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The Phonon Entropy of Transition Metals and Alloys: Effects of

Impurities and of a Martensitic Phase Transition

by

Olivier Delaire

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

For a fixed configuration of ions on a given crystalline lattice, low energy excitations around

the static average configuration can be thermally activated and will contribute to the entropy

of the system. As such, nuclear vibrations, spin-waves, or electronic excitations have their

own entropic contribution. The entropy associated with these degrees of freedom is usually

neglected in calculations of alloy thermodynamics, however. A simple reason is that the

systematics of so-called excess entropy terms are not understood very well, and these terms

are difficult to compute. This thesis investigates the entropic effects of lattice vibrations,

or phonons, in transition metal alloys, both from experimental and computational points

of view.

From inelastic neutron scattering measurements, it is found that a few percent of tran-

sition metal solutes strongly affect the phonon density of states (DOS) of pure vanadium.

In particular, alloying with 6% Pt solutes produces a strong stiffening of the phonon DOS,

inducing a large and negative vibrational entropy of mixing, which overcomes the positive

gain in configurational entropy. This result is the first reported observation of a negative to-

tal entropy of mixing in a binary alloy. Chemical trends in the phonon DOS and vibrational

entropy of dilute vanadium alloys were investigated, for impurity elements across the 3d,

4d and 5d-series. A previously unknown correlation is established between the vibrational

entropy of alloying and the difference in electronegativity of the solute and the host atoms.

First-principles charge transfer calculations were conducted and confirmed the occurrence

of systematic charge transfers correlating with the electronegativity, which can affect the
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interatomic force-constants and the phonons.

Phonons in vanadium exhibit an anomalous behavior, showing a stiffening with increas-

ing temperature at constant volume. The effect of impurities on the anomalous temperature-

dependence is investigated. It is found that the solutes that affect the phonon density of

states most strongly at room temperature also suppress the anomalous temperature behav-

ior. This observation is compared to trends in the phonons and elastic constants of BCC

transition metals. Electron-phonon and phonon-phonon couplings are examined as poten-

tial sources of this effect, through a careful accounting of contributions to the heat capacity,

derived from neutron scattering experiments, calorimetry measurements, and electronic

structure calculations.

Finally, the changes in the phonon DOS and the vibrational entropy across the low-

temperature martensitic phase transformation in Fe71Ni29 are investigated. The respec-

tive contributions of the phonons and magnetism to the entropy of the direct and reverse

transformation are evaluated from neutron scattering experiments and scanning calorime-

try measurements. A significant magnetic entropy is found in the reverse transformation,

which is not present in the direct transformation. This result stresses the necessity to ac-

count for the respective contributions of all microscopic degrees of freedom in evaluating

entropy changes in solid-solid phase transitions.
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Chapter 1

Introduction

1.1 Alloy Thermodynamics

Very extensive experimental efforts have sought to characterize the crystalline phases formed

in alloys of various compositions and at varying temperatures, typically extending up to

the melting point. Much of that effort is nowadays compounded and readily available in

databases such as binary, and to a more restricted extent, ternary phase-diagrams. These

empirical observations are generally interpreted in the framework of classical thermody-

namics, and can, to a certain extent, be modelled and extended to more complex systems

(ternary and quarternary), using semi-empirical approaches [1]. The rationalization of this

large body of phenomenological observations is still incomplete, however.

On the one hand, the energetics of fairly complex crystalline phases of alloys have

become accessible to theoretical calculations of high accuracy, through the advent of efficient

methods to solve the electronic structure problem directly from quantum mechanics. The

configurational entropy contributions, beyond the simple point approximation for a purely

random distribution of atoms on sites, are also well accounted for, taking into account

correlations such as short-range order, thanks to cluster expansions [2, 3, 4].

On the other hand, in building the free energy curve for each phase of a binary alloy,

one most often restricts the entropy contributions to the configurational degrees of free-

dom, in large part because of our lack of knowledge about so-called excess entropy terms.

Even when some, or parts, of these terms can be calculated in principle, the difficulty in

actually computing them has precluded the emergence of a clear understanding of their size
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and variations. Non-configurational degrees of freedom do contribute significantly to the

entropy, however, and can induce entropy differences between phases that are significant

to thermodynamics. These can induce qualitative changes in phase diagrams, for example.

Other sources of entropy exist besides configurational entropy. For a fixed configuration of

ions on a given lattice, low energy excitations around that static configuration can be ther-

mally activated and will provide extra entropy. As such, nuclear vibrations, spin-waves or

electronic excitations add their own contribution to the entropy of the system. We are con-

cerned in this thesis with the entropic effects of lattice vibrations, or phonons, in transition

metal alloys.

1.2 Vibrational Entropy

The concept of vibrational entropy is conveniently introduced from the framework of statis-

tical physics, using the notion of phase-space. The phase-space of a system of N particles

(or effective particles) is the 6N -dimensional space of all the coordinates and momenta of

the constitutive particles. In the microcanonical description of statistical mechanics, the

thermodynamics of the system is fully specified by the function Ω(N,E, V ), which gives

the number of microstates compatible with the macrostate (N,E, V ) of the system. The

classical thermodynamic entropy of the system, S, is then related to Ω through Boltzmann’s

equation,

S = kB ln Ω , (1.1)

where kB is Boltzmann’s constant. Since there are many possible ways to partition the en-

ergy of the macroscopic system between its microscopic degrees of freedom, many different

microstates are compatible with a given macrostate. It can be shown from quantum mechan-

ical considerations that the volume element associated with one microstate in phase-space

is h3, where h is Planck’s constant. In the microcanonical description, the representative

volume for the system in phase-space, V, is proportional to the number of accessible mi-

crostates in the ensemble, Ω(N,E, V ), and the volume of each microstate h3. However,

indistinguishability of individual particles introduces a normalization of Ω(N,E, V ) accord-
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ing to the quantum statistics obeyed by the particles, fixed by their spins. In the classical

limit, one obtains∗

Ω =
V

h3NN !
. (1.2)

Thus, entropy can be seen as a measure of the extent of the representative volume of the

system in phase-space.

For a collection of particles oscillating around a given configuration, such as nuclei

vibrating around their sites on a crystal lattice, the system explores a larger portion of

phase-space than if the particles were static. There is thus an entropy associated with the

extra extent of phase-space sampled by the system as the constituent particles vibrate. This

is the origin of vibrational entropy.

1.3 Expected Trends

In a vibrating crystal, the amplitudes of the motions of atoms away from their equilibrium

sites depend on the effective force-constants. If the restoring force-constants are large, the

amplitudes of vibrations are constrained, and the frequencies high. On the other hand,

small force-constants allow for larger displacements, which correspond to a large volume

being sampled in phase-space. As a consequence, softer materials have a higher vibrational

entropy. For a constant mass of the nuclei, the vibrational entropy of the crystal is a

decreasing function of the frequency of its vibration modes.

Changes in the mass of the constituent nuclei, for example in the case of a mass defect,

also induce changes in vibrational entropy. A simple harmonic model considering the range

sampled by the system in phase-space and taking into account only the mass defect associ-

ated with an impurity, without perturbation of the electronic structure, predicts a change

in vibrational entropy upon alloying given by

ΔSmass
vib =

3
2
c kB ln(

Mi

Mh
) , (1.3)

∗more rigorously, for N particles occupying energy levels {εi} according to the distribution {ni}, the

statistical weight associated with indistinguishability is w({ni}) = N !/
�

p np!.
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where Mi is the atomic mass of the impurity, Mh is the atomic mass of the host, kB is

Boltzmann’s constant, and c is the impurity concentration. In this picture, heavier solutes

are thus expected to cause an increase in vibrational entropy, due to a softening of the

phonons.

The vibrational entropy of a crystal thus depends both on the mass of the atoms in

the crystal and on the restoring force-constants that constrain the nuclei to vibrate around

a local equilibrium configuration. The forces on the nuclei are the sum of electrostatic

repulsions from other positively charged nuclei and the electrostatic interaction with the

negative electronic charge density throughout the crystal. The electronic density is in turn

determined by the spatial distribution of point-like nuclear charges.

1.4 Overview

Over the last decade, experimental and theoretical investigations have shown that changes

in vibrational entropy play an important role in the thermodynamics of solid-state phase

transitions [5, 6, 7, 8]. Our recent experimental results have shown that in dilute alloys with

a few percent impurities, the vibrational entropy of mixing can be larger in magnitude than

the configurational entropy gain due to disorder, and can lead in certain cases to a negative

total entropy of mixing [9]. Recent theoretical calculations have also predicted important

effects of the vibrational entropy on the solubility limit in dilute alloys [8, 10, 11].

Experimentally, the vibrational entropy difference between two phases of a material can

be measured by a number of methods, including calorimetry or inelastic neutron scattering

[12, 13, 14]. However, the neutron scattering approach provides more information since it

allows measuring the phonon density of states (DOS), which connects the macroscopic ther-

modynamics of the material with its underlying microscopic lattice dynamics. Calorimetry,

on the other hand, gives information mostly about the sum of all entropy contributions,

including phonons, magnetism, and electronic excitations, for example.

In this thesis, we first review the concepts underlying our investigations. The theoret-

ical framework of density functional theory is briefly reviewed, followed by a discussion of

lattice dynamics in the Born–von Kármán model. The thermal properties of phonons are

summarized in the harmonic and anharmonic cases. The inelastic neutron scattering tech-
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nique, which constituted the backbone of the experimental work performed, is presented

succinctly.

The thesis then presents our results and findings. The first aspect of vibrational entropy

investigated in this work is associated with the introduction of impurities. Vanadium is

the host crystal on which our efforts have been focused, and different impurities from the

transition metals are considered. The different dilute vanadium alloys investigated were

studied both experimentally and by means of computer simulations. We find for the first

time a clear trend with the chemical properties of the impurity atoms. We believe this trend

offers a significant insight into the systematics of vibrational entropy in binary alloys. Also,

vibrational entropy is strongly reduced upon alloying with late transition metal impurities.

In the case of Pt solutes, this reduction overcomes the gain in configurational entropy, so the

total entropy of mixing is negative. Such a large effect, for only a few percent impurities,

has surprised the alloy thermodynamics community.

The second aspect considered is the temperature dependence of the phonon modes.

Vanadium and dilute V-based alloys are studied, in the light of previous investigations

on pure vanadium and other BCC transition metals. It is shown that impurities disrupt

the anomalous temperature-dependence observed in pure vanadium. Differential scanning

calorimetry was used to evaluate the respective contributions of phonons and electrons, and

interpreted in terms of phonon-phonon and electron-phonon interactions.

Finally, the effect of vibrational entropy on the γ − α martensitic transformation in

Fe71Ni29 is investigated. The phonons and vibrational entropy in this material were moni-

tored across the martensitic transformation upon cooling. The difference in phonon entropy

between the high and low temperature phases is substantial. Additional calorimetry work

for both the direct and reverse transformations identified a large additional contribution

from magnetism in the reverse transformation.
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Chapter 2

Theoretical Background

2.1 Hamiltonians and Densities

We review in this section some fundamental aspects of solid-state theory and the more

specialized framework of density functional theory. More details on this subject can be

found in [15]. A shorter account is also given in [16].

2.1.1 Condensed-Matter Hamiltonian

We start with the general many-body hamiltonian describing a system of interacting elec-

trons and nuclei:

Ĥ = −
∑

i

�
2

2me
∇2

i −
∑
I,i

ZIe
2

|ri − RI | +
1
2

∑
i�=j

e2

|ri − rj |

−
∑

I

�
2

2MI
∇2

I +
1
2

∑
I �=J

ZIZJe
2

|RI − RJ | , (2.1)

where the uppercase (resp. lowercase) subscripts label the nuclei (resp. electrons), MI is

the nuclear mass, me the electronic mass, ZI the atomic number of ion I and RI and ri

are the nuclear and electronic positions, respectively. We have absorbed the spin index

for the electrons into the symbol ri. This hamiltonian operates on many-body states in

the Hilbert space of the system, such as many-body wave functions ψ({RI , ri}) in position

representation. Also, we require that the wave function ψ is antisymmetric under the

exchange of electrons. We recognize in this hamiltonian the canonical kinetic and potential
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energy operators for nuclei and electrons:

T̂n = −
∑

I

�
2

2MI
∇2

I

T̂e = −
∑

i

�
2

2me
∇2

i

V̂n−n =
1
2

∑
I �=J

ZIZJe
2

|RI − RJ |

V̂e−n = −
∑
I,i

ZIe
2

|ri − RI |

V̂e−e =
1
2

∑
i�=j

e2

|ri − rj | , (2.2)

where T̂n is the kinetic energy of the nuclei, T̂e is the kinetic energy of the electrons, V̂n−n

is the Coulombic repulsion energy of the nuclei, V̂e−n is the Coulombic attraction between

electrons and nuclei and, finally, V̂e−e is the electron-electron interaction. The hamiltonian

of Eq. 2.1 is too hard to solve directly and a series of approximations are called for to reduce

this problem to a manageable one.

2.1.2 Born-Oppenheimer Approximation

Usually the first simplification is to use the Born-Oppenheimer, or adiabatic, approximation.

Considering the very small mass ratio of the electron and nuclei, me/M , one can perform a

series expansion of Ĥ in this parameter and apply perturbation theory. We focus for now on

the zero-th order term in this expansion; higher-order terms relevant to the electron-phonon

interaction will be discussed later. At this order:

Ĥ = T̂e + V̂e−e + V̂e−n + V̂n−n , (2.3)

so only the static positions of the nuclei intervene. We can effectively consider the nuclear

configuration {RI} as a set of external parameters for the problem of determining the

electronic quantum states. Physically, this amounts to saying that the nuclei move much

slower than the electrons and thus, at any given time, the electron states correspond to the

instantaneous nuclear configuration. With this point of view, V̂e−n is seen as an “external



8

potential,” V̂ext, imposed on the electrons for a fixed configuration of the nuclei. Next, V̂n−n

is just a constant and thus has no relevance to the electronic problem. Leaving this last

term aside, we obtain the electronic hamiltonian:

Ĥe = T̂e + V̂e−e + V̂ext . (2.4)

2.1.3 Density Functional Theory

The electronic hamiltonian for a specified external potential (Eq. 2.4) is still very difficult to

solve. Chief among the difficulties facing us is the fact that this is still a many-body problem:

Ĥ operates on electronic wave functions ψ({ri}), that depend on the 3N spatial coordi-

nates of the N electrons in the system (and also on their spin coordinates). Besides, the

electrons are interacting, which precludes us from treating them as independent particles.

Traditionally, the electron-electron interaction is broken down into exchange interaction and

correlation.

A considerable simplification can be performed following the importants results of Ho-

henberg and Kohn and of Kohn and Sham, published in two papers in 1964 and 1965

[17, 18]. Hohenberg and Kohn [17] showed that the problem above can be recast into a

problem that depends only on the electronic density, ρ(r), rather than the many-body wave

function. This is a tremendous advance since ρ(r) only depends on one three-dimensional

position. The possibility to recast the problem in this manner stems from two very general

theorems introduced by Hohenberg and Kohn (HK).

The first HK theorem states that the external potential V̂ext is uniquely determined from

the ground state density of the many-body interacting system. Conversely, the specification

of V̂ext determines Ĥe, and thus the ground state and its density ρ0(r). We conclude that

there is a one to one relationship between the ground state density ρ0(r) and the external

potential V̂ext for the electrons. Because the hamiltonian fully describes the system, an

additional consequence is that every property of the system is determined from ρ0(r).

Mathematically, this is expressed by writing the observables Ô of the system as functionals

of the electronic density:

〈Ô〉 = 〈ψ|Ô|ψ〉 = O[ρ] ,
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where O[ρ] is a real-valued functional of continuous functions on R
3, O : C(R3) → R.

The second HK theorem states that there exists a universal functional for the energy

E[ρ], which can be uniquely defined, provided the external potential V̂ext. The density that

minimizes this functional is the ground state density and the energy at the minimum, the

ground state energy. More specifically, applying the first theorem to the hamiltonian itself,

we write:

E = 〈Ĥ〉 = H[ρ] = EVext [ρ] = FHK[ρ] +
∫
ρ(r)Vext(r) d3r , (2.5)

where FHK[ρ] = 〈ψ|T̂e+V̂e−e|ψ〉 is universal for any many-electron system. The 2nd theorem

stipulates that EVext [ρ] reaches its minimum for ρ = ρGS and that EVext [ρGS] = EGS.

Using these results, the original eigenvalue problem for the solution of the Schrödinger

equation corresponding to the electronic hamiltonian (2.4) can be replaced by a mini-

mization problem for EVext [ρ]. One could try solving this minimization problem using

the Rayleigh-Ritz procedure, for example. There is one problem, however, as an explicit

expression for FHK[ρ] has not yet been found and its expression for the many-body problem

might be hopelessly complicated. The procedure devised by Kohn and Sham [18] overcomes

this difficulty.

2.1.4 Kohn-Sham Equations

The approach of Kohn and Sham for determining the ground state density of the many-body

problem is to introduce an auxiliary hamiltonian for independent particles, the Kohn-Sham

hamiltonian. This ansatz rests upon the assumption that the independent particle system

has the same ground state density as the interacting particle system. We start by regrouping

the terms in FHK:

FHK = T0 + EH + Exc , (2.6)

where T0 is the kinetic energy functional for independent electrons, EH is the Hartree

classical Coulomb interaction energy

EH[ρ] =
1
2

∫
ρ(r)ρ(r′)
|r − r′| d3rd3r′ , (2.7)
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and Exc is the exchange-correlation energy defined as the difference between the kinetic and

potential interaction energies of the true interacting many-body electron system and those

of the fictitious independent electron gas, with electron-electron interaction limited to the

Hartree contribution:

Exc[ρ] = 〈T̂e〉 − Tni[ρ] + 〈V̂e−e〉 − EH[ρ] , (2.8)

where the subscript “ni” stands for “non-interacting.” As is apparent from its definition,

Exc[ρ] contains all the difficult parts about the interactions in the real system, and an exact

expression for this term is not known. Nevertheless, several approximations for exchange

and correlation have been developed that allow for realistic results in solid-state DFT calcu-

lations, such as the local density approximation (LDA) and a number of generalized gradient

approximations (GGA). Supposing Exc, or a model thereof, is known, Eq. 2.5 can be re-

formulated as an effective single-particle hamiltonian by using a Rayleigh-Ritz approach

to convert the variational minimization into an eigenvalue problem, as first done by Kohn

and Sham. The single-particle Kohn-Sham (KS) hamiltonian for a given external potential

reads:

ĤKS = T̂ni + V̂H + V̂xc + V̂ext , (2.9)

with V̂xc the functional derivative of the exchange-correlation functional:

V̂xc =
δExc[ρ]
δρ

, (2.10)

and similarly for the Hartree potential. The determination of the ground state density for

the true system of N interacting electrons then reduces to solving an effective one-particle

Schrödinger equation

ĤKSφi = εiφi (2.11)
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for theN lowest-energy states {φi}1≤i≤N and then using the fact that the model independent-

particle density is the same as that of the interacting system:

ρGS(r) = ρni(r) =
N∑

i=1

φ∗i (r)φi(r) . (2.12)

The set of equations (2.11) for 1 ≤ i ≤ N constitutes the celebrated Kohn-Sham equations.

This eigenvalue problem is finally tractable and can be solved by expanding the single-

electron wave functions φi on some basis and diagonalizing the KS hamiltonian matrix

expressed in this basis. One additional layer of complexity arises, however, as both V̂H

and V̂xc entering in (2.11) depend on ρ, which is the quantity we seek to determine. We

are thus faced with a self-consistency problem, which we can solve iteratively. Starting

with some estimate for the density, ρn=0, such as a superposition of atomic densities in a

solid, V̂H and V̂xc are calculated, the eigenvalue problem (2.11) is solved and a new density

ρn+1 is obtained via (2.12). This cycle is iterated until self-consistency is reached, e.g.∫ |ρn+1(r) − ρn(r)| d3r ≤ Qtol, with Qtol some tolerance on the charge difference. Another

approach is to solve the minimization problem for E[ρ] using a variational approach with

orthonormalization constraints for the Kohn-Sham orbitals, using for example a conjugate

gradient method [19].

Numerous schemes have been devised and implemented to solve the Kohn-Sham equa-

tions. Broad classes can be distinguished, based on the basis set used to expand the Kohn-

Sham wave functions or the treatment of core electrons. Different flavors of DFT also arise

from the approximation used in the representation of the exchange-correlation functional.

We review some of these implementations in an appendix.

2.2 Lattice Dynamics

We review in this section some fundamental aspects of lattice dynamics, as described in

the model established by Born and von Kármán. This model has been a cornerstone of

solid-state physics since its introduction almost a century ago. It is presented extensively in

the seminal book of Born and Huang [20]. Other accounts of this theory and its extensions

can be found in [21, 22, 23].
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In the harmonic approximation, the nuclear potentials are parabolic, and the Ehrenfest

theorem allows us to treat the system classically, by identifying particles with the center of

their wavepacket [24]. In the following, we present a classical derivation for the vibration

modes and finally present a connection with the quantum-mechanical concept of a phonon.

2.2.1 Born–von Kármán Model

Atomic force-constants and equations of motion

We consider a crystal generated by the infinite repetition in space of a parallelepipedic unit

cell defined by three non-coplanar vectors a1, a2, and a3. The vectors a1, a2, and a3 are the

lattice vectors of the crystal. We label each unit cell by a triplet l of integers: l = (l1, l2, l3).

The equilibrium position of the origin of the unit cell l is denoted

x(l) = l1a1 + l2a2 + l3a3 . (2.13)

If there are r > 1 atoms per unit cell, we assign an index κ = 1, 2...r to the atoms of the

basis and write their mass Mκ. We describe the atomic equilibrium positions with respect

to the origin of a unit cell with basis vectors {x(κ), κ = 1, 2...r} so that the equilibrium

position of atom κ in cell l is then given by x(lκ) = x(l) + x(κ). Thermal fluctuations

induce displacements in the atomic positions; we write u(lκ) the displacement vector of

atom (lκ) from its equilibrium position x(lκ), and uα(lκ), α = x, y, z, the corresponding

cartesian components. The instantaneous position R(lκ)(t) of atom (lκ) at time t is then

R(lκ)(t) = x(lκ) + u(lκ)(t) . (2.14)

The total potential energy V for the nuclei is assumed to be a function of the instantaneous

positions of all the atoms in the crystal

V = V ({...,R(lκ), ...R(l′κ′), ...}) (2.15)
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and it can then be expanded in a Taylor series of the atomic displacements:

V = V0 +
∑
lκα

Φα(lκ)uα(lκ) +
1
2

∑
lκα

∑
l′κ′β

Φαβ(lκ; l′κ′)uα(lκ)uβ(l′κ′) + ... . (2.16)

In the harmonic approximation of lattice dynamics, we use only the terms of the series

explicitly written above, and neglect terms of order three and higher in the displacements.

The coefficients of the Taylor series are the derivatives of the potential with respect to the

displacements:

Φα(lκ) =
(

∂V

∂uα(lκ)

)
0

Φαβ(lκ; l′κ′) =
(

∂2V

∂uα(lκ)∂uβ(l′κ′)

)
0

, (2.17)

where the subscript zero means that derivatives are evaluated in the equilibrium configu-

ration (all displacements equal to zero) and V0 is the static potential energy of the crystal.

Because the force on any particle must vanish in the equilibrium configuration, we have

Φα(lκ) = 0 ∀α, l, κ . (2.18)

The hamiltonian for the nuclei is given by H = T + V where T =
∑

κ,l p
2
κ.l/2Mκ is the

kinetic energy of the crystal. Following the harmonic approximation we obtain

H =
∑
κ,l

p2
κ,l

2Mκ
+ V0 +

1
2

∑
lκα

∑
l′κ′β

Φαβ(lκ; l′κ′)uα(lκ)uβ(l′κ′) . (2.19)

We can rewrite the last term as a matrix product, and obtain

H =
∑
κ,l

p2
κ,l

2Mκ
+ V0 +

1
2

∑
lκ

∑
l′κ′

uT (lκ)Φ(lκ; l′κ′)u(l′κ′) , (2.20)

where we have defined the 3 × 3 matrix Φ by

Φ(lκ; l′κ′) =
[
Φαβ(lκ; l′κ′)

]
. (2.21)
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The matrix Φ(lκ; l′κ′) is the force-constant matrix associated with the bond (lκ; l′κ′). If

(l, κ) 	= (l′, κ′), then the components of the force-constant matrix are given by the second-

order derivatives of the potential as in Eq. 2.17. On the other hand, if (l, κ) = (l′, κ′), then Φ

is the so-called self force–constant matrix, whose expression is derived from the requirement

that there is no force on the crystal as it undergoes a constant uniform translation:

Φ(lκ; lκ) = −
∑

(l′,κ′) �=(l,κ)

Φ(lκ; l′κ′) . (2.22)

A number of relations on the force-constant tensors Φ(lκ; l′κ′) can be derived from re-

quirements that there be no overall translation or rotation of the crystal, and from the

symmetries of the crystal structure.

From the quadratic approximation of the hamiltonian, one can derive the equations of

motion for all the atoms in the crystal:

Mκü(lκ)2 = −
∑
l′,κ′

Φ(lκ; l′κ′)u(l′κ′) ∀ l, κ . (2.23)

It is then convenient to impose periodic boundary conditions on the crystal. If we write

N cell
x (N cell

y , N cell
z ) the number of unit cells in the crystal in the x (y, z) direction, and

N cell = N cell
x N cell

y N cell
z the total number of unit cells, we then have 3 × r ×N cell equations

of motion to solve. We can seek the solutions under the form of plane waves of wave vector

q, angular frequency ωqj , and polarization e(κ, qj):

uα(lκ, qj) =
1

2
√
N Mκ

{A(qj)eα(κ, qj) exp(i(q · x(lκ) − ωqjt)) + c.c.} , (2.24)

where A(qj) are amplitudes and c.c. denotes the complex-conjugate term.

The periodic boundary conditions cause the set of possible wave vectors {q} to be

discrete, although the typically large number of unit cells in the crystal translates into a

very fine mesh of q-points in reciprocal space. For each value of the wave vector q, there are

3× r vibration modes of the crystal, corresponding to a priori different polarization vectors

e(κ, qj) and angular frequencies ωqj (1 ≤ j ≤ 3r). The number of physically distinct

wave vectors is N cell, so that the total number of degrees of freedom for the system is
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3rN cell, as required. As a side note, we point out that in a physical finite crystal 6 of these

degrees of freedom actually correspond to translations and rotations of the whole crystal, so

(3rN cell − 6) degrees of freedom effectively qualify as internal lattice vibrations. Although

this is a minor point for bulk crystals where N cell � 1, it may become important in the case

of very small crystallites. In the present model, these degrees of freedom are “clamped.”

The Dynamical Matrix and its Eigenvalue Problem

The substitution of the propagating-wave displacements of Eq. 2.24 in the equations of

motion effectively corresponds to taking a space–Fourier transform of the right-hand side in

Eq. 2.23, and leads to the introduction of the “dynamical matrix”, the Fourier transform of

the interatomic force-constant tensor. After simplifying by the oscillatory time dependence,

we are left with an eigenvalue problem for ω2, with the corresponding eigenvectors being

the polarization vectors of the lattice vibrations. The polarization vectors e(κ, qj) for all

the atoms in the basis (1 ≤ κ ≤ r) and their associated angular frequencies ωq,j can be

calculated by diagonalizing the dynamical matrix D(q). More explicitly, the (3r × 3r)

dynamical matrix D(q) is constructed from (3 × 3) submatrices D(κκ′, q), which are the

Fourier transforms of the force-constant matrices Φ(κl, κ′l′):

D(q) =

⎛
⎜⎜⎜⎝

D(11, q) . . . D(1r, q)
...

. . .
...

D(r1, q) · · · D(rr, q)

⎞
⎟⎟⎟⎠ ,

with

D(κκ′, q) =
1√

MκMκ′

∑
l′

Φ(0κ, l′κ′)eiq·(x(l′)−x(l)) , (2.25)

where we took l = 0 since the summation is over all values of l′ and the crystal is infinite,

periodic, and the origin cell is arbitrary∗. By similarly collecting the polarization vectors

into a vector of size 3r, we can rewrite our system of differential equations for the plane
∗Ziman calls this the “cosmological principle” for the lattice [25]
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waves in the form of an eigenvalue problem:

D(q)e(qj) = ω2
qj e(qj) , (2.26)

where

e(qj) =

⎛
⎜⎜⎜⎝

e(1, qj)
...

e(r, qj)

⎞
⎟⎟⎟⎠ .

It can be shown that the (3r×3r) dynamical matrix D(q) is hermitian (for any value of

q), and thus is fully diagonalizable. The 3r eigenvectors and eigenvalues of the dynamical

matrix evaluated at a particular wave vector q then correspond to the 3r eigenmodes of

vibration of the crystal for that wave vector. Since D(q) is hermitian, its eigenvalues are

real and thus the angular frequencies ωqj are either real or purely imaginary. The case of

purely imaginary frequencies leads to exponential divergence of the displacements in the

past or the future and this case must be ruled out from mechanical stability conditions

(although this formalism is valid to predict wavectors q leading to mechanical instabilities,

e.g., at martensitic transitions). Also, the eigenvectors can be chosen to form a complete

orthonormal set and, thus, any nuclear displacement field can be expressed as a linear

combination of these vectors.

Normal Modes and Phonons

One can introduce normal modes Q(qj) by rewriting the displacements as

u(lκ, qj) =
1√
N Mκ

∑
qj

e(κ, qj) exp(i q · x(lκ)Q(qj)) , (2.27)

such that

Q(qj) =
1
2

[A(qj) exp(−iωqjt) +A∗(−q j) exp(iωqjt)] . (2.28)
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After introducing the conjugate normal momenta P (qj) ≡ Q̇(qj), it can be shown that the

hamiltonian can be written

H =
1
2

∑
qj

P ∗(qj)P (qj) + ω2
qjQ

∗(qj)Q(qj) (2.29)

and the normal modes verify equations of motion for uncoupled harmonic oscillator:

Q̈(qj) + ω2
qjQ(qj) = 0 . (2.30)

The formulation of the problem in terms of the normal modes can be quantized with

the canonical correspondence for position and momentum operators. Based on the normal

mode operators, one can introduce the operators b̂qj and b̂†qj :

b̂qj =
1√

2�ωqj

[ωqjQ(qj) + iP ∗(qj)]

b̂†qj =
1√

2�ωqj

[ωqjQ
∗(qj) − iP (qj)] . (2.31)

The operators b̂(qj) and b̂†(qj) satisfy the commutation relations for annihilation and cre-

ation operators, respectively. In the occupation number representation (second quantiza-

tion), they annihilate or create a quantum of excitation for the mode s = (q j):

b̂s |..., ns, ...〉 =
√
ns |..., ns − 1, ...〉

b̂†s |..., ns, ...〉 =
√
ns + 1 |..., ns + 1, ...〉 . (2.32)

The hamiltonian assumes the form of a sum of uncoupled quantum harmonic oscillators in

terms of these operators:

Ĥ =
∑

s

�ωs

[
1
2

+ n̂s

]
, (2.33)

where n̂s = b̂†s b̂s is the number operator

n̂s |..., ns, ...〉 = ns |..., ns, ...〉 . (2.34)
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Within this description, we define the concept of a phonon as a quantum of excitation

of mode s = (q j). A purely quantum-mechanical attribute of this description is that, as

appears in Eq. 2.33, even when the phonons are all in their ground state (zero temperature),

the system possesses 1
2�ω of energy per mode, corresponding to zero-point motion. We recall

that phonons so defined are quasi-particles obeying Bose-Einstein statistics.

Calculation of the phonon density of states

We define the phonon density of states (DOS) g(ω) as the function giving the number

of states (qj) of frequency ω, or in a continuous description, the number of states whose

frequency is between ω and ω + dω:

g(ω) =
1

3rN

∑
q∈BZ

∑
1≤j≤3r

δ(ω − ωqj)

=
Ω

3r(2π)3
∑

j

∫
BZ
δ(ω − ωqj) d3q , (2.35)

where we used the fact that the q-point grid is fine in the first Brillouin zone (BZ) to go

from the first to the second expression (Ω is the volume of the unit cell in real space). With

this definition, g is normalized:

∫ ∞

0
g(ω) dω = 1 , (2.36)

To calculate the phonon density of states (DOS) of the crystal, we need to diagonalize

the dynamical matrix at a large number of points in the first BZ. The diagonalization of

D(q) returns 3r eigenvalues of frequency ωqj (1 ≤ j ≤ 3r) at each q-point. By sampling all

the q’s inside the first Brillouin zone of the reciprocal lattice (or its symmetry-irreducible

portion), we get a list of all the vibration frequencies of the crystal, thus defining g(ω)

though Eq. 2.35. The number of q-points to sample is prohibitive, however. A practical

solution consists in partitioning the frequency axis into bins and populating these bins

according to the number of states whose frequency fall into them. This is equivalent to

considering g(ω) as a histogram.

Different computational algorithms can be used to populate this DOS histogram. In
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general, the number of sampling q-points (and matrix diagonalizations to perform) to get

good statistics in the histogram varies inversely with the bin-width of the histogram. For a

given bin-size, we can adopt different schemes for sampling reciprocal space. Two elemen-

tary approaches consist in picking q at random (a Monte Carlo approach), or on a regular

grid. In the computations presented in this thesis, the random sampling has usually been

used, for it presents the advantage of avoiding systematic sampling of high-symmetry direc-

tions with degenerate phonon modes. In the Monte Carlo approach, we need to define the

volume to sample. Technically, one only needs to sample the symmetry-irreducible portion

of the first BZ. However, we adopted an extended zone scheme view and sampled a very

large volume (e.g., a cube) so that the boundary effects (owing to partial sampling of BZ

intersected by the boundary surface) were minimized.

2.2.2 Electron-Phonon Interaction

Finally, we emphasize that both the formalism of density functional theory and the Born–

von Kármán model of lattice dynamics rest on the Born-Oppenheimer approximation. It is

the Born-Oppenheimer approximation that allows one to treat the electronic and nuclear

problems as decoupled. Although well founded in principle, the adiabatic approximation

precludes us from treating such effects as the electron mass-enhancement at low tempera-

ture in metals, which gives rise to an increase in electronic specific heat, for example. The

electron-phonon interaction can be reintroduced in the theory with a perturbative treat-

ment. Some ingredients of this description are given in an appendix.

2.3 First-Principles Phonon Calculations

In this section, we give a brief overview of current approaches for calculating phonons from

first-principles simulations.

2.3.1 Frozen Phonons

This approach draws on the adiabatic approximation to calculate the energy of displace-

ment of the nuclei (or ions) in the potential provided by the electrons. One picks a phonon
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mode for the system (wavelength and mode index) and applies a displacement field to the

nuclei corresponding to this phonon. The displacements correspond to the polarization

vector for the phonon considered, e(qj), multiplied by the periodic oscillation, sin(q ·Rlκ),

and a displacement amplitude, u. By calculating the total energy for a set of displacement

configurations (varying the values of u), one obtains the “deformation potential” for this

phonon. This potential curve is typically parabolic around the equilibrium configuration

(small u), but for larger displacements, anharmonic components in the potential become

more important. One can then extract the frequency for this phonon mode from the po-

tential energy curve. For example in the case of a parabola, the frequency is
√
K/M , with

K the second-derivative of the potential and M the nuclear mass.

The advantage of this method is that it provides the potential for the atomic displace-

ments and it is not limited to the harmonic approximation. Studies of anharmonicity

for selected phonon modes in transition metals have been performed with this method

[26, 27, 28]. The obvious disadvantage of the frozen-phonon method is its computational

cost. For calculating long-wavelength modes, one needs to setup a supercell that can be

quite large. Also, the method is rather cumbersome, since the phonon modes are calculated

one at a time, and a special supercell is needed for each one. Obviously, the method is lim-

ited to phonon modes whose displacement pattern are commensurate to the supercell used.

The calculation of the entire phonon dispersions along several directions, or even worse the

phonon DOS, would be very tedious and probably too demanding computationally for a

true ab initio approach.

2.3.2 Hellmann-Feynman Forces

The Hellmann-Feyman or ‘direct’ method is based on the calculation of forces, rather than

the total energy. The essence of this method is based on the evaluation of forces on nuclei in

a quantum-mechanical description of the system, which is done with use of the Hellmann-

Feynman theorem [29, 15].

If we consider the ground state energy Eλ and wave function ψλ to be parameterized by
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some quantity λ, the change in Eλ incurred by a change in λ is given by

∂Eλ

∂λ
= 〈ψλ|∂Ĥ

∂λ
|ψλ〉 , (2.37)

since the ground state energy is extremal with respect to variations of the wave function

and the terms of the form 〈∂ψλ/∂λ|Ĥ|ψλ〉 vanish. The force on the nucleus I at RI is thus

FI = − ∂E

∂RI
= −〈ψ| ∂Ĥ

∂RI
|ψ〉 . (2.38)

Feynman [29] showed this to be just the electrostatic force on the displaced nucleus:

FI = −
∫
ρ(r)

∂Vext(r)
∂RI

d3r − ∂Vn−n

∂RI

=
∫
ρ(r)

(r − RI)ZIe

|r − RI |3 d3r +
1
2

∑
J �=I

(RI − RJ)ZIZJe
2

|RI − RJ |3 . (2.39)

This theorem is very useful as it provides us with an expression for the force on the nucleus

from the electronic density ρ(r) directly. Using DFT, we can calculate the electronic ground

state density for a nuclear configuration with a displaced nucleus R(lκ) = x(lκ) + u(lκ)

and thus, we can obtain the force on the nucleus from first principles.

