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Abstract

Current research in single-atom cavity quantum electrodynamics largely emphasizes

the input-output properties of strongly coupled systems, from normal mode split-

ting [1] to photon blockade [2]. But over the last decade, experiments have, with few

exceptions, focused on relatively weak driving conditions. This thesis concentrates

on a range of quantum nonlinear phenomena in the strong driving regime. In par-

ticular, I discuss the observation of random-telegraph phase switching in the light

transmitted through a Fabry-Perot resonator containing one strongly coupled atom

and 10-100 photons, confirming long-standing predictions of a phenomenon known

as single-atom phase bistability [3, 4]. These results highlight the relevance of cavity

quantum electrodynamics in the development of attojoule nanophotonic logic and sig-

nal processing. In addition, I consider a general class of bifurcation phenomena that

are manifest within this physical setting. Here, focus is placed on the investigation

of quantum-classical correspondence near semiclassical bifurcation points.
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Chapter 1

Introduction

It’s kind of incredible that the system to be analyzed ad nauseam throughout this

thesis consists of just one atom coupled to the quantized electromagnetic field con-

fined within an optical resonator [5]. Even worse, the primary model that I beat

into the ground makes the additional simplifications of treating the atom as a two-

level system (which it isn’t) and the electromagnetic field as though it consists of a

single mode (which it doesn’t). Nevertheless, the system is quite complex [6] and

resulting description is quite accurate [1, 2, 5, 7–13]. That such a simple underlying

model can actually predict the behavior of real experimental systems is a testament

to the incredible technical advances in atomic and optical physics over the last few

decades [11, 14–18], providing exquisite tools for control and (ultimately) measure-

ment of fundamental microscopic system dynamics. These developments have made

possible real-time observations of open quantum systems for which a delicate interplay

of coherent dynamics, dissipation, and quantum fluctuations determine the qualita-

tive system behavior [3, 6, 11, 19, 20]. So, before jumping into the gory and the

technical, I’d like to explain how such a simple model can be so accurate, and why

it’s not so simple.

1.1 The atom-field interaction: qualitative

Fundamental matter-radiation interactions may be experimentally realized within

the context of optical cavity quantum electrodynamics (cavity QED) [21]. The key
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κγ⊥

g0

Figure 1.1: A cartoon schematic of the basic cavity QED system: a two level atom
interacts with a single mode cavity. g is the atom-field coupling strength, 2γ⊥ is the
atomic spontaneous emission rate, and κ is the cavity field decay rate. The system
dynamics may be inferred (in real time) through detection of the cavity’s decay field.

idea here is to place our precious atom, with all its natural limitations, within an

electromagnetic resonator (the cavity) of high quality factor and small mode volume

(depicted in Figure 1.1.) The high quality factor insures that the atom-radiation

interaction may be long lived, while the small mode volume implies that a single

quantum of the cavity excitation will have a larger influence on the atom than the

remaining 4π steradians of vacuum modes. To a very good approximation atom-cavity

coherent dynamics are described by the dipole Hamiltonian:

Ĥint = d̂ · Ê max−−→ d

√
~ω

2ε0Vm

, (1.1)

where d̂ is the atomic dipole operator, and Ê is the electric field operator. The right-

hand side represents the maximum achievable coupling energy between the atom, with

dipole moment d, and a single photon, with electric field magnitude E1 =
√

~ω
2ε0Vm

.

Here, ω is the optical transition frequency and Vm is the cavity mode volume.

In this idealized version of things, three fundamental rates characterize the uncon-

ditional behavior of this system [6]. First, the atomic internal states are coupled to

the cavity mode by coupling constant g0, which quantifies the rate of coherent energy

exchange between the atom and cavity:

g0 ≡
dE1

~
. (1.2)
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This coherent interaction is limited by two dissipative mechanisms: energy can leave

the system through atomic spontaneous emission into free space, at a rate 2γ⊥, and

photons can leak out of the cavity at a rate 2κ. Presumably the coherent dynamics

will tend to dominate the qualitative system behavior for sufficiently large g0 – but

how large is large enough?

Ideally g0 should be large enough that: a single-photon excitation of the cavity is

sufficient to saturate the atomic response, and conversely, a single atom inserted into

the cavity has a profound (i.e., nonlinear) effect on the field. The former condition

can be achieved easily enough: since a saturated atom in free-space can, at most,

scatter light at a rate ∼ γ⊥, it stands that a drive strength equivalent to one photon

per unit radiative volume, Vrad ∼ λ2c/γ⊥, will saturate the atomic response. The

mode volume dependence of Eq. 1.1 implies, then, that for a modified mode volume,

V ′
rad, this ‘saturation photon number’ will scale ∝ V ′

rad/Vrad – in other words, for a

cavity of mode volume Vm the number of cavity photons needed to overwhelm the

puny atom is roughly ∼ (γ⊥/g0)
2. Interestingly, this quantity depends solely on the

cavity’s mode volume and not at all on its quality.

This condition alone does not imply anything about the atom’s qualitative in-

fluence on the cavity field. If the behavior of this atom is to have any chance at

strongly influencing the cavity field, and therefore producing a measurable change in

the cavity’s (accessible) decay channel, two conditions must be met: first, the atomic

influence over the cavity field should be enhanced through multiple passes of intra-

cavity radiation; second, the cavity mode volume should be as small as possible, so

that a large fraction of the mode interacts with the atomic cross-section per pass.

Together, these conditions set a requirement on the ratio g0 : κ.

Now, the standard way to quantify the atomic influence over the cavity field

argues from atomic cross-sections, dipole moments, cumbersome factors of ~, etc.

Such arguments have no place in my precious introduction1. A more elegant way

1If there areN atoms in a cavity that supports, on average,m bounces of the intracavity field, then
the fraction of each intracavity excitation that is eaten by the atoms is roughly Nmσ0/A, where σ0

is the resonant atomic scattering cross-section and A is the mode’s cross-sectional area. Demanding
that this fraction be of order unity implies that N ∼ A/(mσ0) atoms must be present. Substituting
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to understand these relations is to consider the ratio of atomic to cavity energy

dissipation: if this ratio is small, the presence of an atom will have a negligible effect

on the cavity steady-state field. It’s easy to estimate the atomic dissipation rate, it’s

simply γ⊥, provided the atom is saturated by the laser field. For the cavity, though,

there really is no maximal energy dissipation rate since the rate increases linearly

with the intracavity photon number. Clearly, then, we’d like to keep this number

down so that the atom’s influence is maximized. Therefore, choosing judiciously an

intracavity excitation number (γ⊥/g0)
2 (as derived above) will maximize the atomic

losses while minimizing the cavity losses. In this case, the ratio of cavity to atomic

loss is roughly:
[
(γ⊥/g0)

2 κ
]
/γ⊥ = κγ⊥/g

2
0. When this quantity is < 1, then for a

single atom can have profound effect on the intracavity field.

As it turns out [6], these two dimensionless parameters quantify how ‘interesting’

the qualitative behavior of a cavity QED system will appear to the experimentalist

who has access to, for example, the cavity’s output field. In particular, for saturation

photon numbers n0 ≡ 2γ2
⊥/g

2
0 < 1, a single photon can saturate the atomic response or

cause a nonlinear system response, and for critical atom numbers N0 ≡ 2γ⊥κ/g
2
0 < 1, a

single atom can significantly alter the cavity field and can therefore be easily detected.

When both of these parameters are sub-unity, we are in the so-called ‘strong coupling’

regime of cavity QED.

In the opposite regime, where (n0, N0) � 1, the dynamical equations governing

the system evolution may be expanded in powers
(
n−1

0 , N−1
0

)
� 1, so that an initial

quantum description may be rigorously reduced into a semiclassical description, but

with small noise fluctuations caused by the underlying ‘quantumness’ [22]. The key,

though, is that in the semiclassical regime, the quantum fluctuations are sufficiently

small that we may safely think of the system’s underlying ‘quantumness’ as merely a

perturbation atop qualitatively semiclassical behavior.

m ∼ (c/2L)/κ, Vm ≈ AL, and σ0 ∼ λ2 gives us N ∼ κVm/cλ
2. Now, since Vm ∼ d2c/(~g2

0ε0λ), we
have N ∼ κ/g2

0 ·
(
d2/ε0~λ3

)
, where the term in the parenthesis is the well-known expression for the

spontaneous emission rate! Thus we recover the same result as in the main text. But really, is that
satisfying?
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1.2 The atom-field interaction: quantitative

Conceptually, the clearest starting point for modeling the system dynamics is the

Jaynes-Cummings Hamiltonian [7]:

Ĥjc = ω0â
†â+ ω0σ̂+σ̂− + ig0(â

†σ̂− − âσ̂+) , (1.3)

whose terms account for, respectively, the field and atomic free evolution and the

dipole interaction Hamiltonian (note, throughout this thesis I routinely set ~ = 1 in

Hamiltonian, eigenvalue, and dynamical equations – ~ is reinserted when required.)

For simplicity, this Hamiltonian is expressed for the situation where the field and

atomic frequencies are identically ω0; the more general case will be dealt with in the

subsequent chapters. The interaction Hamiltonian is scaled by g0, the atom-photon

coupling rate introduced in the previous section. â and â† are the field annihilation

and creation operators, and σ̂− and σ̂+ are the atomic lowering and raising operators.

The eigenstates of this coupled system are characterized by a sharing of excitation

between the atom and cavity degrees of freedom. For n excitations in the system, these

states reflect this notion of energy exchange as they are comprised of the superposition

of the (uncoupled) n-excitation states:

|±, n〉 =
1√
2

(|e, n− 1〉 ± i|g, n〉) , (1.4)

with (g, e) here denoting the atomic ground and excited states. Although the bare

uncoupled states, |e, n−1〉 and |g, n〉, are degenerate with eigenvalues nω0, the coupled

system eigenvalues possess a pronounced energy splitting as a results of the atom-field

interaction:

E
(n)
± = nω0 ±

√
ng0 . (1.5)

This level structure is depicted in Figure 1.2 for up to three excitations in the system.

Obviously, the presence of dissipation can cloud this picture. When the strong
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Figure 1.2: The resonant Jaynes-Cummings energy ladder for small excitations.

coupling conditions (outlined above) are met, however, the underlying structure of

the Jaynes-Cummings Hamiltonian can be inferred from the systems input-output

behavior. In particular, the observation of the low n normal mode splitting predicted

by Eq. 1.5 is perhaps the most well-known experimental result of cavity QED [1], and

most research over the last decade has focussed on the system input-output behavior

in the low excitation regime [1, 2, 18, 23, 24]. This isn’t surprising since it is in this

regime that the anharmonic nature of the Jaynes-Cummings eigenstates are most

evident: i.e., relative to the uncoupled resonant frequency ω0, the detuning between

successive levels decreases rapidly as the system is driven to larger excitation levels:

g0 → (
√

2− 1)g0 → (
√

3−
√

2)g0 → . . .→ (
√
n+ 1−

√
n)g0 . (1.6)

For very large excitations, this detuning is ∼ 1/
√
n and the transmission spectrum

of this coupled system approaches that of an empty cavity. This behavior is depicted
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Figure 1.3: Dependence of the steady-state system transmission on the drive
strength. The normal mode splitting for low excitations (blue) disappears in the larger
excitation regime. The used parameter values, {g0, κ, γ⊥} /2π = {16, 8.0, 2.6}MHz,
are those of the experimental system described in Chapter 2. The empty cavity
response (dashed black) is a Lorentzian of full width δf = 2κ/2π.

in Figure 1.3, which shows the steady-state transmission over a range of excitation

strengths. Here, the excitation strength (given in the legend) is parametrized by the

mean intracavity photon number that it would generate for an atom-less cavity.

1.3 The atom-field interaction: nonlinearity and

bifurcations

From the above discussion, one might conclude that the ‘interesting’ system behavior

disappears in the regime of large excitation. This is in fact true for a weakly coupled

system. If our atom interacts with a coherent field of mean photon number n̄ � 1
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and Poisson fluctuations
√
n̄, the system will be excited over a range of eigenvalues

2

√
n̄+

√
n̄g0 − 2

√
n̄−

√
n̄g0 ≈ 2

√
n̄g0

[
(1 +

1

2
√
n̄

)− (1− 1

2
√
n̄

)

]
→ 2g0. (1.7)

When {γ⊥, κ} � g0 these dynamical variations are negligible in comparison to

the system dephasing. In this limit, we are justified in making the approximation

2
√
ng0 → 2

√
n̄g0 and treating the electromagnetic field semiclassically. Thus, we

recover the semiclassical limit of atomic dressed states

|±〉 =
1√
2

(|e〉 ± i|g〉) , (1.8)

with constant frequency splitting 2
√
n̄g0 ≡ Ω, where Ω is the Rabi frequency [25, 26].

In this regime, the system’s macroscopic behavior can be understood from a semi-

classical model with small (quantum) fluctuations tacked on [6, 22]. But this is not

necessarily true for a strongly-coupled system. In this case, fluctuations over the pho-

ton number distribution can not be ignored through the substitution n→ n̄, since the

energy variations over this distribution are quite large relative to the other system

dynamical rates. Under strong coupling conditions, the interplay between dissipa-

tive and coherent dynamics can reorganize the system’s qualitative behavior; that is,

quantum fluctuations can not simply be ‘tacked on’ after the fact. In fact, it is in the

weak-driving regime where the system’s behavior is, in some sense, more predictable.

In particular, the vacuum-Rabi splitting can be explained using a semiclassical de-

scription of the system (discussed in Section 2.1.3.4).

The work presented in this thesis concentrates on the interesting effects that reside

in this large excitation regime. In Chapter 2, I describe an experiment [27] in which

individual spontaneous emission events from a strongly-coupled single atom cause

phase-switching of an intracavity field of mean photon numbers in the range 10 ↔ 100,

thereby confirming the long-existing prediction of optical phase bistability, which

is also known as spontaneous dressed-state polarization [3, 4, 28]. And while this

particular experiment suffers from rather modest results (due to the values of the



9

fundamental parameters, g0 and κ), this demonstration highlights the relevance of

cavity QED in future designs of ultralow energy nonlinear optical elements [29, 30].

Specifically, the ability of a single spontaneous emission event to change the properties

of many photons is of relevance to the developing field of nanophotonic logic and signal

processing.

But, in a larger sense, studying such nonlinear behavior within strongly coupled

quantum systems is essential to understanding the interface between quantum and

classical worlds. In the case of phase bistability, the qualitative nature of the sys-

tem’s macroscopic behavior is completely reorganized by the underlying quantum

fluctuations. As expected, the standard semiclassical theory fails to capture the ob-

served behavior in this regime. Instead, intuition must be sought from the underlying

structure of the idealized quantum system, and the critical role spontaneous emission

plays within it. Using this intuition, we can form a more appropriate semiclassical

description which captures the observed behavior.

The utility of a semiclassical description becomes clear in Chapter 3. Here, I

describe a study of bifurcations in the standard model of cavity QED with damping

and driving [20]. Emphasis is placed on applying computational tools and methods

to the semiclassical model in order to find dynamically interesting parameter regimes

of the fully quantum problem. In particular, I consider bifurcation phenomena as

focal points for the investigation of quantum-(semi)classical correspondence in cavity

nonlinear optics. A general approach to characterizing the semiclassical bifurcation

set is presented, and numerical simulations of the quantum dynamics about bifurca-

tion points lead to observations of self-oscillation and bifurcation-type behavior in an

experimentally accessible parameter regime for single-atom cavity QED. As we will

see, a surprisingly wide range of input-output characteristics are supported by this

small and simple state space.
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Chapter 2

Phase Bistability

Section 2.1 introduces the cavity QED model. This is all standard stuff [21], but I

include it here for your convenience. Section 2.2 describes the theoretical background

for phase bistability in particular, and includes an introduction to some of the com-

putational tools used for the experimental data analysis. Section 2.3 describes the

apparatus and the experimental results.

2.1 Cavity QED background

We consider the driven Jaynes-Cummings Hamiltonian [6] which models the inter-

action of a single mode of an optical cavity having resonant frequency ωc, with a

two-level atom, comprised of a ground state |g〉 and an excited state |e〉 separated

by a frequency ωa. For an atom-field coupling constant g0 and a drive field with

amplitude E at frequency ωp, the Hamiltonian is [~ = 1]:

Ĥ = ωcâ
†â+ ωaσ̂+σ̂− + ig0(â

†σ̂− − âσ̂+) + iE(e−iωptâ† − eiωptâ) , (2.1)

where â is the field annihilation operator and σ̂− = |g〉〈e| is the atomic lowering op-

erator. The pesky time dependence in Eq. 2.1 can be eliminated by transforming the

dynamics into a frame rotating at the drive frequency. Formally this is accomplished

through the transformation

T̂ = e−iω0tâ†âe−iω0tσ̂+σ̂− , (2.2)
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so that we now evolve a rotating state vectors |ψ〉 ,

|χ〉 → T̂ †|χ〉 ≡ |ψ〉 (2.3)

under the transformed Hamiltonian1

Ĥ → T̂ †ĤT̂ + i
∂T̂ †

∂t
T ≡ Ĥ . (2.4)

This new Hamiltonian is expressed as

Ĥ = Ĥjc + Ĥd , (2.5)

where Ĥd is the modified (and now time independent) drive term

Ĥd = iE
(
â† − â

)
, (2.6)

and Ĥjc is the Jaynes-Cummings Hamiltonian

Ĥjc = Θâ†â+ ∆σ̂+σ̂− + ig0(â
†σ̂− − âσ̂+) . (2.7)

Here, Θ = ωc − ωp is the cavity-probe detuning, and ∆ = ωa − ωp is the atom-probe

detuning.

1It’s easy to verify that if an initial state |χ〉 satisfies i ˙|χ〉 = Ĥ|χ〉, then the transformed state
|ψ〉 will satisfy i ˙|ψ〉 = Ĥ|ψ〉.
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2.1.1 System eigenstructure

After expanding the annihilation operators in the standard Fock basis [33], the Hamil-

tonian in matrix form is

Ĥjc =



∆σ̂+σ̂− −ig0σ̂+ 0 0 · · ·

ig0σ̂− Θ + ∆σ̂+σ̂− −
√

2ig0σ̂+ 0 0

0
√

2ig0σ̂− 2Θ + ∆σ̂+σ̂− −
√

3ig0σ̂+ 0

0 0
√

3ig0σ̂− 3Θ + ∆σ̂+σ̂− −
√

4ig0σ̂+

... 0 0
√

4ig0σ̂−
. . .


. (2.8)

We can break up the Hamiltonian into block diagonal elements that are decoupled

from one another,2

(n− 1)Θ + ∆σ̂+σ̂− −
√
nig0σ̂+

√
nig0σ̂− nΘ + ∆σ̂+σ̂−

 =


(n− 1)Θ 0 0 0

0 (n− 1)Θ + ∆ −
√
nig0 0

0
√
nig0 nΘ 0

0 0 0 nΘ + ∆

 . (2.9)

Therefore, we need only diagonalize the general form3

Ĥ
(n)
jc =

(n− 1)Θ + ∆ −
√
nig0

√
nig0 nΘ

 . (2.11)

2I use the atomic basis convention |g〉 =
[
1 0

]T and |e〉 =
[
0 1

]T .
3We’ve ignored the first block diagonal element for the ground-state

Ĥgs
jc =

[
0
]
. (2.10)
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Figure 2.1: Energy level diagram of the Jaynes-Cummings Hamiltonian for general
parameters. For clarity, the levels are displayed in the non-rotating frame.

The eigenvalues of this matrix are

E±
n =

1

2

[
2(n− 1)Θ + (ωa + ωc)±

√
(ωa − ωc)

2 + 4ng2
0

]
= nΘ + δ/2±

√
(δ/2)2 + ng2

0

(2.12)

with associated eigenvectors

|±, n〉 =

√
1

2

[√
1± δ√

δ2 + 4ng2
0

|e, n− 1〉 ± i

√
1∓ δ√

δ2 + 4ng2
0

|g, n〉

]
. (2.13)

δ = ∆ − Θ = ωa − ωc is the atom-cavity detuning. This energy spectrum, in the

non-rotated frame, is depicted in Figure 2.1.
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2.1.2 Some salient features that will be referred to later

2.1.2.1 Adiabatic passage

The resonant system eigenstates 1.4 represent an equal sharing of excitation between

the atom and cavity. But as |δ| increases this amount of sharing decreases, and

the upper and lower eigenstates, Eq. 2.13, develop either an atom-like or cavity-like

behavior. For δ � 0 the lower eigenstate, |−, n〉, is comprised primarily of |g, n〉

and is therefore more ‘cavity-like’ since the excitation is primarily within the cavity

mode. For δ � 0 the opposite is true: the lower eigenstate is now more ‘atom-like’

with excitation residing in the atomic internal states. This behavior can be easily

understood from energy spectrum in Figure 2.1: while the eigenstate energies are

symmetric with regards to the sign of δ, the uncoupled state energies are not. For a

positive atom-cavity detuning, for example, the uncoupled excited atomic state has

a stronger resemblance to the upper eigenstates, while the ground state is closer to

the lower eigenstate.

Taking the limit g0 → 0 for the states 2.13 we obtain

lim
g0→0

|+, n〉 →

 i|g, n〉 , for δ < 0

|e, n− 1〉 , for δ > 0

 ,

lim
g0→0

|−, n〉 →

 |e, n− 1〉 , for δ < 0

−i|g, n〉 , for δ > 0

 .

