The Phonon Entropy of Transition Metals and Alloys:

Effects of Impurities and of a Martensitic Phase Transition

Thesis by

Olivier Delaire

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended May 12th, 2006)



ii

© 2006
Olivier Delaire

All Rights Reserved



iii
Acknowledgements

First and foremost, I would like to thank my advisor, Brent Fultz, for his guidance and
support throughout my graduate student experience at Caltech. I count myself as very
fortunate for having him as a research mentor and collaborator during these years.

I wish to acknowledge the help and support of our collaborators at Los Alamos and
Argonne National Laboratories: Rob McQueeney, Ray Osborn and Frans Trouw, as well
as Markus Hehlen and Eugene Goremychkin. They made our inelastic neutron scattering
experiments possible through their advice and unrelenting support and were always willing
to share their deep knowledge and understanding of neutron scattering.

I am also indebted to all the members of the Caltech community who have helped me in
my research endeavours over the years: Bill Johnson, for his illuminating thermodynamics
lectures, being receptive to my interrogations, and letting me use the equipment in his group
extensively; Tahir Cagin, who responded to my computational inquiries with interest and
guided me through my first steps with density functional theory simulations; and Haibin
Su, for interesting discussions about first-principles calculations and solid-state physics in
general.

I wish to thank all the members and collaborators of the Fultz group. I am particularly
indebted to previous graduate students in Brent Fultz’s research group, Mike Manley and
Peter Bogdanoff, whose steps I have followed into: you tremendously impressed me and
inspired me. I extend special thanks to my long-time officemates, Tabitha Swan-Wood,
Jiao Lin, Jason Graetz, and Max Kresch. All of you have been wonderful; you made work
so much more enjoyable, both at Caltech and our trips. Thanks also to Alex Papandrew,
Ryan Monson, Joanna Dodd, Matt Lucas and Rebecca Stevens for helping out, sharing
ideas and for interesting conversations. I thank Tim Kelley for his expert help on neutron
scattering data reduction. I wish to thank also Mike McKerns and John McCorquodale
for their expert support with computing and Jonny Lin for his work on, and help with,
development of parallel software for Born—von Karméan inversions. Special thanks are due
to Jorge Munoz, who devoted considerable effort and achieved impressive results during his
MUREF project in our group. I also wish my best to younger students in Brent’s group, who

all show great promise of overachieving, Mike Winterrose, Chen Li, and Justin Purewal.



iv

Thanks to Rachid Yazami, for accepting to serve on my candidacy exam with short
notice, and for sharing his experience as a researcher in several countries. Thanks also
to Channing Ahn, for his kind help with experimental matters. Special thanks to Itzhak
Halevy for an interesting collaboration, for introducing me to high-pressure investigations
and the basics of Hebrew. Thanks also to Carol Garland and Mike Wondrus for their
technical help and to all the staff members in Materials Science for their support.

I wish to take this opportunity to also thank Arthur Motta, my M.S. advisor at PennState,
for allowing me to come to the USA during my third year at the Ecole Centrale de Lyon,
for guiding me through my first steps in research, and for his friendship. Merci.

My special thoughts go to the friends who have made these years at Caltech much
more enjoyable. In particular, I extend my gratitude to my long-time roommates and
friends Nicolas Ponchaut, Matthieu Liger, Pierre Moreels, Frank Ducheneaux, and Chin-
Wen Chou: thanks for bearing with me and keeping me sane. Chaleureux remerciements to
all the current and former French students and visitors in the Materials Science department,
who have made Caltech a home away from home: Yvan Reynier, Anne Dailly, Aurélie and
JY, Mélanie and Houria. Come back to visit, I know you miss SoCall!

All my deepest thoughts go to Celia: for all the love and support you have given me
during these past years. Your determination and optimism have been a constant source of
inspiration to me. You made this possible.

Finally, all my gratitude goes to my parents, my sisters Stéphanie and Emilie, and my
family, for their unconditional love and constant support across the distance and throughout
the years.

Financial support for the work presented in this thesis was provided by the US Depart-

ment of Energy.



The Phonon Entropy of Transition Metals and Alloys: Effects of
Impurities and of a Martensitic Phase Transition
by

Olivier Delaire

In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract

For a fixed configuration of ions on a given crystalline lattice, low energy excitations around
the static average configuration can be thermally activated and will contribute to the entropy
of the system. As such, nuclear vibrations, spin-waves, or electronic excitations have their
own entropic contribution. The entropy associated with these degrees of freedom is usually
neglected in calculations of alloy thermodynamics, however. A simple reason is that the
systematics of so-called excess entropy terms are not understood very well, and these terms
are difficult to compute. This thesis investigates the entropic effects of lattice vibrations,
or phonons, in transition metal alloys, both from experimental and computational points
of view.

From inelastic neutron scattering measurements, it is found that a few percent of tran-
sition metal solutes strongly affect the phonon density of states (DOS) of pure vanadium.
In particular, alloying with 6% Pt solutes produces a strong stiffening of the phonon DOS,
inducing a large and negative vibrational entropy of mixing, which overcomes the positive
gain in configurational entropy. This result is the first reported observation of a negative to-
tal entropy of mixing in a binary alloy. Chemical trends in the phonon DOS and vibrational
entropy of dilute vanadium alloys were investigated, for impurity elements across the 3d,
4d and 5d-series. A previously unknown correlation is established between the vibrational
entropy of alloying and the difference in electronegativity of the solute and the host atoms.
First-principles charge transfer calculations were conducted and confirmed the occurrence

of systematic charge transfers correlating with the electronegativity, which can affect the
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interatomic force-constants and the phonons.

Phonons in vanadium exhibit an anomalous behavior, showing a stiffening with increas-
ing temperature at constant volume. The effect of impurities on the anomalous temperature-
dependence is investigated. It is found that the solutes that affect the phonon density of
states most strongly at room temperature also suppress the anomalous temperature behav-
ior. This observation is compared to trends in the phonons and elastic constants of BCC
transition metals. Electron-phonon and phonon-phonon couplings are examined as poten-
tial sources of this effect, through a careful accounting of contributions to the heat capacity,
derived from neutron scattering experiments, calorimetry measurements, and electronic
structure calculations.

Finally, the changes in the phonon DOS and the vibrational entropy across the low-
temperature martensitic phase transformation in Fe;iNigg are investigated. The respec-
tive contributions of the phonons and magnetism to the entropy of the direct and reverse
transformation are evaluated from neutron scattering experiments and scanning calorime-
try measurements. A significant magnetic entropy is found in the reverse transformation,
which is not present in the direct transformation. This result stresses the necessity to ac-
count for the respective contributions of all microscopic degrees of freedom in evaluating

entropy changes in solid-solid phase transitions.
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Chapter 1

Introduction

1.1 Alloy Thermodynamics

Very extensive experimental efforts have sought to characterize the crystalline phases formed
in alloys of various compositions and at varying temperatures, typically extending up to
the melting point. Much of that effort is nowadays compounded and readily available in
databases such as binary, and to a more restricted extent, ternary phase-diagrams. These
empirical observations are generally interpreted in the framework of classical thermody-
namics, and can, to a certain extent, be modelled and extended to more complex systems
(ternary and quarternary), using semi-empirical approaches [1]. The rationalization of this
large body of phenomenological observations is still incomplete, however.

On the one hand, the energetics of fairly complex crystalline phases of alloys have
become accessible to theoretical calculations of high accuracy, through the advent of efficient
methods to solve the electronic structure problem directly from quantum mechanics. The
configurational entropy contributions, beyond the simple point approximation for a purely
random distribution of atoms on sites, are also well accounted for, taking into account
correlations such as short-range order, thanks to cluster expansions [2, 3, 4].

On the other hand, in building the free energy curve for each phase of a binary alloy,
one most often restricts the entropy contributions to the configurational degrees of free-
dom, in large part because of our lack of knowledge about so-called excess entropy terms.
Even when some, or parts, of these terms can be calculated in principle, the difficulty in

actually computing them has precluded the emergence of a clear understanding of their size



and variations. Non-configurational degrees of freedom do contribute significantly to the
entropy, however, and can induce entropy differences between phases that are significant
to thermodynamics. These can induce qualitative changes in phase diagrams, for example.
Other sources of entropy exist besides configurational entropy. For a fixed configuration of
ions on a given lattice, low energy excitations around that static configuration can be ther-
mally activated and will provide extra entropy. As such, nuclear vibrations, spin-waves or
electronic excitations add their own contribution to the entropy of the system. We are con-
cerned in this thesis with the entropic effects of lattice vibrations, or phonons, in transition

metal alloys.

1.2 Vibrational Entropy

The concept of vibrational entropy is conveniently introduced from the framework of statis-
tical physics, using the notion of phase-space. The phase-space of a system of N particles
(or effective particles) is the 6 N-dimensional space of all the coordinates and momenta of
the constitutive particles. In the microcanonical description of statistical mechanics, the
thermodynamics of the system is fully specified by the function Q(N, E, V'), which gives
the number of microstates compatible with the macrostate (N, E, V') of the system. The
classical thermodynamic entropy of the system, 5, is then related to {2 through Boltzmann’s

equation,
S = kglnQ, (1.1)

where kp is Boltzmann’s constant. Since there are many possible ways to partition the en-
ergy of the macroscopic system between its microscopic degrees of freedom, many different
microstates are compatible with a given macrostate. It can be shown from quantum mechan-
ical considerations that the volume element associated with one microstate in phase-space
is h3, where h is Planck’s constant. In the microcanonical description, the representative
volume for the system in phase-space, V, is proportional to the number of accessible mi-
crostates in the ensemble, Q(N, E,V), and the volume of each microstate h3. However,

indistinguishability of individual particles introduces a normalization of Q(N, E, V') accord-



ing to the quantum statistics obeyed by the particles, fixed by their spins. In the classical

limit, one obtains*

%
0 = NN (1.2)

Thus, entropy can be seen as a measure of the extent of the representative volume of the
system in phase-space.

For a collection of particles oscillating around a given configuration, such as nuclei
vibrating around their sites on a crystal lattice, the system explores a larger portion of
phase-space than if the particles were static. There is thus an entropy associated with the
extra extent of phase-space sampled by the system as the constituent particles vibrate. This

is the origin of vibrational entropy.

1.3 Expected Trends

In a vibrating crystal, the amplitudes of the motions of atoms away from their equilibrium
sites depend on the effective force-constants. If the restoring force-constants are large, the
amplitudes of vibrations are constrained, and the frequencies high. On the other hand,
small force-constants allow for larger displacements, which correspond to a large volume
being sampled in phase-space. As a consequence, softer materials have a higher vibrational
entropy. For a constant mass of the nuclei, the vibrational entropy of the crystal is a
decreasing function of the frequency of its vibration modes.

Changes in the mass of the constituent nuclei, for example in the case of a mass defect,
also induce changes in vibrational entropy. A simple harmonic model considering the range
sampled by the system in phase-space and taking into account only the mass defect associ-
ated with an impurity, without perturbation of the electronic structure, predicts a change
in vibrational entropy upon alloying given by

M;
M,

), (1.3)
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“more rigorously, for N particles occupying energy levels {€;} according to the distribution {n;}, the

statistical weight associated with indistinguishability is w({ni}) = N!/], np!.



where M; is the atomic mass of the impurity, M), is the atomic mass of the host, kg is
Boltzmann’s constant, and c is the impurity concentration. In this picture, heavier solutes
are thus expected to cause an increase in vibrational entropy, due to a softening of the
phonons.

The vibrational entropy of a crystal thus depends both on the mass of the atoms in
the crystal and on the restoring force-constants that constrain the nuclei to vibrate around
a local equilibrium configuration. The forces on the nuclei are the sum of electrostatic
repulsions from other positively charged nuclei and the electrostatic interaction with the
negative electronic charge density throughout the crystal. The electronic density is in turn

determined by the spatial distribution of point-like nuclear charges.

1.4 Overview

Over the last decade, experimental and theoretical investigations have shown that changes
in vibrational entropy play an important role in the thermodynamics of solid-state phase
transitions [5, 6, 7, 8]. Our recent experimental results have shown that in dilute alloys with
a few percent impurities, the vibrational entropy of mixing can be larger in magnitude than
the configurational entropy gain due to disorder, and can lead in certain cases to a negative
total entropy of mixing [9]. Recent theoretical calculations have also predicted important
effects of the vibrational entropy on the solubility limit in dilute alloys [8, 10, 11].

Experimentally, the vibrational entropy difference between two phases of a material can
be measured by a number of methods, including calorimetry or inelastic neutron scattering
[12, 13, 14]. However, the neutron scattering approach provides more information since it
allows measuring the phonon density of states (DOS), which connects the macroscopic ther-
modynamics of the material with its underlying microscopic lattice dynamics. Calorimetry,
on the other hand, gives information mostly about the sum of all entropy contributions,
including phonons, magnetism, and electronic excitations, for example.

In this thesis, we first review the concepts underlying our investigations. The theoret-
ical framework of density functional theory is briefly reviewed, followed by a discussion of
lattice dynamics in the Born—von Kéarm&an model. The thermal properties of phonons are

summarized in the harmonic and anharmonic cases. The inelastic neutron scattering tech-



nique, which constituted the backbone of the experimental work performed, is presented
succinctly.

The thesis then presents our results and findings. The first aspect of vibrational entropy
investigated in this work is associated with the introduction of impurities. Vanadium is
the host crystal on which our efforts have been focused, and different impurities from the
transition metals are considered. The different dilute vanadium alloys investigated were
studied both experimentally and by means of computer simulations. We find for the first
time a clear trend with the chemical properties of the impurity atoms. We believe this trend
offers a significant insight into the systematics of vibrational entropy in binary alloys. Also,
vibrational entropy is strongly reduced upon alloying with late transition metal impurities.
In the case of Pt solutes, this reduction overcomes the gain in configurational entropy, so the
total entropy of mixing is negative. Such a large effect, for only a few percent impurities,
has surprised the alloy thermodynamics community.

The second aspect considered is the temperature dependence of the phonon modes.
Vanadium and dilute V-based alloys are studied, in the light of previous investigations
on pure vanadium and other BCC transition metals. It is shown that impurities disrupt
the anomalous temperature-dependence observed in pure vanadium. Differential scanning
calorimetry was used to evaluate the respective contributions of phonons and electrons, and
interpreted in terms of phonon-phonon and electron-phonon interactions.

Finally, the effect of vibrational entropy on the v — o martensitic transformation in
Fe71Nigg is investigated. The phonons and vibrational entropy in this material were moni-
tored across the martensitic transformation upon cooling. The difference in phonon entropy
between the high and low temperature phases is substantial. Additional calorimetry work
for both the direct and reverse transformations identified a large additional contribution

from magnetism in the reverse transformation.



Chapter 2

Theoretical Background

2.1 Hamiltonians and Densities

We review in this section some fundamental aspects of solid-state theory and the more
specialized framework of density functional theory. More details on this subject can be

found in [15]. A shorter account is also given in [16].

2.1.1 Condensed-Matter Hamiltonian

We start with the general many-body hamiltonian describing a system of interacting elec-

trons and nuclei:
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where the uppercase (resp. lowercase) subscripts label the nuclei (resp. electrons), M is
the nuclear mass, me the electronic mass, Z; the atomic number of ion I and R; and r;
are the nuclear and electronic positions, respectively. We have absorbed the spin index
for the electrons into the symbol r;. This hamiltonian operates on many-body states in
the Hilbert space of the system, such as many-body wave functions ¥ ({ Ry, r;}) in position
representation. Also, we require that the wave function 1 is antisymmetric under the

exchange of electrons. We recognize in this hamiltonian the canonical kinetic and potential



energy operators for nuclei and electrons:
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where T}, is the kinetic energy of the nuclei, T, is the kinetic energy of the electrons, Vin
is the Coulombic repulsion energy of the nuclei, Ve_n is the Coulombic attraction between
electrons and nuclei and, finally, Vo_e is the electron-electron interaction. The hamiltonian
of Eq. 2.1 is too hard to solve directly and a series of approximations are called for to reduce

this problem to a manageable one.