The direct method for phonon simulations has its foundation in the calculation of the

Hellmann-Feynman forces. The argument given above to calculate the force on a displaced

atom can be generalized to compute the force on all atoms κ′ in the crystal unit cell upon

displacement of atom κ. The direct method typically proceeds with assuming that forces

are linear with the displacement amplitude (Hooke’s law), which is equivalent to the har-

monic model for the nuclear potential, although this is not an intrinsic limitation. With

this assumption, we can directly obtain the interatomic force-constants as the proportion-

ality factor. With the interatomic force-constants in hand, we can calculate the phonon

dispersions and density of states with the Born–von Kármán model, as described above.

In principle, one off-symmetry displacement of an atom is sufficient to determine all the

force-constants involving this atom, which makes the direct method much more efficient

than the frozen-phonon approach. There is one pitfall, however. In typical DFT simula-

tions, periodic boundary conditions are used to replicate the crystal unit cell. If we displace
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one of the atoms in the basis (l, κ), all the periodic images of this atom {l′ 	= l, κ} are also

displaced, producing extra “image forces” on other basis atoms. The forces calculated are

thus cumulant forces, instead of the true Hellmann-Feynman forces. This can be corrected

for, however [30]. More severely, the range of interactions that can be calculated depends

directly on the size of the supercell. Also, displacements in off-symmetry directions make

the DFT calculation more costly and it may be more favorable to replace them by several

high-symmetry displacements. Although the direct method is much more efficient than the

frozen-phonon approach to treat the harmonic lattice dynamics with DFT, its main draw-

back is the need to use rather large supercells for materials with long-ranged interatomic

interactions.

Pioneering examples of first-principles phonon computation with this approach can be

found in [31, 32]. We performed phonon DOS calculations using the direct method, as

implemented in the computer programs “Phonon” and “Phon”, and using the electronic-

structure code VASP [33] to compute the Hellmann-Feyman forces. A presentation of the

“Phonon” computer program implementation of the direct method can be found in [30].

The alternative software implementation provided by “Phon” is described in [34]. Our

results from first-principles calculations for FCC Al, BCC Cr and BCC Fe are shown in

figure 2.1, where they are compared with phonon DOS curves we obtained using a Born–von

Kármán model and interatomic force-constants (derived from triple-axis neutron scattering

measurements) reported in the literature. As can be seen in this figure, the results of

our calculations with the direct method are in very good agreement with the experimental

phonon DOS. The deviations between the ab-initio and experimental DOS in the case of

Cr and Fe are consistent with the higher temperature at which the measurements were

conducted.

2.3.3 Linear Response

The linear response approach to the calculation of perturbations allows one to compute the

dynamical matrix D(q) and phonon frequencies ωj(q) at a selected set of q-points without

the need for supercells. It is based essentially on the computation of the derivatives (at arbi-

trary order) of the total energy with respect to perturbations, such as atomic displacements
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Figure 2.1: Phonon DOS of FCC Al (a), antiferromagnetic BCC Cr (b) and ferromagnetic

BCC Fe (c), calculated from first-principles with the direct method, using VASP [33] and

Phonon [30] (Al, Cr), or Phon [34] (Fe). The ab-initio results are compared to phonon DOS

curves that were obtained with Born–von Kármán models, using experimental interatomic

force-constants reported in the literature [35, 36, 37]. The first-principles calculation for

FCC Al used a 2 × 2 × 2 repetition of the cubic unit cell (32 atoms). The calculation for

BCC Cr (spin-polarized, antiferromagnetic) used a 2 × 2 × 2 cubic supercell (16 atoms).

The calculation for BCC Fe (spin-polarized, ferromagnetic) used a 4 × 4 × 4 repetition of

the rhombohedral primitive unit cell (64 atoms).
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in the case of phonons. The derivatives are obtained from the formalism of perturbation

theory applied onto the general DFT, thereby creating the so-called density functional per-

turbation theory (DFPT). DFPT relies on the “2n+ 1 theorem” of perturbation theory to

obtain the (2n+1) order derivatives of E from n-order perturbed wave functions. This for-

malism is discussed in details in [19, 38, 39, 40]. Applications to the calculation of phonons

in transition metals are presented in [41, 42].

The linear-response method is quite general. Many physical properties are derivatives

of the total energy, or of a suitable thermodynamic potential, with respect to perturbations.

For example, perturbations might be atomic displacements, dilations or contractions of the

unit cell, or an external electric field. The corresponding first order derivatives of the energy

would then be the forces on the nuclei, the stresses and the dipole moment. Second-order

derivatives would include the dynamical matrix, elastic constants, the dielectric susceptibil-

ity, the Born effective charge tensors and internal strains, while third-order derivatives would

include the non-linear dielectric susceptibility, phonon-phonon interactions and Grüneisen

parameters [19]. Implementations of DFPT are found in several computer programs, such

as Abinit [43] and PWscf [44].

2.3.4 Molecular Dynamics

Finally, we briefly comment on molecular dynamics (MD), which also gives access to vi-

brational properties. In classical molecular dynamics, one numerically integrates Newton’s

equations of motion (EOM) for an ensemble of particles, provided a set of initial conditions

for positions and velocities, and with some model for interparticle interactions. By integrat-

ing the EOM with a fine time-step and for many steps, we can get a good sampling of the

dynamics of the system (through the ergodic principle), which are recorded in a run history.

Various properties can be calculated from such a run; in particular, the phonon DOS can

be computed as the Fourier transform of the velocity autocorrelation function. The MD

approach is a powerful one, as it can be applied to liquids or amorphous solids and not just

crystalline solids. It also offers a realistic way to investigate effects of temperature, and it

has been applied with some success to the case of transition metals. Examples of studies

for transition metals relevant to this thesis can be found in [45, 46, 47].
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Historically important potentials used in these simulations are the Morse, Lennard-

Jones, and Born-Mayer potentials, among others. Embedded-atom potentials have been

more successful for metals. Since these potentials are, to a large extent, empirical, these

types of simulations do not qualify as “first-principles”. New developments have allowed to

carry the MD technique into the realm of first-principles simulations, following the intro-

duction by Car and Parinello of a novel approach to solve the quantum MD problem [48].

In the approach of Car and Parinello, a fictitious lagrangian for both nuclei and electrons

is introduced, which is solved simultaneously for the classical coordinates of the nuclei and

the quantum-mechanical degrees of freedom of the electrons. Although this reformulation

has offered a great improvement in the feasibility of solving the quantum MD equations,

the main difficulty is that it is still computationally very expensive, in particular for metals.

2.4 Thermal Properties

We review in this section the connection between vibrational and electronic properties and

the thermodynamics of crystals and alloys. We start by recalling a number of relations

for thermodynamical properties of phonons, without deriving them. Derivations for these

standard results can be found in many textbooks, e.g., [49, 50, 51, 52].

2.4.1 Harmonic Oscillators

Classical Harmonic Oscillator

A classical one-dimensional harmonic oscillator of massM and force-constant k has a natural

frequency

ω =
√
k/M . (2.40)

Its potential energy is

Epot(x) =
1
2
kx2 =

1
2
Mω2x2 . (2.41)
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From the equipartition theorem, in equilibrium, the average potential and kinetic energies

are equal,

Epot = Ekin =
1
2
kBT , (2.42)

such that x2 only depends on the temperature T and the force-constant k:

x2 =
kBT

Mω2
=
kBT

k
. (2.43)

The heat capacity is

C =
∂E

∂T
=
∂(Epot + Ekin)

∂T
= kB , (2.44)

which recovers the law of Dulong and Petit, according to which the classical, high-temperature

limit for the heat capacity of solids is 3 kB per atom.

Harmonic Phonons

Consider a quantum harmonic oscillator of natural frequency ω. Its thermal occupation

factor at temperature T is given by the Bose-Einstein distribution

n(�ω, T ) =
1

exp(�ω/kBT ) − 1
, (2.45)

with kB the Boltzmann constant. In thermal equilibrium, the energy associated with a

harmonic phonon with frequency ω = ωqj is

E(qj) = (n(qj) + 1/2)�ωqj , (2.46)

where n(qj) = n(�ω(qj)), and for a harmonic crystal:

Ehar(T ) =
∑
qj

E(qj) = 3N
∫ ωmax

0
�ω(n(�ω, T ) + 1/2) g(ω)dω , (2.47)

with g(ω) the phonon DOS. The entropy of a particular harmonic phonon of frequency ω

is given by the general formula for the entropy of non-interacting bosons [52]:

Shar(qj, T ) = kB [(n+ 1) ln(n+ 1) − n lnn] , (2.48)
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where we wrote n for n(�ωqj , T ). Thus, we obtain the entropy per atom for the harmonic

crystal:

Shar(T ) =
∑
qj

Shar(qj, T ) = 3kB

∫ ωmax

0
[(n+ 1) ln(n+ 1) − n lnn] g(ω) dω , (2.49)

with g(ω) normalized to unity. For harmonic vibrations, the heat capacities at constant

pressure or constant volume are equal: CP = CV = Char. They can be obtained from the

relation

Char =
∂Ehar

∂T
= T

∂Shar

∂T
. (2.50)

For a single mode (qj), we obtain

Char(qj, T ) =
(

�ωqj

kBT

)2 exp(�ωqj/kBT )
[exp(�ωqj/kBT ) − 1]2

, (2.51)

and for the harmonic solid, per atom,

Char,T =
∫ ωmax

0
Char(ω, T )g(ω) dω . (2.52)

2.4.2 Anharmonicity

In the theory of lattice dynamics presented above, the interatomic potential was truncated

at the quadratic order. This has allowed us to identify uncoupled vibration modes of the

crystal, or phonons, that depend only the force-constants, i.e. the second-order deriva-

tives of the nuclear potential energy. In particular, the phonon frequencies so-derived do

not depend explicitly on the amplitudes of the vibrations, nor on the temperature. The

harmonic approximation stems from the proposition that the displacements of the nuclei

away from their equilibrium positions are small and that higher order terms in the expan-

sion of the potential are negligible. Although these conditions are verified in many solids

at low temperature, they tend to become less valid as the amplitude of the displacements

increases at high temperatures, or in the vicinity of a martensitic phase transition. Some

fundamental thermophysical properties are even completely unaccounted for by the har-

monic approximation. If this model were valid, there would be no thermal expansion and
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the thermal conductivity would be infinite, in the absence of phonon-phonon scattering.

Also, force-constants and elastic constants would not vary with temperature or pressure

and, as previously mentioned, the heat capacities at constant pressure and constant volume

would be equal.

If one keeps a description of vibrations in terms of phonons, small deviations from the

harmonic case can be treated in perturbation theory and the result is a shift in phonon

frequencies [50]:

ω̃(qj) = ω(qj) + Δ(qj) − iΓ(qj) , (2.53)

with ω(qj) the harmonic frequency of mode (qj). The frequencies ω̃(qj) are called “renor-

malized” phonon frequencies. The term −iΓ(qj) expresses that the phonons are now

damped, as (qj) is not a true eigenstate of the anharmonic hamiltonian and is not sta-

tionary. In the case of weak anharmonicity, Γ/ω 
 1 and the lifetime of the state is long

enough that it is still meaningful to label it as a phonon state (qj). The shifted frequencies

(2.53) are the frequencies measured in a neutron scattering experiment [50, 53, 51, 52]. In

the following, it is assumed that the phonon width Γ is small and the focus is on the energy

shift Δ.

In the case of a one-dimensional oscillator, the anharmonicity of the potential can be

expressed

V (x) =
1
2
Mω2x2 + V3x

3 + V4x
4 , (2.54)

where higher order terms are neglected. The harmonic case V3 = V4 = 0 yields the energy

eigenstates En = (n+ 1/2)�ω, but including the effect of small terms V3 and V4 in second-

order perturbation theory gives a shift [50]:

ΔEn = 〈n|V4x
4|n〉 +

∑
n′ �=n

|〈n|V3x
3 + V4x

4|n′〉|2
En′ − En

, (2.55)

since 〈n|V3x
3|n〉 = 0 because the integrand V3|ψn(x)|2x3 is odd in x. On the other hand,

the contribution of V4x
4 in the last term is smaller than that of V3x

3 and it can be dropped.
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From this, V3 and V4 contribute to the same order in perturbation and both must be kept to

leading order. The renormalized phonon frequencies (without damping) can thus be written

ω̃(qj) = ω0(qj) + Δ2(qj) + Δ3(qj) + Δ4(qj) , (2.56)

with ω0(qj) the harmonic frequencies at some reference volume and temperature (usually

0 K or 300 K) and where Δ3 and Δ4 are shifts due to explicitly anharmonic potentials, while

Δ2 is the shift due to the change in force-constants upon thermal expansion or application

of pressure. Δ2 represents the softening of the parabolic potentials with the increase in

volume incurred by thermal expansion or their stiffening with applied external pressure.

When only Δ2 is retained in Eq. 2.56, one speaks of the quasiharmonic approximation.

Quasiharmonic Approximation

The change in frequency of a particular phonon mode qj is related to the change in volume

V through the Grüneisen parameter γqj :

γqj(V, T ) = −∂ lnωqj(V, T )
∂ lnV

. (2.57)

It is cumbersome to consider a specific Grüneisen parameter for each phonon mode since

the full phonon spectrum needs to be taken into account for thermodynamic purposes. A

thermodynamic Grüneisen parameter is then generally defined as:

γG(V, T ) =
3αV BT

CV
=

3αV BS

CP
, (2.58)

with α the coefficient of linear thermal expansion, V the specific volume, BT and BS the

isothermal and isentropic bulk moduli, respectively, and CV and CP the heat capacity at

constant volume and constant pressure, respectively. The approximation of γqj by γG is not

always firmly justified, as substantial deviations of γqj may exist between different phonon

modes. It is often adopted for convenience, however. In first approximation, γqj (or γG)

is a constant around ambient conditions, i.e., it does not depend on the magnitude of the

change in V for small compression/expansion around the reference volume, and the only
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T–dependence is usually assumed to come through the dependence of the reference volume

on temperature V = V (T, P ). Although this may be inappropriate in the case of explicit

anharmonicity, we concentrate for now on the thermodynamic consequences that can be

expected from the softening of phonons in the quasiharmonic approximation.

Thermal expansion yields a difference between the heat capacities at constant pressure

and constant volume. From standard thermodynamic equalities, one can show that

CP − CV = 3αγGCV T = 9α2V BTT . (2.59)

Integrating this relation, the quasiharmonic change in entropy associated with thermal

expansion between T1 and T2 is obtained:

ΔSqh(T1, T2) = 9V
∫ T2

T1

α2BT dT . (2.60)

The quasiharmonic entropy defined this way takes into account the shift Δ2 in phonon

frequencies. Since it is defined from a macroscopic relation, however, phonons may not

be the only degrees of freedom that contribute. In particular, in a metal, electrons also

contribute to the entropy and in this case

ΔSqh(T1, T2) = ΔSqh
ph(T1, T2) + ΔSxp

el (T1, T2) , (2.61)

where we use the subscript ‘xp’ to refer to the effect of thermal expansion on the electronic

entropy.

Beyond the Quasiharmonic Approximation

An attempt to describe thermodynamic effects related to the amplitudes of phonon dis-

placements requires one taking into account the explicit anharmonic shifts Δ3 and Δ4 in

the renormalized phonon frequencies in Eq. 2.56. An important result concerning the ther-

modynamics of anharmonic crystals is that, in leading order in perturbation theory, the

vibrational entropy is still given correctly by its harmonic expression, but with phonon

frequencies given by their renormalized values. This was proven first by Barron [54] with
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perturbation theory and was also shown to be valid at all orders of self-consistent phonon

theory by Hui and Allen [55]. The vibrational entropy is the only thermodynamic function

for which this procedure applies, however. In particular, the result does not hold for the

free energy or the heat capacity [52, 50]. The anharmonic phonon entropy is

Sanh
ph = Sqh

ph + S
(3)
ph + S

(4)
ph = S̃har ≡ Shar({ω̃qj}) . (2.62)

It should be emphasized that this result is only established up to leading order in pertur-

bation theory and may not hold when the anharmonicity is large.

Another important result is that the renormalized phonon frequencies are the frequen-

cies measured in neutron scattering experiments. Thus, the true anharmonic entropy is

experimentally accessible. It also follows that the entropy due to explicit anharmonicity in

the nuclear potential, S(3)
ph + S

(4)
ph , is accessible by comparing Sanh

ph and Sqh, provided the

electronic entropy and its volume dependence are available.

The argument can be made more specific with the help of a generalized notation. First,

we recognize that the anharmonic shifts in phonon frequencies, Δ2, Δ3, and Δ4 yield a

redistribution of the area under the density of states, so we can write

g̃(ω) = g(0)(ω) + δg(2)(ω) + δg(3)(ω) + δg(4)(ω) , (2.63)

where we added a symbolic zero superscript on the harmonic phonon DOS for explicitness.

Second, the expressions (2.49) and (2.62) for the phonon entropy show that it is a functional

of the phonon DOS, which motivates the notation

S[g̃T , T ] = Shar
ph ({ω̃qj(T )}) , (2.64)

where the second argument, T , denotes the temperature in the Bose-Einstein thermal pop-

ulation. Also, we point out that this functional is linear with respect to the first argument

(linearity of integration). With this notation, the difference in phonon entropy between T1

and T2, in leading order in perturbed phonon frequencies, is

Sanh
ph (T2) − Sanh

ph (T1) = S[g̃T2 , T2] − S[g̃T1 , T1]



32

= {S[g(0)
T2
, T2] − S[g(0)

T1
, T1]}

+ {S[g(2)
T2
, T2] − S[g(2)

T1
, T1]}

+ {S[g(3,4)
T2

, T2] − S[g(3,4)
T1

, T1]} . (2.65)

The second grouping on the right corresponds to the quasiharmonic change in phonon

entropy owing to thermal expansion between T1 and T2:

S[g(2)
T2
, T2] − S[g(2)

T1
, T1] = ΔSqh

ph(T1, T2) , (2.66)

and the last grouping is the explicitly anharmonic contribution to the change in phonon

entropy between the two temperatures:

S[g(3,4)
T2

, T2] − S[g(3,4)
T1

, T1] = ΔS(3,4)
ph (T1, T2) . (2.67)

Since the harmonic component of the phonon DOS is independent of temperature, we also

have g(0)
T1

= g
(0)
T2

. We now consider the case where T1 is a low-temperature and T2 some

high temperature. We make the approximation that the low temperature phonon DOS is

harmonic, g̃T1 = g
(0)
T1

= g
(0)
T2

. This is expected to be approximately valid for T1 ∼ 300 K and

should be better at lower temperatures. With this approximation, we obtain the result

S[g̃T2 , T2] − S[g̃T1 , T2] = ΔSqh
ph(T1, T2) + ΔS(3,4)

ph (T1, T2) , (2.68)

which allows us to evaluate the explicitly anharmonic contribution from the experimental

phonon DOS curves at temperatures T1 and T2 and the knowledge of the quasiharmonic

effect, obtained from the classical thermal expansion formula (corrected for the electronic

part), Eq. 2.60. The physical signification of the left-hand side in (2.68) is clear: it is the

difference between the phonon entropy obtained from the measured high-temperature DOS

and the phonon entropy that would be obtained at high temperature, if the solid were

harmonic.
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2.4.3 Electronic Entropy

In metals, the Fermi level falls in the conduction band and empty electronic states are

accessible to electrons at any temperature T > 0. An electronic entropy Sel is associated

with the excitations of electrons with temperature:

Sel(T, V ) = −kB

∞∫
−∞

[(1 − fT,E)ln(1 − fT,E) + fT,E ln(fT,E)]nV (E) dE , (2.69)

where fT,E is the Fermi distribution function and nV (E) is the electronic density of states

at energy E [52]. Using density functional theory, nV (E) can be calculated for different

volumes of the crystal, and the change in Sel with thermal expansion can be evaluated.

A simple procedure is to calculate Sel at a low-temperature volume, Vlow, and a high-

temperature volume, Vhigh, and interpolate at intermediate temperatures

Sel(T ) = Sel(T, Vlow)
(

Thigh − T

Thigh − Tlow

)
+ Sel(T, Vhigh)

(
T − Tlow

Thigh − Tlow

)
. (2.70)

In practice, Sel can be large at elevated temperatures, with values on the order of 1 kB/at.

at Tfus in transition metals (see, e.g. [56]). The change in Sel with thermal expansion is

small, however Sxp
el (Tfus) ∼ 0.05 kB/at.
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Chapter 3

Inelastic Neutron Scattering

3.1 Introduction

Thermal neutrons represent a valuable probe of condensed matter, and their use has consid-

erably increased since the early work of Brockhouse and Shull∗. The strength of neutrons is

that they are well suited to the study of both static and dynamic properties of matter. Not

only is the wavelength of thermal neutrons of the same order as the interatomic distances

in solids, but the energy and momenta of thermal neutrons match well those of a range of

low-energy excitations, such as phonons and magnons. These favorable properties, together

with the advent of facilities producing beams of thermal neutrons (nuclear reactors or spal-

lation sources) have spun the development of a host of techniques to investigate countless

aspects of condensed matter.

Neutrons interact with the nuclei in the sample through nuclear forces. Since the neutron

has a magnetic moment, it can also interact with the spin distribution of the sample. We

thus have two fundamental types of interactions, leading to nuclear or magnetic scattering

processes. In this thesis, we are mostly concerned with nuclear scattering processes, for

which we present an overview of the theory. More detailed accounts of the theory of thermal

neutron scattering can be found in the books of Squires [14] and Lovesey [13].

The principal aspect of neutron scattering that interests us is the opportunity of probing

phonon modes in metals and alloys. Thermal neutrons corresponding to a temperature of
∗Bertram N. Brockhouse and Clifford G. Shull shared the 1994 Nobel prize in physics for the development

of neutron spectroscopy and neutron diffraction, respectively.
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293 K, or equivalently of energy E = 25.3 meV, have a wavelength λ = 1.798 Å and, corre-

spondingly, a wave vector k = 2π/λ = 3.49 Å−1. This wavelength matches well the lattice

parameters of crystals, and thus the wave vector has about the same size as the width of

the Brillouin zone. This energy scale also corresponds well to phonon energies in many

materials. By comparison, IR or visible photons match excitation energies in molecules or

crystals but, owing to their small wave vector, they can only sample vibration modes close

to the center Γ of the Brillouin zone. Besides, the modes accessible by Raman scattering and

infrared spectroscopy are limited by selection rules, although these are often complementary

between the two techniques. X-ray photons, on the other hand, can interact with phonons

throughout the Brillouin zone, but the energy they gain or lose in this interaction is much

smaller than their incident energy (by a factor of 106). Such minute energy changes are

difficult to detect. Inelastic x-ray scattering has undergone tremendous progress with the

advent of synchrotron radiation sources, however, and measurements of phonon dispersions

and densities of states are nowadays possible, with conventional or nuclear-resonant inelas-

tic x-ray scattering techniques. Although neutron scattering is still the central technique in

phonon investigations, neutron and x-ray scattering offer some interesting complementar-

ities. One illustrative example applies to the measurement of the phonon DOS in binary

alloys. Inelastic neutron scattering can provide a total phonon DOS for the alloy, but this

DOS is usually weighted by the different strengths with which the constituent nuclei scatter

the neutrons. This constitutes the infamous “neutron-weighting” problem. For elements

exhibiting Mössbauer isotopes, nuclear-resonant inelastic x-ray scattering allows one to mea-

sure the partial phonon DOS for the resonant nucleus, and thus gives a way to determine

both contributions to the total DOS and correct for neutron-weighting.

We consider the general scattering event depicted in figure 3.1, where an incident neutron

of wave vector ki is scattered by the sample into a final state of wave vector kf , transferring

a momentum Q = ki − kf to the sample. The incident and final neutron energies are

Ei = �
2k2

i /2m and Ef = �
2k2

f/2m, where m denotes the mass of the neutron, and the

energy transferred to the sample is E = Ei − Ef = �
2(k2

i − k2
f )/2m. The scattering angle

Φ verifies cos(Φ) = ki · kf/‖ki‖‖kf‖. One notes from figure 3.1 that, for a fixed incident

neutron energy Ei and a constant scattering angle Φ, the magnitudes of the momentum
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Figure 3.1: Neutron scattering geometry.

transfer Q and energy transfer E vary with the final wave vector of the neutron. The

relationship between E and Q gives rise to kinematic conditions on the scattering, which

are of experimental importance.

3.2 Scattering Cross-Section

3.2.1 General Case

The central quantity in a scattering experiment is the cross-section. We can determine the

cross-section from the probability that the system (neutron+sample) undergoes a transition

from the initial state (ki, λi) to the final state (kf , λf ) as the neutron traverses the scattering

potential V in the sample. In this discussion, λ denotes an aggregate quantum number for

the state of the sample. For experimental reasons, we are interested in the scattering cross-

section corresponding to neutrons being scattered into final states kf within a small solid

angle dΩ around the direction Ω̂. This differential cross-section is expressed in terms of the

rate W of scattering events (ki, λi) → (kf , λf ) and the flux F of incident neutrons as [14]:

(
∂σ

∂Ω

)
λi→λf

=
1
F

1
dΩ

∑
kf∈dΩ

W(ki,λi)→(kf ,λf ) . (3.1)
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Using Fermi’s golden rule, we can express the transition rate in terms of the matrix element

of the scattering potential V coupling the initial and final states:

∑
kf∈dΩ

W(ki,λi)→(kf ,λf ) =
2π
�
ρkf

|〈kfλf |V |kiλi〉|2 , (3.2)

where ρkf
is the density of final states within dΩ, per unit energy. Working out ρkf

from

the energy relation for free final particles Ef = �
2k2

f/2m and using the fact that F is

proportional to the velocity of incident neutrons and thus to ki, one obtains

(
∂σ

∂Ω

)
λi→λf

=
kf

ki

( m

2π�2

)2 |〈kfλf |V |kiλi〉|2 . (3.3)

We also obtain the double differential cross-section for scattering of neutrons into final

states within dΩ and of energy between Ef and Ef + dE, by requiring that the energy of

the system (neutron + sample) be conserved:

(
∂2σ

∂Ω∂E

)
λi→λf

=
kf

ki

( m

2π�2

)2 |〈kfλf |V |kiλi〉|2δ((Eλi + Ei) − (Eλf
+ Ef )) . (3.4)

3.2.2 Phonon Scattering

We recall in this section the results that can be derived in the case of neutrons scattering

off the phonon excitations in a crystalline sample. A pictorial representation of a phonon

creation process is given in figure 3.2. In this inelastic scattering process, a phonon of wave

vector q = Q and energy �ω = Ei − Ef is created, raising the occupation number of such

phonons in the crystal from nqω to nqω + 1.

The phonon scattering processes occur through the neutron-nucleus interaction, which

is conventionally described by an isotropic delta function, or Fermi pseudopotential:

V (r) =
2π�

2

m
b δ(r) , (3.5)

where b is the scattering length. If we consider a Bravais lattice, this potential is replicated
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Figure 3.2: Scattering process for creation of one phonon.

at each site of the lattice:

V (r) =
∑

l

2π�
2

m
bl δ(r − Rl) . (3.6)

The scattering of the neutron between the asymptotic plane wave states ki and kf by this

potential involves the matrix element 〈kf |V |ki〉, which corresponds to taking the space-

Fourier transform of V . The matrix element is then rewritten as
∑

l bl〈λf | exp(iQ ·Rl)|λi〉,
with Q = ki − kf . The cross-section is then best evaluated with the position operators

Rl expressed in Heisenberg representation. Reasoning that we do not actually measure the

cross-section for the transition λi → λf , but rather between the sets of sample states Eλi

and Eλf
, and expressing the delta function for conservation of energy with help of its time

Fourier transform, one can rewrite Eq. 3.4 as

(
∂2σ

∂Ω∂E

)
=

kf

ki

1
2π�

∑
l,l′

blbl′

×
∫ ∞

−∞
〈exp(−iQ · Rl′(0)) exp(iQ · Rl(t))〉 exp(−iωt) dt , (3.7)

where the brackets denote thermal averages and �ω = Ei −Ef is the energy transferred to

the sample. The quantity in brackets represents a space-time correlation function for the

displacements projected along the momentum transfer.

Two categories of scattering processes can be distinguished at this point: coherent scat-
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tering processes, in which the phases in the scattering by each center preserve the coherency

of the neutron wave, and incoherent scattering processes, in which the coherency is lost. In

the coherent case, the neutron waves scattered from each center can produce interference

effects, and these effects build up over the whole sample. On the other hand, in the inco-

herent case, the randomness in the phase of each scattered wave prevents any macroscopic

interference and the scattering intensity is effectively a sum of scattering intensities from

each nucleus. In the case of coherent scattering, we take the Fourier transform of the corre-

lation functions between different atoms at different times, whereas in the incoherent case,

each atom is considered separately and the correlation function is for that same atom at

different times. The respective cross-sections are given by:

(
∂2σ

∂Ω∂E

)
coh

=
σcoh

4π
kf

ki

1
2π�

∑
l,l′

×
∫ ∞

−∞
〈exp(−iQ · Rl′(0)) exp(iQ · Rl(t))〉 exp(−iωt) dt (3.8)(

∂2σ

∂Ω∂E

)
inc

=
σinc

4π
kf

ki

1
2π�

∑
l

×
∫ ∞

−∞
〈exp(−iQ · Rl(0)) exp(iQ · Rl(t))〉 exp(−iωt) dt , (3.9)

where σcoh = 4πb 2 and σinc = (b2−b 2) are the total coherent and incoherent cross-sections,

with the bar denoting averages over all nuclei in the sample. One should keep in mind

that even a Bravais lattice can be an incoherent neutron scatterer, as different spin-states

of the same isotope can lead to incoherency. Isotopic disorder is an additional source of

incoherency. Neutron diffraction and dispersion curve measurements exploit the coherent

scattering (in a time-averaged way for diffraction) to revealQ-structure, while measurements

on incoherent scattering samples can only access the E-dependence.

In the case of a vibrating lattice, the nuclear scattering potentials oscillate periodically

around the equilibrium lattice positions and these oscillations are described by normal

modes of vibrations, which have been discussed in chapter 2. The displacement operator

for the atom in cell l of a Bravais lattice is expressed in terms of the phonon creation and
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annihilation operators, b̂†s and b̂s, respectively (s = (q, j)), as

ûl =
(

�

2MN cell

)1/2∑
s

es√
ωs

(b̂s exp(iq · Rl) + b̂†s exp(−iq · Rl)) . (3.10)

The scattering cross-sections of (3.9) involve the instantaneous nuclear positions Rl(t) =

xl + ul(t). After introducing the operators U = −iQ · u0(t) and V = iQ · ul(t), both

cross-sections can be shown to involve the correlation function 〈expU expV 〉, while a static

structure factor can be pulled out of the time integral. One can then show that, for a

Bravais crystal of harmonic oscillators,

〈expU expV 〉 = exp〈U2〉 exp〈UV 〉 , (3.11)

where the first factor on the right corresponds to the well-known Debye-Waller factor. The

factor exp〈UV 〉 can be expanded as a Taylor series:

exp〈UV 〉 = 1 + 〈UV 〉 +
1
2!
〈UV 〉2 + . . . . (3.12)

Because of the time Fourier transform in (3.9), the first term gives a non-zero contribution

to ∂2σ/∂Ω∂E only if ω = 0, which is the case of elastic scattering. In the coherent case, we

are then left with the static structure factor for diffraction, multiplied by the Debye-Waller

factor. On the other hand, the elastic incoherent cross-section is just proportional to the

Debye-Waller factor. The higher-order terms in the decomposition of exp〈UV 〉 correspond

to inelastic scattering processes. The first order term represents processes where one phonon

is created or annihilated and the p -th order term, processes where p phonons are involved.

We now focus our discussion on the incoherent inelastic cross-section for one-phonon

scattering. The evaluation of 〈UV 〉 with the expression (3.10) brings about products of

phonon creation and annihilation operators, which reduce to occupation numbers upon

thermal averaging. We are then left with two terms:

(
∂2σ

∂Ω∂E

)
inc,1phonon

=
σinc

4π
kf

ki

1
2M

exp〈U2〉
∑

s

(Q · es)2

ωs

×{〈ns + 1〉δ(ω − ωs) + 〈ns〉δ(ω + ωs)} , (3.13)
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where the first and second delta functions correspond respectively to the creation and an-

nihilation of one phonon of energy �ω. The sum over modes s brings about the phonon

density of states and after further simplification, one obtains the incoherent neutron scat-

tering cross-section for a one-phonon creation process, originally derived by Placzek and

van Hove [12]:

(
∂2σ

∂Ω∂E′

)inc

+1 phonon

=
σinc

4π
kf

ki

3N
2M

e−2W × Q2

3ω
g(�ω)〈n(ω) + 1〉 , (3.14)

where exp(−2W ) = exp〈U2〉 is the Debye-Waller factor and g(�ω) is the normalized phonon

DOS. Since phonons are Bosons, 〈n(ω)〉 is the Bose-Einstein distribution.

3.3 Scattering Function

A more general formulation of neutron scattering was derived by van Hove [57] in terms of

correlation functions. All the information on the system available from a neutron scattering

experiment is encoded in the time-dependent pair-correlation function for the scattering

centers, G(r, t) (also called the van Hove correlation function). The scattering intensity

is related to the Fourier transform in time and space of G(r, t), also called the scattering

function S(Q, ω):

S(Q, ω) =
1

2π�

∫
G(r, t) exp(i(Q · r − ωt)) d3rdt . (3.15)

The relations between S(Q, ω) and the cross-sections for coherent and incoherent scattering

are [14]:

(
∂2σ

∂Ω∂E

)
coh

=
σcoh

4π
kf

ki
Scoh(Q, ω)(

∂2σ

∂Ω∂E

)
inc

=
σinc

4π
kf

ki
Sinc(Q, ω) , (3.16)

where Sinc(Q, ω) in the incoherent case corresponds to G(r, t) limited to self-correlations.
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3.4 Time-of-Flight Neutron Spectrometer

3.4.1 Principle

The time-of-flight (TOF) neutron spectrometer corresponds directly to the pictorial scat-

tering experiment of figure 3.1. A schematic of a direct-geometry chopper spectrometer,

as found most commonly at a spallation source, is shown in figure 3.3. A pulsed source

delivers neutrons to a moderator, in which the neutrons thermalize through multiple col-

lisions with the medium, exiting with a maxwellian velocity distribution representative of

the moderator temperature. The spectrum typically also contains epithermal neutrons of

higher energy that were not fully equilibrated. A port passes a beam of neutrons, which

is monochromatized by a pair of rotating choppers (t0 and E0 rotors in figure 3.3), whose

synchronized opening times only let through neutrons of a chosen energy. This energy

selection rests on the energy-velocity relationship for the free neutrons, E = 1
2mv

2. The

neutrons are incident on a sample and some of them are scattered, transferring momentum

and energy, and the scattered neutrons are collected by a set of detectors covering possibly

a large angular range. Typically, the detectors are 3He-filled tubes, which produce a charge

after capture of the neutron and a low-energy nuclear reaction. This type of detector does

not offer energy discrimination. Instead, knowing the time of the initial neutron pulse, the

velocity of the scattered neutrons is determined from their arrival time on the detector, the

time at which they were impinging on the sample, and knowledge of the sample-detector

distance. This velocity is converted to energy with the energy-velocity relationship. In this

time-of-flight approach, the final energies are most accurately measured when the sample-

to-detector flight path is long. However, because of spatial and monetary constraints, the

surface that can be covered with detectors is finite and there is thus a trade-off between the

length of the flight path and the solid-angle coverage.

Another important parameter in neutron scattering experiment is the relatively low

flux of neutron sources, especially when compared to x-ray sources. Because the density

of neutrons in the beam is low (with particle densities on the order of a magnitude of a

good vacuum), the dimensions of the beam tend to be large to compensate. This results in

the need for large samples, with typical transverse sizes on the order of a few centimeters.
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Figure 3.3: Direct-geometry time-of-flight neutron spectrometer.

Another aspect, resulting from this sample size, is that one needs to minimize multiple

scattering events. Because the elastic cross-section is typically much larger than its inelastic

counterpart (see examples below), multiple scattering events mostly involve several elastic

scattering events or a combination of one elastic scattering and one inelastic scattering.

Since the neutrons involved in an extra elastic scattering event travel extra distances inside

the sample, they will reach the detector with a delay, thus appearing to have an extra

energy loss. Multiple scattering is difficult to correct for and as a result one tries to limit

the number of such processes by having samples that are thin enough. A typical working

value is to make samples that scatter 10% of the incident neutrons, limiting double elastic

scattering events to less than 1%. This has the unfortunate consequence that most of the

already scarce incident neutrons are wasted. Such limitations are intrinsic to the neutron

time-of-flight approach, until detectors with sufficient energy resolution are devised.
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3.4.2 Sampling Region

Among the many different neutron scattering techniques, time-of-flight neutron spectrome-

try stands out as the best method to measure the phonon density of states. This technique

allows one to sample large regions of q-space (the reciprocal space of the sample). In the case

of coherently scattering nuclei, the phonon dispersions can be accessed as well as the DOS.