(2.14)

This indicates that if the atom-cavity coupling is turned on slowly, an initially de-

coupled state like |g, n〉 will tend towards ±i|±, n〉, with the particular dressed state

determined by the atom-cavity detuning. This is exactly related to the experimental

scenario where an atom, initially prepared in the state |g〉, is introduced into a cavity

initially prepared in the state |n〉. Note that for g0 > 0, the lower eigenstate has lower

energy than the decoupled system, and therefore the (spatially-varying) cavity mode,

Eq. 2.15, can form a binding potential for the atom-cavity.
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2.1.2.2 Spatial mode structure and forces on the atom

For modern experiments in cavity QED that employ laser cooling and trapping of

atomic motion, the quantum dynamical timescales are generally very well separated

from the characteristic timescales associated with atomic motion. In this case, it is

generally convenient to account for the cavity mode structure through a spatially

varying coupling constant [11]

g(r, z) = g0e
−r2/w2

0 cos kx . (2.15)

Here, x is the position along the cavity axis, r =
√
y2 + z2 is the radial distance from

the cavity axis, k = 2π/λ is the wavevector, and we have assumed that the TEM00

mode, with waist w0, is being used [34].

For the experiment in Section 2.3, we will generally be concerned with atomic

motional effects when the cavity mean photon number is very large. In this case, we

are justified in treating the field semiclassically. Taking expectations over the field,

〈â〉 → α in Eq. 2.7, we arrive at the atomic, or semiclassical Hamiltonian

Ĥsc = ∆σ̂+σ̂− + ig0(α
∗σ̂− − ασ̂+) . (2.16)

The eigenvalues and eigenvectors are

E± =
1

2

(
∆±

√
∆2 + 4n̄g2

0

)
,

|±〉 =

√
1

2

[√
1± ∆√

∆2 + 4n̄g2
0

|e〉 ± ie−iφ

√
1∓ ∆√

∆2 + 4n̄g2
0

|g〉

]
,

(2.17)

which are the well known semiclassical dressed states and associated energies. Here,

we’ve parameterized the complex field amplitude as α = |α|eiφ, and n̄ = |α|2 is the

mean cavity photon number. The complex phase in the eigenvectors above has its

origins in the oscillation phase of the drive field [26]. For a fixed φ we can just as well

treat α as real by simply absorbing this phase into our definition of the rotating frame

(which in this case is at the probing frequency.) I only left it in the definition above
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to highlight the fact that the relative phase in these eigenstates is actually defined

by the drive field. This is a manifestation of the fact that the real and imaginary

components of the dipole moment are defined by the field phase:

〈σ̂− + σ̂+〉± = ±

√
4ng2

0

∆2 + 4ng2
0

sinφ

〈i(σ̂− − σ̂+)〉± = ±

√
4ng2

0

∆2 + 4ng2
0

cosφ .

(2.18)

For posterity, we note that the population difference is given by

〈σ̂z〉± =
±∆√

∆2 + 4ng2
0

. (2.19)

All this implies, amongst other things, that for interactions with traveling waves

the relative phase in the eigenvectors is position dependent, since the field can be

written

Etw(t) ∝ cos (kx− ωt+ φ) . (2.20)

This is not the case for standing waves, which we will employ. Here, the spatial and

temporal degrees of freedom decouple

Esw(t) ∝ cos kx cos (ωt+ φ) . (2.21)

Therefore, for a standing wave cavity the drive phase decouples from position and we

write

|±〉 =

√
1

2

[√
1± ∆√

∆2 + 4ng2
0

|e〉 ± i

√
1∓ ∆√

∆2 + 4ng2
0

|g〉

]
. (2.22)

There is, however, the complication of nodes in a standing wave cavity. In particular,

as an atom passes through a node (kx = (2m + 1)π/2 in 2.15) the sign of the field

changes. In the resonant case, ∆ = 0, this sign change implies an effective switching

of the dressed state |±〉 → |∓〉. This effect will be of some relevance for the data
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analysis of Section 2.3.7.4.

Finally, returning to the issue of forces, the form of the eigenvalues 2.12 implies

that the atom moves within a conservative potential defined by 2.15. In the resonant

case, we have the potential

E±(r, z) = ±
√
n̄g0e

−r2/w2
0 | cos kx| . (2.23)

Therefore, the |−〉 state will see a confining potential and will be attracted to anti-

nodes of the standing wave. In contrast, the |+〉 state will be radially repelled from

the cavity, and will be funneled into field nodes. Note, for the case of nonzero ∆ the

magnitude of these forces is reduced, but the qualitative picture provided above still

holds.

2.1.3 Dissipation and the master equation

In order to account for dissipation in the model, we need to incorporate the Hamilto-

nian dynamics into a master equation for the non-unitary evolution of a joint atom-

cavity density operator ρ̂. Under the two dissipation channels, γ⊥ and κ, the uncon-

ditional master equation has the form

˙̂ρ = −i[Ĥ, ρ̂] + 2κD̂[â]ρ̂+ 2γ⊥D̂[σ̂−]ρ̂ . (2.24)

Ĥ = Ĥjc + Ĥd is the Hamiltonian in the rotating frame comprised of the Jaynes-

Cummings and drive components, and the super-operator, D̂, accounts for decay

of system excitation into the environment through the ubiquitous Lindblad decay

term [35, 36]. For arbitrary system operators Ô and P̂ ,

D̂[Ô]P̂ = ÔP̂ Ô† − 1

2
Ô†ÔP̂ − 1

2
P̂ Ô†Ô . (2.25)

Eq. 2.25 represents the most general form of Markovian dissipation that is trace pre-

serving and therefore allows for multiple independent decay channels to summed [36]
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.

2.1.3.1 The external drive

In the presence of dissipation a drive term is necessary to have a nontrivial steady-

state solutions to 2.24. To remedy this behavior we incorporate the term

Ĥd = iE(â† − â) . (2.26)

The phase convention in 2.26 insures that the empty4 cavity steady-state is the coher-

ent state |α〉 = |E/(κ + iΘ)〉. When driven on resonance, this steady-state coherent

state amplitude is real valued, with α = E/κ.

Unlike the Jaynes-Cummings Hamiltonian 2.7, Ĥd couples blocks of different ex-

citation. We have

(n− 1)Θ + ∆σ̂+σ̂−
√
ni(g0σ̂+ + E)

√
ni(g0σ̂+ + E) nΘ + ∆σ̂+σ̂−

 =


(n− 1)Θ 0 −

√
niE 0

0 (n− 1)Θ + ∆ −
√
nig0 −

√
niE

√
niE

√
nig0 nΘ 0

0
√
niE 0 nΘ + ∆

 (2.27)

which represents the driving term pushing the system into eigenstates of higher photon

numbers through the (far) off diagonal elements. Furthermore, this drive couples

upper and lower dressed states of adjacent blocks

. . . ↔ |±, n− 1〉 ↔ |±, n〉 ↔ |±, n+ 1〉 ↔ . . . , (2.28)

and

. . . ↔ |±, n− 1〉 ↔ |∓, n〉 ↔ |±, n+ 1〉 ↔ . . . . (2.29)

4I use the phrase ‘empty cavity’ here, and throughout this thesis, to describe the situation where
no atom is present. This phrase is not meant to imply that the cavity field is unexcited.
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These two excitation pathways, however, will be relatively detuned by ∼ ±
√
ng0,

and, therefore, will not be simultaneously resonant for intra-cavity photon numbers

where
√
ng0 � {κ, γ⊥}.

2.1.3.2 Displacing the mean field

For problems in the low-excitation regime, the master equation 2.24 may be integrated

on a PC without much difficulty. However, when the drive is large enough so that the

mean coherent state amplitude α = E/κ� 1, the large intra-cavity photon numbers

become problematic computationally since the required Fock space dimension scales

as
〈
â†â

〉
≈ |α|2. Often, the intra-cavity field is very close to a coherent state but

with small variations associated with the interesting atom-field dynamics. In this

case, we can displace away the large mean field α, which is essentially a classical term

and therefore uninteresting, so that we can focus on the small quantum fluctuations,

which we know to be interesting.

The displacement operator [35],

D̂(α) = eαâ†−α∗â = eαâ†e−α∗âe−|α|
2/2 , (2.30)

has the convenient property that it transforms the vacuum state as D̂(α)|0〉 → |α〉

and the annihilation operator as

D̂†(α)âD̂(α) = â+ α . (2.31)

Using 2.30, we displace the dynamics so that Ĥ → D̂†(α)ĤD̂(α) and obtain

Ĥ ′
jc = Θâ†â+ ∆σ̂+σ̂− + ig0(â

†σ̂− − âσ̂+)

+ Θ
(
αâ† + α∗â+ |α|2

)
+ ig0(α

∗σ̂− − ασ̂+) ,
(2.32)

and

Ĥ ′
d = iE

(
â† − â

)
+ iE (α∗ − α) . (2.33)
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Unlike the transformation 2.2, this displacement does affect the field dissipation term:

2κD̂[â]ρ̂→ D̂†(α)
{

2κD̂[â]
(
D̂(α)ρ̂′D̂†(α)

)}
D̂(α)

→ 2κD̂[â]ρ̂′ − i
[
iκ

(
α∗â− αâ†

)
, ρ̂′

]
,

(2.34)

where ρ̂′ = D̂†(α)ρ̂D̂(α) is the new (displaced) density matrix.

Using a result from Section 2.1.3.3 we make the judicious choice

α =
E

κ+ iΘ
, (2.35)

and, after a few lines of algebra, we find that our transformed density matrix satisfies

the following evolution (after dropping constant terms)

˙̂ρ′ = −i[Ĥjc + Ĥ ′
d, ρ̂] + 2κD̂[â]ρ̂′ + 2γ⊥D̂[σ̂−]ρ̂′ , (2.36)

Ĥ ′
d = −i

(
g0E

κ+ iΘ

)
σ̂+ + i

(
g0E

κ− iΘ

)
σ̂− . (2.37)

Evidently, the dynamics in the transformed frame are identical to those in the original

frame – the only difference is the form of the drive term. In this new picture, the

drive field does not excite the cavity mode but instead directly excites the atom. Of

course, the original picture, with the drive exciting the cavity, is in some sense more

physically motivated, but it’s also quite biased – the cavity and the atom are both

coupled to the drive field, after all. Now, this new picture wherein the drive term only

excites the atoms is just as biased, but it’s also very convenient since we may now

work within the displaced Fock space, which can have much lower dimension. In any

case, it stands that from a solution ρ̂′ of the displaced master equation 2.36 we may

construct the solution ρ̂ = D̂(α)ρ̂′D̂†(α) to the dynamics 2.24 of the more ‘natural’

picture. Similarly, if we’re only interested in computing operator expectation values
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we can use, for example,

Tr [âρ̂] = Tr [âρ̂′] + α , (2.38)

which is much more convenient than transforming the entire density matrix.

2.1.3.3 Semiclassical description: the Maxwell-Bloch Equations

Note, the results of this section are expanded upon in great detail in Chapter 3.

Unfortunately, aside from brute numerical integration, it’s difficult to extract much

information from the master equation 2.24 because analytic treatments are possible

for very few applications. For many parameter regimes, however, the operator expec-

tation equations of motion can provide much insight. Using that
d〈Ô〉

dt
= 〈Ô ˙̂ρ〉, we

get the operator equations of motion:

d 〈â〉
dt

= −(κ+ iΘ)〈â〉+ g0 〈σ̂−〉+ E

d 〈σ̂−〉
dt

= −(γ⊥ + i∆) 〈σ̂−〉+ g0 〈âσ̂z〉

d 〈σ̂z〉
dt

= −2γ⊥(〈σ̂z〉+ 1)− 2g0(〈â†σ̂−〉+ 〈σ̂+â〉) .

(2.39)

σ̂z = [σ̂+, σ̂−] = |e〉〈e| − |g〉〈g| measures the atomic population difference. Unfortu-

nately, these equations are not amenable to analytic analysis either because they are

not closed – the dual-operator expectation values, like 〈âσ̂z〉, muck everything up. We

can, of course, simply factor these terms, e.g., 〈âσ̂z〉 → 〈â〉 〈σ̂z〉, but in doing so we

necessarily introduce errors associated with the atom-field entanglement. Therefore,

we should expect the resulting equations to be reliable only for conditions where the

atom and field are weakly coupled.

Making these factorizations leads to the semiclassical Maxwell-Bloch Equations [33,

37], which describe the coupled evolution of the complex field amplitude, z = 〈â〉,

the complex atomic polarization, v = 2 〈σ̂−〉, and the real-valued atomic population
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difference m = 〈σ̂z〉:

ż = −(κ+ iΘ)z + g0v/2 + E

v̇ = −(γ⊥ + i∆)v + 2g0zm

ṁ = −2γ⊥(m+ 1)− g0(z
∗v + zv∗) .

(2.40)

Note that |v| ≤ 1 and −1 ≤ m ≤ 1.

The utility of the coupled equations 2.40 lies primarily in their relative simplicity

when compared to the full master equation 2.24. For example, the analytic form for

the steady-state empty cavity field,

zss =
E

κ+ iΘ
, (2.41)

can be easily inferred whereas the master equation must be solved numerically for

steady-state solutions. In general, the evolution given by 2.40 will differ from the

true evolution 2.24, i.e., zss and Tr [âρ̂ss], etc. This difference can be significant

under strong-coupling conditions [38, 39].

2.1.3.4 The linear regime and the transmission spectrum

In the weak-driving limit [6], n̄� n0, the system can have at most one excitation, so

that for all transmissive properties we may assume the atom is in the ground-state,

mss → −1. In fact, we must have 〈âσz〉 ≡ − 〈â〉 if there is only one excitation

allowed in the system. Therefore, the atom-field interaction will be completely linear

since atomic saturation effects will be nonexistent, and we need only solve the two

equations

ż = −(κ+ iΘ)z + g0v/2 + E

v̇ = −(γ⊥ + i∆)v − 2g0z
(2.42)
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which have steady-states given by

zss =
γ⊥ + i∆

g2
0 + (κ+ iΘ)(γ⊥ + i∆)

E

vss = − 2g0

g2
0 + (κ+ iΘ)(γ⊥ + i∆)

E .
(2.43)

Therefore, the (normalized) transmission coefficient of the coupled system is

zss

E/κ
≡ T =

κ(γ⊥ + i∆)

g2
0 + (κ+ iΘ)(γ⊥ + i∆)

. (2.44)

Defining the fluctuations, δz = z−zss and δv = v−vss, the linear dynamics about

steady-state are characterized by

δ̇z = −(κ+ iΘ)δz + g0δv/2

δ̇v = −(γ⊥ + i∆)δv − 2g0δz ,
(2.45)

with eigenvalues given by

λ± = −1

2

[
(γ⊥ + i∆) + (κ+ iΘ)±

√
[(γ⊥ + i∆)− (κ+ iΘ)]2 − 4g2

0

]
(2.46)

and rather messy eigenvectors. In the loss-less case, however, thing necessarily sim-

plify

λ± = − i
2

[
(∆ + Θ)±

√
(∆−Θ)2 + 4g2

0

]

δ~u± =

δz±
δv±

 =


−i

h
δ∓
√

δ2+4g2
0

i
r

16g2
0+

h
δ∓
√

δ2+4g2
0

i2

4g0r
16g2

0+
h
δ∓
√

δ2+4g2
0

i2

 .

(2.47)

The eigenvalues clearly correspond to the energies of the upper and lower dressed-

states of Eq. 2.12 for n = 1. Most importantly, we see that the semiclassical results

capture the essence of the ‘vacuum’-Rabi splitting of cavity QED: for ∆ = Θ = 0, the

λ± eigenvalues are split by an amount ±ig0, independent of the drive field strength.
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This normal mode splitting is often attributed to the quantum nature of field – as

an indication that the field only interacts in quantized steps – but we can see here

that it’s present for a classical field interacting with an elastic scatterer. However,

the fact that the semiclassical equations correctly predict the eigenstructure of the

system should not be taken as an indication that the weakly-driven system possesses

no quantum properties. For example, correlation functions (which are an indication

of system dynamics) of the cavity transmitted field can display photon antibunching

in the weak-excitation regime [9].

2.2 Optical phase bistabilty

It’s well known that a cavity filled with N � 1 atoms each weakly coupled to the field,

g0 ≤ {κ, γ⊥}, and driven strongly on resonance, E � {g0, κ, γ⊥}, exhibits absorptive

optical bistability [37, 40, 41]. This behavior can be understood through a straight-

forward extension of the Maxwell-Bloch Equations for N atoms (see Chapter 3 for

details) or through simpler arguments based on a saturable intracavity absorber [42].

It was also recognized early on that a single atom cavity QED system in the weak

coupling regime could also exhibit signatures of absorptive bistability. Under the right

conditions, steady-state photon number distributions of the master equation 2.24 are

doubly peaked, with the peaks centered on mean photon numbers predicted by the

semiclassical theory of optical bistability [43]. It was believed, however, that the non-

linear behavior of a single atom system would be washed away in the strong coupling

regime, since the saturation photon number, n0 = γ2
⊥/2g

2
0, would be so small that

the (photon number) difference between coexisting stable states would necessarily be

smaller than the quantum fluctuations.

However, this does not preclude the existence of nonlinear behavior in the strong-

coupling regime – it only suggests that drawing quantum analogies from the semiclas-

sical picture of a saturable absorber is no longer warranted. As we’ll see, a new kind

of nonlinear behavior emerges from this strongly coupled quantum system. The intu-

ition for this behavior comes from the idealized structure of the underlying quantum
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model. In fact, semiclassical analogies are drawn from an idealized quantum picture.

2.2.1 Back to the eigenstructure

Returning to the eigenvalues 2.12 and eigenvectors 2.13 of the Hamiltonian system,

but considering now the system under resonance conditions, ∆ = Θ = 0, we obtain

eigenstates that are balanced superpositions

lim
δ→0

|±, n〉 → 1√
2

[|e, n− 1〉 ± i |g, n〉] , (2.48)

with energy levels

E±
n = ±ng0 . (2.49)

These states and energies are represented in Figure 2.2. In a sense, the resonant

case leads to the strongest coupling between the atom and cavity. For this case, the

eigenvalues indicate a pronounced ‘splitting’ of the atom-cavity transmission spectrum

under weak driving conditions: the coupled system will no longer be ‘resonant’ with

the probe at frequency ω0, but instead will possess two transmission peaks at ω0±g0.

As the external drive strength is increased and the system populates higher and

higher dressed states the transmission spectrum will return to the case of very weak

coupling. To see this note that for n � 1 the frequency difference between adjacent

upper/lower dressed states goes as

ε±n = E±
n+1 − E±

n

= ±
√
n+ 1g0 ∓

√
ng0 ≈ ±

g0

2
√
n

(2.50)

and therefore tends to zero as the system is excited to higher levels. Although the

steady-state transmission ostensibly approaches that of an empty cavity for n � 1

(as depicted in Figure 1.3), the laser frequency is actually detuned from the coupled

system, albeit by a very small amount. This is depicted in Figure 2.3 with the probe

frequency slightly red detuned relative to the upper eigenstate transition, and slightly
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|g, 0〉 |g, 0〉

|+, 1〉

|−, 1〉

|−, 2〉
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ω0

ω0

2

√

2g0

2g0|g, 1〉, |e, 0〉

|g, 2〉, |e, 1〉

Figure 2.2: The eigenstructure (in the lab frame) of the Jaynes-Cummings Hamilto-
nian for the resonant case.

blue detuned from the lower. Note, though, that the detuning between the lower and

upper eigenstates is quite large

ζ±n = E±
n+1 − E∓

n

= ±
√
n+ 1g0 ±

√
ng0 ≈ ±2

√
ng0 ,

(2.51)

so that the lower and upper eigenstates can not couple to each other through the

driving laser.
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Figure 2.3: Transition detunings for phase bistability in the resonant case.

2.2.2 Everyone’s favorite analogy

If we assume, for the time being, that the system localizes on either the upper or

lower manifold of eigenstates, then in the limit of strong driving the field behavior

should follow that of a damped harmonic oscillator being driven off resonance by a

manifold dependent detuning. For very large mean photon numbers, we can neglect

the variation of the detuning 2.50 with n, and take ε±n → ±g0/2
√
n̄, where n̄ is the

mean intracavity photon number. The coherent state amplitude of this quantum

harmonic oscillator satisfys [33, 35]

α̇± = −
(
κ± ig0

2|α±|

)
α± + E , (2.52)
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where we have used the fact that for coherent states
√
n̄± = |α±|. Solving for the

steady-states, we easily obtain the magnitude

|α±ss| =
E
κ

√
1−

( g0

2E

)2

, (2.53)

which can be re-substituted into Eq. 2.52 to yield

α±ss =
E
κ

[
1−

( g0

2E

)2
]
± ig0

2κ

√
1−

( g0

2E

)2

. (2.54)

Evidently, then, for a sufficiently strong drive this driven, damped oscillator has two

steady-state field amplitudes of equal magnitude but with an imaginary component

that varies as ≈ ±g0/2κ. However, these solutions only exist for E ≥ g0/2, since the

field magnitude given by Eq. 2.53 must be real valued. We might assume then, that

this field strength is like a threshold for some qualitative change in the systems steady-

state and dynamical behavior (although we should be be careful drawing conclusions

from such an ad hoc model.)

