermally

excited phonons at temperatures of order 1 K are predicted to be localized in the

experiments of Schwab et al., with a localization length less than the length of the

bridge. Unfortunately, in this regime the estimate of the contribution to the conduc-

tance from these modes predicted by our lowest order scattering calculation, will not

be accurate. Kambili et al. [14] have used a similar model in a numerical investiga-

tion of the effect of surface roughness on the mode propagation. The scattering of

scalar waves in waveguides with rough surfaces has been also investigated numerically

by other workers [15, 16] in a diffusive region - a transition regime between ballistic

regime and localised regime.

From Fig. 2.3 we can suggest two mechanisms that might account for the observed

minimum in the dependence of K/T on temperature. The first mechanism ascribes

the minimum in K/T to the behaviour of the first mode alone, as plotted in Fig.

2.3. The upturn in K/T arises from the reduced scattering of the lowest mode as

the wave vectors of the important modes increase with temperature. The second

mechanism supposes that the scattering of the lowest mode is responsible for the

decreasing K/T at low temperatures, but that the subsequent increase is from the

thermal excitation of the higher modes. For our “best fit” values of a, δ (see below)

the results are summarized in Fig. 2.4. The picture is quite complicated, with both

the reduced scattering of the lowest mode and the thermal excitation of the higher

modes contributing to the rise in K/T with increasing temperature. Furthermore,

due to the strong scattering of the higher modes near their cutoff frequencies, these

modes become important in the transport at a higher temperature than would be

estimated simply from their cutoff frequencies.

In Fig. 2.5 the thermal conductance calculated using Eq. (2.32) is plotted together

with the ideal (no-scattering) conductance and the measurements of Schwab et al.

The conductance is scaled such that the universal conductance appears as unity.
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Figure 2.4: Contribution to the thermal conductance K divided by the universal value
Ku from the first few modes for the ideal no scattering case, and for the rough case
with scattering, as a function of the scaled temperature kBT/~∆: solid line—total
thermal conductance for the rough surface case; dotted line and short-dotted line—
conductance of mode 0 (ideal and rough); dashed line and short-dash-dotted line—
conductance of mode 1 (ideal and rough); dashed-dotted line and short-dash-dotted
line—conductance of mode 2 (ideal and rough). Values of the roughness parameters
were a/W = 0.75 and δ/W = 0.22.

The roughness parameters a/W = 0.75 and δ/W = 0.22 (so that aδ2L/W 4 = 0.23)

were used, and yield a reasonable fit to the data. Our 2-D model shows the same

trend as the experimental data: a decrease in the thermal conductance below the

universal value at low temperatures where only the lowest modes are excited, then a

gradually increasing conductance as other modes are excited and the scattering of the

lowest mode is reduced. Comparison to the ideal (non-scattering) curve shows that

the scattering is important over the whole temperature range examined (T < 1 K).

The values of δ = 35 nm and a = 120 nm appear reasonable when one considers

the physical process of constructing the mesoscopic bridge structure. For example, a

typical chemical etch of silicon nitride can easily produce a few tens of nm in roughness

amplitude. Electron micrographs of the actual structure used in the experiment show

roughness on scales comparable to the ones we estimate [17].
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Figure 2.5: Thermal conductance relative to the universal value Ku as a function of
temperature for the ideal case (dashed line), the rough surface case (solid line), and
the data of Schwab et al. (circles). The roughness parameters used were a/W = 0.75,
δ/W = 0.22.

There are small but systematic differences at very low temperatures, where the

conductance is dominated by the lowest modes, and the theory should be most ac-

curate. The discrepancy suggests that we are overestimating the scattering at long

wavelengths. A roughness spectrum g̃(k) ∼ k2e−a2k2/4 with a reduced amplitude at

small wave numbers gives a better fit to the data. Such a form might be physically

reasonable, since we might expect the roughness to be largest at a scale of order the

minimum dimension of the structure, and reduced at larger scales than this. However,

since the scalar model does not account for the mode structure of the elastic beam

accurately, it is probably unwise to use the discrepancies in Fig. 2.5 to make any firm

deductions. Such conclusions require more accurate treatment of the modes within

the elasticity theory, which will be the focus in the next chapter.
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Chapter 3

Detailed analysis of surface
scattering effects - the elastic
model

3.1 From a scalar model to an elastic model

In this chapter we again calculate the effect on the low temperature thermal conduc-

tance of the scattering of the thermal phonons by surface roughness, but this time,

using elastic waves. In the last chapter, we described the scattering in waveguides

with rough surfaces via a scalar wave equation. However, this does not accurately cap-

ture the low frequency modes of interest at low temperature. For example, the scalar

model predicts a linear dispersion at small wave vectors. In fact the dispersion rela-

tions of the modes are different, with two of the four modes with zero long-wavelength

frequency having a quadratic dispersion at small wave vectors, rather than the linear

one given by the simple scalar theory.

To understand the experimental results quantitatively, a more accurate treatment

of the vibrational waves is needed. At low temperatures, the wavelengths of the ther-

mally excited modes are large compared with the atomic spacing, and so a treatment

based on the equations of macroscopic elasticity theory is appropriate. Blencowe

[4, 18] has considered the scattering of elastic waves in a thin plate waveguide with

rough surfaces1, but prior to our work, the scattering of elastic waves confined in a

1Blencowe has considered a semi-infinite thin plate. In his case, the out-of-plane mode is a
shear-horizontal mode, i.e., the same mode as a bulk mode resulting in no mode coupling for the
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beam-like wave guide with rough surfaces has not been considered.

At the end of the last chapter, we noted the apparent discrepancy between the

results of the scalar model with a simple assumption for the nature of the surface

roughness and the data by Schwab et al. [8] below a temperature of 0.1 K: the

data seemed to show a delay of the onset of scattering as the temperature increased

that was not predicted by the model. However, since the scalar model does not

properly account for the properties of the elastic waves, it was not clear whether

this discrepancy is due to inadequate modelling of the surface roughness or a flaw

in the description of the waves themselves. To resolve this matter, and to obtain a

more accurate account of the scattering of the waves by rough surfaces, we develop

a theory based on the full elasticity equations, and use this to calculate the thermal

conductance at low temperatures. This work forms the basis for three published

papers [19, 20, 21].

In § 3.2, the scattering of elastic waves confined to a beam of rectangular cross

section with rough surfaces is calculated using the full three dimensional elasticity

theory. We use a Green theorem approach, and calculate the scattering coefficient

to quadratic order in the amplitude of the surface roughness. These results are quite

general, but are rather intractable for further progress, since the structure of the

modes in an elastic beam cannot be determined in closed form. Thus in § 3.3 we reduce

the expressions to a thin plate limit to provide a closed form for the displacement

fields, and to obtain analytical expressions for the scattering behaviour. In § 3.4

the general behaviour of the scattering and the effect on the thermal conductance is

analysed in detail, using a simple description of the surface roughness, to investigate

the physical consequences of the novel features of the elastic waves. In § 3.5 we

use our theory to attempt to fit the data of Schwab et al. [8] using more realistic

descriptions of the surface roughness. A number of the more difficult issues that arise

in the elasticity theory are described in appendices.

Although our main interest is the scattering of thermally excited vibrational waves

in mesoscopic systems at low temperatures, the formulation of the surface scattering

out-of-plane mode.
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is quite general, and can be applied to other situations, such as the scattering of

mechanically excited modes in macroscopic samples, for example.

3.2 General formalism

3.2.1 The model

The geometry we consider in this chapter is a 3-D freely suspended elastic beam,

which we call the bridge, connecting two thermal reservoirs. We will consider a beam

of rectangular cross section of dimensions width W (in the y direction) and depth d

(in the z direction). Mesoscopic structures are often produced lithographically from

epitaxially grown material. We choose a convention that the depth is the dimension

in the growth direction, and the width in the lithographically defined transverse

direction. We define the length of the rectangular beam of nominally uniform cross

section as L. In practice the bridge may be joined to the reservoirs smoothly, by

a portion of continuously growing width, to eliminate or reduce the scattering of

the vibration modes off a sharp junction. We will suppose that the scattering by

roughness is important only in some narrower portion of length L.

To actually perform the scattering calculation we imbed the rough beam of length

L in an infinite beam of the same cross section but with smooth surfaces outside of

the region of length L, Fig. 3.1. In the previous chapter, we have defined the rough

surface boundaries in y-direction to be y = f− (x, z) and y = W + f+ (x, z). In

this chapter, we shift the coordinate such that the boundaries in y-direction will be

symmetrical about the origin. Thus the mathematical calculation is the scattering

of a wave incident from x = −∞ on a rough portion of the beam with surfaces at

y = ±W/2 ± f1 (x, z) and at z = ±d/2 ± f2 (x, y), with the height functions f1,2,

defining the roughness, nonzero only in a finite region 0 < x < L. Forward scattering

is evaluated from the intensity of waves as x → +∞, and backward scattering from

the intensity of waves as x → −∞.

To calculate the scattering amplitude, we take a Green function approach similar
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Figure 3.1: Top: Three-dimensional elastic beam with rectangular cross section. The
rough surfaces are on the top, bottom, and sides. Bottom: Top view of the mathe-
matical model of the structure actually used for the scattering calculation.

to the one used for the scalar model in the previous chapter.

The displacement field u away from any sources satisfies the wave equation:

ρ∂2
t ui = ∂jTij, (3.1)

where ρ is the mass density, and

Tij = Cijkl∂kul (3.2)

is the stress tensor field with Cijkl the elastic modulus tensor. The subscript i runs

over the three Cartesian coordinates, we use the symbol ∂x to denote the derivative

∂/∂x etc., and repeated indices are to be summed over. The displacement field

satisfies stress-free boundary conditions at the surfaces

Tijnj|S = 0, (3.3)

where S denotes the surface boundaries and nj is normal to the surface. Assuming
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harmonic time dependence at frequency ω, Eq. (3.1) becomes

ρω2ui + Cijkl∂j∂kul = 0. (3.4)

We approximate the material of the system as an isotropic solid. Then the elastic

modulus tensor is

Cijkl = λδijδkl + µ (δikδjl + δilδkj) , (3.5)

where λ and µ are Lamé constants (µ is also the shear modulus)

λ = Eσ/(1 + σ)(1 − 2σ), µ = E/2 (1 + σ) (3.6)

with E Young’s modulus and σ the Poisson ratio.

Even in a rectangular beam geometry the displacement fields in the propagating

modes yielded by these equations are complicated, and cannot be found analytically.

The modes can be grouped into four classes according to their signature under the

parity operations y → −y and z → −z. Some modes show regions of anomalous

dispersion where the group velocity dω/dk is negative: these regions require a careful

examination of the notions of “forward” and “backward” scattering for the waves.

The lowest frequency mode of each class has a frequency that tends to zero at small

wave number. These four modes are the only ones excited at low enough temperature,

and are the ones contributing to the universal thermal conductance. The structure

of these modes at small wave numbers is simple and can be calculated using familiar

macroscopic arguments of elasticity theory: they are the compression, torsion, and

two orthogonal bending modes.

We define a Green function Giq(x,x′; t, t′) to satisfy the wave equation with a

source term −δiqδ(x − x′)δ(t − t′), and Γijq to be the corresponding stress

Γijq ≡ Cijkl∂kGlq. (3.7)
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It is convenient to introduce the frequency space version of the Green function

Giq(x;x′; t, t′) =

∫

dω

2π
Giq(x;x′; ω)e−iω(t−t′), (3.8)

with a similar expression defining Γijq(x,x′; ω). Inserting G, Γ, and the source term

into Eq. (3.4) gives

ρω2Giq(x,x′; ω) + ∂jΓijq(x,x′; ω) = −δiqδ (x − x′) , (3.9)

where x is the observation coordinate and x′ is the source coordinate.

Equations (3.4) and (3.9) lead to Green’s theorem expressing the displacement

field at frequency ω in terms of a surface integral

uq(x) =

∫

S′

[

n′
jTij (x′) Giq (x′,x; ω) − n′

jui (x
′) Γijq (x′,x; ω)

]

dS ′. (3.10)

We are free to choose any closed integration surface S ′. One choice is to use the

physical rough surface thereby eliminating the first term in Eq. (3.10) due to the

boundary condition Eq. (3.3). However, the resulting integration over the rough

surface is not easy. Instead, we integrate over the smoothed surfaces at y = ±W/2

and z = ±d/2 and impose the boundary conditions on the Green function to be

stress-free on these smoothed surfaces

Γijqnj|S = 0, (3.11)

together with cross sections at x′ → ±∞ to close the surface.

The total field u can be written as the sum of incident and scattered waves

u = uin + usc. (3.12)
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3.2.2 Incident and scattered fields

Using Green’s theorem we have expressed the displacement field at frequency ω in

terms of the surface integral

uq(x) =

∫

S′

[

n′
jTij (x′) Giq (x′,x) − n′

jui (x
′) Γijq (x′,x)

]

dS ′. (3.13)

Eq. (3.13) involves the integration over a closed surface S ′, which we have chosen to

be the smooth boundaries together with the cross sections at x′ → ±∞. We show

that the integration over the sections at ±∞ simply yields the incident field uin
q , and

this allows us to deduce the expression for the scattered field as an integration over

the side surfaces. To deduce this result, we first need to derive what are known as

reciprocity relations for the elastic modes. We follow Auld’s approach [22] to derive

reciprocity relation. Remember that for x → ±∞ the surfaces are smooth, so we are

interested in the modes of the ideal beam here.

Let u(r) and u(s) be the displacement fields for modes r and s in the ideal beam,

and T(r), T(s) the corresponding stress tensor fields. The modes satisfy the wave

equation at frequency ω, so that

ρω2u
(r)
i + ∂jT

(r)
ij = 0. (3.14)

Multiply the first equation by u
(s)∗
i and the complex conjugate of the second by u

(r)
i ,

subtract the two equations, integrate over a volume of the beam between x = x1 and

x = x2, and finally use the divergence theorem to find

∫

S

[

u
(s)∗
i T

(r)
ij − u

(r)
i T

(s)∗
ij

]

n̂jdS = 0, (3.15)

where the integral is over the surface bounding the volume, consisting of the sides

of the beam between x1 and x2, and the sections at x1 and x2. The integrations

over the sides of the beam are zero by the stress-free boundary conditions. For the

integration over the sections, introduce the explicit x-dependence u(r) = φ(y, z)eikrx



34

and T(r) = T̄(r)(y, z)eikrx, with kr the wave number of mode r at frequency ω, etc.

Then Eq. (3.15) reduces to

(

1 − ei(kr−ks)(x1−x2)
)

∫ ∫

[

φ
(s)∗
i T̄

(r)
ix − φ

(r)
i T̄

(s)∗
ix

]

dydz = 0, (3.16)

and the integral is independent of x. Unless the prefactor is zero, this shows us that

the integral over the section must be zero, and so

∫ ∫

[

u
(s)∗
i T

(r)
ix − u

(r)
i T

(s)∗
ix

]

dydz = 0, kr 6= ks. (3.17)

This is one version of the reciprocity relations.

For our purposes it is more convenient to express the condition for the reciprocity

integral to be zero in terms of the group velocity rather than the wave number. To

do so, we need to consider the dispersion curves. The condition for the reciprocity

integral to be nonzero, kr = ks for modes r, s at the same frequency ω, actually

implies r and s are the same mode, so that in fact v
(r)
g = v

(s)
g . The only other

possibility is that r and s are modes with dispersion curves that cross at frequency

ω, k = kr = ks. However only modes of different y, z parity signatures can cross, and

then the integration over the section for these different modes in Eq. (3.17) is again

zero. Thus we can rewrite the reciprocity relation as

∫ ∫

[

u
(s)∗
i T

(r)
ix − u

(r)
i T

(s)∗
ix

]

dydz = 0, v(r)
g 6= v(s)

g . (3.18)

If r and s are the same mode, the integral is related to the energy flux and hence to

the group velocity (see Eq. (3.25))

∫ ∫

dydz
(

u
(r)∗
i T

(r)
ij − u

(r)
i T

(r)∗
ij

)

= 2iρωv(r)
g . (3.19)

We now use Eqs. (3.18, 3.19) to evaluate the contributions to Eq. (3.13) from the

integrations over the sections at x′ → ±∞.

Let us first consider x′ → ∞. According to Eq. (3.24) the x′ dependence of the
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Green’s function pair G,Γ consist of modes us(x
′)∗ with v

(s)
g < 0 since here x′ > x for

any finite x. On the other hand the field pair u,T are made up of the incident wave,

and waves scattered from the roughness at finite x, and so consist of modes ur(x
′)

with v
(r)
g > 0. The integral in Eq. (3.13) over the section at x′ → ∞ is therefore the

sum of terms involving
∫ ∫

[

u
(s)∗
i T

(r)
ix − u

(r)
r T

(s)∗
ix

]

dydz with v
(r)
g and v

(s)
g of opposite

sign. All these terms are zero by Eq. (3.18), and so there is no contribution from the

section at x′ → ∞.

Similar arguments apply to the section at x′ → −∞. The Green function is made

up of modes with vg > 0. The scattered component of the field u consists of modes

with vg < 0, and there is no contribution to the integral over the section from these

modes. On the other hand the incident wave uin is mode um with v
(m)
g > 0, and there

is the single term with v
(n)
g = v

(m)
g surviving in the sum over modes in the Green

function. Using Eq. (3.19) the integral just gives u
(m)
q (x). So the integration over the

sections at x′ → ±∞ on the right-hand side of Eq. (3.10) just gives uin
q . On the other

hand, in the integration over the smoothed surfaces at y = ±W/2 and z = ±d/2 the

second term in the integrand vanishes due to Eq. (3.11). Thus we find the expression

for the scattered field

usc
q (x) =

∫

dS

[

n′
jTij (x′) Giq (x′,x; ω)

]

dS ′, (3.20)

with the surface S the smoothed surfaces y = ±W/2 and z = ±d/2. The stress field

Tij on the smoothed surface is evaluated by expanding about its value on the rough

surfaces, where Eq. (3.3) applies. Writing u = uin + usc then leads to Eq. (3.20).

The remainder of this section proceeds to evaluate Eq. (3.20). Firstly, we find

an explicit expression for the Green function with stress-free boundary conditions;

then we apply the boundary perturbation method to project the stress at the rough

surfaces onto the smooth surfaces by expanding the stress-free boundary terms around

the smooth surfaces using the small roughness as the expansion parameter; and finally

we evaluate the strength of the scattered waves to give the scattering coefficient.
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3.2.3 Green function

We evaluate Giq(x,x′; ω) as an expansion in the complete orthonormal set of normal

modes u(k,m) (x) in the ideal geometry, which satisfy Eq. (3.4) and stress-free bound-

aries at the smooth surfaces. Here k is the wave number in the x direction, and m

labels the branch of the dispersion curve. We define ωm(k) as the frequency of the

mode m at wave number k in the ideal geometry. The modes satisfy the completeness

relation
∑

m

∫

dk

2π
u

(k,m)
i (x′)∗u

(k,m)
j (x) = δijδ(x − x′). (3.21)

Substituting this expression on the right hand side of Eq. (3.9) leads to the expression

for the Green function

Giq(x
′,x; ω) = −

∑

m

1

2π

∫ ∞

−∞

dk
φ

(k,m)
i (y′, z′)∗φ

(k,m)
q (y, z)

ρ
[

(ω + iε)2 − ω2
m(k)

] eik(x−x′), (3.22)

where we write

u
(k,m)
i (x) = φ

(k,m)
i (y, z)eikx (3.23)

with φ
(k,m)
i giving the transverse dependence of the displacement field. In Eq. (3.22)

ε is a positive infinitesimal number to incorporate causality, Giq(x,x′; t, t′) = 0 for

t < t′.

Equation (3.22) can now be evaluated by contour integration. The integrand has

poles labelled by an index n near values k = kn on the real axis which are given

by solutions to the dispersion relation ωm(kn) = ω for all branches m. (We take

an incident wave with ω > 0.) Note that for branches with regions of anomalous

dispersion there may be more than one solution to this equation for some ω, so that

the index n is not identical to the branch index m. The poles are shifted slightly off

the real axis by the infinitesimal ε in Eq. (3.22), and are given by expanding about

kn

k = kn +
iε

v
(n)
g

,

with v
(n)
g the group velocity at the n th pole dωm/dk|k=kn

. Notice the poles are in
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the upper half plane for v
(n)
g > 0, and in the lower half plane for v

(n)
g < 0.

Now we can perform the k integration by complex integration. Consider first

the case, x > x′. The contour must be closed in the upper half plane so that the

contribution from the semicircle at large |k| vanishes. The contour integration then

picks up contributions from the poles in the upper half plane, i.e. wave numbers with

v
(n)
g > 0. On the other hand, for x < x′ the contour must be closed in the lower

half plane and it is poles at wave numbers with v
(n)
g < 0 that give nonzero residue.

Forward scattering or backscattering is thus seen to be determined by the sign of

the group velocity v
(n)
g rather than by the sign of kn, as indeed would be expected

physically.

Evaluating the residues gives the expression for the Green function:

Giq(x
′,x; ω) = i

∑

n

′ u
(n)
i (x′)∗u

(n)
q (x)

2ρωn v
(n)
g

, (3.24)

where u
(n)
i (x) is written for u

(k,m)
i (x) at the value of the wave number k = kn satisfying

ωm(kn) = ω. The prime on the sum is used to denote the fact that the sum runs over

n with v
(n)
g > 0 for x > x′, and over n with v

(n)
g < 0 for x < x′.

The group velocity v
(n)
g does not have an analytical expression for a rectangular

beam, and is obtained by differentiating the dispersion curve which must be found

numerically. Alternatively, to avoid numerical differentiation, we can rewrite v
(n)
g in

terms of the average power flow in mode n. Since u
(n)
i is normalized, the power Pn in

mode n can be written as

Pn =
1

2
Re

∫ ∫

(

−iωT
(n)
ix u

(n)∗
i

)

dydz =
1

2
ρω2v(n)

g , (3.25)

the first expression of the equality expressing the energy flux in terms of the rate of

work done across a section, and the second in terms of the group velocity and the

average energy density evaluated as twice the average kinetic energy. Then v
(n)
g can
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be evaluated in terms of Pn as

v(n)
g = 2Pn/ρω2, (3.26)

and Pn has an expression directly in terms of displacement field given by the first

equality in Eq. (3.25)

Pn =
1

2
Re

∫ ∫

(

−iωT
(n)
ix u

(n)∗
i

)

dydz. (3.27)

This expression for v
(n)
g can also be derived directly from the equations of motion.

The details of the derivation is in Appendix A.3.

3.2.4 Boundary perturbation

In this section we show the boundary perturbation technique for the rough surfaces

on the sides (i.e., the xz boundary planes). We work out the scattering coefficient

explicitly for the surface near y = W/2. The surface near y = −W/2 will give a similar

contribution and, assuming uncorrelated roughness on the two surfaces, is accounted

for by multiplying the single-surface scattering rate by 2 at the end of the calculation.

The results for the top and bottom surfaces can be obtained by interchanging y and

z whenever they occur in the indices in the displacement fields and stress tensors in

the calculation below.

In order to calculate the stress on the smooth surface appearing in Eq. (3.20), we

expand the stress Tij in a Taylor series about the flat surface, and impose stress-free

boundary conditions at the rough surface which is the small distance f1 away. We

also assume f1 is differentiable.

The unit vector n̂ normal to the rough boundaries to first order in f1 is

n̂ ' ŷ − ∂xf1 (x, z) x̂ − ∂zf1 (x, z) ẑ. (3.28)
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Then the stress-free surface boundary conditions Eq. (3.3) can be written

[Tiy − ∂xf1 (x, z) Tix − ∂zf1 (x, z) Tiz]y=W
2

+f = 0. (3.29)

Now expanding Eq. (3.29) in the neighbourhood of y = W/2 and taking only the

lowest order in f1 and f ′
1, we obtain

Txy|y=W
2
' (∂xf1 (x, z) Txx + ∂zf1 (x, z) Txz − f1 (x, z) ∂yTxy)|y=W

2
, (3.30)

Tzy|y=W
2
' (∂xf1 (x, z) Tzx + ∂zf1 (x, z) Tzz − f1 (x, z) ∂yTzy)|y=W

2
, (3.31)

Tyy|y=W
2
' −f1 (x, z) ∂yTyy|y=W

2
, (3.32)

where the first two expressions for Txy and Tzy have been used to simplify Tyy. Since

the terms on the right hand side of Eqs. (3.30-3.32) are explicitly first order in the

small parameter f1, the stress field Tij on the right hand side can be evaluated at

zeroth order, i.e. for ideal smooth surfaces. These results are now used in Eq. (3.20).

3.2.5 Scattering coefficient

We now evaluate the expression for the scattered field given by an integration over

the beam surfaces Eq. (3.20). To calculate the scattering coefficient, we consider an

incident wave of unit amplitude in a single mode m. Again in this section we will

outline the calculation for the scattering by the single surface at y = W/2, and will

include the effects of the other surfaces at the end. We therefore have

usc
q (x) =

∫ ∫

[Tiy (x′) Giq (x′,x; ω)]y′=W
2

dx′dz′. (3.33)

We can now evaluate the forward- and backscattering amplitudes by using Eq.

(3.24) for the Green function in Eq. (3.33), and evaluating the scattered wave at
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large positive and negative x

usc
q (x → ∞, y, z) '

∫ x

−∞

dx′

∫ d
2

− d
2

dz′
∑

n,v
(n)
g >0

i

2ρω v
(n)
g

[

Tiy (x′) u
(n)
i (x′)

∗
]

y′=W
2

u(n)
q (x) ,

(3.34)

usc
q (x → −∞, y, z) '

∫ ∞

x

dx′

∫ d
2

− d
2

dz′
∑

n,v
(n)
g <0

i

2ρω v
(n)
g

[

Tiy (x′) u
(n)
i (x′)

∗
]

y′=W
2

u(n)
q (x) .

(3.35)

The stress tensor Tij corresponding to the full displacement field of the wave is eval-

uated from Eqs. (3.30-3.32). Since these expressions explicitly include the small

roughness amplitude f1 on the right hand side, to calculate the scattering at lowest

order in the roughness amplitude it is sufficient to replace all Tij on the right hand

side by the value T
(m)
ij in the incident mode m. From Eqs. (3.34, 3.35) we see that

usc(x) is expressed as a sum over modes u(n)(x), and the coefficient of each mode is

then the scattering amplitude tn,m from incident mode m into mode n, so that

tn,m =

∫ ∞

−∞

dx

∫ d
2

− d
2

dz
i

2ρω v
(n)
g

[

T
(m)
iy (x) u

(n)
i (x)∗

]

y=W/2
, (3.36)

where we can now extend the integration limit to ±∞ since f1, and so the integrand,

is zero outside the domain of roughness 0 < x < L. Again mode indices n for

which v
(n)
g > 0 represent the forward-scattered waves and those with v

(n)
g < 0 the

backward-scattered waves.

Now use the expression for the stress tensor on the smooth surfaces obtained in

the previous section Eqs. (3.30-3.32) and integrate the resulting expressions by parts

with respect to x or z to rewrite the terms in ∂xf1 and ∂zf1 as integrations over f1.

After these manipulations we find tn,m can be written

tn,m = − i

2ρωv
(n)
g

∫ ∞

−∞

dx

∫ d
2

− d
2

dz f1 (x, z) Γ(m,n) (x, z) , (3.37)
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where

Γ(m,n)(x, z) =
[(

∂xT
(m)
xx + ∂yT

(m)
xy + ∂zT

(m)
xz

)

u(n)∗
x

+
(

∂xT
(m)
zx + ∂yT

(m)
zy + ∂zT

(m)
zz

)

u(n)∗
z

+ ∂yT
(m)
yy u(n)∗

y + T (m)
xx ∂xu

(n)∗
x + T (m)

zz ∂zu
(n)∗
z

+T (m)
zx

(

∂xu
(n)∗
z + ∂zu

(n)∗
x

)]

y=W/2
. (3.38)

Applying the equations of motion Eq. (3.4) and rememberingT
(m)
iy

∣

∣

∣

y=W/2
= 0 for all i

and for all x, z leads to the somewhat simpler expression

Γ(m,n)(x, z) =
[

−ρω2
(

u(m)
x u(n)∗

x + u(m)
y u(n)∗

y + u(m)
z u(n)∗

z

)

+T (m)
xx ∂xu

(n)∗
x + T (m)

zz ∂zu
(n)∗
z + T (m)

xz

(

∂zu
(n)∗
x + ∂xu

(n)∗
z

)]

y=W/2
. (3.39)

Notice that the scattering separates into a kinetic term (the first line) and a stress

term (the second line).

The above form for Γ(m,n) is still neither instructive nor practical for numerical

evaluation. It can be further simplified using the expressions Eqs. (3.2, 3.6) for the

stress tensor in terms of the displacements. First we use the boundary condition

T
(m)
yy = 0 for the y-stress to give at y = W/2

∂yu
(m)
y = − σ

(1 − σ)
(∂xu

(m)
x + ∂zu

(m)
z ). (3.40)

This can be used to simplify the expressions for the other components of the stress

tensors at y = W/2

T (m)
xx =

E

(1 − σ2)
(∂xu

(m)
x + σ∂zu

(m)
z ), (3.41)

T (m)
zz =

E

(1 − σ2)
(σ∂xu

(m)
x + ∂zu

(m)
z ), (3.42)

T (m)
xz =

E

2 (1 + σ)
(∂xu

(m)
z + ∂zu

(m)
x ). (3.43)
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Inverting these gives at y = W/2

∂xu
(m)
x =

1

E
(T (m)

xx − σT (m)
zz ), (3.44)

∂zu
(m)
z =

1

E
(T (m)

zz − σT (m)
xx ), (3.45)

∂xu
(m)
z + ∂zu

(m)
x =

2(1 + σ)

E
T (m)

xz . (3.46)

We emphasize that Eqs. (3.40-3.46) are only true on the stress-free boundaries, and

are not generally true in the bulk of the material.

Using these results we get

tn,m = − i

2ρω v
(n)
g

∫ d
2

− d
2

dz f̃1 (km − kn, z) Γ̄(m,n)(z), (3.47)

with

Γ̄(m,n) =
{

ρω2(φ(m)
x φ(n)∗

x + φ(m)
y φ(n)∗

y + φ(m)
z φ(n)∗

z )

− 1

E

[

(T̄ (m)
xx T̄ (n)∗

zz + T̄ (m)
zz T̄ (n)∗

zz ) − σ(T̄ (m)
zz T̄ (n)∗

xx + T̄ (m)
xx T̄ (n)∗

zz )
]

− 1

µ
T̄ (m)

xz T̄ (n)∗
zx

}

y=W/2

, (3.48)

where we have introduced the explicit x dependence of u
(n)
i (x) as in Eq. (3.23) and

the stress tensor

T
(n)
ij (x) = T̄ij(y, z)eiknx, (3.49)

so that the x′ integration is just the Fourier transform f̃ of the roughness function,

and Γ̄ is a function of the z coordinate only.

Alternatively, using Eqs. (3.41-3.43) we can derive an expression explicitly in the
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displacement fields, which is useful for numerical evaluation,

Γ̄(m,n) =
{

ρω2(φ(m)
x φ(n)∗

x + φ(m)
y φ(n)∗

y + φ(m)
z φ(n)∗

z )

− 2µ

(1 − σ)

[

(kmknφ(m)
x u(n)∗

x + ∂zφ
(m)
z ∂zφ

(n)∗
z )

+ σ(ikmφ(m)
x ∂zφ

(n)∗
z − ikn∂zφ

(m)
z φ(n)∗

x )
]

− µ(ikmφ(m)
z ∂zφ

(n)∗
x + kmknφ(m)

z φ(n)∗
z

+∂zφ
(m)
x ∂zφ

(n)∗
x − ikn∂zφ

(m)
x φ(n)∗

z )
}

y=W/2
. (3.50)

The scattering rate is given by multiplying |tn,m|2 by the ratio of the group veloc-

ities in the scattered and incident waves2. We also treat the roughness of the surface

statistically, and take an ensemble average (denoted by angular brackets) to give the

final expression for the scattering rate γn,m from mode m to mode n by the per unit

length of single rough surface at y = W/2 given by

γn,mL =
v

(n)
g

v
(m)
g

〈

|tn,m|2
〉

=
1

4ρ2ω2v
(m)
g v

(n)
g

〈∣

∣

∣

∣

∣

∫ d
2

− d
2

dzf̃1 (km − kn, z) Γ̄(m,n)(z)

∣

∣

∣

∣

∣

2〉

. (3.51)

We are interested in the reduction of the phonon heat transport due to rough

surfaces. Only the backscattered waves (those with v
(n)
g < 0) reduce the amount of

heat transmitted. Thus we define γm, the thermal attenuation coefficient of mode m

per unit length, to be the sum of the scattering rates from the incident mode m to all

possible backscattered modes, per unit length of rough surface. This can be written

2Note that the scattering amplitude normalized by the energy flux t̄n,m =

√

∣

∣

∣v
(n)
g

∣

∣

∣ /
∣

∣

∣v
(m)
g

∣

∣

∣tn,m

can be seen from Eq. (3.47) to explicitly satisfy the reciprocity relation t̄n,m = t̄∗−m,−n. For systems

in which energy is conserved, as in our case, reciprocity is equivalent to time-reversal invariance [23].
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for scattering off the single rough surface considered so far

γmL =
∑

n
v
(n)
g <0

γn,mL

=
∑

n
v
(n)
g <0

1

4ρ2ω2v
(m)
g v

(n)
g

〈∣

∣

∣

∣

∣

∫ d
2

− d
2

dzf̃1 (km − kn, z) Γ̄(m,n)(z)

∣

∣

∣

∣

∣

2〉

. (3.52)

To include the second rough side surface, assuming uncorrelated roughness, we

simply have to multiply the expression for γm by a factor of 2. The expression for

scattering off the top and bottom surfaces, if these are rough too, can be derived in a

similar manner, and the result may be obtained by exchanging y and z in Eq. (3.52).

The total scattering rate is the sum of the scattering off all the surfaces.

We have assumed that the amplitude of the surface roughness is small, allowing

us to use perturbation theory to derive the above expressions. In this weak scattering

limit the transmission coefficient is Tm ' 1 − γmL. When we estimate the size of

the surface roughness from the data of Schwab et al. [8], we find that the weak

scattering approximation is sufficient for all frequencies except near the onset of the

higher modes, where the scattering tends to diverge due to the group velocity factors

in the denominator of Eq. (3.52) as found in the scalar model. The transmission

coefficient becomes small over a narrow range near these onset frequencies, and the

simple expression for Tm is inadequate here. To interpolate to the small transmission

for strong scattering, we use the approximation

Tm ' exp [−γmL] . (3.53)

This expression correctly includes the exponential decay of the wave due to successive

scattering out events, but does not include multiple scattering, which may eventu-

ally scatter the wave back into the forward direction. However, for the calculation

of the thermal conductivity in the temperature range of interest, the effect of the

strong scattering regions around the onset of the higher modes is negligible, and
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other interpolation expressions between the weak scattering expression valid for most

frequencies, and the small transmission near the onset frequencies, give very similar

predictions.