The possibility of collecting data over a large swath of reciprocal space at once is in fact

the main strength of this technique, whereas more detailed studies of excitations at specific

points in the Brillouin zone are perhaps best undertaken with a triple-axis spectrometer.

From the incident and final neutron energies and the scattering angle Φ, the momentum

transfer Q can be determined. In practice, one most often works with polycrystalline

samples and only the magnitude of the momentum transfer is relevant,

Q = { 1
2.072

(2Ei(1 − cos Φ
√

1 − �ω/Ei) − �ω)}1/2 , (3.17)

where Q is in Å−1 and the energies are in meV. The Q(Φ, E) relation for the low-resolution

medium-energy chopper spectrometer (LRMECS) instrument at the intense pulsed neutron

source (IPNS) at Argonne National Laboratory is shown in figure 3.4, for different scattering

angles covered by the detector bank.

From figure 3.4, one can see that the relevant range of phonon energies for a vanadium

crystal is sampled with momentum transfer ranging from close to 0 Å−1 up to about 8 Å−1.

A spherical sampling region with such range is compared to the size of the first Brillouin

zone for the vanadium reciprocal lattice in figure 3.5. In this figure, the sphere denotes the

volume sampled by the neutrons and the central thick square is the Brillouin zone of the

fcc reciprocal lattice. One can see on this figure that many Brillouin zones are sampled.

3.5 Data Analysis

Figure 3.6 presents typical results for S(E) obtained on a TOF instrument, after summing

the data over Φ. The first thing to note is the relative intensity of the elastic scattering

(central peak) and inelastic scattering (side shoulders). As seen in the inset, the elastic

scattering dominates by a factor of approximately 20 in this case. Also of interest is the
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Figure 3.4: Scattering kinematics for LRMECS instrument with Ei = 55 meV.

Figure 3.5: Sampling volume in reciprocal space for vanadium single crystal. Estimated for

LRMECS instrument with Ei = 55 meV.
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Figure 3.6: Scattering intensity S(E) for Fe71Ni29 sample. Data measured on Pharos in-

strument at LANSCE.

symmetry observed in the data between positive energy transfers (phonon creation) and

negative energy transfers (phonon annihilation). This symmetry is the direct consequence

of the detailed balance principle. Considering two states between which the sample can

transition, and assuming the a priori probabilities for an incident neutron to induce either

transition (up or down in energy) to be equal, then the ratio of the cross-section for the two

scattering events will be the ratio of the probabilities for the sample to be in either state

initially. Thus the phonon annihilation process (down in sample energy) is less likely and

S(Q,−E) = exp(−E/kBT )S(Q, E) . (3.18)

Features on the negative energy transfer side are also broader, which is an effect of

energy resolution. Because neutrons gain energy in these processes, their final velocities are

higher and timing errors represent larger errors in energy.

3.5.1 Background

The first correction to apply to the data is to subtract a constant background due to

extraneous events in the detector, as well as the signal due to the sample holder and sample
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Figure 3.7: Scattering intensity S(Φ, E) from V sample and empty holder. The data cor-

respond to a constant scattering angle 80◦ ≤ Φ ≤ 90◦. Data measured on LRMECS

instrument at IPNS.

environment. A comparison of signal from the sample and from a typical aluminum encasing

in a displex environment is shown in figure 3.7. The peak around 7 meV in the background

corresponds to diffraction from an Al window in the sample well, yielding a delayed elastic

peak.

One can also note on this graph that S(Φ, E) tends to a constant at low energy transfer,

as expected from Eq. 3.14, since g ∼ E2 and n(E) ∼ kT/E at low E, so S(Φ, E) ∼ constant.

The error bars in this graph represent counting statistics in the detector channels.

Once the background correction is performed, one can obtain the phonon DOS from the

scattered intensity using Eq. 3.14, by dividing out the Bose-Einstein thermal occupation

and the Debye-Waller factor as well as other prefactors. However, the Debye-Waller factor

is not known a priori. Nevertheless it can be calculated from an estimated DOS, as

2W =
1
3
Q2〈u2〉

=
Q2

�

2M

∫ ωmax

0
coth(�ω/2kT )g(ω)/ω dω , (3.19)

with 〈u2〉 the mean thermal displacement, in the approximation of a cubic Bravais crystal.
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We can thus envisage an iterative solution converging on the Debye-Waller factor. An

additional correction for multiphonon scattering is often needed and it can also be applied

in this iterative scheme, as we now discuss.

3.5.2 Multiphonon Scattering

The cross-section for a one-phonon creation process is given by Eq. 3.14 and a similar ex-

pression for the one-phonon annihilation process. However, the experimentally measured

cross-section also contains contributions from higher-order scattering events (for both an-

nihilation and creation processes), which cannot be neglected at higher scattering vectors:

(
∂2σ

∂Ω∂E

)inc

inelastic

=
∞∑

n=1

(
∂2σ

∂Ω∂E

)inc

n−phonon

. (3.20)

We use the multiphonon correction procedure of Bogdanoff and Fultz [58], which we sum-

marize below. The incoherent inelastic n-phonon double differential scattering cross-section

is given, for TOF spectra measured at constant scattering angle, by:

(
∂2σ

∂Ω∂E

)inc

n−phonon

=
σinc

4π�

kf

ki

N

n!
e−2W

×
(

�κ2

2Mω

)n

P (ω)(n)

P (ω) = g(�ω)〈n(ω) + 1〉 − g(−�ω)〈n(−ω)〉 , (3.21)

where the symbolic power notation f (n) means the sequential convolution of n instances of

the function f . Extracting the neutron-weighted phonon DOS thus involves a correction

for multiphonon scattering, which contributes to the measured signal mostly at higher mo-

mentum transfers, as well as corrections for the Debye-Waller factor and the Bose-Einstein

thermal occupation function. This is accomplished through an iterative procedure that cal-

culates the n-phonon contributions to the scattering for each one of the angle banks, fits the

sum of these contributions to the data and subtracts the n ≥ 2 phonon scattering contribu-

tion to obtain the single phonon spectrum from each bank. The multiphonon cross-section

of Eq. 3.20 was truncated after the 5 -th order in n, the n-phonon contribution to this sum

becoming vanishingly small as n increases beyond small values. From the single-phonon
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Figure 3.8: Multiphonon scattering correction for V-6.25%Pd sample at 295 K. The data

correspond to a constant scattering angle 80◦ ≤ Φ ≤ 90◦. Data measured on LRMECS

instrument at IPNS.

scattering, the next iteration of the DOS is easily obtained by applying a correction for

thermal occupation and taking into account the Debye-Waller factor, itself evaluated from

the previous iteration of the DOS. This procedure is iterated until convergence is reached

on the Debye-Waller factor and the DOS itself, yielding self-consistency between all the

computed quantities. Convergence is often achieved in three or four iterations.

Results for a V-6.25%Pd polycrystalline sample are shown in figure 3.8. As seen in

this example, the multiphonon contribution is mostly featureless, owing to the convolution

products of (3.21). For the materials studied in this thesis, the correction is relatively minor

at low temperatures, but becomes significant above room temperature.

3.5.3 Instrument Resolution

Typical instrument energy resolution functions are plotted in figure 3.9. One can see that

instrument resolution gets worse with higher incident neutron energies. Also, the Pharos

instrument has a better resolution than LRMECS because of its longer sample-to-detector

flight path and higher-frequency Fermi chopper.
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Figure 3.9: Energy Resolution for LRMECS and Pharos spectrometers. The resolution

is the full width at half maximum (FWHM) of the line shape, for the instrument in the

specified operating conditions.

3.5.4 Neutron-Weighting

Neutron-weighting is a thorny problem in time-of-flight neutron scattering investigations

of alloys. Because different isotopes have different neutron cross-sections, the modes corre-

sponding to the elements of higher cross-section are overemphasized over those of elements

with lesser neutron scattering power, resulting in a weighting of the partial DOS compo-

nents. We call this measured DOS a generalized phonon DOS (gDOS). In the incoherent

scattering regime for an ordered structure, the weight associated with the vibrations of a

given species in the crystal is (σinc/M) exp(−2W ), with σinc the incoherent neutron scat-

tering cross-section of the species, M its atomic mass and exp(−2W ) the Debye-Waller

factor for this atom of the unit cell [13],[14]. Hence, the neutron-weighted phonon DOS is

rigorously defined as

gNW(E) ∝
∑

κ

gκ(E) exp(−2Wκ) exp(2W )
σκ

Mκ
, (3.22)

where gκ(E), exp(−2Wκ), σκ and Mκ are the partial phonon DOS, Debye-Waller factor, to-

tal scattering cross-section, and mass for atom κ in the basis. The Debye-Waller factor is an
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explicit function of gκ(E). The term exp(−2W ) is the average Debye-Waller correction; this

is calculated from the self-consistent neutron-weighted DOS. The factor exp[2(W −Wκ)] is

very close to unity, with a deviation typically smaller than a few percent.

Currently, there exists no general method to correct for the effects of neutron-weighting.

Generally, we cannot solve the problem thus formulated as the number of undetermined

variables is larger than the number of available equations. However, additional informa-

tion can be obtained on the different components of the DOS, which sometimes involved

well-chosen approximations. Several approaches have been adopted in this thesis, through

computational modelling as well as by combining data from other techniques. These will

be discussed in the following chapters.
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Chapter 4

Effects of Alloying on Phonons in Vanadium

4.1 Introduction

Vanadium is an ideal element for measuring a phonon DOS since it scatters neutrons inco-

herently, and it has a cubic crystal structure (BCC). There is in this case a direct relationship

between the inelastic neutron scattering cross-section and the phonon DOS, as discussed in

chapter 3. These properties make polycrystalline vanadium especially suitable for phonon

DOS measurements using a time-of-flight (TOF) neutron spectrometer.

Our interest in the phonons in V and its alloys is not fueled only by mere convenience,

however. Several known properties of vanadium make it an interesting material in which to

study phonons. First, V is one of the elements with the highest superconducting transition

temperature (Tc = 5.3 K), which reveals the importance of electron-phonon interactions in

this metal. Also, the elastic constants in BCC transition metals are known to vary system-

atically upon alloying, with a good correlation to the average electronic density per atom

[59, 60, 61, 62]. This trend has been interpreted in terms of the electronic structure of BCC

transition metals [63]. Also, some of the elastic constants in vanadium exhibit an anomalous

temperature dependence [64], similarly to the other metals of column 5, Nb and Ta [65, 66],

which is suppressed upon alloying [67]. The origin of this anomaly has also been traced

to the electronic structure [66]. Since there is some correlation between the interatomic

force-constants and the elastic moduli, it is interesting to see whether this behavior carries

over to the phonon DOS, which is the central quantity in phonon thermodynamics. In this

chapter, we concentrate on the effect of alloying on phonons at low (room) temperature.
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The high-temperature phonon properties will be the topic of chapter 6.

Previous measurements of the phonon DOS in vanadium-based alloys have indicated a

strong sensitivity of the phonons to impurities in vanadium. Neutron scattering measure-

ments of the phonon DOS have been reported for the V-rich alloys V-Pt, V-Ta, V-W, V-Ni,

and V-U [68, 69, 70, 71, 72], all in solid-solution with a few percent solutes. Although quite

interesting, these older measurements focused on the dynamics of resonance modes and

lacked the reliability necessary to allow for the investigation of phonon thermodynamics. In

particular, the phonon densities of states for pure V show marked deviations between the

different results reported.

In the following, we report a systematic investigation of phonons and vibrational entropy

in dilute V-X alloys for a large number of solute elements and we examine the emerging

chemical trends. A clear trend is observed for solutes across the d-series: impurities to the

left of vanadium induce a softening of the phonon modes while those to the right cause a

stiffening that is gradually increasing with their number of d-electrons. This trend is robust

and applies to large and heavy impurities of the 4d- and 5d-series as well as those of the

3d-series. This trend goes against what might expected based on mass considerations. For

heavy impurities such as Pd and Pt, one might expect an overall softening of the phonon

modes in the alloy, but this is not observed and instead there is a large overall stiffening

of the phonon DOS. Our results thus show that the mass effect is small compared to the

effect of the changes in the interatomic force-constants due to the rearrangement of the

electronic structure. The difference in electronegativity between the impurity and the host

is identified as a good parameter to parameterize the stiffening in the phonon DOS and

the vibrational entropy of alloying. Electronegativity differences point to the role of charge

transfer, which is investigated using first-principles calculations in the following chapter.

4.2 Experimental Details

4.2.1 Sample Preparation and Characterization

The alloys investigated and some of their relevant properties are listed in table 4.1. The

samples were prepared from slugs of vanadium of 99.8% purity or better, and alloying
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elements of purity better than 99.9%. The elemental components were weighed with a

precision scale to obtain the desired compositions. Several ingots were synthesized for

each material by arc-melting the elemental metals under ultra-high-purity Ar atmosphere.

A Ti getter ingot was melted in the chamber to remove trace amounts of oxygen. Each

sample ingot was flipped in the crucible and melted thoroughly several times to ensure good

homogeneity. The mass loss upon arc-melting was measured on each ingot and found to be

small to negligible in all cases. From the measured mass loss, we estimated an upper bound

on the deviation to the nominal alloy compositions listed in table 4.1 of at most 0.2%.

The samples showed no trace of surface oxidation. The ingots were subsequently cold-

rolled to the desired thickness in order to produce neutron scattering samples with 10%

total scattering cross-section, with the exception of V-Zr and V-Hf samples, which were

crushed to form granules of the appropriate size. The elemental vanadium control sample

was prepared by directly rolling the pure V shots. All the alloys were then recrystallized

at 1000◦ C for an hour under Ar atmosphere and quenched into ice-brine. There was only

minimal surface oxidation on the samples after heat treatment, which was easily removed

on all the cold-rolled samples by a slight mechanical polishing. The Rockwell hardness,

measured before and after heat treatment on several of the alloys (V-Ni, V-Pd, V-Pt),

showed a large softening characteristic of recrystallization.

X-ray diffractometry with Co Kα radiation was performed on all samples using an Inel

CPS-120 position sensitive detector. The diffraction patterns showed that all samples were

BCC solid solutions with no chemical long-range order. Lattice parameters were obtained

from x-ray diffraction patterns measured with a Philips X’Pert series diffractometer using

a Cu Kα x-ray source. The densities of the samples were measured using Archimedes’

method, from which a second value of lattice parameter was derived. The experimental

lattice parameters are plotted in figure 4.1.

Our results indicate almost no change in lattice parameter for the alloys V-6.25%Pd

and V-6.25%Pt. This is in good agreement with the XRD results of Daumer et al., who

found almost no change in lattice parameters for the solid-solutions V-10%Pd and V-10%Pt

[73]. Our results for V-6.25%Nb and V-6.25%Ta are also in good agreement with the values

reported by these authors, after a correction for the difference in composition. For impurities
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Table 4.1: Samples prepared and relevant physical properties.

X cX MX rBCC
m χ a(ρ) a (XRD) σscat

X /MX

(% at.) (a.u.) (Å) Pauling (Å) (Å) (barn)

0 50.94 1.310 1.63 3.032 ± 0.002 3.029 0.100

Ti 6.25 47.87 1.422 1.54 3.045 ± 0.003 3.039 0.091

Cr 6.25 51.99 1.248 1.66 3.020 ± 0.002 3.017 0.067

Fe 6.25 55.85 1.240 1.83 3.008 ± 0.002 3.011 0.208

Co 6.25 58.93 1.219 1.88 3.007 ± 0.002 3.009 0.096

Co 2.00 58.93 1.219 1.88 3.022 ± 0.002 −−− 0.096

Ni 6.25 58.69 1.213 1.91 3.013 ± 0.002 3.012 0.316

Zr 6.25 91.22 1.558 1.33 −−− −−− 0.071

Nb 6.25 92.91 1.428 1.60 3.051 ± 0.003 −−− 0.067

Pd 6.25 106.42 1.339 2.20 3.030 ± 0.004 3.026 0.042

Hf 6.25 178.49 1.537 1.30 −−− −−− 0.057

Ta 6.25 180.95 1.427 1.50 3.047 ± 0.005 −−− 0.033

Pt 6.25 195.08 1.350 2.28 3.034 ± 0.004 [3.024] 0.060
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along the 3d-series, the lattice parameter a shows first a linear contraction from Ti to V to

Cr, followed by a plateau for Fe and Co and finally a slight increase in a from V-6.25% Co to

V-6.25%Ni. We also plotted in figure 4.1 the lattice parameters for more concentrated V-Cr

alloys derived from the density measurements of Lenkkeri et al. as the thick dashed line

[61]. For all concentrations of Cr in V the lattice parameter varies linearly, which is not the

observed behavior for later transition metal impurities at the constant alloy concentration

of 6.25%. This explicitly shows the difference between a rather homogeneous system such

as V-Cr, which exhibits a linear trend as function of composition, and the more dilute V-X

system we investigate, in which effects are more localized and dependent on the properties

of the impurity element.

A comparison of the lattice parameter in the V-6.25%X alloys with the metallic radii

Rm for the pure elements in BCC coordination determined by Teatum and Gschneider

[74] reveals a good correspondence. The relative difference in Rm between the solutes and

vanadium is plotted in figure 4.2. As seen in this figure, the contraction of Rm along the

d-series explains in part the trend observed in the lattice parameter of the random solid-

solutions. A good estimate of the lattice parameter in the alloy is given by dividing this

ΔRm/Rm of the solute by 16 to get the average change in size per atom in the solution

(Vegard’s law). The result of this calculation is indicated by the crosses in Fig. 4.1.

4.2.2 Elastic Moduli

The elastic moduli were measured using an ultrasound pulse-echo technique on the annealed

samples. The shear modulus G = ρc2T and bulk modulus B = ρc2L − 4
3G were obtained from

measurements of the transverse (cT ) and longitudinal (cL) sound velocities, which were

performed using 5 MHz transducers. The sound velocities and elastic moduli could not be

obtained in this way for the V-Zr and V-Nb alloys, because the samples for these alloys

were prepared in the form of coarse-grained powders. Results for B and G are listed in

Table 4.2. Two sets of measurements were performed with different ultrasonic setups. The

second set of measurements is considered more accurate since it used an oscilloscope with a

higher sampling rate. Figure 4.3 shows the relative change in moduli for solutes across the

3d-series.
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Table 4.2: Elastic moduli.

set 1 set 2

composition G B G B

(GPa) (GPa) (GPa) (GPa)

V 46.0 ± 0.7 149 ± 7 48.1 ± 0.2 163 ± 1

V93.75Ti6.25 - - 45.2 ± 0.3 163 ± 1

V93.75Cr6.25 - - 49.2 ± 0.3 176 ± 2

V93.75Fe6.25 - - 51.7 ± 0.3 172 ± 1

V93.75Co6.25 - - 52.5 ± 0.4 173 ± 2

V93Co7 51.3 ± 1.1 154 ± 8 - -

V93.75Ni6.25 48.6 ± 0.9 163 ± 8 50.8 ± 0.3 168 ± 1

V93.75Nb6.25 - - 47.1 ± 0.2 165 ± 1

V93.75Pd6.25 53.4 ± 0.9 150 ± 6 56.2 ± 0.3 168 ± 1

V93.75Ta6.25 - - 49.6 ± 0.3 178 ± 2

V93.75Pt6.25 59.3 ± 1.0 167 ± 7 61.7 ± 0.4 176 ± 2
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A clear trend is observed in the shear modulus G for alloys of vanadium with 3d-series

impurities. For Ti impurities, the shear modulus is softer by about 6%, while for impurities

with more d-electrons than vanadium, the shear modulus stiffens. This stiffening in G

increases with the number of d-electrons of the impurity up to Co impurities, for which 9%

stiffening is observed, then decreases in the case of Ni, which induces about 6% stiffening.

A similar trend is seen in the variation of the bulk modulus B, with Ti inducing softening,

while elements to the right of vanadium induce a stiffening of the alloy bulk modulus. The

stiffening of B is very similar to that observed for G in the case of Fe, Co and Ni solutes.

On the other hand, in the alloy V93.75Cr6.25, the stiffening seems much larger for B than

for G, but it could be due to experimental inaccuracies, and it is still compatible with the

trend observed for other solutes.

Down the Ni column, we observe a large and systematic increase in G, with 10% increase

from V93.75Ni6.25 to V93.75Pd6.25 and again from V93.75Pd6.25 to V93.75Pt6.25. On the other

hand, B only shows a modest increase down this column.

4.2.3 Inelastic Neutron Scattering

Time-of-flight inelastic neutron scattering spectra were measured with the LRMECS chop-

per spectrometer, at the IPNS spallation neutron source at Argonne National Laboratory.

Additional measurements for V, V-Nb and V-Pt were performed on the Pharos chopper

spectrometer at the Los Alamos Neutron Science Center (LANSCE). The neutron scatter-

ing samples were assembled by tiling the specimens into mosaic plates of uniform thickness

of dimension 7.5 cm by 10 cm (5 cm by 7 cm for Pharos), and encasing them in neutron-

transparent thin-walled aluminum pans. The samples were mounted directly onto the

sample holder of the spectrometer, and positioned at 45 degrees with respect to the in-

cident beam (in transmission geometry) to minimize self-shielding. For our samples, this

configuration resulted in about 10% scattering of incident neutrons for both elastic and

inelastic processes, the probability of scattering through inelastic processes being much

smaller, however. All measurements were conducted under vacuum with the samples at

room temperature. The detector coverage of the LRMECS spectrometer ranges from 3◦ to

117◦, allowing measurements over a wide range of momentum and energy transfers. The
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detector coverage on Pharos is even larger, extending from −10◦ to 145◦. In our first ex-

periment on LRMECS, for the measurement of V, V-Ni, V-Pd, and V-Pt samples, the

instrument choppers were set to produce a monochromatic incident energy of Ei = 55 meV.

In the second LRMECS experiment, during which the remaining alloys were measured, the

incident energy was Ei = 50 meV. At these incident energies, the scattered neutrons mea-

sured correspond to a momentum transfer k varying between about 0.5 and 9 Å−1 at zero

energy transfer. This corresponds to an average sampling in reciprocal space covering many

Brillouin zones of the reciprocal lattice for all the samples. During the Pharos experiments,

the incident energies were set to Ei = 75 meV (V-Pt) and Ei = 70 meV (V-Nb). The range

of momentum transfers sampled in the Pharos runs exceeds that in the LRMECS mea-

surements. The LRMECS instrumental energy resolutions for the two incident energies are

plotted in figure 3.9. The FWHM energy resolution of the LRMECS spectrometer in the

run conditions is about 2.5 meV at the elastic line, smoothly decreasing to about 1.0 meV

at 40 meV energy transfer. Typically, data were acquired on each sample (alloys and V

control sample) for about 8 hours to ensure good statistics. The background scattering

from the empty Al pan was measured for the same amount of time. The response from

the 3He detector tubes was calibrated with a standard procedure using a pure vanadium

sample illuminated with a “white” neutron beam, without the Fermi chopper.

4.3 Data Analysis

4.3.1 Density of States

The time-of-flight neutron spectra were first normalized with respect to the cumulated inci-

dent intensity and corrected for detector efficiency as well as time-independent background

following standard procedures. The detector counts were summed into 7 angle banks, cor-

responding to 10◦ scattering angle ranges, covering the range 50◦ to 117◦. The contribution

to the background due to the Al sample container and sample environment was subtracted

using the data collected on the empty sample pan. Only the positive part of the spectra was

conserved, corresponding to energy gained by the sample, since the statistics and energy

resolution on this side of the elastic line were much better. The data below 7 meV are dom-
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inated by the large elastic scattering peak, which was stripped by keeping the data constant

at low energy, as the neutron scattering function is proportional to g(�ω)/ω2 and thus tends

to a constant in the limit of low energy transfer �ω → 0. The neutron-weighted phonon

density of states was determined in all cases following the procedure described chapter 3.

The final phonon DOS curves were all normalized to unity.

4.3.2 Neutron-Weighting

The data were analyzed in the virtual crystal and incoherent-scattering approximations to

obtain the neutron-weighted phonon DOS. We expect the incoherent scattering approxima-

tion to be valid in the case of random substitutional alloys of vanadium. First, the vanadium

host crystal scatters neutrons almost purely incoherently, its coherent cross-section account-

ing for less than 4×10−3 of its total neutron scattering cross-section [75]. Second, the impu-

rity elements, although their scattering cross-sections have a coherent component [75], only

contribute to the incoherent signal, since they are distributed randomly, thus preventing

any global interference between the scattered neutron waves. Because of this, one should be

careful to consider the total scattering cross-section for the impurities, σscat = σcoh + σinc.

Table 4.1 summarizes the neutron scattering properties of the elements present in our

samples. As seen in this table, the neutron-weight ratios, σ/M for the solute atoms deviate

from the value for vanadium by a factor of 3 on either side. This neutron-weighting can affect

the inelastic energy spectra measured experimentally, if the partial DOS for the impurity

differs markedly from that for the host, as discussed in chapter 3. However, for the low

concentrations of substitutional impurities considered here, the overall bias compared to

the true phonon DOS is expected to be small. Nevertheless, a correction for this effect was

performed for the alloys potentially affected the most. A quantitative estimate of this effect

on the measured vibrational entropy is thus derived.
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Figure 4.4: Pure Vanadium phonon DOS. Comparison of different measurements and pub-

lished results of Sears [76].

4.4 Phonon DOS

4.4.1 Pure Vanadium

The results of our measurements for the phonon density of states of pure vanadium are

shown in figure 4.4, where they are compared with the previous measurement of Sears [76]

and the measurement of Bogdanoff et al. [77]. As can be seen in this figure, the results

of our different measurements for pure vanadium on Pharos and LRMECS yielded phonon

DOS curves that are in very good agreement with each other, as well as with the previous

measurement of Sears, carried with a triple-axis spectrometer in constant-Q mode [76]. The

phonon DOS for pure V measured by Bogdanoff et al. [77] using the HFIR-HB2 triple-axis

spectrometer at Oak Ridge National Laboratory shows more scatter, but it is nevertheless

in good agreement with our time-of-flight results.

4.4.2 Trend Across the 3d-Series

Our result for the vanadium phonon DOS and the neutron-weighted phonon DOS of V-

6.25%X, with X a 3d-series solute, are shown in figure 4.5. The average phonon frequencies
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for all the alloys are listed in table 4.4.

The neutron-weighted phonon DOS curves for these alloys show a systematic stiffening

from the case of V-6.25%Ti to the case of V-6.25%Ni. In the case of Ti impurities, the

phonon DOS is softer than in pure V. All modes appear shifted to lower energies, with

a maximum shift of about 2 meV, on the lower energy side of the transverse peak. The

longitudinal peak and the cutoff frequency appear shifted down by about 1 meV. In the

case of Cr, Fe, Ni, and Co impurities, the phonon DOS is stiffer than in pure vanadium and

this stiffening is gradually increasing along the 3d-series. The upward energy shift affects

all the modes in these alloys and the cutoff shift goes from about 1 meV in the case of Cr

to about 2.5 meV in the case of Ni. Another observed trend is that impurities that induce

the larger shifts of the phonon DOS also affect its shape the most and in particular the

transverse and longitudinal peaks appear to coalesce for the impurities with higher atomic

number (Fe, Co, Ni).

4.4.3 Trend Down the Ti Column

Our measurements for the alloys of vanadium with Ti, Zr, and Hf are shown in figure

4.6. All these solutes induce a softening in the phonon DOS, compared with pure V. The

softening increases when going down the column from Ti to Hf. This is best seen at low

energies, between 8 and 17 meV and around the cutoff energy. Since these impurities are

isoelectronic, this trend can be associated with the increase in mass of the impurity down

the column, as well as the increase the size of the impurity, which induces a larger average

lattice parameter for the alloy (0.3% increase in the case of Ti, see table 4.1). Also, in the

case of Zr and even more so for Hf, the partial phonon DOS for the impurities is likely to

exhibit a resonance mode at low energies, due to the high impurity/host mass ratio (1.8

and 3.5, respectively). We discuss such resonance modes for Pd and Pt impurities (mass

ratios of 2.1 and 3.8, respectively) below.

4.4.4 Trend Down the V Column

Figure 4.7 shows our results for the phonon DOS of the isoelectronic alloys V-Nb and V-

Ta. Niobium and tantalum impurities have a remarkably small effect on the vanadium
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Figure 4.5: Neutron-weighted Phonon DOS for impurities across the 3d-series measured on

LRMECS. Broken traces: pure vanadium, solid lines: V-6.25%X. Ei = 50 meV, except for

top curves where Ei = 55 meV.
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Figure 4.6: Neutron-weighted Phonon DOS for impurities down the Ti column measured

on LRMECS, Ei = 50 meV.

phonon DOS. Nb induces a slight softening of about 0.5 meV at the cutoff as well as on

the low-energy side of the transverse peak. On the other hand, Ta solutes seem to have

no detectable effect on the V phonon DOS, within our experimental error bars. This is

surprising considering the impurity/host mass ratio in excess of 3.5 in this case. However,

it is possible that this is an artifact due to the stronger neutron-weighting for Ta impurities,

with Ta modes scattering neutrons three times more weakly than vanadium modes (see the

σscat/M ratios in Table 4.1). Nevertheless, the overall effect of Ta solutes on the phonon

DOS appears to be very weak.

4.4.5 Trend Down the Ni Column

Ni, Pd and Pt impurities have the strongest effect on the V phonon DOS. The curves plotted

in figure 4.8 are the neutron-weighted DOS curves for V-6.25%Ni, V-6.25%Pd, V-6.25%Pt

and V. Ni, Pd and Pt impurities induce a large stiffening of the vanadium phonon DOS,

which is gradually increasing from the case of Ni to that of Pd and Pt. The shift of the

cutoff is about 2.5 meV in the case of Ni and almost 4 meV in the case of Pt. The pure V
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Figure 4.7: Neutron-weighted Phonon DOS for impurities down the V column measured on

LRMECS, Ei = 50 meV.

and V-6.25%Pt measurements using Pharos are shown in figure 4.9. As can be seen on this

figure, the agreement between the LRMECS and Pharos measurements is excellent. In all

the alloys down the column, the shift affects the full DOS rather uniformly, although there is

also some restructuring of the phonon spectrum, with the transverse and longitudinal peaks

coalescing in the alloys. Also, we show below using a Born–von Kármán lattice dynamics

model that Pd and Pt impurities exhibit resonance modes around 12 meV. However, these

modes only affect a small portion of the total DOS for impurity concentrations of 6.25%.

Hence the neutron-weighting does not affect the general shape of the total phonon DOS

significantly and has a minor effect on the calculated vibrational entropy, as discussed in

the following.

4.4.6 Concentration Dependence in V-Co

We investigated the dependence of the phonon DOS on the concentration of Co impurities.

The V-Co system is particularly suitable for this type of study, as it is almost free of neutron-

weighting, and Co impurities induce a significant distortion of the phonon DOS. The alloys
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V-6.25%Co and V-2.0%Co were measured on the LRMECS time-of-flight spectrometer, to-

gether with the reference V sample, while the alloy V-7.0%Co and a pure V reference were

measured with the HB-2 triple-axis spectrometer at HFIR (Oak Ridge National Labora-

tory). The triple-axis data are unpublished results measured by P.D. Bogdanoff, B. Fultz et

al. with the experimental conditions described in [77]. The phonon DOS for the alloys and

control samples are shown in figure 4.10. As seen in this figure, the addition of Co impurities

in V causes a gradual stiffening of the phonons. The data from LRMECS show that the

stiffening increases in proportion to the impurity concentration. The data for V-7.0%Co

show a much bigger stiffening than those for V-6.25%Co. Although we cannot rule out

the possibility of stronger impurity dependence of the DOS from 6.25% to 7.0% impurity,

this seems rather unlikely considering the small difference in overall concentration. Besides,

the random solid-solutions will present concentration fluctuations that will make the two

materials locally very similar. It is possible that a small amount of a second phase is present

in the V-7.0%Co alloy, but we think that the difference comes in part from the different

sampling of reciprocal space between the time-of-flight and triple-axis measurements.

4.5 Born–von Kármán Inversions

Fitting a Born–von Kármán lattice-dynamics model to the data allowed us to calculate

phonon DOS curves for the alloys free of neutron-weighting and their corresponding dif-

ference in vibrational entropy with pure vanadium. The refined atomistic lattice dynamics

model also provides valuable insight into the change in interatomic force-constants upon

alloying, identifying the origin of the change in vibrational entropy. We conducted such

a Born–von Kármán analysis on the alloys V-6.25%Ni, V-6.25%Pd and V-6.25%Pt, which

exhibit the biggest effect of impurities on the phonon DOS. Also, these samples present

possibly the strongest neutron-weighting effect in the series of alloys we studied, so the

quantitative assessment of neutron-weighting on the phonon DOS and vibrational entropy

is of particular interest.
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Figure 4.11: Supercell model used in lattice dynamics inversions. The central black circle is

the solute atom X. Small dark atoms are 1NN vanadium atoms. Arrows indicate the bonds

whose force-constants were optimized in the simulation. Solid arrows: X-V force-constants.

Dashed arrow: V1-V1 force-constants.

4.5.1 Lattice Dynamics Model and Fitting Procedure

The lattice dynamical model we employed to calculate the phonon DOS was based on a

16-atom cubic V15X1 supercell made out of 8 BCC V unit cells, with the central V atom

substituted by an impurity atom X (X = Ni, Pd, Pt or Co), as illustrated in Fig. 4.11.

The 8 vanadium atoms that are first-nearest-neighbors (1NN) to the impurity were treated

separately from the 7 other, more distant, vanadium atoms. Three sets of independent

force-constants were used in the model, corresponding to three types of bonds: X-V bonds,

V1-V1 bonds (both vanadium atoms 1NN to the impurity), and V-V or V1-V bonds (at

most one vanadium atom 1NN to the impurity). All bonds were included up to 5NN, if

present. X-X type bonds correspond to higher-distance bonds (6NN) and were not included.

The consistency of this model was checked by reproducing the DOS of pure BCC vanadium,

upon setting the mass of the impurity atom equal to that of vanadium and setting all the

force-constants equal to their pure V values.

This supercell model allowed us to compute both the true phonon DOS and the neutron-

weighted phonon DOS by applying the neutron weights discussed above to the different
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modes. The DOS curves were calculated from a random sampling of �q points in reciprocal

space, covering a sphere of arbitrarily large radius in order to minimize the effect of partial

sampling of the farthest Brillouin zones. A convergence study lead us to use 1×103 random

�q points for DOS calculations with the supercell model, whose dynamical matrix D(�q) has

48 eigenvalues at each �q point. The calculated gDOS histograms were binomially smoothed

to match the experimental instrument average energy resolution. Our fitting procedure

employed an implementation of Powell’s algorithm [78] to optimize the tensorial interatomic

force-constants Φκ,κ′
α,β by minimizing the deviation between the calculated and experimental

DOS curves, as evaluated through the generalized χ2:

χ2 =
imax∑

i=imin

(gexp
i − gcalc

i )2

(σexp
i )2

, (4.1)

with σexp
i the experimental error bars.

The experimental DOS curves were fit by optimizing the 6 parameters corresponding

to 1NN and 2NN X-V force-constants and 2NN V1-V1 force-constants, while all remaining

force-constants were constrained to their pure vanadium values. To identify and discard

possible local minima solutions, we conducted the fitting procedure for 20 different starting

guesses in the parameter space, which were obtained from the pure V force-constants by

applying a random deviation with a spread equal to half the value of each force-constant.

In all our simulations, we used as pure vanadium force-constants the values published

by Colella et al., which were obtained by fitting V dispersion curves measured by diffuse

inelastic x-ray scattering [79]. For consistency, the experimental DOS of pure vanadium

was also inverted, using a primitive BCC unit cell and the same procedure followed for

the V15X1 supercells. This inversion up to 4NN bonds yielded a force-tensor in very good

agreement with that published by Colella et al.

4.5.2 Minimization Results

We present here our minimization results for the force-constants and the corresponding

DOS and partial DOS curves. Some of the guesses for the force-constants were trapped in

local minima in the parameter space during the fitting procedure. For this reason, initial
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guesses that converged towards bad fits, with peaks at either much higher energies than the

cutoff energy or at very low energies were discarded. The average and standard deviation

for each force-constant was calculated from the remaining population. Partial and total

supercell DOS curves were then calculated from these.

Minimized Force-Constants

Assuming a central potential, longitudinal and transverse force-constants were calculated

from their optimized tensorial counterparts according to [21]:

ΦxNN
αβ = (LxNN − T xNN)

rαrβ
r2

+ δαβT
xNN (4.2)

where LxNN and T xNN are the longitudinal and transverse stiffnesses for xth NN bonds,

and r and rα are the magnitude and α component of the bond vector. Results are listed

in table 4.3. The central 1NN X-V force-constants are plotted versus the relative change in

metallic radius in figure 4.12.