So far we have ignored spontaneous emission completely. In its presence the

oscillator states 2.54 will no longer be steady-states since the upper and lower dressed-

state manifolds are now coupled. However, as we’ll see, direct numerical integration

of the master equation supports the interpretations of this section, and under the

right conditions the steady-state of the full quantum mechanical treatment is roughly

that of an incoherent mixture of these two coherent states

ρ̂f
ss ∝

1

2

(
|α−ss〉〈α−ss|+ |α+

ss〉〈α+
ss|

)
. (2.55)

2.2.3 Steady-state solutions to the master equation

The most direct way to compare steady-state results of the master equation with

the harmonic oscillator analogy of the previous section is through the Q-function [33,

35]. The benefits of using the Q-function, over the other common quasi-probability

distributions, are twofold. Firstly, the Q-function is positive-semidefinite, and is
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Figure 2.4: Steady-state Q-functions vs. E for an idealized parameter set: g0/κ ≈
7.3, κ/γ⊥ ≈ 3.2. The value of the drive term is A) E = 0; B) E = g0/2; C) E = 4g0.
Note, the imaginary axis is fixed for all three plots, and the peak positions in C) are
at roughly Im [α] = ±g0/2κ ≈ ±3.7.

therefore better suited for making comparisons to classical probability distributions

(such as the stationary distribution of a classical model with noise). Secondly, the

value of the Q-function has a simple interpretation in terms of coherent states |α〉 of

the intracavity field. For any given density operator ρ̂ we have

Q(α) = 〈α|ρ̂f |α〉 , (2.56)

where ρ̂f is the reduce density matrix on the field. Therefore, Q(α) may strictly be

thought of as a probability, which further lends to its utility for making comparisons

between quantum and semiclassical descriptions of equilibrium behavior.

In practice we can find the steady-state density operator ρss of the master equa-

tion 2.24 simply by setting the terms on its right-hand side to zero and solving the

resulting algebraic equation. We can then use Qss(α) = 〈α|ρ̂f
ss|α〉 to visualize the

results.

In Figure 2.4 we plot this Q-funcion for an ideal set of parameters that exhibit a

pronounced bimodal distribution. The real and imaginary axis are, respectively, the

real and imaginary components of the coherent state amplitude (i.e., the amplitude
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and phase quadratures):

Re [α] =
1

2

〈
â† + â

〉
,

Im [α] =
i

2

〈
â† − â

〉
.

(2.57)

For each plot, the real and imaginary axes are centered on the expected empty cavity

mean field, Re [α] = E/κ. For small drive strengths the steady-state field distribution

is essentially normal, as expected in the vacuum state, but with a slight broadening

due to atomic scattering. However, as the drive field is increased through the predicted

threshold, E = g0/2, the distribution begins to noticeably deviate from normal, and in

the very strong driving regime two peaks are clearly visible. Note that in the absence

of an atom-field interaction, the normal distribution seen in Figure 2.4A will simply

shift along Re [α] as the drive strength is increased.

I won’t waste a bunch of space here plotting up Q-funcitons for every conceivable

parameter set. Suffice it to say [3] that the agreement between the steady-state

Q-functions and the harmonic oscillator picture of the previous section is excellent.

In particular, for large drive strengths the peak splitting in phase goes as ±g0/2κ,

and in the limit g0 � 2κ the drive field E = g0/2 sets a threshold for this bimodal

display. Also, in Figure 2.4B it’s clear that the steady-state distribution is ‘lagging’

significantly behind the empty cavity field value (at the center of the plot). We

can understand this behavior easily from the Jaynes-Cummings structure for low

excitations displayed in Figure 2.2 – the nominally resonant drive is off resonant

from the coupled atom-cavity system by ∼ ±g0, so that the cavity steady-state field

amplitude is largely suppressed. With persistence, though, the drive will populate

higher and higher rungs of the ladder, until at the critical value of g0/2 the larger n

states are sufficiently populated to allow for the near resonant pathways |−, n−1〉 →

|−, n〉 → |−, n + 1〉 and |+, n − 1〉 → |+, n〉 → |+, n + 1〉 to overwhelm the system

with photons.

As alluded to at the end of Section 2.2.2, in the strong driving limit spontaneous

emission couples the upper and lower eigenstate manifolds. Since the states |±, n〉 are
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comprised of an equal mixture of atomic excited and ground states, we should expect

that their spontaneous emission rate to be γ⊥. For each emission event the initial

state is knocked down by one excitation, but the resulting manifold will be random

|±, n〉 

{
|±, n− 1〉

|∓, n− 1〉
(2.58)

so that the effective rate of ‘mixing’ is γ⊥/2. We can expect, then, that this bimodal

field behavior to persist for finite γ⊥, but with the individual peaks less distinguish-

able. In fact, this is the case – for example, the ‘skirt’ connecting the two peaks in

Figure 2.4 is a consequence of a finite γ⊥. As it turns out, the critical parameter that

determines how distinct the two peaks appear is the ratio γ⊥/2κ. But to understand

this fact we need to move beyond steady-state Q-functions.

2.2.4 A (slightly) better semiclassical model

The semiclassical equations 2.40 don’t predict the bimodal phase behavior shown in

Figure 2.4. The resonant Maxwell-Bloch equations

ż = −κz + g0v/2 + E ,

v̇ = −γ⊥v + 2g0zm ,

ṁ = −2γ⊥(m+ 1)− g0(z
∗v + zv∗) ,

(2.59)

have steady-states that satisfy

vss = (2g0/γ⊥) zssmss ,

mss = − 1

1 + (2g2
0/γ

2
⊥) |zss|2

,
(2.60)

and

E/κ = |zss|+
(g2

0/γ⊥κ) |zss|
1 + (2g2

0/γ
2
⊥) |zss|2

. (2.61)
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If we take the limit γ⊥/κ→ 0, these solutions exhibit absorptive bistability for small

drive values, and for E � g0/2 there is only a single solution of the form

zss = E/κ , vss = 0 , mss = 0 . (2.62)

This corresponds to the cavity field overwhelming the atom into a completely unpo-

larized state; at this point, the intracavity field may respond to the drive as though

there is no atom.

It shouldn’t be too surprising that Eq. 2.62 fails to capture the behavior of the

previous section, since the approximations leading to 2.59 are invalid under strong

coupling. But still, if the arguments presented in Section 2.2.2 are correct, and the

master equation seems to think they are, then the system state is essentially jumping

between the two separable states |+〉 ⊗ |α+〉 and |−〉 ⊗ |α−〉, where

|±〉 =
1√
2

(|e〉 ± i|g〉) , (2.63)

are the semiclassical atomic dressed states. In this case, the operator factorizations

made in Section 2.1.3.3 that lead to Eq. 2.59 are not so inappropriate. And yet, the

Maxwell-Bloch equations are oblivious to this bimodal phase behavior.

Well maybe the Maxwell-Bloch equations are smarter than we (meaning I) think.

The key problem is that the atomic steady-state in Eq. 2.62 is completely unpolarized.

Of course, this is the steady-state mean we should expect if the underlying dynamics

describe an atomic states randomly jumping between orthogonally polarized states.

The problem is, once again, that pesky parameter γ⊥, which tends to depolarize the

atomic state even if we take γ⊥ → 0 after solving for the steady-state. Instead, let’s

just force the atomic state to be polarized by setting γ⊥ = 0 before solving for the

steady-states. In this case, we have the conservation law |vss|2 + m2
ss = 1 to add to
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the steady-state equations

E/κ+ (g0/2κ)vss = zss ,

zssmss = 0 ,

z∗ssvss + zssv
∗
ss = 0 .

(2.64)

The solutions valid for E ≤ g/2 are:

zss = 0 ,

vss = −2E/g0 ,

mss = ±
√

1− (2E/g0)2 ,

(2.65)

which correspond to an atom polarized just so that it’s radiated field exactly cancels

the drive field. Of course, the atom can not do this indefinitely, and for E ≥ g/2 the

solutions become

zss = (E/κ)[1− (g0/2E)2]± i(g0/2κ)
√

1− (g0/2E)2 ,

vss = −(g0/2E)± i
√

1− (g0/2E)2 ,

mss = 0 .

(2.66)

These states exhibit the bistability that we were looking for. The important thing

about Eqs. 2.65-2.66 is that they accurately predict: (i) that the field is zero when

the driving is weak; (ii) that there exists a threshold driving strength, E = g/2, for

the interesting things to happen; (iii) that phase bistability occurs for strong driving;

and (iv) the optical phase is correlated with the atomic dipole orientation. In the

limit of very strong driving, E � g, the steady-states in Eq. 2.66 simplify further to:

zss = (E/κ)± i(g/2κ) ,

vss = ∓i ,

mss = 0 .

(2.67)

These states are the classical analogs to the quantum tensor product of a optical
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coherent state with an atomic dressed state. Physically, these states correspond to

the atomic dipole either aligned or anti-aligned with the resonant drive field; the

steady-state field thus contains a quadrature component corresponding to the field

radiated by the atomic dipole, g0vss/2 in 2.59.

2.2.5 Quantum trajectory simulations

The dynamics obtained from direct numerical integration of the master equation 2.24

display nothing like the behavior outlined in Section 2.2.2. In Figure 2.5 this time

evolution is presented for the parameters of Figure 2.4C, where the Q-function has a

pronounce phase splitting. In Figure 2.5A we plot the phase, Tr[Ŷ ρ̂], and amplitude,

Tr[X̂ρ̂], quadratures of the intracavity field over a time 1/γ⊥, where

Ŷ =
i

2
(â† − â) , (2.68)

and

X̂ =
1

2
(â† + â) . (2.69)

The initial condition is the steady-state of an uncoupled atom and cavity: |g〉⊗|E/κ〉.

Note that the plotted amplitude quadrature has the value E/κ subtracted so that it

can be displayed in the same scale as the phase quadrature. Clearly there’s nothing

interesting going on here, except for a modest ripple in the amplitude quadrature

a early times. The phase quadrature, however, is exactly zero (within simulation

error). In Figure 2.5B we plot the evolution of the dressed states Tr [|±〉〈±|ρ̂]. Aside

from an early time Rabi oscillation at frequency Ωr ≈
√
n̄g0/2, the dressed state

populations decay into nearly unpolarized states. This behavior is exactly what our

initial Maxwell-Bloch steady-states predicted 2.62.

From the intuitive harmonic oscillator picture of Section 2.2.2 we would expect

the phase quadrature and atomic dressed states switch between the two values of

Eq. 2.67, with the switching triggered by individual spontaneous emission events. We

clearly don’t see this. The thing is, the master equation 2.24 would never produce
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Figure 2.5: Solution to numerical integration of the unconditional master equation
for parameters of Figure 2.4B. A) Expectation values of the amplitude (â† + â)/2
and phase i(â†− â)/2 quadratures – note, to display on the same scale the amplitude
quadrature has its t = 0 value subtracted off. B) Probability of being in the upper
and lower dressed states. Note, the two curves lie on top of each other.

this sort of behavior – as it’s just a finite set of linear differential equations, the most

we can expect is a bunch of damped sinusoids, which is essentially what we see. Of

course, the behavior that leads to the Q-functions 2.4 is in there somewhere – we just

need a way of coaxing it out. Now we could attempt to reconstruct this behavior by

computing the time evolution of higher and higher moments of system operators [44],

but I find this approach is cumbersome and quite unsatisfying.

The problem is that the master equation 2.24 describes the unconditional dynam-

ics of the atom-cavity system. That is, the solutions ρ̂(t) of the master equation

represent the knowledge we can have of the evolving system state without utilizing

information obtainable via real-time measurements of the output fields (i.e., cavity
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Figure 2.6: A schematic of a cavity QED system with homodyne measurement of the
phase quadrature. In a parameter regime exhibiting phase bistability, the detected
phase of the output field is correlated with the atomic dressed state.

transmission and atomic fluorescence). Therefore, we can gain further insight into

the dynamics by considering quantum predictions regarding detection photocurrents.

Fortunately, the same theory used to derive the master equation provides a powerful

set of tools for a statistically-faithful sampling of continuous measurement records

[6, 45, 46], and tells us how to interpret them as real-time observations of the in-

tracavity dynamics [47]. In what follows I’ll make use of these ‘quantum trajectory’

methods for Monte Carlo simulations of the photocurrent generated by homodyne

detection of the cavity output field [45].

2.2.5.1 The stochastic Schrödinger equation

One possible, and in this case relevant, measurement scheme is homodyne detection,

depicted in Figure 2.6. The cavity output field (the ‘signal’) is interfered with a

coherent field (the ‘local oscillator’), and the total intensity of these summed fields

is measured by a standard photodetector. By varying the relative phase, θ, of the

local oscillator field we may exact a measurement of the cavity field operator (see

Section 2.3.5)

X̂θ =
1

2

(
eiθâ† + e−iθâ

)
. (2.70)

For the moment I’ll pretend as though there is no spontaneous emission just to sim-

plify the equations. Then, in the limit of a very intense local oscillator, the stochastic

Schrödinger equation (SSE) governing the evolution of the conditional state vector,
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|ψc〉, is given by [48]

d|ψc〉 =
(
−iĤ − κâ†â+ 2κe−iθâ〈X̂θ〉c − κ〈X̂θ〉2c

)
|ψc〉dt+

+
√

2κ
(
e−iθâ− 〈X̂θ〉c

)
|ψc〉dW ,

‘ (2.71)

where dW is a Wiener increment [49] satisfying 〈dW 〉 = 0 and 〈dW 2〉 = dt, and 〈·〉c
denotes the conditional expectation. I include this particular case here for posterity,

since in many places [20, 50] the SSE for homodyne detection is written in an unnor-

malized form (which is fine), or even flat out incorrectly [35] (which is not fine). Of

course, van Handel [48] gets it just right [51], and in particular the form 2.71 correctly

reproduces the normalized stochastic master equation [45]

dρ̂tot = d (|ψc〉〈ψc|)

= dρ̂+ dρ̂meas ,
(2.72)

where dρ̂ is just the increment from the unconditional master equation 2.24 and the

measurement term is

dρ̂meas =
√

2κ
(
e−iθaρ̂+ ρ̂eiθa† − 2Tr[X̂θρ̂]ρ̂

)
dW . (2.73)

Incorporating the measurement of atomic spontaneous emission into the SSE leads

to (after the obvious extension of 2.71),

d|ψc〉 = −iĤ|ψc〉dt

+
(
−κâ†â+ 2κe−iθ1 â〈X̂θ1〉c − κ〈X̂θ1〉2c

)
|ψc〉dt

+
√

2κ
(
e−iθ1 â− 〈X̂θ1〉c

)
|ψc〉dW1

+
(
−γ⊥σ̂+σ̂− + 2γ⊥e

−iθ2σ̂−〈Ŝθ2〉c − γ⊥〈Ŝθ2〉2c
)
|ψc〉dt

+
√

2γ⊥

(
e−iθ2σ̂− − 〈Ŝθ2〉c

)
|ψc〉dW2 ,

(2.74)

with the Hamiltonian, Ĥ, given in Eq. 2.5, and Ŝθ2 = (e−iθ2σ̂− + eiθ2σ̂+)/2. The

measured homodyne photocurrents, Ihom1,2 = dQ1,2

dt
, which are, respectively, the ho-
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modyne photocurrents associated with the cavity and atomic decay channels, can

then be calculated using

dQ1 =
√

2κηκ

〈
2X̂θ1

〉
dt+ dW ′

1 ,

dQ2 =
√

2γ⊥ηγ⊥

〈
2Ŝθ2

〉
dt+ dW ′

2 ,
(2.75)

where
(
dW1,2, dW

′
1,2

)
are independent Wiener increments, and (ηκ, ηγ⊥) represent the

measurement efficiencies of each channel. Numerical integration of Equations 2.74

and 2.75 are performed using the stochastic integration routine incorporated in the

Quantum Optics Toolbox [52] for MATLAB.

In a real experiment, full measurement of the atomic spontaneous emission is not

actually feasible as this would require a detector covering nearly 4π steradians of

solid angle. Fortunately, the cavity-output homodyne photocurrent Ihom1 generated

by Monte Carlo integration of the above SSE (considered on its own without any ref-

erence to the corresponding Ihom2) is sampled from the same law as the photocurrent

one would see in an experiment in which the atomic decay channel was not measured

at all [48]. Therefore I make use of such photocurrent simulations below and also in

Chapter 3 in the analysis of single-atom bistability and Hopf bifurcations.

It should be stressed that the conditional state |ψc〉 propagated by the SSE is

merely an internal variable of the Monte Carlo simulation, and not something that

could be reconstructed (in a recursive estimation sense) from the cavity-output pho-

tocurrent alone. The best we could do to estimate the system’s state, without assum-

ing high-efficiency observation of the cavity decay channel, would be to utilize the

corresponding stochastic master equation [45] as an optimal quantum filter [47]. Even

in a purely theoretical discussion it’s best to utilize the SME (as in Ref. [28]) to gener-

ate not only realistic photocurrent samples, but also the conditional quantum states

that one could in principle generate from them via recursive filtering. Unfortunately

such numerical procedures are very computationally intensive, which motivates the

use of the SSE here. In the remainder of this section I will plot conditional expecta-

tions as well as photocurrents, but this is primarily just to ‘guide the eye’ and verify
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Figure 2.7: Quantum trajectory simulation for parameters of Figure 2.4B. A) The
conditional amplitude(blue) and phase(red) quadratures of the field. Note that the
amplitude quadrature has E/κ subtracted off to display on the same scale. B) Pho-
tocurrent generated from phase quadrature homodyne measurement of the cavity
field assuming perfect detection efficiency. Photocurrent is displayed at an analog
bandwidth, fbw = 5κ. C) Probability of being in the |−〉〈−| (red) and |+〉〈+| (blue)
atomic dressed states.

the intuition of Section 2.2.2. As we’ll see here the dynamics underlying the bimodal

Q-functions are generally well represented by the photocurrents alone.

2.2.5.2 Numerical results

The variations in photocurrent, for the case of phase bistability, are best captured by

setting the measurement phase so that X̂π/2 = Ŷ , where Ŷ the phase quadrature field

operator of Eq. 2.68. The results of a quantum trajectory simulation, in this case,

for the parameters of Figure 2.4 are plotted in Figure 2.7. The simulated homodyne

photocurrent in Figure 2.7B shows a clear hopping between two states separated by

±g0/2κ. Note, as will be the norm throughout the remainder of this thesis, the
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displayed photocurrent, Idisp, is scaled so

Idisp =
Ihom

2
√

2κηκ

1

g0/2κ
, (2.76)

and should therefore jump between the values ±1 in the ideal case. Within the plotted

time window we see four distinct switching events, consistent with the picture of

spontaneous emission induced jumping between atomic dressed states[3]. And from

extended simulations, we find that the the average rate of switching between the upper

and lower field states is indeed γ⊥/2. Furthermore, we see that the phase quadrature

field switching displayed in 2.7A) is generally preceded by the atomic state jumps

between the upper |+〉 and lower |−〉 dressed states in 2.7C). Comparing A) and

C) it’s immediately clear why the ratio γ⊥/2κ serves such an important role in the

‘distinguishability’ of the Q-function peaks: for every spontaneous emission induced

atomic jump between dressed state manifolds, the cavity field needs at least a time

τ ∼ 1/κ to respond. That is, the intracavity field can not respond instantaneously; in

general, it can only change as ∼ e−κt. If the jumping rate γ⊥/2 becomes faster than

κ, the intracavity phase quadrature will not have enough time to fully switch between

the values, ±g0/2κ. The steady state distribution will become smeared, reflecting the

smaller fraction of time spent at the fixed points 2.66.

So far we’ve looked at an idealized set of parameters. In Figure 2.8 and 2.9 we plot

the Q-function and quantum trajectory simulation, respectively, for an experimentally

relevant parameter set, {g0, κ, γ⊥} /2π = {22, 8.0, 2.6}MHz. The values correspond

to the maximal coupling strength for a Cesium atom interacting with circularly po-

larized light within the cavity described in Section 2.3.1. Note that in comparison to

the ‘ideal’ values, this ‘realistic’ parameter set has the same ratio κ/γ⊥, but the ratio

g0/κ is about three times smaller. The threshold behavior 2.8B is now not nearly as

pronounced is in the ideal case 2.4B, nor is the high field splitting 2.8C, although two

peaks can still be easily distinguished by eye. These peaks can also be distinguished

quite easily in the simulated photocurrent presented in Figure 2.9B. Note, this simu-

lated signal is displayed at the same bandwidth as that of Figure 2.7B, fbw = 5κ, and
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Figure 2.8: Steady-state Q function expected for the experimental parameters of
Section 2.3. Parameters are g0/κ ≈ 2.7, κ/γ⊥ ≈ 3.2, and the value of the drive term
is A) E = 0; B) E = g0/2; C) E = 4g0.

again with perfect detection efficiency. The smaller value of g0/2κ for these parameter

means that the photocurrent signal appears more ‘noisy’. That is, the conditional

expectation term in the simulated photocurrent 2.75 now jumps between smaller field

values, but the Wiener process remains unchanged.
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Figure 2.9: Quantum trajectory simulation for the expected experimental param-
eters of Section 2.3 and the driving field used in Figure 2.8C. A) The conditional
amplitude(blue) and phase(red) quadratures of the field. Note that the amplitude
quadrature has E/κ subtracted off to display on the same scale. B) Photocurrent
generated from phase quadrature homodyne measurement of the cavity field assum-
ing perfect detection efficiency. Photocurrent is displayed at an analog bandwidth,
fbw = 5κ. C) Probability of being in the |−〉〈−| (red) and |+〉〈+| (blue) atomic
dressed states.
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2.3 The experiment

The experimental procedure is conceptually quite straightforward. Within a vacuum

chamber, a cold cloud of Cesium atoms is dropped onto a high finesse optical cavity

about ∼ 8mm below. When a weak off-resonant probe, monitored through optical

heterodyne detection, senses the presence of an atom, an electronic switch turns on an

intense resonant drive. A homodyne measurement of the cavity’s transmitted signal

is digitized and stored for post processing.

2.3.1 The cavity

I’ll begin by describing the single most important experimental component whose

properties we have direct control over: the cavity. It was constructed, somewhat

hastily, using what mirrors were lying around. Consequently, the cavity QED pa-

rameters that were obtained are somewhat marginal for a real-time demonstration of

phase bistability, and are certainly short of state-of-the-art [53, 54].

