
Fault Tolerance using Whole-Process Migration and
Speculative Execution

Thesis by

Justin David Smith

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2003

(Submitted May 30, 2003)

ii

c© 2003

Justin David Smith

All Rights Reserved

iii

Acknowledgements

This thesis would not have been possible without contributions and support from a number of

individuals. It has been a great pleasure to interact with my colleagues in the course of my research.

I am also truly amazed at the number of people who have supported me in achieving my dreams

throughout my life, and to those people I offer my most sincere gratitude. Below I will acknowledge

some of the major contributors and supporters of this thesis.

I am very grateful to my advisor, Professor Jason Hickey, who introduced me to the field of

compilers and formal methods, and has offered constant inspiration and guidance throughout my

graduate-level research. I also thank everyone in the PRL/Mojave group for their insight in the

development of this work; in particular, Brian Aydemir, Adam Granicz, Nathaniel Gray, and Cristian

Ţăpuş contributed to the formalization of the Mojave compiler that is described in this thesis.

My family and friends have always encouraged me to follow the road less traveled, no matter how

intimidating the obstacles might seem. They have never faltered in their support of my aspirations,

no matter how high, and they have always been there to offer guidance when I needed it. I offer

my deepest thanks to my parents, Janet and David Smith, who have always been there for me, and

who taught me the importance of seeking my dreams; their support has been the most valuable

contribution to my life. I also offer deep thanks to everyone in my extended family, and to all of my

friends — their love and support have given me the strength I needed to make it this far.

The teachers I’ve had throughout my life are responsible for my rich academic background that

has allowed me to pursue studies at such a prestigious institute. I thank all of my teachers, and

in particular I would like to thank Mrs. Dolores Veselka, who encouraged my early studies in

mathematics, and Mr. Henry Veselka, who taught me my first programming languages, inspiring

me to study computer science. The Veselkas have continued to follow my academic career and

support my work, and for that I am very grateful.

This work was supported by Air Force grant F33615-98-C-3613 and the Department of Defense,

Lawrence Livermore National Laboratory contract W-7405-ENG-48, subcontract B523297.

iv

Abstract

This thesis examines programming language concepts that facilitate fault-tolerant distributed pro-

gramming. New language primitives are introduced for whole-process migration, which allows an

active process to be transferred from one machine to another, and speculative execution, which

enables optimistic computing based on an unverified assumption. These primitives are developed in

the context of the Mojave Compiler Collection, a multi-language multi-architecture compiler with

ties to the MetaPRL theorem prover.

The new primitives are first discussed from a theoretical perspective. The primitives are imple-

mented as part of a functional intermediate language in the Mojave compiler, which has a formal

operational semantics and complete typing rules. The operational semantics and typing rules are

extended to accommodate whole-process migration and speculative execution, and the implications

these primitives have for program safety are discussed.

The primitives are implemented as part of the Mojave compiler. The runtime safety checks that

are required to ensure these primitives are safe are presented, along with runtime invariants used

to justify the safety of the system. The primitives are also integrated with a novel compacting,

generational garbage collector whose algorithm is presented.

v

Contents

Acknowledgements iii

Abstract iv

Contents v

List of Figures viii

1 Introduction 1

1.1 The distributed application problem . 1

1.1.1 Checkpoints in distributed applications . 2

1.1.2 Grid computation . 3

1.2 Capturing snapshots of a process state . 4

1.2.1 Whole-process migration . 4

1.2.1.1 Load balancing . 4

1.2.1.2 Active messages . 5

1.2.1.3 Fault tolerance in distributed programming 6

1.2.2 Speculative execution . 6

1.2.2.1 Fault isolation and transaction-like behavior 7

1.2.2.2 Fault tolerance in distributed programming 8

1.2.2.3 Generalization of speculative evaluation 8

1.3 The Mojave Compiler Collection (MCC) . 9

1.4 Organization of this thesis . 10

2 Semantics of Process Migration and Speculation 11

2.1 The FIR syntax . 11

2.1.1 FIR type system . 12

2.1.2 FIR statements . 13

2.1.2.1 Atoms . 13

2.1.2.2 Expressions . 14

vi

2.2 Judgments . 16

2.2.1 Heap and store values . 16

2.2.2 Kinds . 16

2.2.3 Contexts and judgments . 17

2.3 FIR operational semantics . 18

2.3.1 External calls . 19

2.3.2 Process migration . 19

2.3.3 Speculations . 20

2.3.3.1 Speculations and external state . 21

2.3.3.2 Speculations and transactions . 21

2.3.4 Subscripting operations . 21

3 Safety 23

3.1 Typing rules . 23

3.1.1 External call typing rule . 23

3.1.2 Migration typing rule . 24

3.1.3 Speculation typing rules . 24

3.1.4 Subscripting typing rules . 25

3.2 Preservation . 26

3.3 Progress . 27

3.4 Runtime safety checks . 29

4 Implementation of Process Migration and Speculation 30

4.1 Runtime implementation . 30

4.1.1 Runtime data structures and invariants . 31

4.1.2 Data blocks and the heap . 32

4.1.3 Pointer table . 33

4.1.4 Function pointers . 34

4.1.5 Pointer safety . 35

4.2 Compiling FIR to assembly code . 35

4.3 Process migration . 36

4.3.1 Using process migration in the FIR . 37

4.3.2 Runtime support for migration . 38

4.3.2.1 The pack and unpack operations 38

4.3.2.2 The migrate operation . 39

4.4 Speculative operations . 40

4.4.1 Using speculations in the FIR . 41

vii

4.4.2 Speculation state . 41

4.4.3 Speculation properties and invariants . 42

4.4.3.1 Invariants related to the organization of the heap 44

4.4.3.2 Invariants related to pointer difference tables 44

4.4.3.3 Liveness invariant . 44

4.4.4 Implementation of speculations . 44

4.4.4.1 The entry operation . 45

4.4.4.2 Copy-on-write faults . 45

4.4.4.3 The commit operation . 45

4.4.4.4 The rollback operation . 46

5 Garbage collection 47

5.1 Heap and pointer table properties . 47

5.1.1 Garbage collector state . 48

5.1.2 Garbage collection and speculations . 49

5.2 Garbage collector main algorithm . 50

5.3 Mark operation . 51

5.4 Minor collection . 53

5.5 Major collection . 55

6 Conclusion 58

6.1 MCC benchmarks . 58

6.2 Future work . 60

Bibliography 61

Index 63

viii

List of Figures

1.1 Example of grid computation using checkpoints . 3

1.2 Fault tolerance using migration in a heterogeneous network 5

1.3 File transfer operation using lightweight transactions 7

1.4 Design of the MCC compiler . 9

2.1 FIR base terms . 12

2.2 FIR type system . 13

2.3 FIR atoms and expressions . 14

2.4 FIR operators . 16

2.5 Heap and store values . 17

2.6 Program contexts and judgments . 17

4.1 Data block header format . 32

4.2 Pointer table representation . 33

4.3 Function header format . 34

4.4 Speculation variables . 42

4.5 Heap data with multiple speculation levels . 43

5.1 GC variables . 48

5.2 GC properties in presence of speculative operations 49

5.3 GC main function . 50

5.4 Mark operation in garbage collector . 51

5.5 Illustration of pointer inversion in mark phase . 52

5.6 GC minor collection . 53

5.7 GC minor collection, mark phase . 54

5.8 GC minor collection, sweep phase . 55

5.9 GC major collection . 55

5.10 GC major collection, mark phase . 56

5.11 GC major collection, sweep phase . 57

ix

6.1 Mojave benchmarks . 59

6.2 Unix-style pattern matching using speculations . 59

1

Chapter 1

Introduction

We propose a new model for addressing fault tolerance in distributed computation, by introducing

two new language primitives for whole-process migration and speculative execution. Both primi-

tives are implemented as extensions to the Mojave Compiler Collection (MCC), a compiler under

development which compiles multiple source languages into a functional intermediate representation.

This chapter will formulate problems in distributed computing which these primitives are designed

to address, and will give a general introduction to migration and speculation. The remainder of the

thesis will address the theoretical properties and implementation of these primitives in the Mojave

compiler.

1.1 The distributed application problem

Consider an application that is distributed across many machines, or nodes, that are connected by

a network backbone. Each node runs one or more processes that perform a set of tasks. In this dis-

tributed system, there are a number of potential failures that can disrupt the application. Hardware

failures with individual machines or with the underlying network can disrupt coordination of the

processes in the application, and software failures can cause the processes to enter an inconsistent

state. An unanticipated failure at any of these points causes the entire application to fail. If the

application spans tens of thousands of nodes, or if it is run over an unreliable network such as the

Internet, then the odds of experiencing a failure somewhere in the system are significant.

Traditionally, distributed application developers implement a substantial amount of error han-

dling code to respond to each of these faults. Since error detection and recovery code must be written

for every operation where the process communicates with another node, this can lead to “spaghetti

code,” where the error handling code is tightly intertwined with code for the computation being

performed. Programmers have difficulty analyzing this code for correctness, since it is difficult to

isolate the computation from the error handling code.

This situation can be improved by providing reliable communication protocols. For example, a

2

total order communication protocol guarantees that messages will be delivered in a well-defined order

to every node in the distributed system that is alive. When a node fails, the total-order protocol

ensures that surviving nodes continue to receive messages as expected, however it does not provide a

mechanism for recovering the computation that was being performed on the failed node. Therefore

the programmer must still write a substantial amount of code to recover the lost computation or to

reassign the failed node’s tasks to surviving nodes. This is a significant improvement over the naive

implementation since much of the error recovery code is isolated in the communication primitives,

but it is only a partial solution as a fault recovery model.

In the error recovery paths for distributed systems, the programmer is often attempting to

revert the system’s state to a consistent state immediately before the failure. A large portion

of the error recovery code is devoted to identifying the failed node, determining what tasks were

running on the failed node, and reassigning those tasks to a surviving node. The programmer may

have to undo many computations that were already performed on the surviving nodes, because the

computations relied on results from the failed node that were not saved to a persistent store and

must be recomputed. All of this recovery code emphasizes the restoration of the distributed system

to a consistent state that is prior to the failure.

Tasks evaluated in a distributed system must be capable of moving from one node to another;

otherwise a failure on the node a task is running on will block all tasks that are dependent on it,

which potentially covers the entire distributed system. Since tasks may need to be reassigned to

surviving nodes, either each node in the system must contain code to evaluate each possible task,

or else we must have a mechanism for migrating executable code into an arbitrary node. In grid

computations, where every node runs the same algorithm but on a different data set, task migration

simply involves copying the data set to a new node; however, in a heterogeneous distributed system,

where each task is running a different algorithm, a mechanism to migrate executable code from one

node to another will greatly simplify the programmer’s work.

1.1.1 Checkpoints in distributed applications

One approach that addresses some of the issues of distributed fault-tolerance is to provide languages

that have built-in mechanisms for taking a snapshot, or checkpoint, of a distributed system, and

record these checkpoints on a persistent storage device. Each checkpoint records the complete state

of every process in the system. The checkpoint is taken in such a way that all process states are

logically consistent — the collection of process states represents a reachable state in the distributed

system. A simple approach to record a self-consistent checkpoint is to suspend every process in the

system and begin recording the checkpoint once every process has stopped. Because every process is

recorded by the checkpoint, the entire distributed system can be restored to the point it is at when

the checkpoint is recorded.

3

1: function Node-Computation:
2: while true do
3: — Mark a synchronization point for error recovery.
4: checkpoint()
5: — Now, compute. This computation is free of error-recovery code. If an error is
6: — detected, an exception is raised that automatically restores the checkpoint.
7: compute for one iteration
8: end while

Figure 1.1: Example of grid computation using checkpoints

Checkpoints can be provided by a service library or using primitives in a language specialized

for distributed computation. When checkpoints are embedded in the language, the compiler is able

to optimize checkpoint performance by choosing internal representations of the data that are easy

to save and restore. The compiler is well-suited to generating checkpoint code, since it has a record

of the internal representation of each process’s state.

By encapsulating all of a process’s state into a single object, it becomes possible to migrate entire

tasks from one machine to another, allowing the system to automatically revive tasks lost because of

a node failure onto a surviving node. If architecture-independent data representations are used, then

migration is feasible even for heterogeneous distributed networks. With checkpoints as a language

primitive, much of the work of transmitting the process state can be automated by the compiler.

Specialized languages can also include automatic detection of failed nodes, so the programmer

simply marks which parts of the distributed system reflect a consistent state. On a failure, built-in

language primitives can rollback all process and I/O state using the most recent checkpoint of the

system. This approach puts the burden of fault detection and recovery on the compiler itself, and

with proper language design, error handling code can be clearly separated from the algorithms.

1.1.2 Grid computation

Grid computation is a class of distributed applications where a data set is divided and distributed

among nodes in the system, and each node performs the same computation on its data set. Typically,

this is used in scientific computing for physical simulations, where an iterative computation is run in

parallel on a large n-dimensional data space, with each node responsible for a particular region of the

space. These computations are often performed on high-performance distributed clusters containing

tens of thousands of nodes connected by a dedicated, high-speed network backbone. These clusters

have a low mean time between failure, on the order of one day, and as a result any long-term

computation must be prepared for several failures during its lifetime.

In this realm, it is relatively easy to take a checkpoint of the distributed system because the

synchronization points are easy to identify. Currently, programmers mix the algorithm and error

4

handling code, but with checkpoints, the overhead in the source language for such a computation

can be as minimal as is illustrated in Figure 1.1, where the error handling is encapsulated in a single

language primitive, and is clearly separated from the computation itself. On a failure, the runtime

which supports the language can automatically revert surviving processes to the last successful

checkpoint and resurrect tasks that were lost on surviving machines. All of the fault recovery is

transparent to the programmer.

1.2 Capturing snapshots of a process state

We develop language primitives for checkpointing as part of the Mojave compiler, which is described

in more detail in Section 1.3. The Mojave compiler utilizes two tools to take snapshots of the

process state. The first is whole-process migration, where an entire process state is migrated from

one machine to another, or recorded to a persistent storage device for later execution. The second

mechanism is an adaptation of transactions, which we refer to as speculative execution. Speculative

execution allows a process state to be rolled back, but unlike whole-process migration, speculative

execution is not persistent.

1.2.1 Whole-process migration

Whole-process migration can be used to migrate an active process from one machine to another,

and to record a process’s state to a persistent storage device. Migration provides persistence of

computations, which is necessary to accommodate machine failures.

Whole-process migration has been widely studied [6, 19]. The JoCaml system [4] provides process

mobility for OCaml programs based on the join calculus [7]. The Mojave compiler’s approach to

process migration is heavily influenced by Cardelli’s work on the Ambient Calculus [2, 3], however

the Mojave compiler only supports whole-process migration at this time, and does not yet support

the fine-grained mobility described in the ambient calculus.

This thesis emphasizes migration’s role in the simplification of fault-tolerant computing. Each

node in a distributed computation can use migration to take periodic persistent checkpoints, which

are used to recover the computation on another machine if the node fails. Migration can also be

used to improve the performance and simplify development of distributed systems.

1.2.1.1 Load balancing

Load-balancing is an important issue in a distributed system, especially if the nodes or tasks are

heterogeneous. A system monitor can detect nodes in the system that are overloaded relative to

other nodes, and migrate some of the processes to balance the load. Processes do not need to observe

the result of a migration, since the distributed system will provide a consistent environment across

5

?

Figure 1.2: Fault tolerance using migration in a heterogeneous network

all machines. Therefore load balancing can be performed without any special support from the

processes.

1.2.1.2 Active messages

Migration can be used to pass active messages, or messages that include executable code and data.

To pass a message from one process to another, the process may start a new thread, and migrate

the thread (including all necessary state) to the machine hosting the other process.

This can be particularly useful for database queries. When the database is hosted on a remote

machine, it is highly inefficient to run a query on the local machine that transfers the entire database

over the network to extract the few records which the query is interested in. Mainstream database

systems work around this by supporting a query language used to describe the query. The local

machine sends the text of the query, which is then run on the server. However, these languages are

highly specialized and are not sufficiently expressive for many types of inquiries. Process migration

allows arbitrary programs to migrate to the remote machine, allowing far greater expressiveness

using a more general mechanism.

Similar to active messages, migration can be used to create active files, or files that contain

data but also code to manipulate the data, similar to existing file formats which include a macro or

scripting language. A simple example would be a multimedia file that includes the program required

to play the media.

6

1.2.1.3 Fault tolerance in distributed programming

Migration provides a mechanism for persistent storage of the process state and the ability to resurrect

the process on any machine. Therefore, when a node in a distributed network fails, migration can

be used to revive all tasks that were running on the system prior to the failure. With a machine-

independent representation of the code and data for each process, tasks can be resurrected on an

arbitrary node in a heterogeneous distributed network, as illustrated in Figure 1.2.