The elastic constants c11, c12 and c44 and the elastic moduli B = (c11 + 2c12)/3 and

G = c44 were calculated from the minimized tensorial force-constants, using the Born-Huang

relations (see [20]), which were evaluated up to 3NN bonds for a BCC lattice:

c11 =
2
a
(Φ1NN

xx + Φ2NN
xx + 4Φ3NN

xx )

c12 =
2
a
(2Φ1NN

xx − Φ1NN
xy − Φ2NN

yy + 2(2Φ3NN
xy − Φ3NN

xx − Φ3NN
zz ))

c44 =
2
a
(Φ1NN

xx + Φ2NN
yy + 2(Φ3NN

xx + Φ3NN
zz )) (4.3)

The derivation of these relations is given in an appendix. Supercell alloy averages for B and

G were then obtained by taking into account the fraction of bonds of X-V or V-V type for

bonds up to 3NN (in this calculation, the V-V bonds in the 1NN shell around the impurity

are considered identical to more distant V-V bonds):

B =
3∑

i=1

fiNNB
XV
iNN + (1 − fiNN)BV

iNN
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Table 4.3: Central force-constants from inversion procedure compared with pure vanadium

values from [79].

Φ(N/m) V ∗ V-Pt V-Pd V-Ni

† X-V L1 25.4 84 ± 8 75 ± 3 −2 ± 5
† X-V T1 3.63 −7 ± 7 −13 ± 3 22 ± 3
† X-V L2 6.49 21 ± 9 11 ± 2 8 ± 11
† X-V T2 -2.15 0 ± 12 −1 ± 2 1 ± 7
‡ V1-V1 L2 25.4 21 ± 11 21 ± 3 26 ± 7
‡ V1-V1 T2 3.63 3 ± 4 3 ± 1 −11 ± 2

∗R. Colella and B.W. Batterman, Phys. Rev. B 1, 3913 (1970).
†impurity-vanadium bond.
‡vanadium-vanadium bond in 1NN shell around impurity.

G =
3∑

i=1

fiNNG
XV
iNN + (1 − fiNN)GV

iNN , (4.4)

with fiNN the fraction of X-V type bonds amongst i-th NN bonds. The bond fractions can

be obtained from enumerating the number of bonds of each type within our supercell. One

finds: f1NN = 1
8 , f2NN = 1

7 , and f3NN = 2
11 .

Some clear trends can be observed in our force-constant minimization results. The most

important trend is the very large change in the 1NN impurity-host force-constants, notably

the longitudinal force-constant L1 of 1NN X-V bonds. This force-constant is much larger in

V-Pt and V-Pd than it is in pure V, while it is much smaller in V-Ni. This result indicates

that L1 increases or decreases dramatically as one replaces the central V atom by a larger

(Pd, Pt) impurity atom, or a smaller (Ni) one. A similar effect is observed on L2, with

an apparently comparable magnitude, although the numerical noise in the inversion results

makes comparisons more difficult in this case. Conversely, the transverse stiffness T1 clearly

follows an opposite trend, decreasing as the size of the impurity atom gets larger. The trend

in L1 is expected from the shape of the binding energy vs. separation curve for a metal,

such as described by the universal equation of state of Rose et al [80]. In effect, as the

size of the impurity substituted for the host vanadium atom increases, the X-V bond is put
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Figure 4.12: Longitudinal and transverse force-constants from optimized lattice dynamics

model. The horizontal axis is the relative change in metallic radius between impurity and

host. The central force-constants are calculated using Eq 4.2. Lines are drawn to guide the

eye.

under compression, so the longitudinal stiffness of the bond increases. The converse effect

in T1 is less intuitive at first. A simple physical argument can nevertheless be made to

explain the trend in T1. The densely-packed 〈111〉 rows of atoms are put in compression

by the introduction of large impurities, which drives an instability with respect to lateral

displacements of the atoms. The result is a negative T1 transverse force-constant. This

mechanism has previously been invoked to explain the lattice dynamics of crystals with

interstitial impurities [81]. The magnitude of the change in L1 and T1 can be compared to

the difference in metallic radius between the host and impurity atom, and a good correlation

is found between those two quantities (see Fig 4.12). It is helpful to recall, however, that

the relaxation of atomic positions around the impurity atom is not at all taken into account

in our lattice dynamics model. It is possible that, in reality, the shift in bond length is

distributed over a longer distance than just the 1NN shell around the impurity, so that

the X-V1 bond lengths would be less affected. Also, the magnitude of the change in L1

seems very large for a 2% increase in impurity metallic radius, which might indicate that

an additional effect is at play. We will discuss these points further in following sections.

A test of the force-constants obtained from the lattice-dynamics inversion procedure is to
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compare the elastic moduli B and G, obtained from Eq. 4.3 and 4.4, with the experimental

values from ultrasound measurements. Both values are plotted in Fig 4.13. As can be

seen in this figure, the experimental and calculated results are in good agreement, although

the calculated value of G is consistently underestimated by about 20%. The trends in

both G and B are very well reproduced, as can be seen in a plot of ΔG/G and ΔB/B

(see Fig. 4.14). The systematic deviation between the calculated and experimental values

of G has two possible explanations. First of all, we calculated the shear modulus from

G = c44, which is not entirely appropriate for a polycrystalline material, although this

yields a convenient estimate. A more accurate value for a random polycrystalline solid

could be obtained from the arithmetic mean of the Voigt and Reuss shear moduli, which

take into the elastic anisotropy parameter of the single crystal [61, 50]. Secondly, the Born-

Huang equations for determining the elastic constants from the interatomic force-constants

in the long-wavelength limit are known to converge slowly with the range of interactions

taken into account [20, 23], so a better agreement should be obtained by extending Eq. 4.3

to interactions beyond 3NN bonds.
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Calculated Partial and Total DOS Curves

From the minimized values of tensorial force-constants, we used the same supercell model

to calculate the total and partial DOS curves for V-Ni, V-Pd and V-Pt. These calculated

DOSes were convolved with the resolution function for LRMECS (Fig. 3.9, Ei = 55 meV)

and are shown in figure 4.15. The most striking feature is the low-energy resonance mode

observed in the Pt and Pd impurity partial DOS curves. For both types of impurities, this

resonance is observed around 12 meV and accounts for most of the impurity vibration modes.

Such impurity resonance modes have been predicted and experimentally observed before;

they are known to occur when the mass ratio between impurity and host atoms is large.

Although the critical value of this mass ratio for the appearance of a resonance mode depends

on the bonding between impurity and host, a critical ratio of two is a general estimate

[81, 21]. In both V-Pt and V-Pd, an extra impurity peak is observed at high energies,

slightly above the cutoff energy of pure vanadium, while practically no modes are present

at intermediate energies. The high-energy peak can be attributed to a local vibration mode,

involving simultaneous displacements of the impurity and its nearest neighbors. Within the

framework of the Mannheim theory of impurity vibrations, the coexistence of resonance and

local modes has been predicted to occur in the case of heavy impurities that are strongly

bound to the host lattice [81]. For both V-Pt and V-Pd also, the pDOS curves for 1NN,

2NN and 3NN vanadium atoms around the impurity are very similar. The 3NN pDOS is

similar to the DOS curve for pure vanadium and shows that the vibrations of 3NN atoms

are only slightly affected by the impurity. On the other hand, the 1NN pDOS shows an

important stiffening in both cases, and due to the fact that the 1NN atoms represent 8 out

of the 16 atoms in the supercell, this accounts for most of the stiffening observed in the

experimental total DOS curves. The stiffening in the 2NN pDOS is smaller but present in

both cases. For the 1NN and 2NN, the pDOS stiffening in more important in the case of

the Pt impurity than in the case of the Pd impurity, which can perhaps be attributed to

the larger size of the Pt impurity atom. In the case of Ni impurities, the impurity pDOS

does not show any resonance mode and is similar to the pDOS of the surrounding V atoms.

This is consistent with the mass of Ni being only 15% heavier than that of V.
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Figure 4.15: Partial phonon DOS for the solute atom and its V neighbors. The partial DOS

are obtained from the optimized supercell force-constants.
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Figure 4.16: Neutron-weight function derived from partial phonon DOS.

Neutron Cross-Section De-Weighting

One can see from the values in table 4.1 that the ratios of phonon scattering intensities

of the impurity elements to those of the vanadium matrix atoms range between 3.1 in the

case of Ni to 0.4 in the case of Pd. For impurity concentrations of 6.25%, the overall bias

compared to the true phonon DOS is expected to be reasonably small, but a correction was

nevertheless performed to obtain accurate values of vibrational entropy.

From the individual pDOS curves we constructed both the total DOS and the neutron-

weighted total DOS curves of the alloys V93.75Ni6.25, V93.75Pd6.25 and V93.75Pt6.25. The

ratio of these then gave us a neutron-weight distribution, which we used to correct the

experimental DOS curves, by dividing out the neutron-weighting. The so-obtained neutron-

weighting functions are shown in figure 4.16.

The corrected experimental DOS curves as well as the DOS curves resulting from our

minimization procedure are presented in figure 4.17. One can see on this figure that the Pd

and Pt resonance modes are more prominent once corrected for the neutron-weighting, as

expected from the fact their σ/M ratios are smaller than for V. The overall effect on the

total DOS is small in all cases, however.
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4.6 Vibrational Entropy

4.6.1 Trend with Alloying Element

The vibrational entropy Svib is given by

Svib = 3kB

Emax∫
0

[(n+ 1)ln(n+ 1) − n ln(n)] g(E) dE , (4.5)

where nE is the Bose-Einstein distribution and g(E) is the DOS, both for the same tem-

perature. The vibrational entropy of alloying is then defined as Sal
vib = SV−X

vib − SV
vib. For

each alloy, the DOS used in Eq. 7.5 was the experimental neutron-weighted DOS curve.

The cutoff energy Emax was estimated visually from the DOS. It was checked that small

changes in Emax around the estimated value (±1 meV) did not significantly affect the value

of Svib. The Results for room-temperature are listed in Table 4.4.

The vibrational entropy of alloying follows a clear trend as function of the solute element,

as can be seen in Fig. 4.18. For elements to the left of vanadium in the periodic table, Sal
vib

is positive, corresponding to the softening of the phonons upon alloying, while elements to

the right of vanadium yield a negative Sal
vib by the reverse effect. The trend in vibrational

entropy is mirrored in the plot of the average phonon frequency of figure 4.19.

The vibrational entropies of alloying are large for impurities down the Ti column and for

impurities at the end of the transition metal series, which have an important difference in

their number of d-electrons and their electronegativity, compared with the host vanadium

atoms. Sal
vib also increases in magnitude with the mass and size of the impurity. This is

observed both for solutes from column IV, which have increasing positive values of Sal
vib,

from Ti to Zr and Hf, and also for solutes from column VIIIc, which yield decreasing

negative values from Ni to Pd and Pt. Chromium and impurities that are isoelectronic

with vanadium (Nb, Ta), have smaller effects on Svib. The effect seen for impurities from

either end of the transition metal series are comparable in magnitude with the positive

configurational entropy of mixing, Smix
cf = −kB[clnc + (1 − c)ln(1 − c)], which for 6.25%

impurities gives an entropy gain Svib(0.0625) = 0.23kB/at.
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Table 4.4: Vibrational entropy of alloying and mean phonon energy.

composition < �ω > Ecut Sal
vib N.W.∗ Sal

vib cor.† Smix
vib cor.†

(meV ) (meV ) (kB/at) (kB/at) (kB/at)

pure V 22.9 ± 0.2 35 na na na

V93.75Ti6.25 22.3 35 0.08 ± 0.01 na na

V93.75Cr6.25 23.1 35 −0.04 ± 0.01 na na

V93.75Fe6.25 23.6 36 −0.09 ± 0.01 na na

V93.75Co6.25 23.9 36 −0.12 ± 0.01 na na

V93.75Ni6.25 23.7 36 −0.09 ± 0.01 −0.08 ± 0.01 −0.08 ± 0.01

V93.75Zr6.25 22.0 35 0.12 ± 0.02 na na

V93.75Nb6.25 22.4 35 0.05 ± 0.01 na na

V93.75Pd6.25 24.5 38 −0.17 ± 0.01 −0.15 ± 0.01 −0.019 ± 0.01

V93.75Hf6.25 21.9 35 0.14 ± 0.02 na na

V93.75Ta6.25 22.6 35 0.01 ± 0.02 na na

V93.75Pt6.25 25.1 40 −0.24 ± 0.01 −0.21 ± 0.01 −0.27 ± 0.01

∗from neutron-weighted phonon DOS
†from corrected phonon DOS



84

Figure 4.18: Neutron-weighted vibrational entropy of alloying (de-weighted values in the

case of Ni, Pd, and Pt impurities).

Figure 4.19: Average phonon energy. Solid symbols: from experimental phonon DOS. Open

symbols: estimate from Grüneissen parameter and impurity metallic radius.
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4.6.2 Effect of Neutron-Weighting

The effect of neutron-weighting on the calculated vibrational entropy can be estimated

by comparing the values of vibrational entropy obtained from the neutron-weighted and

de-weighted phonon DOS. The phonon DOS for V-Ni, V-Pd, and V-Pt were analyzed

using the Born–von Kármán lattice dynamics inversion procedure described above, which

allowed correction for the effect of neutron-weighting. The neutron-weighted and corrected

vibrational entropies of alloying for these alloys are listed in Table 4.4. The effect of neutron-

weighting is potentially largest when the alloy components have very different ratios of

cross-section over mass. However, even in this case, neutron-weighting only has an effect

if the different species have sufficiently different partial densities of states. The alloy V-

Pd shows the largest possible neutron-weighting, owing to the resonant nature of the Pd

pDOS and the Pd neutron scattering cross-section, which yields a scattering intensity ratio

compared with vanadium of 0.4. Even in the case of Pd impurities, one can see that the

effect of neutron-weighting on the vibrational entropies listed in Table 4.4 is of modest

magnitude, comparable to the statistical error due to counting statistics on the phonon

DOS itself. The same is true for Ni and Pt impurities. It was shown above that most of

the stiffening of the DOS is due to the stiffened pDOS curves for the 1NN vanadium atoms

around the impurities. Most of the entropy change is associated with the vibrations of these

1NN vanadium atoms, and is not affected by neutron-weighting.

4.6.3 Vibrational Entropy of Mixing

The difference in entropy between the pure elements and the alloy, is the vibrational entropy

of mixing:

Smix
vib = S

V1−xXx

vib − ((1 − x)SV
vib + xSX

vib) . (4.6)

This analysis conserves the number of atoms before and after alloying, and is representative

of an entropy for a closed thermodynamic system. We computed this quantity for the

V-Ni, V-Pd, and V-Pt alloys, using the de-weighted phonon DOS curves and published

experimental phonon DOS curves for FCC Ni, Pd, and Pt [82, 83, 84]. Results are listed in
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Figure 4.20: Neutron-weighted vibrational entropy of alloying for V-Co alloys with different

Co concentrations. Solid symbols: LRMECS data. Open symbol: HFIR-HB2 data.

Table 4.4. Because the vibration frequencies in pure Pd and Pt are lower than in V, Smix
vib

is more negative than Sal
vib in these cases. In the case of Pt solutes, the vibrational entropy

of mixing (−0.27kB/at) is even larger in magnitude than the configurational entropy gain

(+0.23kB/at), which makes the total entropy of mixing impurities negative in this case (the

electronic entropy turns out to augment this effect, as discussed in the following).

4.6.4 Concentration Dependence in V-Co

The vibrational entropies of alloying for V-Co obtained from the phonon DOS curves of

figure 4.10 are shown in figure 4.20. Co has almost the same σ/M as V, so these vibra-

tional entropies are almost free of neutron-weighting. For the data from LRMECS for Co

concentrations xCo ≤ 6.25%, Sal
vib varies linearly with xCo. The data point for xCo = 7%

does not fall exactly on the same line, but the error bars on this value are larger and the

discrepancy might be attributed in part to the different technique used in this measurement,

as discussed above.

4.6.5 Connection with Elastic Constants

As can be seen from figures 4.19 and 4.18, the vibrational entropy of alloying is directly

related to the change in average phonon energy upon alloying. This is expected since in first
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approximation, an average phonon energy or Debye frequency can describe the vibrational

entropy fairly well, as Svib � kB(3 + 〈ln(kBT/�ω)〉) in the high-temperature limit. We also

observe a high degree of correlation between the shear elastic constants and the vibrational

entropy, as seen in figure 4.3. The shear modulus G appears closely correlated to the mean

phonon energy and vibrational entropy, while the trend in the bulk modulus B is not quite

as clear. This is best seen in figure 4.21. This is expected from simple considerations in,

for example, a Debye model [50]. In the Debye model of atomic vibrations, the density of

states is proportional to ω2/C3
D, with CD the Debye average sound velocity:

3
C3

D

=
1
C3

L

+
2
C3

T

, (4.7)

where CL and CT are, respectively, the longitudinal and transverse sound velocities. Typi-

cally, CL is larger than CT , and in the case of V alloys CL/CT ∼ 2 so that the second term

in the right-hand side of Eq. 4.7 is about 16 times larger than the the first term. Equation

4.7 thus shows that the shear modulus is more important than the bulk modulus (in the

Debye model) in estimating the average phonon frequency and vibrational entropy. This is

also observed experimentally, at least qualitatively.

4.7 Chemical Trends

The effects observed on the vanadium phonon DOS upon alloying of 6.25% transition metal

impurities are large and follow some systematic trends, as discussed above. The systematic

stiffening of the phonon DOS for solutes across the transition metal series is opposite to

the effect of increasing solute mass. This indicates that the mass effect is a smaller effect

and that the main effect is due to changes in interatomic force-constants, associated with

changes to the electronic structure of the crystal upon introduction of the impurities. Two

types of factors can influence this change in the electronic structure: first, the size of the

impurity atoms (metallic radius Rm), and second, their atomic electronic properties, such

as their number of d-electrons, Nd, and electronegativity, χ.
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Figure 4.22: Neutron-weighted vibrational entropy of alloying plotted against relative

change in metallic radius between host and impurity. Metallic radii are from Table 4.1.

4.7.1 Effect of Metallic Radius

The vibrational entropy of alloying is graphed against the relative change in metallic radius

in figure 4.22. There is a generally fair correlation between the two quantities, with most

points falling into the lower-left and upper-right quadrants. This is not surprising. Vi-

brational entropy tends to increase as the average lattice parameter increases and phonons

soften. More quantitative assessments using the Grüneisen parameter are given below.

More recent models, such as the “bond-stiffness vs. bond-length” model, have developed

similar considerations, seeking a linear relationship between the interatomic force-constants

and the length of a given chemical bond [8]. However, this model does not give predictions

for chemical trends, when one component of the bond is systematically varied as studied

here. Two points in the lower portion of figure 4.22 are not following the same metallic

radius trend observed in the rest of the alloys. These correspond to Pd and Pt impurities.

Pd and Pt solutes do not alter substantially the lattice parameter of the alloy, yet they

produce the largest phonon stiffening.

The effect of the impurity metallic radius on the average lattice parameter was seen to
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account for the experimental trend of Fig. 4.1. In a similar fashion, one can calculate the

effect of the impurity metallic radius on the average phonon frequency, using the Grüneisen

parameter γG (Eq. 2.58). Using our measured bulk modulus and reported values for the

heat capacity CP and linear coefficient of thermal expansion α at 300 K [85, 86], we obtained

γG = 1.23 for V at 300 K. The change in average phonon frequency is then obtained from

Δ〈ω〉
〈ω〉 � −3 cγG

ΔRm

Rm
, (4.8)

with c the concentration (1/16). Results are shown together with the experimental values

in figure 4.19. One can see on this figure that the values predicted from Rm in this model

are in good agreement with experimental results for impurities in columns adjacent to V.

However, the agreement is poor for impurities from the late transition metals. The predicted

effect is much too small for Fe, Co, and Ni solutes and in the case of Pd and Pt a softening

is predicted instead of the strong observed stiffening. This illustrates limitations of these

atomic size considerations.

4.7.2 Effect of Electronegativity

Figure 4.23 shows a correlation plot of ΔSal
vib with the difference in electronegativity between

solute and host atoms on the Pauling scale, ΔχPauling. This graph shows that ΔSal
vib varies

linearly with the electronegativity of the solute, even for the large and heavy solutes of the

4d and 5d rows. The correlation with electronegativity for our 6.25% solute concentrations,

weighted with experimental error bars, is ΔSal
vib = −0.34(±0.06)Δχ. This correlation is

successful both across the 3d row and down three columns of the periodic table. The

charge transfer between solutes and host vanadium atoms, as quantified by the Pauling

electronegativity scale, accounts surprisingly well for the trends observed in the phonon

DOS. This result prompted us to investigate charge transfer effects in these alloys using

first-principles calculations. Results are discussed in the next chapter.
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Figure 4.23: Neutron-weighted vibrational entropy of alloying plotted against Pauling’s

electronegativity of the solutes. The line is a fit to the data.

4.7.3 Comparison with Trends for BCC Transition Metals

We can compare the present results to previous observations for BCC transition metals. It

has been shown that the phonon dispersions of BCC transition metals exhibit systematic

trends correlating with their number of d-electrons [87, 88]. The BCC lattice exhibits

inherent instabilities for deformations toward the HCP lattice and the ω structure, which

leads to the occurrence of both types of martensitic transformations in Sc, La, Ti, Zr and Hf

[89, 90, 91, 92, 93]. The instability toward the ω transformation appears as a pronounced

dip in the dispersions at the L 2/3[111] point, or ω-point. This weakness is understood as

a geometric feature of the BCC lattice [87]. The displacement of the ions in this phonon

mode corresponds to motions of dense rows of atoms in the [111] directions that do not

alter the 1NN distance between ions. Because the 1NN interactions are strongest and they

do not come into play in this displacement pattern, the corresponding energy is particularly

low. This feature is also present in BCC alkali metals and was reproduced in theoretical

calculations [94]. The BCC to HCP martensitic transformations in the elements of groups

3 and 4 are also explained in terms of precursor modes corresponding to a mechanical

weakness of the BCC lattice. In this case, the precursor mode involved is the N-point
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(1/2[110]) transverse phonon, T[11̄0]. As was shown by Petry [87], the group 3 and 4 BCC

elements exhibit a valley of low-energy, strongly damped modes along the low-symmetry

[2ξ ξ ξ] direction, which connects the L 2/3[111] and T[11̄0]1/2[110] modes. These low-energy

modes contribute an increase in vibrational entropy, which stabilizes the BCC phase at high

temperatures.

The dip at the ω-point in the L[111] phonon branch is progressively suppressed as the

number of d-electron increases. Petry has related this observation to the strengthening of

directional bonding with the filling of the d-band, which leads to “cross-locking” of [111]

rows of atoms [87, 88]. Directional bonding also stabilizes the T[11̄0] [110] transverse phonon

branch. As a result, the BCC phase is mechanically stabilized at lower temperatures for

more filling of the d-band. This strong stiffening of the phonons is observed as one goes

from group 5 to group 6 elements, with an increase in nominal d-band filling from 3 to 4 (or

number of valence electrons per atom between 5 e/at and 6 e/at). For example, the cutoff

energy of the phonon DOS increases from 21 meV to 28 meV between Ta and W [95], from

27 meV to 33 meV between Nb and Mo [96], and from 33 meV to 40 meV between V and

Cr [36] (magnetism also intervenes in the latter case, but it is believed to yield a softening,

not a stiffening).

The d-band filling has also been invoked to explain the composition dependence of the

elastic moduli in BCC transition metal alloys [61, 62, 60, 65, 66, 67, 63]. In the simplest

of approximations, that of a free-electron metal, one can relate the bulk modulus B to the

electron density n through (see ref. [49])

B =
�

2π4/3

31/3m
n5/3 . (4.9)

In the transition metals, the electronic structure is more complex. In the Friedel model,

one considers a rectangular electronic DOS to approximate the d-band, while the sp band is

neglected altogether. The only free parameters are then the bandwidth W and the number

of d-electrons Nd (the height of the rectangular DOS is fixed to 10/W , since there are 10 d

states to accomodate). In this model, the cohesive energy is proportional to Nd(10 −Nd);

it is an inverted parabola peaking at Nd = 5. The bulk modulus exhibits an essentially

similar behavior, but the modulation by the change in lattice parameter (and thus electron
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density) across the d-band gives it a more linear dependence with Nd for Nd < 5 [97]. The

predicted shape of B(Nd) reproduces well the experimental values of bulk modulus for the

pure elements, independently of their crystal structure.

Measurements on Ti-V-Cr and Zr-Nb-Mo alloys have found a generally linear depen-

dence of the bulk modulus with e/at [61, 62, 59, 60] in the range of 4 e/at to 5.8 e/at,

in good agreement with the simple model of Friedel. For more Cr-rich V-Cr alloys, the

magnetism yields a sudden decrease in B. The shear modulus G and single crystal shear

elastic constant c44 present a more complex behavior, however. At room-temperature, the

dependence of G and c44 on e/at goes from weak to much stronger, with a pronounced

cusp at around 5.4 e/at [61, 62, 60, 67]. This behavior is even more pronounced at low

temperatures, where c44 goes from a decrease with e/at to a strong increase, at around this

composition. This feature has been attributed to the crossing of the Γ25′ point in the band

structure at a band-filling of about 5.4 e/at, corresponding to a topological change of the

Fermi surface [64]. More will be said about this in chapter 5.

The rigid-band model is rather successful at describing both the temperature and

electron-concentration dependence of the elastic constants of Ti-V-Cr and Zr-Nb-Mo al-

loys, as well as some features of their phonon dispersions. However, it is expected that the

rigid band model is limited to “homogeneous” alloys and will not be valid for alloys with

components that are not neighbors in the periodic table. In the case of V-6.25%X alloys,

the rigid band model describes well the elastic constants for Ti and Cr impurities. But

for later transition metal impurities such as Fe, Co, Ni, Pd, and Pt, it does not work so

well. We observe a stronger dependence of the elastic constants and phonons on the type of

solute than would be predicted by a mere band-filling. One should keep in mind that with

6.25% solutes, the range of electron concentration sampled is small, between 4.9375 e/at and

5.3125 e/at. We observed a downward curvature of B and G from Co to Ni impurities, for

example, which would not be expected based on rigid-band filling only. Most prominently,

the behavior of G and the phonons for solutes changing from Ni to Pt (at constant e/at) is

unaccounted for.

The emerging picture is thus as follows. For solutes having a similar number of d-

electrons as the vanadium atoms of the host crystal, the alloy is rather homogeneous,
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thus the rigid-band model is valid and provides some account of the observed stiffening

of the phonons and elastic constants. On the other hand, for solutes from the end of the

transition metal series, the alloy is not homogeneous and the rigid-band model fails. The

chemical nature of the impurities then becomes more important than the average electron

concentration in predicting the change in the vibrational and elastic properties. We have

shown that the difference in electronegativity between the impurities and the host atoms is

a good parameter to predict the sign and magnitude of the change in vibrational entropy,

in the case of semi-dilute vanadium alloys.

4.8 Summary

The phonon density of states and vibrational entropy were investigated in a series of dilute

vanadium alloys V-6.25%X, with X a transition metal impurity. Systematic chemical trends

were identified in the behavior of the phonons as function of the alloying solute. Impurities to

the left of V induce a stiffening of the phonons and a positive vibrational entropy of alloying,

while elements to the right of V produce the reverse effect. The impurity mass was shown

to be of minor importance to the observed effect, even for impurities four times as massive

as the host. The mass effect could be more relevant in concentrated alloys, however. The

vibrational entropy of alloying correlates in part with the metallic radius of the impurity,

at least for solutes not too different chemically from the host. For late transition metal

impurities, the trend with metallic radius fails. On the other hand, we show that the

vibrational entropy of alloying exhibits a strong correlation with the electronegativity of

the solutes. A linear relationship is found between the two quantities, which is robust for

solutes from the 3d-, 4d- and 5d-series. To date the systematics of the vibrational entropy

of alloying have remained elusive, so this electronegativity correlation should be of interest

to the alloy community. Tests of its applicability to other metallic systems would be very

interesting.
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Chapter 5

First-Principles Simulations of V-X Alloys

5.1 Introduction

We performed first-principles electronic structure calculations to determine the origin of

the experimentally observed effects in V-6.25%X alloys. The calculations were carried out

with density functional theory, using full electronic potentials and linearized augmented

plane-waves plus local orbitals (FP-LAPW+LO) method, as implemented in the software

package Wien2k [98, 99]. Additional density functional theory calculations were performed

using the computer program VASP [33, 100], within the projector-augmented wave (PAW)

representation [101, 102]. Descriptions of these implementations of density functional theory

are presented in an appendix.

Calculations on pure BCC vanadium used a two-atom simple cubic unit cell, or a 2×2×2

supercell (16 atoms), or a 3 × 3 × 3 supercell (54 atoms), based on repetitions of the two-

atom cell. The random substitutional solid-solutions were modelled using the 2× 2× 2 and

3 × 3 × 3 supercells, with the central vanadium atom replaced in each case by an impurity

atom X, yielding the compositions V15X1 (V-6.25%X) and V53X1 (V-1.85%X), respectively.

5.2 Simulation Parameters

5.2.1 Wien2k

We used the PBE-96 parameterization of the generalized-gradient approximation by Perdew,

Burke and Ernzerhof for the exchange-correlation functional [103]. We used the Brillouin
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zone sampling scheme of Monckhorst and Pack (MP) [104] and carried out convergence

studies for the grid mesh size. For the simple BCC unit cell, we calculated total energies

with grids comprising between 20 and 560 sampling points in the irreducible portion of the

Brillouin zone (IBZ), corresponding to 7 × 7 × 7 and 27 × 27 × 27 MP grids, respectively.

For the 2× 2× 2 supercells, we used k-point grids with 35 (MP-10× 10× 10) to 286 points

in the IBZ (MP-21 × 21 × 21). The calculations for the 3 × 3 × 3 supercells used 20 points

in the IBZ.

Wien2k calculations were performed with atomic sphere radii RMT = 2.2 atomic units

(a.u.) for all atoms in the unit cells considered. A convergence study on the 2 × 2 ×
2 pure vanadium supercell lead us to use a plane wave energy cutoff RMTKmax = 7.0,

corresponding to a kinetic energy cutoff Ecut = 138 eV. This gave satisfactory convergence,

when taking into account the important error cancelling when comparing pure vanadium

with the alloy supercells. Additional calculations on the relaxed supercells were performed

with an increased RMTKmax = 8.0, which did not affect the calculated properties.

In the case of the magnetic impurities Fe, Co and Ni, spin-polarized calculations were

performed on the relaxed 2 × 2 × 2 supercells, indicating no magnetization on the impu-

rity atom, and subsequent simulations were performed with the non-spin-polarized model.

Sample input files for Wien2k simulations are presented in appendices.

5.2.2 VASP

The VASP calculations were carried within the PAW formalism with the Perdew-Wang 1991

(PW91) GGA exchange-correlation functional. We used the Monckhorst-Pack Brillouin

zone sampling with a mesh of 16×16×16 points for the 2×2×2 supercells, as suggested by

a convergence study. This mesh reduces to 120 independent k-points in the IBZ. The partial

occupancies for the wave functions were determined from the Methfessel-Paxton method,

with an energy smearing width of 0.2 eV. A typical input file for VASP calculations is shown

in the appendix.
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5.3 Geometry Relaxation

5.3.1 Procedure

Upon introduction of an impurity atom, the host crystal relaxes its volume and geometry to

accommodate the stresses. For a substitutional impurity, these are due to the difference in

metallic radius and electronic structure between the solute and the host. The total energy

of the supercell was minimized with respect to the volume of the supercell and the position

of the atoms in the basis in order to calculate the equilibrium volume and strains in the

alloys. The theoretical equilibrium volume for pure vanadium was calculated with both the

Wien2k and VASP simulation codes and converged with respect to both the k-point grid

and kinetic energy cutoff. In Wien2k, the positions of all ions in the supercell were relaxed

using the provided “PORT” algorithm, which minimizes the calculated forces on the ions

at a fixed cell volume by displacing the nuclei. The volume was then optimized with fixed

fractional ionic coordinates and a final optimization of the ion positions was performed at

this optimum volume. In this last step, the changes in ion coordinates were very small. A

typical energy-volume curve with relaxed ion coordinates is shown in figure 5.1 for the case

of V15Ti1. A Murnaghan equation of state [105] is fitted to the calculated energy-volume

data in order to determine the equilibrium lattice parameter:

E(V ) = E0 +
B0V

B′
0

(
(V0/V )B′

0

B′
0 − 1

+ 1

)
− B0V0

B′
0 − 1

(5.1)

with V0 = a3
0/2 the zero-pressure atomic volume (there are two atoms per unit cell), B0 the

zero-pressure bulk modulus and B′
0 the bulk modulus pressure derivative, which is assumed

constant. The geometry relaxation was performed within Wien2k for both the 2 × 2 × 2

and 3 × 3 × 3 supercells.

In the VASP simulations, the geometry relaxation was performed with a script that

let the code optimize the ion coordinates for a set of increasing lattice parameters. The

calculations were conducted with an energy cutoff increased by 30% to minimize the effect

of Pulay stress. The results were then fit to Eq. 5.1. Figure 5.2 compares the energy-

volume curves calculated with VASP and Wien2k. As can be seen in this figure, the two
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Figure 5.1: Typical energy-volume curve for the V15X1 supercells calculated with Wien2k.

Here for V15Ti1, with relaxed ionic positions. The line is a fit to the Murnaghan equation

of state.

calculations are in very good agreement. The slight energy difference can be attributed to

the ionic positions, held fixed at all volumes in Wien2k, in addition to general differences

in the two simulation codes.

5.3.2 Results

The results of supercell geometry optimizations are summarized in table 5.1. Since the

supercells have Oh point symmetry, the directions of impurity-host bonds are constrained

to 〈111〉, 〈200〉 and 〈220〉 directions for the 1-st, 2-nd, and 3-rd nearest-neighbor bonds,

respectively. The free parameters are the bond-lengths and lattice parameters. Our results

are given in table 5.1.

A comparison with the experimental results listed in table 4.1 shows that the calculated

lattice parameters are too small by about 1%. Additional calculations on pure V within the

local density approximation (LDA) in VASP predicted an even smaller lattice parameter,

about 4% smaller than the experimental value. Discrepancies of 1% are considered small

with current implementations of density functional theory. Besides, this error is systematic
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Table 5.1: Relaxed supercell geometries from first-principles calculations. L1, L2 and L3

are the 1-st, 2-nd, and 3-rd nearest-neighbor bond lengths; a is the equivalent BCC lattice

parameter.

system VASP Wien2k Wien2k

2 × 2 × 2 2 × 2 × 2 3 × 3 × 3

a(Å) L1(Å) a(Å) L1(Å) a(Å) L1(Å) L2(Å) L3(Å)

V-Ti 3.015 2.653 3.013 2.653 3.004 2.676 3.003 4.247

pure V 2.996 2.594 2.996 2.595 2.996 2.595 2.996 4.237

V-Cr 2.989 2.561 2.986 2.557 2.994 2.544 3.009 4.225

V-Mn 2.980 2.543 2.993 2.538 3.010 4.223

V-Fe 2.978 2.547 2.973 2.546 2.992 2.547 3.002 4.219

V-Co 2.978 2.565 2.973 2.562 2.991 2.568 2.988 4.220

V-Ni 2.982 2.592 2.980 2.588 2.993 2.601 2.969 4.229

V-Zr 3.036 2.722

V-Nb 3.020 2.659

V-Pd 3.002 2.650 2.998 2.641 2.998 2.664 3.008 4.230

V-Hf 3.036 2.714

V-Ta 3.023 2.666

V-Pt 3.002 2.643 2.998 2.634 2.998 2.654 3.007 4.239
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Figure 5.2: Comparison of volume relaxation curves from Wien2k and VASP for V15Ti1.

The lines are fits to the Murnaghan equation of state.

and can be overcome by looking at the relative change in lattice parameter Δa/a between

pure vanadium and the alloys. This quantity is plotted in figure 5.3. As seen on this figure,

there is good agreement between the experimental and calculated change in lattice parame-

ter. This indicates that the relaxation effect upon introduction of the impurities is captured

well by the DFT simulations. The deviations are not much larger than the experimental

uncertainties, except in the case of V-6.25%Ti, for which Δa/a is overestimated by about

50% in both the FP-LAPW and PAW calculations. Both types of simulations reproduce

well the overall trend across the 3d-series, with first a linear contraction, followed by an

upward curvature of Δa/a.

This trend is due mostly to the change in 1NN bond length, as we will now discuss.

Figure 5.4 shows the calculated change in 1NN bond length ΔL1/L1 for the 3d-series.

The values of ΔL1/L1 obtained from FP-LAPW and PAW calculations are in very good

agreement and present a similar behavior as Δa/a. The magnitude of the change is much

larger however, as physically expected. The upward curvature for later transition metal

impurities is also stronger in ΔL1/L1 than in the lattice parameter, with almost no net

change in 1NN bond length in the case of Ni impurities. This indicates that for Ni, the
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relaxation involves predominantly further NN shells. The values of L1NN calculated on the

3 × 3 × 3 supercells are close to those obtained on the 2 × 2 × 2 supercells, which shows

that the impurity-impurity interactions are relatively weak for a concentration of 6.25%,

when the impurities are separated by 6-th NN bonds as in the case of the ordered 2× 2× 2

structure. The positions of 2NN and 3NN atoms around the impurity in the 2 × 2 × 2

supercell are constrained by symmetry, so we used 3 × 3 × 3 supercells to investigate the

relaxation of these shells. The results are plotted in figure 5.5. This figure clearly shows

that the relaxation predominantly occurs in the 1NN bonds, at least for earlier transition

metal impurities up to Fe. For these elements, the relaxation in L1NN is more than four

times larger than in L2NN or L3NN. For Co impurities, this ratio decreases to about three

and in the case of Ni the relaxation affects mostly L2NN. For the other impurities of the

Ni-column, Pd and Pt, the relaxation in the 1NN shell is sizeable, with 2.6% and 2.3%

increase in 1NN bond lengths for Pd and Pt impurities, respectively. The strain is also

positive for 2NN bonds in the case of Pd and Pt impurities (about 0.4% increase). In all

cases, the strains decay to negligible levels beyond the 3NN shell.