2.3.1.1 The cavity QED parameters

When properly constructed, a Fabry-Perot cavity comprised of two spherical mir-

rors separated by a length l will support a fundamental TEM00 Gaussian mode of

volume [34]

Vm =
π

4
w2

0l (2.77)

where w0 is the Gaussian waist of the mode. For mirrors of radius of curvature R1

and R2, this waist can be expressed as

w2
0 =

λ

πl

√
h1h2(1− h1h2)

(h1 + h2 − 2h1h2)2
(2.78)

where λ = 2πc/ω is the wavelength of the light, and the hi’s above are given by

hi = 1− l

Ri

. (2.79)
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This notation is different from that of Siegman [34] who denotes my h’s using the

variable g, as is customary in the laser physics community. For obvious reasons I

choose not to do that here, and the reader is left with but a minor inconvenience.

Provided that these parameters are well known, the atom-field coupling strength g0

may be easily computed from

g0 = d

√
~ω

2ε0Vm

, (2.80)

where d is the dipole moment for the atomic transition in question.

Estimation of the cavity decay rate, κ, is rather straightforward through knowledge

of the cavity linewidth, δf , defined, here, as the full width at half max for the intensity.

The cavity field decay rate is computed from κ = (2π ·δf)/2. As additional knowledge

of the cavity properties are required for proper calibration of the ‘interesting’ signals

to be measured, I’ll spend a moment discussing some key concepts and parameters.

In particular, we’ll need an estimate of each mirror’s field reflectivity, ri, as well as it’s

total absorptive and scattering losses (for intensity), Ai. As modern mirror coating

and polishing techniques are quite impressive, mirrors can routinely be fabricated

with r ≈ 1, so it’s generally convenient to express properties through the finesse

F =
π
√
r1r2e−A1/2e−A2/2

1− r1r2e−A1/2e−A2/2
, (2.81)

which roughly measures the number of round trips a photon will make in an empty

cavity before it exits. In the very high finesse limit, it’s convenient to parameterize

the reflectivity as, r2
i = e−Ti , where Ti is the power transmission for mirror i. In this

case, the finesse may be expressed as

F =
2π

(T1 + A1) + (T2 + A2)
=

2π

Ltot

, (2.82)

where Ltot is the total round trip loss. The finesse is related to the full width at

half max and the cavity free spectral range, FSR = c/2l, through the convenient
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expression

F =
FSR

δf
. (2.83)

For a laser incident on mirror 1, and matched to the cavity TEM00 mode with

efficiency, ν, the ratios of reflected and transmitted powers to the incident power

are [54]

Pr

Pi

= (1− ν) + ν

(
T2 + A2 + A1 − T1

Ltot

)2

, (2.84)

and
Pt

Pi

= ν
4T1T2

L2
tot

. (2.85)

Therefore, the mode matching efficiency can be eliminated from these equations by

constructing the ratio

Pt

Pi − Pr

=
4T1T2/L

2
tot

1− [(A1 + T2 + A2 − T1)/Ltot]
2 , (2.86)

which is quite conveniently measurable. It’s not useful, however, unless we assume

the cavity mirrors to be identical, so that T1 = T2 = T and A1 = A2 = A, and the

ratio reduces to
Pt

Pi − Pr

=
T 2

(T + A)2 − A2
. (2.87)

This quantity can be measured along with the finesse to determine the mirror trans-

mission and scattering losses.

2.3.1.2 Measurements of the cavity properties

The cavity length is easy enough to determine with the aid of an optical wavemeter.

On resonance, the optical wavelength must satisfy mλ = 2l, for integer m; therefore,

by measuring the resonant wavelengths of adjacent axial modes, λ1 and λ2, we can

compute5

l ≈ 1

2

λ1λ2

|λ1 − λ2|
. (2.88)

5Note, this expression is only approximate: the FSR is a “real” Fabry-Perot cavity is not con-
stant, because light reflected off a real mirror experiences a frequency-dependent phase shift [34].
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Using this procedure I obtained a nominal value of l = 71.6µm, implying an axial

mode spacing, FSR = 2.1THz.

The cavity linewidth was measured by monitoring the transmitted intensity while

sweeping, in time, the length of the cavity over a resonance. The sweep rate was

calibrated by placing frequency sidebands on the laser, and the digitized transmission

signal was fit with a Lorentzian. The obtained value was, δf = 16MHz, implying a

cavity decay parameter, κ = 2π · 8MHz, and a finesse, F = 130, 000. Assuming a

symmetric cavity, this constrains the total losses to T +A ≈ 24ppm. Since the cavity

was mode matched to > 95%, the mirror loss parameters were inferred through a

measurement of the cavity transmission alone, Eq. 2.85. From the ≈ 20% of the

incident power that was measured exiting the cavity, I inferred the transmission and

absorption losses to be T ≈ 10ppm and A ≈ 14ppm. This is quite unfortunate, as it

implies that only a fraction ηT ≈ 0.2 of the intracavity power makes it into the cavity

output mode (i.e., the mode that we measure.) It should be noted, however, that I

made no attempts to characterize the optical scattering due to the (uncoated) vacuum

chamber view ports, so that the quantity T is probably a bit larger than quoted

above, while A is equally smaller. This fact is irrelevant, however, for determining

the quantity κ. Furthermore, although ηT was estimated using only transmission

measurements, subsequent analysis of the cavity reflection signal was found to be

consistent with this value of ηT .

Finally, the cavity is comprised of two 25cm radius of curvature spherical mirrors;

combined with the known length, this gives us a waist, w0 ≈ 29µm. Therefore, for

dipole allowed transitions on the D2 manifold of Cesium 133 [55], we get a maximal

atom-field coupling of g0 ≈ 2π · 22MHz for circularly polarized transitions between

the (6S1/2, F = 4,mf = 4) → (6P3/2, F
′ = 5,m′

f = 5) states, or g0 ≈ 2π · 16MHz

for linearly polarized transitions between the (6S1/2, F = 4,mf = 0) → (6P3/2, F
′ =

5,m′
f = 0) states.
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2.3.1.3 Cavity construction and vibration isolation

In order to be useful, a high finesse optical cavity must have its length very well

stabilized. If we require that the cavity’s resonant frequency be stabilized to a fraction,

ε, of its linewidth, then for a resonant wavelength, λ, the mirror separation must

satisfy δlrms ≤ ε λ/2
F . Making the conservative choice, ε = 0.1, the required RMS

stability for our cavity is δlrms ≤ 0.3pm.

As our Fabry-Perot cavity is comprised of two macroscopic mirrors attached to

a common surface, this RMS stability requirement is not intrinsically satisfied. In

general, the mirror separation drifts due to low frequency thermal variations and

fluctuates due to high frequency vibrations. To correct for the first problem each

mirror is set atop a piezo transducer, as depicted in Figure 2.10C. The mirror itself

rests within an aluminum mount which has been carefully machined such that its

radius of curvature is ever-so smaller than that of the mirror; the mirror rests firmly

within its clutches through a slight flexure of the (very thin) aluminum side walls.

This mount is then glued on top of a shear mode piezo, which itself is attached to a

gold-plated surface (the upper most component of Figure 2.10A) through a vacuum

safe conductive epoxy [56]. The cavity is then formed by placing an identical assembly

(mirror, aluminum mount, and piezo) opposite the first. The length of the cavity can

be scanned by applying a high voltage difference between top and bottom surfaces of

each piezo.

Unfortunately, the piezos can not be reliably used to correct for all of the high

frequency vibrational disturbances to the cavity. The general problem is that mirror

assemblies, such as the one described here, always exhibit low frequency mechanical

resonances in the range ∼ (10−50)kHz; these resonances are caused by a combination

of mass loading effects and the poor mechanical rigidity imparted by the epoxy joints

(for our cavity mount the first mechanical resonance is at ∼ 15kHz.) Consequently,

servo loop bandwidths are generally limited to . 1kHz by the (undesirable) cou-

pling of electronic noise into the system through these mechanical resonances. This

necessitates the use of passive vibration isolation to stop the native high frequency
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a) b)

c)
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~12mm

~12mm

~20cm

Figure 2.10: Cavity construction and vibration isolation.

vibrations from coupling into the cavity.

The required vibration isolation was attained through an alternating stack [57, 58]

of four copper masses (shown in Figure 2.10A) separated by rubber springs (not pic-

tured). These masses were shaped so as to most efficiently fill the available volume

within the vacuum chamber while still providing sufficient optical access for the ex-

periment. The three lowest stages in Figure 2.10A rest atop RTV-615 [59] rubber

bumpers, whereas the final stage that houses the cavity mounts rests atop Viton

tabs. These rubber materials were chosen for the following reasons. First, they are

both vacuum compatible and, in particular, are known to negligibly contaminate high

finesse mirror surfaces through their outgassing [60]. Second, as rubber materials go

RTV-615 has a relatively low elastic modulus and very low loss, meaning that it is
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Figure 2.11: A photo of the cavity resting on the vibration isolation stack resting
within the vacuum chamber. The lowest element of the vibration stack is not visible.

ideally suited for constructing an isolation system with high frequency vibration at-

tenuation. Third, as Viton is relatively lossy it is well suited to act as a vibration

damper in the final stage [61].

With properly sized rubber bumpers, the entire assembly fits together rather

snugly (Figure 2.10B); it rests even more snugly within the vacuum chamber, as

can be seen in Figure 2.11. Note, the lower-most element of the vibration isolation

stack is not visible in this photo. As copper oxidizes quite readily, and therefore

necessitates a rather nasty vacuum preparation procedure [62, 63], we had the entire

stack plated with gold [64]. Also visible at the top right quadrant of the photo are two

wires that carry the piezo control voltage. These are standard, commercially available

UHV vacuum-grade wires, but with the outer Kapton sheath removed (using a razor)

so that minimal vibrational energy is coupled into the cavity mount.
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Figure 2.12: Cavity transmission for three different incident polarizations. As a
point of reference, for a ‘p’-polarized signal the electric field polarization is parallel
to the top surface of the mirror shown in Figure 2.10C, and for ‘s’-polarized it is
perpendicular.

Measuring (by eye) the vibrational characteristics of the assembled stack, I esti-

mate that the normal modes lie in the range ∼ (5− 20)Hz, meaning that laboratory

vibrational disturbances for frequencies greater than f = 100Hz are greatly attenu-

ated at the cavity stage. In practice the cavity length is easily stabilized using piezo

feedback with a servo unity-gain bandwidth . 100Hz, and even moderate distur-

bances to the optical table do not unlock it.

2.3.1.4 Cavity issues

Ah, sweet irony. The design of the aluminum ‘flexure-mode’ mirror mount in Fig-

ure 2.10C was motivated by a desire to minimize stress-induced birefringence that

is ubiquitous in high finesse cavities assembled by directly gluing the mirrors into
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Figure 2.13: Steady-state Q function for the realized experimental parameters. The
parameters are {g0, κ, γ⊥} = 2π × {16, 8.0, 2.6}MHz. The drive strengths are A)
E = 0, B) E = g0/2, and C) E = 4g0.

place [39, 65]. Figure 2.12 indicates that the stresses induced by our glue-less tech-

nique are still considerable. The displayed data represents three successive mea-

surements of the cavity transmission with the input polarization rotated from ‘s’

(linear vertical) to ‘p’ (linear horizontal) in 45◦ increments. A double Lorentzian fit

to the ‘s+p’ signal (this fit is not displayed) confirmed that the modes are split by

∆f ≈ 20MHz, which is slightly larger than the cavity linewidth.

This mode splitting implies that the cavity only supports circularly polarized light,

‘s±ip’, for a laser frequency situated directly between the cavity eigenmodes. As it

turns out, the phase bistability (Figures 2.8 and 2.9) is lost for a detuning this large

(Θ ≈ 2.5κ), implying that we must instead work with linearly polarized light and π-

transitions in Cesium [55]. Not only does this give rise to complications due to optical

pumping, as discussed in Section 2.3.7.2, but it also brings an unfortunate reduction

in the atom-field coupling constant, g0 → 2π · 16MHz. In this case, g0/2κ ≈ 1, and

the mode splitting exhibited by the resulting Q-function, Figure 2.13, is less than

impressive.
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F’=5

F=4

π

+1-1 0

σ+

mf = +4

mf = 5

Figure 2.14: Schematic of Cesium F = 4 → F ′ = 5 transitions excited by either
circularly (blue) or linearly (red) polarized light.

2.3.1.5 Working with a birefringent cavity

The reduction in g0 is not the only problem caused by our use of linearly-polarized

interactions; additionally, we can no longer think of our atom as a closed two-level

system. When using circularly polarized light, we can reduce the atomic system to the

F = 4,mf = 4 and F ′ = 5,m′
f = 5 hyperfine levels, because, in this case, the excited

state can only decay back down to initial state (depicted in Figure 2.14). For linearly

polarized transitions, however, spontaneous emission will couple adjacent levels in the

F = 4 ground state manifold. Therefore, regardless of the initial atomic state, the

linear cavity probe excitation will lead to some finite steady-state population in each

mf magnetic sublevel.

The second problem is the existence of the orthogonal cavity mode, detuned by

≈ 2.5κ. While we do not excite this orthogonal mode, the atoms are still coupled

to it. For the case of σ+-polarized interactions between the mf = 4 and m′
f = 5

levels, the presence of the undriven σ−-polarized mode is irrelevant, since the excited

state can not couple to any state through σ− transitions. But, for linearly polarized

transitions, we are not so lucky. For example, the excited F ′ = 5,m′
f = 0 state couples

through the orthogonal cavity mode to a superposition of the F = 4,mf = −1 and

F = 4,mf = +1 states.

To deal with these problems, we use the formalism of Ref. [66] to model the

multilevel atom, and the formalism of Ref. [65] to model the two-mode cavity. We

restrict interactions to the F = 4 and F ′ = 5 hyperfine states of the Cesium D2
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line [55]. We take the driven cavity mode to be ẑ-polarized, with the orthogonal

mode ŷ-polarized. The Jaynes-Cummings Hamiltonian generalizes to

Ĥ
(2)
jc = Θzâ

†â+ Θy b̂
†b̂+ ∆P̂ ′

5 + ig0(â
†Ŝz − âŜ†z) + ig0(b̂

†Ŝy − b̂Ŝ†y) . (2.89)

Here, â and b̂ are the field annihilation operators for the ẑ and ŷ modes, respectively.

Ŝz and Ŝy are the multilevel extensions of the Pauli lowering operators for interactions

between the F = 4 and F ′ = 5 levels using ẑ and ŷ polarized fields, respectively. In

terms of the standard spherical basis, Ŝy = i(Ŝ+ + Ŝ−)/
√

2, where Ŝ± are the lowering

operators for circularly polarized transitions. Here, g0 = 2π ·22MHz, and the lowering

operators, Ŝ±,z, are normalized such that 〈4, 4|Ŝ+|5, 5〉 = 1. Θz and Θy are the cavity-

probe detunings for the two modes, with the restriction Θy = Θz + 2π · 20MHz set

by the mode birefringence. P̂ ′
5 is the excited state projection operator. The Lindblad

decay is generalized over the independent atomic decay channels and the additional

cavity mode. In Figure 2.15 we plot, in red, the transmission spectrum for ẑ-polarized

light coupled to this two-mode, multilevel system. For comparison, we also plot the

ideal transmission spectrum for a two-level atom interacting with a single mode, with

g0 = 2π · 16MHz (this is the maximum π coupling strength, attained between the

mf = 0 and m′
f = 0 states). The atomic transitions and the ẑ cavity mode (shown as

the dashed black curve) are simultaneously resonant at frequency ω0. The orthogonal

mode, detuned by ≈ 2.5κ, is represented as the dash-dot black curve.

In Figure 2.16 we plot the the steady-state Q-function, projected along the Im [α]-

axis, for three cases. The black curve represents the ideal two level case, with pa-

rameters in 2.13C. The blue curve (hidden behind the red) is the steady-state result

for a single-mode cavity, but with all F = 4 and F ′ = 5 hyperfine levels included.

The red curve is a two-mode analysis. In this case, however, only magnetic sublevels

in the range +3 ≥ mf ≥ −3 are included, due to numerical limitations imposed by

the large state space. We see here that the inclusion of the full manifold of hyperfine

states leads to only a minor narrowing of the (already narrow) ‘bimodal’ distribution.

Fortunately, the addition of the orthogonal mode has only a small added effect. This



54

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Probe Detuning: (ω
p
−ω

0
)/g

0

S
te

ad
y−

st
at

e 
In

te
si

ty
 T

ra
ns

m
is

si
on

Figure 2.15: Comparison between steady-state cavity transmissions, in the weak
excitation regime. The idealized transmission for a two-level atom coupled to a single
cavity mode, with g0 = 2π · 16MHz, is plotted in blue. The solid red curve is the
ẑ-polarized transmission for the two-mode cavity with all Cesium F = 4 and F ′ = 5
levels included. The dashed red curve is the total transmission for the ẑ and ŷ-
polarized light. The dashed black curve shows the driven ẑ polarized cavity resonance,
and the dash-dot black curve is the orthogonal ŷ mode. The atomic transitions and
ẑ mode are resonant, with frequency ω0.

is probably because the birefringent splitting is relatively large when compared to the

coupling strengths for the ŷ interactions near mf = 0. Note, however, that inclusion

of the extended hyperfine states, e.g., m′
f = ±5, will certainly modify the two-mode

analysis, since these states couple strongly to σ+ and σ−-polarized light.

I note here, before moving on, that all of the experimental analysis of Sec-

tion 2.3.7.4 is performed using the idealized two-level atom model. As we will see,

that model captures the essential features of the experimental data.
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Figure 2.16: Comparison between steady-state Q-functions for a two-level system,
a multilevel atom, and a multilevel atom and two-mode cavity. For clarity, only
the cumulative distributions of the Q-functions along Im [α] are plotted here. The
black curve is for a two-level atom. The blue curve is for a single mode cavity
interacting with the entire F = 4 and F ′ = 5 states. The red-curve is for a two-mode
cavity interacting with a multilevel atom, but only including magnetic sublevels up
to +3 ≥ mf ≥ −3.

2.3.2 The apparatus in brief

Figure 2.17 is a schematic representation of the experiment. Before, describing in

detail the function of these various components, I will provide a brief overview of the

apparatus as a whole. The vacuum chamber houses both the cavity and the atomic

Cesium, and is the home for all of the important physics. In order to both excite

and measure the atom-cavity system behavior, a probe beam is coupled into one side

of the cavity, the ‘input’, with the other side, the ‘output’, measured by a balanced

homodyne detector [16, 67]. This homodyne photocurrent is digitized and stored on

a PC.

As the experiment necessitates the use of a weak probe (∼ 10pW–1nW of CW

power) that is rapidly modulated on and off, an auxiliary laser reference is used to

stabilize the cavity length. To this end, light from a titanium-sapphire ring laser
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Figure 2.17: An experimental schematic focusing on the optical and electrical com-
ponents that measure and control the lasers and cavities. For clarity, the components
necessary for conditioning the atoms, i.e., the laser cooling and trapping beams, etc.,
have been omitted.

(Ti:S) is also coupled into the cavity; measurement of its reflected signal is used to

stabilize the cavity length. Finally, a transfer cavity (distinct from the experimental

cavity) is used to stabilize the frequency difference between the diode laser and the

Ti:S.

2.3.3 Laser frequency generation and cavity stabilization

In this section I make repeated references to the components of Figure 2.17. I apolo-

gize if the following reads like stereo installation instructions, but I attempt to detail

the numerous components concisely.
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2.3.3.1 Probe generation

The probe beam is generated from a homemade grating-stabilized diode laser [68, 69]

set up to operate near the nominal wavelength, ≈ 852.36nm, of the Cesium D2

transition manifold [55]. A small portion, ∼ 1mW, of this diode’s output is double-

passed through an acousto-optic modulator (AOM1), driven at fA1 = 126.5MHz, with

the positive first-diffracted order selected out. Part of this light passes through an

electro-optic phase modulator (‘EOM3’, not shown in Figure 2.17) and is coupled into

a transfer cavity. The transfer cavity is approximately 19cm long and is comprised

of two 25cm radius-of-curvature mirrors glued within a solid brass housing. It has a

measured axial mode splitting, FSRtc = 797MHz, and ring-down time, τtc = 16µs,

implying a linewidth, δftc = 1/(2πτtc) ≈ 10kHz, and a finesse, Ftc ≈ 80, 000. EOM3

is driven by a radio-frequency (RF) signal so that small frequency-modulation (FM)

sidebands are placed on the light. The Pound-Drever-Hall technique [70] of demodu-

lating the cavity reflected signal is used to lock the diode laser’s frequency to a cavity

axial mode. This servo-loop consists of grating and current feedback with unity gain

bandwidth ∼ 500kHz.

Unfortunately, the transfer cavity lacks long-time frequency stability due to ther-

mally induced variations to its length. Therefore, prior to passing through EOM3,

a small fraction of AOM1’s output is sent to a Cesium modulation transfer spec-

trometer [71, 72] which produces atomic line-shape signals that are nearly inde-

pendent of the linear absorption coefficient. The error signal obtained from the

(6S1/2, F = 4) → (6P3/2, F
′ = 5) transition is used to stabilize the transfer cav-

ity length through actuation of a tube-piezo-mounted intracavity mirror, with a servo

bandwidth ∼ 100Hz. As the diode laser is already locked to the transfer cavity at DC,

this feedback loop also imparts it with absolute frequency stability. By monitoring

the size of the spectrometer’s residual error signal in closed loop, I estimate an RMS

frequency jitter of . 100kHz (measured in a 10kHz bandwidth), which is negligible

in comparison to the relevant experimental parameter, κ/2π ≈ 8MHz.

