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Abstract

We argue that two specific wave packet families—curvelets and wave atoms—provide pow-

erful tools for representing linear systems of hyperbolic differential equations with smooth,

time-independent coefficients. In both cases, we prove that the matrix representation of the

Green’s function is

• sparse in the sense that the matrix entries decay nearly exponentially fast (i.e., faster

than any negative polynomial), and

• well organized in the sense that the very few nonnegligible entries occur near a few

shifted diagonals, whose location is predicted by geometrical optics.

This result holds only when the basis elements obey a precise parabolic balance between

oscillations and support size, shared by curvelets and wave atoms but not wavelets, Gabor

atoms, or any other such transform.

A physical interpretation of this result is that curvelets may be viewed as coherent

waveforms with enough frequency localization so that they behave like waves but at the

same time, with enough spatial localization so that they simultaneously behave like particles.

We also provide fast digital implementations of tight frames of curvelets and wave atoms

in two dimensions. In both cases the complexity is O(N 2 logN) flops for N -by-N Cartesian

arrays, for forward as well as inverse transforms.

Finally, we present a geometric strategy based on wave atoms for the numerical solution

of wave equations in smoothly varying, 2D time-independent periodic media. Our algorithm

is based on sparsity of the matrix representation of Green’s function, as above, and also

exploits its low-rank block structure after separation of the spatial indices. As a result, it

becomes realistic to accurately build the full matrix exponential using repeated squaring,

up to some time which is much larger than the CFL timestep. Once available, the wave

atom representation of the Green’s function can be used to perform ‘upscaled’ timestepping.
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We show numerical examples and prove complexity results based on a priori estimates

of sparsity and separation ranks. They beat the O(N 3) bottleneck on an N -by-N grid, for

a wide range of physically relevant situations. In practice, the current wave atom solver can

become competitive over a pseudospectral method in the regime when the wave equation

should be solved several times with different initial conditions, as in reflection seismology.
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Chapter 1

Introduction

The main object of study in this thesis is the wave equation in two or three space dimensions,

∂2u

∂t2
(t, x) = c2(x)∆u(t, x), u(0, x) = u0(x),

∂u

∂t
(0, x) = u1(x), (1.1)

a good model for acoustic and electromagnetic waves. For simplicity, we consider a spatial

domain without boundaries. When c(x) is smooth, solutions to the wave equation are waves

traveling with local speed c(x).

The classical mathematical questions of existence, uniqueness, and Strichartz-type esti-

mates were settled long ago for this simple equation [38], yet the basic observation that wave

equations model traveling waves is surprisingly absent from their justifications. Standard

proof techniques involve energy estimates and weak convergence arguments. In fact, Lions

and Magenes [60], and also Stolk [80] use these analysis tools to prove existence and unique-

ness in the general case log c(x) ∈ L∞, a regime of rough coefficients in which solutions may

not behave like traveling waves at all.

Likewise, textbook numerical methods for the wave equation in two or three space

dimensions tend to ignore the geometry of wave propagation. Degrees of freedom are usually

distributed in a mechanical way over some grid points (for finite differences), grid cells (for

finite volumes), spectral or other Galerkin elements, leaving for the physics of the problem

to be discovered a posteriori, from the output of a computer simulation. In this spirit,

solving say the heat equation instead would require little modification of the source code.

The message of the present thesis is that the geometric aspects of wave propagation are

very well understood mathematically and make for excellent a priori geometric information

for novel numerical methods. Computational wave propagation in smooth media is, for
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example, of prime importance in seismic imaging.

We devote the next section to retracing some key steps in the genesis of an exciting dia-

logue between pure and applied mathematics. Three surprisingly interconnected problems

form the mathematical context of this thesis: propagation of singularities, boundedness

estimates, and multiscale compression of operators. We make no claim of reviewing the

literature in any exhaustive manner. Sections 1.2 through 1.4 summarize the contributions

of this thesis and introduce Chapters 2 through 4 respectively.

1.1 Context

1.1.1 Propagation of Singularities

There is a slogan in textbooks on partial differential equations (PDE), that solutions to

hyperbolic equations have singularities that propagate along characteristics [38]. An acces-

sible formal justification of this result can be found in [89]. The mathematical formulation

of the problem and its resolution for linear equations are part of a much larger body of

theory developed mostly in the 1970s and 1980s, called microlocal analysis.

To see how microlocal analysis gives information about the wave equation (1.1), let us

express its solution u(t) by means of integral operators with kernels G0 and G1, also called

retarded propagator or Green’s function,

u(t, x) =

∫

Rn

G0(t, x, y)u0(y) dy +

∫

Rn

G1(t, x, y)u1(y) dy.

If (1.1) were replaced by some other well-posed linear initial-value PDE, the singularities

of u0 and u1 would most likely be washed out by diffusion or dispersion. But because we

are in presence of the wave equation, singularities propagate in a very predictable manner.

This property reflects itself in the fact that the two kernels G0 and G1 are smooth almost

everywhere, but share the same locus of singularity, a codimension one manifold x ∈ Γy(t)

for each time t > 0 and y ∈ Rn.

In 1957 Peter Lax showed in a pioneering article [57] that G0 and G1 can be well

approximated for small times by oscillatory integrals, now called Fourier integral operators,

as

Gj(t, x, y) '
∑

k=±

∫

Rn

ei(−y·ξ+Φk(t,x,ξ))aj,k(x, ξ) dξ, j = 0, 1. (1.2)
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The near-equality sign is to be understood in the sense that the difference between each Gj

and its integral approximation is smoother than either of them. The phases Φ± solve the

Hamilton-Jacobi equations of geometrical optics,

∂Φ±
∂t

(t, x, ξ) = ±c(x)|∇xΦ±(t, x, ξ)|, Φ±(0, x, ξ) = x · ξ, (1.3)

which are also the characteristic equations for (1.1). The amplitudes ajk belong to some

standard symbol class that will concern us later. The integral in (1.2) is then expected to di-

verge when the phase in the integrand’s exponent is stationary, providing a characterization

of the singularities of G0, G1 as

Λy(t) = {x ∈ Rn : there exists ξ ∈ Rn and a choice of sign for which y = ∇ξΦ±(t, x, ξ)}.

In the case when c(x) is constant, for example, Φ±(t, x, ξ) = x · ξ ± ct|ξ| and Λy(t) is the

boundary of the forward light cone with apex at y.

Lax’s original approach is compelling but was soon recast by Hörmander, Duistermaat,

and others [12] into a more powerful, far-reaching ‘phase-space’ viewpoint, later dubbed

microlocal analysis. The rationale of their approach is that directions in which a function

or distribution is singular matter as much as the location of the singularity. Mathematically,

directional smoothness is encoded in the notion of wavefront set of a distribution, defined as

the complement of the set of directions in which the Fourier transform of the distribution,

properly localized near x, decays fast. For example, if we consider the Green’s function of

the wave equation in frequency,

Ĝj(t, η, ξ) '
∑

k=±

∫

Rn

ei(−x·η+Φk(t,x,ξ))aj,k(x, ξ) dx, j = 0, 1,

then this time, stationary phase analysis yields the relation η = ∇xΦ±(t, x, ξ). In case Gj

is singular at (x, y), we can gather additional information on the directions (η, ξ) in which

Gj(x, y) fails to be smooth, yielding the wavefront set of Gj(x, y),

Λ(t) = {(x, η) ∈ R2n : there exists (y, ξ) ∈ R2n and a choice of sign for which (1.4)

y = ∇ξΦk(t, x, ξ) and η = ∇xΦk(t, x, ξ)}.
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The above set is equivalently considered as the corresponding union of quadruples (x, η, y, ξ) ∈
R4n and then called canonical relation.1 The set R2n of couples (x, η) is called cotangent

bundle in mathematics, or phase-space in physics. The fundamental theorem of propagation

of singularities is the following result [51].

A singularity at x, in the direction η gets mapped by the wave group to at most two points

y± and directions ξ± specified by the canonical relation.

Note that consideration of the light cone Λy(t) alone does not suffice to formulate such

a precise result; the phase-space viewpoint was essential.

The dual variable ξ or η is also central in the Hamiltonian formulation of geometrical

optics as a system of ordinary differential equations (ODE) for the “light” rays,





ẋ(t) = c(x(t)) ξ(t)
|ξ(t)| , x(0) = x0,

ξ̇(t) = −∇c(x)|ξ(t)|, ξ(0) = ξ0.
(1.5)

These are the characteristic equations for the Hamilton-Jacobi equation (1.3), the trajec-

tories of which are called “bicharacteristic strips.” The union of the two prescriptions

(x0, ξ0) → (x(t), ξ(t)) for k = ±, is for small times equivalent to the canonical relation (1.4)

for propagation of singularities.

Remarkably the system (1.5) is solvable for all times, unlike the Hamilton-Jacobi equa-

tion (1.3) that generally breaks down upon formation of so-called caustics—because some

Φ± would become multivalued and could not be the solution of a PDE anymore. The

canonical relation (1.4) defined for large times by means of (1.5) is a more intrinsic object

than the phase functions themselves.2

Generalization of results of propagation of singularities to large times by means of a

phase-space approach is the far-reaching consequence of microlocal analysis we were men-

tioning at the beginning of this section.

1For specialists, we are actually in presence of two canonical relations, each correponsing to a choice of
sign. Also, canonical relations sometimes come with ξ replaced by −ξ depending on the choice of symplectic
form in the direct product of cotangent bundles, to make sure the canonical relation is a Lagrangian manifold.
The term ‘canonical’ refers to this latter property. See [51].

2Artificial large-time complications occur only because the projection of Λ(t) onto physical space may
have folds, hence the presence of caustics as creases.
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Let us however remark that most of the ideas behind geometrical optics and geometrical

mechanics had been around for a long time before Hörmander wrote his first treatise, even

beyond caustics. Phase-space has been a central notion in Hamiltonian mechanics for almost

two hundred years. It is common knowledge since the 1930s that the Hamilton-Jacobi

equation is naturally derived from a high-frequency ansatz for the wave equation, cf. WKB

expansions in quantum mechanics. Some of the landmark papers on the high-frequency

asymptotic analysis of wave equations in the neighborhood of caustics were produced in the

1950s, see Kay and Keller [54], and Ludwig [61].

In the past two decades microlocal analysis has emerged as a natural mathematical

language in seismic imaging. Considerations of wave fronts and canonical relations are

central in formulating and solving the inverse problem of determining discontinuities in the

sound speed c(x) (and other parameters) in the Earth’s upper crust from acoustic wave

measurements [6, 81, 82].

Microlocal ideas have also made a strong impact on contemporary mathematics, in

particular on questions of propagation of singularities for nonlinear wave equations [10, 63,

30, 5], for wave equations on manifolds with edges or corners [58, 87], and many other

problems.

