
Throughput Optimization of Quasi Delay

Insensitive Circuits via Slack Matching

Thesis by

Piyush Prakash

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Submitted December 2007)

ii

c© 2008

Piyush Prakash

All Rights Reserved

iii

To my parents Dr. Shiv and Mrs. Neelam Prakash.

iv

Acknowledgements

I would like to begin by thanking my advisor, Prof. Alain J. Martin for his patience,

guidance and encouragement over the past years. He introduced me to the very

interesting field of designing circuits without clocks. His search for simple and elegant

solutions will be a guiding force in my continued learning.

I would also like to thank Prof. André DeHon for teaching me a very interesting

class in electronic design automation, and for his detailed feedback on early drafts of

my thesis. I thank the other members of my committee, Prof. K. Mani Chandy and

Prof. Chris Umans for their constructive feedback on my thesis.

Another very important part of my life as a graduate student has been the other

members of the Asynchronous VLSI research group at Caltech. I would like to thank

Mika Nyström, Paul Pénzes, Catherine Wong, Karl Papadantonakis, Wonjin Jang,

Jonathan Dama, Weiwei Yang, Chris Moore and Sean Keller. In particular I would

like to thank them for listening, commenting and debating the research presented here

at our Friday morning group meetings. I would also like to thank the departmental

assistants Jeri Chittum, Betta Dawson and Diane Goodfellow for helping me navigate

through the adminstrative parts of life as a graduate student.

My life as a graduate student has been enriched by some close friendships I have

formed at Caltech. I would like to thank Matthew Mattson, Frosso Seitaridou and

Scott Miserendino for their friendship over the years. They have been instrumental in

keeping me sane over the years, making sure that I took breaks from work, encouraging

me when I was down and being great friends. I thank Richard Korn for helping me

keep sane by reminding me to exercise and encouraging me to train for and run in a

marathon and half marathon. The training runs were a great way to clear my mind.

v

It was on these runs that some of the ideas in this thesis were formed. I would also like

to thank my brother Punit Prakash, for listening to me when I was down, providing

encouragement and an outside perspective.

Lastly, I would like to thank my parents Dr. Shiv and Mrs. Neelam Prakash for

their constant support, encouragement of and commitment to my education. Words

cannot convey the immense depth of my gratitude to them. I dedicate this thesis to

them.

vi

Abstract

Though the logical correctness of an asynchronous circuit is independent of imple-

mentation delays, the cycle time of an asynchronous circuit is of great importance

to the designer. Oftentimes, the insertion of buffers to such circuits reduces the cy-

cle time of the circuit without affecting the logical correctness of the circuit. This

optimization is called slack matching. In this thesis the slack matching problem is

formulated. I show that this problem is NP-complete via a reduction from subset

sum. I describe two methods for expressing slack matching as a mixed integer linear

program(MILP). The first method is applicable to any QDI circuit, while the second

method produces a smaller MILP for circuits comprised solely of half buffers. These

two formulations of slack matching were applied to the design of a fetch loop in an

asynchronous micro-controller. Slack matching reduced the cycle time of the circuit

by a factor of 3. For a circuit composed of 14 byte wide processes and a 8k instruction

memory, 30s were required to generate the first MILP. It was solved in 2s. When the

memory is modeled as a pipeline of half buffers, the second MILP could be formulated

in 0.1s and solved in 0.6s. This MILP had half the number of integer variables as the

first formulation.

vii

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Motivating Example . 2

1.2 Background . 4

1.3 Problem Definition . 6

1.4 Another Example . 8

1.5 Prior Work . 15

1.6 Contributions . 15

1.7 Outline . 16

2 Event-Rule Systems 17

2.1 General ER Systems . 17

2.2 Repetitive ER Systems . 18

2.2.1 Verifying the Cycle Period of a Repetitive ER System 22

2.3 Pseudo-Repetitive ER Systems . 24

2.4 Constructing a Repetitive ER System 25

2.4.1 HSE . 25

2.4.2 PRS . 31

2.4.3 Disjunctive Circuits . 31

2.4.3.1 Disjunctive HSE . 31

2.4.3.2 Disjunctive PRS . 32

viii

3 Slack Matching Circuits of Half Buffers 34

3.1 ER Systems of Half Buffers . 35

3.1.1 Classification of Paths in a Buffer’s Collapsed Constraint Graph 35

3.1.2 Assumptions About Processes in a Circuit 37

3.1.3 Critical Cycles in the Collapsed Constraint Graph of Circuits

of Half Buffers . 44

3.1.3.1 Cycles in Collapsed Constraint Graphs 44

3.1.3.2 Critical Delay of F ,B and L Paths 45

3.1.3.3 Critical Delay of Cycles in a Circuit with No Initial

Communications . 51

3.1.3.4 Critical Delay of Cycles in a Collapsed Constraint Graph 53

3.2 Process Graphs and Cycle Time . 54

3.2.1 Process Graphs . 54

3.2.2 Correspondence Between Cycles in Process Graphs and Col-

lapsed Constraint Graphs . 55

3.2.3 Sufficient Conditions for Slack Matching 56

3.2.4 Necessary Conditions for Slack Matching 67

3.3 Slack Matching a QDI circuit . 68

3.3.1 Pipelines of LR-buffers . 69

3.3.2 MILP for Slack Matching . 69

3.3.3 Generating the MILP . 71

3.3.4 Multiple Scenarios . 71

3.4 Results . 72

3.4.1 Example I: Lutonium Fetch Loop 72

3.4.2 Example II: Control Loop of MiniMIPS 74

3.5 Conclusions and Future Work . 75

4 Slack Matching is NP-Complete 76

4.1 Slack Matching Decision Problem . 76

4.2 NP Completeness of SMDP . 77

ix

4.2.1 Outline . 77

4.2.2 Class of Circuits Used in the Reduction 78

4.2.3 Sum Checkers . 78

4.2.3.1 Pipelines of LR-buffers 79

4.2.3.2 J-limiters . 79

4.2.3.3 Sum Checkers . 87

4.2.4 SMDP is NP-Hard . 90

4.2.5 SMDP is NP-Complete . 94

4.3 Conclusions . 95

5 Slack Matching General QDI circuits 96

5.1 Pipelines of 1 or More LR Buffers . 97

5.1.1 Critical Delays of Φ, B, Λ and P Paths in a Pipeline of Slack

Matching Buffers . 98

5.1.2 Critical Delays of Cycles in a Pipeline of Slack Matching Buffers 110

5.2 Pipelines of 0 or More LR Buffers . 111

5.3 A MILP Formulation of Slack Matching 115

5.3.1 Multiple Scenarios . 116

5.4 Results . 117

5.5 Summary . 118

6 Slack Matching in Practice 119

6.1 Slack Matching by Hand . 119

6.1.1 Common Case of Slack Matching 122

6.1.1.1 Rings of Processes 124

6.1.1.2 Fork and Join Paths 125

6.2 Slack Matching Circuits of Half Buffers 129

6.3 Slack Matching General QDI Circuits 129

7 Related Problems 134

7.1 Clustering for Eτ 2 . 134

x

7.1.1 Circuit Templates . 136

7.1.2 Problem Definition . 137

7.1.3 Simulated Annealing . 138

7.1.3.1 Cost Function . 139

7.1.3.2 Initial Solution and Cost 140

7.1.3.3 Moves . 140

7.2 Bundled Data Circuits . 142

7.3 Synchronous Circuits . 143

8 Conclusion and Future Work 145

8.1 Summary . 145

8.2 Future Work . 146

A Notation 148

A.1 CHP . 148

A.2 Handshaking Expansion(HSE) . 148

A.3 Production rule sets . 149

Bibliography 150

xi

List of Figures

1.1 Two processes with a channel between them. 2

1.2 Ring of processes. 3

1.3 Dependences of four phase handshake. 9

1.4 Dependences of a PCHB. 10

1.5 Circuit whose cycle time exceeds that of each individual process. . . . 10

1.6 Pair of processes with channel between them. 11

1.7 Pair of processes with a LR-buffer between them. 12

1.8 Adding a buffer reduces cycle time. 14

1.9 Relationship between cycle time of a ring of half buffers and the number

of half buffers on the ring. 14

2.1 Ring Oscillator . 19

2.2 Critical paths. 24

2.3 Collapsed constraint graph of PCHB. 29

3.1 Paths in a buffer’s collapsed constraint graph. 37

3.2 Collapsed constraint graph of a PCHB 40

3.3 Collapsed constraint graph of a ring of buffers satisfying assumptions 3.1–

3.5. 43

3.4 Collapsed constraint graph of a ring of buffers with critical delays at 14. 43

3.5 Collapsed constraint graph of a ring. 57

3.6 Process graph of a ring. 57

3.7 Collapsed constraint graph of a ring with only ti,j↑↑(p) paths for each

process p. 57

xii

3.8 Lutonium fetch loop . 73

3.9 Control Loop in the MiniMIPS fetch 74

4.1 Sum Checker . 77

4.2 J-limiter . 80

4.3 Constraint graph of J-limiter . 81

4.4 Circuit used in reduction from subset sum to SMDP 87

6.1 Forward latency cycle in a ring of buffers. 123

6.2 Backward latency cycle in a ring of buffers. 123

6.3 Cycle with direction change. 123

6.4 Example of a cycle with direction change. 128

7.1 QDI process template . 136

7.2 Example of Reconvergent Fanout . 143

1

Chapter 1

Introduction

Asynchronous circuits use local handshakes instead of a global clock for synchroniza-

tion. Many asynchronous circuits are designed as collections of processes that share

information only via message passing. The cycle time of a circuit is the mean time

between successive occurrences of the same transition in the circuit. It has been ob-

served that the insertion of additional processes that act as buffers can greatly reduce

a circuits’ cycle time [26, 12]. Slack matching is the process of inserting additional

processes in order to reduce its cycle time.

In this thesis, two methods of formulating the slack matching problem as a mixed

integer linear program(MILP) are presented. The first MILP is applicable only to half

buffers. The second MILP, is applicable to a more general class of circuits. However,

the second MILP requires more integer variables. During the design of the Luto-

nium [19] micro-controller, certain decisions were influenced by the anticipated need

for slack matching buffers on certain channels. That is, the designer expected slack

matching buffers to be inserted on certain channels. Therefore, rather than attempt-

ing to fit certain computations in one process, the computation was distributed over

two or more processes. Even for such a circuit, slack matching reduced the cycle time

by a factor of 3.

This Chapter is organized as follows. First, a simple example to motivate the

slack matching problem is described in Section 1.1. Second, in Section 1.2 some

background information about asynchronous circuits is provided. Next, the slack

matching problem is defined in Section 1.3. In Section 1.4 a more detailed example of

2

the slack matching problem is described. The prior work on this problem is described

in Section 1.5. The contributions of this thesis are summarized in Section 1.6. Finally

in Section 1.7, an outline of the remainder of this thesis is provided.

1.1 Motivating Example

In this section, an example to motivate the need for slack matching is described. This

section begins with a description of the properties of two processes with a channel

between them. Next, lower bounds on the cycle time of a circuit are computed. It

is shown how these lower bounds change when an additional process is added to the

circuit.

Recall that instead of a global clock, asynchronous circuits use a local handshake

for synchronization. Consider two processes, P and Q, with a communication chan-

nel from P to Q, that is the channel permits P to send data to Q. There is a set

of variables assigned to by P that encode the data to be sent on the channel. Sim-

ilarly, there is a variable assigned to exclusively by Q, that acknowledges the data.

This variable signals to P that Q has observed that data and that the data may be

changed. The communication actions are blocking, that is P cannot begin the next

communication on this channel until it has received an acknowledgment from Q.

rd

ra

ld

la

ld

la

rd

ra

QP DATA

ACK

Figure 1.1: Two processes with a channel between them.

Consider a ring of processes, each having one input channel and one output chan-

nel. Let each process on this ring repeatedly wait for one message on its input channel.

When a message arrives, the process produces a message on its output and acknowl-

edges a message on its input. The next message on the input channel cannot arrive

until this acknowledgment has been produced. Similarly, the process cannot send a

subsequent message on its output channel until the previous message sent has been

acknowledged. Figure 1.2 shows an example of such a ring. Let one process on this

3

Figure 1.2: Ring of processes.

ring begin by sending a message on its output channel. Let all other processes begin

by receiving a message and forwarding the message on their output channels. There

is said to be one message on this ring. Let f , be the delay of each process between

receiving a message on its input and sending a message on its output. One lower

bound on the cycle time, τ , of a ring with N processes and m messages is:

τ ≥ τf =
Nf

m
.

Since each process is of finite size, it can contain only a finite number of messages.

Thus, each process can acknowledge only a finite number of messages on its input

channel before having to wait for an acknowledgment on its input channel. For some

processes, a pipeline of N processes can contain at most N
2

messages. Thus, two

such processes are required to contain one message. Let the processes be such that

a ring of N processes can contain at most N
2

messages. The number of additional

messages the ring can contain, called the number of holes, is given by N
2
−m if the ring

contains m messages initially. Let b be the delay between each process receiving an

acknowledgment on its output channel and the processes sending an acknowledgment

on its input channel. Another lower bound on the cycle time, τ , of a ring with N

processes and h holes is:

τ ≥ τb =
Nb

h
.

If the processes are all half buffers, h = N
2
−m, thus a lower bound on the cycle is:

τ ≥ τb =
Nb

N
2
−m

.

4

Furthermore, the cycle must be at least as large as the time it takes for each

process to receive on its input channel, send on its output channel and return to the

state where it is ready to receive on its input channel. This is called the internal cycle

time of the process.

Thus, for a ring of processes that have identical internal cycle time, τi, the cycle

time, τ , of the ring is given by

τ ≥ max{τi, τb, τf},

where τb is the lower bound on the cycle time imposed by the movement of holes

through the ring, and τf is the lower bound imposed by the movement of messages.

Consider a ring of 3 processes, each with f = 2 and b = 5. Let the internal cycle

time of each process be 14. Let there be one message on the ring. Such a ring is

shown in Figure 1.5. The lower bounds on the cycle time of the ring are τi = 14,

τf = 3∗2
1

= 6 and τb = 3∗5
3
2
−1

= 30. Thus the cycle time of the ring is 30.

Consider adding a process to the ring, with f = 2, b = 5, and internal cycle time

14. The lower bounds on the cycle time of the ring are now τi = 14, τf = 4∗2
1

= 8 and

τb = 4∗5
4
2
−1

= 20. Thus, the cycle time of the ring is 20.

It is easily seen that adding further processes, until there are 7 processes, on the

ring reduces the cycle time to 14. At this point, adding an additional process will

increase the cycle time 16. Table 1.1 shows how the cycle time of such a ring changes

with the number of processes on the ring.

1.2 Background

Traditionally, VLSI circuits are designed using a single global clock to synchronize

various circuit components. Circuits designed without a global clock are said to be

asynchronous. The class of circuits that do not make any timing assumptions has been

shown to be limited [16]. In particular, such circuits are not Turing-complete. There

are many classes of asynchronous circuits that make different timing assumptions. Of

5

Number of Processes τf τb τ
3 6 30 30
4 8 20 30
5 10 162

3
162

3

6 12 15 15
7 14 14 14
8 16 131

3
16

9 18 126
7

18
10 20 121

2
18

Table 1.1: Change in cycle time of ring with the number of processes on the ring.

these, the class of quasi delay-insensitive(QDI) circuits makes the most conservative

timing assumption. These circuits have been shown to be Turing-complete [13]. Such

circuits are insensitive to the delays of all gates and most wires (the only timing

assumption is the isochronic fork [15] on some wires). QDI circuits are designed as

a collection of processes that share information via message passing. The processes

do not share any variables except those used to implement communication channels.

Communication channels are implemented using delay insensitive handshake proto-

cols such as the four phase handshake [17].

The four phase handshake protocol is now described. Each communication chan-

nel is implemented as a set of wires. The communication channels are unidirectional.

A subset of the wires that implement the channel can be assigned to by the sending

end of the channel. The receiving end of the channel can only read values on these

wires. Similarly, the receiving end of the channel can only assign values to the re-

maining wires. The sending end can only read the values on these wires. All wires are

initialized to a neutral state. The sender begins by changing the values of its output

wires to encode a valid data value. The receiver waits for a valid value on its input

wires. When it detects a valid value, it changes its output wires to a valid value. The

sender waits for this acknowledgment from the receiver, and then resets its outputs to

a neutral value. When the receiver observes the neutral value, it resets its outputs to

the neutral state. The communication actions on each channel are blocking, that is a

process cannot begin the next communication on the same channel until the previous

6

handshake is complete.

The cycle time of a circuit is the mean time between successive occurrences of a

particular transition in the circuit. This is a measure of the average rate at which

the circuit can process data. Whilst the logical correctness of a QDI circuit is inde-

pendent of all implementation delays (except at isochronic forks), it is often desirable

to minimize the cycle time of a QDI circuit. Oftentimes, the cycle time of a circuit

can be much greater than that of the process with the largest cycle time. It has

been observed that insertion of additional processes, that act as buffers, on certain

channels can greatly reduce a circuit’s cycle time [26, 12], as illustrated in Section 1.1

1.3 Problem Definition

In this section, the slack matching problem is defined. The section begins with the

definition of a QDI circuit. Next, buffers are defined and finally, slack matching is

defined.

A QDI circuit is a pair of a set of processes, P , and a set of channels between

processes, X ⊆ P × P. The interface between a process and a channel is called a

port. Each process can be described in three ways:

• as a CHP program [17](see appendix A.1 for a brief description of CHP),

• as a handshaking expansion (HSE) [17](see appendix A.2 for a brief description

of HSE),

• as a production rule set(PRS) [17](see appendix A.3 for a brief description of

PRS).

An LR-buffer is a process with the CHP *[L?;R!]. A circuit is said to be slack

elastic if and only if an arbitrary number of LR-buffers can be inserted on any com-

munication channel in the circuit without affecting its logical correctness [14].

Before defining a slack matching buffer, the concept of a buffer is defined. A buffer

is a process, that after a set of initial actions, repeatedly performs communication

7

actions on a set of ports, called input ports, before performing communication actions

on its remaining ports, called output ports. A buffer may manipulate the data received

on its input ports before forwarding it on its output ports.

Definition 1.1 (Buffer). A buffer is a process in a slack elastic circuit that can be

written in CHP as

Pinit ; *[Ploop]

where both Pinit and Ploop are terminating programs and there is at most one commu-

nication on each port in any execution of either Pinit or Ploop. Furthermore, for the

process to be a buffer, it must be possible to partition its ports into two sets, I and

O, satisfying the following conditions.

• Pinit contains only assignments or communications on ports in O.

• In any trace of Ploop all communications on ports in I precede all communica-

tions on ports in O. I is said to be the set of input ports of the process and O

the set of output ports.

• An input port of a process can only be connected to an output port of another

process.

Slack matching is an optimization applied to a QDI circuit that reduces the cir-

cuit’s cycle time below a specified target, via the insertion of LR-buffers on certain

channels in the circuit, whilst minimizing a specified cost function. Slack matching

can only be performed on circuits that are slack elastic. Formally, the slack matching

problem can be stated as follows.

Definition 1.2 (Slack Matching Optimization Problem(SMOP)). Let (P ,X) be a

slack elastic QDI circuit, τ0 ∈ R+ be a target cycle time, and S be the LR-buffer that

is to be inserted on a subset of the circuit’s channels in order to ensure the cycle time

of the resulting circuit is at most τ0. Furthermore, let C : X 7→ [0,∞) be a function

that maps each channel to the cost of inserting an additional buffer on this channel.

Determine whether there exists a mapping N : X 7→ N such that the circuit obtained

8

by inserting N(xi) instances of S on each channel xi ∈ X has cycle time at most τ0.

If such a mapping exists, determine a mapping such that the total cost of the inserted

buffers,
∑

xi∈X
N(xi)C(xi), is minimized.

1.4 Another Example

Before continuing further, I explain informally why the need for slack matching arises.

In order to do so, the notion of static slack is introduced. The example presented at

the beginning of this chapter is analyzed in more detail in this section.

A pipeline of LR-buffers is a sequence of LR-buffers such that the L port of the

(i + 1)th buffer is connected to the R port of the ith buffer. The L port of the first

process is said to be the input port of the pipeline. Similarly, the R port of the last

process is said to be the output port of a pipeline. The static slack of a pipeline of

LR-buffers is the maximum number of communications that can be completed on the

input port with none being performed on the output port. If a pipeline of n identical

LR-buffers has static slack n
2
, each buffer has static slack 1

2
. A buffer is called a

half buffer if projecting the buffer onto any pair of input and output ports results

in an LR-buffer with static slack 1
2

(projection is a technique used in the analysis

on concurrent systems whereby the behavior of a process is analyzed in terms of its

actions on a subset of its variables and channels). If the resulting LR-buffer has static

slack 1, the buffer is a full buffer.

Let there be a communication channel, implemented via a delay insensitive hand-

shake protocol, in a QDI circuit between processes Q and R. There must be a set of

one or more variables, assigned to exclusively by Q, that are used to signal that Q

has started a handshake. Similarly, there is a set of one or more variables assigned to

exclusively by R that signal that R has started the handshake. Thus in any execution

of the circuit where the communication channel is used, Q must signal the start of a

handshake. R must wait for this signal from Q before proceeding to acknowledge Q

by changing the value of one of its handshake variables.

Recall that a circuit has finite size, however most circuits can have infinitely long

9

executions. Thus, a finite set of assignments must occur repeatedly in an execution of

the circuit. Graphically, the dependences between the occurrences of these assignment

can be represented as follows. Each assignment to a variable is represented by a

vertex of the graph. Let a directed edge (u, v) between two assignments denote that

assignment v cannot occur until the preceding assignment u has occurred. Figure 1.3

shows these dependencies for a pair of processes Q and R that communicate via the

four phase handshake protocol on two wires.

li↑

lo↓

li↓

lo↑

ro↓

ro↑

ri↓

ri↑

R Q

Figure 1.3: Dependences of four phase handshake.

Each process in a circuit has finite size and therefore must have finite static slack.

Thus, there must be some dependences between the variables that implement input

and output channels of a circuit. Figure 1.4 shows the dependences for a commonly

used buffer, the precharged half buffer(PCHB).

For a circuit to be deadlock free, after initialization, at least one assignment must

be able to execute without waiting for any other assignments. For an edge (u, v), if the

first occurrence of assignment v can execute without waiting for the first occurrence

of assignment u, the edge is marked with a solid rectangle. In a physical realization

of a circuit, assignments are not instantaneous. Each edge, (u, v), is labeled with a

delay, δ, such that assignment v can occur only δ time units after u. Summing the

delays along a cycle in the graph and dividing by the number of edges (u, v) on the

cycle marked with a solid rectangle provides a lower bound on the circuit’s cycle time.

This analysis of a circuit’s cycle time is formalized in Chapter 2.

Figure 1.5 shows an example of a circuit where the cycle time of all cycles entirely

within a process, and the cycle time of cycles between adjacent processes are at most

10

li↑

lo↓

li↓

lo↑

ro↑

ri↓

ro↓

ri↑

Figure 1.4: Dependences of a PCHB.

14. However, when the processes are connected together as shown, the cycle time of

the highlighted cycle is 30. Edges in the figure not marked with a number have delay

0.

3 5

42

3

4

2

4

2
35

3

2

4 2

2

4
5

3

2

2
4

3
2

Q S R

Figure 1.5: Circuit whose cycle time exceeds that of each individual process.

In this example, each of the processes Q, S and R is an LR-buffer. All processes

repeatedly alternate between a communication on the input port and a communica-

tion on the output port. Process S begins with a communication on its output port.

Process Q and R begin with a communication on their input ports. The graph of

11

processes Q and R differ slightly since R needs to be initialized differently from Q

because S begins with a communication on its output port. All communications are

implemented using a four phase handshake protocol on two wires. In Figure 1.5, the

input port of each process is on its left side and its output ports on the right side.

The processes Q, S and R are connected in a ring. The ring contains one message

since only process S can communicate on its output port before a communication on

its input port. A message moves around this ring from an input port of a process to

an output port of the process. Each process has finite static slack. The number of

holes in the ring is the difference between the static slack and the number of messages

in the ring. A message can only move into a process if the number of messages it

contains is less than its static slack, that is the process is able to accept a message.

Holes move from an output port of a process to the input port of a process, in the

opposite direction to messages. The cycle time of the ring is determined not only by

the movement of messages along the ring, but also the movement of holes along the

ring. Note that the circuit in Figure 1.5 is limited by the movement of holes along

the ring since the highlighted cycle enters each process on an output port and exits

on an input port.

Consider a pair of processes, R and Q, with a channel between them, as shown

in Figure 1.6. The assignments R.ro↑, R.ri↑, R.ro↓ and R.ri↓ obey a four phase

li↑

lo↓

li↓

lo↑

ro↓

ro↑

ri↓

ri↑

R Q

Figure 1.6: Pair of processes with channel between them.

handshake protocol and occur in the sequence

R.ro↑;R.ri↓;R.ro↓;R.ri↑;

12

Similarly, the assignments Q .li↑, Q .lo↑, Q .li↓ and Q .lo↓ obey a four handshake

protocol and occur in the sequence

Q .li↑;Q .lo↓;Q .li↓;Q .lo↑;

When there is no buffer between the two processes, the only possible interleaving of

these assignments is

Q .lo↓;R.ri↓;R.ro↓;Q .li↓;Q .lo↑;R.ri↑;R.ro↑;Q .li↑;

Inserting a buffer between the processes Q and R, permits other interleavings of the

sets of assignments {R.ro↑,R.ri↑,R.ro↓,R.ri↓} and {Q .li↑,Q .lo↑,Q .li↓,Q .lo↓}. An

example of such an interleaving is:

B .lo↓;R.ri↓;R.ro↓;B .li↓;Q .lo↓;B .ri↓;B .ro↓;

B .lo↑;R.ri↑;R.ro↑;B .li↑;Q .li↓;Q .lo↑;B .ri↑;B .ro↑;Q .li↑;

Note that the first R.ro↓ occurs before the first Q .lo↓. In fact, the ith occurrence of

R.ro↓ only waits for the (i−1)th occurrence of Q .lo↓. This allows, R to proceed with-

out waiting for Q to complete the handshake, the buffer decouples the handshakes of Q

and R. Figure 1.7 shows the same circuit with a half buffer inserted between the pro-

ro↓

ro↑

ri↓

ri↑

R

li↓

li↑ ro↑

ro↓

lo↓

lo↑

ri↓

ri↑

li↑

lo↓

li↓

lo↑

QB

Figure 1.7: Pair of processes with a LR-buffer between them.

cesses R and Q. Inserting the buffer, B, increases the set of possible interleavings of

the sets of assignments {R.ro↑,R.ri↑,R.ro↓,R.ri↓} and {Q .li↑,Q .lo↑,Q .li↓,Q .lo↓}.

The assignments in this circuit can be interleaved in any manner such that:

• the sets of assignments {R.ro↑,R.ri↑,R.ro↓,R.ri↓} and {B .li↑,B .lo↑,B .li↓,B .lo↓}

have the following interleaving

B .lo↓;R.ri↓;R.ro↓;B .li↓;B .lo↑;R.ri↑;R.ro↑;B .li↑; . . . ,

13

and

• the sets of assignments {Q .li↑,Q .lo↑,Q .li↓,Q .lo↓} and {B .ro↑,B .ri↑,B .ro↓,B .ri↓}

have the following interleaving

Q .lo↓;B .ri↓;B .ro↓;Q .li↓;Q .lo↑;B .ri↑;B .ro↑;Q .li↑; . . . ,

and

• the sets of assignments {B .li↑,B .lo↑,B .li↓,B .lo↓} and {B .ro↑,B .ri↑,B .ro↓,B .ri↓}

are interleaved in the manner specified by the graph of B.

Note that inserting B, replaces a set of edges(that each have delay zero and are not

marked with solid rectangles) by a set of new vertices and edges. The new graph has

paths between vertices that did not exist prior to the insertion of B. These paths have

non-zero delay. Furthermore, some of these paths are marked with solid rectangles.

This changes the set of cycles in the circuit’s graph. Informally, the buffer allows

R and Q to proceed further along in their executions before having to wait on each

other. Consider the ring shown in Figure 1.5. Recall that a message cannot move

from the input of process R to the output of R unless there is a hole that can move

from the output of R to the input of R. The buffers inserted by slack matching are

simple LR-buffers that do not start with an initial communication. Thus, inserting

a buffer on a ring of processes increases the number of holes on the ring, without

changing the number of messages. Inserting a buffer on a ring of processes increases

the total delay of a hole moving around the ring. However, this delay is such that

the average rate at which holes move around the ring is increased.

Figure 1.8 shows the circuit from Figure 1.5 with a buffer inserted on the channel

between processes R and Q. The buffer, B, is exactly like the process Q. Adding

the buffer reduces the cycle time to 20. The cycle with the largest cycle time is

highlighted in the figure.

Figure 1.9 shows how the cycle time of this circuit changes if additional buffers

are introduced on the channel between R and Q. The logical correctness of a slack

14

3 5

42

3

4

2

4

2
35

2

3

4

2

4

2
35

3

2

4 2

2

4
5

3

2

2
4

3
2

B Q S R

Figure 1.8: Adding a buffer reduces cycle time.

elastic circuit is guaranteed only when additional buffers are introduced. Removing

buffers may introduce deadlock [14]. Thus slack matching is restricted to only adding

buffers to a circuit. The graph in Figure 1.9 shows that it is not always possible to

reduce a system’s cycle time via slack matching. When the cycle time of the ring

Cycle Time of a Ring of Buffers vs. Number of Buffers

16

18

20

22

24

26

28

30

0 2 4 6 8 10 12 14 16

C
y
cl

e
T

im
e

Number of Buffers

14

Figure 1.9: Relationship between cycle time of a ring of half buffers and the number
of half buffers on the ring.

is limited by the number of holes in the ring, adding buffers(and thus holes) to the

ring reduces its cycle time. At some point, adding more buffers to the ring limits the

speed at which a message can travel around the ring. In this case, adding additional

buffers increases the cycle time of the ring since the additional buffers only slow down

the progress of messages around the ring.

15

1.5 Prior Work

Wong [27] describes a method for slack matching circuits comprised of processes

that conform to the precharged half buffer (PCHB) circuit template [12]. When all

processes in a circuit can be characterized by identical values of parameters in Wong’s

model, she formulates in polynomial time a mixed integer linear program(MILP) that

is equivalent to the slack matching problem. However, when the parameters of each

process in Wong’s model differ, she formulates an equivalent MILP in time exponential

in the number of processes. Beerel et al. [2] describe a method for slack matching

circuits that are comprised of full buffers. However, their model cannot be extended

to half buffers. Penzes [22] describes an execution model for QDI circuits described as

PRS and for specific circuits formulates a MILP that is equivalent to slack matching.

However he does not explain how to do this in general. Slack matching has often

been compared to the retiming problem for synchronous circuits. Leiserson et al. [11]

describe an efficient algorithm for retiming. Retiming is the analogous problem to

slack matching for synchronous circuits. This problem can be solved in polynomial

time. A detailed comparison between retiming and slack matching is provided in

Section 7.3.

1.6 Contributions

The primary contribution of this thesis is a general method for slack matching slack

elastic QDI circuits. It is shown how any slack elastic circuit that can be written as

a stable and non-interfering PRS with stable disjuncts can be slack matched using

this method provided that all communication channels are implemented using a four

phase handshake. The only restrictions placed are on the class of LR-buffers used to

slack match the circuit. This method is applicable to circuits that implement com-

munication channel using other handshake protocols as well. The specific examples

of the construction of a MILP equivalent to slack matching described by Penzes [22]

are special cases of the general method in this thesis. For circuits composed entirely

16

of half buffers, a MILP that is a generalization of the one described by Wong [27] is

derived. This MILP for slack matching is applicable to circuits composed of a larger

class of half buffers than described by Wong. In particular, the processes need not

be PCHBs. It is shown how this MILP can be generated in polynomial time even

when the parameters of each half buffer in the circuit differ. This formulation of

slack matching as a MILP, for circuit comprised of half buffers, is analogous to the

formulation for full buffers described by Beerel et al. [2].

A second contribution of this thesis is an analysis of the NP-completeness of slack

matching. It has been conjectured [9] that slack matching is NP-complete, however

there is no proof of this in the literature. It is proven that slack matching is NP-

complete via a reduction from subset sum.

1.7 Outline

In Chapter 2, I describe Event-Rule(ER) system [3]. In the remainder of the thesis, I

use ER systems to determine the cycle time of a QDI circuit. In Chapter 3, I derive a

MILP equivalent to slack matching for a specified class of half buffers. In Chapter 4

I show that slack matching circuits comprised of such half buffers is an NP-complete

problem. In Chapter 5, I derive a MILP that is equivalent to slack matching for

any slack elastic QDI circuit that does not have unstable disjuncts, provided that

the buffer used for slack matching satisfies the specified conditions. In Chapter 6,

practical issues in slack matching circuits are discussed. It is also explained how

slack matching may be performed by hand. In Chapter 7, the relationship between

slack matching and similar problems in circuit design are described. I conclude in

Chapter 8 with a summary of the results and directions for future work.

17

Chapter 2

Event-Rule Systems

Event-Rule(ER) systems can be used to simulate QDI circuits [3, Chapter 2]. In

the remainder of this thesis, the cycle time of QDI circuits is determined using ER

systems. In this chapter, some definitions and properties of ER systems are stated.

The majority of results about ER systems in this chapter are due to Burns [3], and

are stated without proof. The only new notions introduced in the chapter are critical

delay, critical path and critical cycle.

First, (general) ER systems, whose size may be unbounded, are defined. Since

most circuits are designed to operate indefinitely, their ER system has unbounded size.