Once the diode laser and transfer cavity are stabilized as described above, the



58

diode laser light itself (i.e., what does not pass through AOM1) is detuned from

the Cesium F = 4 → F ′ = 5 transition by −2fA1 = −253MHz. Therefore, to

generate the local oscillator required for homodyne and heterodyne detection, some

(∼ 10mW) of the diode’s output is double passed through AOM2, with the positive

first-order diffracted signal chosen again. For almost all experimental measurements,

AOM2 is driven by the same RF sourcing AOM1, at fA2 = fA1 = 126.5MHz, so

that its output is nominally resonant with the F = 4 → F ′ = 5 transition. Some

of the diagnostic measurements, however, require a detuning of the local oscillator

over a range ±40MHz from this nominal value. This is accomplished by generating a

drive frequency fA2 = fA1± fOFF through a phase-locked loop [73] that incorporates

an offset frequency, fOFF , generated by an independent RF synthesizer. As the

frequency shift imparted by AOM2 is 2 × fA2, the local oscillator offset from the

Cesium transition is 2× fOFF .

The remainder (∼ 100µW) of the diode laser’s output is double-passed through

AOM3, which is driven at an RF frequency, fA3 = 2 × fA1, generated by frequency

doubling the RF signal driving AOM1. In this case, the negative first-order diffraction

peak is selected, thereby providing laser light that is nominally shifted 759MHz red

of the Cesium F = 4 → F ′ = 5 transition. AOM3’s output then passes through a

waveguided electro-optic modulator (EOM1) [74] that is driven at an RF frequency,

fE1 = 6× fA1 −∆/2π. The upper sideband generated by EOM1 provides the atom-

cavity probe with a detuning parameter ∆ = ωa−ωp, as in the Hamiltonian 2.7. Note

that, in general, two RF synthesizers are used to drive EOM1: the first generates a

weak heterodyne probe that may be monitored to sense the presence of an atom; the

second generates the intense resonant signal that drives the atom-cavity system into

the large excitation regime. The two signals are never on simultaneously, however

(details in Section 2.3.6.3.)

2.3.3.2 The cavity locking beam

A titanium-sapphire (Ti:S) monolithic block resonator (Coherent Inc. MBR-110),

operating at ≈ 832nm, sources the laser light that ultimately serves as the cavity sta-
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bilization reference. Light from the Ti:S is double-passed through AOM4, nominally

operating at fA4 ≈ 90MHz, and is then sent through another waveguided electro-optic

modulator (EOM2), that imparts FM sidebands at RF frequency, fE2. By phase mod-

ulating fE2, one of these sidebands may be locked to the transfer cavity using the

ubiquitous PDH technique. The servo loop accomplishing this has two branches:

the first branch actuates the voltage-controlled oscillator generating fA4, to provide

fast frequency feedback in the range 10Hz–500kHz; the second loop, operating from

DC-100Hz, provides low frequency stability through feedback to a Fabry-Perot cavity

residing within the MBR-110 housing. A small fraction, ∼ 1µW, of the AOM4’s

output is then passed through yet another EOM (not pictured) before being coupled

into the experimental cavity; its reflected signal is used to stabilize the cavity length

through feedback to the shear mode piezos, with a servo bandwidth ∼ 100Hz, as

described in Section 2.3.1.3. By tuning the RF frequency fE2 sourcing EOM2, the

cavity-probe detuning parameter, Θ, may be adjusted.

In practice things are not so simple, since the experimental cavity’s axial mode

spacing, FSR = 2.1THz, far exceeds both the sourcing range of fE2 and the response

range of EOM2. In order to get all the frequencies “just right”[51] I employ the

following procedure. First, the diode laser is prepared using the steps outlined above,

and the probe transmission signal is monitored by manually adjusting the cavity

length into resonance while it is being swept. The Ti:S wavelength is now manually

adjusted until the diode probe and the Ti:S probe are simultaneously resonant with

different cavity TEM00 modes. The cavity length is now locked to this Ti:S probe

resonance. fE2 is tuned (over a range FSRtc = 800MHz) until a Ti:S transfer cavity

resonance is found; the Ti:S frequency is now locked. Finally, fine adjustments to fE1

and fE2 set the experimental ∆ and Θ parameters.

2.3.4 The atoms: cooling and delivery

I will provide a brief description of the laser cooling and trapping apparatus that

provides the source of cold(-ish) atoms for the experiment. But since the techniques
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employed in this experiment are industry standards [11, 14, 75–78], and since even

more extravagant methods exist [15, 17, 79–81], I won’t dwell on the basics here.

But before moving on, I should point out that essentially all of the laser cooling

and trapping hardware was made by Tony Miller. In particular, he designed and

assembled all of the following: the vacuum chamber, the magnetic field coils, the

immediate hardware used to create the fiber MOT, the tapered amplifier that sources

the intense trapping beams, and the RF electronics responsible for controlling and

shuttering these magneto-optical components (details may be found here [82]). I

then swooped in and commandeered what was essentially his apparatus. I am greatly

indebted to him; I may even thank him one day. Also, I would be remiss if I didn’t

thank Kevin McHale who, in a fit of procrastination, rapidly assembled the diode

laser that sources the MOT repumping light.

Within the vacuum chamber at background pressure ∼ 10−9 Torr, light from six

independent fiber-coupled beams [83], of ∼ 1cm diameter each, intersect approxi-

mately 8mm above the cavity axis. Anti-Helmholtz coils, configured such that their

axis of symmetry is parallel to that of the cavity, provide a magnetic field gradient of

about 15G/cm. Finally, a Cesium getter [84] driven with currents . 3Amps sources

enough atoms to form a bright MOT with a near Doppler limited temperature of

∼ 200µK. During a typical experimental cycle, the MOT is loaded for ∼ 1sec, at

which point the trapping beams and anti-Helmholtz coils are turned off, and a cold

atomic cloud of . 105 atoms free-falls towards the cavity.

At no point was there any serious attempt made to achieve sub-Doppler cooling of

the atoms. The reasons for this are as follows. Over an ∼ 8mm drop, an atom initially

at rest is gravitationally accelerated up to vg ∼ 40cm/s by the time it reaches the cav-

ity mode. The near-Doppler limited velocity of the MOT, vdop ∼ 10cm/s, is already

significantly smaller than vg. Furthermore, the free-fall limited atom-cavity transit

time, τ = w0/vg ∼ 100µs, is already long enough to perform the phase bistability

experiment (characteristic time ∼ 1/γ⊥ ≈ 60ns).

There is the minor complications of getting the atoms into the cavity, however.

Once the MOT is turned off, the atoms fall and expand due to their non-zero initial
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temperature. A doppler limited MOT cloud will expand to ∼ 5mm in size by the

time it reaches the cavity. As the mirrors that form the cavity are nominally 7.75mm

in diameter, and with a 25cm radius of curvature, there is but a 10µm gap for the

atoms to fall through (note, this small gap is caused by the mirror sagittal depth

of ‘sag’, and is distinct from the cavity length ≈ 70µm). In this case, efficient atom

delivery would require a delicate positioning of the MOT above the cavity and careful

cancellation of stray magnetic fields. Furthermore, we would need to insure that the

cavity mirrors are negligibly tilted relative to gravity. Instead of fussing with all that,

we had the Stanford Crystal Shop lap down each mirror’s edge by about 3mm. This

‘flat-top’ mirror geometry, displayed in Figure 2.10C, provides a ≈ 60µm gap. From

Monte-Carlo simulations of this system [65], I estimate that a MOT of . 105 atoms

positioned 10mm above the cavity and within ∼ 1mm of the gap, will leave about

one atom in the cavity mode per drop.

Finally, I’ll briefly go over the chain of optical components that generate the MOT

light. A fraction of the diode laser’s direct output is double-passed through an AOM,

which provides a net positive frequency shift in the range 160MHz to 220MHz. About

10µW of this light is used to seed a slave laser. Most of the slave laser’s output power,

∼ 40mW, is directed into an homemade tapered amplifier. The output of this tapered

amplifier receives yet another +40MHz shift through an AOM before being coupled

into an optical fiber. The optical fiber passes through an inline six-way splitter, thus

providing the MOT trapping beams. A separate diode laser, locked to the Cesium

F = 3 → F ′ = 4 transition, is coupled into the same six-way fiber splitter so as to

provide the MOT repump light.

2.3.5 Homodyne detection and calibration

The light that exits the cavity first passes through a dichroic beamsplitter (not pic-

tured in Figure 2.17) which reflects > 95% of the 852nm light and transmits ≈ 30% of

the 832nm locking light (which is measured to provide a monitor of the cavity lock.)

The reflected probe is routed into a 50/50-beam splitter where it is combined with an
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Figure 2.18: A schematic pictorial of the homodyne/heterodyne detection of an atom
falling through the cavity field.

intense local oscillator. Photodetection of the two output modes of this beam split-

ter realize a homodyne measurement of the atom-cavity field [85]. Below, I briefly

provide a sketch of the theoretical formalism behind this measurement in order to

introduce the definitions and formulae that will be referred to later.

2.3.5.1 The measurement

Referring to the configuration in Figure 2.18, we have the operators

ĉ = (â+ b̂)/
√

2 , (2.90)

d̂ = (â− b̂)/
√

2 , (2.91)

where â is the output field [35, 86] of our system (i.e., atom + cavity) and b̂ is the

operator for the local oscillator mode. For (quasi-)monochromatic fields the photode-

tector response is proportional to the incident number operator [87, 88], so that the
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measured signal in a balanced configuration will be proportional to

î = ĉ†ĉ− d̂†d̂ (2.92)

= â†b̂+ b̂†â. (2.93)

Assuming the local oscillator is in a coherent state, we set b̂→ |β|eiθ and obtain

îβ = |β|(eiθâ† + e−iθâ)

= 2|β|X̂θ ,
(2.94)

where X̂θ is the field quadrature operator6 defined by the angle θ (the standard

convention is to define θ = 0 as the ‘amplitude’ quadrature and θ = π/2 as the

‘phase’ quadrature.) Eq. 2.94 is the key result in this (grossly simplified) picture

of homodyne/heterodyne detection: it implies that if the local oscillator is in a well

defined coherent state, the detected photocurrent is directly related to the signal field,

fluctuations and all.

2.3.5.2 The ‘signal’ and the ‘noise’

The first and second moments of this photocurrent operator are

〈̂i〉 = 2|β|〈X̂θ〉 , (2.95)

and

〈∆î2〉 = 〈(̂i− 〈̂i〉)2〉 = 〈̂i2〉 − 〈̂i〉2

= 4|β|2〈∆X̂2
θ 〉+ 〈â†â〉 ≈ 4|β|2〈∆X̂2

θ 〉 ,
(2.96)

where the final approximation is valid for an intense local oscillator: |β|2 �
〈
â†â

〉
.

This analysis can easily be generalized for higher moments of X̂θ, and we see that the

6Conventions vary for the normalization of the field quadrature operators. I use the convention
X̂θ = 1

2 (e−iθâ + eiθâ†). However, most texts use either X̂ ′
θ = (e−iθâ + eiθâ†) or X̂θ = 1√

2
(e−iθâ +

eiθâ†).
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local oscillator essentially acts as a multiplicative factor: it generates a large signal

proportional to X̂θ which may be readily measured in the presence of extrinsic noise

sources [67, 85].

To see this, we consider the case where the signal is in a coherent state, 〈â〉 =

|α|eiφ, and so 〈∆X̂2
θ 〉 = 1/4. For |β|2 � |α|2 we have

〈̂i〉 = 2|α||β| cos (φ− θ) ,

〈∆î2〉 ≈ |β|2 .
(2.97)

In practice, the relative phase, φ−θ, may be controlled by changing the local oscillator

optical path length leading to the 50/50 beamsplitter. This is accomplished through

a piezo mounted mirror, as depicted in Figure 2.17. This way we realize phase,

φ − θ = {±π/2}, and amplitude, φ − θ = {0, π}, quadrature measurements for an

arbitrary signal.

The measurement signal-to-noise ratio is independent of the local oscillator

S2

N
=

4|α|2|β|2

|β|2
= 4|α|2 , (2.98)

which simply serves to scale up the signal, making it visible in the presence of extrinsic

noise sources. For example, assuming that our detector has a small amount of excess

noise, ξ2, the signal-to-noise generalizes to7

S2

N
=

4|α|2|β|2

|β|2 + ξ2
. (2.99)

In practice, if the shot-noise of the LO alone is much larger than the inherent noise of

the detector, |β|2 � ξ2, then the homodyne/heterodyne measurement will essentially

reflect an ideal measure of the signal field quadrature. In this case, the measurement

is said to be ‘shot-noise-limited’.8

7ξ could be the result of a number of independent noise sources: dark current through the
photodiode, current and voltage noise generated by the detector electronics, Johnson noise from a
transimpedance resistor, stray electric and magnetic field pick-up, etc.

8It should be noted, however, that in a quantum-optics theoretic sense this LO shot-noise is a
measure of the ‘vacuum’ field that it is interfering with, since the noise terms actually reflect the
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2.3.5.3 An experimentally useful form

Unfortunately, photodetectors don’t provide signals in ‘coherent state amplitude’

units. Assuming both the signal and local oscillator are prepared in coherent states

we can use the following expressions for ‘real’ photocurrents. For a local oscillator

and signal with optical powers, PL and PS, respectively, the measured current is [85]

I = 2R
√
PLPS cos (φ− θ) , (2.101)

and the RMS variance in a time window τ is

∆I2
rms =

~ωR2PL

ηqτ
+ ∆i2n . (2.102)

Here, R is the detector responsivity, in [Amps/W], ηq is the detector quantum effi-

ciency, ω is the optical frequency, and ∆i2n represents excess current noise. Assuming

this excess noise is negligible, the signal-to-noise ratio is

S2

N
=

I2
max

∆I2
rms

=
4ηqPSτ

~ω
, (2.103)

which is consistent with Eq. 2.98 if we assume perfect quantum efficiency and identify

|α|2 = PSτ/~ω.

Finally, if the steady-state cavity field has mean photon number n̄, the detected

output photo-flux (in quanta per second) is 2κηT n̄, where ηT , discussed in Sec-

tion 2.3.1.3, is the fraction of the intracavity power that makes it into the output

mode. In this case, the detected interference fringe is

I = 2RηLηH

√
2~ωκηTPLn̄ cos (φ− θ) , (2.104)

where ηH is the homodyne efficiency that characterizes the spatial overlap between

commutation relations
〈∆î2〉 = |β|2[â, â†] + |α|2[b̂, b̂†] . (2.100)
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the signal and local oscillator [33], and ηL accounts for optical losses otherwise un-

accounted for. In practice Eq. 2.104 is used to scale the measurement photocurrent

into ‘quadrature-amplitude units’

X̄θ =
V

2RZηLηH (2~ωκηTPL)1/2
, (2.105)

where V = ZI is the detected voltage and Z is the detector’s transimpedance gain.

Following this calibration a direct comparison to the theory of Section 2.2.5 can be

made.

2.3.5.4 Homodyne noise and fringe calibration

The homodyne detector is a homemade balanced receiver [89, 90] consisting of two

Hamamatsu silicon PIN photodiodes [91], each with an active area diameter of 1.5mm.

The difference photocurrent of these photodiodes is converted into a voltage by a

transimpedance amplifier, with transimpedance Z = 5.1kΩ. The detector’s response

bandwidth is approximately 30MHz, and its signal-to-noise bandwidth [89, 92] is

greater than 10MHz for this local oscillator power.

Generally, the local oscillator power was fixed to PL = 3.5mW. Setting PS = 0, the

optical shot noise level was measured using a spectrum analyzer. Over the frequency

band 100kHz–10MHz the optical shot noise was approximately 100 times larger than

the detector’s electronic noise (the second term in Eq. 2.102). With the cavity probe

on resonance and the homodyne fringe locked to zero (i.e., measuring the signal phase

quadrature) there was a negligible increase in this noise floor for a range 0 < n̄ < 100

intracavity photons. As n̄ was increased past 100 intracavity photons a mound of noise

centered near ∼ 500kHz could be seen in the photocurrent. This behavior is shown in

Figure 2.19, where the measured homodyne photocurrent noise spectrum is displayed

for different intracavity photon numbers. These measurements were performed with

the homodyne fringe locked to zero using a low frequency feedback loop. The excess

noise visible for n̄ ≈ 200 is due, primarily, to phase noise on the RF signal that

generates the cavity probe via EOM1.
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Figure 2.19: Measured noise spectra of balanced homodyne photocurrents for a range
of intracavity photon numbers. The frequency span is from DC-2MHz. The bottom
red curve shows the detector noise with no incident light. The upper red curve is the
shot noise level when only the local oscillator is present. The remaining curves are for
cavity probe strengths corresponding to: n̄ ≈ 10 (blue), n̄ ≈ 50 (green), and n̄ ≈ 200
(magenta). These measurements were performed using a low frequency servo to lock
the homodyne fringe to zero.

The homodyne efficiency was determined as follows: the cavity probe strength

was increased until the output power, measured immediately before the 50/50 beam-

splitter, was raised to ∼ 1µW and the local oscillator power was lowered to match.

While sweeping the relative phase, φ− θ in Eq. 2.101, I measured the fringe contrast

ηH =
Imax − Imin

Imax + Imin

, (2.106)

where Imax and Imin are the maximum and minimum values of the homodyne pho-

tocurrent, respectively. The value so obtained was ηH = 0.95, which is quite good
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indeed.

This leaves only the mysterious factor ηL. This factor most likely accounts for a

combination of: losses at the dichroic mirror that separates 852nm and 832nm light;

diffraction losses from numerous optical elements in the cavity output beam path (the

beam waist is ∼ 5mm at the 50/50 beamsplitter); and electronic mis-calibration (for

example, in the estimate of R). Note that ηT would not account for any of these

factors, since it was determined by measuring the cavity transmission immediately

outside of the vacuum chamber. Independent calibration of the intracavity photon

number, using the procedure discussed in Section 2.3.6.2, indicates that ηL ≈ 0.80.

2.3.6 Heterodyne detection of the atoms

In addition to providing a homodyne measurement of the resonant probe, the bal-

anced receiver detects the RF interference beatnote between the local oscillator and

an off-resonant ‘heterodyne’ probe. This off-resonant probe is generated using an in-

dependent RF synthesizer driving EOM1 at a frequency f ′E1 =759MHz−∆′/2π (note,

I will use ‘primes’ to distinguish between heterodyne probe parameters and homo-

dyne probe parameters.) In this case the detection phase, θ in Eq. 2.94 is oscillating

at an RF frequency, θ = θ(t) = ωrf t. Subsequent sine and cosine transforms of the

photocurrent can provide a ‘psuedo-simultaneous’ measurement of orthogonal field

quadratures over coarse-grained time-scales (though instantaneous measurement of

orthogonal quadratures is forbidden by stubborn quantum mechanical rules.) Defin-

ing xϕ and yϕ = xϕ+π/2 as these arbitrary orthogonal quadratures, a phase and

amplitude quadrature measurement of the intracavity field may be accomplished by

varying the local oscillator phase until the mean value of, say, yϕ is zero. In this case,

we measure the quadratures

x0 =
1

2
(α∗ + α) ,

y0 =
i

2
(α∗ − α) ,

(2.107)

where α∗ is the complex amplitude of the transmitted optical field.
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2.3.6.1 Atom transits

As an atom passes through the cavity mode, its interaction with the cavity field

strongly influences the transmitted signal (as depicted in Figure 2.18.) In the case of

very weak driving, such that n̄′ � n0, the atom-cavity linear transmission function is

T ≡ 〈â〉
E ′/κ

=
κ(γ⊥ + i∆′)

(κ+ iΘ′)(γ⊥ + i∆′) + g2
0(r)

, (2.108)

where g0(r) is the radially dependent atom-field coupling constant. Of course, this is

a steady-state expression and is, in general, only valid for an atom fixed at position

r. For the atomic transit analysis that follows, however, I ignore transient behavior

in the master equation, and assume this steady-state response; this approximation

should be valid for carefully filtered signals since the atomic transit time, ∼ 100µs, is

very long compared to the dissipative timescales, {γ⊥, κ}. Therefore, I assume that

the transmission is modified, in real-time, through the dependence of the spatially

dependent coupling term, g0(r) = g0(r(t)), on the atoms position.

Noting the empty cavity transmission

T0 =
κ

κ+ iΘ′ , (2.109)

the quadratures defined above measure

x0 ∝
(
T ∗

T ∗0
+
T

T0

)
,

y0 ∝ i

(
T ∗

T ∗0
− T

T0

)
.

(2.110)

As we generally work outside the linear regime, the steady-state transmission may be

inferred from 〈â〉ss = Tr[ρ̂ssâ]. In this case, we have

x0 ∝
(
〈â〉∗ss
T ∗0

+
〈â〉ss
T0

)
,

y0 ∝ i

(
〈â〉∗ss
T ∗0

− 〈â〉ss
T0

)
.

(2.111)
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Figure 2.20: Atomic transits monitored through heterodyne detection with linearly
polarized light. A feedback loop stabilizes the phase quadrature(red) to zero. The
x-axis notes the time after the MOT was turned off. The detection parameters are
n̄′ = 2, ∆′/2π = 30MHz, and Θ′/2π = 0.