1.1.2 Regularity of Integral Operators

In the late 1970s Antonio Córdoba and Charles Fefferman showed that the action of a Fourier

Integral Operator (FIO) is simply a “rearrangement” of energy in phase-space, modulo

negligible contributions [28]. Their study effectively casts the high-frequency viewpoint of

singularity propagation into the bounds of the Heisenberg uncertainty principle, by means

of a continuous wave packet representation. Important mathematical results follow from

their analysis, in particular an elementary proof of L2 boundedness of FIOs, by means of

Schur’s lemma.3

Schur’s lemma is an instance of almost orthogonality method for proving boundedness, or

regularity estimates, of operators. The Cotlar-Stein lemma is another such tool. Underlying

both approaches is the key idea that, in order to understand the action of an operator and

how it may or may not concentrate energy, it suffices to break it up into “almost orthogonal”

3A special case of Schur’s lemma is the following: if one can find a domain indexed by λ, λ′ in which the
kernel T obeys supλ

P

λ′ |T (λ, λ′)| <∞ and supλ′

P

λ |T (λ, λ′)| <∞, then T is bounded on L2.
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contributions, roughly independent of each other. For definitions and statements, see [79],

Chapter 7.

By the early 1970s, Elias Stein and his collaborators had turned the boundedness ques-

tion for singular integral (pseudodifferential) operators (ΨDO) into a branch of harmonic

analysis [79], also called the Calderón program [65]. A significant milestone in this program

is the T(1) theorem of David and Journé in 1984 [29], which gives necessary and sufficient

conditions for L2 boundedness in the so-called Calderón-Zygmund operator class. The cor-

rect argument in [29] was to define almost orthogonal blocks corresponding to different

scales. In fact, one proof of their result is based on expressing almost orthogonality as

diagonal dominance of the wavelet matrix

T (λ, λ′) = 〈ψλ, Tψλ′〉, (1.6)

where ψλ are wavelets, and λ indexes scales and positions. Some of the first constructions

of orthonormal bases of wavelets by Y. Meyer [64] were actually motivated by the Calderón

program.

With Fourier Integral Operators, boundedness questions are raised to a more difficult

level where the geometry of wave propagation needs to be taken into account. Although

L2 boundedness is accessible by soft harmonic analysis arguments [79], it was only in 1991

that sharp Lp boundedness, p 6= 2, was established by Andreas Seeger, Chris Sogge, and

Elias Stein [68] by means of interpolation from a Hardy-H1 to L1 endpoint estimate. In

their argument they exhibit the correct decomposition of the Fourier domain, Fefferman’s

second dyadic decomposition (SDD), where dyadic annuli are further subdivided into thin

rectangles obeying the parabolic scaling length = (width)2. The SDD was first introduced

in [39] to study boundedness of a family of Bochner-Riesz summation multipliers on L4.

Córdoba and Fefferman’s decomposition is different from the SDD, yet shows some subtle

resemblance.

While a standard dyadic decomposition of the frequency space corresponds to wavelet

analysis, we now know that the second dyadic decomposition corresponds to curvelet anal-

ysis [15]. Curvelet were introduced as a tight frame of multiscale directional basis elements

by Emmanuel Candès and David Donoho [18, 20], in an attempt to overcome inherent lim-

itations of traditional multiscale representations such as wavelets. They efficiently address
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important problems where wavelet ideas are far from ideal, like sparse representation of

images with edges. Curvelets have now become a household tool in applied communities,

for instance in geometrical image processing [76], seismic imaging [49], and computerized

tomography.

A wave packet frame identical to curvelets was independently introduced by Hart Smith

as a tool to define function spaces adapted to FIOs [73]. Smith also used curvelets to define

a parametrix and formulate Strichartz and Pecher estimates for wave equations in rough

(C1,1) metrics [74]. More recently, Terence Tao applied a variation of the SDD to proving

a weak-L1 bound for FIOs [83].

The definitions of wavelets, curvelets, and the related decompositions of the Fourier

domain will be given in Section 1.2.4 and Chapter 2.

1.1.3 Multiscale Compression of Operators

The beauty of almost orthogonality methods in harmonic analysis is their application as

compression tools for operators, by revealing their true information content. It was recog-

nized in 1991 by Gregory Beylkin, Ronald Coifman, and Vladimir Rokhlin [7] that Meyer’s

almost diagonal wavelet representation of singular integral operators gives rise to matrices

that are well suited for numerical computations. For most pseudodifferential operators it

suffices to put to zero the small matrix entries, below some threshold ε in absolute value, to

obtain a sparse matrix with at most O(ε−1/M ) elements per row and column for arbitrary

large M—an optimal compression estimate.4

The wavelet sparsity result has been used extensively in the 1990s as the basis of in-

novative numerical methods for linear elliptic PDE and some boundary integral equations.

See for instance [53, 27] and the book [26]. Beyond sparsity, wavelets also allow multiscale

preconditioning of differential operators by simple diagonal matrices; an important asset for

iterative inversion algorithms like conjugate gradients. As a result of these good properties

wavelet-based numerical methods often enjoy asymptotically optimal complexity estimates.

One could speak of wavelets as a universally parsimonious way of distributing degrees of

freedom in the discretization of smooth elliptic problems. Wavelets have also been success-

fully applied to homogenization [34], solving the variable coefficient heat equation [37], 1D

4This claim is a theorem provided the amplitude of the ΨDO is in a symbol class S0
ρ,δ with δ ≤ ρ ≤ 1

and δ < 1.
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wave equations [37, 4], and many other problems.

In contrast, and for good reasons, oscillatory integrals and FIOs in dimensions two and

greater do not lend themselves to a sparse wavelet representation.

For instance, the Green’s function of wave equations yields poorly structured wavelet

matrices because of geometric dispersion: wavelets do not remain wavelet-like waveforms

but disperse in all directions as time increases. An illustration of this problem can be found

in the introduction of our paper [15]. Accordingly, most efforts in the applied literature

(although very interesting) go into designing adequate quadratures for oscillatory integrands

without tapping into multiscale ideas [52]. Notable exceptions are [2]; and also [11, 25] in

a different context, the Helmholtz equation.

To resolve this stalemate, we need to rethink the geometry of multiscale representations.

We show that microlocal and harmonic analysis, cf. the previous sections, provide the

correct insights towards understanding compressibility of wave-type oscillatory integrals.

Chapter 2 of the present thesis establishes this claim in a quantitative manner. There are

essentially only two families of wave packets, or tilings of phase space, which provide a

change of basis to make wave propagators asymptotically optimally sparse. These wave

packet families, curvelets and wave atoms, inherit respectively the geometrical properties

of the second dyadic decomposition and Córdoba-Fefferman’s wave packets. In the spirit of

Hörmander’s large time theory, our phase-space constructions are completely oblivious to

the presence of caustics.

The compression gains achieved in the right representation offer the tantalizing perspec-

tive that solving the wave equation itself could be thought of as an operator compression

problem. The road from a sparsity theorem to a fast algorithm in the form of competitive

software is nevertheless long and challenging. The requirements of an efficient harmonic-

analysis-based method for operator compression are typically at least threefold, and include

• the availability of a fast digital transform for analysis into, and synthesis from coeffi-

cients; and

• the ability to predict the location and compute the value of significant matrix entries,

in an efficient manner (one instance of such operation in the context of classical wavelet

solvers is called the refinement rule); and

• a deliberate pruning strategy to discard the less important information. This step can
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take the form of thresholding small entries in a matrix, resulting in a provably good

approximation.

We will come back to these three important steps in Sections 1.3 and 1.4 and summarize

the solutions we propose for each of them. As we will see, they do not automatically follow

from conventional wavelet wisdom. The detailed exposition follows in Chapters 3 and 4.

To conclude this section let us remark that the field of scientific computing is alive and

well. A few geometrically informed algorithms have been proposed in the recent years for

linear wave and related equations. This list is, of course, far from complete.

• The work by de Hoop, le Rousseau, and Wu on phase-screen methods addresses fast

computation of one-way (down-going or up-going) wave equations by means of ade-

quate approximation of pseudodifferential symbols, with applications to seismic imag-

ing [50].

• Beylkin and Sandberg [9] achieve remarkable accuracy in solving the time-dependent

wave equation (1.1) using a basis of prolate spheroidal wavefunctions, well suited

for approximation of bandlimited functions in intervals and encoding of boundary

conditions on rectangular domains.

• Impressive progress has been made on the front of fast multipole methods for the

Helmhotz equation in free space, by Rokhlin and co-workers. See [25].

• Achi Brandt presents the state of the art on multiscale ideas for a variety of equations

in [11].

1.2 Curvelets, Wave Atoms, and Sparse Representations

In this section we will consider slightly more general initial value problems than (1.1),

namely hyperbolic systems of the form

∂u

∂t
+
∑

k

Ak(x)
∂u

∂xk
+B(x)u = 0, u(0, x) = u0(x), (1.7)

where u is an m-dimensional vector and x ∈ Rn. The matrices Ak and B may depend on

the spatial variable x, and the Ak are symmetric. Second-order wave equations like (1.1)
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can be reduced to a symmetric system of first-order equations (1.7) by a standard change

of variables.

Linear hyperbolic systems are ubiquitous in the sciences and a classical example are the

equations for acoustic waves, Maxwell’s equations of electrodynamics and the equations of

linear elasticity.

We are interested in representations of the solution operator E(t) to the system (1.7) ,

u(t, ·) = E(t)u0,

in a “basis” (ϕµν) of L2(Rm) as a matrix

E(t;µ, ν;µ′ν ′) = 〈ϕµν , E(t)ϕµ′ν′〉. (1.8)

In what follows we will take ϕµν(x) to be vector-valued curvelets and will explain our

choice of notation. Let us remark right away that curvelets do not form orthonormal bases,

only tight frames, but that the formula (1.8) is still the relevant object.

1.2.1 A New Form of Multiscale Analysis

Curvelets are waveforms that are highly anisotropic at fine scales, with effective support

obeying the parabolic principle length ≈ width2. Just as for wavelets, there is both a

continuous and a discrete curvelet transform. A curvelet is indexed by three parameters

which—adopting a continuous description of the parameter space—are: a scale a, 0 < a < 1;

an orientation θ, θ ∈ [−π/2, π/2) and a location b, b ∈ R2. At scale a, the family of curvelets

is generated by translation and rotation of a basic element ϕa

ϕa,b,θ(x) = ϕa(Rθ(x− b)).

Here, ϕa(x) is some kind of directional wavelet with spatial width ∼ a and spatial length

∼ √
a, and with minor axis pointing in the horizontal direction

ϕa(x) ≈ ϕ(Dax), Da =


1/a 0

0 1/
√
a


 ;
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Da is a parabolic scaling matrix, Rθ is a rotation by θ radians. The approximate equality

sign indicates that ϕa(D
−1
a x) may depend on a, but in a non-essential manner.