An interesting aspect is the alternating sign in the strain as the distance from the

impurity increases, for impurities in the 3d-series. This feature may be related to Friedel

oscillations in the electronic density. However, Singh et al. have also reported predictions

of such oscillations in the strain around impurities in V [106], based on purely mechanical

considerations of lattice forces. Singh et al. used an analytical potential for interionic

interactions in transition metals developed by Wills and Harrison [107] and performed

calculations of the strain induced by transition metal impurities (Ti, Cr, Mn, Fe, Nb,

Mo, Ta, W) in vanadium with the Kanzaki lattice statics method [108]. The strains they

calculated show trends similar to our results, but are much smaller in magnitude, by about

a factor of three. Also, the calculations of Singh et al. predict a maximum strain at the 2NN

shell for all the impurities they considered (except W), which disagrees with our results.

It is likely that their results suffer from the stringent approximations that were used, in

particular the neglect of charge transfer between the solute and host atoms as well as the

central potential approximation and the inclusion of ion-ion interactions only up to 2NN.

Also, the electric field gradient around the impurities calculated by the same authors in
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Figure 5.4: Impurity-host 1NN bond-length calculated for different supercells.

a subsequent study are not in very good agreement with experimental results [109]. This

discrepancy also illustrates the difficulty of making reliable predictions for transition metals

using simple analytical potentials.

5.4 Electronic Structure

The electronic density of states (DOS) was computed with Wien2k on the relaxed 2× 2× 2

supercells, using a Monckhorst-Pack grid of 21 × 21 × 21 k-points (286 points in the IBZ).

The electronic densities of states for pure vanadium and the alloys with 3d-series elements

are shown in figure 5.6. The electronic DOS in this discussion includes the factor of two

for both up and down spins. As can be seen in this figure, the electron DOS shows a

systematic behavior as the impurity element changes from Ti to Ni. For early transition

metal impurities, the conduction band is shifted to lower energies with no change of shape

to first order, hence exhibiting a “rigid-band” behavior. Early theoretical considerations

have predicted that upon introduction of dilute impurities in a metal, the electron DOS is
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modified up to second order only by a rigid energy shift ΔE:

n(E) � n0(E − ΔE) + O2(Vp) , (5.2)

where Vp is the perturbing potential due to the introduction of the impurity and ΔE is the

average of the perturbation potential:

ΔE � V −1

∫
V
Vp dτ + O2(Vp) , (5.3)

with V the volume of the system. The reader can refer for example to Friedel’s treatment

in [110]. Alternatively, in the rigid-band picture, this energy shift upon introduction of

impurities with extra d-electrons can be seen as a simple filling of the d-band. The energy

shift in the case of Ni solutes is about 0.2 eV. From the integrated electron DOS for pure V,

one finds that this requires about one-third of an electron, in good agreement with the 5/16

extra electrons per atom introduced by the Ni solutes. However, one cannot expect this

argument to be valid for impurities that are very different to the host, such as the 4d and

5d elements. One can also notice on fig. 5.6 that the rigid-band description starts to fail for
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later transition metal impurities, with the appearance of new features, such as states filling

the pseudo-gap (see for example the eg peak for Fe, Co and Ni in Fig. 5.8) and a generally

more “wiggly” density of states. However, some of these features are associated with the

ordered nature of the supercell used in the simulation and one expects the electron DOS

for the random solid solution to be more washed out.

Another important feature of the electronic structure of an alloy is the electronic struc-

ture at the Fermi level, n(EF). This quantity determines for example the electronic specific

heat, given at low temperatures by [49]

Cel(T ∼ 0) = γT ,

γ =
π2

3
k2

B n(EF) . (5.4)

In the case of metals with a significant electron-phonon coupling, there is an additional

factor (1+λ), corresponding to an effective mass enhancement factor for the electrons [53].

At higher temperatures this simple linear temperature behavior of Cel(T ) (with or without

electron-phonon coupling) starts to break down as the Fermi distribution populates states

at energies sufficiently high above EF that the actual shape of n(E) has to be taken into

account. More on this will be said in chapter 6. The quantity n(EF) also influences the

electron-phonon coupling parameter λ, as discussed in the next section. Because the Fermi

level in pure V sits on the shoulder of the t2g peak below the pseudo-gap, the filling of the

band in this region yields a decrease of the electron density at the Fermi level. We will

describe this more quantitatively below.

For an alloy, it is interesting to consider the local density of states on an atom, for

the different species present [97, 111]. In the simulation code Wien2k, this quantity is

readily available, and already decomposed into orbital angular momentum components,

inside the atomic spheres. In Fig. 5.8, we plot the local d-density of states on the impurity

atoms (sphere of radius RMT = 1.164 Å). One can see that the d-states of the impurity are

shifting to lower energy with increasing Z and that their width is narrowing, indicating more

atomic-like orbitals. The lower center of gravity of the impurity d-states tends to induce a

charge transfer from the host vanadium atoms to the impurity [97]. We will present below
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quantitative calculations of the charge transfer. Figures 5.7 and 5.9 show the electron DOS

and local d-electron DOS respectively for the alloys V-Ni, V-Pd and V-Pt. The same trends

described in the above discussion are observed, with the impurity d-levels shifting to even

lower energies and becoming more localized as one goes down this column of the periodic

table.

5.5 Electronic Topological Transition

It is generally accepted that the rigid-band model holds well for metallic alloys of elements

that are neighbors in the periodic table. Our simulations support this view in the case of

V-6.25%Ti, V-6.25%Cr and V-6.25%Mn alloys. It has been discussed in chapter 4 that the

elastic constant C44 in BCC alloys of V-Cr presents an anomaly for a band-filling corre-

sponding to about 5.4 e/atom. This anomaly has been ascribed to an electronic topologi-

cal transition [64, 66]. Electronic topological transitions (ETT) correspond to topological

changes in the Fermi surface, such as a sheet of the surface disappearing or two portions

becoming disconnected or merging. These can arise when the volume is changed through

increasing external pressure, for example, although the conditions would have to be ex-

treme. They are more commonly known to arise with alloying, which simply changes the

band-filling in a rigid-band model [112]. Although their effects are currently not fully under-

stood, ETTs have been related to anomalies in the elastic constants, the thermal expansion

coefficient, phonon dispersions, and thermodynamic properties [112, 113, 114].

We investigated the Fermi surface of BCC V for different band-fillings. The band-

fillings correspond to different compositions of a V-Cr alloy, in the rigid-band model. The

Fermi surface was computed starting from the Wien2k self-consistent density and potential,

and performing a band structure calculation with 104 k-points in the Brillouin zone. The

calculation was performed with the software Xcrysden [115]. Results are illustrated in

figure 5.10. High-symmetry points and directions for the BCC lattice Brillouin zone are

labelled in Fig. 5.11.

For pure V (5 e/at), the Fermi surface is composed of an octahedron at Γ, ellipsoids

at N and a multiply connected “jungle-gym” manifold. As the band-filling increases, the

octahedron sheet thins down to a cross and disappears at about 5.4 e/at, while the “jungle-
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Figure 5.10: Topological transition in Fermi surface of V-Cr alloys. The Fermi surface is

calculated with Wien2k for bcc V, with different values of band-filling. (a), (b), (c): Jungle-

gym and N-point ellipsoids for 5, 5.2, and 5.4 e/at, respectively. (d), (e), (f): octahedron

sheet at the same respective electron concentrations as (a), (b), and (c).
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Figure 5.11: Brillouin zone for BCC lattice.

gym” sheet of the Fermi surface becomes disconnected and breaks down into a small pocket

at Γ and a “star” around H. This topological transition corresponds to a large decrease

in the area (and number of states) of the Fermi surface. This could lead to an important

change in the wave vectors spanning by the Fermi surface sheets that may consequently

affect the electron-phonon coupling. A similar ETT has been reported in Nb-Mo alloys,

also at 5.4 e/at, and has been correlated to a decrease in electron-phonon coupling strength

with increasing number of valence electrons [112].

5.6 Superconductivity and Electron-Phonon Coupling

Vanadium is a superconductor at low temperatures. The transition temperature Tc = 5.3 K

is one of the highest for pure elements [116]. In the BCS theory of superconductivity,

the electron-phonon coupling is the mechanism responsible for pairing of the electrons in

Cooper pairs. The strength of the interaction between electrons and phonons, as quantified

by the parameter λ, is related to the electronic density at the Fermi level as well as the

average phonon energy. In the McMillan theory of strong-coupled superconductors [117],
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the electron-phonon coupling constant λ is given by

λ =
n(EF)〈I2〉
M〈ω2〉 , (5.5)

where n(EF) is the electron density at the Fermi level, 〈I2〉 is the average over the Fermi

surface of the square of the electron-phonon interaction matrix element, M is the nuclear

mass, and the average phonon frequency square 〈ω2〉 is defined by

〈ω2〉 =
∫
dω ω α2F (ω)∫
dω α2F (ω)/ω

, (5.6)

with α2F (ω) the direction-averaged Éliashberg coupling function. The superconducting

transition temperature in McMillan’s theory is estimated as

Tc =
θ

1.45
exp

[ −1.04(1 + λ)
λ− μ∗(1 + 0.62λ)

]
, (5.7)

where μ∗ is the effective Coulomb repulsion potential for the electrons and θ is a repre-

sentative average phonon temperature, such as the Debye temperature or the temperature

corresponding to the average phonon energy. This formula was slightly revised by Allen

and Dynes [118], but it will serve our purpose here.

As mentioned in the previous section, because of the negative slope in n(E) at the Fermi

level, the introduction of impurities raises or decreases n(EF) when the solutes have fewer

or more d-electrons than vanadium, respectively. The results of our calculations of n(EF)

with Wien2k, using 104 k-points, are shown in figure 5.12. The decrease in n(EF) appears

approximately linear with the number of d-electrons of the impurity, Nd. In fig. 5.13, we

compare the relative change in the calculated n(EF) with the same experimental quantity,

deduced from low-temperature measurements of the electronic specific heat. The agreement

is good, although our calculations predict slightly smaller effects upon alloying. For impu-

rities in the Ni column, the decrease in n(EF) is about 20%. This electronic contribution to

the change in the electron-phonon coupling λ (cf Eq. 5.5) can be compared to the phonon

contribution coming from the factor 〈ω2〉. From the values listed in table 5.2, we see that

the phonon effect on λ is comparable to that of n(EF).
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Table 5.2: Superconductive properties for V-6.25%X alloys.

X Tc
‡ Tc ref. 〈�ω〉∗ n(EF)† λ

(K) (meV) (eV−1 at.−1)

Ti 6.00 [119] 22.3 1.88 0.71

V 5.30 [73] 22.9 1.76 0.68

Cr 3.74 [73] 23.1 1.73 0.61

Mn 3.31 [73] - - -

Fe 2.07 [120] 23.6 1.58 0.52

Co - 23.9 1.34 -

Ni - 23.7 1.36 -

Zr 5.36 [119] 22.0 1.94 0.69

Nb 4.54 [73] 22.4 1.84 0.65

Mo 3.62 [73, 121] - - -

Tc 2.93 [122] - - -

Ru 0.80 [123] - - -

Rh 0.55 [123] - - -

Pd 2.22 [73] 24.5 1.42 0.53

Hf 5.18 [119] 21.9 - 0.68

Ta 4.42 [73, 120] 22.6 - 0.64

W 4.20 [73] - - -

Re 2.46 [73] - - -

Os 0.96 [124] - - -

Pt 2.22 [73] 25.1 1.40 0.52

Au 1.71 [73] - - -

‡Extrapolated to 6.25% impurity concentration
∗From phonon DOS measurement
†From Wien2k simulations



116

6

5

4

3

2

1

0

T
c 

(K
)

98765432

Nd

 3d
 4d
 5d

Figure 5.14: Estimated superconducting critical temperature for V-6.25%X.

Using published measurements of Tc for V-X alloys with impurity concentrations less

than 10% (typically 5% and 10% impurities), we linearly extrapolated the value of Tc for

alloys V-6.25%X. Our results are summarized in table 5.2 and shown in figure 5.14. We

extracted values of λ from these critical temperatures for the alloys whose phonon DOS

we measured. We used Eq. 5.7, in which we set θ = �〈ω〉/kB and used μ∗ = 0.13, a

value commonly used for transition metals. Results are listed in table 5.2 and plotted in

figure 5.15. The fractional variation of λ for all the impurities exceeds 20%, which may

have significant effects on the electron-phonon coupling in these alloys.

5.7 Electronic Entropy

The electronic entropy at finite temperature is associated with the availability of unoccupied

states above the Fermi level and is given by

Sel = −kB

∞∫
−∞

[(1 − fT,E)ln(1 − fT,E) + fT,E ln(fT,E)]n(E) dE , (5.8)
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Figure 5.15: Electron-phonon coupling strength for V-6.25%X.

where fT,E is the Fermi distribution function and n(E) is the electronic density of states at

energy E [52]. Using the electronic densities of states obtained from FP-LAPW simulations

for the relaxed 2×2×2 supercells, we calculated the difference in electronic entropy between

the pure vanadium and the alloys V15X1, or electronic entropy of alloying at temperature

T , ΔSal
el (T ). Our results for T = 295 K are plotted in figure 5.16. Comparing these results

with the vibrational entropy of alloying ΔSal
vib(295 K) of figure 4.18, one can see that ΔSal

el

is much smaller than ΔSal
vib for the alloys investigated, with the exception of V-6.25%Ni.

In this case, ΔSal
el is about half of ΔSal

vib, while in all other cases, it is smaller by a factor of

five or more. The thermodynamic contribution of ΔSal
el (T ) is thus expected to be small at

low temperatures, although it may play a more important role at high temperatures, as we

will discuss in the next chapter. Also, in the case of the dilute vanadium alloys investigated,

ΔSal
el follows a similar trend as its vibrational counterpart, with a positive contribution for

solutes to the left of V in the periodic table and an increasingly negative contribution for

those to the right. This extra contribution to the total entropy of alloying thus augments

the vibrational contribution.
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Figure 5.16: Electronic entropy of alloying at 295 K for V15X1 relaxed supercells.

5.8 Charge Transfer

Chapter 4 reported an experimental correlation of the phonon frequencies with the Pauling

electronegativity of the solutes. We investigated this further by performing first-principles

charge transfer calculations. The concept of atomic charges is one of interest to chemists

and solid-state physicists, as it is helpful for a simple description of solids and molecules

and it naturally arises in a variety of contexts. There is, however, no unique way of as-

cribing the electron density in a condensed-matter system (or a molecule) to the atoms

that compose it. Many different definitions of atomic charges have been given, inspired by

different models, and they are unfortunately not equivalent. Some methods for partitioning

the electrons between the atoms adopt orbital-projection schemes, the most widespread

being the Mulliken population analysis. Other approaches partition the electronic density

based on topology (Bader analysis) or the geometrical configuration of the nuclei (Voronoi

analysis) [125, 126]. Another method uses the relative contribution of each atom to the

superposition of atomic densities, before any bonding redistributes the charge, to determine

the contribution associated with the atom (Hirshfeld analysis). These schemes are all based

on the notion of static charges attached to host nuclei. Another class of models focuses

on the change in polarization upon displacements of the atoms, introducing the concept of
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Table 5.3: Bader charge transfer (in number of electrons) calculated with Wien2k.

Nd χPauling χWatson X V1nn∗ V2nn∗ V3nn∗

Ti 2 1.54 1.38 -0.565 0.442 0.140 0.002

V 3 1.63 1.62 0.000 0.000 0.000 0.000

Cr 4 1.66 1.69 0.477 -0.375 -0.098 -0.008

Mn 5 1.55 1.74 0.929 -0.763 -0.123 -0.051

Fe 6 1.83 1.93 1.130 -0.934 -0.141 -0.074

Co 7 1.88 1.95 1.190 -1.013 -0.133 -0.092

Ni 8 1.91 2.09 1.125 -0.979 -0.114 -0.097

Zr 2 1.33 1.37 -0.421 0.360 0.103 -0.051

Nb 3 1.6 1.69 0.198 -0.088 -0.070 -0.022

Pd 8 2.2 2.22 1.440 -1.152 -0.248 -0.080

Hf 2 1.3 1.4 -0.375 0.333 0.071 -0.029

Ta 3 1.5 1.74 0.327 -0.157 -0.147 -0.004

Pt 8 2.28 2.28 1.864 -1.446 -0.388 -0.087

∗Taking into account the multiplicity

dynamical charges (e.g., Born dynamical charges) [127, 128].

In analyzing the electronegativity correlation discussed in the previous section, we con-

centrate on the charge analysis introduced by Bader [125], as it provides a well-defined

way of partitioning the whole crystal into atomic volumes in which the charge can be inte-

grated. In this approach, the atomic charges are defined based on the topological properties

of the electronic density, ρ(r). Atoms are defined as the basins delimited by surfaces of zero

charge–flux ∇ρ(rS) · n(rS) = 0, where n(rS) is the unit vector normal to the surface at

point rS on the Bader surface S. The Bader surfaces are also constrained to go through

the critical points (saddle points) between atoms.

The Bader charge analysis is readily implemented in the Wien2k package, while in the

VASP calculations, the additional software of Henkelman et al. was used to analyze the

VASP output density files [129]. Our results for the alloys V-6.25%X with solutes in the
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Figure 5.17: Charge transfer onto each atom for impurities across the 3d-series, calculated

from first principles using the Bader charge analysis. Solid symbols: Wien2k calculation,

open symbols: VASP calculation and Bader analysis with software of Henkelman et al.

[129].

3d-series are shown in figure 5.17. All Wien2k charge transfer results are listed in table 5.3.

A clear trend is observed: Ti (Nd = 2) loses some of its valence charge to the surrounding

host V atoms (Nd = 3), while impurities to the right of V increasingly gain electrons from

their V neighbors. The charge transfer to the impurity atom rises linearly from a negative

value in V15Ti1 (loss of electrons) to positive values for Cr and Mn solutes, and subsequently

tapers off for Fe, Co and Ni impurities. This behavior is mirrored in the charge transfer

to 1NN vanadium atoms around X, while further V neighbors do not participate much in

the charge redistribution. In the plot of Fig. 5.17, the charge transfer to each atom type

is weighted by the multiplicity of the atom in the supercell. The complementarity of the

weighted charge transfer for impurity and 1NN vanadium atoms indicates that the charge

redistribution is confined to the 1NN shell around the impurities. Mention should be made

of the magnitude of the calculated charge transfers. The values we obtained are very large

(plus or minus one electron for Fe, Co, Ni solutes). However, it is known that the Bader

charge determination scheme tends to overestimate charge transfer when compared to other
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Figure 5.18: charge transfer on impurity calculated with the Bader analysis (Wien2k), plot-

ted against the impurity-host difference in electronegativity on the Pauling (solid symbols)

and Watson (open symbols) scales.

methods, such as the Mulliken or Hirshfeld charge analyses [126]. To the extent that charge

transfers can only be compared for a given definition of atomic charges, we do not have to

worry about this point. In any case, it is expected that the bonding in the physical system

is not fully ionic.

Figure 5.18 shows the calculated transfer of charge to the impurity, in the Bader sense,

plotted against the difference of electronegativity between impurity and host atoms, on the

Pauling and Watson scales. The Watson electronegativity scale is derived from experimental

observations of Mössbauer isomer shifts and electronic structure calculations in transition

metals [130, 131]. We observe a good correlation between the charge transfer and the

electronegativity difference between impurity and host on both scales. The correlation with

the Watson scale is substantially better, with in particular all points falling either in the

lower-left or upper-right quadrants.

Figure 5.19 shows the experimental vibrational entropy of alloying plotted against the

calculated charge transfer and the difference in electronegativity of the impurity and the

host atoms on the Pauling scale. The Bader charge transfer values are those obtained with
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Wien2k on 2 × 2 × 2 supercells. There is a good correlation between ΔSal
vib and the charge

transfer calculated with the Bader analysis, with impurities losing charge to the vanadium

atoms inducing a phonon softening (except Nb), while impurities gaining charge from their

V neighbors induce a stiffening. This correlation is not as good for large impurities of the

4d series (upper-left quadrant, two most positive values of ΔSal
vib), but is is possible that

size or mass effects for these large solutes influence the phonons differently than the charge

transfer.

Thus, it appears that charge transfer effects can explain the experimental trend in the

phonons and the vibrational entropy. Large charge transfers between impurity and first-

nearest-neighbors produce more ionic bonds, which tend to be stiffer, causing higher-energy

phonons. In this electrostatic picture, the charge transfer and the bond length affect the

stiffness in opposite ways. Thus, although the V-Ti bond undergoes a charge transfer similar

in magnitude to that of the V-Cr bond (but opposite in sign), it should be softer since the

bond length is much longer.

5.9 Deformation Potential

Over the past 15 years, phonons have become accessible to first-principles calculations.

However, ab-initio computations of the complete phonon dispersions and density of states

remain challenging in the case of transition metals. Early transition metals tend to be

especially difficult to treat with the pseudo-potential and plane-wave approach, because

they are typically represented with “hard” pseudo-potentials, which require a large num-

ber of plane-waves, making the computations costly. We performed test computations on

a number of elemental metals within the “direct method” as well as the linear-response

approach. We were able to obtain good results for the phonon DOS and dispersions of

FCC Al, B2 FeAl, BCC Fe and BCC Cr. However, V and Nb have proven quite a bit

harder to tackle. The direct method has consistently failed to produce physical results for

long-wavelength phonon modes in Nb and V. For both metals, the direct method tends to

predict mechanically unstable transverse modes in the [100] and [110] directions at long

wavelengths, but finite k, even for supercells as large as 6 × 6 × 6. This difficulty can be

traced to the behavior of transverse phonon branches at long wavelengths in BCC metals of



124

0.6

0.4

0.2

0.0

E
 (

eV
)

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

u (Å)

V

V-Pt

V-Ti

V-Cr

V-Ni

toward X

Figure 5.20: Calculated potential for 1NN atom displacements in a breathing mode. The

energy is the total supercell energy calculated with VASP. The displacement is counted

positive when toward the impurity atom X (1NN shell contraction).

this group. It is known from the experimental dispersion curves and theoretical models that

the T[100] and T[110] branches exhibit an anomalous upward curvature in the case of Nb

and Ta [132, 96, 133, 134, 135]. Although it is likely that this is also the case in vanadium,

as predicted by a few first-principles calculations [135, 136], this is not as well established

experimentally, owing to the impossibility of performing coherent neutron scattering ex-

periments on V. The only available dispersion data for V are those measured by Colella

and Batterman [79] using thermal diffuse x-ray scattering, and the accuracy of these older

measurements is unestablished. Some theoretical investigations based on linear-response

DFT have successfully produced phonon dispersions for BCC V, but we are not aware of

any phonon calculations on dilute V alloys.

To investigate the change in the interatomic potentials upon introduction of the impu-

rities in V, we resorted to calculations of the deformation potential in a breathing-mode

of the 1NN shell around the impurity. We computed the change in total energy of the
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2 × 2 × 2 supercells for 1NN neighbors displaced along the 〈111〉 directions using VASP

with PAW formalism. Owing to the cubic symmetry, all 1NN atoms are displaced toward

or away from the impurity by the same amount. This deformation mode is not a proper

frozen-phonon, but it allows us to investigate the longitudinal stiffness of the 1NN X-V

bond. Results for displacement amplitudes u up to 0.06 Å (about 2% of a) are shown in

figure 5.20. The displacement potential for pure V is nearly parabolic over this range of

displacements. In the presence of an impurity, the potential exhibits a small amount of

asymmetry between positive and negative displacements, as expected. This contributes a

small cubic term, but this anharmonicity is small. The potential is increasingly stiffer for

Cr, Ni and Pt impurities, whereas Ti induces a small softening for displacements toward the

impurity. This trend is in very good agreement with the measured phonon frequencies. A

simple fit of parabolas to the displacement potential allows us to estimate the frequencies of

this breathing mode. We find an increase in frequency of about 18% for vibrations around

the Pt solutes and about 15% around the Ni solutes, compared with the pure V case. This

is in good agreement with observed shifts in the frequency of the longitudinal modes, in

particular the cutoff frequency.

5.10 Summary

Density functional theory calculations were performed on V15X1 and V53X1 supercells to

model the dilute vanadium solutions investigated experimentally. The predicted lattice pa-

rameters agree well with experimental values and the calculated change in lattice parameter

between the alloys and the pure host reproduces the experimental trends to within error

bars. The strain around the solute atoms was found to occur mostly in the 1NN shell,

although it is also significant in the 2NN shell in the case of Co and Ni. The overall trend in

the X-V 1NN bond length thus follows that in the lattice parameter. The electronic density

calculated on the relaxed supercells showed that the alloys V-Ti, V-Cr and V-Mn behave

like in the rigid band model, with minimal deformation of the host electron DOS. On the

other hand, late transition metal impurities Fe, Co, Ni, Pd, Pt induce a large restructuring

of the electron DOS, with their d-states being lower in energy than the d-band in the host V

crystal. The electronic density at the Fermi level varies strongly with the impurity, owing to
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the large negative slope in n(E) at EF in pure V. This affects the electron-phonon coupling

parameter as well as the electronic entropy. The deformation potential for a breathing-mode

of the 1NN shell around the impurities was calculated and the same trend is observed as

in the phonon measurements. The calculated stiffening of the potential appears to agree

broadly with the shift in the experimental frequencies. Within the Bader atomic charge de-

finition, a large charge transfer was found to occur between the solute atoms and their 1NN

shell. The trend in the Bader charge transfer behaves linearly with the electronegativity

difference between the impurity and the host. This charge transfer offers an explanation

for the stiffening of the phonons, as more ionic bonds should be stiffer and induce higher

energy phonon modes.
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Chapter 6

Phonons in Vanadium Alloys at High

Temperatures

6.1 Introduction

In all early transition metals of groups 3 to 6, the BCC structure is the stable high-

temperature phase. From the temperature range over which it is observed, it appears

that the BCC phase is stabilized by a larger number of d-electrons, which has been related

to the strengthening of directional bonding [87, 88]. The early transition metals of group 3

and 4 are only stable in the BCC structure at high temperature and undergo martensitic

transformations BCC→HCP and BCC→ ω at low temperatures. The high-temperature

stability of the BCC phase for the earlier transition metals is attributed to a stabilization

by a large vibrational entropy, owing to low-energy transverse phonons along the [110] and

[211] directions (see [88]). On the other hand, the elements of groups 5 and 6 crystallize

in the BCC arrangement over the full temperature range of the solid phase, and the melt-

ing temperatures for group 6 elements is particularly high. The strengthened directional

bonding in these elements increases the mechanical stability of the BCC lattice with respect

to martensitic transformations, as evidenced by first-principles frozen-phonon calculations

[137, 28, 138, 139].

Another factor is known to stabilize the BCC phase at high-temperatures for elements

and alloys with 5 to 6 valence electrons. The electronic density of states of the BCC structure

exhibits a pseudo-gap between the low-energy t2g and high energy eg peaks. When the Fermi
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level reaches this portion of the DOS with increasing number of d-electrons, the effect is to

effectively lower the occupied states in energy more than in the case of, say, a rectangular d-

band, resulting in an increased cohesive energy. This accounts for the high cohesive energy

and melting temperature of Mo and W, and these elements have been likened, at elevated

temperatures, to “overheated solids” [140, 141]. As such, they are likely to exhibit large

anharmonic effects.

6.2 High-Temperature Phonon DOS

6.2.1 Pure Vanadium

The phonon DOS of vanadium has been measured up to 1673 K by Bogdanoff, Fultz et al.,

using triple-axis neutron spectrometry [77]. In the course of this thesis, additional phonon

DOS measurements were performed on pure V between 295 K and 1323 K using the Pharos

time-of-flight spectrometer at LANSCE. Our results confirm the previous observations of

Bogdanoff and coworkers.

The vanadium phonon DOS curves measured by triple-axis spectrometry are shown in

Fig. 6.1. The phonon DOS of vanadium is essentially constant up to 1273 K, subject only to

broadening. This broadening in energy affects both the transverse and longitudinal peaks.

On the other hand, the DOS undergoes a large softening between 1273 K and 1673 K. The

phonon broadening is an effect of damping, and the phonon linewidth Γ is related to the

damping rate. Anharmonicity is a possible source of such damping, since it causes more

frequent phonon scattering events, as was discussed in chapter 2 (see Eq. 2.53). By convo-

luting the 293 K phonon DOS with the line shape for a damped oscillator to best reproduce

the higher-temperature phonon DOS, Bogdanoff and coworkers were able to extract the

average quality-factor for the phonons and found that the modes are substantially damped

[77].

The results of our V phonon DOS measurements using time-of-flight neutron spectrom-

etry at temperatures of 300 K, 973 K, 1273 K, and 1323 K are shown in figures 6.3(a) and

6.4(a). These phonon DOS curves present an absence of softening up to 1323 K, similarly

to the DOS obtained from triple-axis measurements. The softening of the transverse mode
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Figure 6.1: Phonon DOS of vanadium at 293, 873, 1273 and 1673 K. Temperatures are as

labeled. Measurements at 293, 873, and 1273 K were taken on the triple-axis spectrometer

HB2, shown in the bottom half of figure. Measurements taken on the triple-axis spectrom-

eter HB1 at 1673 and again at 293 K are shown in the top half of figure. Adapted from

[77]
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appears more important in the result of figure 6.3-(a), but this measurement is of lesser

statistical quality.

The temperature behavior of the V phonon DOS is inconsistent with what is expected

from classical softening upon thermal expansion. Like most materials, vanadium does ex-

pand with increasing temperature, and the classical quasiharmonic behavior would suggest

that the DOS should soften gradually between 293 K and 1673 K. This is not the observed

behavior, however, and it appears that anharmonic effects beyond the quasiharmonic model

are at play.

6.2.2 Vanadium Alloys

The phonon DOS of vanadium alloys with a few percent of Co, Pt, and Nb impurities

at elevated temperatures were investigated. These measurements reveal a trend with the

nature of the impurity.

The phonon DOS for the alloy V-7%Co was measured at elevated temperatures by

Bogdanoff, Fultz et al. (unpublished results). These measurements were conducted with

the same triple-axis neutron spectrometry technique used to measure pure V [77]. Results

are shown in Fig. 6.2. Contrasting with the anomalous behavior of pure V, the phonon

DOS of V-7%Co undergoes a gradual softening between 293 K and 1273 K. The softening is

clearly seen in low-energy transverse modes as well as high-energy longitudinal modes, in

particular at the cutoff energy. The high-temperature DOS also exhibits a broadening, as

can be seen on the tail-like shape of the cutoff. The longitudinal peak appears to gain in

intensity at elevated temperatures, however, which could result from a differential softening

along independent longitudinal branches in the dispersion curves, or a flattening of the

dispersion in a particular direction.

The phonon DOS for V-6.25%Pt and V-6.25%Nb at high temperature were measured

with the Pharos time-of-flight spectrometer at LANSCE. Results are shown in figures 6.3(b)

and 6.4(b). The temperature-dependence of the phonon DOS for V-6.25%Pt is very similar

to that observed in V-7%Co, with a gradual temperature-softening. The softening is larger

than in the case of Co impurities, however. The longitudinal peak undergoes an increase

in intensity with temperature, similar to V-7%Co. We conclude that Pt and Co impurities
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Figure 6.2: Phonon DOS of V-7%Co at 293, 873 and 1273 K, measured with the triple-axis

spectrometer HB2. Temperatures are as labeled.

influence the temperature-dependence of the V phonon DOS in the same fashion, with a

strong disruption of the anomalous temperature-dependence. We recall that these impurities

also had comparable effects on the phonon DOS of V at room-temperature, both causing a

large stiffening of the vibrations (see chapter 4). On the other hand, Nb impurities only had

a small effect on the phonon DOS at room-temperature and their effect on the temperature-

dependence of the phonon DOS is also small, as seen in figure 6.4. The transverse modes

are almost unaffected by the Nb solutes, both at 300 K and 1273 K, while the longitudinal

modes show only a small excess in softening at 1273 K in the presence of the solutes. A

trend in the effect of impurities on the phonon-softening emerges, as Nb is isoeletronic to

V, while Co and Pt are both late transition metals.

The anharmonic effects observed in the V phonon DOS can be studied more quantita-

tively, and contrasted to the behavior of V-Co, using an entropy analysis.
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Figure 6.3: (a) Phonon DOS of pure V at 300, 973 and 1323 K, measured with Pharos. (b)

Phonon DOS of V-6.25%Pt at 300, 973 and 1323 K, measured with Pharos (LANSCE).
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Phonon DOS of V-6.25%Nb at 300 K and 1273 K, measured with Pharos (LANSCE).



134

6.3 High-Temperature Entropy

6.3.1 Pure Vanadium

Bogdanoff et al. deduced the phonon entropy of pure vanadium at high temperature from

their phonon DOS measurements [77]. These authors also compared their results to the pre-

dictions of Eriksson, Wills, and Wallace [56], who analyzed the experimental heat capacity

and thermal expansion and inferred the phonon entropy after subtracting an electronic con-

tribution obtained from electronic structure calculations. The results of both studies are in

good agreement and attribute the anomalous temperature of the phonon DOS to phonon

anharmonicity.

The anharmonic entropy analysis adopted by Bogdanoff et al. is essentially similar to

that described in chapter 2, although the notation used by those authors is slightly differ-

ent. We illustrate their results with the help of Fig. 6.5, taken from [77]. The crosses in

this figure correspond to the anharmonic phonon entropy calculated from the experimental

phonon DOS, as in the left-hand side of Eq. 2.68. The thick upward line is the quasihar-

monic phonon entropy ΔSqh
ph, obtained from thermal expansion data and corrected for the

electronic contribution as in Eq. 2.61, using the electronic structure calculations of Eriksson

et al. [56]. The difference between the line and the crosses, in the approximation that

the phonon modes at 300 K are harmonic, is the contribution of explicit anharmonicity in

the interatomic potentials to the entropy, ΔS(3,4)
ph . It is plotted as black circles in Fig. 6.5.

This contribution is negative and almost exactly cancels out the positive term correspond-

ing to thermal expansion. It represents a stiffening of the phonon modes with increasing

temperature at fixed volume.

Eriksson, Wills, and Wallace performed calculations of the electronic entropy Sel and

used heat capacity data, thermal expansion data, as well as harmonic phonon data from

the literature to deduce the phonon anharmonicity from the relationship

Stot = Sel + Shar + S
(2)
ph + S

(3,4)
ph , (6.1)

where Stot is the total entropy and the terms on the right-hand side are as defined in chap-

ter 2. Their result for the explicit anharmonicity in the entropy, S(3,4)
ph , is plotted as the
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Figure 6.5: Anharmonic contributions to the entropy of vanadium. The bold curve is as

computed from Eq. 2.61. Crosses are computed from the phonon DOS of vanadium using

Eq. (2.68). The solid circles are the difference between the bold curve and the crosses (the

solid circle at 1673 K is obtained by extrapolating the bold curve to higher temperatures).

The solid curve is the anharmonic entropy obtained by Eriksson et al. [56].

black curve in Fig. 6.5. This curve and the black dots are in good agreement, although the

anharmonic component of the entropy was derived by different means, strengthening the

proposition that the anomalous T -dependence of the phonons in V stems from anharmonic-

ity in the displacement potentials.

6.3.2 Vanadium Alloys

In this section, the anharmonic phonon entropies of vanadium and V-7%Co are compared.

A similar entropy analysis as in the previous section is conducted. However, because the

necessary quantities for the alloy were not available from the literature, extra measurements

and electronic structure calculations were necessary.

We performed thermal expansion measurements on V and V-7%Co up to 900 K us-

ing a Perkin-Elmer TMA-7 thermo-mechanical analyzer. The bulk modulus was obtained

for both materials at room-temperature from ultrasonic measurements and densities were

measured using Archimedes’ method. Using our results for these quantities, we evaluated
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Eq. 2.60, under the assumption that the bulk modulus does not change with tempera-

ture. The resulting quasiharmonic entropy of expansion is plotted as triangles in Fig. 6.6.

The quasiharmonic entropy from thermal expansion for vanadium was also evaluated with

data taken from the literature. The thermal expansion coefficient used was taken from

Touloukian [86], and the temperature-dependent bulk modulus was obtained from the elas-

tic constants measurements of Walker [64], plotted in figure 6.10. The result is plotted as

the dashed line in Fig. 6.6. As seen on this figure, the agreement between our thermal ex-

pansion measurement for V and the literature result is excellent. The slight quasiharmonic

entropy overestimation of our result compared to the literature in the case of V is due to

the neglect of the decrease of B with temperature.

The anharmonic phonon entropy for V-7%Co was derived from the experimental high-
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temperature phonon DOS with Eq. 2.68. As can be seen on Fig. 6.6, for V-7%Co, the

anharmonic phonon entropy and the quasiharmonic contribution due to thermal expansion

are in good agreement, within the error bars on our measurements. The agreement is even

better if one considers the small electronic term of Eq. 2.61. This term was calculated with

first-principle calculations (Wien2k) on V15X1 and V 2 × 2 × 2 supercells, using Eq. 2.70

with Tlow = 300 K and Thigh = 900 K. It gives a small positive contribution, since thermal

expansion decreases the overlap integral and consequently the band-width, increasing the

number of electron states per unit energy.

