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Abstract

This thesis explores the paradigm of two degree of freedom design for nonlinear con-
trol systems. In two degree of freedom design one generates an explicit trajectory
for state and input around which the system is linearized. Linear techniques are
then used to stabilize the system around the nominal trajectory and to deal with
uncertainty. This approach allows the use of the wealth of tools in linear control
theory to stabilize a system in the face of uncertainty, while exploiting the non-
linearities to increase performance. Indeed, this thesis shows through simulations
and experiments that the generation of a nominal trajectory allows more aggressive
tracking in mechanical systems.

The generation of trajectories for general systems involves the solution of two
point boundary value problems which are hard to solve numerically. For the special
class of differentially flat systems there exists a unique correspondence between
trajectories in the output space and the full state and input space. This allows us
to generate trajectories in the lower dimensional output space where we don’t have
differential constraints, and subsequently map these to the full state and input space
through an algebraic procedure. No differential equations have to be solved in this
process. This thesis gives a definition of differential flatness in terms of differential
geometry, and proves some properties of flat systems. In particular, it is shown that
differential flatness is equivalent to dynamic feedback linearizability in an open and
dense set.

This dissertation focuses on differentially flat systems. We describe some in-
teresting trajectory generation problems for these systems, and present software to
solve them. We also present algorithms and software for real time trajectory gener-
ation, that allow a computational tradeoff between stability and performance. We
prove convergence for a rather general class of desired trajectories. If a system is
not differentially flat we can approximate it with a differentially flat system, and ex-
tend the techniques for flat systems. The various extensions for approximately flat
systems are validated in simulation and experiments on a thrust vectored aircraft.
A system may exhibit a two layer structure where the outer layer is a flat system,
and the inner system is not. We call this structure outer flatness. We investigate
trajectory generation for these systems and present theorems on the type of tracking
we can achieve. We validate the outer flatness approach on a model helicopter in
simulations and experiment.
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Chapter 1

Introduction

Over the past four decades the field of control theory has witnessed an incredible
growth in theory and tools. Much of the success of the theory can be attributed
to the development of software that made this theory accessible to the practicing
control engineer. Without these tools, the theory would have been just that: the-
ory. The majority of these tools apply to linear control theory. Even though the
nonlinear theory has witnessed substantial development, it has not been accom-
panied by computational tools that make the theory accessible. It is the author’s
belief that software tools are an essential part of the development of a new theory.
New paradigms need to be continuously validated in simulation and experiment,
therefore experimental validation takes a prominent place in this work.

This thesis is a first step in the development of software tools for certain classes of
nonlinear systems. The paradigm we advocate is the so called two degree of freedom
design. This paradigm entails explicit generation of a nominal state space and input
trajectory using the full nonlinear system description, and the use of linear theory
to deal with uncertainty and to stabilize around this trajectory. It is shown through
experiments and simulation that stabilizing around a nominal trajectory allows a
more aggressive response for nonlinear systems.

1.1 An Overview of Trajectory Tracking Methods

This section will use some technical terms from control theory that we loosely intro-
duce here. We summarize the technical details and precise definitions of nonlinear
geometric control theory in Appendix ??. The reader unfamiliar with the concepts
presented here is referred to that appendix.

Trajectory tracking is an important problem in nonlinear and linear systems
theory alike. It is most prominent in the control of mechanical systems, where we
want the outputs of the system to follow a prescribed path. Important examples of
mechanical systems where trajectory tracking is important are vehicles and robotic
manipulators. Trajectory tracking is less common in the control of distributed
parameter systems, like compressors, combustors and acoustic systems. Trajectory
tracking methods can roughly be divided in two classes: methods that compute
explicitly a nominal trajectory for the state space, and those that don’t.



In this dissertation we are not interested in trajectories generated as output
of another system. One particular instance of this latter problem is the model
matching problem, where we are interested in following all trajectories generated
by a reference system subjected to the same input as our plant. For linear systems
this problem is widely studied [?]. For nonlinear systems some initial work has been
done in [?]. Some researchers study the problem of tracking a trajectory generated
by an exosystem subjected to one particular input [?]. It is our opinion that this
problem is merely of academic interest. In practice the desired trajectories are not
generated by exosystems, but rather given to us as independent entities. Hence we
will devote our attention to the case where the desired trajectory is generated by
arbitrary means.

The most straightforward approach to the problem of trajectory tracking is the
one advocated in this thesis: compute a nominal path for the state of the system
that has the desired output, and try to regulate the system around this path. This
approach contains two distinct parts: the computation of the nominal trajectory,
and the design of a controller that tries to keep the system on the trajectory. For
obvious reasons this approach is called two degree of freedom design. This is to be
contrasted with the one degree of freedom design , where one anly steers to a nominal
output trajectory, while not caring what the entire state does, as long as the desired
output is followed. The desired output trajectory does in general not determine the
full state, and the two degree of freedom design uses more knowledge of the system
than the one degree of freedom design. It can therefore be expected that better
performance will result if we control the system around a nominal state, rather
than a nominal output. Indeed, we will show in this thesis that the two degree of
freedom design yields superior performance for trajectory tracking. For two degree
of freedom design we use explicit trajectory generation to achieve trajectory tracking.
This dissertation is concerned with the problem of trajectory generation.

For linear systems without right half plane zeros, trajectory tracking can be ac-
complished quite simply without resort to optimal control theory. This can be done
by writing a differential equation for the error between the output and the desired
output and selecting a feedback that make this differential equation asymptotically
stable around the origin. The error converging to zero is equivalent to the output
tracking the desired output. It might be that the full system has internal dynamics
that are not visible from the output. The requirement that the linear system have
no right half plane zeros guarantees that these internal dynamics are stable. If it
s0 happens that there are no internal dynamics, this method generates a full state
space trajectory from the desired output and its derivatives. This happens when
the outputs and their derivatives determine the trajectories for all states. If there
are internal dynamics, the state space trajectory is not fully determined.

With the advent of nonlinear geometric control theory, the problem of trajec-
tory tracking for nonlinear systems made great progress. It was realized that some
nonlinear systems could be transformed into linear systems by a coordinate trans-
formation on the states and a special control law [?, ?]. This process is called
feedback linearization. The same procedure as for linear systems would then ensure
trajectory tracking. One would simply transform the desired output trajectory to



linear coordinates, and the resulting stabilizing control law for the error system
back to nonlinear coordinates. As in the linear case, the full system could have
internal dynamics that were not visible from the output. For the linearizing scheme
to work, these internal dynamics would have to be stable. In the linear case this is
guaranteed by the requirement that all zeros be in the left half plane. For nonlinear
systems, we call the equivalent property minimum phase zero dynamics. Again, a
full state space trajectory is generated in the linearized coordinates if it so happens
that there are no internal dynamics.

If there are internal dynamics, one can try to extend the trajectory for the
outputs and their derivatives to a full state space trajectory. One such method is
reported by Chen et al. in the papers [?, ?], and by Devasia in [?]. The method is
called noncausal inversion for trajectory generation for systems with unstable zero
dynamics. This method requires the system to have well defined relative degree
and hyperbolic zero dynamics, i.e. no eigenvalues on the imaginary axis. In the
absence of imaginary eigenvalues, the zero dynamics manifold can be split into a
stable and an unstable manifold. The method of noncausal inversion tries to find a
stable solution for the full state space trajectory by steering from the unstable zero
dynamics manifold to the stable zero dynamics manifold. The noncausality results
from the fact that we first have to get from the origin to the right position on the
unstable zero dynamics manifold. The solution is found by repeatedly solving a
two point boundary value problem for the linearized zero dynamics driven by the
desired trajectory. At each step a system of differential equations has to be solved,
and computational requirements are heavy.

This iteration can also be performed in the frequency domain, as shown by Meyer
et al. in [?]. This is because the solution of differential equations in the time domain
can be done through integrating the desired output with a convolution kernel. This
convolution corresponds to multiplication in the Fourier domain. In [?]. the method
is applied to flight path generation between via points for commercial aircraft. The
update rate of via points is in the order of several minutes, which is long enough
to allow steering on the unstable zero dynamics manifold. If the input is provided
by a pilot in real time, the computational requirements and acausality might be
prohibitive.

Finally, an approach that does not generate a feasible state space trajectory, but
improves on the output-only trajectory has been explored by Getz et al. in [?]. The
method generates an approximate trajectory for the internal dynamics by following
an instantaneous equilibrium for the internal dvnamics. The first and higher order
derivatives of the internal states are set to zero. Therefore the total state trajectory
is not feasible. Further refinements of this technique can be found in [?].

In this thesis we investigate fast computational methods of generating full state
space trajectories from output trajectories for differentially flat systems, or deriva-
tives thereof. Differentially flat systems are systems that exhibit a one-to-one cor-
respondence between output trajectories and full state space and input trajectories.
Trajectories can be planned in output space and then lifted to the state and input
space, through an algebraic mapping.



1.2 Limitations of Feedback Linearization

Although feedback linearization is a popular approach in nonlinear control theory,
it is good to point out some limitations. One of the main problems of feedback
linearization is the coordinate transformation, which makes the design of a controller
hard. Oftentimes tuning of a controller is achieved by comparing step responses,
in simulation or experiment. In the author’s experience it is particularly hard to
design a controller for a system in which the states do not correspond to physical
quantities. The coordinate transformation hides the meaning of the true dynamics.

Example 1.1 Toillustrate the potential problems with feedback linearization, con-
sider the following simple system:

i=—2+ (14 az?)u (1.1)

where the constant a has a nominal value @, but is only known within some degree
of accuracy: a = @ 4 da. A proportional feedback linearizing controller is

x4+ ki

U= ———i;; (1.2)
1+ ax=

whereas a controller based on the Jacobian linearization with the same gain is

w=kx. (1.3)

Figure 1.1 shows the response from an initial error to zero for both controllers,
where k; = 5, @ = 10. The controller based on the Jacobian linearization regulated
the state to zero faster. The reason is clear: the nonlinearity in the system (1.1)
is actually helping us to drive the system to zero, and the feedback linearizing
controller cancels this beneficial term.

In some cases the Jacobi-linearized controller is optimal with respect to some cost
criterion, and the feedback linearized controller is suboptimal. This is illustrated in
the following example.

Example 1.2 (provided by J.C. Doyle) Consider the system
T=¢"u (1.4)
with cost criterion

J = / 2?4 uldt. (1.5)
0

The linear controller with unity gain is

Uljp, = — T, (l())



x: fol (-.), Jac Lin (=)

time [s]
u: fbi (~.), Jac Lin (=)

—— —r

time [s]

Figure 1.1 Feedback linearizing and Jacobian linearization controllers.

and the feedback linearizing controller with the same linearization at the origin is
up, = —xe . (1.7)

The optimal controller for this simple example can be found by solving the Bellman
equation [?],

Vi 4+ min(V,e®u + 2% + uz) =0, (1.8)

giving

19 9s 5
_iy2er g gz
e e+ N
Ve =22e™" (1.10)
Uopt = —T = Ul -

Hence the linear controller is optimal with respect to cost criterion .J, whereas the
feedback linearizing controller is not. The cost for the linear and feedback linearizing



controller as a function of the initial condition z is

Jin(2) =2-2(1+ z)e™™

1 ). ‘ (1.11)
Ja(z) = 1(1 — 73 (1 4 22) + 227)
respectively. For  — +oc, Jyi/Jy, grows quadratically. For @ — —oo, Jy1/Jyin
grows exponentially. This shows that the feedback linearizing controller is arbitrarily
worse than the optimal linearizing controller.

In most cases we cannot solve the Bellman equation analytically, and this ex-
ample was constructed to make the equation solvable. Other examples show that
the optimality of the linear controller is not restricted to systems with strong non-
linearities in the factor multiplying the input.

In [?] it is shown that in certain initial configurations a linear controller outper-
forms the feedback linearizing controller for trajectory tracking for the kinematic
car. This is related to the fact that feedback linearization tries to decouple a multi-
input system into separate chains of integrators. The coupling between inputs and
outputs can be beneficial in certain cases. This in turn is related to the fact that it
is easier to design controllers in physical coordinates.

1.3 Optimal Control

A solution to trajectory tracking that does not compute an explicit state space tra-
jectory is given by optimal control [?, 7, 7]. Optimal control allows the minimization
of an integral cost criterion subject to constraints on the initial and final states. In
particular, optimal control encompasses the problem of steering from an initial to a
final state while minimizing the error between the output and a desired trajectory
for the output. It also encompasses the problem of minimizing an arbitrary cost
function of the states and inputs subject to initial and final constraints, and the
formulation of the problem of steering from an initial state to a final state in mini-
mum time. Although the formulation of the solution to optimal control problems is
quite straightforward and extremely elegant, the practical solution is complicated.
It involves the numerical solution of two point boundary value problems, which is
typically done by iteration and cannot guarantee convergence. For one time missions
like spacecraft trajectories, the generality of optimal control outweighs the compu-
tation penalty. Indeed, optimal control has been used for many vears to compute
orbits for spacecraft. Computation time was not a big concern, since the mission was
one of its kind and planned a long time ahead. In this thesis we are concerned with
situations where computation time is at a premium, and convergence guarantees
are indispensable. In these situations we have to perform the trajectory calculation
many times in one single mission, and the desired trajectory changes continuously.
See Section 1.5 for examples of applications where these conditions are important.



~1

1.4 Two Degree of Freedom Design

As mentioned, two degree of freedom design is a paradigm where we generate a
nominal trajectory for the state and input space around which we try to stabilize
the system by means of linear controller. This is depicted in Figure 1.2. The source
of the output trajectory is dependent on the application. It can be a human pilot or
a machine based scheduler in a highly automated aircraft, a driver in a vehicle, or a
high level scheduler for a robotic manufacturing plant. The module that generated
the desired output trajectory is a level in itself, so in some sense the situation
depicted in Figure 1.2 is really a three degree of freedom controller. The topmost
level generates the output trajectory, which might not be feasible, or just consist of
a series of way points. The intermediate level generates a feasible full state space
and input trajectory, and the low level stabilizes the system around the nominal
trajectory. Since the scheme is traditionally known as two degree of freedom design,
we will follow that convention.

uncertainty
tra'ectorv Unom _-—__L—
output J ? plant
trajectory generation
r
scheduled
. 6 +
Tynoms Unom lincar
controller -

Lrom

Figure 1.2 Two degree of freedom control.

The trajectory generation module generates a nominal state space trajectory
and a nominal control input. This part of the controller can be run at a rate lower
than the sampling rate, since the dynamics of the operator are typically much slower
than those of the plant. The plant is linearized around the nominal trajectory, and
a linear controller is used to stabilize the plant around this trajectory and deal with
uncertainty. The advantage of linearizing the plant around a trajectory as opposed
to using a coordinate transformation is that in the latter case it is often impossible to
get a good uncertainty description that makes physical sense. The linear controller
runs at a higher rate, since it needs to stabilize the plant dynamics. Note that the
linear controller needs to have information about the nominal state to compute the
appropriate linearization.



Two degree of freedom design allows an explicit robustness analysis using suc-
cessive linearizations. Some promising work on the robustness analysis of nonlinear
systems with uncertainty along a trajectory is reported in [?, 7, ?7].

Typically the linear controller is gain scheduled, i.e., in different operating
regimes we use different controllers. Various scheduling schemes can be devised.
Suppose the set of controllers is {\;}, and the scheduling variables are 6.

1. Hard switching: use controller K if # € ©;. This might result in chattering
around the switching boundary.

2. Linear interpolation: design controller K; for scheduling variables #; and use
K = MK, if 6 = X\;6;. This has the problem that the controller is never the
controller designed for an operating point, but always some linear combination
with neighboring controllers. This might hinder analysis.

3. Switching with hysteresis: ‘use controller I; if d(8,0;) < ¢;, keep using this
controller until d(#,0;) > d§; where §; > ¢;. This avoids the chattering around
the switching boundary associated with hard switching.

Even though gain scheduled controllers are widely and successfully used in prac-
tice, the resulting closed loop system is nonlinear and typically time varying, and
there is no guarantee that the resulting system is stable. In particular, stability of
the scheduled system over its entire operating range does not follow from stability
in each separate regime. Only if the system is slowly time varying, i.e. the open loop
svstem dynamics are much slower than the controller dynamics, we can establish
stability. Even then the conditions are hard to compute [?, ?, ?].

Linear parameter varying (LPV) [?, 7] controllers provide global stability for
plants with gain scheduled controllers. Usually, LPV control is used for measurable
parameters that vary in some bounded interval. To apply LPV to two DOF design,
we would have to schedule with respect to the nominal state and input, which would
then have to be bounded for all time. This requirement is counter intuitive especially
for the state. We would also need to be able to express the error system as a linear
fractional transformation on the nominal state. This can in general not be done.
Adding a nominal feed forward trajectory to an LPV controller would break the
stability guarantee since we no longer have a linear time invariant (LTI) system,
with a linear fractional parameter dependence.

An approach to deal with set point tracking for non-minimum phase systems
is presented in [?]. This approach inverts the non-minimum phase zeros of the
linearization to the left hand plane, and shows that this achieves better set-point
tracking. The paper restricts attention to single input systems that are completely
maximum phase, i.e. have all the poles in the right half plane. The authors suggest
that their approach is more general though, and we certainly look forward to seeing
the extensions hinted at in the paper. In any case, this approach does not apply to
trajectory tracking per se.



1.5 Motivating Applications

Aircraft control has long been a driving application for the theory of nonlinear con-
trol systems. Aircraft have been flying successfully for many years without the help
of sophisticated control systems, and the question arises if aircraft control really
benefits from such sophisticated schemes as two degree of freedom control. The
applications we have in mind exhibit a much higher level of vehicle autonomy than
is currently present in aircraft control systems. The system might be a remotely
piloted vehicle, with a low bandwidth communication link. The remote pilot can
only give terse information at low update rates, and the on board computer has
to generate feasible trajectories from the pilot information. Another application is
an evasion-pursuit scenario, where the desired trajectory is the path of a vehicle to
be intercepted. The desired output trajectory is obtained by on-board sensors and
fed on-line to the trajectory generation module. Yet another application is station
keeping, where a vehicle is supposed to monitor a target that might move, or maybe
a target that is stationary, whereas the vehicle is subject to disturbances. More
concretely, the California PATH project features a high degree of autonomy in cars,
that are expected to follow other cars, or avoid them. Here too, the desired output
trajectory comes from on-board sensors, and might not be feasible. The trajectory
generation module functions as an intermediate layer that takes this coarse output
trajectory and feeds a feasible nominal path to the lower level controllers. Finally,
automated inspection by aerial vehicles is another application of highly autonomous
systems. The desired inspection path may be stored as way points or be updated
during the mission, depending on the type of information obtained. The trajec-
tory generation module has to convert this sparse destination data into a feasible
trajectory.

In all these cases, the variety of maneuvers is too rich to be stored on board in
reasonably sized memory banks. The update rate of the desired output trajectory
is slow enough to allow some on board computation, but not low enough to allow off
line computation by heavy computational machinery. It is this class of applications
for which trajectory generation has great potential.

Current aircraft control systems still leave a great authority to a human pilot. It
will take time for more advanced control schemes, as suggested in this dissertation,
to find acceptance in current flight control architectures. The most promising short
term applications are in remotely piloted and fully autonomous vehicles.

1.6 Summary of Main Contributions

This dissertation is concerned with the problem of trajectory generation for nonlin-
ear systems. A central theme in the thesis is the class of differentially flat systems.
Differentially flat systems exhibit a one-to-one correspondence between trajectories
in output space and trajectories in the full state and input space. From the de-
sired trajectory in output space we can then algebraically generate the state space
trajectory, making the trajectory generation problem trivial.

Differential flatness was originally formulated in the language of differential al-
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gebra. Most of the theory and tools in nonlinear control theory use the language of
differential geometry. It is therefore useful to give a definition of differential flatness
in terms of differential geometry, to allow connections with the important results
in nonlinear control theory. The main theoretical contribution is a foundation for
differential flatness in the language of exterior differential systems. Using the tools
of exterior differential systems the thesis proves some results connecting flatness
to feedback linearizability. In particular, it is shown that differential flatness is
equivalent to feedback linearizability in an open and dense set. The thesis gives a
complete characterization of differential flatness in the single input case, allowing
time varyving flat outputs.

To follow up on the promise to provide computational tools, a number of im-
portant trajectory generation problems are formulated, and a software library is
presented that solves these problems. All simulations presented in the thesis used
this library and the real time experiments used the same library compiled on a PC.
The software is analyzed on computation time.

Another theoretical contribution is the formulation of the real time trajectory
generation problem and two algorithms that solve it. Again, software implementing
these algorithms is provided and analyzed.

A number of methods are given that extend the trajectory generation methods
for flat systems to systems that are not flat. These methods start with a flat ap-
proximation to the system and look at the remaining terms as perturbations. These
methods are analyzed on their theoretical properties and validated in simulation
and experiment.

Some systems exhibit a natural division in two subsystems: an outer system
that is flat with respect to some pseudo inputs, and an inner system that is not flat.
If we can control the inner system tight enough, we can treat the pseudo inputs
to the outer system as inputs. Flatness of the outer system allows full state tra-
jectory generation. We present two theorems on the conditions required to achieve
exponential and bounded tracking for the total system based on exponential and
bounded tracking of the inner and outer system.

Experimental validation takes an important place in this thesis. Both algorithms
and software are evaluated on real time experiments available at Caltech. One is
the ducted fan, which is a model of the pitch dynamics of a thrust vectored aircraft.
The other is an electric model helicopter.

1.7 Overview of the Dissertation

The theoretical foundation for differential flatness in terms of exterior differential
systems is given in Chapter 2. This chapter also proves some properties of differen-
tially flat systems in the geometric framework and gives examples of flat systems.
Chapter 3 presents some important trajectory generation problems and algorithms
to solve them for differentially flat systems. It also presents the software library
that implements these algorithms. It illustrates these through simulations and ex-
periments. Chapter 4 presents the real time trajectory generation problem, and
two algorithms to solve it for differentially flat systems. Again, simulations and
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experiments validate the algorithms. Chapter 5 presents some extensions to deal
with perturbations to flatness, and validates these in experiment and simulation. In
Chapter 6 we define outer flatness, discuss some theoretical properties and present
the helicopter experiment as a test case for outer flatness. In Chapter 7 we summa-
rize the main points and point out directions for future research.



Chapter 2

Differential Flatness

2.1 Introduction

This chapter will give the mathematical definition of the class of differentially flat
systems in terms of exterior differential systems. Much of this material is very
technical, and the hurried reader can get a good understanding of flatness by looking
at Equation (2.2), which captures the essence of flatness. In Section 2.7 we present
examples of flat systems. The results in this chapter were joined work with Muruhan
Rathinam, and appeared earlier in an abbreviated form as [?].

2.2 Historical Context

The problem of equivalence of nonlinear systems (in particular to linear systems,
that is, feedback linearization) is traditionally approached in the context of differen-
tial geometry [2. 7). A complete characterization of static feedback linearizability in
the multi-input case is available, and for single input systems it has been shown that
static and dynamic feedback linearizability are equivalent [?]. Some special results
have been obtained for dynamic feedback linearizability of multi-input systems, but
the general problem remains unsolved. Typically, the conditions for feedback lin-
earizability are expressed in terms of the involutivity of distributions on a manifold.

More recently it has been shown that the conditions on distributions have a
natural interpretation in terms of exterior differential systems [?, ?]. In exterior
differential systems, a control system is viewed as a Pfaflian module. Some of the
advantages of this approach are the wealth of tools available and the fact that
implicit equations and non-affine systems can be treated in a unified framework.
For an extensive treatment of exterior differential systems we refer to [?].

Fliess and coworkers [?, 7, ?] studied the feedback linearization problem in the
context of differential algebra and introduced the concept of differential flatness.
In differential algebra, a system is viewed as a differential field generated by a
set of variables (states and inputs). The system is said to be differentially flat if
one can find a set of variables, called the flat outputs, such that the system is (non-
differentially) algebraic over the differential field generated by the set of flat outputs.
Roughly speaking, a system is flat if we can find a set of outputs (equal in number
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to the number of inputs) such that all states and inputs can be determined from
these outputs without integration. More precisely, if the system has states @ € R",
and inputs u € R then the system is flat if we can find outputs y € R™ of the form

y=vylx,ub,. .. ul) (2.1)

such that

QIL(yvyv*y(q)) (2 2)
w=uy, g ..., y'?). .

Differentially flat systems are useful in situations where explicit trajectory gen-
eration is required. Since the behaviour of flat systems is determined by the flat
outputs, we can plan trajectories in output space, and then map these to appro-
priate inputs. A common example is the kinematic car with trailers, where the zy
position of the last trailer provides flat outputs [?]. This implies that all feasible
trajectories of the system can be determined by specifving only the trajectory of
the last trailer. Unlike other approaches in the literature (such as converting the
kinematics into a normal form), this technique works globally.

A limitation of the differential algebraic setting is that it does not provide tools
for regularity analysis. The results are given in terms of meromorphic functions
in the variables and their derivatives, without characterizing the solutions. In par-
ticular, solutions to the differential polynomials may not exist. For example, the
system:

9;"1 =1Uu
(2.3)

Ty =2y
is flat in the differentially algebraic sense with flat output y = 2,. However, it is
clear that the derivative of z; always has to be positive, and therefore we cannot
follow an arbitrary trajectory in y space.

To treat time as a special variable in the relations (2.2), one can to resort
to Lie-Bicklund transformations on infinite dimensional spaces [?, ?]. The latter
paper distinguishes between “orbital (or topological) flatness” where time scalings
are allowed, and “differential flatness™ where they are not.

In the beginning of this century, the French geometer E. Cartan developed a
set of powerful tools for the study of equivalence of systems of differential equa-
tions [?, 7, ?]. Equivalence need not be restricted to systems of equal dimensions.
In particular a system can be prolonged to a bigger svstem on a bigger manifold,
and equivalence between these prolongations can be studied. This is the concept of
absolute equivalence of systems. Prolonging a system corresponds to dynamic feed-
back, and it is clear that we can benefit from the tools developed by Cartan to study
the feedback linearization problem. The connections between Cartan prolongations
and feedback linearizability for single input systems were studied in [?].

In this chapter we reinterpret flatness in a differential geometric setting. We
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make extensive use of the tools offered by exterior differential systems, and the
ideas of Cartan. This approach allows us to study some of the regularity issues,
and also to give an explicit treatment of time dependence. Moreover, we can easily
make connections to the extensive body of theory that exists in differential geometry.
We show how to recover the differentially algebraic definition, and give an exterior
differential systems proof for a result proven by Martin [?, ?] using differential
algebra: a flat system can be put into Brunovsky normal form by dvnamic feedback
in an open and dense set (this set need not contain an equilibrium point).