2.1.2 Born-Oppenheimer Approximation

Usually the first simplification is to use the Born-Oppenheimer, or adiabatic, approximation.
Considering the very small mass ratio of the electron and nuclei, m¢/M, one can perform a
series expansion of H in this parameter and apply perturbation theory. We focus for now on
the zero-th order term in this expansion; higher-order terms relevant to the electron-phonon

interaction will be discussed later. At this order:

A~ N

H = Te + ‘A/e—e + ‘Ze—n + Vn—n ) (23)

so only the static positions of the nuclei intervene. We can effectively consider the nuclear
configuration {R;} as a set of external parameters for the problem of determining the
electronic quantum states. Physically, this amounts to saying that the nuclei move much
slower than the electrons and thus, at any given time, the electron states correspond to the

instantaneous nuclear configuration. With this point of view, Ve_y is seen as an “external



potential,” Vext, imposed on the electrons for a fixed configuration of the nuclei. Next, Vien
is just a constant and thus has no relevance to the electronic problem. Leaving this last

term aside, we obtain the electronic hamiltonian:

He = Te + ‘A/e—e + Véxt . (24)

2.1.3 Density Functional Theory

The electronic hamiltonian for a specified external potential (Eq. 2.4) is still very difficult to
solve. Chief among the difficulties facing us is the fact that this is still a many-body problem:
H operates on electronic wave functions ¢ ({r;}), that depend on the 3N spatial coordi-
nates of the N electrons in the system (and also on their spin coordinates). Besides, the
electrons are interacting, which precludes us from treating them as independent particles.
Traditionally, the electron-electron interaction is broken down into exchange interaction and
correlation.

A considerable simplification can be performed following the importants results of Ho-
henberg and Kohn and of Kohn and Sham, published in two papers in 1964 and 1965
[17, 18]. Hohenberg and Kohn [17] showed that the problem above can be recast into a
problem that depends only on the electronic density, p(r), rather than the many-body wave
function. This is a tremendous advance since p(r) only depends on one three-dimensional
position. The possibility to recast the problem in this manner stems from two very general
theorems introduced by Hohenberg and Kohn (HK).

The first HK theorem states that the external potential Vexs 18 uniquely determined from
the ground state density of the many-body interacting system. Conversely, the specification
of Vext determines I:Ie, and thus the ground state and its density po(r). We conclude that
there is a one to one relationship between the ground state density po(r) and the external
potential Vi for the electrons. Because the hamiltonian fully describes the system, an
additional consequence is that every property of the system is determined from po(7).
Mathematically, this is expressed by writing the observables O of the system as functionals

of the electronic density:

(0) = (¥|Oly) = O[g],



where O|p] is a real-valued functional of continuous functions on R3, O : C(R?) — R.

The second HK theorem states that there exists a universal functional for the energy
E[p], which can be uniquely defined, provided the external potential Vext. The density that
minimizes this functional is the ground state density and the energy at the minimum, the
ground state energy. More specifically, applying the first theorem to the hamiltonian itself,

we write:

E = (H) = Hlp| = Ev...[p) = Fuxlp] + / (1) Vs (r) &P (2.5)

where Fyk[p] = (¢|T.+Ve_o|t)) is universal for any many-electron system. The 2" theorem
stipulates that Ey_, [p] reaches its minimum for p = pggs and that Ey._, [pcs] = Fas-

Using these results, the original eigenvalue problem for the solution of the Schrodinger
equation corresponding to the electronic hamiltonian (2.4) can be replaced by a mini-
mization problem for Ey,  [p]. One could try solving this minimization problem using
the Rayleigh-Ritz procedure, for example. There is one problem, however, as an explicit
expression for Fyk [p] has not yet been found and its expression for the many-body problem
might be hopelessly complicated. The procedure devised by Kohn and Sham [18] overcomes
this difficulty.

2.1.4 Kohn-Sham Equations

The approach of Kohn and Sham for determining the ground state density of the many-body
problem is to introduce an auxiliary hamiltonian for independent particles, the Kohn-Sham
hamiltonian. This ansatz rests upon the assumption that the independent particle system
has the same ground state density as the interacting particle system. We start by regrouping

the terms in Fyxk:
Fagx = To+ Eg+ Exc, (2.6)

where Ty is the kinetic energy functional for independent electrons, Ey is the Hartree

classical Coulomb interaction energy

Eulp] = ;/p|(:)_p(:?) Erd3r’ (2.7)
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and Fy. is the exchange-correlation energy defined as the difference between the kinetic and
potential interaction energies of the true interacting many-body electron system and those
of the fictitious independent electron gas, with electron-electron interaction limited to the

Hartree contribution:
Exlp] = (T¢) — Tuilp] + (Ve—e) — Enlp] | (2.8)

where the subscript “ni” stands for “non-interacting.” As is apparent from its definition,
E.[p] contains all the difficult parts about the interactions in the real system, and an exact
expression for this term is not known. Nevertheless, several approximations for exchange
and correlation have been developed that allow for realistic results in solid-state DFT calcu-
lations, such as the local density approximation (LDA) and a number of generalized gradient
approximations (GGA). Supposing FEy., or a model thereof, is known, Eq. 2.5 can be re-
formulated as an effective single-particle hamiltonian by using a Rayleigh-Ritz approach
to convert the variational minimization into an eigenvalue problem, as first done by Kohn
and Sham. The single-particle Kohn-Sham (KS) hamiltonian for a given external potential

reads:
-FIKS = Tni + VH + VXC + ‘A/ext y (29)

with ch the functional derivative of the exchange-correlation functional:

Vie = , (2.10)

and similarly for the Hartree potential. The determination of the ground state density for
the true system of N interacting electrons then reduces to solving an effective one-particle

Schrodinger equation

Hxsoi = e (2.11)



11

for the N lowest-energy states {¢; }1<i<n and then using the fact that the model independent-

particle density is the same as that of the interacting system:

N
pas(r) = pai(r) =D @5 (r)di(r) - (2.12)
=1

The set of equations (2.11) for 1 <14 < N constitutes the celebrated Kohn-Sham equations.
This eigenvalue problem is finally tractable and can be solved by expanding the single-
electron wave functions ¢; on some basis and diagonalizing the KS hamiltonian matrix
expressed in this basis. One additional layer of complexity arises, however, as both Vit
and Vi entering in (2.11) depend on p, which is the quantity we seek to determine. We
are thus faced with a self-consistency problem, which we can solve iteratively. Starting
with some estimate for the density, p,—g, such as a superposition of atomic densities in a
solid, Vij and Vi are calculated, the eigenvalue problem (2.11) is solved and a new density
Pn+1 is obtained via (2.12). This cycle is iterated until self-consistency is reached, e.g.
[ 1pns1(r) = pu(r)| d®r < Qto1, With Q11 some tolerance on the charge difference. Another
approach is to solve the minimization problem for E[p] using a variational approach with
orthonormalization constraints for the Kohn-Sham orbitals, using for example a conjugate
gradient method [19].

Numerous schemes have been devised and implemented to solve the Kohn-Sham equa-
tions. Broad classes can be distinguished, based on the basis set used to expand the Kohn-
Sham wave functions or the treatment of core electrons. Different flavors of DFT also arise
from the approximation used in the representation of the exchange-correlation functional.

We review some of these implementations in an appendix.

2.2 Lattice Dynamics

We review in this section some fundamental aspects of lattice dynamics, as described in
the model established by Born and von Karman. This model has been a cornerstone of
solid-state physics since its introduction almost a century ago. It is presented extensively in
the seminal book of Born and Huang [20]. Other accounts of this theory and its extensions

can be found in [21, 22, 23].



12

In the harmonic approximation, the nuclear potentials are parabolic, and the Ehrenfest
theorem allows us to treat the system classically, by identifying particles with the center of
their wavepacket [24]. In the following, we present a classical derivation for the vibration

modes and finally present a connection with the quantum-mechanical concept of a phonon.

2.2.1 Born—von Karman Model
Atomic force-constants and equations of motion

We consider a crystal generated by the infinite repetition in space of a parallelepipedic unit
cell defined by three non-coplanar vectors aj, as, and ag. The vectors a;, ag, and ag are the
lattice vectors of the crystal. We label each unit cell by a triplet [ of integers: | = (I, l2,13).

The equilibrium position of the origin of the unit cell [ is denoted

x(l) = lLai +las +I3a;3. (2.13)

If there are r > 1 atoms per unit cell, we assign an index k = 1, 2...r to the atoms of the
basis and write their mass M,. We describe the atomic equilibrium positions with respect
to the origin of a unit cell with basis vectors {x(k),x = 1,2...r} so that the equilibrium
position of atom k in cell [ is then given by x(Ik) = () + x(x). Thermal fluctuations
induce displacements in the atomic positions; we write u(lx) the displacement vector of
atom (lk) from its equilibrium position x(Ix), and uq(lk), @ = z,y, z, the corresponding

cartesian components. The instantaneous position R(lx)(t) of atom (Ix) at time ¢ is then

R(r)(t) = a(lk)+ u(ls)(t) . (2.14)

The total potential energy V for the nuclei is assumed to be a function of the instantaneous

positions of all the atoms in the crystal

V = V({..,R(k),..R(I'r),..}) (2.15)
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and it can then be expanded in a Taylor series of the atomic displacements:

1
Vo= Vot > @allk)uallr) + 5 SO Caplin e Yua(l)ug(Us') + ... (2.16)
lka lka U'K'B
In the harmonic approximation of lattice dynamics, we use only the terms of the series
explicitly written above, and neglect terms of order three and higher in the displacements.
The coefficients of the Taylor series are the derivatives of the potential with respect to the

displacements:

Po(ls) = (c{hti‘(/lm)o

o2V
P = 2.1
ap(l; [r) <8ua(l/£)8uQ(l%’)>0 ’ (2.17)

where the subscript zero means that derivatives are evaluated in the equilibrium configu-
ration (all displacements equal to zero) and Vj is the static potential energy of the crystal.

Because the force on any particle must vanish in the equilibrium configuration, we have
O,(lk) = 0 Va,l, k. (2.18)

The hamiltonian for the nuclei is given by H =T+ V where T' = }__, p2,/2M, is the

kinetic energy of the crystal. Following the harmonic approximation we obtain

2
by, 1
H = E oA +Vo+ 3 E E Do p(lk; UK Yua(lk)ug(U's') . (2.19)

K,l lka U'K'B

We can rewrite the last term as a matrix product, and obtain

2
pl‘i,l 1
H o= > oM, T Vot g SN wT k)@ U u(l's) (2.20)

K,l Ik UK

where we have defined the 3 x 3 matrix ® by

Bk U'r) = [®ap(lr;l's)] . (2.21)
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The matrix ®(lx;1'k’) is the force-constant matrix associated with the bond (Ix;U'x"). If
(I,k) # (I', k"), then the components of the force-constant matrix are given by the second-
order derivatives of the potential as in Eq. 2.17. On the other hand, if (I, x) = (', x’), then ®
is the so-called self force—constant matrix, whose expression is derived from the requirement

that there is no force on the crystal as it undergoes a constant uniform translation:

®(Ir;lk) = — Z ®(Ik; 'K . (2.22)
(V5" #(1k)
A number of relations on the force-constant tensors ®(lx;I'x’) can be derived from re-
quirements that there be no overall translation or rotation of the crystal, and from the
symmetries of the crystal structure.
From the quadratic approximation of the hamiltonian, one can derive the equations of

motion for all the atoms in the crystal:
My(lk)® = = ®(Uslsul's)  Vik. (2.23)
UK

It is then convenient to impose periodic boundary conditions on the crystal. If we write
Neell (N;eu, Nl the number of unit cells in the crystal in the x (y, z) direction, and
Neell = NgeuN;jenN cell the total number of unit cells, we then have 3 x r x N equations
of motion to solve. We can seek the solutions under the form of plane waves of wave vector

g, angular frequency wg;, and polarization e(k, qj):

uo(lk,qj) = N;T{A(qj)ea(n, qj) exp(i(q - x(lk) — wgq;t)) + c.c.}, (2.24)

where A(qj) are amplitudes and c.c. denotes the complex-conjugate term.

The periodic boundary conditions cause the set of possible wave vectors {g} to be
discrete, although the typically large number of unit cells in the crystal translates into a
very fine mesh of g-points in reciprocal space. For each value of the wave vector q, there are
3 x r vibration modes of the crystal, corresponding to a priori different polarization vectors
e(k,qj) and angular frequencies wq; (1 < j < 3r). The number of physically distinct

wave vectors is N so that the total number of degrees of freedom for the system is
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3rN°l as required. As a side note, we point out that in a physical finite crystal 6 of these
degrees of freedom actually correspond to translations and rotations of the whole crystal, so
(3rNeell — 6) degrees of freedom effectively qualify as internal lattice vibrations. Although
this is a minor point for bulk crystals where N°!' >> 1. it may become important in the case

of very small crystallites. In the present model, these degrees of freedom are “clamped.”

The Dynamical Matrix and its Eigenvalue Problem

The substitution of the propagating-wave displacements of Eq. 2.24 in the equations of
motion effectively corresponds to taking a space—Fourier transform of the right-hand side in
Eq. 2.23, and leads to the introduction of the “dynamical matrix”, the Fourier transform of
the interatomic force-constant tensor. After simplifying by the oscillatory time dependence,
we are left with an eigenvalue problem for w?, with the corresponding eigenvectors being
the polarization vectors of the lattice vibrations. The polarization vectors e(k, gj) for all
the atoms in the basis (1 < k < r) and their associated angular frequencies wq,j can be
calculated by diagonalizing the dynamical matrix D(q). More explicitly, the (3r x 3r)
dynamical matrix D(q) is constructed from (3 x 3) submatrices D(kr/, q), which are the

Fourier transforms of the force-constant matrices ®(xl, x'l’):

D(11,q) ... D(1r,q)
D(rl,q) --- D(rr,q)
with
D(kr', q) \/MiiMn ZI: B(0r, 1K) @) —2) (2.25)

where we took [ = 0 since the summation is over all values of I’ and the crystal is infinite,
periodic, and the origin cell is arbitrary*. By similarly collecting the polarization vectors

into a vector of size 3r, we can rewrite our system of differential equations for the plane

*Ziman calls this the “cosmological principle” for the lattice [25]
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waves in the form of an eigenvalue problem:

D(q)e(qj) = wijelqj), (2.26)
where
e(1,qj)
e(qj) =
e(r,qj)

It can be shown that the (3r x 3r) dynamical matrix D(q) is hermitian (for any value of
q), and thus is fully diagonalizable. The 3r eigenvectors and eigenvalues of the dynamical
matrix evaluated at a particular wave vector q then correspond to the 3r eigenmodes of
vibration of the crystal for that wave vector. Since D(q) is hermitian, its eigenvalues are
real and thus the angular frequencies wg; are either real or purely imaginary. The case of
purely imaginary frequencies leads to exponential divergence of the displacements in the
past or the future and this case must be ruled out from mechanical stability conditions
(although this formalism is valid to predict wavectors q leading to mechanical instabilities,
e.g., at martensitic transitions). Also, the eigenvectors can be chosen to form a complete
orthonormal set and, thus, any nuclear displacement field can be expressed as a linear

combination of these vectors.

Normal Modes and Phonons

One can introduce normal modes Q(gqj) by rewriting the displacements as
(I, ) L > _e(r, qj)exp(iq - z(lx) Q(g))) (2:27)
uiik,qj) = €\k,q])exp(tq - T(tk qj)) .
VN M, pr
such that

[A(gj) exp(—iwg;t) + A*(—q j) exp(iwg;t)] - (2.28)

N | —

Q(gj) =
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After introducing the conjugate normal momenta P(qj) = Q(gqj), it can be shown that the

hamiltonian can be written
1 wr . ) s . )
H = ) Pai)P(aj) + wg;Q (ai)Q(a) (2.29)
qj

and the normal modes verify equations of motion for uncoupled harmonic oscillator:

Q(qj) +wy;Qgj) = 0. (2.30)

The formulation of the problem in terms of the normal modes can be quantized with
the canonical correspondence for position and momentum operators. Based on the normal

mode operators, one can introduce the operators bg; and bLj:

1

by = e b QUai) + P (a))
7 1 . B
by = m[wqu*(qj)—zP(qy)]. (2.31)

The operators b(qj) and bf(gj) satisfy the commutation relations for annihilation and cre-
ation operators, respectively. In the occupation number representation (second quantiza-

tion), they annihilate or create a quantum of excitation for the mode s = (g j):

by loyng, ) = Vg lons —1,..)
Ve ng, o) = Vns+ 1| ns+1,...) . (2.32)

The hamiltonian assumes the form of a sum of uncoupled quantum harmonic oscillators in

terms of these operators:
= Y [ + n] | (2.33)
where ng = l;l 135 is the number operator

Ns ooy Mgy o) = Mg |eee, Mgy o) (2.34)
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Within this description, we define the concept of a phonon as a quantum of excitation
of mode s = (gj). A purely quantum-mechanical attribute of this description is that, as
appears in Eq. 2.33, even when the phonons are all in their ground state (zero temperature),
the system possesses %hw of energy per mode, corresponding to zero-point motion. We recall

that phonons so defined are quasi-particles obeying Bose-Einstein statistics.