3.3 Thin plate limit

Although the expression in the previous section is general and applicable to any rect-

angular waveguide with rough surfaces, there are no closed-form expressions for the

displacement fields in general, and so a direct evaluation of the scattering would have

to be done completely numerically. Here, we instead use the thin plate approximation

d ¿ W [10, 25], which yields closed form expressions for the displacement fields of

the modes (in terms of dispersion curves ωm(k) given by numerical solution of a sim-

ple transcendental equation). The thin plate limit captures the important properties

of the elastic modes, for example, the quadratic dispersion of the bending modes at

small wave numbers, and regions of anomalous dispersion, as well as providing ana-

lytical expressions enabling us to do further analysis of the scattering. The thin plate

theory is applicable where the thickness of the sample is much less than the width

and the wavelengths are much greater than the thickness, which is the case for many

mesoscopic systems at low temperatures.

The use of the thin plate limit for mesoscopic structures was proposed in reference

[10], where the calculation of the structure of the modes is described in more detail. It

is found that the modes can be separated into two classes: in-plane modes, where the

polarization of the displacement is largely in the xy plane (together with small strains

in the z-direction given by the Poisson effect) and the displacement field is completely

specified by giving the vertically averaged horizontal displacement components ūx(x, y)

and ūy(x, y); and flexural modes, where the displacement is primarily in the z direction

and is specified by a vertical displacement field ūz(x, y). Within each class we can

further distinguish the modes by their parity under y → −y. For the in-plane modes

we define the mode as even if ūx (x,−y) = ūx (x, y) and odd if ūx (x,−y) = −ūx (x, y).

Similarly, the even flexural modes have ūz (x,−y) = ūz (x, y) and the odd modes
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have ūz (x,−y) = −ūz (x, y). As in the general case, there are four branches of

the dispersion curves that tend to zero frequency as the wave number goes to zero,

corresponding to one mode from each of these classes. The low frequency, even in

plane mode corresponds to the compression mode, and the odd mode to a bending

mode. The low frequency even, flexural mode corresponds to the second bending

mode, and the low frequency odd flexural mode is the torsion mode.

Explicit expressions for the displacement fields can be obtained using the method

described in reference [10]. For the in-plane modes we find, up to a normalization

factor A1 that is common to both even and odd parity waves, the even modes

ūx (x, y) = ikA1

[

k2 − χ2
1

2k2
cos

(

χ2W

2

)

cos (χ1y) − cos (χ2y) cos

(

χ1W

2

)]

eikx,

(3.54)

ūy (x, y) = A1

[

k2 − χ2
1

2χ1

cos

(

χ2W

2

)

sin (χ1y) + χ2 cos

(

χ1W

2

)

sin (χ2y)

]

eikx,

(3.55)

and the odd modes

ūx (x, y) = ikA1

[

k2 − χ2
1

2k2
sin (χ1y) sin

(

χ2W

2

)

− sin

(

χ1W

2

)

sin (χ2y)

]

eikx, (3.56)

ūy (x, y) = −A1

[

k2 − χ2
1

2χ1

cos (χ1y) sin

(

χ2W

2

)

+ χ2 sin

(

χ1W

2

)

cos (χ2y)

]

eikx,

(3.57)

where χ1 = (ω2/c2
t − k2)

1/2
and χ2 = (ω2/c2

l − k2)
1/2

, with ct the transverse sound

velocity and cl the longitudinal velocity in a large thin plate

ct =

√

E

2ρ (1 + σ)
, cl =

√

E

ρ (1 − σ2)
, (3.58)

and ω and k related by the dispersion curve which must be found numerically. In the
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thin plate limit it is sufficient to take for the in-plane modes

ux(x, y, z) ' ūx(x, y), (3.59)

uy(x, y, z) ' ūy(x, y), (3.60)

uz(x, y, z) ' 0. (3.61)

Similarly, the vertical displacement field for the even flexural modes is

ūz (x, y) = A2

[

cosh

(

χ−W

2

)

cosh (χ+y) − k2σ − χ2
+

k2σ − χ2
−

cosh

(

χ+W

2

)

cosh (χ−y)

]

eikx,

(3.62)

and for the odd flexural modes

ūz (x, y) = A2

[

sinh

(

χ−W

2

)

sinh (χ+y) − k2σ − χ2
+

k2σ − χ2
−

sinh

(

χ+W

2

)

sinh (χ−y)

]

eikx,

(3.63)

where χ± are defined as χ+ =
(

k2 +
√

ρd/Dω
)2

and χ− =
(

k2 −
√

ρd/Dω
)2

with

D = Ed3/12 (1 − σ2) the flexural rigidity, and ω and k are related by the appropriate

dispersion curve. In the classical thin plate theory, the displacement fields are given

in terms of ūz by the expressions

ux(x, y, z) ' −z∂xūz(x, y), (3.64)

uy(x, y, z) ' −z∂yūz(x, y), (3.65)

uz(x, y, z) ' ūz(x, y). (3.66)

This approximation is adequate for evaluating the surface stress integrals in Eq. (3.52)

but turns out not to be sufficiently accurate to evaluate the energy flux expression

for the group velocity Eq. (3.27). We discuss this case in § 3.3.2 below.

3.3.1 Attenuation coefficient in the thin plate limit

The thin plate approximation is implemented by noticing that the stress-free bound-

ary conditions imply that the stress components Tiz are zero on the top and bottom
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surfaces. For small thickness this implies that the components Tiz for any i are small

everywhere. In most situations these components can be approximated as zero [25].

This simplifies many of the terms appearing in Eq. (3.47). Also, at low temperatures,

only modes with no strong dependence on the z coordinate will be excited, so that

the mode sum extends over modes with increasing numbers of nodes in the y direction

only.

In this section we calculate the scattering of the elastic waves by surface roughness

for a thin plate. We assume that the roughness is confined to the sides, since in the

experiments theses are prepared lithographically, whereas the top and bottom surfaces

are produced by the epitaxial growth process.

For simplicity, we assume the roughness function f1 has no z dependence. This is

probably a reasonable description of the roughness produced by a typical lithographic

process of anisotropic chemical etch3. Then the Fourier transformed roughness func-

tion f̃1 (km − kn) can be pulled outside of the z integral in Eq. (3.52) and the statistical

average over the roughness can be performed to give

〈

∣

∣

∣f̃1 (k)
∣

∣

∣

2
〉

= g̃ (k) L, (3.67)

where g̃ (k) is the Fourier transform of the roughness correlation function

g̃ (k) =

∫

dxe−ikx 〈f1 (x) f1 (0)〉 .

Equation (3.52) leads to the back-scattering rate from mode m to mode n

γn,m =
g̃ (km − kn)

2ρ2ω2v
(m)
g v

(n)
g

∣

∣

∣

∣

∣

∫ d
2

− d
2

dzΓ̄(m,n)(z)

∣

∣

∣

∣

∣

2

, (3.68)

where Eq. (3.52) is multiplied by a factor of 2 to account for the two surfaces at

y = ±W/2.

3Without this assumption, we would find slightly different z averages of the roughness function f̃1

involved for the scattering of the in-plane modes and of the flexural modes—in fact a direct average
for the inplane modes and an average weighted by z2 for the flexural modes. In addition there would
now be scattering from in-plane to flexural modes, and vice versa.
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With the closed forms of the displacement fields at hand, we can obtain the

analytical expression for the attenuation coefficient. We first evaluate Γ̄(m,n) from Eq.

(3.48). Since T
(m)
iz ' 0, the expression for Γ̄ reduces to

Γ̄(m,n) '
[

ρω2
(

φ(m)
x φ(n)∗

x + φ(m)
y φ(n)∗

y + φ(m)
z φ(n)∗

z

)

− 1

E

(

T̄ (m)
xx T̄ (n)∗

xx

)

]

y=W/2

. (3.69)

In addition, putting T
(m)
zz in Eq. (3.43) at the stress-free boundary to zero gives

∂zu
(m)
z = −σ∂xu

(m)
x , (3.70)

so that T
(m)
xx from Eq. (3.41) simplifies to

T (m)
xx = E∂xu

(m)
x . (3.71)

Now Eq. (3.68) can be written as

γn,m =
g̃ (km − kn)

2ρ2ω2v
(m)
g v

(n)
g

∣

∣

∣

∣

∣

∫ d
2

− d
2

dz
[

ρω2φ
(m)
i φ

(n)∗
i + Ekmknφ(m)

x φ(n)∗
x

]

y=W
2

∣

∣

∣

∣

∣

2

, (3.72)

where the index i is summed over x, y, z. The scattering in the thin plate limit is

seen to have two components: the kinetic term, the first term in the [ ] in Eq. (3.72),

which involves all components of the displacement; and the stress term, the second

term, which just depends on the longitudinal displacement. Comparing this result

with the one in Eq. (2.29) in the scalar model, we notice the same kind of components

are contributing the scattering (note that the expression in Eq. (3.72) per unit length

in x-direction).

To see how the scattering rate scales with the parameters it is useful to rewrite
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Eq. (3.72) as

γn,mL =
g̃ (km − kn) L

2W 4
× W 2ω2

v
(m)
g v

(n)
g

×

∣

∣

∣

∣

∫ d/2

−d/2
dz

[

φ
(m)
i φ

(n)∗
i + Ekskn

ρω2 φ
(m)
x φ

(n)∗
x

]

y=W
2

∣

∣

∣

∣

2

(

∫ d/2

−d/2
dz

∫ W/2

−W/2
dy
W

φ
(m)
i φ

(m)∗
i

)1/2 (

∫ d/2

−d/2
dz

∫ W/2

−W/2
dy
W

φ
(n)
i φ

(n)∗
i

)1/2
. (3.73)

The first factor is a dimensionless measure of the strength of the roughness; the

second factor is a dimensionless ratio that depends, through the dispersion relation,

only on the geometric ratio d/W and the Poisson ratio σ; and the final factor involves

integrals over the displacement fields, where we have introduced the explicit normal-

ization factors in the denominator so that we may evaluate the ratio using convenient

unnormalized expressions for the displacements.

3.3.2 Evaluating the group velocity

As we have seen in Eq. (3.26), we can avoid evaluating the group velocity appearing

in Eq. (3.72) via numerical differentiating the dispersion curve by instead relating the

group velocity to the energy flux in the mode, which in turn can be written as an

explicit integral Eq. (3.27). Thus we need to evaluate the expression (we suppress the

mode index in this section)

P = −1

2
Re

[

iω

∫ ∫

(

Txxu
∗
x + Tyxu

∗
y + Tzxu

∗
z

)

dydz

]

(3.74)

involving the displacement fields and their derivatives.

In the thin plate limit the z components of the stress are small. If we approximate

Tzz = 0 then expressions Eqs. (3.2, 3.6) can be used to evaluate the z-component of

the strain

∂zuz = − σ

(1 − σ)
(∂xux + ∂yuy) . (3.75)
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This can be then used to simplify the in-plane components of the stress

Txx =
E

(1 − σ2)
(∂xux + σ∂yuy), (3.76)

Tyy =
E

(1 − σ2)
(σ∂xux + ∂yuy), (3.77)

Tyx =
E

2(1 + σ)
(∂xuy + ∂yux). (3.78)

These expression are used to evaluate the first two terms in the integrand in Eq.

(3.74). The evaluation of the last term in the integrand turns out to depend on

whether we are looking at the in-plane or flexural modes, and we now consider each

case in turn.

3.3.2.1 In-plane modes

For the in-plane modes in the thin plate limit it is sufficiently accurate to approximate

Tzx ' 0, and we can evaluate the remaining terms in P with the approximations

ux ' ūx, uy ' ūy independent of z. This yields

P = Re

{

− iωEd

4 (1 − σ2)

∫

dy
[

2(∂xūx + σ∂yūy)ū
∗
x + (1 − σ) (∂xūy + ∂yūx) ū∗

y

]

}

.

(3.79)

3.3.2.2 Flexural modes

For the flexural mode the approximations Tzx ' 0 and uz(x, y, z) ' ūz(x, y) indepen-

dent of z lead to the expressions for the horizontal displacements

ux(x, y, z) ' −z∂xūz(x, y), (3.80)

uy(x, y, z) ' −z∂yūz(x, y). (3.81)

Using these expressions with Eqs. (3.76-3.77) shows that the first two terms in Eq.

(3.74) are of order d3, i.e., third order in the expansion parameter of thin plate theory

d/W . It turns out that to this order, we cannot neglect the last term in Tzx, even
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though all z-components in the stress tensor are nominally “small”. Indeed comparing

the group velocity evaluated from Eq. (3.74) neglecting the term in Tzx with those

given by numerically differentiating the dispersion curve shows a clear discrepancy.

This same problem comes up in deriving the wave equation for the flexural waves

ρdω2ūz = D∇4
⊥ūz. (3.82)

The term on the left-hand side is the mass per unit area times the vertical accel-

eration, which is given by the integral over the depth of ∂xTzx + ∂yTzy. Clearly the

components of Tzi cannot be neglected completely. Their “smallness” is what leads to

the unusual fourth-order derivative appearing in this wave equation, with a coefficient

again proportional to d3.

We have used two methods to arrive at the correct calculation of the energy flux

integral for the flexural waves, which is then used to calculate the group velocity for

the these waves. The first is to use an improved approximation to the expressions for

the in-plane displacements Eqs. (3.76, 3.77) and a nonzero Tzx following the approach

of Timoshenko [26]. The second evaluates the energy flux in terms of the vertical dis-

placement and an effective vertical force, and in addition the rotational displacement

θ and corresponding torque M , as is used in the macroscopic derivation [25] of the

wave equation (3.82). Below, we present the energy flux calculations by these two

methods and show that these methods give the identical answers (c.f. Eqs. (3.107,

3.113).

In the extended thin plate approximation of Timoshenko the z-dependence of the

in-plane displacements is still approximated as linear

ux(x, y, z) ' zψx(x, y), (3.83)

uy(x, y, z) ' zψy(x, y). (3.84)

However, the x, y dependence is no longer assumed to be given by the gradient of the
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mean vertical displacement ūz(x, y), but by the more general expression

ψ = −∇⊥ūz + ∇⊥S + ∇⊥ × (ζẑ) (3.85)

introducing the scalar potential S(x, y) and vector potential ζ(x, y) defining the cor-

rections to the in-plane strain and rotation. Here ∇⊥ = (∂x, ∂y) is the horizontal

gradient. In addition the vertically averaged stress Tzx is taken to be

Tzx ' κ2 E

2 (1 + σ)
(∂xūz + ∂zux) (3.86)

(with a similar expression for Tzy given by replacing the subscript x with y every-

where). Here the “shear correction factor” κ, a number of order unity, is introduced

to take into account deviations of the in-plane displacements from the assumed linear

dependence on z [26]. In the usual thin plate approximation Tzi are set to zero and

ψ = −∇⊥w, so that (ux, uy) = −z∇⊥w.

With the Timoshenko approximations, the equations of motion for the three com-

ponents of displacement are now investigated.

The equations of motion for the horizontal displacement lead to an equation re-

lating ψ to ūz [27]

D

2

{

(1 − σ)∇2ψ + (1 + σ)∇⊥∇⊥ · ψ
}

− κ2µd (ψ + ∇⊥ūz) = 0 (3.87)

(remember D = Ed3/12(1−σ2), with E Young’s modulus, and µ the shear modulus).

The inertial terms ∂2
t ψ turn out to be negligible in this equation. Using Eqs. (3.85,

3.87) becomes

D∇⊥∇2
⊥(S −w)− κ2µd∇⊥S +

D

2
(1− σ)∇⊥ × (∇2

⊥ζẑ)− κ2µd∇⊥ × (ζẑ) = 0. (3.88)

Taking the vertical curl of Eq. (3.88) gives

D

2
(1 − σ)∇2

⊥Ω − κ2µd Ω = 0 (3.89)
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with Ω = ẑ · ∇⊥ × ψ = −∇2
⊥ζ the rotation. For a wave disturbance eikx, this gives

an exponential dependence on y, e±λy with

λ2 ' 2κ2µd

D(1 − σ)
∼ d−2. (3.90)

Since λ−1 ∼ d ¿ W , the rotation will be large only over a boundary layer region with

width of order d near the edges y = ±W/2, where the solution takes the form

Ω(x, y ' ±W/2) ' Ω(±W/2)eikxe−λ|y∓W/2|. (3.91)

The vector potential ζ has a similar solution, so that last two terms in Eq. (3.88)

cancel. This leaves for the scalar potential S

∇⊥

(

D∇2
⊥(S − ūz) − κ2µdS

)

= 0, (3.92)

which immediately gives

D∇2
⊥S − κ2µdS = D∇2

⊥ūz. (3.93)

(We are only interested in ∇⊥S and so do not need to keep track of the arbitrary

gradient-free function that could be added to this equation.)

The equation of motion for the vertical displacement is [27]

κ2µd∇2
⊥S = −ρdω2ūz. (3.94)

Together Eqs. (3.93, 3.94) give

ρdω2(ūz −
D

κ2µd
∇2

⊥ūz) = D∇4
⊥ūz. (3.95)

This is the usual fourth order wave equation, with a small correction term of order

(d/W )2 (the second term in the brackets on the left hand side). Note that solutions

to this equation vary on the long scale of order k−1 or W , and not the small scale
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λ−1 ∼ d, so that to a good approximation we have

ρdω2ūz = D∇4
⊥ūz, (3.96)

S = − D

κ2µd
∇2

⊥ūz. (3.97)

The first equation is now the standard fourth order wave equation. The second

equation for S shows it to be small compared with ūz by of order (d/W )2.

The boundary conditions at the edges are that all stresses are zero, so that in

particular at y = ±W/2

∫

dzTzy = κ2µd(∂yūz + ψy) = 0. (3.98)

Substituting Eq. (3.85) into this gives

∂yS − ∂xζ = 0. (3.99)

Equation (3.99) together with Eq. (3.97) tells us the size of the ζ correction, which

at y = ±W/2 takes the value

ζ(x, y = ±W/2) = − D

κ2µd

1

ik

(

∂y∇2
⊥ūz

)∣

∣

y=±W/2
. (3.100)

This expression can be simplified using the boundary condition Tyy = 0 at y = ±W/2,

which from Eq. (3.77) and Eqs. (3.80, 3.81) gives at y = ±W/2

∂2
y ūz = −σ∂2

xūz = σk2ūz, (3.101)

so that

ζ(x, y = ±W/2) = −ikD(1 − σ)

κ2µd
(∂yūz)|y=±W/2 . (3.102)

The potential ζ is only large in the boundary layers near the edges where it takes the

form

ζ(x, y ' ±W/2) = −ikD(1 − σ)

κ2µd
(∂yūz)|y=±W/2 e−λ|y∓W/2|. (3.103)
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Thus finally we have expressions for the horizontal displacement field, Eqs. (3.85,

3.83) together with Eqs. (3.97, 3.103) defining S and ζ, and Eq. (3.86). These can

be used to calculate the additional contribution to the energy flux coming from the

Tzx term in Eq. (3.74). (The corrections to ux and uy derived here do not change

the contributions from the first two terms in Eq. (3.74) to the order we require, since

these terms are already third order in the small parameter d/W .)

We therefore need to evaluate

∫ ∫

Tzxu
∗
zdydz ' κ2µd

∫

dy(∂xS + ∂yζ )ū∗
z. (3.104)

Both terms in the integral give contributions at the same order. The first term,

coming from the correction to the in-plane strain Eq. (3.97), is

κ2µd

∫

dy(∂xS) ū∗
z = −D

∫

(∂x∇2
⊥ūz)ū

∗
z dy. (3.105)

The second term in the integrand is only large in the boundary layer region near the

edges and from Eq. (3.102) evaluates to the edge contributions

κ2µd

∫

dy (∂yζ) ū∗
z = −ikD(1 − σ) [(∂yūz)ū

∗
z]|

y=W/2
y=−W/2 . (3.106)

Combining these expressions for Eq. (3.104) with Eq. (3.79) together with Eqs.

(3.80, 3.81) yields the final expression

P ' ωkD

2
Re

{∫

dy
[

2k2ūzū
∗
z + (1 − σ) (∂yūz) (∂yūz)

∗ − (1 + σ)
(

∂2
y ūz

)

ū∗
z

]

+ [(1 − σ) (∂yūz) ū∗
z]

y=W/2
y=−W/2

}

, (3.107)

which is identical to Eq. (3.113).

An alternative approach to calculate the energy flux is to use the expression for

the energy of distortions of the plate evaluated using the lowest order expressions
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Eqs. (3.76, 3.77, 3.80, and 3.81) [25]

F =
1

2
D

∫ ∫

[

(

∇2
⊥ūz

)2
+ 2(1 − σ)

{

(

∂2ūz

∂x∂y

)2

− ∂2ūz

∂x2

∂2ūz

∂y2

}]

dxdy. (3.108)

It turns out that the higher order corrections discussed above are not needed in

this expression, and so we can derive the energy flux without these difficulties. The

functional derivative of F with respect to ūz yields the vertical force per unit area in

the interior of the plate, which can be used to derive the fourth order wave equation,

as well as expressions for the energy flux into the plate across the boundaries. The

latter expressions give us the result for the energy flux along the beam

P =
1

2
Re

{

−iω

[∫

Mxθ
∗
x + V ū∗

z dy + (Fcū
∗
z|y=W/2 +Fcū

∗
z|y=−W/2)

]}

, (3.109)

where

V = −D∂x[∂
2
xūz + (2 − σ) ∂2

y ūz] (3.110)

is the effective vertical force that couples to the vertical displacement ūz,

Mx = −D
(

∂2
xūz + σ∂2

y ūz

)

(3.111)

is the torque that couples to the angular displacement θx = ∂ūz/∂x, and

Fc(y = ±W/2) = ± 2D(1 − σ)∂2
xyūz

∣

∣

y=±W/2
(3.112)

is a vertical force localized at the edges of the plate. This force does not appear in a

simple elasticity theory and the key equation to the correct calculation.

Substituting Eqs. (3.110-3.112) into Eq. (3.109) gives

P ' 1

2
ωD Re

{∫

dy
[

2k3ūzū
∗
z + k(1 − σ)(∂yūz)∂yū

∗
z − k(1 + σ)(∂2

y ūz)ū
∗
z

]

+Dk [(1 − σ)(∂yūz)ū
∗
z]y=W

2
− Dk [(1 − σ)(∂yūz)ū

∗
z]y=−W

2

}

. (3.113)
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Evaluating ∂x = ik, and using integration by parts, we again get Eq. (3.107). The

comparison of the group velocity derived from Eq. (3.113) and from numerically

differentiating the dispersion curve now shows agreement to high accuracy.

3.4 Scattering analysis

The thermal attenuation is calculated from Eq. (3.72) for normalized mode displace-

ment fields or Eq. (3.73) in general. The group velocity for each mode can be ac-

curately evaluated numerically from the equality vg = 2P/ρw2, with the energy flux

P given by Eq. (3.79) for the in plane modes and Eq. (3.113) for the flexural modes

(both expressions are for normalized displacement fields). These are all explicit re-

sults in terms of the mode displacements, which are given by Eqs. (3.54-3.57) for the

in-plane modes, and Eqs. (3.62, 3.63) for the flexural modes.

Combining the interaction term, the power term, and the attenuation term, we

have

γm =
∑

n

ω2g̃(km − kn)

8PnPm

∣

∣

∣

∣

∣

∫ d
2

− d
2

dz′ Γ(m,n)
∣

∣

y=W
2

∣

∣

∣

∣

∣

2

, (3.114)

where

Γ(m,n)
∣

∣

y=W
2

=
[(

ρω2 − Ekskn

)

u(s)
x u(n)∗

x + ρω2u(s)
y u(n)∗

y + ρω2u(s)
z u(n)∗

z

]

y=W
2

, (3.115)

P in-plane
n = −iω

[∫ ∫

dydz
E

(1 − σ2)

[

∂xu
(n)
x + σ∂yu

(n)
y

]

u∗
x

+

∫ ∫

dydz
E

2 (1 + σ)

(

∂xu
(n)
y u(n)∗

y + ∂yu
(n)
x u(n)∗

y

)

]

, (3.116)

P flexural
n =

ω

2

[

D

∫

dy
[

2k3ww∗ + k (1 − σ) (∂yw) (∂yw)∗ − k (1 + σ) ∂2
yww∗

]

+ Dk [(1 − σ) (∂yw) w∗]y=W
2

]

. (3.117)

Now the above expressions can be evaluated easily once the displacement field is

known, which is followed next.

Before analysing the scattering behaviour, we first need to have a good under-

standing of the dispersion relation of the modes, since the scattering rates are strongly
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Figure 3.2: Dispersion relation for in-plane modes (solid) and flexural modes (dashed)
for a geometry ratio d/W = 0.375 and Poisson ration 0.24. The wave numbers are
scaled with the width W , and the frequencies by W/ct with ct =

√

µ/ρ.

dependent on this.

3.4.1 Dispersion relation and group velocity

The dispersion relations for a representative case are shown in Fig. 3.2. For this

example we have used a Poisson ratio of 0.24, and a depth to width ratio of d/W =

0.375, values corresponding to the experimental work of Schwab et al. [8]. As we have

discussed, the modes fall into four classes, depending on their parity signatures. We

label the lowest mode from each class, the one with zero frequency as the wave number

goes to zero, as mode 0, and the modes with successively higher cutoff frequencies in

each class as mode 1, mode 2, etc., in that class.

Notice that one of the curves in the figure, the one for the in-plane mode with cutoff

frequency ωW/ct ' 5, shows anomalous dispersion with the frequency decreasing as

the wave number increases up to about 3W−1. (This is actually an even mode, and

some higher even and odd modes also show anomalous dispersion.) The dispersion

curves for all modes n > 0 have zero slope, and so zero group velocity, at onset. As we
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Figure 3.3: Group velocity for in-plane modes for the same parameters as Fig. (3.2):
dash dotted line represents in-plane bending mode, solid line represents compression
mode. The wave numbers are scaled with the width W , and the group velocities by
ct with ct =

√

µ/ρ.

will see later, this results in a diverging scattering rate at each mode onset. For the

n = 0 modes, as ω → 0 two of the modes (the compression and torsion modes) have

linear dispersion, whilst the other two lowest modes (in-plane and flexural bending

modes) exhibit quadratic dispersion. Figure 3.3 shows the group velocities vg for

the four lowest in-plane modes. The group velocity of the bending mode approaches

zero as ω → 0 whilst that of the compression mode becomes constant. The group

velocity of the compression mode suddenly drops to ∼ 0.5ct around ωW/ct ∼ 4.6,

then gradually recovers and approaches 0.9ct. These features of the dispersion curve

will be reflected in the behaviour of the scattering of the waves.

3.4.2 Scattering behaviour

We first consider the scattering and reduction of the thermal transport by white

noise roughness g̃(k) = g̃(0). This allows us to focus on the role of geometry and the

unusual mode structure of the elastic waves in the physics.
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ω/
√

E/ρ vg/
√

E/ρ φx φy φz

Extension k 1 1 O(ky) O(kz)

In-plane bend (w/
√

12)k2 (w/
√

3)k −iky 1 O(kz)

Torsion
√

2/(1 + σ)(d/w)k
√

2/(1 + σ)(d/w) O(kyz) −z y

Flex-bend (d/
√

12)k2 (d/
√

3)k −ikz O(k2yz) 1

Table 3.1: Dispersion relation, group velocity, and (unnormalized) transverse mode
structure for the four modes with zero frequency at zero wave vector.

in-plane flexural

cc bb bc,cb

2ω̄2
√

3ω̄ 35/4

23/2 ω̄
3/2

tt bb tb,bt
9(1+σ)

4

(

Wω̄
d

)2
O

[

(

Wω̄
d

)3
]

35/4(1+σ)1/2

4

(

Wω̄
d

)3/2

Table 3.2: Scattering coefficients for the zero onset frequency modes at low frequen-
cies: c denotes compression, b denotes bend, t denotes torsion, bb denotes bend to
bend scattering etc. Values are quoted for γmW 4/g̃(0) as a function of scaled fre-
quency ω̄ = ωcE/W . For the flexural bend to bend scattering (bb) the terms in the
braces in Eq. (3.72) cancel to leading order resulting in very small O(ω̄3) scattering.
There is no scattering between in-plane and flexural modes for the z-independent
roughness assumed.

In the low frequency limit the dispersion curve and the spatial dependence of

the modes take on the simple analytic forms shown in Table 3.1, allowing us to

make analytic predictions for the scattering at low frequencies, and then the thermal

conductance at low temperatures. Since only small wave vector scattering is involved

in these calculations, the results are true for a general roughness correlation function,

providing g̃(0) is nonzero. The mode structure in Table 3.1 may be calculated from

Eqs. (3.54-3.63) taking k → 0 or from arguments of macroscopic elasticity theory.

The contributions to the thermal attenuation coefficient in the low frequency limit

(ωW/ct ¿ 1) from the various scattering processes are shown in the Table 3.2 4.

The expressions take on their simplest form if we introduce the frequency scaled

with the velocity of the long wavelength compression mode ω̄ = ωcE/W with cE =
√

E/ρ =
√

2(1 + σ)ct. The power laws can largely be understood from the pre-

4A more accurate expression for the scattering between the in-plane compression and bending
modes is giving by keeping the next order term in ω̄ which is O(ω̄1/2) for this scattering process. To
include this correction multiply the expression in the table by (1 +

√
ω̄/121/4)2.
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factor in Eq. (3.73), γn,m ∝ ω2/v
(m)
g v

(n)
g . The group velocity vg becomes a constant

at small frequencies for the compression and torsion modes. Thus the torsion-torsion

and compression-compression scattering shows the ω2 dependence corresponding to

Rayleigh scattering in one dimension, and as was found for scalar waves with linear

dispersion. On the other hand for the bending modes vg ∝ ω1/2. This has the

important consequence that the in-plane bend-bend scattering increases more rapidly

at low frequencies proportional to ω, and the torsion-bend and compression-bend

scattering have an ω3/2 frequency dependence. For the flexural bend-bend scattering

the two terms in the braces in Eq. (3.72) cancel to leading order resulting in smaller

scattering O(ω3) than given by the pre-factor alone. Note that the expressions for the

flexural modes involve additional factors of W/d, so that these modes will be scattered

more strongly at a given ω in the thin plate limit. This is because these modes are

softer, so that the scattering wave vectors are larger for the same frequency.
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Figure 3.4: Attenuation coefficient γmW 4/g̃(0) for scattering from the two lowest m =
0 inplane modes to any other mode as a function of scaled frequency ωW/ct: solid line–
inplane bend mode; dashed line–compression mode. The insert shows an enlargement
of the low frequency region, and compares with the analytic low frequency expressions
from Table 3.2: dotted line–analytic in-plane bend mode; dash-dotted line–analytic
compression mode; other lines as in the main figure.
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Figure 3.5: Attenuation coefficient γmW 4/g̃(0) for scattering from the two low-
est m = 0 flex modes to any other mode as a function of scaled frequency
ω
√

12(1 − σ2)(W/d)W/cE: solid line–the flex-bend mode; dashed line–torsion mode.
The insert shows an enlargement of the low frequency region, and compares with
the analytic low frequency expressions from Table 3.2: dotted line–analytic approx-
imation for the flex-bend mode; dash-dotted line–analytic expression for the torsion
mode; other lines as in the main figure.

Numerical results for the attenuation coefficient γm of the four lowest modes are

shown in Fig. 3.4 for the in-plane and Fig. 3.5 for the flexural modes. The plot

for the in-plane modes in particular shows interesting structure deriving from the

complicated dispersion curves of Fig. 3.2. Much of this structure can be understood

from the product of group velocities in the denominator of Eq. (3.72). In particular

there is a square root divergence in γm at the onset frequency of each mode where

the group velocity is zero. In addition, the large scattering around ωW/ct = 5 derives

from the region of anomalous dispersion, since the group velocity is small in this

frequency range. The insert to Fig. 3.4 shows an expanded view of the low frequency

behaviour, using the results from Table 3.2 together with the next order correction

for the compression-bend scattering. The agreement for the compression mode is

very good even up to ωW/ct ∼ 3, whereas for the bend mode the correspondence is

only good for ωW/ct . 0.5. The scattering for the flexural modes shows generally
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Figure 3.6: Total scattering
∑

m γmW 4/g̃(0) for the in-plane modes on a log-log plot.
The dotted line shows the low frequency analytic expression from Table 3.2, and the
dashed line shows a power law 4. (Note that the heights of the peaks in the plot
are not significant, depending on how close the individual points, separated by 0.01
in ωW/ct, used in constructing the plot are to the mode onset frequencies where the
scattering diverges.)

similar results, Fig. 3.5 although the behaviour is simpler corresponding to the rather

featureless dispersion curves. At low frequencies, (insert to Fig. 3.5), the scattering

of the flexural-bend mode is small, since the intra-mode scattering is reduced by the

cancellation discussed above.

Figure 3.6 shows the total scattering
∑

m γm for the in-plane modes on a log-

log plot, again with white noise roughness. At very low frequencies the scattering

varies proportional to ω corresponding to the dominant intra-mode scattering of the

compression mode at low frequencies (Table 3.2). For frequencies up to ωW/ct ' 3.5,

the first nonzero onset frequency of an in-plane mode, the analytic low-frequency

expression given by summing the in-scattering expressions from Table 3.2 (cc, cb,

bc, and bb), shown as the dotted line in Fig. 3.6, gives a good approximation to the
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full results. At higher frequencies the total scattering increases rapidly, following a

general trend proportional to ω4 (dashed line) together with divergent scattering at

each mode onset frequency. The ω4 power law can be understood as the combination

of the explicit ω2 dependence of Eq. (3.72), together with two powers of ω coming

from the number of modes available for scattering from and to.

3.4.3 Change in the thermal conductance

In the weak scattering limit the change in thermal conductance at low temperatures

can be derived directly from the expressions for the scattering at low frequencies. If

we write the thermal attenuation coefficient of mode m as γmL = A(ω/ω0)
p, where

p is the power law obtained in the low frequency limit and ω0 some characteristic

frequency, then the corresponding contribution of the suppression of the thermal

conductance from this mode is

δKm/Ku = AIp(T/TE)p (3.118)

with TE = ~cE/kBW the corresponding characteristic temperature for the in-plane

mode and Ku = π2k2
BT/3h the universal thermal conductance. The constant Ip can

be obtained evaluating the integral

Ip =
3

π2

∫ ∞

0

dy
yp+2ey

(ey − 1)2
. (3.119)

Thus the power law for the temperature dependence of the depression of the thermal

conductivity is the same as the one for the low frequency behaviour of the scattering

coefficient.