An important property is that curvelets obey the principle of harmonic of analysis

which says that it is possible to analyze and reconstruct an arbitrary function f(x1, x2) as a

superposition of such templates. It is possible to construct tight frames of curvelets and one

can, indeed, easily expand an arbitrary function f(x1, x2) as a series of curvelets, much like

in an orthonormal basis. Continuing at an informal level of exposition, there is a sampling

of the space (a, b, θ)

aj = 2−j , θj,` = 2π` · 2−bj/2c, Rθj,`
b
(j,`)
k = (k12

−j , k22
−j/2),

such that with µ indexing the triples (aj , θj,`, b
(j,`)
k ) the collection ϕµ is a tight frame:

f =
∑

µ

〈f, ϕµ〉ϕµ, ‖f‖2
2 =

∑

µ

|〈f, ϕµ〉|2. (1.9)

(Note that these formulae allow us to analyze and synthesize arbitrary functions in L2(R2)

as a superposition of curvelets in a stable and concrete way.)

As we have seen, a curvelet is well localized in space but it is also well localized in

frequency. Recall that a given scale, curvelets ϕµ are obtained by applying shifts and

rotations to a “mother” curvelet ϕj,0,0. In the frequency domain then

ϕ̂j,0,0(ξ) = 2−3j/4W (2−j |ξ|)V (2bj/2cθ).

Here,W,V are smooth windows compactly supported near the intervals [1, 2] and [−1/2, 1/2]

respectively. Whereas in the spatial domain curvelets live near an oriented rectangle R of

length 2−j/2 and width 2−j , in the frequency domain, they are located in a parabolic wedge

of length 2j and width 2j/2, and whose orientation is orthogonal to that of R. The joint

localization in both space and frequency allows us to think about curvelets as occupying a

“Heisenberg cell” in phase-space with parabolic scaling in both domains. Figure 1.1 offers a

schematic representation of this joint localization. As we shall see, this microlocal behavior

is key to understanding the properties of curvelet propagation. Additional details are given

in Section 2.2.
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2
j

2
− j

2
j/2

2
− j/2

Space viewpoint

Frequency viewpoint

Figure 1.1: Schematic representation of the support of a curvelet in both space and fre-
quency. In the spatial domain, a curvelet has an envelope strongly aligned along a specified
‘ridge’ while in the frequency domain, it is supported near a box whose orientation is aligned
with the codirection of the ridge.

1.2.2 Curvelets and Geometrical Optics

A hyperbolic system can typically be considered in the approximation of high frequency

waves, also known as geometrical optics. In order to best describe our main result, it is

perhaps suitable first to exhibit the connections between curvelets and geometrical optics.

In that setting it is not necessary to describe the dynamics in terms of the wavefield u(t, x).

Only its prominent features are studied: wave fronts, or equivalently rays. The latter are

trajectories (x(t), ξ(t)) in phase-space R2 ×R2, and are the solutions to the m Hamiltonian

flows (indexed by ν)





ẋ(t) = ∇ξλ
0
ν(x, ξ), x(0) = x0,

ξ̇(t) = −∇xλ
0
ν(x, ξ), ξ(0) = ξ0.

(1.10)

The system (1.10) is also called the bicharacteristic flow and the rays (x(t), ξ(t)) the bichar-

acteristics. It is a little bit more general than (1.5) because we are considering general

hyperbolic equations. In the above expression, the λ0
ν(x, ξ) are the eigenvalues of the dis-

persion matrix

a0(x, ξ) =
∑

k

Ak(x)ξj . (1.11)
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(Note that a0(x, ξ) is the principal symbol of (1.7).) As we mentioned earlier, it is well

known that the Hamiltonian equations describe the evolution of the wavefront set of the

solution [51].

We are now in a position to qualitatively describe the behavior of the wave propagation

operator E(t) acting on a curvelet ϕµ. However, we first need to introduce a notion of vector-

valued curvelet since E(t) is acting on vector fields. Let r0
ν(x, ξ) be the eigenvector of the

dispersion matrix associated with the eigenvalue λ0
ν(x, ξ). We then define hypercurvelets

by

ϕ
(0)
µν (x) =

1

(2π)2

∫
eix·ξr0ν(x, ξ)ϕ̂µ(ξ) dξ. (1.12)

Later in this section, we will motivate this special choice but for now simply observe that

ϕ
(0)
µν is a vector-valued waveform.

Consider then the solution to the wave equation ϕ
(0)
µν (t, x) with initial value ϕ

(0)
µν (x).

Our claim is as follows:

the wave group maps each hypercurvelet onto another curvelet-like waveform whose

location and orientation are obtained from the corresponding Hamiltonian flow.

To examine this claim, let (xµ, ξµ) be the center of ϕ
(0)
µν in phase-space and define the

rotation matrix U(t) by

U(t)
ξ(t)

|ξ(t)| =
ξµ
|ξµ|

where (x(t), ξ(t)) is the solution to (1.10) with initial condition (xµ, ξµ). Our claim says that

the solution to the wave equation nearly follows the dynamics of the reduced Hamiltonian

flow, i.e.,

ϕ
(0)
µν (t, x) = ϕ̃

(0)
µν (Uµ(t)(x− xµ(t)) + xµ). (1.13)

We will show in Chapter 2 that the waveform ϕ̃
(0)
µν has the same strong spatial and frequency

localization properties as the initial curvelet ϕ
(0)
µν itself. For an illustration, see Figure 1.2.

We now return to the interpretation of a hypercurvelet. Suppose that r0
ν only depends

on ξ as in the case of the acoustic system (1.1)

r00(ξ) =


ξ

⊥/|ξ|
0


 , r0±(ξ) =

1√
2


±ξ/|ξ|

1


 .

(Here and below, ξ⊥ denotes the vector obtained from ξ after applying a rotation by 90
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Figure 1.2: Schematic representation of the action of the wave group on a hypercurvelet.
The new positions and orientations are given by the Hamiltonian flow. The two waveforms
at time 0 and t are not quite the same although they have very similar profiles.
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degrees). In this special case, we see that the hypercurvelet is obtained by multiplying—

in the frequency domain—a scalar-valued curvelet with the eigenvectors of the dispersion

matrix

ϕ̂
(0)
µν (ξ) = r0ν(ξ)ϕ̂µ(ξ), ν ∈ {+,−, 0}.

This is useful for the curvelet ϕ̂
(0)
µν will essentially follow only one flow, namely, the νth flow.

Suppose we had started, instead, with an initial value of the form ϕµν = ϕµeν , where eν

is the canonical basis of R3, say. Then our curvelet would have interacted with the three

eigenvectors of the dispersion matrix, and would have “split” and followed the three distinct

flows. By forcing ϕ̂
(0)
µν (ξ) to be aligned with r0

ν(ξ), we essentially removed the components

associated with the other flows. In the general case (1.12), we build hypercurvelets by

applying R0
ν , which is now a pseudodifferential operator with symbol r0

ν(x, ξ), mapping

scalars to m-dimensional vectors, and independent of time. The effect is, of course, the

same.

Note that when r0
ν is independent of x, hypercurvelets build up a (vector-valued) tight

frame; letting [F,G] be the usual inner product over 3D vector fields in L2(R2), the family

(ϕ
(0)
µν )µν obeys the reconstruction formula

u =
∑

µ,ν

[u,ϕ(0)
µν ]ϕ(0)

µν (1.14)

and the Parseval relation

‖u‖2
L2 =

∑

µ,ν

|[u,ϕ(0)
µν ]|2. (1.15)

Just as one can decompose a scalar field as a superposition of scalar curvelets, one can

analyze and synthesize any wavefield as a superposition of hypercurvelets in a stable and

concrete way. For arbitrary r0
ν(x, ξ), this is, however, in general not true.

We would like to emphasize that although the Hamilton-Jacobi equations only have

solutions for small times, the approximation (1.13) and, more generally, all of our results

are valid for all times since the rays (1.10) are always well defined, see Section 1.6 below for

a more detailed discussion.
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1.2.3 Curvelet and Hyperbolic Systems

The previous section gave a qualitative description of the action of the wave group on a

curvelet and we we shall now quantify this fact. The evolution operator E(t) acting on a

curvelet ϕ
(0)
µ0ν0 is of course not exactly another curvelet ϕ

(0)
µ0(t)ν0

which occurs at a displaced

location and orientation. Instead, it is a superposition of curvelets
∑

µ,µ αµνϕ
(0)
µν such that

1. the coefficients (αµν) decay nearly exponentially,

2. and the significant coefficients of this expansion are all located at indices (µ, ν) “near”

(µ0(t), ν0). By near, we mean nearby scales, orientations and locations.

To state our key result, we need a notion of distance ω between curvelet indices which

will be formally introduced in Section 2.2. Crudely, ω(µ, µ′) is small if and only if both

curvelets are at roughly the same scale, have similar orientation and are at nearby spatial

locations. In the same spirit, the distance ω(µ, µ′) increases as the distance between the

scale, angular, and location parameters increases.

For each µ = (j, k, `) and ν = 1, . . . ,m, define the vector-valued curvelets

ϕµν = eνϕµ, (1.16)

where eν is the νth canonical basis vector in Rm. The ϕµν inherit the tight frame property

(1.14)–(1.15). We would like to again remind the reader that these vector-valued curvelets

are simpler and different from the hypercurvelets ϕ
(0)
µν defined in the previous section. Con-

sider now the representing the operator E(t) in a tight frame of vector-valued curvelets,

namely,

E(t;µ, ν;µ′, ν ′) = 〈ϕµν , E(t)ϕµ′ν′〉. (1.17)

We will refer to E(t;µ, ν;µ′, ν ′) or simply E as the curvelet matrix of E(t), with row index

µ, ν and column index µ′, ν ′. Decompose the initial wavefield u0 =
∑

µ,ν cµνϕµν . Then one

can express the action of E(t) on u0 in the curvelet domain as

E(t)u0 =
∑

µν

cµν(t)ϕµν , cµν(t) =
∑

µ′,ν′

E(t;µ′, ν ′;µ, ν)cµ′ν′

with convergence in L2(R2,Cm). In short, the curvelet matrix maps the curvelet coefficients

of the initial wavefield u0(·) into those of the solution u(t, ·) at time t.
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Theorem 1.1. Suppose that the coefficients Ak(x) and B(x) of the hyperbolic system are

C∞, and that the multiplicity of the eigenvalues of the dispersion matrix
∑

k Ak(x)ξk is

constant in x and ξ. Then

• The matrix E is sparse. Suppose a is either a row or a column of E, and let |a|(n) be

the nth largest entry of the sequence |a|, then for each M > 0, |a|(n) obeys

|a|(n) ≤ CtM · n−M . (1.18)

• The matrix E is well organized. For each N > 0, the coefficients obey

|E(t;µ, ν;µ′, ν ′)| ≤ CtN ·
m∑

ν′′=1

ω(µ, µ′ν′′(t))−N . (1.19)

Here µν(t) is the curvelet index µ flown along the νth Hamiltonian system.

Both constants CtM and CtN grow in time at most like C1e
C2t for some C1, C2 > 0 depending

on M , resp. N .