However, since circuits are of finite size, they must repeatedly perform a specified set

of actions. Repetitive ER systems are defined in Section 2.2. Repetitive ER systems

are unable to simulate circuits that perform an initial set of actions before repeatedly

performing a specified set of actions. In Section 2.3, pseudo-repetitive ER systems

are defined. Pseudo-repetitive ER systems can simulate the behavior of such circuits.

Finally, Section 2.4 describes how the repetitive ER system for a specified class of

processes can be generated.

2.1 General ER Systems

Definition 2.1 (Event-Rule System). An event-rule(ER) system is a pair 〈E, R〉

where:

• E is a set of events, and

18

• R is a set of rules defining timing constraints between events. Each rule, r ∈ R

is written e
δ→ f , where

– e ∈ E is the source of r,

– f ∈ E is the target of r, and

– δ ∈ [0,∞) the delay of r.

Neither E nor R need be finite, however, every event must be the target of a finite

number of rules.

Intuitively, each rule e
δ→ f specifies the timing constraint that event f can only

occur δ time units after event e. If there are multiple rules with the same target, f ,

f can only occur if the timing constraint imposed by all such rules is satisfied. The

following definition of timing function formally captures this notion.

Definition 2.2 (Timing Function). A timing function, t, of an ER system, 〈E, R〉

is any function t : E 7→ [0,∞) such that t(f) ≥ t(e) + δ for each e
δ→ f ∈ R.

An ER system can have many timing functions. Since hardware is eager, that is

an event will occur as soon as it can occur, the timing function of most interest is

one that lets each event occur as early as possible.

Definition 2.3 (Timing Simulation). A timing simulation, t̂, of an ER system,〈E, R〉,

is the timing function such that for any other timing function t of the ER system,

t̂(e) ≤ t(e)∀e ∈ E.

2.2 Repetitive ER Systems

Many ER systems of unbounded size can be generated from bounded structures.

In particular, for many systems there is a finite set of transitions, E ′, that occurs

repeatedly. Repetitive ER systems can be used to analyze such systems.

Definition 2.4 (Repetitive ER System). A repetitive ER system is a pair 〈E ′, R′〉

such that

19

• E ′ is a finite set of transitions, and

• R′ is a finite set of repeated rules. Each repeated rule, r′ ∈ R′ is written

〈u, i− o〉 δ→ 〈v, i〉 where:

– u is the source transition of r′,

– v is the target transition of r′,

– δ is the delay of r′

– o is the occurrence index offset of r′, and

– i is the occurrence index of the event v.

Example 2.1. Consider the ring oscillator shown in Figure 2.1. Initially let y =

y

x

z

Figure 2.1: Ring Oscillator

true and x = z = false.

Its repetitive ER system is:

E ′ = {x↑, x↓, y↑, y↓, z↑, z↓}

R′ ={〈z↓, i− 1〉 δx↑→ 〈x↑, i〉,

〈x↑, i− 0〉 δy↓→ 〈y↓, i〉,

〈y↓, i− 0〉 δz↑→ 〈z↑, i〉,

〈z↑, i− 0〉 δx↓→ 〈x↓, i〉,

〈x↓, i− 0〉 δy↑→ 〈y↑, i〉,

〈y↑, i− 0〉 δz↓→ 〈z↓, i〉}

The general ER system, 〈E, R〉, corresponding to a repetitive ER system 〈E ′, R′〉

can be constructed as follows.

E = E ′ × N

20

An event 〈u, i〉 ∈ E is the indexed occurrence of a transition u ∈ E ′. The non-negative

integer, i, is called the occurrence index of the event. R is generated by instantiating

each repeated rule, r′ ∈ R′ for all i ∈ N such that i > o, where o is the occurrence

index offset of r′.

Example 2.2. Consider the repetitive ER system in Example 2.1. The corresponding

general ER system is:

E = E ′ × N = {〈x↑, 0〉, 〈x↓, 0〉, 〈y↑, 0〉, 〈y↓, 0〉, 〈z↑, 0〉, 〈z↓, 0〉,

〈x↑, 1〉, 〈x↓, 1〉, 〈y↑, 1〉, 〈y↓, 1〉, 〈z↑, 1〉, 〈z↓, 1〉, . . . }

R ={〈z↓, 0〉 δx↑→ 〈x↑, 1〉,

〈x↑, 0〉 δy↓→ 〈y↓, 0〉,

〈y↓, 0〉 δz↑→ 〈z↑, 0〉,

〈z↑, 0〉 δx↓→ 〈x↓, 0〉,

〈x↓, 0〉 δy↑→ 〈y↑, 0〉,

〈y↑, 0〉 δz↓→ 〈z↓, 0〉,

〈z↓, 1〉 δx↑→ 〈x↑, 2〉,

〈x↑, 1〉 δy↓→ 〈y↓, 1〉,

〈y↓, 1〉 δz↑→ 〈z↑, 1〉,

〈z↑, 1〉 δx↓→ 〈x↓, 1〉,

〈x↓, 1〉 δy↑→ 〈y↑, 1〉,

〈y↑, 1〉 δz↓→ 〈z↓, 1〉,

. . . }

A timing function of a repetitive ER system is a function that is a timing function

of the corresponding general ER system. A linear timing function of a repetitive ER

system is one that satisfies the following property.

21

Definition 2.5 (Linear Timing Function). A linear timing function, t̄ : E ′ × N 7→

[0,∞),of a repetitive ER system 〈E ′, R′〉, is a timing function such that for each

v ∈ E ′, there exist xv and pv such that

t̄(v, i) = xv + pv · i ∀v ∈ E ′, i ∈ N

For a specific linear timing function, t̄, pv is called the cycle period of transition v

in t̄ and xv the offset of v in t̄. Note that each xv and pv is independent of i.

A repetitive ER system, 〈E ′, R′〉, can be represented as a directed graph G =

(N, A). N is the set of nodes, and is equal to E ′. A is the set of arcs such that

(u, v) ∈ A if and only if 〈u, i− o〉 δ→ 〈v, i〉 ∈ R′. Let ∆ : A 7→ [0,∞) map each arc to

the delay of the corresponding rule and O : A 7→ N map each arc to the occurrence

index offset of the corresponding rule. This graph is called the collapsed constraint

graph of 〈E ′, R′〉.

In a given timing function, all transitions in the same strongly connected com-

ponent of a collapsed constraint graph have the same cycle period. The collapsed

constraint graph of typical asynchronous circuits is strongly connected [3, 10]. Fol-

lowing Burns [3], only repetitive ER systems whose collapsed constraint graph is

strongly connected are considered. Thus, all transitions have the same cycle period

p in a given timing function. This cycle period is the cycle period of the timing

function.

Burns has shown that there exists a linear timing function of a repetitive ER

system with minimal cycle period.

Definition 2.6 (Minimum Period Linear Timing Function(MPLTF)). A minimum

period linear timing function(MPLTF) of a repetitive ER system is the linear timing

function of the repetitive ER system with minimal period.

Burns has shown that the period of the MPLTF of a repetitive ER system is an

approximation of the timing simulation of the corresponding timing simulation. In

particular, he has shown that the period of a MPLTF is arbitrarily close to the mean

time between successive occurrences of a transition in the timing simulation.

22

Definition 2.7 (Cycle Time). The cycle time of a QDI circuit is the minimum cycle

period of the repetitive ER system that simulates the circuit.

2.2.1 Verifying the Cycle Period of a Repetitive ER System

In this section, I state how it can be verified that a repetitive ER system has a specific

cycle time, p ∈ R+. In order to do so, the notion of critical delay of a repeated rule is

introduced. The critical delay as defined depends on the value of p. Thus, the phrase

critical delay at p specifies the value of p used in the computation of the critical delay.

The minimum cycle period of a repetitive ER system, 〈E ′, R′〉 is at most p, if

there exists a linear timing function with period p. That is, for each transition

e ∈ E there exists xe such that the following inequality is satisfied for each rule

〈u, i− o〉 δuv→ 〈v, i〉 ∈ R′.

xv − xu ≥ δuv − ouv · p

Each xe corresponds to the offset in a linear timing function. Rewriting in matrix

form, the minimum cycle period of 〈E ′, R′〉 is at most p if there exists x such that

Ax ≥ y (2.1)

x ≥ 0 (2.2)

where

• y ∈ R|R′| such that for each rule 〈u, i− oj〉
δj→ 〈v, i〉 ∈ R′, yj = δj − p · oj,

• 0 is the zero vector of length |E ′|,

• x ∈ R|E′| is such that each entry xu corresponds to the offset of u in a linear

timing function,

23

• A is a |R′| × |E ′| matrix such that for each rule, rj ∈ R′

Aj,k =



−1 if ek is the source transition of rj,

1 if ek is the target transition of rj,

0 otherwise

Since this set of inequalities is a system of difference constraints, if x satisfies inequal-

ity (2.1), then so does any x′ : x′ = x + d1, d ∈ R where 1 is a unit vector. It can

be shown that the system of difference constraints (2.1) can be satisfied if and only

if there are no positive weight cycles in a directed graph that has arc-node incidence

matrix A and arc weights y [4]. By definition, A is the arc-node incidence of the

collapsed constraint graph of 〈E ′, R′〉.

A directed path in a directed graph is a sequence of arcs {(ui, vi)} such that

ui = vi−1 for all i > 1. Let ‖π‖ denote the number of arcs in directed path π. A cycle

is a path, c, such that v‖c‖ = u1. Thus, a circuit has cycle time at most p if and only

if for each cycle C in its collapsed constraint graph,

∑
(u,v)∈C

δuv − p · ouv

where δuv is the delay of rule corresponding to arc to (u, v) and ouv is the occurrence

index offset of this rule. This value is defined as the critical delay of the cycle at p.

The critical delay of an arc at p is the contribution of the arc to the critical delay of

any cycle that traverses the arc.

Definition 2.8 (Critical Delay). Let r′ ∈ R′ be the repeated rule 〈u, i− ouv〉
δuv→ 〈v, i〉.

For p ∈ [0,∞), the critical delay of r′ at p is δuv − p · ouv.

The critical delay at p of an arc in a collapsed constraint graph is the critical delay

at p of the corresponding repeated rule. The critical delay at period p of a directed

path, π, in a collapsed constraint graph is the sum of the critical delays at p of the

arcs on the path.

24

A critical path at p between two nodes of a collapsed constraint graph is a path

with maximum critical delay at p between the nodes. A critical cycle at p is a cycle

in the collapsed constraint graph with maximum critical delay at p.

Thus, the minimum period of the repetitive ER system corresponding to a collapsed

constraint graph is at most p if and only if all critical cycles at p have non-positive

critical delay

Example 2.3. Figure 2.2 show a fragment of a collapsed constraint graph. Each

edge in the graph is marked with its’ delay. An edge marked with a solid rectangle has

occurrence index offset 1. All other edges have occurrence index offset 0. There are

two paths between vertices u and x. At cycle time 14, the path (u, v)(v, x) has critical

delay 14 − 14 · 1 = 0. The path (u, w)(w, x) has critical delay 6 − 14 · 0 = 6. Thus,

(u, w)(w, x) is the critical path between u and x.

12

u v

w

x

2 4

2

Figure 2.2: Critical paths.

2.3 Pseudo-Repetitive ER Systems

Whilst many circuits can be modeled as repetitive ER systems, many circuits of

interest consist of a finite set of initial events followed by a set of repeated transitions.

Such circuits are modeled as pseudo-repetitive ER systems. A pseudo-repetitive ER

system is a 6-tuple (E0, E1, E
′
0, E

′
1, R0, R

′
1) where E0 is a finite set of initial events, E ′

0

a finite set of initial transitions, E1 an infinite set of repeated events, E ′
1 a finite set

of repeated transitions, R0 a finite set of of initial rules and R′
1 a finite set of repeated

rules. Note that E0 ⊂ E ′
0×N and E1 ⊆ E ′

1×N. The elements of R0 take the form of

rules in a general ER system, and their source must be an initial event. The elements

of R′
1 are of the form of rules in a repetitive ER system. Both the source and the

25

target of a repeated rule must be repeated transitions. The general ER system that

corresponds to a pseudo-repetitive ER system is constructed by setting E = E0 ∪E1

and letting R be the union of R0 and the rules of R′
1 instantiated in such a manner

that both the target and source of the rule are in E1.

Burns [3] shows that the cycle time of a pseudo-repetitive ER system is approxi-

mated by that of the repetitive system (E ′
1, R

′
1).

2.4 Constructing a Repetitive ER System

In this Section, I state how to generate a repetitive ER system from the description

of a QDI circuit. These constructions are from Burns [3][Chapter 4]. In Section 2.4.1

I state how to construct the repetitive ER system for a circuit such that all processes

are described as HSE. In Section 2.4.2 I state how to construct the repetitive ER

system for a circuit such that all processes are described as PRS.

2.4.1 HSE

I begin with the construction of repetitive ER systems from straight line HSE in

standard form. This construction is then generalized to straight line HSE.

A straight line handshaking expansion(SLHE) is a HSE such that each selection

statement is of the form [C → skip] with C being a conjunction of literals, and

each repetition statement is of the form [true → S]. A SLHE has a vacuous wait

on a literal if the literal l is true in the initial state and as the process executes, a

wait [l ∧ C] is encountered without l having become false. A SLHE has a vacuous

assignment if there is an assignment that does not change the state of the program

when it is encountered during execution. A SLHE has a repeated assignment if the

same repetition statement contains two assignments of the same value to the same

variable.

A collection of SLHE in standard form is one that satisfies the following conditions.

1. The collection is deadlock free.

26

2. Each process is of the form S ; *[T] and contains no vacuous waits or assign-

ments.

3. Each process has no repeated assignments.

4. S and T are a sequence of alternating waits and assignments.

5. S begins with a wait and ends with a wait.

6. T begins with an assignment and ends with a wait.

7. Each variable appears in one process only and is either a local variable, or a

variable implementing a communication action.

8. If a variable, v appears in a wait of one process, v is either assigned to by the

process, or is not assigned to in any process and is the input variable of a port

with the corresponding output variable only assigned to in this process.

Given a SLHE in standard form, S ; *[T], a repetitive ER system 〈E ′, R′〉 can

be constructed by adding a transition to E ′ for each assignment that appears in T .

In addition, transitions are added for each assignment to each input variable of the

process. Let v be an assignment in T . Let u be an assignment that causes a literal

in a wait immediately preceding v to evaluate to true. For each such u, add to R′ a

repeated rule, 〈u, i − o〉 δ→ 〈v, i〉. If v is the first assignment in T , let the last wait

in T be the wait immediately preceding v in T . In either case, u is said to be a

constraining wait of v. Let u be an assignment such that there is exactly one wait in

sequence between u and v in T . For each such u, add a repeated rule 〈u, i−o〉 δ→ 〈v, i〉

to R′. If v is the first assignment in T , let u be the last assignment in T . In either

case, u is said to be a constraining assignment of v. The value of the occurrence

index offset, o, is the number of times that v must occur in any execution of the HSE

before the first occurrence of u.

Example 2.4. Consider the HSE of the ring oscillator in Example 2.1:

*[x↑; y↓; z↑; x↓; y↑; z↓]

27

Its repetitive ER system is:

E ′ = {x↑, x↓, y↑, y↓, z↑, z↓}

R′ ={〈z↓, i− 1〉 δx↑→ 〈x↑, i〉,

〈x↑, i− 0〉 δy↓→ 〈y↓, i〉,

〈y↓, i− 0〉 δz↑→ 〈z↑, i〉,

〈z↑, i− 0〉 δx↓→ 〈x↓, i〉,

〈x↓, i− 0〉 δy↑→ 〈y↑, i〉,

〈y↑, i− 0〉 δz↓→ 〈z↓, i〉}

The cycle time of this ER system is the minimum p such that the following system of

linear inequalities can be satisfied.



1 0 0 0 0 −1

−1 0 0 1 0 0

0 0 0 −1 1 0

0 1 0 0 −1 0

0 −1 1 0 0 0

0 0 −1 0 0 1


·



xx↑

xx↓

yy↑

yu↓

zz↑

zz↓


≥



δx↑ − p

δx↓

δy↑

δy↓

δz↑

δz↓




xx↑

xx↓

yy↑

yu↓

zz↑

zz↓


≥ 0

Let P and Q be processes with a communication channel between them. Let u

be an output variable of process P that implements a communication action on this

28

channel. Let v be the corresponding input variable of process Q. Following Burns [3,

Chapter 4], for each such pair of variables u and v, a repeated rule with delay and

occurrence index offset zero is added between each transition on u and the same

transition on v. If the wire connecting the variables has non-zero delay, a fraction of

its delay is added to that of all rules whose target is a transition on u. The remaining

delay added to that of all rules whose source is a transition on v. That is, the delay of

a wire between processes is apportioned in some manner between the two processes.

A collection of SLHE in standard form does not permit any concurrent assignments

or concurrent waits. The requirement that S and T in an SLHE be sequences can be

relaxed in the following manner.

Consider replacing any assignment by the concurrent composition of one or more

assignments. Let the program fragment . . .A′;w ;A be such that A and A′ are con-

current assignments to one or more variables. Any assignment that makes a literal in

w true is a constraining wait of each assignment in A. Similarly, each assignment in

A′ is a constraining assignment of each assignment in A.

Consider two general statements composed in parallel. For each program fragment

. . . ; ((. . . ; a ′;w ′), (. . . ; a ′′;w ′′)); a; . . .

the constraining assignments of a are a ′ and a ′′. The constraining waits of a are any

assignments that make a literal in either w ′ or w ′′ true.

Example 2.5. Figure 2.3 shows the collapsed constraint graph of the repetitive part

of the pseudo-repetitive ER system that describes the HSE:

PCHB ≡ lo↓; [¬ri]; ro↓; [¬li]; lo↑;

*[[ri ∧ li]; ro↑; lo↓; [¬ri]; ro↓; [¬li]; lo↑]

All edges have an occurrence index offset of zero unless they are marked with a rect-

angular box which denotes an occurrence index offset of 1. The pseudo-repetitive ER

system is:

E ′
0 = {lo↓, ri↓, ro↓, li↓, lo↑}

E0 = {〈lo↓, 0〉, 〈ri↓, 0〉, 〈ro↓, 0〉, 〈li↓, 0〉, 〈lo↑, 0〉}

29

li↓

li↑ ro↑

ro↓

lo↓

lo↑

ri↓

ri↑

Figure 2.3: Collapsed constraint graph of PCHB.

E ′
1 = {lo↑, lo↓, li↑, li↓, ri↑, ri↓, ro↑, ro↓}

30

E1 ={〈lo↑, i〉|i ≥ 1} ∪ {〈lo↓, i〉|i ≥ 1} ∪ {〈li↑, i〉|i ≥ 0} ∪ {〈li↓, i〉|i ≥ 1}∪

{〈ro↑, i〉|i ≥ 0} ∪ {〈ro↓, i〉|i ≥ 1} ∪ {〈ri↑, i〉|i ≥ 0} ∪ {〈ri↓, i〉|i ≥ 1}

R0 = {〈lo↓, 0〉 δ1→ 〈ro↓, 0〉

〈ri↓, 0〉 δ2→ 〈ro↓, 0〉

〈li↓, 0〉 δ3→ 〈lo↑, 0〉

〈ro↓, 0〉 δ4→ 〈lo↑, 0〉

〈lo↑, 0〉 δ5→ 〈ro↑, 0〉

}

R′
1 = {〈lo↓, i− 0〉 δ1→ 〈ro↓, i〉

〈ri↓, i− 0〉 δ2→ 〈ro↓, i〉

〈li↓, i− 0〉 δ3→ 〈lo↑, i〉

〈ro↓, i− 0〉 δ4→ 〈lo↑, i〉

〈lo↑, i− 0〉 δ5→ 〈ro↑, i〉

〈li↑, i− 0〉 δ6→ 〈ro↑, i〉

〈ri↑, i− 0〉 δ7→ 〈ro↑, i〉

〈ro↑, i− 1〉 δ8→ 〈lo↓, i〉

}

The corresponding general ER system is:

E = EO ∪ E1

31

R =R0∪

{〈lo↓, i− 0〉 δ1→ 〈ro↓, i〉|i ≥ 1}∪

{〈ri↓, i− 0〉 δ2→ 〈ro↓, i〉|i ≥ 1}∪

{〈li↓, i− 0〉 δ3→ 〈lo↑, i〉|i ≥ 1}∪

{〈ro↓, i− 0〉 δ4→ 〈lo↑, i〉|i ≥ 1}∪

{〈lo↑, i− 0〉 δ5→ 〈ro↑, i〉|i ≥ 1}∪

{〈li↑, i− 0〉 δ6→ 〈ro↑, i〉|i ≥ 0}∪

{〈ri↑, i− 0〉 δ7→ 〈ro↑, i〉|i ≥ 0}∪

{〈ro↑, i− 1〉 δ8→ 〈lo↓, i〉|i ≥ 1}

2.4.2 PRS

Each process can also be described as a production rule set(PRS). Consider a produc-

tion rule set derived from a handshaking expansion as described above. Let G → v be

a production rule in a such a closed PRS, where v is a simple assignment and G is a

conjunctive guard. For each assignment v, let u be an assignment that causes a literal

in G to evaluate to true. For each such u, add to R′ a repeated rule 〈u, i−o〉 δ→ 〈v, i〉.

The value of o is the number of times that u must occur before the first occurrence

of v. This can be determined either from the HSE, or via simulation.

2.4.3 Disjunctive Circuits

Many circuits cannot be written as collections of HSE or PRS satisfying the restric-

tions in Section 2.4.1 and 2.4.2. In this section, I state how ER systems may be used

to model the behavior of such circuits.

2.4.3.1 Disjunctive HSE

Some collections of HSE that do not satisfy the restrictions of Section 2.4.1 can still

be modeled as a collection of HSE satisfying these restrictions. In this Section, such

a class of HSE is described.

32

For a HSE with deterministic selection statements, only one of the guards in the

selection statement may be true at any time. When closing the HSE, the environment

must be chosen in such a manner that the same guard of each selection statement

may evaluate to true in any execution. All other guards in the selection statement

may be removed since in the particular scenario being considered, they never evaluate

to true. If the guard is conjunctive, this part of the HSE satisfies the restrictions in

Section 2.4.1. If the guard is disjunctive, it can be transformed to conjunctive guard

in the manner described below.

Consider a HSE with a wait on a disjunction. If only one of the disjuncts may

evaluate to true in any execution, and this disjunction is the same for all executions,

the other disjuncts may be removed from the wait statement.

If more than one disjunct may evaluate to true, the HSE cannot be modeled

directly as a repetitive ER system. Such HSE can either be excluded, or modeled in

the following way. The disjunction is replaced by a conjunction of the disjuncts that

may evaluate to true in some execution of the HSE. As with selection statements,

if the environment can be chosen to ensure that only one of the disjunct evaluates

to true, the circuit with such an environment can be modeled as a repetitive ER

system. Circuits where this is not possible occur rarely in practice [3, Chapter 4].

These circuits are excluded from consideration.

2.4.3.2 Disjunctive PRS

A circuit described as a PRS is disjunctive if at least one PR has a disjunction in its

guard.

There are two types of disjunctions.

• Stable disjunctions are ones such that if any disjunct evaluates to true, it

remains true until the target assignment of the PRS fires.

• Unstable disjunctions are all other disjunctions.

In the remainder of this thesis, only PRS with stable disjuncts are considered. Circuits

with data have stable disjuncts. In practice, circuits with unstable disjuncts are

33

rare [10, 3].

Stable disjuncts can be divided into three cases.

• In the first case, during all executions of the PRS only one disjunct evaluates

to true when the rule fires effectively. This disjunct is the same across all

executions of the PRS. In this case, the remaining disjuncts can be ignored

since they can never cause an effective firing.

• In the second case, the disjuncts are mutually exclusive. In this case, when the

PRS is closed, the environment of the PRS is chosen in such a manner that

only one of the mutually exclusive disjuncts evaluates to true in any execution

of the PRS. Such disjuncts typically arise due to data dependencies.

• Typically, the preceding cases cover most disjunctions in a circuit. Circuits with

neither of the preceding type of stable disjunctions can either be excluded, or

the disjuncts in each guard that may evaluate to true can be determined via

simulation and the disjunction can be replaced by a conjunction of the disjuncts

that may evaluate to true. In the latter case, the cycle time of the resulting

PRS is an upper bound on the cycle time of the original PRS. The disjunction

is modeled as a conjunction in order to allow the PRS to be modeled as an ER

system.

Given a PRS with an environment that satisfies the preceding restrictions, Lee [10,

Chapter 7] shows how the corresponding ER system can be generated.

34

Chapter 3

Slack Matching Circuits of Half
Buffers

In this Chapter, I derive necessary and sufficient conditions to guarantee that a circuit

composed of a specified class of half buffers has a cycle time τ0. These conditions are

used to state the slack matching problem as a mixed integer linear program(MILP).

This Chapter is organized as follows.

• First, in Section 3.1.1, the paths in the collapsed constraint graph of half buffers

are classified. Based on this classification of paths, the class of half buffers

considered in the remainder of the Chapter is specified in Section 3.1.2. In

Section 3.1.3, the critical cycles at the target cycle time are determined.

• In Section 3.2.1 process graphs are defined. In Section 3.2.2, undirected cycles in

a process graph are related to directed cycles in the collapsed constraint graph

of the same circuit. Since the number of undirected cycles in a graph may be

exponential in the size of the graph, in Section 3.2.3, a set of sufficient conditions

for the circuit described by a process graph to have cycle time less than or equal

to a specified target is described. This set of conditions is polynomial in the

size of the graph. In Section 3.2.4, it is shown when this set of conditions is

necessary for a circuit to have cycle time less than or equal to the a specified

target.

• Next, in Section 3.3.1 some properties of a pipeline of LR-buffers, used for slack

matching, are stated. Using these properties, in Section 3.3.2, the conditions

35

derived in Section 3.2.3 are modified in order to introduce a variable number of

slack matching buffers on each channel. This results in a mixed integer linear

program that can be solved to determine the number of slack matching buffers

to add to each channel in a circuit in order for the circuit to have cycle time

less than or equal to a specified target. In Section 3.3.3, the time complexity of

generating the MILP is determined.

• In Section 3.4, the results of slack matching two different circuits by solving the

aforementioned MILP are discussed. This chapter concludes in Section 3.5 with

a summary of the results.

3.1 ER Systems of Half Buffers

Recall that the goal of slack matching is to introduce LR-buffers into a circuit is such

a manner that the resulting circuit has cycle time at most τ0. In this Section, the

critical delay at cycle time τ0 of all cycles in the collapsed constraint graph of a circuit

comprised of a specified class of buffers is derived.

This Section is organized as follows.

• In Section 3.1.1 the paths in a buffer’s collapsed constraint graph are classified.

• Next, in Section 3.1.2 the class of buffers in the circuits considered is specified.

• Finally, the critical delay at τ0 of all cycles in the collapsed constraint graph of

such circuits is determined.

3.1.1 Classification of Paths in a Buffer’s Collapsed Con-

straint Graph

In order to state the assumptions made about the class of buffers considered, the paths

in the collapsed constraint graph between transitions of the variables that implement

ports need to be classified.

36

The input variables of a process are variables that implement a port such that

these variables are not assigned to by the process. The output variables of a process

are variables that implement a port such that these variables are assigned to by the

process. All ports are assumed to implement a four phase handshake. As described in

Section 2.4.3 each process can be modeled as having one input variable and one output

variable per port. Note that in order to do so for circuits with data, the environment

of the circuit must be such that for each communication channel, the same data value

is repeatedly sent on the channel. A transition of an input(output) variable is said

to be an input(output) transition. The transition on the input(output) variable of

an input port and the corresponding transitions on the output(input) variable of the

output port of the same channel are connected by a rule with delay and occurrence

index offset equal to zero. A delay of the wire connecting the two variables can be

apportioned as follows. A fraction of this delay can be added to all rules whose

target is the output transition of a port. The remaining delay can be add to all rules

whose source is the corresponding input transition of the corresponding port. Thus,

regardless of the value of τ0, the critical delay at τ0 of this rule is zero. Therefore, in

the remainder of this section such edges are ignored and the vertices corresponding

to such transitions considered to be the same.

In a QDI circuit’s collapsed constraint graph, all directed paths between transi-

tions on variables that implement ports are classified by the type of ports that the

variables belong to. Let a path, π, begin at an input transition of port y in process

u. Let π end at an output transition of port z in process v.

• If y is an input port and z is an output port π is said to be of type Φ. Addi-

tionally, if u = v and π traverses only paths in process u, it is said to be of type

φ. Thus, a φ path is a Φ path that traverses exactly one process.

• If y is an output port and z is an input port π is said to be of type B. Addi-

tionally, if u = v and π traverses only paths in process u, it is said to be of type

β. Thus, a β path is a B path that traverses exactly one process.

• If y is an input port and z is an input port π is said to be of type Λ. Additionally,

37

if u = v and π traverses only paths in process u, it is said to be of type λ. Thus,

a λ path is a Λ path that traverses exactly one process.

• If y is an output port and z is an output port π is said to be of type P .

Additionally, if u = v and π traverses only paths in process u, it is said to be

of type ρ. Thus, a ρ path is a P path that traverses exactly one process.

Figure 3.1 shows all φ, λ, β and ρ paths in a buffer that uses a four phase handshake.

lo↓

li↑ φ↑↑

φ↑↓

φ↓↓

φ↓↑

ro↑ ro↑

li↑

ri↓ri↓

ro↓

ri↓

ri↑

ro↓

ro↑

lo↑

li↑

ri↑ lo↑ri↑

li↓

ro↑

lo↓

li↓

li↑

β↑↑

β↓↓

β↓↑

β↑↓

li↑

ro↑

lo↑

lo↓

li↓

ro↑

lo↓

li↑ li↑
ρ↓↑

ρ↓↓

ρ↑↑

ρ↑↓

ro↑

ri↓

ro↓

ri↑

ro↑

λ↓↓

li↑

λ↓↑
lo↑

λ↑↑

li↓

λ↑↓

ro↓

Figure 3.1: Paths in a buffer’s collapsed constraint graph.

The notation tij↑↓ is used to denote a path of type t ∈ {φ, β, ρ, λ, Φ, B, Λ, P} from

transition w↑ to transition x↓ where w is the input variable of port i and x is the

output variable of port j. The notation tij↑↓(p) is used to denote a path of type

t ∈ {φ, β, ρ, λ} in the collapsed constraint graph of process p, between an input

transition of port i and an output transition of port j. Let ti,j denote the set of all

paths of type t between a transition of an input variable of port i and a transition of

an output variable of port j.

3.1.2 Assumptions About Processes in a Circuit

The following assumptions are satisfied by all processes in the circuits considered in

this chapter.

Assumption 3.1. Each process is a half buffer.

Assumption 3.2. A process communicates on each channel exactly once per itera-

tion.

38

For circuits in which a process conditionally communicates on a channel based on

data, assumption 3.2 can be satisfied by choosing an environment that ensures that

each process exercises the same set of channels on each iteration. This is done as

described in Section 2.4.3.

Assumption 3.3. A port can be initialized in one of three ways.

1. An output port may complete a communication action before any input port of

the process starts a communication. Such a port is said to have an initial send.

2. Consider an output port with an initial send. The port at the other end of

a channel containing this port is an input port that is said to have an initial

receive.

3. A port that has neither an initial send nor an initial receive is said to be neutral.

Assumption 3.4. The critical delay, at τ0 of a path between input and output tran-

sitions of process p is less than or equal to the value in Table 3.1, where f i,j
p , bi,j

p , li,jp

and ri.j
p are constants.

In Table 3.1, i ∈ N denotes that port i is neutral, i ∈ S that i has an initial send

and i ∈ R that there is an initial receive of i. Since the processes in the circuit are

assumed to be half buffers, a process cannot have both a port that has an initial send

and a port that has an initial receive.

Assumption 3.5. The critical delay at τ0 of any cycle that contains only transitions

from one process is less than 0.

Assumption 3.5 states that target cycle time be at least as large as the largest

ratio of the delay along a cycle entirely within a process to the sum of the occurrence

index offsets along this cycle. Such cycles are not affected by slack matching since

slack matching only adds buffers to channels, it does not change a process in the

circuit.

39

Path i, j ∈ N i ∈ N, j ∈ S i ∈ R, j ∈ N

φi,j
↑↑ f i,j

p f i,j
p -τ0 f i,j

p

φi,j
↑↓ f i,j

p - τ0
2

f i,j
p - τ0

2
f i,j

p - τ0
2

φi,j
↓↑ f i,j

p + τ0
2

f i,j
p - τ0

2
f i,j

p - τ0
2

φi,j
↓↓ f i,j

p f i,j
p f i,j

p -τ0

Path i, j ∈ N i ∈ R, j ∈ N i ∈ N, j ∈ R i, j ∈ R

λi,j
↑↑ li,jp - τ0

2
li,jp - τ0

2
li,jp - τ0

2
li,jp - τ0

2

λi,j
↑↓ li,jp -τ0 li,jp -τ0 li,jp li,jp

λi,j
↓↑ li,jp li,jp -τ0 li,jp li,jp -τ0

λi,j
↓↓ li,jp - τ0

2
li,jp - τ0

2
li,jp + τ0

2
li,jp - τ0

2

Path i, j ∈ N i ∈ S, j ∈ N i ∈ N, j ∈ R

βi,j
↑↑ bi,j

p - τ0
2

bi,j
p + τ0

2
bi,j
p - τ0

2

βi,j
↑↓ bi,j

p -τ0 bi,j
p bi,j

p

βi,j
↓↑ bi,j

p bi,j
p bi,j

p

βi,j
↓↓ bi,j

p - τ0
2

bi,j
p - τ0

2
bi,j
p + τ0

2

Path i, j ∈ N i ∈ S, j ∈ N i ∈ N, j ∈ S i, j ∈ S

ρi,j
↑↑ ri,j

p ri,j
p +τ0 ri,j

p -τ0 ri,j
p

ρi,j
↑↓ ri,j

p - τ0
2

ri,j
p + τ0

2
ri,j
p - τ0

2
ri,j
p + τ0

2

ρi,j
↓↑ ri,j

p + τ0
2

ri,j
p + τ0

2
ri,j
p - τ0

2
ri,j
p - τ0

2

ρi,j
↓↓ ri,j

p ri,j
p ri,j

p ri,j
p

Table 3.1: Upper bound on critical delays of paths in process a p.

