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Abstract

This thesis presents a concise introduction to the spectral-element method and its appli-

cations to the simulation of seismic wave propagation in 3-D earth models. The spectral-

element method is implemented in the regional scale for a 3-D integrated southern Califor-

nia velocity model. Significantly better waveform fits are achieved for the 3-D synthetics

calculated compare to the 1-D synthetics generated from the 1-D standard southern Califor-

nia model, especially for many basin stations where strong amplifications are observed due

to the very low wave-speed sediments. A hypothetical earthquake rupturing from north-

east to southwest at the southern end of the San Andreas fault is simulated to improve our

understanding of the seismic hazards in the Salton Trough region.

With the improved 3-D Green’s function, we perform source inversions for both the

source mechanisms and event depths of Mw ≥ 3.5 earthquakes in southern California.

The inversion results generally agree well with the results obtained by other traditional

methods, but with significantly more stations used in the inversions. Time shifts are gen-

erally required to align the data and the synthetics, which provides a great dataset for the

improvement of the 3-D velocity models in southern California.

We use the adjoint method to formulate the tomographic inverse problem based upon

a 3-D initial model. We calculate the sensitivity kernels, a key component of the tomo-

graphic inversion, that relate the perturbations of observations to the perturbations of the

model parameters. These kernels are constructed by the interaction of the regular forward

wavefield and the adjoint wavefield generated by putting the time-reversed signals at the

receivers as simultaneous adjoint sources. We compute the travel-time sensitivity kernels

for typical phases in both regional and global problems for educational purposes, and out-

line the procedures of applying the conjugate-gradient method to solve both source and

structural inversion problems.
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Chapter 1

Introduction

Accuratel simulation of seismic wave propagation in a 3-D heterogeneous medium has al-

ways been a crucial yet difficult task in seismology. By precisely computing the synthetic

seismograms given any 3-D earth model for an earthquake, and comparing them to the

actual seismograms recorded at the stations, we can evaluate either the quality of the ve-

locity models or the accuracy of the earthquake source parameters, making it possible to

improve the velocity models or the source parameters by further matching the data and the

synthetics. Recently, the spectral-element method was introduced to simulate both regional

and global wave propagation in seismology [e.g., Komatitsch and Tromp, 2002a,b; Chaljub

et al., 2003; Komatitsch et al., 2004]. This method combines the geometrical flexibility

of the finite-element method with an accurate representation of the wave field in terms

of high-degree Lagrange polynomials. Its successful application to model global seismic

wave propagation in 3-D heterogeneous tomography models has demonstrated significant

improvement in both travel-time prediction and waveform fits compared to the results ob-

tained from semi-analytical solutions to the wave equation for a 1-D laterally homogeneous

earth model [Komatitsch and Tromp, 2002a,b; Ritsema et al., 2002; Komatitsch et al., 2003;

Ji et al., 2005].

Chapter 2 presents a summary of the regional application of the spectral-element method

to an integrated 3-D velocity model of southern California. This complicated 3-D hetero-

geneous model is generated by combining high-resolution structural-geology basin models

with a regional tomographic model. The spectral-element mesh is carefully designed to

incorporate different velocity discontinuities, e.g, the surface topography as well as the
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Moho topography. A typical regional earthquake is simulated, and the synthetics at various

seismic stations are compared to the ground motion recorded, producing generally good

waveform fits throughout the southern California region at periods of 6 seconds and longer.

With a high-resolution sedimentary basin model implemented for the Salton Trough re-

gion, a hypothetic scenario earthquake on the southern segment of the San Andreas fault

is simulated to assess the possible intensity of shaking, especially in the Salton Trough

region.

This great forward modeling tool presents us with the opportunity to further solve the

most important problems in seismology, the source and structural inversions. In Chapter

4, we take advantage of the accuracy of the 3-D wave simulations for the integrated 3-D

velocity model of southern California, and compute the 3D Green’s functions required by

moment-tensor inversions for the Southern California Seismic Network (SCSN) stations.

With careful selection and weighting of the three component seismograms, we are able

to invert the location and source mechanisms for some typical southern California earth-

quakes, using significantly more data compared to those used in the traditional body-wave

and surface-wave source estimates.

Because of the limitations and accuracy of the forward wave modeling methods, tradi-

tional tomographic inversions are limited by the types and quantities of the data that can

be collected for the inversion, and the approximation that has to be made in the inversion

procedures. Using a full 3-D wave simulation approach completely eliminates these limita-

tions. However, the computational cost of the spectral-element method as a forward model-

ing tool in the conventional framework of tomographic inversions may be prohibitive at this

stage, give that a vast number of forward simulations is needed to perform the inversions.

This leads to the application of the adjoint method to compute sensitivity kernels, which

relate the perturbations of the misfit measurements between observations and the synthet-

ics to the perturbations of the structural parameters. Chapter 5 and Chapter 6 present these

sensitivity kernels for regional and global phases respectively, in both 1-D and 3-D ve-

locity models. These kernels are the basic components in the construction of the gradient

of the misfit function; therefore, they are the key ingredients for the adjoint tomographic

inversions.
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Chapter 2

Introduction to the Spectral Element
Method

2.1 Abstract

This chapter serves as an introduction to the spectral element method and its applications

to simulate seismic wave propagation. It starts by reviewing existing numerical schemes

that calculate synthetic seismograms for 3-D velocity models. Then the theory and numer-

ical implementations of the spectral element methods are introduced. The spectral element

method describes the geometry of the mesh elements by the product of low-degree La-

grange polynomials, while it represents the function field by the product of high-degree

Lagrange polynomials defined on the Gauss-Lobatto-Legendre (GLL) points, which ren-

ders higher accuracy compared to the classical finite element methods. Because of the

choices of these GLL points, the mass matrix of the assembled discrete system is exactly

diagonal, which significantly reduces the computational cost associated with solving a large

linear system and makes it relatively easy to implement the numerical scheme in parallel.

2.2 Review of Existing Numerical Techniques

A large collection of numerical techniques is available for the simulation of wave propaga-

tion in 3-D elastic media. The most widely used approach is the finite difference method

(FD), in which the strong form of the wave equation is discretized both spatially and tem-
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porally [Kelly et al., 1976; Virieux, 1986]. It has been successfully applied to solve both

regional and global problems [e.g., Olsen and Archuleta, 1996; Graves, 1996; Igel and We-

ber, 1996], but it also suffers from issues like ”grid dispersion” near large gradients of the

wave field [e.g., Frankel, 1993; Olsen and Archuleta, 1996], ”numerical anisotropy”, and

at least 15 points per wavelength is required at the upper half-power frequency to maintain

numerical stability [e.g., Alford et al., 1974; Kelly et al., 1976]. The use of the strong for-

mulation of the wave equation makes the method geometrically inflexible; therefore, it is

difficult to incorporate 3-D surface topography in the wave simulation [e.g., Robertsson,

1996].

Pseudospectral methods are also popular in calculating the synthetic seismograms for 3-

D earth models. Originally proposed in fluid dynamics, and later applied to elastodynamics

and seismology [e.g., Gazdag, 1981; Tessmer and Kosloff , 1994; Furumura et al., 1998],

these methods, although often very accurate, are restricted to models with smooth varia-

tions, and suffer from the same geometrical inflexibility as the finite difference method.

The classical finite element method (FEM) has also been attempted by seismologists to

calculate wave propagation in 3-D [e.g., Bao et al., 1998]. It is based upon the variational

formulation of the wave equation, and therefore can easily handle complicated geometries

associated with the 3-D velocity model, e.g., the topographies of the free surface and any

internal interface. However, the finite element methods, when used in low order, suffer

from numerical dispersions, and when used in high order, produce spurious waves, and in

both cases affect the accuracy of the simulation. The direct solution method proposed by

Geller and Ohminato [1994] is another numerical approach for the calculation of synthetic

seismograms for 3-D velocity models, similar to the finite element method. Both methods

require the ability to solve large linear systems, and therefore are computationally costly.
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2.3 The Theory of the Spectral-Element Method

2.3.1 Strong Formulation – the Equation of Motion

The most fundamental equation solved in seismology is the elastodynamics equation, given

in its most general form by

ρ∂2
t s = ∇ · T + F in Ω, (2.1)

where Ω is the domain of interest, and s(x, t) is the displacement field of the wave motion

that needs to be solved; ρ(x) denotes the density distribution throughout the domain, and

F(x, t) denotes the external body force that acts on the medium and excites the wave mo-

tion. In pure elastic simulations, the stress tensor T can be related to the strain field by the

following constitutive relation:

T = c : ε = c : ∇s, (2.2)

where c denotes the fourth-order elastic tensor. The last equality of the above equation

holds because of the symmetry of the elastic tensor. The wave equation is generally solved

subject to the the initial conditions stating that the medium is at rest before the start of the

simulation

s(x, t = 0) = 0

ṡ(x, t = 0) = 0. (2.3)

If the wave equation (2.1) is solved for a medium volume with boundaries (including inter-

nal boundaries), it is also subject to the boundary conditions

n̂ · T = 0 on Σ0

[n̂ · T]+− = 0 on Σ, (2.4)
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where Σ0 is the external boundary of the model volume Ω, Σ denotes the collection of all

discontinuities inside Ω, and n̂ denotes the unit outward normal to the boundaries. Equation

(2.1) subject to conditions (2.3) and (2.4) is also called the strong formulation or differential

formulation of the wave equation.

2.3.2 Weak Formulation

In the finite element method, rather than using the equation of motion and the associated

boundary conditions listed in section 2.3.1, one discretizes and solves the wave equation in

its weak form. Dotting both sides of equation (2.1) with a test vector function w(x) and

integrating by parts over the model volume Ω, we obtain the following expression:

∫

Ω

ρw · s̈ dV = −
∫

Ω

∇w : T dΩ +

∫

Ω

w · F dΩ +

∫

Γ

w · (n̂ · T) dΓ, (2.5)

where Γ is the absorbing boundaries, which will be discussed in section 2.3.5. Notice that

the boundary condition (2.4) has already been used in the process of integration by parts

and is naturally incorporated in the above expression. When combined with the initial

condition in equation (2.3), equation (2.5) is also called the weak formulation or the integral

formulation of the wave equation. And this is the common starting point of a collection

of numerical techniques that use different test functions and/or discretize the wave field

on different basis functions. Sections 2.3.6 through 2.3.12 illustrate the selections of test

functions and basis functions by the spectral element method and the associated numerical

implementations.

The purpose of sections 2.3.3 through 2.3.5 is to describe different aspects of the weak

form (2.5), including how to express the body force F(x) in the context of seismology, how

to incorporate attenuation to accommodate viscoelastic effects on the wave propagation,

and how to deal with artificial boundary conditions when bounded domains are used to

simulate wave propagation in an unbounded medium.
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2.3.3 Earthquake Source Representation

Earthquake generally occurs as a result of dislocations on a fault. In the far field, the region

where the faulting occurs can be considered as a point source. For example, a single force

at location x0 produces a force field given by

Fj(x, t, f) = fjg(t)δ(x − x0), (2.6)

where fj is the amplitude of the force, and g(t) is the normalized source time function that

satisfies the requirement that
∫

g(t)dt = 1. A more realistic description of a seismic point

source is given by the moment tensor M, and the force field arising from a moment-tensor

point force at location x0 can be expressed as

Fj(x, t,m) = −Mjkg(t)∂kδ(x − x0). (2.7)

When the length scale of the faulting caused by the earthquake rupture is substantially

large, the earthquake source has to be represented by a finite fault. We mesh the finite fault

into rectangular blocks, and define basis functions PIJ(x) associated with each rectangular

block. We select a time window of the rupture history of the finite fault, and define the

associated basis function with each time block Bσ(t). Now the moment density tensor

function can be expanded in terms of the basis functions:

mjk(x, t) =
∑

I,J,σ

mIJσ
jk PIJ(x)Bσ(t). (2.8)

Once we obtain the Green’s functions associated with the earthquake location and a

particular station, the response at the station for this earthquake can be calculated by the

convolution of the Green’s functions with the seismic sources represented in this section.
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2.3.4 Attenuation

In a viscoelastic medium, the constitutive relation (2.2) needs to be modified such that the

stress is determined not by the instantaneous strain, but by the entire strain history:

T(t) =

∫ t

−∞
c(t− t′) : ∇s(t′) dt′. (2.9)

Since the quality factor Q is observed to be constant over the wide range of frequencies

of interest in seismology, the viscoelastic effects can be mimicked by a series of standard

linear solids [Liu et al., 1976], and the elastic tensor cijkl can be rewritten as

cijkl(t) = cRijkl

[

1 −
L

∑

l=1

(1 − τ εl
ijkl/τ

σl)e−t/τσl

]

H(t), (2.10)

where cRijkl denotes the relaxed modulus and H(t) is the Heaviside function. In practice,

only three linear solids (L = 3) are used to obtain a constant Q effect. The constitutive

relation then becomes

T = c
U : ∇s −

L
∑

l=1

R
l, (2.11)

where the unrelaxed modulus cU
ijkl is given by

cUijkl = cRijkl

[

1 −
L

∑

l=1

(1 − τ εl
ijkl/τ

σl)

]

, (2.12)

and the memory variables R
l satisfy the following first-order differential equations:

∂tR
l = −R

l/τσl + δc : ∇s/τσl, (2.13)

where the modulus defect δclijkl is defined by

δclijkl = −cRijkl(1 − τ εl
ijkl/τ

σl). (2.14)

For detailed derivation of equations (2.10) through (2.14), please refer to Appendix A.
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2.3.5 Absorbing Boundary Conditions

In order to simulate wave propagation in an unbounded medium, absorbing boundary con-

ditions are introduced for the edges of the bounded model volume. Waves can propagate

outward transparently through these artificial boundaries, avoiding reflections from these

edges. The most popular approximated absorbing boundary conditions were introduced

by Clayton and Engquist [1977] and Stacey [1988], who used the paraxial approximations

of the elastic wave equations. The approximations we implement are similar to those of

Clayton and Engquist [1977] with some small modifications. Under these approximations,

traction on these artificial boundaries Γ, can be expressed as

t = ρ
[

vn(n̂ · ṡ)n̂ + v1(̂t1 · ṡ)̂t1 + v2(̂t2 · ṡ)̂t2

]

, (2.15)

where vn is the quasi-P wave speed of waves traveling in the n̂ direction, v1 is the quasi-S

wave speed of waves polarized in the t̂1 direction, and v2 is the quasi-S wave speed of

waves polarized in the t̂2 direction. These approximations are exact for the waves incident

vertically on the boundary and become less reliable with increasing incident angle. Other

more efficient treatments of the absorbing boundary conditions are also available, such as

the perfect matched layer absorbing boundary condition introduced by [Bérenger, 1994;

Komatitsch and Tromp, 2003]. However, they are more expensive to implement compared

to equation (2.15).

2.3.6 Discretization

We design the SEM mesh similarly to the FEM mesh. The model volume Ω is subdi-

vided into a series of hexahedral non-overlapping elements Ωe, e = 1, . . . , ne, such that

Ω =
⋃ne

e=1 Ωe. Consequently the absorbing boundary Γ is also subdivided into a series of

quadrilateral surface elements Γb. We map the boundary elements into the standard 2-D

biunit square and define the 2-D shape functions Na(ξ, η), a = 1, . . . , nb on the square as
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the double product of Lagrange polynomials given by

N1(ξ) =
1

2
(1 + ξ), N2(ξ) =

1

2
(1 − ξ) (2.16)

for nb = 4 and

N1(ξ) =
1

2
ξ(ξ − 1), N2(ξ) = 1 − ξ2, N3(ξ) =

1

2
ξ(ξ + 1) (2.17)

for nb = 9. Notice that −1 ≤ ξ ≤ 1. Now the shape of the boundary elements can be

expressed as

x(ξ, η) =

nb
∑

a=1

Na(ξ, η)xa. (2.18)

The Jacobian of this transform is given by

Jb = (
∂x

∂ξ
× ∂x

∂η
), (2.19)

and the scalar Jacobian of this transform is just the determinant of the Jacobian matrix

Jb = det[Jb]. (2.20)

The outward normal of the boundary elements can be expressed as

n(ξ, η) =

∂x

∂ξ
× ∂x

∂η

‖∂x

∂ξ
× ∂x

∂η
‖
. (2.21)

Similarly, we map the volume elements into tge standard 3-D biunit cubic square and

define the 3-D shape functions Na(ξ, η, ζ), a = 1, . . . , nv as the triple product of the La-

grange polynomial functions given by (2.16) for nv = 8 or (2.17) for nv = 27. The shape

of the volume elements can be represented by a transform from a biunit cubic to the volume

elements

x(ξ, η, ζ) =
nv
∑

a=1

Na(ξ, η, ζ)xa, (2.22)
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and the Jacobian matrix and the scalar Jacobian of this transform can be expressed as

Jv = [
∂x(ξ, η, ζ)

∂(ξ, η, ζ)
], Jv = det[Jv]. (2.23)

One critical requirement on the mesh design is that the boundary and volume elements

should never degenerate, i.e., Jb 6= 0 and Jv 6= 0, which ensures a unique and invertible

mapping between the elements and standard biunit domains.

2.3.7 Representation of Functions

Although the discretization schemes described in section 2.3.6 are the same as in the finite

element methods, the SEM differs from the FEM in that it represents the function field by

higher-order Lagrange interpolants, therefore rendering higher accuracy of the simulation

compared to the classical FEM. We first choose a set of control points ξα, α = 1, . . . , nl on

the [−1, 1] interval to be the nl Gauss-Lobatto-Legendre (GLL) points that satisfy

(1 − ξ2)ṖN(ξ) = 0, (2.24)

then the high-order Lagrange polynomial functions lα(ξ), lβ(η), lγ(ζ) constructed from

these control points can be used to expand any function defined on the boundary element

Σe or on the volume element Ωe:

f(x(ξ, η))|Σe
=

∑

αβ

fαβ lα(ξ)lβ(η) (2.25)

f(x(ξ, η, ζ))|Ωe
=

∑

αβγ

fαβγ lα(ξ)lβ(η)lγ(ζ), (2.26)

and the derivatives of the volumetric function field can also be approximated by these

Lagrange interpolants:

∂f(x(ξ, η, ζ))

∂xi

=
∑

αβγ

fαβγ

[

l̇α(ξ)lβ(η)lγ(ζ)
∂ξ

∂xi

+ lα(ξ)l̇β(η)lγ(ζ)
∂η

∂xi

+ lα(ξ)lβ(η)l̇γ(ζ)
∂ζ

∂xi

]

,

(2.27)
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where l̇α(ξ) denotes the differentiation of function lα(ξ). Notice the ∂ξ
∂xi

, ∂η
∂xi

, ∂ζ
∂xi

are just

the matrix elements of J
−1
v .

2.3.8 Integration Quadrature

We use the Gauss-Lobatto-Legendre integration rule to approximate integrations over sur-

face elements
∫

Σe

f(x) dx =
∑

αβ

ωαωβf
αβJαβ

b , (2.28)

where ωα, α = 0, . . . , nl denote the weights associated with the GLL points of integration,

and Jαβ
b = Jb(ξα, ηβ). Similarly integrations over volume element Ωe can be approximated

by
∫

Ωe

f(x) dx =
∑

αβγ

ωαωβωγf
αβγJαβγ

v , (2.29)

where Jαβγ
v = Jv(ξα, ηβ, ζγ).

2.3.9 Global Test Functions

Although section 2.3.7 demonstrated how to represent a function field by the local La-

grangian polynomials at the elemental level, the test function used in the weak formulation

(2.5) is defined globally throughout the volume. Therefore we define the Ith global scalar

test function by its restrictions on the individual elements:

wI(x)|Ωe
=











lα(ξ)lβ(η)lγ(ζ) if I ∈ Ωe, and I|Ωe
= (α, β, γ)

0 if I 6∈ Ωe

, (2.30)

where I is the global index of a particular grid point, I = 1, . . . , Ng. If the Ith global grid

point resides in an element and is not shared by elements, i.e., it has zero valence, then

the global test function wI(x) is simply the 3-D local Lagrange function lα(ξ)lβ(η)lγ(ζ)

extended to the whole space. However, if the grid point is shared by neighboring elements

and has valence nval, then the global test functionwI(x) will be composed of nval+1 pieces

of local Lagrange function connecting on this shared point at the edge of the elements.
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To compute integrations, we establish the mapping between local grid points and the

global grid points,

(αi, βj, γk; Ωe) −→ (I). (2.31)

Notice this projection is one-to-one for grid points inside any element (nval = 0), and

multiple-to-one for the grid points on the element boundaries that are shared by neighboring

elements (nval ≥ 1). In order to assemble the contributions from all the elements for the

integrations involving the Ith global test function, one needs first to loop over all spectral

elements Ωe, e = 1, · · · , ne, and then all the GLL points (nl × nl × nl) to count in all the

contributions from local grid points that correspond to this Ith global point. Also notice

that W I(x) when evaluated at local grid points of Ωe will have

wI|Ωe
(α′, β ′, γ′) = δαα′δββ′δγγ′ , (2.32)

where (α′, β ′, γ′) is another local grid point of element Ωe.

2.3.10 Applications to the Weak Form of the Wave Equation

In this section, we will numerically perform the integrations on the left and right hand

sides of the weak formulation (2.5) using the discretization and integrations schemes listed

in previous sections. We first expand the displacement wave field as

s(x(ξ, η, ζ), t) =

3
∑

j=1

x̂i

nl
∑

σ,τ,µ=0

sστµ
j (t)lσ(ξ)lτ (η)lµ(ζ). (2.33)

The goal of our simulation is to solve the discretized displacement field sστµ
j (t). We choose

the global test vector in equation (2.5), corresponding to the kth component of the Ith

global mesh point, to be the function defined by (2.32):

w(x(ξ, η, ζ)) = w x̂k = x̂k

∑

Ωe

(α,β,γ; Ωe)→I

lα(ξ)lβ(η)lγ(ζ). (2.34)



14

2.3.10.1 Mass Matrix

The mass matrix term on the left hand side of equation (2.5) can be numerically integrated

as follows:

∫

Ω

ρw · s̈ dx =

∫

Ω

ρw s̈k(t) dx =
∑

p

∫

Ωp

ρws̈k(t) dx

=
∑

p

∑

α′β′γ′

ωα′ωβ′ωγ′Jα′β′γ′

ρα′β′γ′

wα′β′γ′

s̈α′β′γ′

k

=







∑

e
(α,β,γ; Ωe)→I

ωαωβωγJ
αβγραβγ






s̈I

k(t), (2.35)

where the property of the Lagrange polynomials lα(ξ′α) = δαα′ has been used in the last

step. In other words, because the GLL points associated with the Lagrange polynomials are

also the GLL quadrature points, the mass matrix that pre-multiplies the acceleration vector

[s̈I
k(t)] will be diagonal. More discussion about this property will be presented in section

2.3.11.

2.3.10.2 Strain and Stress

The computation of strain and stress is necessary for both the boundary and volume inte-

grations on the right hand side of the weak form (2.5). We first calculate the gradient of the

displacement field according to the expansion given by (2.33),

∂isj(x)|αβγ
Ωe

= ∂i

[

∑

α′β′γ′

sα′β′γ′

j lα′(ξ)lβ′(η)lγ′(ζ)

]

|αβγ
Ωe

= [
∑

σ

sσβγ
j l̇σ(ξα)]∂iξ(ξα, ηβ, ζγ)

+ [
∑

σ

sασγ
j l̇σ(ηβ)]∂iη(ξα, ηβ, ζγ)

+ [
∑

σ

sαβσ
j l̇σ(ζγ)]∂iζ(ξα, ηβ, ζγ), (2.36)
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then the strain tensor ε is given by

εij =
1

2
(∂isj + ∂jsi), (2.37)

and for the elastic wave propagation problem, the stress tensor can be expressed as

Tkl = Cklijεij. (2.38)

For the isotropic and no pre-stress case, it can be reduced to

Tkl = (κ− 2

3
µ)δklεii + 2µεkl. (2.39)

And when attenuation is introduced to the wave equation by standard linear solids, equation

(2.38) is replaced by (2.11).

2.3.10.3 Stiffness Matrix

Now we compute the volume integrals associated with the stress on the right hand side of

equation 2.5.

∫

Ω

∇w · T dΩ =

∫

Ω

∂jw Tjk dΩ

=
∑

p

∫

Ωp

∂jwTjk dΩe

=
∑

Ωe

(α,β,γ; Ωe)→I

∫

Ωe

[l̇α∂jξlβlγ + lα l̇β∂jηlγ + lαlβ l̇γ∂jζ]Tjk dx

=
∑

Ωe

(α,β,γ; Ωe)→I

{[

∑

σ

ωσ l̇α(ξσ)∂jξ(ξσ, ηβ, ζγ)T
σβγ
jk Jσβγ

]

ωβωγ

+

[

∑

σ

ωσ l̇β(ησ)∂jη(ξα, ησ, ζγ)T
ασγ
jk Jασγ

]

ωαωγ

+

[

∑

σ

ωσ l̇γ(ζσ)∂jζ(ξα, ηβ, ζσ)T
αβσ
jk Jαβσ

]

ωαωβ

}

. (2.40)
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2.3.10.4 Force Terms

The integration associated with the product of the global test function and the force terms

can be performed similarly to the previous sections. For a point force F(x, t) = f(t)δ(x −
x0),

∫

Ω

w · F dΩ = w(x0)fk(t)

=











lα(ξ(x0))lβ(ξ(x0))lγ(ξ(x0))fi(t) x0 ∈ Ωe

0 x0 /∈ Ωe

, (2.41)

where x0, if resides in an element Ωe, can be mapped to the (ξ(x0), η(x0), ζ(x0)) point on

the standard biunit domain.