Since the checkpoints may be recorded infrequently, the revived processes will be at an earlier

point in the computation than the surviving processes. They can replay the original computation

up to the point of failure, given the same inputs as the original process.

1.2.2 Speculative execution

In a distributed computation, the processes involved must synchronize periodically. Ideally, a process

would speculatively continue computing across a synchronization point, even if it has not received

confirmation that all other processes have reached the same synchronization point. In this case, a

process can enter a new speculation as it passes the synchronization point and continue comput-

ing. If a process in the system fails, the remaining processes can agree on the last known-good

synchronization point using a consensus algorithm, and then roll back to that synchronization point

to continue the computation.

Speculations share many traits with traditional distributed transactions, one of the earliest and

simplest abstractions for reliable concurrent programming [9]. Transactions provide source-level fault

isolation: from a process’s point of view, a failure cannot occur during a transaction; if a failure

occurs, it must occur before or after. While transactional models are ubiquitous in the database

community, they have not been frequently applied to traditional programming languages. As part of

the Venari project, Haines et.al. [10] implement a transaction mechanism as part of Standard ML,

utilizing a mutation log produced by a generational garbage collector to implement undoability.

Speculations share the same operations as transactions, but speculations provide weaker prop-

erties. For one, transactions are atomic; a process that is not involved in the transaction is not

allowed to view the intermediate state of the processes that are participating in the transaction.

This external process must either block until the transaction is completed, or else it must access

an older copy of the state from before the transaction was entered. Speculations do not need to be

atomic; if another process depends on a value generated during a speculation, the other process may

simply join the existing speculation, so the processes will be rolled back in unison in the event of a

failure.

Speculations may also be committed in the opposite order of transactions. For fault-tolerance,

the process may speculatively execute past a synchronization point, and commit older speculations

7

Conventional code Speculative code

1: function Transfer(file1,file2, k)
2: i := read(file1)
3: if read failed then return failure
4: j := read(file2)
5: if read failed then return failure
6: if write(file1, i− k) failed then return failure
7: if write(file2, j + k) failed then
8: — Undo file1

9: write(file1, i)
10: — Unrecoverable if this write fails
11: return failure
12: return success

1: function Transfer(file1,file2, k)
2: speculate
3: i := read(file1)
4: j := read(file2)
5: write(file1, i− k)
6: write(file2, j + k)
7: return success
8: catch
9: return failure

Figure 1.3: File transfer operation using lightweight transactions

as it receives confirmations that the other nodes have reached the synchronization point. Since the

confirmations typically arrive in temporal order, the process will usually commit the oldest spec-

ulation in the system, which is opposite the behavior a traditional distributed transaction would

provide. In a speculation, if multiple speculations are active when a particular speculation is com-

mitted, the committed speculation is simply folded into the next-oldest speculation. This gives

speculations more flexibility than traditional transactions provide.

1.2.2.1 Fault isolation and transaction-like behavior

Like transactions, speculations allow for fault isolation. Frequently, error-recovery code in a program

exists to revert the state to a known-consistent state. As a simple example, consider a banking

program that wishes to transfer a sum of money k from one account to another. If a failure occurs

during the transfer, the program must take steps to ensure that the amount k remains credited to

the original account. Code to perform this operation is illustrated in Figure 1.3.

In the traditional case, the programmer must manually revert the state of all modified files if an

I/O failure occurs. Note that the error-recovery code itself requires some form of error-recovery; it is

entirely possible that line 9 will fail, at which point it is not clear how the program should proceed.

By contrast, speculations allow the programmer to automatically roll back the entire process state

to the state on entry to this operation, without requiring the programmer to explicitly recover the

state.

Speculations also offer a unique form of debugging; a process that takes periodic speculations

can be debugged by rolling back to a prior speculation, and re-evaluating the code. This allows

debuggers to support commands for stepping back one or more instructions, similar to support they

already provide for stepping forward in the program. The ability to move in both forwards and

backwards in the execution of a program can make it easier to isolate buggy code in a program.

8

1.2.2.2 Fault tolerance in distributed programming

Speculative execution enables a “monitor and recover” programming model [15], where processes

monitor in the background for failures in the distributed system, and roll back their computation

on discovery of a failure. The surviving processes will need to roll back their state in order to return

to a consistent state for the overall distributed system.

It is possible to implement rollback of a surviving process using whole-process migration, since

all processes are periodically written to persistent storage. However, this would require recovery of

the full process state from the relatively slow persistent storage device. By comparison, speculations

can utilize the current state of the process to roll back more efficiently, by keeping track only of the

changes to the state since the last speculation. This mutation log is likely to be much smaller than

the full process state, and therefore more efficient to utilize.

1.2.2.3 Generalization of speculative evaluation

In general, a speculative execution is based on an assumption A that may or may not be true,

but is not immediately evaluated. The speculative execution is committed if A is verified to be

true, and aborted if the process later determines A is false. For fault-tolerance, A represents the

assumption that no machine in the distributed network will fail, and for fault isolation, A represents

the assumption that no exception will be raised. In these cases, A cannot be assessed in advance,

since A is dependent on the code that will be evaluated during the speculation.

There are other situations where it may be possible to evaluate A in advance, but for performance

reasons it is more advantageous to defer the evaluation of A until part of the speculative code has

been executed. In these situations, A itself may be dependent on information from other computers,

and may be a slow computation due to network latencies. If A is likely to be true, and the cost

of a speculation is low, then it is in the process’s best interests to assume A and rollback if the

assumption proves to be false later.

This approach is utilized in shared memory systems by general message predictors and pattern-

based predictors to learn and predict the memory activity in distributed shared memory systems

for performance improvement. Two such systems are Cosmos [14], which predicts future coher-

ence operations and performs them speculatively, and the Memory Sharing Predictor [13], which

detects patterns in memory request messages and sends read-only pages of memory to the predicted

requesters.

9

Intermediate
Functional

Language

Executable
Code

Theorem
Prover

Runtime
Library

C Pascal ML Java

Figure 1.4: Design of the MCC compiler

1.3 The Mojave Compiler Collection (MCC)

We implement whole-process migration and speculative execution as part of the Mojave Compiler

Collection (MCC)1. MCC is a multi-language compiler that compiles C, Pascal, ML, Java, and

other languages to a common, functional intermediate language (FIR). The FIR is a concise semi-

functional representation of the code, where variables in the FIR are immutable, but heap values

can be modified. Looping constructs are expressed using recursion, and all internal function calls are

expressed as tail-calls. The FIR also contains primitive features to support its source-level languages

in a type-safe manner. MCC can be integrated with MetaPRL [12], a theorem prover capable of

reasoning about programs written in the FIR language. The MCC architecture is illustrated in

Figure 1.4.

MCC utilizes formal reasoning of programs and runtime safety checks to ensure that programs

compiled using MCC are safe — that is, they will not attempt to access illegal areas of memory,

or use values with inappropriate types. MCC’s safety properties allow mutually untrusting systems

to exchange and evaluate code, and reduce the need for explicit security boundaries in distributed

systems. They also allow programmers to develop modules for execution directly in kernel space,

with the assurance that no MCC-compiled module will errantly tamper with other kernel modules.

MCC is able to impose an architecture-independent representation of data and can migrate

code using the architecture-independent FIR representation. This makes it an ideal platform for

developing whole-process migration primitives in an efficient manner. Also, MCC’s heap design is

easy to extend to support speculative execution models.
1The latest version of MCC is available for download from http://mojave.caltech.edu./.

10

MCC provides an active test bed for research in several areas of distributed systems research.

Several projects are conducted by members of the Mojave group to include a distributed filesystem [8]

and distributed shared memory [5] with MCC, taking advantage of the features offered by the

compiler. These projects extend the concepts of migration and speculation to the design of persistent

storage and distributed communication technologies.

1.4 Organization of this thesis

Chapter 2 begins with a formal introduction of the language and primitives used to implement process

migration and speculative execution. It covers the syntax and operational semantics of the language,

and describes basic properties of process migration and speculation. Chapter 3 demonstrates that

programs using process migration and speculations will be safe, even after migration from one system

to another. Chapter 4 focuses on the implementation of these primitives, including data structures,

invariants, and algorithms for implementing the primitives. Chapter 5 discusses integration of these

primitives with a compacting garbage collector. Chapter 6 presents the conclusions of this work and

future directions.

11

Chapter 2

Semantics of Process Migration
and Speculation

Process migration and speculation are implemented as extensions to MCC. The semantics of mi-

gration and speculation is defined as part of the FIR, the intermediate language used internally by

MCC. The complete FIR language, including the FIR operational semantics, is described in detail

in a technical report by Hickey, Smith, et al. [11]. The FIR presented here is a subset of the full

FIR language; only the properties of the FIR that are relevant to this thesis are discussed here.

The formal discussion of migration and speculation will be with respect to the FIR. This chapter

introduces basic FIR syntax and provides the operational semantics for migration and speculation.

Safety properties for migration and speculation are given in Chapter 3, and the runtime support

required to implement these primitives is discussed beginning in Chapter 4.

2.1 The FIR syntax

The following conventions are used in the descriptions below. In general, the meta-variables i, j, k,

and l to refer to arbitrary integers, and the meta-variables m and n to refer to arbitrary nonnegative

integers. The meta-variable v refers to program variables. The meta-variables t and u refer to

program types, while the Greek letters α, β, γ and the meta-variable tv refer to type variables.

In most cases, the meta-variable m enumerates type parameters α1, . . . , αm, and the meta-

variable n enumerates actual parameters v1, . . . , vn. The notation dvien1 is a shorthand denoting the

vector v1, . . . , vn, where the index variable is implicitly i. An alternate notation dvjenj=1 explicitly

uses a different index variable j.

The basic FIR base terms are shown in Figure 2.1. MCC supports several forms of numbers,

including integers of various signedness and precision, and floating-point values of various precisions.

Sets of integers are used in integer pattern matching expressions. The sets are represented by lists

of closed intervals [i1, i2].

12

Entity Description
v1, v2, . . . Variable names
tv1, tv2, . . .
α, β, . . . Type variables

i ::= . . . | −1 | 0 | 1 | . . . Integer constants
set ::= [i11, i

1
2], . . . , [i

n
1 , in2] Integer interval set

pre ::= 8 | 16 | 32 | 64 Integer precisions
sign ::= signed | unsigned Integer signedness

r ::= (i, pre, sign) Raw integer constants

Figure 2.1: FIR base terms

2.1.1 FIR type system

The FIR has two classes of types, the basic types, shown in Figure 2.2, and the type definitions,

which are parameterized types of the form Λα1, . . . , αm.t.

The type Zbox refers to tagged, signed integers. Native integers with bit precision pre and

signedness sign are represented using Zsign
pre , and must be boxed when stored into memory. Floating-

point values are also supported by the implementation, but are not described here.

Memory values are represented by several types. The tuple type 〈t1, . . . , tn〉 represents a tuple

〈v1, . . . , vn〉, where each value vi has type ti. The array type t array resembles a tuple, but the

elements of an array all have the same type, and an array has arbitrary nonnegative dimension. Both

tuples and arrays are seen as safe types — the compiler guarantees that values in these memory

areas have the appropriate types. MCC also supports tagged tuples, or unions, but they are omitted

here for simplicity.

The unsafe type data represents arbitrary data. Values of type data are normally used to rep-

resent data aggregates for imperative programming languages, such as C, that allow the assignment

of values to the data area without regard for the data type. Data areas with the data type have no

explicit substructure.

The function type (t1, . . . , tn) → t includes the functions that return a value of type t, given

arguments of types t1, . . . , tn.

For polymorphic types, MCC provides type application tv [t1, . . . , tm], which applies arguments

to a type definition. If the definition is a parameterized type Λα1, . . . , αm.t, the type tv [t1, . . . , tm]

is defined as the type t[t1/α1, . . . , tm/αm]. For example, in a context containing the definition

γ = Λα, β.〈α, β〉, the type γ[Zbox, Zsigned
32 → Zbox] is the same as the type

〈
Zbox, Zsigned

32 → Zbox

〉
.

The universal type ∀α1, . . . , αm.t defines a polymorphic type, where t must be a function

type. The existential type ∃α1, . . . , αm.t defines a type abstraction. The values in an existen-

tial type have the form ty pack[∃α1, . . . , αm.t](v, t1, . . . , tm), where v has type t[t1/α1, . . . , tm/αm].

The type projection v.i is used for values having existential type ∃α1, . . . , αm.t. If a value

13

Type Description
t ::= Zbox Boxed integers
| Zsign

pre Native integers
| void Void type

| 〈t1, . . . , tm〉 Tuple data
| t array Array data
| data Unsafe data
| (t1, . . . , tm)→ t Function type

| α, β, . . . Polymorphic type vars
| tv [t1, . . . , tm] Type application
| ∀α1, . . . , αm.t Universal types
| ∃α1, . . . , αm.t Existential types
| v.i Abstract type

tydef ::= Λα1, . . . , αm.t Parameterized types

Figure 2.2: FIR type system

v = ty pack[∃α1, . . . , αm.t](v′, t1, . . . , tm) has type ∃α1, . . . , αm.t, then v.i is equivalent to ti.

Type definitions define parameterized types. A type definition tydef has the form Λα1, . . . , αm.t,

where t is a type abstracted over type parameters α1, . . . , αm. Type definitions will appear as part

of the program context.

2.1.2 FIR statements

Statements in the FIR are divided into two classes: the atoms a and general expressions e shown in

Figure 2.3.

2.1.2.1 Atoms

The atoms a represent values, including numbers, variables, and basic arithmetic. Atoms are func-

tional. Apart from arithmetic exceptions1, the order of atom evaluation does not matter. The atoms

include the following.

The boxed integers int(i) have type Zbox. The raw integers rawint(r) are native, unboxed

integer constants with type Zsign
pre . There are two forms for arithmetic: unary operations unop a, and

binary operations a1 binop a2. The operators, shown in Figure 2.4, include the normal operations

for arithmetic.

The variables v represent values defined in the program environment, described in Section 2.2.

Variables are immutable: the FIR does not include a variable assignment operation.

There are three kinds of polymorphic operations. The ty apply[t](v, t1, . . . , tm) atom is a

type application of a polymorphic value v to type arguments t1, . . . , tm. For the application
1Notable arithmetic exceptions include division by zero and floating point overflow/underflow.

14

Definition Description
a ::= int(i) Boxed integers

| rawint(r) Raw integers
| v Variables
| ty apply[t](a, t1, . . . , tm) Type application
| ty pack[t](v, t1, . . . , tm) Existential pack
| ty unpack(v) Existential unpack
| unop a Unary operation
| a1 binop a2 Binary operation

e ::= let v : t = a in e Basic operations
| let v : tv = (“s” : ts)(a1, . . . , an) in e Calls to the runtime
| a(a1, . . . , an) Tail-call
| special tailop Special tail-call
| match a with dsi 7→ eien1 Case analysis
| let v = alloc in e Allocation
| let v : t = a1[a2] in e Load from heap
| a1[a2] : t← a3; e Store into heap

Figure 2.3: FIR atoms and expressions

to be well-formed, the variable v must have universal type ∀α1, . . . , αm.u; the atom has type

t = u[t1/α1, . . . , tm/αm]. The ty pack[t](v, t1, . . . , tm) atom performs type abstraction. It has

type t = ∃α1, . . . , αm.u when v has type u[t1/α1, . . . , tm/αm]. The ty unpack(v) atom is the

elimination form for type abstraction. If v has existential type ∃α1, . . . , αm.u, the atom has type

u[v.1/α1, . . . , v.m/αm]. The type v.i represents the type parameter ti in the original pack operation.

2.1.2.2 Expressions

The let v : t = a in e expression forms a new scope, where the variable v is bound to the value of the

atom expression a in the expression e. For the expression to be well-formed, the atom must have

type t, and the expression e must be well-formed for an arbitrary value v of type t.

The external-call expression let v : tv = (“s” : ts)(a1, . . . , an) in e is used to provide access to

the runtime and operating system. The string “s” represents the name of a runtime function to be

called with arguments a1, . . . , an. For the expression to be well-formed, the runtime function “s”

must have type ts = (u1, . . . , un)→ tv, each atom ai must have type ui, and e must be well-formed

given a value v with type tv.

The tail-call a(a1, . . . , an) represents a function call to the function a with arguments a1, . . . , an.

Functions are statically defined as part of the program context, discussed in Section 2.2.1, and

function definitions may not be nested. The atom a in a tail-call is always a variable v or a type-

application v[t1, . . . , tm] where v is defined in the context. For the tail-call to be well-formed, the

function a must have some type (u1, . . . , un)→ void, and each argument ai must have type ui. The

return type of the function is the empty type void. There is no syntactic mechanism for using the

15

return value of a function, and functions never return.