Calculation of the phonon density of states

We define the phonon density of states (DOS) g(w) as the function giving the number
of states (gj) of frequency w, or in a continuous description, the number of states whose

frequency is between w and w + dw:

900 = oo 3 b wy)

qeBZ 1<;<3r

Q
_ 3(%)32 | sw—wg)da, (2.35)

where we used the fact that the g-point grid is fine in the first Brillouin zone (BZ) to go
from the first to the second expression ({2 is the volume of the unit cell in real space). With

this definition, ¢ is normalized:

/000 gw)dw = 1, (2.36)

To calculate the phonon density of states (DOS) of the crystal, we need to diagonalize
the dynamical matrix at a large number of points in the first BZ. The diagonalization of
D(q) returns 3r eigenvalues of frequency wq; (1 < j < 3r) at each g-point. By sampling all
the @’s inside the first Brillouin zone of the reciprocal lattice (or its symmetry-irreducible
portion), we get a list of all the vibration frequencies of the crystal, thus defining g(w)
though Eq. 2.35. The number of g-points to sample is prohibitive, however. A practical
solution consists in partitioning the frequency axis into bins and populating these bins
according to the number of states whose frequency fall into them. This is equivalent to
considering g(w) as a histogram.

Different computational algorithms can be used to populate this DOS histogram. In
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general, the number of sampling g-points (and matrix diagonalizations to perform) to get
good statistics in the histogram varies inversely with the bin-width of the histogram. For a
given bin-size, we can adopt different schemes for sampling reciprocal space. Two elemen-
tary approaches consist in picking g at random (a Monte Carlo approach), or on a regular
grid. In the computations presented in this thesis, the random sampling has usually been
used, for it presents the advantage of avoiding systematic sampling of high-symmetry direc-
tions with degenerate phonon modes. In the Monte Carlo approach, we need to define the
volume to sample. Technically, one only needs to sample the symmetry-irreducible portion
of the first BZ. However, we adopted an extended zone scheme view and sampled a very
large volume (e.g., a cube) so that the boundary effects (owing to partial sampling of BZ

intersected by the boundary surface) were minimized.

2.2.2 Electron-Phonon Interaction

Finally, we emphasize that both the formalism of density functional theory and the Born—
von Karméan model of lattice dynamics rest on the Born-Oppenheimer approximation. It is
the Born-Oppenheimer approximation that allows one to treat the electronic and nuclear
problems as decoupled. Although well founded in principle, the adiabatic approximation
precludes us from treating such effects as the electron mass-enhancement at low tempera-
ture in metals, which gives rise to an increase in electronic specific heat, for example. The
electron-phonon interaction can be reintroduced in the theory with a perturbative treat-

ment. Some ingredients of this description are given in an appendix.

2.3 First-Principles Phonon Calculations

In this section, we give a brief overview of current approaches for calculating phonons from

first-principles simulations.

2.3.1 Frozen Phonons

This approach draws on the adiabatic approximation to calculate the energy of displace-

ment of the nuclei (or ions) in the potential provided by the electrons. One picks a phonon
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mode for the system (wavelength and mode index) and applies a displacement field to the
nuclei corresponding to this phonon. The displacements correspond to the polarization
vector for the phonon considered, e(qj), multiplied by the periodic oscillation, sin(q - Ry),
and a displacement amplitude, u. By calculating the total energy for a set of displacement
configurations (varying the values of u), one obtains the “deformation potential” for this
phonon. This potential curve is typically parabolic around the equilibrium configuration
(small u), but for larger displacements, anharmonic components in the potential become
more important. One can then extract the frequency for this phonon mode from the po-
tential energy curve. For example in the case of a parabola, the frequency is \/W , with
K the second-derivative of the potential and M the nuclear mass.

The advantage of this method is that it provides the potential for the atomic displace-
ments and it is not limited to the harmonic approximation. Studies of anharmonicity
for selected phonon modes in transition metals have been performed with this method
[26, 27, 28]. The obvious disadvantage of the frozen-phonon method is its computational
cost. For calculating long-wavelength modes, one needs to setup a supercell that can be
quite large. Also, the method is rather cumbersome, since the phonon modes are calculated
one at a time, and a special supercell is needed for each one. Obviously, the method is lim-
ited to phonon modes whose displacement pattern are commensurate to the supercell used.
The calculation of the entire phonon dispersions along several directions, or even worse the
phonon DOS, would be very tedious and probably too demanding computationally for a

true ab initio approach.

2.3.2 Hellmann-Feynman Forces

The Hellmann-Feyman or ‘direct’ method is based on the calculation of forces, rather than
the total energy. The essence of this method is based on the evaluation of forces on nuclei in
a quantum-mechanical description of the system, which is done with use of the Hellmann-
Feynman theorem [29, 15].

If we consider the ground state energy Fy and wave function ) to be parameterized by
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some quantity A, the change in E) incurred by a change in A is given by

o8,

B a2, (237)

since the ground state energy is extremal with respect to variations of the wave function

and the terms of the form (9 /OA| H|i)y) vanish. The force on the nucleus I at R; is thus

8E

m=- 2Py (239)

Feynman [29] showed this to be just the electrostatic force on the displaced nucleus:

8%){1;(7") 3 8Vn—n
Fr = — — == _
! / PR, 1T oR,
(’l" — R[)Z[@ 3 1 (R[ — RJ)Z[ZJ€2
= ———d = . 2.39
/p(r) R r+2; B R (2.39)

This theorem is very useful as it provides us with an expression for the force on the nucleus
from the electronic density p(r) directly. Using DFT, we can calculate the electronic ground
state density for a nuclear configuration with a displaced nucleus R(Ik) = z(lk) + u(lk)
and thus, we can obtain the force on the nucleus from first principles.

The direct method for phonon simulations has its foundation in the calculation of the
Hellmann-Feynman forces. The argument given above to calculate the force on a displaced
atom can be generalized to compute the force on all atoms «’ in the crystal unit cell upon
displacement of atom x. The direct method typically proceeds with assuming that forces
are linear with the displacement amplitude (Hooke’s law), which is equivalent to the har-
monic model for the nuclear potential, although this is not an intrinsic limitation. With
this assumption, we can directly obtain the interatomic force-constants as the proportion-
ality factor. With the interatomic force-constants in hand, we can calculate the phonon
dispersions and density of states with the Born—von Kdrméan model, as described above.

In principle, one off-symmetry displacement of an atom is sufficient to determine all the
force-constants involving this atom, which makes the direct method much more efficient
than the frozen-phonon approach. There is one pitfall, however. In typical DFT simula-

tions, periodic boundary conditions are used to replicate the crystal unit cell. If we displace
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one of the atoms in the basis (I, k), all the periodic images of this atom {l’ # [, k} are also

“image forces” on other basis atoms. The forces calculated are

displaced, producing extra
thus cumulant forces, instead of the true Hellmann-Feynman forces. This can be corrected
for, however [30]. More severely, the range of interactions that can be calculated depends
directly on the size of the supercell. Also, displacements in off-symmetry directions make
the DFT calculation more costly and it may be more favorable to replace them by several
high-symmetry displacements. Although the direct method is much more efficient than the
frozen-phonon approach to treat the harmonic lattice dynamics with DFT, its main draw-
back is the need to use rather large supercells for materials with long-ranged interatomic
interactions.

Pioneering examples of first-principles phonon computation with this approach can be
found in [31, 32]. We performed phonon DOS calculations using the direct method, as
implemented in the computer programs “Phonon” and “Phon”, and using the electronic-
structure code VASP [33] to compute the Hellmann-Feyman forces. A presentation of the
“Phonon” computer program implementation of the direct method can be found in [30].
The alternative software implementation provided by “Phon” is described in [34]. Our
results from first-principles calculations for FCC Al, BCC Cr and BCC Fe are shown in
figure 2.1, where they are compared with phonon DOS curves we obtained using a Born—von
Karmén model and interatomic force-constants (derived from triple-axis neutron scattering
measurements) reported in the literature. As can be seen in this figure, the results of
our calculations with the direct method are in very good agreement with the experimental
phonon DOS. The deviations between the ab-initio and experimental DOS in the case of
Cr and Fe are consistent with the higher temperature at which the measurements were

conducted.

2.3.3 Linear Response

The linear response approach to the calculation of perturbations allows one to compute the
dynamical matrix D(q) and phonon frequencies w;(q) at a selected set of g-points without
the need for supercells. It is based essentially on the computation of the derivatives (at arbi-

trary order) of the total energy with respect to perturbations, such as atomic displacements
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Figure 2.1: Phonon DOS of FCC Al (a), antiferromagnetic BCC Cr (b) and ferromagnetic
BCC Fe (c), calculated from first-principles with the direct method, using VASP [33] and
Phonon [30] (Al, Cr), or Phon [34] (Fe). The ab-initio results are compared to phonon DOS
curves that were obtained with Born—von Kéarm&an models, using experimental interatomic
force-constants reported in the literature [35, 36, 37]. The first-principles calculation for
FCC Al used a 2 x 2 x 2 repetition of the cubic unit cell (32 atoms). The calculation for
BCC Cr (spin-polarized, antiferromagnetic) used a 2 x 2 x 2 cubic supercell (16 atoms).
The calculation for BCC Fe (spin-polarized, ferromagnetic) used a 4 x 4 x 4 repetition of

the rhombohedral primitive unit cell (64 atoms).
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in the case of phonons. The derivatives are obtained from the formalism of perturbation
theory applied onto the general DF'T, thereby creating the so-called density functional per-
turbation theory (DFPT). DFPT relies on the “2n + 1 theorem” of perturbation theory to
obtain the (2n+ 1) order derivatives of F from n-order perturbed wave functions. This for-
malism is discussed in details in [19, 38, 39, 40]. Applications to the calculation of phonons
in transition metals are presented in [41, 42].

The linear-response method is quite general. Many physical properties are derivatives
of the total energy, or of a suitable thermodynamic potential, with respect to perturbations.
For example, perturbations might be atomic displacements, dilations or contractions of the
unit cell, or an external electric field. The corresponding first order derivatives of the energy
would then be the forces on the nuclei, the stresses and the dipole moment. Second-order
derivatives would include the dynamical matrix, elastic constants, the dielectric susceptibil-
ity, the Born effective charge tensors and internal strains, while third-order derivatives would
include the non-linear dielectric susceptibility, phonon-phonon interactions and Griineisen
parameters [19]. Implementations of DFPT are found in several computer programs, such

as Abinit [43] and PWscf [44].

2.3.4 Molecular Dynamics

Finally, we briefly comment on molecular dynamics (MD), which also gives access to vi-
brational properties. In classical molecular dynamics, one numerically integrates Newton’s
equations of motion (EOM) for an ensemble of particles, provided a set of initial conditions
for positions and velocities, and with some model for interparticle interactions. By integrat-
ing the EOM with a fine time-step and for many steps, we can get a good sampling of the
dynamics of the system (through the ergodic principle), which are recorded in a run history.
Various properties can be calculated from such a run; in particular, the phonon DOS can
be computed as the Fourier transform of the velocity autocorrelation function. The MD
approach is a powerful one, as it can be applied to liquids or amorphous solids and not just
crystalline solids. It also offers a realistic way to investigate effects of temperature, and it
has been applied with some success to the case of transition metals. Examples of studies

for transition metals relevant to this thesis can be found in [45, 46, 47].
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Historically important potentials used in these simulations are the Morse, Lennard-
Jones, and Born-Mayer potentials, among others. Embedded-atom potentials have been
more successful for metals. Since these potentials are, to a large extent, empirical, these
types of simulations do not qualify as “first-principles”. New developments have allowed to
carry the MD technique into the realm of first-principles simulations, following the intro-
duction by Car and Parinello of a novel approach to solve the quantum MD problem [48].
In the approach of Car and Parinello, a fictitious lagrangian for both nuclei and electrons
is introduced, which is solved simultaneously for the classical coordinates of the nuclei and
the quantum-mechanical degrees of freedom of the electrons. Although this reformulation
has offered a great improvement in the feasibility of solving the quantum MD equations,

the main difficulty is that it is still computationally very expensive, in particular for metals.

2.4 Thermal Properties

We review in this section the connection between vibrational and electronic properties and
the thermodynamics of crystals and alloys. We start by recalling a number of relations
for thermodynamical properties of phonons, without deriving them. Derivations for these
standard results can be found in many textbooks, e.g., [49, 50, 51, 52].

2.4.1 Harmonic Oscillators

Classical Harmonic Oscillator

A classical one-dimensional harmonic oscillator of mass M and force-constant k£ has a natural

frequency

w = Vk/M. (2.40)

Its potential energy is

Epot(7) = —ka® = —~Mw?a? . (2.41)
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From the equipartition theorem, in equilibrium, the average potential and kinetic energies
are equal,

— 1
Epot = Exin = 5ksT, (2.42)
such that 22 only depends on the temperature T and the force-constant k:

—  ksT  kgT
2 - 27 _ P
x = (2.43)

The heat capacity is o o
_OE  O(Epot + Eyin)

C‘éTT_ oT

= kg, (2.44)

which recovers the law of Dulong and Petit, according to which the classical, high-temperature

limit for the heat capacity of solids is 3 kg per atom.

Harmonic Phonons

Consider a quantum harmonic oscillator of natural frequency w. Its thermal occupation

factor at temperature 7" is given by the Bose-Einstein distribution

1
M T) = (2.45)

with kg the Boltzmann constant. In thermal equilibrium, the energy associated with a

harmonic phonon with frequency w = wg; is

E(qj) = (n(qj) +1/2)hwg; (2.46)

where n(qj) = n(hw(qj)), and for a harmonic crystal:

Wmax

Byar(T) =) E(qj) =3N | hw(n(hw,T) +1/2) g(w)dw , (247)

qj 0

with g(w) the phonon DOS. The entropy of a particular harmonic phonon of frequency w

is given by the general formula for the entropy of non-interacting bosons [52]:

Shar(q@j, T) = kp[(n+1)In(n+1)—nlnn] , (2.48)



27

where we wrote n for n(hwg;, T'). Thus, we obtain the entropy per atom for the harmonic

crystal:
Shar(T) = > Shar(q), T) = 3k / [(n+1)In(n+1) —nlnn] g(w)dw , (2.49)
- 0
q)

with g(w) normalized to unity. For harmonic vibrations, the heat capacities at constant
pressure or constant volume are equal: C'p = Cy = Char. They can be obtained from the

relation

o 8Ejhar . 8Shar
Char = 7" =T =" . (2.50)

For a single mode (qj), we obtain

‘ hwgi \2  exp(fiwg;/ksT
Char(q4,T) = ( ‘”) p(fwg;/knT) o (2.51)
kT lexp(hwg; /kBT) — 1]
and for the harmonic solid, per atom,
Crut = [ Chulw (o) do (2.52)
0

2.4.2 Anharmonicity

In the theory of lattice dynamics presented above, the interatomic potential was truncated
at the quadratic order. This has allowed us to identify uncoupled vibration modes of the
crystal, or phonons, that depend only the force-constants, i.e. the second-order deriva-
tives of the nuclear potential energy. In particular, the phonon frequencies so-derived do
not depend explicitly on the amplitudes of the vibrations, nor on the temperature. The
harmonic approximation stems from the proposition that the displacements of the nuclei
away from their equilibrium positions are small and that higher order terms in the expan-
sion of the potential are negligible. Although these conditions are verified in many solids
at low temperature, they tend to become less valid as the amplitude of the displacements
increases at high temperatures, or in the vicinity of a martensitic phase transition. Some
fundamental thermophysical properties are even completely unaccounted for by the har-

monic approximation. If this model were valid, there would be no thermal expansion and
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the thermal conductivity would be infinite, in the absence of phonon-phonon scattering.
Also, force-constants and elastic constants would not vary with temperature or pressure
and, as previously mentioned, the heat capacities at constant pressure and constant volume
would be equal.

If one keeps a description of vibrations in terms of phonons, small deviations from the
harmonic case can be treated in perturbation theory and the result is a shift in phonon

frequencies [50]:

w(gj) = wiqj)+ Algj) —il(qj) , (2.53)

with w(gj) the harmonic frequency of mode (gj). The frequencies w(qj) are called “renor-
malized” phonon frequencies. The term —il'(qj) expresses that the phonons are now
damped, as (gj) is not a true eigenstate of the anharmonic hamiltonian and is not sta-
tionary. In the case of weak anharmonicity, I'/w < 1 and the lifetime of the state is long
enough that it is still meaningful to label it as a phonon state (gj). The shifted frequencies
(2.53) are the frequencies measured in a neutron scattering experiment [50, 53, 51, 52]. In
the following, it is assumed that the phonon width I' is small and the focus is on the energy
shift A.