In effect, the curvelet matrix of the solution operator resembles a sum of m permutation

matrices wherem is the order of the hyperbolic system; first, there are significant coefficients

along m shifted diagonal, and second, coefficients away from these diagonals decay nearly

exponentially; i.e., faster than any negative polynomial. Now just as wavelets provide

sparse representations to the solution operators to certain elliptic differential equations,

our theorem shows that curvelets provide an optimally sparse representation of solution

operators to systems of symmetric hyperbolic equations.

Notice that Theorem 1.1 holds for large times, even when caustics form in the geometrical

optics approximation. Caustics are a nonissue in the curvelet domain.

We can also resort to hypercurvelets as defined in the previous section and formulate

a related result where the curvelet matrix is sparse around a single shifted diagonal. This

refinement approximately decouples the evolution into polarized components and will be

made precise later.

To grasp the implications of Theorem 1.1, consider the following corollary:

Corollary 1.1. Consider the truncated operator AB obtained by keeping m ·B elements per

row—the B closest to each shifted diagonal in the sense of the pseudo-distance ω. Then the
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truncated matrix obeys

‖A−AB‖L2→L2 ≤ CM ·B−M , (1.20)

for each M > 0.

The proof follows from that of Theorem 1.1 by an application of Schur’s lemma and is

omitted. Hence, whereas the Fourier or wavelet representations are dense, curvelets faith-

fully model the geometry of wave propagation as only a few terms are needed to represent

the action of the wave group accurately.

1.2.4 Generalization: Wave Atoms

It is a natural question to ask whether other waveforms than curvelets would yield compa-

rable sparsity results. The short answer is that the parabolic scaling is essential, allowing

only for slight variations on a fixed theme.

Since a complete collection of wave packets ϕµ(x) must “span” all positions and frequen-

cies, we will call it a phase-space tiling, with wave packets as tiles. Some tilings are more

interesting than others. We say a tiling is universal if it treats democratically all positions

and orientations. In that case,

• the geometry of the tiling in space must be Cartesian, or approximately so; and

• the geometry of the tiling in frequency must be polar, or approximately so.

In what follows we limit our discussion to two space variables. This is not an essential

restriction.

Universality as above suggests that two parameters should suffice to index a lot of known

wave packet architectures: α to index whether the decomposition is “multiscale” (α = 1)

or not (α = 0); and β to indicate whether basis elements should be isotropic (β = α) or, on

the contrary, elongated and anisotropic (β < α).

In terms of phase-space localization of the wave packets, we will require that

• the essential support of ϕµ(x) be of size ∼ 2−αj vs. 2−βj as scale j, with oscillations

of wavelength ∼ 2−j tranverse to the ridge; and

• the essential support of ϕ̂µ(ξ) be of size ∼ 2αj vs. 2βj as scale j, at a distance ∼ 2j

from the origin.



19

xµ

~ 2−αj

2~ −βj

µξ

~2

~2
jβ

αj
~2

j

Figure 1.3: Essential support of a wave packet with parameters (α, β), in space (left), and
in frequency (right). The parameter α indexes the multiscale nature of the transform,
from 0 (uniform) to 1 (dyadic). The parameter β measures the wave packet’s directional
selectivity, from β = 0 (best selectivity) to β = 1 (poor selectivity). Curvelets are the
special case α = 1, β = 1/2.
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Figure 1.4: Identification of various transforms as (α, β) families of wave packets. The
horizontal segment at β = 1/2 indicates the only wave packet families that yield sparse
decompositions of Fourier Integral Operators.
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Figure 1.3 summarizes these microlocalization properties.

We hope that a description in terms of α and β will clarify the connections between

various transforms of modern harmonic analysis. Curvelets correspond to α = 1, β = 1/2,

wavelets are α = β = 1, ridgelets are α = 1, β = 0, and the Gabor transform is α = β = 0.

The situation is summarized in Figure 1.4.

A careful inspection of the arguments in Chapter 2 shows that the sparsity result, The-

orem 1.1, extends to the whole segment β = 1/2 and 1/2 ≤ α ≤ 1 in the (α, β) plane.

In short, other scalings than the parabolic scaling do not work. In Chapter 2, section

2.3 we argue why that is the case: the parabolic scaling is the right trade-off between

directionality and spatial localization for which dispersion of waves and distortion of wave

fronts are comparable and both small.

We term the other endpoint, corresponding to α = β = 1/2, wave atoms, to stress their

unique relation to the wave equation. A precise definition of wave atoms will be given in

Chapter 4, but let us observe for now that they have an isotropic aspect ratio ∼ 2−j/2×2−j/2

in space, with oscillations of wavelength ∼ 2−j in the codirection ξµ. Each wave atom is

like a train of “stacked curvelets” along ξµ.5

Note that the range of possible transforms in Figure 1.4 could presumably extend beyond

the triangle shown—the horizontal segment indicating sparse FIO, on the other hand, does

not. All the transforms within the triangle can be realized as tight frames of L2(R2), in the

spirit of the curvelet or wave atom construction that we present next.

As we will see later, wave atoms are sometimes more adequate than curvelets for nu-

merical simulations of wave equations because of their low separation rank.

We now turn our attention to the problem of implementing curvelet and wave atom

expansions as digital transforms.

1.3 A Fast Discrete Curvelet Transform

As mentioned earlier, curvelets offer fundamentally improved sparsity rates for functions

with discontinuities along curves [20]. As such, their application to wave equations is only

one facet of their versatility. A promising potential in application areas such as image

5Wave atoms are in a sense simpler than curvelets so we prefer avoiding terming them curvelet packets.
Moreover, it seems that wavelet packets refer to the line α = β, and ridgelet packets to the whole triangle
in Figure 1.4 [40] (as well as all other hybrid architectures). We prefer not to add to the confusion.
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processing, data analysis, scientific computing, and, in particular, seismic imaging, clearly

lies ahead.

To realize this potential though, and deploy this technology to a wide range of problems,

one would need a fast and accurate discrete curvelet transform operating on digital data.

1.3.1 Curvelets

Soon after the introduction of curvelets, researchers developed numerical algorithms for

their implementation [76, 33], and scientists have started to report on a series of practical

successes, see [78, 77] for example. Now these implementations are based on the original

construction [18] which uses a preprocessing step involving a special partitioning of phase-

space followed by the ridgelet transform [13, 17] which is applied to blocks of data that are

well localized in space and frequency.

In 2003 Emmanuel Candès and David Donoho proposed a simplified implementation

of second generation curvelets directly in the frequency plane, that relied on interpolation

by means of the Unequispaced FFT (USFFT)[16]. Applications can be found at least in

[22, 48, 35].

We propose an improved algorithm for second generation curvelets based on the wrapping

of Fourier samples, instead of interpolation. Wrapping is a simple strategy that results in

an equally faithful but faster transform than the USFFT version. It also allows to make

the digital transform an isometry, up to round-off errors of the order of 10−15 in double

precision. As a result, the inversion algorithm is greatly simplified, more accurate and

simply consists of applying the adjoint transform. Efforts in designing the USFFT and

wrapping versions have been grouped and resulted in a single publication, [16].

Since then, it seems that curvelets via wrapping have become the implementation of

choice in many applications [49, 47].

We expand on curvelets via wrapping in Chapter 3. Our claims are as follows:

• The complexity of both the forward and inverse transforms is O(N 2 logN) on N -by-N

grids. In practice, applying the transform takes about 5 to 10 times the work of the

FFT on the same grid.

• The accuracy of reconstruction is comparable to the machine epsilon.

• The Riesz representers of the transform are as faithful to continuous curvelets as the
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grid allows. In particular, we exploit the Shannon sampling theory which says that

computing inner products involving bandlimited functions can be done exactly on a

grid.

Numerical examples are given as well. We show in particular that curvelets via wrapping

allow a spectacular gain of 7dB over translation-invariant wavelet thresholding, for denoising

of synthetic seismic data.

An extension to three dimensions has been worked out, mostly by Lexing Ying [91].

The curvelet code has been turned into the toolbox CurveLab, and can be downloaded

from http://www.curvelet.org.

1.3.2 Wave Atoms

Wave atoms can be implemented using the wrapping strategy in the frequency plane, along

the same line of thought as curvelets.

The search for a low redundancy transform is however complicated by the wavelet packet

curse, a well documented phenomenon that filterbank ideas provide provably suboptimal

time-frequency localization. Our implementation bypasses this obstruction by designing

basis functions directly in the frequency plane, with the necessary cancellations properties

for numerical tightness (isometry). The ideas involved have roots in harmonic analysis

constructions like [88].

We obtain a fast O(N 2 logN) transform, isometric up to round-off errors, and invertible

with inversion algorithm of the same complexity. Wave atoms have redundancy 2, i.e., there

are twice more wave atom coefficients than samples on the Cartesian grid. See Chapter 4,

Section 4.1.3 for more details.

1.4 Wave Atoms and Time Upscaling of Wave Equations

Typical numerical methods for the wave equation, say in the periodic square [0, 1]2 with

initial conditions on a N -by-N grid, consist in evolving the solution using small time-steps

∆t constrained by the CFL condition,

∆t <
1

cmaxN
,
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Figure 1.5: A curvelet (left) and a wave atom (right). They are examples of Riesz rep-
resenters of the digital transforms we propose in this thesis. The annotations remind the
reader of the essential parabolic scaling properties: curvelets obey width = length2 and
wave atoms obey wavelength = diameter2.

where cmax = maxx c(x). When the wave equation is written as a system ut = Au, the

Euler explicit time discretization heuristically converges because

u(t) = eTAu0 ' (I + ∆t A)
T
∆tu0. (1.21)

The results of Sections 1.2 and 1.3 suggest that it may become preferable to solve the

same equation by constructing the full Green’s function in compressed form, and dispensing

with the CFL timestepping.

1.4.1 Time Upscaling

We call time upscaling the possibility of building a representation of the Green’s function

eτA up to some time τ larger than the CFL timestep ∆t, yet smaller than the time T up

to which the wave equation needs to be solved. The solution at t = T can be obtained

by performing T
τ “upscaled” time steps, consisting of repeated applications of the Green’s

function:

eTAu0 =
(
eτA
)T

τ u0.

The question of representation is left implicit in the above equation. In the sequel we will

use a tight frame of curvelets or wave atoms; by writing down A we actually mean the

infinite matrix 〈ϕµν , Aϕµ′ν′〉 as in Section 1.2. In that case, u0 stands for the vector of
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coefficients 〈u0,ϕµ′,ν′〉.
It is important to understand the sense in which a numerical method could qualify as

“beating the CFL condition”. After all, one could discretize u0 by finite differences, group

small time steps two by two in (1.21), use (I + ∆t A)2 as propagator and declare that the

new time step is 2∆t. This operation of course does not qualify as time upscaling, because

the matrix representation of the propagator fills up to compensate the larger time step, so

that no overall simplification occurs. Progress is achieved only if a representation can be

found in which the Green’s function stays simple, even for times greater than ∆t.