The behavior for V-7%Co is in sharp contrast with the results for pure vanadium, in

which the effect of thermal expansion against the bulk modulus predicts a much larger

phonon softening and quasiharmonic phonon entropy than is observed. Thus, it appears

that most of the phonon frequency shifts with temperature in the case of V-Co are associated

with quasiharmonic shifts, Δ2, whereas substantial explicitly anharmonic shifts, Δ3 + Δ4

(and possibly higher-order terms), are present in the case of pure V. Moreover, in the case

of V, Δ3 +Δ4 is positive, yielding a negative anharmonic entropy S(3,4), as discussed above.

This suppression of the anharmonic behavior in V by Co impurities can have several

sources. One possible mechanism would be that the impurities disrupt the coherence be-

tween phonons and thus suppress the phonon-phonon scattering process, thereby making

the material more harmonic. Another possible source is a change of the electron-phonon

interaction, as the impurities affect the electronic structure of the host, in particular the

electronic density at the Fermi level, and thus the electron-phonon coupling parameter, λ

(as discussed in chapter 5).

6.3.3 Vibrational Entropy of Alloying

A connection can be established between the temperature-dependent phonon DOS of V and

V-7%Co and the temperature dependence of the solubility limit for Co in V.

Because no complete dataset on the Co phonon DOS at high temperatures is available,

and because the analysis is complicated by the Co hcp → fcc martensitic phase transition

at 673 K, the vibrational entropy of mixing was not calculated and we focus instead on the
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Table 6.1: Vibrational entropy of alloying for 7% Co solutes in V, at the different temper-

atures for which the phonon DOS measurements were performed.

T (K) Salloying
ph (kB/atom)

293 −0.22 ± 0.03

873 −0.13 ± 0.03

1273 −0.02 ± 0.03

vibrational entropy of alloying:

Salloying
ph (T ) = SV−Co

ph (T ) − SV
ph(T ) . (6.2)

It is expected that Salloying
ph (T ) is close to Smix

ph (T ), however, since the energy range of the Co

phonon DOS is similar to that of V and because there is only 7% Co in the alloy. Our results

of Salloying
ph (T ) for Co in vanadium at different temperatures are listed in Table 6.1. Because

the V phonon DOS does not vary much with temperature up to 1273 K while the V-7%Co

DOS softens, the stiffening of the DOS induced by the impurities at room temperature is

gradually suppressed as temperature increases. This suppression is approximately linear

with temperature, and at 1273 K the vibrational entropy of alloying is nearly zero. As a

consequence, the total entropy of alloying increases linearly with temperature, since the

configurational entropy gain is constant for 7% Co solutes. This gain in entropy with

increasing temperature favors the solid-solution over the A15 V3Co phase in equilibrium

with it, and therefore contributes to the observed increased solubility limit of Co in V

at higher temperatures. Of course, a full account of the temperature dependence of the

solubility limit would require to estimate the free energy curves for both phases, and in

particular would require consideration of the vibrational entropy for the A15 phase.
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Figure 6.7: Phonon DOS for BCC Ti and Zr at elevated temperatures. Taken from [91, 92].

6.4 High-Temperature Properties of BCC Transition Metals

6.4.1 Phonon DOS

The phonons in elements of group 5 present an intermediate behavior between those of

groups 4 and 6. In the high-temperature BCC phase of group 4 metals, the phonon DOS

exhibits a stiffening with temperature. This is particularly pronounced for the transverse

modes, while longitudinal modes do not vary much with temperature [91, 92], see figure

6.7. On the other hand, in the BCC metals of group 6, the phonons soften significantly

with increasing temperature. This was observed by direct measurements of the phonon

dispersions at high temperature in Cr (see [142]; see also Fig. 6.8) and was inferred from a

thermodynamic analysis of the heat capacity for Mo and W [141].

Measurements of phonon dispersions in BCC Nb up to 2223K have been performed by

Güthoff and coworkers [143]. Their results are shown in Fig. 6.9. From room temperature to

773 K, the phonon DOS of Nb exhibits a stiffening of the transverse modes with little change

in the position of the longitudinal peak and cutoff, very much like the behavior observed

in the BCC group 4 metals. At temperatures between 773 K and 1773 K, all vibrational

modes start to soften, with similarity to the behavior in vanadium. The magnitude of the

high-temperature softening in Nb is rather smaller than that expected based on thermal

expansion alone, similarly as for V [56, 77].

It thus appears that the softening of phonons expected from thermal expansion is over-
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come by an intrinsic temperature stiffening (that is, a stiffening with increasing temperature

at constant volume) in BCC metals of groups 4 and 5. This intrinsic stiffening appears to

dominate over the full temperature range of stability of the BCC phase in group 4 met-

als, but it is suppressed at very high temperatures in the BCC group 5 metals V and Nb.

Between groups 5 and 6, the mechanism responsible for this intrinsic stiffening becomes

ineffective and the phonons soften even at moderate temperatures.

6.4.2 Elastic Constants

It is instructive to compare the temperature dependence of phonons in BCC transition

metals to the temperature variation of their elastic constants. Room-temperature ultra-

sonic measurements of elastic constants for BCC transition metals and alloys with varying

electron-to-atom ratios, e/a, have been reported [59, 60, 61, 62]. These were discussed in

chapter 4. Several studies have been reported of such measurements in single crystals of V

and Nb, as well as single-crystal alloys of V-Cr, Zr-Nb and Nb-Mo at varying compositions

and over wide ranges of temperature [65, 66, 64, 67]. These studies have shown that the C44

shear elastic constant exhibits an anomalous temperature variation in V, Nb and Ta and in

BCC alloys of composition close to V and Nb. Published results for V and Nb-Mo alloys

are shown in figures 6.10 and 6.11, respectively. As seen on these figures, C44 for V and Nb

follows a non-monotonic temperature evolution, with first a decrease at low temperatures

leading to a local minimum located between 300 K and 800 K, followed by a stiffening that

proceeds up to melting in Nb, but reverses around 1500 K in V.

This behavior can be tuned by alloying V and Nb with neighboring elements Cr and Mo,

respectively, which form solid-solutions over the whole range of compositions. As seen in

Fig. 6.11, the addition of Mo in Nb shifts the position of the local minimum in C44 to lower

temperatures. For 33%Mo, the minimum is at 0 K and for concentrations above 56% Mo, the

local minimum has disappeared, leaving a normal, monotonic temperature decrease of C44.

The same effect is observed in V-Cr alloys [67]. Through electronic structure calculations,

this behavior has been interpreted as a Fermi surface effect [65, 66, 63]. In pure V, the

distortion of the unit cell in a trigonal strain corresponding to the C44 elastic constant

leads to the opening of a gap around the Γ25′ point of the band structure, about 25 mRy
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above the Fermi level, associated with a decrease in the symmetry of the lattice [63]. This

has only a small energy cost when the upper band above this gap is unoccupied as is the

case in pure V and Nb at low T . However, it is expected to become more energetically

unfavorable when electrons are thermally excited into these states. The position of the Γ25′

point in the electronic DOS of BCC V and Fermi distribution for different temperatures

are illustrated in Fig. 6.12. Alternatively, in the rigid-band model, the states above Γ25′

become filled around 5.4 e/a and, at this composition, the stiffening of C44 is shifted to

lower temperatures, as band-filling and temperature play similar roles. At higher band-

filling and higher temperature, the effect is not as prominent, as Fermi integrals involve the

derivative (−∂f/∂E), which is either not centered on these states or not as sharply peaked

[65, 66]. Besides, for band-fillings crossing the Γ25′ point, the Fermi surface undergoes an

electronic topological transition, as discussed in chapter 5. The significant modifications of

the geometry of the Fermi surface during this transition have also been invoked to explain

the behavior in the C44 elastic constant [112].

The temperature and composition variations of C44 presents some striking similarities

with the variations observed in the phonon DOS, as described above. This is particularly

true for the transverse phonon modes, as expected since those have a close connection

to shear elastic constants. In particular, the stiffening (or absence of softening) of these
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modes at intermediate temperatures follows the same behavior as C44. Also, the addition

of impurities with more d-electrons (Co and Pt) induces a normal softening, while Nb

has almost no effect. Although the addition of Co and Pt solutes is not well described

in the rigid-band model, it is interesting that 7% Co or 6.25% Pt correspond to about

5.3 e/a, which is not in bad agreement with the composition at which the anomaly in C44 is

suppressed above 300 K. However, we expect that Co and Pt have additional effects, related

to the electronic redistribution described in chapter 5. Nevertheless, this similarity between

C44 and the phonons strongly suggests the importance of the coupling of the phonons with

the Fermi surface in the T -dependence of the phonons in vanadium and niobium.

6.5 Effects of Electron-Phonon Interaction

6.5.1 Theoretical Predictions

The possibility of a free energy contribution associated with the electron-phonon coupling

has been alluded to in the previous sections. It is well established that the electron-phonon

interaction affects thermodynamics at low temperatures [53, 52]. In particular, the electron-

phonon interaction gives rise to a mass-enhancement factor (1 + λ) for the electrons, which

increases the low-temperature electronic specific heat by the same factor. The non-adiabatic

electron-phonon scattering responsible for this mass-enhancement vanishes at higher tem-

peratures, however, and the electronic heat capacity is then correctly given by the band

structure expression (the T–derivative of Eq. 2.69) [53, 50].

The possibility of an electron-phonon interaction contribution to the free energy at high

temperatures has been the subject of several contradicting theoretical investigations, and

is still debated. Grimvall’s calculations for Pb imply that the electron-phonon coupling

contribution to the free energy vanishes at temperatures higher than the characteristic

phonon frequency [53, 50]. Allen and Hui, on the other hand, calculated the effect of

the adiabatic electron-phonon interaction on the heat capacity at elevated temperatures

(T ≥ θD) and predicted a contribution of order of magnitude γT and of either sign [144].

Wallace, in [52], states that the derivation of Allen and Hui is “grossly overestimating”

this heat capacity contribution, because of a neglected double-counting ground state term.
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However, in more recent and detailed investigations ([145, 146]), Bock, Coffey, and Wallace

isolated the adiabatic and non-adiabatic electron-phonon contributions to the free energy

of nearly free electron metals and concluded that, although the non-adiabatic term vanishes

at elevated temperatures (in agreement with Grimvall), the adiabatic term increases, and

could have effects on the specific heat comparable to those predicted by Allen and Hui.

Also, in their more recent study, these authors state that the ground state double-counting

correction vanishes at high temperature in the case of the specific heat [146], thus validating

Allen and Hui’s calculation.

We set out to investigate experimentally the prediction of Allen and Hui. According to

those authors, heat capacity measurements at high temperature could be used to discrimi-

nate between phonon-phonon and electron-phonon interactions as sources of T -dependence

of the phonon frequencies. This proposition stems from the result, referred to as “Brooks’

theorem” by the authors, that the perturbation of the non-interacting electronic eigenvalue

εkn by the addition of an extra phonon in mode qj is equal to the change in energy of

phonon mode qj upon inserting an extra electron in state εkn, or mathematically:

Δεkn(qj) = Δωqj(kn) . (6.3)

Using this result, Allen and Hui derive the change in heat capacity of the electrons and

phonons, due to the electron-phonon coupling. The change of the phonon heat capacity in

this model is due to the temperature-dependence of the Fermi distribution for the electrons,

instead of the higher order terms in the deformation potentials in the case of anharmonicity

and phonon-phonon scattering. Their result can be summarized as follows. The expression

for the change in phonon heat capacity in terms of T -dependent frequencies due to the

electron-phonon coupling turns out to be the same as that due to phonon-phonon coupling

and is given by

ΔCph = −
∑
qj

char
ph (ωqj)

d lnωqj

d lnT
. (6.4)
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The change in electronic heat capacity due to the electron-phonon coupling is given by

ΔCel = −
∑
kn

cn.i.
el (εkn − μ)

d ln Δεkn

d lnT
, (6.5)

with cn.i.
el the heat capacity of a non-interacting electron of energy εkn and μ the electronic

chemical potential. Allen and Hui proceed to show that, following Brooks’ theorem,

ΔCel = ΔCph . (6.6)

So, if phonon frequencies are shifting due to phonon anharmonicity alone, the change in

heat capacity is given by the phonon term, Eq. 6.4. On the other hand, if the shifts are

due to electron-phonon coupling alone, the heat capacity change is given by the sum of the

changes in electron and phonon heat capacities ΔCel + ΔCph, and from Eq. 6.6, it is thus

twice the change that would be incurred by phonon anharmonicity. This prediction can

directly be tested experimentally. A useful simplification of Eq. 6.4 is given by Allen and

Hui for kBT > ωmax:

ΔCph � −3kB
d〈lnωqj〉T
d lnT

, (6.7)

per atom, with 〈...〉T the average over modes at temperature T ∗.

6.5.2 Heat Capacity Measurements

Heat capacity measurements for pure vanadium and V93Co7 were conducted using a Netzsch

404-C differential scanning calorimeter. Heating rates of 20 K/min were used. The purge

gas used was Ar of ultra-high purity, which was circulated through a Ti getter furnace to

remove traces of oxygen. This circumvented any observable oxidation on the samples up

to the highest temperatures measured (1723 K). Heat capacities for the two materials were

obtained by comparison to a measurement of a synthetic sapphire standard. In these runs,

the samples (successively sapphire and V or V93Co7) were held in a Pt pan with Pt lid,

while the reference crucible was an empty Pt holder. A baseline run with empty crucibles
∗It can be seen that this expression is equivalent to CP − CV at elevated temperatures.
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was conducted before each measurement. Typical results and deviations for pure V are

seen in Fig. 6.13. The scatter around the average value is about 0.2 kB/atom. Results with

somewhat smaller uncertainties were obtained by conducting differential measurements be-

tween V93Co7 and V samples of the same shape, and containing close to the same number of

atoms (within a few %). In the differential measurement, the scatter between measurements

is about 0.1 kB/atom from the average.

V Heat Capacity

Figure 6.13 shows the different components for the heat capacity at constant pressure of

vanadium from 0 K to 1800 K. The figure shows the assessment of Maglic for the total heat

capacity of V as the thick dashed line [85]. The harmonic phonon contribution “Cph” was

calculated from the V phonon DOS measured at 300 K at Pharos. The non-interacting elec-

tronic contribution, “Cel”, was derived from the electronic entropy calculation of Eriksson

et al. [56] as well as our electronic entropy calculation (Wien2k). The quasiharmonic contri-

bution from thermal expansion “Cexp” is derived from the respective entropy in figure 6.6.

The DSC result for the total heat capacity is indicated by the shaded area.

V93Co7 Heat Capacity

The total constant-pressure heat capacity for V-7%Co was obtained by adding the result

of our differential measurement between the alloy and pure V using DSC and the total

CP of V reported by Maglic [85]. The electronic entropy and specific heat were derived

from the electronic DOS for V-6.25%Co calculated with Wien2k. The quasiharmonic heat

capacity due to thermal expansion was obtained from the corresponding entropy in Fig. 6.6.

Because our thermal expansion measurement is limited to T < 925K, the heat capacity for

thermal expansion was also estimated over a larger range from the literature result for pure

V. We observed that the ratio of the thermal expansion coefficients for V-7%Co and V is

a constant over the whole range of the measurement (1.27 ± 0.01), see Fig. 6.14. The ratio

for the quasiharmonic entropies of thermal expansion, calculated with T -independent bulk

moduli, is also constant over the range of the measurement, ΔSqh
V−Co/ΔS

qh
V = 1.57 ± 0.03.

This result was extrapolated to higher temperatures, and we assumed that the temperature-
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Figure 6.13: Heat capacity components for pure vanadium. Values are at constant pressure.

dependence of the bulk modulus for the two materials is the same (constant bulk modulus

ratio). Results are shown in Fig. 6.15.

Discussion

Our DSC result for the total heat capacity of V is in fair agreement with the recommended

value of Maglic [85]. For reasons that are not obvious, there appears to be a systematic

underestimation in our DSC measurement, however, by about 0.2 kB at 1200 K and reaching

0.5 kB at 1700 K. We will consider the recommended value of Maglic as the reference total

heat capacity of V.

The upward curvature observed in CP of vanadium at elevated temperatures is a general

feature of the heat capacity of early transition metals, although no consensus currently exists

on its interpretation. It has been observed in V, Nb, Ta, Cr, Mo, and W [85]. Although the

coefficient of thermal expansion exhibits a similar behavior at high T , the effect observed

in the heat capacity is not due only to thermal expansion, as it is still present when one
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considers CV , as shown by White [147]. The magnitude of the contribution of vacancies

to the heat capacity in BCC transition metals has been controversial, but it is generally

accepted to be too small to account for the strong non-linear increase in CP [147, 148].

Adding the contributions of electrons, harmonic phonons and quasiharmonic phonons

for pure vanadium, we obtain a heat capacity (“Cph+Cel+Cexp” in Fig. 6.13) in close

agreement with the total heat capacity Ctot
P of Maglic. However, it is interesting to note

that the sum of these contributions is slightly larger than Ctot
P at low temperatures and then

slightly lower a high temperatures, with a crossover around 1500 K. This is reminiscent of

the behavior of the phonon DOS and the anharmonic entropy.

In the case of V93Co7, “Cph+Cel+Cexp” is following the same temperature dependence

as Ctot
P obtained by adding Maglic’s value for vanadium to our differential DSC measure-

ment, but it is consistently smaller by about 0.2 kB/at.

According to the analysis of Allen and Hui, one ought to compare the difference between

the curves “Cph+Cel+Cexp” and Ctot
P to the value of ΔCph of Eq. 6.7. The results for

ΔCph are given in Table 6.2. The anharmonic entropy of Allen and Hui is small in all

cases, not much larger than the error bars on the components and the total heat capacity.

Nevertheless, it seems to show the right behavior, with the correct sign and magnitude. It is

interesting that it is negative for the range 873 K to 1273 K in pure V (about −0.08 kB/at.)

and then becomes larger and positive above 1273 K. Considering the uncertainties in the

various components entering our CP estimates, it is difficult to assess wether this anharmonic

entropy stems from phonon anharmonicity or electron-phonon coupling. The analysis might

be more amenable on a material presenting a strong phonon softening or stiffening but would

still require careful calorimetry work.

6.6 Summary

The temperature-dependence of the phonon DOS of V and dilute V alloys was investigated

experimentally with inelastic neutron scattering. Whereas it had been previously shown

that the V phonons first present an absence of softening up to 1273 K and subsequently

soften more normally, we show that the introduction of a few percent of Co or Pt impu-

rities disrupts this anomalous behaviour. Nb impurities on the other hand do not affect
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Table 6.2: Average phonon frequencies and anharmonic heat capacity for V and V-7%Co.

V 293 (583) 873 (1073) 1273 (1473) 1673

〈E〉 (meV) 23.0 23.2 23.6 22.6

〈lnE〉 3.10 3.10 3.11 3.08

ΔCph (kB/at.) 0.00 -0.08 0.40

V-Co 293 (583) 873 (1073) 1273

〈E〉 (meV) 25.2 24.5 23.8

〈lnE〉 3.19 3.15 3.12

ΔCph (kB/at.) 0.10 0.25

the anomaly. The behavior of the phonons with temperature in V and V-rich alloys can

be compared to general trends observed in BCC transition metals, suggesting the impor-

tance of the electronic structure in determining the temperature-dependence of the lattice

vibrations. Careful analyses of the entropy and heat capacity reveal the necessity to ac-

count for a multitude of contributions, many of them having similar magnitudes at elevated

temperatures. The intrisically anharmonic components of the entropy and heat capacity,

wether stemming from phonon-phonon or electron-phonon interactions, are much smaller,

however. The heat capacity analysis derived from Allen and Hui’s formalism shows the

need for accurate calorimetry measurements and reliable electronic structure calculations.
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Chapter 7

Vibrational Entropy of the γ − α Transformation

in Fe71Ni29

7.1 Introduction

Considerable attention has been given to Fe-Ni alloys over the years. Of particular inter-

est is the martensitic transformation occuring upon cooling the face-centered-cubic (FCC)

austenite (γ), which produces body-centered-cubic (BCC) martensite (α) of higher specific

volume. The temperature at which this transformation occurs is suppressed with increasing

Ni content; for Ni concentrations larger than 32%at, the FCC austenite phase is stable down

to 0 K, as reported by Owen [149]. The martensitic transformation in the Fe-Ni system has

been widely studied, but there has not yet been a quantitative assessment of the entropy

contributions to the change in free energy driving the transformation. In displacive phase

transitions, the transformation from one crystal structure to another operates through well

coordinated movements of atoms, and no long-range diffusion takes place. Thus, there is

no change in the configurational entropy of the alloy and it is expected that the vibrational

entropy will play the predominant role. The relevance of phonons has already been empha-

sised in regards to the mechanism of the martensitic transformation, as in the “soft mode”

model proposed by Cochran [150].

Magnetic effects in Fe-Ni alloys have also been the subject of many studies, especially

the INVAR effect for FCC alloys close to 35%at Ni. Owen [149] reports that the Curie

temperature in the FCC phase varies rapidly with Ni content in this range of compositions;
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it decreases with decreasing Ni content and it becomes lower than the martensitic transfor-

mation start temperature MS at 28%at Ni. For Ni concentrations above 28%, the austenite

phase is ferromagnetic at the martensitic transformation temperature.

Kaufman and Cohen [151] have shown that the transformation between FCC austenite

and BCC martensite in Fe71Ni29 is strongly hysteretic. The γ → α transformation takes

place only upon a large undercooling below the temperature T0 where the free energies of

both phases are equal, while the reverse α → γ transformation requires a similarly large

overheating above T0. The transformation thus takes place out of equilibrium, and this is

caused by the large elastic forces of the α− γ transformation.

We investigate the different contributions to the entropy of transformation in the direct

γ → α and reverse α → γ transformations in Fe71Ni29 by inelastic neutron scattering and

calorimetry. We used inelastic neutron scattering (INS) to measure the phonon density

of states (DOS) and the associated vibrational entropy of Fe71Ni29 as the alloy undergoes

the martensitic transformation. Because the direct and reverse transformations are not in

equilibrium and do not happen at the same temperature, their transformation entropies

could differ. We found a large discrepancy in the vibrational entropies of the direct and

reverse transformations, which we explain in terms of a difference in the magnetic entropy

contributions to the α→ γ and γ → α transformations at different temperatures.

7.2 Experimental Details

7.2.1 Sample Preparation

The samples were prepared from pieces of Fe of 99.98% purity and Ni of 99.9% purity, which

were precision-weighted to obtain the alloy of composition Fe71Ni29. Ingots were made by

arc-melting under high purity Ar atmosphere. The ingots were flipped in the crucible

and melted thoroughly three times to ensure good homogeneity. The mass loss upon arc-

melting was negligible, and there was no trace of surface oxidation. We estimate the possible

composition variations between ingots were less than 0.2%. The ingots were subsequently

cold-rolled to a thickness of 0.4 mm. All specimens were then sealed in evacuated quartz

ampoules and recrystallised at a temperature of 1223 K for an hour, then cooled in the
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ampoules. The difference in Rockwell hardness as measured before and after heat treatment

showed the large softening characteristic of recrystallisation.

7.2.2 X-ray Diffractometry

The amount of γ − α martensitic transformation in Fe71Ni29 was determined by measuring

x-ray diffraction patterns of samples cooled to different temperatures. Strips of samples of

0.4 mm thickness were immersed for 10 minutes in mixtures of ethanol and liquid nitrogen

at temperatures ranging from 260 K to 77 K, then warmed in air. In the present alloy,

Ms is below 260 K while AS is above 600 K; therefore the phase fraction of martensite in

the measured strips should be the fraction achieved by the transformation at the cooling

temperature. The x-ray diffractometer used Co Kα radiation and an Inel CPS-120 posi-

tion sensitive detector. Representative diffraction patterns from the strips after 10 minute

coolings are shown in Figure 7.1. The recrystallised starting material is fully austenitic,

and the phase fraction of BCC martensite increases with decreasing temperature. At 77 K,

the martensite transformation is nearly complete. The austenite phase fraction fγ was

determined from the diffraction patterns using the following formula:

fγ =
0.65(Iγ

311 + Iγ
220)

Iα
211 + 0.65(Iγ

311 + Iγ
220)

, (7.1)

as suggested by Fultz and Howe [152]. Our results are plotted in Fig 7.2. The profile of the

phase fraction evolution is in good agreement with the results of Kaufman and Cohen [151].

These authors found the MS temperature for the onset of the martensitic transformation

to be 243 ± 10 K for the composition Fe-29.3%Ni and 280 ± 10 K for the composition Fe-

28.0%Ni, while we find MS = 248 ± 10 K for the composition Fe-29.0%Ni. Goldman and

Robertson [153, 154] report MS = 243 K for Fe-29%at Ni, also in good agreement with our

result. Using the x-ray diffraction measurements, we find that only about 5% austenite

remains at 77 K. The time-dependence of the transformation was also investigated at 243 K

and 223 K (Fig 7.3). We find a weak time dependence of the transformed fraction, with

not much change occurring after about 2 hours. The time dependence may be stronger at

higher temperatures.
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Figure 7.1: Diffraction patterns from Fe71Ni29 at room temperature for transformation

stages corresponding to decreasing temperatures. a) X-ray diffraction patterns obtained

with Co Kα radiation, λ = 1.790Å. b) Neutron diffraction patterns from Pharos with

60.05 meV neutrons, λ = 1.167Å.
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Figure 7.2: Fraction of remaining austenite (γ) versus decreasing temperature, as obtained

from the diffraction patterns of Figure 7.1 with the analysis described in the text.

Figure 7.3: Time evolution of the austenite fraction at fixed transformation temperatures

of 243 K and 223 K.
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7.2.3 Calorimetry

Low-temperature differential scanning calorimetry (DSC) measurements of the γ → α trans-

formation were performed with a Netzsch STA 449C scanning calorimeter. The α → γ

measurements were performed with a Perkin-Elmer DSC-7. In all calorimetry runs, the

samples were plates of 0.4 mm thickness and about 50 mg mass. The samples were placed in

the Pt sample holder and the reference was the empty Pt holder. The γ → α measurements

were performed by cooling the austenite at rates of 2 K min−1 and 5 K min−1 from room

temperature to 155 K, a temperature range that includes most of the γ → α transformation.

The martensite was then brought back to room-temperature and cooled again to obtain a

baseline that was subtracted from the measurement. The same procedure was followed to

investigate the high-temperature α→ γ transformation. The starting material in this case

was martensite obtained by cooling the alloy to liquid nitrogen temperature and the DSC

measurement was performed from room temperature to 823 K at a rate of 20 K min−1.

Typical heat capacity difference curves obtained from DSC runs are presented in figure

7.4. The profile of the cooling curve shows that the martensite starts forming below 250 K,

and that it occurs in bursts. The first few bursts appeared at 240 K in our samples. These

are the larger and sharper bursts, and they are followed by a series of gradually smaller

bursts down to 220 K, the transformation appearing continuous thereafter. By comparison,

the DSC profile for the reverse transformation is smoother and does not show any sharp

bursts.

7.2.4 Neutron Scattering

Inelastic neutron scattering spectra were measured on the Pharos time-of-flight chopper

spectrometer at the Los Alamos Neutron Science Center. Strips of 0.4 mm thickness of

the austenitic alloy were arranged vertically in a cylindrical shape around an aluminum

support disk. No material other than the sample obstructed the incident beam. The

sample thickness was chosen so that 10% of the incident neutrons were scattered by the

sample. The sample was mounted on a closed-cycle helium displex refrigerator. Spectra

were acquired on the sample in the following sequence of temperatures: 300 K, 235 K, 300 K,

210 K, 300 K, 80 K, 300 K. The material in the room temperature runs after various coolings
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Figure 7.4: Differential scanning calorimetry profiles for the direct γ → α (a) and reverse

α → γ (b) martensitic transformations in Fe71Ni29. Scanning rates were 5 K min−1 for the

direct transformation and 20 K min−1 for the reverse transformation.
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should thus be directly comparable to the material studied by x-ray diffractometry, and this

was indeed verified using the elastic scattering portion of our data (see figure 7.1, panel b).

For each low-temperature run, the sample was cooled slowly and held until the temperature

stabilized, after which data were collected for at least 4 hours. The background signal

from the displex refrigerator and sample environment was measured at room temperature

for a comparable time. The Pharos spectrometer covers a range of scattering angles from

Φ = −10◦ to +145◦ in the scattering plane with 376 position-sensitive 3He detector tubes,

each with 40 pixels along its 1 m height. The incident neutron energy was 60.05 meV.

The scattered neutrons underwent a momentum transfer, Q, varying between 0 and 10 Å−1

at zero energy transfer. This corresponds to a sampling of many Brillouin zones of the

reciprocal lattice for both the γ-phase and the α-phase. The FWHM energy resolution

was 2.7 meV at the elastic line (zero energy transfer), decreasing to 0.5 meV at 40 meV of

positive energy transfer.

Neutron diffraction patterns were obtained from the elastic portion of the neutron scat-

tering data, and used to monitor in situ the martensitic transformation. The neutron dif-

fraction patterns showed the same trends as the x-ray patterns, as can be seen in figure 7.1,

panel b. The same phase-fraction analysis discussed above was applied to these patterns;

neutron results are compared to x-ray results in figure 7.2. The γ phase-fraction measured

by neutron diffraction is slightly higher than that obtained by XRD at all temperatures,

but it is compatible with the same transformation profile. This might reflect a difference in

surface and bulk transformation characteristics, but it is known that an isothermal holding

below the martensite start temperature MS yields a stabilisation of the remaining austenite

phase fraction (Kaufman and Cohen [151]), possibly causing the observed shift to lower

temperatures. The γ phase fractions measured at room temperature after a cooling of

several hours are generally slightly lower than those for the as-cooled sample. This might

be explained by the slight time-dependence of the transformed phase fraction at a given

temperature, which was measured by XRD (Fig. 7.3). The different values of gamma frac-

tions obtained from neutron and x-ray diffraction might also be explained by the higher

penetration of neutrons. In effect, it is possible that the bulk of the 0.4 mm thick samples

transforms slower than the surface upon cooling, despite the sample being close to or at
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thermal equilibrium at all the temperatures of neutron scattering measurements. Perhaps

the strains induced by the transformation of the surface material delay the transformation

of the bulk until lower temperatures are reached.

7.3 Analysis of the Phonon Density of States

7.3.1 Data Reduction

The time-of-flight neutron spectra were first normalized to the cumulated incident inten-

sity and corrected for time-independent background. The response from the 3He detector

tubes was calibrated with data from a pure vanadium cylinder illuminated with a “white”

neutron beam, without a Fermi chopper. The contribution to the background due to the

sample environment was subtracted using data collected without any sample mounted on

the displex. The data were rebinned in constant scattering angles Φ and energy transfer.

The energy energy bin width was ΔE = 0.5 meV. They were then summed into 13 slices

corresponding to conical shells of 10◦ width, from Φ = 15◦ to Φ = 145◦. Because the

martensite is ferromagnetic at all temperatures and the austenite is ferromagnetic below

room temperature, spin-waves can be excited by neutrons in both phases. Although the

intensity from magnetic scattering owing to spin-waves is smaller than the intensity from

phonon scattering, it can become large at small momentum transfers Q. For these reasons,

we used only the portion of the scattering data corresponding to Φ between 85◦ and 145◦.

The data below 6 meV are dominated by the large elastic scattering peak. Since the neu-

tron scattering function tends to a constant at small E, the peak was simply stripped from

the data. The phonon density of states (DOS) was determined in the virtual crystal and

incoherent approximations, with the procedure described in chapter 3.

7.3.2 Neutron-Weight Correction

Because Ni and Fe do not have the same cross-sections for phonon scattering, the resulting

phonon DOS is “neutron-weighted.” As discussed in previous chapters, the weighting factor

for each species is given by the ratio of neutron scattering cross-section over atomic mass

σscat/M , which is 1.5 times larger for Ni than for Fe. Thus, the vibrational modes with
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large amplitude motions of Ni atoms are overemphasised. The experimentally measured

(neutron-weighted) DOS is given by

gnw(E) = xFe
σscat

Fe

MFe
gFe(E) + xNi

σscat
Ni

MNi
gNi(E) , (7.2)

with gFe(E) and gNi(E) the partial phonon DOS for Fe and Ni atoms, respectively. How-

ever, since the integral of the DOS is eventually normalized to unity and since the weighting

factor is modest in the present case, the neutron-weighting only affects the shape of the mea-

sured DOS if the partial DOS curves of the constituents are markedly different. However,

because the atomic masses of Fe and Ni differ only by 5%, we do not expect the two kinds of

atoms to follow very different vibrational modes in a random substitutional solid-solution.

Hence, the overall shape of the phonon DOS is expected to be at most moderately affected

by the neutron-weighting.

Franz et al. [155] have performed nuclear-resonant inelastic x-ray scattering experiments

on 57Fe-enriched Fe80Ni20 polycrystalline samples. This technique allows the measurement

of the partial phonon DOS (pDOS) associated with 57Fe resonant nuclei, but is insensitive

to motions of the Ni atoms. It is in this respect very complementary to the present inelastic

neutron-scattering measurements. Using the martensite Fe-pDOS published by these au-

thors, we extracted the Ni partial phonon DOS from our measurement of the 300 K total

neutron-weighted DOS using Eq. 7.2, on the assumption that the Fe-pDOS in Fe-29%Ni is

comparable to that in Fe-20%Ni. From these Ni and Fe partial DOS contributions, we then

obtained the true, unweighted, DOS for the BCC martensite:

g(E) = xFegFe(E) + xNigNi(E) (7.3)

The ratio of the neutron-weighted DOS to the true DOS for the martensite at room temper-

ature gave us a neutron-weighting distribution for the bcc martensite fnw
α = gnw

α /gα. Since

the effect of neutron-weighting is not expected to vary strongly with temperature, we used

this function to correct the low-temperature martensite DOS gα,80K . The DOS for the in-

termediate states of the transformation were then corrected for the neutron-weighting of the

martensite phase by subtracting a neutron-weighting enhancement Δgnw
α,T = gnw

α,T − gα,T , in
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proportion to the phase-fraction of martensite determined from our phase-fraction analysis.

For example, in the case of the two-phase sample at 210 K,

g210K = gnw
210K − xα, 210KΔgnw

α, 80K . (7.4)

The resulting DOS curves were then renormalised to unit area.

7.4 Results and Discussion

7.4.1 Phonons

Our results for the neutron-weighted phonon DOS curves of martensite and austenite at

room temperature are presented in figure 7.5. The martensite has a stiffer phonon DOS

than the austenite, with an energy cutoff that is larger by about 2 meV. The transverse and

longitudinal modes in the martensite are not as well separated as in the austenite, but all

van Hove singularities in the martensite are shifted toward higher energies. The neutron-

weighted martensite DOS also displays excess intensity at low energy, which we find to be

due to an overweighting of the Ni contribution to low energy modes, as discussed below.

The DOS for the lowest temperature and for the intermediate states of transformation

were corrected for neutron-weighting using the procedure described above. Results are

plotted in figure 7.6. The DOS curves for the two-phase sample exhibit a smooth evolution

from the high-temperature austenite to the low-temperature martensite as the austenite

phase fraction diminishes. We do not observe any effect on the two-phase phonon DOS

caused by the stresses and strains in the mixed phase samples. Within the statistical errors

of our measurements, the total DOS at any degree of transformation is the phase fraction-

weighted average of the martensite DOS and austenite DOS. For the martensite, a phonon

DOS softening was observed between 80 K and 300 K. This is discussed further below.

Previous neutron scattering measurements were performed on FCC Fe70Ni30 solid-

solutions by Hallman and Brockhouse [156], using a triple-axis spectrometer. These au-

thors obtained phonon dispersions along high symmetry directions for the FCC phase at

room temperature, and partial dispersions for long wavelength acoustic phonons at 573 K.

They obtained tensorial interatomic force-constants up to fifth nearest-neighbors for room
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Figure 7.5: Neutron-weighted phonon DOS for γ (white circles) and α (black diamonds)

Fe71Ni29 at room temperature, measured by inelastic neutron scattering. The martensite

(α) result is after cooling the sample to 80 K. The continuous line is the DOS for γ-Fe70Ni30

obtained by Hallman and Brockhouse (1969), convolved with the Pharos instrument reso-

lution function.
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Figure 7.6: Phonon DOS of Fe71Ni29 as function of cooling temperature, corrected for

neutron-weighting. White circles: measurements at low temperature. Black diamonds:

measurements at room temperature after cooling.
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Figure 7.7: Phonon dispersions for BCC Fe80Ni20 calculated by Meyer and Entel. The

calculation is based on molecular-dynamics with embedded atom potentials [46].

temperature by fitting the experimental dispersions with a Born–von Kármán model, from

which they obtained the density of states. The resulting DOS from those authors was con-

volved with our Pharos resolution function and is compared with our present result in figure

7.5. The agreement is excellent, validating our analysis procedure. The cutoff energy, the

positions of the van Hove singularities and the low-energy acoustic behaviour are virtually

identical. Because the DOS obtained from force-constants is free of neutron-weighting, the

agreement shows that the neutron-weighting in the FCC phase does not affect the shape of

the total DOS, and thus the partial DOS curves for Ni and Fe in the FCC phase must be

very similar.