Similarly for moment tensor point source Fk(x, t) = −Mkj∂jδ(x − x0)g(t),

∫

Ω

w · F dΩ =

∫

Ω

w Fk dΩ = −Mkj∂jw(x0)g(t), (2.42)

where we need to further evaluate ∂jw. Realizing that ∂jw = ∂w
∂ξl

∂ξl

∂xj
and definingGkl(ξ0, η0, ζ0) =

Mkj
∂ξl

∂xj
(x0), where (ξ0, η0, ζ0) are the local coordinates of point x0 in the element Ωp, we

obtain

Mkj∂jW
I(x0) = Gkl

∂W

∂ξl
(ξ0, η0, ζ0)

=
∑

r,t,v

lr(ξ0)lt(η0)lv(ζ0)Gkl(ξr, ηt, ζv)∂ξl
(lα(ξr)lβ(ηt)lγ(ζv))

=
∑

r,t,v

lr(ξ0)lt(η0)lv(ζ0) [Gk1(ξr, ηt, ζv)l̇α(ξr)lβ(ηt)lγ(ζv))

+ Gk2(ξr, ηt, ζv)lα(ξr)l̇β(ηt)lγ(ζv))

+ Gk3(ξr, ηt, ζv)lα(ξr)l̇β(ηt)l̇γ(ζv)) ]. (2.43)
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For a general force field Fi(x, t), the integration becomes

∫

Ω

w · F dΩ =

∫

Ω

w Fk dΩ =
∑

p

∫

Ωp

wFk dΩe (2.44)

=
∑

Ωe

(α,β,γ; Ωe)→I

ωαωβωγJ
αβγF αβγ

k (t). (2.45)

2.3.10.5 Boundary terms

Now only the absorbing boundary surface integration is left on the right hand side of equa-

tion (2.5). Notice that only when the Ith global grid point is on a boundary element Γe will

this integration not vanish, in which case it can be performed as follows,

∫

Γ

w · (n̂ · T) dΓ =

∫

Γ

wn̂jTjk

=
∑

p

∫

Γp

wtk dΓe

=
∑

Γe

(α,β,γ; Γe)→I

ωαωβJ
αβtαβ

k . (2.46)

Normal stress ti is zero for the free surface, and continuous for any internal boundaries. For

global problems, the fluid outer core couples with the solid inner core, and we may solve

the fluid and solid sides independently, while the interchange of the two fields will occur

through this boundary condition (please refer to Komatitsch and Tromp [1999] for detailed

implementations). As for regional problems, all the artificial boundaries are treated as

”absorbing” boundaries, on which the traction is given by equation (2.15).

2.3.11 Assembling and Time Marching

With all the parts of the weak formulation (2.5) resolved, we assemble both sides of the

equations for the global test vector w(x), corresponding to the global grid point I ,







∑

e
(α,β,γ; Ωe)→I

ωαωβωγJ
αβγραβγ






s̈I

k(t) = T I
k + F I

k (t) + BI
k, (2.47)



18

where the expressions for T I
k , F(t)I

k, and BI
k are given by equations (2.40), (2.42) and

(2.46).

Now we define the displacement vector s(t) = [sI
k(t)], which is a collection of the

displacement as a function of time at all the global grid points, and assemble both sides of

equation (2.47) into a matrix form given by

M s̈(t) = RHS, (2.48)

where RHS denotes the vector version of the right hand side of equation (2.47), RHS =

T + F(t) + B. Therefore, in practice, spectral-element simulations involve assembling

the mass matrix M, computing RHS , and solving the linear system given by (2.48) at

every time step. As mentioned earlier, because of the choices of GLL points and the GLL

quadrature rules, the mass matrix is exactly diagonal. Therefore this linear system can be

solved by simple division:

s̈I(t) = M−1
I RHSI , (2.49)

where MI is the diagonal element of the mass matrix M corresponding to the Ith global

grid point.

Equation (2.49) gives the formula to compute acceleration at any given time. We can

then march the wavefield by finite differencing in the time domain, and use the Newmark

scheme to update the velocity and displacement at (n+1)th time step, given by the predictor

phase at the beginning of each time step:

dn+1 = dn + vn∆t +
1

2
an(∆t)2

vn+1 = vn +
1

2
an∆t

an+1 = 0, (2.50)
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and the corrector phase at the end of each time step:

an+1 = M−1(T + F(t) + B)

vn+1 = vn+1 +
1

2
an+1∆t

dn+1 = dn+1. (2.51)

2.3.12 Accuracy Analysis

Two key parameters to evaluate the quality of the mesh design and the accuracy of the

simulation are the number of grid points per wavelength and the Courant number. The

number of grid points per wavelength, which determines the resolution of the mesh in

terms of how it samples the wavefield, is defined by

N = τ(
v

∆h
)min, (2.52)

where τ is the shortest period present in the source time function, v is the wave speed,

and ∆h is the spatial between neighboring grids. A general rule of thumb for the SEM

method is that a spacing sampling of approximately 5 points per minimum wavelength,

when Lagrange polynomials of degree order nl = 8 is used [Komatitsch and Vilotte, 1998],

are required for the stability and accuracy of the simulation. The Courant number, which

gives the number of grid points advanced in each time step, is defined by:

C = ∆t(
v

∆h
)max. (2.53)

Generally, ∆t should be chosen such that C ≤ 0.3 to maintain a stable simulation. A

common practice to evaluate the quality of the mesh design is to plot these two quantities

for the mesh, and by examining how these two above requirements are satisfied one can

estimate the accuracy and stability of the simulation.
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Chapter 3

Spectral-Element Simulation for
Earthquakes in Southern California

3.1 Abstract

In this section, we apply the spectral element method outlined in Chapter 2 to a 3-D south-

ern California velocity model. We simulate seismic wave propagation in this integrated

model for two recent southern California earthquakes and demonstrate the accuracy of our

numerical method and the significant improvement of waveform fits achieved by the intro-

duction of the detailed 3-D model. Most of the results from this chapter are published in

Komatitsch et al. [2004] and Lovely et al. [2006].

3.2 Model Description

We use an integrated crustal velocity model of southern California. We adopt the Hauksson

[2000] tomographic model as the regional background model and, within this model, we

embed a recent Los Angeles basin P-velocity model developed by Süss and Shaw [2003],

which extends from 119.3◦W to 117.3◦W longitude and from 33.0◦N to 34.8◦N latitude.

This model further contains a higher-resolution block within the Los Angeles basin, ex-

tending from 118.4◦W to 117.9◦W in longitude and from 33.7◦N to 34.1◦N in latitude.

This model was constructed in GOCAD (a 3D structural modeling tool [Mallet, 1992]) and

contains a detailed description of the sedimentary basement shape determined from hun-
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dreds of petroleum industry well logs and more than twenty-thousand kilometers of seismic

reflection profiles. We also include the velocity model in the Salton Trough region devel-

oped by Lovely et al. [2006]. We scale the P velocity of the model through an empirical

relation [Komatitsch et al., 2004] to obtain the shear velocity. The mesh for this integrated

model honors the shape of the Moho determined by Zhu and Kanamori [2000], and the to-

pography and bathymetry obtained from the USGS [Komatitsch et al., 2004]. Figure 3.1(a)

shows the integrated model in map view, and Figure 3.1(b) shows P-velocity variations in

two cross-sections, A A′ and B B′, through the model. Cross-section A A′ starts from the

Coast Ranges, goes through the Ventura and Los Angeles basins, and ends in the Penin-

sular Ranges. As seen clearly in Figure 3.1(b), both basins have very slow P velocities

(warm colors) due to the thick sediments. Cross-section B B′ starts north of the East Cal-

ifornia Shear Zone, goes through the Mojave Desert, the San Gabriel Mountains, the Los

Angeles Basin, and ends at the Continental Borderland. In the corresponding P-velocity

cross-section, the Los Angeles basin again appears with distinctly slow P velocities at the

surface. Notice the significant variations in surface topography, the difference in elevation

between the San Gabriel Mountains and the Continental Borderland being about 3 km. The

Moho depth in southern California also varies significantly, from about 20 km underneath

the Continental Borderland to roughly 40 km underneath the San Bernardino Mountains

[Zhu and Kanamori, 2000].

This integrated model involves substantial 3D variations, precluding the use of simple

quasi-analytic solutions or perturbation theory. The accurate simulation of seismic wave

propagation in this complicated 3D model is crucial to minimize the effects of numerical

imperfection on the inversion for both source and structural parameters. Therefore, we use

the spectral-element method to simulate wave propagation in this integrated 3D velocity

model.
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Figure 3.1: (a) Topographic map with shaded relief of southern California showing the
extent of our 3D integrated velocity model. The largest blue box indicates the area cov-
ered by the medium-resolution GOCAD model developed by Süss and Shaw [2003]. The
smaller blue box indicates the high-resolution part of the GOCAD model centered on the
Los Angeles basin. The tilted blue box in the Salton Trough region indicates the range of
a detailed GOCAD model provided by Lovely et al. [2006]. The epicentral locations and
source mechanisms of the four earthquakes discussed in this chapter and the next chapter
are denoted by beachballs in the plot. The major late Quaternary faults [Jennings, 1975]
are also displayed. (b) Compressional-wave speed variations along two cross-sections A A′

and B B′ as described in section 3.2. Notice the significant 3D wave-speed variations, and
in particular the very low wave-speed sedimentary basins in cross-section A A′. Also no-
tice the shallow Moho under the continental borderland and the substantial topography and
bathymetry (exaggerated five times) variations in the cross-section B B′.
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3.3 Numerical Implementations

3.3.1 Mesh Design for Realistic 3-D Velocity Models

3.3.1.1 Adaption to Velocity Discontinuities

We compile the surface shape files for topography, basin basement, and the Moho depth,

and interpolate evenly-spaced horizontal surfaces in between these given surfaces accord-

ing to their absolute depth. Figure 3.2(a) shows two slices of the topography, basin base-

ment, and Moho surfaces in the Los Angeles basin region (for the definition of slices, please

refer to section 3.3.2). Then the mesh is designed to adapt to the given three surfaces as

well as the horizontal surfaces interpolated in between them.

3.3.1.2 Doubling Scheme

For realistic velocity models, the seismic velocity increases with depth in most cases;

therefore, for a mesh designed to have relatively homogeneous grid spacing throughout

the model, the number of grid points per wavelength will inevitably increase with depth,

meaning the top of the model mesh will have fewer grid points per wavelength compared

to the bottom. Hence the accuracy of the simulation is determined by the N number (equa-

tion (2.52)) at the top of the mesh. However, since an excessive number of grid points is

available for the mesh at depth, much more computation cost is needed to propagate waves

through these regions of the model without much gain in the accuracy of the simulation.

The ideal situation to achieve computational efficiency is to have an almost uniform num-

ber of grid points per wavelength throughout the entire model, which means that the grid

spacing will generally have to increase with depth. One simple way to achieve this is to

use the mesh doubling scheme. Figure 3.2(b) shows how the doubling is achieved in two

layers for a 3-D Cartesian mesh, with doubling in every horizontal direction achieved in

one layer.
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3.3.2 Parallel Computing

Because of the substantial computational power required by the spectral-element simula-

tions for realistic 3-D seismic velocity models, we implement the spectral-element method

in parallel computers. The model region is divided into Nξ × Nη number of slices from

the surface, and each slice is assigned to one computation unit, and the communication

between slices is accomplished by the message passing interface (MPI).

3.4 Yorba Linda Earthquake

As an example, we simulate seismic wave propagation in the 3-D integrated southern Cali-

fornia model for the Sep. 3, 2002, Mw = 4.2 Yorba Linda earthquake. This event occurred

at a depth of 7 km, and was well-recorded by the Southern California Seismic Network

(SCSN). The source mechanism we used is inverted using the spectral-element moment-

tensor inversion method outlined in Chapter 4. Figure 3.3(a) shows the transverse displace-

ment waveform fits between data and synthetics for the 3-D velocity model, in comparison

with figure 3.3(b) showing the waveform fits between data and synthetics generated for a

standard 1-D southern California velocity model [Hadley and Kanamori, 1977; Dreger and

Helmberger, 1990] for the zoomed-in Los Angeles region. Both data and synthetics have

been filtered between 6 seconds and 35 seconds. For the 3-D synthetics, time shifts have

been applied to align them with the corresponding data to take into account the inadequacy

of the 3-D velocity model. Notice that strong basin resonance is clearly seen in the 3-D syn-

thetics for most of the basin stations, which is not present for the 1-D synthetics generated

for the 1-D standard velocity model mostly compiled with data from rock sites. Significant

improvement of the waveform fits has been achieved for basin stations such as PDR, KAF,

STS, LGB, BRE, and LLS, where the observed amplitude can be up to 20 times larger than

the 1D predictions. This suggests that the 3-D velocity model and the spectral-element sim-

ulation provide very accurate 3-D Green’s functions for these basin stations, which helps

to facilitate the inversion of source mechanisms in Chapter 4. Figure 3.4 shows the overall

very nice waveform fits throughout the SCSN stations for this event for the stations out-
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Figure 3.2: (a) Two slices of the 3D spectral-element mesh designed for the southern Cali-
fornia region going through the Los Angeles basin. The color of the mesh shows the values
of the bulk modulus at the grid points. (b) A slice of the spectral-element mesh showing
the doubling scheme. The size of the elements is doubled in the x direction in one layer and
then doubled in the y direction in the next layer. (c) The number of points per wavelength
(N) for two slices of the mesh. (d) The Courant number (C) describing the number of grid
points advanced in one time step for two slices of the mesh. (e) We divide our model into
Nξ × Nη (6 × 6) slices on the surface. The simulation for each slice is run on one pro-
cessor, and communications between processors are accomplished by the Message Passing
Interface (MPI) on a Beowulf cluster.
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side the Los Angeles basin. Another noticeable feature is that the simulation also captures

the strong resonance visiable in some of the stations in the Imperial Valley such as THX,

SAL, ERR, and BTC, which is due to the high resolution of the sedimentary basin model

(constructed by Lovely et al. [2006]) present in our integrated 3-D model. This area will be

further studied in the next section.

3.5 Hypothetical Major Rupture on the Southern San An-

dreas Fault

The implementations of detailed structural geology models of the basin velocity structure

for both the Los Angeles basin and the Salton Trough have made it possible to assess

realistic seismic hazard generated by scenarios for large plausible earthquake on the San

Andreas fault. For demonstration purposes, we simulate a Mw = 7.9 earthquake along

the southern San Andreas fault by mapping the rupture history and slip distribution of the

2002, Mw = 7.9 Denali earthquake [Tsuboi et al., 2003] onto the San Andreas fault. The

magnitude of this hypothetical event is comparable to the 1857 Mw = 7.9 Fort Tejon

earthquake which ruptured an adjacent northern segment of the fault. The rupture initi-

ates in the north-west and propagates towards the southeast, which focuses more energy

into the Salton Trough area because of the rupture directivity. Figure 3.5 shows a series of

snapshots of the velocity field generated by this scenario earthquake as simulated by our

spectral-element method. Apparently, most of the energy rolls along the rupture segment

of the San Andreas fault as indicated by the red line, while expanding outward at the same

time. Strong directivity is indicated by the large amplitude of the motion at the wavefront

towards the rupture direction, while very little motion at the wavefront opposite to the rup-

ture direction. Also, a strong basin amplification phenomenon is observed for both the Los

Angeles basin and the Salton Trough, where strong resonance of the wave field persists

over a long time, even after the wave front has passed these regions. The shakemaps (

Figure 3.6) illustrates the peak ground velocity and acceleration generated by this scenario

earthquake. The motion in the Salton Trough region is significantly amplified compared
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Figure 3.3: (a) Waveform fits of displacement seismograms between the data (in black)
and the 3-D synthetics (in red) computed for the 3-D integrated southern California model
by the spectral-element method for the Yorba Linda earthquake at some of the stations in
the vacinity of the Los Angeles basin. The 3-D synthetics have been shifted to achieve
best correlation with the data. The event location and source mechanism is denoted by the
small beachball at the edge of the Los Angeles basin. (b) Waveform fits of displacement
seismograms between the data (in black) and the 1-D synthetics (in green) computed for
the 1-D standard southern California model.
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Figure 3.4: The waveform fits of displacement seismograms between the data and the 3-D
synthetics calculated for some representative stations throughout southern California for
the Yorba Linda earthquake (data in black and synthetics in red). Both the data and the
synthetics have been filtered between 6 seconds and 35 seconds. The event location and
mechanism is denoted by the beachball at the edge of the Los Angeles basin.



29

to the surrounding bedrock regions, caused by both the amplification effect of the Salton

Trough basin which is at about 6 km depth at the deepest point [Lovely et al., 2006], and

also the directivity effect that focuses the energy from the northwest into this sedimentary

basin. For cases like this, the spectral-element method, combined with the detailed veloc-

ity models, can provide more accurate assessment of the potential damage from possible

catastrophic events.

3.6 Discussion

We simulate wave propagation for both the Yorba Linda earthquake and a hypothetical

earthquake through an integrated 3-D velocity model. Comparisons of the 3-D synthetics

generated by these simulations with the data show generally great improvements of wave-

form fits, while the synthetics generated from a 1-D model developed to fit waveforms at

rock sites show poor waveform fits for most of the basin stations, both in the Los Angeles

basin and the Salton Trough region. Although the accuracy of our simulation up to 1 second

can be easily achieved with the parallel implementation of the spectral-element method, the

highest frequency at which we can achieve decent fits to the observed waveforms is limited

by the accuracy of the 3-D velocity model itself. Apparently, by introducing detailed 3-D

sedimentary basin models for both the Los Angeles basin and the Salton Trough area, we

have predicted much better the amplification and resonance effects at the stations in these

regions, making it possible to perform realistic seismic hazard assessments. On the other

hand, these improved 3-D Green’s functions can also be used in the source mechanism in-

versions for earthquakes throughout southern California, especially small magnitude events

in the basins.
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Figure 3.5: Snapshots of the hypothetical earthquake rupture from northwest toward south-
east on the southern end of the San Andreas fault. All frames are plotted on the same color
scale. Notice the large amplification that occurs in both the Salton Trough region and the
Los Angeles basin.
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Figure 3.6: (a) Peak velocity shakemap generated for this hypothetical rupture on the San
Andrea fault from the northeast to the southwest. The ruptured section of the San Andreas
fault is denoted by the white line. (b) Peak acceleration shakemap for this hypothetical
event.
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Chapter 4

Spectral-Element Moment-Tensor
Inversions for Earthquakes in Southern
California

4.1 Abstract

We have developed and implemented an automated moment-tensor inversion procedure to

determine source parameters for southern California earthquakes. The method is based

upon spectral-element simulations of regional seismic wave propagation in an integrated

three-dimensional (3-D) southern California velocity model. Sensitivity to source param-

eters is determined by numerically calculating the Fréchet derivatives required for the

moment-tensor inversion. We minimize a waveform misfit function, and allow limited

time shifts between data and corresponding synthetics to accommodate additional 3-D het-

erogeneity not included in our model. The technique is applied to three recent southern

California earthquakes: the September 9, 2001, Ml = 4.2 Hollywood event, the Febru-

ary 22, 2003, Ml = 5.4 Big Bear event, and the December 14, 2001, Ml = 4.0 Diamond

Bar event. Using about half of the available three-component data at periods of 6 seconds

and longer, we obtain focal mechanisms, depths, and moment magnitudes that are gener-

ally in good agreement with estimates based upon traditional body-wave and surface-wave

inversions. Most of the results from this chapter are published in Liu et al. [2004].
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4.2 Introduction

Southern California is characterized by geologic and tectonic complexity. Every year about

40 earthquakes with local magnitude greater than 3.5 occur on the fault systems in the re-

gion, and the determination of the source parameters of these earthquakes is important

for understanding the associated tectonic processes. Southern California Seismic Net-

work (SCSN) first-motion data can be used to determine focal mechanisms of earthquakes

[Hauksson et al., 2002]. Regional long-period (10 − 50 seconds) surface waves have been

used to invert for source parameters by correcting for the effects of 3-D heterogeneity

with a regional phase-velocity map [Thio and Kanamori, 1995]. However, in general this

method is only suitable for earthquakes with Mw ≥ 3.7, because the signal-to-noise ra-

tio becomes too low for smaller earthquakes at such long periods. Regional broadband

waveform data have also been used to determine source parameters. The early part of the

P wave — i.e., Pnl, the combination of the Pn and PL phases [Helmberger and Engen,

1980] — on the vertical and radial components of the seismograms is relatively insensi-

tive to crustal heterogeneity. For this reason, this phase has been used to determine the

strike, dip, and rake of moderate-size earthquakes [Wallace and Helmberger, 1981]. Grid

searching over strike, dip, rake, and depth was introduced to deal with the non-linearity

associated with these source parameters for southern California earthquakes [Dreger and

Helmberger, 1991] based upon the one-dimensional standard southern California velocity

model [Hadley and Kanamori, 1977; Dreger and Helmberger, 1990]. In order to utilize the

whole waveform and accommodate the imperfect 1-D Green’s function, the vertical and

radial components of the seismograms at local and regional distances are cut into Pnl and

surface-wave segments. By allowing for time shifts between these two segments, source

mechanisms can be resolved by fitting them simultaneously [Zhao and Helmberger, 1994;

Zhu and Helmberger, 1996].

Many more high-quality stations have been deployed by the SCSN since the early ’90s.

A large portion of these is located in or near the Los Angeles basin, where complicated 3-D

velocity structure produces complicated waveforms. Simple time shifts do not adequately

accommodate the imperfect 1-D Green’s function in the source inversions, and 3-D Green’s
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functions are required for a significant portion of the SCSN stations. For this purpose, this

paper introduces an adaptation of the centroid-moment tensor (CMT) formalism [Gilbert

and Dziewonski, 1975; Dziewonski et al., 1981; Ritsema and Lay, 1993] to determine the

source mechanisms of small- to moderate-size earthquakes in southern California. The

calculation of synthetic seismograms and Fréchet derivatives (i.e., derivatives of the syn-

thetics with respect to source parameters) is accomplished based upon the spectral-element

method (SEM) [e.g., Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999] and re-

cently developed 3-D southern California crustal velocity models [Hauksson, 2000; Süss

and Shaw, 2003] as described in Chapter 3.

4.3 Moment-Tensor Inversion Theory

Suppose we have N observed time series {di(t); i = 1, . . . , N} and N corresponding

synthetic seismograms {si(t,m); i = 1, . . . , N} to constrain a point source model m =

{mj; j = 1, . . . , n}. In the case of an inversion for the six elements of the moment tensor

M = {Mrr,Mθθ,Mφφ,Mrθ,Mrφ,Mθφ}, we have n = 6 and m = {M}. An inversion for

the moment tensor M and event depth ds involves n = 7 and m = {M, ds}. An inversion

for the moment tensor M and the event location rs results in n = 9 and m = {M, rs}. Al-

though theoretically and numerically feasible, the period range used in our simulations does

not enable us to invert for the source half-duration of small- to moderate-size earthquakes.

Given a set of source model parameters m, the misfit between the data and the synthet-

ics may be assessed based upon the least-square waveform misfit function

E1(m) =
1

2A1

N
∑

i=1

wi

∫

[di(t) − si(t,m)]2 dt. (4.1)

A1 is a normalization factor, which can take the value of 1
2

∑N
i=1 wi

∫

di(t)
2dt to ensure that

E1(m) generally takes values between zero and one. Weightswi = wa
iw

d
iw

c
i , i = 1, . . . , N ,

may be assigned based upon azimuth-, wa
i , epicentral distance-, wd

i , and component-related

criteria, wc
i . The disadvantage of the waveform misfit function (4.1) is that it is susceptible

to cycle skips (i.e., the synthetic is advanced or delayed by one wave cycle or more relative
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to the data).

An alternative misfit function may be defined based upon the envelope of the wave-

forms. For example, the data envelope function is defined by

e(di(t)) =
[

d2
i (t) + d̂2

i (t)
]1/2

, (4.2)

where d̂i(t) is the Hilbert transform of di(t). The corresponding envelope misfit function is

E2(m) =
1

2A2

N
∑

i=1

wi

∫

[e(di(t)) − e(si(t,m))]2 dt, (4.3)

where A2 = 1
2

∑N
i=1 wi

∫

e(di(t))
2dt, and E2(m) usually takes values between zero and

one. The disadvantage of the envelope misfit function (4.3) is that it does not provide any

phase information, but when it is combined with the waveform misfit function (4.1), cycle

skips may be avoided.