40

Example 3.1. Consider the HSE in Example 2.5. This circuit is called a precharged

half buffer(PCHB). There are no initial communications on either port of the PCHB.

The repetitive part of its pseudo-repetitive ER system is shown below, along with the

collapsed constraint graph. Typical values of the delays for each rule are shown.

E ′ = {lo↑, lo↓, li↑, li↓, ri↑, ri↓, ro↑, ro↓}

R′
1 = {〈lo↓, i− 0〉 4→ 〈ro↓, i〉

〈ri↓, i− 0〉 2→ 〈ro↓, i〉

〈li↓, i− 0〉 5→ 〈lo↑, i〉

〈ro↓, i− 0〉 3→ 〈lo↑, i〉

〈lo↑, i− 0〉 4→ 〈ro↑, i〉

〈li↑, i− 0〉 2→ 〈ro↑, i〉

〈ri↑, i− 0〉 2→ 〈ro↑, i〉

〈ro↑, i− 1〉 3→ 〈lo↓, i〉

}

li↓

li↑ ro↑

ro↓

lo↓

lo↑

ri↓

ri↑

2

3

3

4
4

22

5

Figure 3.2: Collapsed constraint graph of a PCHB

Note that in the collapsed constraint graph in Figure 3.2, there is a directed cycle

41

ro↑ → lo↓ → ro↓ → lo↑ → ro↑. The sum of the delays along this cycle is 14. The

sum of occurrence index offsets on this cycle is 1. Thus, the cycle time of a circuit

containing this process is at least 14. Slack matching only adds buffers to the circuit,

and thus does not have any effect on this cycle. Therefore, the target cycle time must

be at least 14.

The φ↑↑ path in the collapsed constraint graph consists of the edge (li↑, ro↑). Since

the occurrence index offset of this edge is 0, it has critical delay 2 and the φ↑↑ path

satisfies the constraint in Table 3.1 for f ≥ 2.

The φ↓↓ path in the collapsed constraint graph is li↓ → lo↑ → ro↑ → lo↓ → ro↓.

The delay of this path is 16. Since the sum of occurrence index offsets of this path

is 1, it has critical delay 2 at τ0 = 14 and the φ↓↓ path satisfies the constraint in

Table 3.1 for f ≥ 2 and τ0 = 14.

The φ↑↓ path in the collapsed constraint graph is li↑ → ro↑ → lo↓ → ro↓. The

delay of this path is 9. Since the sum of currency index offsets of this path is 1, it has

critical delay −5 at τ0 = 14 and the φ↑↓ path satisfies the constraint in Table 3.1 for

f ≥ 2 and τ0 = 14.

The φ↓↑ path in the collapsed constraint graph is li↓ → lo↑ → ro↑. The delay of

this path is 9. Since the sum of occurrence index offsets of the path is 0, it has critical

delay 9 and this path satisfies the constrain in Table 3.1 for f ≥ 2.

Thus, for this particular process, at τ0 = 14, f = 2. Similarly it can be seen that

b = 5, l = 5 and r = 2.

Lines [12] analyzes several low latency reshufflings of an LR-buffer. Of these, the

following five are half-buffers, where variables Re,Rd implement an output port and

variables Le,Ld implement an input port.

PCHB ≡ *[[Re ∧ Ld];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑]

WCHB ≡ *[[Re ∧ Ld];Rd↑;Le↓; [¬Re ∧ ¬Ld];Rd↓;Le↑]

B1 ≡ *[[Re ∧ Ld];Rd↑;Le↓; [¬Re ∧ ¬Ld];Le↑;Rd↓]

B4 ≡ *[[Re ∧ Ld];Rd↑;Le↓; [¬Re];Rd↓, ([¬Ld];Le↑)]

B5 ≡ *[[Re ∧ Ld];Rd↑;Le↓; [¬Re ∧ ¬Ld];Rd↓,Le↑]

42

Consider a buffer such that the projection of the process onto the variables im-

plementing a pair of input and output channels is the PCHB reshuffling with one of

the prefixes described below.

• If there is an initial send on the output port, the prefix is

[Re];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑

• If there is an initial receive on the input port, the prefix is

[¬Re];Rd↓;Le↑

• If there are no initial actions on either port, the prefix is

Le↓; [¬Re];Rd↓; [¬Ld];Le↑

A class of buffers that satisfies assumptions 3.1–3.5 was used in the implementation

of the Lutonium [19] and MiniMIPS [18].

Example 3.2. Figure 3.3 shows the collapsed constraint graph of the repetitive part

of the pseudo-repetitive ER system that describes the circuit with HSE:

Q ≡ Le↓; [¬Re];Rd↓; [¬Ld];Le↑;

*[[Re ∧ Ld];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑]

S ≡ [Re];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑;

*[[Re ∧ Ld];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑]

R ≡ [¬Re];Rd↓;Le↑;

*[[Re ∧ Ld];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑]

Typical values of the delays are assigned to each repeated rule. In a manner similar to

that shown in Example 3.1 it can be seen that this circuit satisfies assumptions 3.1–3.5

for any cycle time τ0 ≥ 14 with the following values of the constants in Table 3.1.

• fR,S
Q = fQ,R

S = fS,Q
R = 2

• bS,R
Q = bR,Q

S = bQ,S
R = 5

43

• lR,R
Q = lQ,Q

S = lS,S
R = 5

• rS,S
Q = rR,R

S = rQ,Q
R = 2

All edges have an occurrence index offset of zero unless they are marked with a rect-

angular box which denotes an occurrence index offset of 1. If an edge has non-zero

delay, it is marked with its delay. Figure 3.4 shows the collapsed constraint graph of

Ld↑

Ld↓

Le↑

Le↓

Ld↑

Ld↓

Le↑

Le↓

Ld↑

Ld↓

Le↑

Le↓

Rd↑

Rd↓

Re↑

Re↓

Rd↑

Rd↓

Re↑

Re↓

Rd↑

Rd↓

Re↑

Re↓

2

3

4

4

2
35

2

2

3

4

4

2
35

2

2

3

4

4

2
35

2Q S R

Figure 3.3: Collapsed constraint graph of a ring of buffers satisfying assumptions 3.1–
3.5.

the same circuit, however each edge is marked with its critical delay at 14, instead of

its delay and occurrence index offset.

Ld↑

Ld↓

Le↑

Le↓

Ld↑

Ld↓

Le↑

Le↓

Rd↑

Rd↓

Re↑

Re↓

Rd↑

Rd↓

Re↑

Re↓

Rd↑

Rd↓

Re↑

Re↓

Ld↑

Ld↓

Le↑

Le↓

2

-11

4

4

2
35

2

2

3

4

-10

2
35

-12

2

3

-10

4

2
3

2

-9

Q S R

Figure 3.4: Collapsed constraint graph of a ring of buffers with critical delays at 14.

44

3.1.3 Critical Cycles in the Collapsed Constraint Graph of

Circuits of Half Buffers

In this section the critical delay at τ0 of all cycles in the collapsed constraint graph

of a circuit satisfying assumptions 3.1–3.5 is determined.

First in Section 3.1.3.1 a set of regular expressions to characterize all the cycles

in such a circuit’s collapsed constraint graph is derived. The remainder of this sec-

tion leads up to Section 3.1.3.4, in which the critical delay of cycles in the collapsed

constraint graph of a circuit is determined. In Section 3.1.3.2 the critical delays of cer-

tain paths in such a circuit’s collapsed constraint graph, assuming there are no initial

communications, is determined. In Section 3.1.3.3, these results are used to to deter-

mine the critical delay of all cycles in a circuit’s collapsed constraint graph, assuming

there are no initial communications. Finally, in Section 3.1.3.4 the critical delay of

all cycles in the collapsed constraint graph of a circuit with initial communications is

determined from the results of Section 3.1.3.3.

3.1.3.1 Cycles in Collapsed Constraint Graphs

The following regular expression characterizes all the cycles in a circuit’s collapsed

constraint graph. The regular expression is a generalization of those derived by

Wong [27]. Wong’s regular expressions characterize cycles in circuits comprised only

of PCHBs, whereas this regular expression characterizes all cycles in a circuit of

buffers that communicate using the four phase handshake.

Lemma 3.1. All cycles that are not entirely within a process in the collapsed con-

straint graph of circuit in which all communication channel implement a four phase

handshake must match regular expression (3.4):

45

F = φ∗ (3.1)

B = β∗ (3.2)

L = FλB|LρL (3.3)

C = Lρ|F|B (3.4)

Proof. Recall that a channel consists of a pair of input and output ports that are

connected. For each channel, the input(output) variable of the input port is the

output(input) variable of the output port. Let V be the set of variables in a circuit’s

collapsed constraint graph that implement a port. The set V can be partitioned into

two non-intersecting sets V1 and V2 such that every v ∈ V1 is the input variable of an

input port and every v ∈ V2 is the output variable of an input port.

Let a cycle, c, in the collapsed constraint graph of a process be represented as a

sequence of variables {ci}, ci ∈ V . If a cycle traverses no transitions on variables in

V , the cycle is entirely within a process. Let c = {ci} be a cycle in the collapsed

constraint graph of such a circuit. By definition, if for all i, ci ∈ V1, c, must contain

only ρ paths. If for all i, ci ∈ V2, the cycle must contain only β paths.

If there exists a pair of variables, ci, cj ∈ c such that either ci ∈ V1, cj ∈ V2 or

ci ∈ V2, cj ∈ V1, and either j = i+1 or j = 1∧ i = ‖c‖, then there must exist an even

number of such pairs since c is a cycle. For each such pair ci, cj, if ci ∈ V1, cj ∈ V2

then c contains a λ path. Similarly for such ci ∈ V2, cj ∈ V1, c contains a ρ path.

Thus such a cycle must contain an equal number of λ and ρ paths, 0 or more φ paths

between a ρ path and the subsequent λ path and 0 or more β paths between a λ path

and the subsequent ρ path. This is exactly the set of cycles described by the regular

expression.

3.1.3.2 Critical Delay of F ,B and L Paths

Next, the critical delay of paths matching regular expressions F ,B and L in the

collapsed constraint graph of a circuit with no initial communications is derived. In

46

the rest of this section, the variables π, π1 and π2 are used to refer to paths in a

collapsed constraint graph. i and j represent ports of process p. Similarly h and k

represent ports of process q.

Claim 3.1. In the collapsed constraint graph of a circuit with no initial communica-

tions, satisfying assumptions 3.1–3.5, the critical delays at τ0 of paths traversing only

φ paths are at most:

• Φ↑↑ :
∑

φi,j(p)∈Φ↑↑

f i,j
p

• Φ↑↓ :
∑

φi,j(p)∈Φ↑↓

f i,j
p − z · τ0

2

• Φ↓↑ :
∑

φi,j(p)∈Φ↓↑

f i,j
p + z · τ0

2

• Φ↓↓ :
∑

φi,j(p)∈Φ↓↓

f i,j
p

where z = 1 if the Φ path contains 1 or more φ paths, undefined otherwise.

Proof. The claim is proven via induction. If the path contains no φ paths, it is simply

a vertex in the collapsed constraint graph. The Φ↑↑ and Φ↓↓ paths clearly have critical

delay of 0. There are no Φ↑↓ and Φ↓↑ paths traversing zero φ paths since the endpoints

of the path are transitions in opposite directions.

The base case of the induction is a Φ path of length 1. Inspection of Table 3.1

easily verifies that the claim holds.

Assume that the claim holds for all Φ paths traversing exactly n > 1 φ paths. It

can be proven that the claim holds for Φ paths traversing n+1 φ paths by considering

the cases where the path of length n+1 is a Φ↑↑, a Φ↑↓, a Φ↓↑ and a Φ↓↓ path separately.

A Φ path traversing n + 1 processes must consist of a Φ path traversing n processes,

π1, followed by a path π2 ∈ φh,k(q).

Consider the Φ↑↑ case. Either π1 is a Φ↑↑ path and π2 is a φh,k
↑↑ (q) path or π1 is a

Φ↑↓ path and π2 is a φh,k
↓↑ (q) path. Since π1 is assumed to traverse at least 1 process,

1 can be substituted for the value of z. In either case, the sum of the critical delays

47

of the path traversing n + 1 processes is at most

∑
φi,j(p)∈Φ↑↑

f i,j
p =

∑
φi,j(p)∈πi

f i,j
p + fh,k

q ,

which proves the claim for Φ↑↑ paths. A similar case analysis can be used to prove

the claim for the remaining cases.

If the critical delays of all paths between every process’s input and output variables

are equal to the values in Table 3.1, the claim specifies not just an upper bound, but

the value of the critical delay of all such Φ paths.

Claim 3.2. In the collapsed constraint graph of a circuit with no initial communica-

tions satisfying assumptions 3.1–3.5, the critical delays at τ0 of paths traversing only

β paths are at most:

• B↑↑ :
∑

βi,j(p)∈B↑↑

bi,j
p − n τ0

2

• B↑↓ :
∑

βi,j(p)∈B↑↓

bi,j
p − (n + z) τ0

2

• B↓↑ :
∑

βi,j(p)∈B↓↑

bi,j
p − (n− z) τ0

2

• B↓↓ :
∑

βi,j(p)∈B↓↓

bi,j
p − n τ0

2

where n is the number of processes traversed and z = 1 if n ≥ 1 undefined otherwise.

Proof. The proof of this claim uses the same techniques as that of claim 3.1. Instead

of considering φ paths, β paths are considered.

If the path traverses no β paths, it is simply a vertex in the collapsed constraint

graph. There are B↑↑ and B↓↓ paths traversing zero β paths, and their critical delay

is 0. There are no B↑↓ and B↓↑ paths traversing zero β paths since the endpoints of

such paths are transitions in opposite directions.

Inspection of Table 3.1 shows that the claim holds for n = 1 as well.

Assume towards induction that the claim holds for some n = n0 > 1. Since n0 > 1,

the value 1 is substituted for z.

48

Again, consider the four cases, B↑↑, B↑↓, B↓↑, B↓↓, separately. For the B↑↑ case,

there are two possibilities. Let π1 be a B path traversing n0 processes and let π2 be

a βh,k(q) path. Either π1 is a B↑↑ path and π2 is a βh,k
↑↑ (q) path or π1 is a B↑↓ path

and π2 is a βh,k
↓↑ (q) path. The critical delay of B↑↑ in the former case is given by

∑
βi,j(p)∈B↑↑

bi,j
p − n1

τ0

2
=

∑
βi,j(p)∈π1

bi,j
p − n0

τ0

2
+ βh,k

↑↑ (q)− τ0

2
.

Similarly, the critical delay of the path in the latter case is

∑
βi,j(p)∈B↑↑

bi,j
p − n1

τ0

2
=

∑
βi,j(p)∈π1

bi,j
p − (n0 + 1)

τ0

2
+ βh,k

↑↑ (q).

This proves the claim, for B↑↑ paths. A similar analysis for the B↑↓, B↓↑ and B↓↓

paths completes the proof.

If the critical delays of all paths between every process’s input and output variables

are equal to the values in Table 3.1, the claim specifies not just an upper bound, but

the value of the critical delay of all such B paths.

Claim 3.3. Consider any Λ path in the collapsed constraint graph of a circuit with

no initial communications satisfying assumptions 3.1–3.5. The critical delay at τ0 of

the path is at most

• Λ↑↑:
∑

βi,j(p)∈Λ↑↑

bi,j
p +

∑
ρi,j(p)∈Λ↑↑

ri,j
p +

∑
φi,j(p)∈Λ↑↑

f i,j
p +

∑
λi,j(p)∈Λ↑↑

li,jp − n τ0
2
.

• Λ↑↓:
∑

βi,j(p)∈Λ↑↓

bi,j
p +

∑
ρi,j(p)∈Λ↑↓

ri,j
p +

∑
φi,j(p)∈Λ↑↓

f i,j
p +

∑
λi,j(p)∈Λ↑↓

li,jp − (n + 1) τ0
2
.

• Λ↓↑:
∑

βi,j(p)∈Λ↓↑

bi,j
p +

∑
ρi,j(p)∈Λ↓↑

ri,j
p +

∑
φi,j(p)∈Λ↓↑

f i,j
p +

∑
λi,j(p)∈Λ↓↑

li,jp − (n− 1) τ0
2
.

• Λ↓↓:
∑

βi,j(p)∈Λ↓↓

bi,j
p +

∑
ρi,j(p)∈Λ↓↓

ri,j
p +

∑
φi,j(p)∈Λ↓↓

f i,j
p +

∑
λi,j(p)∈Λ↓↓

li,jp − n τ0
2
.

where n is the sum of the number of λ and β paths in L and n ≥ 1.

Proof. This proof uses the same technique of inductively verifying the claim as was

used in the proofs of Claim 3.1 and Claim 3.2.

49

Every Λ path must traverse at least 1 process, and contain at least 1 λ path. The

claim is proven by inducting on the number of λ paths contained in Λ.

Base case: A Λ path containing exactly 1 λ path must be a concatenation of Φ,

λ and B paths. There are four such possibilities for a Λ↑↑ path:

1. Φ↑↑λ↑↑B↑↑

2. Φ↑↑λ↑↓B↓↑

3. Φ↑↓λ↓↑B↑↑

4. Φ↑↓λ↓↓B↓↑

where Φ paths contain only φ paths of a process, and B paths only contain β paths

of a process. Let zΦ be 1 if the Φ path has at least 1 φ path, undefined otherwise.

Let nB be the number of β paths in B. Let zB = 1 if nB ≥ 1, undefined otherwise.

Let nΛ be the number of β and λ paths in Λ↑↑.

Note that if zΦ is undefined paths 3 and 4 do not exist. If zB is undefined, paths 2

and 4 do not exist. However, path 1 always exists, thus there is always a Λ↑↑ path.

The critical delays of the paths are respectively at most

1.
∑

βi,j(p)∈B↑↑

bi,j
p − nB

τ0
2

+
∑

φi,j(p)∈Φ↑↑

f i,j
p + l− τ0

2
= l +

∑
βi,j(p)∈B↑↑

bi,j
p +

∑
φi,j(p)∈Φ↑↑

f i,j
p −

(nB + 1) τ0
2

2.
∑

βi,j(p)∈B↓↑

bi,j
p −(nB−zB) τ0

2
+

∑
φi,j(p)∈Φ↑↑

f i,j
p +l−τ0 = l+

∑
βi,j(p)∈B↑↑

bi,j
p +

∑
φi,j(p)∈Φ↑↑

f i,j
p −

(nB − zB + 2) τ0
2

3.
∑

βi,j(p)∈B↑↑

bi,j
p −nB

τ0
2

+
∑

φi,j(p)∈Φ↑↓

f i,j
p −zΦ

τ0
2

+ l = l+
∑

βi,j(p)∈B↑↑

bi,j
p +

∑
φi,j(p)∈Φ↑↑

f i,j
p −

(nB + zΦ) τ0
2

4.
∑

βi,j(p)∈B↓↑

bi,j
p − (nB − zB) τ0

2
+

∑
φi,j(p)∈Φ↑↓

f i,j
p − zΦ

τ0
2

+ l − τ0
2

= l +
∑

βi,j(p)∈B↑↑

bi,j
p +∑

φi,j(p)∈Φ↑↑

f i,j
p − (nB + 1− zB + zΦ) τ0

2

Note that the critical delay of path 1 clearly satisfies the claim. When zΦ is

defined, the critical delay of 3 also satisfies the claim. When zB is defined, the critical

50

delay of 2 satisfies the claim. When zB and zΦ are defined, all four paths satisfy the

claim. Note that there is always at least one Λ↑↑ path regardless of the values of zB

and zΦ.

By considering the remaining three cases in a similar manner, it can be shown

that when there is exactly one λ path in a Λ path, the claim holds.

Inductive step: Assume towards induction that the claim holds for all Λ paths

containing m0 λ paths. Let Λ0
↑↑ be a Λ↑↑ path with m = m0 + 1 λ paths. This path

can be expressed as a composition of a Λ path containing m0 λ paths, a ρ path and

a Λ path containing exactly one λ path. There are four such possibilities:

1. Λ1
↑↑ρ↑↑Λ

2
↑↑

2. Λ1
↑↑ρ↑↓Λ

2
↓↑

3. Λ1
↑↓ρ↓↑Λ

2
↑↑

4. Λ1
↑↓ρ↓↓Λ

2
↓↑

where the Λ1 and Λ2 paths contain m0 and one λ paths respectively.

Let n1 be the number of λ and β paths in Λ1. Similarly let n2 be the number of

λ and β paths in Λ2. The number of λ and β paths in Λ0
↑↑ is n0 = n1 + n2.

The critical delays of the paths 1–4 are respectively at most:

1.
∑

βi,j(p)∈Λ1
↑↑

bi,j
p +

∑
ρi,j(p)∈Λ1

↑↑

ri,j
p +

∑
φi,j(p)∈Λ1

↑↑

f i,j
p +

∑
λi,j(p)∈Λ1

↑↑

li,jp −n1
τ0
2
+r+

∑
βi,j(p)∈Λ2

↑↑

bi,j
p +∑

ρi,j(p)∈Λ2
↑↑

ri,j
p +

∑
φi,j(p)∈Λ2

↑↑

f i,j
p +

∑
λi,j(p)∈Λ2

↑↑

li,jp − n2
τ0
2

2.
∑

βi,j(p)∈Λ1
↑↑

bi,j
p +

∑
ρi,j(p)∈Λ1

↑↑

ri,j
p +

∑
φi,j(p)∈Λ1

↑↑

f i,j
p +

∑
λi,j(p)∈Λ1

↑↑

li,jp − n1
τ0
2

+ r − τ0
2

+∑
βi,j(p)∈Λ2

↓↑

bi,j
p +

∑
ρi,j(p)∈Λ2

↓↑

ri,j
p +

∑
φi,j(p)∈Λ2

↓↑

f i,j
p +

∑
λi,j(p)∈Λ2

↓↑

li,jp − (n2 − 1) τ0
2

3.
∑

βi,j(p)∈Λ1
↑↓

bi,j
p +

∑
ρi,j(p)∈Λ1

↑↓

ri,j
p +

∑
φi,j(p)∈Λ1

↑↓

f i,j
p +

∑
λi,j(p)∈Λ1

↑↓

li,jp − (n1 + 1) τ0
2

+ r + τ0
2

+∑
βi,j(p)∈Λ2

↑↑

bi,j
p +

∑
ρi,j(p)∈Λ2

↑↑

ri,j
p +

∑
φi,j(p)∈Λ2

↑↑

f i,j
p +

∑
λi,j(p)∈Λ2

↑↑

li,jp − n2
τ0
2

51

4.
∑

βi,j(p)∈Λ1
↑↓

bi,j
p +

∑
ρi,j(p)∈Λ1

↑↓

ri,j
p +

∑
φi,j(p)∈Λ1

↑↓

f i,j
p +

∑
λi,j(p)∈Λ1

↑↓

li,jp − (n1 + 1) τ0
2

+ r +∑
βi,j(p)∈Λ2

↓↑

bi,j
p +

∑
ρi,j(p)∈Λ2

↓↑

ri,j
p +

∑
φi,j(p)∈Λ2

↓↑

f i,j
p +

∑
λi,j(p)∈Λ2

↓↑

li,jp − (n2 − 1) τ0
2

In all four cases, the expressions simplify to

∑
βi,j(p)∈Λ0

↑↑

bi,j
p +

∑
ρi,j(p)∈Λ0

↑↑

ri,j
p +

∑
φi,j(p)∈Λ0

↑↑

f i,j
p +

∑
λi,j(p)∈Λ0

↑↑

li,jp − n0
τ0

2

This proves the claim for Λ↑↑ paths with m0 + 1 λ paths. A similar case analysis will

prove the claim for the three remaining cases of Λ paths completing the induction.

If the critical delays of all paths between every process’s input and output variables

are equal to the values in Table 3.1, the claim specifies not just an upper bound, but

the value of the critical delay of all such Λ paths.

3.1.3.3 Critical Delay of Cycles in a Circuit with No Initial Communica-

tions

In this section, critical delays of paths matching regular expressions F ,B and L in

the collapsed constraint graph of a circuit with no initial communications are used to

determine the critical delay of any cycle in the collapsed constraint graph of circuit

with no initial communications.

Lemma 3.2. A simple cycle, c, in the collapsed constraint graph of a circuit satisfying

assumptions 3.1–3.5, with no initial communications has critical delay at most

∑
βi,j(p)∈c

bi,j
p +

∑
ρi,j(p)∈c

ri,j
p +

∑
φi,j(p)∈c

f i,j
p +

∑
λi,j(p)∈c

li,jp − n
τ0

2

where n is the number of β and λ paths in the cycle.

Proof. Any cycle in the collapsed constraint graph must match the regular expression

in lemma 3.1. If a cycle in the collapsed constraint graph of such a circuit contains

no λ edges, the cycle is composed of either only φ paths or only β paths. If the cycle

is composed of only φ paths, for any process p and pair of ports i and j of p, a φi,j(p)

52

path occurs in c at most twice, since there are only two transitions that can be the

source of a φi,j(p) path. Thus c can be written as one of the following:

1. c = Φ↑↑ where Φ↑↑ contains at most one element of φi,j(p) for any i, j, p.

2. c = Φ↓↓ where Φ↓↓ contains at most one element of φi,j(p) for any i, j, p.

3. c = Φ↑↓Φ↓↑ where Φ↑↓ and Φ↓↑ each contain at most one element of φi,j(p) for

any i, j, p.

By claim 3.1, the critical delay of c must be at most
∑

φi,j(p)∈c

f i,j
p . Similarly, if c contains

only β paths, it can be written as

1. c = B↑↑ where B↑↑ contains at most one element of βi,j(p) for any i, j, p.

2. c = B↓↓ where B↓↓ contains at most one element of βi,j(p) for any i, j, p.

3. c = B↑↓B↓↑ where B↑↓ and B↓↑ each contain at most one element of βi,j(p) for

any i, j, p.

Let n be the number of β paths in c. Then, by claim 3.2, the critical delay of c is at

most
∑

βi,j(p)∈c

bi,j
p − n τ0

2
.

If the cycle contains at least 1 λ path, then c can be written as

1. Λ↑↑ρ↑↑

2. Λ↑↓ρ↓↑

3. Λ↓↑ρ↑↓

4. Λ↓↓ρ↓↓

Let n be the number of β and λ paths in Λ. By claim 3.3 and assumption 3.4, the

critical delay of the c is at most
∑

βi,j(p)∈c

bi,j
p +

∑
ρi,j(p)∈c

ri,j
p +

∑
φi,j(p)∈c

f i,j
p +

∑
λi,j(p)∈c

li,jp −n τ0
2
.

If the critical delays of all paths between every process’s input and output variables

are equal to the values in Table 3.1, the lemma specifies not just an upper bound,

but the value of the critical delay of the cycles.

53

3.1.3.4 Critical Delay of Cycles in a Collapsed Constraint Graph

In this section, the critical delay of any cycle in the collapsed constraint graph of a

circuit with initial communications on a subset of its channels is derived, using the

results from Section 3.1.3.3

Theorem 3.1. Consider a cycle c in the collapsed constraint graph of a circuit sat-

isfying assumptions 3.1–3.5. Let p and q be processes such that there is an initial

communication on the channel formed by output port j of p and input port h of q.

Let m+ be the number of pairs of consecutive paths, π1, π2, in c such that π1 is either a

ρi,j(p) or φi,j(p) path and π2 is either a λh,k(q) or φh,k(q) path. Let m− be the number

of pairs of consecutive paths π1, π2, in c such that π1 is a λk,h(q) or βk,h(q) path and

π2 is a ρj,i(p) or βj,i(p) path. The critical delay of c is at most

∑
βu,v(w)∈c

bu,v
w +

∑
ρu,v(w)∈c

ru,v
w +

∑
φu,v(w)∈c

fu,v
w +

∑
λu,v(w)∈c

lu,v
w − n

τ0

2
− (m+ −m−)τ0

where n is the number of β and λ paths in c.

Proof. This claim can be proven by induction. Consider a circuit with no initial

communications on any channel. The claim is clearly true, by lemma 3.2.

Assume the claim holds for a circuit with n channels with initial communications.

The possible pairs of consecutive paths in any cycle of the circuit are φφ, φλ, ρφ,

ρλ, ββ, βρ, λβ and λρ. Consider a pair of consecutive paths φi,j
↑↑φ

h,k
↑↑ where the

pair of ports j, h are part of a channel with an initial communication, and there

are no initial communications on the channels to which ports i and k belong. By

Table 3.1, the critical delay of such a path is f i,j + fh,k − τ0. If there were no

initial communication, the delay would be f i,j + fh,k. The proof is completed by

performing similar comparisons for all possible combinations of consecutive paths,

and combinations of initial communications on ports j and h.

If the critical delays of all paths between every process’s input and output variables

are equal to the values in Table 3.1, the theorem specifies not just an upper bound,

but the value of the critical delay of all cycles.

54

3.2 Process Graphs and Cycle Time

In this section, process graphs are defined. Sufficient conditions to ensure the circuit’s

cycle time is at most τ0 are derived. These conditions are on the process graph.

In Section 3.2.1, process graphs are defined. Next, the relationship between a

cycle in the process graph and a cycle in the collapsed constraint graph of a circuit

is determined in Section 3.2.2. Then, in Section 3.2.3, a set of sufficient conditions

for a circuit to have cycle time at most τ0 is derived. Finally, in Section 3.2.4, it is

shown when these conditions are necessary for the cycle time to be at most τ0.

3.2.1 Process Graphs

A process graph of a QDI circuit is a directed graph G = (N, A). The set of nodes,

N , is the set of processes that comprise the circuit. There is an arc (u, v) ∈ A if and

only if there is a channel comprised of an output port of u and an input port of v.

Let an undirected path be a sequence of triplets {(ui, vi, di)} such that

• for all i, ui, vi ∈ N , di ∈ B,

• for all i, if di = true (ui, vi) ∈ A otherwise di = false and (vi, ui) ∈ A,

• for all i > 1, ui = vi−1.

An undirected path, c, is said to be an undirected cycle if u1 = v‖c‖ where ‖c‖ is the

length of the sequence c.

In the interest of clarity, it is assumed that the process graph does not contain

any arcs that are self-loops. In the interest of simplifying the notation, it is also

assumed that there is at most one channel (u, v) and at most one channel (v, u)

between any pair of processes. It is assumed that there are no arcs (u, u) ∈ A. Whilst

the following analysis remains correct without these assumptions, these assumptions

allow a simpler notation. I use the convention that input port u of process v is the

port that is part of the channel (u, v) and output port w of process v is part of channel

(v, w).

55

Let D ⊆ N × N be such that (u, v) ∈ D if and only if there is a directed path

from u to v in G. Let U ⊆ N ×N be such that (u, v) ∈ U if and only if there is an

undirected path from u to v in G. I adopt the convention that (u, u) ∈ D∧ (u, u) ∈ U

for all u ∈ N . Define mx,y to be 1 if and only if there is an initial communication on

the channel (x, y), 0 otherwise.

3.2.2 Correspondence Between Cycles in Process Graphs and

Collapsed Constraint Graphs

There is a direct correspondence between directed cycles in the collapsed constraint

graph of a circuit and undirected cycles in its process graph.

Any simple cycle, c′ = {c′i} expressed as a sequence of λ,ρ, β and φ paths in the

collapsed constraint graph of a circuit can be mapped to an undirected cycle, c = {ci}

in the circuit’s process graph as follows. Let c′i = tu,v(w).

• If t ∈ {λ, φ}, then ci = (u, w, true).

• If t ∈ {ρ, β}, then ci = (u, w, false).

Given an undirected cycle in the process graph, c = {(ui, vi, di)}, a corresponding

cycle c′ = {c′i} in the collapsed constraint graph is constructed as follows. For each

pair of triplets (ui, vi, di), (uj, vj, dj) ∈ c such that either j = i + 1 or i = ‖c‖ ∧ j = 1:

• if di = dj = true, c′i ∈ φui,vj(vi).

• if di = dj = false, c′i ∈ βui,vj(vi).

• if di = false ∧ dj = true, c′i ∈ ρui,vj(vi).

• if di = true ∧ dj = false, c′i ∈ λui,vj(vi).

with the directions of the transitions chosen such that c′ is indeed a cycle in the

collapsed constraint graph.

56

3.2.3 Sufficient Conditions for Slack Matching

Next, a system of linear inequalities that when satisfied imply that a circuit’s cycle

time is at most τ0 is derived. Theorem 3.1 provides an upper bound on the critical

delay of any cycle in the collapsed constraint graph of a circuit composed of processes

satisfying assumptions 3.1–3.5. This upper bound depends only on the number of

ti,j(p) paths (for all t, i, j, p) in the cycle. Thus, it suffices to consider the collapsed

constraint graphs of such circuits with only ti,j↑↑(p) paths, where i and j are ports of

process p and t is as described in Section 3.1.1.

Example 3.3. Consider the circuit described in example 3.2. Its HSE is:

Q ≡ Le↓; [¬Re];Rd↓; [¬Ld];Le↑;

*[[Re ∧ Ld];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑]

S ≡ [Re];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑;

*[[Re ∧ Ld];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑]

R ≡ [¬Re];Rd↓;Le↑;

*[[Re ∧ Ld];Rd↑;Le↓; [¬Re];Rd↓; [¬Ld];Le↑]

This circuit satisfies assumptions 3.1–3.5 for any cycle time τ0 ≥ 14 with the following

values of the constants in Table 3.1.