On the other hand, perfect time upscaling would be obtained in the basis of eigenfunc-

tions of A. In that case etA =
∑

j e
tλjPj is a diagonal operation in each eigenspace with

projector Pj . There is, at present, no known fast numerical procedure to compute the eigen-

decomposition of A in compressed form, let alone expand u0 in eigenfunctions. Although

curvelets and wave atoms are not eigenfunctions, they each offer a fixed frame of L2([0, 1]2)

with reliable expansion algorithms and good sparsity properties.

1.4.2 Repeated Squaring

In the spirit of [66] and [37], we form the matrix exponential eτA by repeated squaring from

a small time approximation. Let tn = 2n∆t for some small ∆t, and assume τ = tn∗ for some

n∗. Then the basic relation underlying our algorithm is the time-doubling group property

etn+1A =
(
etnA

)2
.

As mentioned earlier, this equation should be understood in a tight frame of curvelet or

wave atoms.

Sparsity needs to be imposed by an adequate truncation step after each time doubling.

As we saw in Section 1.2, the large matrix elements occur near two shifted diagonals defined

from the flows µ′±(t). Let us call B the desired band size, such that the significant matrix

elements live within

ω(µ, µ′±(t)) ≤ CB, (1.22)

where CB is a constant depending on B. Elements outside of those shifted band diagonals

should not be accessed or computed at all.

Prediction of the location of the shifted diagonals for O(1) times is not a priori obvious.
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We believe the Phase Flow Method (PFM) is perfectly suited for this task [90]. This new

method is an important improvement over raytracing which allows to compute a multitude

of rays at once. PFM is an interpolation-based repeated squaring strategy to compute the

whole phase flow, that is, the diffeomorphism of phase-space generated by the Hamiltonian

ODE system.

We believe that this simple repeated squaring procedure has near-optimal asymptotic

complexity, in the sense that it requires

Cε,δN
2+δ (1.23)

operations to build the propagator on an N -by-N grid, for a resulting `2 accuracy ε on

fairly oscillatory initial data, and for arbitrarily small δ > 0. Notice that reading the initial

data already takes N 2 operations. The full repeated squaring algorithm can be found in

Section 4.2.1.

Heuristically, the complexity result (1.23) follows directly from the compression result

(1.20): multiplication of sparse matrices with size N 2 and band size B has complexity

O(B2N2). Justifying (1.23) would mean showing that B = O(N δ/2) for small δ suffices to

control the error from successive thresholdings and repeated squarings of matrices.

1.4.3 The Separated Wave Atom Representation

To our knowledge, the complexity claim (1.23) for the repeated squaring would be the first

to break the asymptotic O(N 3 logN) bottleneck of standard methods in two dimensions,

and by a wide margin. In the spirit of spectral methods, universally good accuracy over

oscillatory initial conditions is a result of discretizing differential operators in the Fourier

domain. These encouraging result shows that wave packet analysis brings fundamentally

new insights into the numerical analysis of wave equations.

Yet, the repeated squaring algorithm as introduced above does not perform as expected,

regardless of whether curvelets or wave atoms are used. A typical band size B to obtain

`2 accuracy ' 10−2 in (1.20) would be B ' 500. As a result, storing the compressed

Green’s function on grids larger than 128-by-128 requires more memory than what most

2006 desktop computers can offer (2 to 4 Gb).

Accordingly, we will neither try to formulate the complexity estimate (1.23) as a theorem
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in the present thesis, nor address the myriad of (deep and interesting) technicalities involved

in its rigorous justification. Instead, we prefer trying to understand how to improve on the

algorithm itself.

Asymptotic estimates like (1.20) and (1.23) are probably valid, but with large constants.

In two space dimensions these large constants makes sense if we observe that B is the total

number of elements inside a ball in four-dimensional phase-space, as in equation (1.22),

hence the relation B ' C4
B. If CB ' 5 elements define a decent neighborhood in phase-

space, then B ' 625.

The message of this section is that the curse of phase-space dimensionality can be

overcome with an adequate separation of variables strategy in the wave atom frame.

In the notations of Section 1.2.4, consider a tight frame of wave atoms ϕµ(x), with

µ = (j,m,n). We recall from Section 1.2.3 that the wave atom representation of E(t) is

the (infinite) matrix

E(t;µ, ν;µ′, ν ′) = 〈E(t)ϕµ′eν′ , ϕµeν〉.

where eν are the canonical basis vectors in Rm. In the above matrix, consider the submatrix

left after fixing ν, ν ′ and the wave vectors (j,m) and (j ′,m′). The remaining indices are

those of the position vectors n = (n1, n2) and n′ = (n′1, n
′
2). The separated wave atom

representation is obtained by seeking a low-rank approximation corresponding to separation

of the spatial indices along x1 vs. x2,

E(t; j,m,n, ν; j′,m′,n′, ν ′) =

r∑

k=1

σku
k
n1,n′

1
vk
n2,n′

2
+O(ε),

where uk and vk have been normalized to unit `2 norm. Of course uk and vk depend on

j,m, ν; j′,m′, ν ′. The most efficient such decomposition, in the sense that the `2 norm of

the residual is minimized for fixed r, is the singular value decomposition (SVD) of the block

(j,m, ν; j′,m′, ν ′) after reorganization of the matrix elements to make the row and column

indices (n1, n
′
1;n2, n

′
2) instead of (n1, n2;n

′
1, n

′
2).

Conversion from the standard to the separated wave atom representation, as an SVD

factorization of the reorganized submatrix, is however never done in practice. Instead,

we modify the repeated squaring strategy so that all computations are done on separated

components without ever forming the standard submatrix. We explain in Chapter 4 how

both initialization and matrix multiplication can be realized in this context, using small
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QR and SVD decompositions.

The composition rules we developed for wave atom submatrices are remindful of the

calculus of H-matrices [46]. A similar partitioned low rank representation was also used

in [9]. In fact, high-dimensional numerical analysis using separated representations is a

promising emerging idea, see [8] and citations thereof.

1.4.4 Complexity

The separated wave atom scheme performs much better than the standard repeated squar-

ing, both in terms of memory and time savings—hence feasibility on larger grids. It even

competes with the standard pseudospectral method6 in regimes where a given wave equa-

tion should be solved several times with different initial conditions. Forming the Green’s

function should be seen as a precomputation that can be amortized over the several runs.

For instance in Chapter 4, Section 4.3, we take for c(x) a smooth wave guide and observe

that about 500 runs is enough to amortize the precomputation. Upscaled timestepping

alone runs 5 to 10 times faster than a pseudospectral method, see Section 4.3.

Complexity of the separated wave atom scheme is very well understood. We give precise

estimates of ε-separation ranks (r in equation (4.12)) as a function of the upscaled time

step τ , the scale j and accuracy level ε. The resulting number of operations for repeated

squaring (RS) and upscaled timestepping (UTS) are reported in Section 4.2.3. Although

not optimal anymore, estimates for UTS still beat the O(N 3 logN) bottleneck in a variety

of physically interesting situations.

The methods of proof of rank estimates rely on understanding the information con-

tent of oscillatory functions in high dimensions—or their Fourier dual, functions with

singularities—and could be of independent interest in numerical analysis.

Last but not least, sparsity of the solution wavefield in wave atoms directly translates into

complexity gains for the upscaled timestepping. If the initial condition can be accurately

represented using a fraction ρ < 1 of all wave atoms, then applying the Green’s function in

wave atoms only requires considering a fraction ρ of all rows. For instance, we can show

that “bandlimited wavefronts” remain so in time and satisfy ρ = O( 1√
N

).

Hence we see that wave atoms, or curvelets, provide the unique opportunity for having a

6The pseudospectral method is a split-step timestepping where multiplications by c(x) are done in x, and
differentiations are done in the Fourier domain. Periodic boundary conditions implicitly follow from using
the FFT.
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representation giving enhanced sparsity of wave groups, and simultaneously of the solution

space. As we alluded to earlier, curvelets are ideal for representing wavefront phenomena

[21], or objects which display curve-punctuated smoothness—smoothness except for discon-

tinuity along a general curve with bounded curvature [18, 20]. We believe that this joint

sparsity property will eventually be of great practical significance for applications in fields

which are great consumers of these mathematical models, e.g., seismic imaging.
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author of the 3D curvelet transform code.
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The synthetic seismic data in Chapter 3 is courtesy of Eric Verschuur and Felix Her-

rmann.
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Chapter 2

The Curvelet Representation of

Wave Propagators is Optimally

Sparse

In this chapter we prove Theorem 1.1. We give some background and introduce the proof

strategy in Section 2.1 below. Section 2.2 reviews the construction of Curvelets. Section

2.3 gives further heuristic indicating why the sparsity may be expected to hold. Section 2.4

links our main result with properties of FIOs. Section 2.5 proves that FIOs are optimally

sparse in scalar curvelet tight frames. Finally, proofs of key estimates supporting our main

result are given in Appendix A.

2.1 Background and Strategy

In his seminal paper [57], Lax constructed approximate solution operators to linear and

symmetric hyperbolic systems, also known as parametrices. He showed that these paramet-

rices are oscillatory integrals in the frequency domain which are commonly referred to as

Fourier integral operators (FIO) (the development and study of FIOs is motivated by the

connection). An operator T is said to be an FIO if it is of the form

Tf(x) =

∫
eiΦ(x,ξ)σ(x, ξ)f̂(ξ) dξ. (2.1)

We suppose the phase function Φ and the amplitude σ obey the following standard assump-

tions [79]:

• the phase Φ(x, ξ) is C∞, homogeneous of degree 1 in ξ, i.e., Φ(x, λξ) = λΦ(x, ξ) for
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λ > 0, and with Φxξ = ∇x∇ξΦ, obeys the nondegeneracy condition

|det Φxξ(x, ξ)| > c > 0, (2.2)

uniformly in x and ξ;

• the amplitude σ is a symbol of order m, which means that σ is C∞, and obeys

|∂α
ξ ∂

β
xσ(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|. (2.3)

Lax’s insight is that the solution of the initial value problem for a variable coefficient

hyperbolic system can be well approximated by a superposition of integrals of the form

(2.1) with matrix-valued amplitudes of order 0. The phases of these FIOs are those solving

the Hamilton-Jacobi equations

∂tΦν + λ0
ν(x,∇xΦν) = 0 (2.4)

(compare with (1.3)). Hence, a substantial part of our argument will be about proving

that curvelets sparsify FIOs. Now an important aspect of this construction is that this

approximation is only valid for small times whereas our theorem is valid for all times. The

reason is that the solutions to the Eikonal equations (2.4) are not expected to be global in

time, because Φν would become multivalued when rays originating from the same point x0

cross at a later time. This typically happens at cusp points, when caustics start developing.