It is often desirable to subject the inversion to certain constraints. For example, if we

require the moment tensor to have zero trace, i.e., the source involves no change in volume,

then the inversion needs to be subject to the constraint C1(m) = m1 +m2 +m3 = 0. If we

further require that the earthquake is representable by a double-couple source mechanism,

the moment tensor is subject to the additional constraint C2(m) = det(M) = 0.

Combining all these ingredients, we minimize the following misfit function:

E(m, µ1, µ2) = λE1(m) + (1 − λ)E2(m) + µ1C1(m) + µ2C2(m), (4.4)

where λ and 1 − λ denote the relative weights of the waveform misfit function E1(m) and

the envelope misfit function E2(m), and µ1 and µ2 are the Lagrange multipliers associated

with the constraints C1(m) and C2(m). The optimal source parameters m
new may be

determined by solving the set of n equations

∂E

∂mj
(m, µ1, µ2) = 0, j = 1, . . . , n, (4.5)

subject to the constraints C1(m) = 0 when µ1 is non-zero and C2(m) = 0 when µ2 is
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non-zero. Under certain assumptions, equation (4.5) can always be reduced to a linear

system. For the detailed formulation of both linear and non-linear inversions, please refer

to Appendix B.

4.4 Time Shifts

The theory presented in the previous section is based on the assumption that we have per-

fect knowledge of the velocity structure in the region. Therefore, the differences between

data and synthetics for given source parameters are completely due to errors in these param-

eters. Obviously this assumption does not hold in general. Source and structural effects are

always entangled, and the difference between data and synthetics is due to both errors in the

source mechanism and the inadequate 3-D model. 3-D velocity variations cause advances

or delays in the arrival times of seismic phases as well as changes in the associated wave-

forms. Introducing the envelope misfit function (4.3) may help prevent cycle skip problems

caused by relatively modest traveltime anomalies; but for large velocity variations, such as

those in southern California, the envelope function may not be sufficiently effective.

Komatitsch et al. [2004] illustrate that differences between the true 3-D velocity struc-

ture and our 3-D model mainly affect the arrival times of seismic phases but do not signif-

icantly alter the associated waveforms at periods of 6 seconds and longer. Therefore, we

can shift the synthetics with respect to the data to obtain the optimal correlation between

the two, and then attribute differences in waveforms between the data and synthetics to the

source parameters of the earthquake. This approach was demonstrated to be quite useful

in accommodating effects due to 3-D heterogeneity for the purpose of source mechanism

inversions by Zhao and Helmberger [1994]. However, it may not be applicable to certain

stations if the velocity variations between the source and the stations are not well described

by our 3-D velocity model, e.g., when waveforms are severely distorted. Therefore, careful

selection of stations is required to select paths for which our 3-D velocity model produces

decent waveforms compared to the data. Of course the whole procedure requires an initial

source model m
0 for which we calculate the synthetics for our 3-D model. By correlating
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the data di(t) and synthetics si(t,m
0) we obtain the time lag δti between the two that gives:

max
δti

∫

di(t)si(t− δti,m
0) dt

[∫

di(t)2 dt
∫

si(t− δti,m0)2 dt
]1/2

. (4.6)

We then apply the same time lag to all the Fréchet derivatives, and invert for source model

parameters by minimizing a waveform misfit function with time lags:

Es(m) =
1

2A1

N
∑

i=1

wi

∫

[

di(t) − si(t− δti,m
0) −

∑

j

∂si

∂mj

(t− δti,m
0)(mj −m0

j)

]2

dt.

(4.7)

This will be the preferred misfit function in our inversion procedure. Another advantage of

using equation (4.7) is that it is not affected by small timing errors associated with either

the instrument or the origin of the event. We will evaluate how well our synthetics for the

new source parameters m
new fit the data by calculating the variance reduction

σi =

∫

[di(t) − si(t− δti,m
new)]2dt

∫

di(t)2dt
. (4.8)

Alternatively, we may determine how much the misfit function (4.7) has been reduced after

the inversion by calculating the misfit reduction:

χ =
[

Es(m
0) − Es(m

new)
]

/Es(m
0). (4.9)

Fortunately, for most earthquakes with Mw ≥ 3.5 we can use source-mechanism estima-

tions from other methods as initial solutions. However, there are cases in which we do not

have other solutions to start with, meaning we do not have any reference upon which to ei-

ther select the data or obtain time lags to shift synthetics and Fréchet derivatives. Neverthe-

less, we can always determine our own initial source mechanism based upon a preliminary

moment-tensor-only linear inversion in which we select data traces solely based upon their

signal-to-noise ratio. As we will show in later examples, this inversion procedure proves to

be quite robust for determining the source mechanisms of small- and moderate-size earth-

quakes in southern California, and can be easily implemented automatically whenever an
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earthquake occurs.

4.5 Numerical Tests

In order to solve (4.5), we need to calculate the derivatives of the synthetics with respect to

the source parameters to obtain the linear system (B.5) or (B.17). In our case, this implies

numerically differentiating synthetics with respect to the source parameters. Because the

synthetics sj(t,m) are linear combinations of the moment-tensor elements, the derivatives
∂sj

∂mi
(t), i = 1, . . . , 6, can be easily obtained by running forward calculations for moment

tensors that have a non-zero ith element while all the other elements are zero. However,

sj(t,m) is a non-linear function of depth, latitude, and longitude, {mi, i = 7, 8, 9}, there-

fore, in order to approximate the derivatives for these three parameters with finite differ-

ences, appropriate intervals for the finite-difference length should be chosen such that the

derivatives of the misfit function remain relatively constant within these intervals. Further-

more, in order to understand the functional dependence of the misfit function on depth,

latitude, and longitude for (4.1) as well as (4.3) and (4.7), we perform several synthetic

tests for the September 9, 2001, Mw = 4.2 Hollywood event (see Figure 3.1 for its location

and mechanism). We adopt the event location and mechanism obtained by the Thio and

Kanamori [1995] method (34.0745◦N latitude, 118.3792◦W longitude, and 5.4 km depth;

please refer to Table 4.1 for further details), calculate synthetics at all available SCSN sta-

tions inside our 3-D model, and regard these as ”synthetic data”. We then run simulations

for a series of ”test” source models, generate synthetics at SCSN stations, and evaluate the

misfit function between the ”synthetic data” and the synthetics for each test source model.

The misfit values have all been normalized by the amplitude of the data such that a mis-

fit value of 1 means that all the synthetics fit the data on average as poorly as a straight

line would fit the data, while a misfit value of 0 means that all the synthetics fit the data

perfectly. For all the synthetic tests and inversions presented in this paper, both data and

synthetics have been bandpass filtered between 6 seconds and 40 seconds.
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4.5.1 Synthetic Test: Latitude

In order to examine how the waveform misfit function without time shifts (4.1) and the

waveform misfit function with shifts (4.7) vary as a function of latitude, we fix all remain-

ing 8 source parameters, varying only the latitude from 34.06◦N to 34.08◦N by 0.0025◦

increments, and calculate the synthetics for each case. We then evaluate the misfit func-

tions (4.1) and (4.7). In Figure 4.1(a), the dashed and the solid lines, respectively, show

how the waveform misfit function with and without time shifts varies with latitude. The

functions have both symmetry and convexity centered on the ”true” latitude 34.0745◦N.

Notice that the waveform misfit function with time shifts (dashed line) has values that are

about one-third of those for the waveform misfit function without time shifts (solid line).

The difference becomes larger when the latitude moves farther away from the ”true” lati-

tude. This suggests that the difference in waveform measured by (4.7) only takes up a small

portion of the difference between the data and synthetics measured by (4.1) in the case of

an incorrect latitude, and thus the arrival time difference should be responsible for a large

portion of the waveform misfit without time shifts. Therefore, the sensitivity of the misfit

function (4.7) to latitudinal variations will be smaller compared to (4.1). All the above

statements hold true for longitudinal variations as well. Notice that within a latitudinal in-

terval of 0.0025◦, the derivative of the misfit function remains about constant, therefore we

are confident that this should give a good approximation to the latitudinal derivatives at the

initial solution.

4.5.2 Synthetic Test: Depth

We vary the depth from 4 km to 9.2 km by 0.4 km increments, and fix all other 8 parameters

to study the functional dependence of the misfit functions (4.1) and (4.7) on depth. As one

can see from Figure 4.1(b), both misfit functions change significantly faster at shallower

depths compared to greater depths, suggesting that both misfit functions are more sensitive

to shallower earthquakes, which may be due to the more rapidly varying shallow structure.

Notice that the values for a waveform misfit function with time shifts (dashed line) are only

slightly smaller than those for a waveform misfit function without time shifts (solid line),
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showing that the depth variation of earthquakes mainly gives rise to changes in waveform

but not in the traveltime for waves at periods of 6 seconds and longer. This means that

we should have good resolution for event depth when we use the waveform misfit function

with time shifts (4.7) to determine the optimal source parameters. Also notice that within an

interval of 0.4 km, the derivative of the misfit function remains almost constant; therefore

it should be a good approximation to obtain the depth derivatives at the initial solution.

4.5.3 Synthetics Test: Envelope Misfit Versus Waveform Misfit With-
out Time Shifts

As mentioned earlier, the existence of structural heterogeneity that is not part of our 3-D

velocity model is the most severe problem that we need to overcome in our source inver-

sions. One way of doing this, in the case of relatively small 3-D heterogeneity, is to use a

combination of waveform misfit without time shifts and the envelope misfit, as in (4.4). To

demonstrate that the envelope misfit function does help accommodate the effects of hetero-

geneity not included in the 3-D model, we assign random time shifts of up to 3 seconds to

the ”synthetic data” to mimic the effect of 3-D heterogeneity and regard the shifted ”syn-

thetic data” as our ”data”. We evaluate both the waveform misfit without time shifts (4.1)

and the envelope misfit (4.3) between the ”data” and synthetics for each depth calculated

in Section 4.5.2. We show the functional dependence of both misfit functions on depth in

Figure 4.1(c). Notice that because of the ”3-D heterogeneity”, the waveform misfit function

without time shifts, which calculates directly the difference between data and synthetics,

does not have its minimum centered on the ”true” depth of 5.4 km. However, the enve-

lope misfit function, which is not very sensitive to small arrival-time anomalies, still has

its minimum at 5.4 km. This suggests that in the case of relatively small unmodeled het-

erogeneity (for example, in global moment-tensor inversions), we may use a combination

of the envelope misfit function (4.3) and the waveform misfit function without time shifts

(4.1) to recover source mechanisms. However, as shown by Komatitsch et al. [2004], the

traveltime anomalies for surface waves at periods of 6 s and longer may be as large as

5 s for stations at distances of 250 km and larger in our 3-D southern California model.
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Therefore, allowing time shifts for the waveform misfit function is a better choice to invert

for earthquake source parameters in southern California. Of course as soon as we have an

improved shear-velocity model for the region we should be able to dispense with these time

shifts.

4.5.4 Data Test: Depth

Next, we obtain actual data recorded at various SCSN stations for the September 9, 2001,

Hollywood event using the STP program provided by the Southern California Earthquake

Data Center (SCEDC). We calculate the waveform misfit function with and without time

shifts for selected data traces and corresponding synthetics for different depths (please refer

to section 4.7 for details about the selection criteria). The result is shown in Figure 4.1(d).

Global minima are achieved by both misfit functions at around 5.5 km–6.5 km, however,

the misfit function without time shifts (solid line) is flatter around the minimum compared

to the misfit function with time shifts (dashed line), which has a distinct minimum at about

5.6 km. We suspect that unmodeled 3-D effects may have obscured the depth minimum

of the misfit function without time shifts. Also notice that the value of the misfit function

with time shifts is typically 50% smaller than the value of the misfit function without time

shifts, suggesting again that the arrival-time anomaly takes up a significant portion of the

misfit between data and synthetics. Of course the situation can be more complicated when

all the moment-tensor elements and location parameters vary. Nevertheless, the waveform

misfit function with time shifts has very good sensitivity to the depth of the earthquake and

will be used in our inversion process.

4.6 Inversion Procedures and Technical Details

4.6.1 Calculation and Processing of Synthetics

If we are able to obtain an initial source solution for an earthquake from either first-motion

or other inversion methods, we can calculate the Fréchet derivatives of the synthetics with

respect to all nine source parameters, including the six moment-tensor elements, depth,
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Figure 4.1: (a) Waveform misfit with or without time shifts between the ”synthetic data”
and the synthetics as a function of latitude. (b) Waveform misfit with or without time
shifts between the ”synthetic data” and the synthetics as a function of depth. (c) Waveform
misfit without time shifts and envelope misfit between the ”shifted synthetic data” and the
synthetics as a function of depth. (d) Waveform misfit with and without time shifts between
actual data and the synthetics as a function of depth.
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latitude, and longitude of the earthquake. The calculations generate a mesh with a total of

45.4 million grid points (i.e., 136 million degrees of freedom), and require 14 gigabytes of

distributed memory. Therefore it takes in total about one day to calculate all the derivatives

needed for our source inversion. To save computation time, we combine the moment-tensor

Fréchet derivatives to obtain the synthetics for the initial solution using (B.1). We then pad

up to 20 seconds of zeroes before the first arrival to all the synthetics and Fréchet derivatives

and bandpass filter them between 6 seconds and 40 seconds.

4.6.2 Data Processing

We collect all the broadband BH component data for the earthquake using the STP pro-

gram, as mentioned earlier. We correct the raw data for the instrument response to obtain

displacement records using the poles-and-zeroes files provided by the SCSN network, and

then apply the same filters as applied to the synthetics.

4.6.3 Inversion

We select those data traces whose corresponding synthetics have relatively decent wave-

form fits to perform our source inversion. As will be discussed in more detail later, we

require that the time shift between data and synthetics δti that satisfies (4.6) be less than

a prescribed value that varies with distance, while the best correlation value itself be large

enough to guarantee good similarity between data and synthetics. Since the correlation

values are always normalized by the amplitude of the data and synthetics, we also require

that the amplitude ratio of the data and synthetics be smaller than a certain value, to avoid

problems that are associated with the stations themselves.

Regional Pnl waves have been shown to be relatively insensitive to 3-D heterogeneity

in the crust [Helmberger and Engen, 1980], therefore the Pnl phase is a good candidate to

invert for the source. We split the vertical and radial components of the data and synthetic

traces into a Pnl part and a Rayleigh surface-wave parts for stations at distances larger than

150 km. Since the Pnl waves are relatively small in amplitude compared to the surface

waves, we also implement a weighting factor for Pnl waves to balance their contribution in
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the inversion.

We add the contributions of all the selected traces to form the matrix equation (B.5)

or (B.17), which has dimension less than or equal to 11. We can simply solve this linear

system by Gaussian elimination with partial pivoting [Conte and Boor, 1980] to obtain

the new source parameters m
new. In general, the initial source parameters are close to the

true source parameters; therefore, we do not iterate the process. We evaluate the variance

reduction (4.8) of the synthetics for the new source parameters m
new relative to the data

at each station to examine how well the new synthetics fit the data. We also evaluate how

much the waveform misfit function with time shifts has been reduced by m
new compared

to the initial source parameters m
0 by going over all the selected data and synthetics again,

and calculating the misfit reduction (4.9). We are also interested in evaluating (4.9) for each

trace, whether it has been used in the inversion or not, to give us some idea of how much

the waveform fits have been improved by changing the source parameters.

In the following three sections we analyze three recent southern California earthquakes

and determine their source parameters by the procedures outlined above. We also further

discuss the effects of velocity heterogeneity that is not part of our 3-D model on the deter-

mination of earthquake source parameters.

4.7 Hollywood Earthquake

We first consider the September 9, 2001, Ml = 4.2 Hollywood Earthquake (Figure 3.1).

This well-recorded event is small enough such that the finite size of the source can be safely

ignored. We obtain data from 125 stations within our model domain, with the nearest sta-

tion at a distance of 7.7 km and the farthest at a distance of 348 km. We use initial source

parameters determined by the method of Thio and Kanamori [1995] (the second from last

entry in Table 4.1). To show that this initial solution is accurate enough to start with, we

plot in Figure 4.2 the correlation value (4.6) between the vertical components of the data

and the synthetics for this initial solution at most of the SCSN broadband stations. Stations

with high correlation values are shown in warm colors, while stations with low correla-

tion values are shown in cold colors. We see overall very good waveform fits throughout
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southern California, as also observed by Komatitsch et al. [2004]. We find that, in general,

with increasing distance the correlation values decrease because of the smaller signal-to-

noise ratio at more remote stations. As discussed in Komatitsch et al. [2004], the Salton

Trough, Santa Barbara, and Ventura Basin regions are filled with thick sediments. However,

they are outside the Süss and Shaw [2003] model range, and the background tomographic

model [Hauksson, 2000] is not particularly good at describing the surface geology in these

locations. Therefore, stations in these regions generally have small correlation values (Fig-

ure 4.2, station NSS,BTC , FIG, SYP, etc). In any event, this initial solution is good enough

to help us select the good data traces to further fine-tune the source parameters. We use the

whole seismogram (up to 3 minutes) and cut the vertical and radial traces into Pnl waves

(from −5.0 + dist(km)/7.8 seconds to ts + 2.0 seconds, where ”dist” denotes the distance

of the station from the epicenter of the earthquake, and ts denotes the predicted arrival time

for S waves using the standard southern California model [Hadley and Kanamori, 1977;

Dreger and Helmberger, 1990]), and surface waves (from −15.0 + dist(km)/3.5 seconds

to 35.0 + dist(km)/3.1 seconds) at distances larger than 150 km. We then shift the syn-

thetics and Fréchet derivatives with respect to the corresponding data traces or segments

to obtain the best correlation. We select Pnl data traces by requiring that the time shift

between data and the initial synthetics be less than 3.0 + dist(km)/80.0 seconds, the am-

plitude ratio be less than 2.5, and the correlation be larger than 0.70. We select Love- and

Rayleigh-wave data by requiring that the time shift between data and the initial synthetics

be less than 3.0+ dist(km)/50.0 seconds, the amplitude ratio be less than 2.5, and the cor-

relation be larger than 0.65. These values for cutting and selecting are empirical, but they

have proved to be robust and appropriate for earthquakes in southern California. In total

we selected for our inversion 28 Pnl traces from vertical and radial seismograms, and 209

surface-wave traces from all three components, including 71 vertical traces, 93 transverse

traces, and 53 radial traces. We set a relative weight of 3 : 1 for Pnl and surface-wave

traces to account for their amplitude difference. We taper the data, synthetics, and Fréchet

derivatives by a trapezoidal function centered around the maximum value of the synthetics.

We also multiply weights w = N−a
a (dist)−dN−c

c to every single trace, where Na represents

the number of traces selected in the same azimuthal bin as the trace under consideration;
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a is an exponent we set to express how much we want to emphasize differences in station

azimuth; d is set to be 1.13 for Pnl traces, 0.74 for Rayleigh waves, and 0.55 for Love

waves to accommodate an empirical amplitude decay with distance for southern California

[Zhu and Helmberger, 1996]; Nc is the number of traces selected with the same component

as the current trace; and c is a factor that controls the relative weights of the three compo-

nents. Since the original SCSN station distribution is not uniform in azimuth, there may be

directions in which the stations are sparse while the model is not well constrained, in which

case a too large value of a would contaminate the final inversion result with contributions

from stations with less reliable 3-D Green’s functions. Therefore we generally set a to a

small value. Because typically the transverse and vertical components of the synthetics are

fitted better than the radial component, we set c to a smaller value for the radial component

than the other two components.

To check the robustness of our inversion procedures, we usually invert with several

combinations of parameters. Table 4.1 shows the inversion results for the following cases:

1) invert for both moment tensor and location; 2) invert for both moment tensor and depth;

3) invert for moment tensor only; 4) same as 1) but constrain the moment tensor to be a

double couple; 5) same as 1) except that only surface-wave traces are used in the inversion;

6) same as 1) except that no weights are applied to the traces. For comparison, the solution

obtained by the methods of Thio and Kanamori [1995] and Zhu and Helmberger [1996]

are also listed in the table. We consider case 2) separately from 1), because typical mislo-

cations of earthquakes in southern California are about 1–2 km in both the latitudinal and

longitudinal directions, while they can be as large as 3–4 km in depth [Hauksson, 2000],

and we are more concerned with obtaining a better depth. Also, because our misfit function

has greater sensitivity to depth than to latitude and longitude, it is desirable to invert only

for the moment tensor and depth to check for the stability of the inversion process. Com-

paring the inversion results in Table 4.1, all the inversion results are similar to the initial

solution, with the strike and rake within 2◦, and the dip within 9◦. Although the presence of

a non-double-couple component in zero-trace inversions may reduce the misfit, we believe

it is not necessarily well-resolved, and may just reflect imperfection in our 3-D Green’s

function. The inversion results show that the depth of this earthquake is about 5.6 ± 0.2



47� ���������	�
��� 
������������������

��� �"! # $ %'&)(+*-,.!./�01*2��/�354�,6! 07!8�9&): ; # !=<>:@?
ACB+ACDFEHGJILKMBONQPRG�SMB)E T=UWV+X YQZ)[>\>Z]T^\_Y`XHa bcUed VfUgYQ[




ACB+ACDFEHGJIihfDFjcGlk T=UWV+X YQZcYm\>Z+an\_YQZ)o bcUWb VfUgYQ[



ApBHApDFEHG@B+EfKWq T=UWV+X YQZcYm\>Z)[>\_YQZ)o bcUrT VfUgYQ[



h_B)sft_KMD�NuB)s_jfKMD T=UWV+X YQZ+an\>Z)[>\_YQZ)X bcUWb VfUeVHV



v s=wyx-PzNuD@{@PF|>D�B)EfKWq T=UWV+X YQZ)[>\>Z]T^\_Y`XHa bcUed VfUgYQ[



D`}>s8P]K~{�DFS��+kHG T=UWV+o YQZ]T^\>Z+bn\_Y`XHa bcUed VfUgYuT



� kfSMBpD�GLP]K2����Y`o+oHb+� T=UWVHZ YQZcYm\nd+d>\_Y`X+[ bcUrT VfUeV)T



� k>s5D�G�P]K2����Y`o+o+dn� T=U�YQZ Y`d+X>\>Z]T^\_YQb)o dfUeV VfUeVHV



Table 4.1: Source parameters of the Hollywood event for various inversion methods or
parameter settings as explained in the main text. The first six rows are the mechanisms
determined by our inversions, and the last two rows are the inversion results based upon the
methods of Thio and Kanamori [1995] and Zhu and Helmberger [1996]. For simplicity,
only one of the fault plane solutions is listed in each row. Strike, dip, and rake are in
degrees, and depth has the unit of km. The parameter ε represents the magnitude of the non-
double-couple component in a moment tensor [Dziewonski et al., 1981; Lay and Wallace,
1995].

km. Notice that this depth is a little bit shallower than that obtained by the method of Zhu

and Helmberger [1996]; therefore, the focal mechanism and the moment magnitude are

slightly different from those obtained by their method as well. Our evaluation of misfit re-

duction (4.9) is about 13% for the selected Pnl traces, and 7% for all selected surface-wave

traces.
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Figure 4.2: Correlation of the vertical component data and synthetics for the initial solution
at most of the SCSN broadband stations for the Hollywood event. Warm colors indicate
high similarity of the waveforms, while cold colors may indicate regions where our 3-D
velocity model does not describe the true structure adequately. Squares indicate stations
whose vertical component is used in the source inversion. All the data and synthetics have
been filtered between 6 seconds and 40 seconds. The epicenter and source mechanism of
the Hollywood earthquake are indicated by the beachball.
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4.8 Big Bear Main Shock

We also study the February 22, 2003, Ml = 5.4 Big Bear main shock (Figure 3.1). This

is the biggest event in southern California since the year 2000. It occurred in the San

Bernardino Mountains, which are surrounded by complicated fault systems (Figure 3.1).

We apply the same data selection criteria as in the previous section, except that we allow

the time shift between the data and synthetics to be larger to accommodate the possible

offset in origin time. Also, because this is a larger earthquake than the Hollywood event,

we set the correlation criteria values to be a little larger than in the previous section. Data

are available for 137 stations in our model region. From this data set, we selected 51

Pnl traces and 169 surface wave traces, which includes 66 vertical traces, 89 transverse

traces, and 63 radial traces. The fact that we use fewer surface-wave records than for the

Hollywood event is not surprising, since this event occurred outside the model of Süss and

Shaw [2003], and we expect the overall waveform fits to be worse than for the Hollywood

event. Although our integrated model has the highest resolution in the Los Angeles basin,

the waves might have already developed complications before propagating into the basin.