The special-call special tailop represents a call for process migration, or one of the speculation

operations. The tailop operations are shown in Figure 2.4.

• The operator migrate [i, ap, ao] afun(a1, . . . , an) defines a process migration. The argument

(ap, ao) specifies the destination (for example, the name of a migration server), and the argu-

ment afun(a1, . . . , an) specifies a function to be called once the process migrates, along with

its arguments.

• The operator speculate afun(aconst , a1, . . . , an) specifies entry into a speculation. This opera-

tion effectively takes a process checkpoint, which can be restored if the speculation is aborted.

Once the speculation is entered, the function afun is called with arguments aconst , a1, . . . , an.

• The operator rollback [alevel , aconst] is used to abort a speculation. The atom alevel is the name

of the speculation to be aborted (the speculation checkpoints are saved in a list). Speculations

are restarted on failure, and the atom aconst is a new argument to be passed to the speculation

entry point when the speculation is restarted.

For example, if the speculation was entered with speculate afun(aconst , a1, . . . , an), and the

speculation is aborted with the rollback [a′level , a
′
const], the speculation is resumed with the

tail-call afun(a′const , a1, . . . , an).

• The operator commit [alevel] afun(a1, . . . , an) commits the speculation identified by alevel .

The speculation checkpoint identified by alevel is discarded, and the function afun is called

with arguments a1, . . . , an.

The match statement match a with dsi 7→ eien1 is a pattern match of an integer against multiple

sets. Each match case si 7→ ei specifies an integer (or raw integer) set si and an expression ei to

be evaluated if a ∈ si. Evaluation is ordered and total. Evaluation chooses the first match that

succeeds, and the match statement is well-formed only if there is a match case for any possible value

of a.

The aggregate data areas include tuples, arrays and raw data. The let v = alloc in e expression

allocates a data aggregate, using one of the alloc forms shown in Figure 2.4.

Values are projected from an aggregate data area using the let v : t = a1[a2] in e expression. For

the expression to be well-formed, a1 must be an aggregate, and a2 must be a valid index into the

aggregate. All fields in aggregates are mutable. The a1[a2] : t ← a3; e expression assigns value a3

to field a2 in aggregate a1.

16

Definition Description
unop ::= − | ! | · · · Unary operations
binop ::= + | − | ∗ | / | · · · Binary operations

alloc ::= 〈a1, . . . , an〉 : t Tuple allocation
| array(asize , ainit) : t Array allocation
| malloc(a) : t Rawdata allocation

tailop ::= migrate [i, ap, ao] afun(a1, . . . , an) System migration
| speculate afun(aconst , a1, . . . , an) Speculation entry
| rollback [alevel , aconst] Speculation rollback
| commit [alevel] afun(a1, . . . , an) Speculation commit

Figure 2.4: FIR operators

2.2 Judgments

All judgments, including type and well-formedness judgments, are defined with respect to an envi-

ronment Γ, also called a context. The environment contains both variable declarations of the form

v : t, and variable definitions of the form v : t = b. The declaration v : t specifies that a variable v

has an unspecified value of type t. The definition v : t = b specifies that variable v has the value b,

and b has type t.

2.2.1 Heap and store values

The definitions in the context use values of two sorts: heap values h, and store values b, shown in

Figure 2.5. The heap values represent atoms that have been fully evaluated. In general, an atom

evaluates to a number, a label, or a variable that represents a store value. The store values are the

values in a program store. These include heap values, functions, “packed” values with existential

type, and data in each of the aggregate data types: tuples, arrays, and rawdata.

Functions are universally quantified, with type parameters α1, . . . , αm and actual parameters

v1, . . . , vn. Elements of type data are represented abstractly using the form 〈c〉; the elements in the

data area are not explicitly described.

2.2.2 Kinds

The program types are also defined as part of the context Γ. For presentation purposes, the program

types are classified with kinds, which have the following form.

ks ::= ω | Ω

k ::= ωm → ks

17

Definition Description
h ::= int(i) Boxed integers

| rawint(r) Raw integers
| v Variables

b ::= h Heap values
| Λα1, . . . , αm.λv1, . . . , vn.e Functions
| ty pack[t](v, t1, . . . , tm) Type packing
| 〈h1, . . . , hn〉 Tuples
| 〈c〉 Raw data

Figure 2.5: Heap and store values

Definition Description
def ::= v : t Variable declaration

| v : t = b Variable definition
| tv : k Type declaration
| tv : k = tydef Type definition

Γ ::= ε Empty environment
| Γ, def Adding a definition

Γ ` � Context Γ is well-formed
Γ ` tydef 1 = tydef 2 : k tydef 1 and tydef 2 are equal type definitions (or types)
Γ ` tv1 = tv2 : k tv1 and tv2 are equal type definitions
Γ ` a : t Atom a has type t
Γ ` b : t Store value b has type t
Γ ` e : t Program e has type t

Figure 2.6: Program contexts and judgments

The kind ks classifies the type definitions tydef as “small” types ω and “large” untagged types

Ω, primarily to support efficient garbage collection. The general kind k = ωm → ks represents a

parameterized type definition tydef . The number of parameters m may be any nonnegative integer.

If m = 0, the type parameters may be omitted.

2.2.3 Contexts and judgments

A program context Γ is defined as a set of mutually-recursive declarations and definitions, as shown

in Figure 2.6. There are two forms of definitions. The type definition tv : k = tydef defines a type

named tv , having kind k, and value tydef . The variable definition v : t = b defines a variable named

v, with type t and store value b. For each definition form there is a corresponding declaration form.

This thesis assumes each variable and type variable in a context is defined/declared at most

once, and uses alpha-renaming to rename variables as appropriate. The meta-variable d is used to

represent a definition or declaration def .

The judgment Γ ` � specifies that the context Γ is well-formed. A context is well-formed if all of

18

its declarations and definitions are well-formed. For each declaration v : t and definition v : t = b, the

term t must be a well-formed type, and the value b must have type t. Similarly, all type definitions

in Γ must be well-formed.

The type system includes an equational theory of types. The judgment Γ ` tydef 1 = tydef 2 : k

is a type definition equality judgment. When the judgment is true, tydef 1 and tydef 2 have the

specified kind, and they are equal. There is no separate membership judgment Γ ` tydef : k.

The judgments Γ ` a : t, Γ ` b : t, Γ ` e : t express typing relations for atoms, store values, and

expressions, respectively.

2.3 FIR operational semantics

Evaluation is defined on programs, which include three parts: the current environment Γ, a check-

point environment C, which is an ordered list of checkpoints, and an expression e to be evalu-

ated. Checkpoints are required for speculations, which are discussed in Section 2.3.3. A checkpoint

〈Γ, f(�, a1, . . . , an)〉 contains a context Γ, and a function f(�, a1, . . . , an), where � is a special spec-

ulation parameter. The function is called if evaluation is resumed from the checkpoint.

C ::= 〈Γ, f(�, a1, . . . , an)〉 Single checkpoint

C ::= Cm; . . . ;C1 Checkpoint environment

Definition 2.3.1 Fully-defined contexts

A context Γ is said to be fully-defined if every variable v in the context is defined with the form

v : t = b and every type variable tv is defined with the form tv : k = tydef .

Definition 2.3.2 Programs

A program is either the special term error, or it is a triple (Γ | C | e) that satisfies the following

conditions.

• Γ is fully-defined and Γ ` e : void,

• For each 〈Γ′, f(�, a1, . . . , an)〉 ∈ C, the context Γ′ is fully-defined, and the judgment

Γ′, vconst : Zsigned
32 ` f(vconst , a1, . . . , an) : void holds.

Intuitively, the error term specifies a runtime error during program evaluation (such as an out-

of-bounds array access, or a runtime type error during a subscripting operation). The error term

is similar to an exception, and may assume any type.

Evaluation is a relation on programs. The relation

(Γ | C | e)→ (Γ′ | C′ | e′)

19

specifies that the program (Γ | C | e) evaluates in one step to the program (Γ′ | C′ | e′). The relation

(Γ | C | e)→ error

specifies that evaluation of the program (Γ | C | e) results in a runtime error in one step. This thesis

only describes the rules for external calls, special-calls, and several subscripting operations on the

heap. The complete operational semantics is described in the technical report [11].

2.3.1 External calls

For external calls, we defer to a semantic interpretation function [[“s”]] that specifies the interpretation

of the built-in function named “s”.

(Γ | C | let v : t = (“s” : (u1, . . . , un)→ t)(h1, . . . , hn) in e)→
(Γ, v : t = [[“s”]](h1, . . . , hn) | C | e) Red-LetExt

It is important to note that the semantic interpretation function [[“s”]] may reference data both

within and external to the context Γ. This is significant in determining what state is included in

checkpoints.

2.3.2 Process migration

When a process migrates, the entire process (including Γ, C, and the continuation function) migrates

to a new location, which is just another runtime environment. The operational definition of migration

is transparent by design. The program context must not change during process migration. This

decouples the process execution from the process location, allowing transparent fault recovery in

distributed systems. This decoupling is fairly significant, since otherwise a process might have to

spend considerable time reacquiring machine-specific resources and rebuilding its state when it is

transferred to another machine.

In the migrate [j, aptr , aoff] afun(a1, . . . , an) special-call expression, the atoms aptr and aoff

specify a string (as a rawdata block and offset) that describes the migration protocol and target (for

example, a machine name). The number j is a unique identifier used by the runtime. Operationally,

evaluation of the expression leads to process migration followed by the evaluation of the tail-call

afun(a1, . . . , an).

(Γ | C | specialmigrate [j, hptr , hoff] f(h1, . . . , hn))→ (Γ | C | f(h1, . . . , hn)) Red-SysMigrate

The implementation of these semantics is discussed in Section 4.3.

All state recorded in C is migrated in the system migration call. Note that state that is external

to C, such as the machine state accessed through external calls, may not necessarily be migrated.

Currently, the memory heap and program registers (both explicitly represented in C), and the process

20

code are migrated. I/O to files and devices is not supported directly by the FIR at this time, and

must use the external call interface. The I/O state is not currently migrated.

2.3.3 Speculations

Speculations are entered with the special-call speculate afun(aconst , a1, . . . , an). The runtime adds

a process checkpoint to the checkpoint environment C. This checkpoint can be restored later if

the speculation is aborted. Evaluation proceeds with a tail-call afun(aconst , a1, . . . , an), and the

speculative call is treated identically to this tail-call for typing purposes. For technical reasons,

aconst must have type Zsigned
32 .

(Γ | C | special speculate f(hconst , h1, . . . , hn))→
(Γ | 〈Γ, f(�, h1, . . . , hn)〉 ; C | f(hconst , h1, . . . , hn)) Red-Spec

The rollback [alevel , aconst] special-call aborts a speculation. It is possible to enter several

speculations simultaneously (in the source program, speculations are typically nested). The atom

alevel is an integer that identifies the speculation level, and aconst is a speculation parameter.

When a speculation checkpoint 〈Γ, afun(�, a1, . . . , an)〉 is rolled back with the rollback [i, j]

special-call expression to level i with speculation parameter j, evaluation proceeds as a tail-call

afun(j, a1, . . . , an), using the original process context Γ and the truncated checkpoint environment

Ci; . . . ;C1. All checkpoints with level higher than i are discarded. The level that was rolled back

is re-entered by this primitive; in effect, the state that is restored is the state captured immediately

after the level was entered.

(Γ′ | Cm; . . . ;Ci = 〈Γ, f(�, dhkenk=1)〉 ; . . . ;C1 | special rollback [i, j])→
(Γ | Ci;Ci−1; . . . ;C1 | f(j, dhkenk=1))
when i ∈ {1 . . .m} Red-Spec-Rollback

In most cases, rollback operates on the most recently entered level. As a short-hand, when i = 0

the runtime will roll back only the most recent level.

(Γ′ | Cm = 〈Γ, f(�, h1, . . . , hn)〉 ; . . . ;C1 | special rollback [0, j])→
(Γ | Cm; . . . ;C1 | f(j, h1, . . . , hn)) Red-Spec-Rollback-2

Also, it is an error to specify a checkpoint that does not exist.

(Γ | Cm; . . . ;C1 | special rollback [i, j])→ error
when i /∈ {0 . . .m} ∨m = 0 Red-Spec-Rollback-Error

Speculations are committed with the special-call commit [i] afun(a1, . . . , an). Operationally, the

checkpoint is deleted from the checkpoint context and evaluation continues with a tail-call to the

function afun(a1, . . . , an).

(Γ | Cm; . . . ;C1 | special commit [i] f(h1, . . . , hn))→
(Γ | Cm; . . . ;Ci+1;Ci−1; . . . ;C1 | f(h1, . . . , hn))
when i ∈ {1 . . .m} Red-Spec-Commit

21

In most cases, commit operates on the most recently entered level. As a short-hand, when i = 0

the runtime will commit the most recent level.

(Γ | Cm; . . . ;C1 | special commit [0] f(h1, . . . , hn))→
(Γ | Cm−1; . . . ;C1 | f(h1, . . . , hn)) Red-Spec-Commit-2

Also, it is an error to specify a checkpoint that does not exist.

(Γ | Cm; . . . ;C1 | special commit [i] f(h1, . . . , hn))→ error
when i /∈ {0 . . .m} ∨m = 0 Red-Spec-Commit-Error

The FIR does not syntactically require entry and commit operations to be balanced. Instead,

programs that attempt to rollback to or commit a checkpoint that does not exist evaluate to the

error term. The implementation of these semantics is discussed in Section 4.4.

2.3.3.1 Speculations and external state

All state recorded in C can be rolled back by a speculation. However, state that is external to C,

such as the machine state accessed through external calls, including I/O to files and devices, is not

currently rolled back.

2.3.3.2 Speculations and transactions

Speculations bear a certain resemblance to database transactions. Indeed, on a single-process system

there is little difference, as both mechanisms accommodate rollback to a known-consistent state

when an abnormal condition occurs. However, in the presence of other processes, speculations can

be more flexible than traditional transactions, particularly with regard to atomicity. For a process in

a traditional transaction, any state modifications it makes must be opaque to processes not involved

in the transaction. An external process wishing to utilize the state modifications must block until the

transaction is committed or aborted. With speculations, we can conceive other processes dynamically

joining a speculation that is in progress, optimistically assuming that the speculation will complete

with the new state in place.

2.3.4 Subscripting operations

The subscripting operations correspond to the aggregate values: tuples, arrays, and rawdata.

The projection for a tuple 〈h0, . . . , hn−1〉 and index j is the element hj . A tuple operation is

always successful because the offset is a constant, and the type system discussed in Chapter 3 ensures

that the offset is within bounds.

((Γ′, v2 : u′ = 〈h0, . . . , hn−1〉) as Γ | C | let v1 : u = v2[j] in e)→
(Γ, v1 : u = hj | C | e) Red-LetSub-Tuple

((Γ′, v : u′ = 〈h0, . . . , hn−1〉) as Γ | C | v[j] : u← h; e)→
(Γ′, v : u′ = 〈h0, . . . , hj−1, h, hj+1, . . . , hn−1〉 | C | e) Red-SetSub-Tuple

22

Arrays are similar to tuples when the array index is in bounds.

((Γ′, v2 : u′ = 〈h0, . . . , hn−1〉) as Γ | C | let v1 : u = v2[j] in e)→
(Γ, v1 : u = hj | C | e)
when j ∈ {0 . . . n− 1} Red-LetSub-Array

((Γ′, v : u′ = 〈h0, . . . , hn−1〉) as Γ | C | v[j] : u← h; e)→
(Γ′, v : u′ = 〈h0, . . . , hj−1, h, hj+1, . . . , hn−1〉 | C | e)
when j ∈ {0 . . . n− 1} Red-SetSub-Array

It is an error for an array subscript to be out-of-bounds.

((Γ′, v2 : t2 = 〈h0, . . . , hn−1〉) as Γ | C | let v1 : t1 = v2[j] in e)→
error
when j /∈ {0 . . . n− 1} Red-LetSub-Array-Error

((Γ′, v : t1 = 〈h0, . . . , hn−1〉) as Γ | C | v[j] : t2 ← h; e)→
error
when j /∈ {0 . . . n− 1} Red-SetSub-Array-Error

For the unsafe aggregates, the subscript operations perform a runtime type check. Rather than

specify the operations here, we rely on an operational semantics provided by the runtime, described

in Chapter 4.

For aggregates of data type, we assume existence of a runtime function runtime(Γ | 〈c〉 [j] : t)

that projects a valid value h of type t from data area 〈c〉, or results in an error. We also assume the

existence of a runtime function runtime(Γ | 〈c〉 [j] : t← h) to store a value in a rawdata aggregate,

returning a new value 〈c′〉 or producing an error.

runtime(Γ | 〈c〉 [j] : t) =

{
h if Γ ` h : t

error otherwise

runtime(Γ | 〈c〉 [j] : t← h) =

{
〈c′〉 assignment succeeds
error otherwise

Given these runtime functions, a rawdata subscript operation returns the value given by the

runtime, or produces an error.