We also give a complete characterization of flatness for systems with a single
input. In this case, flatness in the neighborhood of an equilibrium point is equivalent
to linearizability by static state feedback around that point. This result is stronger
than linearizability by endogenous feedback as indicated by Martin et al. [?, ?],
since the latter only holds in an open and dense set. We also treat the case of
time varying versus time invariant flat outputs, and show that in the case of a single
input, time invariant system the flat output can always be chosen time independent.
In exterior differential systems, the special role of the time coordinate is expressed
as an independence condition, i.e., a one-form that is not allowed to vanish on any
of the solution curves. A fundamental problem with exterior differential systems is
that most results only hold on open dense sets [?]. It requires extra effort to obtain
results in the neighborhood of a point, see for example [?]. In this chapter too, we
can only get local results by introducing regularity assumptions, typically in the
form of rank conditions.

The organization of the chapter is as follows. In Section 2.3 we introduce the
definitions pertaining to absolute equivalence and their interpretation in control the-
ory. In Section 2.4 we introduce our definition of differential flatness and show how
to recover the differential algebraic results. In Section 2.5 we study the connections
between flatness and feedback linearizability. In Section 2.6 we present our main
theorems characterizing flatness for single input systems, and in Section 2.7 we give
examples of differentially flat systems. In Section ?? we summarize our results and
point out some open questions.

2.3 Prolongations and Control Theory

This section introduces the concept of prolongations, and states some basic theo-
rems. It relates these concepts to control theory. Proofs of most of these results
can be found in [?]. We assume that all manifolds and mappings are smooth (C'*)
unless explicitly stated otherwise.

Definition 2.1 (Pfaffian system) A Pfaffian system I on a manifold M is a sub-
module of the module of differential one-forms Q!(AM) over the commutative ring

of smooth functions C">(M). A set of one-forms wl,... ,w". generates a Pfaffian

system [ = {wt, ..., Y} = S fref | fi € O (M)}

In this work, we restrict attention to finitelv generated Pfaffian systems on finite
dimensional manifolds.
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It is important to distinguish between a Pfaffian system and its set of generators
or the algebraic ideal Z in A(M) generated by I. Since we are only dealing with
Pfaffian systems the term system will henceforth mean a Pfaffian system.

For a Pfaffian system I we can define its derived system 1) as I = {w €
Ildw = 0mod T}, where 7 is the algebraic ideal generated by I. The derived
system is itself a Pfaffian system, so we can define the sequence [,7(1) J(2)
which is called the derived flag of I. The algebraic ideal will contain forms of degree
1...dim(M). The degree k part of [ is the set of all k-forms in 7.

Assumption 2.2 (Regularity of Pfaffian systems) Unless explicitly otherwise
stated, we will assume throughout this work that the system is regular, i.e.

1. The system and all its derived systems have constant rank.

2. For each k, the exterior differential system generated by I%) has a degree 2
part with constant rank.

If the system is regular the derived flag is decreasing, so there will be an N such
that I(V) = [(N+1) This [V is called the bottom derived system.

When one studies the system of one-forms corresponding to a system of differ-
ential equations, the independent variable time becomes just another coordinate on
the manifold along with the dependent variables. Hence the notion of an indepen-
dent variable is lost. If 2 denotes the dependent variables, a solution to such a
system ¢ : s — (t(s),2z(s)) is a curve on the manifold. But we are only interested
in solution curves which correspond to graphs of functions x(¢). Hence we need to
reject solutions for which f}% vanishes at some point. This is done by introducing
dt as an independence condition, i.e., a one-form that is not allowed to vanish on
any of the solution curves. An independence condition is well defined only up to
a nonvanishing multiple and modulo I. We will write a system with independence
condition 7 as (I, 7). The form 7 is usually exact, but it does not have to be. In
this work we shall always take 7 exact, in agreement with its physical interpretation
as time.

Definition 2.3 (Control System) A Pfaffian system with independence condi-
tion ([, dt) is called a control system if {I,dt} is integrable.

In local coordinates, control systems can be written in the form:
I ={dey — file,u t)dt, ... do, = fo(o,u t)dt} (2.4)

with states {1....,a,} and inputs {uy,...,u,}. Note that a control system is al-
ways assumed to have independence condition d¢t. If the functions f are independent
of time then we speak of a time invariant control system.

Definition 2.4 (Cartan Prolongation) Let (/,dt) be a Pfaffian system on a
manifold M. Let B be a manifold such that # : B — AM is a fiber bundle. A
Pfaffian system (J, 7*dt) on B is a Cartan prolongation of the system (I, dt) if the
following conditions hold:
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1L (I)CJ

2. For every integral curve of I, ¢ : (—¢,€) — M, there is a unique lifted integral
curve of .J, ¢: (—¢,¢) = B with moé = c.

Assumption 2.5 (Regularity of Cartan prolongations) In this work we only
look at Cartan prolongations that preserve codimension.

Note that all prolongations are required to preserve the independence condition
of the original system. The above definition implies that there is a smooth 1-1 cor-
respondence between the integral curves of a system and of its Cartan prolongation.
Cartan prolongations are useful to study equivalence between systems of differen-
tial equations that are defined on manifolds of different dimensions. This occurs in
dynamic feedback extensions of control systems. We increase the dimension of the
state by adding dynamic feedback, but the extended system is still in some sense
equivalent to the original system.

This allows us to define the concept of absolute equivalence introduced by Elie
Cartan [?]:

Definition 2.6 (Absolute Equivalence) Two systems I;, I5 are called absolutely
equivalent if they have Cartan prolongations Jy, J; respectively that are equivalent
in the usual sense, i.e., there exists a diffeomorphism ¢ such that ¢*(J3) = J;. This
is illustrated in the following diagram:

J| —

I I

An interesting subclass of Cartan prolongations is formed by prolongations by
differentiation: If (I,dt) is a system with independence condition on M, and du an
exact one-form on M that is independent of {I, dt}, and if y is a fiber coordinate of B.
Then {I,du—ydt} is called a prolongation by differentiation of I. Note that we have
omitted writing #*(du—ydt) where 7 : B — M is the surjective submersion. We will
make this abuse in the rest of the work for notational convenience. Prolongations
by differentiation correspond to adding integrators to a system. In the context of
control systems, the coordinate u is the input that is differentiated.

If we add integrators to all controls, we obtain a total prolongation: Let (I, dt) be
a system with independence condition, where dim [ = n. Let dim M = n + p+ 1.
Let uy,...,u, be coordinates such that duy,...,du, are independent of {I,dt},
and let y1,...,y, be fiber coordinates of B, then {I,du; —ydt,... du,— y,di} is
called a total prolongation of I. Total prolongations can be defined independent of
coordinates, and are therefore intrinsic geometric objects. It can be shown that in
codimension 2 (i.e., a system with n generators on an n + 2 dimensional manifold),
all Cartan prolongations are locally equivalent to total prolongations [?].
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We will call dynamic feedback a feedback of the form

F=a(x,z,v,t)

w = b{x, z,v.t).

If t does not appear in (a,d) we call (a,b) a time invariant dynamic feedback. The
dynamic feedback is called regular dynamic feedback if for each fixed 2 and t the
map b(z,.,..t): (z,v) = u is a submersion. An important question is what type of
dynamic feedback corresponds to what type of prolongation. Clearly, prolongations
by differentiation correspond to dynamic extension [?] (adding integrators to the
inputs) .

Cartan prolongations provide an intrinsic geometric way to study dynamic feed-
backs. We shall show that Cartan prolongations that extend a control system to
another control system can be expressed as dynamic feedbacks in local coordinates.
The following example shows that not every dynamic feedback corresponds to a
Cartan prolongation:

Example 2.7 (Dynamic Feedback vs. Cartan prolongation) Consider the
control system
i = u,

with feedback

2
-
[l

<2

21
g(z)v.

<2

()

This dynamic feedback introduces harmonic components which can be used to
asymptotically stabilize nonholonomic systems (see [?] for a description of how this
might be done). It is not a Cartan prolongation since (z,v) cannot be uniquely
determined from (x, u).

It must be said that the feedback in Example 2.7 is somewhat unusual, in that
most theorems concerning dynamic feedback are restricted to adding some type of
integrator to the inputs of the system.

Definition 2.8 (Endogenous Feedback) Let & = f(x,u.t) be a control system.
A dynamic feedback

T=alx,z, v, t)
u=>b(x,z,v,t)
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is said to be endogenous if = and v satisfving (2.5) can be expressed as functions of
2,u,t and a finite number of their derivatives:

(2.6)

An endogenous feedback is called regular if for each fixed = and ¢ the map b(x, ., ..t) :
(z,v) = u is a submersion.

Note that this differs slightly from the definition given in [?, ?] due to the
explicit time dependence used here. The relationship between Cartan prolongations
and endogenous dynamic feedback is given by the following two theorems. The first
says that a regular endogenous feedback corresponds to a Cartan prolongation.

Theorem 2.9 (Endogenous feedbacks are Cartan prolongations) Let I be a
control system on an open set T X X x U which in coordinates (t,x,u) is given by
= f(x,u,t). Let.J denote the control system on the open set T x X x Z xV which
is obtained from the above system by adding a regular endogenous dynamic feedback.
Then J is a Cartan prolongation of I.

Proof: Define the mapping F' : T X X x Z XV - T x X x U by F(t,a,z,v) =
(t,2,b(x,z,0,t)). Since b is regular, F is a submersion. Furthermore b is surjec-
tive since the feedback is endogenous. Therefore F' is surjective too. Since F'is a
surjective submersion, T'x X x Zx V" is fibered over T'x X x I. Hence we have that so-
lutions (t,z(t), 2(t). v(t)) of J project down to solutions (f,z(t),b(x(t), z(t), v(t), 1))
of I. Therefore the first requirement of being a Cartan prolongation is satisfied.
The second requirement of unique lifting is trivially satisfied by the fact that = and
v are obtained uniquely by equation (2.6). |

Conversely, a Cartan prolongation can be realized by endogenous dynamic feed-
back in an open and dense set, if the resulting prolongation is a control system:

Theorem 2.10 (Cartan prolongations are locally endogenous feedbacks)
Let I be a control system on a manifold M with p inputs, {uy, ..., u,}. Every Car-
tan prolongation J = {I,wy, ... ,w,} on B with independence condition dt such that
J is again a control system is realizable by endogenous regular feedback on an open
and dense set of B.

Proof: Let r denote the fiber dimension of B over A{, and let {w;,..., w,} de-
note the fiber coordinates. Since [ is a control system, {I.dt} is integrable, and
we can find n first integrals x¢,...,2,. Preservation of the codimension and inte-
grability of {.J.dt} means that we can find » extra functions a,...,a, such that
J={l.dzy—adt,... dz. —a,dt}. Here the z; are first integrals of {.J, dt} that are
not first integrals of {/,dt}. Pick p coordinates v(u,w) such that {¢,z,z, v} form
a set of coordinates of B. The v coordinates are the new control inputs. Clearly
a; = a;(x,z,v.t) since we have no other coordinates. Also since {t,z,z, v} form
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coordinates for B, and wu is defined on B, there has to be a function b such that
w = b(z,z,v,t). Since both (¢, 2,u,w) and (¢, 2, z,v) form coordinates on B, there
has to be a diffeomorphism ¢ between the 2. From the form of the matrix Tm)%l—)
8(8:%’1,) is full rank, and hence b is regular. This recovers the form
of equation (2.5). Since .J is a Cartan prolongation, every (2, u,t) lifts to a unique
(z,z,v,t). From Lemma 2.15 , to be presented in the next section, it then follows
that we can express (z, v) as functions of @ and « and its derivatives in an open and
dense set. We thus obtain the form of equation (2.6). |

it can be seen that

2.4 Differentially Flat Systems

In this section we present a definition of flatness in terms of prolongations. Our
goal is to establish a definition of flatness in terms of differential geometry, while
capturing the essential features of flatness in differential algebra [?, ?]. We build our
definition on the minimal requirements needed to recover these features, namely the
one to one correspondence between solution curves of the original system and an
unconstrained system, while maintaining regularity of the various mappings. Our
definition makes use of the concept of an absolute morphism [?].

Definition 2.11 (Absolute morphism) An «bsolute morphism from a system
(Iy,dt) on M to a system ([, dt) on M, consists of a Cartan prolongation (J;, dt)
on 7 : By — M; together with surjective submersion ¢ : By — M, such that
¢*(I3) C Jy. This is illustrated below:

J1

I

1 I

Definition 2.12 (Invertibly absolutely morphic systems) Two systems
({1,dt) and ([3,dt) are said to be absolutely morphic if there exist absolute
morphisms from (Iy,dt) to (I3, dt) and from (I3, dt) to (I, dt). This is illustrated
below:

Jy Jo
o Pt
m1 w2
1y 1>

Two systems (/;.dt) and (12, dt) are said to be invertibly absolutely morphic if
they are absolutely morphic and the following inversion property holds: let ¢y(¢) be
an integral curve of I} with ¢ the (unique) integral curve of .J; such that ¢y = woéq,
and let y(t) = @20¢((t) be the projection of ¢;. Then we require that ¢;(t) = ¢107(t).
where (t) is the lift of v from 7, to J;. The same property must hold for solution
curves of 5.
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If two systems are invertibly absolutely morphic, then the integral curves of
one system map to the integral curves of the other and this process is invertible
in the sense described above. If two systems are absolutely equivalent then they
are also absolutely morphic, since they can both be prolonged to systems of the
same dimension which are diffeomorphic to each other. However, for two systems
to be absolutely morphic we do not require that any of the systems have the same
dimension.

A differentially flat system is one in which the “flat outputs™ completely specify
the integral curves of the system. More precisely:

Definition 2.13 (Differential Flatness) A system ([, dt) is differentially flat if
it is invertibly absolutely morphic to the trivial system I; = ({0}, dt).

Notice that we require that the independence condition be preserved by the
absolute morphisms, and hence our notion of time is the same for both systems.
Since an independence condition is only well defined up to nonvanishing multiples
and modulo the system, we do allow time scalings between the systems We also
allow time to enter into the absolute morphisms which map one system onto the
other.

If the system (7, dt) is defined on a manifold M, then we can restrict the system
to a neighborhood around a point in M, which is again itself a manifold. We will
call a system flat in that neighborhood if the restricted system is flat.

The following discussion leans heavily on a theorem due to Sluis and Shadwick,[?,
?], which we recall here for completeness:

Theorem 2.14 Let I be « system on a manifold M and J a Cartan prolongation
of I onm: B — M. On an open and dense subset of B, there erists a prolongation
by differentiation of J that is also a prolongation by differentiation of I.

Proof: See [?], Theorem 24. [ ]

In order to establish the relationship between our definition and the differen-
tial algebraic notion of flatness, we need the following straightforward corollary to
Theorem 2.14. This lemma expresses the dependence of the fiber coordinates of a
Cartan prolongation on the coordinates of the base space:

Lemma 2.15 Let (1, dt) be a system on a manifold M with local coordinates (t,x) €
R x R™ and let (J,dt) be a Cartan prolongation on the manifold B with fiber co-
ordinates y € R". Assume the reqularity assumptions 2.2, 2.5 hold. Then on an
open dense sel. each y; can be uniquely determined from t,x and a finite number of
derivatives of x. ‘

Proof: By Theorem 2.14 there is a prolongation by differentiation, on an open and
dense set, say I, of .J, with fiber coordinates z;, that is also a prolongation by dif-
ferentiation of the original system I, say with fiber coordinates w;. This means that
the (x,y, z,t) are diffeomorphic to (x,w,t): y = y(x,w,t). The w are derivatives of
x, and therefore the claim is proven. |
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This lemma allows us to explicitly characterize differentially flat systems in a
local coordinate chart. Let a system in local coordinates (¢, 2) be differentially flat
and let the corresponding trivial system have local coordinates (¢,y). Then on an
open and dense set there are surjective submersions h and ¢ with the following
property: Given any curve y(t), then

‘T(f) = g(t,y(t), cee ﬁy(Q)(t))

is a solution of the original system and furthermore the curve y(t) can be obtained
from a(t) by

This follows from using definitions of absolute morphisms, the invertibility property,
and Lemma 2.15, stating that fiber coordinates are functions of base coordinates
and their derivatives and the independent coordinate.

This local characterization of differential flatness corresponds to the differential
algebraic definition except that h and ¢ need not be algebraic or meromorphic.
Also, we do not require the system equations to be algebraic or meromorphic. The
explicit time dependence corresponds to the differential algebraic setting where the
differential ground field is a field of functions and not merely a field of constants. The
functions ¢ and h now being surjective submersions enables us to link the concept of
flatness to geometric nonlinear control theory where we usually impose regularity.
We emphasize that we only required a one to one correspondence of solution curves
a priori for our definition of flatness, and not that this dependence was in the form
of derivatives. The particular form of this dependence followed from our analysis.

Finally, the following theorem allows us to characterize the notion of flatness in
terms of absolute equivalence.

Theorem 2.16 Two systems are invertibly absolutely morphic if and only if they
are absolutely equivalent.

Proof: Sufficiency is trivial. We shall prove necessity. For convenience we shall
not mention independence conditions, but they are assumed to be present and do
not affect the proof. Let [} on My and I; on M, be invertibly absolutely morphic.
Let .J; on B; be the prolongation of Iy with ny : By — M, and similarly .J; on
By be the prolongation of I; with 73 : B, — A,. Let the absolute morphisms be
é1 1 By — My and ¢y : B; — M.

We now argue that .J, is a Cartan prolongation of I; (and hence I and I,

solution ¢; of Jy projects down to a solution ¢; of Iy on M. The only extra
requirement for J; on ¢1 : By — M; to be a (Cartan) prolongation is that every
solution ¢y of I has a unique lift é5 (on By) which is a solution of J,.

To show existence of a lift, observe that for any given ¢; which is a solution of
Iy, we can obtain its unique lift ¢4 on By (which solves .J1). and get its projection ¢y
on M; (which solves I;) and then consider its unique lift ¢, on By. Now it follows
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from the invertibility property that ¢; o & = ¢;. In other words, ¢, projects down
to cy.

To see the uniqueness of this lift, suppose ¢ and ¢z which are solutions of
Jy on By, both project down to ¢; on M;. Consider their projections ¢, and 3
(respectively) on M. When we lift ¢; or ¢3 to By and project down to M; we
get ¢1. Which when lifted to By gives, say ¢;. By the requirement of the absolute
morphisms being invertible ¢, should project down to (via ¢3) ¢y as well as c¢3. Then
uniqueness of projection implies that ¢; and ¢3 are the same. Which implies ¢4 and
¢s are the same.

Hence J; is a Cartan prolongation of [y as well. Hence I) and I, are absolutely
equivalent. |

Using this theorem we can completely characterize differential flatness in terms
of absolute equivalence:

Corollary 2.17 A system (1,dt) is differentially flat if and only if it is absolutely
equivalent to the trivial system I; = ({0}, dt).

Note that we require the feedback equivalence to preserve time, since both sys-
tems have the same independence condition. In the classical feedback equivalence
we only consider diffeomorphisms of the form (¢, 2, u) — (¢, #(2), ¥ (2, u)). For flat-
ness we allow diffeomorphisms of the form (¢, 2, u) — (¢, 0(t, v, u), ¥(t, 2, u)). We
could allow time scalings of the form ¢ — s(t) but this does not change the indepen-
dence condition and does therefore not gain any generality. In Cartan’s notion of
equivalence all diffeomorphisms are completely general. This is akin to the notion
of orbital flatness presented in [?], where one allows time scalings dependent on all
states and inputs.

Often we will be interested in a more restricted form of flatness that eliminates
the explicit appearance of time that appears in the general definition.

Definition 2.18 An absolute morphism from a time invariant control system (1y, dt)
to a time invariant control system ([, dt) is a time-independent absolute morphism
if locally the maps 7 : By — M; and ¢ : By — M, in Definition 2.11 have the
form (¢, 2, ) — (t,n(x,u), (2, u)), i.e. the mappings between states and inputs do
not depend on time. A system ([/,dt) is time-independent differentially flat if it is
differentially flat using time-independent absolute morphisms.

Note that the example given above is time-independent differentially flat. One
might be tempted to think that if the control system I is time invariant and knowing
that the trivial system is time invariant, we can assume that the absolute morphism
v =o(t,y,yM, ..., y?) has to be time independent as well. That this is not true
1s illustrated by the following example.

Example 2.19 Consider the system § = ay, and the coordinate transformation
. . —1)r . . . .

y = 2%t Then @ = % Both systems are time invariant, but the coordinate

transformation depends on time.
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2.5 Linear Systems and Linearizability

The differential algebra approach to control has given rise to new interpretations of
linearity [?, ?]. Rather than overloading the concept of linearity we feel it increases
clarity if we stick with the conventional notion of linearity (see for example [?]) and
introduce a new term for the broader concept of linearity as exposed in [?, ?]. We
will try to clarify the different notions and indicate what the underlying approaches
and assumptions are. This will enable us to elucidate the connections with flatness
and prolongations. The following definitions are widely accepted and taken from

[?].

Definition 2.20 A dynamical system is a 5-tuple (X,U,Y,T,p). Here X is the
set of states, U is a set of allowable input functions and U(7) denotes the possible
values of the inputs at a fixed time. Y is the set of outputs functions and 7T is
the set of times over which the system evolves. The map p : (X, U, T.T) = Y ,
P(20, Ute.4,]: tos t1) = g1 is the response function that maps an initial state 2 at an
initial time fg given an input on an interval [tg,¢1], to an output y; at a final time
t.

Definition 2.21 (Linear system) A dynamical system is said to be linear if

1. The sets X, U/ and Y are linear vector spaces over the same field.

2. For each fixed initial and final time (fg,?;) respectively, the response function
pl.y - to.t1) is a linear map from (X, U7) into Y.

The linearity of the response function implies in particular that the origin of the

space X is an equilibrium point.

Definition 2.22 (Time invariant system) Let S, denote the delay map from a
function space onto itself: (S.f)(t) = f(t — 7). A dynamical system is said to be
time invariant if

1. The input, output, and time spaces are closed under operation of S, for all
T €R.
2. plro,u,to, t1) = plag, Syu,ty + 7,tg + 7).
In particular, a system of the form
= Ax + Bu (2.7)
y=Ca+ Du (2.8)
is linear and time invariant. Here (A, B, (', D) are matrices of appropriate dimen-
sions. If the system is controllable, we can find outputs z; such that the system is

equivalent (by a linear coordinate tranformation) to m chains of integrators, where
m is the number of outputs:

PG —— (2.9)

2
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This form is called the Brunovsky normal form

Definition 2.23 (Feedback linearizability) The time invariant nonlinear sys-
tem

&= f(x,u) (2.10)

is feedback linearizable if there is a dynamic feedback
=, z,v) (2.11)
u =gz, z,v) (2.12)

and new coordinates £ = ¢(x, z) and n = ¥’(a, z, v) such that in the new coordinates
the system has the form:

£ = AS+ By (2.13)

and the mapping ¢ maps onto a neighborhood of the origin. If dim z = 0 then we
say the system is static feedback linearizable.

The form in equation (2.13) is the standard form in linear systems theory. It is
useful if one wants to design controllers for nonlinear systems around equilibrium
points.

It might be that the system can be put in the form (2.13) but that the coordinate
transformation is not valid in a neighborhood of the origin of the target system. In
that case we can shift the origin of the linear system to put it in the form

§= A+ By+ E. (2.14)

We will call this a state space affine form. This form is called linear in [?], but
most results in linear systems theory cannot be applied since the origin is not an
equilibrium point. However, it is still useful in the context of trajectory generation.
For example, a nonholonomic system in chained form ([?]) can be transformed to
this state space affine form.

It is clear that all feedback linearizable (by static or dynamic feedback) systems
are flat, since we can put them into Brunovsky normal form. The converse only
holds in an open and dense set, as is shown by the following theorem. An analogous
result was proven by Martin in a differentially algebraic setting [?, 7].

Theorem 2.24 FEvery differentially flat system can be put in Brunovsky normal
Jorm in an open and dense set through regular endogenous feedback.

Proof: Let .J, J; be the Cartan prolongations of I, I; respectively. Then by Theorem
2.14, on an open and dense set, there is a prolongation by differentiation of .J; that
is also a prolongation by differentiation of I;, say Js. Let .J; be the corresponding
Cartan prolongation of J. Then .J; is equivalent to .J,;, which is in Brunovsky
normal form. In particular, since .J; is a Cartan prolongation, it can be realized by
regular endogenous feedback. ]
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This proof relies on Theorem 2.14 which restricts its validity to an open and
dense set. We conjecture that the result in Theorem 2.24 holds everywhere, but the
above proof technique does not allow us to conclude that. The obstruction lies in
certain prolongations that we cannot prove to be regular.

We emphasize here that even though flatness implies that we can find coordinates
that put the system into the linear form (2.13) we do not require the underlying
manifolds to be linear spaces. In this sense, flatness is an intrinsic property of a
control system defined on a smooth manifold.

2.6 Flatness for Single Input Systems

For single input control systems, the corresponding differential system has codimen-
sion 2. There are a number of results available in codimension 2 which allow us to
give a complete characterization of differentially flat single input control systems.
In codimension 2 every Cartan prolongation is a total prolongation around every
point of the fibered manifold (see [?]), given our regularity assumptions 2.2, 2.5.
This allows us to prove the following

Theorem 2.25 Let I be « time invariant control system:
I ={dey — file,w)dt, ... . de, — fo(x, u)dt},

where w is a scalar control, i.e., the system has codimension 2. If I is time-
independent differentially flat around an equilibrium point, then I is feedback lin-
earizable by static time invariant feedback at that equilibrium point. ’

Proof: Let I be defined on M with coordinates (x, u,t), let the trivial system I; be
defined on B; with coordinates (yo, ), let the prolongation of I; be J;, and let J; be
defined on M;. This is illustrated below :

J Ji
X
I” L=0

First we show that .J; can be taken as a Goursat normal form around the equi-
librium point. In codimension 2, every Cartan prolongation is a repeated total
prolongation in a neighborhood of every point of the fibered manifold ([?], Theorem
5). Let Iio = It, Iy1. 112, . . . denote the total prolongations starting at I, defined on
fibered manifolds By = By, By, .... If y; denotes the fiber coordinate of By over
By, then I has the form Adt + pdyg, where either A or p depends non trivially on
y1. Since the last derived system of I does not drop rank at the equilibrium, neither
does I;; and we have that not both A and p vanish at the equilibrium. Now, u # 0
at the equilibrium point, since yo = ¢ is a solution curve to I;, which would not have
a lift to Iy if g« = 0, since dt is required to remain the independence condition of
all Cartan prolongations. From continuity p # 0 around the equilibrium point. So
we can define y; := —A/u, and I;; can be written as dyy — y1dt. We can continue
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this process for every Cartan prolongation, both of I; and of I. This brings .J; in
Goursat normal form in a neighborhood of the equilibrium point.