We refer the reader to [43, 89]. Because, we are interested in a statement valid for all times,

we need to bootstrap the construction of the FIO parametrix by composing the small time

FIO parametrix with itself. Now this creates an additional difficulty. Each parametrix

convects a curvelet along m flows, and we see that after each composition, the number of

curvelets would be multiplied by m, see Section 4.1 for a proper discussion. This would lead

to matrices with poor concentration properties. Therefore, the other part of the argument

consists in decoupling the equations so that this phenomenon does not occur. In summary,

the general architecture of the proof of Theorem 1.1 is as follows:

• We first decompose the wave-field into m one-way components, i.e., components which

essentially travel along only one flow. We show that this decomposition is sparse in
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tight frames of curvelets.

• Second, we show that curvelet representations of FIOs are optimally sparse in tight

frame of curvelets, a result of independent interest.

2.2 Curvelets

This section briefly introduces tight frames of curvelets, see [20] for more details.

2.2.1 Definition

We work throughout in R2, with spatial variable x, with ξ a frequency-domain variable, and

with r and θ polar coordinates in the frequency-domain. We start with a pair of windows

W (r) and V (t), which we will call the “radial window” and “angular window,” respectively.

These are both smooth, nonnegative and real valued, with W taking positive real arguments

and supported on r ∈ [1/2, 2] and V taking real arguments and supported on t ∈ [−1, 1].

These windows will always obey the admissibility conditions:

∞∑

j=−∞
W 2(2jr) = 1, r > 0; (2.5)

∞∑

`=−∞
V 2(t− `) = 1, t ∈ R. (2.6)

Now, for each j ≥ j0, we introduce the frequency window Uj defined in the Fourier domain

by

Uj(r, θ) = 2−3j/4W (2−jr)V (
2bj/2cθ

2π
). (2.7)

where bj/2c is the integer part of j/2. Thus the support of Uj is a polar “wedge” defined

by the support of W and V , the radial and angular windows, applied with scale-dependent

window widths in each direction.

To obtain real-valued curvelets, we could work with the symmetrized version of (2.7),

namely, Uj(r, θ) + Uj(r, θ + π).

Define the waveform ϕj(x) by means of its Fourier transform ϕ̂j(ω) = Uj(ω) (we abuse

notations slightly here by letting Uj(ω1, ω2) be the window defined in the polar coordinate

system by (2.7)). We may think of ϕj as a “mother” curvelet at scale 2−j in the sense that
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all curvelets at that scaled are obtained by rotations and translations of ϕj . Introduce

• the equispaced sequence of rotation angles θ` = 2π · 2−bj/2c · `, with ` = 0, 1, . . .

such that 0 ≤ θ` < 2π (note that the spacing between consecutive angles is scale-

dependent),

• and the sequence of translation parameters k = (k1, k2) ∈ Z2.

With these notations, we define curvelets (as function of x = (x1, x2)) at scale 2−j , orien-

tation θj,` and position b
(j,`)
k = Rθj,`

(k1 · 2−j/δ1, k2 · 2−j/2/δ2) for some adequate constants

δ1, δ2 by

ϕj,k,`(x) = ϕj

(
R−θj,`

(x− b
(j,`)
k )

)
.

where Rθ is the rotation by θ radians and R−1
θ its inverse (also its transpose),

Rθ =


 cos θ sin θ

− sin θ cos θ


 , R−1

θ = RT
θ = R−θ.

A curvelet coefficient is then simply the inner product between an element f ∈ L2(R2) and

a curvelet ϕj,`,k,

c(j, `, k) := 〈f, ϕj,`,k〉 =

∫

R2

f(x)ϕj,`,k(x) dx. (2.8)

In the sequel it will prove useful to apply Plancherel’s theorem and express this inner

product as the integral over the frequency plane

c(j, `, k) :=
1

(2π)2

∫
f̂(ω) ϕ̂j,`,k(ω) dω =

1

(2π)2

∫
f̂(ω)Uj(Rθ`

ω)ei〈x
(j,`)
k ,ω〉 dω. (2.9)

As in wavelet theory, we also have coarse scale elements. We introduce the low-pass

window W0 obeying

|W0(r)|2 +
∑

j≥0

|W (2−jr)|2 = 1,

and for k1, k2 ∈ Z, define coarse scale curvelets as

Φj0,k(x) = Φj0(x− 2−j0k), Φ̂j0(ξ) = 2−j0W0(2
−j0 |ξ|).

Hence, coarse scale curvelets are nondirectional. The full curvelet transform consists of the

fine-scale directional elements (ϕj,`,k)j≥j0,`,k and of the coarse-scale isotropic father wavelets
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Figure 2.1: Curvelet tiling of phase-space. The figure on the left represents the sampling
in the frequency plane, also called second dyadic decomposition (SDD). In the frequency
domain, curvelets are supported near a “parabolic” wedge. The shaded area represents such
a generic wedge. The figure on the right schematically represents the spatial Cartesian grid
associated with a given scale and orientation.

(Φj0,k)k. It is the behavior of the fine-scale directional elements that are of interest here.

In the remainder of the chapter, we will use the generic notation (ϕµ)µ∈M to index the

elements of the curvelet tight frame. The dyadic-parabolic subscript µ stands for the triplet

(j, k, `). We will also make use of the convenient notations

• xµ = b
(j,`)
k is the center of ϕµ in space.

• θµ = θj,` is the orientation of ϕµ with respect to the vertical axis in x.

• ξµ = (2j cos θµ, 2
j sin θµ) is the center of ϕ̂µ in frequency.

• eµ = ξµ/|ξµ| indicates the codirection of ϕµ.

Figure 2.1 summarizes the key components of the construction.

2.2.2 Properties

We now list a few properties of the curvelet transform which will play an important role

throughout the remainder of this thesis.
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1. Tight frame. Much like in an orthonormal basis, we can easily expand an arbitrary

function f(x1, x2) ∈ L2(R2) as a series of curvelets: we have a reconstruction formula

f =
∑

µ

〈f, ϕµ〉ϕµ,

with equality holding in an L2 sense; and a Parseval relation

∑

µ

|〈f, ϕµ〉|2 = ‖f‖2
L2(R2), ∀f ∈ L2(R2).

2. Parabolic scaling. The frequency localization of ϕj implies the following spatial

structure: ϕj(x) is of rapid decay away from a 2−j by 2−j/2 rectangle with minor axis

pointing in the horizontal direction. In short, the effective length and width obey the

anisotropy scaling relation

length ≈ 2−j/2, width ≈ 2−j ⇒ width ≈ length2. (2.10)

3. Oscillatory behavior. As is apparent from its definition, ϕ̂j is actually supported

away from the vertical axis ξ1 = 0 but near the horizontal ξ2 = 0 axis. In a nutshell,

this says that ϕj(x) is oscillatory in the x1-direction and lowpass in the x2-direction.

Hence, at scale 2−j , a curvelet is a little needle whose envelope is a specified “ridge”

of effective length 2−j/2 and width 2−j , and which displays an oscillatory behavior

across the main “ridge.”

4. Vanishing moments. The curvelet template ϕj is said to have q vanishing moments

when ∫ ∞

−∞
ϕj(x1, x2)x

n
1 dx1 = 0, for all 0 ≤ n < q, for all x2. (2.11)

The same property of course holds for rotated curvelets when x1 and x2 are taken

to be the corresponding rotated coordinates. Notice that the integral is taken in

the direction perpendicular to the ridge, so counting vanishing moments is a way

to quantify the oscillation property mentioned above. In the Fourier domain, (2.11)
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becomes a line of zeros with some multiplicity:

∂nϕ̂j

∂ωn
1

(0, ω2) = 0, for all 0 ≤ n < q, for all ω2.

Curvelets as defined and implemented in this thesis have an infinite number of van-

ishing moments because they are compactly supported well away from the origin in

the frequency plane, as illustrated in Figure 2.1.

5. Phase-Space Tiling/Sampling. We can really think about curvelets as Heisenberg

tiles of minimum volume in phase-space. In x, the essential support of ϕµ has size

O(2−j ×2−j/2). In frequency, the support of ϕ̂µ has size O(2j/2×2j). The net volume

in phase-space is therefore

O(2−j × 2−j/2) ·O(2j/2 × 2j) = O(1),

which is in accordance with the uncertainty principle. The parameters (j, k, `) of the

curvelet transform induce a new non-trivial sampling of phase-space, Cartesian in x,

polar in ξ, and based on the parabolic scaling.

6. Complex-valuedness. Since curvelets do not obey the symmetry ϕ̂µ(−ξ) = ϕ̂µ(ξ),

ϕµ is complex-valued. There exists a related construction for real-valued curvelets

by simply symmetrizing the construction, see [20]. The complex-valued transform is

better adapted to the purpose of this chapter.

2.2.3 Curvelet Molecules

We introduce the notion of curvelet molecule; our objective, here, is to encompass under this

name a wide collection of systems which share the same essential properties as the curvelets

we have just introduced. Our formulation is inspired by the notion of “vaguelettes” in

wavelet analysis [65]. Our motivation for introducing this concept is the fact that operators

of interest do not map curvelets into curvelets, but rather into these molecules. Note that

the terminology “molecule” is somewhat standard in the literature of harmonic analysis

[42].

Definition 2.1. A family of functions (mµ)µ is said to be a family of curvelet molecules
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with regularity R if (for j > 0) they may be expressed as

mµ(x) = 23j/4a(µ)
(
D2−jRθµx− k′

)
,

where k′ = (k1
δ1
, k2

δ2
) and where for all µ, the a(µ)’s verify the following properties:

• Smoothness and spatial localization: for each |β| ≤ R, and each M = 0, 1, 2, . . . there

is a constant CM > 0 such that

|∂β
xa

(µ)(x)| ≤ CM · (1 + |x|)−M . (2.12)

• Nearly vanishing moments: for each N = 0, 1, . . . , R, there is a constant CN > 0 such

that

|â(µ)(ξ)| ≤ CN · min(1, 2−j + |ξ1| + 2−j/2|ξ2|)N . (2.13)

Here, the constants may be chosen independently of µ so that the above inequalities hold

uniformly over µ. There is of course an obvious modification for the coarse scale molecules

which are of the form a(µ)(x− k′) with a(µ) as in (2.12).

This definition implies a series of useful estimates. For instance, consider θµ = 0 so that

Rθµ is the identity (arbitrary molecules are obtained by rotations). Then, mµ obeys

|mµ(x)| ≤ CM · 23j/4 ·
(

1 + |2jx1 −
k1

δ1
| + |2j/2x2 −

k2

δ2
|
)−M

(2.14)

for each M > 0 and |β| ≤ R, and similarly for its derivatives

|∂β
xmµ(x)| ≤ CM · 23j/4 · 2(β1+β2/2)j ·

(
1 + |2jx1 −

k1

δ1
| + |2j/2x2 −

k2

δ2
|
)−M

. (2.15)

Another useful property is the almost vanishing moments property which says that in the

frequency plane, a molecule is localized near the dyadic corona {2j ≤ |ξ| ≤ 2j+1}; |m̂µ(ξ)|
obeys

|m̂µ(ξ)| ≤ CN · 2−3j/4 · min(1, 2−j(1 + |ξ|))N , (2.16)

which is valid for every N ≤ R, which gives the frequency localization

|m̂µ(ξ)| ≤ CN · 2−3j/4 · |Sµ(ξ)|N , (2.17)
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where for µ0 = (j, 0, 0),

Sµ0(ξ) = min(1, 2−j(1 + |ξ|)) · (1 + |2−jξ1| + |2−j/2ξ2|)−1. (2.18)

For arbitrary µ, Sµ is obtained from Sµ0 by a simple rotation of angle θµ, i.e., Sµ0(Rθµξ).