((Γ′, v2 : u′ = 〈c〉) as Γ | C | let v1 : u = v2[j] in e)→
(Γ, v1 : u = h | C | e)
when runtime(Γ | 〈c〉 [j] : u) = h Red-LetSub-RawData

((Γ′, v2 : u′ = 〈c〉) as Γ | C | let v1 : u = v2[j] in e)→ error
when runtime(Γ | 〈c〉 [j] : u) = error Red-LetSub-RawData-Error

((Γ′, v : u′ = 〈c〉) as Γ | C | v[j] : u← h; e)→
(Γ′, v : u′ = 〈c′〉 | C | e)
when runtime(Γ | 〈c〉 [j] : u← h) = 〈c′〉 Red-SetSub-RawData

((Γ′, v : u′ = 〈c〉) as Γ | C | v[j] : u← h; e)→ error
when runtime(Γ | 〈c〉 [j] : u← h) = error Red-SetSub-RawData-Error

23

Chapter 3

Safety

The FIR features a strong typing system that is used to ensure the safety of programs. By showing

that a FIR program is well-typed, we can prove that the program is safe — it will not perform an

illegal memory operation, and it will only branch to an execution point that is an entry point for

either a function within the program, or a predetermined external function. With this property,

system migration can be performed in a safe manner, even among machines that are not mutually

trusting.

This chapter describes the properties of the FIR type system that contribute to demonstrating

the safety of programs. The type rules give rise to preservation and progress theorems, which ensure

that a program’s type is preserved during evaluation and that evaluation will not stall. This chapter

also introduces the runtime safety checks that are required to enforce certain typing rules in the

presence of unsafe aggregate types (such as data for C programs).

3.1 Typing rules

The typing rules for FIR terms are presented in this section as a set of inference rules. Only

syntactically valid terms are covered by these rules. Each rule consists of a judgment from Figure 2.6

as the conclusion, and a list of judgments and other “side-conditions” (such as i ∈ Zbox) as premises.

The shorthand Γ ` dJien1 denotes a list of judgments. This is equivalent to listing all judgments

Γ ` J1, . . ., Γ ` Jn. When n = 0, this notation expands to no judgments. This thesis only describes

the rules for external calls, special-calls, and subscripting operations. The complete type system is

described in the technical report [11].

3.1.1 External call typing rule

External calls are defined by the runtime environment to access the runtime or the operating system.

For example, the runtime typically exports functions to gather statistics and control the garbage

collector, and it also exports a set of system calls. The description of these functions is specific

24

to the runtime and beyond the scope of this thesis. For our purposes, we assume there is some

interpretation [[“s”]] that defines a function that corresponds to the runtime operation.

Γ ` dai : uien1 Γ, v : t1 ` e : t2 Γ ` [[“s”]] : (u1, . . . , un)→ t1

Γ ` let v : t1 = (“s” : (u1, . . . , un)→ t1)(a1, . . . , an) in e : t2 Ty-LetExt

3.1.2 Migration typing rule

For simplicity, the expression typing rule Ty-Special-Call uses a common form for all of the

special-calls. If tailop is a special-call, then special tailop is an expression.

Γ ` tailop : special t
Γ ` special tailop : t Ty-Special-Call

Process migration is specified with the migrate [j, aptr , aoff] af (a1, . . . , an) special-call expres-

sion, which is described in Section 4.3. The atoms aptr and aoff specify a string (as a rawdata

block and offset) that describes the migration protocol and target (for example, a machine name).

Section 4.3.1 describes the possible protocols available for system migration. The af (a1, . . . , an) is

a tail-call to be performed once the process has migrated. The number j is a unique identifier used

by the runtime.

Γ ` aptr : data
j ∈ Zbox Γ ` aoff : Zsigned

32

Γ ` dai : tien1 Γ ` af : (t1, . . . , tn)→ void

Γ `migrate [j, aptr , aoff] af (a1, . . . , an) : special void Ty-SysMigrate

3.1.3 Speculation typing rules

The speculation special-calls are described in Section 4.4. The speculate af (aconst , a1, . . . , an)

expression specifies entry into a new speculation which may be later committed or rolled back. The

speculate call instructs the runtime to establish a process checkpoint that may be used for rollback

(or discarded if the speculation is committed). Otherwise, the speculate call acts exactly like a tail-

call to a function af with arguments (aconst , a1, . . . , an). For technical reasons, the first argument

is currently restricted to have type Zsigned
32 .

Γ ` aconst : Zsigned
32 Γ ` dai : tien1 Γ ` af : (Zsigned

32 , t1, . . . , tn)→ void
Γ ` speculate af (aconst , a1, . . . , an) : special void Ty-Spec

It is possible to enter several speculations simultaneously. While speculations are typically nested

in the source program, the type system does not enforce this structural constraint. The type system

also does not require entry and commits to be balanced. This error condition is handled by a runtime

check in the operational semantics. Each program checkpoint is identified by an integer alevel known

as a speculation level ; speculation levels are described in further detail in section 4.4.1. When a

25

speculation at level alevel is aborted, or “rolled back,” all speculations with more recent identifiers are

discarded and the program state is restored to the state immediately after entry into the speculation.

If the speculation was initiated with speculate a′fun(a′const , a
′
1, . . . , a

′
n), the rollback [alevel , aconst]

special-call expression resumes execution with a tail-call to a′fun(aconst , a
′
1, . . . , a

′
n).

Γ ` alevel : Zsigned
32 Γ ` aconst : Zsigned

32

Γ ` rollback [alevel , aconst] : special void Ty-SpecRollback

Speculations can be committed in any order. The expression commit [alevel] af (a1, . . . , an)

specifies that speculation alevel be committed. Committing a speculation instructs the runtime to

discard the program checkpoint identified by alevel . Once committed, the commit call acts like the

tail-call af (a1, . . . , an).

Γ ` alevel : Zsigned
32 Γ ` dai : tien1 Γ ` af : (t1, . . . , tn)→ void

Γ ` commit [alevel] af (a1, . . . , an) : special void Ty-SpecCommit

3.1.4 Subscripting typing rules

Elements in the aggregate types (tuples, arrays, and rawdata) are accessed using the let v : t1 =

a1[a2] in e expression. All entries in aggregate blocks are mutable; an entry is replaced using the

a1[a2] : t1 ← a3; e expression.

In general, let v : t1 = a1[a2] in e is a well-formed expression if all of the following are true: the

atom a1 has an aggregate type, the atom a2 is a valid index into a1, the element of a1 at location

a2 has type t1, and expression e is well-formed assuming v has type t1.

Similarly, a1[a2] : t1 ← a3; e is well-formed if the following are true: the atom a1 has aggregate

type, the atom a2 is a valid index into a1, the element of a1 at location a2 has type t1, the atom a3

has type t1, and expression e is well-formed (with no extra assumptions).

For the subscripting operation a1[a2] on tuple aggregates, the index a2 must be a constant j. If

the tuple a1 has type 〈u0, . . . , un−1〉, the element has type uj .

Γ ` a1 : 〈u0, . . . , uj−1, u, uj+1, . . . , un−1〉 Γ, v1 : u ` e : t

Γ ` let v1 : u = a1[j] in e : t Ty-LetSub-Tuple

Γ ` a1 : 〈u0, . . . , uj−1, u, uj+1, . . . , un−1〉 Γ ` a3 : u Γ ` e : t

Γ ` a1[j] : u← a3; e : t Ty-SetSub-Tuple

Unlike tuples, all the elements in an array have the same type. The subscripting operation a1[a2]

is well-formed if the index a2 is a valid index, the aggregate a1 has array type u array, and the

element being accessed has type u.

Γ ` a1 : u array Γ ` a2 : Zbox Γ, v : u ` e : t

Γ ` let v : u = a1[a2] in e : t Ty-LetSub-Array

26

Γ ` a1 : u array Γ ` a2 : Zbox Γ ` a3 : u Γ ` e : t

Γ ` a1[a2] : u← a3; e : t Ty-SetSub-Array

For data blocks used by C programs, the load and store operations may manipulate values in

memory with arbitrary types. Therefore, the typing rules cannot determine the type of the value

being accessed. For safety, the runtime environment generates a runtime safety check to verify that

the value being accessed has a compatible type. Runtime safety checks are discussed in more detail

in Section 4.1.5.

Γ ` a1 : data Γ ` a2 : Zbox Γ, v : u ` e : t

Γ ` let v : u = a1[a2] in e : t Ty-LetSub-RawData

Γ ` a1 : data Γ ` a2 : Zbox Γ ` a3 : u Γ ` e : t

Γ ` a1[a2] : u← a3; e : t Ty-SetSub-RawData

3.2 Preservation

The proof of type-safety has two parts. The Preservation theorem 3.2.1 shows that types are pre-

served during program reduction. The Progress theorem 3.3.1 shows that for well-typed programs,

if the expression e being evaluated is not a value, then there is a reduction rule that can be used

to evaluate the program one more step. These safety properties allow for provably safe migration

of code and data from one system to another, in networks where the machines are not mutually

trusting.

Theorem 3.2.1 Preservation If (Γr | Cr | er) is a program and (Γr | Cr | er)→ (Γc | Cc | ec), then

(Γc | Cc | ec) is a valid program.

This can be proven by a case analysis on the reduction. The proof for the full FIR language is

given in the technical report [11]. This thesis gives a sketch of the proof for the special calls only.

Note that if the program (Γr | Cr | er) is valid, we can construct a typing proof that Γr ` e : void.

SysMigrate Suppose the reduction uses the rule Red-SysMigrate.

(Γr | Cr | specialmigrate [j, hptr , hoff] f(h1, . . . , hn))→ (Γr | Cr | f(h1, . . . , hn))

The proof of typing must use the rule Ty-SysMigrate.

Γr ` hptr : data
j ∈ Zbox Γr ` hoff : Zsigned

32

Γr ` dhi : tien1 Γr ` f : (t1, . . . , tn)→ void

Γr `migrate [j, hptr , hoff] f(h1, . . . , hn) : special void

From the premises Γr ` dhi : tien1 and Γr ` f : (t1, . . . , tn) → void, we can infer that Γr `

f(h1, . . . , hn) : void. Since Γr and Cr are unaltered by this rule, the proof case is complete.

27

Spec Suppose the reduction uses the rule Red-Spec.

(Γr | Cr | special speculate f(hconst , h1, . . . , hn))→
(Γr | 〈Γr, f(�, h1, . . . , hn)〉 ; Cr | f(hconst , h1, . . . , hn))

The proof of typing must use the rule Ty-Spec.

Γr ` hconst : Zsigned
32 Γr ` dhi : tien1 Γr ` f : (Zsigned

32 , t1, . . . , tn)→ void
Γr ` speculate f(hconst , h1, . . . , hn) : special void

From the premises Γr ` hconst : Zsigned
32 , Γr ` dhi : tien1 , and Γr ` f : (t1, . . . , tn) → void, we

can infer that the checkpoint 〈Γr, f(�, h1, . . . , hn)〉 is well-formed, and that Γr ` f(h1, . . . , hn) :

void.

SpecRollback Suppose the reduction uses the rule Red-Spec-Rollback.

(Γ′
r | Cm; . . . ;Ci = 〈Γr, f(�, dhkenk=1)〉 ; . . . ;C1 | special rollback [i, j])→

(Γr | Ci;Ci−1; . . . ;C1 | f(j, dhkenk=1))
when i ∈ {1 . . .m}

By assumption, the checkpoint context Cr is well-formed, and Γr ` f(j, h1, . . . , hn) : void.

Since the reduction only removes checkpoints from the context, the checkpoint context remains

well-formed. The argument for Red-Spec-Rollback-2 is similar.

SpecCommit Suppose the reduction uses the rule Red-Spec-Commit.

(Γr | Cm; . . . ;C1 | special commit [i] f(h1, . . . , hn))→
(Γr | Cm; . . . ;Ci+1;Ci−1; . . . ;C1 | f(h1, . . . , hn))
when i ∈ {1 . . .m}

The proof of typing must use the rule Ty-SpecCommit.

Γr ` i : Zsigned
32 Γr ` dhi : tien1 Γr ` f : (t1, . . . , tn)→ void

Γr ` commit [i] f(h1, . . . , hn) : special void

From the premises Γr ` dhi : tien1 and Γr ` f : (t1, . . . , tn) → void, we can infer that Γr `

f(h1, . . . , hn) : void. The argument for Red-Spec-Commit-2 is similar.

3.3 Progress

Theorem 3.3.1 Progress If (Γr | Cr | er) is a program, and er is not a value h, then there is a

program (Γc | Cc | ec) such that (Γr | Cr | er)→ (Γc | Cc | ec), or (Γr | Cr | er)→ error.

This can be proven by induction on the length of the proof Γr ` er : t. The proof for the full FIR

language is given in the technical report [11]. This thesis gives a sketch of the proof for the special

calls only, where er = specialS.

28

SysMigrate Suppose er = specialmigrate [j, hp, ho] hfun(h1, . . . , hn). The typing rule that ap-

plies is Ty-SysMigrate.

Γr ` hptr : data
j ∈ Zbox Γr ` hoff : Zsigned

32

Γr ` dhi : tien1 Γr ` hf : (t1, . . . , tn)→ void

Γr `migrate [j, hptr , hoff] hf (h1, . . . , hn) : special void

Since hf : (t1, . . . , tn)→ void, it must be defined in the context as a function f = λv1, . . . , vn.e.

The Red-SysMigrate rule applies.

(Γr | Cr | specialmigrate [j, hptr , hoff] f(h1, . . . , hn))→ (Γr | Cr | f(h1, . . . , hn))

Spec Suppose er = special speculate hf (hconst , h1, . . . , hn). The corresponding typing rule is

Ty-Spec.

Γr ` hconst : Zsigned
32 Γr ` dhi : tien1 Γr ` hf : (Zsigned

32 , t1, . . . , tn)→ void
Γr ` speculate hf (hconst , h1, . . . , hn) : special void

Since hf : (hconst , h1, . . . , hn)→ void, it must be defined in the context as a function f . The

Red-Spec rule applies.

(Γr | Cr | special speculate f(hconst , h1, . . . , hn))→
(Γr | 〈Γr, f(�, h1, . . . , hn)〉 ; Cr | f(hconst , h1, . . . , hn))

SpecRollback Suppose er = special rollback [hlevel , hconst]. The corresponding typing rule is

Ty-SpecRollback.

Γr ` hlevel : Zsigned
32 Γr ` hconst : Zsigned

32

Γr ` rollback [hlevel , hconst] : special void

The value hlevel must defined in the context as a variable or a constant. In the former case,

there is a rule in the full FIR, Red-Atom-Var, which will expand the variable. Otherwise,

let i = hlevel , and suppose the checkpoint context Cr contains m checkpoints Cm, . . . , C1.

If 1 ≤ i ≤ m, then the Red-Spec-Rollback rule applies.

(Γ′
r | Cm; . . . ;Ci = 〈Γr, f(�, dhkenk=1)〉 ; . . . ;C1 | special rollback [i, j])→

(Γr | Ci;Ci−1; . . . ;C1 | f(j, dhkenk=1))
when i ∈ {1 . . .m}

If i = 0 ∧m > 0, then the Red-Spec-Rollback-2 rule applies.

(Γ′
r | Cm = 〈Γr, f(�, h1, . . . , hn)〉 ; . . . ;C1 | special rollback [0, j])→

(Γr | Cm; . . . ;C1 | f(j, h1, . . . , hn))

Otherwise, the Red-Spec-Rollback-Error rule applies.

29

(Γr | Cm; . . . ;C1 | special rollback [i, j])→ error
when i /∈ {0 . . .m} ∨m = 0

SpecCommit Suppose er = special commit [hlevel] hf (h1, . . . , hn). The typing rule which applies

is Ty-SpecCommit.

Γr ` hlevel : Zsigned
32 Γr ` dhi : tien1 Γr ` hf : (t1, . . . , tn)→ void

Γr ` commit [hlevel] hf (h1, . . . , hn) : special void

The value hlevel must be a variable or a constant. In the former case, the Red-Atom-Var

rule applies. Otherwise, let i = hlevel , and suppose the checkpoint context Cr contains m

checkpoints Cm, . . . , C1.

If 1 ≤ i ≤ m, then the Red-Spec-Commit rule applies.

(Γr | Cm; . . . ;C1 | special commit [i] f(h1, . . . , hn))→
(Γr | Cm; . . . ;Ci+1;Ci−1; . . . ;C1 | f(h1, . . . , hn))
when i ∈ {1 . . .m}

If i = 0 ∧m > 0, then the Red-Spec-Commit-2 rule applies.