Figure 2.20 shows an example of this phase and amplitude quadrature data over

∼ 6ms time window centered approximately 43ms after the MOT is shut off. The

data is displayed in a DC-300kHz bandwidth, and the detection parameters are n̄′ = 2,

∆′/2π = 30MHz, and Θ′/2π = 0. Here, five distinct atom transits are observed. In

general these transits are accompanied by a sharp drop in the amplitude quadrature

and an increase in the phase quadrature. Note that since the transits have only a

∼ 100µs temporal width, they interfere negligibly with the heterodyne fringe lock

that has a unity-gain bandwidth of 1kHz.
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2.3.6.2 Photon number calibration

Since the system response is, in general, nonlinear, these field quadrature measure-

ments provide an independent means of calibrating the intracavity photon num-

ber [11]. Figure 2.21 shows the results of this calibration procedure. In each plot,

a single atom transit is displayed as a phasor diagram: starting with the amplitude

and phase quadrature data versus time, we plot the radius and angle

R =
√
x̃0(t)2 + ỹ0(t)2 ,

ψ = tan−1

(
x̃0(t)

ỹ0(t)

)
,

(2.112)

where x̃0(t) and ỹ0(t) are the phase and amplitude quadratures normalized by the

empty cavity transmission. The theoretical fit comes from steady-state solutions to

the master equation with {κ, γ⊥,∆,Θ} fixed, and the coupling constant g0(r) varied

from its maximal value to zero, so as to simulate an atom moving through the cavity

mode waist. The only fit parameter then is n̄′, the intracavity mean photon number

for an atom-less cavity. The utility of this approach is obvious: by plotting the phase

and amplitude quadratures against each other we can remove time from the picture.

Thus, complications due to peculiarities of the atomic motion through the Gaussian

mode structure are largely avoided. It should be pointed out, however, that the fits

are performed by selecting out the largest transits. This way we eliminate transits for

which the atom grazes the cavity mode, and thereby insure that we are fitting data

where a maximal coupling of g0/2π = 16MHz is attained. Using these fits for the

intracavity photon number, the calibration factor ηL was determined by comparing

the measured homodyne fringe size, Eq. 2.104, to the value expected for ηL = 1.

2.3.6.3 Triggering the resonant probe

The heterodyne signal also serves as a real-time indication of an atom’s arrival into

the cavity. In particular, a homemade Schmitt trigger [73] monitors the amplitude

quadrature photocurrent, and fires when this photocurrent dips below a predeter-
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Figure 2.21: Calibration of the intracavity photon number through theoretical fits
to the atom-transits. The data is presented as blue dots, while the theoretical fits are
in red. For all plots, the we have {∆′,Θ′} /2π = {33, 0}MHz. The fit mean photon
numbers are: a) n̄′ = 1 ; b) n̄′ = 2 ; c) n̄′ = 4 ; d) n̄′ = 7.

mined threshold. This threshold level is represented by the horizontal dotted line

near 30mV in Figure 2.20. By setting the threshold sufficiently low we may selec-

tively trigger off atomic transits for which the atom-field interaction is strong (i.e.,

transits that pass through the center of the cavity mode.)

With this triggering scheme in place, a typical data acquisition cycle goes as fol-

lows. The resonant probe is initially off. While the MOT is loading, the heterodyne
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probe is turned on and the demodulated component yθ is locked to zero (thus defin-

ing the phase quadrature.) The MOT is turned off. Some 40ms later the Schmitt

trigger, initially in a dormant state, is activated and measures the amplitude quadra-

ture. A drop in the amplitude quadrature triggers the Schmitt output to high – this

simultaneously switches the heterodyne probe off and the homodyne probe on. Fur-

thermore, this trigger signal and the homodyne photocurrent are stored on a PC for

post processing. Note, in general, the MOT number density is lower than the case

of Figure 2.20 – typical densities lead to only ∼ one atom visible in the heterodyne

photocurrent per drop. On average one triggering event occurs for every four MOT

drops.

In order to assure that the homodyne measurement is of the phase quadrature,

the homodyne fringe is phase locked to the demodulated signal, yθ, that defines

the heterodyne phase quadrature. Therefore, if yθ is initially locked to zero, then

the homodyne detector is measuring phase. In order to assure that the heterodyne

fringe lock responds minimally to the atom transit, the general heterodyne detuning

is ∆′ = Θ′ = 2π · 6MHz; for these parameters, an atom induces a large dip in the

amplitude quadrature but only a moderate change in the phase quadrature.

2.3.7 Results and Analysis

2.3.7.1 Triggered homodyne signals

Four examples of the atom-triggered phase quadrature homodyne measurements are

shown in Figures 2.22 and 2.23. In all four figures, t = 0 corresponds to the Schmitt

trigger event that heralds the arrival of an atom by simultaneously turning the homo-

dyne drive on and turning the heterodyne probe off. To make this triggering event

clear, 5µs of the ‘dead time’ prior to the trigger is also included. In each plot, the

x-axis spans a 55µs window, and the data has been scaled into units of g0/2κ (using

2.105 and the known cavity QED parameters). Note, the drive strength increases

between each of the four plots such that the intracavity photon number for an empty

cavity is, respectively, n̄ = {9, 20, 37, 109}. For the data displayed in this section the
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(a) n̄ = 9

(b) n̄ = 20

Figure 2.22: Triggered homodyne photocurrents for n̄ = 9 and 20. Both signals
are displayed at an analog bandwidth of 100kHz-4MHz. The red curves show the
photocurrent variance over time.
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(a) n̄ = 37

(b) n̄ = 109

Figure 2.23: Triggered homodyne photocurrents for n̄ = 37 and 109. Both signals
are displayed at an analog bandwidth of 100kHz-4MHz. The red curves show the
photocurrent variance over time.
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probe strength is generally parametrized by the mean intracavity photon number that

would be produced in an empty cavity; for n̄ > 5 the steady-state photon number

with the atom present is ∼ n̄ − 1, so that n̄ is a good indicator of the mean photon

number. As a point of comparison to the theory of Section 2.2, n̄ = 9 corresponds to

E ≈ 3g0/2, n̄ = 20 corresponds to E ≈ 2g0, and so on with E ∝ n̄1/2.

The superimposed red curves represent the photocurrent standard deviation aver-

aged in 2µs time windows. In each plot, the trigger event brings a period of increased

photocurrent variation, typically lasting ∼ 25 − 35µs, followed by a return to the

shot noise level variance. In Figure 2.22b, for example, when the homodyne probe is

turned on, the standard deviation jumps to ∼ 0.75. It remains there until the atom

abruptly disappears, at which point it returns to the shot noise level of ∼ 0.35.

2.3.7.2 Optical pumping losses

These atoms disappear rather abruptly. For example, in Figures 2.22a, 2.22b, and 2.23b

the photocurrent variance changes from a large and nearly constant value to the

smaller shot noise level, in an almost step-like fashion. If the atom were simply mov-

ing through the Gaussian beam waist we would expect the photocurrent to smoothly

decrease to the shot noise level. Only in Figure 2.23a does photocurrent variance

decrease in this manner. In fact, the behavior displayed in Figure 2.23a is quite rare.

Most of the homodyne photocurrent traces show precisely the opposite behavior: an

atom, at the height of its coupling power, simply vanishes. Furthermore, the traces

shown in Figures 2.22 and 2.23 are representative of the longest atom transits. Typ-

ically, the ‘large variance’ behavior is much shorter lived: for 10 ≤ n̄ ≤ 100, the

typical duration of this large variance behavior is only ∼ 10µs; this problem is more

pronounced as n̄ grows, with many events lasting a duration < 5µs. This is signifi-

cantly shorter than expected from the temporal width of typical heterodyne transit,

for example, those of Figure 2.20.

The problem is optical pumping. For a linearly polarized field, the probe can

always excite transitions from the F = 4 ground states to the F ′ = 4 excited states.

For weak driving, however, this is hardly a problem: since the probe is nominally
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(a) (b)

Figure 2.24: Measurement of optical pumping losses for a resonant probe with n̄ =
50. (a) Blue – fraction of atoms lost versus resonant probe duration. Red – same
measurement but with a repumping field present. (b) A sample heterodyne transit
with a resonant probe of 20µs duration turned on at t = 0 (duration denoted by
dashed black vertical lines).

resonant with the F = 4 → F ′ = 5 transition, the population of the F ′ = 4 states

is largely suppressed by a ∼ 250MHz detuning. However, as the Rabi frequency,

Ωr =
√
n̄g0/2, approaches the magnitude of this detuning, the F ′ = 4 excited states

become non-negligibly populated. These states can decay, via spontaneous emission,

to the F = 3 ground state manifold, which is essentially decoupled from the rest of

the system by a ∼ 9GHz detuning.

Figure 2.24A shows evidence of this atomic loss mechanism is at work. The blue

data points represent the fraction of atoms that survive interrogation by a resonant

probe of mean photon number n̄ ≈ 50. The duration, τ , of this resonant probe

excitation is plotted along the x-axis for 10µs ≤ τ ≤ 50µs. These measurements

were performed using the same triggering procedure employed for acquisition of the

phase quadrature homodyne photocurrents; this time, however, the heterodyne signal

is kept on, and the resonant probe is only turned on for a predetermined duration.

Figure 2.24B shows a representative heterodyne transit for the case of a 20µs resonant

probe duration. The vertical dashed lines show the probe ‘on’ period. The data

of Figure 2.24A was compiled by looking at transits similar to Figure 2.24B and
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determining by eye whether the atom survived the encounter with the probe. Note, in

the case of Figure 2.24B the atom is lost. The red data in Figure 2.24A represents the

same measurement but with a repumping laser, resonant with the F = 3 → F ′ = 4

transition, also exciting the cavity during the probing time. For short times, the

presence of this repump laser largely suppresses atomic losses. For longer times the

two measurements approach each other, since atoms are also lost because they simply

fall through the mode. Also, the inferred error bars are N1/2 deviations about the

mean values, where N is the number of data points collected for each duration. I

should point out that I don’t have much faith in this data outside of its qualitative

confirmation of optical pumping effects. Note, for example, that the slopes of these

data do not appear to extrapolate to one for a probe of zero duration. Also, the decay

does not appear to be exponential, as it should.

2.3.7.3 Single-shot analysis

A major technical limitation to the experiment is that all of the acquired data was

sampled at an analog-to-digital conversion rate of 2.5× 107 samples per second. This

implies a maximum analog bandwidth of ≈ 12 MHz that is dangerously close to

expected phase switching rate, γ⊥/2 ≈ 8MHz. Nevertheless, it is possible to utilize

standard techniques for hidden Markov models to attempt to reconstruct two-state

switching trajectories from individual photocurrent records. Figure 2.25a displays

a homodyne photocurrent for n̄ = 56 intracavity photons. Note, the scale on the

y-axis is the same as Figure 2.23b and the data is presented at an analog bandwidth

of 4MHz. In this case the atom remains in the cavity until t ≈ 25µs when, at the

height of its coupling potential, it disappears. Figure 2.25b displays a zoomed in

look at the final ∼ 12µs of the transit, at a full analog bandwidth of 11MHz. The

superimposed solid red curve is a reconstruction of the system’s switching behavior

using a hidden Markov model with posterior decoding to infer the underlying state

sequence [93]. This analysis was provided by Dmitri Pavlichin. The model assumes

that the system is jumping between hidden states, and attempts to reconstruct the

state switching sequence through knowledge of the system’s output channel (i.e.,
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Figure 2.25: A) A phase bistability trajectory for an empty cavity photon number
n̄ = 56. The displayed bandwidth is 4MHz. The red curve shows the photocurrent
variance over time. B) A hidden Markov model reconstruction of switching behavior
assuming three underlying states (provided by D. Pavlichin). The data is fit and
displayed at full bandwidth.

the homodyne photocurrent). For this particular model, there are three internal

system states; an initial guess is provided for the switching rates between the three

states, and the Baum-Welch algorithm [93] is then used to train the inferred switching

rates and the field values for each state. Remarkably, over the duration of the atom

transit the model hops between high and low states, but shortly after t = 26µs it

chooses the middle state. Furthermore, the trained switching rate, averaged over

many trajectories, is ≈ 6MHz, which is within 30% of γ⊥/2.
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Phase Quadrature Homodyne Photocurrent

Figure 2.26: A quantum trajectory with a simulated phase quadrature homodyne
photocurrent that accounts for the experimental measurement efficiency and the max-
imum analog bandwidth, 11MHz. Note, the x-axis scale correspond to ≈ 10µs. A)
The phase (red) and amplitude (blue) quadratures. B) The simulated phase quadra-
ture photocurrent.

Clearly these data do not look like the nice theoretical trajectories plotted in

Figures 2.7 and 2.9. Figure 2.26 displays a ‘realistic’ simulation in which the ex-

perimental efficiency and maximum analog bandwidth are accounted for. The x-axis

spans a total time ∼ 10µs. Dare I say, the resemblance of this simulated photocurrent

to the data of 2.25B is haunting. Note, as a consequence of the low analog bandwidth,

this simulated photocurrent tends to ‘miss’ jumps in the phase quadrature field. For

example, near the end of the simulation the phase quadrature, shown in 2.26A, jumps

between the high and low field values fairly rapidly; the photocurrent, however, re-

flects a low-passed version of this behavior, with but a small offset from zero reflecting

the average phase quadrature amplitude over this time period.
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2.3.7.4 Statistical analysis of the data

The modest signal-to-noise ratio of these measurements limits the amount of insight

that can be gained through analysis of single-shot homodyne photocurrents. Sadly, we

now turn to statistical analysis applied to the experimental data set. For the analysis

described below, the data set was compiled by selecting out regions of the homodyne

photocurrent where the phase fluctuations were largest. This way, we can compare the

data to theoretical predictions that assume a maximal atom-field coupling, g0 = 2π·16

MHz, and thereby sidestep most complications due to atomic motion within the

cavity mode. This process of data selection was performed by eye, primarily to

avoid accidental contamination of the data set with homodyne photocurrent event

where the heterodyne fringe was unlocked. Such events are rare, but they do occur.

Typically, these snippets of data are only . 10µs in duration, although for longer

events, like those in Figures 2.22, longer time windows are chosen. For each value of n̄,

approximately 50 atom transits were inspected for regions of large phase fluctuations.

Histograms of these compiled data sets are displayed in Figure 2.27. The three

rows of plotted histograms correspond to three choices of analog filtering bandwidth:

in plot 2.27a the data is not filtered (beyond an analog anti-aliasing filter at 11MHz);

in 2.27b the data is digitally filtered to 8MHz; and in 2.27c the data is digitally

filtered to 2MHz. In addition, all data are first AC filtered at 200kHz to removed slow

drifts in the homodyne fringe level that are caused by imperfections in the heterodyne

servo lock. All histograms are normalized such that they integrate to unity, but

note that the x-axis scale changes between the different filtering bandwidths. In

general, the photocurrent distributions widen with increasing n̄, although they do

not possess any clear bimodal features. Note, however, that for large large n̄, the

8MHz bandwidth histograms reveal a non-Gaussian distribution. In particular, for

n̄ = 56 the histogram is distinctly flat-topped.

Superimposed on these histograms are theoretical predictions generated through

quantum trajectory simulations for the experimental parameters. The simulated pho-

tocurrent, Eq. 2.75, is generated assuming a detection efficiency ηκ = (ηLηH)2ηT ,
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(a) Full bandwidth (11MHz)

(b) 8MHz bandwidth

(c) 2MHz bandwidth

Figure 2.27: Photocurrent histograms and theoretical distribution for four values of
n̄. The analog filtering bandwidth for each row is: (a) 11MHz (set by the anti-aliasing
filter); (b) 8MHz; (c) 2MHz..

which follows from the analysis of Section 2.3.5. The black curves in Figure 2.27 are

then obtained as follows. The simulated photocurrents are digitally filtered and his-

tograms are constructed by the same procedure used on the experimental data. These

trajectory histograms are then fit with a (one-dimensional) double-Gaussian distri-

bution, but with the standard deviation of each Gaussian constrained to one. There
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are three fit parameters: the separation between Gaussian peaks, and the height of

each peak. The displayed curves are these double-Gaussian fits. It should be noted,

however, that because γ⊥ is finite, the expected width of each bimodal peak is ac-

tually larger than one. That is, even in theory, the width of the two ‘coherent-ish’

states that comprise the bimodal Q-function for large n̄ have additional noise due to

spontaneous emission. For reasons of consistency that will become evident shortly, we

fit the trajectories using this idealized width (i.e., one, for coherent states). In going

from full bandwidth to 2MHz, these theoretical distributions gain a more pronounced

bimodal shape for large n̄. This filtering effect can be understood as elimination of

high frequency shot noise (dW in Eq. 2.75) that is outside of the relevant dynamical

range set by γ⊥/2 ≈ 8MHz. Note, though, that the quality of this fit to the simu-

lated photocurrent rapidly declines for lower high frequency cut-offs, since the rapid

switching behavior will be averaged to zero. At 2MHz bandwidth, for example, the

actual simulated distribution does not possess the bimodal shape indicated by the fit

(however, for 8MHz the fit is still excellent).

The agreement between the data and the theoretical predictions is quite good at

full bandwidth and 8MHz. In particular, for large n̄ the widths of these experimental

distributions are very well fit by the simulations. In general, however, the experimen-

tal distributions possess slightly fatter tails. There are two reasons for this. First,

there is the problem of broadening due to a finite γ⊥, as discussed above (this is also

the cause of the poor fits for n̄ = 1.) Second, there is a contribution of low-frequency

(i.e., 1/f) noise due to variations in the homodyne fringe level that are not entirely

eliminated through the AC filtering. This effect is particularly pronounced in the

4MHz bandwidth data, since the lower frequencies now contribute a large fraction of

the total bandwidth.

The bigger problem with these experimental histograms is that they are singly

peaked. In general, the large n̄ photocurrent histograms have more weight at zero than

predicted by theory. No systematic attempt has been made to pinpoint the source

of this problem, but the following are possible contributors. One likely candidate is

atomic motion through the standing wave structure of the cavity. Motion through
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a cavity node has the effect of ‘resetting’ the atomic dressed-state, as discussed in

Section 2.1.2.2. This process leads to an effective increase of the phase switching

rate. For a fixed bandwidth, then, more switching events will be averaged to zero,

as discussed in regards to Figure 2.26. Furthermore, because of the low sampling

rate, this problem could be even more pronounced. This explanation is somewhat

questionable, however, since the overall width of these histograms does match the

theory quite well. If atomic motion through the standing wave is problematic, then

we should also see an effective reduction in the size of the coupling strength, which

we do not. Another contributor to this single peaked-ness is the use of a linearly

polarized cavity mode. In particular, the cavity supports an orthogonal (nominally

unexcited) mode that the atoms are also coupled to, as discussed in Section 2.3.1.5.

The presence of this mode and the multilevel nature of the atoms leads to a small

reduction of the mode splitting. Finally, excess low frequency phase noise, from a

great many conceivable sources, could smear out the underlying bimodal distribution.

Figure 2.28 is a summarized comparison between the experimental photocurrent

distributions and theoretical predictions over a range of intracavity photon numbers.

The data points represent the mode-splitting obtained from double-Gaussian fits to

the experimental photocurrents. These experimental fits are performed with the

same procedure outlined above, but with the standard deviation of each Gaussian

constrained by the width of the measured shot noise distribution. The values plotted

at each n̄ are the centroids for the fit. The theoretical mode splitting is obtained by

fitting a double-Gaussian to simulated photocurrents, as described above. In order to

avoid cluttering the figure, I plot a smoothed fit through the theoretical mode splitting

data points so obtained. In general the trajectory simulations fit the data quite well,

particularly for smaller bandwidths. Not too much should be inferred from this trend

though: with increased filtering both theoretical and experimental fluctuations tend

to zero. Also displayed is the mode splitting predicted by the steady-state Q-function

(dotted black curve). For large n̄, this curve matches up quite nicely with the full

bandwidth quantum trajectory splitting. To obtain this curve, the Q-functions were
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Figure 2.28: Comparison of experimental mode splitting to theoretical predictions
for: 11MHz bandwidth (blue) and 2MHz (red). Data points represent experimental
data whereas solid lines are quantum trajectory simulations. The dotted black curve
is a represents the best fit centroid to steady-state Q-functions (similar to the ones
plotted in Figure 2.13.)

also fit with a double Gaussian distributions. In this case, however, the width of the

underlying Gaussians was also fit. The reason for this, as discussed earlier, is that

the width of the underlying modes differ from the coherent state value of one because

of spontaneous emission effects. Note that even the ideal Q-function splitting is less

than ±g0/2κ. This is due to the modest size of the ratio g0/2κ ≈ 1.

Finally, in order to provide a dynamical comparison between the data and theory,

we turn to autocorrelation functions. Figure 2.29 displays autocorrelation functions of

the experimental photocurrent for a range of photon numbers (denoted in the legend).

Before computing these autocorrelations, the data was AC filtered at 100kHz, to elim-

inate systematic offsets caused by low frequency fringe fluctuations. The theoretical
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Figure 2.29: Comparison between photocurrent autocorrelations and theoretical pre-
dictions. The mean photon number is denoted in the legend. The dashed curves are
theoretical predictions from the master equation. The vertical dashed line indicates
the predicted average period between switching events, 2/γ⊥. As a point of contrast,
the theoretical prediction for g0 = 2π · 22MHz and n̄ = 50 is plotted in yellow.

curves are the expectations 〈Ŷ (t+ τ)Ŷ (t)〉 generated from the master equation 2.24

using the quantum regression theorem [44]. The vertical dashed line indicates the

predicted average period between switching events, 2/γ⊥. For 1 ≤ n̄ ≤ 56 the data

matches up nicely with the theory, although it generally lies slightly lower than pre-

dicted. This could be due to a minor miscalibration of one of the scaling factors

used in Eq. 2.105 to convert the experimental photocurrent into ‘theory units’. This

discrepancy could also be understood from a minor reduction in the effective coupling

rate g0, caused by atomic motion, for example. In either case the discrepancy is quite

small since the autocorrelations are quadratic in these calibration factors. As a point

of contrast, the theoretical prediction for n̄ = 50 and g0 = 2π · 22MHz is plotted in
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yellow. The slope of this curve differs significantly from the n̄ ≈ 56 data. In fact,

a ten percent decrease in the total calibration factor is all that is implied – such

a change would go largely unnoticed in the mode-splitting analysis of Figure 2.28.