Figures 3.7 and 3.8 show the thermal conductance depression scaled with the

universal value Ku as a function of the appropriate scaled temperature for the lowest

in-plane and flexural modes, showing the deviation from the low temperature power

laws as the temperature is raised. For the in-plane modes we use the characteristic

temperature TE = ~cE/kBW and for the flexural modes TF = ~cEd/kBW 2. The
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individual plots are then independent of the geometry. To combine the contributions

from the in-plane and flexural modes the ratio d/W is needed to relate the two

temperature scale factors. In the thin plate limit TF = (d/W )TE ¿ TE.
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Figure 3.7: Reduction in the thermal conductance scaled with the universal con-
ductance Ku for the lowest in-plane modes as a function of scaled temperature
T/TE with TE = ~cE/kBW : solid line–low temperature analytical expressions from
Table 3.2: points–full expression evaluated numerically. The quantity plotted is
(δKc + δKib)/2Ku with δKc, δKib the depression of the contributions to the con-
ductance by the scattering for the compression and in-plane bending modes.

3.5 Comparison with the experiment of Schwab et

al.

3.5.1 Experimental geometry

Based on the SEM micrograph of the experimental structure [24], we set the di-

mensions of the structure in the following way. In the experimental structure of

Schwab et al. the thermal pathway was constructed with the shape function W (x) =

W cosh(Ax), so that the beam width becomes large and joins smoothly to the ther-
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Figure 3.8: Similar to Fig. (3.7), δK/2Ku for the lowest flexural modes (torsion
and flexural-bending) as a function of the scaled temperature T/TF with TF =
~cEd/kBW 2.

mal reservoirs at the ends, reducing the scattering due to the geometric imperfection

at these junctions. Unfortunately this makes the calculation of the behaviour of the

elastic waves in the beams much harder. However both with and without the scat-

tering off surface roughness, we expect the narrow portion of the beam to dominate

the behaviour. Thus we simplify the structure and model it as an elastic beam with

rectangular cross section of width W , depth d, and effective length L. We estimate

the width as the narrowest width of the structure, W ' 160 nm, and L = 1 µm

as the length over which the width is approximately constant. The thickness of the

material was d = 60 nm. The accuracy of the length estimation is not very critical,

since the only length dependence in the scattering rate γ appears in the combination

δ2L where δ is the rms roughness which is a parameter of the model, so that any error

in the assignment of L will just change the value assigned to δ. The width W on the

other hand plays a crucial role, for example determining the frequency cutoffs of the

various modes, and so the temperature dependence of the thermal conductivity.
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3.5.2 Roughness correlation function

Since the nature of the surface roughness on the experimental structure is not known,

to fit the experimental data we need a sensible parametrization of the roughness. As

a starting point we choose a Gaussian correlation function for the roughness as we

did for the scalar model, leading to the spectral density

g̃ (k) =
√

πaδ2 exp

[

−a2

4
k2

]

. (3.120)

This parametrization of the roughness contains two parameters: δ the rms roughness

and a the correlation length.

To analyse the data, we first quantify the amount of scattering by subtracting

the data of Schwab et al. from the ideal thermal conductance obtained numerically

using the “xyz” algorithm [9]. Then we attempt to fit the data by adjusting the two

parameters a and δ2L.
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Figure 3.9: Attempts to fit the low temperature data T . 0.2 K using various values
of aδ2: solid line–

√
πaδ2 = 0.1; dotted line–

√
πaδ2 = 0.05; dashed line–

√
πaδ2 = 0.02;

open circles–from the experimental data of Schwab et al.

The inadequacy of Eq. (3.120) in fitting the experimental data is shown by the
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low temperature fits in Fig. 3.9. At these low temperatures only small wave number

modes are excited, so that the exponential term in Eq. (3.120) can be approximated

as unity and g̃ (k) ' g̃ (0) =
√

πaδ2. Thus the roughness parameters only appear

in the combination aδ2, and this quantity can be varied to attempt to fit the low

temperature region. As seen from the figure, increasing aδ2 causes scattering that

is systematically larger than the experimental data at the low temperatures, while

decreasing aδ2 does not provide enough scattering in the range 0.1 < T < 0.2 K.

Although there is considerable scatter in the data over the range of the fit, the

systematic differences between the predictions and the data lead us to propose a

modified form of the roughness correlation that reduces the scattering at small wave

numbers

g̃ (k) =
√

πaδ2 exp

[

−a2 (k − k0)
2

4

]

. (3.121)

A nonzero value of the parameter k0 leads to a roughness correlation function that is

maximum at a length scale of order k−1
0 , and serves to reduce the scattering at long

wavelengths. As mentioned before, the same discrepancy (i.e., the overestimation

of the scattering at long wavelengths in the theory compared with experiment) was

found using the scalar model of the elastic waves [11]. The full elasticity theory

considered here actually makes the discrepancy worse, since the scattering at small

frequencies now is predicted to increase more rapidly at small frequencies than the

ω2 found in the scalar theory, varying as ωp with p < 2 for most of the scattering

processes, see Table 3.2.

To fit the data of Schwab et al., we need to determine three parameters: k0 , a,

and δ. We evaluate the quality of the fit by calculating the mean square deviation

of the data from the theory curve over the temperature range up to 0.4K. At higher

temperatures many modes becoming excited, and the scattering of individual modes

becomes strong, so that our theory is less reliable. Since the onset frequency of the

scattering at low frequencies, and the initial decrease in thermal conductance with

increasing temperature near the onset, are mainly determined by k0, this parameter

is the easiest to determine. We find the value k0W = 4.9 , rather insensitive to the
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Figure 3.10: Thermal conductance per mode scaled with universal value Ku: solid
line–fit using roughness parameters a/W = 5.5, δ/W = 0.2, and k0W = 4.9; circles–
data of Schwab et al. The dotted line shows the ideal value with no scattering.

values of a and δ.

We have done a systematic investigation of the error. A plot of the error as a

function of δ and a shows that the fit parameters δ and a are strongly correlated. This

is presumably because an increase in a, which reduces the scattering at small wave

numbers and frequencies that is important at low temperatures, can be compensated

by an increase in δ. If we fix k0W at 4.9, then using the standard χ2 estimate for

the confidence level [28] of the fitted values of δ and a, leads to values of δ, a at a

68.3% confidence level covering ranges as wide as 2 < a/W < 8 and 0.1 < δ/W < 0.5

(and we have not looked at larger values of the parameters). However, as the two fit

parameters are correlated, fixing one parameter gives a much tighter constraint on

the second one. For example: once δ is fixed at δ/W = 0.1 the 93% confidence limit

gives 3 < a/W < 4; for δ/W = 0.25 gives 5.5 < a/W < 7.6; and for δ/W = 0.4 gives

6.4 < a/W < 8.4. Since the values of δ and a are not well determined separately, we

use the knowledge of the experimental geometry to constrain the parameters further.

The physical roughness due to chemical etch has been estimated [24] from the SEM
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Figure 3.11: Same as in Fig. 3.10 but showing the decrease of K/Ku from the ideal
value.

micrograph to be about δ/W = 0.2. The best fit value of a for this value of δ/W

is a/W = 5.5, and we use these values, together with k0W = 4.9, to obtain the fit

shown in Figs. 3.10 and 3.11. For quantitative estimate of the error in the fit that

we are using, we have calculated χ2 and attempted to optimise the parameters. As

a result, the fit is significantly better than the one in Ref. [19] where we have used

visual inspection for the fit.

A difficulty of fitting the data is the lack of data points at very low temperatures:

it is in this range where only a few modes are involved that we have a very good

understanding of the scattering. At higher temperatures many more modes become

involved, and the scattering of individual modes becomes strong, so that the second-

order approximation used in calculating the scattering will not be good. A full test

of the theory explaining the reduction in the thermal conductance in terms of the

scattering off surface roughness requires more data below a temperature of about

0.08 K for the type of geometry used by Schwab et al., or systems with smaller

geometries where the effects can be measured at higher temperatures.
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3.5.3 Individual mode contribution to the thermal conduc-

tance

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

 

 

K
/K

u

T (K)

Figure 3.12: Individual mode contribution to the thermal conductance. The lowest
two flex modes and lowest three in plane modes are shown. The contributions to
K/Ku from the four modes with zero onset frequency tend to unity at low temper-
atures. The higher modes only contribute at higher temperature. The modes are:
dash-dotted–in-plane bending; dashed–compression; dotted–torsion; dashed-dotted-
dot–out-of plane bending. The solid line shows the sum of all the mode contribu-
tions, reduced by 4Ku. Values of the roughness parameters used were a/W = 5.5,
δ/W = 0.2, k0W = 4.9, and d/W = 0.375.

It is interesting to investigate the contribution to the total thermal conductance

of the individual modes with the roughness parameters used to fit the experimental

data. This is shown in Fig. 3.12. The flex-bending mode shows a much smaller

contribution to the reduction in K at low temperatures for the reason we have already

discussed. The modes with nonzero onset frequencies start to contribute significantly

above about T ' 0.2 K, and this is the predominant cause for the increase in thermal

conductivity above this temperature, since the recovery of the thermal conductance

for the lowest mode occurs very slowly.
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Chapter 4

Conclusion to Part I

We have investigated the effect of surface roughness on the scattering of elastic waves

in a rectangular beam or waveguide, and the resulting depression of the thermal con-

ductance in the low temperature quantized limit. We have employed a Green function

approach to calculate the reduced transmission of the elastic waves due to surface

roughness and then have used Landauer’s formula for the thermal conductance.

In Chapter 2 we used a 2-D scalar model and examined the effect of surface

roughness on the scattering. At low temperatures, the conductance divided by the

temperature is dominated by the lowest mode. The scattering of this mode reduces the

conductance below the universal value with a quadratic dependence on temperature

for low temperatures with an amplitude proportional to the combination of roughness

parameters aδ2. As the temperature increases, higher modes begin to play a role and

the scattering of the lowest modes is reduced, so that the conductance increases. We

find that the effect of scattering is always significant, reducing the conductance below

the ideal ballistic value over the whole temperature range we investigate T < 1 K.

Considering the simplicity of our model our results agree well with the experiment

of Schwab et al. However, there were small differences between the data of Schwab

et al. data and our theoretical model at very low temperatures. Elastic waves in

confined geometries have many unusual features and their dispersion relations are

quite different from those for scalar waves. To investigate the scattering at long

wavelengths in depth we needed a more accurate model.

Then in Chapter 3 we have moved onto a 3-D elastic model using a full elasticity
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theory to analyse the low temperature behaviour of the scattering in detail. Our

formulation is quite general, but to obtain concrete results we have specialized to the

thin-plate limit, which should be a reasonable approximation for many mesoscopic

experiments where the depth of the structures is fixed by the epitaxial growth, whilst

the width is determined lithographically. The thin plate limit preserves the peculiar

features of the elastic waves in the full elastic theory, namely, quadratic dispersion

at long wavelengths for two of the low frequency modes, and regions of negative

dispersion in the spectra. A robust result is that the asymptotic dependence of

the scattering by unstructured roughness of the low frequency modes important in

the low temperature universal thermal conductance depends on the structure of the

modes and the dispersion relation, and is not the simple ω2 dependence of Rayleigh

scattering as found in the scalar approximation to the modes. We find different power

laws for the various mode scattering processes that can be understood largely from

the dispersion relations at: ω for intramode scattering for the in-plane bend mode

(the flex-bend intramode scattering is anomalous because of a cancellation between

leading order terms, and varies as ω3); ω3/2 for scattering between the bend modes

and the modes with linear dispersion (torsion and compression modes); and the usual

ω2 for the intramode scattering of the modes with linear dispersion.

Although the scatter in the data of Schwab et al. is considerable at low tempera-

tures, the observations seem to show a delay in the onset of the depression scattering

as the temperature is raised, beyond what can be fitted with our predictions for un-

structured surface roughness. We tentatively resolve this delay by supposing that the

surface roughness has a maximum amplitude at some nonzero length scale, which we

parameterize by a shifted Gaussian correlation function. Due to the lack of data at

low temperatures, a precise determination of the roughness parameters is not possible.

However, we do obtain a fit to the data with parameters that look reasonable when

compared with electron micrographs of the actual devices. Recently Yung, Schmit,

and Cleland have measured thermal conductance of a mesoscopic rectangular beam

at a temperature of 25 mK and found that scattering is important even at this low

temperature [29].
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Our results are based on second-order perturbation theory, and the thermal con-

ductance is evaluated assuming the scattering over the length of the device is small.

This is a good approximation at low temperatures, but the scattering becomes strong

at higher temperatures, particularly for the new modes excited as the temperature is

raised, which have a diverging scattering at onset due to the flat dispersion relation

here. At higher temperatures multiple scattering and perhaps phonon localization

will therefore become important. Kambili et al. [14] and Sanchez-Gil et al. [16] have

numerically investigated the these effects in the simplified scalar wave approxima-

tion. It might be interesting in the future to consider this phenomenon using the

more accurate elasticity treatment.
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Part II

Quantum dynamics of phonons
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Chapter 5

Introduction

Quantum mechanics tells us that the energy of an oscillator is quantised. However,

an observation of quantum limited mechanical motion in macroscopic objects is not

possible because the energy associated with individual phonons is much smaller than

their thermal energy [30].

Advances in nanotechnology have enabled experimenters to build ever smaller

mechanical oscillators with high resonance frequencies and quality factors [31]. As

an individual phonon energy becomes comparable to or greater than kBT , quantum

effects begin to appear and we can take advantage of the size effects towards the

realization of various quantum phenomena.

Here, we are interested in observing quantum transitions amongst the Fock states

of a mesoscopic mechanical oscillator. If we had a direct way to measure the energy

eigenvalue of the system without influencing the system state transitions, we would

see something like Fig. 5.1. However, this is not possible with any conventional mea-

surement scheme. As a consequence, the so-called backaction due to a measurement

will add a large error to a subsequent measurement. We propose an indirect measure-

ment scheme which could extract the information of our interest. This is the subject

of Part II.

It becomes very important to model the precise way that a quantum system

interacts with any measuring apparatus as well as with the environment. Specifically,

it is necessary to take into account the measurement backaction and to design the

system-readout interaction so as to allow the best possible measurement of the desired
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(t) if we were able to observe the transitions of the

mechanical oscillator states.

observable. In this part of the thesis we show that it is possible in principle to take

advantage of the non-linear interaction between modes of oscillation of an elastic beam

or beams to realize a quantum non-demolition measurement of the phonon number

of the system oscillator. As a result, it is possible to track the state of the oscillator

as it jumps between number states due to its coupling to the surrounding thermal

environment.

The rules of quantum mechanics require that, even in the absence of instrumental

or thermal noise, every measurement will in some way disturb the state of the mea-

sured system. The Hamiltonian interaction between the system and readout means

that while information about the measured observable may be read out from the state

of the readout, the quantum mechanical uncertainty in the conjugate observable of

the readout leads to random changes in a measured observable of the system. This

backaction noise on the conjugate observable is an inevitable result of the very inter-

action with the system that allows the measurement to take place. It has long been

recognized that such backaction noise places a fundamental limit on the sensitivity of

physical measurements [32]. However, the class of measurements known as quantum

non-demolition (QND) measurements partially circumvent this problem by guaran-
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teeing that the backaction noise does not affect the results of future measurements.

In a QND measurement the interaction Hamiltonian between system and readout

commutes with the internal Hamiltonian of the system: an ideal QND measurement

is repeatable since the backaction noise does not affect the dynamics of the measured

observable. In this paper, we are interested in a QND measurement of phonon num-

ber. The conjugate observable of number is phase, thus, the measurement backaction

in our case will result in diffusion of the phase of the mechanical oscillations (we

will see this phase diffusion explicitly when we derive an equation of motion for the

system). However, our scheme allows the complete determination of the oscillator

excitation level and thus projects the system onto a number state in the ideal limit.

Our proposed scheme for the QND measurement of phonon number uses two an-

harmonically coupled modes of oscillation of a mesoscopic elastic beam. The resonant

frequencies of these two modes are very different. The higher frequency mode is the

system to be measured, while the lower frequency serves as the readout system. The

key idea of our scheme is that, from the point of view of the readout oscillator, the

interaction with the system constitutes a shift in resonance frequency that is propor-

tional to the time-averaged excitation of the system oscillator. This frequency shift

may be detected as a change in the phase of the readout oscillation when driven on

resonance. We show that our scheme realizes an ideal QND measurement of phonon

number in an appropriate limit and discuss the physical readout regime that is nec-

essary to achieve such a measurement.

5.1 A note on our approach

A description of a system interacting the surrounding environment can have four

different levels. The first level is the wavefunction defining the whole universe. If

such a description is possible, then the state of the universe is pure and we can

evolve the Hamiltonian according to a Schrödinger equation of motion and will know

everything about its dynamics. However, such a wavefunction is not known and the

description of the dynamics at this level is impossible.
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The second level is the density matrix description of the part of the universe of

interest (this could be called the “whole system”) limited by the lack of knowledge of

the rest of the universe. At this level it is assumed that the system interacts arbitrarily

weakly with the rest of the universe, and thus we could regard this whole system as

completely isolated. Then the density matrix evolution is unitary and is given by the

internal Hamiltonian. (Note in our case this “whole system” consists of the system

of our real interest + secondary system used as a readout purpose + surrounding

environment of importance which directly affects our measurement results, which is

usually modelled as baths with each bath represents one aspect of the effects to the

system).

The third level is integrating out the bath degrees of freedom. In practice, we

trace out the bath degrees of freedom to describe the system’s behaviour. Since

the interaction of the system with the rest of the whole system is not arbitrarily

weak, this can only be done in practice with certain approximations - in particular,

we will use Markov and rotating wave approximations as well as perturbation and

adiabatic elimination techniques. These processes lead to an evolution equation for

the system density matrix (the master equation) that is not unitary. The master

equation describes an ensemble of systems, i.e., the distribution over the ensemble.

The final level of description introduces the stochastic elements due to measure-

ments. We can describe an ensemble of systems each of which has the same mea-

surement apparatus, i.e., an ensemble of experiments. The stochastic element is

introduced when we restrict our attention to a subset of the ensemble with a given

measurement sequence and the stochastic terms arise precisely because the value of

the measurement outcome is stochastic. The equation that is concerned with the

restricted set of elements of the ensemble is called the stochastic master equation.

Whilst the master equation describes the distribution over the whole ensemble includ-

ing all the possible measurement outcomes, the stochastic master equation describes

the distribution “conditioned on” the particular measurement outcome.

Based on the concept described above, we proceed our investigation from the third

level. In Chapter 6, we introduce our QND measurement scheme and derive a corre-
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sponding master equation using a density matrix and tracing out the environment.

In Chapter 7 we investigate the time correlations of the measurement signal and the

state of the system conditioned on the results of the measurement using the method

of stochastic density matrix equations. This allows us to track the quantum jumps

of the system as it moves between different Fock states due to the thermal environ-

mental coupling, and we will present numerical evidence for this behaviour. Then we

discuss the possibility of tracking the evolution of the system as it jumps between

number states due to its interaction with a thermal bath. In Chapter 8, we focus

on a damped driven non-linear oscillator and investigate the effect of higher order

anharmonic terms.
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Chapter 6

Deterministic dynamics - the
master equation

6.1 Constructing the Hamiltonian

6.1.1 The model

In this section we introduce our model system and show how the coupling between

the system and ancilla approximates a QND coupling in an appropriate limit. We

then derive equations of motion that take into account the thermal couplings and the

interactions that drive and monitor the oscillations of the readout system.

Consider a mesoscopic beam with rectangular cross section. As already discussed

in Part I, there are two orthogonal flexing modes that are not coupled in the lin-

ear elasticity theory, but are coupled anharmonically. This coupling exists in nature

between the two orthogonal flexing modes of single mechanical beam. However, the

coupling can also be controlled and engineered. Such a coupling of two elastic beams

has been proposed by Yurke [33]: two mesoscopic elastic beams with rectangular cross

section are connected by a series of mechanical coupling devices. These devices have

the effect of allowing only one type of strain (the longitudinal stretch) to pass to

the other beam. The experimental effort of fabricating such a structure is currently

underway by Roukes and his group [31, 34]. Here we focus on the extent to which

such a device is able to realize a QND measurement, the eventual sensitivity of the

measurement and the constraints this places on the specifications of the device, and
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Figure 6.1: Schematics of a QMD measurement using two coupled mechanical oscil-
lators.

the required temperatures. For convenience, we refer to the system of interest as

oscillator 0 and the ancilla as oscillator 1, and the corresponding resonant frequencies

of the two modes as ω0 and ω1, respectively. The ancilla is driven at its resonant

frequency, and a measurement apparatus is attached to the ancilla. The whole struc-

ture is kept at a low temperature such that ~ω ∼ kBT , where ~ = h/2π is Plank’s

constant, ω is the system beam resonance frequency, T is the temperature, and kB

is Boltzmann’s constant. The oscillators and the environment are weakly coupled.

Figure 6.1 shows a schematic of our model.

6.1.2 System Hamiltonian

Converting the schematic model in the last section into a realistic mathematical model

and obtaining the system dynamics requires some assumptions and simplifications.

Firstly, we focus on the anharmonic coupling and the limit in which it satisfies the

QND condition. In linear elasticity theory, two flexing modes, which are perpendic-

ular to each other, propagate independently without interacting. Beyond the linear

approximation these modes are coupled. Expansion of the elastic energy with respect

to the strain tensor is taken up to second order in the harmonic approximation. The

next term, cubic in the elastic energy, gives quadratic terms in the equation of mo-

tion [25, 26]. Since the coupling of two flexing modes has a symmetry and they are
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not coupled at the linear level, the lowest order coupling is x2
0x

2
1. So we expand the

anharmonic terms up to first order in coupling and obtain

Hanh = ~

(

λ̃0x
2
0 + λ̃00x

4
0 + λ̃1x

2
1 + λ̃11x

4
1

)

, (6.1)

Vanh = ~λ̃01x
2
0x

2
1, (6.2)

where λ̃ij is the non-linear coupling constant between the oscillators i and j, and

the expansion of anharmonic terms in each potential is up to the same order as the

leading anharmonic coupling term, ~λ̃01x
2
0x

2
1. In terms of creation and annihilation

operators, the Hamiltonian is

H = H0 + Hanh + Vanh, (6.3)

H0 = ~ω0a
†
0a0 + ~ω1a

†
1a1, (6.4)

Hanh = ~λ̃0

(

a†
0 + a0

)2

+ ~

(

a†
1 + a1

)2

+ ~λ̃00

(

a†
0 + a0

)4

+ ~λ̃11

(

a†
1 + a1

)4

, (6.5)

Vanh = ~λ̃01

(

a†
0 + a0

)2 (

a†
1 + a1

)2

, (6.6)

where we have defined the standard raising and lowering operators for the oscillators

ai =
√

miωi/2~xi + i
√

1/2~miωipi and a†
i is the Hermitian conjugate of ai. Elastic-

ity theory also tells us that the anharmonic coefficients are much smaller than the

oscillation frequencies, i.e., ωi À λ̃i,j [35]. So far we have ignored any environmental

couplings of the two oscillators so as to focus on the interaction of the two oscillators.

The idea of a QND measurement is widely discussed in the literature (for ex-

ample, see [32], [36], and [37]) and is nicely summarised by Caves et al. [36] as “A

measurement which, in principle, can be made time after time on a single system,

giving always the same precise result in the absence of external forces (signals). When

external forces are present, quantum nondemolition measurements are an ideal tool

for monitoring them.” Since we want to monitor dynamical changes of a†
0a0, a QND

measurement is what we need. In order to perform a QND measurement of a†
0a0 the
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coupling Hamiltonian between the two oscillators V should satisfy the QND condition

[a†
0a0, Vanh] = 0. (6.7)

This condition guarantees that the future dynamics of the measured observable a†
0a0

are unaffected by the interaction Vanh with the ancilla.

At this point, it is useful to move into an interaction picture with respect to H0

in order to determine the regime that approaches the condition in Eq. (6.7). In the

interaction picture with respect to H0 we find

Vanh(t) = ~λ̃01

(

a†
0e

iω0t + a0e
−iω0t

)2 (

a†
1e

iω1t + a1e
−iω1t

)2

. (6.8)

Expanding out the product, there are terms that have the time dependence exp(±i2ω0t),

exp(±i2ω1t), or exp[±i2(ω0 ± ω1)t]. If the frequencies of the two oscillators satisfy

ω0 − ω1 À λ̃01 and ωi À λ̃01, then all of these time dependences are very fast rela-

tive to the interaction picture time dependence of the operators a0, a1. In this limit

the time-dependent terms in Vanh(t) lead to rapid, small amplitude oscillations of ai

that essentially average to zero over the timescales for which the non-linearity λ̃01 is

relevant. If we admit a time coarse-graining and only consider times longer than a

mechanical oscillation period we may disregard these time dependent terms; such an

approximation is known as the rotating wave approximation (RWA) and is frequently

used in quantum optics. Another intuitive explanation for the rotating wave approxi-

mation is that the terms with time dependence in the interaction picture drive energy

non-conserving transitions and as long as the condition ω0−ω1 À λ̃01 is satisfied, the

differences in energy are large and the associated transitions are strongly suppressed

as a result. Thus we disregard the energy non-conserving terms in the Hamiltonian

to obtain

V RWA
anh (t) = ~λ̃01

(

1 + 2a†
1a1 + 2a†

0a0 + 4a†
0a0a

†
1a1

)

. (6.9)

Note that having made the rotating wave approximation the anharmonic coupling

term now commutes with the observable a†
0a0, so a QND measurement can be achieved
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under the condition ω0 − ω1 À λ̃01
1.

The internal anharmonic terms, Hanh, can be also treated in a similar manner,

which result in

HRWA
anh = ~

(

ω0 + 2λ̃0 + 4λ̃00

)

a†
0a0 + 6~λ̃00

(

a†
0a0

)2

+ ~

(

ω1 + 2λ̃1 + 4λ̃11

)

a†
1a1 + 6~λ̃11

(

a†
1a1

)2

+ ~

(

3λ̃11 + 3λ̃00 + λ̃0 + λ̃1

)

. (6.10)

From above, we can see that the anharmonic terms cause both a shift in the oscillator

resonant frequency and a non-linear phase shift which depends on intensity (a Kerr

non-linearity in optical terminology and it is discussed in detail in Chapter 8). The

constant term can be disregarded since it merely provides an overall phase. We assume

in the present chapter that the dominant non-linearity is the coupling given by λ̃01

and disregard the nonlinearities of the system and ancilla internal Hamiltonians2.

Returning to the Schrödinger picture the Hamiltonian H now can be written as

HRWA = ~ω0a
†
0a0 + ~ω1a

†
1a1 + ~λ01a

†
0a0a

†
1a1, (6.11)

where we have absorbed the corrections to the system and ancilla oscillation frequency

into the definition of ω0 and ω1 and λ01 = 6λ̃01. This Hamiltonian is an adequate

description of the dynamics as long as we are not concerned with short times of the

order of a mechanical oscillation period.

In the above rotating wave Hamiltonian the excitation of the system oscillator

leads to a frequency shift of the ancilla oscillator. Thus it is necessary to monitor

the frequency of the ancilla oscillations in order to determine the system excitation.

To achieve this we imagine driving the ancilla oscillations on resonance and detecting

1Actually, it is not necessary to make the rotating wave approximation with respect to both
oscillators as the interaction Vanh becomes QND after the rotating wave approximation made in
an interaction picture with respect to ~ω0a

†
0a0 only. However, we make the further rotating wave

approximation to simplify the later development.
2The detailed analysis of non-linearities of the system and ancilla internal Hamiltonian and the

correction to the dynamical equation due to these terms will be discussed in Chapter 8.
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any shift in phase that is due to the system excitation. There will thus be a driving

term on the ancilla that may be written

Hdrive = 2~E cos ω1t
(

a1 + a†
1

)

(6.12)

in the Schrödinger picture. The driving frequency is chosen to resonantly drive os-

cillations of the ancilla. The phase of the oscillator depends on the frequency of the

drive (in-phase below resonance and out-of-phase above resonance). At resonance the

phase depends linearly on the driving frequency. If the resonance is shifted due to

the system excitation this will be detected as a phase shift between the mechanical

oscillations and the drive. In the interaction picture with respect to the ancilla in-

ternal Hamiltonian there are again fast oscillating terms that can be neglected in the

RWA when ω1 > E. Then we get

Hdrive = ~E
(

a1 + a†
1

)

(6.13)

in the interaction picture.

Now we add the coupling of thermal baths to the system and ancilla. We employ

a standard technique and model the thermal baths (the surrounding environment) as

an infinite number of harmonic oscillators. The thermal baths are linearly coupled

to the system (or ancilla) by coordinate-coordinate coupling, i.e.,
∑

j Ajxixj where

xi is the system (or ancilla) coordinate, xj is the coordinate of an oscillator in the

bath, and the index j corresponds to different bath oscillators. We will again use the

rotating wave approximation for the coupling since the couplings are weak.

The nature of the coupling with the measurement instrument depends on what

is to be measured. Here we adapt a magnetomotive detection scheme suggested by

Yurke et al. [38], which can be summarised as follows (see also Fig. (6.2): The voltage

developed depends on

V = LB
dx

dt
, (6.14)

where V is the voltage, B is the magnetic field, and x is the displacement of the beam
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Figure 6.2: A mechanical oscillation measurement scheme proposed by Yurke et al.

[38]. Adopted from Phys. Rev. A 51 (5), 4211 (1994).

from its equilibrium position. It is then amplified by the amplifier to give the output

voltage

Vout = V (t) cos (ω1t + φ (t)) , (6.15)

where V (t) is the time varying amplitude and φ (t) is the time varying phase. The

current induced by this voltage is monitored by phase lock-in amplifier. An experi-

menter monitors the amplitude of the current and its phase with respect to the driving

current that is set to the resonant frequency. However, we do not focus on technical

details of specific measurement schemes at this point and intend to be fairly general,

thus similar analysis to the one presented below will hold for variety of measurements

where the system is linearly coupled to a measurement current.

The measurement current is given by

I (t) =

√

~ω1

2Lz0

∑

n

(

bd,n (t) + b†d,n (t)
)

, (6.16)

where bd,n (t) is the measurement bath operator of mode n, L is the inductance and

z0 is the quantisation length [39]. From here on we use scaled unit ~ω1/2Lz0 = 1 for

convenience.

For a linearly coupled system-bath measurement within the rotating wave ap-

proximation, the coupling between the measurement current and ancilla has the form
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i~
(

b†d,na1 − bd,na
†
1

)

, where bd,n is the bosonic bath operator, and thus it has the same

mathematical structure as those of thermal baths.

The final Hamiltonian for our model in the interaction picture is

H = ~ω0a
†
0a0 + ~E

(

a1 + a†
1

)

+ ~

∑

s

∞
∑

n

ωs,nb†s,nbs,n + ~λ01a
†
0a0a

†
1a1

+ i~
(

Γ†a1 − Γa†
1

)

+ i~
(

D†a1 − D (t) a†
1

)

+ i~
(

Θ†a0 − Θa†
0

)

, (6.17)

where the index s denotes three different baths: the thermal bath coupled to the

system (b0), the thermal bath coupled to the ancilla (b1), and the measurement bath

coupled to the ancilla (d). The bath operators and coupling coefficients are defined

such that coordinate-coordinate coupling of system-bath will give a factor of i~ for

later convenience, and

Γ =
∞

∑

n

gb1 (ωn) bb1,n (6.18)

D =
∞

∑

n

gd (ωn) bd,n (6.19)

Θ =
∞

∑

n

gb0 (ωn) bb0,n, (6.20)

where gs (ωn) is the coupling coefficient with index n which distinguishes the different

modes of frequency ωn, Since the energy is dissipated among the many modes, there

is some coupling to all of the modes. Later, we will derive the relationship between

this coefficient and the corresponding damping rate.

We are interested in the dynamics of the system and the performance of the

measurement that we have described. The rest of the chapter proceeds in the following

sequence. Firstly, we find a master equation that describes the evolution of the

system and ancilla alone without explicitly describing the state of the environment.

Secondly we further simplify this equation by making use of the difference in time-

scales between the system and ancilla to obtain a master equation for the system

oscillator alone by means of adiabatic elimination. This allows us to determine the
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effect of the QND measurement coupling on the system.

6.2 Dynamics of the system: Master equation and

adiabatic elimination

6.2.1 Master equation

In this section we present the evolution equations for the ancilla and system alone,

tracing out the environmental couplings. We treat the interaction between the oscil-

lators and the environment in the Markov and rotating wave approximations. This

is consistent with our treatment of the internal Hamiltonian and we leave it to future

work to consider effects beyond the rotating wave regime. The rotating wave approx-

imation is usually very well satisfied in optical systems where non-linear couplings

or loss rates are many orders of magnitude smaller than optical frequencies. The

difference of timescales will be smaller in the present case but mechanical oscillators

with high Q-factors are becoming realizable in practice and it is in this limit that a

QND detection of phonon number will become possible. A master equation can be

derived from the Hamiltonian Eq. (6.17).

6.2.1.1 Thermal coupling component of the master equation (Lindblad

form)

We consider a thermal bath coupled to a system (The formalism presented here is

applicable to all baths). The high temperature system-thermal bath coupling (T →
∞) has been considered by Caldeira and Leggett [40] while the low temperature case

has been examined by Walls and Milburn [37]. We note that, despite of the claims by

some, the Caldeira-Leggett formula has a corresponding operator equation derived

by themselves (see Eq. (5.12) in [40]) and this equation is in a Lindblad form. Under

the RWA, the Caldeira-Leggett operator form at high temperature and the Walls and

Milburn Lindblad form at low temperature have very similar expressions, differing

only by coefficients.
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In the interaction picture, the equation of motion is

dρSB

dt
= − i

~
[Hint (t) , ρSB(t)] , (6.21)

where Hint is the interaction Hamiltonian, and ρSB is the combined system-bath den-

sity matrix. The reduced density operator for the system is

ρ (t) = Trb {ρSB (t)} . (6.22)

Initially (at t = 0), we assume that the system and bath are uncorrelated and the

total density matrix is a direct product of the system ρ and bath ρb

ρSB (0) = ρ (0) ⊗ ρb. (6.23)

Integration of Eq. (6.21) gives

ρSB(t) = ρSB(0) − i

~

∫ t

0

dt1 [Hint (t1) , ρSB(t1)] . (6.24)

Iteration of the above equation gives

ρSB(t) = ρSB(0)

+
∞

∑

n=1

(

− i

~

)n ∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

dtn [Hint (t1) , ... [Hint (tn) , ρSB(0)]] .

(6.25)

Tracing over the bath results in

ρ (t) = V (t) ρ (0) , (6.26)

where V (t) is the evolution operator. We now expand V (t) corresponding to Eq.
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(6.25).

V (t) = 1 +
∞

∑

n=1

Vn (t) , (6.27)

Vn (t) =

(

− i

~

)n

Trb

{∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

dtn [Hint (t1) , ... [Hint (tn) , ρb ⊗ (.)] ...]