(Γr | Cm; . . . ;C1 | special commit [0] f(h1, . . . , hn))→
(Γr | Cm−1; . . . ;C1 | f(h1, . . . , hn))

Otherwise, the Red-Spec-Commit-Error rule applies.

(Γr | Cm; . . . ;C1 | special commit [i] f(h1, . . . , hn))→ error
when i /∈ {0 . . .m} ∨m = 0

3.4 Runtime safety checks

Preservation and progress require some runtime support to be complete, notably for subscripting

operations. Array bounds checks are explicit in the reduction rules, but type validation for values

read from unsafe blocks (blocks with type data) is deferred to the runtime. These checks are

performed during the runtime(Γ | 〈c〉 [i] : t) and runtime(Γ | 〈c〉 [i] : t← h) operations, which are

described in more detail in Section 4.1.5.

30

Chapter 4

Implementation of Process
Migration and Speculation

Previous chapters focus on the formal properties of process migration and speculation. This chapter

focuses on the implementation details, particularly of the construction of a runtime environment

that satisfies the operational semantics and safety properties imposed in previous chapters. Process

migration and speculation interact closely with a compacting garbage collector, which is described

in Chapter 5.

4.1 Runtime implementation

The FIR is machine-independent, and the Mojave compiler architecture is designed to support mul-

tiple back-ends, including both native-code and interpreted runtime environments. Currently, our

primary runtime implementation is a native-code runtime for the Intel IA32 architecture [1]. An

additional runtime environment is available that simulates RISC architectures. Object code genera-

tion is performed in two stages: the FIR is first translated to a machine intermediate representation

(MIR), which introduces runtime safety checks in a machine-independent form. The MIR language

is not discussed in detail here; the language itself is similar to the FIR with a simpler type system,

and the process of generating MIR code is a straightforward elaboration of the FIR code. In the

second stage, the final object code is generated for the target architecture from the MIR program.

The runtime manages several tasks, including garbage collection, process migration, specula-

tion, and runtime type-checking for heap operations. To complicate matters, a faithful C pointer

semantics rules out direct use of data relocation, which occurs when a process migrates or during

heap compaction. Several auxiliary data structures and invariants are introduced to address these

matters.

31

4.1.1 Runtime data structures and invariants

The runtime consists of the following parts and invariants.

• A heap, containing the data for tuples, arrays, and rawdata. A data value in the heap is called

a block, and the heap contains multiple (possibly non-contiguous) blocks. Values are stored in

the heap in an architecture-independent format.

• A text area, containing the program code. This includes both native machine code and a

representation of the FIR code. The FIR code is immutable at all times, and the native

machine code is immutable at all times except during process migration. The native code is

modified during process migration, when the machine code is regenerated from the FIR for

the target architecture.

• A set of registers. Each variable in the FIR program is assigned to a register, which is usually

a hardware register. Some architectures have a limited number of hardware registers, so some

FIR variables may be stored in memory locations known as register spills.

At any time during program execution, a register may contain a value in one of several machine

types: a pointer into the heap, a function pointer, or a numerical value. The machine type

is statically determined from the variable’s type in the FIR. Register spills have the same

properties as registers, and additional temporary registers are introduced during assembly code

generation which have very short live ranges. Registers may represent values in a machine-

dependent manner.

Invariant: at each function boundary and garbage collection point: if a register contains a

pointer, it contains the address of the beginning of a block in the heap; if a register contains

a function pointer, it contains the address of a function entry point in the text area.

Note that temporary registers that are generated during assembly generation may contain

“hybrid” pointers, however these temporaries are never live at a function boundary or garbage

collection point.

• A pointer table, containing pointers to all valid data blocks in the heap.

Invariant: all non-empty entries in the pointer table contain pointers to valid blocks in the

heap, and every valid block in the heap has an entry allocated for it in the pointer table.

It is possible that there will be valid blocks in the heap whose pointer table entry refers to a

different block; Section 4.4 discusses this special case.

• A function table, containing function pointers to all valid higher-order functions. The function

table is immutable, except during process migration.

32

Unsafe block format
msb lsb
size : 30 (words) 0 R
index : 30 (words) 1M
data0

...
datasize−1

Safe block format
msb lsb
tag : 7 size : 23 (words) 0 R
index : 30 (words) 0M
data0

...
datasize−1

Figure 4.1: Data block header format

Invariant: all entries in the function table contain the address of a function entry point in

the text area.

• A checkpoint record, containing descriptions of all live program checkpoints. Checkpoints are

discussed in Section 4.4.

4.1.2 Data blocks and the heap

The heap represents the FIR store, and it contains the store values b defined in Figure 2.5, also

called blocks. The runtime representation of a block contains two parts: a header that describes the

size and type of information stored in the block, and a value area containing the contents of the

block.

There are two types of data blocks in the heap. Unsafe data corresponds to values of type data;

memory accesses within a data block are unrestricted. Safe data corresponds to the 〈t1, . . . , tn〉 and

t array types. Memory operations on safe data blocks can be statically validated, to ensure that

all values are manipulated with the proper types. The contents of unsafe data are not explicitly

typed in the FIR, and safety checks are required to ensure the data is interpreted properly. Any

pointer read from an unsafe block must be checked to ensure it is a valid pointer, and the bounds

must be checked any time an unsafe block is dereferenced. In contrast, the contents of safe block

data are typed in the FIR, and many safety checks can be omitted. Note that safety checks cannot

be omitted on safe data after a successful migration, unless the two machines are mutually trusting.

The garbage collector can use explicit FIR types to identify pointers embedded in safe block data,

but it must use a more conservative algorithm to determine which values are pointers in unsafe block

data. As a consequence, in the presence of unsafe data, the garbage collector may consider certain

blocks to be live beyond their actual live range.

A block header has three parts, as illustrated in Figure 4.1: it contains a tag that identifies

the block type (unsafe or safe), and distinguishes among safe data types; an index into the pointer

table identifying the pointer for this block, accessed with the indexof(b) function; and a nonnegative

number that indicates the size of the block, accessed with the sizeof(b) function. The header also

33

Pointer Table

Heap

Registers

Unallocated Live data

Figure 4.2: Pointer table representation

contains bits used by garbage collection and speculations. In the figure, R indicates the root bit,

and M indicates the mark bit, both discussed in Chapter 5.

A null pointer is always a valid pointer to a zero-size block. A null pointer is allocated an

entry in the pointer table and may be manipulated like any other base pointer, but any attempt to

dereference it will result in a runtime exception. Certain source-level languages require distinct null

pointers for various data types. For example, in Java there are different null pointers for each object

type that are not considered equivalent. For these languages, a different zero-size block is allocated

in advance for each type.

4.1.3 Pointer table

The pointer table ptr table effectively acts as a segment table for the blocks (segments) in the heap.

It supports several features, including migration and speculation, but its main purpose is to allow

for relocation and safety for C data areas. The pointer table is implemented in software, however

its design is compatible with a hardware implementation for increased efficiency.

Figure 4.2 illustrates the pointer table layout. The pointer table contains entries pointing to

allocated data blocks. Source-level C pointers are represented in the runtime as (base +offset) pairs.

The base pointer always points to the beginning of a data block in the heap. Base pointers are never

stored directly in the heap. Instead, the base pointer is stored as an index to an entry in the pointer

table, which contains the actual address of the beginning of the data block.

The pointer table serves several purposes. First, it provides a simple mechanism for identifying

and validating data pointers in aggregate blocks. When an index i for a base pointer is read from

the heap, the following steps are performed:

1. i is checked against the size of the pointer table to verify if it is a valid index.

34

msb lsb
arity tag : 32
size = 0 : 30 (words) 0 0
index : 30 (words) 0 0
function code
...

Figure 4.3: Function header format

2. The value p is read from the ith entry in the pointer table.

3. p is checked to ensure it is not free (that it points into the heap). This check tests the least-

significant bit of p; empty pointer table entries are always odd values, whereas valid heap

pointers are always even values.

After these steps, p is always a valid pointer to the beginning of a block with index i. These steps

can be performed in a small number of assembly instructions, requiring only two branch points.

The second purpose of the pointer table is to support relocation. If the heap is reorganized by

garbage collection or process migration, the pointer table and registers are updated with the new

locations, but the heap values themselves are preserved. This level of transparency has a cost: in

addition to the execution overhead, the header of each block in the heap contains an index. In the

IA32 runtime, the overhead is in excess of 12 bytes per block, including the pointer table.

4.1.4 Function pointers

Function pointers are managed through the function table fun table, which serves the same purpose

as the pointer table for heap data. Any function whose address is taken and stored in a function

pointer is considered an escaping function. A function stub must be generated for each FIR function

that escapes. Each function stub has a function header, and the function table contains the addresses

of all the escaping-function headers. To ease some of the runtime safety checks, each function stub

is formatted with a block header that indicates that the function is a data block with zero-size.

This prevents a function pointer from being errantly used as a data pointer using the existing safety

checks. The function header is illustrated in Figure 4.3. As with block pointers, function pointers

are represented in the heap as indexes into the function table.

The function header also contains an arity tag, used to describe the types of the arguments.

The arity tags are integer identifiers, computed at link time from the function signatures. The

signatures themselves are generated based on the primitive architecture types, not the high-level

FIR types. When a function is called, the arguments must generate an arity tag that matches the

function header, or the runtime raises an exception. This check must be performed at runtime since

C permits function pointers to be coerced arbitrarily.

35

Functions may be invoked in a tail-call directly by specifying the function name, or indirectly

through a function pointer. Unlike direct function calls, indirect calls through a function pointer

use a standardized calling convention. The escape stub is responsible for moving arguments from

standard argument registers to the registers expected by the original function.

4.1.5 Pointer safety

The runtime operations for load, runtime(Γ | 〈c〉 [i] : t), and store, runtime(Γ | 〈c〉 [i] : t← h), are

guaranteed to be type-safe, even for unsafe blocks. The typing rules require any data read from

an unsafe block to be type-checked by the runtime before it is used. In MCC, these checks are

performed during the load operation. The location where a value is loaded may not correspond to

the location where the value is used. For C programs, this will result in error-handling semantics

that are inconsistent with traditional C programs, where fault handling is performed at the time

that the value is used. The runtime safety check for a load operation is performed as follows.

1. The index i is compared with the bounds of block 〈c〉; an exception is raised if the index is

out-of-bounds.

2. The value h at location i is retrieved, and a safety check is performed.

• If t represents a pointer, then h should be an index into the pointer table. If h is a valid

pointer table index, and the entry ptr table[h] is a valid pointer p, the result of the load

is p.

• If t represents a function pointer, then h should be an index into the function table. If h

is a value function table index, the result of the load is fun table[h].

• Otherwise, h does not represent a pointer, and the result of the load is h.

The safety check for a store operation is somewhat simpler. For the runtime(Γ | 〈c〉 [i] : t← h)

operation, the runtime invariants guarantee that if t represents a pointer, then h is a valid pointer

to a block in the heap; if t is of function type, then h is a valid pointer to a function header. In these

two cases (after a bounds-check on the index i) the index for h is stored. If t does not represent

either kind of pointer, the value h is stored directly.

4.2 Compiling FIR to assembly code

Compilation of FIR to assembly code is done through the MIR. The MIR resembles the FIR, however

the type system in the MIR is much weaker and closely resembles the machine architecture types.

To simplify conversion to assembly, details about polymorphic types are removed, and pointers to

various blocks and high-level functions are reduced to three pointer types: safe blocks, unsafe blocks,

36

and functions. The system migration and speculation calls are also expanded into operations that

are simpler to convert to assembly code. The final assembly code is generated through the use of a

special term-rewriting language known as Kupo [17]; various assembly-level optimizations including

dead instruction elimination, peephole optimization, and instruction scheduling are expressed in

Kupo.

Throughout the conversion from FIR to assembly code, it is important to maintain a correlation

between a statement in the FIR and an instruction in the assembly code, for system migration.

This is because migration recompiles the code from the FIR on the target machine, and must know

where to begin execution once the code is recompiled. Currently, an exact correlation is maintained

between the FIR and the assembly code for each migrate [i, aptr , aoff] f(a1, . . . , am) statement.

The migration points must be explicit in the program. It is feasible to introduce conditional

migration points at the beginning of each function call that will check if the process should migrate,

and do so as needed. The FIR contains no explicit looping construct, so any loop must be expressed

using tail-recursion, and every function must terminate. Therefore, function boundaries are encoun-

tered on a regular basis, making it reasonable to establish cooperative migration points at those

locations.

To preserve the correlation between FIR instructions and assembly code, backend optimizations

cannot reschedule code across function boundaries that may be the target of a migration. Currently,

most advanced optimizations are performed on the FIR code where they can be formally verified

using MetaPRL [12], an integrated theorem prover. It is difficult to reason about the MIR due to the

weakened type system and semantics, so optimizations in the backend are limited to architecture-

specific optimizations. Migration is safe because backend optimizations are limited in scope, and do

not reschedule instructions across function boundaries.

4.3 Process migration

To facilitate fault-tolerant computing, MCC introduces a level of abstraction between the processes

that are running in a distributed system, and the specific machines on which they are running. Each

process should view the distributed cluster as a single machine and a single shared resource pool,

rather than a collection of distinct nodes each with their own set of resources. Processes should have

a lifetime greater than that of any particular machine in the cluster, so that the process continues

running even when one or many machines it is running on fail. Processes should also be able to

recover automatically from unanticipated and abrupt failures.

In a distributed system, a process will execute on a specific machine with a particular architecture.

Since individual nodes in a cluster may fail at any time, a mechanism for migrating a process from

one machine to another is an essential tool for fault-tolerance. Such a mechanism needs to perform

37

three operations: a pack operation to capture the entire state of the process, including the program

counter, register values, heap data, and code; a transmit operation to transmit the state of the

process to a target machine; and an unpack operation to reconstruct the process state on the target

machine and resume execution. Collectively, this sequence of operations is referred to as process

migration.

Process migration should be architecture-independent to allow for distributed clusters of hetero-

geneous nodes. Also, process migration should be safe; the remote machine receiving the program

should be able to verify that the program type-checks and that heap values are used in a proper

manner. If the remote machine can verify that a received program is safe, then process migration is

viable in environments where machines in the cluster do not trust each other entirely, such as the

wide-area computing clusters on the Internet.

Since process migration requires pack and unpack operations, it is fairly straightforward to

extend the mechanism to support saving the process state to a file for later execution, and to write

checkpoint files while the process is running that contain snapshots of the full process state. In the

event of a later failure, the process can be recovered from this file using the unpack operation.

This section provides an overview of the system migration implementation; technical details are

further discussed in the MCC documentation [18].

4.3.1 Using process migration in the FIR

In the FIR, migration is expressed using the special-call mechanism. Special-calls are similar to

tail-calls, taking a function name and argument list, but a special-call implies some special action is

performed before the function is invoked. Since many FIR transformations are not concerned with

the special action, these transformations treat a special-call exactly as a tail-call, simplifying their

implementation.

Process migration is expressed in the FIR using the migrate [i, aptr , aoff] f(a1, . . . , an) special-

call. The first three arguments indicate how the migration should be performed, and are not passed

as arguments to f . The integer i represents a unique label that identifies the migration call, and is

used by the backend to determine where program execution resumes after a successful migration.

The pointer (aptr , aoff) refers to a null-terminated string that determines the migration target. The

string includes information on what protocol to use.

There are three protocols that may be used for process migration. The first is the migrate

protocol, which sends the entire state of a process to another machine, and terminates the process

on the original machine. If migration fails for any reason, the process will continue to execute on

the original machine. While a process may indirectly observe the result of a migration by invoking

external functions, the process is indifferent to the machine it is running on, and does not observe

a successful migration. This encourages an abstraction between the process and the machine it is

38

running on, and enables processes to be migrated without their specific knowledge for failure-recovery

or load-balancing purposes. The fact that the process does not observe the result of migration is

reflected in the operational semantics.

In order to migrate to another machine, the remote machine must run a migration server. This

is a version of the compiler that will listen for incoming migration requests, recompile any inbound

processes on the new machine, and reconstruct their state before executing them.

The other two protocols write the process state to a file for later execution. The suspend protocol

writes the process state to a file, and terminates the process if it is successfully written. In contrast,

the checkpoint protocol continues running the process even when the file is successfully written.

The latter protocol is useful for taking snapshots of a process state, as a crude rollback mechanism

or in anticipation of possible machine failure in the near future. A resurrection program is used to

resume process execution from a state file.

4.3.2 Runtime support for migration

Process migration requires two key features from the runtime. First, to support the pack operation

the runtime must be able to collect the entire process state. For unpack it must be able to restore the

process state from a previous pack operation. Second, the runtime should accommodate migration

in an architecture-independent manner.