Similar estimates are available for the derivatives of ϕ̂µ.

In short, a curvelet molecule is a needle whose envelope is supported near a ridge of

length about 2−j/2 and width 2−j and which displays an oscillatory behavior across the

ridge. It is easy to show that curvelets as introduced in the previous section are indeed

curvelet molecules for arbitrary degrees R of regularity.

2.2.4 Near Orthogonality of Curvelet Molecules

Curvelets are not necessarily orthogonal to each other,1 but in some sense they are almost

orthogonal. As we show below, the inner product between two molecules mµ and pµ′ decays

nearly exponentially as a function of the “distance” between the subscripts µ and µ′.

This notion of distance in phase-space, tailored to curvelet analysis, is to be understood

as follows. Given a pair of indices µ = (j, k, `), µ′ = (j′, k′, `′), define the dyadic-parabolic

pseudodistance

ω(µ, µ′) = 2|j−j′| ·
(
1 + min(2j , 2j′) d(µ, µ′)

)
, (2.19)

where

d(µ, µ′) = |θµ − θµ′ |2 + |xµ − xµ′ |2 + |〈eµ, xµ − xµ′〉|.

Angle differences like θµ − θµ′ are understood modulo π. As introduced earlier, eµ is the

codirection of the first molecule, i.e., eµ = (cos θµ, sin θµ).

The pseudodistance (2.19) is a slight variation on that introduced by Smith [74]. We

see that ω increases by at most a constant factor every time the distance between the scale,

angular, and location parameters increases. The extension of the definition of ω to arbitrary

points (x, ξ) and (x′, ξ′) is straightforward. Observe that the extra term |〈eµ, xµ − xµ′〉|
induces a non-Euclidean notion of distance between xµ and xµ′ . The following properties

of ω are proved in Appendix A.1. (The notation A ³ B means that C1 ≤ A/B ≤ C2 for

some constants C1, C2 > 0.)

1It is an open problem whether orthobases of curvelets exist or not.
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Proposition 2.1. 1. Symmetry: ω(µ, µ′) ³ ω(µ′, µ).

2. Triangle inequality: d(µ, µ′) ≤ C · (d(µ, µ′′) + d(µ′′, µ′)) for some constant C > 0.

3. Composition: for every integer N > 0, and some positive constant CN

∑

µ′′

ω(µ, µ′′)−N · ω(µ′′, µ′)−N ≤ CN · ω(µ, µ′)−(N−1).

4. Invariance under Hamiltonian flows: ω(µ, µ′) ³ ω(µν(t), µ
′
ν(t)).

We can now state the almost orthogonality result

Lemma 2.1. Let (mµ)µ and (pµ′)µ′ be two families of curvelet molecules with regularity R.

Then for j, j′ ≥ 0,

|〈mµ, pµ′〉| ≤ CN · ω(µ, µ′)−N . (2.20)

for every N ≤ f(R) where f(R) goes to infinity as R goes to infinity.

Proof. Throughout the proof of (2.20), it will be useful to keep in mind that A ≤ C · (1 +

|B|)−M for every M ≤ 2M ′ is equivalent to A ≤ C · (1 + B2)−M for every M ≤ M ′.

Similarly, if A ≤ C · (1 + |B1|)−M and A ≤ C · (1 + |B2|)−M for every M ≤ 2M ′, then

A ≤ C · (1 + |B1|+ |B2|)−M for every M ≤M ′. Here and throughout, the constants C may

vary from expression to expression.

For notational convenience put ∆θ = θµ−θµ′ and ∆x = xµ−xµ′ . We abuse notation by

letting mµ0 be the molecule a(µ)(D2−jRθµx), i.e., mµ0 is obtained from mµ by translation

so that it is centered near the origin. Put Iµµ′ = 〈mµ, pµ′〉. In the frequency domain, Iµµ′

is given by

Iµµ′ =
1

(2π)2

∫
m̂µ0(ξ)p̂µ′

0
(ξ) e−i(∆x)·ξ dξ.

Put j0 to be the minimum of j and j ′. The Appendix shows that

∫
|Sµ0(ξ)Sµ′

0
(ξ)|N dξ ≤ C · 23j/4+3j′/4 · 2−|j−j′|N ·

(
1 + 2j0 |∆θ|2

)−N
, (2.21)

where Sµ0 is defined in equation (2.18). Therefore, the frequency localization of the curvelet
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molecules (2.17) gives

∫
|m̂µ0(ξ)| |p̂µ′

0
(ξ)| dξ ≤ C · 2−3j/4−3j′/4 ·

∫
|Sµ0(ξ)Sµ′

0
(ξ)|N dξ

≤ C · 2−|j−j′|N ·
(
1 + 2j0 |∆θ|2

)−N
. (2.22)

This inequality explains the angular decay. A series of integrations by parts will introduce

the spatial decay, as we now show.

The partial derivatives of m̂µ obey

|∂α
ξ m̂µ(ξ)| ≤ C · 2−3j/4 · 2−j(α1+

α2
2

) · |Sµ(ξ)|N .

Put ∆ξ to be the Laplacian in ξ. Because p̂µ′ is misoriented with respect to eµ, simple

calculations show that

|∆ξp̂µ′(ξ)| ≤ C · 2−3j′/4 · 2−j′ · |Sµ′(ξ)|N ,

| ∂
2

∂ξ21
p̂µ′(ξ)| ≤ C · 2−3j′/4 · (2−2j′ + 2−j′ | sin(∆θ)|2) · |Sµ′(ξ)|N .

Recall that for t ∈ [−π/2, π/2], 2/π · |t| ≤ | sin t| ≤ |t|, so we may just as well replace

| sin(∆θ)| by |∆θ| in the above inequality. Set

L = I − 2j0∆ξ −
22j0

1 + 2j0 |∆θ|2
∂2

∂ξ21
.

On the one hand, for each k, Lk(m̂µp̂µ′) obeys

|Lk(m̂µp̂µ′)(ξ)| ≤ C · 2−3j/4−3j′/4 · |Sµ(ξ)|N · |Sµ′(ξ)|N .

On the other hand

Lke−i(∆x)·ξ = [1 + 2j0 |∆x|2 +
22j0

1 + 2j0 |∆θ|2 |〈eµ,∆x〉|
2]ke−i(∆x)·ξ.
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Therefore, a few integrations by parts give

|Iµµ′ | ≤ C · 2−|j−j′|N ·
(
1 + 2j0 |θµ − θµ′ |2

)−N

·
(

1 + 2j0 |∆x|2 +
22j0

1 + 2j0 |∆θ|2 |〈eµ,∆x〉|
2

)−N

,

and then

|Iµµ′ | ≤ C · 2−|j−j′|M ·
(

1 + 2j0(|∆θ|2 + |∆x|2) +
22j0

1 + 2j0 |∆θ|2 |〈eµ,∆x〉|
2

)−N

.

One can simplify this expression by noticing that

(1 + 2j0 |∆θ|2) +
22j0 |〈eµ,∆x〉|2
1 + 2j0 |∆θ|2 &

√
1 + 2j0 |∆θ|2 2j0 |〈eµ,∆x〉|√

1 + 2j0 |∆θ|2
= 2j0 |〈eµ,∆x〉|.

This yields equation (2.20) as required.

Remark. Assume that one of the two terms or both terms are coarse scale molecules,

e.g., pµ′ , then the decay estimate is of the form

|〈mµ, pµ′〉| ≤ C · 2−jN ·
(
1 + |xµ − xµ′ |2 + |〈eµ, xµ − xµ′〉|

)−N
.

For instance, if they are both coarse scale molecules, this would give

|〈mµ, pµ′〉| ≤ C ·
(
1 + |xµ − xµ′ |

)−N
.

The following result is a different expression for the almost-orthogonality, and will be

at the heart of the sparsity estimates for FIOs.

Lemma 2.2. Let (mµ)µ and (pµ)µ be two families of curvelet molecules with regularity R.

Then for each p > p∗,

sup
µ

∑

µ′

|〈mµ, pµ′〉|p ≤ Cp.

Here p∗ → 0 as R→ ∞. In other words, for p > p∗, the matrix Iµµ′ = (〈mµ, pµ′〉)µ,µ′ acting

on sequences (αµ) obeys

‖Iα‖`p ≤ Cp · ‖α‖`p .
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Proof. Put as before j0 = min(j, j′). The appendix shows that

∑

µ∈Mj′

(
1 + 2j0(d(µ, µ′)

)−Np ≤ C · 22|j−j′| (2.23)

provided that Np > 2. We then have

∑

µ′

|Iµµ′ |p ≤ C ·
∑

j′∈Z

2−2|j−j′|Np · 22|j−j′| ≤ Cp,

provided again that Np > 2.

Hence we proved that for p ≤ 1, I is a bounded operator from `p to `p. We can of course

interchange the role of the two molecules and obtain

sup
µ′

∑

µ

|〈mµ, pµ′〉|p ≤ Cp.

For p = 1, the above expression says that I is a bounded operator from `∞ to `∞. By

interpolation, we then conclude that I is a bounded operator from `p to `p for every p.

This completes the discussion of the mathematical properties of curvelets. We can now

go back to hyperbolic equations.

2.3 Heuristics

This section explains the organization of the argument underlying the proof of the main

result, namely, Theorem 1.1, and gives the main reasons why curvelets are special.

2.3.1 Architecture of the Proof of the Main Result

• Decoupling into polarized components. The first step is to decouple the wavefield

u(t, x) into m one-way components fν(t, x)

u(t, x) =
m∑

ν=1

Rνfν(t, x),

where the Rν are operators mapping scalars to m-dimensional vectors, and inde-

pendent of time. The fν will also be called “polarized” components. This allows
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a separate study of the m flows corresponding to the m eigenvalues of the matrix
∑m

k=1Ak(x)ξk. In the event these eigenvalues are simple, the evolution operator E(t)

can be decomposed as

E(t) =
m∑

ν=1

Rνe
−itΛνLν + negligible, (2.24)

where the Lν are operators mapping m-dimensional vectors to scalars and the Λν ’s

are one-way wave operators acting on scalar functions. In effect, each operator

Eν(t) = e−itΛν convects wave-fronts and other singularities along a separate flow.