Now we will argue that we don’t need to prolong I to establish equivalence. Since
J is a Cartan prolongation, and therefore a total prolongation, its first derived
system will be equivalent to the first derived system of J;,. Continuing this we
establish equivalence between I and I;,,, where Iy, = {dyo— 1 dt, ... ,dy,—1 —y,dt}.
So we have y = (yo, ..., yn) = ylz, u, t).

Next we will show that yo, ..., y, are independent of time, and that yg, ..., y,_1
are independent of w. By assumption yg is independent of time. Since the corre-
sponding derived systems on each side are equivalent, dyp — y1dt is equivalent to
the last one-form in the derived flag of I. Since the differential du does not appear
in this one-form, yo is independent of u. Analogously, y;,¢ = 1,...,n — 1 are all
independent of u. Since the y;,7 = 1,..., n are repeated derivatives of yg, and since
I is time invariant, these coordinates are also independent of time.

We still have to show that the mapping @ — y is a valid coordinate transforma-
tion. Suppose dyo,....dy,—1 are linearly dependent at the equilibrium. Then. J;
drops rank at the equilibrium, and since we have equivalence, so would 7. But from
the form of I we can see this is not the case.

a chain of integrators with input y,. The original system I is equivalent to this
linear system by a coordinate transformation on the states and a state dependent
and time invariant feedback. This coordinate transformation is well defined around
the equilibrium point. It is therefore feedback linearizable by a static feedback that
is time invariant. Note that dy,/du # 0 because y,, is the only of the y variables
that depends on u. |

Example 2.26 Notice that in our definition the system

i’g = U
i = a3 (2.15)
y=

is not flat around the origin, because we get u = 31/+/ so that curves with y = 0
and j # 0 have no lift. It is also not feedback linearizable at the origin.

We will now show that in the case of a time invariant system, we don’t need the
assumption of time invariant flatness to conclude static feedback linearizability. We
will require the following preliminary result, which appeared in a proof in [?].

Lemma 2.27 Let o = A;(a, w)da; — Ag(a, w)dt be a one-form (using implicit sum-
mation) on a manifold M with coordinates (x,u,t). and suppose we can write
a=dX(x,u,t) = U(x,u,t)dt. Then we can also write o as o = dY (2) — V(z, u)dt.
i.€., we can take the function X independent of time and the input, and we can take
U independent of time. If we know in addition that o = A;(x)dx; — Ag(x)dt. then
we can scale o as o = dY (x) — V(2)dt. ie.. we can take V independent of u as
well.
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Proof: See [?]. |

The following theorem seems to be implied in [?], but the proof there refers to a
general discussion of Cartan’s method of equivalence as applied to control systems
in [?]. We work out the proof for this special case.

Theorem 2.28 A single input time invariant control system is differentially flat if
and only if it is feedback linearizable by static, time invariant feedback.

Proof: Sufficiency is trivial, so we shall only prove necessity. Let the control system
be I = {dzy — fi(z,uw)dt,... dx, — f,(x,u)dt}, where u is a scalar control, i.e. the
system has codimension 2. Let {a',i = 1,...,n} and {al,i = 1,...,n} be one-
forms adapted to the derived flag of I, I; respectively. Thus, 1) = {a!,... "
and It(l) = {al,...,a’7"}. Since I does not contain the differential du, the forms
al,...,a" ! can be taken independent of u. Since I is time invariant, the forms
Qq,...,a, can be chosen independent of time. We can thus invoke the second part
of Lemma 2.27 for the forms al, ..., a1,

Assume n > 2. As in Theorem 2.25 we have equivalence between a! and
af = dyo(z,t) — y1(2,)dt (if n = 1 we have y, = y,(z,u,t), which we will
reach eventually). Since I is time invariant we can choose a! time independent:
ol = A;(x)dx; — Ao(z)dt. From Lemma 2.27 we know that we can write o' as
dYy — Yidt where Yy, Y] are functions of z only.

Again according to Lemma 2.27, we can write o? = dV (x) — W (2)dt. Now from,

=da' Ao A a?

= —=dYi Adt ANdYy A dV
we know V' = V' (¥1,Yy). And from

0 # da® A o' A a?
=—-dW Adt ANdYy A dV

we know that v; := 9V/3dY; # 0. Then, writing 7o := 9V/9Yy, (and ~ denotes
equivalence in the sense that both systems generate the same ideal),

{at, a?} ~ {dYy — Yidt, y1dY) + yod Yy — Wdt}
~ {dYy — Y1dt, y1dYy + yoYidt — Wt}
>~ {dYy — Yidt, dYy — (=vyoY1 + W) /y1dt}
= {dYy — Y1dt,dY] — Yodt}. (2.16)

Where Y), defined to be Y5 = (—~¥1 + W)/, is independent of (¢,u) since
(71:70, Y1, W) are. One can continue this procedure, at each step defining a new
coordinate Y;. In the last step the variable W = W (a, u) (this will also be the first
step if n = 1), and therefore Y}, depends on u nontrivially. Hence we obtain equiva-
lence between [ and {dYy—Yidt, ..., dY,_1—Y,dt} with Y; = Y;(2).i=0,...,n—1,

and Y, = Y, (v, u), i.e., feedback linearizability by static time invariant feedback. W
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Corollary 2.29 If a time invariant single input system is differentially flat we can
always take the flat output as a function of the states only: y = y(z).

None of these results extend easily to higher codimensions. The reason for this
is that only in codimension two we can find regularity assumptions on the original
system such that every Cartan prolongation is a total prolongation. This is related
to the well known fact that for SISO systems static linearizability is equivalent
to dynamic linearizability. For MIMO systems we cannot express these regularity
conditions on the original system: we have to check regularity on the prolonged
systems.

2.7 Examples

2.7.1 Generic Classes

If a linear system is controllable, it can be put into Brunovsky canonical form. The
heads of the chains of integrators are the flat outputs.

All feedback linearizable systems can be put into Brunovsky canonical form and
are therefore flat. The feedback linearization can be dynamic or static. All results
about feedback linearizable systems, as in [?], apply to flatness.

A fully actuated Lagrangian system has the form

Mz, #)i+Cla, i) + K(2) = F (2.17)

where dim F' = dim 2. Clearly, we can determine all states and F' from the outputs z.
These systems include most robotic manipulators, and indeed, computed torque is a
well established control technique for trajectory tracking with robotic manipulators.
In [?] necessary and sufficient conditions were given for Lagrangian systems with
dim F' = dim #—1. The same author also gives conditions for flatness of codimension
3 systems in [?]. The pure feedback form described in [?] is feedback linearizable in
an open and dense set and therefore automatically flat in that set. Finally, [?] gives
a catalog of flat systems, including some examples not presented here.

2.7.2 Kinematic Car

Consider the equations of motion for a kinematic car (see Figure 2.1),

& = cosfcoso v

1 (2.18)

Y = sinf#cos ¢ vy
0 = 7 sin @ 1y

¢ = vy

Here, (z,y) is the position of the rear axle, 8 is the angle between the horizontal
and the car, ¢ is the steering angle, v is the forward velocity of the front wheels,
vy is the steering angle velocity and [ is the distance between front and rear axle.



Figure 2.1 The kinematic car.

This system is flat with flat outputs (2, y), the position of the rear axle. If we
want to back up a truck into a loading dock these outputs are the same as the
tracking outputs. For other problems, e.g. when the driver is trying to negotiate
a window at a drive-thru restaurant, it might be more appropriate to generate a
trajectory for the front cab of the car. Then the tracking outputs are (z+1cos 8, y+
[sin #), and the zero dynamics can be parametrized by ¢. In general it is desirable
to keep ¢ small. This can be achieved by setting up a cost criterion that minimizes
a weighted integral of the tracking error and the magnitude of ¢. Note that ¢ can
be expressed in terms of the flat outputs as

1 .. o
6= a‘rctan(T(i'Z + 5232 di — gF). (2.19)

2.7.3 Thrust Vectored Aircraft

The ducted fan is a model of a thrust vectored aircraft mounted on a stand, as
shown in Figure 2.2 and Figure 2.3. The fan was built at Caltech to study the pitch
dynamics of highly maneuverable aircraft. We refer the reader to [?] for a detailed
description of this apparatus.

The fan mounted on the stand can be approximated by the planar ducted fan
depicted in Figure 2.4. The planar ducted fan is thought to move in an (x, z) plane
obtained by rolling out the sphere scribed out by the fan on the stand as (o1, ¢3) go
through their range of values. The relation between the coordinates for the ducted
fan on the stand and the planar ducted fan is simply given by

= Rson
2= —R;oy : (2.20)
0 = ¢3,
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adjustable o1 propellor housing

\T/ four-bar
Counterb7lance

ﬂchayxm

ducted fan

. /
adjustable flaps

Figure 2.2 Ducted fan with stand.

where Ry is the length of the boom carrying the fan. In the planar idealization
the fan has infinite travel in the @ and z directions. Note that the = direction is
taken positive downward to remain consistent with the convention used in aircraft
dynamics. Since the planar fan is thought to move in the (2, y) plane, it is convenient
to associate the variable y with the vertical position measured positive upward, so
y = —z. In plots we will use the variable y.
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Figure 2.3 First generation Caltech ducted fan.

g

Figure 2.4 Planar ducted fan.



Hipa‘ra‘meter l value | units H

g 9.81 m/s?
r 0.25 m

J 0.0475 | kg m?
my 4.19 kg

My 3.71 kg

my 0.27 kg

Table 2.1 Parameter values for the ducted fan

The fact that the fan is mounted on a stand introduces the following parasitic
dynamics that are not present in the planar fan. The real ducted fan is mounted
on a stand with a counterweight that moves in as the fan moves up. This results in
inertial masses m, and m. in the x and z direction respectively, that change with
the z coordinate. We do not take the variation of these inertial masses with z into
account for the flat model but take their value around hover. The counterweight
also results in an effective weight m, different than the masses in « and =z direction.
In addition to these inertial effects, the interaction of the rotating propeller and the
fan rotating around the ¢; axis causes a Coriolis force. If we ignore these parasitic
dynamics and the aerodynamic forces, the equations of motion for the planar ducted
fan describe a flat system. This flat approximation of the ducted fan on the stand
will be our prime example in the numerical and experimental data presented in later
chapters.

We can apply an arbitrary force on the center of mass by adjusting the magni-
tude and the direction of the thrust, or equivalently, the parallel and perpendicular
component of the thrust. After shifting the parallel thrust uo — wuy + myg to
compensate for gravity, the equations of motion for the planar ducted fan are:

My cosf —sinf " 0
m.%? | = | —sinf —cosé ( ! ) + | myg (2.21)
Jé , 0 Uy + Myyg 0

where (2, z) are the coordinates of the center of mass, 6 is the angle with the vertical,
uy 1s the force perpendicular to the fan body, u, is the force parallel to the fan body,
1 is the distance between the center of mass and the point where the force is applied,
¢ is the gravitational constant, m,.m. is the inertial mass of the fan in the (2, z)
direction respectively, m, is the gravitational mass of the fan, and .J is the moment
of inertia of the fan. The tracking outputs are the (x,z) coordinates of the center
of mass. The values of the parameters for the ducted fan that was built in our lab
are given in Table 772,

Note that these equations are almost identical to the ones presented in [?] and
[?7], except for the small parameter ¢ multiplying the u, term that occurs in those
references. We do not impose this restriction here. Also, in our case m, # m. in
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general.
The planar approximation (??) is differentially flat. In [?] the flat outputs were
shown to be

rp=2a — ‘SinB
Mt (2.22)
Tp=z— — 6.
s mer cos

Note that these outputs are not fixed in body coordinates. We can dynamically
feedback linearize this system by the following dynamic extension:

1. Add u, as a state, and let 4y = us.
2. Apply the following input transformation: uy — —2u18 + us.

3. Add uy4 as a state, and let uy = us.

The extended system is

my¥ = —mygsin 0 + cosBuy — sin Ouy

m:Z = mgg(—cosf 4+ 1) — sin Buy — cosfu,
Jb = iy (2.23)
Uy = Uy + 2'u19
Uy = Us

with new inputs (uj, us). The coordinate transformation
(Tgy... ,1';3), ooy :-(3)) — (2, 2,60, 2, 8, us, Uy) (2.24)
has determinant

mygr — J6% + rug)? o a
_( 99 ki 2) (2.25)
m2m?2i

which is nonzero around the origin. The determinant of the I/O decoupling matrix,

q t(a(ﬂ?(f*l)’ :}4))) _ —mygr + Je? _ ruy (2.26)
“ Iuy.us) ~ Jmgm. '

is nonzero around the origin. Therefore the extended system has well defined relative
degree around the origin, and is feedback linearizable. It is interesting to note that
both the decoupling matrix and the coordinate transformation become singular if
no gravity is present. The system will still be flat in zero gravity, since flatness is
not restricted to an equilibrium point: in an open and dense set the system will still
have linear structure. We will not explicitly use the feedback linearization, since the
form in equation (?7?) is sufficient for trajectory generation purposes.
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Note that the zero dynamics (with respect to outputs (2, z)),

mggr

6 =

sin 6, (2.27)

are unstable. Imposing a bound on # will impose a bound on the zero dynamics.
The variable 6 can be expressed in terms of the flat outputs as

-y &
tan @ = v f

—m.E + myg’ (2.28)
2.7.4 Submarine

Consider the a rigid body symmetric about the y-axis with 3 forces acting in 1 point
on the y-axis, depicted in Figure ??. This body could model an underwater vehicle,
a zeppelin or a missile.

7

Figure 2.5 The axially symmetric body with 3 forces acting in a point.

Due to the axial symmetry we ignore the rotation about the y-axis. We have no
actuating torque there, and do not measure the angle. In the language of geometric
mechanics, we reduce the dynamics by the symmetry around the y-axis. Recall
Euler’s equations for a rigid body in body coordinates [?],

N (2.29)

where .J is the inertia matrix which will be diagonal with .J, = J. due to axial
symmetry. w® is the rotational velocity in body coordinates. Put the origin at the
center of mass, and let the forces act at the point (0., r, 0) (note that r is negative
in the picture); then 7 = (rF.,0, —rF},).

Suppose we observe the point p® = (0, ~de 0) on the body. This is the equivalent

mr?
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of the center of oscillation for the ducted fan. Our observation in a spatial frame is
P’ =pi+ Rp® (2.30)

where p? are the coordinates of the center of mass in the spatial frame, and R is the
rotation matrix from body to spatial coordinates. Since we ignore rotation about
y, I has 2 unknown parameters, say ¢ and 6. Differentiating equation (??) gives

p° = p° + Rp® + Robp’, (2.31)

where &p = w x p. Note that p* = 0, since p’ is a body fixed point.
Differentiating equation (??) and using Euler’s equations and F'* = RF® = mj?
gives

- ng¢§/7‘ 0
mp® =R | Fy+ Jo(wW2)2 + (W)H)/r ] = | mg | . (2.32)
- ngujg/r 0

Now we need the extra assumption that wf; = 0. Then we know the direction
of the second column of R, that is, we know the attitude up to a rotation about
the y-axis, which we ignore. This gives us # and ¢. One more differentiation gives
b, wh, then equation (?7) gives us £y, and the Euler equations give us F,., I.

If we want to track the center of mass instead of the center of oscillation, we will

w

have unstable zero dynamics, entirely analogous to the ducted fan.

Note that even though we have no direct actuation of the roll rotation, we can
rotate about the y-axis by performing a sequence of noncommuting rotations about
the 2 and = axes.

2.8 Summary

We have presented a definition of flatness in terms of the language of exterior dif-
ferential systems and prolongations. Our definition remains close to the original
definition due to Fliess [?, ?], but it involves the notion of a preferred coordinate
corresponding to the independent variable (usually time).

Using this framework we were able to recover all results in the differential algebra
formulation. In particular we showed that flat systems can be put in linear form
in an open and dense set. This set need not contain an equilibrium point, and
this linearizability therefore does not allow one to use most methods from linear
systems theory. In other words, although flatness implies a linear form, it does not
necessarily imply a linear structure. For a SISO flat system we resolved the regularity
issue, and established feedback linearizability around an equilibrium point. We also
resolved the time dependence of flat outputs in the SISO case.

The most important open question is a characterization of flatness in codimen-
sion higher than two. See [?, ?] for an answer to this question in some special
cases.
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Chapter 3

Trajectory Generation for Differentially Flat
Systems

3.1 Introduction

As was announced in the first chapter, software tools form an important part of
this dissertation. In this chapter we present some important trajectory generation
problems for flat systems, and algorithms and software to solve them. All algorithms
will describe which numerical computations have to be performed, and we will give
an indication of the computational cost. All problems treated in this chapter are
finite horizon and anti-causal in the sense that some information about the future
and final behavior of the trajectory has to be given beforehand. This information
can be the entire desired trajectory, or the points we want to steer between. The
material in this chapter is based on [?].

Although the two degree of freedom scheme in Figure 1.2 is quite common [?, 7],
implementation issues are usually ignored. We added an operator and an integra-
tor box to the scheme to indicate emphasis on on-line input. We focus on digital
implementation and computational feasibility. Work to this effect was presented in
[7, 7], where trajectory computations were done in pseudo real time, i.e., pilot input
was given on line, but trajectory output was generated at a rate several orders of
magnitude slower than the controller rate. The particular application in [?] was tra-
Jectory generation for commercial aircraft between via points, which were supplied
at intervals of several minutes. Clearly this allows fairly complicated computations
to be performed for the trajectory generation. Our goal in this chapter is to present
methods to reduce that computation to the order of seconds.

3.2 Problem Setup and Notational Conventions

Recall that the basic equations for flat systems presented in the previous chapter
were:

(3.1)
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for some [. That is, we can express the state and the inputs as functions of the
flat outputs and their derivatives. This was the original definition in the differential
algebraic setting.

All code is written in ANSI C | all computation times refer to an Intel 486 DX2
CPU, running at 66 MHz. Throughout this chapter we will denote flat outputs by
z and tracking outputs by y. We will be looking at trajectories over a finite time
interval [tp,t1]. We will approximate trajectories by polynomials, since this allows
us to perform derivative calculations symbolically.

All examples are based on the ducted fan presented in Section 2.7. We take into
account the different inertial and gravitational masses, but no aerodynamic forces
or stand dynamics. The extended system, i.e. the system that allows static feedback
linearization, for this example has 8 states and 2 inputs.

3.3 Point-to-Point Steering Problems

The easiest tracking problem is where we want to steer from one point in state space
to another point in state space. For this problem it is irrelevant whether the flat
outputs are the tracking outputs or not, since we are given the entire state at two
points in time. Suppose we want to steer from z(tg) = 2o to 2 (t;) = ;. Assume the
inputs and their derivatives at both times are also specified. Then we can compute
the flat outputs and their derivatives at the initial and final times. We parametrize
the flat outputs z as

zi(t) = Agjo,(t) (3.2)

(using implicit summation) where the ¢;(¢) are some basis functions. We need to
solve for the coefficients A;; in the following equations:

zilto) = Aijo;(to)  =i(ty) = Ajjo;(to)
(3.3)
Zz(l)(to) = Az’j(/j-(jl)(fg) Z}l)(ff) = 41]0(]“(”0)

We need enough basis functions so that these equations have a solution. If the
dimension of the state is n and the dimension of the input is m, then we need
2(n + m(l 4 1)) coefficients. The point-to-point steering problem then amounts to
solving a system of linear equations with 2(n 4+ m({+1)) unknowns. It is, of course,
possible to overparametrize the flat outputs in Equation (??), thereby achieving an
extra degree of freedom that will not only allow us to steer from an initial to a final
point, but also minimize some cost function of interest. We will address this issue
in Section 77.

After we compute the coefficients 4;; we need to compute the trajectory at a
number of time points for our real time implementation from equation (??). The
more time points we have, the more accurate our nominal trajectory, and the better
the performance will be. Solving for the states and inputs amounts in general to
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[N | Time ([s]) |

50 | 0.66
100 | 1.05
200 | 1.76
300 | 2.58

Table 3.1 Computation time for point-to-point steering.

solving a nonlinear systems of equations for each desired trajectory point. Since
this is an iterative process, the computation time is hard to predict. For the ducted
fan we can find symbolic expressions for the states from the flat outputs and their
derivatives, since

—Mdf

tanf = —_—
—M 2§ + Myg

(3.4)
and from 6 we can find all states and inputs. Note that a and z here are the
horizontal and vertical position of the fan respectively, and have nothing to do with
the state and flat output of a system as in Equation (??). For a reasonable number
of trajectory points, the computation of the states from the flat outputs will be
longer than the computation of the coefficients from equation (7?), even if we have
symbolic expressions, as for the ducted fan. Therefore the computation time is
mainly determined by the number of time points desired in the output trajectory.
Table 77 lists the computation time vs. number of time points for the ducted fan.
For this case we can solve for the states and inputs in closed form, and don’t need to
resort to numerical root finding. Each flat output is parametrized by 8 polynomials
(of degree 0 to 7). If we do not require fixing the inputs at both ends, but only the
states, we need the flat outputs and 3 derivatives, so that we need 8 polynomials
for each flat output for the equations (??) to have a solution.

Figure 77 shows the trajectory for an initial state (z,y, 8, 2.y, 9) =(0,0,0,0,0,0)
at o = 0, and a final state (x,y.6, 1,7, 0) = (1.0,0,0,0,0,0) at t; = 3.0. Remember
that y is the vertical position, measured positive upward.

3.4 Least Squares Approximate Trajectories for Flat
Systems

If the tracking outputs are the flat outputs and we are given a trajectorv to track,
we still want to parametrize the flat outputs by basis functions. The reason is that
computation of the states requires differentiation of the flat outputs, up to several
orders, which is a numerically ill conditioned computation. Large magnitudes of the
derivatives can prevent convergence of the nonlinear solver of equation (?7?).
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Figure 3.1 Trajectory for a poini-to-point steering problem.

The parametrization of the outputs leads to the least squares problem:

t
m4in/ (za(s) — Ao(s)) W (s) (za(s) — Ao(s))ds (3.5)
4 Sy
where A;; is the coeflicient of basis function j in flat output ¢, ¢(¢) is the vector of
basis functions evaluated at time ¢, z, is the desired flat output, and W (t) is a time
varying weighting matrix. This minimization has the closed form solution:

A=M"1L (3.6)

where

(3]
ﬂfl‘j‘ :/ (_Dl'(S)H'Y,‘J'(S)C’)j(s)(ls
o (3.7)
L,jJ‘ :/ gbl’(S)”'}j(S)Zdj'(s)ds.
to
Note that the problem is decoupled with respect to the different outputs: we can
compute the coefficients for each flat output separately. In our implementation
we approximate integration by summation. The computation of M~! only has to
be performed once, so that there is no great savings in picking orthogonal basis
functions. For polynomial basis functions on a finite interval, the higher order
polynomials have large magnitude at the boundaries. This results in numerical
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inaccuracy over the rest of the interval, and therefore orthogonal basis functions are
not always the best choice.

Since we are only minimizing an integrated error, the resulting trajectory does
not necessarily start at the state we are at. However, we can fix initial and final
conditions {or conditions at any time for that matter), by imposing linear constraints
on the coefficients A;; exactly as in equation (??). Suppose the linear constraints
on A are given by » = I'A. Then we have to find a particular solution to these
equations, say Ag = F1z, and we can reparametrize A = Ay + FL A;, The modified
error then becomes

za(t) — Agg(t) — FrA1p(t) =: Z4(t) — Ao(t) (3.8)

with solution A4y = ML, where

~ tl
M;; = F“(/ Gi(s)Wi;(s)p;(s)ds) Ft
to

0 (3.9)
Lij = Fl*/ @i(S)WQ‘J‘(S)(Zd(S) - A40@(.S))j(18.
to

Table 77 shows the computation time for the trajectory depicted in Figure ?7?.
NPTS refers to the number of time points in the input trajectory, the pair NPOL is
the number of polynomials used to approximate each flat output, and cost/NPTS is
the approximation error over the number of points in the input trajectory. Since the
error is linear in NPTS, this is the right cost measure. We note that the computation
time is linear in the number of points, and that increasing the number of basis

functions stops improving the error fairly soon.

| NPTS [ NPOL [ Time ([s]) | cost/NPTS |

30 (4,4) ]0.82

60 (1,4) 0.8

120 (1,4) [ 1.26 0.18
120 (6,6) | 1.87 0.087
120 (8.8) |27 0.082

Table 3.2 Computation time for least squares approximation.

Figure 77 shows the desired and approximated trajectory for NPOL = (6.6).
Note that the approximation does not go through the desired initial and final point.
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Figure 3.2 Trajectory for a least squares approximation problem.

3.5 Approximate Tracking for Non-minimum Phase Sys-
tems

In general the flat outputs that parametrize all system trajectories may not be the
outputs that we want to track. For the ducted fan and the submarine we want to
track the center of mass, which is different from the center of oscillation. For the
kinematic car we might not be interested in the position of the rear axle, but of
some other point. In general, any flat system with tracking outputs other than the
flat outputs are examples of such systems.

Tracking and approximate tracking for non-minimum phase systems has received
a fair amount of attention in the literature [?, ?]. A fundamental limitation in the
tracking performance was demonstrated by Grizzle et al. in [?], where it was shown
that under fairly mild conditions the stability of the zero dynamics is a necessary
condition for asymptotic tracking with internal stability.

In [?] it is suggested to redefine the tracking outputs to the flat outputs, so that
the tracking problem becomes trivial. However, this may have undesired effects for
the zero dynamics of the original system. Tracking the flat outputs will allow exact
tracking but might drive the zero dynamics of the original outputs to undesirable
magnitude. If we maintain the original outputs, we can still parametrize all system
trajectories with the flat outputs, but in general for each trajectory of the tracking
outputs, we can find more than one trajectory of the flat outputs. This freedom can
be used to advantage to minimize an additional cost function. Typically, we pick
this cost function to bound the magnitude of the coordinates describing the zero



dynamics, or the actuator effort.