4.3.2.1 The pack and unpack operations

The implementation of the pack and unpack operations is relatively straightforward. Since all

heap data and function pointers in the heap are represented indirectly as indices, the heap data

is not modified by a migration, even if the data are relocated. Also, by imposing standard byte

ordering and alignment rules on heap data, the amount of translation required to migrate the heap

across architectures is minimal. This is essential for unsafe languages such as C, where it is difficult

or impossible to determine whether data in the heap needs to be realigned or byte-swapped. For

example, an array of characters is indistinguishable from an array of 32-bit integers in languages

that do not feature strong typing, defeating attempts to automatically align and byte-swap data for

the native architecture.

The pack operation first performs garbage collection on the heap. Then it packs the live data, the

pointer table, the program text, and the registers into a message that can be stored or transmitted.

To migrate the register spills and hardware registers (which together cover the set of variables in

the FIR program), MCC stores the set of live variables into a newly allocated block migrate env on

the heap, taking care to convert any real pointers into index values. The set of live variables across

migration corresponds exactly to the arguments (a1, . . . , an) passed to function f . By storing the

variables into a block in the heap, several problems are addressed:

39

• All data is stored in the heap at the time of migration, with the exception of a single variable

that contains the index for migrate env .

• Since no data is stored in variables, no data will be stored in the hardware-specific registers.

Therefore system migration does not need to construct an explicit map between register names

on different architectures.

• Since all data is in the heap during migration, all data follows the standard, architecture-

independent representation for MCC. Data in hardware registers may continue to have

hardware-specific representations without interfering with system migration. Also, since no

real pointers exist in the data, system migration does not need to construct an explicit map

between pointers across different machines.

• Safety checks can be applied during the unpack operation on all data, including data in

variables. This is performed as usual, when the data is read from the heap.

There is a performance issue related to storing all register data for a process in the heap. It is

reasonable to store registers in the heap when the process is actually migrating elsewhere, since the

cost of transmitting the data over the network generally outweighs any local processing. However,

for the checkpoint protocol it means that all register data must be stored in the heap and then

immediately loaded back into registers, with safety checks. This operation can be fairly expensive if

the process intends to take frequent checkpoints. Checkpointing can be partially optimized by not

attempting to unpack the registers when the process continues execution on the current machine.

While the unpack operation and associated safety checks can be skipped in this case, the pack

operation cannot be omitted.

On an unpack operation, the FIR code is type-checked, recompiled, and execution is resumed.

Register values are extracted from the heap with the standard safety checks, allowing the register

values to be type-checked.

4.3.2.2 The migrate operation

To implement the migrate operation, the source machine first transmits the following data to the

server:

1. FIR code for the process

2. size of heap and pointer tables

3. index of the block containing live variables (migrate env)

4. location to resume execution at (i).

40

The server compiles the code and links it with a special stub that initializes the heap, restores

the registers and resumes execution at the location indicated by i. If this compilation is successful,

then the server starts the new process using the stub, and the source machine transmits the contents

of the pointer table and heap to the new process, allowing the heap to be reconstructed.

In order to achieve architecture independence, MCC never migrates the actual executable text.

Instead it migrates the FIR code for the program, so the target machine can formally verify the safety

of the code. The location index i in the migration call is used to correlate the runtime execution

point with a corresponding execution point in the FIR.

Since all pointers are stored in the heap using indexes, migration must be careful that indexes on

the destination machine exactly match. This is not a problem for data pointers since the pointer table

is migrated as-is. The order of program globals and the function table is determined at compile time,

therefore the compiler on the target machine must be aware of the original order of these symbols

so the tables can be reconstructed in the proper order.

4.4 Speculative operations

Semantically, speculative execution appears atomic; that is, either all the operations in a speculation

must succeed, or none of them will succeed. The FIR provides a generalization of speculation for

expressing rollback of a distributed computation that is more efficient than using process migration

alone in the event of a machine failure.

The primary obstacle in implementing speculation is restoration of the program state. This

chapter does not include rollback of I/O operations, however the principles discussed here are being

applied for the Mojave group’s distributed filesystem [8]. When a speculation is aborted, the entire

process state, including all variable and heap values, must be restored to the state it had on entry

into the speculation. This rollback operation can be expressed with process migration by having

a process write a checkpoint file each time it enters a new speculation. To abort the speculation,

the previous state is restored from the checkpoint file. However, since the migration mechanism

recompiles the program, and the entire process state must be reconstructed, this operation can be

very expensive. Even taking the checkpoint is expensive, since the entire state must be written to a

file, even parts of the state that have not changed since a prior checkpoint. By contrast, speculation

uses a copy-on-write (COW) mechanism to keep track of modified state that must be restored if a

speculation is rolled back, and speculation does not need to recompile the code.

The FIR provides three primitives for managing speculations: entry, which enters a new specu-

lation level; commit, which marks a speculation level as completed; and rollback, which aborts all

changes made by a level and resumes execution at the point where the level was previously entered.

41

4.4.1 Using speculations in the FIR

Like process migration, speculation uses the special-call mechanism in the FIR. Each entry operation

enters a new speculation level nested within the previous level. Speculation levels are numbered from

1 to N , where 1 is the oldest speculation level entered and N is the most recent. A process that has

not entered any speculation is at level 0. A level l keeps track of all changes made to the state that

have occurred since l was entered. Speculation levels use copy-on-write (COW) semantics; when a

block in the heap is modified, the block is cloned and the pointer table updated to point to the new

copy of the block, preserving the data in the original block. On a commit or rollback operation

of l, exactly one of these blocks will be discarded.

The primitive for entry is the speculate f(c, a1, . . . , an) special-call. c is an integer that is

passed as the first argument to f . On a rollback, the value of c passed to f may be changed to

indicate that the rollback occurred. This is the only way to carry state information across a rollback1.

The primitive for commit is commit [l] f(a1, . . . , an). This commits data for l by folding all

changes from that level into its previous level. The level l must be in the interval {0 . . . N}, otherwise

a runtime exception will occur. If l = 0, then the most recent level N is committed.

The primitive for rollback is rollback [l, c]. This reverts all changes made by in level l and all

later levels. l must be in the interval {0 . . . N}, otherwise a runtime exception will occur. If l = 0,

then the most recent level N is reverted.

Rollback resumes execution at the point where level l was entered. No function or argument list

is specified. The function that was associated with level l is saved as part of the checkpoint, to be

called with the original atom arguments but with the new value for c. This version of the primitive

is a retry primitive. Speculation level l is automatically re-entered after it (and all later levels) have

been rolled back. In effect, the state that is captured and restored is the state immediately after

level l was entered.

4.4.2 Speculation state

Speculation requires the introduction of several variables, described below and summarized in Fig-

ure 4.4. The heap layout is illustrated in Figure 4.5, which is drawn with the base of the heap at

the bottom of the figure, and the limit of the heap at the top. Some parameters in the figure are

specific to garbage collector, which is discussed in Chapter 5.

Speculation uses the following state variables:

• The program is currently at speculation level spec next . If spec next = 0, then there are no

speculations active.
1For technical reasons, c must be an integer in the current implementation.

42

Variable Properties Description
spec next spec next ≥ 0 Current speculation level
base[l] l ∈ {0..spec next} Base of heap corresponding to level i
limit [l] l ∈ {0..spec next} Limit of heap corresponding to level i
ptr diff [l] l ∈ {0..spec next − 1} Pointer differential tables
spec env [l] l ∈ {0..spec next − 1} Environment (registers for a speculation)
limit limit = limit [spec next] Upper bound of the heap
current current ≥ base[spec next] Current allocation point

Figure 4.4: Speculation variables

• Each speculation level l ∈ {0..spec next} is delimited in the heap by a base pointer base[l]

and a limit pointer limit [l]. The limit pointer is determined by the base of the next-youngest

generation:

limit [l] =

{
base[l + 1] if l < spec next
limit if l = spec next

In MCC, each generation corresponds to a speculation level. The following inequalities hold:

base[l − 1] ≤ base[l] ∀ l ∈ {1..spec next}

base[spec next] ≤ limit

• In addition to the base[l] and limit [l] bounds, each level except the youngest has a pointer

difference table ptr diff [l], which is used to restore the pointer table if speculation level l+1 is

aborted. To minimize storage requirements, the ptr diff [l] table is stored as a set of differences

with the current pointer table ptr table. When a block is copied due to a copy-on-write fault,

the original block is added to the difference table ptr diff [spec next − 1].

• Each level except the youngest has an environment spec env [l] that contains the live variables

(machine registers and register spills) on entry to level l+1. The environment is constructed and

accessed using the pack and unpack operations, previously introduced for system migration

in Section 4.3.2.1. Since the environment contains the live variables of the program, all data

that was live on entry to level l + 1 is reachable from the block spec env [l]. The environment

block spec env [l] is always allocated as the last block within speculation level l.

• The current allocation point is in current . The following holds:

base[spec next] ≤ current ≤ limit

4.4.3 Speculation properties and invariants

It is useful to define a few properties for blocks in the heap:

43

Immutable data

Live, mutable data

base[0]

GC-specific
bounds

base[1]

base[2]

current

limit

ptr_diff[0]

ptr_diff[1]

ptr_table

Speculation
bounds

base[3]

Pointer
tables

copy_point

ptr_diff[2]

Growth

Figure 4.5: Heap data with multiple speculation levels

• A block b is indexed if the block is listed in ptr table or ptr diff . Blocks that do not appear in

any pointer table are always available for collection. These non-indexed blocks are introduced

by the commit and rollback operations.

• For blocks b and b′ that are both indexed, block b′ is a version of block b if indexof(b) =

indexof(b′).

• Block b′ is the parent of block b if b′ is the largest block such that b′ < b and b′ is a version of

b. In this situation, b is the child of b′. This relationship occurs when a copy-on-write fault on

b′ creates block b.

• A block is live if it is reachable directly from the current live variables of a program, or if it is

reachable from any indexed environment block spec env [l] when the pointer table is restored

to the state it was in on entry to level l + 1. This is a definition of liveness that is typical for

garbage-collected heaps, adapted to accommodate speculations. Any block in the heap that is

not live, including non-indexed blocks, is considered dead.

With these definitions, we can define several invariants on speculations. These invariants are

preserved in all three speculative operations, and also by the garbage collector.

44

4.4.3.1 Invariants related to the organization of the heap

The first invariant ensures that all data needed to revert to a given speculation level is contained

within that speculation level or older levels.

Invariant: (Speculation Invariant) all heap data for speculation level l is between base[0]

and limit [l]. The heap data is immutable if l < spec next .

The next invariant ensures that at most one version of a block exists within a particular specula-

tion level. The commit and rollback operations may introduce additional blocks in the speculation

level that share a common index, but those blocks will not be indexed. Note that this invariant

ensures that a block has at most one parent and at most one child.

Invariant: (Speculation Level Uniqueness) for a given index i and speculation level l, there

is at most one indexed block b in level l with indexof(b) = i.

4.4.3.2 Invariants related to pointer difference tables

The next two invariants ensure that the difference tables remain consistent. When a block is listed

in the difference table ptr diff [l], the block should belong to speculation level l or an older level, and

there should be a child residing in speculation level l + 1 that was created by a copy-on-write fault

in level l + 1. It is possible no child exists in the case where the child was not live during garbage

collection, in which case ptr table is automatically reverted to the original block.

Invariant: (Difference Table Invariant 1) for every block b ∈ ptr diff [l], b < limit [l].

Invariant: (Difference Table Invariant 2) for every block b ∈ ptr diff [l], either there exists

a child block b′ in speculation level l + 1, or ptr table[indexof(b)] = b.

4.4.3.3 Liveness invariant

If a block is live entering speculation l, then it must be preserved as long as l exists in the event

that l is rolled back. Since it will be included in spec env [l− 1], it will remain live as long as level l

exists.

Invariant: (Speculation Liveness) if a block b is live on entry to speculation l, then it must

remain live until level l is either committed or rolled back.

4.4.4 Implementation of speculations

Speculations are implemented in close cooperation with the garbage collector. Speculation data for

each level is maintained in contiguous sections of the heap, and is ordered from oldest to youngest

level to simplify the test for immutability. The garbage collector must maintain the invariants related

to speculations.

45

4.4.4.1 The entry operation

On speculation entry, a new generation is set up in the heap by creating a new level l = spec next+1.

The live variables of the program are packed into a new indexed block spec env [l − 1], allowing the

live variables to be recovered if the speculation is later aborted. Then, current is advanced to point

past the end of spec env [l− 1]. The heap is partitioned, with base[l] pointing at current , the end of

the allocated heap. All live data before current , including spec env [l − 1], becomes immutable. An

empty difference table ptr diff [l− 1] is created; each copy-on-write fault in level l will add a pointer

to this table. Finally, the spec next variable is incremented.

Speculation Invariant is preserved since all data in the program is before base[i]. Specu-

lation Level Uniqueness is also preserved, since spec env [l− 1] is allocated a new index and no

other blocks are introduced. Difference Table Invariant 1 and Difference Table Invari-

ant 2 both trivially hold since the new difference table is empty. Speculation Liveness holds

because no blocks become dead during this operation.

4.4.4.2 Copy-on-write faults

Within a speculation, the only operations requiring special support are the assignment operations.

If a block is to be mutated, and the block belongs to a previous speculation level (its address

is below base[spec next]), the block is copied into the youngest generation (level spec next), the

current pointer table ptr table is updated with the new location, and the previous pointer difference

table ptr diff [spec next −1] is updated with the block’s original location. The original data remains

unmodified. The garbage collector uses the ptr diff tables as “root” pointers, to ensure that the

original block remains live.

Note that a copy-on-write fault does not affect the liveness of the original block. Since the original

block was live on entry to the current level, it is referred to by spec env [spec next − 1], therefore by

definition it is still live, and Speculation Liveness is preserved. The pointer table always refers

to the most recent live version of a block, therefore there was no indexed version of the block in the

current speculation level prior to the copy-on-write fault, and Speculation Level Uniqueness

holds. The invariants Difference Table Invariant 1 and Difference Table Invariant 2

remain true by construction. Speculation Liveness holds because no blocks become dead during

this operation.

4.4.4.3 The commit operation

When a speculation level l is committed, blocks b which belong to level l − 1 can be discarded if

a newer block with the same index is live in level l. There are two cases to consider for commit

operations:

46

• When l = 1, ptr diff [l − 1] is discarded — the original copies of blocks which faulted at level

1 is reclaimed automatically during the next garbage collection.

• When l > 1, the difference table ptr diff [l − 1] must be consolidated with the next-oldest

difference table ptr diff [l − 2] to preserve the pointer table history for blocks which had a

copy-on-write fault in level l, but whose previous version is not in level l − 1. For each block

b ∈ ptr diff [l − 1], b is added to ptr diff [l − 2] iff b < base[l − 1]. This allows the garbage

collector to collect blocks that were preserved for a potential rollback of level l, but preserves

the pointer table history for earlier levels.

By coalescing the difference tables, we maintain the invariants Difference Table Invariant

1 and Difference Table Invariant 2. Any block b in level l − 1 that has a child in level l will

no longer be indexed, because ptr table will refer to a descendant of b, and ptr diff [l − 1] (the only

other table which could refer to b) will be deleted; therefore Speculation Level Uniqueness

also holds. Only blocks that were in level l − 1 may become dead during this operation, therefore

Speculation Liveness holds.

Once the difference tables are coalesced, the limit of the previous level is adjusted, limit [l−1] :=

limit [l], preserving Speculation Invariant. The base and limit pointers for level l are deleted,

and all younger levels are shifted down. The environment block spec env [l− 1] is no longer indexed.

At the end of the operation, spec next is decremented.

4.4.4.4 The rollback operation

The rollback of speculation level l assumes that all levels after l have already been rolled back, and

spec next = l. The pointer table is restored from the current pointer table and the ptr diff [l−1] table

as follows: for each b ∈ ptr diff [l−1], set ptr table[indexof(b)] := b. The difference table ptr diff [l−1]

is then discarded. Difference Table Invariant 1 and Difference Table Invariant 2 are

preserved since ptr diff [l − 1] is deleted and no other difference table is affected by this rollback.

The limit of the previous level is adjusted, limit [l − 1] := limit [l], preserving Speculation In-

variant. The base and limit pointers for level l are deleted, and the environment block spec env [l−1]

is no longer indexed. No block allocated in level l will be indexed after rollback, so Speculation

Level Uniqueness is preserved. Furthermore, only blocks that were in level l may become dead

during this operation and there are no younger speculation levels, therefore Speculation Liveness

trivially holds. At the end of the operation, spec next is decremented.