}

.

(6.28)

Multiplying by V −1 (t) from left on both side of Eq. (6.26) gives

ρ (0) = V −1 (t) ρ (t) . (6.29)

Taking the trace, Eq. (6.25) can be written as

ρ(t) = ρ(0) +
∞

∑

n=1

(

− i

~

)n ∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

dtnTrb [Hint (t1) , ... [Hint (tn) , ρSB(0)]]

= ρ(0) +
∞

∑

n=1

Vn (t) ρ(0). (6.30)

Using Eq. (6.26) and taking the derivative with respect to t yields

dρ(t)

dt
=

d

dt
(V1 (t) + V2 + ...) ρ(0)

=
(

V̇1 (t) + V̇2 + ...
)

V −1 (t) ρ (t) . (6.31)

If Hint (t) is such that

Trb {Hint (t) ρb} = 0, (6.32)

then V1 (t) = 0 and the first order term becomes zero. With a series expansion of

V −1 (t) and keeping terms to second order we obtain

dρ(t)

dt
= − 1

~2

∫ t

0

dt′Trb [Hint (t) , [Hint (t′) , ρSB(t)]] . (6.33)
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The interaction Hamiltonian in the interaction picture is

Hint (t) = i~
[

Z† (t) ae−iω0t − Z (t) a†eiω0t
]

, (6.34)

where ae−iω0t is the bosonic system operator in the interaction picture, and we define

Z (t) as

Z (t) ≡
∑

n

gb0 (ωn) bne
−iωnt, (6.35)

where gb0 (ωn) is the coupling coefficient as in Eq. (6.20) and bne−iωnt is the bosonic

bath operator in the interaction picture. The bath operator satisfies the commutation

relation (see B.1):
[

bn, b†n′

]

= δn,n′ . (6.36)

The commutator of the second order term in the interaction picture is

[Hint (t) , [Hint (t′) , ρ(t) ⊗ ρb]]

= −~
2
{

aaρ(t)e−iω0(t+t′) ⊗ Z† (t) Z† (t′) ρb − aa†ρe−iω0(t−t′)(t) ⊗ Z† (t) Z (t′) ρb

− a†aρ(t)eiω0(t−t′) ⊗ Z (t) Z† (t′) ρb + a†a†ρ(t)eiω0(t+t′) ⊗ Z (t) Z (t′) ρb

− aρ(t)ae−iω0(t+t′) ⊗ Z† (t) ρbZ
† (t′) + aρ(t)a†e−iω0(t−t′) ⊗ Z† (t) ρbZ (t′)

+ a†ρ(t)aeiω0(t−t′) ⊗ Z (t) ρbZ
† (t′) − a†ρ(t)a†eiω0(t+t′) ⊗ Z (t) ρbZ (t′)

− aρ(t)ae−iω0(t+t′) ⊗ Z† (t′) ρbZ
† (t) + aρ(t)a†e−iω0(t−t′) ⊗ Z† (t′) ρbZ (t)

+ a†ρ(t)aeiω0(t−t′) ⊗ Z (t′) ρbZ
† (t) + a†ρ(t)a†eiω0(t+t′) ⊗ Z (t′) ρbZ (t)

+ ρ(t)aae−2iω0t ⊗ ρbZ
† (t′) Z† (t) − ρ(t)aa†e−iω0(t−t′) ⊗ ρbZ

† (t′) Z (t)

− ρ(t)a†aeiω0(t−t′) ⊗ ρbZ (t′) Z† (t) + ρ(t)a†a†eiω0(t+t′) ⊗ ρbZ (t′) Z (t)
}

. (6.37)

Since the dynamical time scale of the system a(t) is after extracting the oscillation

at ω0 much slower than that of the bath, we can pull the system operator outside of
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the integral in Eq. (6.33). Taking the trace over the bath, we have

− 1

~2

∫ t

t0

dt1Trb [Hint (t) , [Hint (t′) , ρSB(t)]]

= aaρ(t)
1

~2

∫ t

t0

dt′
〈

Z† (t) Z† (t′)
〉

e−iω0(t+t′) − aa†ρ(t)
1

~2

∫ t

t0

dt′
〈

Z† (t) Z (t′)
〉

e−iω0(t−t′)

− a†aρ(t)
1

~2

∫ t

t0

dt′
〈

Z (t) Z† (t′)
〉

eiω0(t−t′) + a†a†ρ(t)
1

~2

∫ t

t0

dt′ 〈Z (t) Z (t′)〉 eiω0(t+t′)

− aρ(t)a
1

~2

∫ t

t0

dt′
〈

Z† (t) Z† (t′)
〉

e−iω0(t+t′) + aρ(t)a† 1

~2

∫ t

t0

dt′
〈

Z† (t) Z (t′)
〉

e−iω0(t−t′)

+ a†ρ(t)a
1

~2

∫ t

t0

dt′
〈

Z (t) Z† (t′)
〉

eiω0(t−t′) − a†ρ(t)a† 1

~2

∫ t

t0

dt′ 〈Z (t) Z (t′)〉 eiω0(t+t′)

− aρ(t)a
1

~2

∫ t

t0

dt′
〈

Z† (t′) Z† (t)
〉

e−iω0(t+t′) + aρ(t)a† 1

~2

∫ t

t0

dt′
〈

Z† (t′) Z (t)
〉

e−iω0(t−t′)

+ a†ρ(t)a
1

~2

∫ t

t0

dt′
〈

Z (t′) Z† (t)
〉

eiω0(t−t′) + a†ρ(t)a† 1

~2

∫ t

t0

dt′ 〈Z (t′) Z (t)〉 eiω0(t+t′)

+ ρ(t)aa
1

~2

∫ t

t0

dt′
〈

Z† (t′) Z† (t)
〉

e−iω0(t+t′) − ρ(t)aa† 1

~2

∫ t

t0

dt′
〈

Z† (t′) Z (t)
〉

e−iω0(t−t′)

− ρ(t)a†a
1

~2

∫ t

t0

dt′
〈

Z (t′) Z† (t)
〉

eiω0(t−t′) + ρ(t)a†a† 1

~2

∫ t

t0

dt′ 〈Z (t′) Z (t)〉 eiω0(t+t′).

(6.38)

The bath correlations can be evaluated by firstly Fourier transforming the integral,

then assuming that the coupling coefficient is a slowly varying function around the

system resonance frequency, and finally evaluating the integral. Since the bath is

assumed large the normal modes of the oscillator are very close spaced in frequency,

we can approximate the spectrum by a continuum. We have

bn =

∫ ωn+1/2ρds(ωn)

ωn−1/2ρds(ωn)

Anb (ω) dω, (6.39)

where ρds (ωn) is the number of modes of frequency ωn per unit frequency (the density

of states) and An is a coefficient to be found such that the commutation rules

[

b (ω) , b† (ω′)
]

= δ (ω − ω′) (6.40)
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are satisfied. Using Eq. (6.40) and Eq. (6.36) we can write

δn,n′ =
[

bn, b
†
n′

]

=

∫ ωn+1/2ρds(ωn)

ωn−1/2ρds(ωn)

∫ ωn′+1/2ρds(ωn′ )

ωn′−1/2ρds(ωn′ )

dωdω′
[

b (ω) , b† (ω′)
]

AnAn′ , (6.41)

and we obtain the coefficient An:

An =
√

ρds (ωn). (6.42)

Thus we can write
∑

n bn (t) in the continuum form as

∑

n

bn (t) =
∑

n

∫ ωn+1/2ρds(ωn)

ωn−1/2ρds(ωn)

√

ρds (ωn)b (ω) dω =

∫ ∞

0

√

ρds (ωn)b (ω) dω. (6.43)

The bath correlations are derived in Appendix B.1. Using those results and Eq. (6.40)

we have the following correlations

〈b (ω) b (ω′)〉 =
〈

b† (ω) b† (ω′)
〉

= 0, (6.44)

〈

b (ω) b† (ω′)
〉

= δ(ω − ω′) (N (ω) + 1) , (6.45)

〈

b† (ω) b (ω′)
〉

= δ(ω − ω′)N (ω) . (6.46)

Here N (ω) is the occupation number of the bath at frequency ω given by the Bose-

Einstein distribution

N (ω) =
1

e~βω − 1
, (6.47)

where β = 1/kBT with T the temperature of the bath.

Next, we need to evaluate the integrals. As an example consider the integration

IZZ† = a†ρ(t)a
1

~2

∫ t

t0

dt′
〈

Z (t) Z† (t′)
〉

eiω0(t−t′). (6.48)
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Writing Z (t) in terms of the continuum Bose operators gives

IZZ† =

∫ t

t0

dt′
∫ ∞

0

dω

∫ ∞

0

dω′
√

ρds (ω)
√

ρds (ω′)gb0 (ω) g∗
b0 (ω′)

×
〈

b (ω) b† (ω′)
〉

e−i(ω−ω0)tei(ω′−ω0)t′

=

∫ t

t0

dt′
∫ ∞

0

dωρds (ω) |gb0 (ω)|2 (N (ω) + 1) e−i(ω−ω0)(t−t′). (6.49)

Changing the variable from t′ to τ = t′−t and assuming ρds (ω) and gb0 (ω) are slowly

varying functions around ω = ω0, and setting ε = ω − ω0 and t0 → −∞, we get

IZZ† =

∫ ∞

0

dτ

∫ ∞

−∞

dερds (ε + ω0) |gb0 (ε + ω0)|2 (N (ε + ω0) + 1) eiετ

=

∫ ∞

−∞

dερds (ε + ω0) |gb0 (ε + ω0)|2 (N (ε + ω0) + 1)

[

πδ (ε) + iP

(

1

ε

)]

= πρds (ω0) |gb0 (ω0)|2 (N (ω0) + 1)

− iP

∫ ∞

−∞

dε
1

ε
ρds (ω0 + ε) |gb0 (ω0 + ε)|2 (N (ω0) + 1) , (6.50)

where P denotes a principal value. The second term in Eq. (6.50) is associated with

the Lamb shift, which can be absorbed in the definition of oscillator frequency, ω0.

Writing N (ω0) = N0, we obtain

IZZ† ' πρds (ω0) |gb0 (ω0)|2 (N0 + 1) . (6.51)

Other terms in Eq. (6.38) can be evaluated in a similar manner.

Going back to the Schrödinger picture and adding the free Hamiltonian part HS,

we finally obtain

ρ̇ (t) = − i

~
[HS, ρ (t)]

+ ν (N0 + 1)
(

2aρa† − a†aρ − ρa†a
)

+ νN0

(

2a†ρa − aa†ρ − ρaa†
)

, (6.52)

where we have defined

ν ≡ πρds (ω0) |gb0 (ω0)|2 . (6.53)
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Physically ν gives the damping rate of the amplitude of oscillation.

As explained in § 6.1.1 our model has three baths, and each system (or ancilla)

- bath coupling gives the same form of contribution to the master equation as the

last two terms in Eq. (6.52). Thus the master equation for the density operator, ρ,

describing the state of the system and ancilla in the interaction picture (i.e., the free

Hamiltonian terms do not appear explicitly) is

dρ

dt
= − i

~

[

~E
(

a†
1 + a1

)

+ ~λ01a
†
0a0a

†
1a1, ρ

]

+ ν(N0 + 1)
(

2a0ρa†
0 − a†

0a0ρ − ρa†
0a0

)

+ νN0

(

2a†
0ρa0 − ρa0a

†
0 − a0a

†
0ρ

)

+ µ(Nd + 1)
(

2a1ρa†
1 − a†

1a1ρ − ρa†
1a1

)

+ µNd

(

2a†
1ρa1 − a1a

†
1ρ − ρa1a

†
1

)

+ η(N1̄ + 1)
(

2a1ρa†
1 − a†

1a1ρ − ρa†
1a1

)

+ ηN1̄

(

2a†
1ρa1 − a1a

†
1ρ − ρa1a

†
1

)

, (6.54)

where ρ is the system+ancilla density matrix, ν is defined in Eq. (6.53) and η, µ

are associated with the damping rates of the amplitudes due to the environmental

couplings to the ancilla oscillators,

µ ≡ πρds (ω1) |gd (ω)|2 , (6.55)

η ≡ πρds (ω1) |gb1 (ω)|2 , (6.56)

and Ni is

Ni =
1

e~βiωi − 1
, (6.57)

where i = 0, 1̄ or d, βi is (kBTi)
−1 with Ti the temperature of the bath, and ωi = ω0

for i = 0 and ωi = ω1 for i = 1̄, d.

The master equation Eq. (6.54) is an evolution equation for the density matrix of

the open system formed by the two oscillators. The commutator terms on the first

line describe the coherent driving of the ancilla oscillator and the non-linear coupling

between the two oscillators in the rotating wave approximation. The remaining terms

describe the dissipative interactions with the various baths. The terms contain a form

(Ni + 1) describe the emission of phonons into the thermal bath while the ones with
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Ni correspond to absorption of phonons from the bath.

Notice that the ancilla is coupled to both the thermal environment and the mea-

surement apparatus and each of these couplings results in analogous emission and

absorption terms differing only by coefficients. In principle the environmental and

measurement baths can have different temperatures described by N1̄ and Nd, however,

the overall width of the ancilla resonance is given by κ = η+µ, and if uncoupled from

the system, the ancilla would reach a steady state consistent with a thermal equilib-

rium with excitation N1 = (ηN1̄ + µNd) /κ. For the purposes of the evolution of the

system-ancilla density matrix we do not need to distinguish between effects arising

from the coupling to the thermal bath and those that result from the measurement

coupling and we may combine these terms to give

dρ

dt
= − i

~

[

~E
(

a†
1 + a1

)

+ ~λ01a
†
0a0a

†
1a1, ρ

]

+ ν(N0 + 1)
(

2a0ρa†
0 − a†

0a0ρ − ρa†
0a0

)

+ νN0

(

2a†
0ρa0 − ρa0a

†
0 − a0a

†
0ρ

)

+ κ(N1 + 1)
(

2a1ρa†
1 − a†

1a1ρ − ρa†
1a1

)

+ κN1

(

2a†
1ρa1 − a1a

†
1ρ − ρa1a

†
1

)

. (6.58)

The master equation Eq. (6.58) can in principle be numerically integrated. How-

ever we will make some further approximations in order to derive a master equation

for the system dynamics alone and show that in some limit the readout system cou-

pling results in only the phase diffusion that is required as the backaction for the QND

measurement, with no extra noise above this quantum limit. To do this we assume

that the ancilla is strongly damped to the measurement apparatus (i.e., κ ' µ À ν).

In this limit the ancilla relaxes rapidly to an oscillating state consistent with the cur-

rent system state, and as a result its dynamics are slaved to the system oscillator and

can in fact be eliminated from the equations of motion. This adiabatic elimination is

described in the following subsection.

Note that ν, κ are the width of the oscillator vibration amplitude as a function

of frequency. The rotating wave (or energy conserving) approximation is only valid

if ω0 − ω1 is much greater than the linewidth of the oscillators, i.e., ω0 − ω1 À ν, κ.

This condition not only allows us to do the rotating approximation but also prevents



99

tunnelling of phonons between two oscillators.

6.2.2 Adiabatic elimination

For a strongly damped ancilla (κ À ν) the ancilla state rapidly relaxes to a displaced

thermal state, i.e., the thermal state where it is centred at the driven state instead of

the vacuum state. So it will be useful to transform the equations of motion in such

a way as to make a perturbative expansion around this steady state. The basic idea

is to transform the origin of phase space such that the ancilla steady state for the

transformed master equation is a thermal state. This transformation will essentially

remove the driving term in the master equation. This transformation was utilised

by Wiseman and Milburn [41] in their study of a driven harmonic oscillator at zero

temperature. Following their approach, we use the displacement operator, D(α) =

exp
[

αa†
1 − α∗a1

]

with α = −iE/κ. The transformed system state is ρ̃ ≡ D(α)ρD(α)†

and we may write the master equation for ρ̃:

˙̃ρ = D(α)ρ̇D(α)†

= −i |α|2 λ01

[

a†
0a0, ρ̃

]

− iλ01

[

a†
0a0a

†
1a1, ρ̃

]

− iλ01

[

a†
0a0

(

αa†
1 + α∗a1

)

, ρ̃
]

+ ν(N0 + 1)
(

2a0ρ̃a†
0 − a†

0a0ρ̃ − ρ̃a†
0a0

)

+ νN0

(

2a†
0ρ̃a0 − ρ̃a0a

†
0 − a0a

†
0ρ̃

)

. + κ(N1 + 1)
(

2a1ρ̃a†
1 − a†

1a1ρ̃ − ρ̃a†
1a1

)

+ κN1

(

2a†
1ρ̃a1 − a1a

†
1ρ̃ − ρ̃a1a

†
1

)

. (6.59)

In this master equation the ancilla oscillator simply damps towards its displaced origin

but the excitation of the ancilla oscillations leads to a frequency shift of the system

oscillator described by the first three Hamiltonian terms of this equation. The first

term is due to the classical mean value of the ancilla oscillator energy and is just

a shift in the system oscillation frequency, and thus we may move to an interaction

picture at this frequency. This is the most convenient interaction picture in which

to perform the adiabatic elimination. The next two terms describe the effect of the

fluctuations in the ancilla excitation. The thermal coupling terms (the last two lines)
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in the master equation are the same as before.

We extend the techniques of Wiseman and collaborators [41, 42] to the case of a

bath at nonzero temperature by expanding the system-ancilla density matrix pertur-

batively about the ancilla thermal state. The adiabatic elimination will hold when

the ancilla is sufficiently strongly damped. These constraints can be understood from

our assumption and Eq. (6.59) as the damping rate of the ancilla must be much larger

than other terms to have a rapid decay of the ancilla into a steady state. Thus, the

adiabatic elimination is valid in a strongly damped regime such that

λ01 |α|
κ

,
ν

κ
' ε ¿ 1. (6.60)

Note that this means we are assuming that the ancilla oscillator relaxes faster than

the system oscillator as well as that the non-linear dynamics are weak compared to

the damping of the ancilla oscillator. For the consistency of the following treatment it

will also be necessary to have λ01N1/κ ' ε2. This requirement follows from the second

term (non-linear coupling term) in the master equation, and we will explain in detail

shortly. This constraint can be achieved consistent with Eq. (6.60), for example,

by leaving α finite and choosing N1, λ01/κ ' ε, a regime of low temperature and

moderate non-linearity. The approximations are also valid at arbitrary temperature

in the limit of strong driving and weak non-linearity such that λ01/κ ' ε2 and α ' ε−1

hold3. Here the scaling of the driving strength is chosen to preserve the measurement

sensitivity which will scale with λ01α/κ. In this regime the frequency shift of the

system oscillator becomes large.

As mentioned above the readout oscillator is nearly in a thermal state about the

shifted position and we expand ρ̃ (with a similar expression for ˙̃ρ) in the form

ρ̃ = ρ0 ⊗ ρN1 + ρ1 ⊗ a†
1ρN1 + ρ1† ⊗ ρN1a1 + ρ2 ⊗ a†

1ρN1a1

+ ρ2′ ⊗ a†2
1 ρN1 + ρ2′† ⊗ ρN1a

2
1 + O

(

ε3
)

. (6.61)

3However, the driving strength is chosen in such a way to avoid the bi-stability region caused by
the anharmonicity of the oscillator, see Chapter 8.
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where ρNi
is the thermal density matrix for the ancilla and ρi acts on the system

oscillator with the subscripts indicating orders of magnitude in ε. The scalings of

the different parameters with ε have been chosen to guarantee the consistency of

this expansion. The thermal state of an oscillator in terms of the average excitation

number N1 is

ρN1 =
∑

n=0

1

1 + N1

(

N1

1 + N1

)n

|n〉〈n|. (6.62)

Note that we have restricted Eq. (6.61) to normal ordered terms using the following

identities:

ρN1a
†
1 =

N1

N1 + 1
a†

1ρN1 , (6.63)

a1ρN1 =
N1

N1 + 1
ρN1a1. (6.64)

Using these identities, the term that contains a1ρN1a
†
1 and all other anti-normal terms

can be expressed in terms of normal ordered terms.

The thermal state in Eq. (6.62) is the steady state solution of the master equation,

ρ̇ = Lκ,N1 [ρ], for an oscillator with lowering operator a1

ρ̇ = Lκ,N1 [ρ] ≡ κ(N1 + 1)
(

2a1ρa†
1 − a†

1a1ρ − ρa†
1a1

)

+ κN1

(

2a†
1ρa1 − a1a

†
1ρ − ρa1a

†
1

)

. (6.65)

Note that

Tr1(ρN1) = Tr1

(

∑

n

1

1 + N1

(

N1

1 + N1

)n

|n〉 〈n|
)

= 1,

Tr1(a
†
1ρN1a1) = Tr1

(

∑

n

1

1 + N1

(

N1

1 + N1

)n

(n + 1) |n + 1〉 〈n + 1|
)

(6.66)

= N1 + 1, (6.67)
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so that the system density matrix after tracing out the ancilla state is

ρs = Tr1 {ρ} = ρ0 + (1 + N1)ρ2. (6.68)

This form actually reduces to the form presented by Wiseman and Milburn [41] in

the zero temperature limit N1 → 0.

Now we start to eliminate the ancilla operators from Eq. (6.59). Firstly we

separate the master equation into four parts

˙̃ρ = ρ̇P1 + ρ̇P2 + ρ̇P3 + ρ̇P4, (6.69)

where

ρ̇P1 = Lκ,N1 [ρN1 ] , (6.70)

ρ̇P2 = −iλ01

[

a†
0a0a

†
1a1, ρ̃

]

, (6.71)

ρ̇P3 = −iλ01

[

a†
0a0

(

αa†
1 + α∗a1

)

, ρ̃
]

, (6.72)

ρ̇P4 = −i |α|2 λ01

[

a†
0a0, ρ̃

]

+ ν(N0 + 1)
(

2a0ρ̃a†
0 − a†

0a0ρ̃ − ρ̃a†
0a0

)

+ νN0

(

2a†
0ρ̃a0 − ρ̃a0a

†
0 − a0a

†
0ρ̃

)

, (6.73)

and we have defined

Lκ,Ni
[ρNi

] ≡ κ(N1 + 1)
(

2a1ρ̃a†
1 − a†

1a1ρ̃ − ρ̃a†
1a1

)

+ κN1

(

2a†
1ρ̃a1 − a1a

†
1ρ̃ − ρ̃a1a

†
1

)

. (6.74)

Equation (6.73) does not need adiabatic elimination since it is already in a reduced

form (i.e., involving the system operators only). We now evaluate each of the remain-

ing three terms.
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6.2.2.1 Evaluation of ρ̇P1

We change each term to a normal ordered form by using Eq. (6.64) together with

the commutator relation,
[

a1, a
†
1

]

= 1. This will lead to a number of terms that we

evaluate in turn. To do this we substitute the expansion form for ρ̃, Eq. (6.61) into

Eq. (6.70).

For example, the term Lκ,N1

[

a†
1ρN1a1

]

,

Lκ,N1

[

a†
1ρN1a1

]

= κ(N1 + 1)
(

2a1a
†
1ρN1a1a

†
1 − a†

1a1a
†
1ρN1a1 − a†

1ρN1a1a
†
1a1

)

+ κN1

(

2a†
1a

†
1ρN1a1a1 − a1a

†
1a

†
1ρN1a1 − a†

1ρN1a1a1a
†
1

)

(6.75)

can be transformed into a normal ordered form

Lκ,N1

[

a†
1ρN1a1

]

= −2κa†
1ρN1a1 + 2κ(N1 + 1)ρN1 . (6.76)

For some cases we will need to disregard the off-diagonal terms further away from the

diagonal terms than the expansion range of the ancilla state since any state further

away from the diagonal decays much faster, at an exponential rate. (We will analyse

decoherence in detail in § 6.3).

Similarly, we can derive the following results:

Lκ,N1 [ρN1 ] = 0, (6.77)

Lκ,N1 [ρN1a1] ' −κρN1a1, (6.78)

Lκ,N1

[

a†
1ρN1

]

' −κa†
1ρN1 , (6.79)

Lκ,N1 [ρN1a1a1] ' −2κρN1a1a1, (6.80)

Lκ,N1

[

a†
1a

†
1ρN1

]

' −2κa†
1a

†
1ρN1 . (6.81)
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Then from Eq. (6.70) ρ̇P1 is

ρ̇P1 = ρ0 ⊗ Lκ,N1 [ρN1 ] + ρ1 ⊗ Lκ,N1

[

a†
1ρN1

]

+ ρ1† ⊗ Lκ,N1 [ρN1a1]

+ ρ2 ⊗ Lκ,N1

[

a†
1ρN1a1

]

+ ρ2′ ⊗ Lκ,N1

[

a†
1a

†
1ρN1

]

+ ρ2′† ⊗ Lκ,N1 [ρN1a1a1]

' −κρ1a
†
1ρN1 − κρ1†ρN1a1 − 2κρ2a

†
1ρN1a1 + 2κ(N1 + 1)ρ2ρN1

− 2κρ2′a
†
1a

†
1ρN1 − 2κρ2′†ρN1a1a1 + O

(

ε3
)

. (6.82)

Writing Eq. (6.82) in the form of Eq. (6.61) gives

ρ̇P1
0 = 2κ(N1 + 1)ρ2ρN1 , (6.83)

ρ̇P1
1 = −κρ1, (6.84)

ρ̇P1
1† = −κρ1† , (6.85)

ρ̇P1
2 = −2κρ2, (6.86)

ρ̇P1
2′ = −2κρ2′ , (6.87)

ρ̇P1
2′† = −2κρ2′† . (6.88)

6.2.2.2 Evaluation of ρ̇P2 = −iλ01

[

a†
0a0a

†
1a1, ρ

]

Consider the term of ρ that is the lowest order in ε, i.e., ρ0 ⊗ ρN1 . Evaluating the

commutator −iλ01

[

a†
0a0a

†
1a1, ρ

]

results in

−iλ01

[

a†
0a0a

†
1a1, ρ0 ⊗ ρN1

]

= −iλ01

[

a†
0a0ρ0 ⊗ a†

1a1ρN1 − ρ0a
†
0a0 ⊗ ρN1a

†
1a1

]

= −iλ01
N1

N1 + 1

[

a†
0a0ρ0 − ρ0a

†
0a0

]

⊗ a†
1ρN1a1. (6.89)

Since the ancilla operators appearing in this form are a†
1ρN1a1, taking a trace of Eq.

(6.89) will result in terms contributing to the evaluation of ρ̇P2
2 . Then we can write

the expression for ρ̇2 including both ρ̇P2 and also ρ̇P1 from Eq. (6.87)

ρ̇2 = −iλ01N1

[

a†
0a0, ρ0

]

− 2κρ2 + other O
(

ε2
)

terms, (6.90)
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where “other terms” contain N1

[

a†
0a0, ρi

]

with ρi higher order of ρ components, and

terms coming from evaluating ρ̇P3
2 . Here we are interested in the lowest order term

coming from −iλ01

[

a†
0a0a

†
1a1, ρ

]

. In the steady state, ρ2 would have a solution

ρ2 = −i
λ01

2κ
N1

[

a†
0a0, ρ0

]

+
1

2κ
other O

(

ε2
)

terms. (6.91)

Since ρ2 is, by definition, of order of ε2, we must have λ01N1/κ ' O (ε2) to be

consistent. Thus we can see that the other terms in Eq. (6.90) are actually O (ε2) or

higher, so that

ρ̇P2
2 ' −iλ01N1

[

a†
0a0, ρ0

]

. (6.92)

6.2.2.3 Evaluation of ρ̇P3 = −iλ01

[

a†
0a0

(

αa†
1 + α∗a1

)

, ρ
]

The same reasoning as for the ρ̇P2 evaluation can be applied. Since we have

ρ̇i = −Cκρi + other O
(

ε2
)

terms, (6.93)

where C = 2 for diagonal terms and 1 for off-diagonal terms, the term obtained from

the evaluation of ρ̇P3 will lead to components of ρ with the coefficient λ01α/Cκ or

λ01α
∗/Cκ in steady state, which are O (ε). This implies that we need to take terms

only up to first order in ρ and can discard the higher order terms to give an expression

up to O (ε2).

In order to evaluate −iλ01

[

a†
0a0

(

αa†
1 + α∗a1

)

, ρ
]

, we need to calculate αa†
1ρ̃,

α∗a1ρ̃, ρ̃αa†
1, and ρ̃α∗a1. The first term

αa†
1ρ̃ = αρ0 ⊗ a†

1ρN1 + αρ1 ⊗ a†
1a

†
1ρN1 + αρ1† ⊗ a†

1ρN1a1

+ αρ2 ⊗ a†
1a

†
1ρN1a1 + αρ2′ ⊗ a†

1a
†
1a

†
1ρN1 + αρ2′† ⊗ a†

1ρN1a
2
1 (6.94)

is already normal ordered. So removing the off-diagonal terms that are further away
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from the expanded range as done in the evaluations of ρ̇P1
2 and ρ̇P2

2 , we obtain

αa†
1ρ̃ ' αρ0 ⊗ a†

1ρN1 + αρ1 ⊗ a†
1a

†
1ρN1 + αρ1† ⊗ a†

1ρN1a1. (6.95)

For the term α∗a1ρ̃ we have

α∗a1ρ̃ = α∗ρ0 ⊗ a1ρN1 + α∗ρ1 ⊗ a1a
†
1ρN1 + α∗ρ1† ⊗ a1ρN1a1

+ α∗ρ2 ⊗ a1a
†
1ρN1a1 + α∗ρ2′ ⊗ a1a

†
1a

†
1ρN1 + α∗ρ2′† ⊗ a1ρN1a

2
1, (6.96)

which can be manipulated to give a normal ordered form

α∗a1ρ̃ = α∗ρ1 ⊗ ρN1 + α∗

[

N1

N1 + 1
ρ0 + ρ2

]

ρN1a1 + 2α∗ρ2′ ⊗ a†
1ρN1

+ α∗ N1

N1 + 1
ρ1 ⊗ a†

1ρN1a1 + α∗ N1

N1 + 1
ρ1† ⊗ ρN1a1a1. (6.97)

Similarly for ρ̃αa†
1, we obtain

ρ̃αa†
1 = αρ1† ⊗ ρN1 + α

[

N1

N1 + 1
ρ0 + ρ2

]

⊗ a†
1ρN1 + 2αρ2′† ⊗ ρN1a1

+ α
N1

N1 + 1
ρ1 ⊗ a†2

1 ρN1 + α
N1

N1 + 1
ρ1† ⊗ a†

1ρN1a1. (6.98)

Finally for ρ̃α∗a1, no manipulation is necessary since it is already normal ordered and

we have

ρ̃α∗a1 = α∗ρ0 ⊗ ρN1a1 + α∗ρ1 ⊗ a†
1ρN1a1 + α∗ρ1† ⊗ ρN1a1a1. (6.99)

To calculate Eq. (6.72) we need the following combinations

αa†
1ρ̃ + α∗a1ρ̃ = α∗ρ1 ⊗ ρN1 + [αρ0 + 2α∗ρ2′ ] ⊗ a†

1ρN1

+ α∗

[

N1

N1 + 1
ρ0 + ρ2

]

ρN1a1 +

[

αρ1† + α∗ N1

N1 + 1
ρ1

]

⊗ a†
1ρN1a1

+ αρ1 ⊗ a†
1a

†
1ρN1 + α∗ N1

N1 + 1
ρ1† ⊗ ρN1a1a1, (6.100)
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ρ̃αa†
1 + ρ̃α∗a1 = αρ1† ⊗ ρN1 + α

[

N1

N1 + 1
ρ0 + ρ2

]

⊗ a†
1ρN1

+ [2αρ2′† + α∗ρ0] ⊗ ρN1a1 +

[

α
N1

N1 + 1
ρ1† + α∗ρ1

]

⊗ a†
1ρN1a1

+ α
N1

N1 + 1
ρ1 ⊗ a†2

1 ρN1 + α∗ρ1† ⊗ ρN1a1a1. (6.101)

Applying the above results to calculate ρ̇P3 = −iλ01

[

a†
0a0

(

αa†
1 + α∗a1

)

, ρ
]

,

ρ̇P3 = −iλ01

[

α∗a†
0a0ρ1 − αρ1†a

†
0a0

]

⊗ ρN1

− iλ01

[

a†
0a0 [αρ0 + 2α∗ρ2′ ] − α

[

N1

N1 + 1
ρ0 + ρ2

]

a†
0a0

]

⊗ a†
1ρN1

− iλ01

[

α∗a†
0a0

[

N1

N1 + 1
ρ0 + ρ2

]

− [2αρ2′† + α∗ρ0] a
†
0a0

]

⊗ ρN1a1

− iλ01

[

αa†
0a0ρ1 − α

N1

N1 + 1
ρ1a

†
0a0

]

⊗ a†
1a

†
1ρN1

− iλ01

[

a†
0a0

[

αρ1† + α∗ N1

N1 + 1
ρ1

]

−
[

α
N1

N1 + 1
ρ1† + α∗ρ1

]

a†
0a0

]

⊗ a†
1ρN1a1

− iλ01

[

α∗ N1

N1 + 1
a†

0a0ρ1† + α∗ρ1†a
†
0a0

]

⊗ ρN1a1a1, (6.102)

which can be separated to have the form of Eq. (6.61)

ρ̇P3
0 = −iλ01

[

α∗a†
0a0ρ1 − αρ1†a

†
0a0

]

+ O
(

ε3
)

, (6.103)

ρ̇P3
1 = −iλ01

[

a†
0a0 [αρ0 + 2α∗ρ2′ ] − α

[

N1

N1 + 1
ρ0 + ρ2

]

a†
0a0

]

⊗ a†
1ρN1 + O

(

ε3
)

,

(6.104)

ρ̇P3
1† = −iλ01

[

α∗a†
0a0

[

N1

N1 + 1
ρ0 + ρ2

]

− [2αρ2′† + α∗ρ0] a
†
0a0

]

+ O
(

ε3
)

, (6.105)

ρ̇P3
2 = −iλ01

[

a†
0a0

[

αρ1† + α∗ N1

N1 + 1
ρ1

]

−
[

α
N1

N1 + 1
ρ1† + α∗ρ1

]

a†
0a0

]

+ O
(

ε3
)

,

(6.106)

ρ̇P3
2′ = −iλ01α

[

a†
0a0ρ1 −

N1

N1 + 1
ρ1a

†
0a0

]

+ O
(

ε3
)

, (6.107)

ρ̇P3
ρ
2′†

= −iλ01α
∗

[

N1

N1 + 1
a†

0a0ρ1† − ρ1†a
†
0a0

]

+ O
(

ε3
)

. (6.108)
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6.2.2.4 Adiabatically eliminating the ancilla operators

Combining ρ̇P1, ρ̇P2 and ρ̇P3 and defining this partial sum as

ρ̇P = ρ̇P1 + ρ̇P2 + ρ̇P3, (6.109)

we obtain

ρ̇P
0 = −iλ01

[

α∗a†
0a0ρ1 − αρ1†a

†
0a0

]

+ 2κ(N1 + 1)ρ2 + κO
(

ε3
)

, (6.110)

ρ̇P
1 = −iλ01

[

a†
0a0 [αρ0 + 2α∗ρ2′ ] − α

[

N1

N1 + 1
ρ0 + ρ2

]

a†
0a0

]

− κρ1 + κO
(

ε3
)

,

(6.111)

ρ̇P
1† = −iλ01

[

α∗a†
0a0

[

N1

N1 + 1
ρ0 + ρ2

]

− [2αρ2′† + α∗ρ0] a
†
0a0

]

− κρ1† + κO
(

ε3
)

,

(6.112)

ρ̇P
2 = −iλ01

[

a†
0a0

[

αρ1† + α∗ N1

N1 + 1
ρ1

]

−
[

α
N1

N1 + 1
ρ1† + α∗ρ1

]

a†
0a0

]

− 2κρ2 − iλ01
N1

N1 + 1

[

a†
0a0, ρ0

]

+ κO
(

ε3
)

, (6.113)

ρ̇P
2′ = −iλ01α

[

a†
0a0ρ1 −

N1

N1 + 1
ρ1a

†
0a0

]

− 2κρ2′ + κO
(

ε3
)

, (6.114)

ρ̇P
ρ
2′†

= −iλ01α
∗

[

N1

N1 + 1
a†

0a0ρ1† − ρ1†a
†
0a0

]

− 2κρ2′† + κO
(

ε3
)

. (6.115)

Notice that all off-diagonal terms have the form

ρ̇P
i =

∑

j

f (ρj) − Cρi, (6.116)

where i = 1, 2′ and C = 2κ for i = 2′ and C = κ for i = 1. When κ is large,

the solution to above equation quickly decays to the steady state. So we perform

adiabatic elimination by setting ρ̇2′ = ρ̇2′† = 0 and obtain the expressions for ρ2′ and
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ρ2′† :

ρ2′ = −i
λ01α

2κ

[

a†
0a0ρ1 −

N1

N1 + 1
ρ1a

†
0a0

]

+ O
(

ε3
)

, (6.117)

ρ2′† = −i
λ01α

∗

2κ

[

N1

N1 + 1
a†

0a0ρ1† − ρ1†a
†
0a0

]

+ O
(

ε3
)

. (6.118)

Similarly, using Eqs. (6.117, 6.118) and setting ρ̇1 = ρ̇1† = 0 we find the expressions

for ρ1 and ρ1† .