The stable inversion proposed in [?, ?, 7], is an iterative solution to the tracking
problem with unstable zero dynamics. This solution offers exact tracking. First
a preliminary input trajectory (prologue) is used to bring the state to a starting
point on the unstable zero dynamics manifold while keeping the outputs zero. The
actual stable inverse follows the desired output trajectory exactly while steering the
internal dynamics from the unstable to the stable zero dynamics manifold. Finally
an epilogue brings the state from the stable zero dynamics manifold to an equilibrium
while keeping the outputs zero. During the actual tracking no bounds on the zero
dynamics are imposed. The trajectory from the stable to the unstable zero dynamics
manifold is obtained by repeated solution of a differential equation over the entire
time interval. It also requires numerical differentiation of the desired trajectory,
since the zero dynamics are dependent on this trajectory and its derivatives. A
solution in the Fourier domain involving repeated convolution is presented in [?].
Our solution does not require a prologue to bring the zero dynamics to the unstable
zero dynamics manifold, and is computationally much simpler. We can bound the
zero dynamics during tracking, at the cost of a larger tracking error. The obvious
drawbacks of our solution are that it only works with flat systems and only offers
approximate tracking.

The approach proposed by Getz et al. in [?] is closer to ours in the sense that
it trades off stability of the internal dynamics versus tracking performance. The
state trajectory that this method tries to follow is a first order improvement on
the one degree of freedom design, in the sense that the trajectory for the internal
configuration is an instantaneous equilibrium generated by the output trajectory,
but the first and higher derivatives of the internal configuration are set to zero.
Therefore the total state trajectory is not feasible, in contrast with our approach.

We now proceed with the solution of the approximate tracking for flat non-
minimum phase systems. The combined tracking and internal dynamics objective
leads to the minimization problem:

min / (WA, s) = yal(s)) W) (y(Ass) —ya(s)) + AK (2,21, zD)ds, (3.10)

tg

where K is a function which penalizes the internal dynamics and ) trades off the
tracking accuracy against the internal dynamics. With A = 0 we will track exactly,
within the accuracy of the basis function parametrization, but we have no control
over the zero dynamics. Since the tracking outputs do not completely determine
the dynamics of the system if they are not the flat outputs, A = 0 will lead to an
ill conditioned minimization problem: there will be infinitely many solutions for
A leading to exact tracking. Therefore, for this problem to be well defined, we
need a nonzero penalty on the internal dynamics. With X large we will have poor
tracking but small zero dynamics. The tradeoff between stability and tracking is
an important feature of our method. Note that since the tracking outputs are no
longer the flat outputs, the outputs y in Equation (??) are arbitrary functions of
the coefficients A.
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If the system has well defined relative degree ans stable zero dynamics, we can
achieve asymptotic tracking by 1/O linearization, as was mentioned in Chapter 1.
However, even though the zero dynamics are stable, the magnitude of the internal
states might be quite large. A cost criterion of the form (??) can also be applied
to systems with stable zero dynamics to explicitly bound the magnitude of the
internal variables. This only works for finite horizon trajectories, whereas the 1/0
linearization works for infinite horizon.

The minimization problem (??) is in general a nonconvex nonlinear minimiza-
tion problem, so that we cannot guarantee convergence to a global minimum. We
approximate the integral with a discrete sum. For each time point in this sum we
need to compute the flat outputs and the states from the coefficients A4;;, and then
evaluate the integrand. This results in long computation times. Computation time
depends on the particular problem and the required accuracy. After the coefficients
A;; have been found, we still have to compute the state-input trajectory at a number
of time points. This latter computation will only take a fraction of the time needed
to compute the minimum of the cost (??), so that the minimization determines the
computation time.

For the ducted fan, a sensible cost criterion reflecting the desire to keep the
internal dynamics bounded is

ty
/ (y(A,s) = yal(s) (y(Ars) — yals)) + A6?ds, (3.11)

to

where the entries of f are polynomials. The trajectory y(t) is depicted in the first 2
windows of Figures 7?7 and ?7. Figure ?? shows the results for A = 0.1. Figure 77
shows the results for A = 1.0. The effect of increasing A is as expected: it decreases
the magnitude of @ at the expense of performance.

Table 77 shows various statistics for this trajectory, with fixed initial and final
conditions. Fixing the initial and final value imposes 10 constraints on the basis
functions. The column labelled NPTS denotes the number of points in the input
trajectory (and therefore also in the output trajectory). The pair NPOL refers to
the number of polynomial basis functions for each of the flat outputs. The number
of basis functions over which we optimize is NPOL - 10, due to the fized initial and
final values. The column “Time” is the computation time in seconds. The column
“cost” refers to the achieved value of the minimization criterion (??). The cost
is linear in “NPTS”, and therefore, “cost/NPTS” gives a better description of the
cost. The last column indicates the minimizations method: a Powell direction set
method, a conjugate gradient method or a variable metric method, as described in
[?].

The first three rows of the table compare the different optimization methods.
The conjugate gradient method seems to give a good balance between computation
time and achieved minimum. Comparing the second block of three rows with the
first block shows that increasing the number of basis functions gives only a small
decrease in the cost function. The last block of four rows shows that the both
the computation time and the cost are linear in NPTS. The cost per point does
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not decrease much by using more points. This means that we can subsample the
input trajectory without incurring a great penalty on the computed trajectory, while
saving substantially on computation time. The computation times are still quite
long. They are definitely too long for real time applications, but are still feasible
for pseudo real time applications like the one in [?].

The same remarks for fixing the initial conditions hold as in the least squares ap-
proximation, except that we now have a nonlinear minimization problem with linear
constraints. Using the same parametrization A = Ag+ F1 A, we minimize over A;.
The important observation is that the number of parameters in the optimization
does not increase by imposing initial conditions.

NPTS | NPOL | Time ([s]) | cost [ cost/NPTS | Method —”

60 (13,13) | 54.1 1.4 Powell

60 (13,13) | 15.16 1.45 | 0.024 Conj Grad
60 (13,13) | 32.36 1.43 Var Met
60 (15,15) | 112.4 1.01 Powell

60 (15,15) | 18.02 1.21 Conj Grad
60 (15,15) | 44.33 0.45 Var Met
30 (13,13) | 8.07 0.86 | 0.029 Conj Grad
60 (13.13) | 15.16 145 | 0.024 Conj Grad
120 | (13.13) | 25.8 2.72 | 0.023 Conj Grad
300 (13,13) | 66.4 6.58 | 0.022 Conj Grad

Table 3.3 Computation times for cost minimization with non-minimum
phase outputs.
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3.6 Experimental Data

In this section we present experimental data to validate the nonlinear control paradigm
depicted in Figure 1.2. The data is taken with the Caltech ducted fan, described in
Section 2.7. We compare a 1 degree of freedom design (Figure ?7), where ouly the
desired output is fed forward, to a 2 degree of freedom design (Figure ??), where we
feed forward the entire state and input space trajectory. In both cases we use the
same LQR controller to stabilize the system around the trajectory. This LQR con-
troller was designed to stabilize the system around hover. We use the point-to-point
steering technique from Section ?? repeatedly to compute the following trajectory
for the approximate flat model of the ducted fan.

o Steer from (0,0) to (1,0) meter in 5 seconds.
e Stay at (1,0) and hover for 2 seconds.
e Steer from (1,0) to (0,0) meter in 5 seconds.

e Stay at (0,0) and hover for 3 seconds.

The two degree of freedom design gives a much more aggressive response, showing
the validity of this approach. The reason is that the one degree of freedom design
tries to keep the fan vertical while moving sideways. This is clearly not a feasible
trajectory and therefore the performance degrades. Note the steady-state error in
y caused by stiction in the stand.
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xd (=), x(—-) yd (), y(=-)
15— 0.1
0.05
E b
>
-0.05
-0.5 -0.1
5 10 5 10
time [s] fime {s}
thd (=), th () fperp (<), fpara ()
15 10
1
5
0. = bk -—e ——
5 % \ z o wo
@ 7N\ \ —
= 0 /N \ 8 0 P e M e Ao
£ 4 s
-0.5
-5
-1
-15 -10
0 5 10 0 5 10
time [} time [s]

Figure 3.6 Experiment:

point-to-point steering.

two degree of freedom controller, repeated



3.7 Software

The software used to generate trajectories for the 3 problems in this chap-
ter, and also to run the real time experiment in Section ?7 is publicly avail-
able as a gzipped tar file through anonymous ftp from avalon.caltech.edu:
/pub/vannieuw/software/trajgen.tar.gz. This file contains the libraries, ex-
amples and documentation. The routines are in ANSI C' and will compile under
different platforms. In particular, the simulations presented in this dissertation used
the library compiled on a UNIX platform, and the real time experiments used the
library compiled under MS-DOS. A Microsoft Windows graphics front end was also
written to illustrate the speed of the routines. The numerical optimization routines
are adapted from the Numerical Recipes Library developed by NAG [?], and a legal
copy of these needs to be bought before using the library. The modification to the
Numerical Recipes consist in improved memory management and graceful exiting.
Matrices are reinitialized only when needed, and not at every call of the function.
The maximum number of iterations can be given as a parameter to the function and
upon reaching that number the routine will not dump out in the operating system
but return with the best available answer so far. This is essential in real time op-
timization, since we only have finite time, and do not care about the best possible
solution, but only about the best possible solution available within the limits of
computation time. The real time software runs with Sparrow, a real time kernel
for IBM PCs written at Caltech by Richard Murray and his group. Documenta-
tion on Sparrow can be found on the Web at URL http://avalon.caltech.edu/
~murray/sparrow. Appendix ?? describes the functionality of the software and
gives examples.

3.8 Summary and Conclusions

This chapter studied implementation issues related to a two degree of freedom non-
linear control paradigm. For differentially flat systems, we reviewed three different
trajectory generation problems: point-to-point steering, least squares approxima-
tion, and cost minimization. These problems were evaluated on their computational
cost. We presented approximate trajectory tracking for flat systems with zero dy-
namics as an alternative to stable system inversion and discussed its advantages
and drawbacks. For all problems we presented sample trajectories, and for point-to-
point steering we validated with experimental data. We briefly described a software
library that solves the presented problems.
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Chapter 4

Real-Time Trajectory Generation

4.1 Introduction

Whereas the previous chapter studied finite horizon problems with off-line calcula-
tions, the focus of this chapter will be real time trajectory generation for differen-
tially flat systems. This is the problem of how to generate, possibly with some delay,
a full state space and input trajectory in real time from an output trajectory that is
given on-line, while allowing a tradeoff between stability and performance. We need
the delay to ensure stability in the face of unstable zero dynamics. This chapter
proposes two algorithms that solve the real time trajectory generation problem for
differentially flat systems with (possibly non-minimum phase) zero dynamics, and
analyze their convergence properties. The algorithms explicitly address the tradeoff
between stability and performance in the form of a weighted cost criterion. The
algorithms are validated in simulations and experiments with the vectored thrust
ducted fan aircraft presented in Section 2.7. The work in this chapter appeared in
abbreviated form in [?].

Looking back at the two degree of freedom control paradigm depicted in Figure
1.2, the trajectory can be generated off-line, in pseudo real time (i.e. at a rate a
few orders of magnitude slower than the sampling rate), or in real time, depending
on the particular problem. In the real time case, the trajectory is being updated
at the same rate as new pilot input becomes available, with some delay due to
computation time. If the system is non-minimum phase, the delay is also necessary
to keep the internal dynamics bounded. A scheduled linear controller is used to
correct for errors.

Related work is reported in [?, 7, ?], with the main difference that in those papers
trajectory generation is performed essentially off-line. This requires the trajectory
to be finite horizon and known in advance. Trajectory generation for non-minimum
phase systems is discussed in [?, ?]. This approach results in anticausal trajectories
and is therefore a fortior{ off-line.



50

4.2 The Real-Time Trajectory Generation Problem

In this section we will try to come to a meaningful definition of the real-time trajec-
tory generation problem, to motivate the algorithms presented in Section ?77. First
we need to distinguish between trajectory tracking which is the general problem, and
trajectory generation which is one way to approach this problem.

The most straightforward approach to trajectory tracking is to subtract the plant
output from the pilot output and feed this error signal to the controller. This is
the so called “one degree of freedom™ approach. We will show through simulations
in Section 7? that this may lead to slow response times. The reason is that in one
DOF design we are trying to track a drifting equilibrium configuration which is an
unfeasible trajectory. Trajectory generation tries to remedy this problem by finding
a feasible full state and input trajectory along which the system can be stabilized.

A further distinction can be made between off-line trajectory generation and
on-line or real-time trajectory generation. In the first case, the trajectory is given
to us ahead of time. In the second case, it becomes available as time proceeds.
For minimum phase systems we can exactly follow a trajectory while maintaining
internal stability. For non-minimum phase systems we need to introduce some sort
of anticausality. For off-line trajectory generation a solution to this problem that
allows exact tracking has been proposed in [?, ?]. An approximate solution for flat
systems that allows a tradeoff between stability and performance, again for off-line
trajectory generation, has been proposed in [?]. In this chapter we are concerned
with on-line trajectory generation.

Some comments are in place about the qualifier “real-time™ in “real-time trajec-
tory generation.” In daily parlance, real-time means “fast enough to be considered
instantaneous.” Of course, this depends on the time scale of the process under con-
sideration, and we therefore specify “real-time” in this chapter as “computations
being performed at the same rate as input becomes available from an operator.” In
the case of a pilot flying an airplane, this means the computations have to proceed
faster than the time constant of the human motoric system, or in about 0.1 seconds.

Usually control objectives are stated as performance criteria subject to stability.
For real-time trajectory generation we only have a finite time history of the desired
trajectory available, and therefore stability as defined in an infinite time horizon
does not make sense. Instead we can capture the notion of stability as some norm
bound on the internal dynamics generated when following a desired trajectory. The
“performance under stability” requirement then translates to minimizing a weighted
norm between tracking error and magnitude of the internal dvnamics. In agreement
with H> control theoryv we take this norm to be the Ly norm on a finite time
interval. This leads to the following cost to be minimized at each time instant:

¢
/ ., (h{z) — ya(s))"(h(x) — ya(s)) + A (z, u)ds {4.1)
t—1y

where I is an appropriate penalty on the internal dynamics, and Ty defines the
time horizon, or the delay with which the trajectory is generated.
This formulation allows a tradeoff between performance and stability, as seen in
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Chapter 7. We can increase stability at the expense of performance by increasing
the penalty on the internal dynamics (i.e. A). Since we have to minimize the cost
in equation (?7) at every time instant, we need to do this subject to fixed initial
conditions, namely, the state that we happen to be at.

There are theoretical limits to the tracking performance that can be obtained
in systems with unstable zero dynamics, as was shown in [?], and repeated in this
dissertation in Theorem 7?7 in Appendix ??. Under mild conditions, a necessary
condition for asymptotic tracking is that the system have stable zero dynamics. The
authors prove this by constructing a signal that cannot be asymptotically tracked
by non-minimum phase systems. An essential feature of this signal is that it has
a time derivative with infinite support. One way to circumvent the non-minimum
phase zero dynamics requirement is to restrict attention to asymptotic tracking of
signals whose derivatives have finite support. More precisely, we define

Definition 4.1 (Eventually constant signals) The set of functions
S={y(t) € L(R™)] T ts:y(t)=0fort >t,}, (4.2)
where ¢, is not given in advance, is called the set of eventually constant signals.

Definition 4.2 (Asymptotic trajectory generation) We say an algorithm
achieves asymptotic trajectory generation for a class of signals Y if the algorithm
generates from yg € Y a feasible full state and input trajectory (x4, uq) such that
limy oo R(2q(t)) — ya(t) = 0 for all yy € Y.

Remark 4.3 The relevance of Theorem ?? for trajectory generation is born out
by the fact that trajectory generation combined with a linear controller based on
the Jacobi linearization of the plant will achieve asymptotic tracking of signals
in Y (e, N) for N large enough and ¢ small enough. (Y (e, N) = {y | |ly(t)|] <
€ lyN ()] < €,Vt}, see Appendix ??) This follows from Lemma 4.5 in [?] and
the fact that the higher order terms in the error system for 2 — 24 are uniformly
Lipschitz in time for desired signals in Y (¢, N). Hence asymptotically stable zero
dynamics are also necessary for real-time trajectory generation, unless we relax the
conditions of Theorem 77 somehow.

We require that our trajectory generation scheme achieve asymptotic trajectory
generation for all signals in .S. This comes down to requiring zero steady-state error.

Of course we need to make sure that eventually constant output signals lead to
feasible state space trajectories. Hence the following assumption.

Assumption 4.4 We assume that to each value of the output y,, there is an equi-
librium value for the states and inputs, i.e. there exist (x4, uy) such that y; = h(x4),
f(xq,uq) = 0. We denote the mapping that maps each output value yq to a full state
and input space equilibrium by Eq, so that f(Eq(yq)) =0, and h{(Eq(yg)) = ya.

If this is not the case, we cannot maintain the output at the desired constant
value. Based on the above discussion we propose to study the following problem:
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Problem 4.5 (Real-time trajectory generation) Find an algorithm that cal-
culates in real-time from yu(t) a feasible full state and input trajectory (xq(t), ug(t))
while allowing to trade off stability of the internal dynamics against tracking error,
and such that

lim h(zq(t), uq(t)) —ya(t) =0 (4.3)

t— 00
for all y; € S.

One might object that this definition still allows the trajectory generation mod-
ule to wait until the desired trajectory reaches its steady state value and then
compute the trajectory off-line. We still would achieve asymptotic tracking. The
key is that the time ¢, after which y(¢) = 0 is not given to us in advance, so that we
cannot determine when to start the off-line computation. This point is philosophi-
cal though, since it should be clear that it is better to start acting when sufficient
knowledge of the desired trajectory is available.

4.3 Two Algorithms For Trajectory Generation

We will now propose a solution to the above problem for differentially flat systems.
First, we parametrize the flat outputs z;,i = 1...m by

zi(t) = Glx(t)) == Aijo;(t) (4.4)

where the ¢;(t),7 = 1...N are basis functions. This reduces the problem from find-
ing a function in an infinite dimensional space to finding a finite set of parameters.
At each time ¢ we have available to us the desired output over the time interval
(70, 7f] := [t — T4, t]. Steering from an initial point in state space to a desired point
in state space is trivial. We have to calculate the values of the flat outputs and their
derivatives from the desired points in state space and then solve for the coeflicients
A;; in the following system of equations:

zi(m0) = Aijoi(mo)  2i(Tr) = Aijo;(7y)
(4.5)

U]

2 (r0) = A0 3 ]

(t0) 2z '(15)= A4Z-J-q§§)(1'f).

To streamline notation we write the following expressions for the case of one flat
output only. The multi-output case follows by repeatedly applying the singe output
case, since the algorithm decouples in the flat outputs. Let ®(¢) be the [+ 1 by N

matrix ®;;(t) = @E—é)(t) and let

5= (z1(rp)s ., 20 () (4.6)
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Then the constraint in equation (?7?) can be written as

(%)) e i
= ( D) )4 L PA. (4.7)

2]

That is, we require the coefficients A to be in the plane defined by equation (7?).
The only condition on the basis functions is that ® is full rank, in order for (??) to
have a solution. We can solve these equations at each sample instant to generate a
trajectory from the current state to the desired output a certain time 7} later. We
augment this desired output to a desired full state and input by mapping it onto an
equilibrium with the mapping F¢. On this trajectory we pick a state corresponding
to some time 7 € [7g,7;] and use this as the instantaneous desired state for the
linear controller. This leads to the first algorithm:

Algorithm 1 Given: the delay time Ty, the current flat flag %y, the desired output
Yq. At each sampling instant t}.:

1. Let 7y = ty, 7o =ty — Ta, 55 = C(Eq(ya(tr))).

jec)

. Compute a trajectory of the flat outputs by solving Zo = ®(19)A, z; = P(r7)A
for A.

3. Compute a point on that trajectory with % (1) = ®(7)A where T € (19, T¢].

4. Solve for (x1 (1), ur(7)) from Z((7).

5. (21(7), us(T)) is the neat desired state and input to feed forward at time ty,.

The times 7, are “virtual” times within the algorithm that shift along as physical
time proceeds. They are reassigned with every new sample time. The times t, are
physical times. This algorithm steers us from the current position to an equilibrium
state with the desired values for the outputs. We generate a trajectory over the
time interval [t — Ty, t;], and pick a time 7 and corresponding point (2, u;) on
this trajectory. This will be the desired state to steer to. We repeat this process at
every sampling instant. This is illustrated in Figure ??. The solid line is the pilot
input, the dashed line is the generated trajectory at sampling time 75, the dotted
line is the trajectory generated one period later.

This algorithm does not involve the explicit minimization of a cost function to
trade off stability versus performance. We will show through simulations in Section
?7 that the parameter T, regulates this tradeoff. Increasing Ty will increase stability
at the expense of performance.

We can bypass solving for the coefficients A;; in the matrix A by noting that

= @(r)07 s = F(r)5 + G(r)3y. (4.8)
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Figure 4.1 Algorithm for real-time trajectory generation.

If we execute this scheme every sample instant we get a dynamical equation for
Zy =: Zp41 for each Zy =: z;, namely:

Zhpr = F(T) 3 + G(T) 74 (k) (4.9)
which has the desired output Z(k) = ((Eq(y4(tx))) at time instant & for its input.

Theorem 4.6 There is a T € [19,7;] such that Algorithm 7?7 achieves real-time
asymptotic trajectory generation of all desired outputs in S.

Proof: We will show that F'(7) is stable for appropriate choice of 7, and then that
the steady state error is zero for y; € 9. Since we constructed the F(7), G(7) to
steer us from Zo to Zy, it follows that G(r;) = 0 and F(r) = I. So for 7 = 7; all
eigenvalues of F'(7) are at the origin. Since the eigenvalues of F(r) are continuous
functions of ., there exists a 7 € [r, 74] such that the eigenvalues of F(7) are
in the open unit circle. Now yy € S means that there is a k; such that Z;(k) is a
constant, say zg, for all & > ks;. Therefore z; converges to a constant value, say
Zoe which will be a multiple of z; due to linearity of (7?). So Z. = vZ;, where v
depends only on F and (. Since there is a trajectory from z., to z; that will bring
us closer to z; for appropriate choice of 7, we have v = 1 for that value of . Then
we have limp_~ Zx = 5. [ |

Picking T = t), — t5—1 in the above scheme corresponds to a one step deadbeat
controller. This requires large control signals which might saturate the actuators.
Clearly, there is a tradeoff between performance and control effort and bandwidth.
Note that the matrices F'(7) and G/(r) are fixed once 7 is selected, and can be
computed ahead of time. We should mention that it is not hard to find 7 such that
F(7) is stable. In fact, it requires considerable effort to construct a set of basis
functions and a 7 such that F(7) is unstable. For polynomial basis functions any
T € |79, 74[ will do. This follows from the fact that the degree of a polynomial is an
upper bound on the number of its zeros.

Step 2 in Algorithm ?7 computes a trajectory between the flat flags Z and z;
by using the point-to-point steering algorithm of Chapter ??. In fact, we can use
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any of the trajectory generation problems presented in that Chapter to generate the
trajectory. It just so happens that the point-to-point steering problem is particularly
attractive since it results in a linear update for the flat flag, as in Equation (27).
In particular, we can augment this algorithm with an additional minimization that
allows tradeoff between stability and performance as discussed in Sections ?? and
?7?. The cost criterion takes the form:

J = nﬁn /Tj(y(A, 5) = yd(s)"(y(A, s) — ya(s)) + AK (A, s)ds (4.10)

70

subject to zg = ®(19) A,z = ®(74)A. Here y is the tracking output, and y4 the
desired tracking output. K is a function that bounds the internal dvnamics. We
can perform this minimization by finding a particular solution that satisfies the
initial and final constraints: Ay = ®'Z, and parametrizing the general solution as
A = Ag + &1 A; where @t is a basis for the nullspace of ®. This optimization
problem is in general nonlinear and nonconvex. We therefore have to resort to
an iterative scheme. Since the optimization has to be performed in real-time, we
might not be able complete the minimization procedure and have to preempt the
procedure. We will show that this will not result in loss of convergence. This leads
to the following algorithm:

Algorithm 2 Given: the delay time T,, the current flat flag Zy. the desired output
Yyq. At each sampling instant ty,:

1 Lettp =ty 1=t —Tq. 55 = C(Eq(y(tr))).

2. Compute a trajectory for the flat outputs by finding a particular solution A,
to 29 = ®(19)A, Zy = ®(74) A.

3. Optimize Ay to minimize J in equation (7).

4. Let A= Aqg+ N1t A,

5. Compute a point on the nominal trajectory with z(t) = ®(1)A where T €

(70, Tf]-
6. Solve for (x1(7), uy(7)) from z1(7).

~

(x1(7),ur(7)) is the next desired state and input to feed forward at time ty,.

Note that the optimization over 4; can be preempted if computation time runs out.

Theorem 4.7 There is a T € [19, 7] such that Algorithm ?? achieves real-time
asymptotic trajectory generation of all desired outputs in S.

Proof: We will show that Z; converges to a constant value for constant Iy, and
then that this constant value equals Z;. Even though we cannot dispense with the
computation of the coefficients 4 as we could in Algorithm ??, we know that for
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7 = 7y the algorithm steers to the desired output in one step. Regardless of the
values for Ay, from continuity of Z; = ®(7)A in 7, we can find a 7 such that

121 = 2 () < [120 = =¢(R)]] (4.11)

so that if z; (k) is a constant for k > kg, say Z;, we achieve convergence to a constant
value for z;. Similar to the proof of Proposition ?? we can show that this constant
value has to be Z;. |

It might seem curious at first sight that convergence of Algorithm ?? does not
depend on the cost criterion .JJ. On second thought this is quite advantageous since
we cannot guarantee that the optimization of .J converges in the allotted compu-
tation time. Preemption of the minimization will not result in loss of convergence.
The additional optimization allows us to get better performance (in the sense of
a lower cost criterion .J) if the computation time allows it. If no improvement
can be obtained, the algorithm returns the solution of the point-to-point steering
algorithm ?7?. This is essential for convergence.

It is somewhat unsatisfactory that we have to fix the final conditions in the
above algorithms. For nonlinear systems we have in general multiple equilibria
corresponding to the same output values, most of which are undesirable. Without
fixing the final condition we cannot guarantee that the trajectory will converge to
the desired equilibrium, even though we still get asymptotic tracking for signals in
S. Indeed, simulations showed that the trajectory might end up in an undesired
equilibrium.

At first sight, Algorithm 77 seems to exhibit some similarity to Model Predictive
Control (MPC), as advocated in [?]. In MPC, a finite or infinite horizon cost
criterion on the states and inputs is minimized over the inputs at each sampling
time, and the first input of the optimal sequence is applied. This process is repeated
at each sampling time. The cost criterion contains predictions of future states, based
on the current state and a model, hence the name MPC. MPC does not, however,
address the issue of generating a feasible full state and input nominal trajectory,
but assumes these are given, so that the cost criterion penalizes the deviation of the
predicted trajectory from the nominal trajectory, and the computed optimal input
is added to the nominal input. MPC seems to have been most successful in chemical
process control, where the desired trajectories are set-point changes, and the slow
time constants accommodate the intensive computations.