• fR,S
Q = fQ,R

S = fS,Q
R = 2

• bS,R
Q = bR,Q

S = bQ,S
R = 5

• lR,R
Q = lQ,Q

S = lS,S
R = 5

• rS,S
Q = rR,R

S = rQ,Q
R = 2

Figure 3.5 shows the collapsed constraint graph corresponding to the circuit, with each

arc marked by its critical delay at 14. Unmarked arcs have critical delay 0.

Figure 3.6 show the process graph of this circuit. An arc in the process graph is

marked with a solid rectangle if there is an initial communication on the channel.

57

Ld↑

Ld↓

Le↑

Le↓

Ld↑

Ld↓

Le↑

Le↓

Rd↑

Rd↓

Re↑

Re↓

Rd↑

Rd↓

Re↑

Re↓

Rd↑

Rd↓

Re↑

Re↓

Ld↑

Ld↓

Le↑

Le↓

2

-11

4

4

2
35

2

2

3

4

-10

2
35

-12

2

3

-10

4

2
3

2

-9

Q S R

Figure 3.5: Collapsed constraint graph of a ring.

RQ S

Figure 3.6: Process graph of a ring.

Figure 3.7 shows the collapsed constraint graph corresponding to the circuit, with

each arc marked by its critical delay at 14. Unmarked arcs have critical delay 0. Only

ti,j↑↑(p) paths of each process p are shown.

Ld↑

Le↑

Rd↑

Re↑

Rd↑

Re↑

Ld↑

Le↑

Rd↑

Re↑

2

-2

-2

2

-12

-2

12

2

Ld↑

Le↑

2

-2

-2

2

S RQ

Figure 3.7: Collapsed constraint graph of a ring with only ti,j↑↑(p) paths for each process
p.

In the remainder of this section, let G = (N, A) be the process graph of a circuit

satisfying assumptions 3.1–3.5. I use the convention that input port u of process v is

the port that is part of the channel (u, v) ∈ A and output port w of process v is part

58

of channel (v, w) ∈ A. When I refer to the collapsed constraint graph of a circuit, I

actually refer to the collapsed constraint graph of the circuit with only ti,j↑↑(p) paths

for all i, j, p ∈ N .

In the proceeding, let π′, π′
1 and π′

2 be directed paths in a collapsed constraint

graph. The letter c′ is used to denote a cycle in a collapsed constraint graph, and

the letter c to denote the corresponding cycle in the process graph. The letters

h, i, j, k, s, u, v, w, x, y and z are used to identify processes and ports, in both the

collapsed constraint graph and the process graph. I assume that each node, k, in the

process graph is labeled with the values f i,j
k , bi,j

k , li,jk and ri,j
k that satisfy assumption 3.4

for all i, j.

In order to verify that a circuit has cycle time at most τ0, it must be verified that

each directed cycle in its collapsed constraint graph has non-positive critical delay at

τ0. Each directed cycle in the collapsed constraint graph corresponds to an undirected

cycle in the process graph. Thus, given a process graph of a circuit, the list of channels

with initial communications and the values of f i,j
k , bi,j

k , li,jk and ri,j
k , for each undirected

cycle in the process graph the critical delay of the corresponding directed cycle in the

collapsed constraint graph can be computed. There are a possibly exponential number

of undirected cycles in a graph. Thus, in the remainder of this section, a polynomial

sized set of linear inequalities is derived that is sufficient to guarantee a circuit has

cycle time at most τ0.

Consider Φw,z paths in the circuits collapsed constraint graph that traverse only

φ paths of any process. Let w be an input port of process x and z be an output port

of process y. For each set of such nodes in the process graph, let Fwxyz · τ0 be an

upper bound on the critical delay of any Φw,z
↑↑ path from an input variable of port w

of process x to an output variable of port z of process y. It will be shown that all

59

Fwxyz must satisfy the following inequalities.

Sfxy ≥ −mx,y ∀x, y ∈ N : (x, y) ∈ A

(3.5)

Fwxxy ≥
fw,y

x

τ0

+ Sfxy ∀w, x, y ∈ N : (w, x), (x, y) ∈ A

(3.6)

Fwxyz ≥ Fwxuy + Fuyyz ∀w, x, u, y, z ∈ N : (w, x), (u, y), (y, z) ∈ A ∧ (x, u) ∈ D

(3.7)

Claim 3.4. Let π′ be a Φw,z
↑↑ path in a circuit’s collapsed constraint graph that traverses

only φ paths. Furthermore, let w be an input port of process x. Similarly, let z be

an output port of process y. Then, satisfying inequalities (3.5)–(3.7) implies that

Fwxyz · τ0 is at least as large as the critical delay of π′.

Proof. The claim is proven via induction. Before doing so, the critical delay of any

such π′ is established.

The critical delay of any such π′ is given by:

∑
φh,j(i)∈π′

fh,j
i −mi,j · τ0

This follows from claim 3.1 if there are no initial communications on any channel in

the system. If there are initial communications, recall that the collapsed constraint

graph only contains φ↑↑ paths. From assumption 3.4 and Table 3.1, the critical delay

of any φh,j
↑↑ (i) path is given by fh,j

i −mi,jτ0.

Base Case: π′ must be of length at least one. Let π′ = φu,w(v). If inequali-

ties (3.5)–(3.7) are satisfied, there exist Sfvw and Fuvvw such that

Sfvw ≥ −mv,w

Fuvvw ≥
fu,w

v

τ0

+ Sfvw

60

Substituting the former inequality into the latter proves the claim.

Inductive Step: Assume that the claim holds for all π′ of length n. Consider a

path, π′, of length n + 1. This path can be expressed as a composition of a path, π′
1

of length n and a path π′
2 of length 1.

Let π′
1 be a Φu,w path and π′

2 be a φy,x(w) path, where (u, v), (y, w), (w, x) ∈ A.

If inequalities (3.5)–(3.7) are satisfied, there exist Fywwx,Fuvwx and Fuvyw that

satisfy the following inequality.

Fuvwx ≥ Fuvyw + Fywwx

Furthermore, by inductive assumption, Fuvyw is at least the critical delay of π′
1 and

from the proof of the base case, Fywwx is at least the critical delay of π′
2. The critical

delay of π′ is the sum of the critical delay of π′
1 and π′

2. Thus, Fuvwx is at least as

large as the critical delay of π′.

Thus it has been shown that Fuvwx · τ0 is at least as large as the critical delay of

any Φu,x
↑↑ path that traverses only φ paths, where u is an input port of process v and

x is an output port w. Satisfying the following inequality ensures that critical delay

of any cycle in the collapsed constraint graph traversing only φ paths is non-positive.

Fxyxy ≤ 0 ∀x, y ∈ N : (x, y) ∈ A, (y, x) ∈ D (3.8)

Lemma 3.3. All cycles in a circuit’s collapsed constraint graph that traverse only φ

paths have critical delay at most 0, if inequalities (3.5)–(3.8) can be satisfied.

Proof. As shown in Section 3.2.2, any directed cycle c in G has a corresponding cycle

c′ in the collapsed constraint graph that traverses only φ paths. Similarly, any cycle c′

in the collapsed constraint graph traversing only φ paths has a corresponding directed

cycle c in G. Since there are no arcs (u, u) ∈ A, c must have length at least 2.

Let the arcs (x, y) and (y, z) occur consecutively in c. Thus, there must be a

directed path from z to x, and consequently a directed path from y to y containing

arcs (y, z) and (x, y).

61

Let this path from y to y be π, and the corresponding path in the collapsed

constraint graph traversing only φ↑↑ paths be π′. By claim 3.4, Fxyxy · τ0 must be

at least as large as the critical delay of π′. However π′ is exactly the cycle c′. Thus

Fxyxy · τ0 is at least as large as the critical delay of c′. If inequality (3.8) is satisfied,

then c′ has critical delay at most 0.

Next, Bw,z paths in the circuit’s collapsed constraint graph that traverse only β

paths of any process are considered. Let w be an output port of process x and z

be an input port of process y. For each set of such nodes in the process graph, let

−Bwxyz · τ0 be an upper bound on the critical delay of any Bw,z
↑↑ path from an input

variable of port w of process x to an output variable of port z of process y. It is

shown that all Bwxyz must satisfy the following inequalities.

Sbyx ≤ −mx,y ∀x, y ∈ N : (x, y) ∈ A

(3.9)

Bwxxy ≤
1

2
− bw,y

x

τ0

+ Sbwx ∀w, x, y ∈ N : (y, x), (x, w) ∈ A

(3.10)

Bwxyz ≤ Bwxuy + Buyyz ∀w, x, u, y, z ∈ N : (z, y), (y, u), (x, w) ∈ A, (u, x) ∈ D

(3.11)

Claim 3.5. Let π′ be a Bw,z path in a circuit’s collapsed constraint graph that tra-

verses only β paths of any process. Further more, let z be an input port of process y.

Similarly, let w be an output port of process x. Then, satisfying inequalities (3.9)–

(3.11) implies that −Bwxyz · τ0 is an upper bound on the critical delay of π′.

Proof. The proof of this claim is nearly identical to that of claim 3.4. The only

difference is that the delays of B paths is considered, not that of Φ paths. The claim

is proven via induction. First, the critical delay of any such π′ is established.

The critical delay of any such π′ is given by:

∑
βh,j(i)∈π′

bh,j
i −

τ0

2
+ mi,h · τ0

62

This follows from claim 3.2 if there are no initial communications on any channel in

the system. If there are initial communications, recall that the collapsed constraint

graph only contains β↑↑ paths. By assumption 3.4 and Table 3.1, the critical delay of

any βh,j
↑↑ (i) path is given by bh,j

i − τ0
2

+ mi,hτ0.

Base Case: π′ must be of length at least one. Let π′ = βu,w(v). If inequali-

ties (3.9)–(3.11) are satisfied, there exist Sbuv and Buvvw such that

Sbuv ≤ −mv,u

Buvvw ≤
1

2
− bu,w

v

τ0

+ Sbuv

Substituting the former inequality into the latter completes the proof.

Inductive Step: Assume that the claim holds for all π′ of length n. Consider a

path, π′, of length n + 1. This path can be expressed as a composition of a path, π′
1

of length n and a path π′
2 of length 1.

Let π′
1 be a Bu,w path and π′

2 be a βy,x(w) path, where (v, u), (w, y), (x, w) ∈ A.

If inequalities (3.9)–(3.11) are satisfied, there exist Bywwx,Buvwx and Buvyw that

satisfy the following inequality.

Buvwx ≤ Buvyw + Bywwx

Furthermore, by inductive assumption, −Buvywτ0 is at least the critical delay of π′
1

and from the proof of the base case, −Bywwxτ0 is at least the critical delay of π′
2. The

critical delay of π′ is the sum of the critical delay of π′
1 and π′

2. Thus, −Buvwxτ0 is at

least as large as the critical delay of π′.

Thus, it has been shown that −Buvwx · τ0 is at least as large as the critical delay

of any Bu,x
↑↑ path that traverses only β paths, where u is an output port of process

v and x is an input port of w. Satisfying the following inequality ensures that the

critical delay of any cycle in the collapsed constraint graph traversing only β paths is

not positive.

Bxyxy ≥ 0 ∀x, y ∈ N : (y, x) ∈ A, (x, y) ∈ D (3.12)

63

Lemma 3.4. All cycles in a circuit’s collapsed constraint graph that traverse only β

paths have critical delay at most 0, if inequalities (3.9)–(3.12) can be satisfied.

Proof. The proof of this lemma, is nearly identical to that of lemma 3.3. The only

difference is that cycles traversing β paths instead of those traversing φ paths are

considered.

As shown in Section 3.2.2, any undirected cycle c in G has a corresponding cycle c′

in the collapsed constraint graph that traverses only β paths. Similarly, any cycle c′ in

the collapsed constraint graph traversing only β paths has a corresponding undirected

cycle c in G. Since there are no arcs (u, u) ∈ A, c must have length at least 2.

Let the triples (x, y, false) and (y, z, false) occur consecutively in c. Thus, there

must be a directed path from x to z, and consequently a directed path from y to y

containing arcs (y, z) and (x, y).

Let π be the undirected path obtained by traversing each edge on this path from y

to y in the opposite direction. Let the corresponding path in the collapsed constraint

graph traversing only β↑↑ paths be π′.

By claim 3.5, −Bxyxy · τ0 must be at least as large as the critical delay of π′.

However π′ is exactly the cycle c′. Thus −Bxyxy · τ0 is at least as large as the critical

delay of c′. If inequality (3.12) is satisfied, then c′ has critical delay at most 0.

I have thus far derived constraints that must be satisfied if the critical delay of

any cycle in the collapsed constraint graph that traverses only φ or only β paths is

non-positive. However, there may be cycles that contain λ and ρ paths. Consider a

Λw,z
↑↑ path in the collapsed constraint graph, such that w is an input port of process

x and z and input port of process y. For each set of such nodes in the process graph,

let −Lwxyz · τ0 be an upper bound on the critical delay of any Λw,z
↑↑ path from an

input variable of port w of process x to an output variable of port z of process y. It

64

is shown that Lwxyz must satisfy the following inequalities.

Lwxxy ≤
1

2
− lw,y

x

τ0

∀w, x, y ∈ N : (w, x), (y, x) ∈ A (3.13)

Lwxyz ≤ Lwxuv + Buvyz

∀u, v, w, x, y, z ∈ N : (w, x), (v, u), (z, y) ∈ A,∃s ∈ N : (y, v), (x, s), (u, s) ∈ D

(3.14)

Lwxyz ≤ −Fwxuv + Luvyz

∀u, v, w, x, y, z ∈ N : (w, x), (u, v), (z, y) ∈ A,∃s ∈ N : (x, u), (v, s), (y, s) ∈ D

(3.15)

Lwxyz ≤ Lwxuv −Ruvvs + Lvsyz

∀w, x, y, z, u, v, s ∈ N : (w, x), (v, u), (v, s), (z, y) ∈ A, (u, x), (y, s) ∈ U (3.16)

Rwxxy ≥ −Sbwx +
rw,y
x

τ0

+ Sfxy

∀w, x, y ∈ N : (x, w), (x, y) ∈ A (3.17)

Claim 3.6. Let π′ be a Λu,x path in a circuit’s collapsed constraint graph. Further-

more, let u be an input port of process v. Similarly, let x be an input port of process w.

Then, satisfying inequalities (3.5)–(3.17) implies that −Luvwx · τ0 is an upper bound

on the critical delay of π′.

Proof. This proof is very similar to that of claims 3.4 and 3.5.

The claim is proven via induction on the number of λ paths in π′. Before doing

so, the critical delay of any such π′ is established. The critical delay of any such π′ is

given by:

∑
λh,j(i)
∈π′

lh,j
i −

τ0

2
+

∑
βh,j(i)
∈π′

bh,j
i −

τ0

2
+mi,h ·τ0+

∑
φh,j(i)
∈π′

fh,j
i −mi,j ·τ0+

∑
ρh,j(i)
∈π′

rh,j
i −mi,j ·τ0+mi,h ·τ0

65

This follows from claim 3.1 if there are no initial communications on any channel in

the system. If there are initial communications, recall that the collapsed constraint

graph only contains φ↑↑ paths. By assumption 3.4 and Table 3.1, the critical delay of

any φh,j(i) path is given by fh,j
i −mi,jτ0. Similarly, the critical delay of any βh,j(i)

path is given by bh,j
i + mi,h · τ0 and the critical delay of any ρh,j(i) path is given by

rh,j
i −mi,j · τ0 + mi,h · τ0.

π′ by definition must contain at least one λ path.

Base case: Let π′ = λw,y
↑↑ (x). The claim is proven for π′ that contain exactly one

λ path by considering three cases:

• π′ = λw,y
↑↑ (x),

• π′ == λu,y
↑↑ (v)Bv,x

↑↑ where Bv,x
↑↑ traverses one or more β paths, and

• π′ = Φu,zΛy,x such that Φu,z contains one or more φ paths and Λy,x contains one

λ path and zero or more β paths.

If inequalities (3.5)–(3.17) hold, there exists Lwxxy such that

Lwxxy ≤
1

2
− lw,y

x

τ0

.

This proves the claim for π′ = λw,y
↑↑ (x).

If π′ = λu,y
↑↑ (v)Bv,x

↑↑ , where Bv,x only has β paths, and Bv,x
↑↑ is a path from port

v of process y to port x of process w. Inequalities (3.5)–(3.17) hold so there exist

Luvvy,Bvywx and Luvwx such that

Luvwx ≤ Luvvy + Bvywx.

Since inequalities (3.5)–(3.17) hold, claim 3.5 holds. By claim 3.5, −Bvywx · τ0 is

an upper bound on the critical delay of Bv,x
↑↑ . This, along with the analysis for

π′ = λw,y
↑↑ (x) proves the claim for π′ = λu,y

↑↑ (v)Bv,x
↑↑ .

Lastly, consider the case where π′ = Φu,zΛy,x such that Φu,z contains only φ paths

and Λy,x contains one λ path and zero or more β paths. Furthermore let u be a port

66

of process v, z a port of process y, y a port of process z, x a port of process w.

It has been established that the claim holds for the Λy,x path. Since inequali-

ties (3.5)–(3.17) hold, claim 3.4 holds. There also exist Fuvyz,Lyzwx and Luvwx such

that

Luvwx ≤ −Fuvyz + Λyzwx.

The claim follows from this inequality, claim 3.4 and the claim for π′ = λu,y
↑↑ (v)Bv,x

↑↑

proven above.

Inductive step: Assume that the claim holds for all paths π′ containing n λ paths.

Consider a path π′ with n + 1 λ paths. π′ = Λu,yρs,z(y)Λy,x where Λu,y has n λ paths

and Λy,x has one λ path. Furthermore, let (y, s), (y, z), (x, w), (u, v) ∈ A. Satisfying

inequalities (3.5)–(3.17) implies there exist Luvsy,Rsyyz,Lyzwx, Sbsy, Sfyz and Luvwx

such that

Rsyyz ≥
rs,z
y

τ0

+ Sfyz − Sbsy

Luvwx ≤ Luvsy −Rsyyz + Lyzwx

By the inductive hypothesis and the base case, the claim holds for Λu,y and Λy,x.

Assumption 3.4 and Table 3.1 show that the critical delay of any ρs,z(y) is at most

Rsyyz · τ0. This along with the last of the two inequalities proves the claim.

Next, all cycles in a circuit’s collapsed constraint graph such that the cycle tra-

verses at least one λ path are considered. The following two constraints ensure that

the critical delay of all such cycles is non-positive.

Cxw ≤ Lxwyx −Ryxxw ∀w, y, x ∈ N : (x, w), (x, y) ∈ A, (w, y) ∈ U (3.18)

Cxw ≥ 0 ∀(x, w) ∈ A (3.19)

Theorem 3.2. All cycles in a circuit’s collapsed constraint graph have critical delay

at most 0, if inequalities (3.5)–(3.19) can be satisfied.

Proof. If a cycle does not contain any λ paths, then by lemmas 3.3 and 3.4 the

67

theorem is true.

If the cycle contains at least one λ path, then the cycle can be written as Λx,xρy,w
x .

Satisfying inequalities (3.5)–(3.19) implies there exists Lxwyx,Ryxxw and Cxw such

that

Cxw ≤ Lxwyx −Ryxxw ∀w, y, x ∈ N : (x, w), (x, y) ∈ A, (w, y) ∈ U

Cxw ≥ 0 ∀(x, w) ∈ A

By claim 3.6, −Lxwyx · τ0 is an upper bound on the critical delay of the Λx,x path

in the cycle. Assumption 3.4 shows that Ryxxwτ0 is an upper bound on the critical

delay of the ρy,w
x path in the cycle. Thus, −Cxw · τ0 is an upper bound on the critical

delay of the cycle. The above inequality requires that this be at most 0, proving the

claim.

3.2.4 Necessary Conditions for Slack Matching

Next, it is shown when inequalities (3.5)–(3.19) must be satisfied for a circuit to have

cycle time at most τ0.

Lemma 3.5. Let p be a process in a circuit with ports i and j. If all ti,j(p) paths

have critical delay at τ0 equal to the values in Table 3.1, then inequalities (3.5)–(3.19)

are necessary for the circuit to have cycle time τ0.

Proof. Let Q be a circuit such that for all processes, every path between any pair

of input and output transitions the critical delay at τ0 equals the value in Table 3.1.

Let Q have cycle time less than τ0. Let G = (N, A) be the process graph of Q.

Inequalities (3.5)–(3.19) can be satisfied as follows.

Let inequalities (3.5),(3.6), (3.9),(3.10),(3.13) and (3.17) be satisfied with equality.

Let w, x, y, z and π′ be as in claim 3.4. Choose Fw,x,y,z such that the claim holds

for all π′ and is satisfied with equality for some π′. This is done by choosing Fwxyz

such that for all u, y : (u, y) ∈ A, (x, u) ∈ D inequality (3.7) holds, and is satisfied

with equality for some u and y.

68

Similarly, let w, x, y, z and π′ be as in claim 3.5. Choose Bwxyz such that the claim

holds for all π′ and is satisfied with equality for some π′. This is done by choosing

Bwxyz such that for all u, y : (y, u) ∈ A, (u, x) ∈ D inequality (3.11) holds, and is

satisfied with equality for some u and y.

For w, x, y, z and π′ as in claim 3.6, choose Lwxyz such that the claim holds for all

π′ and is satisfied with equality for some π′. This is done by choosing Lwxyz so that

for all u, v, s if

1. (v, u) ∈ A ∧ (y, v), (x, s), (u, s) ∈ D, then inequality (3.14) holds for all such

(u, v, s),

2. (u, v) ∈ A ∧ (y, s), (x, u), (v, s) ∈ D, then inequality (3.15) holds for all such

(u, v, s),

3. (v, u), (v, s) ∈ A ∧ (u, x), (y, s) ∈ U , then inequality (3.16) holds for all such

(u, v, s)

and for every Lwxyz at least one of the inequalities (3.14)–(3.16) is satisfied with

equality.

If one of the inequalities (3.8),(3.12), (3.18)–(3.19) is not satisfied, then by con-

struction there exists some cycle in the process graph, such that critical delay at τ0 of

the corresponding cycle in the collapsed constraint graph is greater than zero. (This

follows from claims 3.4–3.6 and theorem 3.1).

3.3 Slack Matching a QDI circuit

In this section, I derive a mixed integer linear program(MILP) that can be solved to

determine the number and placement of slack matching buffers needed for any circuit

composed of processes satisfying assumptions 3.1–3.5 to have cycle time τ0.

First, in Section 3.3.1, results from Section 3.1 and 3.2 are used to establish the

critical delays between input and output variables of a pipeline of LR-buffers. Next,

in Section 3.3.2, it is shown how this can be used to generate a set of inequalities over

69

a collection of real and integer variables that must be satisfied in order for the circuit

to have cycle time τ0. Finally, in Section 3.3.3, the time complexity of generating this

MILP, given a circuit’s process graph, is determined.

3.3.1 Pipelines of LR-buffers

In Section 3.2, I derived a set of constraints sufficient to guarantee that a circuit’s

cycle time is at most τ0. Only an integral number of slack matching buffers can be

added to any channel. In the following section, such a set of inequalities is constructed

for the circuit obtained by adding a variable number of buffers, nu,v, to each channel

(u, v) in a circuit. In order to do so the critical delays of paths between input and

output variables of a pipeline of LR-buffers need to be characterized. As explained

in Section 3.2, only the critical delay of any path traversing only φ↑↑, β↑↑, λ↑↑ and ρ↑↑

paths needs to be considered.

Let s be the buffer that is used for slack matching a system. Let i be the input

port of s and j the output port. Furthermore, let s satisfy assumptions 3.1–3.5 and

let f i,j
s = rj,j

s , bj,i
s = li,is and f i,j

s + bsj, i ≤ τ0
2
. An example of such a buffer was shown

in Example 3.1. By claim 3.1, the critical delay of any Φ↑↑ path traversing only φ

paths in a pipeline of n instances of s is given by n · f i,j
s . Since only t↑↑ paths in

each slack matching buffer are being considered, all simple Φ↑↑ paths in the pipeline

contain only φ↑↑ paths. Symmetrically, it can be argued that the critical delay of any

B↑↑ path is at most n(bj,i
s − τ0

2
). All simple Λ↑↑ paths must contain an equal number

of φ↑↑ paths and β↑↑ paths and one λ↑↑ path. The sum of the critical delay of a pair

of φ↑↑ and β↑↑ paths is f i,j
s + bj,i

s − τ0
2
≤ 0. Thus, critical Λ↑↑ path has critical delay

li,is . A symmetric argument can be used to show that the critical P↑↑ path has critical

delay rj,j
s .

3.3.2 MILP for Slack Matching

In this section, SMOP is stated as a MILP and it is shown how to generate this MILP

efficiently. It is assumed that the circuit being slack matched is closed, that is each

70

port of a process is part of a channel containing the port of another process. If the

circuit is not closed, a source is connected to each of the circuit’s input ports and

a sink to each of the system’s output ports. A source is a buffer with exactly one

output channel, and a sink is a buffer with exactly one input channel. It is assumed

that the environment is such that it does not constrain the system’s cycle time to be

greater than the target, τ0.

Consider a process graph G = (N, A) representing a circuit comprised of processes

satisfying assumptions 3.1–3.5. The circuit represented by G has cycle time at most

τ0 if theorem 3.2 holds.

Slack matching is performed by adding buffers along communication channels in

such a manner that the inequalities (3.5)–(3.19) can be satisfied for the resulting

system. Slack matching only changes a system by adding buffers to communication

channels.

Replacing inequalities (3.5) and (3.9) by (3.20)–(3.22), the set of inequalities from

theorem 3.2 is obtained for the system with nuv slack matching buffers added to each

channel (u, v), where the slack matching buffer, s, is as described in the previous

section and the following assumption holds. It is assumed that li,is ≤ lj,jp for all

process p and ports j in the circuit being slack matched. Similarly, it is assumed

that ri,i
s ≤ rj,j

p for all process p and ports j in the circuit being slack matched. This

is typically the case for LR-buffers. Slack matching a circuit is thus equivalent to

determining non-negative integers nuv such that the system of inequalities (3.6)–(3.8)

and (3.10)–(3.22) is satisfied.

Sfuv ≥ −mu,v + nuv
f i,j

s

τ0

∀(u, v) ∈ A (3.20)

Sbvu ≤ −mu,v + nuv ·
(

1

2
− bi,j

s

τ0

)
∀(u, v) ∈ A (3.21)

nuv ∈ N ∀(u, v) ∈ A (3.22)

Since there may be multiple solutions to the set of equations, any cost function linear

in nuv may be used to drive the optimization.

71

3.3.3 Generating the MILP

The time complexity of generating the MILP to slack match a circuit is analyzed in

this section. Let n be the number of nodes in the collapsed constraint graph of a

circuit. Let m be the number of arcs in the collapsed constraint graph.

Given the collapsed constraint graph, G, a n × n matrix, D, such that Du,v = 1

if (u, v) ∈ D, Du,v = 0 otherwise, is constructed by running n breadth first searches,

each rooted at a distinct node. This takes time O(mn + n2). Let G′ be the graph

obtained from G by replacing all directed arcs in G with an undirected arc. Matrix

U such that Uu,v = 1 if (u, v) ∈ U , 0 otherwise, can be constructed by running n

breadth first searches, each rooted at a distinct node. This takes O(mn + n2) time.

There are O(mn) 3-tuples of nodes for which inequalities (3.6),(3.10),(3.13) and (3.17)

need to be generated. Similarly, there are O(m2n2) 5-tuples of nodes for which

inequalities (3.7), (3.11) need to be generated. There are O(m2n3) 7-tuples for

which (3.14), (3.15) and (3.16) need to be generated. There a re also O(m) arcs

such that the remaining inequalities need to be generated. Thus the MILP can be

generated in (m2n3) time.

Often, due to cycle time considerations, the number of channels a process has is

bounded by a constant k. In this case, the preceding analysis reveals that the MILP

can be generated in O(k4n3) time.

Pseudocode for generating this MILP is provided in Section 6.2

3.3.4 Multiple Scenarios

Recall that the MILP described thus far is constructed for a specific set of inputs to

the circuit being slack matched. Each set of inputs is called a scenario. If there are

multiple scenarios of concern to the designer, similar MILPs can be constructed for

each scenario and solved simultaneously. Different sets of real variables are used in

each of the MILPs. However, for each channel, the same integer variable is used to

encode the number of slack matching buffers to be inserted on the channel. The set of

MILP constraints for slack matching multiple scenarios is the union of the individual

72

sets of MILP constraints.

3.4 Results

The algorithm to generate a MILP equivalent to SMOP, from Section 3.3, was imple-

mented in Modula-3 [21] and solved with glpsol [1], a freely available MILP solver.

Two large examples were studied, the fetch loop of the Lutonium [19], an asyn-

chronous 8051 micro-controller, and a control loop in the fetch unit of the MiniMIPS

microprocessor [18].

3.4.1 Example I: Lutonium Fetch Loop

This algorithm was used to slack match the fetch loop of the Lutonium micro-

controller. The objective function minimized was the estimated energy consumption

of the slack matching buffers. Whilst the instruction memory is not implemented as

a pipeline of half buffers, it can be modeled as one. The 8k instruction memory is

modeled as 2s half buffers where s is the static slack of the memory.

Figure 3.8 shows the fetch loop of the Lutonium micro-controller. The 8051 in-

struction set contains instructions of different lengths(1,2,or 3 bytes). These instruc-

tions can be classified into four groups, those that read the instruction memory, those

that write to the instruction memory, those that change the program counter (pc)

and all other instructions. In the interests of cycle time, the Lutonium was designed

so that two bytes of data are fetched from the instruction memory per cycle. I will

describe the path of an instruction through this fetch loop. Initially, a pc is sent to

the IMem, and two bytes are received from the IMem. A switch box(implemented

by process SplD0,SplD1,MrgExt and MrgIO) routes the lower order byte to the IDe-

code process. This process determines the instruction type and length and forwards

it to the state machine controller. The state machine controller consists of process

IntCtrl, ExtControl,Router,CBUFE,CBUFIE,and CBUF. Based on the instruction

type, the state machine controller sends a message to the switch box telling it how to

route the higher order byte from the instruction memory. The collection of processes

73

PCUL,PCUH,PCIL,PCIH, PCNL and PCNH keep track of the current pc, and make

any necessary changes to the current pc. The state machine controller also sends a

message to these processes describing how the next pc is to be computed. For branch

instructions, those that change the pc, the current pc needs to be forwarded to the

Branch Unit. The new vale of the pc is also received from Branch Unit.

MrgI0Ext-
Control

CBUFIE

MrgExt

Ctrl

CBUFE

Int

Router

PCNH

PCUL

PCNL

PCUH

D0

IMEM

Spl

PCIH

CBUF

PCIL

D1

Spl

Check

Irpt-

IDecode

Figure 3.8: Lutonium fetch loop

Table 3.2 shows the buffers needed to slack match the system. The table also

lists the results of slack matching when performed by hand on the system. Observe

that there are fewer buffers on the byte channel in the pc increment loop when slack

matching is performed using this algorithm, all other channels have an identical num-

ber of buffers. It took 0.1s to generate the MILP and 0.6s to solve the MILP for this

circuit. The MILP was generated and solved on a machine with a 2.2 GHz Pentium 4

processor with 512 MB of memory. This MILP had 31 integer variables. The cycle

time of the fetch was reduced from 68 transitions to 22 transitions.

74

Channel # Buffers (hand) # Buffers (MILP)
ExtControl - CBUFE 1 1
ExtControl - Router 1 1
ExtControl - IntCtrl 1 1
CBUF - IntCtrl 1 1
Router - SplD1 2 2
Router - MrgI0 1 1
Router - MrgExt 3 3
PCNH - PCIH 1 0
PCNH - PCUH 1 1
PCNL - PCUL 1 1
PCIL - PCUL 1 1

Table 3.2: Slack Matching buffers for Lutonium fetch

3.4.2 Example II: Control Loop of MiniMIPS

Figure 3.9 shows a loop in the fetch of the MiniMIPS.

BJ T

MPE

VA IJ

Figure 3.9: Control Loop in the MiniMIPS fetch

Table 3.3 shows the buffers required to slack match this loop. It also shows the

results when slack matching was performed by hand. Note that extra buffers included

when slack matching was performed by hand may be needed because a ring composed

of both half buffers and full buffers was not included when generating the MILP. It

took 0.1s to generate the MILP and 0.4s to solve it. The MILP was generated and

solved on a machine with a 2.2 GHz Pentium 4 processor with 512 MB of memory.

This MILP had 13 integer variables.

75

Channel # buffers (hand) # buffers (MILP)
VA-MPE 4 1
IJ-MPE 4 1

Table 3.3: Slack Matching buffers for the control loop in the MiniMIPS fetch

3.5 Conclusions and Future Work

A method of expressing SMOP as a MILP has been presented. This method provides

a set of conditions for slack matching systems composed of a specified class of half

buffers. A polynomial time algorithm has been presented to generate the MILP. This

method of generating a MILP, and then solving using general purpose MILP solvers

has been applied to circuits from the Lutonium [19] and the MiniMIPS [18]. Similar

conditions to those in Sections 3.1 and 3.2 can be derived for slack matching circuits

comprised of a restricted set of full buffers.

For the circuits studied so far, solving the MILP exactly has not taken a large

amount of time. However, if solving the MILP for slack matching larger systems does

take an excessive amount of time, heuristic MILP solvers should be considered [5]

76

Chapter 4

Slack Matching is NP-Complete

Whilst it has been conjectured that slack matching a QDI circuit is NP-complete [9,

22, 27], there is no proof in the literature that this problem is indeed NP-complete.