ρ1 = −i
λ01

κ

[

a†
0a0 [αρ0 + 2α∗ρ2′ ] − α

[

N1

N1 + 1
ρ0 + ρ2

]

a†
0a0

]

= −i
λ01

κ

[

αa†
0a0ρ0 − α

N1

N1 + 1
ρ0a

†
0a0

]

+ O
(

ε2
)

. (6.119)

ρ1† = −i
λ01

κ

[

α∗a†
0a0

[

N1

N1 + 1
ρ0 + ρ2

]

− [2αρ2′† + α∗ρ0] a
†
0a0

]

= −i
λ01

κ

[

α∗a†
0a0

N1

N1 + 1
ρ0 − α∗ρ0a

†
0a0

]

+ O
(

ε2
)

. (6.120)

We now evaluate the expression Eq. (6.68) using Eqs. (6.117)-(6.120) together with

Eqs. (6.110, 6.113). After manipulating terms, we obtain

Tr1

{

ρ̇P
}

= −λ2
01 |α|2 (1 + 2N1)

κ

[

a†
0a0,

[

a†
0a0, ρ

]]

− iλ̃01N1

[

a†
0a0, ρ

]

+ κO
(

ε3
)

.

(6.121)

Adding ρ̇P4, the full expression Eq. (6.109) and replacing ρ0 with ρs

ρ̇s = −λ2
01 |α|2 (1 + 2N1)

κ

[

a†
0a0,

[

a†
0a0, ρs

]]

− i
{

ω0 + λ01(|α|2 + N1)
}

[

a†
0a0, ρs

]

+ ν (N0 + 1)
(

2a0ρsa
†
0 − a†

0a0ρs − ρsa
†
0a0

)

+ νN0

(

2a†
0ρsa0 − ρsa0a

†
0 − a0a

†
0ρs

)

. (6.122)

Equation (6.122) is the master equation for the system density matrix. The first
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term is associated with the measurement backaction and induces diffusion in the

oscillator phase as discussed in the next subsection. Note that our scheme is a QND

measurement and the backaction does not cause changes in the system number state.

The second term in Eq. (6.122) arises from a harmonic oscillator Hamiltonian for

the system oscillator with an energy shift due to the mean excitation of the ancilla.

There are two contributions; one from the driving term E(a1 + a†
1) and the second

from the thermal excitation of the ancilla N1. This means that the QND measurement

counts phonons of the mechanical oscillator with the modified oscillation frequency

ω0 +λ2
01(|α|2 +N1). The last two terms in Eq. (6.122) are associated with the system-

environment coupling, which may cause transitions between the number states of the

system oscillator.

6.3 Analysis of the master equation

We now analyse the first two terms of the following master equation. For convenience,

let us disregard the thermal bath - system interaction (i.e., set ν = 0 in Eq. (6.122))

and write the master equation as

dρs

dt
= −i (ω0 + ∆ω)

[

a†
0a0, ρs

]

− Γ
[

a†
0a0,

[

a†
0a0, ρs

]]

, (6.123)

where

∆ω ≡ λ01(|α|2 + N1), (6.124)

Γ ≡ λ2
01 |α|2 (1 + 2N1)

κ
. (6.125)
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The equations of motion for the matrix elements are

d 〈n |ρs|m〉
dt

= −i (ω0 + ∆ω)
{

〈n| a†
0a0ρv |m〉 − 〈n| ρsa

†
0a0 |m〉

}

+ Γ

{

〈n| 2a†
0a0ρsa

†
0a0 |m〉 − 〈n|

(

a†
0a0

)2

ρs |m〉 − 〈n| ρs

(

a†
0a0

)2

|m〉
}

=
[

−i (ω0 + ∆ω) (n − m) − Γ (n − m)2] 〈n| ρs |m〉 , (6.126)

and the solution to the differential equation above is

〈n |ρs (t)|m〉 = exp [−i (ω0 + ∆ω) (n − m) t] exp
[

−Γ (n − m)2 t
]

〈n| ρs |m〉 . (6.127)

From the equation above, we notice several features: Firstly the second term in

Eq. (6.123) produces no change in number state. Secondly, this term causes off-

diagonal elements to decay away to zero. This decay of off-diagonal term is known as

decoherence. Since the decoherence rate is proportional to Γ (n − m)2, the further a

term is from the diagonal, the faster it decays.

Next, we show that the term Γ
[

a†
0a0,

[

a†
0a0, ρs

]]

leads to phase diffusion. For

simplicity, consider a master equation consisting of just this term:

dρs

dt
= −Γ

[

a†
0a0,

[

a†
0a0, ρs

]]

. (6.128)

To analyse this master equation, it is convenient to change the representation to a

coherent state form. Note that any operator can be expressed in the coherent states

basis |α〉, labelled by the complex number α. In fact it is well-known that because

of the overcompleteness every density operator can be uniquely represented in terms

of the diagonal elements by just ϕ (α) = 〈α |ρ|α〉. Here we use the Q-representation

which generates a quasi-probability density of the system. The Q function is defined
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as

Q (α, α∗) ≡ 1

π
〈α |ρ|α〉 , (6.129)

∫

d2αQ (α, α∗) = 1. (6.130)

The mapping between Q (α, α∗) and ρ is one to one [43] due to the overcompleteness

of the coherent states. To evaluate the commutators in Eq. (6.128) we need to know

how the creation and annihilation operators act on a coherent states. First we have

a |α〉 = α |α〉 , (6.131)

〈α| a† = α∗ 〈α| . (6.132)

The results for a† |α〉 and 〈α| a are not so trivial, and Bergmann states are usually

used [43]. They are defined as

‖α〉 ≡ e
1
2
|α|2 |α〉 =

∞
∑

n=0

αn

√
n!

|n〉 , (6.133)

so that

a† ‖α〉 =
∑

n

αn

√
n!

√
n + 1 |n + 1〉 =

∂

∂α
‖α〉 , (6.134)

〈α‖ a ≡ ∂

∂α∗
〈α‖ . (6.135)

In terms of the Bergmann states, the Q function can be written as

Q (α) = 〈α |ρ|α〉 = e−|α|2 〈α ‖ρ‖α〉 . (6.136)

The operator correspondence of α, α∗ in terms of Q function are

〈α |ρa|α〉 = α 〈α |ρ|α〉 = αQ, (6.137)
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〈α |aρ|α〉 = e−|α|2 ∂

∂α∗
〈α ‖ρ‖α〉 =

(

∂

∂α∗
+ α

)

Q. (6.138)

The Hermitian conjugate terms can be derived in a similar manner. Thus, we obtain

the following correspondence:

aρ ↔
(

α +
∂

∂α∗

)

Q (α, α∗) , (6.139)

a†ρ ↔ α∗Q (α, α∗) , (6.140)

ρa ↔ αQ (α, α∗) , (6.141)

ρa† ↔
(

α∗ +
∂

∂α

)

Q (α, α∗) . (6.142)

Using the above relations, we can derive the following:

〈

α
∣

∣a†aρ
∣

∣ α
〉

=

(

α∗ ∂

∂α∗
+ α∗α

)

Q, (6.143)

〈

α
∣

∣ρa†a
∣

∣ α
〉

=

(

αα∗ + α
∂

∂α

)

Q. (6.144)

Then Eq. (6.128) can be transformed into

∂Q

∂t
= Γ

[

2

(

α∗ ∂

∂α∗
(αα∗) + α∗ ∂

∂α∗

(

α
∂

∂α

)

+ |α|4 + α∗α2 ∂

∂α

)

〈α |ρ|α〉
]

+ Γ

[

−
(

α∗ ∂

∂α∗
+ α∗α

)

〈α |ρ|α〉 − α∗2 〈α |aaρ|α〉
]

+ Γ

[

−
(

αα∗ + α
∂

∂α

)

〈α |ρ|α〉 − α2
〈

α
∣

∣ρa†a†
∣

∣ α
〉

]

= Γ

[

−α∗ ∂Q

∂α∗
− α

∂Q

∂α
+ 2 |α|2 ∂2Q

∂α∗∂α
− α∗2 ∂Q

∂α∗2
− α2 ∂Q

∂α2

]

. (6.145)

Now express α in terms of the intensity I and phase θ

α (I, θ) =
√

Ieiθ. (6.146)
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We use the chain rule to write the derivatives in Eq. (6.146) in terms of θ and I,

∂Q

∂α
=

∂Q

∂θ

∂θ

∂α
+

∂Q

∂I

∂I

∂α
(6.147)

∂2Q

∂α2
=

∂

∂θ

(

∂Q

∂θ

∂θ

∂α
+

∂Q

∂I

∂I

∂α

)

∂θ

∂α
+

∂

∂I

(

∂Q

∂θ

∂θ

∂α
+

∂Q

∂I

∂I

∂α

)

∂I

∂α
(6.148)

...etc. (6.149)

The following trick simplifies the evaluation of the derivatives of θ and I with respect

to α and α∗

αα∗ = I ⇒ ∂I

∂α
= α∗ =

√
Ie−iθ, (6.150)

α

α∗
= e2iθ ⇒ ln

( α

α∗

)

= 2iθ ⇒ ∂θ

∂α
=

−i

2α
=

−ie−iθ

2
√

I
. (6.151)

The final result is
∂Q

∂t
= Γ

∂2Q

∂θ2
. (6.152)

Therefore, the term −Γ
[

a†
0a0,

[

a†
0a0, ρ

]]

gives a diffusion process with the diffusion

coefficient Γ. The diffusion coefficient is important as the quantity reflects the mea-

surement strength and thus projection time as we will see in the next chapter.
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Chapter 7

Measurement statistics and
stochastic dynamics - the
stochastic master equation

7.1 Measurements and trajectories overview

In an experiment the current will be measured and this signal contains information

about the system phonon number because of correlations between the current and

the state of the system oscillator. In order to analyse this, it is necessary to have

a description of the state of the current that accounts for the interaction with the

ancilla oscillator.

Using terminologies taken from the scattering theory discussed in Part I, we cal-

culate the current out-field (after interaction with the ancilla) in terms of the current

in-field and the interaction of the in-field with the ancilla. It is then possible to

express the correlation functions of the measured current in terms of appropriate

correlation functions of the output field, which may by means of the input-output

relation be calculated from the correlation functions of the ancilla and the thermal

input field. Quantum mechanics also allows us to determine the state of the system

conditioned on the measured current I(t). The von Neumann projection postulate

says that after a measurement a quantum system in some possibly mixed initial state

is projected onto the eigenstate corresponding to the measurement outcome. In our

system and many others, including those familiar in quantum optics, the projection
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is onto states of a large semi-classical measurement apparatus weakly coupled to the

quantum system of interest.

The theory of quantum trajectories [44, 45, 46] has been developed to deal with

these weak projections and to describe the state of the system at time t + dt given

the state at time t and the infinitesimal change in the measurement current dI =

I(t + dt) − I(t). The effect on the evolution equation for the system is derived

precisely by projecting the output field of the ancilla onto the appropriate current

eigenstate.

The measurement process will tend to force the system towards a pure number

state and we will be able to determine the number state of the system. The time-

scale for this to occur will depend on the coupling of the system to the measurement

apparatus, which is in turn connected to the sensitivity of the measurement.

On the other hand, the coupling of the system to a thermal bath will lead it to

absorb and emit energy from the bath. So in order to determine which number state

the system is in and track its evolution, it must be possible to distinguish between

one number state and the next in a time that is short compared to the time-scale

over which phonons are absorbed from and emitted into the thermal bath.

7.2 The measurement bath operator description of

the current

We now derive an expression for the measurement current. The measurement bath

Hamiltonian Hbath is undisturbed at t < t0. At time t0, the interaction with the

system is turned on and we calculate the state of the bath at later time.

Consider the ancilla and measurement bath interaction. The Hamiltonian in this

case is

H = Hbath + Hint, (7.1)
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The free Hamiltonian for the measurement bath is from Eq. (6.17)

Hbath =
∑

n

~ωd,nb
†
d,nbd,n. (7.2)

where bd,n is the measurement bath operator and the interaction Hamiltonian is from

Eqs. (6.17) and (6.19)

Hint = i~
∑

n

gd (ωn)
(

b†d,na1 − bd,na
†
1

)

, (7.3)

where a1 is the ancilla oscillator operator and gd (ωn) is the coupling strength as

defined in the previous chapter.

Using the Heisenberg equation of motion

dÔ

dt
= − i

~

[

Ô,H
]

, (7.4)

for an operator Ô, we obtain

dbd,n

dt
= − i

~

∑

n′

[

bd,n, ~ωd,n′b†d,n′bd,n′ + i~g (ωn′)
(

b†d,n′a1 − bd,n′a†
1

)]

= −iωnbd,n + gd (ωn) a1 (t) . (7.5)

Integrating dbd,n/dt results in

bd,n (t) = C0e
−iωnt + e−iωnt

∫ t

t0

gd (ωn) eiωnt′a1 (t′) dt′, (7.6)

and the initial condition bd,n (t) = bd,n (t0) at t = t0 gives

bd,n (t0) = C0e
−iωnt0 ⇒ C0 = bd,n (t0) eiωnt0 . (7.7)

Thus we can write
∑

n bd,n (t) which appears in the expression for the current Eq.
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(6.16) as

∑

n

bd,n (t) =
∑

n

bd,n (t0) e−iωn(t−t0) +

∫ t

t0

∑

n

gd (ωn) e−iωn(t−t′)a1 (t′) dt′. (7.8)

When gd (ωn) varies smoothly around the ancilla oscillation frequency ω1, we can

approximate the discrete frequencies by a continuum. Then the sum can be expressed

in integral form in a similar manner to the one presented in Eq. (6.43):

∑

n

gd (ωn) =

∫ ∞

0

ρds (ω) g (ω) dω, (7.9)

where ρds (ω) is the density of states at frequency ω as before. Writing a1 (t′) in the

interaction picture a1 (t′) e−iω1t′ , Eq. (7.8) can be written as

∑

n

bd,n (t) =
∑

n

bd,n (t0) e−iωn(t−t0)

+ e−iω1t

∫ t

t0

∫ ∞

0

ρds (ω) gd (ω) e−i(ω−ω1)(t−t′)a1 (t′) dωdt′. (7.10)

The expression

∫ ∞

0

ρds (ω) gd (ω) e−i(ω−ω1)(t−t′)dω = M (t − t′) (7.11)

is the memory function of the noise since it makes the result at time t depends on the

value of a1 (t′) for previous times. Because ρds (ω) gd (ω) is a slowly varying function

of frequency, the memory function goes to zero on a time scale which is much less

that the time over which a1 (t′) changes in the interaction picture. Then
∑

n bd,n (t)

has a short memory, thus we can replace a1 (t′) by a1 (t). So we can rewrite Eq. (7.10)

as
∑

n

bd,n (t) =
∑

n

bd,n (t0) e−iωn(t−t0) + a1 (t) e−iω1t

∫ t

t0

M (t − t′) dt′. (7.12)
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If we let t0 = −∞, then the second term in Eq. (7.12) becomes

a1 (t) e−iω1t

∫ t

t0

∫ ∞

0

dt′dωρds (ω) gd (ω) e−i(ω−ω1)(t−t′)

= a1 (t) e−iω1t

∫ ∞

0

dτ

∫ ∞

0

dωρds (ω) gd (ω) ei(ω−ω1)τ . (7.13)

Then letting ε = ω − ω1 and integrating, we obtain

= a1 (t) e−iω1t

∫ ∞

−∞

dερds (ε + ω1) gd (ε + ω1) e−i(ε+ω1)t

[

πδ (ε) + iP

(

1

ε

)]

' a1 (t) e−iω1tπρds (ω1) gd (ω1) , (7.14)

where we have used the same integration technique as in 6.2.1.1. Using

µ ≡ πρds (ω1) |gd (ω1)|2 , (7.15)

as in Eq. (6.55) and changing the interaction form of a1 (t) e−iω1t back to the Schrödinger

form, Eq. (7.12) becomes

∑

n

bd,n (t) =
∑

n

bd,n (t0) e−iωn(t−t0) +

√

πρds (ω1)

2

√

2µa1 (t) . (7.16)

The measurement current is, from Eqs. (6.16) and (7.16),

I (t) =
∑

n

(

bd,n (t) + b†d,n (t)
)

=

√

πρds (ω1)

2

√

2µ
[

a1 (t) + a†
1 (t)

]

+
∑

n

[

bd,n (t0) + b†d,n (t0)
]

e−iωn(t−t0).

(7.17)

The second term is the noise which depends only on the initial bath operators with the

time evolution e−iωn(t−t0) and can be more readily calculated from the rms amplitude

of the noise than directly calculating from all the combinations of correlations of

bd,n, b
†
d,n, a1, a

†
1. We will derive it in the next section. Assuming the bath is initially
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in equilibrium and the bath correlation at t = t0 is

〈bn (t0)〉 =
〈

b†n (t0)
〉

= 0, (7.18)

the average current is

〈I (t)〉 =

√

πρds (ω1)

2

√

2µ
〈

a1 (t) + a†
1 (t)

〉

. (7.19)

Before moving onto the next section, we could relate our results just derived to the

input-output formalism used in quantum optics: Changing bd,n (t) to the continuum

form using Eq. (6.43), we obtain

∫ ∞

0

√

ρds (ω)b (ω) dω =

∫ ∞

0

√

ρds (ω)b (ω; t0) e−iω(t−t0)dω +

√

πρds (ω1)

2

√

2µa1 (t)

(7.20)

Since we are interested in time dependences that are slow, the integral is dominated

by ω near ω1. Thus we may take the slowly varying density of states outside the

integral and divided the equation above by
√

ρds (ω1). Then

1√
2π

∫ ∞

0

b (ω) dω =
1√
2π

∫ ∞

0

b (ω; t0) e−iω(t−t0)dω +

√
2µ

2
a1 (t) . (7.21)

In quantum optics, Eq. (7.21) is known as an alternative form of the quantum

Langevin equation using the input-output formalism and has been derived from a

different point of view using different language [43].

7.3 Quantum trajectories

7.3.1 Background on quantum trajectories

In order to observe quantum phenomena, we need to connect quantum mechanical

microscopic events to a (semi-)classical macroscopic quantity of a measurement ap-

paratus. The model we have described is an indirect measurement of the excitation
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of the system oscillator. Both the system and ancilla oscillators are coupled to large

thermal environments that lead to irreversible dynamics in the Markov and rotating

wave approximations. In the preceding treatment the state of the baths was averaged

over (or traced out) to lead to a master equation describing the state of the system

oscillator alone.

Quantum trajectories give a method of calculating the state of the system condi-

tioned on the measured current. Specifically if projective measurements are made on

the bath, von Neumann projections allow us to calculate the corresponding effect on

the system state.

The state of the system prior to the measurement determines the distribution of

the values of the current I = dQ/dt. So it is possible to perform simulations of the

experiment by picking the increment in the charge transported by the measurement

current dQ(t) at random from this distribution at each time-step.

The quantum trajectory equations allow us to provide a means of determining

the state of the system conditioned on a given set of measurement outcomes. In

addition, the quantum trajectory equations allow us to perform a simulation by pick-

ing the measurements I(t) with the correct probability distribution and following

the corresponding evolution of the system state. This results in a stochastic differ-

ential equation for the state evolution and can be used to simulate an ensemble of

experiments. The randomness in the measurement results corresponds to a white

noise background to the signal arising from intrinsic thermal noise. In addition there

maybe apparatus intrinsic noise such as the circuit noise.

It is also interesting to mention that such simulations of idealised measurements

are also often performed for numerical reasons in quantum optics since it is possible

to calculate the trajectories corresponding to imaginary measurements for which the

conditioned state is always pure; then finding mean values from quantum trajectory

simulations by averaging over many trajectories. Pure states take less memory to

store and less computation to update than the mixed density matrix that appears

in the master equation. Thus the trajectory method is often more efficient than the

direct integration of the master equation. However, this aspect of trajectories is not
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discussed further in this thesis.

7.3.2 Quantum trajectory description of the measurement

7.3.2.1 Unravelling a master equation

The master equation of Eq. (6.122) provides a dynamical description of the system

as an evolving probability distribution. This equation provides the average quantities

that would be measured over an ensemble of experiments, and we have seen in the

previous chapter how each term in the Hamiltonian contributes to the system dynam-

ics. An ensemble of quantum systems is described by a density operator that uniquely

satisfies this deterministic differential master equation [51]. However, given a master

equation, there is no unique way, without further considering the physical processes,

by which one can obtain its corresponding stochastic master equation, which consists

of both a deterministic component (the master equation) and a stochastic component.

The process of obtaining a stochastic master equation from the master equation is

called ‘unravelling the master equation’. At present, two unravelling methods have

been developed and are commonly used: the quantum diffusion method and the quan-

tum jump method. There are some review/tutorial articles available (see for example,

[52] and [53].) and an unravelling for a hetrodyne detection (i.e., measuring both the

displacement and momentum of the system at the same time) using the quantum

diffusion method is introduced in Appendix B.3.

As long as the objective of a quantum trajectory is to obtain the solution to a

master equation, the method used does not matter. However, when a trajectory

is used to infer the outcome of an individual experiment, we need to consider the

physics associated with the actual measurement. Since our detection scheme uses

electrical current, an appropriate unravelling corresponds to projecting the state on

current eigenstates. In the rest of this chapter, we unravel the master equation

Eq. (6.122), based on our measurement scheme. Firstly, we derive the expression

for current I (t) including a stochastic component by calculating the variance of the

average current as mentioned in the last section. Then we obtain an expression for
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the evolution of the state of the system when the entangled system-bath states are

projected onto the current states of the bath modes, i.e., the system state conditioned

on the measurements.

7.3.2.2 Measurement current with a stochastic component

In § 6.1.2, we introduced the measurement scheme in which the displacement for the

ancilla oscillator mode is monitored through a magneto-motive detection. The current

operator in this scheme can be expressed in terms of the modes of the circuit as in Eq.

(6.16), where bd,n are Bose operators with the commutation rule
[

bd,m, b†d,n

]

= δmn.

The constant prefactor in the current expression depends on the details of the circuit,

which we have set to 1 in the previous chapter. In the absence of the interaction

with the ancilla, the free Hamiltonian is given by Eq. (7.2). Since the measurement

bath is considered large it is convenient to introduce a continuum form for the bath

operators. The description in terms of finally spaced modes of the bath with a smooth

density of states can be used to show that the bath has the Markov property of a

short memory. To exploit this it is useful to introduce a global bath operator with

time-local commutation rules. Consider

B (t) = Ceiω1t
∑

n

bd,n = Ceiω1t

∫ ∞

0

√

ρds (ωn)b (ω) dω. (7.22)

Here we have used Eq. (6.43) and extracted the time dependence eiω1t of the drive

and the resonant response of the ancilla since this is the predominant frequency of

the operators coupling to the ancilla. We now show, with an appropriate choice of

the constant C, that B (t) has the commutation rule

[

B (t) , B† (t)
]

= δ (t − t′) . (7.23)
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Substituting in the continuum representation, and the time dependence of the bd,n

given by the bath free Hamiltonian, we find

[

B (t) , B† (t)
]

= C2

∫ ∞

0

dω

∫ ∞

0

dω′
√

ρds (ω)
√

ρds (ω′)
[

b (ω) , b† (ω′)
]

e−i(ω−ω1)tei(ω′−ω1)t′ . (7.24)

Since we are interested in time dependences that are slow, the integral is dominated

by ω near ω1. Thus we may take the slowly varying density of states outside the

integral and switch the integration variable to ε = ω − ω1 we get

[

B (t) , B† (t)
]

= C2

∫ ∞

0

dωρds (ω) e−i(ω−ω1)(t−t′)

= ρds (ω1) C2

∫ ∞

−∞

dεe−iε(t−t′)

= ρds (ω1) C22πδ (t − t′) , (7.25)

where the lower integration limit −ω1 has been replaced by −∞. Now using the

fact that we want B (t) to satisfy the commutation rule Eq. (7.23), we find C =
√

2πρds (ω1) and

B (t) =
1

√

2πρds (ω1)
eiω1t

∑

n

bd,n. (7.26)

Thus the current operator becomes

I (t) =
∑

n

(

bd,n (t) + b†d,n (t)
)

=
√

2πρds (ω1)
(

B (t) + B† (t)
)

. (7.27)

To formulate the effect of the measurement bath on the ancilla and derive the

stochastic component of the system dynamics, we follow Wiseman’s discussion (Ref.

[47], § 4.4.1) of homodyne detection in quantum optics, which maps onto the same

form of Hamiltonian as ours. Note when comparing with Wiseman, the prefactor
√

2πρds (ω1) in our current expression Eq. (7.27) is not included in Wiseman’s ex-

pression.

The idea of the calculation is to consider the interaction of the ancilla with the
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bath at time t, represented by the operator B(t), over a small time interval ∆t. It

is supposed that each “element” in the time sequence of the bath B(t) is initially

described by a thermal state. Over the interval ∆t correlations with the ancilla build

up, so that the ancilla and bath states become weakly entangled. Measurement of

the current (i.e., the bath operator B (t) + B† (t)) then finds a value of the current

equal to an eigenvalue I of the current operator, with the corresponding eigenstate

|I〉, with a probability distribution P (I) given by the density matrix of the entangled

state in the usual way.

P (I) = 〈I |ρ (t + ∆t)| I〉 . (7.28)

The measurement also projects the density matrix onto the eigenstate |I〉

ρ → |I〉 〈I |ρ (t + ∆t)| I〉 〈I|
〈I |ρ (t + ∆t)| I〉 . (7.29)

Since the value of the current measured is a stochastic variable, this projection adds

a stochastic component to the evolution of the density matrix.

To follow the evolution over a time ∆t, where ∆t is much shorter the time-scale

of B (t), it is useful to introduce the operator

dB (t) =

∫ ∆t/2

−∆t/2

B (t) dt ' B (t) ∆t, (7.30)

which satisfies the commutation rule

[

dB (t) , dB† (t′)
]

= ∆t. (7.31)

The stochastic aspects of the density matrix evolution are most easily derived by

introducing the normalized operator dB̃ = dB/
√

∆t which has the nice commutation

rule,
[

dB̃ (t) , dB̃† (t′)
]

= 1. (7.32)

With this notation we can now formulate the ancilla-bath entangling and measure-

ment process. At time t the density matrix representing the ancilla and the segment
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of the measurement bath represented by dB (t) can be written as a direct product of

the system plus ancilla ρ (t) and bath ρb (t) density matrices

ρ̄ (t) = ρ (t) ⊗ ρb (t) , (7.33)

and ρb (t) is a thermal state. The interaction Hamiltonian in terms of the operators

B (t) , B† (t′) is from Eqs. (7.3) and (7.26),

Hint = i~
√

2πρds (ω1)gd (ω1)
(

B† (t) a1 − B (t) a†
1

)

= i~
√

2µ
(

B† (t) a1 − B (t) a†
1

)

, (7.34)

introducing the “damping rate” µ ≡ πρds (ω1) |gd (ω)|2 as in Eq. (6.53). Then, to

lowest order the evolution under the interaction gives

ρ̄ (t + dt) = ρ (t) ⊗ ρb (t) +
√

2µ
√

∆t
[

dB̃†a1 − a†
1dB̃, ρ (t) ⊗ ρb (t)

]

+ O (∆t) . (7.35)

The second term on the right hand side of this equation is the leading order term in

the weak entangling of the state, and will lead to the stochastic part of the density

matrix evolution. Note that using the dB̃ notation has made the O
(√

∆t
)

size of this

term explicitly apparent. To derive the deterministic part of the evolution equation

we would need to keep the O (∆t) terms, but since these are already known (the

master equation in the Lindblad form) we will not do this here.

The scheme is now to project this density matrix onto an eigenstate of dB̃ + dB̃†

chosen with a probability given by ρ̄ (t + dt). Because of the weak coupling of the

bath with the system, this will give a small additional contribution (actually propor-

tional to
√

∆t) to the system density matrix depending on the value of the current

measured. Since the combination of operators dB̃ + dB̃† is just the “displacement”

X of the harmonic oscillator represented by the Bose operator dB̃, this projection is

most easily done by writing the density matrix in Wigner form in terms of coherent
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states. As mentioned in the previous chapter, writing a density matrix in terms of

coherent state is not unique due to the overcompleteness of the coherent state ba-

sis. So far, we have introduced two such phase-space distributions (i.e., distribution

over real degrees of freedom): the P -function and the Q-function. The moments

of the P -function are the normal ordered moments of ρ, whilst the moments of the

Q-function are the anti-normal ordered moments of ρ. The Wigner function has sym-

metrically ordered moments that are the moments of displacement x and momentum

p. Since a measurement on the bath is equivalent to projecting the bath state onto

the displacement basis, the Wigner function is the most useful representation in this

context.

At time t, the bath oscillator dB̃ is in a thermal state and the distribution of X =

dB̃+dB̃† is a Gaussian centred at X = 0 and with width 2Nd +1 = coth (~ω1/2kBT ).

In terms of the Wigner representation, this state can be written as

W̃ (α, α∗; t) =
1

π (2Nd + 1) /2
exp

[

− |α|2
(2Nd + 1) /2

]

, (7.36)

where α, α∗ are c-numbers corresponding to the bath operators. At time t + ∆t and

to O
(√

∆t
)

the distribution of X after the evolution corresponding to the operation

Eq. (7.29) and (7.35) remains Gaussian [47] and with the same width, but now centred

around
√

2µTrρ(t)

{

a1 + a†
1

}

∆t. This means that the variable
√

∆tX is the Gaussian

random variable given by

√
∆tX =

√

2µ
〈

a1 + a†
1

〉

∆t +
√

2Nd + 1dW, (7.37)

with dW a Wiener increment with dW 2 = ∆t. Since the current is
√

2πρds (ω1)X/
√

∆t

this gives us the first important result, namely, that the measured current is

I (t) =
√

2πρds (ω1)
[

√

2µ
〈

a1 + a†
1

〉

(t) +
√

2Nd + 1ξ (t)
]

, (7.38)
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where ξ (t) = dW/dt represents delta-function correlated white noise with correlations

〈ξ (t)〉 = 0, (7.39)

〈ξ (t) ξ (t′)〉 = δ (t − t′) . (7.40)

The second result is for the increment of the system density matrix after evolution

through ∆t and projection by the measurement (c.f. [47] Eq. (4.113)),

dρst (t) =
√

∆tX

√
2µ

2Nd + 1

[

(Nd + 1)
(

a1ρ
st + ρsta†

1

)

− Nd

(

a†
1ρ

st + ρsta†
1

)

−Tr
{

a1ρ
st + ρsta†

1

}

ρst
]

+ O (∆t) . (7.41)

Replacing the stochastic variable X by the expression Eq. (7.37), and retaining only

the O
(√

∆t
)

term gives

dρst =

√

2µ

1 + 2Nd

[

(Nd + 1)(a1ρ
st + ρsta†

1) − Nd(a
†
1ρ

st + ρsta1) − 〈a1 + a†
1〉ρst

]

dW.

(7.42)

This is the stochastic term that must be added to the density matrix evolution to

give us the stochastic master equation for the density matrix conditioned on the

measurement outcome.

7.3.3 Adiabatic elimination of the stochastic master equation

Our objective is to evaluate Eq. (7.42) using Eqs. (6.61, 6.64). The result will lead

to Eq. (7.70). In summary, we are able to replace ρst in Eq. (7.42) by ρ1 of the

deterministic calculations Eq. (6.119).

Since we are dealing with only the stochastic component of the stochastic master

equation, we will omit the superscript ‘st’. We can use the result from the adiabatic
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master equation of Eqs. (6.97, (6.99) to evaluate Eq. (7.42) and obtain

(Nd + 1)(a1ρ + ρa†
1)

= (Nd + 1) (ρ1 + ρ1†) ⊗ ρN1

+ (Nd + 1)

[

2ρ2′ +
N1

N1 + 1
ρ0 + ρ2

]

⊗ a†
1ρN1

+ (Nd + 1)

[

2ρ2′† +
N1

N1 + 1
ρ0 + ρ2

]

ρN1a1

+ (Nd + 1)
N1

N1 + 1
[ρ1 + ρ1† ] ⊗ a†

1ρN1a1

+ (Nd + 1)
N1

N1 + 1
ρ1 ⊗ a†

1a
†
1ρN1 + (Nd + 1)

N1

N1 + 1
ρ1† ⊗ ρN1a1a1. (7.43)

Similarly, using Eqs. (6.97, 6.95) we can show that

−Nd(a
†
1ρ + ρa1) = −Ndρ0 ⊗ a†

1ρN1 − Ndρ0 ⊗ ρN1a1

− Nd (ρ1 + ρ1†) ⊗ a†
1ρN1a1 − Ndρ1 ⊗ a†

1a
†
1ρN1 − Ndρ1† ⊗ ρN1a1a1.