In the case of a one-dimensional oscillator, the anharmonicity of the potential can be

expressed
1
V() = iMw21:2 + Vaz® 4+ Vyat | (2.54)

where higher order terms are neglected. The harmonic case V3 = V; = 0 yields the energy
eigenstates E, = (n+ 1/2)hw, but including the effect of small terms V3 and V4 in second-
order perturbation theory gives a shift [50]:

333 4 V4x4|n’>\2

AB, = (Vi) Y0 1V VAT

n'#n

(2.55)

since (n|Vzz3|n) = 0 because the integrand V3|, (z)|?23 is odd in z. On the other hand,

the contribution of V32 in the last term is smaller than that of V322 and it can be dropped.
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From this, V3 and Vj contribute to the same order in perturbation and both must be kept to

leading order. The renormalized phonon frequencies (without damping) can thus be written

w(qj) = wo(qj)+ Az(gj) + As(gj) + Aulgj) , (2.56)

with wp(gj) the harmonic frequencies at some reference volume and temperature (usually
0K or 300 K) and where Az and Ay are shifts due to explicitly anharmonic potentials, while
Ay is the shift due to the change in force-constants upon thermal expansion or application
of pressure. As represents the softening of the parabolic potentials with the increase in
volume incurred by thermal expansion or their stiffening with applied external pressure.

When only A, is retained in Eq. 2.56, one speaks of the quasiharmonic approximation.

Quasiharmonic Approximation

The change in frequency of a particular phonon mode qj is related to the change in volume

V through the Griineisen parameter 7g;:

_ Olnwg; (V. T)

70 (V. T) = oV

(2.57)

It is cumbersome to consider a specific Griineisen parameter for each phonon mode since
the full phonon spectrum needs to be taken into account for thermodynamic purposes. A

thermodynamic Griineisen parameter is then generally defined as:

3aVBr  3aVBg

T) =
va(V,T) Cr o

(2.58)

with a the coefficient of linear thermal expansion, V' the specific volume, By and Bg the
isothermal and isentropic bulk moduli, respectively, and Cy and Cp the heat capacity at
constant volume and constant pressure, respectively. The approximation of v4; by ¢ is not
always firmly justified, as substantial deviations of v4; may exist between different phonon
modes. It is often adopted for convenience, however. In first approximation, vq; (or va)
is a constant around ambient conditions, i.e., it does not depend on the magnitude of the

change in V' for small compression/expansion around the reference volume, and the only
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T—dependence is usually assumed to come through the dependence of the reference volume
on temperature V = V(T, P). Although this may be inappropriate in the case of explicit
anharmonicity, we concentrate for now on the thermodynamic consequences that can be
expected from the softening of phonons in the quasiharmonic approximation.

Thermal expansion yields a difference between the heat capacities at constant pressure

and constant volume. From standard thermodynamic equalities, one can show that
Cp —Cy =3aygCyT = 9a*VBrT . (2.59)

Integrating this relation, the quasiharmonic change in entropy associated with thermal

expansion between 717 and 75 is obtained:

1>
AS™(T,Ty) = 9V | o*Brdl. (2.60)
T

The quasiharmonic entropy defined this way takes into account the shift A, in phonon
frequencies. Since it is defined from a macroscopic relation, however, phonons may not
be the only degrees of freedom that contribute. In particular, in a metal, electrons also

contribute to the entropy and in this case
ASM(TY,Ty) = ASH(T,T) + ASP (T, Ty) (2.61)

where we use the subscript ‘xp’ to refer to the effect of thermal expansion on the electronic

entropy.

Beyond the Quasiharmonic Approximation

An attempt to describe thermodynamic effects related to the amplitudes of phonon dis-
placements requires one taking into account the explicit anharmonic shifts Az and A4 in
the renormalized phonon frequencies in Eq. 2.56. An important result concerning the ther-
modynamics of anharmonic crystals is that, in leading order in perturbation theory, the
vibrational entropy is still given correctly by its harmonic expression, but with phonon

frequencies given by their renormalized values. This was proven first by Barron [54] with
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perturbation theory and was also shown to be valid at all orders of self-consistent phonon
theory by Hui and Allen [55]. The vibrational entropy is the only thermodynamic function
for which this procedure applies, however. In particular, the result does not hold for the

free energy or the heat capacity [52, 50]. The anharmonic phonon entropy is
3 4 5 -
Sah = S + S + Sy = Star = Shar({gs}) - (2.62)

It should be emphasized that this result is only established up to leading order in pertur-
bation theory and may not hold when the anharmonicity is large.

Another important result is that the renormalized phonon frequencies are the frequen-
cies measured in neutron scattering experiments. Thus, the true anharmonic entropy is
experimentally accessible. It also follows that the entropy due to explicit anharmonicity in
the nuclear potential, Slgi) + Sf)i), is accessible by comparing Sgﬂh and S, provided the
electronic entropy and its volume dependence are available.

The argument can be made more specific with the help of a generalized notation. First,

we recognize that the anharmonic shifts in phonon frequencies, Ay, As, and A4 yield a

redistribution of the area under the density of states, so we can write
i) = ¢Ow)+35g® (W) + 69 (W) + 3¢V (w) , (2.63)

where we added a symbolic zero superscript on the harmonic phonon DOS for explicitness.
Second, the expressions (2.49) and (2.62) for the phonon entropy show that it is a functional

of the phonon DOS, which motivates the notation
Slor,T] = Spi'({0g;(T)}) . (2.64)

where the second argument, T', denotes the temperature in the Bose-Einstein thermal pop-
ulation. Also, we point out that this functional is linear with respect to the first argument
(linearity of integration). With this notation, the difference in phonon entropy between T}

and 75, in leading order in perturbed phonon frequencies, is

Spit(T2) = S (T1) = Slgr,, To] — Slgry, T
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0 0
= {Slg\ T2 - Slogy \ T1]}
2 2
+ {Slgp . To] - Slgry . 1]}
+ (SIS, 1] — Slgs? i} (2.65)
The second grouping on the right corresponds to the quasiharmonic change in phonon

entropy owing to thermal expansion between 77 and 7T5:
2 2 h
Slgw) . To) - Slg) . 1] = ASHNT1,T) (2.66)

and the last grouping is the explicitly anharmonic contribution to the change in phonon

entropy between the two temperatures:

Slg o) - Sl 1) = ASGY(T, ) . (2.67)

Since the harmonic component of the phonon DOS is independent of temperature, we also
have g(T? ) = 9592 ). We now consider the case where Ty is a low-temperature and 75 some
high temperature. We make the approximation that the low temperature phonon DOS is
harmonic, g, = gg ) = gg ). This is expected to be approximately valid for 71 ~ 300 K and

should be better at lower temperatures. With this approximation, we obtain the result
S[gr, To) — Slgr, To] = ASEN(T1,To) + ASSY (11, Ty) (2.68)

which allows us to evaluate the explicitly anharmonic contribution from the experimental
phonon DOS curves at temperatures 77 and T and the knowledge of the quasiharmonic
effect, obtained from the classical thermal expansion formula (corrected for the electronic
part), Eq. 2.60. The physical signification of the left-hand side in (2.68) is clear: it is the
difference between the phonon entropy obtained from the measured high-temperature DOS
and the phonon entropy that would be obtained at high temperature, if the solid were

harmonic.
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2.4.3 Electronic Entropy

In metals, the Fermi level falls in the conduction band and empty electronic states are
accessible to electrons at any temperature 7" > 0. An electronic entropy S is associated

with the excitations of electrons with temperature:

[e.o]

Sa(T,V) = —kg /[(1 — fre)n(1 — frg)+ freln(fre)nv(E) dE, (2.69)

—00

where fr g is the Fermi distribution function and ny (E) is the electronic density of states
at energy E [52]. Using density functional theory, ny (E) can be calculated for different
volumes of the crystal, and the change in S, with thermal expansion can be evaluated.
A simple procedure is to calculate Sg at a low-temperature volume, Vo, and a high-

temperature volume, Vjign, and interpolate at intermediate temperatures

Thigh — T

2.70
Thigh - ,Tlow ( )

Sel(T) = Sel(Ta‘/iOW)<

T— TOW
) btz i) (Y

Thigh - j_iow
In practice, S can be large at elevated temperatures, with values on the order of 1 kp/at.
at Tpys in transition metals (see, e.g. [56]). The change in S with thermal expansion is

small, however S)P(Th,s) ~ 0.05 kg /at.
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Chapter 3

Inelastic Neutron Scattering

3.1 Introduction

Thermal neutrons represent a valuable probe of condensed matter, and their use has consid-
erably increased since the early work of Brockhouse and Shull*. The strength of neutrons is
that they are well suited to the study of both static and dynamic properties of matter. Not
only is the wavelength of thermal neutrons of the same order as the interatomic distances
in solids, but the energy and momenta of thermal neutrons match well those of a range of
low-energy excitations, such as phonons and magnons. These favorable properties, together
with the advent of facilities producing beams of thermal neutrons (nuclear reactors or spal-
lation sources) have spun the development of a host of techniques to investigate countless
aspects of condensed matter.

Neutrons interact with the nuclei in the sample through nuclear forces. Since the neutron
has a magnetic moment, it can also interact with the spin distribution of the sample. We
thus have two fundamental types of interactions, leading to nuclear or magnetic scattering
processes. In this thesis, we are mostly concerned with nuclear scattering processes, for
which we present an overview of the theory. More detailed accounts of the theory of thermal
neutron scattering can be found in the books of Squires [14] and Lovesey [13].

The principal aspect of neutron scattering that interests us is the opportunity of probing

phonon modes in metals and alloys. Thermal neutrons corresponding to a temperature of

*Bertram N. Brockhouse and Clifford G. Shull shared the 1994 Nobel prize in physics for the development

of neutron spectroscopy and neutron diffraction, respectively.
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203 K, or equivalently of energy E = 25.3meV, have a wavelength A = 1.798 A and, corre-
spondingly, a wave vector k = 27/ = 3.49 A~1. This wavelength matches well the lattice
parameters of crystals, and thus the wave vector has about the same size as the width of
the Brillouin zone. This energy scale also corresponds well to phonon energies in many
materials. By comparison, IR or visible photons match excitation energies in molecules or
crystals but, owing to their small wave vector, they can only sample vibration modes close
to the center I' of the Brillouin zone. Besides, the modes accessible by Raman scattering and
infrared spectroscopy are limited by selection rules, although these are often complementary
between the two techniques. X-ray photons, on the other hand, can interact with phonons
throughout the Brillouin zone, but the energy they gain or lose in this interaction is much
smaller than their incident energy (by a factor of 10%). Such minute energy changes are
difficult to detect. Inelastic x-ray scattering has undergone tremendous progress with the
advent of synchrotron radiation sources, however, and measurements of phonon dispersions
and densities of states are nowadays possible, with conventional or nuclear-resonant inelas-
tic x-ray scattering techniques. Although neutron scattering is still the central technique in
phonon investigations, neutron and x-ray scattering offer some interesting complementar-
ities. One illustrative example applies to the measurement of the phonon DOS in binary
alloys. Inelastic neutron scattering can provide a total phonon DOS for the alloy, but this
DOS is usually weighted by the different strengths with which the constituent nuclei scatter
the neutrons. This constitutes the infamous “neutron-weighting” problem. For elements
exhibiting M&ssbauer isotopes, nuclear-resonant inelastic x-ray scattering allows one to mea-
sure the partial phonon DOS for the resonant nucleus, and thus gives a way to determine
both contributions to the total DOS and correct for neutron-weighting.

We consider the general scattering event depicted in figure 3.1, where an incident neutron
of wave vector k; is scattered by the sample into a final state of wave vector ky, transferring
a momentum @ = k; — k; to the sample. The incident and final neutron energies are
E; = h*k?/2m and E; = th}/Qm, where m denotes the mass of the neutron, and the
energy transferred to the sample is £ = E; — By = h2(k:i2 — k%) /2m. The scattering angle
® verifies cos(®) = k; - k¢ /|| kil|||kf||. One notes from figure 3.1 that, for a fixed incident

neutron energy F; and a constant scattering angle ®, the magnitudes of the momentum
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Figure 3.1: Neutron scattering geometry.

transfer () and energy transfer E vary with the final wave vector of the neutron. The
relationship between E and @ gives rise to kinematic conditions on the scattering, which

are of experimental importance.

3.2 Scattering Cross-Section

3.2.1 General Case

The central quantity in a scattering experiment is the cross-section. We can determine the
cross-section from the probability that the system (neutron+sample) undergoes a transition
from the initial state (k;, A;) to the final state (kf, A¢) as the neutron traverses the scattering
potential V' in the sample. In this discussion, A denotes an aggregate quantum number for
the state of the sample. For experimental reasons, we are interested in the scattering cross-
section corresponding to neutrons being scattered into final states ky within a small solid
angle df2 around the direction ). This differential cross-section is expressed in terms of the

rate W of scattering events (k;, \;) — (kf, Ay) and the flux F of incident neutrons as [14]:

80) 11
20 = Ta0 Wik xi)— (ke Ap) - (3.1)
<89 N—As F dQ2 ki
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Using Fermi’s golden rule, we can express the transition rate in terms of the matrix element

of the scattering potential V' coupling the initial and final states:

2w
> Wien)—(kyny) = fpkf\<kf>\f|V|ki>\i>|2 ; (3.2)
kjed
where pg, is the density of final states within df2, per unit energy. Working out pg, from

the energy relation for free final particles Ey = h2k%/2m and using the fact that F is

proportional to the velocity of incident neutrons and thus to k;, one obtains

aO' _ kf m 2 e
<m>,\,‘a>\f B E<W) (R AV IRiN) | (3.3)

We also obtain the double differential cross-section for scattering of neutrons into final
states within d€2 and of energy between Ky and Ey + dE, by requiring that the energy of

the system (neutron + sample) be conserved:

0?0 ky m 2 9
(maE)wf = () AV I PO, + i) = (B, + By) - (3.4)

3.2.2 Phonon Scattering

We recall in this section the results that can be derived in the case of neutrons scattering
off the phonon excitations in a crystalline sample. A pictorial representation of a phonon
creation process is given in figure 3.2. In this inelastic scattering process, a phonon of wave
vector ¢ = Q and energy hw = E; — Ey is created, raising the occupation number of such
phonons in the crystal from ng, to ng. + 1.

The phonon scattering processes occur through the neutron-nucleus interaction, which

is conventionally described by an isotropic delta function, or Fermi pseudopotential:

T 2
vy = s (3.5)

m

where b is the scattering length. If we consider a Bravais lattice, this potential is replicated
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Figure 3.2: Scattering process for creation of one phonon.

at each site of the lattice:

21 h?

Vir) = Zl: ——bid(r — Ry) . (3.6)
The scattering of the neutron between the asymptotic plane wave states k; and k; by this
potential involves the matrix element (ks|V'|k;), which corresponds to taking the space-
Fourier transform of V. The matrix element is then rewritten as >, bj(A | exp(iQ - R;)|\;),
with @ = k; — ky. The cross-section is then best evaluated with the position operators
R; expressed in Heisenberg representation. Reasoning that we do not actually measure the
cross-section for the transition A\; — Ay, but rather between the sets of sample states Ey,
and E),, and expressing the delta function for conservation of energy with help of its time

Fourier transform, one can rewrite Eq. 3.4 as

0o /Cf 1
(aQaE) - E%Zb’bl’
« / " lexp(—iQ - Ry(0)) exp(iQ - Ru(1))) exp(—iwt) dt . (3.7)

where the brackets denote thermal averages and hw = E; — Ey is the energy transferred to
the sample. The quantity in brackets represents a space-time correlation function for the
displacements projected along the momentum transfer.

Two categories of scattering processes can be distinguished at this point: coherent scat-
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tering processes, in which the phases in the scattering by each center preserve the coherency
of the neutron wave, and incoherent scattering processes, in which the coherency is lost. In
the coherent case, the neutron waves scattered from each center can produce interference
effects, and these effects build up over the whole sample. On the other hand, in the inco-
herent case, the randomness in the phase of each scattered wave prevents any macroscopic
interference and the scattering intensity is effectively a sum of scattering intensities from
each nucleus. In the case of coherent scattering, we take the Fourier transform of the corre-
lation functions between different atoms at different times, whereas in the incoherent case,
each atom is considered separately and the correlation function is for that same atom at

different times. The respective cross-sections are given by:

Po \ _ Genky 1
000F ) oy, AT ki 2mh &

< [ ten(-iQ - Ru(0) expliQ Rt expl—iwt) i (39

O\ omely 1
0OOE ) ...  Arn k; 27h l

X /OO (exp(—iQ - R;(0)) exp(iQ - Ry(t))) exp(—iwt)dt,  (3.9)

— 00

where oo, = 4702 and o = (672—52) are the total coherent and incoherent cross-sections,
with the bar denoting averages over all nuclei in the sample. One should keep in mind
that even a Bravais lattice can be an incoherent neutron scatterer, as different spin-states
of the same isotope can lead to incoherency. Isotopic disorder is an additional source of
incoherency. Neutron diffraction and dispersion curve measurements exploit the coherent
scattering (in a time-averaged way for diffraction) to reveal @-structure, while measurements
on incoherent scattering samples can only access the E-dependence.