Beerel [9] has shown that the pipeline optimization problem is NP-complete. Slack

matching is a special case of the pipeline optimization problem. Beerel conjectures

that slack matching is NP-complete. In this chapter, it is shown that slack matching

is NP-complete via a reduction from the subset sum problem [7, SP13].

The slack matching decision problem is defined in Section 4.1. Next, in Section 4.2

a reduction from subset sum to slack matching is provided and it is shown that slack

matching is NP-complete. The results are summarized in Section 4.3.

4.1 Slack Matching Decision Problem

NP is a class of decision problems. In this section, the decision problem corresponding

to SMOP is defined. It will be shown that this decision problem is NP-complete.

Let S be the buffer that is to be added to channels in order to reduce the circuit’s

cycle time. S is called the slack matching buffer. If an SMOP has no feasible solution,

then the circuit cannot be slack matched to cycle time τ0. If the circuit has a feasible

solution, the minimum value of
∑

X N(xi)C(xi) is said to be the cost of slack matching

(P ,X) to cycle time τ0.

Definition 4.1 (Slack Matching Decision Problem(SMDP)). Given K ∈ [0,∞) and

a circuit (P ,X), slack matching buffer S, target cycle time τ0 ∈ R+ and cost function

77

C as in Definition ??, does there exist a mapping N as in Definition ?? such that∑
xi∈X

N(xi)C(xi) ≤ K.

4.2 NP Completeness of SMDP

In this section, it is show that SMDP is NP-complete by demonstrating a reduction

from subset sum, a well known NP-complete problem, to SMDP. It is also shown that

SMDP is in NP, completing the proof. The subset sum problem is defined as follows.

Definition 4.2 (Subset Sum). Given a set K of positive integers and positive integer

T , does there exists a subset S ⊆ K such that the sum of elements of S equals T ?

4.2.1 Outline

This section is organized as follows. A variant of the subset sum problem is reduced

to the problem of determining whether a particular circuit can be slack matched with

cost at most H.

• In Section 4.2.2 the processes that are in the circuits used in the reduction are

described.

• In Section 4.2.3, the circuit used in the reduction is described. This circuit is

called a sum checker.

A sum checker consists of ring comprised of a chain of circuits, called J-limiters,

and two half buffers with an initial communication on the channel between the

two half buffers. It is show in figure 4.1

HB2 HB1

JL1 JL2 JLm

Figure 4.1: Sum Checker

The reduction relies upon a circuit called a J-limiter. Such a circuit takes two

parameters, H and J . The circuit has cycle time at most τ0 if at most J slack

78

matching buffers have been inserted on a particular channel of the circuit and

not slack matching buffers have been added on any other channel in the circuit.

The cost of adding a slack matching buffer to any other channel in the J-limiter

is H + 1.

• In Section 4.2.4, it is shown that slack matching is NP-hard. First it is proven

that a variant of the subset sum problem is NP-complete. Next, it is shown how

each instance of this problem can be reduced to a problem of slack matching a

particular sum checker.

• Finally, in Section 4.2.5, it is shown that slack matching is NP-complete.

4.2.2 Class of Circuits Used in the Reduction

The circuit used in the reduction from subset sum to slack matching consists of

processes that satisfy assumptions 3.1–3.5 (pp 37–38). Furthermore, it is assumed

that the critical delay at τ0 of paths between input and output transitions of the

process are exactly the values in Table 3.1.

Let the paths between input and output variables of a process be classified as in

Section 3.1.1. Theorem 3.1 shows that the critical delay of any cycle depends only

on the number of ti,j(p) paths on the cycle for each process p with ports i and j.

Thus it is sufficient to consider the collapsed constraint graph of a circuit comprised

of such processes with only ti,j↑↑(p) paths of each process p with ports i and j. In

the following, when I refer to a collapsed constraint graph of a circuit, I mean the

collapsed constraint graph of the circuit containing only edges that are on t↑↑ paths

of each process.

4.2.3 Sum Checkers

The subset sum problem is reduced to that of determining whether a circuit called a

sum checker can be slack matched with cost at most H.

In Section 4.2.3.1, some properties of LR-buffers used in the reduction are stated.

79

The slack matching buffer used satisfies these properties. Next in Section 4.2.3.2, a

circuit called a J-limiter is described. This circuit has the property that if it has cycle

time at most τ0 and the total cost of any slack matching buffers is at most J , at most

one slack matching buffer has been added to a particular channel in the circuit, and

no slack matching buffers have been added to any other channel in the circuit. In

Section 4.2.3.3, the sum checker is described, and necessary and sufficient conditions

for a sum checker to slack matched with cost at most H are stated.

4.2.3.1 Pipelines of LR-buffers

Let M be an LR-buffer such that the critical delays of paths, in its collapsed constraint

graph, between input and output transitions are equal to the values in Table 3.1.

Furthermore, let fM + bM ≤ τ0
2

and lM + rM
τ0
2
. In Section 3.3.1, it was shown that

in a pipeline of n such LR-buffers, the critical delay of any Φ↑↑ path is at most nfM .

Similarly, the critical delay of any B↑↑ path is at most nbM − n τ0
2
, the critical delay

of any Λ↑↑ path is lM − τ0
2

and the critical delay of any P↑↑ path is rM . It was also

shown that there exist paths with exactly these critical delays.

4.2.3.2 J-limiters

In this section a circuit called a J-limiter is described. This circuit has the property

that if it has cycle time τ0 and the total cost of any slack matching buffers is at most

J , then either no slack matching buffers have been introduced on any channel, or at

most one buffer has been introduced a specific channel in the J-limiter, and no slack

matching buffers have been introduced on any other channel. A J-limiter will be

parametrized by three values J, H and τ0 where J is as defined above, H is such that

H > J , and τ0 ≥ 2J + 4. Let S be a buffer with fS = rS = 1 and lS = bS = τ0
2
− y

for any y such that J + 1 ≤ y and y + 1 ≤ τ0
2
. In the proceeding, we refer to S as the

slack matching buffer.

Consider a circuit composed of processes as shown in Figure 4.2. Each node in

the graph represents a process, and each edge a channel. Let the cost of introducing

a slack matching buffer on all channels, except for (p3, p4), be H + 1. Let the cost of

80

introducing a slack matching buffer on channel (p3, p4) be J . Furthermore, there are

no initial communications on any channel in this circuit.

p2

p3 p4p1

Figure 4.2: J-limiter

There is at most one channel between each pair of processes, thus each port of

process pk can be identified by the process at the other end of the channel to which the

port belongs. For a process pk, let the constants described in Table 3.1 be f i,j
k , bi,j

k , li,jk

and ri,j
k . For example, f 1,4

2 is critical delay of the φ1,4
↑↑ (p2) path. Let f i,j

k = ri,j
k = 1

for all i,j and k. Similarly let li,jk = bi,j
k = τ0

2
− 1 for all i andj, and k ∈ {1, 3, 4}.

Furthermore, let l1,1
2 = b4,1

2 = τ0
2
− (J + 1) for J > 1 such that J + 2 ≤ τ0

2
.

The input port of p1 is said to be the input port of the J-limiter. Similarly, the

output port of p4 is the output port of the J-limiter. For convenience, let the input

port of the J-limiter be connected to process p0 and the output port of the J-limiter

be connected to process p5.

Claim 4.1. Consider a J-limiter such that n slack matching buffers have been added to

channel (p3, p4), and no slack matching buffers have been added to any other channel.

The circuit has cycle time τ0 if and only if n ≤ J .

Proof. Consider the circuit obtained by adding n instances of S on channel (p3, p4).

Its collapsed constraint graph, with only ti,j↑↑(p) paths is shown in Figure 4.3. Edges

marked by a broken line have critical delay zero. The collapsed constraint graph of

each process is shaded, and labeled by process name. pS is a pipeline of n instances

of S inserted on channel (p3, p4). All nodes of the collapsed constraint graph are

labeled by the name of the variable that the transition corresponds to. These names

are local to each process. li and lo are respectively the input and output variables of

an input port of a process. Similarly, ri and ro are the input and output variables

81

of an output port of a process. The subscript j is appended to a variable name if

the process at the opposite end of the channel is process pj. In order to distinguish

variables in different processes with the same name, the prefix pj is added to every

variable of process pj.

lo0

li0

ri3

ro3

ri2

ro2 li1

lo1

li1

lo1

p1 p2
p4

p3 roS

riS

li3

lo3

pS

ro5

ri5

loS

liS

lo2

li2

ri4

ro4

ri4

ro4

Figure 4.3: Constraint graph of J-limiter

The critical delay of each edge in the collapsed constraint graph is shown in

Table 4.1.

Edge Delay Edge Delay Edge Delay
(p1.li0, p1.ro2) 1 (p1.li0, p1.ro3) 1 (p1.li0, p1.lo0) -1
(p1.ri2, p1.ro2) 1 (p1.ri2, p1.ro3) 1 (p1.ri2, p1.lo0) -1
(p1.ri3, p1.ro2) 1 (p1.ri3, p1.ro3) 1 (p1.ri3, p1.lo0) -1
(p2.li1, p2.ro4) 1 (p3.li1, p3.roS) 1 (pS.li3, pS.ro4) n
(p2.ri4, p2.ro4) 1 (p3.riS, p3.roS) 1 (pS.ri4, pS.ro4) 1
(p2.li1, p2.lo1) −J − 1 (p3.li1, p3.lo1) -1 (pS.li3, pS.lo3) -1
(p2.ri4, p2.lo1) −J − 1 (p3.riS, p3.lo1) -1 (pS.ri4, pS.lo3) −ny
(p4.li2, p4.ro5) 1 (p4.liS, p4.ro5) 1 (p4.ri5, p4.ro5) 1
(p4.li2, p4.lo2) -1 (p4.liS, p4.lo2) -1 (p4.ri5, p4.lo2) -1
(p4.li2, p4.loS) -1 (p4.liS, p4.loS) -1 (p4.ri5, p4.loS) -1

Table 4.1: Critical delay of edges in J-limiter’s collapsed constraint graph

In order to prove the claim, the following must be shown.

1. If 0 ≤ n ≤ J , the critical delay of all cycles in the collapsed constraint graph is

at most zero.

2. If n > J , the critical delay of some cycle in the collapsed constraint graph is

greater than zero.

82

Recall from Section 2.2 that there is no cycle with positive critical delay in a

collapsed constraint graph, G, if and only if for each vertex u there exists xu such

that for any edge (u, v), xv ≥ xu + w(u, v) where w(u, v) is the critical delay of edge

(u, v). Note that each element of x corresponds to one vertex in the graph. For each

transition, t, in the collapsed constraint graph of a J-limiter, it is can be verified that

the following assignment to xt satisfies this condition.

u xu u xu u xu u xu

p1.li0 0 p1.lo0 -1 p1.ri2 0 p1.ro2 1
p1.ri3 0 p1.ro3 1 p2.li1 1 p2.lo1 0
p3.li1 1 p3.lo1 0 p3.riS 1 p3.roS 2
pS.li3 2 pS.lo3 1 pS.riS 1 + n p3.roS 2 + n
p2.ri4 1 + n p2.ro4 2 + n p4.li2 2 + n p4.lo2 1 + n
p4.liS 2 + n p4.loS 1 + n p4.ro5 3 + n p4.ri5 2 + n

Table 4.2: xu such that for 0 ≤ n ≤ J , xv − xu ≥ w(u, v)

Note that this assignment does not satisfy the condition when n > J . When

n > J the cycle ρ2,3
↑↑ (p1), φ

1,S
↑↑ (p3)φ

3,4
↑↑ (S)λS,2

↑↑ (p4)β
4,1
↑↑ (p2) has critical delay n− J . Since

n > J , the cycle has positive critical delay.

Consider a J-limiter that has been slack matched to τ0, by inserting slack match-

ing buffers only on channel (p3, p4). Next, the critical delays of all paths, in the

collapsed constraint graph, between input and output transitions of such a J-limiter

are determined.

Claim 4.2. Consider a J-limiter with n slack matching buffers added on channel

(p3, p4) such that the circuit’s cycle time is at most τ0. Recall that the slack matching

buffer, S, is such that fS = rS = 1 and bS = lS = τ0
2
− y where J + 1 ≤ y and

y + 1 ≤ τ0
2
. The critical delay of any Φ↑↑, B↑↑, Λ↑↑ or P↑↑ path between input and

output transitions of the J-limiter is at most:

• Φ↑↑: 3 + n,

• B↑↑: −(3 + min{ny, J}),

• Λ↑↑: −1,

83

• P↑↑: 1.

Furthermore, there exist paths with exactly these critical delays.

Proof. The claim is proven by considering all possible paths between input and out-

put variables of the J-limiter. Only paths that traverse each edge in the collapsed

constraint graph at most once need be considered.

I begin by proving that any Φ↑↑ path that traverses only φ edges satisfies the

claim. There are two such paths:

1. φ0,2
↑↑ (p1)φ

1,4
↑↑ (p2)φ

2,5
↑↑ (p4) and

2. φ0,3
↑↑ (p1)φ

1,S
↑↑ (p3)φ

3,4
↑↑ (pS)φS,5

↑↑ (p4).

The critical delays of these paths are respectively 3 and 3 + n. Thus, there exists a

Φ↑↑ path with critical delay 3 + n. Any Φ↑↑ path must begin with a φ0,i(p1) path and

end with a φj,6(p3) path. If i = j, then the path is one of three paths listed above.

Otherwise, the path must satisfy one of the following three conditions.

• The path contains a λi,j
↑↑(p4) path and no ρ↑↑(p1) path.

• The path contains a ρi,j
↑↑(p1) path and no λ↑↑(p4) path.

• The path contains at least one pair of paths λi,k
↑↑ (p4) and ρm,j(p1) such that i 6= k

and j 6= m.

The critical delays of all λ↑↑(p4) paths are equal. Similarly, the critical delays of

all ρ↑↑(p1) paths are equal, the critical delays of all φ↑↑(p1) paths are equal. Thus

the critical delay of any such Φ↑↑ path is equal to the sum of the critical delay of a

Φ↑↑ path containing only φ↑↑ paths and the critical delay of a cycle in the collapsed

constraint graph of a J-limiter. Since the J-limiter is part of a circuit with cycle time

τ0, the critical delay of this cycle must be at most zero. This completes the proof for

Φ↑↑ paths.

Similarly, there are two B↑↑ paths that traverse only β edges. These are

1. β5,2
↑↑ (p4)β

4,1
↑↑ (p2)β

2,0
↑↑ (p1) and

84

2. β5,S
↑↑ (p4)β

4,3
↑↑ (pS)βS,1

↑↑ (p3)β
3,0
↑↑ (p1).

Their critical delays are respectively −3 − J and −3 − ny. respectively. Thus there

exists a B↑↑ path with critical delay at most −(3 + min{ny, J}).

Any B↑↑ path must begin with a β5,j(p4) path and end with a φi,0(p1) path. If

i = j, then the path is one of three past listed above. Otherwise, the path must

satisfy one of the following three conditions.

• The path contains a λj,i
↑↑(p4) path and no ρ↑↑(p1) path.

• The path contains a ρj,i
↑↑(p1) path and no λ↑↑(p4) path.

• The path contains at least one pair of paths λj,k
↑↑ (p4) and ρm,i(p1) such that

j 6= k and i 6= m.

The critical delays of all λ↑↑(p4) paths are equal. Similarly, the critical delays of

all ρ↑↑(p1) paths are equal, the critical delays of all β↑↑(p1) paths are equal. Thus

the critical delay of any such B↑↑ path is equal to the sum of the critical delay of a

B↑↑ path containing only β↑↑ paths and the critical delay of a cycle in the collapsed

constraint graph of a J-limiter. Since the J-limiter has cycle time τ0, the critical delay

of this cycle must be at most zero. This completes the proof for B↑↑ paths.

There is only one Λ↑↑ path traversing only λ↑↑ edges. This path is λ↑↑(p1) and

has critical delay −1. All other Λ↑↑ paths must begin with a φ0,i
↑↑ (p1) path end with

a βj,0
↑↑ (p1) path. Let L be such a path. Let C be the cycle in the J-limiter’s collapsed

constraint graph constructed by replacing the φ0,i
↑↑ (p1) and βj,0

↑↑ (p1) edges in L by the

ρj,i
↑↑(p1) edge. The critical delay of L must then be the sum of the the critical delay of

φ0,i
↑↑ (p1), the critical delay of βj,0

↑↑ (p1), and the difference between the critical delay of

C and ρj,i
↑↑(p1). The sum of the critical delay of any φ↑↑(p1) and β↑↑(p1) edge is zero.

Since the J-limiter has cycle time τ0, the critical delay of the cycle is at most zero.

The critical delay of all ρ↑↑(p1) edges is 1. Thus, the critical delay of all Λ↑↑ paths

must be at most −1.

A symmetric argument can be used to show that the critical delay of any P↑↑

path is at most 1. There is only one P↑↑ path traversing only ρ↑↑ edges. This path is

85

ρ↑↑(p3) and has critical delay 1.

Next, the critical delays of paths between input and output variables of a pipeline

of m J-limiters, when each J-limiter has cycle time τ0, are derived. Each of the J-

limiters may have different values Ji, but the values of H and τ0 are the same across

all J-limiters in the pipeline. Thus H > Ji for all i. It is assumed that only one type

of slack matching buffer, S, is used. Let y be such that y ≥ Ji for all i. Furthermore,

let τ0
2
≥ y+1 and τ0

2
> Ji +2 for all i. As before, let fS = rS = 1 and bs = lS = τ0

2
−y.

Claim 4.3. Consider a pipeline of m J-limiters such that each J-limiter has cycle

time τ0 and all slack matching buffers have been added to only the (p3, p4) channel of

each J-limiter. The critical delays of Φ↑↑, B↑↑, Λ↑↑ and P↑↑ paths in this pipeline are

• Φ↑↑: 3m +
m∑

i=1

ni,

• B↑↑: −
(

3m +
m∑

i=1

min{niy, Ji}
)

,

• Λ↑↑: −1, and

• P↑↑: 1,

where ni denotes the number of slack matching buffers introduced on channel (p3, p4)

of the ith J-limiter, and Ji denotes the J parameter of the ith J-limiter. Let the τ0

and H parameters be identical across all J-limiters in the pipeline.

Proof. This claim is proven via induction. The base case of m = 1 holds by claim 4.2.

Assume that the claim is true for all pipelines of m0 J-limiters. A Φ↑↑ path of any

pipeline of m0 + 1 J-limiters must be the composition a Φ↑↑ path of a pipeline of m0

J-limiters and a Φ↑↑ path of a the (m0 +1)th J-limiter. The critical delay of this path

is given by 3m0 +
m0∑
i=1

ni + 3 + nm0+1. This prove the claim for Φ↑↑ paths.

Similarly, a B↑↑ path of any pipeline of m0 +1 J-limiters must be the composition

a B↑↑ path of a pipeline of m0 J-limiters and a B↑↑ path of a the (m0 + 1)th J-

limiter. The critical delay of this path is given by −
(

3m0 +
m0∑
i=1

min{niy, Ji}
)
−

(3 + min{nm0+1y, Jm0+1}). This proves the claim for B↑↑ paths.

86

A Λ↑↑ path of any pipeline of m0 + 1 J-limiters is either a Λ↑↑ path in the first

J-limiter in the pipeline, or a composition of a Φ↑↑ path,B↑↑ and Λ↑↑ path such that

the Φ↑↑ and B↑↑ paths are in the first J-limiter and the Λ↑↑ paths is in a pipeline of

m0 J-limiters. In the former case, the claim is proven by claim 4.2. In the latter case,

by the inductive hypothesis, the critical delay of the Λ↑↑ paths in a a pipeline of m0

J-limiters is at most −1. Thus, the critical delay of the Λ↑↑ path traversing m0 + 1

J-limiters is at most 3 + n1 − 1− (3 + min{n1y, J1}). Since n1 ≤ J1 and y ≥ Ji, the

critical delay of this path is at most −1, which proves the claim for Λ↑↑ paths.

Similarly, P↑↑ path of any pipeline of m0 + 1 J-limiters is either a P↑↑ path in the

last J-limiter in the pipeline, or a composition of a Φ↑↑ path,B↑↑ and P↑↑ path such

that the Φ↑↑ and B↑↑ paths are in the last J-limiter and the P↑↑ path is in a pipeline

of m0 J-limiters. In the former case, the claim is proven by claim 4.2. In the latter

case, by the inductive hypothesis, the critical delay of the P↑↑ path in the pipeline of

m0 J-limiters is at most 1. Thus, the critical delay of the P↑↑ path traversing m0 + 1

J-limiters is at most 3+nm0+1 +1− (3 + min{nm0+1y, Jm0+1}). Since nm0+1 ≤ Jm0+1

and y ≥ Jm0+1, the critical delay of this path is at most 1, which proves the claim for

P↑↑ paths.

Next, it is shown that if and only if each J-limiter in a pipeline of such J-limiters

has cycle time τ0 does the entire pipeline have cycle time τ0.

Claim 4.4. Consider a pipeline of m J-limiters such that slack matching buffers are

only added to the (p3, p4) channel of each J-limiter. The pipeline has cycle time τ0 if

and only if each J-limiter in the pipeline has cycle time τ0.

Proof. If a particular J-limiter does not have cycle time τ0, then its collapsed con-

straint graph must contain a cycle with positive critical delay. This cycle remains in

the pipeline of J-limiters, thus the pipeline cannot have cycle time τ0.

If all J-limiters in the pipeline have cycle time τ0, then claim 4.3 holds. Any

cycle in the constraint graph of the pipeline of m J-limiters can be expressed as the

composition of a Λ↑↑ path and a P↑↑ path, each in pipelines of at most m J-limiters.

87

The critical delays of these paths must respectively be at most −1 and 1. Thus the

critical delay of all cycles in the pipeline is non-positive.

4.2.3.3 Sum Checkers

In this section, the circuit used in the reduction from subset sum to SMDP is de-

scribed. Consider the circuit shown in Figure 4.4, where JL is a pipeline of m

J-limiters, and TB is a pipeline of two LR-buffers, pA, such that fA = rA = 1 and

bA = lA = τ0
2
− 1. Furthermore, let there be an initial communication on the channel

between two instances of pA in TB.

JL TB

Figure 4.4: Circuit used in reduction from subset sum to SMDP

Consider the collapsed constraint graph of TB, with only ti,j↑↑ paths. There is only

one simple Φ↑↑ path, and it has critical delay 2− τ0. Similarly, it can be shown that

the critical B↑↑, Λ↑↑ and P↑↑ paths of TB respectively have critical delay −2 + τ0,−1

and 1. Furthermore, there is only one cycle in this collapsed constraint graph and it

has critical delay 0.

Let the slack matching buffer be S as described in Section 4.2.3.2. This can be

achieved by choosing y = max
i∈{1...m}

{Ji}. Let the cost of adding a slack matching buffer

to each channel within a J-limiter be as described in Section 4.2.3.2. Let the cost of

adding slack matching buffers to channels between the J-limiters and channels with

at last one port in TB be H + 1. In order for the all the process in the J-limiters to

be implementable, the following inequalities must be satisfied for each process pj:

• τ0
2
≥ fj + bj

• bj > fj

• fj > 0

88

In the construction fj = 1 for all processes, thus the last constraint is satisfied for

all processes. The slack matching buffer has bS = τ0
2
−y. Process p2 in the ith J-limiter

has b2 = τ0
2
− (Ji + 1). All other processes have b = τ0

2
− 1. Since all Ji > 1, the first

constraint in the list is satisfied for all processes. The second constraint imposes the

following three inequalities:

• τ0
2
− y > 1

• τ0
2
− (Ji + 1) > 1

• τ0
2
− 1 > 1

Recall y = max
i∈{1...m}

{Ji}. Thus, τ0
2
− y > 2, or equivalently τ0 > 2y + 4 satisfies the

above inequalities. Choosing H > 2y and τ0 = 3m + H + 2 satisfies this constraint

since m ≥ 1.

Subset sum is reduced to slack matching such a sum checker.

Claim 4.5. Consider a sum checker comprised of a pipeline of m J-limiters. Let the

J parameter of the ith sum checker be Ji. Let y = max
i∈{1...m}

{Ji}. Let all J-limiters have

the same H parameter, H such that H > 2y. Consider a sum checker with cycle time

τ0 = 3m + H + 2. Let the slack matching buffer, S be such that fS = rS = 1 and

lS = bS = τ0
2
−y. Let slack matching buffers be added only to (p3, p4) channels of each

J-limiter in the sum checker, and to no other channels. The sum checker has cycle

time τ0 if and only if:

2 + 3m +
m∑

i=1

ni ≤ 3m + H + 2 ≤ 2 + 3m +
∑

i:ni 6=0

Ji (4.1)

0 ≤ ni ≤ Ji∀i ∈ {1, . . . ,m} (4.2)

Proof. Assume towards contradiction that there exists a sum checker with cycle τ0

and slack matching buffers added to only to the (p3, p4) channel of each J-limiter in

the sum checker, and the above inequalities do not hold.

If (4.1) is not satisfied, consider the pair of cycles Φ↑↑(JL)Φ↑↑(TB) and B↑↑(TB)B↑↑(JL)

in the collapsed constraint graph of the sum checker. From claim 4.3, the critical de-

89

lay of the former cycle is given by 3m+
m∑

i=1

ni +2− τ0. The critical delay of the latter

cycle is given by −3m−
∑

i:ni 6=0

Ji − 2 + τ0. Recall τ0 = 3m + H + 2. Since the circuit

has cycle time τ0, the critical delay of both cycles is at most zero. Thus

3m +
m∑

i=1

ni + 2 ≤ τ0 ≤ 3m +
∑

i:ni 6=0

Ji + 2

Substituting in for τ0 shows that (4.1) holds.

If (4.2) is not satisfied for some i, then by claim 4.1, this J-limiter does not have

cycle time τ0, hence the sum checker cannot have cycle time τ0.

Assume towards contradiction that there exist m, y, Ji, H and ni such that the

inequalities in the claim hold but the corresponding sum checker can not be slack

matched by adding ni slack matching buffers to the the the (p3, p4) channel of the ith

J-limiter in the sum checker.

By claim 4.1, each J-limiter must have cycle time τ0. Thus by claim 4.4, the

pipeline of J-limiters has cycle time τ0. Similarly, TB has cycle time τ0. Therefore

the only cycles that could possibly have positive critical delay at τ0 are cycles that

traverse JL and TB. There are four such cycles:

• B↑↑(JL)B↑↑(TB)

• Φ↑↑(JL)Φ↑↑(TB)

• Λ↑↑(JL)P↑↑(RB)

• P↑↑(JL)Λ↑↑(TB)

From claim 4.3 and the analysis in Section 4.2.3.3, the critical delays of these cycles

are respectively at most

• −3m−
∑

i:ni 6=0

Ji − 2 + τ0

• 3m +
m∑

i=1

ni + 2− τ0

• −1 + 1

90

• 1 +−1

Furthermore, there exists cycles with exactly these critical delays. The last two

cycles always have critical delay at most 0. Substituting τ0 = 3m + H + 2, if either

−3m−
∑

i:ni 6=0

Ji−2+ τ0 > 0 or 3m+
m∑

i=1

ni +2− τ0 > 0, then either 3m+
∑

i:ni 6=0

Ji +2 <

τ0 = 3m + H + 2 or τ0 = 3m + H + 2 < 3m +
m∑

i=1

ni + 2, reaching a contradiction.

Lemma 4.1. Consider a sum checker described in claim 4.5. Such a sum checker

can be slack matched with cost at most H if and only if there exist ni ∈ N such that

the following inequalities hold:

0 ≤ ni ≤Ji ∀i (4.3)

2 + 3m +
m∑

i=1

ni ≤ 3m + H + 2 ≤2 + 3m +
∑

i:ni 6=0

Ji (4.4)

∑
niJi ≤ H (4.5)

Proof. If there exist such ni, then consider the circuit obtained by adding ni slack

matching buffers to the (p3, p4) channel of the ith J-limiter in the sum checker. The

cost of adding these slack matching buffers is given by
∑

niJi, which is at most H.

From claim 4.5, the resulting circuit has cycle time τ0.

If a sum checker can be slack matched with cost at most H, then no channel other

than a (p3, p4) channel of a J-limiter has any slack matching buffers added to it, since

the cost of adding a buffer to these channels is H + 1. Let ni be the number of slack

matching buffers added to the (p3, p4) channel of the ith J-limiter. The cost of the

slack matching buffers is given by
∑

niJi, which is assumed to be at most H. Since

the sum checker has cycle time τ0, by claim 4.5, (4.3) and (4.4) hold.

4.2.4 SMDP is NP-Hard

In this section, it is shown that for any instance of the subset sum problem such

that T is at least twice as large as the largest element in K, a sum checker can be

constructed such that it can be slack matched with cost at most H if and only if there

91

exists a subset of K such that the sum of its elements equals T . Before describing

this construction, it is proven that this restricted version of the subset sum problem

is NP hard via a reduction from 3SAT.

In the following, K denotes the set of positive integers in an instance of subset

sum, y the largest element of K, and S and T are such that S ⊆ K and the sum

of elements of S equals T . T is called the target of an instance of the subset sum

problem.

Claim 4.6. The subset sum problem, with the restriction that the target is at least

2y, remains NP complete.

Proof. This claim is proven via a reduction from 3SAT. Let C be the set of clauses

of an instance of 3SAT, and U the set of variables. Let m = |C| and n = |U |. In

the following, all integers will be base 10, though any base greater than or equal to

4 suffices. Label the digits of the integers from 1 to m + 2n in order from the least

significant to most significant digit. For each variable ui ∈ U , construct two m + n

digit integers as follows. The first integer corresponds to assigning the value true to

ui. Set digit i to 1 and for each clause cj that contains the unnegated literal ui, set

digit n + j to 1, and all remaining digits to 0. The second integer corresponds to the

assigning false to ui. Set digit i to 1 and for each clause cj that contains the negated

literal ui, set digits n + j to 1, and all remaining digits to 0. Additionally, for each

clause cj construct the following two integers. The first has a 1 in digit n + j and 0

elsewhere. The second has a 2 in digit n + j and 0 elsewhere. Let this set of integers

be K. Let the target integer contain a 1 for each digit 1 . . . n and a 4 for each digit

n + 1 . . . n + m. The most significant digit of the target is 4. The largest element in

K has a 2 as its most significant digit and 0 elsewhere. Let this integer be y. 2y has

4 as the most significant digit and 0 elsewhere. Thus, the target is strictly greater

than 2y.

Example 4.1. Consider the 3SAT problem (x1∨¬x2∨x3)∧(x2∨x3∨¬x4). The subset

sum problem described above, that corresponds to this formula has target 441111. The

set of integers is:

92

c1 c2 x1 x24 x3 x4

x1 = true 1 0 0 0 0 1

x1 = false 0 0 0 0 0 1

x2 = true 0 1 0 0 1 0

x2 = false 1 0 0 0 1 0

x3 = true 1 1 0 1 0 0

x3 = false 0 0 0 1 0 0

x4 = true 0 0 1 0 0 0

x4 = false 0 1 1 0 0 0

(x1 ∨ ¬x2 ∨ x3) 1 0 0 0 0 0

(x1 ∨ ¬x2 ∨ x3) 2 0 0 0 0 0

(x2 ∨ x3 ∨ ¬x4) 0 1 0 0 0 0

(x2 ∨ x3 ∨ ¬x4) 0 2 0 0 0 0

It remains to be shown that this subset sum problem has a solution if and only if

the original 3SAT problem has a solution.

If the 3SAT instance is satisfiable, construct S as follows. Given a satisfying truth

assignment, for each variable ui select the integer that corresponds to ui’s value in

the satisfying truth assignment and add it to the set S. So far, S has exactly one

integer with a non-zero entry for digit i for all i ∈ {1 . . . n}. Furthermore, for each

j ∈ {n + 1 . . . n + m}, S contains at least one integer with digit j equal to 1 and at

most three such integers. The sum of the elements of S has value 1 in the n least

significant digits. The remaining digits are between 1 and 3. If the digit is n + j is 3,

then add to S the integer with a 1 in only digit n+j, and 0 elsewhere. If digit n+j is

2, then add the integer with a 2 in digit n+ j and 0 elsewhere. If digit n+ j is 1, then

add both the integers with 0 in all digits but n + j. Thus, S has been constructed

such that the sum of the elements of S is exactly the target.

Suppose there exists a subset of the integers that sums to the target. Note that

there are at exactly two integers in K with a 1 at digit i such that 1 ≤ i ≤ n.

Similarly, there are exactly 4 integers with in Kwith a 1 at digit j for j such that

93

n < j ≤ n + m and 1 integer with a 2 in this position. Since all integers are base

10, there are no carries when summing the members of any subset of K. If a subset

of integers sums to the target, then for each i, there is exactly one integer in S such

that there is 1 in digit i, for 1 ≤ i ≤ n. Consider the truth assignment obtained by

setting ui to true if this integer corresponds to the ui having the value true, false

otherwise. Note that for each j : n+1 ≤ j ≤ m, there must be at least one integer in

S such that it contains at least two non-zero entries, one of which is at digit j. This

integer corresponds to the truth assignment having a true literal in clause j. Thus,

this assignment satisfies all clauses.

This proves that this problem is NP-hard. Since this problem is a restriction of

subset sum, that is known to be in NP, this restricted version of subset-sum is NP

complete.

Lemma 4.2. SMDP is NP-hard.