4.4 Simulations

In this section. simulations are performed with an approximate flat model of the
Caltech ducted fan, presented in Section 2.7. The code used to generate the real-
time trajectories for the simulations in this section and the experiments in the
next section is added as a module to the trajectory generation library described in
Appendix ?7?. and is available through anonymous ftp from avalon.caltech.edu:
/pub/vannieuw/software/trajgen.tar.gz.
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We simulate on-line pilot input as a file from which successive samples are read
every sample instant. The pilot command is input to a trajectory generation module,
whose output serves as a nominal trajectory. We wrap a simple full state LQR
controller around a nonlinear model of the fan. This controller was designed to
stabilize hover. See [?] for a detailed analysis of several controller designs for this
experiment. We assume we have knowledge of the full state. On the experiment
this is achieved by differentiating and filtering the position signals.

The nominal trajectories are generated with the approximate flat model for the
fan presented in 2.7. The nonlinear model used for simulation takes into account
the aerodynamic drag, inertial effects from the rotating propeller, changing inertias
with altitude, and viscous friction. This model is more elaborate than the flat
approximation used to generate the nominal trajectories, but is no longer flat. We
use this more detailed model to allow comparison with the experimental results in
the next section.

First we show how the ducted fan behaves without feed forward. The pilot input
is a 1.0 meter step in the « direction at constant altitude. The pilot input is used to
generate an error signal to the controller. At each time instant we stabilize around
the equilibrium point generated by setting 2 and y equal to the pilot input, and all
other states equal to 0. This is the conventional “one degree of freedom” controller.
Figure 7?7 shows that the trajectory followed by the fan lags far behind the desired
trajectory.

In this plot and subsequent plots, the pilot input is denoted by (ap,yp), the
generated desired trajectory (which is identical to the pilot input in the one degree
of freedom case) is denoted (2d, yd), whereas the variable name without suffix
denotes the real (experimental or simulated) time trace of a quantity. The force
parallel to the fan shroud is denoted “fpara,” the force perpendicular to the fan
shroud is called “fperp.”

Next we show for Algorithm 77 plots of the pilot input, the generated trajectory,
the simulated trajectory for the (z,y) position of the fan, as well as the generated
and simulated trajectory for # and the nominal forces. Figure ?? shows these for
a delay time of T; = 60 sampling periods of Ty = 0.01 seconds. We see that the
fan follows the pilot input much better than in the one degree of freedom design.
Clearly, there is an advantage in real-time trajectory generation. Figure ?? shows
these for a delay time of T, = 100 sampling periods. It is clear that the larger
delay results in better stability, i.e. lower magnitude of § and the nominal forces,
but poorer performance, since the delay is bigger.

Figures 7?7 and 7?7 both show a large error in 6 right after the first and second
peak of the nominal € trace. We suspect this is caused by the inertia changing
with altitude, which is not taken into account in the flat model, but is present in
the simulation model. Note that the errors occur simultaneously with a substantial
error in altitude y.

We tested Algorithm ?7 in simulation. It behaves as expected, in the sense that
it penalizes the cost. The major problem is that the optimization is a factor of 10
too slow for realistic operator sampling rates. Improvement of this optimization is
a subject of current research.
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4.5 Experiments

Algorithm ?? was implemented on the experimental apparatus. The pilot input
comes from a joystick with two degrees of freedom. We run the trajectory generation
algorithm at 100 Hz, and the controller at 200 Hz. The delay time T, = 1.0 seconds,
corresponding to 100 samples for the trajectory generation algorithms.

We conducted 2 experiments. The first one was the one degree of freedom
controller: the pilot signal was used to generate an error signal in the output around
which the fan was stabilized. The results are depicted in Figure ??. The generated
desired trajectory, is identical to the pilot input in this case.

In the second one, we used the pilot signal to generate a trajectory, as described
in this chapter. The results are depicted in Figure ??. The desired trajectory (xd,
vd) is generated by the trajectory generation module and is no longer equal to the
pilot input (xp, yp). Since the pilot input is given real-time the experiments are not
repeatable. We can draw some qualitative conclusions though.

The real-time trajectory generation algorithm gives a more aggressive response,
at the expense of more oscillations in the pitch angle #. This could likely be remedied
by implementing Algorithm ??. Even so, the mean squared pitch error for the real-
time trajectory generation is less than for the one degree of freedom controller. The
real-time implementation performs worse than the simulations. We submit that
this is due to noise in the pilot input and plant uncertainty. The pilot input from
the joystick has a dead zone of about 5 ticks on a total range of 250. The flat
model used to generate trajectories is of course only an approximation of the real
dynamics. Also. it can be seen from the plots that the required actuator bandwidth
is high. Limiting the nominal actuator bandwidth can be included as part of the
cost criterion by weighting basis functions with high frequency content different
than basis functions with low frequency content.

Due to the high computational requirements of the second algorithm, it is not
tested in the experiments.
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4.6 Conclusions

In this chapter, we proposed a formulation for the real-time trajectory generation
problem. We described two algorithms for real-time trajectory generation for dif-
ferentially flat systems with unstable zero dynamics, and proved stability and con-
vergence properties. The first algorithm generated a trajectory that steers from the
current position to a desired final position given by the pilot input. We can trade off
stability versus performance by varying the delay time. The second algorithm steers
to a desired final position while minimizing a cost criterion, that typically limits the
magnitude of the zero dynamics. The algorithms were validated with simulations
and experiments.
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Chapter 5

Perturbations to Flatness: Mode Switching

5.1 Imntroduction

In the previous chapters we dealt with differentially flat systems. Most systems are
not differentially flat, and in this chapter we investigate some extensions that make
the tools from differential flatness applicable to non-flat systems. The approach we
take here is to find a flat approzimation. Of course, any system can be approximated
by a flat system, but for this procedure to be meaningful, the flat approximation
has to be close in some sense. This requires a meaningful metric on systems, and
at this point it is unclear what a good flat approximation is. Some work in this di-
rection is reported in [?, ?], which uses ideas based on Frobenius’ theorem. In some
cases, the flat approximation is natural, in the sense that the system is the sum of a
flat system plus perturbing terms. This happens to be the case for the ducted fan,
described in Section 2.7, if we include the aerodynamic forces. These forces only
become significant at high velocities. In order to investigate the effect of aerody-
namic perturbation terms, a new fan was built with a wing and an aerodynamically
shaped shroud, see Figure ??. In forward flight, the wing carries the weight of the
fan, and to take this effect into account, one clearly has to consider the aerody-
namic forces. This chapter present some methods to accommodate perturbations
to flatness, guided by the problem of mode switching.

Commercial and military aircraft operate in different modes during flight, cor-
responding to flight regime, controlled variables and used actuators. In a landing
mode, for example, the controlled variables would be the position of the aircraft
with respect to the runway. In a climbing mode the primary controlled variable
is altitude. In other modes we are concerned with velocity rather than position.
Different modes exhibit vastly different aerodynamic properties.

In high performance aircraft, it is important that mode switches occur fast. This
can be accomplished by calculating a nominal trajectory that brings the aircraft from
one mode to the other. The nominal trajectory gives a more aggressive response
than point stabilization around a changing output, while reducing control effort.
For aggressive maneuvering we should exploit the nonlinearities of the aircraft to
obtain better performance. We use differential flatness of the approximate model of
the pitch dynamics of the ducted fan to achieve fast switching between those modes.
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First we will present the extended model of the thrust vectored aircraft, that
includes aerodynamic forces. This repeats some of the material in Section 2.7, but
we feel it adds to the clarity to present the model in its totality. We will also adopt
the notation that is customary in aerodynamics to describe the various aerodynamic
effects. Then we will discuss some issues involved in mode switching. The central
part of the chapter is a discussion of methods to deal with perturbations to flatness,
based on Lyapunoff arguments. Simulations and experimental data are provided to
validate the approach. This chapter is based on [?].

5.2 Model: General Pitch Dynamics

In this section we will present the pitch dynamics corresponding to various flight

modes. Consider the thrust vectored aircraft with wing depicted in Figures ?? and
27

paddles

propeller

Figure 5.1 Thrust vectored aircraft with wing.

For hover to hover transitions we want to control the position of the aircraft
with respect to a fixed spatial frame. Hover to hover transitions typically happen at
low speed. We therefore ignore the aerodynamic effects of drag and lift. The pitch
dynamics in spatial coordinates are then

mai cos @ sin # T 0
mi| =] —sinf cosb (Tl) +1mg]. (5.1)
Jé 0 r : 0

The inputs 77 and T, are the axial and perpendicular components of the thrust.
Typically Ty is much larger than T5. The pitch angle 6 is measured with respect to
the horizontal. It will be convenient to have a symbol , O, for the angle with the
vertical, measured positive in the same direction as the pitch angle.

It was shown by Martin et al. in [?] that if we ignore the aerodvnamic terms, the
system (?77) becomes flat, with flat outputs given by the coordinates of the center



Figure 5.2 Second generation Caltech ducted fan with wing.

of oscillation:

J
rp=x4+ —cosf
‘ e .
i (5.2)
;=2 — —siné.
! mr
Flatness means that all states and inputs of the system can be expressed as
functions of the flat outputs and their derivatives. In particular, in the above system,

Fp=17F4+ -/—(—sillf) b — cos 6 6?)

]')]2] ) . (5,.3)
Zp=: 4 —(—cosf+sinf o)
’ mr
so that
tanf = :_:lj__({ (5.4)
Ij

This equation gives us @, and from ¢ and (x;. z7) we can find the other states. We
can resolve the modulo 7 redundancy in the tangent function by requiring that the
nose is always pointing forward.

Ior flat svstems, trajectory planning becomes trivial: we can design a trajectory
in the lower dimmensional output space and lift it to the full state and input space.
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For mode switching, we are interested in steering from an initial condition to a final
condition. This gives prescribed values for the flat outputs and their derivatives at
the initial and final time, which we can then link by an arbitrary curve in output
space. Typically, one parametrizes the curves by basis functions, and then solves
for the coefficients to match the initial and final conditions. See Chapter ?7 for a
more detailed treatment of trajectory planning for flat systems.

For forward flight, we ignore the position variables, using their velocities instead.
The pitch dynamics are more conveniently given in body coordinates, since the
aerodynamic forces are most conveniently written in body coordinates:

mz}* T —sin 8 -WQ
mW | =T | +mg| cosb | +m | UQ (5.5)
JQ Ty 0 0

where Q = 6 is the pitch rate, U is the forward velocity and W is the downward
velocity (measured positive downward). In these equations, we still ignore aerody-
namic coefficients.

This system is also flat, with flat outputs given by the velocity of the center of
oscillation, but written in quantities occurring in Equation (?7?):

Tr\ ifw;%ésinf)
i) " \é - Lbcosh
_f Ucost + Wsin 6 — %Q sin 0
~ \=Usinf +Wcosf — %QCOSO '

(5.6)

Note that this is not the velocity of the center of oscillation in body coordinates.
The system is not flat with respect to these latter outputs. Taking derivatives of

(77),
P\ (=L@ + L)cosh .
()=, e ) >0

and again
tan f = __5;‘_/"{_“_2 (5.8)

from which we can recover #, and hence @, U, W, T7 and T,. There is a sign
ambiguity in 6.
Compare the system (??) with the full pitch dynamics of an aircraft with aero-
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dynamic surfaces [?]:

ml T —sinf -WQ
mW =T | + mg | cos@ | +m U@
JQ rT, . 0 0 (5.9)
1 ‘ Ce(a, 0c)
+ 5,0\725 Cyla,0e) |
ECQ(Q', 66)

where V2 = U2 4 W? is the square of the absolute velocity,  pis the density of air,
S is the wing surface, ¢ is the mean aerodynamic chord, §. is the flap angle of the
control surface, in our case an elevator, and o = arctan :lel is the angle of attack.
The functions C., Cy, Cy represent aerodynamic lift, drag and moment.

It may seem from the equations (?7) that we are dealing with a fully actuated
system. However, the control surface is only effective in a narrow range around zero
angle of attack, and for fast maneuvering we are interested in regimes with high
angle of attack. We can use the flap to trim and control the equilibrium in forward
flight, but not to switch modes.

It may be that we are not interested in the z-position, but only in the forward
velocity, and also position in the spatial z-coordinate, as in constant altitude flight.
Then we can use the x velocity and the z position of of the center of oscillation as
our flat outputs. Similarly in the unlikely case that we want to regulate vertical
velocity and horizontal position.

In this chapter we propose to calculate nominal trajectories for the flat system
(?7?) and use these as nominal trajectories for the non-flat system (??). We inves-
tigate several straightforward extensions to flatness to deal with the aerodynamic
terms that perturb flatness.

5.3 Model: Aerodynamic Forces from Wind Tunnel Data

In this section we model the thrust vectored aircraft that was designed and built
in our lab, see Figure ??. To allow unlimited travel in the horizontal direction, the
aircraft is mounted on a horizontal boom that rotates around a central post. There
are 3 main parts to the modelling. The horizontal boom, the shroud containing a
propeller driven by an Astroflight Cobalt 40 electric motor, and the wing. Due to
the rotation, all parts move at a different horizontal velocity. The shroud is attached
to the boom in its center of mass.

The gravitational mass of the fan is offset by a counterweight in the center of the
central post, to allow the 200 W motor to lift the weight of the fan and the boom
in hover. To reduce the inertial mass in the vertical direction, this counter weight is
attached through a pulley with gear ratio 1:5. This results in different gravitational
masses and inertial masses in the 2 and = direction respectively: m, = 0.46 kg,
m, = 4.9 kg, m. =85 kg. It was shown in Section 2.7 that using different masses
does not affect flatness of the system (??). The values of the remaining parameters
in Equation (??) are r = 0.12 m, .JJ = 0.0323 kg m? and g = 9.8 m/s%.
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Figure 5.3 Thrust vectored aircraft on stand.

The boom is modelled as a cylinder, providing drag only and no lift and moment.
The drag is

lp
Dy = O.5Cdew2/ r2dr (5.10)
0

where Cy = 1.2 is the drag coeflicient of a cylinder in uniform flow, p = 1.2247
kg/m? is the density of air at sea level, [, = 1.7524 m is the length of the boom,
D = 0.0635 m is the diameter of the boom, w = v,./{; is the angular velocity of the
boom, v, is the horizontal velocity of the fan, and Iy = 2.032 m is the distance from
the central post to the center of the shroud.

The wing is a NACA 0015 airfoil [?]. This airfoil is symmetric, since we want
to fly in both positive and negative direction. The wing was put in the wind tunnel
on a force-torque sensor to measure the forces. The experimental data for lift, drag
and moment agrees well with the theoretical values for lift, drag and moment. In
particular, the aerodynamic center is at the quarter chord point for low angle of
attack and over the range of wind speeds we are interested in, 0 < v, < 12 m/s.
Since different cross sections of the wing move at different speed, we find for the
total lift of the wing

lu‘l
L, = 0.5C'chw'2/ r2dy (5.11)
le
where [,,0 = 2.15 m is the distance from the center to the inside edge of the wing,
ly1 = 2.81 m is the distance from the center to the outside edge of the wing, ¢ = 0.35
m is the aerodynamic chord, and (7, is the lift coefficient determined experimentally.
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Note that C'p is linear in the angle of attack, a, for a smaller than the stall angle
of attack, which is about 15 degrees for the NACA 0015. Similar expressions hold
for the drag and the moment on the wing. The wing has an elevator hinged at the
3/4 chord point, with a range of —60 < 6. < 60 degrees. The lift is also linear in
the elevator deflection for small angles of attack.

The shroud is most difficult to model. Fundamental aerodynamic theory does
not provide expressions for lift, drag and moment coefficients. We have to rely
completely on experimental data. The lift, drag and moment are highly dependent
on fan speed, wind speed, angle of attack and flap angle. We approximated the
lift, drag and moment by a 4th order polynomial in the independent variables,
restricting terms to be linear in wind speed and cubic in a. Including all cross
terms, and pruning terms with small coefficients, this results in 50 terms.

The boom and wing forces are transformed to spatial axes and the horizontal
component is scaled so as to act on the center of the shroud by factors {;/l;; and
[7 /12 respectively. Here [5 = 0.88 m is the distance from the center of the stand to
the center of the boom, and [,,2 = 2.52 m is the distance to the center of the wing.

Since we have aerodynamic data only for wind speeds 3 < V < 12 m/s, we
interpolate the above aerodynamic model with an analytic model around hover given
by Equation (?7) with the different inertial and gravitational masses m,, m., m,
substituted.

Figure 77 shows the lift, drag and moment as a function of airspeed and angle of
attack, for 5. = 0, horizontal flight, zero paddle deflection, and zero thrust. Note the
interesting sign reversal of the moment coefficient beyond the stall angle of attack.
In this regime, the pitch moment dynamics are unstable. For small angles of attack,
the center of pressure is aft of the center of mass, by a distance of d = 0.02 m,
resulting in stable pitch dynamics.

An interesting feature of the system is that level flight is not possible at all
pitch angles. There is a range, roughly from ~60 < a < 60 degrees, beyond which
the wing cannot generate enough lift to compensate for the weight (5 N). It will
appear crucial for mode switches to travel through this regime in a smooth manner.
Appropriate feedforward is instrumental in achieving this transition. Even though
the wing can generate enough lift for a range of angles of attack beyond stall, it is
undesirable to fly at such high angle of attack for extended time since the increased
drag results in much higher fuel consumption.

5.4 Model: Aerodynamic Forces from Theory

In this section we will use aerodynamic theory to model the aerodynamic forces for
the thrust vectored aircraft depicted in Figure ?7. We derive approximate expres-
sions for the aerodynamics coefficients using [?]. This serves to get insight in the
various aerodynamic effects and to check the experimental data from wind tunnel
tests obtained in the previous section.

The boom is modelled as a cylinder in uniform flow, just as in Section ??. We
model the fan body as a sphere, for which the drag coefficient is approximately given
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Figure 5.4 Experimental lift, drag and moment on the thrust vectored
aircraft, for V.= 3(-), 6(*), 9(0) and 12(-.) m/s

by:

24/ Re for Re 0
Crop = { /Re for Re < 6 (5.12)

0.4 for Re >= 60

where Re = Vip/pu = VI/v is the Reynolds number . For our fan, [ = 0.3 m, is the
diameter of the shroud, v = 1.5 x 107" is the kinematic viscosity of air.

The wing is a NACA 0015 airfoil [?]. This airfoil is symmetric, and the lift
coefficient for finite aspect ratio AR = b/¢ and small angle of attack (Jla]] < 15
degrees), is

27
Cry=——=a. 5.13)
S L+ TZE (
The drag for small angle of attack satisfies
. o L\ re . -
Cps = (0.0031 + m)CLf-i—O.OO() (5.14)

provided [|a|| < 15 degrees. The wingspan is b = 0.6 meter, the mean aerodynamic
chord is ¢ = 0.35 meter.

Since we are interested in maneuvers with high angle of attack, we need to
model lift and drag in the stall region too. In the stall region, [|a|| > 15 degrees, we
model the wing as a flat plate in uniform flow, for which C'p = 1.2 for aspect ratios
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1 < L/d <5 and Re > 1.0 x 10%. For the magnitude of the uniform flow we take
the component of the air velocity perpendicular to the wing. The force on the wing
then decomposes into lift and drag as follows:

Cpy =12sinasina _
) ) (5.15)
Cry =1.2cosasina.

This is a very crude approximation, and here a validation with wind tunnel data is
indispensable.

From aerodynamic theory, the effect of the flap is to increase the lift coefficient
by an amount

ACT = 2(r +sin 0y — p,)0, (5.16)

where 6;, = —60 degrees for our flap, which is hinged at the 3/4 chord point, and &,
is the flap deflection.

We find the moment coefficient from the moments of lift and drag around the
center of mass:

C,, = —dCp, sin o + dC'r,, cos a (5.17)

where d is the distance between the center of mass and the center of pressure. A
positive sign indicates a center of mass in front of the center of pressure, that is, a
stable aircraft. We assume here that the center of pressure is constant with angle
of attack, which is true for a symmetric airfoil, i.e. as long as §. = 0. For nonzero
elevator deflection, this assumption breaks down. For the Caltech ducted fan, the
center of pressure is at the quarter chord point, and the center of mass of the
shroud/wing assembly is 0.07 m from the leading edge of the wing. The distance
from the center of mass to the center of pressure then is 0.09 — 0.07 = 0.02 cm.
Hence the aircraft is statically stable.

Figure 7?7 shows the lift, drag and moment as a function of airspeed and angle
of attack, for é. = 0, horizontal flight, zero paddle deflection, and zero thrust. The
plots look qualitatively the same as those obtained from wind tunnel data, Figure
7?7, but the magnitudes are much smaller for the theoretical model. We submit
this is due to the fact that the shroud will experience some lift, and therefore drag,
which adds to the theoretical expressions. The sign reversal in the moment curve
does not take place, due to the assumption of constant center of pressure. At high
angle of attack the center of pressure shifts backward, resulting in static instability.
The decrease and increase in lift beyond the stall angle of attack is predicted by the
theory, as is the notch in the moment curve at the stall angle of attack (15 degrees).

5.5 Flight Modes

Since our experimental apparatus does not allow unlimited travel in the z direction,
we only distinguish between hover and forward flight at constant altitude. This
gives 4 possible transitions, the transition from forward flight to forward flight (at
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Figure 5.5 Theoretical lift, drag and moment on the thrust vectored
aircraft, for V.= 3(-), 6(*), 9(0) and 12(-.) m/s

a different velocity) being most typical for normal flight, the transition from hover
to forward flight being most interesting due to the regime where the wing cannot
carry the weight of the fan. For a mode switch we need to:

1. Determine the desired forward velocity and corresponding pitch and elevator
trim.

2. Calculate a nominal velocity, pitch and elevator profile.
3. Apply to the appropriate controller for the transition.

4. Switch to the controller for the destination flight regime.

The computation time for the second step is determined by the dimension of the
state, and the number of way points desired along the trajectory. For the system
(?7?) it takes about 1 second for 50 points on a PC with a 66MHz Iutel 486 DX2
microprocessor. This is with a controller running in the interrupt loop, i.e. the
typical conditions one would have during flight. The computation time is roughly
linear in the number of way points.

5.6 Pitch Dynamics and Pitch Trim Table

A first simple extension to the model (?7) is to inciude the disturbance terms in the
desired steady state. Even though the model (?7) does not include aerodynamic
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forces, we need to account for these to establish steady-state forward flight. That is,
we need to apply a certain force to balance drag, and can use lift to balance gravity.
If we restrict ourselves to horizontal forward flight, then from the equations (??) we
can determine which forward velocity and pitch angle combinations establish a trim
condition, i.e. lift equal to weight and zero moment. For certain forward velocities
there will be more than one pitch value that establishes trim. One corresponds to
high angle of attack and therefore high drag, one corresponds to low angle of attack,
and low drag. It is the latter solution we are interested in for steady forward flight.
From the forward velocity we calculate the necessary pitch angle, which equals the
angle of attack in horizontal flight, to generate the desired lift. We tabulate the
pitch-speed trim conditions and interpolate from this table to find the pitch trim
corresponding to a certain airspeed. The moment generated by the lift is balanced
by the perpendicular thrust.

5.7 Flat Systems with Perturbations

In this section we investigate some aspects of the approximation of a non flat system
by a flat one. Suppose we have a nominal system that is flat, and generate a nominal
trajectory for it. We design a scheduled controller that stabilizes the system around
the trajectory. Then the error system becomes a linear system plus error terms:

&= Az + Bu+ h(t,x). (5.18)

Note that h(x) contains perturbations to flatness and errors in the linearization,
which might change along the trajectory. Therefore, A(2) may still contain linear
terms in x. Suppose we design a linear full state controller u = Kz which gives us
a quadratic Lyapunoff function V' (z) = 2*Pa such that

V(z) = —2"Qu + 22*Ph (5.19)

for the linear system plus error. Note that most linear controller design techniques
provide a quadratic Lyapunoff function. Now allow a correction in the input: u =
K+ du, then we get

V(2) = —2*Qu + 22" Ph + 22" PBéu. (5.20)
It follows that setting
Sou=-B'h=—(B*B)"'B*i (5.21)

will always decrease the perturbation in the derivative of V. However, this error
might actually be negative and help us decrease V. It is therefore advisable to
check for the sign of this error before applying the correction (??). Moreover, we
can do better: if + ¢ A (B*P), where A" denotes the null space, we can cancel the



perturbation in (??) completely with
Sou = — (2" PB)T2*Ph. (5.22)

Once again, we should only do this when the perturbation is positive. Obviously,
even though the null space of B* P is a thin set, the correction blows up for 2 almost
aligned with the null space. We therefore need to incorporate some switching logic
checking for the magnitude of 2*PB, resulting in a discontinuous control law:

(5.23)

0 otherwise

5 { dout for 2*PB > ¢ and 2*Ph > ()
U =

where ¢ is some bound corresponding to the actuator limits. The theoretical justi-
fication for differential equations with a discontinuous right-hand side can be found
in [?]. Discontinuous control laws are routinely used in sliding mode control [?].

One might even improve on Equation (??) and not only cancel the perturbation,
but make the derivative of V() arbitrarily negative. It is clear that there has to
be some limit to this correction based on actuator saturation and the information
encoded in the controller design. This is a topic of future research.

5.8 Simulations

We try the simple extensions to deal with perturbations to flatness on the model
(77). We use the model (?7) to generate the trajectory, and simulate on the model
(??), which includes aerodynamic terms. We simulate the aircraft with one wing
only. This is because our experimental aircraft is mounted on a stand, and has only
1 wing. For two wings we would simply multiply the wing span by 2.

We denote the angle with the vertical as © = 8 — x/2. Then hover corresponds
to ©® = 0. We plot the nominal (solid) and simulated (dashed) traces of the forward
velocity vg, the altitude y = —z, ©, and the perpendicular (solid) and parallel
(dashed) thrust. The suffix 'd” denotes the desired, or nominal path of a variable.

The maneuver we are trying to follow is a transition from hover to forward flight,
at a speed of 6 m/s, in 6 secs. The corresponding angle of attack that provides a lift
equal to the weight (4.6 N) at this speed is & = 13 degrees or © = —1.34 radians.
Since in the transition regime, the fan cannot lift its own weight, the transition will
result in a drop in altitude in the nominal trajectory.