47

Chapter 5

Garbage collection

The garbage collector implements generational, mark-sweep, compacting collection. It incorporates

two phases: a minor collection phase that is fast and eliminates blocks with short live ranges, and

a major collection phase that sweeps and compacts the entire heap. Use of a compacting collector

is possible through the use of the pointer table, and is beneficial since it preserves temporal data

locality. Two blocks that are allocated near each other temporally are more likely to be used

together than two blocks that were allocated far apart from each other. By preserving temporal

locality, we increase the likelihood that frequently-accessed data will be close together in memory,

thereby improving the cache performance over breadth-first copying collectors.

The garbage collector maintains a number of heap invariants that are required for efficient im-

plementation of speculations. This section describes the necessary heap invariants and presents an

outline of the garbage collection algorithm, and discusses how the invariants are maintained by the

algorithm.

5.1 Heap and pointer table properties

For speculations to function efficiently, the following invariants are imposed on the heap:

• The heap is a single contiguous span of memory. The heap is partitioned into spec next + 1

contiguous segments, each representing one speculation level l with bounds base[l], limit [l].

• The segments are ordered from the oldest speculation level to the newest. The interval

[base[0], limit [0]) corresponds to data at level 0 (data allocated outside of any speculation),

[base[1], limit [1]) corresponds to data allocated after the first speculate f(c, a1, . . . , am) call,

and so forth.

• New data can only be allocated in the youngest speculation level, within the interval

[base[spec next], limit [spec next]). Copy-on-write faults on immutable blocks also generate

new blocks within this interval.

48

Variable Properties Description
base[minor] base[minor] ≥ base[spec next] Base of minor heap (within youngest level)
limit [minor] limit [minor] ≤ limit Limit of minor heap
minor roots none Blocks that contain pointers into minor
copy point copy point = base[spec next] Marks end of immutable segment of heap
gc level gc level ∈ {0..spec next} Indicates which immutable levels were collected

Figure 5.1: GC variables

• Data in level l that is dead on entry to level l + 1 may be removed by the garbage collector

at any time, but data that is live on entry to l + 1 must remain live until level l + 1 is either

committed or rolled back, to preserve Speculation Liveness.

• All live data in speculation level l′, l′ < spec next , is immutable.

• Garbage collection does not reorder the live blocks in the heap.

Several properties are also imposed on the pointer table. In general, the pointer table refers to

the most recent live version of a block at the end of each garbage collection. If a block b with index

i is live, then:

1. ptr table[i] 6= empty

2. ptr table[i] = b iff b has no live child block.

3. ptr table[i] > b iff b has a live child block.

Maintaining the pointer table correctly requires special attention in the case where block b is live

entering a new speculation and subsequently generates a new block b′ through a copy-on-write fault.

If b′ subsequently becomes dead during the course of the current speculation, then the pointer table

must be reverted to point to b.

5.1.1 Garbage collector state

In addition to the speculation state summarized in Figure 4.4 and illustrated in Figure 4.5, the

garbage collector maintains several additional variables, listed in Figure 5.1 and described below.

The youngest speculation level spec next contains a minor heap, with a base pointer base[minor]

and a limit pointer limit [minor]. All blocks outside the minor heap that may contain pointers into

the minor heap must be listed in the set of root blocks minor roots. This allows the minor heap

to be collected in isolation, reducing the overall expense of the garbage collector. The minor heap

must be a subinterval of [base[spec next], limit). It is permissible for limit [minor] to be less than the

heap limit limit . We usually want the minor heap to remain small, to improve cache performance in

49

b1 b2 b3 b4

Level 1 is committed

Major collection removes b2

b1 b2 b3 b4

b1 b3 b4

Level 0 Level 1 Level 2 Level 3

b2 is no longer indexed

Figure 5.2: GC properties in presence of speculative operations

the system. minor roots is maintained by the same mechanism that copy-on-write faults use, and

is maintained conservatively.

copy point is used to indicate the location of the end of the immutable heap segment. All

speculation levels except the youngest level are immutable. Since the levels are ordered in the

heap, a copy-on-write test for block b can compare against copy point to determine if the block is

immutable.

When the process enters speculation level l + 1, any data in l that is live on entry remains

live throughout level l + 1. As a result, the garbage collector only needs to collect level l once

to identify the data that was dead on entry to level l + 1. The gc level variable is used to track

which speculation levels have already been collected and can be disregarded in subsequent major

collections. This optimization improves performance for processes that enter a large number of

speculations and programs that have long-life speculations. gc level always refers to the first level

that has not been fully collected.

5.1.2 Garbage collection and speculations

Typically, garbage collection on multiple versions of a block marks at most one version dead. Con-

sider a sequence of blocks b1 < b2 < · · · < bm, shown in Figure 5.2, that are in the heap at a garbage

collection such that bi is a parent of bi+1. Such a sequence is generated by copy-on-write faults on

50

1: — Perform GC. The live registers are in registers (a mutable set).
2: function GC(registers, request bytes, request pointers):
3: if request bytes � sizeof(minor) then
4: Minor-GC(registers)
5: if request bytes ≥ free(minor) ∨ request pointers ≥ free(ptr table) then
6: Major-GC(registers, request bytes, request pointers)

Figure 5.3: GC main function

b1, . . . , bm−1. By Speculation Level Uniqueness and Speculation Liveness, the first m − 1

blocks must remain live on a garbage collection. As a result, bi must be live on garbage collection

for i < m, and only bm may be marked dead. The pointer table entry ptr table[indexof(bi)] for these

blocks can be reclaimed only if m = 1.

Note that blocks which become non-indexed during a commit or rollback operation are never

listed in any pointer table, and are always collected by the garbage collector. The commit and

rollback operations allow multiple blocks b1, . . . , bm within a speculation level to have the same

index, however at most one of the blocks may appear in any pointer table, and therefore at most

one of the blocks can be live. After a major garbage collection, for every block b, no block b′ exists

which is in the same speculation level and has the same index. This stronger property implies

Speculation Level Uniqueness.

Speculations are responsible for maintaining the garbage collector state in a manner such that

the properties stated above remain valid. On entry, the minor heap is reset, base[minor] :=

current , and the minor roots in minor roots are cleared. Also, the immutable heap limit is updated,

copy point := current .

On commit and rollback of level l, level l−1 may contain dead data, so gc level must be rolled

back such that gc level ≤ l − 1. copy point also needs to be adjusted so that it reflects the base of

the current speculation level, base[spec next]. Neither operation needs to modify the minor heap or

the minor roots, since both are conservatively maintained and will still satisfy the properties.

5.2 Garbage collector main algorithm

The main GC function is shown in Figure 5.3. The function is passed the number of bytes required for

allocation in request bytes, and the number of new pointer table entries required in request pointers.

The set of live variables (both hardware registers and register spills) which may contain pointers is

passed in as the registers list. The main function determines whether a minor collection is sufficient

based on a simple heuristic, and performs a major collection if necessary.

51

1: function Mark-Contents(block , interval):
2: size := sizeof(block),mark := 0, level := 0

3: label scanner:
4: while mark < size do — Iterate through fields in block.
5: index := block [mark]
6: if index is a valid index then
7: field := ptr table[index]
8: if field 6= empty ∧ field even ∧ field not marked ∧ field ∈ interval then
9: mark field — Discovered a new block; start marking field instead.
10: ptr table[index] := addressof(block [mark]) + 1
11: block [mark] := block
12: block := field
13: size := sizeof(field),mark := 0, level := level + 1
14: goto scanner
15: mark := mark + 1

16: if level > 0 then — Backtrack a level.
17: index := indexof(block)
18: field := ptr table[index]− 1
19: ptr table[index] := block
20: block := field [0]
21: mark := (field − block)/sizeof(field)
22: block [mark] := index
23: size := sizeof(block),mark := mark + 1, level := level − 1
24: goto scanner
25: return

Figure 5.4: Mark operation in garbage collector

5.3 Mark operation

Both major and minor collection include a mark phase that marks live blocks within a particular

interval interval , which may be a speculation level or the minor heap. A traditional marking algo-

rithm iterates over each field in a block b: for each unmarked block b′ referenced, it marks b′ and

adds it to a queue for later processing. This queue requires storage that is linear in the number of

blocks in the heap. MCC’s marking algorithm uses a pointer reversal-scheme to eliminate the need

for additional storage during traversal. It exploits the redundant encoding in the block headers and

the pointer table to deliver constant storage requirements during the mark phase.

The algorithm described here is presented in the function Mark-Contents in Figure 5.4. It

is not a recursive algorithm; instead, it implements a state machine that traverses the pointers in

live blocks, modifying the pointer table and heap to indicate a return path. The mark operations

are illustrated in Figure 5.5. The marking algorithm begins with a root block block . It traverses

the fields in block until it finds a field that contains a valid pointer index pointing to an unmarked

block. For each such field block [mark], the algorithm loads a pointer to the new block into field .

Then, it modifies the pointer table entry for field to point back at block [mark], the field within

52

HEADER

HEADER

Block A

Block B

ptr_table

Block B Entry

mark

block

Block A Entry

Step 1:
Initially, the mark algorithm exam-
ines a field block [mark] in block A.

HEADER

HEADER

Block A

Block B

ptr_table

Block B Entry

mark
block

Block A Entry Step 2:
The mark algorithm begins scanning
block B. B’s pointer table points at
the original field in block A, and the
original field in block A points at A’s
header.

HEADER

HEADER

Block A

Block B

ptr_table

Block B Entry

mark

block

Block A Entry Step 3:
The mark algorithm completes scan-
ning of block B, and follows the re-
verse pointers to return to block A
and continue. B’s pointer table en-
try and the original field in block A
are restored.

Figure 5.5: Illustration of pointer inversion in mark phase

block . block [mark] itself is modified to point to the head of the original block, block . All of these

modifications are reversible as long as we know field . The mark phase continues, iterating over the

fields of field .

When all fields in field have been checked, the algorithm backtracks to the original block . Using

the index embedded in the header for field , the algorithm looks up its pointer table entry, which was

previously modified to point to block [mark]. It then traverses the pointer in block [mark] to recover

the original block , and then the value in block [mark] is restored to field . The mark phase is then

53

1: — Perform a minor collection; the live registers are in registers.
2: function Minor-GC(registers):
3: Mark-Minor(registers) — mark phase
4: Normalize(registers) — convert pointers to index values
5: Pointer-Table-Minor — revert pointer table to state before minor heap
6: Sweep-Minor — sweep the minor heap
7: Shift-Minor — shift minor heap if it is full
8: Denormalize(registers) — convert index values back to pointers

Figure 5.6: GC minor collection

able to continue iterating over the original fields in block .

To ensure the algorithm makes progress, it immediately marks each new block that it discovers,

and it sets the least significant bit on the modified pointer table entry to prevent traversal of the

now-invalid pointer table entry. All valid entries in the pointer table are even (blocks are word-

aligned), so by setting the least significant bit in the pointer table entry, we ensure that references

back to the current block will be ignored.

Whenever a block is marked in the GC functions, Mark-Contents is called to mark all blocks

reachable from it.

5.4 Minor collection

A minor collection collects only within the minor heap. During a minor collection, the live data in

the minor heap is compacted, and a portion of the oldest data is moved to the major heap. The

minor collector uses a mark-sweep algorithm for identifying live blocks, and updates entries in the

pointer table as blocks are compacted. Any block located outside of the minor heap that contains

pointers into the minor heap is added to the list of root blocks minor roots. Minor collection never

resizes the heap or pointer table areas; if the minor collection is unable to reclaim sufficient space,

then the major collector is run.

The algorithm for minor collection is given in Figure 5.6. Minor collection involves the following

actions:

1. During Mark-Minor, the minor collector uses minor roots and registers to mark live blocks

in the minor heap. This function also removes blocks from minor roots that do not contain

pointers into minor .

Invariant: (Mark Minor Invariant) During any minor collection, only blocks b ∈

[base[minor], limit [minor]) are marked.

2. In Normalize, the collector replaces all real pointers in registers with index values, so the

blocks may be compacted without maintaining a pointer relocation map. This utilizes the pre-

54

1: — Mark all reachable blocks in the minor heap.
2: function Mark-Minor(registers):
3: mark all b in minor heap reachable from minor roots ∪ registers
4: remove all b from minor roots that do not contain pointers into minor

5: — For COW-faulted minor blocks, update pointer table to refer to prior immutable version.
6: function Pointer-Table-Minor:
7: if spec next > 0 then
8: for all b ∈ ptr diff [spec next − 1] do
9: if ptr table[indexof(b)] ≥ base[minor] then
10: ptr table[indexof(b)] := b

Figure 5.7: GC minor collection, mark phase

existing indirection to defer updating pointers in registers until all blocks have been relocated.

Under this scheme, only the pointer table is updated when a block is relocated; at the end of

collection, the register values are converted back to pointers by looking up the updated entry

in the pointer table.

3. In Pointer-Table-Minor, entries in the pointer table referring to minor blocks are reverted

to the parent of the block, if a parent exists. This code is responsible for reverting the pointer

table entries in the event that the youngest version of the block is dead. This function only

alters pointer table entries corresponding to blocks in the minor heap. The pseudo-code is

given in Figure 5.7.

4. In Sweep-Area, the heap within interval is compacted. The pseudo-code is given in Fig-

ure 5.8. In this case, it is only used to compact the minor heap. For minor blocks that remain

live, the pointer table entry is restored to the youngest version of the block (undoing the effect

of Pointer-Table-Minor). For minor blocks that are dead, the pointer table entry is freed

iff the pointer table points at the dead version of the block. If the pointer table refers to a

parent of the block, then the pointer table is left unaltered.

5. In Shift-Minor, the minor heap is adjusted within the current speculation level if it is still

nearly full. Often, limit [minor] < limit to trigger minor collection more frequently. The minor

heap is represented as a sliding window at the end of the heap. When it is overfull, data in

the minor heap is moved into the major heap, and the minor heap slides toward the end of the

heap. A major collection may be triggered once the minor heap reaches limit . This function

uses a simple size heuristic to determine when to shift the minor heap.

6. Finally, Denormalize replaces the saved index values in registers with real pointers, reversing

the effect of Normalize.

55

1: — Compact the specified interval in the heap.
2: function Sweep-Area(b′, interval):
3: for all blocks b ∈ interval do
4: if b marked then
5: unmark b
6: move block b to location b′

7: ptr table[indexof(b)] := b′ — Supersedes any prior version
8: update any references to b in ptr diff
9: b′ := b′ + sizeof(b)
10: else if ptr table[indexof(b)] = b then
11: ptr table[indexof(b)] := empty — No prior version of b
12: return b′

13: — Compact the minor heap.
14: function Sweep-Minor:
15: current := Sweep-Area(base[minor],minor heap)

Figure 5.8: GC minor collection, sweep phase

1: — Perform a major collection; the live registers are in registers.
2: function Major-GC(registers, request bytes, request pointers):
3: Clear-Minor-Roots — clear the minor roots
4: Mark-Major(registers) — mark phase
5: Normalize(registers) — convert pointers to index values
6: Sweep-Major — sweep the entire heap
7: Expand-Heap(request bytes,

request pointers) — expand the heap if necessary
8: Setup-New-Minor — setup the new minor heap
9: Denormalize(registers) — convert index values back to pointers

Figure 5.9: GC major collection

5.5 Major collection

A major collection is run whenever a minor collection is unable to reclaim sufficient space. The

major collector also uses a mark-sweep algorithm and compacts live blocks in the heap. The major

collector will cull all dead blocks in the heap, and will also resize the heap and pointer table if

necessary to accommodate the request in request bytes, request pointers.

Since all data in speculation levels {0..gc level − 1} must be live, it is sufficient for the major

collector to collect the speculation levels {gc level ..spec next}. After this collection, all data in levels

{gc level ..spec next − 1} is live and immutable, therefore major collection can advance the gc level

pointer to spec next .

The algorithm for major collection is given in Figure 5.9. Major collection involves the following

actions:

1. Clear-Minor-Roots clears the root marker on all blocks in the heap. Major collection always

reconstructs the minor heap as a new area of memory, so existing roots must be cleared.

56

1: — Revert entries in the pointer table to the indicated level.
2: function Revert-Pointer-Table(table):
3: for i := 1 to sizeof(table) do
4: b := table[i]
5: ptr table[indexof(b)] := b

6: — Mark all reachable blocks in the heap above gc level .
7: function Mark-Major(registers):
8: mark all b in youngest speculation level reachable from registers
9: for l := spec next − 1 down to gc level do
10: Revert-Pointer-Table(ptr diff [l])
11: — Pointer table does not refer to speculation levels younger than l.
12: mark all b in speculation level l reachable from registers
13: — Next, make sure we mark blocks that are only reachable from older generations.
14: mark all b reachable from ptr diff [l], . . . , ptr diff [l − 1]
15: mark spec env [l] and all blocks reachable from it — Environment is always live
16: — The next step ensures pointer table refers to blocks in the uncollected region.
17: if gc level > 0 then
18: Revert-Pointer-Table(ptr diff [gc level − 1])

Figure 5.10: GC major collection, mark phase

2. Mark-Major marks live blocks in the heap. The pseudo-code for the mark phase is given

in Figure 5.10. The mark phase marks live blocks in the youngest speculation level spec next

first. Then, it proceeds to mark blocks in speculation levels {gc level , spec next − 1}, from

youngest (largest level number) to oldest (smallest level number). While marking level l, it is

important that each pointer table entry refers to a version that was current when the process

transitioned from level l to level l + 1; Mark-Major maintains the following invariant:

Invariant: (Mark Pointer Table Invariant) when marking speculation level l, for all

blocks b ∈ [base[0], limit [l]), ptr table[b] ≤ limit [l].