The inversion results are summarized in Table 4.2. All the inversion results are consis-

tent, and are within 5◦ of the strike, dip, and rake of the initial solution. Figure 4.3 shows

the variance reduction given by (4.8) for the surface-wave part on the transverse compo-

nent at each station to demonstrate how well the synthetics for the inversion result (moment

tensor and location) fit the data. Obviously the variance reduction for each trace is related

to both the correlation value as well as the amplitude difference between the data and the

synthetics. Figure 4.3 shows that most stations have quite large variance reduction (50%).

By comparing the waveform fits of the surface waves for some of the typical stations in

southern California (Figure 4.4), it is clear that stations in the nodal directions of the trans-

verse component tend to have smaller variance reductions because of the relatively small

signal-to-noise ratio. However, our misfit function (4.7) recognizes the absolute amplitude

information in the data; therefore, the stations in the nodal directions also provide critical

information in estimating the source parameters as long as the noise level is not too high.

Notice that we still have low variance reductions in the Salton Trough, Santa Barbara, and
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Table 4.2: Same as Table 4.1 but for the Big Bear main shock.

Ventura Basin area. Our variance reduction in the Los Angeles basin is relatively small,

which may be due to complications in the waveforms developed along the propagation

path. Overall, we achieve significant variance reduction for traces that have been used in

the inversion (indicated by squares). The difference in variance reduction at different sta-

tions may also reflect the fact that a significant portion of the waveform misfit is due to

complicated 3-D velocity structure. Different inversion schemes show that the depth of the

earthquake is about 6.4 ± 0.3 km.

4.9 Diamond Bar Earthquake

The December 14, 2001, Ml = 4.0 Diamond Bar event (Figure 3.1) is quite a unique event

in that it occurred close to the Los Angeles basin and had a deep hypocenter of 14 km
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Figure 4.3: Variance reduction for transverse component synthetics calculated based upon
the inverted source parameters at most of the SCSN broadband stations for the 2003 Big
Bear main shock. Warm colors indicate large variance reductions, where the new syn-
thetics generally fit the data better than at stations indicated by the cold colors. Squares
indicate stations whose transverse component is used in the source inversion. Only stations
with a correlation larger than 0.4 are plotted. The epicenter and source mechanism of the
earthquake are denoted by the beachball.
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Figure 4.4: Selected waveform fits for transverse component data (black) and synthet-
ics (red) for the inverted source parameters of the Big Bear main shock. The synthetics
have been shifted with respect to the data to obtain the best correlation. Combined with
Figure 4.3, it illustrates the general fits between data and synthetics throughout southern
California. More examples of waveform fits can be found in Komatitsch et al. [2004].
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(from the SCSN earthquake catalog). Besides its significant depth, its small magnitude

also makes the data rather noisy to invert for a stable mechanism. The method of Thio

and Kanamori [1995] is not able to produce a stable solution because their method mostly

uses stations outside the basin, which have relatively smaller signal-to-noise ratios for this

earthquake. It is desirable that we produce an initial solution by our own preliminary

inversion. We select data traces based upon the noise level before the origin time, i.e., the

signal-to-noise ratio. Since we have a rough estimate of the magnitude of this earthquake,

we require the amplitude of the data to be below a certain value to avoid problems such

as station clipping or long-period noise. Based upon these criteria, we selected 123 traces

for the inversion, including 31 vertical traces, 60 transverse traces, and 32 radial traces.

Figure 4.5 shows the station distribution of the selected traces (both red and green triangles)

on the transverse component. Notice that they are well distributed in both distance and

azimuth, showing the good quality of the data as well as the robustness of the data selection.

As a preliminary inversion, we only use the surface-wave part of the traces. We apply no

shift to the derivatives, because we do not have synthetics to obtain the δti value given by

(4.6) for each trace, which means that we minimize the waveform misfit function without

time shifts (4.1). We take the network event depth, 14 km, and invert only for a zero-

trace moment tensor, which is a linear inversion that does not require any initial source

mechanism. The inversion result gives us a source mechanism of 324◦ strike, 88◦ dip, and

178◦ rake; a moment magnitude of 3.64; and a variance reduction of the new synthetics

(without time shifts) with respect to the selected data traces of 27%. Obviously, when no

time shifts are allowed, the quality of the inversion might have been compromised due to

problems such as cycle skips.

We next use the preliminary inversion result as an initial solution, calculate the location

derivatives with respect to this initial solution as described in Section 4.5, and perform the

standard source inversion to minimize the waveform misfit function with time shifts. The

stations for which transverse component data were selected are plotted in Figure 4.5 (both

red and blue triangles). Notice more than half of the selected data overlap with the data

selected in the preliminary inversion, showing the suitability of the initial selection proce-

dures. The well-distributed coverage of the selected data traces also gives us confidence
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Table 4.3: Same as Table 4.1 but for the Diamond Bar event. Our preliminary inversion
result has been listed in the bottom row as the initial solution used in the second inversion.

in the inversion results we present in Table 4.3. Different inversion schemes show that the

event depth changed from 14 km to about 12.0± 0.5 km. Figure 4.6 demonstrates the mis-

fit reduction for stations with correlations higher than 0.4. Most of the stations that were

used (denoted by squares) have a misfit reduction of at least 20%. Even some stations that

are not used in the inversion have positive misfit reduction values, showing that the second

inversion has significantly reduced the misfit function compared to the initial result. We

achieve a total misfit reduction of about 18% for the selected Pnl traces and 25% for the

surface-wave traces.

4.10 Discussion

We typically use about 200 traces to invert for the source parameters of earthquakes with

Mw ≥ 4.0, and about 120 traces for a Mw = 3.7 earthquake. Therefore, we may be able to

extend our inversion method to earthquakes with Mw ≥ 3.5 for southern California. In the

Los Angeles basin, where we have the highest model resolution, we may be able to push
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Figure 4.5: Stations whose transverse component has been used in the preliminary source
inversion and the standard source inversions for the Diamond Bar event. Red triangles
indicate stations that are used in both inversions, green triangles indicate stations used
only in the preliminary inversion, blue triangles indicate stations used only in the second
inversion, and white triangles indicate stations used in neither inversion. The epicenter and
source mechanism of the earthquake are indicated by the beachball.
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Figure 4.6: Misfit reduction for transverse component seismograms by the source parame-
ters from the standard inversion compared to the ones determined by a preliminary inver-
sion at most of the SCSN stations for the Diamond Bar event. Only stations with corre-
lations larger than 0.4 are plotted. Squares indicate stations whose transverse component
is used in the source inversion. Warm colors indicate a large misfit reduction, where the
improvement in the source mechanism helps to explain the misfit between the data and the
synthetics for the initial solution, whereas cold colors indicate locations where the wave-
form misfit is mainly due to an imperfect 3-D Green’s function.
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the limit to even smaller earthquakes (Mw = 3.3). The inversion procedure described for

the Hollywood, Big Bear, and Diamond Bar earthquakes can be very easily automated for

events with Mw ≥ 3.5 in southern California. The point source mechanism should be a

quite good representation for these small- and moderate-sized earthquakes. By minimizing

the waveform misfit function with time shifts, we can accommodate the effects of an imper-

fect 3-D Green’s function on the source inversion reasonably well. Future improvements

to the 3-D velocity model should render such time shifts unnecessary.

4.11 Conclusion

We determined source parameters for three southern California earthquakes based upon

spectral-element simulations of regional seismic wave propagation in an integrated 3-D

southern California velocity model. By minimizing the waveform misfit function with time

shifts, which accommodates the imperfect 3-D Green’s function, we were able to determine

moment tensors and locations for these earthquakes. The inversion results agree very well

with estimates from either body- or surface-wave inversion methods for the Hollywood

and Big Bear earthquakes. The inversion procedures can be performed with or without

an initial solution, as shown for the Diamond Bar earthquake. This enables us to perform

automatic source parameter inversions for Mw ≥ 3.5 earthquakes in southern California.

Since there are about 40 earthquakes with Ml ≥ 3.5 in southern California every year, we

will be able to build and maintain an earthquake source mechanism database, which should

be of importance for understanding local fault systems and tectonic processes.
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Chapter 5

Finite-frequency Kernels Based upon
Adjoint Method for Regional Wave
Simulations

5.1 Abstract

We derive the adjoint equations associated with the calculation of Fréchet derivatives for

tomographic inversions based upon a Lagrange multiplier method. The Fréchet deriva-

tive of an objective function χ(m), where m denotes the earth model, may be written in

the generic form δχ =
∫

Km(x) δ lnm(x) d3
x, where δ lnm = δm/m denotes the relative

model perturbation andKm the associated 3-D sensitivity or Fréchet kernel. Complications

due to artificial absorbing boundaries for regional simulations as well as finite sources are

accommodated. We construct the 3-D finite-frequency ”banana-doughnut” kernel Km by

simultaneously computing the so-called ”adjoint” wavefield forward in time and recon-

structing the regular wavefield backward in time. The adjoint wavefield is produced by

using time-reversed signals at the receivers as fictitious, simultaneous sources, while the

regular wavefield is reconstructed on the fly by propagating the last frame of the wave-

field saved by a previous forward simulation backward in time. The approach is based

upon the spectral-element method, and only two simulations are needed to produce the 3-D

finite-frequency sensitivity kernels. The method is applied to 1-D and 3-D regional models.

Various 3-D shear- and compressional-wave sensitivity kernels are presented for different

regional body- and surface-wave arrivals in the seismograms. These kernels illustrate the
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sensitivity of the observations to the structural parameters and form the basis of fully 3-D

tomographic inversions. Most of the results from this chapter are presented in Liu and

Tromp [2006a].

5.2 Introduction

Seismic tomography is transitioning from classical ray-based tomography to finite-frequency

tomography. The new approach incorporates traveltime effects associated with wavefront

healing and recognizes the inherent frequency dependence of the body-wave traveltime or

surface-wave phase. For layer cake or spherically symmetric Earth models, sensitivity or

Fréchet kernels may be calculated based upon surface-wave Green’s functions [Marquering

et al., 1999], normal modes [Zhao et al., 2000], or asymptotic, ray-based methods [Dahlen

et al., 2000; Hung et al., 2000; Zhou et al., 2004]. Simple 3-D traveltime kernels for phases

like P and S are shaped like bananas with a doughnut-like cross-section, and thus the ker-

nels are commonly referred to as ”banana-doughnut” kernels. Such kernels were recently

implemented for compressional-wave tomography by Montelli et al. [2004].

To go beyond 1-D reference models, i.e., allowing for laterally heterogeneous reference

Earth models, requires fully 3-D numerical simulations. Zhao et al. [2005] demonstrate that

3-D finite-frequency sensitivity kernels for 3-D reference models may be obtained by cal-

culating and storing 3-D Green’s functions for all earthquakes and stations of interest. An

advantage of this approach is that it gives access to both the gradient and the Hessian of the

misfit function in the tomographic inverse problem. A disadvantage is the formidable stor-

age requirements associated with saving the entire Green’s function as a function of space

and time for all sources and receivers. Alternatively, Tromp et al. [2005] demonstrate that

the gradient of a misfit function may be obtained based upon just two numerical simulations

for each earthquake: one calculation for the current model and a second ”adjoint” calcula-

tion that uses time-reversed signals at the receivers as simultaneous, fictitious sources. The

main benefit of the adjoint approach is that the Fréchet derivatives of the misfit function

may be obtained based upon two 3-D simulations for each earthquake. Because one needs

simultaneous access to both the regular wavefield and the adjoint wavefield during the con-
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struction of the kernel, the approach doubles the memory requirements, but there is no need

to store wavefields as a function of space and time. A disadvantage is the fact that the Hes-

sian is unavailable, which leads to the use of iterative, e.g., conjugate-gradient, methods in

the inverse problem. In this paper we introduce a Lagrange multiplier method from which

the adjoint wave equations and the related finite-frequency kernel expressions follow nat-

urally. We apply the adjoint method to regional phases, first, for educational purposes, to

a simple homogeneous half-space model, and then to a realistic 3-D integrated southern

California model. The method can be readily extended to include numerous phases per

seismogram, as well as many seismograms per earthquake. This facilitates the rapid calcu-

lation of the gradient of a very general misfit function with respect to the model parameters.

5.3 Lagrange Multiplier Method

In this section we use a Lagrange multiplier method to derive the adjoint seismic wave

equations and the associated finite-frequency sensitivity kernels. This approach comple-

ments the results obtained by Tromp et al. [2005] and clearly demonstrates the origin of the

adjoint seismic wave equation and the related sensitivities to perturbations in structure and

source parameters.

Suppose we seek to minimize the least-squares waveform misfit function

χ =
1

2

∑

r

∫ T

0

[s(xr, t) − d(xr, t)]
2 dt, (5.1)

where the interval [0, T ] denotes the time series of interest, s(xr, t) denotes the synthetic

displacement at receiver location xr as a function of time t, and d(xr, t) denotes the ob-

served 3-component displacement vector. In practice, both the data d and the synthetics s

will be windowed, filtered, and possibly weighted on the time interval [0, T ]. In what fol-

lows we will implicitly assume that such filtering operations have been performed, i.e., the

symbols d and s will denote processed data and synthetics, respectively. As demonstrated

by Tromp et al. [2005], one may choose to minimize any number of misfit functions, e.g.,

cross-correlation traveltime measurements or surface-wave phase anomalies, but for the
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purpose of this discussion we will use the waveform misfit function (5.1). Different mea-

sures of misfit simply give rise to different adjoint sources. We will seek to minimize the

misfit function (5.1) subject to the constraint that the synthetic displacement field s satisfies

the seismic wave equation, as we discuss next.

Let us consider an Earth model with volume Ω and outer free surface ∂Ω. In Ap-

pendix C we will consider the complications associated with regional Earth models, which

have both a free surface and an artificial boundary on which energy needs to be absorbed.

The synthetic wavefield s(x, t) in (5.1) is determined by the seismic wave equation

ρ ∂2
t s −∇ · T = f , (5.2)

where ρ denotes the distribution of density. In an elastic medium, the stress T is related to

the displacement gradient through Hooke’s law:

T = c :∇s, (5.3)

where c denotes the elastic tensor. On the Earth’s free surface ∂Ω the traction must vanish:

n̂ · T = 0 on ∂Ω, (5.4)

where n̂ denotes the unit outward normal on the surface. In addition to the boundary con-

dition (5.4), the seismic wave equation (5.2) must be solved subject to the initial conditions

s(x, 0) = 0, ∂ts(x, 0) = 0. (5.5)

Finally, the force f in (5.2) represents the earthquake. In the case of a simple point source

it may be written in terms of the moment tensor M as

f = −M · ∇δ(x − xs)S(t), (5.6)

where the location of the point source is denoted by xs, δ(x − xs) denotes the Dirac delta
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distribution located at xs, and S(t) denotes the source-time function. The complications

associated with a finite source are discussed in Appendix C.2.

Our objective is to minimize the misfit function (5.1) subject to the constraint that the

synthetic displacement field s satisfies the seismic wave equation (5.2). Mathematically,

this implies the minimization of the constrained action

χ =
1

2

∑

r

∫ T

0

[s(xr, t) − d(xr, t)]
2 dt−

∫ T

0

∫

Ω

λ · (ρ ∂2
t s −∇ · T − f) d3

x dt, (5.7)

where the vector Lagrange multiplier λ(x, t) remains to be determined. Upon taking the

variation of the action (5.7), using Hooke’s law (5.3), we obtain

δχ =

∫ T

0

∫

Ω

∑

r

[s(xr, t) − d(xr, t)]δ(x − xr) · δs(x, t) d3
x dt

−
∫ T

0

∫

Ω

λ · [δρ∂2
t s −∇ · (δc :∇s) − δf ] d3

x dt

−
∫ T

0

∫

Ω

λ · [ρ∂2
t δs −∇ · (c :∇δs)] d3

x dt. (5.8)

Upon integrating the terms involving spatial and temporal derivatives of the variation δs by

parts, we obtain after some algebra

δχ =

∫ T

0

∫

Ω

∑

r

[s(xr, t) − d(xr, t)]δ(x − xr) · δs(x, t) d3
x dt

−
∫ T

0

∫

Ω

(δρλ · ∂2
t s + ∇λ :δc :∇s − λ · δf) d3

x dt

−
∫ T

0

∫

Ω

[ρ∂2
t λ−∇ · (c :∇λ)] · δs d3

x dt−
∫

Ω

[ρ(λ · ∂tδs − ∂tλ · δs)]T0 d3
x

+

∫ T

0

∫

∂Ω

λ · [n̂ · (δc :∇s + c :∇δs)] − n̂ · (c :∇λ) · δs d2
x dt, (5.9)

where the notation [f ]T0 means f(T )− f(0), for any function f . Perturbing the free surface

boundary condition (5.4) implies n̂ · (δc : ∇s + c : ∇δs) = 0 on ∂Ω, and perturbing the
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initial conditions (5.5) implies that δs(x, 0) = 0 and ∂tδs(x, 0) = 0. Thus we obtain

δχ =

∫ T

0

∫

Ω

∑

r

[s(xr, t) − d(xr, t)]δ(x − xr) · δs(x, t) d3
x dt

−
∫ T

0

∫

Ω

(δρλ · ∂2
t s + ∇λ :δc :∇s − λ · δf) d3

x dt−
∫ T

0

∫

Ω

[ρ∂2
t λ−∇ · (c :∇λ)] · δs d3

x dt

−
∫

Ω

[ρ(λ · ∂tδs − ∂tλ · δs)]T d3
x −

∫ T

0

∫

∂Ω

n̂ · (c :∇λ) · δs d2
x dt, (5.10)

where the notation [f ]T means f(T ).

In the absence of perturbations in the model parameters δρ, δc, and δf , the variation

in the action (5.10) is stationary with respect to perturbations δs provided the Lagrange

multiplier λ satisfies the equation

ρ∂2
t λ−∇ · (c :∇λ) =

∑

r

[s(xr, t) − d(xr, t)]δ(x − xr), (5.11)

subject to the free surface boundary condition

n̂ · (c :∇λ) = 0 on ∂Ω, (5.12)

and the end conditions

λ(x, T ) = 0, ∂tλ(x, T ) = 0. (5.13)

More generally, provided the Lagrange multiplier λ is determined by equations (5.11)–

(5.13), the variation in the action (5.10) reduces to

δχ = −
∫ T

0

∫

Ω

(δρλ · ∂2
t s + ∇λ :δc :∇s − λ · δf) d3

x dt. (5.14)

This equation tells us the change in the misfit function δχ due to changes in the model

parameters δρ, δc, and δf in terms of the original wavefield s determined by (5.2)–(5.5)

and the Lagrange multiplier wavefield λ determined by (5.11)–(5.13).

To appreciate the nature of the Lagrange multiplier wavefield, let us define the adjoint
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wavefield s
† in terms of the Lagrange multiplier wavefield λ by

s
†(x, t) ≡ λ(x, T − t), (5.15)

i.e., the adjoint wavefield is the time-reversed Lagrange multiplier wavefield λ. Then the

adjoint wavefield s
† is determined by the set of equations

ρ∂2
t s

† −∇ · T† =
∑

r

[s(xr, T − t) − d(xr, T − t)]δ(x − xr), (5.16)

where we have defined the adjoint stress in terms of the gradient of the adjoint displacement

by

T
† = c :∇s

†. (5.17)

The adjoint wave equation (5.16) is subject to the free surface boundary condition

n̂ · T† = 0 on ∂Ω, (5.18)

and the initial conditions

s
†(x, 0) = 0, ∂ts

†(x, 0) = 0. (5.19)

Upon comparing (5.16)–(5.19) with (5.2)–(5.5), we see that the adjoint wavefield s
† is

determined by exactly the same wave equation, boundary conditions, and initial conditions

as the regular wavefield, with the exception of the source term: The regular wavefield is

determined by the source f , whereas the adjoint wavefield is generated by using the time-

reversed differences between the synthetics s and the data d at the receivers as simultaneous

sources.

In terms of the adjoint wavefield s
†, the gradient of the misfit function (5.14) may be

rewritten in the form

δχ =

∫

Ω

(δρKρ + δc ::Kc) d3
x +

∫ T

0

∫

Ω

s
† · δf d3

x dt, (5.20)
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where we have defined the kernels

Kρ(x) = −
∫ T

0

s
†(x, T − t) · ∂2

t s(x, t) dt, (5.21)

Kc(x) = −
∫ T

0

∇s
†(x, T − t)∇s(x, t) dt. (5.22)

Realizing that δc and Kc are both fourth-order tensors, we use the notation δc :: Kc =

δcijklKcijkl
in (5.20).

The perturbation to the point source (5.6) may be written in the form

δf = −δM ·∇δ(x−xs)S(t)−M ·∇δ(x−xs− δxs)S(t)−M ·∇δ(x−xs)δS(t), (5.23)

where δM denotes the perturbed moment tensor, δxs the perturbed point source location,

and δS(t) the perturbed source-time function. Upon substituting (5.23) into the gradient of

the misfit function (5.20), using the properties of the Dirac delta distribution, we obtain

δχ =

∫

Ω

(δρKρ + δc ::Kc) d3
x +

∫ T

0

δM :ε†(xs, T − t)S(t) dt

+

∫ T

0

M : (δxs · ∇s)ε
†(xs, T − t)S(t) dt +

∫ T

0

M :ε†(xs, T − t)δS(t) dt,(5.24)

where ε† = 1
2
[∇s

† + (∇s
†)T ] denotes the adjoint strain tensor and a superscript T denotes

the transpose.

In an isotropic Earth model we have cjklm = (κ − 2
3
µ)δjkδlm + µ(δjlδkm + δjmδkl),

where µ and κ denote the shear and bulk moduli, respectively. Thus we may write

δc ::Kc = δ lnµKµ + δ ln κKκ, (5.25)

where the isotropic kernelsKκ andKµ represent Fréchet derivatives with respect to relative

bulk and shear moduli perturbations δ ln κ = δκ/κ and δ lnµ = δµ/µ, respectively. These

isotropic kernels are given by

Kµ(x) = −
∫ T

0

2µ(x)D†(x, T − t) :D(x, t) dt, (5.26)
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Kκ(x) = −
∫ T

0

κ(x)[∇ · s†(x, T − t)][∇ · s(x, t)] dt, (5.27)

where

D = 1
2
[∇s + (∇s)T ] − 1

3
(∇ · s)I, D

† = 1
2
[∇s

† + (∇s
†)T ] − 1

3
(∇ · s†)I, (5.28)

denote the traceless strain deviator and its adjoint, respectively.

Finally, we may express the Fréchet derivatives in an isotropic Earth model in terms

of relative variations in density δ ln ρ, shear-wave speed δ ln β, and compressional-wave

speed δ lnα based upon the relationship

δ ln ρKρ + δ lnµKµ + δ ln κKκ = δ ln ρKρ′ + δ ln β Kβ + δ lnαKα, (5.29)

where

Kρ′ = Kρ +Kκ +Kµ , (5.30)

Kβ = 2

(

Kµ − 4

3

µ

κ
Kκ

)

, (5.31)

Kα = 2

(

κ + 4
3
µ

κ

)

Kκ . (5.32)

In later sections we will see numerous examples of shear- and compressional-wave kernels

for various body- and surface-wave arrivals.

5.4 Spectral Element Method

We simulate wave propagation in both a homogeneous velocity model and a realistic south-

ern California velocity model by the spectral element method described in Chapter 2 and

Chapter 3. The combination of a detailed crustal model and an accurate numerical tech-

nique results in generally good fits between data and synthetic seismograms on all three

components at most stations in the Southern California Seismic Network at periods of 6 s

and longer [Komatitsch et al., 2004]. This provides us with a good starting point for further

improvement of the 3-D wave speed model. A typical 3-D simulation for 3-minutes long
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seismograms takes approximately 40 minutes on a 72-node PC cluster. Time shifts of up to

5 s are needed to align the data and the synthetics on the transverse component, suggesting

significant deviations of the model shear-wave speed from reality, i.e., significant improve-

ments may be achieved through further inversions. The adjoint methods discussed in this

paper makes 3-D inversions based upon highly heterogeneous initial models feasible.

5.5 Numerical Implementation of the Adjoint Method

From the kernel expressions (5.30), (5.31), and (5.32), it is obvious that in order to perform

the time integration, simultaneous access to the forward wavefield s at time t and the adjoint

wavefield s
† at time T − t is required, as illustrated in Figure 5.1.

This rules out the possibility of carrying both the forward and the adjoint simulation

simultaneously in the spectral-element simulation, where both wavefields would only be

available at a given time t. One apparent solution is to run the forward simulation, save

the whole forward wavefield as a function of space and time, and then launch the adjoint

simulation while performing the time integration by accessing the time t slice of the adjoint

wavefield and reading back the corresponding T−t slice of the forward wavefield stored on

the hard disk. However, this poses a serious storage problem because the complete forward

field s(x, t) can be very large when saved at every time step and every grid point, especially

when the problem is large enough that parallel computing is involved. One remedy might

be to introduce a highly efficient compression scheme to reduce the storage requirements.