(7.44)

Therefore, the last term in Eq. (7.42) can be evaluated by plugging Eq. (6.61) for ρ

into a†
1ρ + ρa1, then taking the trace results in leaving only the (ρ1 + ρ1†) ⊗ a†

1ρN1a1

term:

−Tr
[

a†
1ρ + ρa1

]

= −〈ρ1† + ρ1〉 . (7.45)

Thus we obtain

ρ̇0 =

√

2µ

1 + 2Nd

{(Nd + 1) (ρ1 + ρ1†) − 〈ρ1† + ρ1〉 ρ0} ξ, (7.46)

ρ̇1 =

√

2µ

1 + 2Nd

{

(Nd + 1)

[

2ρ2′ +
N1

N1 + 1
ρ0 + ρ2

]

− Ndρ0 − 〈ρ1 + ρ1†〉 ρ1

}

ξ,

(7.47)

ρ̇1† =

√

2µ

1 + 2Nd

{

(Nd + 1)

[

2ρ2′† +
N1

N1 + 1
ρ0 + ρ2

]

− Ndρ0 − 〈ρ1 + ρ1†〉 ρ1†

}

ξ,

(7.48)
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ρ̇2 =

√

2µ

1 + 2Nd

{[

(Nd + 1)
N1

N1 + 1
− Nd

]

(ρ1 + ρ1†) − 〈ρ1 + ρ1†〉 ρ2

}

ξ, (7.49)

ρ̇2′ =

√

2µ

1 + 2Nd

{[

(Nd + 1)
N1

N1 + 1
− Nd

]

ρ1 − 〈ρ1 + ρ1†〉 ρ2′

}

ξ, (7.50)

ρ̇2′† =

√

2µ

1 + 2Nd

{[

(Nd + 1)
N1

N1 + 1
− Nd

]

ρ1† − 〈ρ1 + ρ1†〉 ρ2′†

}

ξ, (7.51)

where ρ̇i means the stochastic component only and ξ = dW/dt.

Until now, we have distinguished Nd from N1. However, for a mesoscopic mechan-

ical beam with current flowing through the surface of the structure, Nd = N1, so the

above differential equations will simplify to

ρ̇0 =

√

2µ

1 + 2N1

{(N1 + 1) (ρ1 + ρ1†) − 〈ρ1† + ρ1〉 ρ0} ξ, (7.52)

ρ̇1 =

√

2µ

1 + 2N1

{(N1 + 1) (2ρ2′ + ρ2) − 〈ρ1 + ρ1†〉 ρ1} ξ, (7.53)

ρ̇1† =

√

2µ

1 + 2N1d

{(N1 + 1) (2ρ2′† + ρ2) − 〈ρ1 + ρ1†〉 ρ1†} ξ, (7.54)

ρ̇2 =

√

2µ

1 + 2N1

{− 〈ρ1 + ρ1†〉 ρ2} ξ, (7.55)

ρ̇2′ =

√

2µ

1 + 2N1

{− 〈ρ1 + ρ1†〉 ρ2′} ξ, (7.56)

ρ̇2′† =

√

2µ

1 + 2N1

{− 〈ρ1 + ρ1†〉 ρ2′†} ξ. (7.57)

Next we will do the adiabatic elimination as has been done for the master equation.

To do the adiabatic elimination, we set off-diagonal terms in ρ̇i to zero. Since ρi is

actually stochastically driven as well, this is not exactly correct: strictly speaking,

the stochastic terms are fluctuating. Thus in the steady state, ρ1, ρ−1 are not quite

constant, as the adiabatic elimination assumes. However, if the fluctuation amplitude

is very small (high order in ε), we can neglect the fluctuation and approximate these

terms with the steady state values. Following Doherty and Jacobs’ analysis [48] we

calculate the variance of the stochastic term, then integrate it over the time scale of

the diagonal term to estimate the amplitude of the fluctuation (i.e., rms of variance).
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Suppose f (t) and g (t) are arbitrary continuous functions. Then the variance is

σ =

〈∫ ∆t

0

f (t) dW (t)

∫ ∆t

0

g (t′) dW (t′)

〉

=

〈∫ ∆t

0

f (t) ξ (t) dt

∫ ∆t

0

g (t′) ξ (t′) dt′
〉

=

∫ ∆t

0

dt 〈f (t) g (t)〉 , (7.58)

where we have used dW (t) = ξ (t) dt and 〈ξ (t) ξ (t′)〉 = δ (t − t′) [43].

Combining Eqs. (6.111) and (7.47) the off-diagonal terms O (ε) are

dρ1 = −iλ01

[

a†
0a0 [αρ0 + 2α∗ρ2′ ] − α

[

N1

N1 + 1
ρ0 + ρ2

]

a†
0a0

]

dt − κρ1dt

+

√

2µ

1 + 2N1

{(N1 + 1) (2ρ2′ + ρ2) − 〈ρ1 + ρ1†〉 ρ1} dW + O
(

ε3
)

, (7.59)

and Eqs. (6.114) and (7.50) give the O (ε2) terms as

dρ2′ = −iλ01α

[

a†
0a0ρ1 −

N1

N1 + 1
ρ1a

†
0a0

]

dt − 2κρ2′dt

+

√

2µ

1 + 2N1

{− 〈ρ1 + ρ1†〉 ρ2′} dW. (7.60)

The assumption of adiabatic elimination is that the system dynamics do not vary

over the timescale of 1/2κ ' 1/2µ. With ρ1† and ρ2′† given by taking the Hermitian

conjugate, the fluctuation amplitude can be characterised by the rms amplitude (the

square root of variance of the stochastic part of dρ1 and dρ2) in the steady state.

Thus for dρ2 the variance is

σ2′ =
2µ

1 + 2N1

〈∫ ∆t

0

dW 〈ρ1 + ρ1†〉 ρ2′

∫ ∆t

0

dW (t′) 〈ρ1 + ρ1†〉 ρ2′

〉

=
2µ

1 + 2N1

∫ ∆t

0

dt
〈

|〈ρ1 + ρ1†〉 ρ2′ |2
〉

, (7.61)
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so that the rms amplitude is

√
σ2′ =

√

2µ

1 + 2N1

|〈ρ1 + ρ1†〉 〈ρ2′〉|
√

∆t, (7.62)

where ∆t ∼ 1/2µ. Since ρ1 is first order in ε, the rms fluctuations about the steady

state are of third order in ε while the average is the second order. Thus we can ignore

the fluctuations to leading order in ε. A similar argument holds for dρ1; we have

σ1 =
2µ

1 + 2N1

〈∫ ∆t

0

dW (N1 + 1) (2ρ2′ + ρ2)

∫ ∆t

0

dW (t′) (N1 + 1) (2ρ2′ + ρ2)

〉

+
2µ

1 + 2N1

〈∫ ∆t

0

dW 〈ρ1 + ρ1†〉 ρ1

∫ ∆t

0

dW (t′) 〈ρ1 + ρ1†〉 ρ1

〉

. (7.63)

The rms amplitude is

√
σ1 =

√

2µ

1 + 2N1

[(N1 + 1) |〈2ρ2′ + ρ2〉| + |〈ρ1 + ρ1†〉 〈ρ1〉|]
√

∆t, (7.64)

and the fluctuation is second order whilst the average is first order. Thus, we find

that the contributions from the stochastic terms in ρ1, ρ1† are insignificant (again,

they are not of leading order in ε). With this result dρ1 is just linear multiplicative

white noise with the steady-state solution and we set ρ1 and ρ†
1 to the mean values of

their dt terms as in Eqs. (6.119) and (6.120). Then the stochastic part of the diagonal

terms are

ρ̇0 = M.E. +

√

2µ

1 + 2N1

{(N1 + 1) (ρ1 + ρ1†) − 〈ρ1† + ρ1〉 ρ0} ξ, (7.65)

ρ̇2 = M.E. +

√

2µ

1 + 2N1

{− 〈ρ1 + ρ1†〉 ρ2} ξ, (7.66)
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where M.E. stands for the master equation part. Using Eq. (6.68) we obtain

ρ̇s = M.E. +

√

2µ

1 + 2N1

(N1 + 1) {(ρ1 + ρ1†) − 〈ρ1† + ρ1〉 ρs} ξ

=

√

2µ

1 + 2N1

(N1 + 1)

(

−i
λ01α

κ

[

a†
0a0ρ0 −

N1

N1 + 1
ρ0a

†
0a0

])

ξ

+

√

2µ

1 + 2N1

(N1 + 1)

(

−i
λ01α

∗

κ

[

a†
0a0

N1

N1 + 1
ρ0 − ρ0a

†
0a0

])

ξ

−
√

2µ

1 + 2N1

〈

(N1 + 1)

(

−i
λ01α

κ

[

a†
0a0ρ0 −

N1

N1 + 1
ρ0a

†
0a0

])〉

ρsξ

−
√

2µ

1 + 2N1

〈

(N1 + 1)

(

−i
λ01α

∗

κ

[

a†
0a0

N1

N1 + 1
ρ0 − ρ0a

†
0a0

])〉

ρsξ. (7.67)

Using iα = −iα∗ = |α|, we can rewrite the above equation

ρ̇s = M.E.

+

√

2µ

1 + 2N1

λ01|α|
κ

(

− (N1 + 1) a†
0a0ρ0 + N1ρ0a

†
0a0

)

ξ

+

√

2µ

1 + 2N1

λ01|α|
κ

(

N1a
†
0a0ρ0 − (N1 + 1) ρ0a

†
0a0

)

ξ

−
√

2µ

1 + 2N1

λ01|α|
κ

〈

− (N1 + 1) a†
0a0ρ0 + N1ρ0a

†
0a0

〉

ρsξ

−
√

2µ

1 + 2N1

λ01|α|
κ

〈

N1a
†
0a0ρ0 − (N1 + 1) ρ0a

†
0a0

〉

ρsξ, (7.68)

which simplifies to

ρ̇s = M.E. −
√

2µ

1 + 2N1

λ01|α|
κ

[(

a†
0a0ρ0 + ρ0a

†
0a0

)

− 2
〈

a†
0a0

〉

ρs

]

ξ. (7.69)



134

Therefore, we finally obtain the stochastic master equation for the system

dρs = −
{

λ2
01 |α|2 (1 + 2N1)

κ

[

a†
0a0,

[

a†
0a0, ρs

]]

}

dt

− i
{

ω0 + λ01(|α|2 + N1)
}

[

a†
0a0, ρs

]

dt

+ ν (N0 + 1)
(

2a0ρsa
†
0 − a†

0a0ρs − ρsa
†
0a0

)

dt

+ νN0

(

2a†
0ρsa0 − ρsa0a

†
0 − a0a

†
0ρs

)

dt

−
√

2µ

1 + 2N1

λ01|α|
κ

[

a†
0a0ρs + ρsa

†
0a0 − 2〈a†

0a0〉ρs

]

dW. (7.70)

Note that the adiabatic elimination gives

〈a1 + a†
1〉 → 2

λ01|α|
κ

〈a†
0a0〉. (7.71)

This result is important and will be used again in the later section.

As was stated in the previous chapter, the first term in Eq. (7.70) describes the

phase diffusion due to the non-linear coupling between the system and ancilla oscil-

lators. The phase diffusion rate required by the measurement sensitivity would be 2k

from the dW term, where

k ≡ µλ2
01|α|2/ (1 + 2N1) κ2, (7.72)

which is the quantum backaction required by the QND measurement of the phonon

number. However, the actual diffusion rate of λ2
01 |α|2 (1 + 2N1)/κ could be larger

than this due to the thermal motion of the ancilla oscillator that also contributes to

the diffusion at non-zero temperature.

Next we consider a case of having initial states that are mixtures of number states,

ρs =
∑

n pn|n〉〈n| (such as a thermal state). The stochastic master equation (SME)

of Eq. (7.70) leads to the result that system states which are diagonal in the number

state basis remain so. The SME for the initially mixed state can be reduced to an
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equation for the weights pn

dpn = −2ν {(N0 + 1)[npn − (n + 1)pn+1] +N0[(n + 1)pn − npn−1]} dt

− 2
√

2k
(

n −
∑

n′pn′

)

pndW. (7.73)

Since such initial states are invariant under changes of phase, neither the phase dif-

fusion term nor the Hamiltonian terms in the stochastic master equation contribute

to the evolution of the phonon number distribution. Note that this system of equa-

tions describes the evolution of the phonon number distribution pn = 〈n|ρ|n〉 for any

arbitrary diagonal ρ. The first two terms containing dt describe emission into and

absorption from the thermal bath. If the stochastic term (the last term) is absent,

the system state eventually reaches equilibrium with the thermal bath and
〈

a†
0a0 (t)

〉

approaches the thermal average number at the bath temperature. On the other hand,

the stochastic term tends to project the system onto pure number states. We will

discuss the competition of these tendencies in the next subsection.

7.3.4 Accumulated projective measurements and thermali-

sation

There are two components in Eq. (7.73); the term that is proportional to ν and the

other that is proportional to
√

k. We now examine the roles of these terms in the

dynamics of the system. In the following analysis ν, k, and time t are scaled with

some multiple of ω1 to have dimensionless quantities unless it is noted.

7.3.4.1 The component with dt of Eq. (7.73)

Firstly we turn off the stochastic component and plot the master equation part, which

is the average dynamics of the system. Figure 7.1 is a plot for k = 0, ν = 1 with the

initial state |1〉 and with the initial state |2〉. The thermal bath is characterised by

the average occupation number N0 = 1.62.

The terms in dt in Eq. (7.73) drive the system toward a mixed (thermal) state,
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Figure 7.1: A plot of Eq. (7.73) without the stochastic component, k = 0, ν = 1 with
the intitial state |1〉 (solid line) and with the intitial state |2〉 (dashed line).

so that ensemble average of
〈

a†
0a0

〉

(t) gradually reaches the thermal average at the

bath temperature. This is true regardless of the initial state. Note that the first term

of Eq. (7.73) describes the average over all measurement outcomes. The plot shows

the thermalisation effect due to the coupling with the heat bath. The thermalisation

time is proportional to 1/ν.

7.3.4.2 Dwell time between transitions

The transition rate per unit time can be obtained from the master equation Eq. (6.122).

The average dwelling time tdwell between the transitions can be calculated from wait-

ing time distribution of phonon emission/absorption:

tdwell =
1

2ν [N0(n + 1) + (N0 + 1) n]
, (7.74)

where we have assumed the average of the weight function to be 1/e. Note that the

dwell time is dependent only on the states prior to the transition. This is due to the

Markovian approximation we have made. The dwell time Eq. (7.74) obtained from
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Figure 7.2: Average dwelling time Tdwell of each number state between transitions.
cross: calculated from Eq. (7.74), circle: simulation results. ν = 0.02, k = 10.

Eq. (7.74) for each state is compared with the one obtained from simulations of Eq.

(7.73). For estimating tdwell from the simulations, we ran simulations for a long time

(t > 1000) using high k/ν ratio (k/ν = 500) to make transitions sharp as well as to

minimise the deviations from integral values. Then we round off
〈

a†
0a0 (t)

〉

to the

nearest integer, and finally evaluate this quantity with a time-step 0.05. Figure 7.2

shows the period between the transitions, tdwell calculated from Eq. (7.2) and the one

from the simulation results. The simulated tdwell follows the theoretically calculated

tdwell quite well. As the number of the simulations or simulation time t increases the

dwell times obtained approach the theoretical values.

7.3.4.3 The component with dW of Eq. (7.73)

Setting k = 1, ν = 0 in Eq. (7.73) results in a projection of the system state onto a

pure number state (Fig. 7.3). Since no thermal dissipation or excitation is present,

once projected, the state is stationary. Figure 7.4 shows pn for n = 0, 1, 2, 3 with an

initial mixed state, which corresponds to the same simulation as in Fig. 7.3. All states
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Figure 7.3: A plot of a solution to Eq. (7.73) without the master equation component,
ν = 0, k = 1 with an intitially thermal state.

are present initially, but eventually the system is projected onto state |1〉. In other

runs with different random numbers for the stochastic term, different final states do

result.

Thus given a constant N0 in Eq. (7.73), we have seen that there are two opposing

tendencies: the terms controlled by ν lead to transitions of phonon number and

eventually to the thermalization of the distribution pn, whilst the term controlled

by the rate k tends to project the system onto a number state determined by the

measurement results.

7.3.4.4 Collapse time, measurement time, and ease of observing transi-

tions

The stochastic part of Eq. (7.73) tells the time which takes the system to be projected

onto a pure number state. This time is called the collapse time and is tcoll ' 1/2k

from Fig. 7.3. (Note that in Fig. 7.3 both t and k are scaled with the same constant.

Since we have used k = 1, t is scaled with k as well.)
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Figure 7.4: pn plot for a simulation of Eq. (7.73) with ν = 0 for the states
|0〉 , |1〉 , |2〉 , |3〉. The initial state is a mixed state with the average 〈1.63〉. The
figures corresponds to Fig. 7.3 (i.e., the same run).
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Practically, another important time is the measurement time that is needed for

the measurement apparatus to distinguish one state from the next.

In our model, the phase shift of the ancilla is monitored by the current (c.f. §
6.1.2). This is equivalent to monitoring the position of the ancilla oscillator by the

current. The current scaled to eliminate unwanted factors has the form (c.f. Eq.

(7.38))

Ĩ(t) = 〈x(t)〉 + sξ(t)

=

√

~

2mω1

〈a1(t) + a†
1(t)〉 +

√

~

2m1ω1

√

2N1 + 1

2µ
ξ, (7.75)

where we have set N1 = Nd, ξ(t) a white noise process with correlations 〈ξ(t)ξ(t + τ)〉 =

δ(τ), and s the position sensitivity in units of [length][frequency]−1/2. Thus, in our

model s is at least
√

~/2mω1

√

(2N1 + 1) /2µ but may have extra contributions from

other apparatus noise. Using the result in Eq. (7.71) and using the definition of k in

Eq. (7.72), Ĩ(t) can be written as

Ĩ(t) =

√

~

2mω1

√

2N1 + 1

2µ

(

2
√

2k
〈

a†
0a0

〉

+ ξ
)

. (7.76)

To calculate the measurement time, we need to identify the signal and noise com-

ponents in the current. It is reasonable to demodulate the measured signal at the

ancilla oscillator frequency and to look for the phase shift of the mechanical oscilla-

tion since, in reality, we first multiply the signal (information of our interest) by a

sinusoidal waveform (called carrier), then send it to the output. This process is called

modulation. At the point of reception, the signal is extracted from the modulated

carrier, a process we call demodulation. The modulated waveform y (t) will be

y (t) = x (t) cos (ω1t) , (7.77)

where x (t) is the signal, in our case x (t) = 2
√

2k
〈

a†
0a0

〉

. Then the demodulated
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waveform g (t) will be

g (t) = y (t) cos (ω1t) = x (t) cos2 (ω1t)

=
x (t)

2
+

x (t)

2
cos (2ω1t) . (7.78)

The function g(t) has two parts. The first is one half the signal, which we are inter-

ested. The second part is the product of this signal with a sinusoid having a frequency

twice the carrier frequency. If the carrier frequency is much higher than any frequency

contained in the signal, x(t), it is easy to separate these two pieces. This is achieved

by passing g(t) through a low-pass filter. So that the D.C. component of the demod-

ulated signal is x (t) /2 =
√

2k
〈

a†
0a0

〉

. The measurement time tm can be obtained by

equating the signal integrated over an integration tm for
〈

a†
0a0

〉

= 1 with the noise

integrated over this time, i.e., S/N = 1:

S

N
= 1 =

〈√
2ktm

〉2

〈

ξ
√

tm
〉2 , (7.79)

⇒ tm =
1

2k
= tcoll. (7.80)

Notice that the measurement time and the collapse (projection) time are the same.

This means that if the experimenter can infer the system number state through the

measurement current, then the system is actually projected to that state in the same

time-scale. In this sense, the 1/
√

2N1 + 1 factor in the stochastic term in Eq. (7.69),

which, as we have seen, projects the system state onto a number state, can be seen

as the inefficiency in the measurement scheme for N1 6= 0.

7.3.4.5 The measurement time versus the dwell time

When tdwell À tm, the correlations of the energy eigenstates during a series of sub-

sequent measurements each of duration tm are strong, an experimenter’s estimation

of the phonon number from the measured current through the relation 〈I〉 (t) ∝
〈

a†
0a0

〉

(t) should also be able to resolve the jumps in
〈

a†
0a0

〉

(t). Conversely, if
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Figure 7.5: A simulation using N0 = 1.62, ν = 0.02, and k = 5.

tdwell ¿ tm, transitions of the system state are much faster than the measure-

ment time, so that the discreteness of
〈

a†
0a0

〉

(t) becomes unclear. We have sim-

ulated both the tdwell À tm case and the tdwell ¿ tm case using fixed parameter:

N0 = 1.62, ν = 0.02, which results in tdwell = 15.3 for |0〉 and tdwell = 4.24 for |1〉.
We have taken two values of k for the simulations: k = 5 which gives tm = 0.1 and

k = 0.1 which gives tm = 5.0. Figures 7.5 and 7.6 confirm our predictions. The ratio

k/ν as discussed in § 7.3.4 determines whether we can see clear transitions. Similarly,

as the thermal coupling strength decreases, the transition rate decreases and the time

between transitions tdwell becomes longer than tm, the interaction time required for

the measurement apparatus and the ancilla. Thus jumps in
〈

a†
0a0

〉

(t) become more

apparent.

We can see “jumps” in a qualitative manner by plotting a histogram of
〈

a†
0a0

〉

(t).

Figures 7.7, 7.8, and 7.9 show histograms of
〈

a†
0a0

〉

(t) with bin width ∆
〈

a†
0a0

〉

= 0.1

using fixed parameters k = 1.5, N0 = 1.62 with these different values of ν: ν = 0.01,

0.1, 0.5, respectively. The clustering of the
〈

a†
0a0

〉

(t) values around integral values

is clearly evident for ν = 0.01 (k/ν = 150), is still identifiable for ν = 0.1 (k/ν = 15),
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and completely lose the track for ν = 0.5 (k/ν = 3).

A reduction of the discreteness of the jumps with increasing ν can be seen in

a more quantitative manner by plotting
∣

∣

∣

〈

a†
0a0

〉

(t) − Int
〈

a†
0a0

〉

(t)
∣

∣

∣

2

with various

k/ν (see Fig. 7.10). As
〈

a†
0a0

〉

(t) becomes more discrete due to increasing k/ν, the

quantity
∑

N

∣

∣

∣

〈

a†
0a0

〉

(t) − Int
〈

a†
0a0

〉

(t)
∣

∣

∣

2

/N decreases.

7.3.4.6 Effect of temperature

Since the signal 〈a†
0a0(t)〉 due to the system oscillator is at low frequency, it will

generally be necessary to low-pass filter the measured current in order to integrate

out the white noise. We have already estimated the time necessary to distinguish the

phonon number states, tm, so we now evaluate the phonon number sensitivity of the

measurement in terms of the position sensitivity s. Rescaling Ĩ(t) as

Ī(t) = 〈a†
0a0(t)〉 + s̄ξ(t), (7.81)

where the phonon number sensitivity s̄ is κ2
√

2N1 + 1/
√

8µλ01E. Recall that in order

to get a signal to noise of at least one for distinguishing one phonon number from the
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Figure 7.6: A simulation using N0 = 1.62, ν = 0.02, and k = 0.1.
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Figure 7.7: A histogram of
〈

a†
0a0

〉

(t) for a simulation t = 3000 with k = 1.5, ν = 0.01,

and N0 = 1.62.
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Figure 7.8: A histogram of
〈

a†
0a0

〉

(t) for a simulation t = 3000 with k = 1.5, ν = 0.1,

and N0 = 1.62.
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Figure 7.9: A histogram of
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0a0
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(t) for a simulation t = 3000 with k = 1.5, ν = 0.5,

and N0 = 1.62.
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next we will need S/N ≥ 1, but this time we express tm in terms of the sensitivity.

S

N
≥ t2m

s̄2tm
→ tm ≥ s̄2. (7.82)

The transition probability P of the state n during the measurement time tm is given

by P = tm/tdwell. If it is possible to track the transitions of the system oscillator it

should be the case that P ¿ 1. Calculating for a typical number state n ' N0 we

get the condition

s̄2νN0(N0 + 1) ¿ 1. (7.83)

Raising temperature increases N0, and thus decreases tdwell. In order to keep the

same resolution for observing clear jumps as the ones at low temperature, k must be

increased sufficiently so that tm < tdwell will be kept. This is not an easy task for the

experimenters: for example, an oscillator with 1 GHz resonant frequency at T = 0.1

K has N0 = 1.62. When the temperature is raised to T = 1 K, N0 = 20, so if we keep

the same resolution for jumping in both cases, the sensitivity of the measurement

at the higher temperature must be increased by a large factor (Note increasing the

sensitivity means a smaller value of s̄). In addition, the sensitivity itself also contains

a temperature factor
√

2N1 + 1 that further amplifies the temperature effect, which

makes it difficult to maintain the condition Eq. (7.83).

From Eq. (6.122) we can see that the transition rate depends on the temperature

through the Bose distribution, N0. Figures 7.11 and 7.12 show
〈

a†
0a0

〉

(t) over time

for different temperatures: (N0 = 1.62, k = 3, and ν = 0.02) and (N0 = 20, k = 37,

and ν = 0.02), whilst the product νN0/k has been kept constant at 0.0217 in order

to provide the same resolution for the jumps. The plots show that for the higher

temperature the transitions occur more frequently. In Fig. 7.12, the transitions occur

so fast that it is not easy to see the jumps on the time scale plotted. Also notice from

Eq. (7.74) that tdwell decreases with the system state n making it difficult to recognise

the discrete jumps when the system state is at higher n.
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Figure 7.11: T = 0.1K, N0 = 1.62, and νN/k = 0.063 with the initial state |2〉.
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Figure 7.12: T = 1 K, N0 = 38, and νN/k = 0.063 with the initial state |2〉.
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7.4 Trajectories and experimental outcomes

7.4.1 The stochastic master equation and the measured sig-

nal

Here we discuss the significance of the stochastic master equation Eq. (7.73) and

emphasize the relationship to the experimentally measured signal.

The most important point about the relation between trajectories and experi-

mental outcomes is that, as said before, the quantum trajectory equations not only

provide a way to simulate the ensemble average of many runs, but also allow us to

perform a simulation by picking the measurements I(t) with the correct probability

distribution and following the corresponding evolution of the system state. In other

words given the measurement current, one can reconstruct the dynamics of a mixed

state of the system given the initial ensemble ρs(t0) and I(t). This can be seen more

readily if we rewrite Eq. (7.75) as

dW =
1√

2N1 + 1

{

I (t) − 2
√

2k
〈

a†
0a0 (t)

〉}

dt. (7.84)

Our calculation in the previous section shows that in each time-step the probability

distribution for I(t) is Gaussian with mean
〈

a†
0a0

〉

and variance
√

(2N1 + 1) /2k∆t.

In our simulations we draw I(t) at random from this distribution and find the stochas-

tic density matrix ρs by projecting the output field onto the corresponding current

eigenstate. Alternatively I(t) could result from experimental data and the experi-

menter could propagate Eq. (7.73) using Eq. (7.84) and then estimate the phonon

number by
〈

a†
0a0

〉

= Tr
{

a†
0a0ρs

}

. This is a kind of low pass filtering process per-

formed by the experimenter using the observed current. We will show how one can

extract
〈

a†
0a0

〉

from noisy current by filtering shortly. In this sense, quantum trajec-

tories can be regarded an optimal filter for the current and
〈

a†
0a0

〉

obtained from the

trajectories contains the minimal amount of noise due to the measurement apparatus.

From the previous section we have seen that even if there is no thermal coupling

for the system oscillator there is a time-scale tm over which it is possible to determine
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which number state the system is in. This time tm decreases as the measurement

strength k increases. If the energy level transitions due to the thermal coupling of the

system oscillator are slow compared to this time, then it should be possible to follow

the system as it jumps between number states. There is a characteristic time tdwell that

the system will stay in a given number state before absorbing or emitting a phonon

into the thermal bath and this depends on the damping rate and the temperature

of the bath. In the limit where tdwell À tm the distribution pn given by Eq. (7.73)

very closely resembles an energy eigenstate and thus
〈

a†
0a0

〉

becomes nearly a series

of integral numbers.

Equation (7.73) gives the probability distribution of number states that are con-

sistent with the measured current I (t). If the condition tdwell À tm does not hold the

distribution pn will have significant support on several number states and
〈

a†
0a0

〉

will

resemble Fig. 7.6 with no clear jumps between number states being distinguished.

A simpler but not necessarily optimal procedure for the experimenter is to use

a low-pass filter I (t) with some bandwidth designed to pick out the transitions be-

tween number states. We show the results of doing this with time averaging and a

Butterworth filter in Fig. 7.13. Note that there is both a significant time delay in

detecting transitions between number states in comparison to the Eq. (7.73) and also

a significant oscillation about the constant level between number state transitions.

We now ask the following question: “what about the cases where ρs is not a pure

number state?” Suppose pn obtained from Eq. (7.73) results in p0 = 1/2, p1 = 1/2

so that the system state is either 0 or 1. If the condition tdwell À tm does not hold,

the distribution pn have to support on a large number of states and
〈

a†
0a0

〉

(t) will

resemble Fig. 7.6 with no clear jumps between number states.

We have simulated a simple filtering process using time average and a Butterworth

filter. (see Fig. 7.13) The filtering process introduces a delay of the signal and degrades

the signal as well as removing the unwanted noise. Experimenters might actually have

much more efficient and clever ways to do low pass filtering than shown here.
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Figure 7.13: Given the measurement current, the above figures show attempts to filter
out the noise using a Butterworth filter with various band widths, for parameters

k/ν = 250, N0 = 1.62. The dotted line is
〈

a†
0a0

〉

without any noise. The current

was first averaged over a time interval of ∆t = 0.03. Left-top current–observed. right
top–cutoff frequency 0.17k; left bottom–cutoff frequency 0.083k; right bottom–cutoff
frequency 0.05k.
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7.4.1.1 Stochastic master equation with an imaginary observer

We have unravelled the master equation with a density matrix. However, it is also

possible to unravel using a pure state. We can add another stochastic term to the SME

as if the thermal bath that is coupled to the system is measuring the displacement of

the system oscillator, and can still obtain the same distribution for the current I (t)

and
〈

a†
0a0

〉

, yet the system state ρs will now be pure due to the direct measurement by

the thermal bath. This corresponds to imagining that another observer is measuring

the thermal bath and projecting the state onto eigenstates. This is a pure state

unravelling. The bath is directly interacting with the system, and so the stochastic

master equation has the terms of Eq. (7.70) plus another stochastic component similar

to Eq. (7.42) with the a1 operator replaced by a0, Nd by N0, and µ by ν,

dρs = −
{

λ2
01 |α|2 (1 + 2N1)

κ

[

a†
0a0,

[

a†
0a0, ρ

]]

}

dt − i {ω0 + ∆ω}
[

a†
0a0, ρ

]

dt

+ ν (N0 + 1)
(

2a0ρa†
0 − a†

0a0ρ − ρa†
0a0

)

dt

+ νN0

(

2a†
0ρa0 − ρa0a

†
0 − a0a

†
0ρ

)

dt

−
√

2k
[

a†
0a0ρ + ρa†

0a0 − 2〈a†
0a0〉ρs

]

dWexpt

− .

√

2ν

2N0 + 1

[

(N0 + 1)(a0ρ + ρa†
0) − N0(a

†
0ρ + ρa0) − 〈a0 + a†

0〉ρs

]

dWS.O,

(7.85)

where ∆ω = λ01(|α|2 + N1). In the limit k À ν, the system dynamics will have little

change from what we already have in Eq. (7.73), but we now can identify the jumping

process due to thermal excitation/dissipation by the thermal bath.

For pure state unravelling we can write ρs in Eq. (7.85) as ρs = |ψ〉 〈ψ|, and the

equation is now reduced to a Stochastic Schrödinger Equation (SSE). A SSE can be

evaluated much more readily than the SME, especially when the initial state is not

in diagonal form, and has been commonly used to predict an experimental outcome

in the Quantum Optics community. We will not discuss pure state unravelling and

its simulation here.
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7.4.2 Parameters and constraints

We will now consider achievable values of the physical parameters. In summary we

have the following adjustable parameters:

N1 1/ (exp [~ω1β1] − 1)

N0 1/ (exp [~ω0β0] − 1)

λ01 anharmonic coupling coefficient

ν damping rate for system oscillator

κ damping rate for ancilla oscillator

|α|2 mean phonon number for the steady state in driven oscillator 1

7.4.2.1 Anharmonic coupling coefficient

The interaction Hamiltonian of the anharmonic coupling together with the free Hamil-

tonian is

~ω0a
†
0a0 + ~ω1a

†
1a1 + ~λ01a

†
0a0a

†
1a1 = ~ω0a

†
0a0 + ~ [ω1 + λ01n] a†

1a1, (7.86)

where the coupling coefficient has units of frequency. The equation above implies

that if we find a frequency shift for one quantum (n = 1), then, the size of this shift

is λ01.

The experimental structure fabricated by Huang et al. [31] in Roukes’ group trans-

mits the strain of one of two flexing modes of the system to the ancilla oscillator as

a longitudinal strain quadratic in the flexing mode amplitude. The strain generated

by this flexing motion and the frequency shift associated with this strain have been

calculated by Harrington and Roukes [50] and we briefly introduce their results. The

longitudinal strain produced by a single quantum in the fundamental flexing motion

is

χ ' ~

m0ω0

1

L2
0

, (7.87)

where m0 is the mass and L0 is the length of the system beam in the small angle
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approximation. Then the ancilla frequency shift caused by this strain is [50]

λ01 = ω1
ζ

2π2
χ

L2
1

d2
1

, (7.88)

where ζ is a geometric factor (ζ = 3 for clamped beam boundary conditions) and

L1, d1 are the length and thickness of the ancilla beam, respectively. Introducing a

dimensionless quantity,

Ri ≡
~

2

mid2
i

1

~ωi

, (7.89)

where i = 0, 1, then the scaled coupling coefficient can be expressed as

λ01

ω1

=
ζ

2π2

L2
1

L2
0

~

m0ω0

1

d2
1

=
ζ

2π2

L2
1

L2
0

d2
0

d2
1

R0. (7.90)

7.4.2.2 Damping rates and k/ν ratio

The coefficient k as we have defined in an earlier section Eq. (7.72) is

k =
µλ2

01|α|2
(1 + 2Nd)κ2

, (7.91)

and ν is

ν =
ω0

2Q0

. (7.92)

As seen from the previous section, the ratio k/ν is crucial to be able to observe jumps.