Proof. The lemma is proven via a reduction from the restricted version of subset sum

described in claim 4.6. Given an instance of subset sum such that T ≥ 2y where y is

largest element of K, construct a sum checker as follows. Let the sum checker have

m = |K| J-limiters. Let Ji be the J parameter of the ith J-limiter. Set Ji = ki for

each ki ∈ K. Choose H = T . For the slack matching buffer, let bS = τ0
2
− y, where

τ0 = 3m + H + 2. As shown in lemma 4.1, such a circuit can be slack matched with

cost at most H if and only if there exist ni ∈ N such that

0 ≤ ni ≤ Ji∀i

∑
niJi ≤ H

2 + 3m +
m∑

i=1

ni ≤ 3m + H + 2 ≤ 2 + 3m +
∑

i:ni 6=0

Ji

Rewriting the last inequality,

m∑
i=1

ni ≤ H ≤
∑

i:ni 6=0

Ji.

94

However, ∑
niJi =

∑
i:ni 6=0

niJi ≤ H ≤
∑

i:ni 6=0

Ji.

Thus, H =
∑

i:ni 6=0

Ji. Substituting for H and Ji,

T =
∑

i:ni 6=0

ki.

Thus it has been shown that the sum checker described can be slack matched with

cost at most τ0 if and only if there exists S ⊆ K such that the sum of the elements

of S equals T . If there is a solution to the subset sum problem, assigning ni to 1

for each ki ∈ S and 0 otherwise provides a solution to the slack matching problem.

Given a solution to the slack matching problem, a solution to the subset sum problem

can be constructed by choosing S = {ki : ni 6= 0}.

4.2.5 SMDP is NP-Complete

In this section, is shown that SMDP is in NP. This result, with that of lemma 4.2

proves that SMDP is NP-complete.

Lemma 4.3. SMDP is in NP.

Proof. It is easy to see that SMDP is a member of the class NP. The cycle time

of a circuit can be determined in polynomial time by solving a linear program as

demonstrated by Burns [3]. The collapsed constraint graph of a pipeline of n buffers

can be expressed as a collapsed constraint graph with a fixed number(independent of

n) of edges and vertices. The occurrence index offsets of the edges and the delays of

the edges are a linear function of the number of buffers. Thus given the number of

buffers ni to place on each channel xi, the cycle time of the circuit with ni buffers on

channel xi can be determined in deterministic polynomial time. Similarly, the value

of
∑

nisi can be computed in linear time and compared to S.

Theorem 4.1. SMDP is NP-complete.

Proof. The theorem follows directly from lemmas 4.2 and 4.3.

95

4.3 Conclusions

It has been proven that slack matching is NP-complete via a reduction from subset

sum. Subset sum is a problem that is NP-complete in the weak sense [7]. That is

there exists a pseudo-polynomial time algorithm to solve the problem. A pseudo-

polynomial time algorithm is one that is polynomial in the length of the encoding of

its input, however there exists an exponentially smaller encoding of the input. The

reduction presented shows that slack matching is NP-complete in the weak sense. It

is not clear whether slack matching is also NP-complete in the strong sense.

Often times, the repetitive ER system of a circuit is constructed from a PRS in

which the delay of all rules is identical. For such circuits, the size of the repetitive

ER system is a linear function of the number of rules in the PRS. Furthermore the

numeric value of all delays is at most 1, and the target cycle time has a numeric

value smaller than the number of repeated rules in the repetitive ER system. Thus,

if SMDP is NP-complete in the weak sense, a pseudo-polynomial time algorithm will

be useful for slack matching circuits that are described as PRS.

Another related problem is that of determining whether a circuit can be slack

matched, regardless of the cost of slack matching buffers. Determining whether this

problem is NP complete remains an open problem.

96

Chapter 5

Slack Matching General QDI
circuits

In Chapter 3, the SMOP for circuits composed entirely of a specified class of half

buffers was expressed as a MILP. In this chapter, the SMOP for a larger class of

circuits is expressed as a MILP. This MILP can be generated for any circuit that

can be simulated by a repetitive ER system, provided the slack matching buffer used

satisfies certain restrictions. It is assumed that all communication channels onto which

slack matching buffers may be added implement a four phase handshake protocol, and

that there are no initial communications on such channels. A MILP can be generated

in a similar manner for other classes of LR-buffers used for slack matching.

It was shown in Section 2.2.1 that a repetitive ER system has cycle period τ0 if

and only if there exists x such that the system of inequalities (2.1) holds. This system

of inequalities is:

Ax ≥ y

where A is the arc-node incidence matrix of the collapsed constraint graph and each

yj is the critical delay at τ0 of the jth arc in the collapsed constraint graph. In this

chapter, a MILP will be constructed that is equivalent to ensuring that the above

inequality can be satisfied for the repetitive ER system of a circuit with ni ≥ 0 slack

matching buffers added to channel i. The objective of the MILP is to minimize a

weighted sum of ni. This can be used, for example, to minimize the total energy

consumed by the slack matching buffers.

97

The number of transitions and repeated rules in the repetitive ER system of a

pipeline of n instances of a slack matching buffers is a linear function of n. The

critical delay at τ0 of each repeated rule is a constant. Thus the size of the system

of inequalities (2.1) is a function of the variables to be solved for. It will be shown

how the repetitive of ER system of a pipeline of n ≥ 0 slack matching buffer can

be represented by a repetitive ER system with a constant number of transitions.

The critical delay of each repeated rule in this ER system is a linear function of the

variables that encode n.

Recall that the repetitive ER system of a circuit is constructed from the repetitive

ER systems of each process in the circuit as follows. For each pair of an output

transition of a process, u, and the corresponding input transition of another process,

v, add a repeated rule 〈u, i− 0〉 0→ 〈v, i〉. A repetitive ER system of the circuit with

ni slack matching buffers added to each channel i is constructed by replacing the

repeated rules described above, by a set of repeated rules that represent a pipeline of

ni slack matching buffers. The critical delay at τ0 of such rules is a linear function of

the variables of the encoding of ni.

This chapter is organized as follows. First, in Section 5.1 the restrictions on

the slack matching buffers are stated, and the critical delay at τ0 between input

and output transitions of n ≥ 1 instances of S is determined. Next, in Section 5.2, a

repetitive ER system with a constant number of transitions is constructed to represent

a pipeline of n ≥ 0 instances of S. The critical delay at τ0 of a rule in this ER system

is a linear function of the variables that encode n. Next, in Section 5.3, SMOP is

formulated as a MILP. In Section 5.4, the results of solving an instance of the SMOP

are described. This chapter is summarized in Section 5.5.

5.1 Pipelines of 1 or More LR Buffers

In this section the critical delays at τ0 between input and output transitions of a

pipeline of n instances of a LR buffer are determined provided the LR buffer satisfies

the following assumption.

98

Assumption 5.1. The LR buffer, S, used for slack matching has the following prop-

erties.

• S is a half buffer.

• S satisfies assumptions 3.4–3.5.

• There are no initial communications on any channel of S.

• rS + lS ≤ τ0
2

and fS + bS ≤ τ0
2

where lS, rS, bS and fS are specified as in

Table 3.1. Since an LR buffer has only one input channel and one output

channel, the superscripts of lS, rS, bS and fS are omitted.

The last item in the list of property is required to ensure that the critical delay

of all cycles in a pipeline of n ≥ 3 instances of S have non-positive critical delay at

τ0. Consider the collapsed constraint graph of a pair of adjacent instances of S in a

pipeline. There is a cycle in the collapsed constraint graph comprised of ρ↑↑ path in

one the instance of S and a λ↑↑ path in the other instances of S. From Table 3.1,

the critical delays of these paths are at most fS and lS − τ0
2
. Example 3.1 shows an

example of a buffer satisfying these assumptions.

In the remainder of this Chapter, let S be an LR-buffer satisfying assumption 5.1.

Let the paths in the collapsed constraint graph of a pipeline of n instances of S be

classified as in Section 3.1.1.

First, in Section 5.1.1, bounds on the critical delays of all paths between input

and output transitions of a pipeline of n ≥ 1 instances of S are derived. Next, in

Section 5.1.2 these bounds are used to show that there is no cycle in the collapsed

constraint graph of such a pipeline with positive critical delay at τ0. The analysis in

this Section is very similar to that in Section 3.1.

5.1.1 Critical Delays of Φ, B, Λ and P Paths in a Pipeline of

Slack Matching Buffers

The following sequence of claims, bounds the critical delays of Φ, B, Λ and P paths

between input and output transitions of a pipeline of n ≥ 1 instances of S. Each

99

claim consists of two parts. The first part of the claim is a bound on the critical delay

of a set of paths in a pipeline of n ≥ 1 instances of S. The second part of the claim

states when these bounds are tight. When the bounds are tight, the MILP for slack

matching described in this chapter can be solved to determine the number of slack

matching buffers to add in order to achieve the target cycle time whilst minimizing the

cost function. When the bounds are not tight, the solution to the MILP determines

a number of slack matching buffers to add to each channel in order to achieve the

target cycle time. However, the cost function may not be minimized.

Claim 5.1. The critical delay of any Λ path in a pipeline of n ≥ 1 instances of S is

at most:

• Λ↑↑: lS − τ0
2

• Λ↑↓: lS − τ0

• Λ↓↑: lS

• Λ↓↓: lS − τ0
2

There exists a path with exactly these delays if the critical delays of paths between

input and output transitions of S equal the values in Table 3.1.

Proof. Note that when the critical delays of the paths between input and output

transitions of S equal the values in Table 3.1, the λ↑↑(S), λ↑↓(S), λ↓↑(S) and λ↓↓(S)

paths have exactly the claimed critical delays.

The remainder of the claim is proven via induction. By assumption 3.4, the lemma

holds for n = 1.

Assume that the claim holds for some n = n0. Consider a pipeline of n0 + 1

instances of S. If the Λ path traverses at most n0 instances of the S, the claim is true

by the inductive hypothesis.

Thus it remains to consider the case where the path traverses n0 + 1 instances of

S. In the following, each type of path Λ↑↑, Λ↑↓, Λ↓↑ and Λ↓↓ is considered separately.

Begin by considering a Λ↑↑ path. Such a path falls into one of the following eight

categories, based on the paths it traverses in the first buffer of the pipeline.

100

• The path traverses only a φ↑↑ and β↑↑ path of the first buffer. The critical delay

of the path is the sum of that of the φ↑↑ path, the β↑↑ path and that of a Λ↑↑ path

in a pipeline of the remaining n0 buffers. This is at most fS + bS − τ0
2

+ lS − τ0
2
.

By assumption 5.1, fS + bS ≤ τ0
2
, thus the critical delay of this path is at most

fS + bS −
τ0

2
+ lS −

τ0

2
≤ lS −

τ0

2
.

• The path traverses only a φ↑↓ and β↑↑ path of the first buffer. The critical delay

of the path is the sum of that of the φ↑↓ path, the β↑↑ path and that of a Λ↓↑ path

in a pipeline of the remaining n0 buffers. This is at most fS − τ0
2

+ bS − τ0
2

+ lS.

By assumption 5.1, fS + bS ≤ τ0
2
, thus the critical delay of this path is at most

fS −
τ0

2
+ bS −

τ0

2
+ lS ≤ lS −

τ0

2
.

• The path traverses only a φ↑↑ and β↓↑ path of the first buffer. The critical delay

of the path is the sum of that of the φ↑↑ path, the β↓↑ path and that of a Λ↑↓

path in a pipeline of the remaining n0 buffers. This is at most fS + bS + lS − τ0.

By assumption 5.1, fS + bS ≤ τ0
2
, thus the critical delay of this path is at most

fS + bS + lS − τ0 ≤ lS −
τ0

2
.

• The path traverses only a φ↑↓ and β↓↑ path of the first buffer. The critical delay

of the path is the sum of that of the φ↑↓ path, the β↓↑ path and that of a Λ↓↓ path

in a pipeline of the remaining n0 buffers. This is at most fS − τ0
2

+ bS + lS − τ0
2
.

By assumption 5.1, fS + bS ≤ τ0
2
, thus the critical delay of this path is at most

fS −
τ0

2
+ bS + lS −

τ0

2
≤ lS −

τ0

2
.

• The path traverses only a φ↑↑, a β↑↑ and a ρ↓↓ path of the first buffer. The critical

delay of this path is the sum of that of the φ↑↑ path, the β↑↑ path, the ρ↓↓ path, a

101

Λ↑↓ path in the pipeline of the remaining n0 buffers, and a Λ↓↑ path in a pipeline

of the remaining n0 buffers. This is at most fS + lS − τ0 + rS + lS + bS − τ0
2

By

assumption 5.1, fS + bS ≤ τ0
2

and rS + lS ≤ τ0
2
, thus the critical delay of this

path is at most

fS + lS − τ0 + rS + lS + bS −
τ0

2
≤ lS −

τ0

2
.

• The path traverses only a φ↑↓, a β↑↑ and a ρ↓↑ path of the first buffer. The

critical delay of this path is the sum of that of the φ↑↓ path, the β↑↑ path, the

ρ↓↑ path, a Λ↓↓ path in the pipeline of the remaining n0 buffers, and a Λ↑↑ path

in a pipeline of the remaining n0 buffers. This is at most fS − τ0
2

+ lS − τ0
2

+

rS + τ0
2

+ lS − τ0
2

+ bS − τ0
2

By assumption 5.1, fS + bS ≤ τ0
2

and rS + lS ≤ τ0
2
,

thus the critical delay of this path is at most

fS −
τ0

2
+ lS −

τ0

2
+ rS +

τ0

2
+ lS −

τ0

2
+ bS −

τ0

2
≤ lS −

τ0

2
.

• The path traverses only a φ↑↑, a β↓↑ and a ρ↑↓ path of the first buffer. The critical

delay of this path is the sum of that of the φ↑↑ path, the β↓↑ path, the ρ↑↓ path, a

Λ↑↑ path in the pipeline of the remaining n0 buffers, and a Λ↓↓ path in a pipeline

of the remaining n0 buffers. This is at most fS + lS − τ0
2

+ rS − τ0
2

+ lS − τ0
2

+ bS

By assumption 5.1, fS + bS ≤ τ0
2

and rS + lS ≤ τ0
2
, thus the critical delay of this

path is at most

fS + lS −
τ0

2
+ rS −

τ0

2
+ lS −

τ0

2
+ bS ≤ lS −

τ0

2
.

• The path traverses only a φ↑↓, a β↓↑ and a ρ↑↑ path of the first buffer. The

critical delay of this paths is the sum of that of the φ↑↓ path, the β↓↑ path, the

ρ↑↑ path, a Λ↓↑ path in the pipeline of the remaining n0 buffers, and a Λ↑↓ path in

a pipeline of the remaining n0 buffers. This is at most fS− τ0
2
+lS+rS+lS−τ0+bS

By assumption 5.1, fS + bS ≤ τ0
2

and rS + lS ≤ τ0
2
, thus the critical delay of this

102

path is at most

fS −
τ0

2
+ lS + rS + lS − τ0 + bS ≤ lS −

τ0

2
.

This completes the proof for Λ↑↑ paths. Symmetric arguments prove the claim for

Λ↑↓, Λ↓↑ and Λ↓↓ paths.

Claim 5.2. The critical delay of any P path in a pipeline of n ≥ 1 instances of S is

at most:

• P↑↑: rS

• P↑↓: rS − τ0
2

• P↓↑: rS + τ0
2

• P↓↓: rS

There exists a path with exactly these delays if the critical delays of paths between

input and output transitions of S equal the values in Table 3.1.

Proof. The proof of this claim is very similar to that of claim 5.1. Note that if the

critical delays of paths between input and output transitions of S are exactly the

values in Table 3.1, then the critical delays of ρ↑↑(S), ρ↑↓(S), ρ↓↑(S) and ρ↓↓(S) paths

of the nth buffer are exactly the specified values. Furthermore, any ρ path of the nth

instance of S is also a P path of the pipeline.

The remainder of the claim is proven via induction. By assumption 3.4, the lemma

holds for n = 1.

Assume that the claim holds for some n = n0. Consider a pipeline of n = n0 + 1

instances of S. If the P path traverses at most n0 instances of the S, the claim is

true by the inductive hypothesis.

Thus it remains to consider the case where the path traverses n0 + 1 instances of

S. In the following, each type of path P↑↑, P↑↓, P↓↑ and P↓↓ is considered separately.

Begin by considering a P↑↑ path. Such a path falls into one of the following eight

categories, based on the paths it traverses in the nth buffer of the pipeline.

103

• The path traverses only a β↑↑ and a φ↑↑ path of the nth buffer in the pipeline.

In this case, the critical delay of the P↑↑ path is the sum of that of the β↑↑ path,

a P↑↑ path in a pipeline of the remaining n0 buffers, and the φ↑↑ path. By the

inductive hypothesis, this is at most bS − τ0
2

+ rS + fS. By assumption 5.1,

fS + bS ≤ τ0
2
. Thus, the critical delay of such a P↑↑ path is at most

bS −
τ0

2
+ rS + fS ≤ rS.

• The path traverses only a β↑↓ and a φ↑↑ path of the nth buffer in the pipeline.

In this case, the critical delay of the P↑↑ path is the sum of that of the β↑↓ path,

a P↓↑ path in a pipeline of the remaining n0 buffers, and the φ↑↑ path. By the

inductive hypothesis, this is at most bS − τ0 + rS + τ0
2

+ fS. By assumption 5.1,

fS + bS ≤ τ0
2
. Thus, the critical delay of such a P↑↑ path is at most

bS − τ0 + rS +
τ0

2
+ fS ≤ rS.

• The path traverses only a β↑↑ and a φ↓↑ path of the nth buffer in the pipeline.

In this case, the critical delay of the P↑↑ path is the sum of that of the β↑↑

path, a P↑↓ path in a pipeline of the remaining n0 buffers, and the φ↓↑ path.

By the inductive hypothesis, this is at most bS − τ0
2

+ rS − τ0
2

+ fS + τ0
2
. By

assumption 5.1, fS + bS ≤ τ0
2
. Thus, the critical delay of such a P↑↑ path is at

most

bS −
τ0

2
+ rS −

τ0

2
+ fS +

τ0

2
≤ rS.

• The path traverses only a β↑↓ and a φ↓↑ path of the nth buffer in the pipeline.

In this case, the critical delay of the P↑↑ path is the sum of that of the β↑↑ path,

a P↓↓ path in a pipeline of the remaining n0 buffers, and the φ↑↑ path. By the

inductive hypothesis, this is at most bS − τ0 + rS + fS + τ0
2
. By assumption 5.1,

104

fS + bS ≤ τ0
2
. Thus, the critical delay of such a P↑↑ path is at most

bS − τ0 + rS + fS +
τ0

2
≤ rS.

• The path traverses a β↑↑, a φ↑↑ and a λ↓↓ path of the nth buffer in the pipeline.

in this case, the critical delay of the P↑↑ path is the sum of that of the β↑↑ path,

a P↑↓ path in a pipeline of the remaining n0 buffers, the λ↓↓ path, a P↓↑ path

in a pipeline of the remaining n0 buffers and the φ↑↑ path. By the inductive

hypothesis, the critical delay of such a path is at most bS − τ0
2

+ rS − τ0
2

+ lS −
τ0
2

+ rS + τ0
2

+ fS. However, by assumption 5.1, fS + bS ≤ τ0
2

and lS + rS ≤ τ0
2
.

Thus, the critical delay of the P↑↑ path is at most

bS −
τ0

2
+ rS −

τ0

2
+ lS −

τ0

2
+ rS +

τ0

2
+ fS ≤ rS.

• The path traverses a β↑↓, a φ↑↑ and a λ↓↑ path of the nth buffer in the pipeline.

in this case, the critical delay of the P↑↑ path is the sum of that of the β↑↓ path,

a P↓↓ path in a pipeline of the remaining n0 buffers, the λ↓↑ path, a P↑↑ path

in a pipeline of the remaining n0 buffers and the φ↑↑ path. By the inductive

hypothesis, the critical delay of such a path is at most bS−τ0 +rS + lS +rS +fS.

However, by assumption 5.1, fS + bS ≤ τ0
2

and lS + rS ≤ τ0
2
. Thus, the critical

delay of the P↑↑ path is at most

bS − τ0 + rS + lS + rS + fS ≤ rS.

• The path traverses a β↑↑, a φ↓↑ and a λ↑↓ path of the nth buffer in the pipeline.

in this case, the critical delay of the P↑↑ path is the sum of that of the β↑↑ path,

a P↑↑ path in a pipeline of the remaining n0 buffers, the λ↑↓ path, a P↓↓ path

in a pipeline of the remaining n0 buffers and the φ↓↑ path. By the inductive

hypothesis, the critical delay of such a path is at most bS − τ0
2

+ rS + lS − τ0 +

rS + fS + τ0
2
. However, by assumption 5.1, fS + bS ≤ τ0

2
and lS + rS ≤ τ0

2
. Thus,

105

the critical delay of the P↑↑ path is at most

bS −
τ0

2
+ rS + lS − τ0 + rS + fS +

τ0

2
≤ rS.

• The path traverses a β↑↓, a φ↓↑ and a λ↑↑ path of the nth buffer in the pipeline.

in this case, the critical delay of the P↑↑ path is the sum of that of the β↑↓ path,

a P↓↑ path in a pipeline of the remaining n0 buffers, the λ↑↑ path, a P↑↓ path

in a pipeline of the remaining n0 buffers and the φ↓↑ path. By the inductive

hypothesis, the critical delay of such a path is at most bS − τ0 + rS + τ0
2

+ lS −
τ0
2

+rS− τ0
2

+fS + τ0
2
. However, by assumption 5.1, fS +bS ≤ τ0

2
and lS +rS ≤ τ0

2
.

Thus, the critical delay of the P↑↑ path is at most

bS − τ0 + rS +
τ0

2
+ lS −

τ0

2
+ rS −

τ0

2
+ fS +

τ0

2
≤ rS.

A symmetric argument can be used to prove the claim for P↑↓, P↓↑ and P↓↓ paths.

Claim 5.3. The critical delay of any Φ path in a pipeline of n ≥ 1 instances of S is

at most:

• Φ↑↑: nfS

• Φ↑↓: nfS − τ0
2

• Φ↓↑: nfS + τ0
2

• Φ↓↓: nfS

There exists a path with exactly these delays if the critical delays of paths between

input and output transitions of S equal the values in Table 3.1.

Proof. The proof of this claim is similar to that of claims 5.1 and 5.2.

Note that if the critical delays of paths between input and output transitions of

S are exactly the values in Table 3.1, then by claim 3.1, there exist Φ↑↑, Φ↑↓, Φ↓↑ and

Φ↓↓ paths in the pipeline with exactly the claimed delays.

106

The remainder of the claim is proven via induction.

Due to assumption 5.1, the claim is true for n = 1.

Assume that the claim hold for some n = n0. It needs to be shown that the critical

delay of any Φ path in a pipeline of n = n0 + 1 instances of S satisfies the claim.

Consider the Φ↑↑, Φ↑↓, Φ↓↑ and Φ↓↓ paths separately. Begin by considering Φ↑↑

paths. Such a path must fall into one of the following six categories.

• The path traverses only a φ↑↑ path of the nth process in the pipeline. In this

case, the path is the composition of a Φ↑↑ path in a pipeline of the remaining

n0 instances of S with a φ↑↑ path in the nth instance of S. By the inductive

hypothesis and assumption 5.1, the critical delay of this path is at most n0fS +

fS = (n0 + 1)fS.

• The path traverses only a φ↓↑ path of the nth process in the pipeline. In this

case, the path is the composition of a Φ↑↓ path in a pipeline of the remaining

n0 instances of S with a φ↓↑ path in the nth instance of S. By the inductive

hypothesis and assumption 5.1, the critical delay of this path is at most n0fS −
τ0
2

+ fS + τ0
2

= nfS.

• The path traverses a λ↓↓ and a φ↑↑ path of the nth process in the pipeline. In

this case, the path is the composition of a Φ↑↓ path in the first n0 instances

of S, followed by the λ↓↓ path in the nth instance of S, followed by a P↓↑ path

in the first n0 instances of S, followed by a φ↑↑ path in the nth instance of S.

By the inductive hypothesis, claim 5.2 and assumption 5.1, the critical delay of

such a path is at most n0fS − τ0
2

+ rS + τ0
2

+ lS − τ0
2

+ fS. By assumption 5.1,

rS + lS ≤ τ0
2
. Thus, the critical delay of this path is at most

(n0 + 1)fS + rS + lS −
τ0

2
≤ (n0 + 1)fS.

• The path traverses a λ↓↑ and a φ↑↑ path of the nth process in the pipeline. In

this case, the path is the composition of a Φ↑↓ path in the first n0 instances

of S, followed by the λ↓↑ path in the nth instance of S, followed by a P↑↑ path

107

in the first n0 instances of S, followed by a φ↑↑ path in the nth instance of S.

By the inductive hypothesis, claim 5.2 and assumption 5.1, the critical delay of

such a path is at most n0fS− τ0
2

+rS + lS +fS. By assumption 5.1, rS + lS ≤ τ0
2
.

Thus, the critical delay of this path is at most

(n0 + 1)fS + rS + lS −
τ0

2
≤ (n0 + 1)fS.

• The path traverses a λ↑↓ and a φ↓↑ path of the nth process in the pipeline. In

this case, the path is the composition of a Φ↑↑ path in the first n0 instances of S,

followed by the λ↑↓ path in the nth instance of S, followed by a P↓↓ path in the

first n0 instances of S, followed by a φ↓↑ path in the nth instance of S. By the

inductive hypothesis, claim 5.2 and assumption 5.1, the critical delay of such a

path is at most n0fS + rS + lS − τ0 + fS + τ0
2
. By assumption 5.1, rS + lS ≤ τ0

2
.

Thus, the critical delay of this path is at most

(n0 + 1)fS + rS + lS −
τ0

2
≤ (n0 + 1)fS.

• The path traverses a λ↑↑ and a φ↓↑ path of the nth process in the pipeline. In

this case, the path is the composition of a Φ↑↑ path in the first n0 instances

of S, followed by the λ↑↑ path in the nth instance of S, followed by a P↑↓ path

in the first n0 instances of S, followed by a φ↓↑ path in the nth instance of S.

By the inductive hypothesis, claim 5.2 and assumption 5.1, the critical delay of

such a path is at most n0fS + rS − τ0
2

+ lS − τ0
2

+ fS + τ0
2
. By assumption 5.1,

rS + lS ≤ τ0
2
. Thus, the critical delay of this path is at most

(n0 + 1)fS + rS + lS −
τ0

2
≤ (n0 + 1)fS.

This proves the claim for Φ↑↑ paths. A symmetric argument can be used for Φ↑↓, Φ↓↑

and Φ↓↓ paths to complete the proof.

Claim 5.4. The critical delay of any B path in a pipeline of n ≥ 1 instances of S is

108

at most:

• B↑↑: nbS − n τ0
2

• B↑↓: nbS − (n + 1) τ0
2

• B↓↑: nbS − (n− 1) τ0
2

• B↓↓: nbS − n τ0
2

There exists a path with exactly these delays if the critical delays of paths between

input and output transitions of S equal the values in Table 3.1.

Proof. The proof of this claim is very similar to that of claim 5.3.

Note that if the critical delays of paths between input and output transitions of

S are exactly the values in Table 3.1, then by claim 3.2, there exist B↑↑, B↑↓, B↓↑ and

B↓↓ paths in the pipeline with exactly the claimed delays.

The remainder of the claim is proven via induction.

Due to assumption 5.1, the claim is true for n = 1.

Assume that the claim holds for some n = n0. It needs to be shown that the

critical delay of any B path in a pipeline of n = n0 + 1 instances of S satisfies the

claim.

Consider the B↑↑, B↑↓, B↓↑ and B↓↓ paths separately. Begin by considering B↑↑

paths. Such a path must fall into one of the following six categories.

• The path traverses only a β↑↑ path of the first instance of S in the pipeline. In

this case, the path is the composition of a B↑↑ path in the last n0 instances of

S and a β↑↑ path. By the inductive hypothesis and assumption 5.1, the critical

delay of such a path is bS − τ0
2

+ n0(bS − τ0
2
) = (n0 + 1)(bS − τ0

2
).

• The path traverses only a β↓↑ paths of the first instance of S in the pipeline. In

this case, the path is the composition of a B↑↓ path in the last n0 instances of

S and a β↓↑ path. By the inductive hypothesis and assumption 5.1, the critical

delay of such a path is bS + n0bS − (n0 + 1) τ0
2

= (n0 + 1)(bS − τ0
2
).

109

• The path traverses a ρ↑↑ and β↓↑ path of the first instance of S in the pipeline,

and a B↑↑ and a Λ↑↓ path in he remaining n0 instances of S. By the inductive

hypothesis, assumption 5.1 and claim 5.1, the critical delay of such path is

n0(bS − τ0
2
) + rS + lS − τ0 + bS. By assumption 5.1, lS + rS ≤ τ0

2
. Thus, the

critical delay of the path is

n0(bS −
τ0

2
) + rS + lS − τ0 + bS ≤ (n0 + 1)(bS −

τ0

2
).

• The path traverses a ρ↑↓ and β↓↑ path of the first instance of S in the pipeline,

and a B↑↑ and a Λ↓↓ path in he remaining n0 instance of S. By the inductive

hypothesis, assumption 5.1 and claim 5.1, the critical delay of such path is

n0(bS − τ0
2
) + rS − τ0

2
+ lS − τ0

2
+ bS. By assumption 5.1, lS + rS ≤ τ0

2
. Thus, the

critical delay of the path is

n0(bS −
τ0

2
) + rS −

τ0

2
+ lS −

τ0

2
+ bS ≤ (n0 + 1)(bS −

τ0

2
).

• The path traverses a ρ↓↑ and β↑↑ path of the first instance of S in the pipeline,

and a B↑↓ and a Λ↑↑ path in he remaining n0 instances of S. By the inductive

hypothesis, assumption 5.1 and claim 5.1, the critical delay of such path is

n0(bS − τ0
2
)− τ0

2
+ rS + τ0

2
+ lS − τ0

2
+ bS − τ0

2
. By assumption 5.1, lS + rS ≤ τ0

2
.

Thus, the critical delay of the path is

n0(bS −
τ0

2
)− τ0

2
+ rS +

τ0

2
+ lS −

τ0

2
+ bS −

τ0

2
≤ (n0 + 1)(bS −

τ0

2
).

• The path traverses a ρ↓↓ and β↑↑ path of the first instance of S in the pipeline,

and a B↑↓ and a Λ↓↑ path in he remaining n0 instances of S. By the inductive

hypothesis, assumption 5.1 and claim 5.1, the critical delay of such path is

n0(bS − τ0
2
)− τ0

2
+ rS + lS + bS − τ0

2
. By assumption 5.1, lS + rS ≤ τ0

2
. Thus, the

110

critical delay of the path is

n0(bS −
τ0

2
)− τ0

2
+ rS + lS + bS −

τ0

2
≤ (n0 + 1)(bS −

τ0

2
).

5.1.2 Critical Delays of Cycles in a Pipeline of Slack Match-

ing Buffers

Thus, the critical delays of paths between input and output transitions of a pipeline

of n ≥ 1 instances of S have been expressed as a linear function of the variables that

encode n. Next is shown that any cycle in the collapsed constraint graph of a pipeline

of n ≥ 1 instances of S has non-positive critical delay at τ0.

Claim 5.5. The critical delay of any cycle in the collapsed constraint graph of a

pipeline of n ≥ 1 instances of S is at most 0.

Proof. By assumption 5.1, the critical delay of any cycle entirely within the collapsed

constraint graph of an instance of S is at most 0.

Note that there cannot be any cycles in the pipeline traversing only φ paths or

only β paths. There must exist one instance of S in the pipeline such that this process

traverses only ρ paths of this process. The cycle must fall into one of the following

six cases.

• The cycle traverses only a ρ↑↑ path of the process. The cycle must traverse

a Λ↑↑ path in the remainder of pipeline. In this case, the by claim 5.1 and

assumption 5.1, the critical delay at τ0 of the cycle is at most lS − τ0
2

+ rS.

However, by assumption 5.1, lS + rS ≤ τ0
2
.

• The cycle traverses only a ρ↑↓ path of the process. The cycle must traverse

a Λ↓↑ path in the remainder of pipeline. In this case, the by claim 5.1 and

assumption 5.1, the critical delay at τ0 of the cycle is at most lS + rS − τ0
2
.

However, by assumption 5.1, lS + rS ≤ τ0
2
.

111

• The cycle traverses only a ρ↓↑ path of the process. The cycle must traverse

a Λ↑↓ path in the remainder of pipeline. In this case, the by claim 5.1 and

assumption 5.1, the critical delay at τ0 of the cycle is at most lS − τ0 + rS + τ0
2
.

However, by assumption 5.1, lS + rS ≤ τ0
2
.

• The cycle traverses only a ρ↓↓ path of the process. The cycle must traverse

a Λ↓↓ path in the remainder of pipeline. In this case, the by claim 5.1 and

assumption 5.1, the critical delay at τ0 of the cycle is at most lS − τ0
2

+ rS.

However, by assumption 5.1, lS + rS ≤ τ0
2
.

• The cycle traverses a ρ↑↑ and ρ↓↓ path of the process. The cycle must traverse

a Λ↑↓ and a Λ↓↑ path in the remainder of the pipeline. By assumption 5.1 and

claim 5.1, the critical delay of such a cycle is at most rS + lS − τ0 + rS + lS.

However, by assumption 5.1, lS + rS ≤ τ0
2
.

• The cycle traverses a ρ↑↓ and ρ↓↑ path of the process. The cycle must Traver’s

a Λ↓↓ and a Λ↑↑ path in the remainder of the pipeline. By assumption 5.1 and

claim 5.1, the critical delay of such a cycle is at most rS − τ0
2

+ lS − τ0
2

+ rS +

τ0
2

+ lS − τ0
2
. However, by assumption 5.1, lS + rS ≤ τ0

2
.

In each case, the critical delay of the cycle is at most 0, proving the claim.

5.2 Pipelines of 0 or More LR Buffers

In this section, it is shown how the collapsed constraint graph of a pipeline of n :

0 ≤ n ≤ N instances of a slack matching buffer, S, can be represented by a collapsed

constraint graph with size independent of n. Specifically, the number of nodes and

arcs in the collapsed constraint graph is constant.