In the absence of attenuation, an alternative approach is to introduce the backward

wave equation, i.e., to reconstruct the forward wavefield backwards in time from the dis-

placement and velocity wavefield at the end of the simulation. The backward wavefield is

determined by

ρ ∂2
t s = ∇ · (c : ∇s) + f in V, (5.33)

s(x, T ) and ∂ts(x, T ) given, (5.34)

n̂ · (c :∇s) = 0 on Ω. (5.35)
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This initial and boundary value problem can be solved to reconstruct s(x, t) for T ≥ t ≥ 0

the same way the forward wave equation is solved. Technically, the only difference between

solving the backward wave equation versus solving the forward wave equation is a change

in the sign of the time step parameter ∆t.1

If we carry both the backward and the adjoint simulation simultaneously in memory

during the spectral-element simulation (Figure 5.1), we have access to the forward wave-

field at time t and the adjoint wavefield at time T − t, which is exactly what we need to

perform the time integration involved in the construction of the kernels (5.30), (5.31), and

(5.32). A great advantage of this approach is that only the wavefield at the last time step

of the forward simulation needs to be stored and read back for the reconstruction of s(x, t)

and the construction of the kernels.

For regional spectral-element simulations, because of the limited size of the computa-

tional domain, absorbing boundary conditions are applied to mimic wave propagation in

a semi-infinite medium. By saving the forward wavefield on the absorbing boundaries at

every time step, we can add back the absorbed wavefield in the backward simulation that

follows the forward simulation. Therefore, by saving the wavefield on the absorbing bound-

aries and the entire wavefield at the end of the forward simulation, we can reconstruct the

forward wavefield in reverse time by solving the backwards wave equation, reinjecting the

absorbed wavefield as we go along. In the parallel simulation, only those mesh slices that

involve a part of an absorbing boundary need to access the absorbed field, and obviously

the storage requirements are still relatively modest compared to saving the entire forward

field at every time step. For more details about the implementation of absorbing boundary

conditions in the adjoint method, please refer to Appendix C.

5.6 Application to a 3-D Homogeneous Model

For educational purposes, we first implement our adjoint method for a 3-D homogeneous

model, as shown in Figure 5.2. The adjoint experiments presented in this section are the
1In an attenuating medium, solving the backward wave equation is numerically challenging because one

needs to ”undo” the effects of attenuation. We are currently experimenting with a number of implementations.



69                                                                

Adjoint wavefield  

Forward wavefield   

         Time =  0         t           T-t        T 

                       Accessed simultaneously 

Figure 5.1: During the construction of the finite-frequency sensitivity kernels (5.30), (5.31),
and (5.32), one needs simultaneous access to the forward wavefield at time t and the adjoint
wavefield at time T − t, where T denotes the duration of the numerical simulation. In our
implementation this is accomplished by reconstructing the forward simulation backwards
in time by solving the backward wave equation (5.33).

3-D complement to some of the 2-D experiments discussed in Tromp et al. [2005].

The 3-D model box has dimensions of 500 km × 500 km on the surface and 60 km in

the vertical direction. A hypothetical source and receiver are located at a subsurface depth

of 40 km at a mutual distance of 100 km. For simplicity, we use a point force with a Ricker

wavelet source time function with a half-duration of 2 s. Synthetic seismograms, obtained

from a spectral-element simulation accurate to a shortest period of 2 s, are recorded at the

receiver, as illustrated in Figure 5.3(a) for an SH (transverse) source and in Figure 5.3(b) for

a P-SV (vertical) source. During the forward simulation, absorbing boundary contributions

are saved to the hard disk, and at the end of the forward simulation the displacement and

velocity of the last time frame are also recorded on the disk. Next, the adjoint simulation is

launched, and its source is created by cutting the arrival of interest out of the recorded seis-

mogram and time-reversing it, as illustrated in Figure 5.3. The backward equation is solved

simultaneously with the adjoint simulation, starting from the last frames of displacement

and velocity that were saved, and reinserting the absorbing boundary contribution from

the appropriate time step. The time integration involved in the construction of the finite-

frequency sensitivity kernels (5.30), (5.31), and (5.32) is performed on the fly, based upon

simultaneous access to the forward wavefield s(x, t) and the adjoint wavefield s
†(x, T − t).

Based upon this approach, we have computed Fréchet kernels relating finite-frequency

traveltime anomalies of P, S, SS, and PS+SP arrivals to structural perturbations. These

kernels are discussed individually in the next few sections.
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Figure 5.2: Geometry of the experiment for a homogeneous half-space with a
compressional-wave speed of 6.3 km/s and a shear-wave speed of 3.2 km/s. For educa-
tional purposes, the source and the receiver are located at a depth of 40 km at a mutual
distance of 100 km. The direct P and S rays as well as the surface-reflected SS, SP and PS
rays are labeled for reference.

-1

0

1

0 10 20 30 40

(a) SH Source

S SS

-1

0

1

0 10 20 30 40

S

-1

0

1

0 10 20 30 40

SS

-1

0

1

0 10 20 30 40

(b) P-SV Source

P PS+SP SS

-1

0

1

0 10 20 30 40

P

-1

0

1

0 10 20 30 40

PS+SP

Figure 5.3: (a) Left column. Top: synthetic transverse seismogram for the source-receiver
geometry shown in Figure 5.2. The direct S and the surface-reflected SS arrival are indi-
cated. Middle: adjoint source for the S arrival. This adjoint source is obtained by differ-
entiating and time-reversing the S arrival in the top seismogram. Bottom: adjoint source
for the SS arrival. (b) Right column. Synthetic vertical component seismogram in which
the P, PS+SP, and SS arrivals are labeled. Middle: adjoint source for the P arrival obtained
by differentiating and time-reversing the P arrival in the top seismogram. Bottom: adjoint
source for the PS+SP arrival.
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Figure 5.4: S sensitivity kernel Kβ for the ray geometry shown in Figure 5.2. Top left:
combined vertical and horizontal cross-sections through the source and receiver illustrat-
ing the hollow cigar-shaped kernel. Top right: vertical cross-section perpendicular to the
middle of the source-receiver line illustrating the ”doughnut hole” in the middle of the ker-
nel. Bottom left: vertical cross-section through the source and receiver showing the cigar
shape of the kernel. Bottom right: horizontal cross-section through the source and receiver.

5.6.1 S Kernel

The S-wave Fréchet kernelKβ, given by (5.31), exhibits a distinctive hollow cigar shape, as

shown in Figure 5.4. Note the minimal sensitivity along the geometrical ray path as dictated

by the hole in the cigar. Note also that the kernel has negative sensitivity some distance off

the ray path, as indicated by the blue ring, implying that a positive anomaly off the ray

path can cause an actual advance in the finite-frequency (cross-correlation) traveltime. The

width of the related first Fresnel zone is approximately given by
√
λL [Dahlen et al., 2000],

where λ denotes the wavelength and L the distance between the source and the receiver.

5.6.2 SS Kernel

Similar to the S phase, the Kβ Fréchet kernel for the SS arrival delineates its geometrical

ray path, as illustrated in Figure 5.5. The kernel displays nearly zero sensitivity kernels

along the geometrical ray path, except near the surface reflection point where the two legs

of SS fold on top of each other. Besides the expected sensitivity along the geometric ray

path, an ellipsoidal locus of points of diffraction shows up faintly in the source-receiver
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Figure 5.5: SS sensitivity kernel Kβ for the ray geometry shown in Figure 5.2. Top left:
combined vertical and horizontal cross-sections through the source and receiver looking
up to the free surface. Top right: vertical cross-section perpendicular to the middle of the
source-receiver line illustrating the ”doughnut hole” in the middle of the kernel. Bottom
left: vertical cross-section showing the ”folded-over cigar” shape of the kernel. Bottom
right: horizontal cross-section at the surface.

vertical cross-section, delineating the points that have the same traveltime as the SS arrival.

This illustrates one of the differences between calculating sensitivity kernels based upon

an adjoint method versus an asymptotic ray-based calculation: The adjoint kernels involve

all possible regions of sensitivity that contribute to the arrival of interest, while a ray-based

sensitivity kernel calculation will only pick out the sensitivities along the geometrical ray

path. Note, however, that the kernel oscillates rapidly in the locus of diffraction points, and

this tends to average out the associated traveltime anomalies.

5.6.3 P Kernel

The Fréchet kernel Kα for the P phase, given by (5.32) and shown in Figure 5.6, looks very

similar to that of the S phase (see Figure 5.4), except, because of the longer wavelength of

the P phase, the width of the Fresnel zone is larger than that of the S phase, in accordance

with the scaling relation width ∼
√
λL.
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Figure 5.6: P sensitivity kernel Kα for the ray geometry shown in Figure 5.2. Top left:
combined vertical and horizontal cross-section through the source and receiver. Top right:
vertical cross-section perpendicular to the middle of the source-receiver line illustrating the
doughnut hole in the middle of the kernel. Bottom left: vertical cross-section showing the
cigar shape of the kernel. Bottom right: horizontal cross-section through the source and
receiver.

5.6.4 PS+SP Kernel

The left column in Figure 5.7 shows the Fréchet kernels for the PS phase in terms of den-

sity Kρ, shear modulus Kµ, and bulk modulus Kκ, whereas the right column in the figure

shows the Fréchet kernels parameterized terms of density Kρ,, S-wave speed Kβ, and P-

wave speed Kα. Notice that although the density kernel Kρ defined by (5.21) shows a

strong negative sensitivity when we use a model parameterization in terms of density, shear

modulus µ, and bulk modulus κ, the density kernel Kρ′ given by (5.30) — corresponding

to a parameterization in terms of density, shear-wave speed β, and compressional-wave

speed α — is practically zero. This reflects the fact that the traveltime is controlled by

the wave speed and not the density. Notice that the Fréchet kernel for the P-wave speed is

most pronounced along the P legs of the PS+SP ray path, while the kernel for the S-wave

speed is mainly sensitive around the S legs of the PS+SP ray path. This example illustrates

that the adjoint approach can be used to invert waveforms that consist of multiple arrivals,

because the resulting kernel will clearly reflect the main contributions to the waveform.
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Figure 5.7: PS+SP sensitivity kernels for the ray geometry shown in Figure 5.2. Top
left: Kµ sensitivity kernel defined by (5.26). This kernel reflects the S legs of the PS+SP
arrival. Middle left: Kκ sensitivity kernel defined by (5.27). This kernel reflects the P
legs of the PS+SP arrival. Bottom left: Kρ sensitivity kernel defined by (5.21). This kernel
shows large negative values related to the model parameterization in terms of density, shear
modulus µ, and bulk modulus κ. Top right: Kβ sensitivity kernel defined by (5.31). This
kernel reflects the S legs of the PS+SP arrival. Middle right: Kα sensitivity kernel defined
by (5.32). This kernel reflects the P legs of the PS+SP arrival. Bottom right: Kρ′ sensitivity
kernel defined by (5.30). This kernel shows hardly any sensitivity to density perturbations
because we are measuring traveltime anomalies and the model is parameterized in terms
of density, shear-wave speed β, and compressional-wave speed α. The nearly-zero Kρ′

reflects the fact that the traveltime is not affected by density but rather by wave speed.
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5.7 Application to a 3-D Southern California Model

In this section we use the adjoint method to calculate finite-frequency sensitivity kernels

for a 3-D integrated southern California model. The model consists of a detailed Los An-

geles basin model developed by Süss and Shaw [2003] embedded in the Hauksson [2000]

regional tomographic background model. This model was evaluated extensively by Ko-

matitsch et al. [2004] and is currently used for centroid moment-tensor inversions based

upon the 3-D source inversion technique introduced by Liu et al. [2004]. The synthetics

produced by this model generally fit the data reasonably well at periods of 5 s and longer

throughout the entire region, and up to 2 s and longer within the Los Angeles basin.

We will be studying Fréchet kernels for body- and surface-wave arrivals generated by

the September 3, 2002, Yorba Linda earthquake, which occurred at a depth of 6.8 km

[Liu et al., 2004]. Figure 3.1 shows a topographic map of southern California with major

late Quaternary faults indicated by black lines. The blue boxes indicate the detailed Los

Angeles basin model developed by Süss and Shaw [2003] and the Salton Trough model

developed by Lovely et al. [2006], which are embedded in the Hauksson [2000] regional

model. Red triangles indicate the stations for which body-wave and surface-wave kernels

are presented later.

5.7.1 P Kernels

3-D P-wave Fréchet kernels and corresponding model cross-sections are shown in Fig-

ure 5.8 for stations DLA and OLP. The P arrival at station DLA, which is about 32 km

from the epicenter, consists primarily of the direct P wave, and therefore its sensitivity ker-

nel shows the characteristic, simple banana-doughnut shape with some minor variations

caused by 3-D heterogeneity. In stark contrast, the P arrival at station OLP, at an epicentral

distance of 165 km, is the Pnl wave train, i.e., the combination of the Pn and PL phases

[Helmberger and Engen, 1980]. Most of the Pnl sensitivity is along the Pn ray path, which

dives down from the source to the Moho, runs along the Moho, and then comes up to the

receiver. The magnitude of the sensitivity kernel is largest along the upgoing and downgo-

ing legs of the ray path and relatively small along the refracted portion the ray path. Notice
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Figure 5.8: (a) Top Panel: vertical source-receiver cross-section of the P-wave finite-
frequency sensitivity kernel Kα at station DLA station at an epicentral distance of 32 km
from the September 3, 2002, Yorba Linda earthquake. Red colors denote negative sensitiv-
ity while blue colors denote positive sensitivity. The locations of the source and receiver are
indicated by white circles. At this relatively short epicentral distance the kernel looks like
a classical ”banana-doughnut” kernel. Lower Panel: vertical source-receiver cross-section
of the 3-D P-wave velocity model used for the spectral-element simulations [Komatitsch
et al., 2004]. The locations of the source and receiver are indicated by the white circles. (b)
The same as (a) but for station OLP at an epicentral distance of 165 km. At this relatively
larger distance the P-wave kernel reflects a combination of the Pn and PL waves.

in the model cross-section that the Moho slopes towards the receiver, which is reflected

in the sloping sensitivity kernel. Another noticeable feature is near-surface sensitivity to

the left of the receiver, indicating body-to-Rayleigh-wave conversions. This example illus-

trates that fully 3-D numerical methods must be used in the construction of finite-frequency

sensitivity kernels for complicated Earth models.

5.7.2 S Kernels

Three-dimensional S-wave sensitivity kernels for stations GSC and HEC are shown in Fig-

ure 5.9. Because it is more difficult to isolate a clean S arrival for the adjoint source com-

pared to the P wave, the S kernels are generally not as clean and sharp as those for the P

wave. At station GSC, at an epicentral distance of 176 km, the Moho-reflected SmS phase

and the Moho-refracted Sn phase arrive very close to each other. Therefore, the kernel for
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Figure 5.9: (a) Top Panel: vertical source-receiver cross-section of the S-wave finite-
frequency sensitivity kernel Kβ for station GSC at an epicentral distance of 176 km from
the September 3, 2002, Yorba Linda earthquake. Lower Panel: vertical source-receiver
cross-section of the 3-D S-wave velocity model used for the spectral-element simulations
[Komatitsch et al., 2004]. (b) The same as (a) but for station HEC at an epicentral distance
of 165 km.

the S wave includes contributions from both phases, which cannot be separated from each

other. At station HEC, at an epicentral distance of 165 km, the S-wave kernel is mainly

composed of the Sn phase plus some reflected phases from internal layers between the sur-

face and the Moho. This kernel serves as an illustration of one of the main advantages of

computing sensitivity kernels using adjoint methods: By simply selecting a waveform of

interest in the seismogram as the adjoint source we automatically determine all the struc-

tural parameters that affected it without prior knowledge of the contributing phases or their

ray paths.

5.7.3 Surface-wave Kernels

Unlike the homogeneous model with buried source and receiver shown in Figure 5.2, the 3-

D southern California model generates surface waves along the free surface. These waves

are mostly sensitive to near-surface structure between the source and the receiver, as il-

lustrated in Figure 5.10 for Rayleigh and Love waves recorded at station HEC at an epi-

central distance of 165 km from the September 3, 2002, Yorba Linda earthquake. Notice

the large 3-D variations on the surface along the path connecting the surface projections
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(a) (b)

Figure 5.10: (a) Map view of the finite-frequency Kα kernel for the Rayleigh wave at
station HEC (indicated by the white circle) generated by the September 3, 2002, Yorba
Linda earthquake. (b) Map view of the finite-frequency Kβ kernel for the Love wave at
HEC for the same earthquake.

of the source and receiver due to both topographic and wave-speed variations. Although

the kernels shown in Figure 5.10 are simple finite-frequency surface-wave kernels, it is

straightforward to make frequency-dependent phase and amplitude measurement for these

wave trains and generate Fréchet sensitivity kernels for individual phase measurements, as

discussed by Zhou et al. [2004].

5.8 Tomographic Inversions

The adjoint approach introduced in this paper may be used to relate changes in a misfit

function, δχ, to relative model perturbations, δ lnm = δm/m, through a general relation-

ship of the form

δχ =

∫

Km(x) δ lnm(x) d3
x, (5.36)

where Km denotes the associated 3-D sensitivity or Fréchet kernel, which is also weighted

banana-doughnut kernels, with weights determined by the measurements, e.g., cross-correlation

traveltime anomalies [Tromp et al., 2005].

It is important to recognize that in the adjoint approach we do not need to calculate

individual banana-doughnut kernels for each measurement. If Nevents denotes the number

of earthquakes, Nstations the number of stations, and Npicks the number of measurements at

that station, such an approach would requireNevents×Nstations×Npicks simulations, i.e., one
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simulation for each banana-doughnut kernel corresponding to one pick. For a given earth-

quake, the adjoint approach is to measure as many arrivals as possible on three components

at all available stations. Ideally, every component at every station will have a number of

arrivals suitable for measurement, for example in terms of frequency-dependent phase and

amplitude anomalies. During the adjoint simulation, each component of every receiver will

transmit its measurements in reverse time, and the interaction of the so-generated adjoint

wavefield with the forward wavefield results in a misfit kernel for that particular event. This

”event kernel” is essentially a sum of weighted banana-doughnut kernels, with weights de-

termined by the traveltime anomaly, and is obtained based upon only two 3-D simulations.

By summing these event kernels one obtains the ”summed event kernel”, which highlights

where the current 3-D model is inadequate and enables one to obtain an improved Earth

model, for example based upon a conjugate-gradient approach. The number of 3-D sim-

ulations at each conjugate-gradient step scales linearly with the number of earthquakes

Nevents but is independent of the number of receivers Nstations or the number of measure-

ments Npicks. Every iteration of the conjugate-gradient method requires one forward and

one adjoint calculation for the current model to obtain the value of the misfit function and

its gradient, and one forward simulation for a ”trial” model, i.e., a model in the direction

of the gradient, to obtain the value of the misfit function at this trial location. A quadratic

polynomial may then be used to determine the minimum of the misfit function in the search

direction, which forms the starting point of the next iteration. Thus one conjugate-gradient

iteration requires a total of three spectral-element simulations. Alternatively, at the cost of

one more adjoint simulation, one may choose to evaluate both the misfit function and its

gradient at the trial location. In that case a cubic polynomial may be used to determine the

minimum of the misfit function in the search direction, and a total of four spectral-element

simulations is required. Both conjugate-gradient approaches are discussed in detail for 2-D

problems in Tape et al. [2006].
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5.9 Conclusions

Based upon a Lagrange multiplier technique, we have developed and implemented an ad-

joint method for the calculation of finite-frequency sensitivity kernels for 3-D reference

Earth models. We have demonstrated that such Fréchet kernels may be obtained based

upon just two 3-D simulations: one forward simulation to determine the current fit of the

synthetic seismograms to the data, and a second, adjoint simulation in which a measure-

ment of the remaining differences between the data and the synthetics is used in reverse

time to generate a wavefield that originates at the receiver(s). The interaction between the

regular and adjoint wavefields determines the sensitivity kernels.

The main advantages of our adjoint approach are five-fold. First, the kernels are cal-

culated on-the-fly by carrying the adjoint wavefield and the regular wavefield in memory

at the same time. This doubles the memory requirements for the simulation but avoids the

storage of Green’s functions for all events and stations as a function of space and time.

One only has to store the final frame of the forward simulation plus the wavefield that is

absorbed on the artificial boundaries of the domain. (At the scale of the globe there are no

absorbing boundaries and thus one only needs to store the final frame of the forward sim-

ulation.) Second, the kernels can be calculated for fully 3-D reference models, something

that is critical in highly heterogeneous settings, e.g., in regional seismology or exploration

geophysics. Third, the approach scales linearly with the number of earthquakes but is inde-

pendent of the number of receivers and the number of arrivals that is used in the inversion.

Thus one should use all available stations and make as many measurements as possible.

Fourth, any time segment where the data and the synthetics have significant amplitudes

and match reasonably well is suitable for a measurement. One does not need to be able

to label the phase, e.g., identify it as SS or SSS, because the adjoint simulation will reveal

how this particular measurement ”sees” the Earth model, and the resulting 3-D sensitivity

kernel will reflect this view. Finally, the cost of the simulation is independent of the number

of model parameters, i.e., one can consider fully anisotropic Earth models with 21 elastic

parameters for practically the same numerical cost as an isotropic simulation involving just

two parameters.
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In the near future we plan to use the adjoint method developed and implemented here

to perform 3-D tomographic inversions.
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Chapter 6

Finite-frequency Kernels Based upon
Adjoint Method for Global Wave
Simulations

6.1 Abstract

We derive the complete set of adjoint equations and the expressions of the Fréchet sensitiv-

ity kernels based upon the Lagrange multiplier methods. We start from the global equations

of motion for a rotating, self-gravitating Earth model initially in hydrostatic equilibrium,

and deduce the corresponding adjoint equations that involve motions on an Earth model that

rotates in the opposite direction. The variations of the misfit function χ can be expressed as

δχ =
∫

V
Km(x) δ lnm(x) d3

x +
∫

Σ
Kh(x)δh(x) d2

x +
∫

ΣFS
Kh(x) · ∇Σδh(x)d2

x, where

δlnm = δm/m denotes the relative model perturbations in the earth volume V , Σ denotes

the solid-solid or fluid-solid boundaries, Kh denotes the kernels associated with topogra-

phy variations on Σ, while ΣFS denotes the fluid-solid boundary, ∇Σ denotes the surface

gradient, and Kh denotes the associated 2-D kernel. Anelasticity also fits in well with

the framework of the adjoint methods and the Lagrange multiplier methods. We calculate

these 3-D and 2-D finite-frequency kernels by simultaneously computing the adjoint wave-

field s
† forward in time and reconstructing the regular wavefield s backward in time. Both

the forward and adjoint simulations of wave propagation are accomplished by the spectral

element methods. We apply the adjoint methods to generate finite-frequency travel time

Fréchet kernels for global seismic phases (P, PKP, S, SKS, depth phases, surface-reflected
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phases, etc.) in both the 1-D PREM model and 3-D tomographic models. These kernels

generally agree well with the results obtained from ray-based finite frequency methods;

however, the adjoint methods do not have the same theoretical limitations, and can pro-

duce sensitivity kernels for any given phase in any 3-D initial velocity model. The Fréchet

kernels illustrate the sensitivity of the observations to the structural parameters and the to-

pography of the internal discontinuities, which forms the basis of full 3-D tomographic

inversions. Most of the results from this chapter is collected in Liu and Tromp [2006b].

6.2 Introduction

Global tomography studies have been around for more than twenty years, during which

more and more images of the velocity structures of the earth’s crust and mantle have been

produced with the expansion of global and regional seismic networks and increasing num-

ber of seismic records [e.g., Woodhouse and Dziewonski, 1984; Su et al., 1994; Masters

et al., 1996; Grand, 1994; Li and Romanowica, 1996; der Hilst et al., 1997; Ritsema and

Van Heijst, 2000]. These images of the earth’s deep interior provide important information

for the understanding of the earth’s internal geodynamic processes. Recently more efforts

have been made to further improve the theoretical basis of the tomographic inversions by

replacing the simple Fréchet sensitivity kernels calculated from either the conventional ray

path or other asymptotically theories with the 3-D volumetric Fréchet kernels that relate the

observations to the 3-D volumetric perturbations of the structural model parameters. These

include sensitivity kernels that are produced based upon the surface-wave Green’s func-

tion [Marquering et al., 1999], body-wave ray theory (also known as the banana-doughnut

kernels, Dahlen et al. [2000]; Hung et al. [2000]; Zhou et al. [2004]), surface-wave ray

theory [Zhou et al., 2004], and normal-model theory [Zhao et al., 2000; Zhao and Jordan,

2006]. Global tomographic inversions based upon these 3-D sensitivity kernels have also

been attempted [Montelli et al., 2004; Zhou et al., 2005].

Using the existing 3-D tomography models as initial models to further invert and up-

date the earth’s velocity structure is a big challenge in seismology since it involves fully

3-D numerical simulation of seismic wave propagation. Tromp et al. [2005] introduced
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the adjoint formulations of the Fréchet kernels, which involves the interactions between

the regular forward wave field and the adjoint wave field produced by time-reversed sig-

nals at the receivers as simultaneous, fictitious sources. The main advantage is that only

two simulations are needed to compute the gradient of the misfit function for each event.