In the case of a vibrating lattice, the nuclear scattering potentials oscillate periodically
around the equilibrium lattice positions and these oscillations are described by normal
modes of vibrations, which have been discussed in chapter 2. The displacement operator

for the atom in cell [ of a Bravais lattice is expressed in terms of the phonon creation and
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annihilation operators, bl and bs, Tespectively (s=1(q,j)), as

i 1/2 e . X
o . . N
W= <2MNcell> zs:\/gs(bsexp(lq‘Rl)erseXp( iq-R)).  (3.10)

The scattering cross-sections of (3.9) involve the instantaneous nuclear positions Ry(t) =
x; + w(t). After introducing the operators U = —iQ - ug(t) and V = iQ - u;(t), both
cross-sections can be shown to involve the correlation function (exp U exp V'), while a static
structure factor can be pulled out of the time integral. One can then show that, for a

Bravais crystal of harmonic oscillators,
(expUexpV) = exp(U?) exp(UV) , (3.11)

where the first factor on the right corresponds to the well-known Debye-Waller factor. The

factor exp(UV') can be expanded as a Taylor series:
1
exp(UV) = 1+(UV)+ 5<Uv>2 +.... (3.12)

Because of the time Fourier transform in (3.9), the first term gives a non-zero contribution
to 020 /ONOE only if w = 0, which is the case of elastic scattering. In the coherent case, we
are then left with the static structure factor for diffraction, multiplied by the Debye-Waller
factor. On the other hand, the elastic incoherent cross-section is just proportional to the
Debye-Waller factor. The higher-order terms in the decomposition of exp(UV') correspond
to inelastic scattering processes. The first order term represents processes where one phonon
is created or annihilated and the p-th order term, processes where p phonons are involved.

We now focus our discussion on the incoherent inelastic cross-section for one-phonon
scattering. The evaluation of (UV') with the expression (3.10) brings about products of
phonon creation and annihilation operators, which reduce to occupation numbers upon

thermal averaging. We are then left with two terms:

0o Tinc k1 (Q - ey)?
- cr - U? A ANV
<8Q(9E> inc,1phonon 4m k’ 2M eXp< > Z Ws

s

x{(ns + 1)0(w — ws) + (ns)d(w + ws)} , (3.13)
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where the first and second delta functions correspond respectively to the creation and an-
nihilation of one phonon of energy Aw. The sum over modes s brings about the phonon
density of states and after further simplification, one obtains the incoherent neutron scat-
tering cross-section for a one-phonon creation process, originally derived by Placzek and

van Hove [12]:

aQaE/> ‘iphonon 4™ ki 2M 3w

2 inc inc L, 3N 2
< To o7k BN ow s @ oy n(w) + 1) (3.14)
where exp(—2W) = exp(U?) is the Debye-Waller factor and g(fw) is the normalized phonon

DOS. Since phonons are Bosons, (n(w)) is the Bose-Einstein distribution.

3.3 Scattering Function

A more general formulation of neutron scattering was derived by van Hove [57] in terms of
correlation functions. All the information on the system available from a neutron scattering
experiment is encoded in the time-dependent pair-correlation function for the scattering
centers, G(r,t) (also called the van Hove correlation function). The scattering intensity
is related to the Fourier transform in time and space of G(r,t), also called the scattering

function S(Q,w):

1
S(Q,w) = Py G(r,t)exp(i(Q - r — wt)) d>rdt . (3.15)
T
The relations between S(Q,w) and the cross-sections for coherent and incoherent scattering

are [14]:

2
( 0o > = UCOhﬂScoh(Qﬂd)
coh

0NOFE 47 k;
&o Oinc ki f
<M>inc = 47‘(‘ ESIHC(Q,W) , (316)

where Sinc(Q,w) in the incoherent case corresponds to G(r,t) limited to self-correlations.



42
3.4 Time-of-Flight Neutron Spectrometer

3.4.1 Principle

The time-of-flight (TOF) neutron spectrometer corresponds directly to the pictorial scat-
tering experiment of figure 3.1. A schematic of a direct-geometry chopper spectrometer,
as found most commonly at a spallation source, is shown in figure 3.3. A pulsed source
delivers neutrons to a moderator, in which the neutrons thermalize through multiple col-
lisions with the medium, exiting with a maxwellian velocity distribution representative of
the moderator temperature. The spectrum typically also contains epithermal neutrons of
higher energy that were not fully equilibrated. A port passes a beam of neutrons, which
is monochromatized by a pair of rotating choppers (tp and Ejy rotors in figure 3.3), whose
synchronized opening times only let through neutrons of a chosen energy. This energy
selection rests on the energy-velocity relationship for the free neutrons, £ = %mv2. The
neutrons are incident on a sample and some of them are scattered, transferring momentum
and energy, and the scattered neutrons are collected by a set of detectors covering possibly
a large angular range. Typically, the detectors are 3He-filled tubes, which produce a charge
after capture of the neutron and a low-energy nuclear reaction. This type of detector does
not offer energy discrimination. Instead, knowing the time of the initial neutron pulse, the
velocity of the scattered neutrons is determined from their arrival time on the detector, the
time at which they were impinging on the sample, and knowledge of the sample-detector
distance. This velocity is converted to energy with the energy-velocity relationship. In this
time-of-flight approach, the final energies are most accurately measured when the sample-
to-detector flight path is long. However, because of spatial and monetary constraints, the
surface that can be covered with detectors is finite and there is thus a trade-off between the
length of the flight path and the solid-angle coverage.

Another important parameter in neutron scattering experiment is the relatively low
flux of neutron sources, especially when compared to x-ray sources. Because the density
of neutrons in the beam is low (with particle densities on the order of a magnitude of a
good vacuum), the dimensions of the beam tend to be large to compensate. This results in

the need for large samples, with typical transverse sizes on the order of a few centimeters.
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Figure 3.3: Direct-geometry time-of-flight neutron spectrometer.

Another aspect, resulting from this sample size, is that one needs to minimize multiple
scattering events. Because the elastic cross-section is typically much larger than its inelastic
counterpart (see examples below), multiple scattering events mostly involve several elastic
scattering events or a combination of one elastic scattering and one inelastic scattering.
Since the neutrons involved in an extra elastic scattering event travel extra distances inside
the sample, they will reach the detector with a delay, thus appearing to have an extra
energy loss. Multiple scattering is difficult to correct for and as a result one tries to limit
the number of such processes by having samples that are thin enough. A typical working
value is to make samples that scatter 10% of the incident neutrons, limiting double elastic
scattering events to less than 1%. This has the unfortunate consequence that most of the
already scarce incident neutrons are wasted. Such limitations are intrinsic to the neutron

time-of-flight approach, until detectors with sufficient energy resolution are devised.
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3.4.2 Sampling Region

Among the many different neutron scattering techniques, time-of-flight neutron spectrome-
try stands out as the best method to measure the phonon density of states. This technique
allows one to sample large regions of g-space (the reciprocal space of the sample). In the case
of coherently scattering nuclei, the phonon dispersions can be accessed as well as the DOS.
The possibility of collecting data over a large swath of reciprocal space at once is in fact
the main strength of this technique, whereas more detailed studies of excitations at specific
points in the Brillouin zone are perhaps best undertaken with a triple-axis spectrometer.

From the incident and final neutron energies and the scattering angle ®, the momentum
transfer @ can be determined. In practice, one most often works with polycrystalline
samples and only the magnitude of the momentum transfer is relevant,

Q = ﬁ(wi(l—cos@m—hw/&)—hw)}l/Q, (3.17)

where @Q is in A~! and the energies are in meV. The Q(®, E) relation for the low-resolution
medium-energy chopper spectrometer (LRMECS) instrument at the intense pulsed neutron
source (IPNS) at Argonne National Laboratory is shown in figure 3.4, for different scattering
angles covered by the detector bank.

From figure 3.4, one can see that the relevant range of phonon energies for a vanadium
crystal is sampled with momentum transfer ranging from close to 0 A~! up to about 8 A1,
A spherical sampling region with such range is compared to the size of the first Brillouin
zone for the vanadium reciprocal lattice in figure 3.5. In this figure, the sphere denotes the
volume sampled by the neutrons and the central thick square is the Brillouin zone of the

fce reciprocal lattice. One can see on this figure that many Brillouin zones are sampled.

3.5 Data Analysis

Figure 3.6 presents typical results for S(F) obtained on a TOF instrument, after summing
the data over ®. The first thing to note is the relative intensity of the elastic scattering
(central peak) and inelastic scattering (side shoulders). As seen in the inset, the elastic

scattering dominates by a factor of approximately 20 in this case. Also of interest is the
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Figure 3.4: Scattering kinematics for LRMECS instrument with E; = 55 meV.

Figure 3.5: Sampling volume in reciprocal space for vanadium single crystal. Estimated for

LRMECS instrument with £; = 55meV.



46

100

80

60

40

20

Scattered Intensity S(E)

E (meV)

Figure 3.6: Scattering intensity S(FE) for Fey1Niyg sample. Data measured on Pharos in-

strument at LANSCE.

symmetry observed in the data between positive energy transfers (phonon creation) and
negative energy transfers (phonon annihilation). This symmetry is the direct consequence
of the detailed balance principle. Considering two states between which the sample can
transition, and assuming the a priori probabilities for an incident neutron to induce either
transition (up or down in energy) to be equal, then the ratio of the cross-section for the two
scattering events will be the ratio of the probabilities for the sample to be in either state

initially. Thus the phonon annihilation process (down in sample energy) is less likely and

S(Q,~E) = exp(—E/ksT)S(Q,E) . (3.18)

Features on the negative energy transfer side are also broader, which is an effect of
energy resolution. Because neutrons gain energy in these processes, their final velocities are

higher and timing errors represent larger errors in energy.

3.5.1 Background

The first correction to apply to the data is to subtract a constant background due to

extraneous events in the detector, as well as the signal due to the sample holder and sample
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Figure 3.7: Scattering intensity S(®, E) from V sample and empty holder. The data cor-
respond to a constant scattering angle 80° < & < 90°. Data measured on LRMECS

instrument at IPNS.

environment. A comparison of signal from the sample and from a typical aluminum encasing
in a displex environment is shown in figure 3.7. The peak around 7meV in the background
corresponds to diffraction from an Al window in the sample well, yielding a delayed elastic
peak.

One can also note on this graph that S(®, E') tends to a constant at low energy transfer,
as expected from Eq. 3.14, since g ~ E? and n(E) ~ kT/E at low E, so S(®, E) ~ constant.
The error bars in this graph represent counting statistics in the detector channels.

Once the background correction is performed, one can obtain the phonon DOS from the
scattered intensity using Eq. 3.14, by dividing out the Bose-Einstein thermal occupation
and the Debye-Waller factor as well as other prefactors. However, the Debye-Waller factor

is not known a priori. Nevertheless it can be calculated from an estimated DOS, as

_ 122
2W—3Q<u>

QQh Wmax
= 7 ; coth(hw/2kT)g(w)/wdw , (3.19)

with (u2?) the mean thermal displacement, in the approximation of a cubic Bravais crystal.
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We can thus envisage an iterative solution converging on the Debye-Waller factor. An
additional correction for multiphonon scattering is often needed and it can also be applied

in this iterative scheme, as we now discuss.

3.5.2 Multiphonon Scattering

The cross-section for a one-phonon creation process is given by Eq. 3.14 and a similar ex-
pression for the one-phonon annihilation process. However, the experimentally measured
cross-section also contains contributions from higher-order scattering events (for both an-
nihilation and creation processes), which cannot be neglected at higher scattering vectors:
820' inc 0 820 inc
(Fo )" ()T 520
OQOE inelastic ~ j,—1 I0N0E n—phonon
We use the multiphonon correction procedure of Bogdanoff and Fultz [58], which we sum-

marize below. The incoherent inelastic n-phonon double differential scattering cross-section

is given, for TOF spectra measured at constant scattering angle, by:

(Zo)" ok
0NOF n—phonon 4rh k; n!

K2 \"
X (273\/[(,(1) P(w)™
Pw) = g(hw)(n(w) +1) — g(=hw)(n(-w)) , (3.21)

where the symbolic power notation f(™ means the sequential convolution of n instances of
the function f. Extracting the neutron-weighted phonon DOS thus involves a correction
for multiphonon scattering, which contributes to the measured signal mostly at higher mo-
mentum transfers, as well as corrections for the Debye-Waller factor and the Bose-Einstein
thermal occupation function. This is accomplished through an iterative procedure that cal-
culates the n-phonon contributions to the scattering for each one of the angle banks, fits the
sum of these contributions to the data and subtracts the n > 2 phonon scattering contribu-
tion to obtain the single phonon spectrum from each bank. The multiphonon cross-section
of Eq. 3.20 was truncated after the 5-th order in n, the n-phonon contribution to this sum

becoming vanishingly small as n increases beyond small values. From the single-phonon
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Figure 3.8: Multiphonon scattering correction for V-6.25%Pd sample at 295 K. The data
correspond to a constant scattering angle 80° < ® < 90°. Data measured on LRMECS

instrument at IPNS.

scattering, the next iteration of the DOS is easily obtained by applying a correction for
thermal occupation and taking into account the Debye-Waller factor, itself evaluated from
the previous iteration of the DOS. This procedure is iterated until convergence is reached
on the Debye-Waller factor and the DOS itself, yielding self-consistency between all the
computed quantities. Convergence is often achieved in three or four iterations.

Results for a V-6.25%Pd polycrystalline sample are shown in figure 3.8. As seen in
this example, the multiphonon contribution is mostly featureless, owing to the convolution
products of (3.21). For the materials studied in this thesis, the correction is relatively minor

at low temperatures, but becomes significant above room temperature.

3.5.3 Instrument Resolution

Typical instrument energy resolution functions are plotted in figure 3.9. One can see that
instrument resolution gets worse with higher incident neutron energies. Also, the Pharos
instrument has a better resolution than LRMECS because of its longer sample-to-detector

flight path and higher-frequency Fermi chopper.
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Figure 3.9: Energy Resolution for LRMECS and Pharos spectrometers. The resolution
is the full width at half maximum (FWHM) of the line shape, for the instrument in the

specified operating conditions.

3.5.4 Neutron-Weighting

Neutron-weighting is a thorny problem in time-of-flight neutron scattering investigations
of alloys. Because different isotopes have different neutron cross-sections, the modes corre-
sponding to the elements of higher cross-section are overemphasized over those of elements
with lesser neutron scattering power, resulting in a weighting of the partial DOS compo-
nents. We call this measured DOS a generalized phonon DOS (gDOS). In the incoherent
scattering regime for an ordered structure, the weight associated with the vibrations of a
given species in the crystal is (oin./M) exp(—2W), with ;. the incoherent neutron scat-
tering cross-section of the species, M its atomic mass and exp(—2W) the Debye-Waller
factor for this atom of the unit cell [13],[14]. Hence, the neutron-weighted phonon DOS is
rigorously defined as

Ok
)

i (3.22)

gNw (F) ZgH(E) exp(—2Wy) exp(2WW)

where g, (F), exp(—2W,,), o, and M, are the partial phonon DOS, Debye-Waller factor, to-

tal scattering cross-section, and mass for atom & in the basis. The Debye-Waller factor is an
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explicit function of g, (E). The term exp(—2W) is the average Debye-Waller correction; this
is calculated from the self-consistent neutron-weighted DOS. The factor exp[2(W — W,,)] is
very close to unity, with a deviation typically smaller than a few percent.

Currently, there exists no general method to correct for the effects of neutron-weighting.
Generally, we cannot solve the problem thus formulated as the number of undetermined
variables is larger than the number of available equations. However, additional informa-
tion can be obtained on the different components of the DOS, which sometimes involved
well-chosen approximations. Several approaches have been adopted in this thesis, through
computational modelling as well as by combining data from other techniques. These will

be discussed in the following chapters.
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Chapter 4

Effects of Alloying on Phonons in Vanadium

4.1 Introduction

Vanadium is an ideal element for measuring a phonon DOS since it scatters neutrons inco-
herently, and it has a cubic crystal structure (BCC). There is in this case a direct relationship
between the inelastic neutron scattering cross-section and the phonon DOS, as discussed in
chapter 3. These properties make polycrystalline vanadium especially suitable for phonon
DOS measurements using a time-of-flight (TOF) neutron spectrometer.