Let P and Q be two processes in a circuit that have a channel between them.

Let Q.ro and Q.ri be the variables that implement the output port of Q of this

channel. Similarly, let P.li and P.lo implement the input port of P of this channel.

Let the channel be such that if a pipeline of 0 ≤ n ≤ N instances of S is inserted

112

Arc Critical Delay Arc Critical Delay
(Q.ro↑, P.li′↑) 0 (Q.ro↓, P.li↓) 0
(P.lo↑, Q.ri↑) 0 (P.lo↓, Q.ri↓) 0

Table 5.1: Critical delays in the collapsed constraint graph of a pipeline of 0 instances
of S.

Arc Critical Delay Arc Critical Delay
(Q.ro↑, P.li↑) nfS (Q.ro↓, P.li↓) nfS

(Q.ro↑, P.li↓) nfS − τ0
2

(Q.ro↓, P.li↑) nfS + τ0
2

(P.lo↑, Q.ri↑) n
(
bs − τ0

2

)
(P.lo↓, Q.ri↓) n

(
bs − τ0

2

)
− τ0

2

(P.lo↑, Q.ri↓) n
(
bs − τ0

2

)
+ τ0

2
(P.lo↓, Q.ri↑) n

(
bs − τ0

2

)
(P.lo↑, P.li↑) rS (P.lo↓, P.li↓) rS

(P.lo↑, P.li↓) rS − τ0
2

(P.lo↓, P.li↑) rS + τ0
2

(Q.ro↑, P.li↑) lS − τ0
2

(Q.ro↓, P.li↓) lS − τ0

(Q.ro↑, P.li↓) lS (Q.ro↓, P.li↑) lS − τ0
2

Table 5.2: Critical delays in collapsed constraint graph of pipeline of n ≥ 1 instances
of S.

on this channel, Q.ro and Q.ri would be connected to the input port of this pipeline.

Similarly, P.li and P.li would be connected to the output port of the pipeline. Such

a pipeline of 0 ≤ n ≤ N instances of S can be represented by the following collapsed

constraint graph. Let E ′ = {Q.ro↑, Q.ri↑, Q.ro↓, Q.ri↓, P.lo↑, P.li↑, P.lo↓, P.li↓}.

If n = 0, the set of nodes in the collapsed constraint graph of the pipeline is E ′.

The set of arcs is as in Table 5.1

If n ≥ 1, claims 5.1– 5.4 specify the critical delays at τ0 of all paths between input

and output transitions of the pipeline. Claim 5.5 shows that any cycle internal to the

collapsed constraint graph of this pipeline is at most 0. Thus, the transitions within

this pipeline can be ignored. Therefore, a pipeline of n ≥ 1 instances of S can be

modeled by a collapsed constraint graph, whose set of nodes is E ′. The set of arcs is

as in Table 5.2.

Note that the set of arcs in this collapsed constraint graph is a superset of the set

of arcs in that of a pipeline of n = 0 buffers. The critical delay at τ0 of the arcs that

appear in both collapsed constraint graphs is 0. The critical delay of each remaining

arc is of the form K1n + K2 where K1 and K2 are constants.

113

The collapsed constraint graph of a pipeline of 0 ≤ n ≤ N instances of S is

represented by a collapsed constraint graph that has the same set of nodes and arcs

as that representing a pipeline of n ≥ 1 instances of S. However, the critical delays

of these arcs is as described below.

If an arc appears in both the collapsed constraint graph of a pipeline of n = 0

buffers and that representing a pipeline of n ≥ 1 buffers, the critical delay of the arc

in the collapsed constraint graph representing a pipeline of 0 ≤ n ≤ N buffers is as

in Table 5.2.

For any other arc in the collapsed constraint graph representing a pipeline of n ≥ 1

instances of S, let the critical delay, from Table 5.2, be K1n + K2. The critical delay

of the corresponding arc in the collapsed constraint graph representing a pipeline of

0 ≤ n ≤ N buffers is chosen to be

K1n + K2z −K3(1− z) (5.1)

where z is such that z ≤ n ≤ zN and z ∈ {0, 1}. The value of K3 depends upon the

rest of the circuit that contains this pipeline of 0 ≤ n ≤ N instances of S. K3 must

be chosen in such a manner that if n = 0, then if a cycle traversing such an arc has

positive critical delay, so does a cycle traversing only arcs that appear in Table 5.1.

Next, it is shown how the value of K3 in (5.1) is chosen for each arc that is

listen in Table 5.2 but not Table 5.1. For the arc (Q.ro↑, Q.ri↑) K3 can be chosen as

the critical delay of the critical path in the collapsed constraint graph of P between

P.li↑ and P.lo↑. When n = z = 0, if the critical delay of a cycle traversing the arc

(Q.ro↑, Q.ri↑) is positive, so is the critical delay of the cycle obtained by replacing the

(Q.ro↑, Q.ri↑) arc by the following sequence of arcs: a (Q.ro↑, P.li↑) arc, the critical

path between P.li↑ and P.lo↑, and a (P.lo↑, Q.ri↑) arc. Similarly the value of K3

for the arcs (Q.ro↑, Q.ri↓), (Q.ro↓, Q.ri↑) and (Q.ro↓, Q.ri↓) can be determined by

respectively considering the critical delay of a path between:

• P.li↑ and P.lo↓,

114

• P.li↓ and P.lo↑, and

• P.li↓ and P.lo↓.

A symmetric argument can be used to show that the value of K3 for the arcs

(P.lo↑, P.li↑), (P.lo↑, P.li↓), (P.lo↓, P.li↑) and (P.lo↑, P.li↑) can be chosen respectively

as the critical delay of the critical path between:

• Q.ri↑ and Q.ro↑,

• Q.ri↑ and Q.ro↓,

• Q.ri↓ and Q.ro↑, and

• Q.ri↓ and Q.ro↓.

It is next shown how the value of K3 is chosen for the arc (Q.ro↑, P.li↓). Let t be

an output transition of P . Let Bt be the critical delay of the critical path between

P.li↓ and t. Similarly, let At be the critical delay of the critical path between P.li↑ and

t. Let v be the output transition of P such that the value of Bv−Av is maximized. K3

is chosen to be Bv − Av. If any cycle traverses the arc (Q.ro↑, P.li↓), the cycle must

contain a path between P.li↓ and an output transition of P , say u. If such a cycle has

positive critical delay, so does the cycle with the path between P.li↓ and u replaced

by the critical path between P.li↓ and u. If n = z = 0, the cycle contains a path

between Q.ro↑ and u with critical delay −K3 + Bu. There is a path between Q.ro↑

and u that traverses the arc (Q.ro↑.P.li↑) with critical delay Au. K3 was chosen such

that K3 ≥ Bu−Au or equivalently, Au ≥ −K3+Bu. Thus, if such a cycle had positive

critical delay, so does the cycle obtained by replacing the arc (Q.ro↑, P.li↓) and the

path between P.li↓ and v by the arc (Q.ro↑, P.li↑) and the critical path between P.li↑

and v. The values of K3 for the arcs (Q.ro↓, P.li↑), (P.lo↑, Q.ri↓) and (P.lo↓, Q.ri↑)

can be chosen in a similar manner.

Note that if K3 ≤ −K2 for all the arcs described above, there is no need to

introduce the variable z and a pipeline of n ≥ 0 instances of S can be represented by

a collapsed constraint graph with nodes E ′ and arcs as in Table 5.2.

115

5.3 A MILP Formulation of Slack Matching

In this section, the SMOP for circuits composed of processes that can be simulated by

repetitive ER systems is formulated as a MILP. It is assumed that all communications

channels implement the four phase handshake protocol and that the slack matching

buffer used satisfies assumption 5.1. Let S be such a slack matching buffer. Let

(P ,X) be the circuit that is to be slack matched. Let (P ′,X ′) be the circuit obtained

by inserting 0 ≤ ni ≤ N slack matching buffers on each channel xi ∈ X . The SMOP

is the problem of determining ni such that a linear cost function of the ni is minimized

subject to the constraint that (P ′,X ′) has cycle time at most τ0. Since the collapsed

constraint graph of a pipeline of 0 ≤ ni ≤ N instances of S can be represented by a

collapsed constraint graph with a constant size, as shown in Section 5.2, the system

of constraints (2.1) can be constructed for the circuit (P ′,X ′). Thus, the SMOP

is equivalent to determining integers ni such that this system of constraints can be

satisfied whilst minimizing a linear cost function of ni.

The construction of the system of constraint 2.1 is described below. In Chapter 1,

the ports of a buffer process were classified as input ports or output ports. Let the

ports of processes in a circuit to be slack matched be classified as follows. A port

that can be connected to the input port of a slack matching buffer is an output port.

Similarly a port that can be connected to an output port of a slack matching buffer

is an input port.

Associate with each transition t of a process in (P ,X) the real variable xt. For

each pair of transitions u and v in the same process, such that there is a repeated

rule with source u and target v, there exists a constraint of the form

xv − xu ≥ yuv (5.2)

where yuv is the critical delay of the repeated rule with source u and target v. For

each channel xi, let u be an input variable of a port of the channel. Similarly, let v

be an output variable of a port of the channel. For each such u and v, there exists a

116

constraint of the form

xv − xu ≥ Kuv
1 ni + (Kuv

2 + Kuv
3)zi −Kuv

3

where Kuv
1 , Kuv

2 and Kuv
3 are constants for each pair (u, v) as described in Section 5.2,

zi ∈ {0, 1} and zi ≤ ni ≤ Nzi. This constraint can be rewritten,

xv − xu −Kuv
1 ni − (Kuv

2 + Kuv
3)zi ≥ −Kuv

3 . (5.3)

If the variables zi cannot be eliminated(as described at the end of Section 5.2, N

can be chosen to be a large constant. Experience from the design of asynchronous

micro-controllers [18, 19] has shown that the number of slack matching buffers re-

quired on any particular channel is small.

Observe that if the system of constraints (5.2)–(5.3) can be solved, then the critical

delay at τ0 of all cycles within the collapsed constraint graph of a process is at most

0. If the critical delay of all such cycles is indeed at most 0, the collapsed constraint

graph of any process can be represented by a collapsed constraint graph containing

only vertices corresponding to input and output transitions of the process. There

is an arc between any pair of vertices in this collapsed constraint graph if and only

if there is a path between the pair of vertices in the original collapsed constraint of

the process. The critical delay of this arc is the critical delay of the critical path

between the vertices in the original collapsed constraint graph. This transformation,

when applied to all processes reduces the number of real variables xu in the MILP

formulation. Pseudocode for generating this MILP is described in Section 6.3

5.3.1 Multiple Scenarios

Recall that the repetitive ER system of a circuit can be constructed only for a specific

set of inputs to the circuit to be slack matched. If the circuit has data, the same data

values must be sent on each channel of the circuit. The MILP described in this chapter

is based on a repetitive ER system. In order to allow for multiple scenarios, the same

117

approach as that in Section 3.3.4 can be used; this approach is as follows. If there are

multiple scenarios of concern to the designer, similar MILPs can be constructed for

each scenario and solved simultaneously. Disjoint sets of real variables are used for

each of the MILPs. However, for each channel, the same integer variables are used to

encode the number of slack matching buffers to be inserted on the channel. The set of

MILP constraints for slack matching multiple scenarios is the union of the individual

sets of MILP constraints.

5.4 Results

A tool was implemented to generate the MILP equivalent to SMOP formulated in

this chapter. The tool was implemented in the C programming language. The MILP

generated has been solved using glpsol [1]. This was applied to the fetch loop of

the Lutonium [19], an asynchronous 8051 micro-controller. The fetch loop of the

Lutonium was described in Section 3.4.1

The objective function minimized was the estimated energy consumption of the

slack matching buffers.

This tool generates the MILP described in Section 5.3. This MILP does not require

that each process in the circuit be a half buffer. Recall that in order to generate the

MILP described in Section 3.3, the entire instruction memory needs to be modeled

as a pipeline of half buffers. By contrast, in order to generate the MILP described

in this chapter, the memory needs to be modeled as a repetitive ER system. All

parts of the memory except the SRAM cells can be described as a PRS that can be

modeled as a repetitive ER system. The SRAM cell used in the Lutonium contains

pass transistors, which cannot be described by a PRS. Instead, the SRAM cell with

pass transistors is modeled by an SRAM cell without pass transistors. This SRAM

cell can be described as PRS that can be modeled as a repetitive ER system. A

repetitive ER system of such an SRAM cell is generated, and the delays are chosen

so as to model the delays of the SRAM cell with pass transistors.

The result of applying this slack matching algorithm is identical to that obtained

118

in Section 3.4.1. However, in this case only individual SRAM cells in the memory

needed to be modeled, as opposed to modeling the entire memory(including logic

surrounding the SRAM cells). It took 30s to generate the MILP and 2s to solve this

MILP. The MILP was generated and solved on a machine with a 2.2 GHz Pentium

4 processor and 512 MB of memory. This MILP had 62 integer variables. The

same reduction from 68 transitions to 22 transitions was obtained. Note that it took

longer to generate the MILP than to solve it. The repetitive ER system of a circuit

described as a collection of HSE can be constructed syntactically. However, in the

absence of a HSE specification of a PRS, constructing an ER system from a PRS

requires simulation. The index priority simulation described by Lee [10, Chapter 7]

is an efficient method to construct the ER system of a PRS. Since the MILP was

constructed from a PRS description of the circuit, it was necessary to perform index

priority simulation to construct its repetitive ER system. If the HSE specification

of a circuit is available, we expect it would take a substantially shorter amount of

time to generate the MILP since there will be no need to perform an index priority

simulation.

5.5 Summary

In this section, a method of formulating the SMOP as a MILP was presented. This

formulation places no restrictions on the circuit to be slack matched except that it

be possible to model each process as a repetitive ER system. Assuming the slack

matching buffers used satisfy certain restrictions, it was shown how to formulate

the SMOP as a MILP. This formulation was demonstrated on the fetch loop of the

Lutonium micro-controller.

119

Chapter 6

Slack Matching in Practice

In the preceding chapters, two mixed integer linear programs equivalent to slack

matching have been described. In this chapter, issues that arise when slack matching

circuits are described. This chapter is divided into three sections. In the first sec-

tion, it will be described how circuits composed entirely of half buffers can be slack

matched by hand. In the remaining sections, it is described how the MILP described

in Chapter 3 and Chapter 5 can be respectively be generated.

6.1 Slack Matching by Hand

Asynchronous QDI circuits are typically designed from an initial sequential descrip-

tion of the circuit. A set of program transformations is applied in order to produce an

equivalent description of the circuit as a collection of concurrent processes that share

information via message passing. A limited set of such transformations is applied

repeatedly until each process can be implemented by a production rule set whose

cycle time is below some target τ0. The set of program transformations can often be

applied in different orders, resulting in different circuits. The circuit designers’ expe-

rience and intuition are used to determine the order in which the transformations are

applied. Experience and intuition also determine when to stop applying these trans-

formations. Oftentimes, the cycle time of the resulting circuit is much greater than

that of process with the largest cycle time. Therefore, the resulting circuit needs to

be slack matched. Typically, circuits are designed to minimize the energy consumed

120

while maintaining a cycle time of τ0. Therefore, the energy the slack matching buffers

consume needs to be computed in order to compare different designs. In this section,

the MILP for slack matching circuits of half buffers derived in Chapter 3 is inter-

preted in terms of process graphs. In the remainder of this section, it will be assumed

that all processes in a circuit to be slack matched satisfy the conditions described

in Section 3.1.2. In Section 3.2, it was shown how to determine whether a circuit

composed of such processes has cycle time at most τ0 by examining undirected cycles

in a circuit’s process graph.

Recall that the process graph of a circuit is a graph with a node for each process.

There is a directed arc in the process graph between nodes u and v if and only if there

is a channel that consists of an output port of process u and input port of process

v. For any arc (u, v) let mu,v be 1 if there is an initial communication on channel

(u, v), 0 otherwise. For each pair of arcs (u, v), (v, w) in the process graph let Fuvvw =

fu,w
v

τ0
−mv,w where fu,w

v is as in Table 3.1. Similarly let Bwvvu = 1
2
− bw,u

v

τ0
−mv,w where

bw,u
v is as in Table 3.1. For each ordered pair of arcs (u, v), (w, v) let Luvvw = 1

2
− lu,w

v

τ0

where lu,w
v is as in Table 3.1. Finally, for each ordered pair of arcs (v, u), (v, w) let

Ruvvw = ru,w
v

τ0
+ mv,u −mv,w where ru,w

v is as in Table 3.1.

Let G = (N, A) be a graph. Recall that an undirected cycle, c, in G is a sequence

of ordered triples {(ui, vi, di)} such that:

• ui, vi ∈ N ,

• di ∈ B,

• if di = true, (ui, vi) ∈ A,

• if di = false, (vi, ui) ∈ A, and

• for i > 1, ui = vi−1 and u1 = v‖c‖.

In Section 3.2, the following relation between an undirected cycle in a circuit’s process

graph and cycles in the circuit’s collapsed constraint graph was shown.

121

Given an undirected cycle in the process graph, c = {(ui, vi, di)}, a corresponding

cycle c′ = {c′i} in the collapsed constraint graph is constructed as follows. For each

pair of triplets (ui, vi, di), (uj, vj, dj) ∈ c such that either j = i + 1 or i = ‖c‖ ∧ j = 1:

• if di = dj = true, c′i ∈ φui,vj(vi).

• if di = dj = false, c′i ∈ βui,vj(vi).

• if di = false ∧ dj = true, c′i ∈ ρui,vj(vi).

• if di = true ∧ dj = false, c′i ∈ λui,vj(vi).

with the directions of the transitions chosen such that c′ is indeed a cycle in the

collapsed constraint graph.

Furthermore, theorem 3.1 provides a bound on the critical delay of any cycle in

a circuit’s collapsed constraint graph. This bound depends only on the number of

tu,w(v) paths (for all t, u, v, w) in the cycle where u, v, w ∈ N and t ∈ {φ, λ, ρ, β}.

Let c be an undirected cycle in a process graph, (N, A). In the following, pairs

of triples (ui, vi, di), (uj, vj, dj) ∈ c will be considered such that either j = i + 1 or

j = 1 and i = ‖c‖. Let c′ be a directed cycle in the collapsed constraint graph of

the circuit that corresponds to c. Furthermore let w, x, y ∈ N For each c, the values

Fwxxy,Bwxxy,Rwxxy and Lwxxy will be used to bound the critical delay of any corre-

sponding c′. Let FP (c) be the set of all ordered pairs of triples (ui, vi, di), (uj, vj, dj) ∈

c such that dj = di = true such that either j = i + 1 or j = 1 and i = ‖c‖. Let

BP (c) be the set of all ordered pairs of triples (ui, vi, di), (uj, vj, dj) ∈ c such that

dj = di = false such that either j = i + 1 or j = 1 and i = ‖c‖. Let LP (c) be the set

of all ordered pairs of triples (ui, vi, di), (uj, vj, dj) ∈ c such that dj = false∧di = true

such that either j = i + 1 or j = 1 and i = ‖c‖. Let RP (c) be the set of all ordered

pairs of triples (ui, vi, di), (uj, vj, dj) ∈ c such that dj = true ∧ di = false such that

either j = i + 1 or j = 1 and i = ‖c‖.

D(c)τ0 is the bound on the critical delay of c′ derived in theorem 3.1, where D(c)

122

is:

D(c) =
∑

(u,v,d),(v,w,d′)
∈FP (c)

Fuvvw−
∑

(u,v,d),(v,w,d′)
∈BP (c)

Buvvw−
∑

(u,v,d),(v,w,d′)
∈LP (c)

Luvvw +
∑

(u,v,d),(v,w,d′)
∈RP (c)

Ruvvw.

Thus, a circuit has cycle time at most τ0 if for any undirected cycle in its process

graph D(c) ≤ 0.

6.1.1 Common Case of Slack Matching

Typically, when a circuit is designed by hand, a repetitive ER system of the circuit

is constructed in the usual manner and the delay of each rule is set to one. Two

asynchronous microprocessors [18, 19] have been designed using the PCHB template.

Let G = (N, A) be the process graph of a circuit designed by hand using the PCHB

template, that satisfies the restrictions in Section 3.1.2. In a typical implementation

of the PCHB template fu,w
v = f for all (u, v), (v, w) ∈ A. Similarly, bw,u

v ≥ f and

bw,u
v + f ≤ τ0

2
. For each pair of arcs (u, v), (w, v) ∈ A, lu,w

v ≤ bx,w
v for all x such that

(v, x) ∈ A. Lastly, for each pair of arcs (v, u), (v, w) ∈ A, ru,w
v ≤ f . In the following,

simplified conditions are presented that must be satisfied in order for such circuits

to have cycle time at most τ0. First, the undirected cycles in a process graph are

classified into three groups.

• Forward latency cycles : A forward latency cycle is one such that |BP (c)| =

|LP (c)| = |RP (c)| = 0. These cycles arise whenever there is a directed cycle

in the process graph. Such cycles have di = true for all (ui, vi, di) ∈ c, i.e.

the undirected cycle traverses each edge in its direction. Figure 6.1 shows an

example of such a cycle.

• Backward latency cycles : A backward latency cycle is one such that |FP (c)| =

|LP (c)| = |RP (c)| = 0. These cycles arise whenever there is a directed cycle in

the process graph. Such cycles have di = false for all (ui, vi, di) ∈ c, i.e. the

undirected cycle traverses each edge in the opposite direction. Figure 6.2 shows

123

Figure 6.1: Forward latency cycle in a ring of buffers.

an example of such a cycle.

Figure 6.2: Backward latency cycle in a ring of buffers.

• Cycles with direction change: A cycle with direction change is one such that

|LP (c)| = |RP (c)| > 0. The simplest case where such cycles arise is when there

is more than one directed path from vertex u to v. Figure 6.3 shows an example

of such a cycle.

Figure 6.3: Cycle with direction change.

A circuit can be slack matched by inserting buffers in such a manner that for any

undirected cycle, c, in the process graph of the resulting circuit D(c) ≤ 0. Note that

if there exists a forward latency cycle c′ in the original circuit such that D(c′) > 0,

124

then introducing slack matching buffers onto any channel along this cycle can only

increase D(c′). Thus such circuits cannot be slack matched.

Having classified the undirected cycles in a collapsed constraint graph, the circuit

structures that give rise to such cycles are described.

6.1.1.1 Rings of Processes

Consider the set of processes such traversed by a directed cycle in the process graph.

Such a set of processes is called a ring of processes. The forward latency cycles and

backward latency cycles impose constraints on the number of processes in such a ring.

Let cf be a forward latency cycle. D(cf) = N f
τ0
−m where N is the number of

channels on the cycle and m is the number of channels with an initial communication.

Therefore, if D(cf) ≤ 0,

Nf −mτ0 ≤ 0 ⇐⇒ Nf

m
≤ τ0 ⇐⇒ N ≤ mτ0

f
.

Recall from Chapter 1, that the number of channels of a ring with an initial

communication is the number of initial messages on the ring. Thus, this inequality

states that the cycle time is at least as large as rate at which messages move around

the ring.

Let cb be a backward latency cycle.

D(cb) = −
∑

(u,v,false),(v,w,false)
∈BP (cb)

(
1

2
− bu,w

v

τ0

−mw,v

)
.

Let the mean value of bu,w
v such that (u, v, false), (v, w, false) ∈ BP (cb) be b̄. D(cb) =

−N(1
2
− b̄

τ0
)+m where N is the number of channels on the cycle and m is the number

of channels with an initial communication. If D(cb) ≤ 0,

N
(τ0

2
− b̄

)
−mτ0 ≥ 0 ⇐⇒ τ0 ≥

Nb̄
N
2
−m

⇐⇒ N ≥ 2mτ0

τ0 − 2b̄

Recall from Chapter 1 that since each process has finite static slack, the difference

125

between the rings’ static slack and the number of messages it contains is the number

of holes in the ring. This inequality states that the cycle time is at least as large as

the rate at which holes move around the ring.

Thus, for any ring of processes, the forward latency cycle imposes an upper bound

on the number of processes on the ring and the backward latency cycle imposes a lower

bound on the number of processes. These bounds are:

2mτ0

τ0 − 2b̄
≤ N ≤ mτ0

f
(6.1)

Example 6.1. Consider a ring LR-buffer, each implemented using the PCHB tem-

plate. Furthermore let there be one channel on this ring with an initial communica-

tion. Let the target cycle time, τ0, be 22. Let f = 2. Typically, 3 ≤ b̄ ≤ 9.

If b̄ = 9, then,

2 · 1 · 22

22− (2 · 9)
≤ N ≤ 1 · 22

2

⇐⇒ 11 ≤ N ≤ 11.

Thus, there must be exactly 11 buffers on such a ring.

If b̄ = 3,

2 · 1 · 22

22− (2 · 3)
≤ N ≤ 1 · 22

2

⇐⇒ 11

4
≤ N ≤ 11.

Thus, there must be at least 3 buffers on the ring and at most 11 buffers on the ring.

The value of b̄ can be changed either be redesigning processes to reduce b, or adding

buffers to the ring.

6.1.1.2 Fork and Join Paths

Let cd be an undirected cycle in a process graph. Furthermore, let cd be a cycle with

direction change, that is |LP (cd)| = |RP (cd)| ≥ 1. Substituting for Luvvw and Ruvvw

126

(from Section 6.1.1) and noting that |LP (c)| = |RP (c)| for any undirected cycle c, it

can be shown that for any undirected cycle c in a process graph:

−
∑

(u,v,d),(v,w,d′)
∈LP (c)

Luvvw +
∑

(u,v,d),(v,w,d′)
∈RP (c)

Ruvvw ≤
∑

(u,v,d),(v,w,d′)
∈RP (c)

mv,u −mv,w.

Thus, for an undirected cycle c in such circuits,

D(c) ≤
∑

(u,v,d),(v,w,d′)
∈FP (c)

Fuvvw −
∑

(u,v,d),(v,w,d′)
∈BP (c)

Buvvw +
∑

(u,v,d),(v,w,d′)
∈RP (c)

mv,u −mv,w.

Let cd be an undirected cycle such that |LP (cd)| = |RP (cd)|. If

∑
(u,v,d),(v,w,d′)

∈RP (c)

mv,u −mv,w = 0,

then

D(cd) ≤
∑

(u,v,d),(v,w,d′)
∈FP (cd)

Fuvvw −
∑

(u,v,d),(v,w,d′)
∈BP (cd)

Buvvw.

The simplest scenario where an undirected cycle with direction change arises is

when |LP (cd)| = |RP (cd)| = 1. An example of such a process graph is shown in

Figure 6.3. Such a circuit structure is called a fork and join path, since there is a

directed path in the process graph that splits into two forks which eventually join.

Wong [27] calls this case reconvergent fanout.

Let NF = |FP (cd)| and NB = |BP (cd)|. Furthermore, let

∑
(u,v,d),(v,w,d′)

∈RP (cd)

mv,u −mv,w = 0, (6.2)

and let ∑
(u,v,d),(v,w,d′)

∈FP (c)

mv,w =
∑

(u,v,d),(v,w,d′)
∈FP (c)

mv,u. (6.3)

127

Note that if there are no initial communications on any channel, the preceding con-

ditions are satisfied. If these conditions hold,

D(cd) ≤ NF
f

τ0

−
∑

(u,v,d),(v,w,d′)
∈BP (cd)

(
1

2
− bu,w

v

τ0

)
.

If b̄ is the mean value of bu,w
v such that (u, v, d), (v, w, d′) ∈ BP (cd), then

D(cd) ≤ NF
f

τ0

−NB

(
1

2
− b̄

τ0

)
.

Thus, if NF and NB are such that

NF
f

τ0

−NB

(
1

2
− b̄

τ0

)
≤ 0 ⇐⇒ NF f + NB b̄

NB

2

≤ τ0, (6.4)

then D(cd) ≤ 0.

Consider the process graph shown in Figure 6.4 and the highlighted undirected

cycle. For the highlighted cycle, inequality (6.4) becomes

NP f + NQb̄Q

NQ

2

. (6.5)

For such a cycle, the sum of the number of holes and messages is determined by

the initialization and remains constant. The holes reside in the pipeline Q and the

messages in P . When process F inserts a message into P , it must also insert a

message into Q. Thus, whenever a message is inserted into P , a hole is removed from

Q. Similarly, whenever process J removes a message from P , it also removes one

from Q. Thus, whenever a message is removed from P a hole is inserted into Q. The

assumptions in Section 6.1.1 ensure that the delay between F removing a hole from

Q and inserting a message in P and the delay between J removing a message from

P and inserting a hole in Q are such that they need to be considered in the above

analysis. When conditions (6.2) and (6.3) hold, inequality (6.5) states that the cycle

time is at least as large as the average rate at which holes and tokens move around

128

the cycle.

F J

P

Q

Figure 6.4: Example of a cycle with direction change.

Note that for any cycle cd, a cycle c′d can be constructed as follows. Let cd =

{(ui, vi, di)}. Let c′d be the cycle such that c′d = {(vi, ui,¬di)}. That is, c′d is the

undirected cycle obtained by traversing each edge in the opposite direction to which

it is traversed in cd. Let b̄′ be the mean value of bu,w
v such that (u, v, d), (v, w, d′) ∈

BP (c′d). By construction of c′d, |BP (c′d)| = |FP (cd)| and |FP (c′d)| = |BP (cd)|. In a

manner similar to that for cd, it can be shown that D(c′d) ≤ 0 if

NB
f

τ0

−NF

(
1

2
− b̄′

τ0

)
≤ 0.

Consider such a pair of undirected cycles cd and c′d. Let NF and NB be defined as

above. If conditions (6.2) and (6.3) hold, then D(cd) ≤ 0 and D(c′d) ≤ 0 if

NB

(
2f

τ0 − 2b̄′

)
≤ NF ≤ NB

(
τ0 − 2b̄

2f

)
. (6.6)

Recall that a source is a process with only output channels and a sink is a process

with only input channels. Consider a circuit with only one source and one sink. If

for each ring in the process graph condition (6.1) holds, and for each fork and join

path in the process graph conditions (6.2), (6.3) and (6.6) hold, then the circuit has

cycle time at most τ0.

129

6.2 Slack Matching Circuits of Half Buffers

In this section, it is described how a circuit composed of half buffers can be slack

matched using the method derived in Chapter 3. Pseudo-code for generating the

described MILP is provided. The following input is required:

• process graph (N, A),

• the constants f, b, l and r as described in Table 3.1 for each process (specified

by the mappings F : A× A 7→ [0,∞),B : A× A 7→ [0,∞),L : A× A 7→ [0,∞),

and R : A× A 7→ [0,∞) respectively),

• a mapping M : A 7→ [0, 1] indicating the channels on which there are initial

communications,

• a cost function C : A 7→ [0,∞) specifying the cost of adding a slack matching

buffer to a channel.

• f i,j
S and bj,i

S where S is the slack matching buffer, and

• τ0, the target cycle time.

The process graph can be generated from the production rule set or HSE specifying

the circuit. The mappings F, B, L and R can be determined from the ER system of

each process in the circuit. Similarly, fS and bS can be determined from the ER

system of the slack matching buffer.

Algorithm 1 shows how the matrices U and D can be generated.

Algorithm 2 shows how the MILP to be solved can be generated. The output of

Algorithm 2 is the number of slack matching buffers to be added to each channel of

the input circuit.

6.3 Slack Matching General QDI Circuits

In this section issues arising in the generation of the MILP described in Chapter 5

are discussed. Pseudo-code for generating this MILP is provided.

130

Algorithm 1 Generating the matrices D and U
1: procedure GenU(N, A)
2: A′ ← A
3: for each (u, v) ∈ A do
4: INSERT(A′, (v, u))
5: end for
6: return GEND(N ,A′)
7: end procedure
8: procedure GenD(N, A) . N-Nodes of process graph, A-arcs of process graph
9: for each u ∈ N do

10: for each v ∈ N do
11: D[u, v]← 0
12: end for
13: end for
14: for each u ∈ N do
15: color ← BFS(N, A, u)
16: for each v ∈ N do
17: if color[v]=black then
18: D[u, v]← 1
19: end if
20: end for
21: end for
22: return D
23: end procedure
24: procedure BFS(N,A,s)
25: for each node u ∈ N − {s} do
26: color[u]← white
27: end for
28: color[s]← gray
29: Q← s
30: while Q 6= do
31: u← head[Q]
32: for each v ∈ Adj[u] do
33: if color[v]=white then
34: color[v]← gray
35: ENQUEUE(Q,v)
36: end if
37: end for
38: DEQUEUE(Q)
39: color[u]← black
40: end while
41: return color
42: end procedure

131

Algorithm 2 Algorithm for generating MILP derived in Chapter 3

1: procedure GenMILP(N, A,M,C, fS, bS, τ0, F, B, L,R)
2: D ← GEND(N, A)
3: U ← GENU(N, A)
4: for each channel (u, v) ∈ A do
5: if (v, u) ∈ D then
6: Generate inequalities (3.8) and (3.12)
7: end if
8: Generate inequality (3.19)
9: Generate inequalities (3.20)–(3.22)

10: end for
11: for each pair (w, x), (x, y) ∈ A× A do
12: Generate inequalities (3.6) and (3.10)
13: for each (u, v) ∈ A : (v, w) ∈ D do
14: Generate inequality (3.7)
15: end for
16: for each (u, v) ∈ A : (y, u) ∈ D do
17: Generate inequality (3.11)
18: end for
19: end for
20: for each pair of channels (w, x), (y, x) ∈ A× A do
21: Generate inequality (3.13)
22: end for
23: for each pair of channels (x, w), (x, y) ∈ A× A do
24: Generate inequality (3.17)
25: if (w, y) ∈ U then
26: Generate inequality (3.18)
27: end if
28: end for
29: for all u, v, w, x, y, z ∈ N : (w, x), (u, v), (z, y) ∈ A do
30: if ∃s ∈ N : (x, u), (v, s), (y, s) ∈ D then
31: Generate inequality (3.15)
32: end if
33: if ∃s ∈ N : (x, s), (v, s), (y, u) ∈ D then
34: Generate inequality (3.14)
35: end if
36: if ∃s ∈ N : (u, s) ∈ A ∧ (x, s), (v, x), (y, s) ∈ U then
37: Generate inequality (3.16)
38: end if
39: end for
40: end procedure

132

The input of the algorithm is as follows.