The controller used to stabilize around the trajectory is a gain scheduled LQR
controller. The scheduling variable is pitch. We design controllers for © = 0.0,
© = 7/2 radians and © = —7/2 radians, and switch with hysteresis between these
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three as follows:
K:=HK_;;if K=Kpand O < -0.77/2
K :=Koif K =K_;/; and © > —0.37/2
K= Koif K = K .y and © < 40.37/2
K=K, pif K=RKsand © > 0.77/2.

(5.24)

The controller has integrators on both v, and z to ensure zero steady-state error,
which is important in set point regulation.

First we examine what happens if we use no model based nominal trajectory,
but try to follow a linear interpolation between hover and forward flight. Figure
?? shows that the lack of an appropriate feedforward term results in severe pitch
oscillations and poor altitude response.
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Figure 5.6 Simulation: maneuver from hover to forward flight, one de-
gree of freedom design.

Next we use the flat system (??) to generate a nominal trajectory steering to
an equilibrium of the nominal flat system. This is obviously not an equilibrium of
the real system, and the effect is displayed in Figure ??. The nominal trajectory
wants to steer back to zero angle with the vertical, and this results in dramatic
excursions in altitude. Note that both here and in Figure ?? we steer to the right
trim conditions due to the integrator on the velocity.

In Figure 77 we generate a nominal trajectory that steers to the right trim
condition, corresponding to (?7). We see clear improvement: the gain in altitude is
significantly less. Notice the nonzero perpendicular force necessary to balance the
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Figure 5.7 Simulation: maneuver from hover to forward flight, two de-
gree of freedom design using flat system.

moment on the wing due to nonzero moment coefficient C,,.

Finally we compensate for the aerodynamic terms by a projection on the input
space as described in Section ??. Figure ?? shows that we get a worse response
if we apply input correction (??). We checked that the perturbation in (??) is
negative most of the time. Figure ?? shows that applying the correction (??) does
give a barely noticeable improvement in performance. Again, we checked that the
correction is zero most of the time.
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Figure 5.8 Simulation: maneuver from hover to forward flight, two de-
gree of freedom design steering to aerodynamic trim.
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Figure 5.9 Simulation: maneuver from hover to forward flight, two de-
gree of freedom design steering to aerodynamic trim, compensating
for aero terms with projection, (?7).
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Figure 5.10 Simulation: maneuver from hover to forward flight, two
degree of freedom design steering to aerodynamic trim, compensating
for aero terms with Lyapunoff, (?7).



Hover to
forward flight: | no correction | Lyapunoff | projection
Figure: 77 77 77
€y 0.0033 0.0044 0.0292
€r, 0.78 0.73 0.97
€g 0.01 0.01 0.02
Forward flight to
forward flight: | no correction | Lyapunoff | projection
Figure: 27 77 7?7
€y 6.46 6.12 17.6
€, 2.82 2.74 3.31
€y 0.04 0.03 0.06

Table 5.1 L, errors for various input corrections

We also examine a more aggressive maneuver from forward flight in the positive
direction, v, = 4+6 m/s to forward flight in the negative direction, v, = —6 m/s,
in 12 seconds. Figure 7?7 shows the response with steering to the appropriate trim
and two degree of freedom design. This is the counterpart of Figure ?7. Figure
7?7 is the counterpart of Figure ?? and shows that adding the projective correc-
tion in Equation (?7?) deteriorates the performance. Figure ?? is the counterpart
of Figure 7?7, and adds the Lyapunoff correction from Equation (?7?). Again the
responses of Figures 77 and 77 are virtually identical, but the Lyapunoff based cor-
rection shows small improvement. Table ?? shows the L, error between nominal
and simulated trajectory for the cases with no correction, with a projective correc-
tion, as in Equation (?7), and a Lyapunoff correction as in Equation (??). Note the
particularly poor response in altitude for all 3 cases. This is because the nominal
trajectory prescribes a nose up pitching motion, and a decrease in altitude at the
same time. These motions are perfectly feasible when no aerodynamic effects are
present, however, due to the aerodynamic lift, the effect of pitching the nose up is a
great increase in lift, causing an increase in altitude. Following the pitch trajectory
is more important than following the altitude trajectory, since pitching the nose up
is the best way to lose speed. Without the effect of drag, resulting from pitching
the wing into the wind, the controller will command a negative thrust to decrease
the velocity, which is impossible, since the propeller only rotates one way.

The projection based correction gives larger errors in both cases, the Lyapunoff
based correction gives a slight improvement. We conclude that steering to the right
pitch trim is crucial. Compensation for aerodynamic forces is not.



80

vxd(-), v(—-) yd(-), y(--)

y [m]

-10
0 5 10 15 20 0 5 10 15 20
time {s] time [s]
thd(-), th(—) fperp(-), fpara(--)
z
o
2
L
-10
-2 -20
0 5 10 15 20 0 5 10 15 20
time [s] time [s]

Figure 5.11 Simulation: maneuver from forward flight to forward flight,
two degree of freedom design steering to aerodynamic trim. not com-
pensating for aero terms.
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Figure 5.12 Simulation: maneuver from forward flight to forward flight,
two degree of freedom design steering to aerodynamic trim, compen-
sating for aero terms with projection, (?7).
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5.9 Experiments

In Chapter ?? we reported that for hover to hover transitions two degree of
freedom design improves significantly over one degree of freedom design. Figures 77
and ?7? show the same experiment for the fan described in this chapter, with and
without feedforward respectively. The results are similar: the use of feedforward
achieves more aggressive tracking. The steady-state error in the attitude is due to
stiction in the stand. To verify that these results are not a stroke of luck, we ran
10 instances of the same experiments, and extracted the minimum and maximum
over all runs for the quantities of interest. Figures ??7 and ?? show the nominal,
minimum and maximum for all traces for the one and two degree of freedom design
respectively. For z, y and @, the nominal trajectory is plotted as a solid line, and the
minimum and maximum over 10 runs are dashed lines. For the forces we plot just the
experimental minimum and maximum and not the nominal trace. The experiments
show good repeatability. The repeatability in the one degree of freedom design in
Figure ?? is remarkable. The traces almost coincide. Yet, the two degree of freedom
design in Figure ?? is consistently better. Apparently, the more aggressive tracking
causes more variation in the trajectories. The altitude response for the one degree
of freedom design is better, most likely because we do not command a change in
altitude, and the stiction keeps the fan from moving up or down. The controller is
not designed to overcome stiction. The two degree of freedom design does command
a change in altitude, from which the controller cannot recover. Hence the poorer
response in altitude for the two degree of freedom design.

Next we report experimental results for the mode switching from hover to for-
ward flight, that was simulated in the previous section. We use the same pitch
scheduled LQR controller as in the simulations. We measure 2, z and © directly,
and obtain their velocities by a digital filter.

Motivated by the simulation results we only compare trajectories that steer
to the right trim without compensating for aerodynamic terms. Figures ??7 and
?? show experimental data for a transition from hover to forward flight at 5 m/s
in 5 seconds, for one and two degrees of freedom respectively. Even though the
nominal trajectory calculated for the flat system and the linear interpolation for the
one degree of freedom design look very similar, the improvement of two degree of
freedom design is dramatic. The linear interpolation went unstable and we had to
cut the power to the fan to prevent damage. Note the significant error in altitude
in Figure 77 which is due to stiction in the stand.

Again, to verify repeatability of the above experiment, we perform 10 runs of
this experiment and collect the minimum and maximum. The result is plotted in
Figure ??. For v,, y and 6 we plot the nominal trajectory as a solid line, and the
upper and lower bound as dashed lines. For the forces we plot just the upper and
lower bound, and no nominal trajectory. The repeatability is remarkable. Since
the one degree of freedom design was unstable, it does not make sense to compare
multiple runs for this experiment.
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5.10 Conclusions

Maneuvers involving transition to forward flight benefit from the use of a feedforward
trajectory based on a flat approximation, provided this feedforward trajectory steers
to the right trim for the nonflat system. Appropriate feedforward terms allow a
smooth transition between hover and forward flight without much change in altitude,
over a regime where no steady state exists.

Through a Lyapunoff stability argument we showed that absorbing the error
between the flat system and the flat approximation in the input may adversely
affect tracking. This is because the error may actually make the Lyapunoff function
decrease faster. If we take the beneficial effect of the error into account, and only
compensate when its effect is adverse, we obtain a small improvement in tracking.

It was shown in simulation and experiment that two degree of freedom design
improves tracking for hover to forward flight transitions.

Much depends on the interplay between controller and feedforward, but in gen-
eral we found that an appropriate feedforward term imposes lower bandwidth and
gain requirements on the actuators. More research is needed to reach a conclusive
answer about the benefits of two degree of freedom design in fast mode switching,
but our preliminary results are promising.
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Chapter 6

Outer Flatness: The Helicopter

6.1 Introduction

This chapter discusses a different way to use the tools of differential flatness on a
system that is not strictly speaking flat. We look at the case where a system can be
split in 2 subsytems. First, there is an outer system, in whose control we are really
interested, but which we cannot control directly. The outer system is driven by an
inner system, which we can control directly, but for which we do not care about
the outputs per se. For mechanical systems, this split can be thought of as a split
in actuator dynamics and rigid body dynamics. We do not care what the internal
state of the actuator is, only that the actuators exert the right forces and torques on
the rigid body. Many models of mechanical systems ignore actuator dynamics and
only look at the outer system. To this extent the split in inner and outer dynamics
is a natural one: it corresponds to leaving out part of the low level dynamics.

6.2 Theory

Suppose we have an input affine system of the form

1= fi(z1) + g1(x1)y2
Y1 = hi(a1)

Ty = fala2) + g2(a2)u (6.2

Y2 = ha(xa), 2)
i.e. the system splits in an outer system with states xy and input y, and an inner
system with states x; and input u. We assume the system is input affine for ease
of notation, but it is not crucial to the following development. The vector y, is not
really an input, in the sense that we have no direct control over y,, but it serves as
an intermediate input to the outer system. The output of the inner system y, is the
input to the outer system, and the outer system depends on the inner system only
through the output ys.
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In Section 77 we will give a geometric definition of outer flatness. For this section
a formulation based on Equations (??) and (??) suffices.

Definition 6.1 (Outer flatness) We call the system (??), (??) outer flat if the
system (77?) is flat with respect to input ys.

Remark 6.2 We can allow f; and ¢, in the inner system (??) to depend on the
outer state z1, at the expense of a more cumbersome notation. The complication is
that the inner error system no longer depends linearly on the outer error. We will
not include this dependency here, but indicate in Remark ?? on what modifications
have to be made to include 2y in the inner system.

If the system is outer flat, we can determine (a1, y9) from y; and its derivatives.
We do not assume the total system is flat. If we can control the inner system tightly
enough, we will follow the desired trajectory for y; closely, and therefore follow the
desired output trajectory for y; closely. What tight enough means will be made more
precise below. See Figure ?7 for a pictorial representation of this configuration.

T

io = flo2) + Glaa)u J &1 = flen) + Glz1)y: T+

u €1

I, ; O G< ¥ K,

Figure 6.1 System structure for outer flatness.

Outer flatness is reminiscent of the backstepping techniques advocated in [?, ?,
?]. Note that in backstepping the inner system has to be minimum phase, and has
to have relative degree equal to 1. We do not a priori require the inner system to
be minimum phase, but it will turn out that in order to make general statements
we will need that condition. This is only natural in view of the results in [?] about
asymptotic tracking. The relative degree requirement in backstepping can be re-
laxed if one considers repeated backstepping, i.e. there is a chain of inner systems
each serving as an outer system to its predecessor. For each level the relative degree
requirement must hold. In backstepping, dependence of the inner system on the
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outer state causes no extra complications, and is routinely included in the formalism.
The structures of outer flat systems and backstepping system seem to be identical.
However, the focus in this dissertation is on trajectory generation, and we will show
in the sequel how outer flatness can be used for this purpose. The two degree of
freedom paradigm advocates decoupled controller design and trajectory generation.
In backstepping, the inner-outer structure determines the control design. We want
to leave the controller design methodology free, and use trajectory generation as
a performance enhancement. We use the inner-outer structure for trajectory gen-
eration, and allow any controller that seems best fit to do the job. Backstepping
is a top down technique: one starts with the outer most system and ends up with
the actuators. Outer flatness is a bottom up approach: we feel that for practical
implementation it is imperative that the lower levels work before a controller for the
higher level is designed. Backstepping is analogous to designing an autopilot before
the aircraft is stabilized. The author of this thesis is not aware of any experimental
implementation of backstepping.

Outer flatness also parallels the dynamic inversion advocated by the researchers
at Honeywell [?, ?]. In dynamic inversion one considers a subsystem of the form

by = fole) + ga(e)u (6.3)

where g,(z) is invertible. This implies that dimz; = dim u, i.e. we have as many
control variables as commanded states. Given a commanded 54, one then inverts
these dynamics by setting

u= g7 (x)(2a — falz)). (6.4)

In outer flatness we do not require that dim 2y = dim u, since if this were the
case for the inner system, the combined inner and outer systems would be flat.
We only require some sort of tracking for the inner system. Dynamic inversion
has been studied mainly in the context of aircraft control, where the pilot controls
the attitude of the aircraft to obtain translational motion. In this case the inner
system is also the total system. In the context of outer flatness we explicitly add
trajectory generation for the outer system. Although dynamic inversion in principle
does allow tracking of arbitrary commands, it only seems to have been applied to
set point changes.

We want to know under what assumptions on the inner and outer system we
can achieve asymptotic or bounded tracking for the outer system, while maintaining
internal stability for the total system. The following development tries to answer
that question.

Suppose we find a nominal trajectory (&, y2) corresponding to an output tra-
jectory i for the outer system. Since the inner system is not flat, we cannot in
general determine a full state space and input trajectory (Zq,u) from i, for the
inner system. Suppose also that we find an exponentially stabilizing control law
Y2 = 92+ KN, (21 — #1) for the nominal outer system with y, as an input, (i.e. with
€3 = 0). Here K, is an operator, not a gain matrix. Then the desired output
for the inner system is y;. Suppose we find an exponentially stabilizing controller
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u = RK;(22,72) for the nominal inner system, i.e. with K, = 0, where again Kj; is
an operator. To simplify notation we assume that ys is a subset of the states x5,
il.e., ¥3 = (y2,&2) for some &, and h(z2) = yo picks off the first dim y, entries of the
state vector. If % # 0 we can achieve this through a coordinate transformation.
Next we set & = d, so that Z, = (72,0) and 73 = (y32,0). This is not necessarily a
feasible trajectory, but corresponds to a one degree of freedom design. Writing

€1 = I — ifl

(6.5)

€3 = Ty — Xy,

using v = T2+ K, (e1) +ez, and assuming that « = K;(22, ¥2) = Ki(a2, G2+ K, (e1))
is linear in e;, we can write the closed loop error system as

e1 = fi(xr) + g1(z1)y2 — fi(@1) — g1(Z1)T2 = Fi(t.er) + Gyt er)ez

. . (6.6)
€2 = fa(®2) + ga(xo)u — Ty = Fy(t, €3) + Go(t, €2)e€q.

Both the inner system with e; = 0 and the outer system with ¢y = 0 are exponen-
tially stable by design of K, and K,.

Without further conditions we cannot conclude stability of the combined system
as is clear from the following example.

Example 6.3 Suppose both ¢; and e, are scalars, and Fy, Iy, G and (5 are scalar
constants. Then the error system (??) becomes

€1 = Fre; + Ghey

. . (6.7)
€2 = Foeq + Glaey

and it is clear that Fy, Fy < 0 does not imply stability of the combined system.

To proceed with our stability analysis, we invoke a Lyapunoff argument. We
will use the converse Lyapunoff theorem (Theorem 4.5 in [?]) which we repeat here
for completeness. See [?] for a comprehensive treatment of stability.

Theorem 6.4 (Converse Lyapunoff Theorem) Suppose x = 0 is an exponen-
tially stable equilibrium of the system

i= f(t.2) (6.8)

with f continuously differentiable on v € Bgr(0) and with Jacobian matrix j—i uni-
Jormly bounded in time on Br(0). Then there exist « Ry > 0 and a Lyapunoff

funetion V(t. &) : [0,00[x B, (0) — R satisfying

allzll; S Vit a) < a3

gV oV ‘ 2

Wer—lf(H) < —CBHJ’HZ (6.9)
oV

1511

IN

call ]2
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for some positive constants c;. Moreover, if the system is globally exponentially
stable and R = oo, then Rg = oo. If the system is autonomous, V can be chosen
independent of t.

Assuming the Jacobians of Fy and Fy exist and are uniformly bounded around
the origin, we can find Lyapunoff functions V;(ez),V,(e1) for the nominal inner
and outer systems, with constants cj;, ¢;,, j = 1,...,4 respectively. We will try
to construct a Lyapunoff function for the combined system using the Lyapunoff
functions for the inner and outer system. In the following, the subscript ¢ refers
to the inner system, the subscript o to the outer system. The candidate Lyapunoff
function V. = V; + AV,, with A > 0 for the combined system still satisfies the
requirements of (?7). The derivative satisfies

‘l‘y(t €1, 62)

IN

. oV, ov;
"/\Co3H€1H2 - Ci3H€2H2 + Al 3 Gi(t,er)ea| + H———() Ga(t, ea)eq]|
1 €2

€

I

=Acosllen|]? = cislleal + Acoallen Gt en)lllleall + culle2 G2t e2)[|[lex])-
(6.10)

Hence,
. ) ‘ /\Cog ——/\CO._;HGl(t,Gl)H ('61”
Vit er,e9) < ‘( ”61H “(’2” ) ( _C'i4”G2(t.€2)” i ) ( HQH >
=l el 2 (21,

€]l

A

Il

(6.11)

Writing p;; for the element in the i-th row and j-th column of the matrix P we
arrive at the following:

Theorem 6.5 (Exponential tracking for outer flatness) Suppose K; and K,
are exponentially stabilizing controllers for the nominal inner system with e; = 0
and the nominal outer system with e; = 0 respectively. Suppose the Jacobians of Fy
and Iy exist and are uniformly bounded in time on some balls around the origin.
Suppose u enters the error system (?7) linearly. Suppose for some X > 0, we have
P11P22 — %(plg +p21)2 >0 forall eq € Br,. €2 € Bp,, where R,, R; > 0 and for all
t > 0. Then we have exponential stability of the combined inner-outer system (7?),

(7?).

Proof: The symmetric part of P is

P11 pratpay o
P, = ( Pratpr) . : (6-12)

b} P22
Since py; > 0. det Py = py1pas — 5(1)12 +p21)? > 0 implies that P is positive definite.
Then V" is a Lyapunoff function for the combined system in a ball around the origin
with radius min(R;, R,), and the combined system achieves asymptotic tracking. l
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Remark 6.6 The condition that the system (??) is linear in e; does not restrict
us to static feedback since we can modify the outer system. If we design a dynamic
controller K',, we can add its states to the outer system. The outer system then
might lose flatness, but we do not care about the nominal trajectory for the controller
states, and can set them to zero. Of course this will slow down the response, since the
nominal trajectory is no longer feasible. If we want to include nonlinear controllers
K,, Theorem 77 essentially still holds. F5 in Equation (??) will now depend on e,
and we need to expand F; in a Taylor series and bound the sum of terms in the
derivative of the combined Lyapunoff function in Equation (??). By restricting e;
to be small, this perturbation can be made arbitrarily small. The notation becomes
cumbersome and we do not elaborate this issue.

Remark 6.7 Theorem ?? is rather academic in the sense that its conditions are
at best cumbersome to check. It is in general hard to find Lyapunoff functions for
systems. The theorem merely serves to show that there are no theoretical obstacles
for the outer flatness approach to work.

Remark 6.8 The perceptive reader will realize that in view of [?], in order to
design an exponentially stabilizing controller for the inner system that works for
arbitrary trajectories, it must be minimum phase. If we are only interested in
particular trajectories we do not need this requirement. In this sense the conditions
for backstepping are also required for outer flatness.

Remark 6.9 The constant A can be used to try to make the derivative of V' nega-
tive.

Next we investigate what happens if we give up exponential tracking for the
inner system, and only require bounded tracking. Suppose there exists a function
W;(t, e2) with

citllea||3 < Wilt, e2) < cinllea|l3
oW oWw;

12 . )
i + e, Fy(t, e2) < —cisllea|l; for [le2]| > R; (6.13)
062 2 S Ciafj€2i]2

that is, W; is a Lyapunoff function with the difference that the derivative is only
negative for large ;. It follows from Theorem 4.10 in [?] that this guarantees
bounded tracking. We call W a bounding function. Now assume that I, still
achieves exponential tracking for the outer system with e, = 0, and let V,, be a

Lyapunoff function for this nominal outer system. For the function W = AV, 4+ W,
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we have:
. 5 ov, ; oW
Wit er,e2) < =Acgllea]]? = caalleall® + M5 =G (t, ex)eall + | 5—=Ga(t, e2)en|
061 ()62
< —Aealler]? - calleal® + AcollenllGa(t, e lleal| +

cialle2lllG2(t, e2)lller],
(6.14)

for |les]] > R;. Hence,

Witere) < = (lleall ezl ) ( _cmllé}(;(:}t,eg)]] —A%Hi(m”” ) ( ”fi” )
== Clleal flet )2 ()

llez|]

A

(6.15)

for ||ea2]] > R;.

Hence we arrive at the following theorem.

Theorem 6.10 (Bounded tracking for outer flatness) Suppose Ky achieves ex-
ponential tracking for the nominal outer system with €5 = 0, and that W; is a bound-
ing function for the nominal inner system with e; = 0 satisfying (?7). Suppose the
Jacobians of Fy and F; exist and are uniformly bounded in time on some balls around
the origin. Suppose u enters the error system (?7) linearly. Suppose there is a X\ > 0
and an annulus R; <1 <||(e1.e2)|] < v2. where pyipas — i(])u +p21)? > 0, for all
t > 0. Then we achieve bounded tracking for the combined inner-outer system.

Proof: Analogous to Theorem ?? we have that since p;; > 0, det P, > 0 implies
that P is positive definite on the annulus. Then W is a bounding function for the
combined system. |

Remark 6.11 Again, this theorem is quite academic, and merely serves to show
there are no theoretical obstacles to the outer flatness approach.

6.3 A Geometric Interpretation of Outer Flatness

To remain true to our definition of flatness in terms of differential geometry in
Chapter 2, we will make the Definition ?? of the previous section more precise by a
formulation in a differential geometric setting.

Definition 6.12 Let I be a control system, (i.e. {I,dt} is integrable), on a manifold
MxUxT. Let I; be asubmodule I; C I on M; XU x T generating a control system.
Let the complement [, (i.e. I = I; % [,) on M, X Y x T also be a control system,
and let the manifolds satisfy M = M; x M, and Y C M;. If I, is differentially flat,
then we call I outer flat with inner system I; and outer system 1.



Remark 6.13 The requirement that Y C M;, translates to the requirement that
the inputs of the outer system are functions defined on the inner manifold.

Remark 6.14 In particular, every flat system is outer flat with I, = {0}.

Example 6.15 The submodule /; is not unique, as is illustrated in this example.
Let

I= {w1,w27w3sw4} (6.16)

= {dxy — xodt, duvy — v3dt, das — (x4 +u)dt,day — (—a3)dt} '
which is outer flat with inner system I; = {wy, w3, w4} or with inner system I; =
{LU3,»J4}

Remark 6.16 If we want to track functions h,(z), we need dh, € I,U{dt} to make
sure that the functions h, are determined by the solution curves of I,.

6.4 The Model Helicopter

The Caltech model helicopter experiment is depicted in Figures ?? and ??. It
i1s a Kyosho EP Concept electric model helicopter with a 30 inch diameter main
rotor, mounted on a 6 degree of freedom stand. For a detailed description of the
experiment, see [?, 7. ?]. We have 5 independent controls: left-right cyclic (aileron),
fore-aft cyclic (elevator), collective pitch (heave), directional (rudder) and throttle
(motor current). The throttle is either ganged to collective, since an increase in
collective pitch angle increases the load on the disk and therefore requires an increase
in throttle, or is regulated around a constant set point by a low level SISO controller.
See [?] for the design of a low level rotor speed governor.

At some level of abstraction we can look at the helicopter as a rigid body actuated
by the thrust of the main rotor and the tail rotor. The tail rotor exerts a thrust
along the body y axis and a torque along the body z axis. The tail rotor force
is small compared to the thrust of the main rotor and we neglect it. The main
thrust is roughly aligned with the body = axis. We can measure the XYZ Euler
angles (¢,0,1) with a Polhemus 6 degree of freedom position sensor described in
[?]. Actually, the sensor measures ZYX Euler angles , but from these we can readily
calculate the XYZ Euler angles, see [?, 7]. The tail rotor torque 7, and the main
thrust T3 then both act along the body = axis and can be transformed to spatial
coordinates by rotations about the y and x axis about angles # and ¢ respectively.
The subscript b indicates that the vector is in body coordinates, the subscript s
indicates spatial coordinates. Note that according to aerodynamic convention the z
axis is positive pointing down, hence T}, < 0 is a thrust upward. Then the thrust in
spatial coordinates is

1 0 0 cosl 0 sind 0
Ts=1 0 cos¢ —sing 0 10 0 . {(6.17)
0 sing coso —sinf 0 coséd T



Figure 6.2 Model helicopter experimental setup.

and similarly for the torque. Writing (,y,z) for the center of mass in spatial
coordinates, the rigid body equations for the model helicopter then take the form

mi Ty sin 6

mij _ ~T, cos Bsin ¢ (6.18)
mz Tycospcosd+mg |’ T
J u T CO8 O cos d

where m is the mass of the helicopter, J is the moment of inertia about the z axis,
and g is the gravitational acceleration. Note that we have no direct control over roll
(¢) and pitch (#) but only through left-right (aileron) and fore-aft (elevator) cyclic
control respectively. However, if we can make the control of roll and pitch tight, we
are exactly in the situation of Equation (??). The thrust 7} and the torque 7, are
real control inputs, the pitch angle 6 and the roll angle ¢ are pseudo inputs. We
will present the dynamics for pitch and roll below.

Note that the outer system is flat since from (2, y, =, ¥») we can recover the inputs
and pseudo-inputs through:

IT)? = m?(#2 + 2+ (5 - 9)})

. mi
f = arcsin —
b
J .omi (6.19)
¢ = —arcsin ————
Ty cos @
L”V

|7]

Jcospcosf’

We cannot determine the sign of Ty, since flying right side up with positive thrust
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cannot be distinguished from flying upside down with negative thrust. We will
assume that the the helicopter always flies right side up.
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Figure 6.3 Kyosho Concept EP30 model helicopter on stand.