Because it is computationally costly to calculate the Hessian of the misfit function, a con-

jugate gradient algorithm is introduced to optimize the misfit function and obtain the best

velocity model. The application of the adjoint method to calculate the 3-D Fréchet sensi-

tivity kernels for the regional 3-D velocity models has been demonstrated in Liu and Tromp

[2006a].

Following Liu and Tromp [2006a], in this paper, we derive the complete set of adjoint

equations and expressions of the Fréchet kernels for the global seismic wave propagation

problem based upon the Lagrange multiplier method. We apply the adjoint methods to

numerically compute the 3-D travel-time sensitivity kernels for typical seismic phases of

both 1-D and 3-D global velocity models. For a full 3-D tomographic inversion, one event

kernel is computed for all the travel-time measurements made at all the receivers for this

particular event. The summed event kernels then form the gradient of the misfit function,

and they will be used in the successive velocity model updates based upon the conjugate

gradient method.

6.3 Equation of Motion

We begin by introducing the equations of motion for a rotating, self-gravitating Earth model

that is initially in hydrostatic equilibrium. In such an Earth model, pressure gradients are

balanced by gradients of the geopotential, which is the sum of the gravitational and centrifu-

gal potentials. As a consequence, the equilibrium model is an ellipsoid in which surfaces

of constant pressure, density, and the geopotential coincide. The results in this section

are well known [e.g., Dahlen and Tromp, 1998], but serve the purpose of introducing the

necessary framework and the related notation.
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The gravitational potential Φ is determined by Poisson’s equation:

∇2Φ = 4πGρ, (6.1)

where ρ denotes the density distribution andG the gravitational constant. For mathematical

and notational convenience the density distribution is defined to be zero outside of the Earth

model, where the gravitational potential satisfies Laplace’s equation. The Earth model

contains internal solid-solid discontinuities, collectively denoted by ΣSS, and internal fluid-

solid discontinuities, collectively denoted by ΣFS. The collection of all internal solid-

solid and fluid-solid discontinuities plus the surface of the model volume ∂V is denoted

by Σ = ∂V ∪ ΣSS ∪ ΣFS. Poisson’s equation (6.1) must be solved subject to the boundary

conditions

[Φ]+− = 0, [n̂ · ∇Φ]+− = 0 on Σ, (6.2)

where the notation [·]+− denotes the jump in the enclosed quantity when going from the

outward (+) side to the inward (−) side of the discontinuity. The unit normal n̂ points

outward from the − side to the + side of a discontinuity. The solution to the boundary

value problem (6.1)–(6.2) is

Φ(r) = −G
∫

V

ρ(r′)

||r− r′|| d3
r
′, (6.3)

where V denotes the volume of the Earth model and r the position vector.

The centrifugal potential ψ is defined in terms of the Earth’s angular rotation vector Ω

by

ψ = −1
2
[Ω2r2 − (Ω · r)2], (6.4)

where r = ||r|| denotes the radius and Ω = ||Ω|| is the angular rotation rate.

The displacement field s in a rotating, self-gravitating Earth model is governed by the

equation of motion

ρ(∂2
t s + 2Ω× ∂ts)−∇ ·T +∇[ρ s · ∇(Φ + ψ)] + ρ∇φ−∇ · (ρ s)∇(Φ + ψ) = f . (6.5)



86

In an anisotropic, elastic Earth model the stress T is defined in terms of the displacement

gradient by

T = c :∇s, (6.6)

where c denotes the elastic tensor. The complications associated with an anelastic Earth

model will be addressed in section 6.5. On all boundaries the traction n̂ · T needs to be

continuous:

[n̂ · T]+− = 0 on Σ. (6.7)

For mathematical convenience, the Earth model parameters ρ and c are defined to be zero

outside of the model volume V , such that at the free surface ∂V the boundary condi-

tion (6.7) reduces to the vanishing of the traction: n̂ ·T = 0. On a fluid-solid boundary the

traction is normal: n̂ · T = (n̂ · T · n̂)n̂. On all solid-solid boundaries the displacement s

must be continuous:

[s]+− = 0 on ΣSS, (6.8)

whereas on fluid-solid discontinuities there may be slip:

[n̂ · s]+− = 0 on ΣFS. (6.9)

The displacement is subject to the initial conditions

s(r, 0) = 0, ∂ts(r, 0) = 0. (6.10)

The perturbation in the gravitational potential φ induced by the displacement s is deter-

mined by

∇ · ξ = 0, (6.11)

[φ]+− = 0, [n̂ · ξ]+− = 0 on Σ, (6.12)

where

ξ = (4πG)−1∇φ+ ρs. (6.13)
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The solution to the boundary-value problem (6.11)–(6.12) is

φ(r, t) = −G
∫

V

ρ(r′)
s(r′, t) · (r − r

′)

||r − r′||3 d3
r
′. (6.14)

6.4 Adjoint Equations

In this section we derive the adjoint equations that arise in the context of tomographic in-

verse problems. Our objective will be to minimize the difference between observed three-

component seismograms and the corresponding synthetic seismograms. This may be ac-

complished based upon a wide variety of misfit criteria, e.g., waveform or cross-correlation

traveltime differences. In this paper we consider the minimization of a waveform misfit

function χ subject to the constraint that the synthetic seismograms are determined by the

equations of motion (6.5)–(6.12):

χ = 1
2

∑

r

∫ T

0

[s(rr, t) − d(rr, t)]
2 dt

−
∫ T

0

∫

V

λ · {ρ(∂2
t s + 2Ω × ∂ts) −∇ · T∇[ρ s · ∇(Φ + ψ)] + ρ∇φ

−∇ · (ρ s)∇(Φ + ψ) − f} d3
r dt

+

∫ T

0

∫

©
µ(∇ · ξ) d3

r dt. (6.15)

Here © denotes all of space, and the vector Lagrange multiplier λ(r, t) and the scalar

Lagrange multiplier µ(r, t) remain to be determined. The interval [0, T ] denotes the time

series of interest, s(rr, t) denotes the synthetic displacement field at receiver location rr,

and d(rr, t) denotes the corresponding observed three-component displacement vector. In

practice, both the data d and the synthetics s will be windowed, filtered, and possibly

weighted on the time interval [0, T ]. In what follows we will implicitly assume that such

operations have been performed. We note that different measures of misfit simply give rise

to different adjoint sources [Tromp et al., 2005].
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Upon taking the variation of the action (6.15) we obtain

δχ =

∫ T

0

∫

V

∑

r

[s(rr, t) − d(rr, t)] δ(r − rr) · δs(r, t) dr3 dt

−
∫ T

0

∫

V

λ · {ρ(∂2
t δs + 2Ω × ∂tδs) + δρ(∂2

t s + 2Ω × ∂ts) −∇ · δT

+ ∇[ρ δs · ∇(Φ + ψ)] + ∇[δρ s · ∇(Φ + ψ)] + ∇[ρ s · ∇(δΦ)] + ρ∇δφ+ δρ∇φ

−∇ · (ρ δs)∇(Φ + ψ) −∇ · (δρ s)∇(Φ + ψ) −∇ · (ρ s)∇(δΦ) − δf} d3
r dt

+

∫ T

0

∫

©
µ(∇ · δξ) d3

r dt, (6.16)

The perturbation in stress δT may be obtained by perturbing Hooke’s law (6.6):

δT = c :∇δs + δc :∇s, (6.17)

and the perturbation δξ is obtained by perturbing (6.13):

δξ = (4πG)−1∇δφ+ ρδs + δρ s. (6.18)

The perturbation in the gravitational potential δΦ associated with a perturbation in densityδρ

and a displacement δd of the discontinuities Σ is determined by [Dahlen and Tromp, 1998]

∇2(δΦ) = 4πGδρ, (6.19)

[δΦ]+− = 0, [n̂ · ∇(δΦ) + 4πGρδd]+− on Σ, (6.20)

where the density perturbation δρ is defined to be zero outside of the volume of the Earth

model V . The solution to the boundary-value problem (6.19)–(6.20) is

δΦ(r) = −G
∫

V

δρ(r′)

||r − r′|| d3
r
′ +G

∫

Σ

δd(r′)[ρ(r′)]+−
||r− r′|| d2

r, (6.21)

i.e., the perturbation in the gravitational potential δΦ is completely determined by the per-

turbations in density δρ and boundary topography δd.

The next step in determining the adjoint equations involves manipulating the variation
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of the action (6.16) by performing integrations by parts over time and repeatedly using

Gauss’s theorem for a volume with discontinuities:

∫

V

∇ · v d3
r = −

∫

Σ

[n̂ · v]+− d2
r, (6.22)

for any tensor v. In an Earth model without any internal discontinuities this reduces to the

familiar form
∫

V

∇ · v d3
r =

∫

∂V

n̂ · v d2
r. (6.23)

After a significant amount of tedious algebra we can rewrite the variation of the action (6.16)

in the form

δχ =

∫ T

0

∫

V

∑

r

[s(rr, t) − d(rr, t)] δ(r− rr) · δs(r, t) dr3 dt

−
∫ T

0

∫

V

δs · {ρ(∂2
t λ + 2Ω × ∂tλ) −∇ · σ + ∇[ρλ · ∇(Φ + ψ)]

+ ρ∇µ−∇ · (ρλ)∇(Φ + ψ)} d3
r dt+

∫ T

0

∫

©
δφ(∇ · ζ) d3

r dt

−
∫

V

ρ [λ · ∂tδs − ∂tλ · δs + 2λ · Ω × δs]T0 d3
r

−
∫ T

0

∫

V

{δρ[λ · (∂2
t s + 2Ω× ∂ts) + λ · ∇φ+ s · ∇µ+ s · ∇∇(Φ + ψ) · λ

+ ∇(Φ + ψ) · (s · ∇λ − s∇ · λ)] + ∇λ :δc :∇s + ρs · ∇∇(δΦ) · λ

+ ρ∇(δΦ) · (s · ∇λ − s∇ · λ) − λ · δf} d3
r dt

−
∫ T

0

∫

Σ

[n̂ · δT · λ − n̂ · σ · δs + n̂ · δξ µ− n̂ · ζ δφ]+− d2
r dt, (6.24)

where we have introduced the notation [f ]T0 = f(T )− f(0), for any function f , and where

we have defined

σ = c :∇λ, (6.25)

and

ζ = (4πG)−1∇µ+ ρλ. (6.26)

In the absence of model parameter perturbations δρ, δc, δd, and δf , the variation in
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the action (6.24) is stationary with respect to permissible (i.e., honoring the appropriate

boundary and initial conditions) perturbations δs and δφ provided the vector Lagrange

multiplier λ satisfies the equation

ρ(∂2
t λ + 2Ω × ∂tλ) −∇ · σ + ∇[ρλ · ∇(Φ + ψ)] + ρ∇µ−∇ · (ρλ)∇(Φ + ψ)

=
∑

r

[s(rr, t) − d(rr, t)] δ(r − rr), (6.27)

subject to the boundary conditions

[n̂ · σ]+− = 0 on Σ, (6.28)

[λ]+− = 0 on ΣSS, (6.29)

[n̂ · λ]+− = 0 on ΣFS, (6.30)

and the end conditions

λ(r, T ) = 0, ∂tλ(r, T ) = 0. (6.31)

On fluid-solid boundaries the quantity n̂ · σ is normal: n̂ · σ = (n̂ · σ · n̂)n̂. The scalar

Lagrange multiplier µ is determined by

∇ · ζ = 0, (6.32)

subject to the boundary conditions

[µ]+− = 0, [n̂ · ζ]+− = 0 on Σ. (6.33)

At this point let us define the adjoint wavefield s
† in terms of the vector Lagrange

multiplier wavefield λ by

s
†(r, t) ≡ λ(r, T − t), (6.34)

i.e., the adjoint wavefield is the time-reversed Lagrange multiplier wavefield λ. Similarly,

we define the adjoint perturbed gravitational potential φ† in terms of the scalar Lagrange
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multiplier µ by

φ†(r, t) ≡ µ(r, T − t). (6.35)

Then the adjoint wavefield s
† is determined by the set of equations

ρ(∂2
t s

† − 2Ω× ∂ts) −∇ ·T† + ∇[ρ s
† · ∇(Φ + ψ)] + ρ∇φ† −∇ · (ρ s

†)∇(Φ + ψ)

=
∑

r

[s(rr, T − t) − d(rr, T − t)] δ(r − rr), (6.36)

where the adjoint stress is determined in terms of the adjoint displacement gradient by

T
† = c :∇s

†. (6.37)

On all boundaries the adjoint traction n̂ · T† needs to be continuous:

[n̂ ·T†]+− = 0 on Σ, (6.38)

and on fluid-solid boundaries the adjoint traction is normal: n̂ · T† = (n̂ · T† · n̂)n̂. On all

solid-solid boundaries the adjoint displacement s† must be continuous

[s†]+− = 0 on ΣSS, (6.39)

whereas on fluid-solid discontinuities

[n̂ · s†]+− = 0 on ΣFS. (6.40)

The adjoint displacement is subject to the initial conditions

s
†(r, 0) = 0, ∂ts

†(r, 0) = 0. (6.41)

The adjoint perturbation in the gravitational potential φ† induced by the adjoint displace-
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ment s† is determined by the boundary-value problem

∇ · ξ† = 0, (6.42)

[φ†]+− = 0, [n̂ · ξ†]+− = 0 on Σ, (6.43)

where

ξ† = (4πG)−1∇φ† + ρs†. (6.44)

Upon comparing the equations for the regular wavefield (6.5)–(6.13) with those for the

adjoint wavefield (6.36)–(6.44) we see that they are identical with two exceptions: First, the

source term for the adjoint wave equation (6.36) is
∑

r [s(rr, T − t) − d(rr, T − t)] δ(r −
rr) and involves the time-reversed differences between the synthetics and the data at all

receivers; and, second, the adjoint wavefield must be calculated in an Earth model with

the opposite sense of rotation, as reflected in the change in the sign of the Coriolis term in

(6.36). Thus the adjoint wavefield may be generated with the same software that generates

the regular wavefield by reversing the sense of rotation of the Earth model and by using

a source that consists of the time-reversed differences between all available data and the

corresponding synthetics.

With the regular and adjoint wavefields now defined, the change in the misfit function

(6.24) reduces to

δχ = −
∫ T

0

∫

V

{

δρ[s† · (∂2
t s + 2Ω × ∂ts) + s

† · ∇φ+ s · ∇φ† + s · ∇∇(Φ + ψ) · s†

+ ∇(Φ + ψ) · (s · ∇s
† − s∇ · s†)] + ∇s

† :δc :∇s + ρs · ∇∇(δΦ) · s†

+ ρ∇(δΦ) · (s · ∇s
† − s∇ · s†) − s

† · δf
}

d3
r dt

−
∫ T

0

∫

Σ

[n̂ · δT · s† − n̂ · T† · δs + n̂ · δξ φ† − n̂ · ξ† δφ]+− d2
r dt, (6.45)

where it is implied that when the regular wavefield s is evaluated at time t, the adjoint

wavefield is evaluated at time T − t.

Because we are allowing perturbations δd in the location of all discontinuities Σ, we

need to carefully consider the boundary integral in (6.45) because such perturbations render
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the variations δs and δφ inadmissible. Because the adjoint traction n̂ · T† is continuous on

Σ and normal on ΣFS we have [Dahlen and Tromp, 1998, eqn. 13.35]

[n̂ · T† · δs]+− = −δd[n̂ · T† · ∂ns]
+
− + ∇Σ(δd) · [(n̂ · T† · n̂)s]+−. (6.46)

Here ∂n = n̂ · ∇ denotes the partial derivative in the direction of the outward normal n̂,

and ∇Σ = (I − n̂n̂) · ∇ denotes the surface gradient on Σ, where I is the identity tensor.

Thus we may express the gradient operator as ∇ = n̂∂n + ∇Σ. Note that on a solid-solid

boundary both s and n̂ · T · n̂ are continuous, which means that the last term in (6.46)

contributes only on a fluid-solid boundary. Next, using the fact that [φ†]+− = 0 [and Dahlen

and Tromp, 1998, eqn. 13.62] we have

[n̂·δξ φ†]+− = −δd[φ†
n̂·∂nξ]

+
−+∇Σ(δd)·[φ†ξ]+− = ∇Σ·[δd φ†ξ]+−−δd[ξ·∇φ†]+−+δd[(n̂·ξ)∂nφ

†]+−,

(6.47)

where we have used (6.11). Because ∇Σ(δd) is a tangent vector to Σ, i.e., n̂ · ∇Σ(δd) = 0,

any vector dotted with ∇Σ(δd) retains only its tangent components. Thus the integration by

parts associated with the second equality involves only the tangent components of ξ; this

becomes important when we use the 2D version of Gauss’s theorem in the surface integral

in (6.45). Using the continuity [n̂ · ξ†]+− [and Dahlen and Tromp, 1998, eqn. 13.36] we have

[n̂ · ξ† δφ]+− = −δd[n̂ · ξ†∂nφ]+−. (6.48)

Finally, on solid-solid boundaries [s†]+− = 0, which implies that [using Dahlen and Tromp,

1998, eqn. 13.61]

[n̂ · δT · s†]+− = −δd[n̂ · ∂nT · s†]+− + ∇Σ(δd) · [T · s†]+− (6.49)

= −δd[(∇ · T) · s†]+− + ∇Σ · [δdT · s†]+− − δd[T :∇s
†]+− + δd[T : n̂∂ns

†]+−,

where we note, again in anticipation of using the 2D version of Gauss’s theorem in (6.45),

that in the second equality only the tangent part of T · s† is involved in the horizontal
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divergence. It may be shown that on a fluid-solid boundary (6.50) acquires one extra term:

[n̂·δT·s†]+− = −δd[(∇·T)·s†]+−+∇Σ·[δdT·s†]+−−δd[T :∇s
†]+−+δd[T : n̂∂ns

†]+−−∇Σ(δd)·[(n̂·T·n̂)s†]+−.

(6.50)

Thus we find that we may rewrite the surface integral in (6.45) in the form

∫ T

0

∫

Σ

[n̂ · δT · s† − n̂ ·T† · δs + n̂ · δξ φ† − n̂ · ξ† δφ]+− d2
r dt

=

∫ T

0

∫

Σ

δd[ρ{−(∂2
t s + 2Ω × ∂ts) · s† − s

† · ∇φ− s · ∇φ† − s · ∇∇(Φ + ψ) · s†

−∇(Φ + ψ) · (s† · ∇s − s
†∇ · s)} − ∇s

† :c :∇s − (4πG)−1(∇φ · ∇φ†) + (n̂ · T) · ∂ns
†

+ (n̂ · T†) · ∂ns + (n̂ · ξ)∂nφ
† + (n̂ · ξ†)∂nφ]+− d2

r dt

−
∫ T

0

∫

ΣFS

∇Σ(δd) · [(n̂ · T† · n̂)s + (n̂ · T · n̂)s†]+− d2
r dt, (6.51)

where we have used the equation of motion (6.5) and the 2D version of Gauss’s theorem

on a closed surface [Dahlen and Tromp, 1998, eqn. A.79]:

∫

Σ

∇Σ · vΣ d2
r = 0, (6.52)

for any tangent vector v
Σ.

Upon combining (6.45) and (6.51) we may write the variation in the misfit function in

the form

δχ =

∫

V

δ⊕K⊕ d3
r+

∫

Σ

δdKd d2
r+

∫

ΣFS

∇Σ(δd) ·Kd d2
r+

∫ T

0

∫

V

s
†(T − t) · δf(t) d3

r dt,

(6.53)

where the symbol ⊕ denotes the Earth model parameters ρ and c, and the kernels K⊕, Kd,

and Kd are defined by

δ⊕K⊕ = −
∫ T

0

{δρ[s† · (∂2
t s + 2Ω× ∂ts) + s

† · ∇φ+ s · ∇φ† + s · ∇∇(Φ + ψ) · s†

+ ∇(Φ + ψ) · (s · ∇s
† − s∇ · s†)] + ∇s

† :δc :∇s + ρs · ∇∇(δΦ) · s†

+ ρ∇(δΦ) · (s · ∇s
† − s∇ · s†)}dt, (6.54)
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Kd = −
∫ T

0

[ρ{−(∂2
t s + 2Ω × ∂ts) · s† − s

† · ∇φ− s · ∇φ† − s · ∇∇(Φ + ψ) · s†

−∇(Φ + ψ) · (s† · ∇s − s
†∇ · s)} − ∇s

† :c :∇s − (4πG)−1(∇φ · ∇φ†)

+ (n̂ ·T) · ∂ns
† + (n̂ · T†) · ∂ns + (n̂ · ξ)∂nφ

† + (n̂ · ξ†)∂nφ]+− dt, (6.55)

Kd =

∫ T

0

[(n̂ · T† · n̂)s + (n̂ · T · n̂)s†]+− dt, (6.56)

where it should be remembered that in these kernel expressions the adjoint field is evaluated

at time T − t, whereas the regular wavefield is evaluated at time t.

If we ignore rotation and self-gravitation, the gradient (6.53) may be rewritten as

δχ =

∫

V

(δρKρ+δc ::Kc) d3
r+

∫

Σ

δdKd d2
r+

∫

ΣFS

∇Σ(δd)·Kd d2
r+

∫ T

0

∫

V

s
†(T−t)·δf(t) d3

r dt,

(6.57)

where kernels Kρ, Kc, Kd and Kd are defined by [Tromp et al., 2005]

Kρ = −
∫ T

0

s
†(T − t) · ∂2

t s(t) dt, (6.58)

Kc = −
∫ T

0

∇s
†(T − t)∇s(t) dt, (6.59)

Kd = −
∫ T

0

[−ρs†(T−t)·∂2
t s(t)−∇s

†(T−t) :c :∇s(t)+n̂·T(t)·∂ns
†(T−t)+n̂·T†(T−t)·∂ns(t)]

+
− dt,

(6.60)

Kd =

∫ T

0

[n̂ · T†(T − t) · n̂ s(t) + n̂ · T(t) · n̂ s
†(T − t)]+− dt. (6.61)

In an isotropic Earth model we have cjklm = (κ− 2
3
µ)δjkδlm+µ(δjlδkm+δjmδkl), where

µ and κ denote the shear and bulk moduli, respectively. Note that the shear modulus µ

should not be confused with the scalar Lagrange multiplier used earlier. Thus we may

write

δc ::Kc = δ lnµKµ + δ ln κKκ, (6.62)

where the isotropic kernelsKκ andKµ represent Fréchet derivatives with respect to relative

bulk and shear moduli perturbations δ ln κ = δκ/κ and δ lnµ = δµ/µ, respectively. These



96

isotropic kernels are given by

Kµ(r) = −
∫ T

0

2µ(r)D†(r, T − t) :D(r, t) dt, (6.63)

Kκ(r) = −
∫ T

0

κ(r)[∇ · s†(r, T − t)][∇ · s(r, t)] dt, (6.64)

where D and D
† denote the traceless strain deviator and its adjoint, respectively.

Similarly, in an isotropic Earth model (6.60) and (6.61) reduce to

Kd(r) =

∫ T

0

[

ρ(r)s†(r, T − t) · ∂2
t s(r, t) + κ(r)∇ · s†(r, T − t)∇ · s(r, t)

+ 2µ(r)D†(r, T − t) :D(r, t) − κ(r)n̂(r) · ∂ns
†(r, T − t)∇ · s(r, t)

− 2µ(r)n̂(r)∂ns
†(r, T − t) :D(r, t) − κ(r)n̂(r) · ∂ns(r, t)∇ · s†(r, T − t)

− 2µ(r)n̂(r)∂ns(r, t) :D†(r, T − t)
]+

− dt, (6.65)

Kd(r) =

∫ T

0

[

s
†(r, T − t)[κ(r)∇ · s(r, t) + 2µ(r)n̂(r) · D(r, t) · n̂(r)]

+ s(r, t)[κ(r)∇ · s†(r, T − t) + 2µ(r)n̂(r) · D†(r, T − t) · n̂(r)]
]+

− dt. (6.66)

Finally, we may express the Fréchet derivatives in an isotropic Earth model in terms of

relative variations in density ln ρ, shear-wave speed lnβ, and compressional-wave speed

lnα based upon the relationship

δ ln ρKρ + δ lnµKµ + δ ln κKκ = δ ln ρKρ′ + δ ln β Kβ + δ lnαKα, (6.67)

where

Kρ′ = Kρ +Kκ +Kµ, Kβ = 2

(

Kµ − 4

3

µ

κ
Kκ

)

, Kα = 2

(

κ+ 4
3
µ

κ

)

Kκ.