Finally, the n̄ = 109 data lies above the theory. As discussed in Section 2.3.5, for

this probe strength there is a noticeable increase in the phase-quadrature homodyne

fringe noise, particularly around 500kHz. This excess phase noise is the most likely

reason why the n̄ = 109 autocorrelation in Figure 2.29 is so large for small τ .

2.3.7.5 Photocurrent signals for a detuned atom

To further confirm that the photocurrent fluctuations were indeed related to atomic

dressed state fluctuations, measurements were made with the cavity and probe de-

tuned with respect to the atom. Specifically, the probe strength and detuning relative

to the cavity were fixed such that, n̄ = 20 and Θ = 0, but also detuned from the atoms

by ∆/2π = ±40MHz. For a nonzero ∆, the atomic state preferentially localizes on

one of the two dressed states. Consequently, the steady-state cavity field distribution

is no longer symmetric in phase. This effect is shown in Figure 2.30, where we plot

the Q-function and simulated phase-quadrature photocurrent for n̄ = 20, Θ = 0, and

with ∆/2π = {−40, 0, 40}MHz for the three rows. The simulated photocurrents are

displayed at 11MHz bandwidth, but assuming perfect detection efficiency so that the

effect can be clearly seen.

The experimental utility of working in this parameter regime is that this ∆-

dependent offset in the phase quadrature signal can be verified through a lower band-

width measurement. Furthermore, because of our limited digital-to-analog conversion

rate, this effect should be more easy to see than phase switching at γ⊥/2. Figure 2.31

shows two examples of measured homodyne photocurrents for this parameter set.

The upper trace is for ∆/2π = +40MHz and the lower trace is for ∆/2π = −40MHz.

In both cases, the atom transit, lasting approximately 25µs, brings an overall phase

shift in the homodyne fringe, with the sign of this shift correlated with ∆. The dis-

play bandwidth, 20kHz-4Mhz, is chosen so that this effect is clearly visible to the eye.

Note that because of an overall π-phase shift in the electronic photocurrent gain, the
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Figure 2.30: Steady-state Q-functions and simulated homodyne photocurrents for
different atomic detunings, and n̄ = 20. The photocurrents are displayed at 11MHz
bandwidth, and assuming perfect detection efficiency. The x-axis scale corresponds
to about 25µs. A) ∆ = −40MHz; B) ∆ = 0MHz; C) ∆ = +40MHz.

sign of these signals is flipped relative to the quantum trajectory simulations above.

Qualitatively, both signals match up nicely with the predictions in Figure 2.30A and

C, aside from some low frequency noise. This noise is visible for these traces because

of the conservative choice of AC filtering at 20kHz, which is necessary to preserve the

size of the atom-induced phase shift.

Histograms of data taken in this parameter regime are displayed in Figure 2.32.

This data was compiled using the same procedure described above with regards to

the resonant histograms. In Figure 2.32, the black curves are simply double-Gaussian

fits to the histograms with the standard deviation constrained by the measured pho-
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(b) {∆,Θ} /2π = {−40, 0}MHz

Figure 2.31: Phase quadrature homodyne signals for a detuned atom. Data is
displayed in an analog bandwidth of 20kHz to 4MHz. The dashed red curve is
the photocurrent low pass filtered at 100kHz. (a) {∆,Θ} /2π = {40, 0}MHz. (b)
{∆,Θ} /2π = {−40, 0}MHz. Note, because of an overall π-phase shift in the elec-
tronic gain, there is a sign difference between this data and the simulated photocur-
rents in 2.30.
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Figure 2.32: Photocurrent histograms for three different ∆. The black curves are
double Gaussian fits to the distributions, with the width of the underlying Gaussians
set by the measured shot noise. The analog filtering bandwidth is 20kHz-4MHz.

tocurrent (the red and blue curves are the underlying Gaussians). In moving from the

∆/2π = −40MHz to the ∆/2π = +40MHz data, there is a clear shift in the weight of

the distribution from positive to negative phase. The ∆/2π = −40MHz histogram,

however, possesses significantly more weight at zero than the ∆/2π = +40MHz his-

togram. The cause of this is most likely the large average repulsive force felt by the

atom for this detuning, as discussed in Section 2.1.2.2. This repulsive force simultane-

ously channels atoms axially towards optical field nodes and repels them radially out

of the cavity; the result is a reduction in the effective atom-field coupling strength.

For ∆/2π = +40MHz, however, the atom is actually bound to the cavity mode,

and is, in general, funneled into regions of strong coupling. It should be noted that

atomic transits of the length displayed in Figure 2.31B are extremely rare for ∆ < 0

case. In fact, they are so rare that the ∆/2π = −40MHz plot presented here is lit-

erally the only atom transit for this detuning that lasted longer than ∼ 10µs. For

∆/2π = +40MHz, however, there are many examples that are as long as the one

displayed in Figure 2.31A.

Finally, a comparison between experimental and theoretical autocorrelations for

different ∆ is shown in Figure 2.33. Before computing these autocorrelations, the

data is AC filtered at 20kHz, to eliminate systematic offsets caused by low frequency

fringe fluctuations while preserving the effects of atom-induced phase shifts. This

particular choice was determined by choosing the lowest AC filter frequency such

that the ∆ = 0 autocorrelation lined up (at zero value) with theory for large τ .
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Figure 2.33: Photocurrent autocorrelations and theoretical predictions for n̄ = 20
and different atomic detunings. The signals are first AC filtered at 20kHz. The plot
parameters are denoted in the legend. The dashed curves are theoretical predictions
from the master equation. The vertical dashed line indicates the expected average
period between switching events for ∆ = 0.

The vertical dashed line indicates the predicted average period between switching

events, 2/γ⊥, for the case ∆ = 0. The theoretical curves are again computed from

the master equation 2.24 using the quantum regression theorem. The plateau in

the ∆/2π = +40MHz autocorrelation reflects the nonzero average phase quadrature

signal. The ∆/2π = −40MHz data does not follow the expected theoretical trend very

well. This is, again, most likely due to the repulsive forces acting on the atom in this

case – these forces lead to a reduction in the average coupling strength. Furthermore,

the statistics for this data are quite poor, as few atomic transit events of length & 5µs

were observed.
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Chapter 3

Bifurcations and bistability in
cavity QED

3.1 Introduction

My principal aims in this chapter are to illustrate a systematic approach (building

upon Refs. [31, 32]) to expanding the known inventory of bifurcation-type phenomena

in single-atom cavity QED, and to highlight some conspicuous predictions of the

fully quantum model as compared to the semiclassical Maxwell-Bloch Equations. In

so doing I hope to begin to illumine a more comprehensive picture of the quantum-

classical transition in cavity nonlinear optics [21, 94], bridging what is generally known

about linear-gaussian [95] and chaotic [96] open quantum systems [97]. While previous

theoretical [4, 43, 98] and experimental [99] investigations of single-atom bistability

have largely focused on steady-state observables of the transmitted optical field, I will

here follow the spirit of Refs. [3, 100] in studying transient signals and stochastic jumps

observable in the broadband photocurrent generated in individual experimental trials.

I look in particular at a case of absorptive bistability, a supercritical Hopf bifurcation,

and a subcritical Hopf bifurcation, all of which occur with mean intracavity photon

numbers of order ten.
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3.2 The master equation revisited

In Chapter 2, a simple version of the cavity QED master equation was presented

that was adequate for the discussion of phase bistability. In particular, non-radiative

dephasing and multiple-atom couplings were not considered. Here, I introduce a form

of the master equation appropriate for more general system behavior. Using this

new description I derive a form of the Maxwell-Bloch equations more amenable to

numerical and analytical analysis. Note, in this chapter, I break with the convention

(of Chapters 1 and 2) of denoting quantum mechanical operators with a ‘hat’. I do

this to simplify otherwise cluttered expressions.

3.2.1 Quantum dynamical description

We consider the driven Jaynes-Cummings Hamiltonian [6] which models the inter-

action of a single mode of an optical cavity having resonant frequency ωc, with a

two-level atom, comprised of a ground state |g〉 and an excited state |e〉 separated by

a frequency ωa. For an atom-field coupling constant g0 and a drive field amplitude

E , the Hamiltonian written in a frame rotating at the drive frequency ωl is given by

[~ = 1]:

H = Θa†a+ ∆σ+σ− + ig0(a
†σ− − aσ+) + iE(a† − a) , (3.1)

where ∆ = ωa − ωl and Θ = ωc − ωl . In Eq. 3.1, a is the field annihilation op-

erator and σ− = |g〉〈e| is the atomic lowering operator. In addition to the coherent

dynamics governed by 3.1 there are two dissipative channels for the system: the atom

may spontaneously emit into modes other than the preferred cavity mode, at a rate

γ‖, and photons may pass through the cavity output coupling mirror, at a rate 2κ.

Furthermore, we model the case of non-radiative dephasing (at rate γnr) between the

atomic ground and excited states. In the analysis to follow, we will be concentrating

solely on the situation where γnr = 0, i.e., purely radiative damping; however, γnr

is included here to indicate that we are not restricted to this case (in particular, the

parameterization employed in section 3.3 will imply a variable dephasing.) The un-



94

conditional master equation describing this driven, damped, and dephased evolution

is

ρ̇ = −i[H, ρ] + κ(2aρa† − a†aρ− ρa†a)

+ γ‖/2(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (3.2)

+ γnr/2(σzρσz − ρ)

where σz = [σ+, σ−] measures the population difference between the excited and

ground states.

While g0 measures the coherent coupling rate between the atom and the cavity,

the rates γ‖, γnr, and κ characterize processes which tend to inhibit the build up of

coherence. The qualitative nature of the dynamics 3.2 may be determined by two

dimensionless parameters which measure the relative strengths of the coherent and

incoherent processes: the critical photon number

n0 =
γ‖γ⊥
4g2

0

, (3.3)

and the critical atom number

N0 =
2γ⊥κ

g2
0

, (3.4)

where γ⊥ is the transverse relaxation rate given by γ⊥ = γ‖/2 + γnr. The critical

photon number provides a measure of the number of photons needed to saturate

the response of a single atom, and in the regime n0 < 1 a single photon inside the

resonator can induce a nonlinear system response. Similarly, the critical atom number

roughly quantifies the number of atoms required to drastically change the resonant

properties of the cavity. When N0 < 1, a single atom inserted into the cavity will

have a dramatic effect on the cavity output. The so-called “strong coupling regime” of

cavity QED, which is usually used to denote the regime where the coherent coupling

dominates over dissipation, is reached when the condition (n0, N0) < 1 holds.

The master equation 3.2 may be used to find the time evolution for any operator

acting on the system Hilbert space. In particular, it will be useful to know the
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dynamical equations for 〈a〉, 〈σ−〉, and 〈σz〉 in order to make concrete comparisons

with the semiclassical results that follow. Using the fact that ˙〈O〉 = Tr[Oρ̇] for a

system operator O, we obtain

˙〈a〉 = −κ(1 + iθ)〈a〉+ g0〈σ−〉+ E

˙〈σ−〉 = −γ⊥(1 + iΛ)〈σ−〉+ g0〈aσz〉 (3.5)

˙〈σz〉 = −γ‖(〈σz〉+ 1)− 2g0(〈a†σ−〉+ 〈σ+a〉) ,

with γ⊥ = γ‖/2 + γnr, θ = (ωc − ωl)/κ, and Λ = (ωa − ωl)/γ⊥.

It should be noted that these formulae may be easily generalized to the case of

N non-interacting atoms each coupled to the same mode of the electromagnetic field,

with coupling constant g0. In this case, the Hamiltonian becomes

H = Θa†a+
N∑

j=1

∆σj
+σ

j
− +

N∑
j=1

ig0(a
†σj

− − aσj
+) + iE(a† − a) , (3.6)

and the new master equation is

ρ̇ = −i[H, ρ] + κ(2aρa† − a†aρ− ρa†a)

+ γ‖/2
N∑

j=1

(2σj
−ρσ

j
+ − σj

+σ
j
−ρ− ρσj

+σ
j
−) (3.7)

+ γnr/2
N∑

j=1

(σj
zρσ

j
z − ρ) ,

where σj
− is the lowering operator for the jth atom and [σj

+, σ
k
−] = δjkσ

j
z. The equa-

tions of motion for the operator expectations become

˙〈a〉 = −κ(1 + iθ)〈a〉+ g0

N∑
j=1

〈σj
−〉+ E

˙〈σj
−〉 = −γ⊥(1 + iΛ)〈σj

−〉+ g0〈aσj
z〉 (3.8)

˙〈σj
z〉 = −γ‖(〈σj

z〉+ 1)− 2g0(〈a†σj
−〉+ 〈σj

+a〉) .
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If we define σ− =
∑N

j=1 σ
j
− and σz =

∑N
j=1 σ

j
z as the collective pseudo-spin

operators, we arrive at the following set of dynamical equations

˙〈a〉 = −κ(1 + iθ)〈a〉+ g0〈σ−〉+ E

˙〈σ−〉 = −γ⊥(1 + iΛ)〈σ−〉+ g0〈aσz〉 (3.9)

˙〈σz〉 = −γ‖(〈σz〉+N)− 2g0(〈a†σ−〉+ 〈σ+a〉) .

Therefore, we may think of Eq. 3.9 as a description of the operator expectation

dynamics for either a single-atom (with N = 1) or multi-atom system. In either

case, the coupled equations 3.9 are not closed, as they contain expectation values of

operator products. Therefore, we also need the dynamical equations for the higher

order moments, of which there are an infinite number. For purely optical systems,

order parameters can often be identified so that a system size expansion can yield

a finite, closed set of equations which are valid in the “low-noise” limit (when the

order parameter is large). Unfortunately, for coupled atom-field systems, there exists

no suitable choice of system scaling parameters which would justify a system size

expansion [6]. Furthermore, it is known that the quantum fluctuations produced by

optical bistability can be non-classical even when N � 1 [9], and therefore would not

fit into the classical mold which is the basis of a system size expansion. Nevertheless it

has been demonstrated [101] that the Maxwell-Bloch equations, which will be derived

from 3.9 below, can be brought with some refinements into close agreement with

experiments on absorptive optical bistability in a multi-atom system. Indeed said

equations are generally accepted as a canonical, though somewhat phenomenological,

model for cavity nonlinear optics outside the strong coupling regime [37, 94].

3.2.2 Semiclassical description

An ad hoc (and somewhat crude) approach to obtaining a closed set of equations

from 3.9 is to simply factorize the operator products, e.g., 〈a†σ−〉 → 〈a†〉〈σ−〉. While

there is no formal basis for this procedure in general, the intuition behind it is that
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for a large system with many weakly-excited atoms, the atom-field correlations will

tend to zero, allowing for expectations of operator products to be factorized [22, 37].

But it should be noted that this approximation is not justified in the case of strong

driving and certainly not for a single atom. This factorization yields

˙〈a〉 = −κ (1 + iθ) 〈a〉+ g0〈σ−〉+ E

˙〈σ−〉 = −γ⊥ (1 + iΛ) 〈σ−〉+ g0〈a〉〈σz〉 (3.10)

˙〈σz〉 = −γ‖ (〈σz〉+N)− 2g0(〈a†〉〈σ−〉+ 〈σ+〉〈a〉)

which are the well known the Maxwell-Bloch equations, used to describe the semi-

classical evolution of a classical field coupled to an atomic medium. The atom-field

correlations which were discarded in performing the factorization above will tend to

contribute “noise” on top of the mean field evolution described by Eq. 3.10. To put

these equation into a more common form, we make the following definitions:

z
.
= 〈a〉, v

.
=

2

N
〈σ−〉, m

.
=

1

N
〈σz〉. (3.11)

so that 3.10 becomes

ż = −κ(1 + iθ)z + (Ng0/2)v + E

v̇ = −γ⊥(1 + iΛ)v + 2g0zm (3.12)

ṁ = −γ‖(m+ 1)− g0(z
∗v + v∗z) .

A computationally more practical form of (3.12), which will prove useful in the bi-

furcation analysis to follow, may be obtained by transforming it into a dimensionless

set of equations. We first make the following change of variables

z →
√
n0 x, v → −

√
γ‖
γ⊥

p, m→ −D, (3.13)
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followed be a re-scaling of time

t→ t′/γ⊥ , (3.14)

so that we are left with the dimensionless Maxwell-Bloch equations [37]:

ẋ = −k [(1 + iθ)x+ 2Cp− y]

ṗ = −(1 + iΛ)p+ xD (3.15)

Ḋ = −γ [D − 1 + (x∗p+ p∗x)/2]

where the complex variables x and p represent the amplitude of the intra-cavity field

and the normalized atomic polarization, respectively, D is the (real) atomic popula-

tion inversion, and y is the amplitude of the external drive field. The cooperativity

parameter, C, measures the strength of the collective atom-field interaction, while k

and γ are, respectively, the cavity field decay and atomic spontaneous emission rates,

scaled by the atomic transverse relaxation rate, γ⊥:

γ =
γ‖
γ⊥
, k =

κ

γ⊥
, C =

Ng2
0

2κγ⊥
, y =

E
κ
√
n0

. (3.16)

The two detuning parameters θ and Λ are the same as in Eq. (3.5). Although there is

no way to express the steady-state solutions for the dependent variables x, p, and D

in terms of the independent variables, we can find a simple set of equations relating

the stationary solutions of the problem:

y = |xss|

{[
1 +

2C

1 + Λ2 + |xss|2

]2

+

[
θ − 2CΛ

1 + Λ2 + |xss|2

]2
}1/2

, (3.17)

pss =
(1− iΛ)xss

1 + Λ2 + |xss|2
, (3.18)

Dss =
1 + Λ2

1 + Λ2 + |xss|2
. (3.19)
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Figure 3.1: Semiclassical calculation of the intracavity steady-state field magnitude
|xss| versus drive field y. The dashed portion of the curve is unstable. The parameter
values are: C = 10, k = 0.1, γ = 2, θ = 0, and Λ = 0. Arrows indicate the evolution
of the steady-state solution when the drive field y is swept smoothly through a bi-
furcation point: the state originally on the lower (upper) branch moving through the
bifurcation point y ≈ 11.1 (y ≈ 8.7) is attracted to the upper (lower) branch.

In Figure 3.1 we plot a typical input-output curve generated using Eq. (3.17).

Note that in the range 8.7 . y . 11.1 the curve displays absorptive bistability,

with the lower and upper branches of the ‘S’-shaped curve supporting stable solu-

tions (the dashed portion of the curve is unstable). It is important to note that

the above equations depend upon g0 and N only through the cooperativity param-

eter, C. Thus, identical behavior is predicted for a range of systems with varying

atom number and g0 =
√

2κγ⊥C/N . Of course, one expects that the quantum fluc-

tuations and atom-field correlations that are disregarded in the derivation of the

Maxwell-Bloch equations should begin to matter as N approaches 1. A direct com-

parison of ‘system behavior’ according to (3.15) versus the master equation (3.2)

with the quantities {γ, k, C, y, θ,Λ} held fixed can thus be construed as a case study
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in quantum-(semi)classical correspondence. The question of course is exactly what

‘system behavior’ should be compared and how; the strategy in what follows will

be to focus on photocurrent properties near bifurcation points of the semiclassical

model. We thus next discuss a systematic approach to finding interesting points in

the bifurcation set of the Maxwell-Bloch equations, and then review a standard monte

carlo approach to simulating photocurrents according to the quantum model. After

presenting some numerical results, we conclude with a discussion of some interesting

features of the quantum-semiclassical comparison that suggest directions for further

research.

3.3 Bifurcation set of the mean-field equations

In this section we delineate the process used to find and classify bifurcations in the

mean-field dynamics described by Eq. 3.15. In particular, in Sec. 3.3.1 we charac-

terize both saddle-node bifurcations and Hopf bifurcations. We further differentiate

between super- and subcritical Hopf bifurcations in Sec. 3.3.2. In the former case,

the bifurcation will destabilize a (typically) fixed point with a local (small amplitude)

limit cycle born about the prior steady-state. In the latter case, no local limit cycle

is created about the destabilized steady-state solution, and the system will move to a

new (possibly distant) attractor. For this reason, subcritical Hopf bifurcations often

lead to qualitatively more radical results, including regions of multi-stability.

3.3.1 Linearization about steady-state

In order to determine the parameter values that lead to bifurcations, we return to

Eq. 3.15, and linearize the system dynamics about steady-state. We consider small

fluctuations δx, δp, and δD about steady-state, and set x = xss + δx, p = pss + δp, et
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cetera. After eliminating terms that are second order in the small fluctuations,

˙δx

˙δx∗

δ̇p

˙δp∗

˙δD


= J



δx

δx∗

δp

δp∗

δD


(3.20)

where the Jacobian J is given by

J =



−k(1 + iθ) 0 −2Ck 0 0

0 −k(1− iθ) 0 −2Ck 0

Dss 0 −(1 + iΛ) 0 xss

0 Dss 0 −(1− iΛ) x∗ss

−γp∗ss/2 −γpss/2 −γx∗ss/2 −γxss/2 −γ


. (3.21)

The associated characteristic equation will have the form

λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 = 0 (3.22)



102

with coefficients given by the following expressions:

a1 = 2 + γ + 2k ,

a2 = k2(1 + θ2) + (2γ + 1 + Λ2 + γ|xss|2)

+ 2k(γ + 2) + 4kCDss ,

a3 = γ(1 + Λ2 + |xss|2) + 2k(2γ + 1 + Λ2 + γ|xss|2)

+ k2(1 + θ2)(γ + 2) + 4kCDss(γ + k + 1)

− γkC(p∗ssxss + pssx
∗
ss) ,

a4 = 2kγ(1 + Λ2 + |xss|2)

+ k2(1 + θ2)(2γ + 1 + Λ2 + γ|xss|2)

+ 2kCDss[2k(1− Λθ) + 2γ(k + 1) + γ|xss|2]

+ γkC [i(Λ + kθ)(p∗ssxss − pssx
∗
ss)

− (k + 1)(p∗ssxss + pssx
∗
ss)] + 4k2C2D2

ss ,

a5 = γk2{4C2Dss[Dss − (p∗ssxss + pssx
∗
ss)2]

+ (1 + θ2)(1 + Λ2 + |xss|2)

+ 4CDss(1− Λθ)} .