Figure 6.4 Kyosho Concept EP30 model helicopter.
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6.5 Identification of Hover Dynamics

The model for the roll and pitch dynamics cannot be obtained analytically, and we
resort to linear identification with experimental data around hover. See [?, ?, 7]
for a treatment of linear ID, and [?] for a more detailed treatment of the ID of the
helicopter. The equation for yaw (¢) in Equation (??) is not very accurate, since
we do not command the yaw torque directly, but rather the pitch angle of the tail
rotor blades. Therefore we include the yaw dynamics in the linear identification.
Note that substituting the yaw acceleration in Equation (?7?) by

v = cos ¢ cos 8( Ao, 0, ¢, p, ¢, 7]+ Bs[ba, 6., 6,]) (6.20)

does not disturb flatness of the system (?7). Here §, ., are the aileron, elevator and
rudder servo input respectively, and Ag and Bg are constant vectors of appropriate
dimensions, obtained from the linear identification.

Since the sampled data is discrete time, we undertake to identify the dynamics
for roll, pitch and yaw in discrete time. If we write p , ¢ and r for the roll, pitch and
yaw rates respectively, and d,, d., 0, for the aileron, elevator and rudder respectively,
then the state becomes o = [¢, 8, v, p, ¢, 7], the input becomes u = [64.0..8,]7 and
we need to identify a system of the form:

x(k+ 1) = Ax(k) + Bu(k)

) {6.21)
y(k) = Ca(k).
If needed the discrete time model can be transformed to continuous time.
We impose the following model structure on the angular dynamics:
M1 0 0 I, 0 0
0 1 0 0 7, 0
0 0 1 0 0 T
A=
41 a4 0 44 0 a46
0 as2 0 0 asy 0 )
L 461 Qg2 Ug3 a4 des Qg6 J (6‘22)
(6, 0 0
B=|0 b, 0 |,
I
C' - [[3 03},

where T is the sampling period. The particular structure of the 4 matrix was
obtained by examination of the standard deviation and repeatability of the various
coefficients over different data sets.

Running the prediction error method (PEM) described in [?, 7, 7], we arrived
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at the following values for the coefficients:

[ 0 0 002 0 0 7
0 1 0 0 002 0
A 0 0 1 0 0 0.02
: —-0.12 —0.08 0  0.82 0 0.02
0 001 0 0 075 0
| —0.18 —0.08 —0.14 —0.02 0.10 0.89 | (6.23)
(037 0 0
B=| 0 -083 0 |,
0 0 —2.03
6'2[1303].

6.6 Simulations

In the forthcoming simulations we use the inner model (roll and pitch dynamics)
from the linear identification, Equation (??), and the outer model from Equation
(?7) with the yaw dynamics replaced by the linear dynamics from (?7).

We design LQR controllers for the inner and outer system, and use the structure
of Figure 7?7 to simulate the system. In order to stabilize the system we need the
inner system to be faster than the outer system. This does not follow straightfor-
wardly from Theorems ?? and ??, but is intuitively clear. For LQR controllers,
this translates into higher weights on the states for the inner system than for the
outer system. If we put higher weights on the outer system than on the inner sys-
tem, the simulations go unstable. Figures 77 and 7?7 show a step response of 0.4
m in 2 seconds in the & (forward) direction, for a two and one degree of freedom
controller respectively. In these and subsequent plots, the nominal trajectory from
Equation (??) is plotted as a solid line, the commanded trajectory for the inner
system is plotted as a dotted line (this is the trajectory y; from Section ??), and
the simulated system response is plotted as a dashed line. We see that the effect
of two degree of freedom design is a great improvement of performance. Figures
7?7 and ?7? show simulated step responses of 0.4 m in 2 seconds simultaneously in
the 2 (forward) and y (sideways) directions, for a two and one degree of freedom
design respectively. Again, the two degree of freedom design improves performance
significantly. We conclude that the simulations validate the outer flatness approach.
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Figure 6.5 Simulation: two degree of freedom controller. Solid: nomi-
nal, dotted: commanded, dashed: experimental. Step sideways.
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Figure 6.6 Simulation: one degree of freedom controller. Solid: nomi-
nal, dotted: commanded, dashed: experimental. Step sideways.
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Figure 6.7 Simulation: two degree of freedom controller. Solid: nom-
inal, dotted: commanded, dashed: experimental. Simultaneous step
sideways and forward.
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Figure 6.8 Simulation: one degree of freedom controller. Simultane-
ous step sideways and forward. Solid: nominal, dotted: commanded,
dashed: experimental.
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6.7 Hover Control Design

We transformed the model (??) to continuous time with a Tustin a method, and we
designed an H™ controller for roll, pitch and vaw. The structure of the #°° controller
is depicted in Figure 77,

disturbance reference

+ 1'(?11 -

S\ - pitch + C
}7&“!
+
u
controller error
Wi Wy

Figure 6.9 Structure of the H controller for the attitude dynamics of
the helicopter.

The weighting functions W}, and W, are 3 x 3 diagonal transfer functions that
penalize control effort at high frequencies and tracking error at low frequencies
respectively. The diagonal entries of W}, and W), have the form

i S+ fri
Vig = Kpyj——22
Wi = K =00, .
) s+ 100f, (6.24)
W/pi = [\mT
) pi

where the values of the coefficients are tabulated in Table ?7.

Our #* design was not able to eliminate an unstable coupling between roll and
vaw without sacrificing yaw performance. We therefore conducted a separate loop
shaping design for the SISO system with rudder as input and vaw as output. This
eliminates the feedback from roll to vaw. This system is obtained by taking the
appropriate entries from model (77).

We tested the disturbance rejection properties of this controller by tapping on
the frame. The results are shown in Figure ??, where the times at which the
disturbances were applied are marked with vertical lines. The step responses for
this controller are shown in Figure ??. Tt can be seen that the speed of the response
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Langle | Ky [ Jii [ Ko [ fyi ]
roll 200 | 6 0.1 |4
pitch | 200 | 6 0.05 | 4
vaw | 200 | 4 0.01 | 4

Table 6.1 Parameter values for the weighting functions in (?7?)

is not as tight as might be hoped for.
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Figure 6.10 Experiment: disturbance rejection with LQR/LS con-
troller. Disturbances indicated with vertical lines.
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step response
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Figure 6.11 Experiment: step responses with LQR/LS controller. Ref-
erence signal is dashed, measured response is solid.

6.8 Experiments

For safety reasons, the helicopter is mounted on the stand depicted in Figure 77,
and the range of roll, pitch and yaw rotation and lateral translation is restricted
by strings. The rotor spins at about 1200 rpm, and when it hits something, the
helicopter crashes, usually damaging the blades and the tail boom. Unfortunately,
the stand dynamics are not negligible. The lower arm link adds to the weight,
exceeding the maximum payload of the helicopter. We mount springs at the elbow
joint to compensate for some of this added weight. Since the springs contract as the
helicopter takes off, the buoyancy compensation decreases with altitude, resulting in
an increased weight at higher altitudes. The friction in the elbow and shoulder joints
turned out to be bigger than the drag for low lateral velocities. The helicopter then
wants to rotate about the elbow joint only, since rotation about the shoulder joint
constitutes a pure addition of friction. This translates into a preferred direction
of lateral motion on the circle prescribed by the lower arm with the elbow joint
pinned. This can be remedied by restricting the helicopter to level flight with the
wrist resting on the floor. By extending the springs we can increase the effective
weight of the helicopter beyond its maximum payvload. The friction of the wrist on
the floor will then dominate the friction of the elbow and shoulder joint, so that
there is no longer a preferred direction of lateral motion.

We found that the vertical and yaw dynamics can be controlled independently
from the horizontal and pitch-roll dvnamics. This is since we have 2 independent
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controls for heave and yaw: namely the collective pitch and rudder respectively.

We therefore restrict attention to (,y) translation induced by (pitch,roll) rota-
tion in this section, effectively resulting in 5 degree of freedom motion: 3 angular
degrees of freedom and 2 and y translation.

We compare the two degree of freedom design with the one degree of freedom
design for a step in the y (sideways) direction in Figures ?? and ?7 respectively.
The nominal trajectory computed from the flat system (??) is plotted as a solid line.
The nominal trajectory for the inner system (the roll and pitch dynamics) plus the
controller correction from the outer system is plotted as a dotted line (this is the
desired trajectory y; in Section ??). The measured position is plotted as a dashed
line.

We see that the response for the two degree of freedom design is slightly less
oscillatory, but the improvement is not substantial. Both designs leave a large
steady-state error, due to the stiction of the wrist on the floor. We think the poor
performance is due to the slowness of the roll and pitch dynamics, as could be
seen from Figure 7?7. The helicopter cannot follow the commanded pitch and roll
commands. Also the friction in the joints and the stiction from the floor represent
unmodelled dynamics. One might suggest to increase the time interval over which
the step is commanded, to decrease the frequency content. This has the undesired
effect of decreasing the amplitude of the nominal roll and pitch command, making
the two degree of freedom design indistinguishable from the one degree of freedom
design. Another possibility to maintain amplitude with decreasing frequency con-
tent, is to use larger values for the inertial masses than for the gravitational mass.
Just as for the ducted fan, it is easy to see that this does not disturb flatness of
Equation (?7). This solution is totally ad hoc and will not be pursued here.

Figures 77 and ?? show the two and one degree of freedom respectively for a
step in the 2 (forward) direction. The same conclusions hold as for the sideways
step.
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6.9 Conclusions

In this chapter we introduced the notion of outer flatness as a two-layered system
structure with a flat outer system and a non-flat inner system. We compared outer
flatness with the existing methodologies of backstepping and dynamics inversion.
We proved two theorems expressing the conditions for exponential tracking and
bounded tracking of the total system, assuming exponential tracking for the outer
system n both cases, and exponential and bounded tracking for the inner system,
respectively. The conditions of the theorems are cumbersome to check, but they
show that there are no theoretical obstructions to the application of outer flatness.

We applied outer flatness to the Caltech model helicopter experiment, for which
we performed linear ID and hover controller design. Simulations showed that outer
flatness is a valid approach, although the experiments showed that there is not much
gain over a one degree of freedom approach, due to slowness of the inner dynamics.
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Chapter 7

Conclusions

7.1 Summary

The theoretical foundation for differential flatness in terms of exterior differential
systems is given in Chapter 2. This chapter also proves some theorems on flat sys-
tems in the geometric framework. In particular, it is shown that flatness is equivalent
to feedback linearization in an open and dense set. A complete characterization of
flatness for single input systems is given. It is shown that for single input time
independent systems we can always take the flat inputs independent of time. The
chapter also gives examples of flat systems.

Chapter 3 presents some important trajectorv generation problems for differ-
entially flat systems and algorithms to solve them. It presents the point-to-point
steering problem, the least squares approximation problem, and the cost minimiza-
tion problem. It also presents the software library that implements these algorithms,
and analyzes the computational complexity of the algorithms and indicates typical
computation times. The software is demonstrated through simulations and experi-
ments.

Chapter 4 presents the real time trajectory generation problem, and two algo-
rithms to solve it for differentially flat systems. One is based on repeated point-
to-point steering, with a receding horizon destination, the other one is based on
additional cost minimization. Again, simulations and experiments validate the al-
gorithms.

Chapter 5 presents some extensions to deal with perturbations to flatness, and
validates these in experiment and simulation. The extensions are illustrated with the
problem of mode switching for a thrust vectored aircraft. Mode switching involves
a strongly nonlinear transition between substantially different flight regimes. It is
concluded that steering to the right trim condition for the aircraft is crucial, but
compensating for the perturbation by absorption in the input is not. The results
are explained with a Lyapunoff argument.

In Chapter 6 we define outer flatness as a two layered structure where the outer
layer is flat, and the inner is not. Outer flatness is compared with the similar
concepts of backstepping and dynamic inversion. We present two theorems on the
type of tracking (bounded or exponential) achievable based on tracking properties
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of the inner and outer system and additional conditions. We present the helicopter
experiment as a test case for outer flatness.

We reiterate some of the philosophical points of this dissertation. A recurring
theme in this work is its emphasis on software tools and experimental validation.
New theory in engineering disciplines needs software tools to be accessible to the
engineering community. Without software tools, much potentially useful theory just
dies on the shelves. For linear control, much research is directed toward the devel-
opment of good software. For nonlinear control, this effort is largely absent. In this
thesis we undertook the development of a software library for trajectory generation
problems for differentially flat nonlinear systems. Much work remains to be done,
mainly to extend this library to nonflat systems. By the same token, new theory
in engineering disciplines needs to be validated in experiments. Actual implemen-
tation of theory is an objective test of its usefulness, and implementation problems
are important indications for rewarding directions of research. This dissertation
systematically tested new theory on experiments.

7.2 Future Research

Most of this dissertation focuses on differentially flat nonlinear systems or approxi-
mations thereof. As of yet, no general test for differential flatness exists. Therefore,
an obvious direction for future research is the formulation of such a test. This is
no easy task, since it was shown in Chapter 2 that differential flatness is equivalent
to dynamic feedback linearizability in an open and dense set, and many excellent
researchers have devoted much effort to finding a test for dvnamic feedback lineariz-
ability without much success. However, see [?] for a special case. It is the belief of
this author that a more promising approach is to find approximating flat systems
and use the techniques described in Chapters 5 and 6.

Another approach to trajectory generation is the development of fast code that
solves the two point boundary value problem resulting from optimal control. Some
promising work has been done by [?, ?, ?, ?], using sparse matrix algebra and
collocation (direct) methods. This allows solving the trajectory generation problem
in its full generality. It remains to be seen to what extent this is amenable to real
time implementation. The iterative character of the collocation method seems to
lend itself well to real time implementation. The grid of collocation points can
be made fine for the immediate future, and coarser for the more remote future,
constantly being updated as time moves along and new trajectory input becomes
available. We believe that this offers the most potential for two degree of freedom
design.

An issue not explicitly addressed here is the incorporation of uncertainty in the
trajectory generation stage. Some researchers, [?, ?, ?], have studied the robustness
analysis of nonlinear systems along a given trajectory, but the synthesis problem
remains untouched.



Appendix A

Basics of Nonlinear Geometric Control Theory

Arguably the most popular approach to the control of nonlinear systems is provided
by feedback linearization [?, ?]. The theory of feedback linearization is well known,
but will be repeated here for completeness and future reference. The system under
consideration is

.7.'

Y

fla) +g(x)e

” (A1)

I

where 2 € R", v € R™, y € R™. The function f and g are assumed to he C'™
and the matrix g is full rank. Note that the system is affine, i.e. the right-hand
side is linear in the input. Non-affine systems can be transformed into this form by
adding integrators to all inputs. The geometric properties of the extended system
are identical to the original system. Note also that the above system is square, i.e.
the number of inputs equals the number of outputs.
Nonlinear control theory borrows many tools from differential geometry. The
Lie derivative of a function A with respect to a vector field f is the function
ohT
Lih=— f. (A.2)
! oz /
The Lie derivative of a vector field ¢ with respect to a vector field f is the vector
field
dg
Lig=—F. A3
9= 7 f (A.3)
The k-th Lie derivative of a function h with respect to a vector field f is defined
recursively as the function

Lyh=L;L57'h, (A4)

and similarly for 2 vector fields. The Lie Bracket of two vector fields f and ¢ is the
vector field
af

Sog =L/~ Lyg. (A.5)

_ 9
[f,9]= E)?f‘
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The system (??) is said to have well defined vector relative degree v at a point
xo if there exists a vector of integers v = (y1,...7,) € N such that the decoupling
matrix

Bij = Ly, L} ™ hy(2) (A.6)

has full rank m at z¢, and LgJL’jih,Z»(:c) =0fori=1,....m, j=1,....m, k =
0,...,7;—2for all 2 in a neighborhood of 2. If the system has well defined vector
relative degree it takes the form

yi) Ly
: = : + B(2)u =: a(z) + B(2)u
(v ) v (A.T)
yn{ m Lj h’m
n=p(x)+q(x)u.
Applving the feedback transformation
u= B (2)(~a(z) +v), (A.8)
and state coordinate transformation
(&) = v(x), (A.9)
where &€ = (y1...., y;w‘l—l). B T .,yy(ﬁ'm_l)), puts part of the system in linear
form:
& =¢
=&
f;l =0
(A.10)

f;;n = ("771
n=pn&)+qn e
Y = SCZI

where dim(n) = n — ) v, If >4, = n the system (77?) is feedback linearizable
by static state feedback. This means that we can transform the system into a
linear system by a coordinate transformation and a feedback transformation. If
> 7: < n then the remaining dvnamics for 5 are called the zero dynamics, or the
internal dynamics . We call a system minimum phase if the zero dynamics are
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asymptotically stable. This term originates in linear systems theory, where stability
of the zero dynamics is equivalent to all zeros being in the left half plane, resulting
in the minimum phase for a given magnitude of the transfer function. If the zero
dynamics are not asymptotically stable, the system is called non-minimum phase.
Sometimes the term mazimum phase is used for systems whose zero dynamics are
minimum phase in reverse time, i.e. the linearization has all zeros in the right half
plane.

Let Yyn(t) = {yd(f),...,yC(IN)(t)} be a class of desired trajectories and their
derivatives up to some order N. Let () be a compensator of the form

Z=a(x,z,Yqn) (A.11)
U = 0{((6, z, }’dN)' |

We say that a control law Q achieves exact tracking of trajectories in Yy for the
system ?7 if y(t) — yq(¢) = 0 for all ¢ for some initialization of the controller state z.
The control law achieves asymptotic tracking for the system if lim,—, . (y(t)—y4(t)) =
0 for all y; € Ygn and the equilibrium (0, 0) of the unforced system

i = f(2) + g(x)ale, =,0)

i=a(x,z0)

(A.12)

is asvmptotically stable. These definitions for exact tracking and asymptotic track-
ing are taken from [?]. We say an algorithm achieves asymptotic trajectory gen-
eration for a class of signals Y if the algorithm generates from y; € Y a feasible
full state and input trajectory (x4, uq) such that lim, .. h(z4(t)) — ya(¢) = 0 for all
yqs €Y.

We can transform a desired trajectory to the new £ coordinates, and implement a
linear tracking control that guarantees asymptotic tracking of the desired trajectory:

,}’1_1 . .
v =&+ Z (& = &) (A.13)

J=1

with the polynomials A% — 3" ¢; A/ Hurwitz for all i. If the zero dynamics are stable,
internal stability of the total system is guaranteed. In that case, the error system is
asymptotically stable around the origin, hence we achieve asymptotic tracking for
all trajectories.

Grizzle et al. [?] present a fundamental result on the necessity of stability of the
zero dynamics for asymptotic tracking. We repeat this result here for completeness.

Theorem A.1 (Grizzle et al., [?]) Given a system of the form 77 satisfying the
following conditions:

1. The system is analytic.
2. The system possesses a zero dynamics manifold.

3. The system is left invertible.
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4. The system has a controllable linearization.

and let Y (e, N) = {y(t) | ly)]] < &..,ly™N@)|| < ¢ Vt}. Then a necessary
condition for asymptotic tracking of signals in Y (¢, N) for any N and € is that the
system have asymptotically stable zero dynamics.

Note that this theorem shows that we cannot achieve asymptotic tracking even
by decreasing the magnitude of the desired outputs and their derivatives. To achieve
asymptotic tracking we need to relax either the analyticity requirement, or reduce
the set of desired trajectories, or resort to some approximate scheme.

Recall (see [?7]) that a left inverse of a system ¥ is a system T, (the left inverse)
that reconstructs the unique input that leads to a given output of ¥, given that
output and the initial state. The dual problem of finding a (possibly non-unique)
input to ¥ that produces a desired output of ¥ given that output and the initial
state is called right inversion. A system Xp that performs this inversion is called a
right inverse.

Recall (see [?]) that a zero dynamics manifold for the system ?? is a C'! manifold
Z* of R™ containing the origin and satisfving

1. Z* C h7H(0).
2. flze CTZ* + span{g}.
3. Z* is locally maximal with respect to 1) and 2).

The system has a zero dynamics if in addition there exists a unique function a* such
that f*:= f+ ga*|z is tangent to Z, a* is C'! and o*(0) = 0.

If the zero dynamics are not asymptotically stable, we can find a trajectory in
an arbitrarily small ball around the origin of the state space that we cannot track
asymptotically. Intuitively this can be understood by realizing that this trajectory
excites the zero dynamics, and the system will have to give up tracking to maintain
internal stability. If we are balancing a broom stick on our hand, it is clear that we
cannot follow arbitrary prescribed motions with our hand. Sometimes we have to
maneuver to keep the broom stick balanced, resulting in loss of tracking.

The relevance of Theorem ?? for trajectory generation is born out by the fact
that trajectory generation combined with a linear controller K based on the Jacobi
linearization of the plant will achieve asymptotic tracking of signals in Y (e, N) for
N large enough and ¢ small enough. This follows from Lemma 4.5 in [?] and the fact
that the higher order terms in the error system for x — z; are uniformly Lipschitz in
time for desired signals in Y (¢, N'). Hence asymptotically stable zero dynamics are
also necessary for real time trajectory generation, unless we relax the conditions of
Theorem ?? somehow,
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Appendix B

LIBTG: C-routines for Trajectory Generation
for Flat and Approximately Flat systems.
Version 1.0

B.1 Introduction

This appendix describes a set of libraries in C for the generation of trajectories
for flat and approximately flat systems. The code is available as a gzipped tarfile
through anonymous ftp from avalon:/pub/vannieuw/software/trajgen.tar.gz.
There are three main libraries. The first one, 1ibnr2.a, is a modified subset of
routines from the Numerical Recipes in C.. They are modified for speed and pseudo
real-time execution. The second one, libmatrix2.a is a set of matrix routines.
The third one, 1ibtg.a contains the proper trajectory generation routines. The
application of the software in trajectory generation is explained in the paper [?],
and in Chapter 3 and 4.

The functions in libtg.a have the format TG_nn_mm() where nn is a prob-
lem class, and mm is the particular function within that problem class. Example:
TG_cost_compcoeff () would compute the coefficients in a cost minimization prob-
lem.

Each data structure dd has associated with it the following functions:

TG_.dd_create(dd, pars)
TG_dd_free(dd)
TG_dd_print(dd, text)

which create, release and print the data structure respectively.
The directory structure is as follows:

/trajgen
/include : header files
/lib : all 1libraries
/src
/nr : source code for Numerical Recipes
/matrix : source code for matrices

/tg : source code for trajectory generation
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/examples : examples of physical systems

/trajdata : trajectory data files

/util : utilities for testing functions in the examples
/matlab : m—files for displaying data
/doc : documentation

The examples directory contains examples of a kinematic car, a ducted fan
engine with full position information, and the ducted fan engine where we ignore
the horizontal position coordinate. The subdirectory util contains routines to test
some of the subroutines related to the physical modelling of the above examples. It
makes a table with the lift and drag coefficients for the ducted fan for instance. The
directory matlab contains some plotting and analysis routines to display the data
in examples/trajdata.

You need to enter a lot of data particular to your problem to use these routines.
Rather than entering everything through endless parameter lists, I kept some im-
portant variables global. It will be clear from the examples which variables you need
to update to tailor the routines to your problem. You are encouraged to look at
the source code and add features where you need them. Consider the code offered
here as a framework vou need to fill in, and can modify, much like the Numerical
Recipes. Re-compilation will be trivial with the provided makefiles.

The code is infested with if (verbose>n)printf(....); to print interesting
statistics using the matrix print functions. These are left in on purpose, for your
convenience. It is true that the if() statements entail a performance penalty,
but this penalty is small and can be completely avoided by using #ifdef VERBOSE
.. .#endif preprocessor statements around the appropriate code fragments.

B.1.1 Notational Conventions

File names, function names and variable names are in typewriter font. The
notation 1..n indicates a range of integers from 1 to n. We indicate the dimensions
in the order (number of rows, number of columns) of a matrix A by size(4) =
{ar, nc).

B.1.2 Acknowledgments

Funding from NASA and AFOSR is gratefully acknowledged. Thanks to Michael
Kantner for writing the trajectory data structure and trajectory functions code.

B.2 Numerical Recipes in C’

This section describes a modification to a subset of the Numerical Recipes in C [?].
Please buy a legal copy of the Numerical Recipes to use these modified routines.
The following subsections describe the modifications.



B.2.1 Caveats

The routines still use array indexing from 1..n. I hate this as much as the next
guy, but it is too much of a pain to chase through all the changes.

B.2.2 Floats Replaced by Doubles
All floats are replaced by doubles.

B.2.3 Array Allocation

All memory allocations for arrays are done at the first call of the routine, or in
subsequent calls when the parameter indicating array size has increased. This is
done by declaring a static integer indicating the size which is initialized to 0. Al
arrays are also declared as static. Most of the Numerical Recipes routines are called
many times in a row with the same size parameter. The above procedure therefore
saves a considerable amount of time. It also enables the routines to be run in real-
time. The disadvantage is that at any one given time the memory requirements
are bigger: all arrays coexist simultaneously in memory. There is no way around
this tradeoff between memory and computation time. For our application, speed is
more important. The user has to make sure all memory is allocated in a background
process before the routine is called real-time. This is achieved easily by calling the
routine once with appropriate size parameter.

We thought about writing for each routine a companion routine that would just
allocate the necessary memory, or passing a flag argument to all routines that would
make the routine allocate memory and then return. This means the user would have
to track down the calling hierarchy of all Numerical Recipes routines. After some
testing we found that this was tedious. The current setup allows the user to call
the routine with the exact same arguments as in real use, without the headache of
tracking down the internal working of the routine. We judged this preferable to the
first approach described above.

B.2.4 Maximum Number of Iterations

The Numerical Recipes define a constant MAXITER at the beginning of all routines
of iterative nature. It would indiscriminately abort the entire program to the op-
erating system if MAXITER was exceeded. The modified routines pass MAXITER as a
parameter. If MAXITER is exceeded, the routine will always return the best solution
found so far, and call the function nrsofterror(). This routine is by default one
that prints an error message to stderr, but can be redefined by the user to an
appropriate alarm call. It should be redefined if the code is to be called in real-time
routines, since printf{) statements are too slow to be executed in an interrupt
loop.
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B.3 Matrices and Trajectories

B.3.1 Introduction

There are several data structures defined to store information. The more complex
ones pertaining specifically to trajectory generation will be introduced in later sec-
tions. In this section we introduce utilities to deal with matrices and trajectories.

B.3.2 Matrices

A matrix is simply a pointer to a column of pointers. Each pointer in the col-
umn points to a row of the matrix. A more sophisticated matrix data structure
would have the dimensions as members and a flag for complex or real data. For
compatibility with Numerical Recipes, we abstain from this.