We now turn to the analysis of the BCC martensite phonon DOS. In an attempt to

elucidate the lattice-dynamical origin of the high-temperature α → γ reverse martensitic

transformation in Fe80Ni20, Meyer and Entel [46] have performed simulations of phonon dis-

persions in the BCC phase, using molecular-dynamics with embedded-atom-method poten-

tials. Although the authors report no indication of a soft mode at the martensite-austenite

transformation, they predict that [110]-TA1 phonons at 300 K have very low energies, with

a maximum energy at the N point of about 10 meV. Their results are shown in figure 7.7.
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Figure 7.8: Phonon dispersions for FCC Fe70Ni30 measured by Hallman and Brockhouse

[156].

For comparison, the TA1 mode at the N point in pure BCC Fe has an energy of 18.5 meV

(Mienkiewicz et al. [37]). One should note that the longitudinal phonon frequencies calcu-

lated by Meyer and Entel are somewhat overestimated (by as much as 8%), as suggested

by the authors and evidenced by their calculations on the pure elements. The authors also

found a pronounced softening with temperature of those phonons, with an energy decrease

between 300 K and 600 K in excess of 30% along the whole branch. They attribute these

low-energy modes to the instability of Ni atoms in the BCC phase. On the other hand,

the FCC phase in Fe70Ni30 does not show any modes of anomalously low energy and the

dispersions are remarkably similar to those of pure FCC Ni (de Wit and Brockhouse [82],

Hallman and Brockhouse [156]). The phonon dispersions of Fe70Ni30 measured by Hallman

and Brockhouse are shown in figure 7.8.

The temperature behavior of the acoustic phonons is also the same in the alloy and pure

Ni, with 2.5% average frequency softening from 296K to 573K.

Goldman and Robertson [153] investigated the elastic moduli of austenite and martensite

for Fe-29%at Ni using resonant ultrasound pulse techniques. These authors report that at

the MS temperature the shear modulus μ in the martensite is smaller than that in austenite

by 15% (μα = 55 GPa, μγ = 65 GPa) and that Young’s modulus E in the martensite is also

smaller than that in austenite, by 8% (Eα = 153 GPa, Eγ = 167 GPa). The shear modulus is

directly related to long-wavelength transverse acoustic modes, so this result adds credibility
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to the low-energy modes predicted by Meyer and Entel.

Goldman and Robertson’s results correspond to a much higher Poisson ratio in the

martensite να = 0.39 than in the austenite νγ = 0.28, for T = MS . Also, because of

the difference in the Poisson ratio, their results would indicate that the bulk modulus B

follows a trend opposite to that of Young’s modulus: Bα = 234 GPa > Bγ = 129 GPa.

The value of Bγ obtained from those authors’ results is compatible with the result of Oomi

and Mōri, who found Bγ = 114 ± 5 GPa in ferromagnetic fcc Fe70Ni30 at −30◦C with

high-pressure measurements [157]. In a high pressure study of Fe70Ni30, Oomi and Mōri

[157] found bulk modulus values for the austenite of 177 ± 8 GPa for the paramagnetic

state and about 108 ± 5 GPa for the ferromagnetic state, both at 300K. The bulk modulus

temperature dependence found by those authors leads to values at −30◦C of 183 ± 8 GPa

and 114 ± 5 GPa for the paramagnetic and ferromagnetic phases, respectively. Since the

austenite in Fe−29%at Ni at MS is ferromagnetic, the values obtained by Oomi et al. and

Goldman et al. are compatible. These two results bay differ because the austenite for

29% Ni is not fully magnetically saturated before the martensitic transformation, thereby

increasing its bulk modulus.

Franz et al. [155] obtained the Fe-pDOS as a function of temperature from 300 K up to

720 K. Although the resistivity measurements of Kaufmann and Cohen [151] place the α→ γ

start temperature AS above 800 K for this composition, Franz et al. were able to directly

measure the change in Fe-pDOS corresponding to the reverse martensitic transformation.

But as the authors point out, the highest temperature they measured corresponds to only

a partial transformation to the FCC phase. The features of the Fe-pDOS curves they

obtained are similar to our results for the total phonon DOS, with a large softening of the

DOS from the α to the γ phase (in excess of 4 meV at the cutoff), yielding an average

Fe-frequency softening 〈�ωFe〉Fe80Ni20
γ,720K /〈�ωFe〉Fe80Ni20

α,300K = 0.887. Using our neutron-weight-

corrected DOS, we found an average frequency ratio of austenite to martensite at room

temperature 〈�ω〉Fe71Ni29
γ,295K /〈�ω〉Fe71Ni29

α,295K = 23.6/24.7 = 0.955. Because Franz et al. performed

their γ phase measurement at 720 K, extra softening is present in their Fe-pDOS compared

to the DOS we measured at 295 K. The authors do not report any Fe-pDOS for the γ

phase at lower temperatures, although the measurements by Kaufmann and Cohen [151]
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place MS around 500 K for 20%Ni. While the Fe-pDOS measurement of Franz et al. is

very interesting in itself, their result for the Fe-pDOS in the martensite at 300 K does not

present a strong evidence for the low energy modes predicted by Meyer et al. [46] at this

temperature.

The Ni-pDOS obtained with the analysis presented above differs markedly from the Fe-

pDOS. The deweighted BCC total DOS and the partial DOS for Fe and Ni are shown in

figure 7.9. The Ni-pDOS shows an unexpectedly big contribution from low-energy modes,

where Ni atoms undergo large amplitude vibrations. On the other hand, it is much lower

than the Fe-pDOS above 30 meV. The deweighted total DOS is smaller than its neutron-

weighted counterpart at low energies, owing to the overweighting of large amplitude Ni

vibrations at low energies. The reverse is true at high energies, where the modes involving

mostly Fe contributions were underweighted. The deweighted martensite DOS still shows a

small excess of low energy modes between 7 meV and 13 meV, compared with the austenite

DOS, although our neutron-weight correction greatly reduced this effect. It thus appears

that the phonon DOS for the martensite has more modes at low energies than for the

austenite; the consequences for the entropy of transformation are discussed in the next

section.

Herper et al. have used ab-initio techniques to study the FCC → BCT martensitic

transformation in ordered L12 Fe3Ni [158]. Using the frozen-phonon approach, they calcu-

lated the phonon softening as function of decreasing temperature in the FCC phase, and

ascribed soft-phonon transverse modes in the [110] direction as precursors of the martensitic

phase transition. They related the phonon softening along this branch to the increase in

the electron-phonon coupling, which the authors expect from the increase in electron den-

sity at the Fermi level with decreasing temperature. Although transverse precusor mode

softening is generally accepted as a possible mechanism for the FCC to BCT martensitic

transformation, no direct evidence for this mechanism can be obtained from our data.
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Figure 7.9: a) Partial phonon DOS curves for Fe and Ni in the martensite, at room tem-

perature. Line: Fe-pDOS obtained by Franz et al. [155]. Dots: Ni-pDOS determined from

Franz’s measurement and our martensite total DOS result. b) Room-temperature phonon

DOS curves. Dashed line: neutron-weighted DOS for martensite. Diamonds: neutron-

weight-corrected DOS for martensite. White circles: neutron-weighted DOS for austenite

(the neutron-weight in this case is minor, see text).
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Table 7.1: Latent heat and entropy contributions to the γ → α and α→ γ transformations

in Fe71Ni29.

ΔQ ΔStot ΔSvib ΔSmag

(J mol−1) (kB atom−1) (kB atom−1) (kB atom−1)

γ → α −293 ± 17 −0.15 ± 0.01 −0.12 ± 0.02 (−0.03 ± 0.02)∗

α→ γ 1800 ± 150 0.32 ± 0.03 (0.12 ± 0.02)† 0.25

7.4.2 Entropy

Calorimetry

Listed in table 7.1 are the latent heat and entropy change in the martensitic phase trans-

formation γ → α and the reverse transformation α → γ that we obtained by differential

scanning calorimetry. Our result for the entropy change in the γ → α transformation is

in good agreement with the approximate value reported by Goldman and Robertson [154],

who obtained ΔSγ→α
tot = −0.8 cal mol−1 = −0.1 kB atom−1 for the total entropy change from

differential thermal analysis measurements on Fe - 29%at Ni. The total enthalpy and en-

tropy values we report for the γ → α transformation were corrected for the fact that the

martensitic transformation is not complete at the lowest temperature of 173 K we could at-

tain with our calorimeter. We estimated from our phase-fraction measurements that there

was 15% austenite remaining at this temperature, so our calorimetry results for the γ → α

transformation were increased by 15% to account for this. On the other hand, the starting

material in the α → γ DSC measurement was nearly fully martensitic (with perhaps 5%

austenite), and our result for the enthalpy change ΔHα→γ = 1800±150 J mol−1 is in excel-

lent agreement with the value of ΔHα→γ = 1800 J mol−1 reported by Porter and Easterling

[159].

The values we found for the enthalpy and entropy changes during the reverse α → γ

transformation are much larger than their respective magnitudes for the γ → α transforma-

tion. This can be explained by the different magnetic states of the austenite and martensite,

as discussed below.

Yamamoto et al. report an even larger value for ΔSα→γ [160]. Yamamoto et al. studied
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the pressure-induced reverse martensitic transformation in Fe70Ni30 by x-ray diffraction and

electric resistance measurements. Using Clapeyron’s equation, they estimated the entropy

change from the change of AS and the change in specific volume between ambient pressure

and 8GPa as ΔSα→γ = 0.509kB/atom. Since the authors used only two pressure points

at 0 GPa and 8 GPa, they did not get a precise behavior of the phase boundary and the

value they obtained is only an approximation for ΔSα→γ at ambient pressure. In particular,

another high-pressure study for the dependence of MS on pressure in Fe70.1Ni29.9 has shown

a highly non-linear behaviour of MS(P ) between 0 GPa and 1.5 GPa [161]. In this light, we

consider that the results of Yamamoto et al. overestimate the true value ΔSα→γ . Also, this

estimate of ΔSα→γ should take into account the change in magnetic configuration.

Phonon Entropy

The vibrational entropy Svib(T ) at temperature T is given in the quasiharmonic approxi-

mation by

Svib(T ) = 3kB

Emax∫
0

[(nT (E) + 1)ln(nT (E) + 1) − nT (E)ln(nT (E))] × gT (E) dE ,(7.5)

where nT (E) is the Bose-Einstein distribution, gT (E) is the DOS and Emax the phonon

energy cutoff. Using the as-measured austenite DOS curve at 300 K and the neutron-weight

corrected martensite also at 300 K, we obtained a difference in vibrational entropy between

the two measured materials of ΔSvib = −0.10 ± 0.02 kB atom−1. Using our phase-fraction

determination from neutron diffraction patterns, we estimated there was 20% remaining

austenite in the martensitic sample, so we obtained a vibrational entropy change in the

martensitic transformation of ΔSγ→α
vib = −0.12 ± 0.02 kB atom−1.

The softening of the martensite DOS between 80 K and 300 K can be related to the

classical softening due to the expansion of the lattice. The classical relationship can be

evaluated with our in situ neutron-diffraction measurements and published values of elastic

constants. From a refinement of the neutron diffraction patterns, we found lattice parame-

ters for the BCC martensite a = 2.858 ± 0.003Å at 80 K and a = 2.863 ± 0.002Å at 295 K,

the latter being in good agreement with the reported density measurement of Goldman
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and Robertson [153] at room temperature for BCC Fe-29%at Ni of ρ = 8.001 g cm−3, or

equivalently a = 2.866Å. The average linear thermal expansion coefficient between these

two temperatures is αL = 8 × 10−6, in good agreement with the 100 K-300 K portion of

the dilatometric measurement of Acet et al. [162] on Fe70Ni30. Using a bulk modulus

B = 234 GPa of the martensite reported by Goldman and Robertson [153], we find the

classical contribution to the anharmonic entropy due to the expansion of the lattice against

the bulk modulus:

ΔSexpan
anh (T0, T1) =

∫ T1

T0

9Bvα2
LdT , (7.6)

where v is the specific volume. Using the values listed above, we obtained ΔSexpan
anh =

0.02 kB atom−1.

We now calculate the anharmonic entropy change from the martensite DOS at 80 K and

295 K. In the quasiharmonic approximation, the anharmonic entropy change is obtained

from the DOS as

ΔSanh(T0, T1) = Svib[nT1(E), gT1(E)] − Svib[nT1(E), gT0(E)] . (7.7)

Because we do not have a neutron-weight-corrected DOS for the martensite at 80K, we use

the neutron-weighted DOS curve at both temperatures; since the neutron-weight affects the

martensite DOS similarly at both temperatures, we expect the result to be reliable. We find

ΔSanh(80K, 295K) = 0.01±0.01 kB atom−1, in good agreement with the classical result. An

average Grüneisen parameter γ̄ = vBαL/kB was evaluated as γ̄ = 1.6, from which we obtain

Δ〈ν〉/〈ν〉|295K
80K ≈ −1%, in good agreement with the observed shift of the cutoff energy and

the average change of frequency: 〈ν〉α295K/〈ν〉α80K = 0.988. Hence the martensite is shown to

behave quasiharmonically in this range of temperatures, the only source of phonon softening

being the classical effect associated with lattice expansion against the bulk modulus.

Magnetic Entropy

The magnetization of both the α and γ phase in Fe - 28.7%at Ni was measured by Peschard

[163] across both the martensitic and reverse-martensitic transformations. Peschard’s re-
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sults show that for this composition, the martensite remains ferromagnetic to the temper-

ature of the α → γ transformation. The author estimates through graphical interpolation

that without the transformation to austenite, the Curie temperature for the BCC phase

would be TC ≈ 870 K. From these magnetisation measurements, we calculated the mag-

netic entropy in the Bragg-Williams approximation (Chaikin and Lubensky [164]),

Smag(m)/kB = ln(2) − 1/2[(1 +m)ln(1 +m) + (1 −m)ln(1 −m)] , (7.8)

where m is the ratio of the magnetization to the saturation magnetization of the sample.

The magnetic entropy curves thus obtained are shown in figure 7.10. When comparing the

magnetization curves of the α and γ phases, one should keep in mind that the saturation

magnetization in the γ is about half of that in the α, with an average magnetic moment

per atom μγ = 1.25μB compared to μα = 2.2μB (Crangle and Hallam [165]).

The Curie temperatures for the γ and the α phases are room-temperature and 870 K,

respectively. Above these temperatures, the magnetic spins are oriented randomly, and the

magnetic entropies of both phases reach their maximum value of ln(2) kB atom−1. How-

ever, upon heating, the ferromagnetic α phase transforms to paramagnetic γ at the reverse

martensitic transformation temperature AS before it becomes paramagnetic. Upon cooling

the γ phase from high temperature, it becomes ferromagnetic below 380 K and then trans-

forms martensitically to the ferromagnetic α phase. Since the Curie temperature for the

austenite is close to MS in Fe-29%Ni, it is possible that the austenite is not fully saturated

magnetically before it transforms to martensite. The small difference of 0.03 kB atom−1 be-

tween our values of ΔSγ→α
tot measured by DSC (although a slight underestimate, as discussed

above) and ΔSγ→α
vib measured by inelastic neutron scattering possibly originates from a non

fully saturated state of the ferromagnetic austenite before it transforms to martensite below

240 K.

From the magnetisation curve for heating of the α and the magnetisation for the α phase

above AS reported by Peschard, we estimated the phase fraction of transformed material,

xγ(T ). By integrating the entropy contribution of each differential element of martensite
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Figure 7.10: a) Magnetisation measurements of Peschard on Fe-28.7%Ni [163]. b) Magnetic

entropy curves derived from Peschard’s measurements, with the analysis described in the

text. The curve labelled Δ is the magnetic entropy difference between the austenite (γ)

and the martensite (α).
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transforming to austenite, we then obtained the magnetic entropy of the transformation

ΔSα→γ
mag =

∫ AF

AS

dxγ(T )
dT

[Smag(mγ(T )) − Smag(mα(T ))]dT , (7.9)

where the start and end temperatures for the α → γ transformation are AS = 590 K

and AF = 770 K, respectively. We found ΔSα→γ
mag = 0.25 kB atom−1. This estimate of the

magnetic contribution to the increase in entropy at the reverse-martensitic transformation

brings our calorimetric measurement ΔSα→γ
total = 0.32 ± 0.03 kB atom−1 in good agreement

with our result for the vibrational entropy change at the martensitic and reverse-martensitic

transformations, ΔSα→γ
vib = −ΔSγ→α

vib = 0.12 ± 0.02 kB atom−1. Thus it appears that the

magnetic contribution to the entropy change at the α→ γ transformation is twice that due

to phonons. The remaining possible contributions to ΔSα→γ
total , such as electronic entropy

ΔSel, should be small.

7.5 Analysis of Time-of-Flight Coherent Phonon Scattering

So far, we have conducted our analysis of neutron scattering data within the incoherent

scattering approximation. Despite the fact that Fe and Ni both present strong coherent

neutron scattering cross-sections, we have illustrated the validity of our procedure by repro-

ducing the phonon DOS of FCC Fe-Ni obtained from published interatomic force-constants

inferred from triple-axis measurements (see section 7.4). This success can be attributed

to the good reciprocal space sampling achieved in our measurement, which allows for a

meaningful averaging of the scattering. This incoherent averaging to extract the phonon

DOS benefited from the use of polycrystalline samples, which effectively performs a direc-

tional average of the phonon dispersions. Our sampling of the scattering function S(Q,E)

also extends to large momentum transfers Q, and thus encompasses many Brillouin zones

in reciprocal space. The phonon DOS is an integral over the phonon dispersions, but

the latter contains more information on the lattice dynamics. The coherent nature of

the Fe-Ni system allows for a more advanced analysis. Using a lattice-dynamics model,

one can calculate the full theoretical Sth
coh(Q,E) and compare the results directly with the

experimental quantity, Sexp
coh (Q,E). The incoherent scattering function Sth

inc(Q,E) can be
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obtained similarly from the lattice-dynamics model, and the total inelastic scattering func-

tion Sinel(Q,E) = Scoh(Q,E) + Sinc(Q,E) can thus be calculated. This requires a priori

knowledge of the lattice dynamics, and in the case of a Born–von Kármán model, one needs

the tensorial interatomic force-constants.

The intensity from the inelastic neutron scattering measurements on Pharos were re-

duced to scattering functions Sexp(Q,E) for the martensite and austenite phase, both at

room temperature. Results are shown in figure 7.11. The diffraction peaks at zero energy

transfer are labelled for the FCC and BCC phases. The arches branching out of these dif-

fraction peaks (or reciprocal lattice vectors) are the orientation-averaged phonon dispersions

for the polycrystalline samples.
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7.5.1 General Considerations

For coherently scattering nuclei distributed on a Bravais lattice, the scattering function

S(Q,E) is closely related to the phonon dispersions in the crystal [14]. In an inelastic neu-

tron scattering experiment, one measures the double-differential neutron scattering cross-

section,
(
d2σ/dΩdE

)
, which is directly related to the scattering function, S(Q, E). For a

coherent one-phonon creation process in a monatomic crystal, we have

(
d2σ

dΩdE

)
coh+1

=
σcoh

4π
kf

ki
NScoh(Q, E) , (7.10)

where E = �ω is the energy transferred from the neutron to the sample, σcoh is the coherent

neutron cross-section for the single species present, ki and kf are the incident and scattered

neutron wave vectors, N is the number of unit cells in the crystal, and Q is the wave vector

transferred to the crystal. After and easy correction for the ratio of final and incident wave

vectors, one is left with a quantity proportional to Scoh(Q, E). For the case of scattering

with the coherent creation of one phonon, the scattering function is given by

Scoh(Q, E) =
(2π)3

Nv0

1
2M

exp(−2W )

×
∑

s

∑
τ

(Q · es)2

ωs
〈ns + 1〉δ(ω − ωs)δ(Q − q − τ ) , (7.11)

where v0 is the unit cell volume; M is the mass of the atom; W is the Debye-Waller factor;

ωs, es and nS are the pulsation, polarization vector, and Bose-Einstein thermal occupancy

factor for the phonon mode of index s (which collects branch index σ and wave vector

q). The sum over τ runs over reciprocal lattice vectors. From Eq. 7.11, we can see that

Scoh(Q, E) gives us information about the phonon dispersions of the sample ω(q). The

scattering function for a given wave vector transfer Q and a given energy transfer E is the

sum of contributions from all single phonon modes that can be excited, while preserving

conservation of energy and momentum (up to a reciprocal lattice vector). Each phonon

mode s contributes in proportion to how well its polarization vector es is aligned with

the momentum transfer Q, giving rise to the polarization factor |Q · es|2. Performing the

summation in 7.11 over the first Brillouin zone and applying shifts by reciprocal lattice
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vectors τ is equivalent to summing over the whole of reciprocal space. We will place

ourselves in this “extended zone scheme” and discard τ in the rest of this discussion.

When measuring a polycrystalline sample, one obtains only the average of Scoh(Q, E)

over all orientations of the crystallites relative to the neutron beam. In the absence of pref-

erential orientation for the crystallites in the sample, Scoh(Q, E) thus reduces to Scoh(Q,E).

We can calculate Scoh(Q,E) from 7.11 using the previously described Born–von Kármán

model in the following manner. The possible phonon wave vectors in reciprocal space

effectively forming a continuum, we can pick an arbitrary value, q, and diagonalize the

dynamical matrix at this point. This provides us with phonon eigen–energies at this point,

{ωq,σ}σ=1,2,3, as well as the polarization vector for each corresponding mode {eq,σ}σ=1,2,3.

The Dirac delta functions for conservation of momentum and energy in 7.11 then tells us

that each of the three modes just calculated can only contribute to Scoh(Q,E) for Q = |q|
and E ∈ {�ωq,σ}σ=1,2,3.

We can thus determine the partial contribution of these three modes to Scoh(Q,E), by

adding 〈ns + 1〉(Q · es)2/ωs to a histogram of S. Sweeping reciprocal space with q, we thus

“build-up” the scattering function Scoh(Q,E) for any Q-range. While the range of Q we

calculate might be taken to correspond to our experimental sampling, the range of energy

E is dictated by the lattice dynamics of the system and is not known a priori, although it

is also limited experimentally. The Debye-Waller factor W also depends on Q. For a cubic

Bravais crystal, one can show that

2W =
1
3
Q2〈u2〉 , (7.12)

where the mean square thermal atomic displacement 〈u2〉 is related to the phonon DOS

g(ω) through

〈u2〉 =
3�

2M

∫ ωmax

0
g(ω) coth(β�ω/2)/ω dω , (7.13)

with β = 1/kBT [14]. Thus, we also need the phonon DOS to obtain S(Q,E). A practical

approach is to calculate Scoh(Q, E) exp(2W ) as we sweep reciprocal space and populate

the DOS histogram with the phonon eigen-frequencies determined at each q-point. The
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Debye-Waller factor is then calculated and factored in to obtain Scoh(Q,E). In this way,

Sinc(Q,E) is obtained essentially for free as a by-product. We should mention in passing

that this simple procedure does not strictly hold for a non Bravais crystal. In effect, for a

unit cell containing more than one atom, the Debye-Waller factor depends on which atom

in the basis is considered, as each atom might have a different 〈u2〉. The partial differential

coherent scattering cross-section is given in this case by

(
d2σ

dΩdE

)
coh+1

=
kf

ki

(2π)3

2v0

∑
s

∑
τ

1
ωs

∣∣∣∣∣∑
κ

b̄κ√
Mκ

exp(−Wκ) exp(iQ · rκ) (Q · eκs)

∣∣∣∣∣
2

×〈ns + 1〉δ(ω − ωs)δ(Q − q − τ ) , (7.14)

where κ runs over the atoms in the crystal basis, b̄κ is the average neutron scattering length

for the atom κ (average over the isotopes of this species and over the nuclear spin values

occupied) and rκ denotes the atomic positions inside the unit cell [14]. The terms in the

sum over s = (q, σ) in 7.14 then involve a sum over the basis atoms and each basis atom κ

involves its own Wκ, so that the Debye-Waller factor cannot be factored out. However, in

cases where W is not very dependent on the atom considered, one could use the previous

procedure with the approximation Wκ ≈W .

7.5.2 Calculation of S(Q, E) for FCC and BCC Fe-Ni

We now apply the general considerations of the previous section to the case of the Fe71Ni29

solid solution. We use the virtual crystal approximation to treat the alloy as a Bravais

lattice. We used the interatomic force-constants for the FCC solid-solution Fe70Ni30 de-

termined by Hallman and Brockhouse [156] to calculate Scoh(Q,E) using the approach

described above. Hallman and Brockhouse obtained these force-constants from a fit of a

Born–von Kármán model for the FCC alloy in the virtual crystal approximation to the

phonon dispersions they measured on a triple-axis spectrometer. To build up Scoh(Q,E),

we used a random sampling of q-points inside a sphere of radius Qmax = 10Å−1, corre-

sponding to the maximum wave vector transfer at the elastic line in our experiments. Since

the Born–von Kármán equations for lattice dynamics do not explicitely contain the lattice

parameter a of the crystal, the wave vectors are scaled by 2π
a in our calculation. To achieve
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a good sampling of Scoh(Q,E), we used 3× 107 random q-points. The result of our calcula-

tion is shown in figure 7.12 (panel a), where it is compared to the experimentally measured

scattering Sexp(Q,E) (panel b). The portion of Scoh(Q,E) displayed in figure 7.12 (a) is

restricted to the region of (Q,E)–space allowed by the kinematics of scattering in the ex-

perimental conditions. The calculated S(Q,E) in this figure does not include Sinc(Q,E),

but the latter represents less than 10% of the total scattering in this case. The arches in

the Scoh(Q,E) calculated intensity are the orientation-averaged phonon dispersions from

our virtual crystal Born–von Kármán model. The dispersions stem from the points on

the elastic line corresponding to reciprocal space lattice vectors. One can observe that the

experimental intensity is well reproduced. The positions and slopes of the dispersions are in

good agreement, which validates the interatomic force-constants used as input. One should

keep in mind that these force-constants were obtained by fitting the phonon dispersions

in a limited number of high-symmetry directions, whereas S(Q,E) samples the whole of

reciprocal space.
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As discussed above, the calculation of Scoh(Q,E) and Sinc(Q,E) requires some knowl-

edge of the lattice dynamics of the material. When using a Born–von Kármán description,

one needs the interatomic force-constants. However, these can be seen as parameters to

be refined by fitting Sth(Q,E) to Sexp(Q,E). The analysis of S(Q,E) described in this

section thus presents a new method to extract information about lattice dynamics from

time-of-flight experiments. This method is potentially more powerful than the inversion of

the phonon DOS alone, described in chapter 4, since it is based on the phonon dispersions

measured over a large swath of reciprocal space, rather than phonon DOS, which is an in-

tegral quantity. One can foresee challenging requirements for the proper implementation of

such a fitting procedure, such as the accurate accounting of experimental effects associated

with the characteristics of the neutron spectrometer, as well as the computational cost of

calculating S(Q,E). In the case of the Pharos time-of-flight spectrometer, the character-

istics of the instrument have been sufficiently well established, through calibrating runs or

Monte Carlo simulations, that the resolution function in both Q and E is available. At

the time the author writes this thesis, however, a full fitting procedure represents a heavy

computation, because of the cost of calculating S(Q,E) from a Born–von Kármán model.

Appropriately designed scientific software is needed to tackle this challenge.

7.6 Conclusion

Inelastic neutron scattering measurements showed that, although the phonon DOS is overall

stiffer in the low-temperature martensite, it also has many modes at low energies. Using

the result of Franz et al. [155] for the Fe partial DOS in BCC Fe80Ni20, we extracted the

Ni partial DOS, which shows much more intense low-energy modes than its Fe counterpart,

as suggested by a previous theoretical study (Meyer and Entel [46]). The phonon entropy

change in the martensitic transformation is ΔSγ→α
vib = −ΔSα→γ

vib = −0.12 kB atom−1. This

value is rather smaller than expected for martensitic transformations (Bogdanoff and Fultz

[166]), and this is seen to result from the low energy and presumably large amplitude Ni

modes in the martensite. Samples of austenitic γ phase were cooled to induce the marten-

site transformation, and measurements of phase fraction and phonon DOS were acquired

at low temperature and again at room temperature. At any intermediate state of trans-
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formation, the phonon DOS for the two-phase sample is the phase-fraction average of the

martensite and austenite DOS. There was no observable effect on the DOS from elastic

forces at the martensite-austenite interface, for example. The phonon DOS softening of

the martensite between 80 K and 300 K is about 1%, consistent with the classical expan-

sion of the lattice against the bulk modulus. From our differential scanning calorimetry

measurements, the total entropy changes in the γ → α and α → γ transformations are,

respectively, ΔSγ→α
tot = −0.15 ± 0.01 kB atom−1 and ΔSα→γ

tot = 0.32 ± 0.03 kB atom−1, in

good agreement with previously reported values. Using previous magnetization measure-

ments, we established a magnetic entropy contribution in the α → γ transformation of

ΔSα→γ
mag = 0.25 kB atom−1, which brings our calorimetry and neutron scattering results in

good agreement. This magnetic contribution to the entropy of the α → γ transformation

is twice as large as the phonon contribution. We performed an analysis of the coherent

inelastic scattering Scoh(Q,E), based on a Born–von Kármán model for FCC Fe71Ni29.

Our calculation of the coherent inelastic scattering function was in very good agreement

with the experimental time-of-flight measurement, which validates the interatomic force-

constants determined by Hallman and Brockhouse [156] using a triple-axis spectrometer.



185

Chapter 8

Conclusions

8.1 Summary

The experimental investigations conducted in this thesis reemphasize the importance of

phonon entropy in binary alloy thermodynamics. In particular, it was shown that a few

percent of impurities can have an entropic effect opposite to that expected solely on the

basis of configurational degrees of freedom. General considerations as well as more detailed

computations in the framework of density functional theory showed that changes in the

electronic structure associated with the introduction of impurities play a critical role for

the lattice dynamics. Simple considerations of electronegativity and charge transfer may

help in predicting general trends for the vibrational entropy of dilute alloys, much in the

fashion of the Hume-Rothery rules for alloy formation. Such trends are invaluable to the

rationalization of vibrational entropy contributions in binary alloys.

The temperature-dependencies of phonons in pure and alloyed BCC vanadium were in-

vestigated with inelastic neutron scattering and calorimetry. It was observed that impurities

also affect greatly the vibrational properties of vanadium at elevated temperatures. In par-

ticular, the anomalous intrisic stiffening of the phonons in the pure metal is suppressed by

the introduction of late transition metal solutes. This effect was related to known trends in

BCC transition metals and electronic structure features, such as the electronic topological

transition occurring between V and Cr. The effects of phonon-phonon and electron-phonon

couplings on the entropy and heat capacity were estimated. A definite answer as to the

origin of the anomalous temperature behavior in pure V has yet to be given, but our as-
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sessments show that it could be accessible to careful calorimetric measurements.

The change in phonon entropy and magnetic entropy across a martensitic phase-transition

was investigated, through inelastic neutron scattering and calorimetry measurements. The

complementarity of the two techniques allowed us to isolate each of the entropy contri-

butions in both the direct and reverse transformations. A significant magnetic entropy

contribution to the reverse transformation was deduced, in agreement with previous mag-

netization measurements. This result emphasizes the need to consider all the microscopic

degrees of freedom in accounting for the entropy differences between solid phases.

8.2 Future Work

The correlation that was exhibited between charge transfer and vibrational entropy of al-

loying in the case of V-based solutions prompts further investigations of entropy of alloying

in semi-dilute alloys with a few percent of impurities. Effects of impurities on the phonons

in the FCC late transition metals are of particular interest. Complementary studies in

other BCC metals, such as Nb or Mo would also help to further establish, or invalidate, the

uncovered trend. Our charge transfer investigations have established a relationship of the

form

ΔSvib = −c ηΔχ , (8.1)

with c the solute concentration, Δχ the difference in electronegativity between solute and

host species, and η a constant. Critical evaluation of this relation in other hosts would be

very interesting. If this simple linear relationship holds, further examination of the constant

η should be performed. Is it universal? How can it be interpreted?

Experimental measurements probing the local structure around the solutes in the case

of vanadium would be useful to complement the first-principles simulations presented here.

Extended x-ray absorption fine structure, for example, could provide information on the

local relaxation and charge state of the solutes and their nearest neighbors.

First-principles calculations of the phonons in dilute vanadium alloys are desirable, in

order to make more explicit the relationship between the charge distribution and the changes

in the force-constants, and explore their consequence on the lattice dynamics. Alternative



187

approaches using effective potentials taking into account the salient points of the physics

may be an efficient way forward. In particular, such treatments might be helpful to inves-

tigate high-temperature phonon thermodynamics.

The simultaneous consideration of high-temperature inelastic neutron scattering exper-

iments, accurate high-temperature measurements of thermophysical properties, and first-

principles electronic structure calculations could potentially answer very interesting ques-

tions about the high-temperature thermodynamics of transition metals. What is really the

nature of anharmonicity? How do phonon-phonon and electron-phonon interactions affect

the free energy?

The analysis of inelastic neutron scattering experiments using time-of-flight spectrome-

ters should be developed beyond the practices available today. In particular, the coherent

inelastic scattering signal may be informative. The coherent inelastic scattering channel

carries useful information about the phonon dispersions, which should be retrieved to ob-

tain a more detailed picture of the lattice dynamics. Such an analysis will require properly

designed software for the direct simulation of the measured scattering intensity, and could

be interfaced to fitting routines in order to refine lattice-dynamics models.
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Appendix A

The Electron-Phonon Interaction

This appendix presents a brief introduction to the electron-phonon interaction. The first

section introduces the operators that couple the motion of the nuclei to the electronic wave

functions, while the second section presents the results of the treatment of these operators

as perturbations. For extensive treatments of the subject, the reader is referred to [25, 53].

A.1 Coupling Operators

We start from the general hamiltonian for the crystal (Eqs. 2.1, 2.2):

Ĥ = T̂e + V̂e−e + T̂n + V̂n−n + V̂e−n , (A.1)

where the different terms are defined as in Eq. 2.2. We use a simplified notation for the

coordinates of the nuclei and electrons:

R = {R1, ...,Rp}
r = {r1, ..., rN} , (A.2)

with N = Zp and Z the atomic number of the nuclei (we assume a Bravais crystal for

simplicity).

For a given nuclear configuration, R, one can in principle determine the many-body
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wave function ψk(r,R), such that:

Ĥeψk(r,R) = Ek(R)ψk(r,R) , (A.3)

where Ĥe is the electronic hamiltonian defined in Eq. 2.4. Since the eigenstates ψk(r,R)

can be determined for any R, and form a complete orthonormal state, we can expand the

eigenstates of Ĥ on this basis:

ĤΦ(r,R) = EΦ(r,R)

Φ(r,R) =
∑
k

χk(R)ψk(r,R) . (A.4)

The Shrödinger equation for the nuclei and electron can be re-written:

ĤΦ − EΦ = 0

= ĤeΦ + [T̂n + V̂n−n]Φ − EΦ

=
∑
k

(Ek(R) − E)χk(R)ψk(r,R)

+
∑
k

(T̂n + V̂n−n)χk(R)ψk(r,R) . (A.5)

Taking the inner product with respect to electronic degrees of freedom in state k′ (left

multiplying by ψk(r,R) and integrating over r), we obtain:

(Ek′(R) − E + V̂n−n)χk′(R) +
∑
k

〈ψk′(r,R)|T̂n|ψk(r,R)χk(R)〉r = 0 . (A.6)

Using the definition T̂n = −∑I
�
2

2M ∇2
RI

, we can expand the terms in the sum over k:

〈ψk′(r,R)|T̂n|ψk(r,R)χk(R)〉r = − �
2

2M

∑
I

{
〈ψk′(r,R)|∇2

RI
ψk(r,R)〉r χk(R)

+ 2 〈ψk′(r,R)|∇RI
ψk(r,R)〉r · ∇RI

χk(R)

+ 〈ψk′(r,R)|ψk(r,R)〉r∇2
RI
χk(R)

}
. (A.7)
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Since

〈ψk′(r,R)|ψk(r,R)〉r = δk,k′ (A.8)

for any R, we obtain:

(Ek′(R) − E + V̂n−n + T̂n)χk′(R) +
∑
k

(Âk′k + B̂k′k)χk(R) = 0 , (A.9)

with

Âk′k = − �
2

M

∑
I

〈ψk′(r,R)|∇RI
ψk(r,R)〉r · ∇RI

B̂k′k = − �
2

2M

∑
I

〈ψk′(r,R)|∇2
RI
ψk(r,R)〉r , (A.10)

which are operators coupling the electronic and nuclear degrees of freedom. The Born-

Oppenheimer approximation is then equivalent to neglecting the off-diagonal terms Âk′k

and B̂k′k, which results in the eigenvalue problem:

(Ek′(R) − E + V̂n−n + T̂n)χk′(R) = 0 (A.11)

for the nuclear wave functions χk′(R). This constitutes an effective Schrödinger equation for

the phonons. The electron-phonon interaction occurs through the action of T̂n on ψk(r,R).

In the adiabatic approximation, the movements of the nuclei are sufficiently slow that there

is no coupling between ψk(r,R) and χk′(R), so ψk(r,R)χk(R) is an eigenstate of Ĥ.