(3.23)

These coefficients may be further simplified by using the form of Dss found in 3.17

and the relations

i(pssx
∗
ss − p∗ssxss) = −2Λ|xss|2/(1 + Λ2 + |xss|2)

(pssx
∗
ss + p∗ssxss) = 2|xss|2/(1 + Λ2 + |xss|2) ,

so that the a’s found in the characteristic equation are written explicitly in terms of

six parameters: C, k, γ, θ,Λ, and |xss|.

Needless to say, it is impossible to solve for the eigenvalues of this system ana-

lytically. However, other methods that provide analytic tests of stability do exist.

Most notably, the Routh-Hurwitz criterion provides a set of inequalities based on

combinations of the a′s that can be used to determine stability. Unfortunately, this

procedure is simply too general, and it is ill suited for the purpose of determining the

boundaries of instability in terms of our controllable parameters. We can, however,
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make use of the Routh-Hurwitz criteria to find the following necessary conditions for

stability [102, 103]

a1, a2, a3, a4, a5 > 0 .

Furthermore, at a Hopf bifurcation the system must have a pair of pure imaginary

eigenvalues, λ1,2 = ±iω. Demanding that the characteristic equation support these

solutions establishes the following critical condition for a Hopf bifurcation

f = (a1a2 − a3)(a3a4 − a2a5)− (a1a4 − a5)
2 = 0 , (3.24)

with f > 0 providing another necessary condition for stability.

For the purpose of delineating the instability boundaries, the six inequalities

a1, a2, a3, a4, a5, f > 0 (3.25)

are not equally important. Starting from a stable region of the parameter space,

there are only two ways for the steady-state solution to become unstable: (i) a single

real eigenvalue passes through the origin and becomes positive; (ii) a pair of complex

conjugate eigenvalues cross the imaginary axis (starting from the LHP). For case

(i) the coefficient a5 must change signs first, whereas for case (ii) it is f that first

changes sign. Therefore, if the goal is to determine the conditions for a known stable

state to become unstable, there is no need to consider the other necessary conditions

and all focus may be placed on a5 and f . Furthermore, if we are only interested

in Hopf Bifurcations, we can also ignore the a5 > 0 condition, which determines the

boundary for saddle-node bifurcations where the steady-state curve displays a turning

point (this can be seen by noting that d(y2)/d(|xss|2) ∝ a5, so that a5 < 0 indicates

bistability.)

It should be noted again, that the inequalities 3.25 are only necessary conditions

for stability, they are not sufficient. For example, the system could have one real

negative eigenvalue, and two pairs of complex eigenvalues each with positive real

parts, and still have a1, a2, a3, a4, a5, f > 0. However, the stability condition f > 0
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can be made sufficient for a given region in parameter space if we can show that this

region is ‘connected’ to a known stable region of the space (two regions of parameter

space are ‘connected’ if there exists a continuous variation of the parameters that

moves the system from one region, while retaining the sign of a1, a2, a3, a4, a5, and

f through the entire path.) Thus, if we know that a particular region of parameter

space (with a1, a2, a3, a4, a5 > 0) is connected to a stable region, we know that f can

serve as a necessary and sufficient condition for the steady-state solution to undergo

a Hopf bifurcation. Practically, all this means is that starting from a stable state, the

first crossing of a surface a5 = 0 (f = 0), will drive the system unstable through a

saddle-node (Hopf) bifurcation. Furthermore, the stability condition f > 0 is quite

reliable in practice, even when we can’t show connectedness to a stable region.

3.3.2 Super- and subcritical Hopf bifurcations

In order to determine whether a Hopf bifurcation is super- or subcritical, the eigen-

values and eigenvectors about the bifurcation point must first be found. Among the

possible reasons for seeking one or the other kind are that supercritical Hopf bifurca-

tions can be used for resonant nonlinear amplification of small periodic signals [104],

and subcritical Hopf bifurcations are likely to indicate the presence of limit cycles that

coexist with other attractors. The latter type of scenario may give rise to observable

‘quantum jumps’ among non-fixed point attractors, which would be an interesting

generalization of the predictions of Refs. [3, 28]. We thus believe that the theory for

distinguishing super- and subcritical Hopf bifurcations merits an extended discussion.

Note that our expressions below correct some apparent misprints in Ref. [31], with

minor changes of notation.

At a Hopf bifurcation, the linearized system 3.21 has a pair of pure imaginary

eigenvalues λ1,2 = ±iω, with the frequency ω determined by

ω2 =
a1a4 − a5

a1a2 − a3

. (3.26)
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Thus, the characteristic equation 3.22 can be factored as

(λ2 + ω2)(λ3 + a1λ
2 + b2λ+ b3) = 0 (3.27)

with

b2 = a4/ω
2, and b3 = a5/ω

2. (3.28)

Solving for the other three eigenvalues yields

λ3 = νw − p/(3νw)− a1/3

λ4 = ν∗w − p/(3ν∗w)− a1/3

λ5 = w − p/(3w)− a1/3

(3.29)

where the variables

ν = (−1 + i
√

3)/2

w =
{
q/2 +

√
(q/2)2 + (p/3)3

}1/3

q = −2a3
1/27 + a1b2/3− b3

p = −a2
1/3 + b2

(3.30)

are determined from the solution to the cubic equation embedded in 3.27. Following

the approach in [31] (and noting several corrections), the system eigenvectors, αi,

may be found in terms of the λi by solving the linearized dynamics

Jαi = λiαi (3.31)

where J is the Jacobian in 3.21. Expressing the results in terms of the λi, one arrives
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at

αi =



exp (iφi)

exp (−iφi)

− exp (iφi) [k(1 + iθ) + λi] /(2Ck)

− exp (−iφi) [k(1− iθ) + λi] /(2Ck)

− exp (iφi) {2CDssk + (1 + iΛ + λi) [k(1 + iθ) + λi]} /(2Ckx)


(3.32)

where the phase factor, exp (iφi), is chosen to preserve symmetry in the components

and is given by

eiφi =

√
x {2CDssk + (1− iΛ + λi)[k(1− iθ) + λi]}
x∗ {2CDssk + (1 + iΛ + λi)[k(1 + iθ) + λi]}

. (3.33)

The set of eigenvectors, {αi}, define a linear transformation of variables such that

dynamical equations about steady-state contain no linear cross couplings. The old

variables are related to the new variables through the relation

δq = α̃ z (3.34)

where α̃ = [α1 α2 α3 α4 α5] is the transformation matrix comprised of the system

eigenvectors, and δq = {δx, δx∗, δp, δp∗, δD}T are the fluctuations about steady-

state. Starting from the dynamical equations for the fluctuations about steady-state

˙δx = −k [(1 + iθ)δx+ 2Cδp]

˙δx∗ = ( ˙δx)∗

δ̇p = −(1 + iΛ)δp+ δxδD (3.35)

+ {δxDss + xssδD}

˙δp∗ = (δ̇p)∗

˙δD = −γ [δD + (δx∗δp+ δp∗δx)/2]

+ {γ/2(δx∗pss + x∗ssδp+ p∗ssδx+ δp∗xss)} ,
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the transformation of coordinates z = β̃ δq, with β̃ = α̃−1, eliminates any linear

coupling between variables

żj = λjzj + βj3δxδD + βj4δx
∗δD

− γβj5(δx
∗δp+ δxδp∗)/2 . (3.36)

Finally, after utilizing the transformation 3.34, this equation may be expressed in

terms of the “diagonalized” coordinates alone:

żj = λjzj +
5∑

k,l=1

[βj3α1kα5l + βj4α2kα5l

− γβj5(α2kα3l + α1kα4l)/2] zkzl . (3.37)

Having converted the system into the form 3.37, the dynamics about a Hopf

bifurcation may be reduced onto a center manifold [105]: since the system dynamics

will be dominated by the “slow” variables, z1 and z2, the flow of the differential

equation may be locally approximated on the surface generated by z1 and z2, with the

“fast” variables, zj=3,4,5, represented by a local graph zj = Aj(z1, z2). Furthermore,

the local graph, Aj(z1, z2), may be approximated by a power series expansion

zj = a20(j)z
2
1 + a11(j)z1z2 + a02(j)z

2
2 + ... , j = 3, 4, 5 , (3.38)

so that the reduced dynamics may be approximated by

żj ≈ 2iωa20(j)z
2
1 − 2iωa02(j)z

2
2 + ... , j = 3, 4, 5 . (3.39)

The coefficients in 3.38 are determined by substituting equations 3.38 and 3.39 into

the exact dynamics 3.37 and equating like powers in zn
1 z

m
2 .

With aid of the local graph 3.38, the dynamics may be reduced onto the center

coordinates associated with eigenvalues having zero real part:

ż1 = iωz1 + b20(1)z
2
1 + b11(1)z1z2 + b02(1)z

2
2 + b21(1)z

2
1z2 + ... (3.40)
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with z2 = z∗1 near the Hopf bifurcation. Writing z1 = u + iv, with {u, v} ∈ R, the

reduced dynamics of the complex variable z1 may be expressed by a set of real coupled

equations

u̇ = −ωv + F (u, v)

v̇ = ωu+G(u, v)
, (3.41)

with F and G comprised of terms nonlinear in u and v. It can be shown [105] that

there exists a smooth change of variables which will put Eq. 3.41 into the normal

form

ṙ = η3r
3 + η5r

5 + ...

ζ̇ = ω + ε2r
2 + ε4r

4 + ...
, (3.42)

with the stability of the bifurcation governed by the sign of η3. For η3 < 0 the

bifurcation is supercritical, and a stable, small amplitude limit cycle is born about

the newly destabilized steady-state. For η3 > 0, the bifurcation is subcritical, and no

such small amplitude cycle is created. In this case, the system may be thrown far

away from the steady-state solution, onto either a limit cycle, a different branch of

the steady-state curve, or some other attractor.

3.3.3 Calculation of η3

The critical parameter η3 can be expressed explicitly [105] in terms of the coefficients

in 3.40 and the bifurcation frequency ω

η3 = Re[b21(1)]−
1

ω
Im[b20(1)b11(1)] . (3.43)

As the calculations for the relevant coefficients are rather tedious and time consuming,

they are included here for posterity:

a20(j) = b20(j)/(2iω − λj) ,

a11(j) = −b11(j)/λj ,

}
j = 3, 4, 5 (3.44)
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where

b20(j) = βj3α11α51 + βj4α21α51 − γβj5(α21α31 + α11α41)/2 ,

b11(j) = βj3 (α11α52 + α12α51) + βj4 (α21α52 + α22α51)

− γβj5 [α21α32 + α22α31 + α11α42 + α12α41] /2 .

(3.45)

Inserting 3.38, with coefficient a20(j) and a11(j) given by 3.44, into the diagonalized

equation 3.37 for j = 1 yields a heinous expression for the last required coefficient

b21(1) = β13[a20(3) (α12α53 + α13α52) + a20(4) (α12α54 + α14α52) +

a20(5) (α12α55 + α15α52) + a11(3) (α11α53 + α13α51) +

a11(4) (α11α54 + α14α51) + a11(5) (α11α55 + α15α51)]

+ β14[a20(3) (α22α53 + α23α52) + a20(4) (α22α54 + α24α52) +

a20(5) (α22α55 + α25α52) + a11(3) (α21α53 + α23α51) +

a11(4) (α21α54 + α24α51) + a11(5) (α21α55 + α25α51)]

− γ
2
β15[a20(3) (α22α33 + α23α32 + α12α43 + α13α42) +

a20(4) (α22α34 + α24α32 + α12α44 + α14α42) +

a20(5) (α22α35 + α12α45 + α25α32 + α15α42) +

a11(3) (α21α33 + α11α43 + α23α31 + α13α41) +

a11(4) (α21α34 + α11α44 + α24α31 + α14α41) +

a11(5) (α21α35 + α11α45 + α25α31 + α15α41)] .

(3.46)

3.4 Numerical results

For the numerical analysis to follow, we make repeated use of the steady-state Q-

function and quantum trajectory simulations. These numerical tools are described in

sections 2.2.3 and 2.2.5, respectively.

3.4.1 Absorptive bistability

In Figure 3.1 we plot the steady-state intra-cavity field magnitude vs. drive field

predicted by the (dimensionless) semiclassical equations 3.17 for the case of purely
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Figure 3.2: Steady-state Q(α) for the parameter values in Figure 3.1, and drive field
y = 11.3.

absorptive bistability (θ = Λ = 0). These parameter values correspond to g =

1.41, κ = .1, γ‖ = 2,∆ = 0,Θ = 0, in the master equation 3.2, and a saturation

photon number, n0 = 0.25. In Figure 3.2 we plot the bimodal Q-function obtained

from the steady solution to the master equation for a drive field y = 11.3 (E = 0.565),

chosen such that the integrated probabilities in each mode of the Q-function are

approximately equal. While this Q-function indicates that the quantum dynamics

show bistable behavior, it is interesting to note that the master equation produces

this bimodal distribution for a drive field where the mean-field equations do not

predict bistability (the lower branch in Figure 3.1 disappears at y ≈ 11.1). In fact,

the Q-function distributions over most of the semiclassically bistable region are not

bimodal, and only become so for 11 . y . 11.5.

In Figure 3.3 we plot the photocurrent 2.75 corresponding to a measurement of the

amplitude quadrature of the cavity output field. As expected, the field localization

brought about by the continuous homodyne measurement causes the signal amplitude
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Figure 3.3: Homodyne photocurrent from quantum trajectory simulation for param-
eter values in Figure 3.2.

to switch, at stochastic intervals, between values consistent with the two peaks in

Q(α).

3.4.2 Supercritical Hopf bifurcation

In Figure 3.4 we plot the equilibrium attractors of the mean-field dynamics 3.15 for

a case where the steady-state fixed points predicted in 3.17 undergo supercritical

Hopf bifurcations. Starting on the lower (upper) branch of the steady-state curve,

as the drive field y is swept through the critical point CP1 (CP2) the fixed point is

destabilized by a small amplitude limit cycle, LC1, which grows in amplitude, peaking

at y ≈ 2800, until finally recombining with and restabilizing the fixed point at CP2

(CP1). To represent the oscillatory solution that is born out of the bifurcation, we

plot the steady-state maximum field magnitude for a state localized on the stable limit

cycle, and denote this as LC1. Thus, the plotted curve LC1 essentially represents the

amplitude plus mean value of the limit cycle.

The parameter values used in Figure 3.4 correspond to g = 1, κ = .01, γ‖ = 2,∆ =

1.25,Θ = −6 in Eq. 3.2, and a saturation photon number n0 = 0.5. Using these

values, we compute Q(α) for y = 2800 (E = 19.8), where the limit cycle amplitude is

maximal. The result is plotted in Figure 3.5. The ring-like shape of the distribution is

consistent with oscillation of a coherent state in the intracavity field. This interpreta-
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Figure 3.4: Semiclassical calculation of the intracavity steady-state field magnitude
|xss| versus drive field y for: C = 50, k = .01, γ = 2, θ = −600, and Λ = 1.25.
The upper dashed-dotted curve (LC1)represents the steady-state oscillation maximum
(steady-state magnitude plus mean value) associated with the limit cycle formed when
the fixed point becomes unstable due to a Hopf bifurcation (at CP1 and CP2). The
lower dashed curve is unstable.

tion is further supported by the inset in Figure 3.6, where we plot the autocorrelation

function G
(1)
Y (τ) = 〈Y (τ)Y (0)〉 − 〈Y (0)〉2, computed using the quantum regression

theorem [35], where Y = i
2
(a†− a) is the phase quadrature amplitude operator of the

intracavity field. In addition, Figure 3.6 displays the coherence time of the steady-

state quantum oscillations over a range of drive fields. The results indicate that the

coherence times depend strongly on the amplitude of the limit cycle, LC1, which is

again consistent with the idea of an oscillating coherent state for the intracavity field.

It can be seen clearly from the inset of Figure 3.6 that the limit cycle comprises an

oscillation of the intracavity field at a frequency much higher than κ. It should thus

be difficult to see the oscillation directly in the broadband photocurrent generated by
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Figure 3.5: Steady-state Q(α) for the parameter values in Figure 3.4, and drive field
y = 2800.

amplitude-quadrature homodyne detection of the cavity output field. In Figure 3.7

however we plot several power spectra of photocurrent records generated in quan-

tum trajectory simulations. For y = 1000 (below CP1 in Figure 3.4) the spectrum

shows little or no sign of a coherent peak, but for y = 2800 we see that homodyne

detection of the field amplitude reveals clear evidence of the limit-cycle oscillation.

This demonstrates at least a basic correspondence with the semiclassical predictions

shown in Figure 3.4. At y = 5000 (above CP2 in Figure 3.4), however, we see that the

quantum model still exhibits strong oscillations even though the semiclassical model

predicts a fixed point solution. This persistence of the oscillatory behavior at both

higher and lower driving fields can also be seen in Figure 3.6.

3.4.3 Subcritical Hopf bifurcation

In Figure 3.8 we plot the steady-state solutions for a parameter regime where the

mean-field equations predict a subcritical Hopf bifurcation. The solid (dashed) curve

corresponds to the stable (unstable) fixed points predicted by Eq. 3.17, whereas the

attractor LC2 (plotted dashed-dotted) corresponds to a stable limit cycle. Beginning



114

1000 1500 2000 2500 3000 3500 4000 4500 5000

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

C
o
h
e
re

n
c
e
 T

im
e
 [
κ

−
1
]

Drive Field [y]

0 0.2 0.4 0.6 0.8 1

7

9

11

13

15

τ [κ
−1

]

G
Y(1

) (
τ
)
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Figure 3.4. The coherence time is estimated by fitting a damped sinusoid to G
(1)
Y (τ).

Inset: simulated G
(1)
Y (τ) for the drive field in Figure 3.5.

on the upper stable branch of fixed points, as the drive field is swept through the

critical point CP4, the system undergoes a subcritical Hopf bifurcation. In the range

475 . y . 925, the semiclassical equations predict coexistence of a stable fixed point

and limit cycle, which is a common signature of subcritical bifurcations. Note that

at y ≈ 925 the limit cycle LC2 is destabilized but the fixed point is not. The two

arrowed lines in Figure 3.8 do not represent solutions to the equations, but simply

indicate which attractor a destabilized state will seek.

The parameter values used in Figure 3.8 correspond to g = 4.47, κ = .05, γ‖ =

2,∆ = 2,Θ = −2.75, and a saturation photon number n0 = 0.025. The small size

of n0 indicates that the qualitative behavior of steady-state solutions to the master

equation will be dominated by quantum fluctuations (over the dynamics implied by

the mean field equations.) We see that this interpretation is justified by the plot of

Q(α) in Figure 3.9, at a drive field y = 1000, near the amplitude maximum of LC2.
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as in Figure 3.4. Lowest plot: y = 1000, below the bifurcation point; middle plot:
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The features in the surface plot (Figure 3.9a) are hardly profound. The contour plot

in Figure 3.9b is somewhat more elucidating, and shows signs of the coexistence of

oscillatory, albeit asymmetric, and fixed coherent states. These ‘blurry’ results are

not surprising, as the small n0, and relation 3.13, imply that, in the quantum case, the

structure implied by the limit cycle and fixed points in Figure 3.8 should be heavily

affected by fluctuations.

Figure 3.10 suggests, however, that the field localization provided by continuous

homodyne measurement of the phase quadrature can reveal signatures of bistability

in the photocurrent. In particular, in Figure 3.10b we plot a typical trajectory for

a drive field y = 1000, as in Figure 3.9. While the contrast is marginal, as it would

have to be given the discussion above, the qualitative appearance of this simulated

photocurrent record is that of oscillations interrupted by brief periods of stationary
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Figure 3.8: Semiclassical calculation of the intracavity steady-state field magnitude
|xss| versus drive field y. The parameter values are: C = 200, k = .05, γ = 2, θ =
−55, and Λ = 2. The upper dashed-dotted curve (LC2) represents the steady-state
oscillation maximum (steady-state magnitude plus mean value) associated with the
limit cycle formed when the fixed point becomes unstable due to a Hopf bifurcation.
The critical point CP3 is supercritical, whereas the point CP4 is subcritical. Note the
coexistence of a stable fixed point and limit cycle in the range 475 . y . 925. The
lower dashed curve is unstable.

noise (which one could attribute to transient localization on the fixed point). Such

intermittency can also be seen in Figure 3.10c, which corresponds to a drive field,

y = 1400, well past the semiclassical region of multi-stability.
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Figure 3.10: Homodyne photocurrent from quantum trajectory simulations with
parameter values in Figure 3.8. (a) drive field y = 500, near the subcritical bifurcation
point; (b) for drive field y = 1000, near the oscillation amplitude maximum; (c) for
drive field y = 1400, beyond the region of semiclassical bistability.
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