We assume that most of the damping of the ancilla comes from the coupling to the

measurement device, i.e., µ ' κ. Then we get

k

ν
=

µλ2
01|α|2

(1 + 2Nd)κ2

Q0

2ω0

' 4Q0Q1
λ2

01

ω1ω0

|α|2 1

(1 + 2Nd)
. (7.93)
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7.4.2.3 Driving strength

The driving energy associated with the magnetomotive detection scheme described

in § 6.1.2 tells that the driving energy associated with this scheme is

ε = BIL1

√

~

2m1ω1

(

a1 + a†
1

)

, (7.94)

where B is the magnetic field. Equating the expression of Eq. (7.94) to Eq. (6.13)

and together with the relation between E and α

|E|2 = |α|2 κ2 (7.95)

will result in the expression for |α|

|α| = Q1
BIdriveL1

~ω1

√

~

2m1ω1

= Q1
BIdriveL1d1√

2~ω1

√

R1. (7.96)

We then calculate |α| that corresponds to a displacement amplitude of the beam

since an experimenter needs to drive the beam strong enough to be able to detect

the displacement of the beam. Let the displacement of the beam be x1. Then the

dimensionless displacement scaled with the thickness of the beam d1 is

x1

d1

=
√

R1 |α| . (7.97)

With the constraints been already discussed, experimenters will have several ad-

justable parameters to design a suitable structure for his experimental setup and we

will leave the task of seeking appropriate combinations and structure designs to the

experimenters who are expert in these fields. Thus, we will conclude this chapter

with an example using the parameters that are currently achievable.

At present, oscillators as fast as 1 GHz have been fabricated [31, 49]. So we

consider two elastic GaAs beams with resonant frequencies of ω0 = 2 GHz and ω1 =

800 MHz at T = 0.1 K. The structural dimensions are 0.63 µm × 0.2 µm × 0.1

µm for the system beam and 1.0 µm × 0.2 µm × 0.1 µm for the ancilla beam.



155

The anharmonic coefficient is purely dependent on geometry and materials. Suppose

Q-factors of Q0 = 5000 and Q1 = 4000. With these parameters we obtain

R1 = 1.95 × 10−14. (7.98)

Then, for example, to obtain the scaled displacement x1/d1 = 0.1, we will need

|α| = 106. The magnetic drive with the magnetic field B = 10 Tesla and Idrive = 1

µA can raise |α| to ∼ 580. To have |α| = 106 using the same magnetic field requires

the driving current Idrive = 2 mA. With the given beam dimensions, the anharmonic

coupling coefficient is λ01/ω1 = 4.7 × 10−15. These values give clearly κ/ν ¿ 1 by

many orders of magnitude. To obtain κ/ν À 1 requires a larger coupling coefficient,

small m, and thin plate (small d) as well as high frequency oscillators with high Q.
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Chapter 8

Anharmonicity - the effect of the
nonlinear term

In the measurement scheme we have considered in the previous chapters, non-interacting

anharmonic terms are neglected. In this chapter, we remove this restriction and anal-

yse the effect of the non-interacting anharmonic terms, x4. We show that this non-

linear term, x4, increases the total phonon number due to both thermal and quantum

fluctuations. However, the overall effect of this term can be negligibly small since the

nonlinear coefficients are much smaller than the measurement damping.

8.1 The Hamiltonian and master equation

(Note: In this chapter, we change the notation for the system and ancilla operators

from a0, a1 to a, b, since we will be using the index 0, 1 to indicate for the steady state

and fluctuation components. Note that b is not a bath operator!)

The driving term of the Hamiltonian is similar to Eq. (6.12) but to study detuning

effects the ancilla is driven at frequency ωd, where ωd 6= ω1:

Hdrive = 2~E cos [ωdt]
(

b† + b
)

. (8.1)

where δω is the detuning frequency between the ancilla resonant frequency and the

driving frequency, δω = ω1 − ωd with δω ¿ ω1, ωd. In the interaction picture within
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the rotating wave approximation this term becomes

H I
drive = ~E

(

b†e+iδω + be−iδω
)

, (8.2)

The anharmonic terms are as in Eqs. (6.1) and (6.2)

Hanh = ~
(

λ0x
2
0 + λ00x

4
0 + λ1x

2
1 + λ11x

4
1

)

, (8.3)

HI = ~λ01x
2
0x

2
1, (8.4)

and this time, we will not disregard the x4
i terms. In the rotating wave approximation,

Hanh and HI become

Hanh = ~λ00a
†aa†a + ~λ11b

†bb†b, (8.5)

HI = ~λ01a
†ab†b. (8.6)

The terms λ0a
†a and λ1b

†b cause a resonant frequency shift by a constant amount

and do not change the dynamics, so we have absorbed these quantities into ω0 and

ω1. As mentioned in the previous chapter, the terms ~λ00a
†aa†a and ~λ11b

†bb†b are

called Kerr non-linearities. Since these terms commute with a†a or b†b, they will not

change the system state; however, the Kerr effect causes an intensity dependent phase

shift. In the case of a coherent state, this effect results in the rotational shear on the

phase space plot, whilst for a thermal state, the rotational shear will not occur due

to the rotational invarianceThe other terms in the Hamiltonian are the same as in

the previous chapter. Thus the master equation for the total density matrix, after

tracing out the bath variables, becomes

dρ

dt
= −iω0

[

a†a, ρ
]

− iλ00

[

(

a†a
)2

, ρ
]

− iδω
[

b†b, ρ
]

− iλ11

[

(

b†b
)2

, ρ
]

− iE
[

b† + b, ρ
]

− iλ01

[

a†ab†b, ρ
]

+ ν (N0 + 1)D [a] ρ + νN0D
[

a†
]

ρ + κ (N1 + 1)D [b] ρ + κN1D
[

b†
]

ρ. (8.7)
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where ρ is the total state density matrix, and

N0 =
1

exp [~ω0/kBT0] − 1
, (8.8)

N1 =
1

exp [~ω1/kBT1] − 1
, (8.9)

and

D [O] ρ = 2OρO† − O†Oρ − ρO†O, (8.10)

D
[

O†
]

ρ = 2O†ρO − OO†ρ − ρOO†, (8.11)

where O = a, b. Comparing with the master equation of Eq. (6.58), we now have two

extra terms coming from non-interacting anharmonic terms as well as the detuning

term.

The ancilla is assumed to be heavily damped due to measurements, i.e., κ À λij, ν

where i, j = 0, 1. Then the ancilla oscillator in Eq. (8.7) remains near a thermal steady

state with the average number N1. In this case, oscillator 1 will relax very rapidly to

its steady state and appear to oscillator 0 as a “bath”. Thus, instead of using adiabatic

elimination as done in the previous chapter, we will treat the interaction pertubatively

and find the correlations of the ancilla operators. This approach is similar to that

in § 6.2.1.1; however, unlike the thermal bath which is nearly unchanged by the

interaction, the ancilla is changed by the interaction. Thus we need to follow the

dynamics on two time-scales. We calculate the relevant steady state average and

correlation functions for oscillator 1 in the presence of the anharmonic term λ11

(

b†b
)2

.

To see the consequences of the rapidly decaying oscillator 1 on the dynamics of

oscillator 0, we use perturbation theory, expand the interaction Hamiltonian HI (t) =

λ01a
†ab†b up to second order, and trace out the oscillator 1 variables. The master
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equation for the density matrix ρs(t) for oscillator 0 can be written as

dρs(t)

dt
= −iω0

[

a†a, ρs(t)
]

− iλ00

[

(

a†a
)2

, ρs(t)
]

+ ν (N0 + 1)D [a] ρs(t) + νN0D
[

a†
]

ρs(t)

− iTr1 [HI (t) , ρ(t)] −
∫ t

0

Tr1 [HI (t) , [HI (t′) , ρ(t)]] dt′, (8.12)

where ρ is the density matrix for the system and ancilla, ρ = ρs ⊗ ρa. Explicitly, the

second term of the last line of Eq. (8.12) can be written as

∫ t

0

Tr1 [HI (t) , [HI (t′) , ρ(t)]] dt′

= − (λ01)
2

∫ t

0

Tr1

[

a†a (t) b†b (t) ,
[

a†a (t′) b†b (t′) , ρ(t)
]]

dt′

= − (λ01)
2

∫ t

0

a†a (t) a†a (t′) ρ(t)
〈

b†b (t) b†b (t′)
〉

dt′

+ (λ01)
2

∫ t

0

a†a (t) ρ(t)a†a (t′)
〈

b†b (t′) b†b (t)
〉

dt′

+ (λ01)
2

∫ t

0

a†a (t′) ρ(t)a†a (t)
〈

b†b (t) b†b (t′)
〉

dt′ (8.13)

− (λ01)
2

∫ t

0

ρ(t)a†a (t′) a†a (t)
〈

b†b (t′) b†b (t)
〉

dt′.

The exact correlation functions of oscillator 1 are not easy to evaluate due to the

presence of the anharmonic, driving, and decay terms. However, one can make an

expansion of the mode b around its steady state average value and linearise the

fluctuations assuming them to be small [37, 54].

Define the steady-state mean field amplitudes as 〈b〉∞ = β0. The operator b can

be written, by adding small fluctuations about the steady state, as

b (t) = β0 + b1 (t) . (8.14)

Then the interaction Hamiltonian HI = λ01a
†ab†b becomes, keeping terms up to



160

quadratic order in b1, b
†
1,

HI = λ01a
†a

[

|β0|2 + β∗
0b1 (t) + β0b

†
1 (t) + b†1 (t) b1 (t)

]

. (8.15)

The first term in Eq. (8.15) contributes to a shift in the resonant frequency by

a constant amount and can be combined with the free Hamiltonian. Inserting this

expression back into the first term of the last line of Eq. (8.12) gives the first order

expansion term

−iλ01Tr1

[

a†a (t) b†b (t) , ρ(t)
]

= −iλ01

[

a†a (t) , ρs

]

〈

b†1b1(t)
〉

, (8.16)

where we have used the fact that the averages of fluctuation fields vanish, i.e.,

〈b1〉 =
〈

b†1

〉

= 0. (8.17)

Now we turn our attention to the second order term, Eq. (8.13). Note that since

κ À ν, the phonon number a†a(t) of oscillator 0 changes on a time-scale much larger

than for change of b†b(t) of oscillator 1. So we can approximate a†a (t′) ' a†a (t) in

Eq. (8.13) and pull oscillator 0 terms outside of the integral. Then Eq. (8.13) becomes

∫ t

0

Tr1 [HI (t) , [HI (t′) , ρ(t)]] dt′

= (λ01)
2
{

a†a (t) ρ(t)a†a (t) −
(

a†a (t)
)2

ρ(t)
}

∫ t

0

〈B (t, t′)〉 dt′

+ (λ01)
2
{

a†a (t) ρ(t)a†a (t) − ρ(t)
(

a†a (t)
)2

}

∫ t

0

〈B (t′, t)〉 dt′, (8.18)
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where

〈B (t, t′)〉 = (β∗
0)

2 〈b1 (t) b1 (t′)〉 + |β0|2
〈

b1 (t) b†1 (t′)
〉

+ |β0|2
〈

b†1 (t) b1 (t′)
〉

+ (β0)
2
〈

b†1 (t) b†1 (t′)
〉

, (8.19)

〈B (t′, t)〉 = (β∗
0)

2 〈b1 (t′) b1 (t)〉 + |β0|2
〈

b1 (t′) b†1 (t)
〉

+ |β0|2
〈

b†1 (t′) b1 (t)
〉

+ (β0)
2
〈

b†1 (t′) b†1 (t)
〉

, (8.20)

and higher order fluctuation terms than b2
1 are ignored. The linearisation transforms

the second-order correlation functions of the ancilla operators, 〈b†b(t)b†b(t′)〉 and
〈

b†b (t′) b†b (t)
〉

, into first order correlation functions of fluctuation fields: 〈b†1 (t) b1 (t′)〉,
〈b†1 (t) b†1 (t′)〉 〈b†1 (t) b1 (t′)〉, and 〈b†1 (t) b†1 (t′)〉.

8.2 A damped driven anharmonic oscillator

8.2.1 One-time correlations

In this section we calculate the one-time and two-time correlation functions of the an-

cilla. For this purpose, firstly we need to calculate the one-time correlation functions

of a single driven anharmonic oscillator. We will follow the method of Drummond

and Wall [54] who obtained one-time correlation functions. Then we extend to their

method to calculate two-time correlation functions.

The master equation for a driven anharmonic oscillator 1 interacting with the

thermal bath is given by

dρb(t)

dt
= −iδω

[

b†b, ρb(t)
]

− iE
[

b† + b, ρb(t)
]

− iλ11

[

(

b†b
)2

, ρb(t)
]

+ κ (N1 + 1)D [b] ρb(t) + κN1D
[

b†
]

ρb(t), (8.21)

where ρb is the density matrix of the ancilla oscillator. The exact steady-state one-

time correlation functions for a system with master equation Eq. (8.21) at zero temper-

ature were given in Refs. [37, 54], in a discussion of optical bistability of a coherently
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driven dispersive cavity with a cubic nonlinearity in the polarizability of the internal

medium. At finite temperature, there is no exact solution.

Our objective is to derive a stochastic differential equation from the quantum

master equation. Representing a density matrix in a coherent state basis is useful in

systems described by Bose operators b†, b. We have used the Q-representation (Sec.

6.3) and the Wigner representation (Sec. 7.3.2). The Wigner function simplifies aver-

aging symmetrically ordered operators, but is not convenient for averaging normally

ordered operators. On the other hand, the Q-function has the disadvantage that not

every positive Q-function corresponds to a positive semidefinite Hermitian density

operator [37, 54, 55]. Instead we will use the generalised P-representation introduced

by Drummond and Gardiner [55]. This involves an expansion in nondiagonal coherent

state projection operators. The generalised P-function is defined as

ρ ≡
∫

dµ (α, β) P (α, β)
|α〉 〈β∗|
〈β∗|α〉 , (8.22)

where dµ (α, β) = d2αd2β. This representation allows (α, β) to vary independently

over the whole complex plane. It has been mathematically proved that P (α, β) always

exists for a physical density operator and can always be chosen positive [55]. For

brevity we write P (α, β) = P
(

β̂
)

. The following identities hold for the generalised

P-representation:

bρ ↔ αP
(

β̂
)

, (8.23)

b†ρ ↔
(

β − ∂

∂α

)

P
(

β̂
)

, (8.24)

ρb ↔
(

α − ∂

∂β

)

P
(

β̂
)

, (8.25)

ρb† ↔ βP
(

β̂
)

. (8.26)

Using the above transformations, the Fokker-Planck equation corresponding to
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the master equation Eq. (8.21) can now be written as

∂

∂t
P

(

β̂
)

=

{

∂

∂α

[

(κ + iδω) α − 2iλ11α
2β + iE

]

− iλ11
∂2

∂α2
α2

+
∂

∂β

[

(κ − iδω) β − 2iλ11β
2α − iE

]

−iλ11
∂2

∂β2
β2 + 2κn̄1

∂2

∂α∂β

}

P
(

β̂
)

. (8.27)

Drummond and Gardiner have shown [55] that the Fokker-Planck equation in β̂ can

be transformed to a stochastic differential equation with positive definite diffusion1.

They found that the stochastic differential equations in the Ito calculus corresponding

to Eq. (8.27) are

∂

∂t





α

β



 =





−iE − α [κ + iδω + 2iλ11αβ]

iE − β [κ − iδω − 2iλ11βα]





+





−2iλ11α
2 2κn̄1

2κn̄1 2iλ11β
2





1/2 



ξ1

ξ2



 , (8.28)

where ξ1 and ξ2 are random Gaussian functions so that α and β are complex conjugate

in the mean2. This stochastic differential equation is non-linear and not solvable as

it is. However, it is reasonable to use a small noise expansion and linearise the

fluctuations about the steady state of the mean field amplitudes. Thus we write β in

terms of the mean amplitude and first order expansion of the fluctuation,

β (t) = β0 + β1 (t) , (8.29)

where β0 is the mean amplitude of β, and β1 is the zero mean fluctuation amplitude.

We have a similar expression for α. Thus α0 and β0 are complex conjugate to each

other (i.e., α0β0 = |β0|2 = |α0|2). Then the fluctuation amplitude vector β̂1 =

1Note that their notation is different from ours: their β corresponds to our α and their β† to our
β.

2The mean of α and β are complex conjugate. However, fluctuation introduces a stochastic
component, and so α and β deviate from being complex conjugate.
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(α1, β1)
T obeys a stochastic differential equation

∂

∂t
β̂1 (t) = −A · β̂1 (t) + D1/2

(

β̂0

)

ξ (t) , (8.30)

where ξ = (ξ1, ξ2)
T is the noise vector, A is the linearised drift matrix and D is the

diffusion matrix evaluated at β̂ = β̂0. The matrices A and D are

A =





κ + iδω + 4iλ11n0 2iλ11α
2
0

−2iλ11β
2
0 κ − iδω − 4iλ11n0



 , (8.31)

where n0 ≡ α0β0, and

D =





−2iλ11α
2
0 2κn̄1

2κn̄1 2iλ11β
2
0



 . (8.32)

The one-time correlation matrix is defined as

C (t, t) ≡





〈α2〉 − 〈α〉2 〈βα〉 − |〈β〉| |〈α〉|
〈βα〉 − |〈β〉| |〈α〉| 〈β2〉 − 〈β〉2



 . (8.33)

Using Eq. (8.29), C (t, t) becomes

C (t, t) =





〈α2
1〉 〈β1α1〉

〈β1α1〉 〈β2
1〉



 . (8.34)

Given Eq. (8.30), Chaturvedi et. al. [37, 54, 56, 57] have derived the expression:

C (t, t) =
D det (A) + [A − ITr (A)]D [A − ITr (A)]T

2Tr (A) det (A)
. (8.35)

Carrying out the calculation we obtain

C (t, t) =
1

Λ





S T

T S∗



 , (8.36)
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where

Λ = κ2 + Λ1, (8.37)

Λ1 = (δω)2 + 8 (δω) λ11n0 + 12λ2
11n

2
0, (8.38)

S = −iλ11α
2
0 (κ − iδω − 4iλ11n0) (2N1 + 1) , (8.39)

S∗ = iλ11β
2
0 (κ + iδω + 4iλ11n0) (2N1 + 1) , (8.40)

T = N1 |κ + iδω + 4iλ11n0|2 + 2λ2
11n

2
0. (8.41)

8.2.2 Two-time correlations

Based on the results in Subsection 8.2.1 we now derive an expression for the two-time

steady state correlation matrix

C (t, t′) =





〈α1 (t) α1 (t′)〉 〈α1 (t) β1 (t′)〉
〈β1 (t) α1 (t′)〉 〈β1 (t) β1 (t′)〉



 . (8.42)

A solution to Eq. (8.30) is

β̂1 (t) = exp (−At) β̂1 (t0) +

t
∫

−∞

exp [−A (t − t′)]D1/2dW, (8.43)

where dW = ξ
√

dt. Then the mean of β̂1 (t) is zero since the average of the fluctuation

is zero, i.e.,
〈

β̂1 (t)
〉

= exp (−At) β̂1 (t0) = 0. (8.44)

and using Eqs. (8.43) and (8.44), two time correlation matrix Eq. (8.42) can be

obtained in a form:

C (t, t′) =
〈

α̂1 (t) β̂1 (t′)
〉

=

min(t,t′)
∫

−∞

exp (−A (t − t′′))D exp
(

−AT (t′ − t′′)
)

dt′′.

(8.45)
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Thus C (t, t′) for t > t′ is

C (t, t′) = exp (−A (t − t′))

t′
∫

−∞

exp (−A (t′ − t′′))D exp
(

−AT (t′ − t′′)
)

dt′′

= exp (−A (t − t′))C (t, t) , (8.46)

and similarly for t < t′

C (t, t′) = C (t, t) exp
(

−AT (t′ − t)
)

. (8.47)

Let us define M(t, t′) ≡ exp[−A(t− t′)]. The matrix M can be calculated as follows.

Let the matrix U = (u1, u2) diagonalise A with eigenvalues λ±. The eigenvalues for

this 2 × 2 matrix can be found from the characteristic equation:

λ± =
Tr (A) ∓

√

[Tr (A)]2 − 4 det (A)

2

= κ ∓ i
√

Λ1, (8.48)

where Λ1 is defined in Eq. (8.38). The eigenvectors are

u1 =

(

−δω + 4λ11n0 +
√

Λ1

2α2λ11

, 1

)

, (8.49)

u2 =

(

−δω − 4λ11n0 +
√

Λ1

2β2λ11

, 1

)

. (8.50)

We can then obtain the matrix M as

M(t, t′) = U





exp (−λ+ (t − t′)) 0

0 exp (−λ− (t − t′))



U−1

=
1

2
√

Λ1





M11 M12

M21 M22



 , (8.51)
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where

M11 = (Λ1 − c) e−λ−(t−t′) + (Λ1 + c) e−λ+(t−t′), (8.52)

M12 = 2λ11α
2
0

[

−e−λ−(t−t′) + e−λ+(t−t′)
]

, (8.53)

M21 = 2λ11β
2
0

[

e−λ−(t−t′) − e−λ+(t−t′)
]

, (8.54)

M22 = (Λ1 + c) e−λ−(t−t′) + (Λ1 − c) e−λ+(t−t′), (8.55)

and c ≡ 4λ11n0 + δω. The two-time correlation matrix Eq. (8.42), follows directly

from Eqs. (8.46) (8.47) and (8.51), and the fact that exp[−A(t − t′)] = M(t, t′) and

exp[−AT (t′ − t)] = MT (t′, t):

The final results for C (t, t′) for t > t′ are

〈α1 (t) α1 (t′)〉 =
1

2
√

Λ1

{(Λ1 + c) exp [−λ+ (t − t′)] + (Λ1 − c) exp [−λ− (t − t′)]}
〈

α2
1

〉

+
λ11α

2
0√

Λ1

{exp [−λ+ (t − t′)] − exp [−λ− (t − t′)]} 〈α1β1〉 , (8.56)

〈β1 (t) α1 (t′)〉 =
1

2
√

Λ1

{(Λ1 + c) exp [−λ+ (t − t′)] + (Λ1 − c) exp [−λ− (t − t′)]} 〈β1α1〉

+
λ11α

2
0√

Λ1

{exp [−λ+ (t − t′)] − exp [−λ− (t − t′)]}
〈

β2
1

〉

, (8.57)

〈α1 (t) β1 (t′)〉 =
Λ1 − c2

4λ11α2
0

√
Λ1

{exp [−λ+ (t − t′)] − exp [−λ− (t − t′)]}
〈

α2
1

〉

+
1

2
√

Λ1

{(Λ1 − c) exp [−λ+ (t − t′)] + (Λ1 + c) exp [−λ− (t − t′)]} 〈α1β1〉 ,

(8.58)
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〈β1 (t) β1 (t′)〉 =
Λ1 − c2

4λ11α2
0

√
Λ1

{exp [−λ+ (t − t′)] − exp [−λ− (t − t′)]} 〈β1α1〉

+
1

2
√

Λ1

{(Λ1 − c) exp [−λ+ (t − t′)] + (Λ1 + c) exp [−λ− (t − t′)]}
〈

β2
1

〉

,

(8.59)

and for t < t′ are

〈α1 (t′) α1 (t)〉 =
1

2
√

Λ1

{(Λ1 + c) exp [−λ+ (t − t′)] + (Λ1 − c) exp [−λ− (t − t′)]}
〈

α2
1

〉

+
− (Λ1 − c2)

4λ11β2
1

√
Λ1

{exp [−λ+ (t − t′)] − exp [−λ− (t − t′)]} 〈β1α1〉 , (8.60)

〈β1 (t′) α1 (t)〉 = −λ11α
2
0√

Λ1

{exp [−λ+ (t − t′)] − exp [−λ− (t − t′)]}
〈

α2
1

〉

+
1

2
√

Λ1

{(Λ1 − c) exp [−λ+ (t − t′)] + (Λ1 + c) exp [−λ− (t − t′)]} 〈β1α1〉 ,

(8.61)

〈α1 (t′) β1 (t)〉 =
1

2
√

Λ1

{(Λ1 + c) exp [−λ+ (t − t′)] + (Λ1 − c) exp [−λ− (t − t′)]} 〈α1β1〉

+
− (Λ1 − c2)

4λ11β2
1

√
Λ1

{exp [−λ+ (t − t′)] − exp [−λ− (t − t′)]}
〈

β2
1

〉

, (8.62)

〈β1 (t′) β1 (t)〉 = −λ11α
2
0√

Λ1

{exp [−λ+ (t − t′)] − exp [−λ− (t − t′)]} 〈α1β1〉

+
1

2
√

Λ1

{(Λ1 − c) exp [−λ+ (t − t′)] + (Λ1 + c) exp [−λ− (t − t′)]}
〈

β2
1

〉

.

(8.63)

8.2.3 Operator correspondences to c-numbers

Note that in the generalised P-representation, the c-number time correlation function

corresponds to a normally ordered time correlation function of the operators. Thus

the correlations above do not correspond to all the two-time correlation functions we
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need. In general the two-time correlation A and B can be written as (t > t′)

〈A (t) B (t′)〉 = Trs {AV (t, t′) {Bρ (t′)}} , (8.64)

〈A (t′) B (t)〉 = Trs {BV (t, t′) {ρ (t′) A}} , (8.65)

where V (t + τ, t) is the evolution operator, which acts as

V (t, t′) {Bρ (t′)} = Trs

{

exp

[

−iH (t − t′)

~

]

Bρ (t′) exp

[

iH (t − t′)

~

]}

. (8.66)

Using Eqs. (8.64) and (8.65), we derive the operator correspondence to the two-time

correlation matrix C (t, t′) we have just found. For example, using Eq. (8.64) and
〈

b†1 (t) b1 (t′)
〉

can be written as

〈

b†1 (t) b1 (t′)
〉

= Trs

{

b†1V (t, t′) {b1ρ (t′)}
}

. (8.67)

From the identity Eq. (8.23), we evaluate b1ρ (t):

〈

b†1 (t) b1 (t′)
〉

= Trs

{

b†1V (t, t′)

∫

dµ
(

β̂
)

α1 (t′) P
(

β̂
) |α〉 〈β∗|

〈β∗|α〉

}

. (8.68)

Using the permutation property of the trace, moving b†1 to the right and evaluating,

we obtain

〈

b†1 (t) b1 (t′)
〉

= Trs

{

α1 (t′)

(

V (t, t′)

∫

dµ
(

β̂
)

P
(

β̂
) |α〉 〈β∗| b†1

〈β∗|α〉

)}

= Trs {β1 (t) α1 (t′)} . (8.69)

This result was to be expected as the P function has a normal ordered operator

correspondence. (Note that, by design, for the generalised P-function.b†1 corresponds

to β1 and b1 to α1.)

Similarly evaluating an anti-normal ordered correlation function using Eq. (8.65),
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we first obtain

〈

b1 (t′) b†1 (t)
〉

= Trs

{

b†1V (t, t′) {ρ (t′) b1}
}

, (8.70)

= Trs

{

b†1V (t, t′)

∫

dµ
(

β̂
)

(

α1 −
∂

∂β1 (t′)

)

P
(

β̂
) |α〉 〈β∗|

〈β∗|α〉

}

, (8.71)

= Trs

{

b†1V (t, t′)

∫

dµ
(

β̂
)

α1 (t) P
(

β̂
) |α〉 〈β∗|

〈β∗|α〉

}

− Trs

{

b†1V (t, t′)

∫

dµ
(

β̂
) ∂

∂β1 (t′)
P

(

β̂
) |α〉 〈β∗|

〈β∗|α〉

}

. (8.72)

Permuting b†1 and evaluating the result gives

〈

b1 (t′) b†1 (t)
〉

= Trs

{

α1 (t′)

(

V (t, t′)

∫

dµ
(

β̂
)

P
(

β̂
) |α〉 〈β∗| b†1

〈β∗|α〉

)}

− Trs

{(

V (t, t′)

∫

dµ
(

β̂
) ∂

∂β1 (t′)
P

(

β̂
) |α〉 〈β∗| b†1

〈β∗|α〉

)}

, (8.73)

= Trs {α1 (t′) β1 (t)}

− Trs

{∫

dµ
(

β̂
)

[

∂

∂β1 (t′)
β1 (t)

]

P
(

β̂
) |α〉 〈β∗|

〈β∗|α〉

}

. (8.74)

where we have used the integration by parts and discarded the surface term. Now we

need to evaluate ∂β1 (t) /∂β1 (t′). Recall that





α1 (t)

β1 (t)



 = exp (−Aτ)





α1 (t′)

β1 (t′)



 = M(t, t′)





α1 (t′)

β1 (t′)



 . (8.75)

Thus we have

β1 (t) = M21α1 (t′) + M22β1 (t′) , (8.76)

where Mij is the element of M. Then

∂

∂β1 (t′)
β1 (t) = M22. (8.77)

Finally, we obtain
〈

b1 (t′) b†1 (t)
〉

= 〈β1 (t) α1 (t′)〉 + M22. (8.78)
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Thus, we obtain the following relations.

〈b1 (t) b1 (t′)〉 = 〈β1 (t) β1 (t′)〉 , (8.79)
〈

b1 (t) b†1 (t′)
〉

=
〈

β1 (t) β†
1 (t′)

〉

+ M11(t, t
′), (8.80)

〈

b†1 (t) b1 (t′)
〉

=
〈

β†
1 (t) β1 (t′)

〉

, (8.81)
〈

b†1 (t) b†1 (t′)
〉

=
〈

β†
1 (t) β†

1 (t′)
〉

+ M21(t, t
′), (8.82)

〈b1 (t′) b1 (t)〉 = 〈β1 (t) β1 (t′)〉 + M12(t, t
′), (8.83)

〈

b1 (t′) b†1 (t)
〉

=
〈

β†
1 (t) β1 (t′)

〉

+ M22(t, t
′), (8.84)

〈

b†1 (t′) b1 (t)
〉

=
〈

β1 (t) β†
1 (t′)

〉

, (8.85)
〈

b†1 (t′) b†1 (t)
〉

=
〈

β†
1 (t) β†

1 (t′)
〉

, (8.86)

where Mij(t, t
′) is the matrix elements of the matrix M (t, t′).

8.3 The master equation for the reduced density

matrix

Having found one-time and two-time correlation functions, we can now evaluate Eqs.

(8.16) and (8.18) and obtain the master equation for the reduced density matrix of

oscillator 0 as:

dρs

dt
= −i (ω0 + ∆)

[

a†a, ρs

]

− Γ
[

a†a,
[

a†a, ρs

]]

− iΘ
[

(

a†a
)2

, ρs

]

+ ν (N0 + 1)D [a] ρs + νN0D
[

a†
]

ρs, (8.87)
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where

∆ = λ01

(

N1

Λ
|κ + iδω + 4iλ11n0|2 +

2

Λ
λ2

11n
2
0 + n0

)

, (8.88)

Θ = λ00 −
λ2

01n0

Λ
(δω + 2λ11n0) , (8.89)

Γ = − λ2
01

4κn2
0λ11

Λ2
(2N1 + 1) (δω + 3λ11n0)

+ λ2
01

{

1

2Λ2

[

4N1n0κ |κ + iδω + 4iλ11n0|2 + 8λ2
11n

3
0κ

]

+
1

Λ
n0

}

, (8.90)

with

Λ = κ2 + δω2 + 8δωλ11n0 + 12λ2
11n

2
0. (8.91)

In Eq. (8.87), ∆ in the first term is the resonant frequency shift due to anharmonic

interactions, and Γ is the phase diffusion coefficient associated with the backaction

due to an effective measurement of a†a. The Kerr non-linear phase shift is the third

term; its coefficient Θ depends on the anharmonicity of both oscillators λ00 and λ11

as well as the detuning of the ancilla oscillator. The last two terms drive from the

thermal coupling to the system and are responsible for the quantum jumps.

8.3.1 Effects of the anharmonic terms

Firstly, notice that in the case of no detuning and no non-linear uncoupled anharmonic

terms (i.e., δω = 0, λ00 = λ11 = 0), we have

∆ = λ01 (N1 + n0) , (8.92)

Θ = 0, (8.93)

Γ =
λ2

01n0 (2N1 + 1)

κ
. (8.94)

which agree with the results of adiabatic elimination in the previous chapter.

Secondly, from Eq. (8.87), we see that the condition κ À λ11 makes the effect of

the non-linear uncoupled anharmonic terms in ∆ and Γ very small, which justifies
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the assumption of neglecting λ11 from the start in Chapter 6. However, the full

calculation allows us to make quantitative estimates of the condition κ À λ11.

The expressions in Eq. (8.87)-(8.90 depend on the value of n0 which gives the

intensity of the driven motion of the nonlinear oscillator. In the next section we show

that there exist parameter values leading to a multiplicity of solutions. This will

limit the strength of the driving that can be used in experiment. This issue is also

discussed in the next section.

8.3.2 Parameter constraints imposed by the anharmonic terms

We now examine the steady state amplitude β as a function of the driving amplitude

E. In the steady state, ∂β/∂t = 0 and the mean phonon number of the driven ancilla

is n0 = α0β0, where |β0| = |α0| is the steady state driving amplitude. Thus, the

steady state solutions are given by

0 =
∂

∂t





α

β



 =





−iE − α0 [κ + iδω + 2iλ11α0β0]

iE − β0 [κ − iδω − 2iλ11β0α0]



 , (8.95)

i.e., by the solutions of above, we obtain

|E|2 = n0

[

κ2 + (δω + 2λ11n0)
2] . (8.96)

Equation (8.96) has an analogy to a classical anharmonic oscillator discussed, for

example, in Landau and Lifshitz [58]. (The results are sketched in Fig. 8.1.) The

resonance frequency shifts with the driving strength. The region between the point

C and D (shown as a dotted line) is the instability region. Classically the oscillator

will take one or the other of the stable solutions; however, what will happen in the

quantum case is not known. As Eq. (7.93) indicates, in order to obtain high k/ν ratio,

we want a maximum possible driving strength without getting into the instability

region, ideally driving near point B.

The instability points of the solution can be found from the stochastic differential
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n
0
/E2

δω

A B C

D

Figure 8.1: A sketch of n0/E
2 vs. δω with various driving strengths. Curve A shows

the linear resonance for small driving. Curves B and C show the effect of increasing
driving strength. Notice that B shows the limiting case for no multiplicity of solutions.
For case C there are multiple solutions over a range of frequencies. The dotted branch
corresponds to unstable solutions.

equation Eq. (8.30) in the steady state, that is, we find the stable solutions for A in

the steady state. Since A is a 2 × 2 matrix, its characteristic equation is given by

x2 − xTr (A) + det (A) = 0. (8.97)

Given a system with this characteristic equation and arranged in matrix form,











x2 1 det (A)

x Tr (A) ..