A.2 Perturbative Treatment

A.2.1 Matrix Elements

First, it is convenient to adopt the notation:

ψk(r,R)χk,s(R) ≡ |k, s〉 , (A.12)
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where k denotes the electronic state and s the phonon state. With this notation, the

uncoupled hamiltonian reads:

Ĥad =
∑
k,s

〈k, s|Ĥ|k, s〉 |k, s〉〈k, s| , (A.13)

and it is diagonal. On the other hand, in the general case:

Ĥ =
∑
k,k′

∑
s,s′

〈k, s|Ĥ|k′, s′〉 |k, s〉〈k′, s′| . (A.14)

One needs to calculate the terms 〈k, s|Ĥ|k′, s′〉 = 〈ψkχk,s|Ĥ|ψk′χk′,s′〉. Let Ĉkk′ = Âkk′ +

B̂kk′ . The matrix element we want to calculate is related to Ĉkk′ through:

〈ψk|Ĥ|ψk′χk′,s′〉 = Ĉkk′χk′,s′ , (A.15)

so

〈k, s|Ĥ|k′, s′〉 = 〈χk,s|Ĉkk′ |χk′,s′〉 . (A.16)

The evaluation of the matrix elements of Ĉkk′ requires to calculate the gradients of the

electronic wave functions with respect to nuclear displacements. A small nuclear displace-

ment gives a small change in the external potential for the electrons, δV , and in first-order

perturbation theory

|ψk〉 = |ψ0
k〉 +

∑
k′ �=k

〈ψ0
k′ |δV |ψ0

k〉
E0

k − E0
k′

|ψ0
k′〉 , (A.17)

where we used a zero symbolic superscript to denote the quantities for the unperturbed

case. The change in external potential we are considering can be written in the form:

δV =
∑

I

W 0
I · uI , (A.18)

in first order in uI = RI − R0
I , the displacement of nucleus I, and W 0

I the gradient of the

electron-ion potential with respect to the coordinate of nucleus I, around the equilibrium
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position:

W 0
I = ∇RI

V̂e−n|R0
I
. (A.19)

Inserting (A.19) into (A.17) yields:

|ψk〉 = |ψ0
k〉 +

∑
I

∑
k′ �=k

|ψ0
k′ 〉〈ψ

0
k′ |W 0

I |ψ0
k〉

E0
k − E0

k′
· uI , (A.20)

In first order in uI , the gradient in the electronic wave function is thus:

∇RI
|ψk〉 =

∑
k′ �=k

|ψ0
k′ 〉〈ψ

0
k′ |W 0

I |ψ0
k〉

E0
k − E0

k′
. (A.21)

We obtain the expression for Âkk′ in first order in uI by substituting the gradient by its

expression in Eq. A.10:

Âkk′ � − �
2

M

∑
I

∑
k′′ �=k′

〈ψ0
k|ψ0

k′′〉 〈ψ
0
k′′ |W 0

I |ψ0
k′〉

E0
k′ − E0

k′′
· ∇RI

= − �
2

M

∑
I

〈ψ0
k|W 0

I |ψ0
k′〉

E0
k′ − E0

k

· ∇RI
. (A.22)

On the other hand, B̂kk′ is zero in lowest order in uI , since it involves ∇2
RI

|ψk〉. The matrix

elements (A.16) for the total hamiltonian are thus:

〈k, s|Ĥ|k′, s′〉 = − �
2

M

∑
I

〈ψ0
k|W 0

I |ψ0
k′〉

E0
k′ − E0

k

· 〈χk,s|∇RI
|χk′,s′〉 . (A.23)

This expression is referred to as Bloch’s relation. Using the fact that the phonon wave

functions satisfy the nuclear Schrödinger equation (A.11), one obtains in first order in

displacement:

− �
2

M
〈χk,s|∇RI

|χk′,s′〉 = (Eks − Ek′s′ + E0
k′ − E0

k) 〈χk,s|uI |χk′,s′〉 , (A.24)
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and the matrix elements of the total hamiltonian become:

〈k, s|Ĥ|k′, s′〉 =
(

1 − Ek′s′ − Eks

E0
k′ − E0

k

)∑
I

〈ψ0
k|W 0

I |ψ0
k′〉

E0
k′ − E0

k

· 〈χk,s|uI |χk′,s′〉 . (A.25)

A.2.2 Coupling Functions

A simple approximation for the change in external potential δV perceived by the electrons

(Eq. A.18) consists in considering that the potential associated with an ion is rigidly dis-

placed with the position of its nucleus. This constitutes the “rigid-ion approximation”. In

this approximation:

W 0
I = −∇r V (r − R0

I) . (A.26)

Using the expression for the displacement operator for the solution s = (q, j) of the

phonon eigenvalue problem (Eq. 3.10), one can rewrite the matrix element A.25 for the case

of phonon absorption as [53]:

〈k, s|Ĥ|k′, s′〉 =
∑

I

1
N
g(kk′; s) e(ik·R

0
I)e(i(k−k′)·R0

I) (n(q, j))1/2 , (A.27)

where we introduced the coupling function:

g(kk′; s) = −
(

�

2MNωs

)1/2

e(q, j)Ĩ(k,k′) , (A.28)

with e(q, j) the phonon polarization and

Ĩ(k,k′) = 〈ψ0
k′ |∇r V (r − R0

I)|ψ0
k〉 . (A.29)

Another important quantity is the matrix element I(k,k′) and its average over the Fermi

surface (see [53]):

I(k,k′) = 〈ψ0
k′ |uI · ∇r V (r − R0

I)|ψ0
k〉

〈I(k,k′)〉 =
∑

k,k′∈SF

I(k,k′)/
∑

k,k′∈SF

, (A.30)
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which enters the expression for λ in McMillan’s theory (Eq. 5.5). Also, the direction-

averaged Eliashberg coupling function α2F (ω) is defined as (see [53]):

α2F (ω) = N(EF )
∑

s

∫
dΩk

4π

∫
dΩ′

k

4π
|g(kk′; s)|2δ(�ω − �ωs) , (A.31)

which gives access to the electron-phonon interaction strength through:

λ = 2
∫ ωmax

0

α2F (ω)
ω

dω . (A.32)
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Appendix B

Implementations of DFT

B.1 Approximations for Exchange and Correlation

As discussed in chapter 2, the strength of the Hohenberg-Kohn-Sham approach lies both

in the effective independent-particle formulation, and the separation of long-ranged and

well-known terms from the more difficult exchange-correlation terms in the hamiltonian. In

this approach, one seeks to numerically solve the Kohn-Sham hamiltonian:

ĤKS = T̂ni + V̂H + V̂xc + V̂ext , (B.1)

where an expression for the exchange-correlation potential V̂xc has to be specified. Since an

actual expression for V̂xc (or a way to compute it exactly) is not yet known, approximations

are necessary.

One of the first approximations devised for this purpose is the local density approxi-

mation (LDA), which is still widely being used. The LDA builds upon our knowledge of

the exchange energy and correlation energy for the homogeneous electron gas. Namely, the

expression for the exchange energy Ex(ρ), as function of the homogeneous electron density

ρ(r) = ρ, is know in that case, and the correlation energy Ec(ρ) for the homogenous elec-

tron gas has been calculated and tabulated, so it is also known [15]. The LDA provides a

simple extension to the case of a non-uniform electronic density, as encountered in a solid,

by considering that the exchange-correlation energy for this more complex density is the
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sum over small volumes in which the electronic density is approximately constant, so that:

Exc(ρ) =
∫
ρ(r)εxc(ρ(r))d3r , (B.2)

where εxc(ρ(r)) is the exchange-correlation energy for the homogeneous gas of density ρ(r)

in the small volume d3r around r. It can perceived that this approximation should work

well in principle for systems in which the electronic density varies little over distances

corresponding to the range of the exchange and interaction energies. If, on the other hand,

the density varies significantly over this range, then we cannot divide the system into small

volumes of constant density and still capture the exchange and correlation terms by using

the homogeneous electron gas model. In the latter case, one has to consider the gradients

in the electronic density and their effects on exchange and correlation. Numerous so-called

generalized gradient approximations (GGA) have been devised to incorporate the effects of

non-homogeneous electron densities [15]. In practice, the LDA works well for systems with

slowly varying densities, such as nearly free electron metals, but the GGAs tend to perform

better for systems with stronger gradients. One of the successes of GGA methods over the

more primitive LDA is to better predict the cohesive energy of solids, in general.

B.2 Solving the Kohn-Sham Equations

Once a functional is provided for the exchange-correlation term, the effective hamiltonian

is defined, leading to the Kohn-Sham equations:

ĤKSφi = εiφi . (B.3)

We seek to determine the Kohn-Sham wave functions φi and their associated energies εi,

keeping in mind that the hamiltonian depends on the wave functions through the total

density. We can decompose the wave functions in a basis of our choice, which we denote

{ϕr}:

φi =
∑

r

cirϕr , (B.4)
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where in practice the sum is truncated (finite basis set). The hamiltonian operator can be

expressed in this basis set as well and we are left with a matrix diagonalization problem.

The actual implementation requires to pick a basis set that makes this problem as easy to

solve as possible. That is, we want to be able to calculate the terms efficiently and use as few

basis vectors as possible to reduce the size of the hamiltonian matrix. The trade-off is that

the basis set should be general enough that any system will be accurately and efficiently

treated.

B.2.1 Pseudopotentials and Plane Waves

One popular approach, as implemented in the computer package VASP [33, 100], is to use

a plane wave basis set. In the case of a crystalline material, this approach can be motivated

by considering Bloch’s theorem [49]. Bloch’s theorem tells us that, for a hamiltonian with

periodic translation symmetry, the eigenstates correspond to wave functions satisfying:

φi(r) = ψn,k(r)

= exp(ik · r)un,k(r) , (B.5)

with a un,k(r) a function having the periodicity of the lattice. Since un,k(r) is periodic, it

can be written as a Fourier series:

un,k(r) =
∑
G

cn,k
G exp(iG · r) , (B.6)

where the vectors {G} are the reciprocal lattice vectors. So the wave functions we seek are

written as

ψn,k(r) =
∑
G

cn,k
G exp(i(G + k) · r) . (B.7)

The basis set is then {exp(i(G + k) · r)} = {|G + k〉}, and it depends on the wavevector

k. This means that the problem must be solved at a series of k-points independently, for

example on a grid in the irreducible portion of the Brillouin zone.

The number of plane waves (or reciprocal lattice vectors G) that are included has to
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be kept finite, and it is customary to include the G-vectors inside a sphere of radius Gmax,

corresponding to a cutoff energy Ecut = �
2G2

max/2me. In practice, the number of plane

waves that have to be included to faithfully represent the wave functions can be quite large.

Wave functions tend to oscillate rapidly around the nuclei and their complexity in the core

region greatly increases the number of plane waves required to describe them. A way around

this difficulty consists in discarding the part of the wave functions close to the atomic nuclei,

since it is not involved in the bonding properties, and it will be very similar to that in a

free atom. One way to achieve this is to modify the atomic potential Vext so that the wave

functions do not oscillate and vary smoothly inside some core radius. Such a modified

potential is called a pseudopotential. This pseudopotential and plane waves approach has

been quite successful, and it is implemented in numerous DFT computer programs, such

as VASP, and Abinit [33, 100, 43]. Nowadays, it is superseded by the so-called projector-

augmented wave method (PAW), which keeps the core part of the wave functions as a frozen

atomic configuration, but still treats the more distant part with plane waves [101, 102].

B.2.2 Augmented Plane Waves

Recognizing that plane waves are well-suited to describe the electronic wave functions in a

periodic solid, but that the wave functions are very atomic-like close to the nucleus, a hybrid

description can be conceived. Close to the nucleus, the wave functions can be decomposed

on a basis of atomic orbitals, and in between nuclei, they can be expanded onto plane waves.

This “best of both worlds” approach leads to the following basis functions

ϕk
G(r, E) = ΔI(r)

1√
V

exp(i(G + k) · r)

+
∑
α

∑
l,m

Δα(r)Aα,G+k
l,m uα

l (r − rα, E)Y m
l (r − rα) , (B.8)

where ΔI(r) is equal to one if r lies in the intersticial region and zero otherwise, and Δα(r)

is equal to one if r is inside a “muffin-tin” sphere of radius Rα around nucleus α, and zero

otherwise. The geometry is illustrated in figure B.1. In Eq. B.8, the Y m
l are the spherical

harmonics, and uα
l (r − rα, E) is the radial part of the solution to the Schrödinger equation

for a coulombic potential centered at rα, corresponding to orbital angular momentum l and
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Figure B.1: Spatial decomposition in APW approach.

energy E. The solutions to the coulombic potential are subjected to boundary conditions

on the muffin-tin sphere, which leads to solutions at any energy E, besides the discrete

energy levels of a free atom. The requirement that the basis wave function be continous on

the surface of the muffin-tin sphere α fixes the coefficients Aα,G+k
l,m for that nucleus, once

the energy E is set.

Although the APW basis set and its derivatives (LAPW, APW+lo, etc) is more com-

plicated than the plave wave basis set discussed above, its advantage is that it describes the

wave functions in the core region as well as in the intersticial volume. This allows one to

compute the hyperfine magnetic field at the nucleus, for instance. Such an implementation

of DFT is found in the computer software Wien2k [16, 98, 99].
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Appendix C

VASP and Wien2k Input Files

C.1 VASP files

This section presents typical VASP input files for computations on the 2 × 2 × 2 V-Ti

supercell.

C.1.1 INCAR file

general:

SYSTEM = V15Ti - rlxd

# to start from scratch:

# ISTART = 0 ; ICHARG=2

# To use wavecar and chgcar files:

ISTART = 1 ; ICHARG = 1

ENCUT = 275

# To take care of Pulay stress:

# ENCUT = 360

ISMEAR = 1 ; SIGMA = 0.2

LORBIT=11

# Relax only ion positions:

# IBRION = 2 ; ISIF = 1 ; NSW = 15

# Relax all:

# IBRION = 2 ; ISIF = 3 ; NSW = 15
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EDIFF = 1e-5 # or smaller

# EDIFFG = -0.001

# use real space projection operators for large cells:

LREAL = .FALSE.

PREC = Accurate

ALGO = Normal

#parallelization options

LPLANE = .TRUE. # recommended for Linux clusters

NPAR = 10 # number of nodes

LSCALU = .FALSE.

NSIM = 4

# Wigner-Seitz radii (to compute integrated atomic charge, moment)

# RWIGS = 1.4843 1.4843

C.1.2 POSCAR file

V15Ti - relaxed

6.029260

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

1 15

Direct

0.500000 0.500000 0.500000

0.245909 0.245909 0.245900

0.754092 0.754092 0.754092

0.754092 0.245909 0.245909

0.245909 0.754092 0.754092

0.754092 0.754092 0.245909

0.245909 0.245909 0.754092

0.245909 0.754092 0.245909
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0.754092 0.245909 0.754092

0.500000 0.500000 0.000000

0.000000 0.500000 0.500000

0.500000 0.000000 0.500000

0.500000 0.000000 0.000000

0.000000 0.500000 0.000000

0.000000 0.000000 0.500000

0.000000 0.000000 0.000000

C.1.3 KPOINTS file

K-Points

0

Monkhorst Pack

16 16 16

0 0 0

C.1.4 POTCAR file

>> grep TITEL POTCAR

TITEL = PAW_GGA Ti_sv 07Sep2000

TITEL = PAW_GGA V_sv 14Sep2000

>> grep ENMAX POTCAR

ENMAX = 274.616; ENMIN = 205.962 eV

ENMAX = 263.695; ENMIN = 197.772 eV

C.2 Wien2k files

This section presents typical Wien2k input files for computations on the 2 × 2 × 2 V-Ti

supercell.
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C.2.1 case.struct file

V15Ti supercell

P 5221_Pm-3m

RELA

11.388126 11.388126 11.388126 90.000000 90.000000 90.000000

ATOM 1: X=0.50000000 Y=0.50000000 Z=0.50000000

MULT= 1 ISPLIT= 2

Ti NPT= 781 R0=.000100000 RMT= 2.20000 Z: 22.00000

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

ATOM -2: X=0.24579932 Y=0.24579932 Z=0.24579932

MULT= 8 ISPLIT= 4

-2: X=0.75420068 Y=0.75420068 Z=0.75420068

-2: X=0.75420068 Y=0.24579932 Z=0.24579932

-2: X=0.24579932 Y=0.75420068 Z=0.75420068

-2: X=0.75420068 Y=0.75420068 Z=0.24579932

-2: X=0.24579932 Y=0.24579932 Z=0.75420068

-2: X=0.24579932 Y=0.75420068 Z=0.24579932

-2: X=0.75420068 Y=0.24579932 Z=0.75420068

V 1NN NPT= 781 R0=.000100000 RMT= 2.20000 Z: 23.00000

LOCAL ROT MATRIX: 0.4082483-0.7071068 0.5773503

0.4082483 0.7071068 0.5773503

-0.8164966 0.0000000 0.5773503

ATOM -3: X=0.50000000 Y=0.50000000 Z=0.00000000

MULT= 3 ISPLIT=-2

-3: X=0.00000000 Y=0.50000000 Z=0.50000000

-3: X=0.50000000 Y=0.00000000 Z=0.50000000

V 2NN NPT= 781 R0=.000100000 RMT= 2.20000 Z: 23.00000

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
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0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

ATOM -4: X=0.50000000 Y=0.00000000 Z=0.00000000

MULT= 3 ISPLIT=-2

-4: X=0.00000000 Y=0.50000000 Z=0.00000000

-4: X=0.00000000 Y=0.00000000 Z=0.50000000

V 3NN NPT= 781 R0=.000100000 RMT= 2.20000 Z: 23.00000

LOCAL ROT MATRIX: 0.0000000 0.0000000 1.0000000

0.0000000 1.0000000 0.0000000

-1.0000000 0.0000000 0.0000000

ATOM 5: X=0.00000000 Y=0.00000000 Z=0.00000000

MULT= 1 ISPLIT= 2

V 5NN NPT= 781 R0=.000100000 RMT= 2.20000 Z: 23.00000

LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 1.0000000

C.2.2 case.inst file

Ti

Ar 2 5

3, 2,2.0 P

3, 2,0.0 P

4,-1,1.0 P

4,-1,1.0 P

V 1NN

Ar 2 5

3, 2,2.0 P

3, 2,1.0 P

4,-1,1.0 P

4,-1,1.0 P
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V 2NN

Ar 2 5

3, 2,2.0 P

3, 2,1.0 P

4,-1,1.0 P

4,-1,1.0 P

V 3NN

Ar 2 5

3, 2,2.0 P

3, 2,1.0 P

4,-1,1.0 P

4,-1,1.0 P

V 5NN

Ar 2 5

3, 2,2.0 P

3, 2,1.0 P

4,-1,1.0 P

4,-1,1.0 P

**** End of Input

**** End of Input

C.2.3 case.in1 file

WFFIL (WFPRI, SUPWF)

7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT

0.30 5 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

0 0.30 0.000 CONT 1

0 -4.35 0.005 STOP 1

1 -2.58 0.010 CONT 1

1 0.30 0.000 CONT 1

2 0.30 0.010 CONT 1
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0.30 5 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

0 0.30 0.000 CONT 1

0 -4.89 0.005 STOP 1

1 0.30 0.000 CONT 1

1 -2.94 0.005 STOP 1

2 0.30 0.010 CONT 1

0.30 5 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

0 0.30 0.000 CONT 1

0 -4.89 0.005 STOP 1

1 0.30 0.000 CONT 1

1 -2.94 0.005 STOP 1

2 0.30 0.010 CONT 1

0.30 5 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

0 0.30 0.000 CONT 1

0 -4.89 0.005 STOP 1

1 0.30 0.000 CONT 1

1 -2.94 0.005 STOP 1

2 0.30 0.010 CONT 1

0.30 5 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)

0 0.30 0.000 CONT 1

0 -4.89 0.005 STOP 1

1 0.30 0.000 CONT 1

1 -2.94 0.005 STOP 1

2 0.30 0.010 CONT 1

K-VECTORS FROM UNIT:4 -7.0 1.5 emin/emax window

C.2.4 case.in2 file

FOR (FOR,FOR,QTL,EFG,FERMI)

-6.0 207.0 0.50 0.05 EMIN, NE, ESEPERMIN, ESEPER0

TETRA 0.000 (GAUSS,ROOT,TEMP,TETRA,ALL eval)
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0 0 4 0 4 4 6 0 6 4 8 0 8 4 8 8

0 0 1 0 2 0 3 0 3 3 4 0 4 3 5 0 5 3 6 0 6 3 6 6 \\

7 0 7 3 7 6 8 0 8 3 8 6

0 0 2 0 4 0 4 4 6 0 6 4 8 0 8 4 8 8

0 0 2 0 4 0 4 4 6 0 6 4 8 0 8 4 8 8

0 0 4 0 4 4 6 0 6 4 8 0 8 4 8 8

14. GMAX

FILE FILE/NOFILE write recprlist

C.2.5 case.inm file

BROYD 0.0 YES (BROYD/PRATT, extra charge (+1 for additional e), norm)

0.10 FACTOR
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Appendix D

Calculation of BCC Elastic Moduli from

Interatomic Force-Constants

This appendix presents the details of our calculation of the elastic moduli for the BCC

lattice from interatomic force-constants, resulting in the relations of Eq. 4.3.

Much of this discussion follows the derivation for a FCC lattice given in Brüesch [23],

section 3.2, and our notation is similar to the notation used in this reference.

D.1 General Considerations

We consider a crystal, which is subjected to a periodic wave-like deformation of long wave-

length. We introduce a continuous displacement field u(x) such that:

u(x = x(lκ)) = u(lκ) . (D.1)

In the following, we restrict the discussion to the case of a Bravais crystal, for simplicity.

The displacement field is assumed to vary slowly from cell to cell, and it can be expanded

in the form [23]:

uβ(l) = uβ(0) +
∑

γ

(
∂uβ

∂xγ

)
0

rγ(l) +
1
2

∑
γδ

(
∂2uβ

∂xγ∂xδ

)
0

rγ(l)rδ(l) + . . . . (D.2)
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The equation of motion for the atom in the origin unit cell is

Müα(l) = −
∑
lβ

Φαβ(0; l)uβ(l) , (D.3)

and inserting (D.2) in (D.3), one obtains:

ρüα(l) =
∑
βγδ

C̃αβ,γδ

(
∂2uβ

∂xγ∂xδ

)
0

, (D.4)

with

C̃αβ,γδ = − 1
2Ω

∑
l

Φαβ(0; l)xγ(l)xδ(l) , (D.5)

with Ω the unit cell volume. These quantities can be shown to verify the following relations

[23]:

C̃αβ,γδ = C̃βα,γδ = C̃αβ,δγ (D.6)

C̃αβ,γδ = C̃γδ,αβ (D.7)

The macroscopic elastic constants Cαβ,γδ relate the stress tensor σ to the strain tensor ε

σαβ =
∑
γδ

Cαβ,γδ εγδ , (D.8)

and can be related to the quantities C̃αβ,γδ through [23]:

Cαγ,βδ = C̃αβ,γδ + C̃γβ,αδ − C̃γα,δβ , (D.9)

thus providing the connection to the interatomic force-constants.

The Voigt contraction can be introduced to simplify the notation:

11 → 1 23, 32 → 4

22 → 2 31, 13 → 5

33 → 3 12, 21 → 6 . (D.10)
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For a cubic crystal, the following relations limit the number of independent elastic constants:

c11 = c22 = c33

c44 = c55 = c66

c12 = c13 = c23 = c31 = c32

,

and similarly

C11,11 = C22,22 = C33,33

C23,23 = C31,31 = C12,12

C11,22 = C11,33 = C22,33 = C33,11 = C33,22 = C22,11

.

Crystal symmetries constrain the force-constant tensor to verify certain relations, which

can be used to minimize the number of independent entries of the tensor. If we consider an

operation g of the symmetry group of the crystal, represented by the matrix S:

Φ(gl gκ; gl′gκ′) = SΦ(lκ; l′κ′)ST (D.11)

For a Bravais crystal, we can use the simplified notation

Φαβ(lκ; l′κ′) = Φαβ(L) , (D.12)

with L the bond vector, such that L = x(l′κ′) − x(lκ). With this notation:

Φ(gL) = SΦ(L)ST . (D.13)

D.2 BCC Lattice

We present here a detailed evaluation of the general equations of the previous section for

the case of a BCC lattice. In the case of a BCC lattice, each atom has eight 1NN bonds:

−→
L ∈ {±d(1, 1, 1),±d(−1, 1, 1),±d(1,−1, 1),±d(1, 1,−1)} , (D.14)
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with d = a0/2, where we write a0 for the lattice constant. The lattice is invariant under a

rotation of 2π/3 along [111], which corresponds to the transformation matrix

SC3[111] =

⎛
⎜⎜⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟⎠

in the (êx, êy, êz) basis (one can verify that S3 = I). If we write Φ, for −→
L = d(1, 1, 1), as

Φ =

⎛
⎜⎜⎜⎝

a b c

d e f

g h k

⎞
⎟⎟⎟⎠ ,

the relation (D.13) then yields

Φ =

⎛
⎜⎜⎜⎝

a b c

c a b

b c a

⎞
⎟⎟⎟⎠ .

Similarly, the crystal is invariant in a reflection with respect to the plane x = y,

Sσxy =

⎛
⎜⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟⎠ ,

and the application of (D.13) to Φ further constrains the form of the force-constant matrix:

Φ(1) ≡ Φ(±d(1, 1, 1))) =

⎛
⎜⎜⎜⎝

a b b

b a b

b b a

⎞
⎟⎟⎟⎠ .
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Similarly, we would obtain:

Φ(2) ≡ Φ(±d(−1, 1, 1)) =

⎛
⎜⎜⎜⎝

a −b −b
−b a b

−b b a

⎞
⎟⎟⎟⎠ , Φ(3) ≡ Φ(±d(1,−1, 1)) =

⎛
⎜⎜⎜⎝

a −b b

−b a −b
b −b a

⎞
⎟⎟⎟⎠ ,

Φ(4) ≡ Φ(±d(1, 1,−1)) =

⎛
⎜⎜⎜⎝

a b −b
b a −b
−b −b a

⎞
⎟⎟⎟⎠ .

We can already calculate (D.5) up to the 1NN shell:

C̃αβ,γδ = − 1
2Ω

{ ∑
l∈1NN

Φαβ(0; l)xγ(l)xδ(l)︸ ︷︷ ︸
Σ1NN

+
∑

l∈2NN

. . .

︸ ︷︷ ︸
Σ2NN

+
∑

l∈3NN

. . .

︸ ︷︷ ︸
Σ3NN

}
, (D.15)

with

Σ1NN
αβ,γδ = Φ(1)[γδ + (−γ)(−δ)] + Φ(2) . . . (D.16)

D.3 Calculation up to 1NN shell

D.3.1 c11 elastic constant

More explicitly, for the c11 elastic constant:

c11 = C11,11 = C̃11,11 + C̃11,11 − C̃11,11 = C̃11,11 , (D.17)

so, for the 1NN shell only:

c11 = C̃11,11 =
−1
2Ω

Σ1NN
11,11 , (D.18)

and

Σ1NN
11,11 = Φ(1)

11 × d× d︸ ︷︷ ︸−→
L=d(1,1,1)

+ Φ(1)
11 × (−d) × (−d)︸ ︷︷ ︸−→
L=−d(1,1,1)

+2Φ(2)
11 d

2 + 2Φ(3)
11 d

2 + 2Φ(4)
11 d

2

= 2d2(a+ a+ a+ a)
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= 8ad2 . (D.19)

Thus, we finally obtain

c11 = − 2
a0
a =

2
a0

C1XX , (D.20)

where the last equality refers to the notation often encountered in the literature for force-

constant tensors.

D.3.2 c12 elastic constant

For the c12 elastic constant, we obtain:

c12 = 2C̃44 − C̃12 = 2C̃23,23 − C̃11,22 . (D.21)

The first term is

C̃23,23 = − 1
2Ω

Σ1NN
23,23 . (D.22)

where

Σ1NN
23,23 = 2 Φ(1)

23︸︷︷︸
=b

d2 + 2 Φ(2)
23︸︷︷︸

=b

d2 + 2 Φ(3)
23︸︷︷︸

=−b

(−d2) + 2 Φ(4)
23︸︷︷︸

=−b

(−d2)

= 8bd2 . (D.23)

For the last term:

Σ1NN
11,22 = 2ad2 + 2ad2 + 2ad2 + 2ad2

= 8ad2 . (D.24)

So the c12 elastic constant, including only 1NN bonds, is given by:

c12 = −8d2

2Ω
(2a− b) = − 2

a0
(2a− b) =

2
a0

(2C1XX − C1XY) . (D.25)
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D.3.3 c44 elastic constant

For the c44 elastic constant, we have:

c44 = C23,23 = C̃23,23 + C̃32,23 − C̃32,32︸ ︷︷ ︸
=C̃32,23

. (D.26)

We can re-use previous calculations, since:

c44 = C̃23,23 = C̃23 = C̃12 = C̃11,22 , (D.27)

so, the result is

c44 = −8ad2

2Ω
=

2
a0

C1XX . (D.28)

We can evaluate these relations with values of interatomic force-constant tensors re-

ported in the literature, which are typically obtained through a fit to measured phonon

dispersions. For example, in the case of vanadium, the value reported by Colella and Bat-

terman [79] are C1XX = 10.9 N/M and C1XY = 7.24 N/M, which, using a lattice parameter

value of a0 = 3.03 Å, yield

c1NN
11 = c1NN

44 = 72 GPa

c1NN
12 = 96 GPa . (D.29)

These results are not in very good agreement with the measured values reported in [167]:

c11 = 228 GPa

c12 = 119 GPa

c44 = 42.6 GPa , (D.30)

which indicates that the truncation of interatomic force-constants at the 1NN shell is not a

good approximation for V. On the other hand, for Ni with 1NN bonds only, we obtain (the



215

expressions for the elastic constants in the case of a FCC lattice are given in [23]):

c1NN
11 =

4
a0

C1XX = 197 GPa

c1NN
12 =

2
a0

(2C1XY − C1XX − C1ZZ) = 121 GPa

c1NN
44 =

2
a0

(C1XX + C1ZZ) = 96 GPa , (D.31)

where the interatomic force-constants are taken from [82], and we use a0 = 3.42 Å. These

calculated values are in fair agreement with the measured values reported in the Landolt-

Börnstein:

c11 = 247 GPa

c12 = 153 GPa

c44 = 122 GPa , (D.32)

D.4 Calculation up to 2NN shell

For the 2NN shell, the bond vector is given by

−→
L ∈ {±a0(1, 0, 0),±a0(0, 1, 0),±a0(0, 0, 1)} . (D.33)

Using the symmetry operations C2x, σxy, C4x and I, the force-constant matrices can be

reduced to

Φ(±a0(1, 0, 0)) =

⎛
⎜⎜⎜⎝

a′ 0 0

0 b′ 0

0 0 b′

⎞
⎟⎟⎟⎠ , Φ(±a0(0, 1, 0)) =

⎛
⎜⎜⎜⎝

b′ 0 0

0 a′ 0

0 0 b′

⎞
⎟⎟⎟⎠ ,

Φ(±a0(0, 0, 1)) =

⎛
⎜⎜⎜⎝

b′ 0 0

0 b′ 0

0 0 a′

⎞
⎟⎟⎟⎠ ,
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and following the same procedure as in the previous section, we find:

c2NN
11 = − 2

a0
a′ =

2
a0

C2XX . (D.34)

For c12, we find:

c2NN
12 = 2C̃44 − C̃12 = 2C̃23,23 − C̃11,22 = 0 +

2
a0
b′ = − 2

a0
C2YY , (D.35)

and for C44:

c2NN
44 = C̃11,22 = − 2

a0
b′ =

2
a0

C2YY . (D.36)

D.5 Sum up to 3NN shell

For the 3NN shell,

−→
L ∈ {±a0(1, 1, 0),±a0(1, 0, 1),±a0(0, 1, 1),±a0(−1, 1, 0),±a0(−1, 0, 1),±a0(0,−1, 1)} .

(D.37)

We have in this case:

c3NN
11 = C̃11,11 = − 1

a3
0

{2b′′a2
0 + 2b′′a2

0 + 0 + 2b′′a2
0 + 2b′′a2

0 + 0} , (D.38)

c3NN
11 = − 8

a0
b′′ =

8
a0

C3XX . (D.39)

Following the same calculations as for 1NN and 2NN shells, we obtain:

c3NN
12 =

4
a0

(2 C3XY − C3XX − C3ZZ) , (D.40)

c3NN
44 =

4
a0

(C3XX + C3ZZ) . (D.41)

Finally, summing the contributions of shells up to 3NN, we obtain the result of Eq. 4.3:

c≤3NN
11 =

2
a
(C1XX + C2XX + 4 C3XX)

c≤3NN
12 =

2
a
(2 C1XX − C1XY − C2YY + 2(2 C3XY − C3XX − C3ZZ))
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c≤3NN
44 =

2
a
(C1XX + C2YY + 2(C3XX + C3ZZ)) (D.42)

The evaluation of these expressions in the case of BCC vanadium, with the interatomic

force-constants reported by Colella and Batterman [79], gives:

c≤3NN
11 = 194 GPa

c≤3NN
12 = 150 GPa

c≤3NN
44 = 35 GPa , (D.43)

which is in fairly good agreement with (D.30). The agreement should become better if one

were to include contributions of more distant shells.
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Appendix E

Mannheim Impurity Model and Application to

V-X Alloys

The lattice-dynamics of crystals with dilute impurities has been investigated by Mannheim

using Green’s function techniques [168]. The derivation conducted by Mannheim relied

on the following approximation: the interatomic force-constants are described by a single

longitudinal stiffness, and the introduction of the impurity only perturbs the 1NN bonds

around the impurity. Within this model, Mannheim has derived an analytical expression

for the impurity partial phonon DOS.

We present in this appendix a Mathematica notebook for calculating the impurity partial

DOS, given the DOS of the pure host, the mass ratio of the impurity and host atoms, and

the ratio of impurity-host and host-host force-constants. The equations are implemented in

the form in which they are presented in the article of Seto et al. [169].

We first start by loading the DOS histogram for the pure host:

Get["NumericalMath‘CauchyPrincipalValue‘"]

CauchyPrincipalValue[1/(x + x^2), {x, -1/2, {0}, 1}]

-0.693147

vpure = ReadList["Vdos.dat", Number]

ListPlot[vpure]

vdos = Interpolation[data, InterpolationOrder -> 2]

Plot[vdos[x], {x, 0, 40}]
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Figure E.1: Pure host phonon DOS histogram in the case of V.
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Figure E.2: Interpolated phonon DOS for pure host.
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We convert the DOS from meV to angular frequency (2π × 1012 s−1):

G[w_] := vdos[w/1.5193]/1.5193

Plot[G[w], {w, 0, 60}]

and define the impurity partial DOS G′(ω):

cutoff = 55.0

S[w_] := CauchyPrincipalValue[y^2*((y^2-w^2))^(-1)*G[y], {y,0,{w},cutoff},

MinRecursion -> 7, MaxRecursion -> 20]

mu[n_] := NIntegrate[w^n*G[w], {w,0,cutoff}, MinRecursion -> 7,

MaxRecursion -> 20]

rho[w_] := Mratio - 1 + w^2 *(1.0 - Kratio)/mu[2]

T[w_] := w^4 * NIntegrate[(y^2 - w^2)^(-2)*G[y], {y,0,cutoff}]

Gp[w_] := Mratio*G[w]/( (1 + rho[w]*S[w])^2 + (N[Pi]/2*w*G[w]*rho[w])^2 )

Now, we define the mass and force-constant ratios. Here, we try for a Pt-V force-constant

twice as large as the V-V force-constant:

Mratio = 50.94 / 195.08

Kratio = 1/2.0

and we evaluate the impurity partial DOS at a list of frequencies:

freq = Range[55]/1.

values = Table[Evaluate[Gp[w]], {w, 55}]

ListPlot[Transpose[{freq/1.5193, values*1.5193}] , PlotRange -> {0, 0.2},

PlotJoined -> True, PlotStyle -> Hue[.6]]

The partial DOS for Pt impurities in V obtained from the Mannheim model using a force-

constant ratio of 2.0 is shown in figure E.4. The Mannheim model reproduces the resonance

mode behavior that was obtained from our Born–von Kármán lattice-dynamics inversion

in chapter 4. The position of the resonance mode around 12 meV and the associated es-

timate of the 1NN bond stiffening are in good agreement with the strong 1NN stiffening

deduced from Born–von Kármán calculations. The shape of the partial phonon DOS, in
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Figure E.3: Interpolated phonon DOS for pure host G(ω), in angular frequency units.

Figure E.4: Impurity partial phonon DOS for Pt in V in Mannheim model, assuming Pt-V

force-constant twice as large as V-V force-constant. Energy axis is in meV.

particular, is in surprisingly good agreement with the result from our Born–von Kármán

model, considering that the Mannheim model only uses one free parameter. The change

in force-constant derived from the Mannheim model, in order to reproduce the Born–von

Kármán Pt partial DOS, is smaller than that obtained from the Born–von Kármán inver-

sion procedure iteslf. However, the approximations used in the Mannheim model are very

stringent and in particular the model does not account for the difference in the behavior of

the longitudinal and transverse force-constants.
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