Our interest in the phonons in V and its alloys is not fueled only by mere convenience,
however. Several known properties of vanadium make it an interesting material in which to
study phonons. First, V is one of the elements with the highest superconducting transition
temperature (7. = 5.3 K), which reveals the importance of electron-phonon interactions in
this metal. Also, the elastic constants in BCC transition metals are known to vary system-
atically upon alloying, with a good correlation to the average electronic density per atom
[59, 60, 61, 62]. This trend has been interpreted in terms of the electronic structure of BCC
transition metals [63]. Also, some of the elastic constants in vanadium exhibit an anomalous
temperature dependence [64], similarly to the other metals of column 5, Nb and Ta [65, 66],
which is suppressed upon alloying [67]. The origin of this anomaly has also been traced
to the electronic structure [66]. Since there is some correlation between the interatomic
force-constants and the elastic moduli, it is interesting to see whether this behavior carries
over to the phonon DOS, which is the central quantity in phonon thermodynamics. In this

chapter, we concentrate on the effect of alloying on phonons at low (room) temperature.
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The high-temperature phonon properties will be the topic of chapter 6.

Previous measurements of the phonon DOS in vanadium-based alloys have indicated a
strong sensitivity of the phonons to impurities in vanadium. Neutron scattering measure-
ments of the phonon DOS have been reported for the V-rich alloys V-Pt, V-Ta, V-W, V-Ni,
and V-U [68, 69, 70, 71, 72], all in solid-solution with a few percent solutes. Although quite
interesting, these older measurements focused on the dynamics of resonance modes and
lacked the reliability necessary to allow for the investigation of phonon thermodynamics. In
particular, the phonon densities of states for pure V show marked deviations between the
different results reported.

In the following, we report a systematic investigation of phonons and vibrational entropy
in dilute V-X alloys for a large number of solute elements and we examine the emerging
chemical trends. A clear trend is observed for solutes across the d-series: impurities to the
left of vanadium induce a softening of the phonon modes while those to the right cause a
stiffening that is gradually increasing with their number of d-electrons. This trend is robust
and applies to large and heavy impurities of the 4d- and 5d-series as well as those of the
3d-series. This trend goes against what might expected based on mass considerations. For
heavy impurities such as Pd and Pt, one might expect an overall softening of the phonon
modes in the alloy, but this is not observed and instead there is a large overall stiffening
of the phonon DOS. Our results thus show that the mass effect is small compared to the
effect of the changes in the interatomic force-constants due to the rearrangement of the
electronic structure. The difference in electronegativity between the impurity and the host
is identified as a good parameter to parameterize the stiffening in the phonon DOS and
the vibrational entropy of alloying. Electronegativity differences point to the role of charge

transfer, which is investigated using first-principles calculations in the following chapter.

4.2 Experimental Details

4.2.1 Sample Preparation and Characterization

The alloys investigated and some of their relevant properties are listed in table 4.1. The

samples were prepared from slugs of vanadium of 99.8% purity or better, and alloying
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elements of purity better than 99.9%. The elemental components were weighed with a
precision scale to obtain the desired compositions. Several ingots were synthesized for
each material by arc-melting the elemental metals under ultra-high-purity Ar atmosphere.
A Ti getter ingot was melted in the chamber to remove trace amounts of oxygen. Each
sample ingot was flipped in the crucible and melted thoroughly several times to ensure good
homogeneity. The mass loss upon arc-melting was measured on each ingot and found to be
small to negligible in all cases. From the measured mass loss, we estimated an upper bound
on the deviation to the nominal alloy compositions listed in table 4.1 of at most 0.2%.
The samples showed no trace of surface oxidation. The ingots were subsequently cold-
rolled to the desired thickness in order to produce neutron scattering samples with 10%
total scattering cross-section, with the exception of V-Zr and V-Hf samples, which were
crushed to form granules of the appropriate size. The elemental vanadium control sample
was prepared by directly rolling the pure V shots. All the alloys were then recrystallized
at 1000° C for an hour under Ar atmosphere and quenched into ice-brine. There was only
minimal surface oxidation on the samples after heat treatment, which was easily removed
on all the cold-rolled samples by a slight mechanical polishing. The Rockwell hardness,
measured before and after heat treatment on several of the alloys (V-Ni, V-Pd, V-Pt),
showed a large softening characteristic of recrystallization.

X-ray diffractometry with Co K« radiation was performed on all samples using an Inel
CPS-120 position sensitive detector. The diffraction patterns showed that all samples were
BCC solid solutions with no chemical long-range order. Lattice parameters were obtained
from x-ray diffraction patterns measured with a Philips X’Pert series diffractometer using
a Cu Ka x-ray source. The densities of the samples were measured using Archimedes’
method, from which a second value of lattice parameter was derived. The experimental
lattice parameters are plotted in figure 4.1.

Our results indicate almost no change in lattice parameter for the alloys V-6.25%Pd
and V-6.25%Pt. This is in good agreement with the XRD results of Daumer et al., who
found almost no change in lattice parameters for the solid-solutions V-10%Pd and V-10%Pt
[73]. Our results for V-6.25%Nb and V-6.25%Ta are also in good agreement with the values

reported by these authors, after a correction for the difference in composition. For impurities
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Table 4.1: Samples prepared and relevant physical properties.

X ex My | rBCC X a(p) a (XRD) | o/ Mx
(% at.) | (a.) | (A) | Pauling (A) (A) (barn)
0 50.94 | 1.310 1.63 3.032 £ 0.002 3.029 0.100
Ti 6.25 47.87 | 1.422 1.54 3.045 £ 0.003 3.039 0.091
Cr 6.25 51.99 | 1.248 1.66 3.020 £ 0.002 3.017 0.067
Fe 6.25 55.85 | 1.240 1.83 3.008 + 0.002 3.011 0.208
Co 6.25 58.93 | 1.219 1.88 3.007 £ 0.002 3.009 0.096
Co 2.00 58.93 | 1.219 1.88 3.022 £ 0.002 - — = 0.096
Ni 6.25 58.69 | 1.213 1.91 3.013 £ 0.002 3.012 0.316
Zr 6.25 91.22 | 1.558 1.33 - — = - — = 0.071
Nb 6.25 92.91 | 1.428 1.60 3.051 £0.003 - —— 0.067
Pd 6.25 106.42 | 1.339 2.20 3.030 £ 0.004 3.026 0.042
Hf 6.25 178.49 | 1.537 1.30 - — - - — - 0.057
Ta 6.25 180.95 | 1.427 1.50 3.047 £ 0.005 - —— 0.033
Pt 6.25 195.08 | 1.350 2.28 3.034 £0.004 | [3.024] 0.060
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along the 3d-series, the lattice parameter a shows first a linear contraction from Ti to V to
Cr, followed by a plateau for Fe and Co and finally a slight increase in a from V-6.25% Co to
V-6.25%Ni. We also plotted in figure 4.1 the lattice parameters for more concentrated V-Cr
alloys derived from the density measurements of Lenkkeri et al. as the thick dashed line
[61]. For all concentrations of Cr in V the lattice parameter varies linearly, which is not the
observed behavior for later transition metal impurities at the constant alloy concentration
of 6.25%. This explicitly shows the difference between a rather homogeneous system such
as V-Cr, which exhibits a linear trend as function of composition, and the more dilute V-X
system we investigate, in which effects are more localized and dependent on the properties
of the impurity element.

A comparison of the lattice parameter in the V-6.25%X alloys with the metallic radii
R,, for the pure elements in BCC coordination determined by Teatum and Gschneider
[74] reveals a good correspondence. The relative difference in R,,, between the solutes and
vanadium is plotted in figure 4.2. As seen in this figure, the contraction of R,, along the
d-series explains in part the trend observed in the lattice parameter of the random solid-
solutions. A good estimate of the lattice parameter in the alloy is given by dividing this
AR, /Ry, of the solute by 16 to get the average change in size per atom in the solution

(Vegard’s law). The result of this calculation is indicated by the crosses in Fig. 4.1.

4.2.2 FElastic Moduli

The elastic moduli were measured using an ultrasound pulse-echo technique on the annealed
samples. The shear modulus G = pcgp and bulk modulus B = pc% — %G were obtained from
measurements of the transverse (c¢y) and longitudinal (cy) sound velocities, which were
performed using 5 MHz transducers. The sound velocities and elastic moduli could not be
obtained in this way for the V-Zr and V-Nb alloys, because the samples for these alloys
were prepared in the form of coarse-grained powders. Results for B and G are listed in
Table 4.2. Two sets of measurements were performed with different ultrasonic setups. The
second set of measurements is considered more accurate since it used an oscilloscope with a
higher sampling rate. Figure 4.3 shows the relative change in moduli for solutes across the

3d-series.
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Table 4.2: Elastic moduli.

set 1 set 2

composition G B G B

(GPa) (GPa) (GPa) (GPa)
A% 46.04+0.7 | 149+ 7 | 48.14+0.2 | 163+ 1
Vo3.75T16.25 - - 45.2+£0.3 | 163 +1
Vo3.75Cr6 25 - - 49.2+03 | 176 £2
Vo3z.75Feq.25 - - 51.7+0.3 | 172 +1
Vo3.75C06.25 - - 52.5+0.4 | 173 £2
Vo3Cor 51.3£1.1 | 154+ 8 - -
Vo3.75Nigos | 48.6+0.9 | 163+ 8 | 50.8+0.3 | 168 +1
Vo3.75Nbg 25 - - 471402 | 165+ 1
Vo3.75Pdgos | 53.4+0.9 | 150+ 6 | 56.24+0.3 | 168 +1
Vo3.75Tag.25 - - 49.6 £0.3 | 178 2
Vogs375Ptgos | 59.3+1.0 | 167+7 | 61.7+0.4 | 176 £2
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A clear trend is observed in the shear modulus G for alloys of vanadium with 3d-series
impurities. For Ti impurities, the shear modulus is softer by about 6%, while for impurities
with more d-electrons than vanadium, the shear modulus stiffens. This stiffening in G
increases with the number of d-electrons of the impurity up to Co impurities, for which 9%
stiffening is observed, then decreases in the case of Ni, which induces about 6% stiffening.
A similar trend is seen in the variation of the bulk modulus B, with Ti inducing softening,
while elements to the right of vanadium induce a stiffening of the alloy bulk modulus. The
stiffening of B is very similar to that observed for G in the case of Fe, Co and Ni solutes.
On the other hand, in the alloy Vg3.75Crg.25, the stiffening seems much larger for B than
for G, but it could be due to experimental inaccuracies, and it is still compatible with the
trend observed for other solutes.

Down the Ni column, we observe a large and systematic increase in G, with 10% increase
from Vg3.75Nig.25 to Voz.75Pdg.o5 and again from Vg3.75Pdg.25 to Vo3 75Ptg.25. On the other

hand, B only shows a modest increase down this column.

4.2.3 Inelastic Neutron Scattering

Time-of-flight inelastic neutron scattering spectra were measured with the LRMECS chop-
per spectrometer, at the IPNS spallation neutron source at Argonne National Laboratory.
Additional measurements for V, V-Nb and V-Pt were performed on the Pharos chopper
spectrometer at the Los Alamos Neutron Science Center (LANSCE). The neutron scatter-
ing samples were assembled by tiling the specimens into mosaic plates of uniform thickness
of dimension 7.5c¢cm by 10cm (5c¢m by 7cm for Pharos), and encasing them in neutron-
transparent thin-walled aluminum pans. The samples were mounted directly onto the
sample holder of the spectrometer, and positioned at 45 degrees with respect to the in-
cident beam (in transmission geometry) to minimize self-shielding. For our samples, this
configuration resulted in about 10% scattering of incident neutrons for both elastic and
inelastic processes, the probability of scattering through inelastic processes being much
smaller, however. All measurements were conducted under vacuum with the samples at
room temperature. The detector coverage of the LRMECS spectrometer ranges from 3° to

117°, allowing measurements over a wide range of momentum and energy transfers. The
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detector coverage on Pharos is even larger, extending from —10° to 145°. In our first ex-
periment on LRMECS, for the measurement of V, V-Ni, V-Pd, and V-Pt samples, the
instrument choppers were set to produce a monochromatic incident energy of F; = 55 meV.
In the second LRMECS experiment, during which the remaining alloys were measured, the
incident energy was F; = 50meV. At these incident energies, the scattered neutrons mea-
sured correspond to a momentum transfer k£ varying between about 0.5 and 947" at zero
energy transfer. This corresponds to an average sampling in reciprocal space covering many
Brillouin zones of the reciprocal lattice for all the samples. During the Pharos experiments,
the incident energies were set to E; = 75meV (V-Pt) and E; = 70meV (V-Nb). The range
of momentum transfers sampled in the Pharos runs exceeds that in the LRMECS mea-
surements. The LRMECS instrumental energy resolutions for the two incident energies are
plotted in figure 3.9. The FWHM energy resolution of the LRMECS spectrometer in the
run conditions is about 2.5 meV at the elastic line, smoothly decreasing to about 1.0 meV
at 40meV energy transfer. Typically, data were acquired on each sample (alloys and V
control sample) for about 8 hours to ensure good statistics. The background scattering
from the empty Al pan was measured for the same amount of time. The response from
the *He detector tubes was calibrated with a standard procedure using a pure vanadium

sample illuminated with a “white” neutron beam, without the Fermi chopper.

4.3 Data Analysis

4.3.1 Density of States

The time-of-flight neutron spectra were first normalized with respect to the cumulated inci-
dent intensity and corrected for detector efficiency as well as time-independent background
following standard procedures. The detector counts were summed into 7 angle banks, cor-
responding to 10° scattering angle ranges, covering the range 50° to 117°. The contribution
to the background due to the Al sample container and sample environment was subtracted
using the data collected on the empty sample pan. Only the positive part of the spectra was
conserved, corresponding to energy gained by the sample, since the statistics and energy

resolution on this side of the elastic line were much better. The data below 7meV are dom-
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inated by the large elastic scattering peak, which was stripped by keeping the data constant
at low energy, as the neutron scattering function is proportional to g(hw)/w? and thus tends
to a constant in the limit of low energy transfer iw — 0. The neutron-weighted phonon
density of states was determined in all cases following the procedure described chapter 3.

The final phonon DOS curves were all normalized to unity.

4.3.2 Neutron-Weighting

The data were analyzed in the virtual crystal and incoherent-scattering approximations to
obtain the neutron-weighted phonon DOS. We expect the incoherent scattering approxima-
tion to be valid in the case of random substitutional alloys of vanadium. First, the vanadium
host crystal scatters neutrons almost purely incoherently, its coherent cross-section account-
ing for less than 4 x 1073 of its total neutron scattering cross-section [75]. Second, the impu-
rity elements, although their scattering cross-sections have a coherent component [75], only
contribute to the incoherent signal, since they are distributed randomly, thus preventing
any global interference between the scattered neutron waves. Because of this, one should be
careful to consider the total scattering cross-section for the impurities, ogcat = Gcoh + Tinc-

Table 4.1 summarizes the neutron scattering properties of the elements present in our
samples. As seen in this table, the neutron-weight ratios, o /M for the solute atoms deviate
from the value for vanadium by a factor of 3 on either side. This neutron-weighting can affect
the inelastic energy spectra measured experimentally, if the partial DOS for the impurity
differs markedly from that for the host, as discussed in chapter 3. However, for the low
concentrations of substitutional impurities considered here, the overall bias compared to
the true phonon DOS is expected to be small. Nevertheless, a correction for this effect was
performed for the alloys potentially affected the most. A quantitative estimate of this effect

on the measured vibrational entropy is thus derived.
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Figure 4.4: Pure Vanadium phonon DOS. Comparison of different measurements and pub-

lished results of Sears [76].

4.4 Phonon DOS

4.4.1 Pure Vanadium

The results of our measurements for the phonon density of states of pure vanadium are
shown in figure 4.4, where they are compared with the previous measurement of Sears [76]
and the measurement of Bogdanoff et al. [77]. As can be seen in this figure, the results
of our different measurements for pure vanadium on Pharos and LRMECS yielded phonon
DOS curves that are in very good agreement with each other, as well as with the previous
measurement of Sears, carried with a triple-axis spectrometer in constant-¢) mode [76]. The
phonon DOS for pure V measured by Bogdanoff et al. [77] using the HFIR-HB2 triple-axis
spectrometer at Oak Ridge National Laboratory shows more scatter, but it is nevertheless

in good agreement with our time-of-flight results.

4.4.2 Trend Across the 3d-Series

Our result for the vanadium phonon DOS and the neutron-weighted phonon DOS of V-

6.25%X, with X a 3d-series solute, are shown in figure 4.5. The average phonon frequencies
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for all the alloys are listed in table 4.4.