Many matrix libraries have been written, and they all do a standard set of op-
erations, plus more or less extra fancy ones. It seems ridiculous to have yet another
set of matrix routines for this library, but we need to to maintain compatibility with
the Numerical Recipes. The matrix library uses the Numerical Recipes library de-
scribed above for inversion and singular value decomposition. Indexing is therefore
still from 1..n, for compatibility with this library. The standard routines include
matrix and vector allocation, addition. subtraction, multiplication, scaling, transpo-
sition, dot products. The more fancy routines are described below. See matrix2.h
for a complete listing of the functions.

Pseudo Inverse

We compute pseudo inverses with the routine
pseudo_inv(double **Adest, double *#*A, int nr, int nc)

which will dump the pseudo inverse of A into Adest. size(A) = (ar, nc). It
is smart enough to decide between Adest = A*(AA*)~! if nr<nc, and Adest =
(A*A)~1A* if ncr>nc. It returns Adest = A7 if nc = nr. Allocates memory for
storage arrays.

Projection Matrices
We can compute a projection matrix with the routine
int project_mat(double **P, double **A, int nr, int nc)

which computes the matrix P = (I — A*(AA*)~14) if nr<nc, and returns with exit
code 1. If nr>nc it sets P = 0, and returns with exit code -1. Projection matrices
are useful in constrained optimization: in that case we need to project the gradient
onto our constraint manifold at every step.
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Projection of Vectors

The function

int project_vec(double *y, double *x, double **A,
int nr, int nc, double *b)

computes y = Px + Afb, where P = (I — 4*(4A4*)"'A) is the projection matrix
associated with A. This is the projection of 2 onto the plane Ax = b. This func-
tionality is useful for constrained optimization. size(A) = (ar, nc). If nr<= 0
there are no constraints, y = x, and the return code is 1. If nr>nc, there are more
constraints than free variables, y = 0 and the return code is -1. A faster version of
this routine is

int project_vec_f(double *y, double **P, double *x,
int nra, int nca, double **Aps, double *b, int nrb, int ncb)

with the projection matrix P and the pseudo inverse Aps already precomputed.
size(P) = (unra, nca), size(Aps) = (nrb, ncb). It effectively computes y =
P.x + Aps.b. This is useful since we usually need to compute the projection and
pseudo inverse for other purposes too, so we might just as well use them here.

Nullspace

The nullspace of a. matrix can be computed with

int nullspace(double **Fnull, double **F, int nr, int nc,
int nulldim, double svdeps)

which writes the nullspace of F in Fnull. size(F) = (anr, nc). It does this with
a singular value decomposition. If svdeps > 0.0 it will compute the eigenvectors
corresponding to singular values less than svdeps, and return 1. If svdeps < 0.0
and nulldim > O it will compute the eigenvectors corresponding to the nulldim
smallest singular values, and return 2. If both svdeps < 0.0 and nulldim <= 0 it
will return -1.

Copying Matrices
Basic matrix copying is done with
int copy_dmatrix(double **matdest, double **matsrc, int nr, int nc)

which will copy matrix matsrc into matdest. size(matsrc) = (nr, nc).
It is often convenient to compute a small matrix and copy it to some location in
a bigger matrix. This can be done with

int copy_dmatrix2(double #**matdest, double **matsrc, int r0, int ri,
int c0, int ci1)
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which will copy matrix matsrc to location (r0, c0) in matrix matdest. size(matsrc)
= (r1-r0+1, c1-c0+1). Returns (ri-r0+1)(c1-c0+1), the number of elements
copied.

Basic vector copying is done with

int copy_dvector(double *v1, double *v2, int n)

which copies vector v2 to vector vi. Returns n, the number of elements copied.
size(vl) = (n).
Copying to an arbitrary location can be achieved with

int copy_dvector2(double *v1, double *v2, int r0, int ril)

which copies vector v2 to location (r0) in vector vi. size(v2) = (ri1-ro+1).
Returns ri-r0+1, the number of elements copied.

B.3.3 Trajectories

The trajectory code has been written by Michael Kantner, with some minor addi-
tions by me. A trajectory is basically an array, where time indexes the rows, and
states and inputs index the columns.

typedef struct trajectory_data {
double *time;
double **data;
int current;
int nrows;
int ncols;
int flag;
} TRAJ_DATA;

Here, time contains the time point, data contains the trajectory data, nrows and
ncols indicate the dimension of data (NOTE: time is not included in the number
of columns count). current is a pointer to the last evaluated trajectory point. See
traj.h for a list of all the utilities operating on trajectories.

B.4 Basis Functions

We expand trajectories in a basis, and perform calculations on the coefficients of
those basis functions. A BASIS is a structure

struct basis_struc{
double (*func)(int order, int der, double arg,
struct basis_struc *);
int numbasfun;
double t0, t1;
double **mat;
void *custom;
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where func return the value of the der-th derivative of basis function number order,
at time arg, and has access to the parameters of the basis through the last argument.
numbasfun is the number of basis functions in the basis, t0, t1 are the initial and
finite time of the interval on which the basis is defined, mat is a matrix of coefficients,
the meaning of which depends on the basis functions, custom is an arbitrary pointer,
the meaning of which depends on the basis.

A reqular basis is a set of polynomials with zeros equally spaced over the basis
interval. To initialize a basis of regular polynomials, use

BASIS *TG_bas_initregular(int numbasfun)

which will fill the matrix in the BASIS with the coefficients of the polynomials, each
row representing a polynomial. Currently, only the regular basis is implemented.
Feel free to add more bases and send me the code.

The function

int TG_bas_free(BASIS *basis)
releases the memory taken by the BASIS basis. The function
int TG_bas_print(BASIS #*basis, char #*text)
prints some statistics on a BASIS. The function
int TG_bas_setinterval (BASIS *basis, double t0, double t1)

sets the initial and final time on the interval, i.e. basis->t0 and basis->t1.
Given a basis, we want to evaluate several function values, or vectors of function
values. The function

double TG_bas_evalpoint(BASIS *basis, double x, int nder,
double *coef)
evaluates the nder-th derivative of a function written with respect to a basis at a
point. The coefficients of the function are stored in coef. So it returns y_. a.;qb}lder(m).
If we want to evaluate a function value and its derivatives at a point, we use the

function

double TG_bas_evalflag(BASIS *basis, double x, int maxder,
double *coef, double *flag, int *numbasfun)

which evaluates the 0-th through the maxder-th (inclusive) derivative of a function
expanded in basis BASIS at a point x and puts the result in flag: flagl[i] =
2 (1{,0‘(/2)(1‘).

To get the values of all separate basis functions and their derivatives at a point,
we can use the function

int TG_bas_evalmat (BASIS *basis, double x, int maxder,
double **mat)

which evaluates a matrix of derivatives of basis functions in the basis BASIS at a
point x and puts the result in mat. mat[i] [j-1] = @(,-1)(11‘). where 1 = 0. .maxder,
j = 1..numbasfun. Note the reverse order of the indices: a row corresponds to a
derivative, a column to a basis function. Note also that the matrix mat is indexed
as mat[0. .maxder] [0. .numbasfun-1].



B.5 Flat Systems

A system is flat if we can find output functions z(2) (equal in number to the number
of inputs) such that all states and inputs can be written as a function of z and its
derivatives:

{2, u) ::@(:.5,”.,:”)y
This means there is a unique correspondence between trajectories in output space
and state space. Trajectory generation is greatly facilitated by planning trajectories
in the lower dimensional output space, and then lifting them to state space.

B.5.1 Flat Structures

Trajectory generation is easy for flat systems. For a flat system we need to know
certain structure constants which we assemble in the structure FLATSTRUC.

typedef struct{
int dimoutput,
maxnumbasfun,
maxnumders,
totnumders,
totnumbasfun;
int *numbasfun,
*numders;
double **zflag;
} FLATSTRUC;

Here dimoutput is the dimension of the output, numders is an array of length
dimoutput specifying how many derivatives we need to take of each of the outputs
to recover the states and inputs, maxnumders is the maximum number in this array,
totnumders is the sum of the numbers in this array. numbasfun is an array of length
dimoutput specifying how many basis functions we want to expand each flat output,
maxnumbasfun is the maximum number in this array, totnumbasfun is the sum of
the numbers in this array. zflag is an array storing the values of the flat outputs
and their derivatives. size(zflag) = (dimoutput, maxnumders).
The function

FLATSTRUC *TG_flat_create(int dimoutput, int *numbasfun,
int *vecreldeg)

creates a flat structure with indicated parameters. The entries of vecreldeg are
copied to FLATSTRUC.numders, and numbasfun is copied to FLATSTRUC.numbasfun.
zflag is filled with zeros.

We release and print some statistics about a flat structure with

int TG_flat_free(FLATSTRUC *flatstruc)
int TG_flat_print(FLATSTRUC *flatstruc, char *text)
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The function

int TG_flat_compflag(BASIS *basis, double **coef, double x,
FLATSTRUC *flatstruc)

computes the values for the flat flag in FLATSTRUC.zflag at point x if the outputs
have coefficients bcoef with respect to basis basis.
The function

int TG_flat_setflag(FLATSTRUC *flatstruc, double *flag)

sets the flat flag FLATSTRUC.zflag to the stacked values in the vector flag. It
figures out where to split the vector over the different outputs by the information
in flatstruc. The function

int TG_flat_extractflag(FLATSTRUC *flatstruc, double *flag)

does the reverse: it pulls out the values in flatstruc.zflag and writes them to
flag, stacked one output after the other. This is useful since we want to do matrix
multiplication on the vector of flat outputs.

It is often necessary to string out the values in a flat flag in to a single vector
for matrix operations, and vice versa, for storage purposes. This can be done with
the function

int TG_flat_flatten(FLATSTRUC *pflatstruc, double *coefl,
double **coef2)

takes the values in coef2 and flattens them out into coef1 according to the structure
pflatstruc.
The function

int TG_flat_stack(FLATSTRUC *pflatstruc, double *coefl, double **coef2)

does the reverse. It stacks the values in coefl into the array coef2 according to
the information in flatstruc

B.5.2 Flat Systems
A flat system is a structure

typedef struct{
int diminput,
dimoutput,
dimstate,
dimxstate,
complevel;
void (*xu2zfun)(int n, double *xu, double *z, double *pars);
void (#z2xufun)(int n, double *xu, double *z, double *pars);
void (*flatpert)(int nx, int nu, double *xflat, double *u, int fcomp);
} FLATSYS;
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where diminput, dimoutput, dimstate, dimxstate are the dimension of the in-
put, output, state and extended state (with dynamic feedback compensator that
makes the system flat) respectively. The transformations from (state input) to flat
flag, and vice versa are given by xu2zfun() and z2xufun() respectively. If the
system is only an approximation to a flat system, the function flatpert() gives
the perturbation to flatness, i.e. the term () in & = f(2) + G(x)u + h(x) where
the nominal system & = f(2) + G(2)u is flat. complevel is the compensation level
for nonflatness. complevel= 0 means we don’t compensate for perturbations to
flatness, complevel = 1 means we project the perturbation h(2) onto the range of
G'(2) and add the result to the nominal input.
A flat structure is created with

FLATSYS *TG_flat_createsys(int diminput, int dimoutput, int dimstate,
int dimxstate, int complevel, void (*xu2zfun)(),
void (*z2xufun) (), void (*flatpert)())

It can be released with
int TG_flat_freesys(FLATSYS *flatsys)

If we are given a flat structure, a basis and a set of coefficients, we can compute
the time history of the flat outputs over the time interval indicated by the basis.
The function

int TG_flat_comptraj(BASIS *pbasis, double **coef2,
int numtabs, FLATSTRUC *pflatstruc, FLATSYS *pflatsys,
TRAJ_DATA *ptraj)

computes the values of the states and inputs corresponding to the flat outputs at
numtabs time points equally spaced between pbasis->t0 and pbasis->t1. It uses
the mappings between (states inputs) and flat flag given in pflatsys.

The mappings between flat flag and state and input can be accessed with

int TG_flat_xu2z(FLATSYS *pflatsys, double *xu, double *z,
double *pars);

int TG_flat_z2xu(FLATSYS *pflatsys, double *xu, double *z,
double #*pars);

These functions just call the corresponding members in the structure pflatsys.

B.6 Trajectory Generation Routines

We have routines for the following trajectory generation problems:
e Steering from a point to a point.
e bollowing a trajectory in a least squares sense.

e bollowing a trajectory while minimizing a cost function in the states and/or
inputs.
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e Taking real-time pilot input and generating with some delay a full state and
input space trajectory.

These 3 problems have a TG_pp._compcoeff () routine where pp = (p2p, 1sq,
cost) for each of the problems.

B.6.1 Point-to-Point Trajectories

An important class of trajectory generation problems consists of steering from one
point to another. The routines have prefix TG_p2p.
The coefficients are computed with

int TG_p2p._compcoeff (BASIS *basis, FLATSTRUC *flatstrucO,
FLATSTRUC *flatstrucl, double **coef)

The flat structures flatstrucO and flatstrucl contain the flat flags at initial
and final point indicated by basis. The computed coefficients are stored in coef.
size(coef) = (dimoutput, maxnumbasfun).

Example

Consider the following streamlined code fragment from the file p2p.c in the examples
directory:

TG_p2p_init();
for(i=1; i<NUMGOALPTS; i++){

/* compute zflag(t0) and zflag(tl) : */
TG_flat_xu2z(pflatsysO, waypoints[i-1], zderinit, pars);

TG_flat_xu2z(pflatsysO, waypoints[i], zderfinal, pars);
TG_bas_setinterval(pbasis, waypoints[i-1][0], waypoints[i][0]);

TG_flat_setflag(pflatstrucO, zderinit+1);
TG_flat_setflag(pflatstrucl, zderfinal+1);

TG_p2p_compcoeff (pbasis, pflatstrucO, pflatstrucl, coef2);
TG_flat_comptraj(pbasis, coef2, numtrajpts[i-1], pflatstrucoO,
pflatsys0O, ptrajxu);
traj_save(xutrajdatfile, ptrajxu);

TG_p2p_cleanup();
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Initialization of the necessary data structures is done in void TG_p2p_init(),
and they are released in void TG_p2p_cleanup(). The necessary parameters ini-
tialized in TG_p2p_init() are listed in the included parameters file, which can be
recognized by the suffix xx_p2p.par, where xx indicates the physical system.

The example does a repeated point-to-point trajectory generation, using state
and time data in an array waypoints, and for each stretch using numtrajpoints[i]
time values. For each pair of points it computes the initial and final flat flag, with
TG_flat_xu2z(), sets the interval on the basis with TG_flat_setinterval(), and
writes the computed flat flags to flat structures with TG_flat_setflag(). It then
calls TG_p2p_compcoeff () to compute the coeflicients coef2, and TG_flat_comptraj()
to compute the trajectory. Note that this last routine appends the segments to the
end of the trajectory, so that the result is a concatenation of all segments. The
trajectory is saved to file with traj_save().

B.6.2 Least Squares Trajectories

If we are given a trajectory in flat output space, and want to construct a trajectory
in state and input space, we can approximate the trajectory in a basis in a least
squares sense, and from the coefficients of the flat outputs compute the values of
state and input. The routines have prefix TG_1sq.

The coefficients are computed with

int TG_lsq_compcoeff(BASIS *basis, FLATSTRUC *pflatstruc,
TRAJ_DATA #*traj, double **coef)

The desired trajectory is given in traj, the flat structure in pflatstruc, and
the basis in basis. The computed coefficients are stored in coef. size(coef)
= (dimoutput, maxnumbasfun).

Example

Consider the following streamlined code fragment from the file 1sq.cin the examples
directory:

TG_lsq_init();
TG_lsq_compcoeff(pbasis, pflatstrucO, ptrajz, coefl);

TG_flat_comptraj(pbasis, coef2, ptrajxu->nrows, pflatstrucO,
pflatsysO, ptrajxu);

traj_save(xutrajdatfile, ptrajxu);

TG_lsq_cleanup();

Initialization of the necessary data structures is done in void TG_lsq_init(),
and they are released in void TG_lsq_cleanup(). The necessary parameters ini-



tialized in TG_1lsq_init() are listed in the included parameters file, which can be
recognized by the suffix xx_lsq.par, where xx indicates the phvsical system.

The desired trajectory ptrajzis read in TG_1lsq_init (). The least squares error
minimizing coefficients coef2 are computed in TG_lsq_compcoeff (). The trajec-
tory is computed in TG_flat_comptraj() and is saved to file with traj_save().

B.6.3 Optimization
We collect the data pertaining to an optimization problem in a structure OPTSTRUC.

struct opt_strucq{
int minmethod,
numfixpt,
numconstr,
totnumpars,
numfreepars,
maxiter;
double (*costfun) (double *),
*partsol,
*zflagcon,
*z0,
*z1;
void (*#gradcostfun)(double *par, double *grad);
double **Fproj,
*%F
**xFps,
**xFnull;
+;
typedef struct opt_struc OPTSTRUC;

The minimization method is indicated by minmethod:
1. Simplex algorithm
2. Simulated annealing
3. Powell’s method,
4. Fletcher-Reeves-Polak-Ribiere (conjugate gradient)

5. Davidon-Fletcher-Powell method with Brovden-Fletcher-Goldfarb-Shanno up-
date of pseudo Hessian (variable metric)

See [?] for a detailed treatment of these optimization routines. Methods 4 and 5
need derivative information. numfixpt takes on values (0,1,2) indicating if we have
no constraints (0), initial time constraints only (1) ot both initial and final time
constraints. The total number of constraints is given by numconstr, the total num-
ber of parameters is totnumpars. The number of free parameters is numfreepars =



129

totnumpars - numconstr. The maximum number of iterations allowed in the outer
loop of the optimization is maxiter. The function to be minimized is costfun which
takes a vector of parameters as an argument. The gradient of the cost function is
gradcostfun which takes a vector par of parameters as an argument and fills a
vector grad with the gradient. We allow linear constraints of the form zflagcon
= F.totnumpars. The pointers 20 and z1 point to the initial and final time part
of the constraint respectively. They point within the vector zflagcon. While not
strictly necessary, this makes coding less cumbersome. Optimization is performed
by finding a particular solution partsol to the constraints and optimizing over the
nullspace Fnull of F. It will be convenient to have expressions for the pseudo inverse
Fps and the projection matrix Fproj of F.
The function

int OPTSTRUC *TG_opt_create(int minmethod, int numfixpt,
int totnumpars, double (*costfun)(), void (*gradcostfun)(),
int veclength, int maxiter)

allocates an optimization structure with the indicated parameters. All vectors and
matrices are initialized to zero.
The function

int TG_opt_print(OPTSTRUC #poptstruc, char *title)

prints some statistics about an optimization structure, preceded by the string title.
The function

int TG_opt_free(OPTSTRUC *poptstruc)

releases the space taken by an optimization structure.
The function

int TG_opt_setflag(double *z0, double *z1, OPTSTRUC *poptstruc)

sets the constraints at the initial time to z0, if poptstruc->numfixpt > 0 and sets
the constraints at the final time to z1, if poptstruc->numfixpt > 1. It returns
numfixpt in all these cases. If poptstruc->numfixpt > 2 it returns ~numfixpt.

B.6.4 Cost Minimizing Trajectories

If we are given a trajectory in output space. but the outputs are not the flat outputs,
there is some freedom left in the corresponding state and input trajectory which we
may wish to exploit to minimize an additional cost criterion. The routines have
prefix TG_cost.

The most important computation is performed by

int TG_cost_compcoeff (BASIS *basis, FLATSTRUC *pflatstruc,
OPTSTRUC *poptstruc, double **coef)
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which computes the coefficients coef with respect to basis basis of the flat outputs
whose structure is given in pflatstruc. The optimization parameters are given in
poptstruc.

Some additional functionality is provided in

int TG_project_coef (BASIS #pbasis, FLATSTRUC *pflatstrucO,
OPTSTRUC *poptstruc, double **coef2)

which will find a particular solution to the constraints in the optimization structure
poptstruc and write it to coef2. The flat structure is given by pflatstrucO, and
the basis in pbasis.

The function

void TG_project_2_null{int numfixpt, FLATSTRUC #*pflatstruc,
double **Fproj, double x*Fnull)

will calculate the null space from the projection matrix by an appropriate selection
of the columns of the latter. It turns out that this gives better optimization results
than a brute force calculation of the nullspace from F, since Fproject has a block
structure to it corresponding to the different flat outputs, and by picking columns
of the projection matrix we preserve this structure.

Since the computation time is linear in the number of trajectory points, we
recommend subsampling the trajectory first. This can be done with the routine

TRAJ_DATA *traj_subsample(TRAJ_DATA #trjsrc, int n)

Example

Consider the following streamlined code fragment from the file cost.cin the examples
directory:

TG_cost_init();

if (NUMFIXPT == 1){
TG_flat_xu2z(pflatsys0, xinit, poptstrucO->zflagcon, pars);
b
if (NUMFIXPT == 2){
TG_flat_xu2z(pflatsys0, xinit, poptstrucO->zflagcon, pars);
TG_flat_xu2z(pflatsysO, xfinal, poptstrucO->zflagcon +
(poptstrucO->numconstr/2), pars);

TG_project_coef(pbasis, pflatstrucO, poptstrucO, coef2);

TG_cost_compcoeff(pbasis, pflatstrucO, poptstrucO, coef2);

TG_flat_comptraj(pbasis, coef2, ptrajxu->nrows, pflatstrucO,
pflatsysO, ptrajxu);
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traj_save(xutrajdatfile, ptrajxu);

TG_cost_cleanup();

We initialize the necessary structures in void TG_cost_init(). They are cleaned
up by void TG_cost_cleanup(). The necessary parameters initialized in TG_cost_init()
are listed in the included parameters file, which can be recognized by the suffix
xx_cost.par, where xx indicates the physical system.

Depending on the number of constraints, NUMFIXPT, we compute the constraints
on the flat flag at the initial and final time, with the function TG_flat_xu2z(),
and write these constraints to poptstruc0. We then compute a particular solution
coef2, to the constraints with TG_project_coef (). This function also computes
the projection matrix, the pseudo inverse, and the nullspace corresponding to the
constraint matrix and stores them in popstrucO. Then we perform a minimization
over the nullspace of the constraint matrix with TG_cost_compcoeff (). The coeffi-
cients coef2 are used to calculate the trajectory with TG_flat_comptraj() which
is saved to file with traj_save(xutrajdatfile, ptrajxu).

B.6.5 Real-Time Trajectory Generation

These routines perform the computations in [?] for real-time trajectory generation.
We collect the data pertaining to an optimization problem in a structure RTSTRUC.

struct rt_strucq
int zlength,
Tdel,
dimoutput,
ydesptr,
rttype;
double tinit,
tnext,
tfinal,
Ts,
*xinit,
*xfinal,
**ydes,
**¥Art,
**Brt ;

};

typedef struct rt_struc RTSTRUC;

Here zlength is the total length of the flat flag, Tdel is the number of samples delay
in the trajectory generation, dimoutput is the dimension of the output, ydesprt
points to the most recent sample in the array ydes that stores the pilot input and the
corresponding time over Tdel+1 samples. size(ydes) = (Tdel+1, dimoutput+1).
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rttype indicates the type of real-time problem: rttype = 1 for real-time point-to-
point steering (algorithm 1 in [?]), rttype = 2 does additional cost minimization
(algorithm 2 in [?]), rttype = 3 does not generate a feasible (state, input) trajectory
put feeds the pilot input through directly. The initial time of the interval over which
the trajectory is computed is tinit, the initial state and input are in xinit. At
the end of a step in the algorithm, xinit will contain the desired nominal state and
input for the next sampling time. The final time is tfinal, the final state and input
are in xfinal The time for the next desired state and input is tnext, where tinit<
tnext< tfinal. The sampling time is Ts. The matrices Art and Brt are the state
and input matrix respectively for the propagation of the flat flag.
The function

RTSTRUC *TG_rt_create(int zlength, int dimoutput, int Tdel,
double Ts, int rttype);

creates a RTSTRUC. We can print some of the members of this structure with

int TG_rt_free(RTSTRUC *prtstruc);
and release the structure with

int TG_rt_print(RTSTRUC *prtstruc, char *text).

To compute the matrices Art and Brt one can use

int TG_rt_compAB(BASIS #pbasis, FLATSTRUC *pflatstruc, RTSTRUC *prtstruc);
To propagate the flat flag with the matrices Art, Brt use

int TG_rt_updateflatflag(OPTSTRUC *poptstruc, RTSTRUC *prtstruc);

which will compute z1 = Art z1 + Brt zf, and write the result to prtstruc->z1.

Example

Consider the following streamlined code fragment from the file cost.c in the examples
directory:

TG_rt_init();
if (prtstrucO->rttype == 1){
TG_rt_compAB(pbasis, pflatstrucO, prtstruc0);
+;
ptrajxu->current = prtstruc0~>Tdel;

while(!stop){

if (prtstrucO->rttype == 1){
TG_rt_updateflatflag(poptstrucO, prtstrucO);
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TG_flat_z2xu(pflatsysO, poptstruc0->z0, prtstrucO->xinit, pars);
b

traj_datachange(ptrajxu, prtstrucO->tfinal, prtstrucO->xinit+1,
ptrajxu->current);
ptrajxu->current++;

if(TG_rt_readinput(prtstruc0) < DIMOUTPUT+1) stop = 1;
+

traj_save(xutrajdatfile, ptrajxu);

TG_rt_cleanup();

We initialize the necessary structures in void TG_rt_init(). They are cleaned
up by void TG_rt_cleanup(). The necessary parameters initialized in TG_rt_init ()
are listed in the included parameters file, which can be recognized by the suf-
fix xx_rt.par, where xx indicates the physical system. This example reads pilot
input from a file in the function TG_rt_readinput() and writes to a trajectory
ptrajxu. First we compute the propagation matrices with TG_rt_compAB(), and
set the current pointer in ptrajxu to prtstruc0->Tdel, since that is the number of
samples we wait. Then we get into a loop, running until there is no more pilot input
and TG_rt_readinput() returns fewer than dimoutput numbers. In the loop we
propagate the flat flag with TG_rt_updateflatflag(), and compute the state and
input from poptstrucO->z1 with TG_flat_z2xu(). We save this state in ptrajxu,
update its current pointer, and read new input. The function TG_rt_readinput ()
is user supplied and updates the data in prtstrucO->ydes and poptstruc0->z1.
When there is no more pilot input, stop is set to 1 and we exit the loop and save the
trajectory to file. In real real-time applications we would not save to file of course,
but feed every nominal state to the controller.
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