Note that Mark-Major marks blocks in the entire heap, not just within the uncollected region

above base[gc level]. This is necessary because it is possible the only surviving references to a

block in the uncollected region are from blocks in the collected region. As a result, the sweep

phase needs to scan all of the heap, even though compaction only occurs above base[gc level].

Note that at most one version of a block in the uncollected region is marked.

At the end of Mark-Major, for every block b, its pointer table entry refers to the youngest

version of b within the uncollected speculation levels {0..gc level − 1}, if such a version exists.

Otherwise, the pointer table entry refers to the oldest version of the block. The effect on the

pointer table is similar to Pointer-Table-Minor in minor collection — if all versions of a

block are dead in the collected region, then the pointer table is left referring to the most recent

version in the uncollected region.

3. Normalize replaces real pointers in registers with index values.

57

1: — Sweep the heap above (and including) gc level .
2: function Sweep-Major:
3: — Clear the mark bits from previously-collected levels.
4: unmark all blocks b ∈ [base[0], limit [gc level − 1])
5: — Sweep all uncollected levels.
6: b′ := base[gc level]
7: for l := gc level to spec next do
8: new base := b′

9: b′ := Sweep-Area(b′, level l heap)
10: base[i] := new base
11: current := b′

12: copy point := base[spec next]
13: base[minor] := current
14: gc level := spec next

Figure 5.11: GC major collection, sweep phase

4. Sweep-Major compacts the heap, starting at speculation level gc level and continuing to

the youngest speculation level. The pseudo-code for the sweep phase is given in Figure 5.11.

The heap is compacted from gc level up to the youngest generation, in order. As with minor

collection, the pointer table is updated for every live block encountered, resulting in a pointer

table that always refers to the youngest version of a block.

If an unmarked block is encountered and the pointer table entry refers to that version of the

block, then the pointer table entry is released. Note that there can only be one version of a

block b within a given speculation level. Also, for a version to exist in speculation level l (dead

or live), there must be a version of the block in speculation level l′, l′ < l that is live. As a

result, only the most recent version of a block can be dead at any given time. This means

that the mechanism to free pointer table entries does not interfere with the mechanism that

ensures the pointer table refers to the most recent version of a block.

Note that Sweep-Major is also responsible for clearing mark bits in the speculation levels

that were already collected.

5. Expand-Heap resizes the heap and pointer table areas if necessary, if there is still insufficient

space to fulfill the request after the major collection.

6. Setup-New-Minor sets up a new minor heap starting at current .

7. Denormalize replaces index values in registers with real pointers.

58

Chapter 6

Conclusion

6.1 MCC benchmarks

System benchmarks are shown in Figure 6.1 for version 0.5.0 of the Mojave compiler, which was

released in May 2002, about a year after the Mojave project started. The performance numbers

measure total real execution time on an unloaded 700MHz Intel Pentium III. The Mojave system is

freely available at mojave.caltech.edu under the GNU General Public License.

The Mojave system is currently under development, and benchmark performance varies widely.

Performance numbers are given for several compilers. The gcc column uses the GNU compiler

collection, version 2.96; gcc2 uses the -O2 optimization. The mcc2 columns list performance numbers

for the Mojave compiler. For comparison purposes (only), the mcc2u column lists performance

without runtime safety checks. In the current state of development, the mcc2 compiler performs only

minimal optimization, including dead-code elimination, function inlining, and assembly peephole

optimization. Advanced FIR optimizations are fairly easy to implement, and the mcc6u column lists

performance numbers using an optimizer under development that implements alias analysis and

partial redundancy elimination. Naml benchmarks are similar, and include numbers for the INRIA

OCaml compiler [16], version 3.04.

The specific benchmarks include the following. The fib program computes the nth Fibonacci

number (using the naive exponential-time algorithm). This benchmark is highly recursive, and the

performance numbers reflect the use of continuation-passing style. The mcc programs allocate an

exponential number of closures on the heap, and much of the time is spent in garbage collection.

The mandel benchmark computes a Mandelbrot set. This is a special case where mcc C com-

piler, using the standard optimizations, happens to perform significantly better than gcc -O2 (per-

formance numbers for gcc -O3 are shown in parentheses). In contrast, the performance for Naml

reflects the use of minimal optimization. The program is implemented with fixed-point numbers,

and each arithmetic operation is a function call. The ocamlopt compiler inlines the function calls,

while mcc2 and ocamlc do not.

59

C benchmarks (time in seconds)
Name gcc gcc2 mcc2 mcc2u mcc6u
fib 35 1.0 0.78 4.6 4.6 4.32
mandel 54.7 42.1 (5.5) 7.2 7.3 6.0
msort1 3.83 1.15 5.92 3.01
msort4 5.4 1.15 8.22 4.13
imat1 37.1 6.27 27.9 17.3 7.6
fmat1 8.9 2.98 10.2 8.33 4.86
migrate 1.77
regex 2.87

Naml benchmarks (time in seconds)
Name ocamlc ocamlopt mcc2 mcc2u
fib 35 3.89 0.61 8.33 7.81
mandel 545 8.1 183 160

Figure 6.1: Mojave benchmarks

1: function match(pattern, buffer):
2: pattern index := 0, buffer index := 0
3: if atomic entry(0) 6= 0 then
4: print string(“Pattern did not match”)
5: return false
6: while pattern[pattern index] 6= nil do
7: if pattern[pattern index] = “*” then
8: if buffer [buffer index] = nil then
9: increment pattern index
10: else if atomic entry(0) = 0 then
11: increment buffer index
12: else
13: atomic commit()
14: increment pattern index
15: else if pattern[pattern index] = buffer [buffer index] then
16: increment pattern index and buffer index
17: else
18: atomic rollback(1)
19: if buffer [buffer index] 6= nil then
20: atomic rollback(1)
21: print string(“Pattern matched”)
22: return true

Figure 6.2: Unix-style pattern matching using speculations

The msort benchmarks implement a bubble-sort algorithm, imat1 performs integer matrix mul-

tiplication, and fmat1 tests floating-point matrix multiplication.

The migrate benchmark measures the minimal process migration time. The program consists

of a single migration call. Nearly all of the time is spent in recompilation on the target machine.

The regex algorithm is a naive, imperative implementation of a Unix-style regular-expression

matcher, using speculations to perform backtracking. C-style code for the algorithm is shown in

60

Figure 6.2. The time listed is for determining that the pattern *h*e*l*l*o*w*o*r*l*d* occurs

in the text of the introduction to this paper. The benchmark enters 945341 speculations with a

maximum speculation nesting depth of 6833.

6.2 Future work

Currently, process checkpointing and migration do not extend to process I/O or any other machine-

specific resource that may be accessed through standard libc. This requires support from the operat-

ing system. To partially accommodate I/O operations, we are developing the MojaveFS distributed

filesystem. MojaveFS provides a distributed filesystem whose namespace and resource handles are

consistent across all nodes in a distributed system. MojaveFS also incorporates primitives for man-

aging speculation information associated with a file in the system. The speculative information

manages both metadata information, such as file creation and deletion, open and close operations,

and file data that is modified by write calls. By standardizing the directory namespace and resource

handles, we remove several dependencies a process might have on a particular machine. Any I/O

to files under MojaveFS will be subject to speculative rollback; that is, C will reflect the state of all

files in MojaveFS.

We may also accommodate other I/O operations with operating system assistance, including

I/O to specific devices that may be connected to a particular node. This will allow processes with

device-specific I/O to migrate to a remote location, but the device-specific I/O may not be subject

to speculative rollback. In particular, I/O to sequential-mode devices such as printers, and I/O

to the console, cannot be subject to speculative rollback because the device is unable to undo the

operation after it is performed. The operating system may provide several policies for controlling

I/O in this case, including a policy that postpones all write operations until all speculations that

were pending on the write have been committed. It is feasible in certain circumstances to allow the

write to proceed even if a speculation is pending, such as for debugging output sent to a console or

logging device.

The current version of the MCC compiler has several performance issues that are introduced by

the conversion of inherently imperative languages into a functional form which relies on continuation-

passing-style, followed by a conversion back to an architecture designed for imperative execution.

We need to introduce more optimizations to improve the performance of MCC, and make it a more

feasible compiler for real-world applications.

We have not yet completed work on the high-level language primitives. MCC exposes the migra-

tion operation and the three speculation operations directly to the source languages. We are con-

sidering higher-level primitives which are more natural for the expression of distributed algorithms.

Most of this work focuses on using guarded statement constructs to encapsulate fault tolerance.

61

Bibliography

[1] IA-32 Intel Architecture Software Developer’s Manual. Intel Corporation, 1997.

[2] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal logics for mobile ambients.

In Proceedings of the 27th ACM Symposium on Principles of Programming Languages, pages

365–377, 2000.

[3] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science, pages

198–229, 2001. Special Issue on Coordination.

[4] Sylvain Conchon and Fabrice Le Fessant. Jocaml: mobile agents for Objective-Caml. In

ASA/MA’99 Joint Agents Symposium, October 1999.

[5] Cristian Ţăpuş, Justin D. Smith, and Jason Hickey. Kernel level speculative DSM. 2003.

Submitted to the Distributed Shared Memory workshop, awaiting notification.

[6] G. Di Marzo Serugendo, M. Muhugusa, and C. Tschudin. A survey of theories for mobile

agents. World Wide Web Journal, special issue on Distributed World Wide Web Processing:

Applications and Techniques of Web Agents, 1998.

[7] Cdric Fournet, Georges Gonthier, Jean-Jacques Lvy, Luc Maranget, and Didier Rmy. The

reflexive chemical abstract machine and the join-calculus. In The 23rd Annual ACM SIGPLAN–

SIGACT Symposium on Principles Of Programming Languages (PoPL’96), January 1996.

[8] Jason Frantz, Cristian Ţăpuş, Justin D. Smith, and Jason Hickey. MojaveFS: A transactional

distributed file system. 2003. Unpublished.

[9] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1994.

[10] Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M. Nettles, and Jeannette M.

Wing. Composing first-class transactions. ACM Transactions on Programming Languages and

Systems, November 1994. Short Communication.

62

[11] Jason Hickey, Justin D. Smith, Brian Aydemir, Nathaniel Gray, Adam Granicz, and Cristian

Tapus. Process migration and transactions using a novel intermediate language. Technical

Report caltechCSTR 2002.007, California Institute of Technology, Computer Science, July 2002.

[12] Jason J. Hickey. The MetaPRL Logical Programming Environment. PhD thesis, Computer

Science Dept., Cornell University, Ithaca, NY, 2001.

[13] An-Chow Lai and Babak Falsafi. Memory sharing predictor: the key to a speculative coherent

dsm. In Proceedings of the 26th annual international symposium on Computer architecture,

pages 172–183. IEEE Computer Society Press, 1999.

[14] Shubhendu S. Mukherjee and Mark D. Hill. Using prediction to accelerate coherence protocols.

In Proceedings of the 25th annual international symposium on Computer architecture, pages

179–190. IEEE Press, 1998.

[15] J. Oplinger and M.S. Lam. Enhancing software reliability using speculative threads. In Pro-

ceedings of the Conference on Architectural Support for Programming Languages and Operating

Systems.

[16] Didier Rémy and Jérôme Vouillon. Objective ML: A simple object–oriented extension of ML.

In ACM Symposium on Principles of Programming Languages, pages 40–53, 1997.

[17] Justin David Smith. Kupo language specification 1.3.1. (available as part of the MCC distri-

bution), August 2002.

[18] Justin David Smith. System migration 1.0. (available as part of the MCC distribution), July

2002.

[19] Giovanni Vigna, editor. Mobile Agents and Security. Springer, 1999. LNCS 1419.

63

Index

addressof function, 51

block properties

child property, 43, 44, 46, 48

dead property, 43, 45, 46, 48–50, 54–57

indexed property, 43–46, 50

live property, 43–45, 48–50, 57

parent property, 43, 44, 49, 54

version property, 43, 45, 49, 54, 56, 57

context variables

base, 42, 44–48, 50, 53–57

copy point, 48–50, 57

current, 42, 45, 50, 55, 57

fun table, 34, 35

gc level, 48–50, 55–57

limit, 42, 44, 46–48, 53, 54, 56, 57

minor, 48, 50, 53–55, 57

minor roots, 48–50, 53, 54

ptr diff, 42–46, 54–56

ptr table, 33, 35, 42–46, 48, 50, 51, 54–56

spec env, 42–46, 56

spec next, 41, 42, 44–48, 50, 54–57

COW (copy-on-write), 40, 41, 54

external calls, 14, 19, 24

FIR (Functional Intermediate Representation

language), 9, 11–14, 16, 18, 20, 21,

23, 26–28, 30–32, 34–41, 58

free function, 50

garbage collector functions

Clear-Minor-Roots, 55

Denormalize, 53–55, 57

Expand-Heap, 55, 57

GC, 50

Major-GC, 50, 55

Mark-Contents, 51, 53

Mark-Major, 55, 56

Mark-Minor, 53, 54

Minor-GC, 50, 53

Normalize, 53–56

Pointer-Table-Minor, 53, 54, 56

Revert-Pointer-Table, 56

Setup-New-Minor, 55, 57

Shift-Minor, 53, 54

Sweep-Area, 54, 55, 57

Sweep-Major, 55, 57

Sweep-Minor, 53, 55

indexof function, 32, 43, 44, 46, 50, 51, 54–56

invariants

Difference Table Invariant 1, 44–46

Difference Table Invariant 2, 44–46

Mark Minor Invariant, 53

Mark Pointer Table Invariant, 56

Speculation Invariant, 44–46

Speculation Level Uniqueness, 44–

46, 50

Speculation Liveness, 44–46, 48, 50

Kupo, 36

64

MCC (Mojave Compiler Collection), 1, 9–12,

35–40, 42, 51, 58, 60

MetaPRL, 9, 36

migration operations

migrate operation, 39

pack operation, 37–39, 42

unpack operation, 37–39, 42

MIR (Machine Intermediate Representation),

30, 35, 36

MojaveFS (Mojave Filesystem), 60

operational semantics rules

Red-LetExt, 19

Red-LetSub-Array, 22

Red-LetSub-Array-Error, 22

Red-LetSub-RawData, 22

Red-LetSub-RawData-Error, 22

Red-LetSub-Tuple, 21

Red-SetSub-Array, 22

Red-SetSub-Array-Error, 22

Red-SetSub-RawData, 22

Red-SetSub-RawData-Error, 22

Red-SetSub-Tuple, 21

Red-Spec, 20, 27, 28

Red-Spec-Commit, 20, 27, 29

Red-Spec-Commit-2, 21, 29

Red-Spec-Commit-Error, 21, 29

Red-Spec-Rollback, 20, 27, 28

Red-Spec-Rollback-2, 20, 28

Red-Spec-Rollback-Error, 20, 29

Red-SysMigrate, 19, 26, 28

runtime operations

runtime(Γ | 〈c〉 [i] : t), 22, 29, 35

runtime(Γ | 〈c〉 [i] : t← h), 22, 29, 35

sizeof function, 32, 50, 51, 55, 56

special calls

commit [al] afun(a1, . . . , an), 15, 16, 20,

21, 25, 27, 29, 41

migrate [i, ap , ao] afun(a1, . . . , an), 15,

16, 19, 24, 26, 28, 36, 37

rollback [al , ac], 15, 16, 20, 25, 27–29, 41

speculate afun(ac , a1, . . . , an), 15, 16,

20, 24, 25, 27, 28, 41, 47

speculation operations

commit operation, 40, 41, 43–45, 50

entry operation, 40, 41, 45, 50

rollback operation, 40, 41, 43, 44, 46, 50

type inference rules

Ty-LetExt, 24

Ty-LetSub-Array, 25

Ty-LetSub-RawData, 26

Ty-LetSub-Tuple, 25

Ty-SetSub-Array, 26

Ty-SetSub-RawData, 26

Ty-SetSub-Tuple, 25

Ty-Spec, 24, 27, 28

Ty-SpecCommit, 25, 27, 29

Ty-Special-Call, 24

Ty-SpecRollback, 25, 28

Ty-SysMigrate, 24, 26, 28

vector notation daien1 , 11, 14, 15, 20, 23–29