• Closed production rule set P of the circuit to be slack matched, specified as a

production rule set of each process and the connections between processes.

• A list, L of channels in the circuit. For each channel the following information

is specified.

– The name, n, of each channel variable in both ports of the channel.

– A list, cv, of the channel variables specifying the variable in the slack

matching buffer to which each channel variable can be connected.

– The cost, c, of adding a slack matching buffer to the channel.

• The target cycle time, τ0 of the circuit.

• The ER system, 〈ES, RS〉 of a pipeline of n ≥ 0 slack matching buffers that

has an constant number of rules, whose delays and occurrence index offsets are

functions of n.

.

Algorithm 3 shows how the MILP described in Chapter 5 can be generated. This

MILP can be solved to determine the variables nl, the numbers of slack matching

buffers that must be added to each channel of the circuit. The procedure IPS, is the

index priority simulation algorithm described by Lee [10, Chapter 7] for generating

an ER system from a production rule set.

133

Algorithm 3 Generating the MILP described in Chapter 5

1: 〈E, R〉 ← IPS(P)

2: for each rule 〈u, i− o〉 δ→ 〈v, i〉 ∈ R do
3: if @l ∈ L : u, v ∈ l.cv then
4: Generate inequality: xv − xu ≥ δ − o · τ0

5: end if
6: end for
7: for each channel l ∈ L do
8: Generate inequality zl ≤ nl ≤ N
9: . N is a large constant

10: . nl is the number of slack matching buffers inserted on channel l
11: . zl = 1 is nl ≥ 1, zl = 0 otherwise.

12: for each rule 〈u, i− o〉 δ→ 〈v, i〉 ∈ RS do
13: . δ, o linear functions of nl and zl

14: u′ is the transition in E ′ corresponding to u.
15: v′ is the transition in E ′ corresponding to v.
16: Generate inequality xv′ − xu′ ≥ δ − o · τ0

17: end for
18: end for

134

Chapter 7

Related Problems

In this Chapter several problems similar to slack matching QDI circuits are discussed.

Each problem and its relation to slack matching is discussed.

In any synchronous distributed system, the cycle time of the system as a whole

may be greater than that of each individual component due to the synchronization

between various processes. However, not all such systems are slack elastic, that is, it

is not always possible to add an arbitrary amount of buffering to each communication

channel in the circuit without affecting the logical correctness of the system. However,

for such systems, it may still be possible to add buffering to improve the cycle time

provided the buffers are inserted in a manner that preserves the logical correctness.

This Chapter is organized as follows. First, in Section 7.1, it is described how slack

matching information may be used as part of an automated synthesis flow for QDI

circuits. Next, in Section 7.2, the problem of slack matching Bundled Data circuits

is discussed. Finally, in Section 7.3, slack matching is compared to the retiming

problem.

7.1 Clustering for Eτ 2

Wong [27] provides a method for synthesizing circuits such that each process can

by implemented using the PCHB template. This synthesis method is called Data

Driven Decomposition(DDD). Broadly speaking, DDD has two phases. The first

phases consists of repeatedly applying a set of program transformations to a circuit

135

until they can no longer be applied. While this collection of processes can be directly

implemented using the template, each process is usually much smaller than it needs

to be. The second phase of DDD, called recomposition, groups these processes into

clusters, such that each cluster describes a process that fits the target template.

Wong [27, Chapter 5] describes a heuristic to explore the space of such clusterings

and determine a clustering that consumes minimum energy subject to the constraint

that the circuit’s cycle time is at most τ0.

QDI circuits do not use a global clock to synchronize the various processes. In-

stead, local handshakes are used. Let E be the energy consumed by a circuit and τ

its cycle time. It has be shown that for QDI circuits, the energy consumed by the

circuit can traded off for throughput via voltage scaling [20]. Furthermore, it has

been observed that over a range of different voltages, the metric Eτ 2 is constant for

a specific circuit. Oftentimes, a QDI designer is interested in minimizing Eτ 2 rather

than minimizing E subject to a target cycle time τ0. Prior to the recomposition

phase, DDD does not use the target cycle time, τ0.

Data Driven Decomposition(DDD) [27] is a method for the automated synthesis

of QDI circuits from an initial sequential description. DDD consists of two phases.

In the first phase, a finite set of program transformations is applied repeatedly to

generate a set of concurrent processes that share information via message passing.

This set of processes is slack elastic and cannot be decomposed further. In the second

phase of DDD, these processes are grouped into clusters such that all the processes

in a cluster can be collapsed into one process. Each cluster is directly implemented

using the PCHB template. There are many such clusterings, thus this phase of DDD

selects a clustering that minimizes some metric of the resulting circuit. Let E be

the energy consumed by the resulting circuit and τ its cycle time. In this section, a

method is described for determining clusters such that the Eτ 2 of the resulting circuit

is small. Note that in addition to grouping processes into clusters, this phase of DDD

also introduces LR-buffers for slack matching.

136

7.1.1 Circuit Templates

DDD produces a circuit that can be implemented using a target template. Wong [27]

describes the DDD method for the PCHB template. Oftentimes, the energy consumed

by a process can be estimated from the number of input channels and output channels

a process has, and the encoding of the data values on each channel. This information

can also be used to construct the collapsed constraint graph of the process.

A typical QDI process template is shown in Figure 7.1. The template has the

Computation

Completion
Tree

Input
Validity

Output
Validity

Input Data Output Data

Le

En

Re

Output

En

Figure 7.1: QDI process template

following three parts.

• Output Computation: This part of the circuit template computes values to send

on the output port from the values received on input ports

• Validity Checkers : There is no global clock synchronizing the various processes.

Therefore, when data is to be shared between two processes using boolean

variables the data must be encoded in such a manner that it can determined

whether the value of the variables is a valid codeword. Similarly there must be a

neutral value that the variables are reset to between successive codewords. The

transition from the neutral codeword to a valid codeword must be monotonic,

i.e. when the variables change from the neutral value to a valid value, there are

no intermediate states that are valid codewords. Each process must check the

validity of the data received on input ports and output ports.

• Completion Trees : The validity(neutrality) of the individual channels are gath-

137

ered together by a completion tree. This component of the template is used in

sequencing the communication actions on input and output channels.

7.1.2 Problem Definition

The first phase of DDD produces a network of processes that can be described by

its process graph (N, A). Let M be a mapping M : A 7→ {0, 1} such that for any

(u, v) ∈ A, M(u, v) = 1 if there is an initial communication on the channel (u, v),

M(u, v) = 0 otherwise. Furthermore, let V be a mapping V : A 7→ [0,∞) such that

for any (u, v) ∈ A V (u, v) is the cost of computing the validity of a value on a port

of the channel. Let S be a mapping S : A 7→ [0,∞) such that for (u, v) ∈ A, S(u, v)

is the energy consumed by a slack matching buffer introduced on channel (u, v).

Let G = (N, A) be a network of processes produced by the first phase of DDD, as

described above. Let M, V and S be mappings as described above. Note that if G is

produced by DDD, then there is at least on arc (u, v) on each directed cycle in G for

which M(u, v) = 1. A clustering of G, M, V, N is a mapping C : N 7→ N that satisfies

the following restrictions. Let p be any directed simple path (one that traverse an

arc at most once) in G from v ∈ N to w ∈ N such that C(v) = C(w).

1. If all nodes, u, on the path p have C(u) = C(v), there is not arc (u′, v′) ∈ p

such that M(u′, v′) = 1.

2. If p contains at least one arc (u′, v′) such that C(u′) 6= C(w). p contains at least

one arc (u′, v′) such that M(u′, v′) = 1.

Let B be a mapping B : A 7→ N such that for any (u, v) ∈ A if C(u) 6= C(v),

B(u, v) is the number of buffers introduced on arc (u, v) for the purposes of slack

matching.

A cluster is a maximal subset of N such that all nodes u in the cluster have the

same value C(u). Consider a circuit obtained by mapping each cluster to a single

process that fits the PCHB template. If the fanout of an output of a cluster is greater

than 4, then additional copy processes are introduced for electrical reasons. For each

138

pair of u and v such that (u, v) ∈ A and C(u) 6= C(v) let the circuit contain B(u, v)

slack matching buffers on the channel (u, v) between the clusters C(u) and C(v). Let

E be the energy consumed by the described circuit, and τ its cycle time. The second

phase of DDD attempts to determine mappings C and B such that Eτ 2 is small.

7.1.3 Simulated Annealing

The optimization problem described in Section 7.1.2 is not convex. Thus, following

Wong [27], the randomized heuristic of simulated annealing is used to determine an

optimal clustering.

Simulated annealing is a randomized search heuristic. Associated with each point

in the space to be searched is a cost function. The simulated annealing heuristic

starts at an initial point in the space to be searched. Each iteration starts at a

point in the search space. This starting point is perturbed. If the new point (the

perturbed starting point) has lower cost than the initial point, the next iteration’s

starting point is this new point. If the cost of the new point is higher than the the

starting point, with some non-zero probability the starting point of the next iteration

is changed to the new point. Otherwise, the starting point of the next iteration is

the starting point of the current iteration. The probability with which a point with

greater cost is selected as the starting point of the next iteration varies with time.

When this probability is changed, the starting point of the next iteration is set to

the point traversed by the search that has the lowest cost. The manner in which this

probability changes is called the annealing schedule.

In the remainder of this section, a simulated annealing heuristic is proposed to

search the space of valid clusterings. First, the cost function is described. Next, it

is described how the initial point in the search space is determined and its cost com-

puted. Then the possible perturbations to a point in the search space are described.

These perturbations move from one valid clustering to another. Finally a method for

updating the costs is suggested.

Note that apart from computing the cost of the initial point in the search space,

139

simulated annealing only needs to compute the change in cost when moving from one

point in the search space to the next. Thus this heuristic is particularly well suited

to cost functions such that it is easy to compute the difference between the cost of

two points in the search space.

7.1.3.1 Cost Function

A simulated annealing heuristic can be used to search the space of valid clusterings.

The cost function considered is Eτ 2 where E is the energy consumed by the circuit

and τ is its cycle time.

Since each process in the circuit either matches a template or is an instance of a

slack matching buffer, the collapsed constraint graph of the circuit corresponding to

a valid clustering can be determined. Let A be the arc-node incidence matrix of this

graph. Let O and ∆ be vectors that respectively specify the occurrence index offset

and delay of each arc in the graph. Furthermore let A, O and ∆ be ordered such

that the occurrence index offset and delay of the arc in ith row A are the values in

the ith elements of O and ∆ respectively. The cycle time τ can be computed as the

minimum τ that satisfies the following constraints

[A O] [x τ]T ≥ ∆.

Burns [3, Chapter 2] describes a primal-dual algorithm to solving this linear program

that typically takes time linear in the number of nodes in the collapsed constraint

graph.

E can be computed as the sum of the energy consumed by each process in the

circuit. The energy consumed by each of the three components in a process that fits

the template described in Section 7.1.1 can be estimated based upon the technology

in which the circuit is to be implemented. The energy consumed by each process is

simply the sum of the energies consumed by each of the individual components.

The energy consumed by the computation of the value to be sent on each output

port is approximately equal. Thus, the energy used in computing all the output values

140

of a process is approximately linear in the number of output ports of a process.

For each type of code used on a communication channel, the energy consumed

by a validity checker for the code can be measured. The total energy consumed by

all the validity checkers in a process is then the sum of the energy consumed by the

validity checker of each port of the process.

Typically, the energy consumed by the completion trees is linear in the number

of ports a process has.

7.1.3.2 Initial Solution and Cost

A initial clustering can be constructed by choosing B(u, v) to be 0 for all (u, v) ∈ A.

C(u) is chosen such that for any pair of distinct nodes, u, v ∈ N , C(u) 6= C(v).

7.1.3.3 Moves

Next, the possible perturbations to clustering are described. The following set of

moves is proposed. In the following let C and B be the mappings for starting point

of an iteration of the simulated annealing heuristic. It is described how to construct

C ′ and B′ for a point that may be selected as the starting point of the next iteration.

• This move and the next correspond to moving a node at the boundary of a

cluster to an adjacent cluster. Let u, v ∈ N be such that C(u) 6= C(v) and

(u, v) ∈ A. Let B′ = B and C ′(u) = C(v) and for all w ∈ N : u 6= w let

C ′(w) = C(w) subject to the constraint that C ′ is a valid clustering.

• Let u, v ∈ N be such that C(u) 6= C(v) and (u, v) ∈ A. Let B′ = B and

C ′(v) = C(u) and for all w ∈ N : v 6= w let C ′(w) = C(w) subject to the

constraint that C ′ is a valid clustering.

• This move and the next correspond to introducing an empty cluster and moving

a node at the boundary of a cluster to the newly introduced cluster. Let (u, v) ∈

A be such that C(u) 6= C(v) and there exists y ∈ N such that C(y) = C(v) and

y 6= v. For each w ∈ N : w 6= v let C ′(w) = C(w). Select C ′(v) = a for some a

such that there exists no x ∈ N : x 6= v for which C ′(x) = a.

141

• Let (u, v) ∈ A be such that C(u) 6= C(v) and there exists y ∈ N such that

C(y) = C(u) and y 6= u. For each w ∈ N : w 6= u let C ′(w) = C(w). Select

C ′(u) = a for some a such that there exists no x ∈ N : x 6= u for which

C ′(x) = a.

• The next two moves correspond respectively to increasing or decreasing the

number of slack matching buffers on a channel between two clusters. Let C ′ =

C. For one arc (u, v) ∈ A such that C(u) 6= C(v), let B′(u, v) = B(u, v) + 1.

For all other arcs, (u′, v′) ∈ A let B′(u′, v′) = B(u′, v′).

• Let C ′ = C. For one arc (u, v) ∈ A such that C(u) 6= C(v), let B′(u, v) =

min{B(u, v)− 1, 0}. For all other arcs, (u′, v′) ∈ A let B′(u′, v′) = B(u′, v′).

• This move corresponds to merging two clusters. Let U and V be two dis-

tinct clusters. For any u, v, w, x ∈ N : w,′ /∈ U ∪ V, u, v ∈ U ∪ V such that

(w, u), (v, x) ∈ A, let p be a directed path in G from u to v that only tra-

verses nodes in U or V . Let all such p contain at most one arc (y, z) such that

M(y, z) = 1. For such a pair of clusters U and V and u ∈ N , let B′ = B and

C ′(u) = C(u) if u /∈ U . For v ∈ V and u ∈ U let C ′(u) = C(v).

• The last move corresponds to partitioning a cluster U into two cluster U1 and

U2. Let B′ = B and U1, U2 be a partition of U . For each u ∈ N : u /∈ U2 let

C ′(u) = C(u). Let C ′(u) = a for all u ∈ U2 where a is such that there exists

no v ∈ N : C(v) = a. Furthermore, U1 and U2 should be sch that C ′ is a valid

clustering.

After one of the above moves is performed, the following modifications are made

to the circuit in order to improve the electrical characteristics of the circuit and ensure

that each cluster fits a template.

As described by Wong [27], the value sent on any pair of distinct arcs (u, v) and

(u, w) is the same. For electrical reasons, if there are greater than four arcs (u, vi)

such that C(u) 6= C(vi) for any i and for all pairs i and j C(vi) 6= C(vj) then a

balanced tree of four way copy processes is inserted into the circuit on the channel

142

u of cluster C(u) and the output of the tree of copy processes is sent to each cluster

C(vj). For some circuits, an unbalanced copy tree may be preferable to a balanced

copy tree due to slack matching reasons. Thus the insertion of unbalanced trees could

be introduced as a second phase of moves in the simulated annealing.

If the template is a half buffer, it cannot contain an initial communication on

both an input and output channel. Thus if a cluster has a pair of input and output

channels such that there is an initial communication on each channel and the value

of B of both channels is zero, then the value of B of the input channel is incremented

by one.

The cost of a clustering can be evaluated by estimating the E and τ of the de-

scribed circuit. This can be done by the method described in Section 7.1.3.1. Note

that instead of evaluating the energy of each cluster, simply the energy of any cluster

changed by a move needs to be computed.

Thus, a simulated annealing heuristic that can be used by DDD for the design of

Eτ 2 optimal circuits has been proposed. A set of moves has been described and a

method for computing the cost of such a clustering has been proposed. The circuit

produced by the heuristic is slack matched.

7.2 Bundled Data Circuits

The slack matching problem as described arises in the design of bundled data asyn-

chronous circuits. Such circuits consist of a control part and data part. The control

part of the circuit is QDI. Delays are added to selected wires in the control part in

order to ensure the logical correctness of the data path. Thus, the cycle time of such

circuits is entirely determined by the cycle time of the control part of the circuit. If

the control part is slack elastic, it may be slack matched in the manner described in

Chapters 3 and 5.

143

7.3 Synchronous Circuits

Slack matching QDI circuits is often compared to retiming synchronous circuits. How-

ever, slack matching has been shown to NP-complete, whereas there exists a polyno-

mial time algorithm for retiming [11].

All transitions in a synchronous VLSI circuit are synchronized to a global clock.

At each ’tick’ of the clock, each pipeline stage of the circuit latches in its inputs and

produces an output at the subsequent clock tick. Such circuits are clearly not slack

elastic. If a circuit has reconvergent fanout as shown in Figure 7.2, then the depth of

pipelines P and Q must be changed by the same amount.

F J

P

Q

Figure 7.2: Example of Reconvergent Fanout

There is one lower bound on the cycle time of a synchronous circuit:

• The cycle time must be at least as large as the latency of an pipeline stage.

Retiming is an optimization to reduce the cycle time of a synchronous circuit. There

is also the following lower bound on the cycle time of a synchronous circuit, that is

intrinsic to the computation, and cannot be affected by retiming.

• The cycle time must be at least as large as the ratio of the delay around the

cycle to the number of registers on this cycle.

Typically, a static timing analysis is performed to determine the cycle time of a

synchronous circuit. Each static timing analysis can be performed in time polynomial

in the size of the circuit. Whilst a retiming could potentially require an exponential

number of static timing analyzes, Leiserson et al. [11] show retiming may be performed

in polynomial time (in the size of the circuit). This is based on the observation that

144

retiming only changes the latency of adjacent pipeline stages. Thus, retiming can

evaluate the cycle time of a synchronous circuit as the largest latency of any stage,

that is the largest value of a set that is polynomial in the size of the circuit.

The cycle time of a QDI circuit is determined by considering all cycles in the

collapsed constraint graph of the circuit. The cycle time is the largest ratio of delay

along a cycle to the sum of occurrence index offsets on the cycle. As shown by

Burns [3], the cycle time of a QDI circuit may be determined in time polynomial in

the size of the circuit. Inserting slack matching buffers changes the delay of existing

cycles in the circuit. It also introduces a set of new cycles, that did not exist in the

original circuit. Unlike retiming, it has not been shown that the number of cycles

introduced or changed by the insertion of a buffer is polynomial in the size of the

circuit. Thus, slack matching must evaluate the cycle time as the maximum of an

exponentially large set of values on each iteration.

In order for retiming not to affect the logical correctness of a synchronous circuit,

the following constraints must be satisfied:

• The number of registers on any ring must remain constant.

• If the number of registers on a particular branch of reconvergent fanout is in-

creased, the number of registers on all branches of this instance of reconvergent

fanout must be increased by the same amount.

Thus, synchronous circuits are not slack elastic, i.e. an arbitrary number of registers

cannot be added to the circuit without affecting its logical correctness. Since syn-

chronous circuits are not slack elastic, there are fewer ways in which pipelining can

be introduced, whilst preserving the logical correctness of the circuit. However, for

a slack elastic QDI circuit, additional pipelining may be introduced on any channel

whilst preserving the logical correctness of the circuit. Thus, the space of valid slack

matchings is larger than the space of valid retimings for comparable circuits.

145

Chapter 8

Conclusion and Future Work

The slack matching problem has been formally described and two methods of slack

matching QDI circuits have been presented. Both of these methods rely on construct-

ing a mixed integer linear program(MILP) that is equivalent to slack matching this

circuit. It has been shown that slack matching is in general an NP-complete problem,

via a reduction from subset sum. Finally the impact of slack matching on the design

of QDI circuits has been discussed.

8.1 Summary

In Chapter 3, a MILP for slack matching circuits composed entirely of a specified

class of half buffers was derived. Each half buffer in a circuit is parametrized by a set

of constants. The slack matching buffer is also parametrized by this set of constants,

and must be a member of the specified class of half buffers. The MILP is formulated

as a list of constraints, which when satisfied, ensure that a process graph with ni slack

matching buffers inserted on each channel i has cycle time at most τ0. The MILP can

be solved using standard MILP solvers. The results of slack matching circuits from

the Lutonium [19] and MiniMIPS [18] are described. The cycle time of the fetch loop

of the Lutonium was reduced from 68 transitions to 22 transitions. The MILP was

generated in 0.1s and solved in 0.6s.

In Chapter 4, it was shown that the slack matching problem is NP-complete via

a reduction from the subset sum problem.

146

In Chapter 5, a more general MILP for the slack matching problem was derived.

This MILP can be used to slack match any circuit that can be modeled as a repetitive

ER system. The only restriction is on the buffer used for slack matching. It must

be possible to parametrize the critical paths between input and output transitions

of the repetitive ER system of a pipeline of n ≥ 0 buffers as a linear function of

the variables that encode n. The results of slack matching an example circuit from

the Lutonium [19] was described. This MILP was generated in 30s and solved in

2s. The reduction in cycle time observed was the same as for the MILP described in

Chapter 3.

In Chapter 6, some simplifying assumptions are stated that allow a designer to

slack match a circuit by hand. All constraints from in the MILP described in Chap-

ter 3 fall under one of two simple rules that must be satisfied in order for a circuit to

be slack matched.

In Chapter 7, the relationship between slack matching and other problems in

circuit design is explored. First it is shown how slack matching may be integrated

into an automated synthesis method for QDI circuits. Next slack matching QDI

circuits is compared to the retiming problem in synchronous circuits.

8.2 Future Work

For the circuits tried so far, solving the MILPs derived in Chapter 3 and 5 has proven

to be tractable. Further examples need to be tried in order to determine when solving

the MILPs becomes intractable. When solving the MILP is intractable, heuristics for

solving MILPs can be used to slack match circuits. Alternatively, it may be possible

to slack match circuits hierarchically.

The proof of NP-completeness of slack matching relies on a reduction from subset

sum. This problem is not NP-complete in the strong sense. That is there exists a

pseudo-polynomial time algorithm that solves this problem. A pseudo-polynomial

time algorithm is one that takes polynomial time in the encoding of the problem,

however this encoding is exponentially larger than another encoding of the problem.

147

This suggests that slack matching may not be NP-complete in the strong sense. If

this is indeed the case, then a pseudo-polynomial time algorithm would be of great

use to the designer.

ER systems can only model disjunctions in PRS by considering specific scenarios.

Further work is needed to develop models that allow a designer to estimate the cycle

time of circuit over a range of different scenarios, rather than a specific scenario.

As the feature size of CMOS technology becomes smaller, it is becoming harder

to predict the exact delays of circuit components. Delays of circuit components are

being modeled as random variables instead. Recall that the expected value of a sum

of random variables is the sum of the expected values of the random variables. Thus,

the analysis in this thesis can be used to slack match a circuit so that the expected

value of its cycle time is at most a specified target. Further work is needed in order

to frame as a MILP, the problem of slack matching a circuit so that the expected

value and variance of the circuits’ cycle time are within specified bounds.

148

Appendix A

Notation

A.1 CHP

In this section, a brief summary of the CHP notation is provided. All variables are

local to the process in which they appear. x := a denotes the assignment of a to x .

I ?x denotes an assignment of the value on the input port I to variable x . Similarly,

O !x assigns the value of x to output port O . These assignments to and from ports are

blocking. Sequential composition is denoted by ; and , denotes parallel composition.

The deterministic selection statement [G1 → S1[]G2 → S2] waits for one of the guards

Gi to be true and then executes Si . The looping statement *[G → S] executes S

while the guard G holds. The statement [G → skip] is abbreviated [G]. Similarly,

the loop *[true→ S] is abbreviated *[S].

A.2 Handshaking Expansion(HSE)

All variables in a collection of HSE are boolean variables. The statements in a HSE

are assignments to these variables. a↑ and a↓ respectively denote the assignment

of the values true and false to variable a. Sequential composition is denoted by

; and , denotes parallel composition. The deterministic selection statement [G1 →

S1[]G2 → S2] waits for one of the guards Gi to be true and then executes Si . The

looping statement *[G → S] executes S while the guard G holds. The statement

[G → skip] is abbreviated [G]. Similarly, the loop *[true → S] is abbreviated

149

*[S].

A.3 Production rule sets

QDI circuits can be described as production rule sets. A production rule set(PRS) is

a set of production rules. A production rule(PR) is a guarded command of the form

G → t . G is the guard of the PR, and is a boolean expression; t is the target of the

PR and is an assignment of the value true or false to a variable. The assignments

of the values true and false to variable, v, are respectively denoted v↑ and v↓. Let

R(v↑) be the predicate v = true. Similarly, let R(v↓) be the predicate v = false.

The execution of a PRS is an unbounded sequence of firings. A firing of the rule

G → t with G true amounts to the execution of t , a firing with G false amounts to

a skip. An effective firing is a firing that changes the value of a variable.

A valid PRS is stable and non-interfering. A PRS is non-interfering if for all pairs

of rules of the form (G1 → v↑,G2 → v↓), ¬G1 ∨ ¬G2 is true at all times. A PRS is

stable if for all rules G → t , G changes from true to false only when R(t) holds.

150

Bibliography

[1] GNU Linear Programming Kit, Version 4.9.

http://www.gnu.org/software/glpk/glpk.html.

[2] P. Beerel, A.Lines, M.Davies, and N.H. Kim. Slack matching asynchronous

designs. In Proc. 12th IEEE International Symposium on Asynchronous Circuits

and Systems, March 2006.

[3] S.M. Burns. Performance Analysis and Optimization of Asynchronous Circuits.

PhD thesis, California Institute of Technology, 1990.

[4] T.H. Cormen, C.E.Leiserson, and R.L.Rivest. Introduction to Algorithms. The

MIT Press, 1990.

[5] Dash Optimization. Xpress-MP. http://www.dashoptimization.com/home/services/publications/applications book.html.

[6] Kenneth Fazel, Lun Li, Mitch Thornton, Robert B. Reese, and Cherrice

Traver. Performance enhancement in phased logic circuits using automatic slack-

matching buffer insertion. In GLSVLSI ’04: Proceedings of the 14th ACM Great

Lakes symposium on VLSI, pages 413–416, New York, NY, USA, 2004. ACM.

[7] M.R. Garey and D.S. Johnson. Computers and Intractability A Guide to the

Theory of NP-Completeness. Freeman and Company, 1979.

[8] M.R. Greenstreet and K. Steiglitz. Bubbles can make self-timed pipelines fast.

Journal of VLSI and Signal Processing, 2(3):139–148, November 1990.

151

[9] S. Kim and P. Beerel. Pipeline optimization for asynchronous circuits: Com-

plexity analysis and an efficient optimal algorithm. IEEE Transactions on CAD,

25(3):389–402, March 2006.

[10] T.K. Lee. A General Approach to Performance Analysis and Optimization of

Asynchronous Circuits. PhD thesis, California Institute of Technology, 1995.

[11] C. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous circuitry by retiming.

In Third Caltech Conference On VLSI, March 1983.

[12] A.M. Lines. Pipelined asynchronous circuits. Master’s thesis, California Institute

of Technology, 1995.

[13] R. Manohar and A.J. Martin. Quasi-delay insensitive circuits are turing com-

plete. In Async96 Second International Symposium on Advanced Research in

Asynchronous Circuits and Systems, March 1996.

[14] R. Manohar and A.J. Martin. Slack elasticity in concurrent computing. In

J. Jeuring, editor, Proc. 4th International Conference on the Mathematics of

Program Construction, Lecture Notes in Computer Science 1422, pages 272–285.

Springer Verlag, 1998.

[15] A.J. Martin. Compiling communicating processes into delay-insensitive vlsi-

circuits. Distributed Computing, 1(4):226–234, 1986.

[16] A.J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In

Sixth MIT Conference on Advanced Research in VLSI. MIT Press, 1990.

[17] A.J. Martin. Synthesis of asynchronous circuits. Technical Report CS-TR-93-28,

Caltech, 1993.

[18] A.J. Martin, A. Lines, R. Manohar, M. Nyström, P. Pénzes, R. Southworth,

U. Cummings, and T.K. Lee. The design of an asynchronous MIPS R3000 mi-

croprocessor. In Proc. 17th Conference on Advanced Research in VLSI, 1997.

152

[19] A.J. Martin, M. Nyström, K. Papadantonakis, P.I. Pénzes, P. Prakash, C.G.

Wong, J. Chang, K.S. Ko, B. Lee, E. Ou, J. Pugh, E. Talvala, J.T. Tong, and

A Tura. The Lutonium: A sub-nanojoule asynchronous 8051 microcontroller. In

Proc. 9th IEEE Intl Symposium on Advanced Research in Asynchronous Circuits

and Systems, May 2003.

[20] A.J. Martin, M. Nyström, and P. Penzes. Power-Aware Computing, chapter ET2:

A Metric For Time and Energy Efficiency of Computation. Kluwer Academic

Publishers, 2001.

[21] G. Nelson. Systems programming with Modula-3. Prentice Hall, 1991.

[22] P. Pénzes. Pipeline composition for asynchronous circuits. unpublished, Septem-

ber 1999.

[23] P. Prakash and A.J. Martin. Slack matching quasi delay insensitive circuits. In

Proc. 12th IEEE Intl Symposium on Asynchronous Circuits and Systems, March

2006.

[24] J. Sparso and J. Staunstrup. Delay-insensitive multi-ring structures. Integr.

VLSI J., 15(3):313–340, 1993.

[25] S.C. Venkataramani, G.; Goldstein. Leveraging protocol knowledge in slack

matching. Computer-Aided Design, 2006. ICCAD ’06. IEEE/ACM International

Conference on, pages 724–729, Nov. 2006.

[26] T. Williams. Latency and throughput tradeoffs in self-timed asynchronous

pipelines and rings. Technical Report CSL-TR-90-431, Stanford, May 1990.

[27] C.G. Wong. High-Level Synthesis and Rapid Prototyping of Asynchronous VLSI

Systems. PhD thesis, California Institute of Technology, 2004.

	Acknowledgements
	Abstract
	Introduction
	Motivating Example
	Background
	Problem Definition
	Another Example
	Prior Work
	Contributions
	Outline

	Event-Rule Systems
	General ER Systems
	Repetitive ER Systems
	Verifying the Cycle Period of a Repetitive ER System

	Pseudo-Repetitive ER Systems
	Constructing a Repetitive ER System
	HSE
	PRS
	Disjunctive Circuits
	Disjunctive HSE
	Disjunctive PRS

	Slack Matching Circuits of Half Buffers
	ER Systems of Half Buffers
	Classification of Paths in a Buffer's Collapsed Constraint Graph
	Assumptions About Processes in a Circuit
	Critical Cycles in the Collapsed Constraint Graph of Circuits of Half Buffers
	Cycles in Collapsed Constraint Graphs
	Critical Delay of F,B and L Paths
	Critical Delay of Cycles in a Circuit with No Initial Communications
	Critical Delay of Cycles in a Collapsed Constraint Graph

	Process Graphs and Cycle Time
	Process Graphs
	Correspondence Between Cycles in Process Graphs and Collapsed Constraint Graphs
	Sufficient Conditions for Slack Matching
	Necessary Conditions for Slack Matching

	Slack Matching a QDI circuit
	Pipelines of LR-buffers
	MILP for Slack Matching
	Generating the MILP
	Multiple Scenarios

	Results
	Example I: Lutonium Fetch Loop
	Example II: Control Loop of MiniMIPS

	Conclusions and Future Work

	Slack Matching is NP-Complete
	Slack Matching Decision Problem
	NP Completeness of SMDP
	Outline
	Class of Circuits Used in the Reduction
	Sum Checkers
	Pipelines of LR-buffers
	J-limiters
	Sum Checkers

	SMDP is NP-Hard
	SMDP is NP-Complete

	Conclusions

	Slack Matching General QDI circuits
	Pipelines of 1 or More LR Buffers
	Critical Delays of ,B, and P Paths in a Pipeline of Slack Matching Buffers
	Critical Delays of Cycles in a Pipeline of Slack Matching Buffers

	Pipelines of 0 or More LR Buffers
	A MILP Formulation of Slack Matching
	Multiple Scenarios

	Results
	Summary

	Slack Matching in Practice
	Slack Matching by Hand
	Common Case of Slack Matching
	Rings of Processes
	Fork and Join Paths

	Slack Matching Circuits of Half Buffers
	Slack Matching General QDI Circuits

	Related Problems
	Clustering for E2
	Circuit Templates
	Problem Definition
	Simulated Annealing
	Cost Function
	Initial Solution and Cost
	Moves

	Bundled Data Circuits
	Synchronous Circuits

	Conclusion and Future Work
	Summary
	Future Work

	Notation
	CHP
	Handshaking Expansion(HSE)
	Production rule sets

	Bibliography