The neutron-weighted phonon DOS curves for these alloys show a systematic stiffening
from the case of V-6.25%Ti to the case of V-6.25%Ni. In the case of Ti impurities, the
phonon DOS is softer than in pure V. All modes appear shifted to lower energies, with
a maximum shift of about 2meV, on the lower energy side of the transverse peak. The
longitudinal peak and the cutoff frequency appear shifted down by about 1meV. In the
case of Cr, Fe, Ni, and Co impurities, the phonon DOS is stiffer than in pure vanadium and
this stiffening is gradually increasing along the 3d-series. The upward energy shift affects
all the modes in these alloys and the cutoff shift goes from about 1 meV in the case of Cr
to about 2.5 meV in the case of Ni. Another observed trend is that impurities that induce
the larger shifts of the phonon DOS also affect its shape the most and in particular the
transverse and longitudinal peaks appear to coalesce for the impurities with higher atomic

number (Fe, Co, Ni).

4.4.3 Trend Down the Ti Column

Our measurements for the alloys of vanadium with Ti, Zr, and Hf are shown in figure
4.6. All these solutes induce a softening in the phonon DOS, compared with pure V. The
softening increases when going down the column from Ti to Hf. This is best seen at low
energies, between 8 and 17meV and around the cutoff energy. Since these impurities are
isoelectronic, this trend can be associated with the increase in mass of the impurity down
the column, as well as the increase the size of the impurity, which induces a larger average
lattice parameter for the alloy (0.3% increase in the case of Ti, see table 4.1). Also, in the
case of Zr and even more so for Hf, the partial phonon DOS for the impurities is likely to
exhibit a resonance mode at low energies, due to the high impurity/host mass ratio (1.8
and 3.5, respectively). We discuss such resonance modes for Pd and Pt impurities (mass

ratios of 2.1 and 3.8, respectively) below.

4.4.4 Trend Down the V Column

Figure 4.7 shows our results for the phonon DOS of the isoelectronic alloys V-Nb and V-

Ta. Niobium and tantalum impurities have a remarkably small effect on the vanadium
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Figure 4.5: Neutron-weighted Phonon DOS for impurities across the 3d-series measured on
LRMECS. Broken traces: pure vanadium, solid lines: V-6.25%X. E; = 50meV, except for

top curves where E; = 55 meV.
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Figure 4.6: Neutron-weighted Phonon DOS for impurities down the Ti column measured

on LRMECS, E; = 50 meV.

phonon DOS. Nb induces a slight softening of about 0.5 meV at the cutoff as well as on
the low-energy side of the transverse peak. On the other hand, Ta solutes seem to have
no detectable effect on the V phonon DOS, within our experimental error bars. This is
surprising considering the impurity /host mass ratio in excess of 3.5 in this case. However,
it is possible that this is an artifact due to the stronger neutron-weighting for Ta impurities,
with Ta modes scattering neutrons three times more weakly than vanadium modes (see the
0% /M ratios in Table 4.1). Nevertheless, the overall effect of Ta solutes on the phonon

DOS appears to be very weak.

4.4.5 Trend Down the Ni Column

Ni, Pd and Pt impurities have the strongest effect on the V phonon DOS. The curves plotted
in figure 4.8 are the neutron-weighted DOS curves for V-6.25%Ni, V-6.25%Pd, V-6.25%Pt
and V. Ni, Pd and Pt impurities induce a large stiffening of the vanadium phonon DOS,
which is gradually increasing from the case of Ni to that of Pd and Pt. The shift of the

cutoff is about 2.5 meV in the case of Ni and almost 4 meV in the case of Pt. The pure V
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Figure 4.7: Neutron-weighted Phonon DOS for impurities down the V column measured on

LRMECS, E; = 50 meV.

and V-6.25%Pt measurements using Pharos are shown in figure 4.9. As can be seen on this
figure, the agreement between the LRMECS and Pharos measurements is excellent. In all
the alloys down the column, the shift affects the full DOS rather uniformly, although there is
also some restructuring of the phonon spectrum, with the transverse and longitudinal peaks
coalescing in the alloys. Also, we show below using a Born—von Karmaén lattice dynamics
model that Pd and Pt impurities exhibit resonance modes around 12 meV. However, these
modes only affect a small portion of the total DOS for impurity concentrations of 6.25%.
Hence the neutron-weighting does not affect the general shape of the total phonon DOS
significantly and has a minor effect on the calculated vibrational entropy, as discussed in

the following.

4.4.6 Concentration Dependence in V-Co

We investigated the dependence of the phonon DOS on the concentration of Co impurities.
The V-Co system is particularly suitable for this type of study, as it is almost free of neutron-

weighting, and Co impurities induce a significant distortion of the phonon DOS. The alloys
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Figure 4.8: Neutron-weighted Phonon DOS for impurities down the Ni column measured
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V-6.25%Co and V-2.0%Co were measured on the LRMECS time-of-flight spectrometer, to-
gether with the reference V sample, while the alloy V-7.0%Co and a pure V reference were
measured with the HB-2 triple-axis spectrometer at HFIR (Oak Ridge National Labora-
tory). The triple-axis data are unpublished results measured by P.D. Bogdanoff, B. Fultz et
al. with the experimental conditions described in [77]. The phonon DOS for the alloys and
control samples are shown in figure 4.10. As seen in this figure, the addition of Co impurities
in V causes a gradual stiffening of the phonons. The data from LRMECS show that the
stiffening increases in proportion to the impurity concentration. The data for V-7.0%Co
show a much bigger stiffening than those for V-6.25%Co. Although we cannot rule out
the possibility of stronger impurity dependence of the DOS from 6.25% to 7.0% impurity,
this seems rather unlikely considering the small difference in overall concentration. Besides,
the random solid-solutions will present concentration fluctuations that will make the two
materials locally very similar. It is possible that a small amount of a second phase is present
in the V-7.0%Co alloy, but we think that the difference comes in part from the different

sampling of reciprocal space between the time-of-flight and triple-axis measurements.

4.5 Born—von Karman Inversions

Fitting a Born—von Karman lattice-dynamics model to the data allowed us to calculate
phonon DOS curves for the alloys free of neutron-weighting and their corresponding dif-
ference in vibrational entropy with pure vanadium. The refined atomistic lattice dynamics
model also provides valuable insight into the change in interatomic force-constants upon
alloying, identifying the origin of the change in vibrational entropy. We conducted such
a Born—von Karmén analysis on the alloys V-6.25%Ni, V-6.25%Pd and V-6.25%Pt, which
exhibit the biggest effect of impurities on the phonon DOS. Also, these samples present
possibly the strongest neutron-weighting effect in the series of alloys we studied, so the
quantitative assessment of neutron-weighting on the phonon DOS and vibrational entropy

is of particular interest.
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Figure 4.10: Phonon DOS for V-Co alloys of different composition. The top curves are
from measurements on the LRMECS time-of-flight spectrometer, F; = 50 meV. The bottom
curves are from unpublished measurements by P.D. Bogadanoff and B. Fultz on the HB-2

triple-axis spectrometer at HFIR.



71

Figure 4.11: Supercell model used in lattice dynamics inversions. The central black circle is
the solute atom X. Small dark atoms are 1NN vanadium atoms. Arrows indicate the bonds
whose force-constants were optimized in the simulation. Solid arrows: X-V force-constants.

Dashed arrow: V1-V1 force-constants.

4.5.1 Lattice Dynamics Model and Fitting Procedure

The lattice dynamical model we employed to calculate the phonon DOS was based on a
16-atom cubic V15X; supercell made out of 8 BCC V unit cells, with the central V atom
substituted by an impurity atom X (X = Ni, Pd, Pt or Co), as illustrated in Fig. 4.11.
The 8 vanadium atoms that are first-nearest-neighbors (INN) to the impurity were treated
separately from the 7 other, more distant, vanadium atoms. Three sets of independent
force-constants were used in the model, corresponding to three types of bonds: X-V bonds,
V1-V1 bonds (both vanadium atoms INN to the impurity), and V-V or V1-V bonds (at
most one vanadium atom 1NN to the impurity). All bonds were included up to 5NN, if
present. X-X type bonds correspond to higher-distance bonds (6NN) and were not included.
The consistency of this model was checked by reproducing the DOS of pure BCC vanadium,
upon setting the mass of the impurity atom equal to that of vanadium and setting all the
force-constants equal to their pure V values.

This supercell model allowed us to compute both the true phonon DOS and the neutron-

weighted phonon DOS by applying the neutron weights discussed above to the different
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modes. The DOS curves were calculated from a random sampling of ¢ points in reciprocal
space, covering a sphere of arbitrarily large radius in order to minimize the effect of partial
sampling of the farthest Brillouin zones. A convergence study lead us to use 1 x 10° random
¢ points for DOS calculations with the supercell model, whose dynamical matrix D(§7) has
48 eigenvalues at each ¢ point. The calculated gDOS histograms were binomially smoothed
to match the experimental instrument average energy resolution. Our fitting procedure
employed an implementation of Powell’s algorithm [78] to optimize the tensorial interatomic
force-constants @Z:'Z by minimizing the deviation between the calculated and experimental

DOS curves, as evaluated through the generalized y?:

imax exp calc\2
(977 — g5°)
X2 — Z i (U€Xp)12 ’ (4.1)
KA

1=%min

with 07" the experimental error bars.

The experimental DOS curves were fit by optimizing the 6 parameters corresponding
to INN and 2NN X-V force-constants and 2NN V1-V1 force-constants, while all remaining
force-constants were constrained to their pure vanadium values. To identify and discard
possible local minima solutions, we conducted the fitting procedure for 20 different starting
guesses in the parameter space, which were obtained from the pure V force-constants by
applying a random deviation with a spread equal to half the value of each force-constant.

In all our simulations, we used as pure vanadium force-constants the values published
by Colella et al., which were obtained by fitting V dispersion curves measured by diffuse
inelastic x-ray scattering [79]. For consistency, the experimental DOS of pure vanadium
was also inverted, using a primitive BCC unit cell and the same procedure followed for
the V15X supercells. This inversion up to 4NN bonds yielded a force-tensor in very good

agreement with that published by Colella et al.

4.5.2 Minimization Results

We present here our minimization results for the force-constants and the corresponding
DOS and partial DOS curves. Some of the guesses for the force-constants were trapped in

local minima in the parameter space during the fitting procedure. For this reason, initial
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guesses that converged towards bad fits, with peaks at either much higher energies than the
cutoff energy or at very low energies were discarded. The average and standard deviation
for each force-constant was calculated from the remaining population. Partial and total

supercell DOS curves were then calculated from these.

Minimized Force-Constants

Assuming a central potential, longitudinal and transverse force-constants were calculated

from their optimized tensorial counterparts according to [21]:
(I)gl[\_le — (L3N _ TxNN)erﬁ + Gog TN (4.2)

LINN TINN

where and are the longitudinal and transverse stiffnesses for z** NN bonds,
and r and r, are the magnitude and « component of the bond vector. Results are listed
in table 4.3. The central INN X-V force-constants are plotted versus the relative change in
metallic radius in figure 4.12.

The elastic constants ci1, c¢12 and cqq and the elastic moduli B = (11 + 2¢12)/3 and
G = cy44 were calculated from the minimized tensorial force-constants, using the Born-Huang

relations (see [20]), which were evaluated up to 3NN bonds for a BCC lattice:

2
en = (@N+ RN + 40l
2
cr = ZN - olIN — o2 4 2203 — oIN — 92N
2 . .
e = (@R + N 20BN + 02N (4:3)

The derivation of these relations is given in an appendix. Supercell alloy averages for B and
G were then obtained by taking into account the fraction of bonds of X-V or V-V type for
bonds up to 3NN (in this calculation, the V-V bonds in the 1NN shell around the impurity

are considered identical to more distant V-V bonds):

3
B = > fixBR& + (1= fixn)Bin
i=1
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Table 4.3: Central force-constants from inversion procedure compared with pure vanadium

values from [79].

O(N/m) V* V-Pt V-Pd V-Ni
X-V L1 25.4 84+38 75+ 3 —2+5
XV T1 3.63 —T+7 —13+3 22+3
tX-V L2 6.49 21+9 11+2 8411
T X-V T2 -2.15 0+12 —1+2 1+7
vi1-vl L2 25.4 21 +11 21 +3 26+ 7
tV1-v1 T2 3.63 3+4 3+1 —11+2

*R. Colella and B.W. Batterman, Phys. Rev. B 1, 3913 (1970).
+

3

impurity-vanadium bond.

vanadium-vanadium bond in 1NN shell around impurity.

3
G = > fanGRN+ (1= fan) G (4.4)
i=1

with finn the fraction of X-V type bonds amongst i-th NN bonds. The bond fractions can
be obtained from enumerating the number of bonds of each type within our supercell. One

finds: finn = g, foxn = +, and fsnn = 35
Some clear trends can be observed in our force-constant minimization results. The most
important trend is the very large change in the 1NN impurity-host force-constants, notably
the longitudinal force-constant L1 of INN X-V bonds. This force-constant is much larger in
V-Pt and V-Pd than it is in pure V, while it is much smaller in V-Ni. This result indicates
that L1 increases or decreases dramatically as one replaces the central V atom by a larger
(Pd, Pt) impurity atom, or a smaller (Ni) one. A similar effect is observed on L2, with
an apparently comparable magnitude, although the numerical noise in the inversion results
makes comparisons more difficult in this case. Conversely, the transverse stiffness T'1 clearly
follows an opposite trend, decreasing as the size of the impurity atom gets larger. The trend
in L1 is expected from the shape of the binding energy vs. separation curve for a metal,
such as described by the universal equation of state of Rose et al [80]. In effect, as the

size of the impurity substituted for the host vanadium atom increases, the X-V bond is put
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Figure 4.12: Longitudinal and transverse force-constants from optimized lattice dynamics
model. The horizontal axis is the relative change in metallic radius between impurity and
host. The central force-constants are calculated using Eq 4.2. Lines are drawn to guide the

eye.

under compression, so the longitudinal stiffness of the bond increases. The converse effect
in T'1 is less intuitive at first. A simple physical argument can nevertheless be made to
explain the trend in T'1. The densely-packed (111) rows of atoms are put in compression
by the introduction of large impurities, which drives an instability with respect to lateral
displacements of the atoms. The result is a negative T'1 transverse force-constant. This
mechanism has previously been invoked to explain the lattice dynamics of crystals with
interstitial impurities [81]. The magnitude of the change in L1 and T'1 can be compared to
the difference in metallic radius between the host and impurity atom, and a good correlation
is found between those two quantities (see Fig 4.12). It is helpful to recall, however, that
the relaxation of atomic positions around the impurity atom is not at all taken into account
in our lattice dynamics model. It is possible that, in reality, the shift in bond length is
distributed over a longer distance than just the 1NN shell around the impurity, so that
the X-V1 bond lengths would be less affected. Also, the magnitude of the change in L1
seems very large for a 2% increase in impurity metallic radius, which might indicate that
an additional effect is at play. We will discuss these points further in following sections.

A test of the force-constants obtained from the lattice-dynamics inversion procedure is to
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Figure 4.13: Bulk modulus B and shear modulus G measured by ultrasound pulse-echo
technique and calculated from phonon DOS inversion procedure. Crosses are for second set

of measurements in table 4.2.

compare the elastic moduli B and G, obtained from Eq. 4.3 and 4.4, with the experimental
values from ultrasound measurements. Both values are plotted in Fig 4.13. As can be
seen in this figure, the experimental and calculated results are in good agreement, although
the calculated value of G is consistently underestimated by about 20%. The trends in
both G and B are very well reproduced, as can be seen in a plot of AG/G and AB/B
(see Fig. 4.14). The systematic deviation between the calculated and experimental values
of G has two possible explanations. First of all, we calculated the shear modulus from
G = cy4, which is not entirely appropriate for a polycrystalline material, although this
yields a convenient estimate. A more accurate value for a random polycrystalline solid
could be obtained from the arithmetic mean of the Voigt and Reuss shear moduli, which
take into the elastic anisotropy parameter of the single crystal [61, 50]. Secondly, the Born-
Huang equations for determining the elastic constants from the interatomic force-constants
in the long-wavelength limit are known to converge slowly with the range of interactions
taken into account [20, 23], so a better agreement should be obtained by extending Eq. 4.3

to interactions beyond 3NN bonds.
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Figure 4.14: Relative change in bulk modulus B (panel a) and shear modulus G (panel b),

measured by ultrasound pulse-echo technique and calculated from phonon DOS inversion

procedure.
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Calculated Partial and Total DOS Curves

From the minimized values of tensorial force-constants, we used the same supercell model
to calculate the total and partial DOS curves for V-Ni, V-Pd and V-Pt. These calculated
DOSes were convolved with the resolution function for LRMECS (Fig. 3.9, E; = 55meV)
and are shown in figure 4.15. The most striking feature is the low-energy resonance mode
observed in the Pt and Pd impurity partial DOS curves. For both types of impurities, this
resonance is observed around 12 meV and accounts for most of the impurity vibration modes.
Such impurity resonance modes have been predicted and experimentally observed before;
they are known to occur when the mass ratio between impurity and host atoms is large.
Although the critical value of this mass ratio for the appearance of a resonance mode depends
on the bonding between impurity and host, a critical ratio of two is a general estimate
[81, 21]. In both V-Pt and V-Pd, an extra impurity peak is observed at high energies,
slightly above the cutoff energy of pure vanadium, while practically no modes are present
at intermediate energies. The high-energy peak can be attributed to a local vibration mode,
involving simultaneous displacements of the impurity and its nearest neighbors. Within the
framework of the Mannheim theory of impurity vibrations, the coexistence of resonance and
local modes has been predicted to occur in the case of heavy impurities that are strongly
bound to the host lattice [81]. For both V-Pt and V-Pd also, the pDOS curves for 1NN,
2NN and 3NN vanadium atoms around the impurity are very similar. The 3NN pDOS is
similar to the DOS curve for pure vanadium and shows that the vibrations of 3NN atoms
are only slightly affected by the impurity. On the other hand, the 1NN pDOS shows an
important stiffening in both cases, and due to the fact that the INN atoms represent 8 out
of the 16 atoms in the supercell, this accounts for most of the stiffening observed in the
experimental total DOS curves. The stiffening in the 2NN pDOS is smaller but present in
both cases. For the INN and 2NN, the pDOS stiffening in more important in the case of
the Pt impurity than in the case of the Pd impurity, which can perhaps be attributed to
the larger size of the Pt impurity atom. In the case of Ni impurities, the impurity pDOS
does not show any resonance mode and is similar to the pDOS of the surrounding V atoms.