(6.68)
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6.5 Anelasticity

In an anelastic Earth model, Hooke’s law (6.6) needs to be replaced by [e.g., Aki and

Richards, 1980; Dahlen and Tromp, 1998]

T(t) =

∫ t

0

c(t− t′) :∂t′∇s(t′) dt′, (6.69)

i.e., the tensor c becomes time dependent and the stress at time t depends on the entire

strain history. To avoid clutter we have suppressed the spatial dependence. In this section

we will determine the implications of this more general, anelastic constitutive relationship

for the adjoint equations. We begin by manipulating the term of concern in (6.15):

∫ T

0

∫

V

λ · (∇ · T) d3
r dt = −

∫ T

0

∫

V

∇λ :T d3
r dt

= −
∫ T

0

∫

V

∇λ(t) :

[
∫ t

0

c(t− t′) :∂t′∇s(t′) dt′
]

d3
r dt, (6.70)

where we have used the boundary condition (6.7) and imposed the (anticipated) continuity

conditions (6.29) and (6.30). Upon integrating by parts over t′, using the initial condi-

tion s(0) = 0 and the relationship ∂t′c(t − t′) = −∂tc(t − t′), changing the order of

integration over t and t′, integrating by parts over t, imposing the (anticipated) end condi-

tion (6.31), and the symmetries of the tensor c, we obtain

∫ T

0

∫

V

λ · (∇ · T) d3
r dt =

∫

V

∫ T

0

[
∫ T

t′
c(t− t′) :∂t∇λ(t) dt

]

:∇s(t′) dt′ d3
r. (6.71)

If we define the second-order tensor

σ(t) = −
∫ T

t

c(t′ − t) :∂t′∇λ(t′) dt′, (6.72)

then it is straightforward to show based upon varying (6.71) that in an anelastic medium

the Lagrange multiplier field λ is determined by the wave equation (6.27), provided we use

the definition (6.72) for σ, rather than the elastic form (6.25).

As in the elastic case, we define the adjoint wavefield s
† in terms of the Lagrange
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multiplier field λ by (6.34). By analogy, let us define the anelastic adjoint stress T
† in

terms of the second order tensor σ by

T
†(r, t) = σ(r, T − t). (6.73)

Based upon (6.72) and (6.73) it is now straightforward to show that in an anelastic medium

the adjoint wavefield s
† is determined by (6.36) provided the adjoint stress T

† is defined in

terms of the gradient of the adjoint displacement by

T
†(t) =

∫ t

0

c(t− t′) :∂t′∇s
†(t′) dt′. (6.74)

We see that in an anelastic Earth model, just as in the elastic case, the adjoint wavefield is

determined by exactly the same equations as the regular wavefield, with the exception of

the source term and the sense of rotation.

In the context of the tomographic inverse problem, the gradient of the misfit function

becomes

δχ =

∫

V

[δρKρ −
∫ T

0

δT†(T − t) :∇s(t) dt] d3
r

+

∫

Σ

δdKd d2
r +

∫

ΣFS

∇Σ(δd) · Kd d2
r +

∫ T

0

∫

V

s
†(T − t) · δf(t) d3

r dt,(6.75)

where Kρ is defined by (6.58) and where we have defined

δT†(t) =

∫ t

0

δc(t− t′) :∂t′∇s
†(t′) dt′. (6.76)

Note that for purely elastic perturbations, when the perturbation δc does not depend on

time, the gradient (6.75) reduces to (6.57). This implies that a tomographic inversion for

elastic perturbations superimposed upon an anelastic reference model may be accomplished

based upon the gradient (6.57), provided the regular and adjoint wavefields are calculated

in the anelastic reference model.
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6.6 Global Seismic Wave Propagation Based upon the Spec-

tral Element Method

As demonstrated in Section 6.4, the expressions for the Fréchet derivatives of volumet-

ric model parameters, e.g., (6.58), (6.59), (6.63) and (6.64), and topographic variations

on internal discontinuities, e.g., (6.60) and (6.61), involve simultaneous access to the for-

ward wavefield s(x, t) and the adjoint wavefield s
†(x, T − t). We calculate both the for-

ward and adjoint wavefield based upon the spectral-element method (SEM), which has

been successfully applied to simulate wave propagation on both global and regional scales

[e.g., Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999, 2002a,b; Chaljub et al.,

2003; Komatitsch et al., 2004]. The method combines the geometrical flexibility of the

finite-element method with an accurate representation of the wavefield in terms of high-

order Lagrange polynomials. The global spectral-element mesh is designed to honor to-

pography and bathymetry on the Earth’s surface and velocity discontinuities inside the

model, such as the Moho, the upper mantle discontinuities, the core-mantle boundary

(CMB), and the inner-core boundary (ICB). The choice of Lagrange interpolants in combi-

nation with Gauss-Lobatto-Legendre quadrature produces an exactly diagonal mass matrix,

which makes it straightforward to implement the method on parallel computers. A simple

predictor-corrector scheme is used to time-march the wavefield [Komatitsch and Tromp,

2002a]. The detailed numerical implementation and numerous benchmarking results are

discussed in Komatitsch and Tromp [2002a,b]. In general, use of the SEM to simulate

wave propagation in 3D global Earth models results in better traveltime predictions and

waveform fits compared to synthetics generated based upon semi-analytical methods for

1D Earth models [e.g., Ritsema et al., 2002; Tsuboi et al., 2003; Ji et al., 2005]. A typi-

cal 3D global simulation for 40-minutes long synthetic seismograms accurate to a shortest

period of 18 s takes approximately 4 hours on a 75-node PC cluster.
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6.7 Numerical Implementation of the Adjoint Method

Although it is straightforward to compute the forward and adjoint wavefields by solving the

regular wave equation (6.5), and the adjoint wave equation (6.36) using the SEM, calcula-

tion of the kernel expressions (6.58), (6.59), (6.60) and (6.61) involves simultaneous access

to the forward wavefield s(x, t) and the adjoint wavefield in reverse time s
†(x, T − t). This

makes it difficult to carry both the forward and adjoint wavefield simultaneously in the

SEM, because at any given time t we would only be able to access the forward wave-

field s
†(x, t) and the adjoint wavefield s

†(x, t), while the time integration involved in con-

structing the kernels requires access to the time-reversed adjoint field s
†(x, T − t). One ap-

parent solution is to run the forward simulation and save the entire regular wavefield s(x, t)

as a function of both time and space, followed by an adjoint simulation during which at any

given time t we read back the forward wavefield at time T − t. This scheme is easy to un-

derstand and theoretically simple to implement; however, realistic global SEM simulations

accurate down to 18 s generally require approximately 12 GB of storage space per time

step to save the forward wavefield. A typical simulation for 40-minutes-long seismograms

involves a number of time steps on the order of 104. Therefore, the total storage require-

ments involve hundreds of terabytes of disk space, and the related I/O requirements may

significantly increase the total simulation time. One possible solution may be to employ an

efficient data compression scheme to reduce the storage requirements and overhead time

associated with assessing the time slices of the forward wavefield.

In this paper we employ an approach first introduced by Liu and Tromp [2006a] for

regional wave propagation problems, in which, ignoring anelasticity effects, we reconstruct

the forward wavefield by solving the equation of motion (6.5) backwards in time:

ρ(∂2
t s +2Ω× ∂ts)−∇ ·T+∇[ρ s ·∇(Φ +ψ)] + ρ∇φ−∇ · (ρ s)∇(Φ +ψ) = f , (6.77)

[n̂ · T]+− = 0 on Σ, (6.78)

[s]+− = 0 on ΣSS, [n̂ · s]+− = 0 on ΣFS, (6.79)

s(r, T ) and ∂ts(r, T ) given. (6.80)
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This initial and boundary value problem can be solved to reconstruct s(x, t) for T ≥ t ≥ 0

the same way the forward wave equation (6.5) is solved subject to the boundary condi-

tions (6.7), (6.8) and (6.9), and the initial conditions (6.10). Actually, we simply need to

replace the time step parameter ∆t in the forward simulation by −∆t in the backward sim-

ulation. Notice that we need to have the ‘ending conditions’ s(r, T ) and ∂ ts(r, T ) to start

the reconstruction of s(x, t), and therefore we need to save on disk the final displacement

and velocity fields of a previous forward simulation. By carrying the backward simulation

(6.77) and the adjoint simulation (6.36) simultaneously, at any given time t we have ac-

cess to both the regular wavefield s(x, T − t) and the adjoint wavefield s
†(x, t), making

it feasible to compute on the fly the contributions to the time integrations involved in the

construction of the finite-frequency kernels (6.58), (6.59), (6.60) and (6.61).

In summary, sensitivity kernels may be calculated based upon just two spectral-element

simulations. One forward simulation provides the synthetic seismograms that may be used

for a cross-correlation traveltime measurement. During the second simulation we calcu-

late the adjoint wavefield while simultaneously reconstructing the forward wavefield based

upon the last snapshots from the first simulation, thereby enabling the on-the-fly calcula-

tion of the sensitivity kernels. The second simulation requires about twice the memory

and run time of the first simulation but avoids overwhelming storage requirements and I/O

demands.

As discussed by Liu and Tromp [2006a], in regional spectral-element simulations one

needs to save the wavefield absorbed on the fictitious boundaries of the model domain as

well as a snapshot of the entire final wavefield. Since the global simulations involve no

absorbing boundaries, only the final snapshot needs to be saved. This requires very little

storage space compared to the absorbing contributions that need to be saved at every time

step during the regional forward simulations.

6.8 Applications to Spherically Symmetric Models

In this section we calculate cross-correlation traveltime sensitivity kernels for typical global

arrivals in the 1D isotropic Preliminary Reference Earth Model (PREM) [Dziewonski and
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Anderson, 1981]. For a given component of the seismogram, we may express the cross-

correlation traveltime perturbation as [Luo and Schuster, 1990; Marquering et al., 1999;

Dahlen et al., 2000]

δT =

∫

V

δ⊕K⊕ d3
r +

∫

Σ

δdKd d2
r +

∫

ΣFS

∇Σ(δd) · Kd d2
r. (6.81)

The expressions for the volumetric kernelsK⊕ and the boundary kernelsKd and Kd are the

same as equations (6.54), (6.55), and (6.56), except that for a cross-correlation traveltime

measurement the associated adjoint wavefield s
† is generated by the adjoint source [Tromp

et al., 2005]

f
† =

1

N
w(T − t)∂ts(xr, T − t)δ(x − xr), (6.82)

where xr denotes the receiver location, w(t) is the cross-correlation window, and the nor-

malization factor N is given by

N =

∫ T

0

w(t)s(xr, t)∂
2
t s(xr, t) dt. (6.83)

Notice that both the adjoint source f
† and the adjoint wavefield s

† are determined by the

synthetic seismogram s(t), and therefore the sensitivity kernels can be computed based

upon only this information.

We simulate three-component seismograms for the June 9, 1994, Bolivian Earthquake.

This earthquake occurred at a depth of 647 km and is one of the largest deep events in mod-

ern recording history. We use the event location and the centroid-moment tensor (CMT)

solution from the Harvard CMT catalog (www.seismology.harvard.edu) for our

simulation, and we modify the half duration of the CMT solution to be compatible with the

resolution of the spectral-element simulation. We follow the procedures outlined in Sec-

tion 6.7 to calculate sensitivity kernels for typical global phases at various distances. Most

of the kernels are generated for a hypothetical station at a source azimuth of 65◦, unless

otherwise noted. We will consider the sensitivity kernels of the following phases: direct

P and S at an epicentral distance of 60◦, the core-reflected phase ScS at a distance of 60◦,

the core phases PKPab and PKPdf at a distance of 170◦ and SKS at a distance of 115◦, the
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core-diffracted phase Pdiff at a distance of 103◦, the depth phases sS at a distance of 40◦ and

sP at a distance of 90◦, as well as the surface-reflected phases PP at a distance of 115◦ and

SS at a distance of 90◦. These arrivals are chosen because they are readily identified in the

seismograms in this particular azimuth at these specific distances. Figure 6.1 illustrates the

ray geometry of these arrivals for the PREM model.

One of the advantages of our fully numerical approach using the adjoint method is that

we need not be able to ‘label’ a particular pulse in the seismogram, i.e., we need not have

any knowledge of the raypath associated with this particular pulse. By performing the

forward and adjoint simulations, combining the forward and adjoint wavefields during the

construction of the kernels, we automatically obtain the 3D sensitivity associated with this

particular pulse in the seismogram. Sometimes the kernels may be readily identified with

a particular geometrical raypath, but frequently the sensitivity kernels are much richer.

Another advantage of the adjoint approach is that it may be used for fully 3D reference

Earth models, as we discuss further in Section 6.9.

6.8.1 P Kernel

We generate 3D compressional wave-speed sensitivity kernels Kα for the P phase at an

epicentral distance of 60◦. Figure 6.2(a), (b) and (c) show source-receiver cross-sections of

the kernels calculated using the adjoint method for simulations accurate down to periods

of 27 s, 18 s and 9 s, respectively. The vertical component seismograms corresponding

to the simulations with different resolution are shown in Figure 6.2(d). All kernels show

very nice banana-doughnut shapes in good agreement with results obtained based upon

ray-based finite-frequency kernels [Dahlen et al., 2000; Hung et al., 2000; Zhou et al.,

2004] as well as those obtained based upon normal-mode methods [Zhao et al., 2005; Zhao

and Jordan, 2006]. Notice that the size of the doughnut holes decreases with increasing

resolution, in accordance with the scaling relation width ∼
√
λL, where L denotes the

length of the raypath and λ the wavelength. At very high frequencies the sensitivity kernel

will asymptotically collapse onto the P raypath shown in Figure 6.1(a). Notice that the

absolute amplitude of the P kernel at 9 s is about 5 times larger than the amplitude of the P
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Figure 6.1: (a) PREM ray geometry for the following arrivals: P, S, ScS, Pdiff, SKS, PKPab
and PKPdf. The S legs of the raypaths are colored blue, while the P legs of the raypaths are
colored red. The hypocenter location of the June 9, 1994, Bolivian earthquake at a depth of
647 km is denoted by a red star. (b) PREM ray geometry for surface-reflected phases such
as PP, SS, and SP, and the depth phases sS and sP.
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Figure 6.2: (a) Source-receiver cross-section of the Kα kernel for a 27 s P wave recorded
at a station at an epicentral distance of 60◦. The source and receiver locations are denoted
with two small white circles. The unit of the sensitivity kernels is 107 s/km3 throughout
this paper. (b) Kα kernel for an 18 s P wave recorded at a station at an epicentral distance
of 60◦. (c) Kα kernel for a 9 s P wave recorded at a station at an epicentral distance of 60◦.
(d) Vertical component of the synthetic velocity seismograms recorded at an epicentral
distance of 60 for simulations accurate down to periods of 27 s, 18 s and 9 s, respectively.

kernel at 27 s. The source radiation patterns clearly show up near the hypocenter (denoted

by a white circle in Figures 6.2(a),(b) and (c)).

6.8.2 Pdiff Kernel

Because of the sudden drop in compressional-wave speed across the CMB towards the outer

core, a shadow zone exists beyond an epicentral distance of approximately 103◦ for the di-

rect P wave. Seismic energy enters the shadow zone in the form of waves diffracted along

the CMB. The raypath for the Pdiff phase at an epicentral distance of 103◦ is shown in Fig-

ure 6.1(a). The Pdiff phase, because of its diffracted nature, generally has a lower frequency

content relative to the direct P wave at closer distances. Figure 6.3(a) shows a vertical
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Figure 6.3: (a) Vertical component synthetics velocity seismograms recorded at a station at
an epicentral distance of 103◦. The spectral-element simulation is accurate down to periods
of 18 s. (b) Vertical component synthetic velocity seismograms recorded at a station at an
epicentral distance of 170◦. The spectral-element simulation is accurate down to periods of
9 s.

velocity seismogram recorded at a station at an epicentral distance of 103◦. Figure 6.4(a)

shows a source-receiver cross-section of the correspondingKα kernel. It is similar to a reg-

ular banana-doughnut kernel except that it has been cut through at the bottom by the CMB.

Figure 6.4(b) shows the sensitivity of the Pdiff phase along the mantle side of the CMB.

Due to the source radiation pattern the sensitivity kernel on the CMB is asymmetric with

respect to the source-receiver plane. The Pdiff phase is frequently assumed to be mainly

sensitivity to the diffracted portion of the raypath along the CMB; however, the sensitivity

kernel shows significant sensitive away from the raypath, e.g., to regions more than 500 km

above the CMB.

6.8.3 PKP Kernel

For stations beyond the shadow zone, the first arrival is usually the Pdiff phase. However,

at epicentral distances larger than approximately 130◦ the PKP phases that arrive about

60–100 s after the diffracted P phase are usually the first clearly identifiable arrivals in ver-

tical component seismograms. Figure 6.5 displays the traveltime curve for the various PKP

branches, the most noticeable of which are PKPab and PKPdf, whose raypaths are shown

in Figure 6.1(a). Notice that the PKPab phase generally samples the shallow part of the

outer core, while the PKPdf phase samples the deeper parts of the core. Figure 6.3 shows
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Figure 6.4: (a) Source-receiver cross-section of the Kα kernel for an 18 s Pdiff phase at an
epicentral distance of 103◦; (b) Spherical cross-section on the CMB of the Kα kernel for
an 18 s Pdiff phase at an epicentral distance of 103◦.

a vertical displacement seismogram recorded at an epicentral distance of 170◦ for a simu-

lation accurate down to 9 s. The PKPdf and PKPab arrivals can be clearly identified in the

seismogram. We pick an epicentral distance of 170◦ because the traveltime difference be-

tween the PKPdf and PKPab branches can be as large as 70 s at this distance, which makes it

very easy to identify and separate them. Figure 6.6(a) and 6.6(b) show the finite-frequency

traveltime sensitivity kernelsKα for these two PKP branches. The PKPdf kernel clearly fol-

lows the raypath shown in Figure 6.1 while exhibiting the typical banana-doughnut shape.

The upper part of the kernel has relatively smaller sensitivity compared to the lower part,

which is partly a result of the source radiation pattern of the Bolivian earthquake. The

PKPab kernel not only follows the conventional raypath, but also shows sensitivity along a

path that goes from the source to the receiver in the major-arc direction. This is a result of

the finite-frequency nature of the cross-correlation traveltime measurements: points along

the unconventional path represent scatterers that produce arrivals within the PKPab cross-

correlation traveltime window. Note, however, that the oscillatory nature of the kernel

along this major-arc path tends to average out longer wavelength heterogeneity.
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Figure 6.5: Traveltime curves of the various PKP branches for the PREM model.

(a) (b)

Figure 6.6: (a) Kα kernel for 9-second PKPdf phase at 170◦; (b) Kα kernel for 9-second
PKPab phase at 170◦.
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Figure 6.7: (a) Transverse velocity seismograms recorded at an epicentral distance of 60◦

for spectral-element simulations accurate down to periods of 18 s and 27 s, respectively.
The S and ScS phases are labeled. (b) Transverse velocity seismograms recorded at an
epicentral distance of 90◦ for spectral-element simulations accurate down to periods of
18 s. The S, sS and SS phases are labeled.

6.8.4 S and ScS Kernels

In this section we calculate the Kβ traveltime sensitivity kernels for the S and ScS phases

at 60◦ for the Bolivian earthquake. These two phases are identified on transverse velocity

seismograms as illustrated in Figure 6.7(a) for synthetics with a shortest period of 27 s and

18 s, respectively. The Kβ Fréchet kernels corresponding to these phases are compared

in Figure 6.8. Notice that they all nicely follow their respective theoretical raypaths (Fig-

ure 6.1a) and exhibit clear banana-doughnut shapes, except near the core-reflection point

of the ScS phase where the two S legs come together, producing a complicated pattern on

and right above the CMB. The kernels corresponding to an accuracy of 18 s and longer are

generally sharper and have larger amplitudes than the kernels at periods of 27 s and longer,

in agreement with the results obtained for the P kernels discussed in Section 6.8.1.

6.8.5 SKS Kernel

Next, we generate traveltime sensitivity kernels for an 18 s SKS phase at an epicentral

distance of 115◦. Because the outer core is liquid, the SKS phase can only be observed on

the vertical and radial components of PREM seismograms. In Figure 6.9(a) we identify the

SKS phase on the North component. Its mantle Kβ kernel and core Kα kernel are jointly
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Figure 6.8: (a) Kβ kernel for a 27 s S phase at 60◦. (b) Kβ kernel for an 18 s S phase at
60◦. (a) Kβ kernel for a 27 s ScS phase at 60◦. (b) Kβ kernel for an 18 s ScS phase at 60◦.
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Figure 6.9: (a) North component of a velocity seismogram recorded for a station at an epi-
central distance of 115◦ for a simulation accurate at periods of 18 s and longer. The promi-
nent SKS phase is labeled. (b) Vertical component of the velocity seismogram recorded for
a station at an epicentral distance of 40◦ for a simulation accurate at periods of 18 s and
longer. The sP phase is labeled.

plotted in Figure 6.10. Overall the sensitivity kernel follows the SKS raypath, and due to the

source radiation pattern the upper part of the banana-doughnut kernel shows much stronger

sensitivity than the lower part of the kernel. Because the SKS phase is not the first arrival in

the seismogram, mantle reverberated waves caused by reflections and refractions from both

the Earth’s surface and internal discontinuities may arrive in the SKS cross-correlation time

window, and hence the sensitivity kernel has more structure than for a simple direct arrival

such as P or Pdiff. This is true in general for later arriving phases, especially when observed

on the radial or vertical components, which involve many S-to-P and P-to-S conversions.

As remarked earlier, the associated rapid oscillations in the amplitude of the kernel provide

no constraints on relatively smooth structure.

6.8.6 Depth Phases

Since the Bolivian earthquake occurred at a depth of 647 km, we can clearly identify the

depth phases on the three-component seismograms. In this section we pick the sP phase

identified in a vertical velocity seismogram recorded at a distance of 40◦ and the sS phase in

a transverse velocity seismogram recorded at a distance of 90◦ (Figures 6.9(b) and 6.7(b)).

Figure 6.11(a) shows theKα sensitivity kernel for the sP phase, while Figure 6.11(b) shows

the corresponding Kβ sensitivity kernel. Clearly the Kα kernel reflects the P leg of the sP
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Figure 6.10: Source-receiver cross-section of theKβ kernel for an 18 s SKS phase recorded
at an epicentral distance of 115◦.

phase, while the Kβ kernel represents the upgoing S leg of the sP phase. Note that the

amplitude of the Kβ kernel is much larger than the Kα kernel. Figure 6.11(c) shows the

Kβ sensitivity kernel for the sS arrival, which clearly follows the geometrical raypath and

exhibits the characteristic banana-doughnut shape along the S leg. Notice that although

the raypath of the sS arrival is at least 500 km above the CMB, as shown in Figure 6.1(b),

the lower part of the banana-doughnut kernel actually touches the CMB and leaves a small

elliptical area of sensitivity on the CMB, as shown in Figure 6.11(d).

6.8.7 Kernels for Surface-reflected Phases

Surface-reflected phases generally become distinct at epicentral distances > 40◦ and dom-

inate the body-wave signals at a distance of approximately 100◦. These arrivals are mostly

sensitive to velocity structure in the upper mantle, in particular in the transition zone. We

compute Kβ sensitivity kernels for the SS phase recorded on the transverse component at a

distance of 90◦, the SP phase recorded on the vertical component at a distance of 100◦, and

the PP phase recorded on the vertical component at a distance of 115◦ (Figure 6.12). The

Kβ kernel for the SS phase follows the raypath shown in Figure 6.1 and displays a compli-

cated folded pattern near the surface reflection point. Similar patterns are also observed in

the Kα kernel for the PP phase. Figures 6.13(c) and 6.13(d) show the Kβ and Kα kernels

for the SP phase, and clearly the Kβ kernel mainly reflects the S leg of the SP raypath,

while the Kα corresponds to the P leg.
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Figure 6.11: (a) Kα kernel for an 18 s sP phase recorded at a distance of 40◦. (a) Kβ kernel
for an 18 s sP phase recorded at a distance of 40◦. (c) Source-receiver cross-section of the
Kβ kernel for an 18 s sS arrival recorded at a distance of 90◦. (d) Spherical cross-section
on the CMB of the Kβ Kernel for an 18 s sS arrival recorded at a distance of 90◦.
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Figure 6.12: (a) Transverse component velocity seismogram recorded at a station at an
epicentral distance of 90◦ for a spectral-element simulation accurate at periods of 18 s and
longer. The emergent SS arrival is labeled. (b) Vertical component velocity seismogram
recorded at a station at a distance of 100◦. The SP phase is labeled. (c) Vertical component
velocity seismogram recorded at 115◦. The PP phase is denoted.



114

(a) (b)

(c) (d)

Figure 6.13: (a) Kβ kernel for an 18 s SS phase recorded at a distance of 90◦. (b) Kα kernel
for an 18 s PP phase recorded at a distance of 115◦. (c) Kβ kernel for an 18 s SP phase
recorded at a distance of 100◦. (d) Kα kernel for an 18 s SP phase recorded at a distance of
100◦.
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Figure 6.14: (a) Vertical component velocity seismogram recorded at a distance of 70◦. (b)
Last 300 s of the seismogram shown in (a) magnified by a factor of 10. The P′ P′ phase is
labeled.