1 Tr(A) det(A)
Tr(A)

..











, (8.98)

the Routh-Hurwitz stability criterion states that all coefficients in the second column

must be positive or all negative but not a combination of both. From Eq. (8.31),

Tr (A) = 2κ > 0, thus we must have det (A) > 0 to have a stable solution. Calculating

det (A) gives

det (A) = κ2 + δω2 + 12λ2
11n

2
0 + 8δωλ11n0. (8.99)
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So the instability point is det (A) = 0,

δω± = −4λ11n0 ±
√

4λ2
11n

2
0 − κ2. (8.100)

Thus the range δω− < δω < δω+ is the bistability region. Therefore when the ancilla

is driven for our QND scheme, the driving strength should be adjusted such that this

region will be avoided. Notice that in the absence of nonlinearity (λ11 = 0, δω 6= 0),

bistability does not exit since det (A) > 0. The same is true in the case where the

detuning is zero (δω = 0, λ11 6= 0).

The instability points are, from Eq. (8.100)

n0 =
κ

2λ11

, (8.101)

and

δω = −4λ11n0 = −2κ. (8.102)

This is the detuning of the point B. The driving amplitude E is from Eq. (8.96)

|E|2 = n0

[

κ2 + (δω + 2λ11n0)
2]

=
κ3

2λ11

. (8.103)

Carr et al. has estimated the anharmonic coefficient for an elastic beam with rectan-

gular cross-section[35], and it is given by

λ11 =
1

4



3
m1

2

(

π2

√
12

√

EB

ρ

d1

L2
1

)2

1

d2
1





~

m2
1ω

3
1

~ω1

~
. (8.104)

where EB is the bulk modulus and ρ is the mass density. Using Eq. (7.95) and the

geometry used in Sec. 7.4.2, we obtain λ11/ω1 = 1.65 × 10−6/ω1, and |α|

|α| =

√

κ

2λ11

= 4.4 × 105, (8.105)
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which corresponds to the scaled displacement of the ancilla x1/d1 = 0.06.

The total phonon number in the oscillator is, from Eqs. (8.36) and (8.41)

n = |α0β0|2 + 〈β1 (t) α1 (t′)〉

= n0 +
1

det (A)

[

N1 |κ + iδω + 4iλ11n0|2 + 2λ2
11n

2
0

]

. (8.106)

If there are no detuning and no nonlinearity, the phonon intensity becomes

n = n0 + N1, (8.107)

that is, the phonon number is just the sum of the driving term contribution and the

thermal bath. This is because the driving and the excitation by the thermal bath

are uncorrelated and the result is simply a linear superposition. With the presence

of nonlinearity, there are additional terms in the intensity. There is a term, 2λ2
11n

2
0,

that is proportional to the intensity n2
0 even at zero temperature. This is due to the

quantum fluctuations in the oscillator and these terms do not exist for the classical

oscillator, whereas the terms N1 (iδω + 4iλ11n0) will exist in the classical counterpart

as well.) When det (A) is zero, Eq. (8.106) diverges. This is where our linearisation

approximation fails and further analysis is required expanding the fluctuation beyond

the linear term.

Since this is a calculation of the correlation functions of the ancilla alone, this

formalism also lets us calculate the behaviour of a single driven nonlinear oscillator in

the quantum regime, including perhaps the tunneling between the two stable classical

solutions.
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Chapter 9

Conclusion to Part II

We have proposed and analysed a scheme to observe quantum transitions of a meso-

scopic mechanical oscillator. The non-linear coupling shifts the frequency of the sec-

ond (ancilla) oscillator proportionally to the excitation of the first (system) oscillator.

This frequency shift may be detected as a phase shift of the ancilla oscillation when

driven on resonance. In principle, a QND measurement is possible if the coupling

constant λ01 is much smaller than the resonance frequencies of the oscillators. We

have derived the master equation for the system density matrix, the deterministic

part of the dynamical equation, by removing the ancilla operator using the fact that

the timescale of the system and ancilla dynamics are quite different. This technique is

called the adiabatic elimination. The master equation has three components: phase

diffusion as a result of the measurement backaction; a constant energy shift due to the

excitation of the ancilla oscillator, and Fock state transitions due to the interaction

with the thermal bath (the environment).

Measurements introduce a stochastic component into the system dynamics and we

have obtained the stochastic master equation (SME) corresponding to our measure-

ment scheme. This process is called unravelling the master equation. From the SME

we identify two competing tendencies that can be characterized by two parameters.

One is the coupling strength ν of the system and thermal bath, which is associated

with the dwell time tdwell between transitions. The other is the coefficient k, associ-

ated with measurements, which includes not only the coupling strength of the system

to the bath but also the anharmonic coupling strength between the oscillators, the
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driving amplitude, and the sensitivity of the measurement apparatus. This coefficient

is related to the measurement time tm that is needed for a measurement to be able to

produce an outcome with certainty. To observe clear quantum jumps we would need

tdwell À tm. If this condition is not satisfied, then the experimenter cannot infer the

energy eigenstate of the system from the observed current.

We have also shown quantitatively that the neglect of the higher order anhar-

monic terms is indeed justified. We have also seen that both thermal and quantum

fluctuations increase the intensity of phonons.

With the rapid development of higher measurement sensitivity and the ability

to control the coupling strengths, there maybe some appropriate experimental pa-

rameters that give the condition tdwell À tm, which might lead to an observation of

quantum jumps. Our scheme and theoretical techniques developed here are fairly

general, and are not restricted to zero temperature, thus they can be also used for

other applications such as a single spin detection, noise analysis for a solid state

based quantum computer and phonon counting. Such possibilities might open up a

new stage for observing quantum dynamics in mesoscopic systems.

9.1 Future issues

Finally, we would like to address several extensions of the work in this thesis that

could be investigated in the near future. Firstly, we have used the rotating wave

approximation (RWA) and have discarded the counter-rotating terms. Whilst this

approximation is reasonable under the assumptions we have imposed, we have not

quantified the counter-rotating terms. Since the RWA is crucial for a QND measure-

ment, it would be of importance to investigate the effect of the counter-rotating terms

in depth.

Secondly, we have not considered all couplings that might arise in an actual ex-

perimental setup. For example, linear coupling x0x1 will not occur theoretically due

to the symmetry of flexing motion. However, when an experimental structure is fab-

ricated, this linear term is probably unavoidable due to limitation of the fabrication
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techniques. For the two flexing modes of an elastic beam, for example, if the structure

is not perfectly symmetric there will be a coupling between the modes, so that the

motion of the beam becomes elliptic rather than simple linear bending motion.

Thirdly, we have assumed the efficiency of the measurement apparatus to be 1.

In reality, there are no perfect detectors and we need to account for the reduced

efficiency.

Finally, in addition to improving our scheme towards more realistic situations, the

existence of nonlinear terms itself provides rich dynamics and might lead to interesting

phenomena such as the macroscopic tunnelling between two nonlinear states. It is of

interest to do a more detailed analysis of the quantum behaviour of driven anharmonic

oscillators.
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Appendix A

Appendices to Part I

A.1 Optical theorem and S-matrix

The attenuation of a wave in elastic scattering is not due to energy dissipation, but

rather to incoherent scattering between different modes. We have taken a Green func-

tion approach to calculate the scattering probability. However, it can be calculated

using S-matrix theory method as well.

If the incident field does not scatter at all, S is simply the identity operator. We

rewrite S as S = 1 + iT to isolate the component due to scattering. The component

T due to interactions is called the T -matrix. Since S is unitary and satisfies the reci-

procity theorem as a consequence of energy conservation and time reversal invariance,

S†S = 1. Thus,

S†S = 1 =
(

1 − iT †
)

(

1 + iT
)

(A.1)

from which

i
(

T † − T
)

= T †T. (A.2)

Projecting the above onto km and using completeness

i
〈

km

∣

∣

(

T † − T
)∣

∣ km

〉

=
〈

km

∣

∣T †T
∣

∣ km

〉

=
max n
∑

n=±1

〈

km

∣

∣T †
∣

∣ kn

〉

〈kn |T | km〉 , (A.3)

where km is the k-vector of the incident mode m, and kn is the k-vector of the scattered
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mode n (+ is for forward scattering and − is for backscattering). Thus

2i 〈km |T | km〉 =
max n
∑

n=±1

|〈kn |T | km〉|2 . (A.4)

This is known as the optical theorem. Eq. (A.4) can be broken down into two com-

ponents, representing forward and backward scattering.

i 〈km|T |km〉 =
1

2

(

max n
∑

n

| 〈kn|T |km〉 |2 +
max n
∑

n

| 〈k−n|T |km〉 |2
)

. (A.5)

Here, m → ±n, corresponding to the transition of mode m to mode ±n. Since

i 〈km|T |km〉 is the coherent scattering field this can be written as Im 〈km|T |km〉 or

Im[δk]|m, where δk is the k-vector change between initial and final state of km. On

the other hand, 〈k±n|T |km〉 is the loss due to the incoherent scattering, i.e., the

scattering probability amplitude, σ±n,m. Thus,

Im[δk]|m = σm, (A.6)

where

σm =
1

2

(

∑

n

σ−n,m +
∑

n

σn,m

)

. (A.7)

A.2 The second term of the total field equation

In this appendix, we show that the second term in Eq. (2.6) is the incident field.

Suppose that the incident mode is m. Separating the Green function into its

incident and other modes gives

G (x, y; x′, f (x′)) =
±i

Wkm

cos (χmy) cos (χmf (x′)) eikm|x−x′|

+
∑

n
χn 6=χm

±i

Wkn

cos (χny) cos (χnf (x′)) eikn|x−x′|. (A.8)
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We evaluate the second term in Eq. (2.6). Let us define this term as Iends i.e.,

Iends ≡
∫

ends

dy′

[

G (x′, y′; x, y)
∂Ψ (x′, y′)

∂x′
− ∂G (x′, y′; x, y)

∂x′
Ψ (x′, y′)

]

. (A.9)

This integral is obtained by combining the two integrals, Iends|x′→∞ and Iends|x′→−∞,

one at each distant end. Due to the change of sign of the outer normal n̂, which points

in the +x direction for one end, and in the −x direction for the other, we have that

the second term of Eq. (2.6) is equal to the difference Iends = Iends|x′→∞− Iends|x′→−∞.

Each of these two integrals is of the form

Iends|x′→±∞ =

∫

dy′ ∓i

Wχm

cos (χmy) cos (χmy′) e∓ikm(x−x′)

[

∂Ψ

∂x′
− (±ikm) Ψ

]

+
∑

n
χn 6=χm

∫

dy′ ∓i

Wkn

cos (χny) cos (χny
′) e∓ikn(x−x′)

[

∂Ψ

∂x′
− (±ikn) Ψ

]

, (A.10)

where sign is up for x′ → +∞ and down for x′ → −∞. The total field Ψ at x′ → ∞
is

Ψ (x′, y′) = Bm cos (χmy′) eikmx′

+
∑

s
χs 6=χm

Bs cos (χsy
′) eiksx′

, (A.11)

where Bm, Bs are associated with the transmission coefficient. The first term rep-

resents the unscattered field and the second term represents the forward scattered

fields. The total field Ψ at x′ → −∞ is

Ψ (x′, y′) = χm (y′) eikmx′

+ Am cos (χmy′) e−ikmx′

+
∑

s
χs 6=χm

As cos (χsy
′) e−iksx′

, (A.12)

where Am, As are associated with the reflection coefficient. The first term is the

incident field, the second and the third terms are for back scattered fields.

At the boundary x′ → ∞, n̂′ = x̂′. Substituting Eq. (A.11) into Eq. (A.10)
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produces

Iends|x′→∞ =
∑

s
χs 6=χm

Bs (ks − km)

Wkm

cos (χmy) e−ikm(x−x′)e+iksx′

∫ W

0

dy′ cos (χmy′) cos (χsy
′)

+
∑

n
χn 6=χm

Bm (km − kn)

Wkn

cos (χny) e−ikn(x−x′)eiklx
′

∫ W

0

dy′ cos (χny
′) cos (χmy′)

+
∑

n
χn 6=χm

∑

s
χs 6=χm

Bs (ks − kn)

Wkn

cos (χny) e−ikn(x−x′)eiksx′

∫ W

0

dy′ cos (χny′) cos (χsy
′)

= 0. (A.13)

This is zero by orthogonality since ks 6= −kn, i.e., all modes are in the same direction.

At x′ → −∞, n̂′ = −x̂′. substituting Eq. (A.12) into Eq. (A.10) yields

Iends|x′→−∞ =
i [ikm + ikm]

Wkm

cos (χmy) eikm(x−x′)eikmx′

∫ W

0

dy′ cos2 (χmy′)

+
∑

s
χs 6=χm

iAs (iks + ikm)

Wkm

cos (χmy) eikm(x−x′)eiksx′

∫ W

0

dy′ cos (χmy′) cos (χsy
′)

+
∑

n
χn 6=χm

iAm (ikm + ikn)

Wkn

cos (χny) eikn(x−x′)eikmx′

∫ W

0

dy′ cos (χny
′) cos (χmy′)

+
∑

n
χn 6=χm

∑

s
χs 6=χm

iAs (iks + ikn)

Wkn

cos (χny) eikn(x−x′)eiksx′

∫ W

0

dy′ cos (χny′) cos (χsy
′) .

(A.14)

This gives a nonzero value only if kn = −ks. Then

Iends|x′→−∞ = −
∑

s

Ns cos (χsy) eiksx = −Ψin. (A.15)

As discussed above, because n̂′ is pointing toward the −x direction at x′ → −∞, the

sign of this integral must be changed. Thus, the second term in (2.6) is the incident

field Ψin.
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A.3 Group velocity and energy velocity

In this appendix, we derive vg directly from the equations of motion. When converting

the expression containing group velocities to power flows in the main text, we have

assumed the energy velocity ve is equivalent to the group velocity in our case.

The average power Pn flowing in x direction of mode n is

Pn ≡ 1

2
ρveω

2

∫ d/2

−d/2

∫ W/2

−W/2

ui,nu∗
i,ndy′dz′, (A.16)

where ve is the energy velocity. For a waveguide extending in the x−direction, the

power flow varies with the position of the cross section. So we take an average power

flow, and the energy velocity is expressed in terms of an integral over the cross section,

ve =
average Power in the x-direction

Energy per unit length (in the x-direction)
=

∫ ∫

dydzP
∫ ∫

dydz (e)

=
−1

2
Re

∫ ∫

(Tixv
∗
i ) dydz

1
2

∫ ∫

ρω2uiu∗
i dydz

, (A.17)

where P is the Poynting vector and e is the energy density. Thus the power P can

be also written as

P =
1

2
Re

∫ ∫

(−Tixv
∗
i ) dydz, (A.18)

where P is the power. We want to show ve = vg. The wave equation with harmonic

time dependence is Eq. (3.4)

ρω2ui + ∂j (Cijkl∂kul) = 0. (A.19)

We multiply by u∗
i , integrate over z and y, and rewrite the result as

∫ ∫

dydzρω2uiu
∗
i +

∫ ∫

dydz [∂j (Cijkl∂kul) u∗
i ] = 0. (A.20)

The second term, after integrating by parts and setting the surface terms to zero by
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the stress-free boundary conditions and symmetry, becomes

∫ ∫

dydz (∂jCijkl∂kul) u∗
i = −Cijkl

∫ ∫

dydz (∂jul) ∂ku
∗
i . (A.21)

Differentiating Eq. (A.20) with respect to the wave vector q gives

2ρωvg

∫ ∫

dydzuiu
∗
i +

∫ ∫

dydzρω2∂ui

∂q
u∗

i +

∫ ∫

dydzρω2ui
∂u∗

i

∂q

−
∫ ∫

dydz

(

∂

∂q
∂jCijklul

)

∂ku
∗
i −

∫ ∫

dydz (∂jCijklul)

(

∂

∂q
∂ku

∗
i

)

= 0. (A.22)

The last two terms on the right hand side can be manipulated in the following way.

In evaluating the q derivative for the second last term in Eq. (A.22), we first

separate the x derivative from y and z, take the derivative with respect to q, and

regroup the terms with ul and ∂qūl.

− Cijkl

∫ ∫

dydz

(

∂

∂q
∂jul

)

∂ku
∗
i

= −Cijkl

∫ ∫

dydz

[

∂

∂q
(iqδjx + ∂j) ūl

]

eikx∂kū
∗
i e

−ikx

= −Cijkl

∫ ∫

dydz

[

iδjxul + ∂j

(

eikx ∂ūl

∂q

)]

∂kū
∗
i e

−ikx

= −iδjxCijkl

∫ ∫

dydzul∂ku
∗
i − Cijkl

∫ ∫

dydz

[

∂j

(

eikx ∂ūl

∂q

)]

∂kū
∗
i . (A.23)

Then we rewrite the last term using integration by parts and set the surface terms to

zero by the boundary conditions.

−Cijkl

∫ ∫

dydz

[

∂j

(

dul

dq

)]

∂kū
∗
i =

∫ ∫

dydz
dul

dq
∂jCijkl∂kū

∗
i . (A.24)
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Thus we have

−
∫ ∫

dydz

(

d

dq
∂jCijklul

)

∂ku
∗
i

= −iδjxCijkl

∫ ∫

dydzul∂ku
∗
i +

∫ ∫

dydz
dul

dq
(∂jCijkl∂kū

∗
i ) . (A.25)

We similarly manipulate the last term in Eq. (A.22) to get

−
∫ ∫

dydz (∂jCijklul)
d

dq
(∂ku

∗
i )

= iδkxCijkl

∫ ∫

dydz (∂jul) u∗
i − Cijkl

∫ ∫

dydz (∂jul)

[

∂k

(

e−ikx dū∗
i

dq

)]

= iδkxCijkl

∫ ∫

dydz (∂jul) u∗
i +

∫ ∫

dydz (∂jCijkl∂kul)
dū∗

i

dq
(A.26)

With Eqs. (A.23, A.26), Eq. (A.22) now becomes

2ρωvg

∫ ∫

dydzuiu
∗
i +

∫ ∫

dydzρω2dui

dq
u∗

i +

∫ ∫

dydzρω2ui
du∗

i

dq

− iδjxCijkl

∫ ∫

dydzul∂ku
∗
i +

∫ ∫

dydz
dul

dq
(∂jCijkl∂kū

∗
i )

+ iδkx

∫ ∫

dydz (Cijkl∂jul) u∗
i +

∫ ∫

dydz (∂jCijkl∂kul)
dū∗

i

dq

= 0. (A.27)

Rearranging the above and using vi = −iωui and Tij = Cijkl∂kul and recalling i = l,

we have

2ρωvg

∫ ∫

dydzuiu
∗
i +

1

ω

∫ ∫

dydz (viT
∗
ix + Tixv

∗
i )

+

∫ ∫

dydz
dui

dq

(

ρω2u∗
i + ∂jCijkl∂kū

∗
i

)

+

∫ ∫

dydz
(

ρω2ui + ∂jCijkl∂zul

) dū∗
i

dq

= 0. (A.28)
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But by Eq. (3.4), the third and the fourth term are zero. Thus Eq. (A.22) is

2ρωvg

∫ ∫

dydzuiu
∗
i +

1

ω

∫ ∫

dydz (viT
∗
ix + Tixv

∗
i ) = 0, (A.29)

so that

vg =
− 1

ω

∫ ∫

dydz (viT
∗
ix + Tixv

∗
i )

2ρωvg

∫ ∫

dydzuiu∗
i

=
− 2

ω
Re

∫ ∫

dydz (Tixv
∗
i )

2ρωvg

∫ ∫

dydzuiu∗
i

= ve. (A.30)

From Eq. (A.16)

P ≡ 1

2
ρvgω

2

∫ d/2

−d/2

∫ W/2

−W/2

|ūi|2dy′dz′. (A.31)

With ui being normalized, we get vg = 2P/ρω2. Now we have an analytical expression

for the group velocity expressed in terms of the displacement and stress fields.
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Appendix B

Appendices to Part II

B.1 Thermal bath correlations

In this appendix, we derive the bath correlation relations. The free Hamiltonian for

the bath is

HB =
∑

i

~ωib
†
ibi, (B.1)

where bi is a Bose operator. Choose a canonical ensemble in which the density oper-

ator is

ρb (ω) =
exp

[

− HB

kBT

]

Tr
{

exp
[

− HB

kBT

]} , (B.2)

where the density operator for the bath ρb commutes with the bath Hamiltonian. The

density operator can be written as

ρb =
∏

i

ρi =
∏

i

exp
[

− ~ωi

kBT

(

b†ibi

)]

Zi

, (B.3)

and

Zi = Tr

{

exp

[

− ~ωi

kBT

(

b†ibi

)

]}

=
∑

n

exp

[

−~ωi (n)

kBT

]

. (B.4)

The mean occupation number is

〈ni〉 =
〈

b†ibi

〉

=
∑

n

exp

[

−~ωi (n)

kBT

]

1

Zi

=
1

exp
[

− ~ωi

kBT

]

− 1
, (B.5)
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〈

b†ibj

〉

=
Tr

{

exp
[

− ~ωi

kBT
b†ibi

]}

Tr
{

exp
[

− HB

kBT

]} =
∑

i,j

〈ni| 〈nj| b†ibi |ni〉 |nj〉 = Nδij, (B.6)

〈

bib
†
j

〉

=
〈

1 + b†ibj

〉

= (N + 1) δij, (B.7)

〈bibj〉 =
〈

b†ib
†
i

〉

= 0, (B.8)

where

N =
1

exp [β~ω] − 1
. (B.9)

B.2 Wiener process

The Wiener process is described by the Fokker-Planck equation with zero drift and

unit diffusion.
∂P (wt, t|w0, 0)

∂t
=

1

2

∂2

∂t2
P (wt, t|w0, 0) , (B.10)

where

P (wt, t|w0, 0) =
1√
2πt

exp

[

−1

2

1 (wt − w0)
2

t

]

. (B.11)

The initial delta-function evolves with constant and a variance increasing linearly in

time

〈Wt〉 = w0, (B.12)

〈

(Wt − w0)
2〉 = t. (B.13)

Random variables {W0,W1, ...,Wn} corresponding to the times t0 = 0, t1, ..., tn sep-

arated by ∆t. Wiener process when the wi, i = 1, ...n are chosen from a series of

Gaussian distributions, each conditioned on the value taken by the random variable

one step earlier in time. Then the probability density for a sequence {w0, w1, ..., wn}
is

P (w0, w1, ..., wn, tn|w0, 0) =
1

√

(2π∆t)n

n
∏

i=1

exp

[

−1

2

1 (wi − wi−1)
2

∆t

]

. (B.14)
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We have assumed a Markovian process (note that the Fokker-Planck equations de-

scribe Markov processes) and each component Wi has the following correlations:

〈Wi〉 = w0, (B.15)

〈

(Wi − w0)
2〉 = i∆t = t, (B.16)

〈(Wj − w0) (Wi − w0)〉 = min (j, i) ∆t = min (tj, ti) . (B.17)

Discrete trajectories generate in this way describe the Wiener process at reduced

resolution, but do not reduce accuracy, and thus is good for a numerical evaluation/

Write an equation of motion for a random variable ρt driven by both deterministic

forces and a fluctuating force derived from Ẇt.

dρt = A (ρt) dt + B (ρt) dWt (B.18)

⇒ ρt =

∫ t

0

A (ρt) dt′ +

∫ t

0

B (ρt) dWt. (B.19)

Wiener increments between ti and ti−1 provides the source of fluctuations. When

the strength of the fluctuating force depends on the random variable Xt it is called

multiplicative noise (not additive). However, a linearised analysis is performed using

the system size expansion, the multiplicative noise is approximated by an additive

noise, with ρt replace by ρ (t) to determine the noise strength B.

A standard Wiener process (often called Brownian motion) on the interval [0, T ]

is a random variable W (t) that depends continuously on t ∈ [0, T ] and satisfies the

following:

W (0) = 0, (B.20)

for 0 < s < t < T ,

W (t) − W (s) ∼
√

t − sξ, (B.21)

where ξ is the random variable ξ = N (0, 1) with the normal distribution with zero

mean and unit variance. Because the normal distribution is used, the process is often

referred to as Gaussian.
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For 0 < s < t < u < v < T , W (t) − W (s) and W (v) − W (u) is independent.

For use on a computer, we discretize the Wiener process with a timestep dt as

dW =
√

dtξ (t) . (B.22)

B.3 Unravelling of a master equation for a hetero-

dyne detection

A master equation provides a dynamical description in terms of an evolving proba-

bility distribution which determines the average quantities that would be measured

over an ensemble of experiments. Alternatively, one can obtain the averages by find-

ing a set of equations whose solutions generate trajectories in phase space, which is

a representative of what would be observed in a single experiment. The Langevin

equation has an stochastic component that are not observed in microscopic detail,

but manifest themselves macroscopically as sources of noise and fluctuations.

Here we show the master equation in Lindblad form

ρ̇ (t) = − i

~
[H, ρ] + γ (n + 1)

∑

m

(

2OmρO†
m − O†

mOmρ − ρO†
mOm

)

+ γn
∑

m

(

2O†
mρOm − OmO†

mρ − ρOmO†
m

)

(B.23)

will lead to the stochastic Schrödinger equation

d |ψ〉 =

[

− i

~
Hdt + γ (n + 1)

∑

m

(

2
〈

O†
m

〉

Om − O†
mOm −

〈

O†
m

〉

〈Om〉
)

dt

+ γn
∑

m

(

2 〈Om〉O†
m − OmO†

m − 〈Om〉
〈

O†
m

〉)

dt

+
∑

m

[√
γ (Om − 〈Om〉) dξm +

√
γ

(

O†
m −

〈

O†
m

〉)

dξ†m
]

]

|ψ〉 . (B.24)

This form has both real and complex noise, i.e., a heterodyne detection form.



192

B.3.1 Derivation

The following derivation is based on Percival [51]. We want to find is differential

equations for |ψ〉 so that dρ/dt is determined by a differential equation such as Eq.

(B.23). Even at t = 0 starts with a pure state, the state evolves into a mixed state,

so there is no general deterministic equation for the pure states |ψ〉. But there are

stochastic equations since the system-environment coupling has a probabilistic nature.

Write d |ψ〉 in the Ito stochastic form

d |ψ〉 = |v〉 dt +
∑

j

|uj〉 dξj, (B.25)

where the first term is drift term and the second term is differential stochastic fluc-

tuations and dξj is Wiener process. Each fluctuation has mean 0 and variance
√

dt

and

M [dξj] = 0, (B.26a)

M [dξjdξi] = 0, (B.26b)

M
[

dξ∗j dξi

]

= 2n̄δijdt, (B.26c)

M
[

dξidξ∗j
]

= 2 (n̄ + 1) δijdt. (B.26d)

To preserve the normalisation of the state vector, the fluctuation in the state must

be orthogonal to that state, i.e.,

〈ψ|uj〉 = 0. (B.27)

Taking mean over |dψ〉 and |dψ〉 〈dψ|. Using Eq. (B.25),

M |dψ〉 = M |v〉 dt + M
∑

j

|uj〉 dξj = |v〉 dt, (B.28)
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M |dψ〉 〈dψ| = M

(

|v〉 dt +
∑

j

|uj〉 dξj

) (

〈v| dt +
∑

j

〈uj| dξ∗j

)

= M |v〉 〈v| (dt)2 +
∑

j

|v〉 〈uj| dtMdξ∗j + |uj〉 〈v|Mdξjdt

+
∑

j

|uj〉 〈uj|Mdξjdξ∗j

= M |v〉 〈v| (dt)2 + 2
∑

j

|uj〉 〈uj| dt

' 2
∑

j

|uj〉 〈uj| dt. (B.29)

For a pure state, a density operator ρ can be expressed as

ρ = |ψ〉 〈ψ| . (B.30)

Since dρ/dt gives the average of change for all possible states, the differential form of

the state is M |dψ〉, where M is the mean over a distribution of normalised pure-state

projection operators. Then the change in ρ is, using Ito calculus rule and the means

obtained above gives the relation between dρ/dt and Ito stochastic form.

dρ = |ψ〉M 〈dψ| + M |dψ〉 〈ψ| + M |dψ〉 〈dψ|

= |ψ〉 〈v| dt + |v〉 〈ψ| dt + 2
∑

j

|uj〉 〈uj| dt

⇒ ρ̇ = |ψ〉 〈v| + |v〉 〈ψ| + 2
∑

j

|uj〉 〈uj| . (B.31)

We want to express |v〉 and
∑

j |uj〉 〈uj| in terms of dρ/dt. Consider ρ̇ |ψ〉,

ρ̇ |ψ〉 = |ψ〉 〈v|ψ〉 + |v〉 〈ψ|ψ〉 + 2
∑

j

|uj〉 〈uj|ψ〉

= |ψ〉 〈v|ψ〉 + |v〉 , (B.32)

where the fluctuating terms (sums) is zero due to orthogonality Eq. (B.27). Notice
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that

〈ψ |ρ̇|ψ〉 = 〈ψ|ψ〉 〈v|ψ〉 + 〈ψ|v〉 = 2 Re 〈v|ψ〉 , (B.33)

so

|v〉 = ρ̇ |ψ〉 − 1

2
〈ψ |ρ̇|ψ〉 . (B.34)

Next dρ/dt expression orthogonal to ψ is the stochastic terms

2
∑

j

|uj〉 〈uj| = (I − ρ) ρ̇ (I − ρ) . (B.35)

Therefore, the stochastic equation can be expresses as

d |ψ〉 =

[

ρ̇ |ψ〉 − 1

2
〈ψ |ρ̇|ψ〉

]

dt + (I − ρ) ρ̇ (I − ρ) dξj. (B.36)

Now consider Eq. (B.23). We get

ρ̇ |ψ〉 = − i

~
(H |ψ〉 〈ψ|ψ〉 − |ψ〉 〈ψ|H |ψ〉)

+ γ (n + 1)
∑

m

(

2Om |ψ〉 〈ψ|O†
m |ψ〉 − O†

mOm |ψ〉 〈ψ|ψ〉 − |ψ〉 〈ψ|O†
mOm |ψ〉

)

+ γn
∑

m

(

2O†
m |ψ〉 〈ψ|Om |ψ〉 − OmO†

m |ψ〉 〈ψ|ψ〉 − |ψ〉 〈ψ|OmO†
m |ψ〉

)

= − i

~
(H |ψ〉 − |ψ〉 〈ψ|H |ψ〉)

+ γ (n + 1)
∑

m

(

2Om |ψ〉
〈

O†
m

〉

− O†
mOm |ψ〉 − |ψ〉

〈

O†
m

〉

〈Om〉
)

+ γn
∑

m

(

2O†
m |ψ〉 〈Om〉 − OmO†

m |ψ〉 − |ψ〉 〈Om〉
〈

O†
m

〉)

, (B.37)
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and

−1

2
〈ψ |ρ̇|ψ〉 = −1

2
(〈ψ|H |ψ〉 〈ψ|ψ〉 − 〈ψ|ψ〉 〈ψ|H |ψ〉)

− 1

2
γ (n + 1)

∑

m

〈

ψ
∣

∣

(

2Om |ψ〉 〈ψ|O†
m − O†

mOm |ψ〉 〈ψ| − |ψ〉 〈ψ|O†
mOm

)∣

∣ ψ
〉

− 1

2
γn

∑

m

〈

ψ
∣

∣

(

2O†
m |ψ〉 〈ψ|Om − OmO†

m |ψ〉 〈ψ| − |ψ〉 〈ψ|OmO†
m

)∣

∣ ψ
〉

= 0, (B.38)

so that |v〉 is

|v〉 = − i

~
(H |ψ〉 − |ψ〉 〈ψ|H |ψ〉)

+ γ (n + 1)
∑

m

(

2Om |ψ〉
〈

O†
m

〉

− O†
mOm |ψ〉 − |ψ〉

〈

O†
m

〉

〈Om〉
)

+ γn
∑

m

(

2O†
m |ψ〉 〈Om〉 − OmO†

m |ψ〉 − |ψ〉 〈Om〉
〈

O†
m

〉)

. (B.39)

The stochastic terms are

(I − ρ) ρ̇ (I − ρ)

= − i

~
(I − |ψ〉 〈ψ|) ([H |ψ〉 〈ψ| − |ψ〉 〈ψ|H]) (I − |ψ〉 〈ψ|)

+ γ (n + 1)
∑

m

(I − |ψ〉 〈ψ|)
(

2Om |ψ〉 〈ψ|O†
m − O†

mOm |ψ〉 〈ψ| − |ψ〉 〈ψ|O†
mOm

)

(I − ρ)

+ γn
∑

m

(I − ρ)
(

2O†
m |ψ〉 〈ψ|Om − OmO†

m |ψ〉 〈ψ| − |ψ〉 〈ψ|OmO†
m

)

(I − ρ) (B.40)

− (I − ρ) O†Oρ (I − ρ)

= − (I − ρ) O†Oρ + (I − ρ) O†Oρρ

= −O†O |ψ〉 〈ψ| +
〈

O†
m

〉

〈Om〉 |ψ〉 〈ψ| + O†O |ψ〉 〈ψ| − |ψ〉
〈

O†
m

〉

〈Om〉 〈ψ|

= 0, (B.41)
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which gives

2
∑

j

|uj〉 〈uj| = γ
[

Om |ψ〉 〈ψ|O†
m − 〈Om〉 |ψ〉 〈ψ|O†

m

]

+ γ
[

−
〈

O†
m

〉

Om |ψ〉 〈ψ| + 〈Om〉
〈

O†
m

〉

|ψ〉 〈ψ|
]

(B.42)

2
∑

j

∣

∣u∗
j

〉 〈

u∗
j

∣

∣ = γ
[

O†
m |ψ〉 〈ψ|Om −

〈

O†
m

〉

|ψ〉 〈ψ|Om

]

+ γ
[

−〈Om〉O†
m |ψ〉 〈ψ| +

〈

O†
m

〉

〈Om〉 |ψ〉 〈ψ|
]

. (B.43)

They are satisfied by

|um〉 =
√

γ (Om − 〈Om〉) |ψ〉 , (B.44)

|u∗
m〉 =

√
γ

(

O†
m −

〈

O†
m

〉)

|ψ〉 . (B.45)

Therefore, d |ψ〉 is, after combining all the terms,

d |ψ〉 =

[

− i

~
Hdt + γ (n + 1)

1

2

∑

m

(

2
〈

O†
m

〉

Om − O†
mOm −

〈

O†
m

〉

〈Om〉
)

dt

+ γn
∑

m

(

2 〈Om〉O†
m − OmO†

m − 〈Om〉
〈

O†
m

〉)

dt

+
∑

m

[√
γ (Om − 〈Om〉) dξm +

√
γ

(

O†
m −

〈

O†
m

〉)

dξ†m
]

]

|ψ〉 . (B.46)
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