This is consistent with the mass of Ni being only 15% heavier than that of V.
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Figure 4.15: Partial phonon DOS for the solute atom and its V neighbors. The partial DOS

are obtained from the optimized supercell force-constants.
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Figure 4.16: Neutron-weight function derived from partial phonon DOS.

Neutron Cross-Section De-Weighting

One can see from the values in table 4.1 that the ratios of phonon scattering intensities
of the impurity elements to those of the vanadium matrix atoms range between 3.1 in the
case of Ni to 0.4 in the case of Pd. For impurity concentrations of 6.25%, the overall bias
compared to the true phonon DOS is expected to be reasonably small, but a correction was
nevertheless performed to obtain accurate values of vibrational entropy.

From the individual pDOS curves we constructed both the total DOS and the neutron-
weighted total DOS curves of the alloys Vg3.75Nig.o5, Vs 75Pdgos and Vgz75Ptgos. The
ratio of these then gave us a neutron-weight distribution, which we used to correct the
experimental DOS curves, by dividing out the neutron-weighting. The so-obtained neutron-
weighting functions are shown in figure 4.16.

The corrected experimental DOS curves as well as the DOS curves resulting from our
minimization procedure are presented in figure 4.17. One can see on this figure that the Pd
and Pt resonance modes are more prominent once corrected for the neutron-weighting, as
expected from the fact their o/M ratios are smaller than for V. The overall effect on the

total DOS is small in all cases, however.
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Figure 4.17: Experimental phonon DOS and Born—von Karman phonon DOS obtained from

the inversion procedure described in the text.
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4.6 Vibrational Entropy

4.6.1 Trend with Alloying Element
The vibrational entropy Syip is given by

Emax
Svib = 3kp / [(n+ Din(n+1) —nln(n)] g(F) dE , (4.5)

where np is the Bose-Einstein distribution and g(F) is the DOS, both for the same tem-
perature. The vibrational entropy of alloying is then defined as Sjilb = Sx}; X_ S\Yib. For
each alloy, the DOS used in Eq. 7.5 was the experimental neutron-weighted DOS curve.
The cutoff energy Fi.x was estimated visually from the DOS. It was checked that small
changes in Fyy.x around the estimated value (+1meV) did not significantly affect the value
of Syib. The Results for room-temperature are listed in Table 4.4.

The vibrational entropy of alloying follows a clear trend as function of the solute element,
as can be seen in Fig. 4.18. For elements to the left of vanadium in the periodic table, Sf,‘ilb
is positive, corresponding to the softening of the phonons upon alloying, while elements to
the right of vanadium yield a negative Sf}ilb by the reverse effect. The trend in vibrational
entropy is mirrored in the plot of the average phonon frequency of figure 4.19.

The vibrational entropies of alloying are large for impurities down the Ti column and for
impurities at the end of the transition metal series, which have an important difference in
their number of d-electrons and their electronegativity, compared with the host vanadium
atoms. Ssilb also increases in magnitude with the mass and size of the impurity. This is
observed both for solutes from column IV, which have increasing positive values of Sjilb,
from Ti to Zr and Hf, and also for solutes from column VIIlc, which yield decreasing
negative values from Ni to Pd and Pt. Chromium and impurities that are isoelectronic
with vanadium (Nb, Ta), have smaller effects on Syj,. The effect seen for impurities from
either end of the transition metal series are comparable in magnitude with the positive
configurational entropy of mixing, S™* = —kg[clnc + (1 — ¢)In(1 — ¢)], which for 6.25%
impurities gives an entropy gain Sy, (0.0625) = 0.23kp/at.
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Table 4.4: Vibrational entropy of alloying and mean phonon energy.

composition < hw > E.u Sjilb N.W.* S’ffilb cor.t Sffilki)x cor.t

(meV') (meV) (kp/at) (kp/at) (kp/at)
pure V 229+0.2 35 na na na
Vo3.75Ti6.25 22.3 35 0.08 +0.01 na na
Vog3.75Crg.05 23.1 35 —0.04 +0.01 na na
Vos.75Feg 25 23.6 36 —0.09 £ 0.01 na na
Vo3.75C06.25 23.9 36 —0.12+0.01 na na
Vo3.75Nig 25 23.7 36 —0.09 +0.01 —0.08 £0.01 —0.08 £ 0.01
Vo3.75716.95 22.0 35 0.124+0.02 na na
Vo3.75Nbg.25 22.4 35 0.05+0.01 na na
Vo3.75Pdg .25 24.5 38 —0.17 £ 0.01 —0.154+0.01 —0.019 £ 0.01
Vg3.75Hfg 05 21.9 35 0.14 + 0.02 na na
Vos3.75Tag 25 22.6 35 0.01 +0.02 na na
Vos3.75Pt6.25 25.1 40 —0.24 £ 0.01 —0.21 £ 0.01 —0.27 £ 0.01

*from neutron-weighted phonon DOS

ffrom corrected phonon DOS
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Figure 4.18: Neutron-weighted vibrational entropy of alloying (de-weighted values in the

case of Ni, Pd, and Pt impurities).
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4.6.2 Effect of Neutron-Weighting

The effect of neutron-weighting on the calculated vibrational entropy can be estimated
by comparing the values of vibrational entropy obtained from the neutron-weighted and
de-weighted phonon DOS. The phonon DOS for V-Ni, V-Pd, and V-Pt were analyzed
using the Born—von Karman lattice dynamics inversion procedure described above, which
allowed correction for the effect of neutron-weighting. The neutron-weighted and corrected
vibrational entropies of alloying for these alloys are listed in Table 4.4. The effect of neutron-
weighting is potentially largest when the alloy components have very different ratios of
cross-section over mass. However, even in this case, neutron-weighting only has an effect
if the different species have sufficiently different partial densities of states. The alloy V-
Pd shows the largest possible neutron-weighting, owing to the resonant nature of the Pd
pDOS and the Pd neutron scattering cross-section, which yields a scattering intensity ratio
compared with vanadium of 0.4. Even in the case of Pd impurities, one can see that the
effect of neutron-weighting on the vibrational entropies listed in Table 4.4 is of modest
magnitude, comparable to the statistical error due to counting statistics on the phonon
DOS itself. The same is true for Ni and Pt impurities. It was shown above that most of
the stiffening of the DOS is due to the stiffened pDOS curves for the 1NN vanadium atoms
around the impurities. Most of the entropy change is associated with the vibrations of these

1NN vanadium atoms, and is not affected by neutron-weighting.

4.6.3 Vibrational Entropy of Mixing
The difference in entropy between the pure elements and the alloy, is the vibrational entropy
of mixing:

mix o = GV (1 - 2)8Y, + 5%, - (4.6)

V.

This analysis conserves the number of atoms before and after alloying, and is representative
of an entropy for a closed thermodynamic system. We computed this quantity for the
V-Ni, V-Pd, and V-Pt alloys, using the de-weighted phonon DOS curves and published
experimental phonon DOS curves for FCC Ni, Pd, and Pt [82, 83, 84]. Results are listed in
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Figure 4.20: Neutron-weighted vibrational entropy of alloying for V-Co alloys with different
Co concentrations. Solid symbols: LRMECS data. Open symbol: HFIR-HB2 data.

Table 4.4. Because the vibration frequencies in pure Pd and Pt are lower than in V, f,?éx
is more negative than Sf,‘ilb in these cases. In the case of Pt solutes, the vibrational entropy
of mixing (—0.27kp/at) is even larger in magnitude than the configurational entropy gain

(4+0.23kp /at), which makes the total entropy of mixing impurities negative in this case (the

electronic entropy turns out to augment this effect, as discussed in the following).

4.6.4 Concentration Dependence in V-Co

The vibrational entropies of alloying for V-Co obtained from the phonon DOS curves of
figure 4.10 are shown in figure 4.20. Co has almost the same o/M as V, so these vibra-
tional entropies are almost free of neutron-weighting. For the data from LRMECS for Co
concentrations zc, < 6.25%, Sﬁilb varies linearly with xc,. The data point for zg, = 7%
does not fall exactly on the same line, but the error bars on this value are larger and the
discrepancy might be attributed in part to the different technique used in this measurement,

as discussed above.

4.6.5 Connection with Elastic Constants

As can be seen from figures 4.19 and 4.18, the vibrational entropy of alloying is directly

related to the change in average phonon energy upon alloying. This is expected since in first
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approximation, an average phonon energy or Debye frequency can describe the vibrational
entropy fairly well, as Syip, ~ k(3 + (In(kp7'/hw))) in the high-temperature limit. We also
observe a high degree of correlation between the shear elastic constants and the vibrational
entropy, as seen in figure 4.3. The shear modulus G appears closely correlated to the mean
phonon energy and vibrational entropy, while the trend in the bulk modulus B is not quite
as clear. This is best seen in figure 4.21. This is expected from simple considerations in,
for example, a Debye model [50]. In the Debye model of atomic vibrations, the density of

states is proportional to w?/ C%, with Cp the Debye average sound velocity:

3 1 2

12 AT
3 s s (4.7)

where Cf, and Cr are, respectively, the longitudinal and transverse sound velocities. Typi-
cally, C7, is larger than C'p, and in the case of V alloys C1,/Cr ~ 2 so that the second term
in the right-hand side of Eq. 4.7 is about 16 times larger than the the first term. Equation
4.7 thus shows that the shear modulus is more important than the bulk modulus (in the
Debye model) in estimating the average phonon frequency and vibrational entropy. This is

also observed experimentally, at least qualitatively.

4.7 Chemical Trends

The effects observed on the vanadium phonon DOS upon alloying of 6.25% transition metal
impurities are large and follow some systematic trends, as discussed above. The systematic
stiffening of the phonon DOS for solutes across the transition metal series is opposite to
the effect of increasing solute mass. This indicates that the mass effect is a smaller effect
and that the main effect is due to changes in interatomic force-constants, associated with
changes to the electronic structure of the crystal upon introduction of the impurities. Two
types of factors can influence this change in the electronic structure: first, the size of the
impurity atoms (metallic radius R,,), and second, their atomic electronic properties, such

as their number of d-electrons, Ny, and electronegativity, .
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Figure 4.21: Change in shear modulus G and bulk modulus B, plotted versus the change
in average phonon energy (E), for V-6%X alloys, with X a 3d, 4d or 5d impurity.
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Figure 4.22: Neutron-weighted vibrational entropy of alloying plotted against relative

change in metallic radius between host and impurity. Metallic radii are from Table 4.1.

4.7.1 Effect of Metallic Radius

The vibrational entropy of alloying is graphed against the relative change in metallic radius
in figure 4.22. There is a generally fair correlation between the two quantities, with most
points falling into the lower-left and upper-right quadrants. This is not surprising. Vi-
brational entropy tends to increase as the average lattice parameter increases and phonons
soften. More quantitative assessments using the Griineisen parameter are given below.
More recent models, such as the “bond-stiffness vs. bond-length” model, have developed
similar considerations, seeking a linear relationship between the interatomic force-constants
and the length of a given chemical bond [8]. However, this model does not give predictions
for chemical trends, when one component of the bond is systematically varied as studied
here. Two points in the lower portion of figure 4.22 are not following the same metallic
radius trend observed in the rest of the alloys. These correspond to Pd and Pt impurities.
Pd and Pt solutes do not alter substantially the lattice parameter of the alloy, yet they
produce the largest phonon stiffening.

The effect of the impurity metallic radius on the average lattice parameter was seen to



90

account for the experimental trend of Fig. 4.1. In a similar fashion, one can calculate the
effect of the impurity metallic radius on the average phonon frequency, using the Griineisen
parameter ¢ (Eq. 2.58). Using our measured bulk modulus and reported values for the
heat capacity Cp and linear coefficient of thermal expansion a at 300 K [85, 86], we obtained

va = 1.23 for V at 300 K. The change in average phonon frequency is then obtained from

A(w) AR,
W T TR,

, (4.8)

with ¢ the concentration (1/16). Results are shown together with the experimental values
in figure 4.19. One can see on this figure that the values predicted from R,, in this model
are in good agreement with experimental results for impurities in columns adjacent to V.
However, the agreement is poor for impurities from the late transition metals. The predicted
effect is much too small for Fe, Co, and Ni solutes and in the case of Pd and Pt a softening
is predicted instead of the strong observed stiffening. This illustrates limitations of these

atomic size considerations.

4.7.2 Effect of Electronegativity

Figure 4.23 shows a correlation plot of ASj‘ilb with the difference in electronegativity between
solute and host atoms on the Pauling scale, Axpauling- This graph shows that ASjilb varies
linearly with the electronegativity of the solute, even for the large and heavy solutes of the
4d and 5d rows. The correlation with electronegativity for our 6.25% solute concentrations,
weighted with experimental error bars, is ASf}ilb = —0.34(£0.06)Ax. This correlation is
successful both across the 3d row and down three columns of the periodic table. The
charge transfer between solutes and host vanadium atoms, as quantified by the Pauling
electronegativity scale, accounts surprisingly well for the trends observed in the phonon

DOS. This result prompted us to investigate charge transfer effects in these alloys using

first-principles calculations. Results are discussed in the next chapter.
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Figure 4.23: Neutron-weighted vibrational entropy of alloying plotted against Pauling’s

electronegativity of the solutes. The line is a fit to the data.

4.7.3 Comparison with Trends for BCC Transition Metals

We can compare the present results to previous observations for BCC transition metals. It
has been shown that the phonon dispersions of BCC transition metals exhibit systematic
trends correlating with their number of d-electrons [87, 88]. The BCC lattice exhibits
inherent instabilities for deformations toward the HCP lattice and the w structure, which
leads to the occurrence of both types of martensitic transformations in Sc, La, Ti, Zr and Hf
[89, 90, 91, 92, 93]. The instability toward the w transformation appears as a pronounced
dip in the dispersions at the L 2/3[111] point, or w-point. This weakness is understood as
a geometric feature of the BCC lattice [87]. The displacement of the ions in this phonon
mode corresponds to motions of dense rows of atoms in the [111] directions that do not
alter the 1NN distance between ions. Because the 1NN interactions are strongest and they
do not come into play in this displacement pattern, the corresponding energy is particularly
low. This feature is also present in BCC alkali metals and was reproduced in theoretical
calculations [94]. The BCC to HCP martensitic transformations in the elements of groups
3 and 4 are also explained in terms of precursor modes corresponding to a mechanical

weakness of the BCC lattice. In this case, the precursor mode involved is the N-point
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(1/2[110]) transverse phonon, Tj;7g). As was shown by Petry [87], the group 3 and 4 BCC
elements exhibit a valley of low-energy, strongly damped modes along the low-symmetry
26 £ ] direction, which connects the L 2/3[111] and Tj;70)1/2[110] modes. These low-energy
modes contribute an increase in vibrational entropy, which stabilizes the BCC phase at high
temperatures.

The dip at the w-point in the L[111] phonon branch is progressively suppressed as the
number of d-electron increases. Petry has related this observation to the strengthening of
directional bonding with the filling of the d-band