6.8.8 P′ P′ Kernel

The adjoint approach can readily be used to look at more exotic arrivals. As an example,

we generate an 9 s Kα sensitivity kernels for the P′ P′ arrival (also known as PKPPKP):

a PKP phase reflected off the Earth’s surface. This phase, which arrives around 2300 s,

is nearly unidentifiable in the complete vertical seismogram, (Figure 6.14(a)). However,

when the last few hundred seconds of the seismograms are magnified by a factor of 10, we

can identify the P′ P′ phase clearly at the tail of the surface waves. Its corresponding Kα

kernel (Figure 6.15) clearly follows the PKPPKP raypath. Since this pulse resides in the

tail of the surface waves in the very late part of the seismogram, the kernel contains ‘noise’

due to mantle and core reverberations.

6.9 Conjugate-gradient Method for Tomography Inversions

The Fréchet kernels discussed in section 6.8 are only the so-called ”banana-doughnut ker-

nels”. One such kernel relates the perturbations of one particular traveltime delay to the

perturbations of model parameters. For a finite-frequency travel-time tomographic inver-

sion, we need to minimize the following misfit function:

χ(m) =
1

2

N
∑

i=1

[

T obs
i − Ti(m)

]2
, (6.84)
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Figure 6.15: Kα kernel for a 9 s P′ P′ phase recorded at a distance of 70◦.

where T obs
i denotes the observed traveltime for the ith source-receiver combination, Ti(m)

the predicted traveltime based upon the current model m, and N the number of traveltime

measurements. We define the traveltime anomaly ∆Ti = T obs
i − Ti(m). Then the variation

of the misfit function (6.84) becomes

δχ = −
N

∑

i=1

∆Ti δTi, (6.85)

Upon ignoring the boundary kernels in equation (6.53), we can relate the perturbations in

the traveltime to the fractional perturbation of the volumetric model parameters by

δTi =

∫

V

Kiδ lnm d3
x, (6.86)

and if we define the misfit kernel as

K(x) = −
N

∑

i=1

∆TiKi(x), (6.87)

and expand our fractional phase-speed perturbations, δ lnm(x), into basis functions B(x):

δ lnm(x) =
M

∑

k=1

δmk Bk(x), (6.88)
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where δmk, k = 1, . . . ,M , represent the perturbed model coefficients, then the perturbation

of the misfit function can be rewritten as

δχ =

M
∑

k

gkδmk (6.89)

where the gradient of the misfit function χ with respect to the kth discrete model parameter

mk is defined as

gk =
∂χ

∂mk

=

∫

V

KBk d3
x, k = 1, . . . ,M. (6.90)

Notice that to obtain gk, we only need to compute the misfit kernelK(x), not the individual

banana-doughnut kernels Ki(x). Therefore, for each event, we generate the event kernel

by putting the adjoint sources

f †(x, t) = −
Nr
∑

r=1

∆Tr
1

Mr

wr(T − t) ∂ts(xr, T − t) δ(x − xr) (6.91)

simultaneously at the individual receivers and computing the adjoint wavefield through

3-D wave simulations. This greatly reduces the number of spectral-element simulations

required to compute the gradient of the misfit function, to two simulations per event. Al-

though the expression for the Hessian of the misfit function can be obtained in a similar

manner as shown in Tape et al. [2006], individualGik =
∫

V
KiBk d3

x has to be computed,

meaning every Ki has to be computed and stored separately, which makes it computation-

ally prohibitive to calculate the Hessian when a large number of events, source-receiver

pairs, and traveltime measurements are involved [Tape et al., 2006]. Now a feasible tomo-

graphic inversion problem can be posed as the following: Given a set of discrete model

parameters m = [mk], k = 1, . . . ,M that describes the velocity structure of the earth, a

misfit function χ(m) that measures the travel-time delays between the observed seismo-

grams and the synthetic seismograms for this set of model parameters m, and the ability

to only compute the gradient of the misfit function gk, how can one iteratively update the

velocity model? The conjugate gradient methods with approximate updates of the search

directions have been proposed to solve this inversion problem, and have been successfully
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applied to both source and structural inversions in synthetic problems [Tromp et al., 2005;

Tape et al., 2006].

6.10 Discussion

As shown in the previous section, we compute the gradient of the misfit function using

simultaneous time-reversed signals (equation (6.91)) at the receivers as the adjoint sources.

Therefore, it is very crucial for us to make the measurements of travel-time delay ∆Ti’s and

their associated error bars carefully due to the significant computation time required to gen-

erate the misfit kernels K(x). On the other hand, we will collect both the cross-correlation

travel-time measurements for the body wave phases, and the frequency-dependent phase-

delay measurements for the surface waves. With these datasets ready, we can compute the

gradient of the misfit function for any given 3-D velocity model, and by iteratively updating

the velocity model and remake these travel-time measurements, we can greatly improve our

knowledge of the 3-D velocity structures of the earth’s interior.
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Appendix A

Attenuation by Standard Linear Solids

A.1 Complex Wave Number

We define the complex wave number as a function of angular frequency ω:

k(ω) =
ω

Vp(ω)
− iα(ω), (A.1)

where Vp(ω) is the phase velocity and α(ω) is the attenuation factor.

A.2 Theory of viscoelasticity

Boltzmann’s after-effect equation (superposition principle and causality principle), which

describes the relationship between the stress and the strain in a viscoelastic medium,

ε(t) =

∫ ∞

0

σ̇(t− θ)φ(θ) dθ (A.2)

= σ̇ ∗ φ, (A.3)

states that the strain at time t, ε(t), is caused linearly by the total history of stress σ(τ) up

to time t. We can define the creep function as σ = const, ε = ε(t), and the relaxation
function as ε = const, σ = σ(t). Therefore when σ(t) = H(t), the Heaviside function,

the strain is given by ε(t) = φ(t).
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A.3 Standard Linear Solids

A single standard linear solid (Figure A.1) satisfies the following first order differential

equation

σ + τσσ̇ = MR(ε+ τεε̇), (A.4)

where MR = k0 is the deformation (relaxed elastic) modulus; τσ = η
k1

is the stress relax-

ation time at constant ε; and τε = (1 + k1

k0
)τσ is the strain relaxation time at constant σ. For

unit constant stress σ(t) = H(t), we have

ε(t) =
1

MR

[

1 − (1 − τσ
τε

) exp(−t/τε)
]

H(t) = φ(t) (A.5)

t = 0, ε(t) =
1

MR

τσ
τε
σ(t) =

1

MU

σ(t)

t = ∞, ε(t) =
1

MR

σ(t),

where the relaxed modulus MU = τε

τσ
MR. Therefore, for arbitrary stress σ(t),

ε(t) = σ(t) ∗ φ(t) =
σ(t)

MR
− 1

MR
(1 − τσ

τε
)

∫ ∞

0

e−θ/τε σ̇(t− θ)dθ. (A.6)

For sinusoidal stress σ(t) = eiωt, the strain becomes

ε(t) =
σ(t)

MR

[

1 − (1 − τσ
τε

)

∫ ∞

0

iωe(
1

τε
−iω)θ dθ

]

=
σ(t)

MR
(A(ω) − iB(ω)) =

σ(t)

Mc(ω)
, (A.7)

where

A(ω) = 1 − ω2τ 2
ε

1 + ω2τ 2
ε

(1 − τσ
τε

) (A.8)

B(ω) =
ω(τε − τσ)

1 + ω2τ 2
ε

. (A.9)

If we define x2 =
√

A2+B2+A
2

, y2 =
√

A2+B2−A
2

, we have A − iB = (x + iy)2. If we

define the elastic velocity Ve such that MR = ρV 2
e , and the complex velocity V (ω) such
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Figure A.1: Single standard linear solid

that M(ω) = ρV (ω)2, then the complex wave number becomes

k(ω) =
ω

V (ω)
=

ω

Ve

(A− iB)1/2 =
ω

Vp(ω)
− iα(ω). (A.10)

Then the expressions for the phase velocity Vp(ω) and the amplification factor α(ω) are

given by

V 2
p (ω) =

2V 2
e

B2
Ω(ω) (A.11)

α2(ω) =
ω2

2V 2
e

Ω(ω), (A.12)

where Ω(ω) =
√
A2 +B2−A. Therefore, for a constant stress, the phase velocity V 2

p (ω =

0) = MR

ρ
, and at very high frequency, the phase velocity becomes V 2

p (ω = ∞) = MR

ρ
τε

τσ
>

MR

ρ
. We define the internal friction coefficient Q−1 = B/A = ω(τε−τσ)

1+ω2τεσ
, which satisfies that

Q−1(ω = 0,∞) = 0, and Q−1(ω = 1√
τετσ

) = τε−τσ

2
√

τετσ
.

A.4 Multiple Standard Linear Solid

We use a series of standard linear solids (Figure A.2) to mimic the constant Q over a range

of frequency bands in seismology, in which case equation (A.5) becomes

φ(t) =
1

MR

[

1 −
N

∑

k=1

(1 − τσk

τεk
) exp(−t/τεk)

]

H(t) (A.13)
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For sinusoid stress σ(t) = eiωt, equation (A.7) becomes

ε(t) =
σ(t)

MR

(A(ω) − iB(ω)), (A.14)

Where

A(ω) = 1 −
N

∑

k=1

ω2τεk(τεk − τσk)

1 + ω2τ 2
εk

(A.15)

B(ω) =

N
∑

k=1

ω(τεk − τσk)

1 + ω2τ 2
εk

(A.16)

and the unrelaxed modulus is given by

Q−1 = B/A (A.17)

MU = M(ω = ∞) = MR/[1 −
∑ τεk − τσk

τεk
]. (A.18)

The expressions for the complex phase velocity Vp(ω), and the attenuation factor α(ω), i.e.

equation (A.12), still hold, and when Q−1 is small, B � A, then Vp = Ve√
A

.

A.5 Constant Q

In seismology, given constant Q over a wide frequency band, the complex velocities at two

different angular frequencies ω1 and ω2 are related by

Vp(ω2)

Vp(ω1)
= 1 +

1

πQ
ln
ω2

ω1
(A.19)

For example, in the Preliminary Reference Earth Model (PREM) model, all the elastic

moduli are given at the reference period of 1 second, and the elastic modulus at any arbi-

trary angular frequency ω may be computed similarly to equation (A.19) [Liu et al., 1976;

Dziewonski and Anderson, 1981].

Now the question becomes how to pick τσk, τεk, k = 1, · · · , N in order to approximate

the constant Q (Q = Q0) effect over a range of frequency we are interested in? We usually
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Figure A.2: Multiple standard linear solids
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choose three standard linear solids, i.e.,N = 3, and pickNf frequencies ωp, p = 1, · · · , Nf ,

to minimize the following misfit function:

χ(τσk, τεk) =

Nf
∑

p=1

[Q−1(τσk, τεk, ωp) −Q0]
2, (A.20)

where the expressions for Q−1(τσk, τεk, ωp) are given by equation (A.17). In practice, τσk’s

are chosen first, and the misfit function is reduced to only a function of τεk, k = 1, · · · , N .

Because only a very small number of variables is involved in this optimization problem,

the simplex method can be applied to obtain the best set of τεk’s.

A.6 Implementations of Anelasticity in SEM

The stress-strain relation in an anelastic medium can be expressed in its most general form

by

T (t) =

∫ t

−∞
∂tC(t− t′) : ∇S(t′) dt′, (A.21)

where C is the fourth-order anelastic tensor, and bS(t′) is the displacement at time t = t′.

Upon taking the Laplace transform of both sides, and inserting the expressions for anelastic

modulus (A.13), we obtain

T = sC : ∇S

= sCR
ijkl

[

1

s
−

N
∑

n=1

(1 −
τ εn
ijkl

τσn
)

1

s+ 1
τ εn

]

∂kSl

= CR
ijkl

[

1 −
N

∑

n=1

(1 −
τ εn
ijkl

τσn
)

]

∂kSl −
N

∑

n=1

R
n

ij

= CU
ijkl∂kSl −

N
∑

n=1

R
n

ij, (A.22)

where the unrelaxed modulus C
U is related to the relaxed modulus by

CU
ijkl = CR

ijkl

[

1 −
N

∑

n=1

(1 −
τ εn
ijkl

τσn
)

]

, (A.23)
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while the memory variables are defined by

R
n

ij = −CR
ijkl(1 −

τ εn
ijkl

τσn
)

τ εn

s+ 1
τ εn

(A.24)

or inverse Laplace transform back to the time domain as a first-order differential equation

∂tR
n
ij = −R

n
ij/τ

σn + δCijkl∇Skl/τ
σn, (A.25)

which is solved to update the memory variable at every time step.
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Appendix B

More on Spectral-Element
Moment-Tensor Inversion Theory

Starting from the misfit function (4.4), we can either perform linear or non-linear source

inversions depending on our choice of source parameters and constraints. The waveform

misfit function with time shifts follows the same formulation, except that a time lag must

be applied to both the synthetics and the Fréchet derivatives. For simplicity, we set the

normalization factors A1 and A2 to 1.

B.1 Linear inversions

If we set λ = 1 (i.e., we do not include the envelope misfit function), µ2 = 0 (i.e., we do not

require a double-couple solution), and invert only for the six elements of the moment tensor

by holding the earthquake location fixed, then the problem becomes linear. In this case the

synthetics si(t,m) can be expressed as linear combinations of the Fréchet derivatives with

respect to moment-tensor elements ∂si

∂mk
(t):

si(t,m) =

6
∑

k=1

∂si

∂mk
(t)mk. (B.1)

Substitution of (B.1) into (4.4) yields

∂E1

∂mj
+µ1

∂C1

∂mj
= −

N
∑

i=1

wi

∫

[

di(t) −
6

∑

k=1

∂si

∂mk
(t)mk

]

∂si

∂mj
(t) dt+µ1

∂C1

∂mj
= 0. (B.2)
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If we define

Hjk =
N

∑

i=1

wi

∫

∂si

∂mk

(t)
∂si

∂mj

(t) dt, Gj =
N

∑

i=1

wi

∫

di(t)
∂si

∂mj

(t) dt, (B.3)

then (B.2) becomes
6

∑

k=1

Hjkmk −Gj + µ1
∂C1

∂mj
= 0. (B.4)

Let U = {∂C1/∂mj ; j = 1, . . . , 6} = [1, 1, 1, 0, 0, 0]T , where a superscript T denotes the

transpose, then (B.4) becomes the following matrix equation:

















. . . . .. ...

Hjk Uj

. .. . . . ...

. . . Uk . . . 0

































...

mk

...

µ1

















=

















...

Gj

...

0

















. (B.5)

This equation can be solved for the six elements of the moment tensor. Notice that (Hjk)

is a positive-definite symmetric matrix. Therefore, when the zero-trace constraint is not

invoked, a unique solution is guaranteed to exist.

B.2 Non-linear inversions

When λ 6= 1 or µ2 6= 0, equation (4.4) becomes non-linear with respect to m, either

because we need to invert for the event location or because the derivative of the envelope

misfit function is non-linear. In any event, an initial solution m
0 is required to solve (4.4).

In our case we use point source parameters inverted using alternative methods [Thio and

Kanamori, 1995; Zhu and Helmberger, 1996] as the starting solution. The synthetics can

be linearized with respect to the initial source parameters:

si(t,m) = si(t,m
0) +

n
∑

k=1

∂si

∂mk

(t,m0)(mk −m0
k), (B.6)
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and (4.5) becomes

λ
∂E1

∂mj

(m0)+(1−λ)
∂E2

∂mj

(m0)+µ1
∂C1

∂mj

(m0)+µ2
∂C2

∂mj

(m0) = 0, j = 1, . . . , n. (B.7)

In the following we will consider the case of a double-couple source inversion in detail;

other non-linear inversions have similar characteristics. Using (B.6) and assuming that the

initial solution is sufficiently close to the true solution, we obtain

∂E1

∂mj
(m0) = −

N
∑

i=1

wi

∫

[

di(t) − si(t,m
0) −

n
∑

k=1

∂si

∂mk
(t,m0)(mk −m0

k)

]

∂si

∂mj
(t,m0) dt,

(B.8)

∂E2

∂mj
(m0) = −

N
∑

i=1

wi

∫

[

e(di(t)) − e(si(t,m
0)) −

n
∑

k=1

∂e(si)

∂mk
(t,m0)(mk −m0

k)

]

∂e(si)

∂mj
(t,m0) dt,

where

∂e(si)

∂mj

(t,m0) = e(si(t,m
0))−1/2

[

si(t,m
0)
∂si

∂mj

(t,m0) + ŝi(t,m
0)
∂ŝi

∂mj

(t,m0)

]

,

(B.9)

and ŝ(t,m) denotes the Hilbert transform of s(t,m). Let

Hjk =

N
∑

i=1

wi

∫
[

λ
∂si

∂mk
(t,m0)

∂si

∂mj
(t,m0) + (1 − λ)

∂e(si)

∂mk
(t,m0)

∂e(si)

∂mj
(t,m0)

]

dt,

(B.10)

Gj =
N

∑

i=1

wi

∫

{λ
[

di(t) − si(t,m
0)

] ∂si

∂mj
(t,m0)

+ (1 − λ)
[

e(di(t)) − e(si(t,m
0))

] ∂e(si)

∂mj
(t,m0)} dt, (B.11)

and rewrite (B.7) as

fj(m, µ1, µ2) =
n

∑

k=1

Hjk(mk−m0
k)−Gj +µ1

∂C1

∂mj

(m)+µ2
∂C2

∂mj

(m) = 0, j = 1, . . . , n,

(B.12)
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with constraints fn+1(m) = C1(m) = 0 and fn+2(m) = C2(m) = 0. To solve the

non-linear equations (B.12), we use the non-linear Newton’s iterative solver [Conte and

Boor, 1980]. Let us define a vector x = [m, µ1, µ2] and an initial solution vector x
0 =

[m0, µ0
1, µ

0
2] (we usually start with µ0

1 = µ0
2 = 0), then the (i + 1)th iteration can be

expressed as
∂f

∂x
(xi)(xi+1 − x

i) = −f(xi). (B.13)

If we define

Y =

(

∂2C2

∂mj∂mk

)

=





























0 m3 m2 0 0 −2m6

m3 0 m1 0 −2m5 0

m2 m1 0 −2m4 0 0

0 0 −2m4 −2m3 2m6 2m5

0 −2m5 0 2m6 −2m2 2m5

−2m6 0 0 2m5 2m4 −2m1





























j, k = 1, . . . , n,

(B.14)

V ={∂C2/∂mj; j = 1, . . . , 6} (B.15)

=[m2m3 −m2
6, m1m3 −m2

5, m1m2 −m2
4,−2(m3m4 −m5m6),

− 2(m2m5 −m4m6),−2(m1m6 −m4m5)]
T ,

and

D =

(

∂fj

∂xk

)

=























. . . . .. ... ...

Hjk + µ2Yjk Uj Vj

. .. . . . ... ...

. . . Uk . . . 0 0

. . . Vk . . . 0 0























j, k = 1, . . . , n, (B.16)

then (B.13) becomes a linear system

D
i(xi+1 − x

i) = −f(xi), (B.17)
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and the source model parameters m are determined by iterating this linear system with

respect to x.
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Appendix C

More on the Adjoint Method

C.1 Absorbing Boundaries

A regional Earth model has both a free surface Σ and an artificial boundary Γ, such that the

model volume Ω has a boundary ∂Ω = Σ ∪ Γ. On the artificial boundary Γ, energy needs

to be absorbed in order to mimic a semi-infinite medium. In an isotropic medium, this may

be accomplished based upon a paraxial equation [Clayton and Engquist, 1977; Quarteroni

et al., 1998]:

n̂ · T = ρ [α(n̂n̂) + β(I− n̂n̂)] · ∂ts ≡ B · ∂ts on Γ, (C.1)

thereby defining the tensor B. The unit outward normal to the absorbing boundary is

denoted by n̂, α denotes the P-wave speed, β denotes the S-wave speed, and I denotes

the 3 × 3 identity tensor. The absorbing boundary condition (C.1) perfectly absorbs waves

impinging at a right angle to the boundary, but is less effective for waves that graze the

boundary [Clayton and Engquist, 1977]. A much more effective absorbing boundary may

be obtained based upon the perfectly matched layer (PML) methodology [Bérenger, 1994;

Collino and Tsogka, 2001; Komatitsch and Tromp, 2003; Festa and Vilotte, 2005]. The

PML approach amounts to solving an alternative wave equation in a thin shell surrounding

the artificial boundary Γ that perfectly absorbs energy leaving the model domain Ω. One

can obtain the adjoint equations associated with the PML region, but this is beyond the

scope of this appendix. For the purposes of the present discussion the simpler one-way
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condition (C.1) will suffice.

In the variation of the action (5.9) the boundary integral represented by the last term

needs to be split in terms of contributions from the free surface Σ and the absorbing bound-

ary Γ:

∫ T

0

∫

∂Ω

λ · [n̂ · (δc :∇s + c :∇δs)] − n̂ · (c :∇λ) · δs d2
x dt

=

∫ T

0

∫

Σ

λ · [n̂ · (δc :∇s + c :∇δs)] − n̂ · (c :∇λ) · δs d2
x dt

+

∫ T

0

∫

Γ

λ · [n̂ · (δc :∇s + c :∇δs)] − n̂ · (c :∇λ) · δs d2
x dt, (C.2)

Perturbing the free surface boundary condition (5.4) implies n̂ · (δc :∇s + c : ∇δs) = 0

on Σ, and perturbing the absorbing boundary condition (C.1) implies n̂ · (δc : ∇s + c :

∇δs) = δB ·∂ts+B ·∂tδs on Γ. Without loss of generality, we are of course free to choose

our artificial boundary Γ such that the perturbation δB vanishes: δB = 0, e.g., by tapering

the perturbed model parameters to zero. Upon integrating the temporal integration on the

absorbing boundary Γ by parts we obtain

∫ T

0

∫

∂Ω

λ · [n̂ · (δc :∇s + c :∇δs)] − n̂ · (c :∇λ) · δs d2
x dt = −

∫ T

0

∫

Σ

n̂ · (c :∇λ) · δs d2
x dt

+

∫

Γ

[λ · B · δs]T d2
x −

∫ T

0

∫

Γ

[n̂ · (c :∇λ) + B · ∂tλ] · δs d2
x dt. (C.3)

Thus we see that for the action (5.10) to make the Lagrange multiplier field vanish is subject

to the free surface condition

n̂ · (c :∇λ) = 0 on Σ, (C.4)

and the absorbing boundary condition

n̂ · (c :∇λ) = −B · ∂tλ on Γ, (C.5)

where we have used the end conditions (5.13). This implies that the adjoint wave equation
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(5.16) is subject to the free surface boundary conditions

n̂ · T† = 0 on Σ, (C.6)

and the absorbing boundary condition

n̂ · T† = B · ∂ts
† on Γ. (C.7)

We deduce that the adjoint wavefield is determined by exactly the same equations as the

regular wavefield, with the exception of the source term.

C.2 Finite Source

In the case of a finite fault plane Σs, the source term may be written in terms of the moment-

density tensor m as

f = −m(xs, t) · ∇δ(x − xs) on Σs. (C.8)

The perturbation to the finite source (C.8) may be written in the form

δf = −δm · ∇δ(x − xs) − δhm · [ν̂ · ∇∇δ(x − xs)], (C.9)

where δm denotes the perturbed moment-density tensor and δhν̂ the fault plane misloca-

tion δh in the direction of the fault normal ν̂ . Upon substituting (C.9) into the gradient of

the misfit function (5.20), using the properties of the Dirac delta distribution, we obtain

δχ =

∫

Ω

(δρKρ + δc ::Kc) d3
x +

∫ T

0

∫

Σs

δm(x, t) :ε†(x, T − t) dx2 dt

+

∫ T

0

∫

Σs

δh(x)m(x, t) : [ν̂(x) · ∇s]ε
†(x, T − t) dx2 dt. (C.10)

This result may be used to improve finite fault models of large earthquakes. Note that if

one is not concerned about perturbations in Earth structure, one only needs to track the time

dependence of the adjoint strain ε† in the vicinity of the fault plane.
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Bérenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J.

Comput. Phys., 114, 185–200, 1994.

Chaljub, E., Y. Capdeville, and J. P. Vilotte, Solving elastodynamics in a fluid-solid hetero-

geneous sphere: a parallel spectral element approximation on non-conforming grids, J.

Comput. Phys., 187, 457–491, 2003.

Clayton, R., and B. Engquist, Absorbing boundary conditions for acoustic and elastic wave

equations, Bull. Seism. Soc. Am., 67, 1529–1540, 1977.

Collino, F., and C. Tsogka, Application of the PML absorbing layer model to the linear

elastodynamic problem in anisotropic heterogeneous media, Geophysics, 66(1), 294–

307, 2001.

Conte, S. D., and C. Boor, Elementary Numerical Analysis: An Algorithm Approach, third

ed., McGraw-Hill Book Company, 1980.



135

Dahlen, F. A., and J. Tromp, Theoretical Global Seismology, Princeton University Press,

Princeton, 1998.
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