The “negligible” contribution is a smoothing operator—not necessarily small. The

composition operators Rν and decomposition operators Lν are provably pseudodiffer-

ential operators, see Section 2.4.2.

• Fourier integral operator parametrix. We then approximate for small times t > 0 each

e−itΛν , ν = 1, . . . ,m, by an oscillatory integral or Fourier integral operator (FIO)

Fν(t). Such operators take the form

Fν(t)f(x) =

∫
eiΦν(t,x,ξ)σν(t, x, ξ)f̂(ξ) dξ,

under suitable conditions on the phase function Φν(t, x, ξ) and the amplitude σν(t, x, ξ).

Again, the identification of the evolution operator Eν(t) = e−itΛν with Fν is valid up

to a smoothing and localized additive remainder. The construction of the so-called

parametrix Fν(t) and its properties are detailed in Section 2.4.3.

Historically [57], the construction of an oscillatory integral parametrix did not in-

volve the decoupling into polarized components as a preliminary step. When applied

directly to the system (2.25), the construction of the parametrix gives rise to a matrix-

valued amplitude σ(t, x, ξ) where all the couplings are present. This somewhat simpler

setting, however, is not adequate for our purpose. The reason is that we want to boot-

strap the construction of a parametrix to large times by composing the small time

FIO parametrix with itself, F (nt) = [F (t)]n. Without decoupling of the propagation

modes, each E(t) or F (t) involves convection of singularities along m families of char-

acteristics or flows. Applying F (t) again, each flow would artificially split into m flows

again, yielding m2 fronts to keep track of. At time T = nt, that would be at most
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mn fronts. This flow-splitting situation is not physical and can be avoided by isolat-

ing one-way components before constructing the parametrix. The correct large-time

argument is to consider Eν(nt) for small t > 0 and large integer n as [Eν(t)]
n. This

expression involves one single flow, indexed by ν.

• Sparsity of Fourier integral operators. The core of the proof is found in Section 2.5

and consists in showing that very general FIOs F (t), including the parametrices Fν(t),

are sparse and well structured when represented in tight frames of (scalar) curvelets

ϕµ. The scalar analog of Theorem 1.1 for FIOs is Theorem 2.1—a statement of

independent interest. Observe that pseudodifferential operators are a special class of

FIOs and, therefore, are equally sparse in a curvelet frame.

Section 2.4.5 assembles key intermediate results and proves Theorem 1.1.

2.3.2 The Parabolic Scaling is Special

Why is the curvelet parabolic scaling the only correct way to scale a family of wave packets

to sparsely represent wave groups? In analogy with the discussion in Section 1.2.4, assume

for a moment that the curvelet scaling width ≈ length2 is replaced with the more general

power-law

width ≈ length
1
β , 1 ≤ 1

β
≤ ∞,

and that one has available a tight frame ϕµ of “β-wave-packets” (we have put α = 1 in the

notations of Section 1.2.4.) For example, β = 1 would correspond to wavelets and β = 0 to

ridgelets [13].

Consider a wave packet ϕµ(x) centered around xµ in space and ξµ in frequency. The

action of a Fourier integral operator on this wave packet can be viewed as the composition

of two transformations, (1) non-rigid convection along the Hamiltonian flow due to the

phase factor Φ(x, t, ξ) (or more precisely its linearization ξ ·∇ξΦ(t, x, ξµ) around ξµ) and (2)

microlocal dispersion due to the remainder after linearization and the amplitude σ(t, x, ξ).

Depending upon the size of the essential support in phase-space (controlled by the value of

β), these two transformations may leave the shape of the waveform nearly invariant, or not.

We now argue that the curvelet parabolic scaling, β = 1/2, offers the correct compromise.

1. Spatial localization. For simplicity, suppose that one can model the convective
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effect by a smooth diffeomorphism g(x), so that a wave-packet ϕµ(x) is effectively

mapped into ϕµ(g(x)). If we Taylor expand g(x) around yµ = g−1(xµ), where xµ is

the center of φµ(x), we obtain

g(x) = xµ + (x− xµ)g′(yµ) +O((x− xµ)2).

The first two terms induce an essentially rigid motion, while the remainder is respon-

sible for deforming the waveform. The requirement for optimal sparsity, as it turns

out, is that the extent of the deformation should not exceed the width of the wave

packet. In the case of curvelets, this imposes the correct condition for ϕµ(g(x)) to

remain a “molecule” in the sense defined earlier; see how equation (2.71) combines

with the molecule estimate (2.14).

If the spatial width is of the order of a = 2−j , then the wave packet should essentially

be supported in a region obeying (x − xµ) ∼ 2−j/2. This is satisfied if and only if

1/2 ≤ β ≤ 1. In short, any scaling more isotropic than the parabolic scaling works.

2. Frequency localization. Dispersive effects are already present in the wave equation

with constant velocity c = 1,
∂2u

∂t2
= ∆u,

with initial conditions u(x, 0) = u0(x),
∂u
∂t (x, 0) = u1(x). In the Fourier domain, the

solution is given by

û(t, ξ) = cos(|ξ|t) û0(ξ) +
sin(|ξ|t)

|ξ| û1(ξ).

These multipliers are of course associated with the phases Φ±(t, x, ξ) = x · ξ ± t|ξ|
(express sine and cosine in terms of complex exponentials). Linearize Φ± around ξµ,

the center of ϕ̂µ, and obtain

Φ±(t, x, ξ) = (x± teµ) · ξ ± t(|ξ| − ξ · eµ),

where eµ =
ξµ

|ξµ| . The first term is responsible for convection as before while the

second is responsible for dispersion (transverse to the oscillations of the wave packet).

Again, we must invoke more sophisticated arguments to see that to achieve sparsity,
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one needs δ(ξ) = |ξ| − ξ · eµ to be uniformly bounded over the frequency support

of the wave packet ϕ̂µ as to make the remainder eitδ(ξ) non-oscillatory. This would

effectively transform each wave-packet into a proper “molecule.” For curvelets, see

how equation (2.52) depends on the crucial estimate (A.8) about the phase, and how

this implies the molecule inequality (2.17).

It is easy to see that δ(ξ) is zero on the line ξ = const × eµ, and proportional to

(ξ·e⊥µ )2

|ξ·eµ| away from it. If ϕ̂µ is supported around ξµ so that |ξµ| ∼ 2j , and the support

lies well away from the origin, then δ(ξ) ≤ const implies that ξ · e⊥µ be bounded by

constant times 2j/2. This is saying that the width of the support should be at most

the square root of the length (in frequency), i.e., 0 ≤ β ≤ 1/2. In short, any scaling

more anisotropic than the parabolic scaling works.

In conclusion, only the parabolic scaling, β = 1/2, allows to formulate a sparsity result

like Theorem 1.1 because it meets both requirements of small warping and small dispersion

effects.

2.4 Representation of Linear Hyperbolic Systems

We now return to the main theme of this chapter and consider linear initial-value problems

of the form
∂u

∂t
+

m∑

k=1

Ak(x)
∂u

∂xk
+B(x)u = 0, u(0, x) = u0(x), (2.25)

where in addition to the properties listed in the introduction, Ak and B together with all

their partial derivatives are uniformly bounded for x ∈ Rn. As explained in Section 2.4.2,

we need to make the technical assumption that for every set of real parameters ξk, the (real)

eigenvalues of the matrix
∑

k Ak(x)ξk have constant multiplicity in x and ξ.

Curvelets will provide a concrete “basis” of L2(Rn,Cm) in which the evolution is sim-

ple/sparse. We choose to specialize our discussion to n = 2 spatial dimensions. The reason

is twofold: first, this setting is indeed that in which the exposition of curvelets is the most

convenient; and second, this is not a restriction as similar results would hold in arbitrary

dimensions.
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2.4.1 Main Result

We need to prove

|E(t;µ, ν;µ′, ν ′)| ≤ Ct,N ·
∑

ν′′

ω(µ, µ′ν′′(t))−N , (2.26)

for some constant Ct,N > 0 growing at most like CNe
KN t for some CN ,KN > 0. The

sum over ν ′′ indexes the different flows and takes on as many values as there are distinct

eigenvalues λ0
ν′′ .

It is instructive to notice that the estimate (2.26) for t = 0 is already the strongest of its

sort on the off-diagonal decay of the Gram matrix elements for a tight frame of curvelets.

For t > 0, equation (2.26) states that the strong phase-space localization of every curvelet

is preserved by the hyperbolic system, thus yielding a sparse and well organized structure

for the curvelet matrix. These warped and displaced curvelets are “curvelet molecules” as

introduced in Section 2.2.3 because, as we will show, they obey the estimates (2.12) and

(2.13).

The choice of the curvelet family being complex-valued in the above theorem is not es-

sential. E(t) acting on real-valued curvelets would yield two molecules per flow (upstream

and downstream). Keeping track of this fact in subsequent discussions would be unneces-

sarily heavy. In the real case, it is clear that the structure and the sparsity of the curvelet

matrix can be recovered by expressing each real curvelet as a superposition of two complex

curvelets.

The following two sections present results which are for the most part established knowl-

edge in the theory of hyperbolic equations. For example, we borrow some methods and

results from geometric optics [57] and most notably from Taylor [84] and Stolk and de

Hoop [81]. The goal here is to keep the exposition self-contained and at a reasonable level,

and to recast prior results in the framework adopted here, which is sometimes significantly

different from that used by the original contributors.

2.4.2 Decoupling into Polarized Components

How to disentangle the vector wavefield into m independent components is perhaps best

understood in the special case of constant coefficients, Ak(x) = Ak, and with B(x) = 0.

In this case, applying the 2-dimensional Fourier transform on both sides of (2.25) gives a
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system of ordinary differential equations

dû

dt
(t, ξ) + ia(ξ)û(t, ξ) = 0, a(ξ) =

∑

k

Akξk.

(Note that a(ξ) is a symmetric matrix with real entries.) It follows from our assumptions

that one can find m real eigenvalues λν(ξ) and orthonormal eigenvectors rν(ξ), so that

a(ξ)rν(ξ) = λν(ξ)rν(ξ).

Put fν(t, ξ) = rν(ξ) · û(t, ξ). Then our system of equations is of course equivalent to the

system of independent scalar equations

dfν

dt
(t, ξ) + iλν(ξ)fν(ξ) = 0,

which can then be solved for explicitly;

fν(t, ξ) = e−itλν(ξ)fν(0, ξ).

Hence, the diagonalization of a(ξ) decouples the original equation (2.25) into m polarized

components; these can be interpreted as waves going in definite directions, for example “up

and down” or “outgoing and incoming” depending on the geometry of the problem. This

is the reason why fν is also referred to as being a “one-way” wavefield.

The situation is more complicated when Ak(x) is non-uniform since Fourier techniques

break down. A useful tool in the variable coefficient setting is the calculus of pseudodiffer-

ential operators. An operator T is said to be pseudodifferential with symbol σ if it can be

represented as

Tf(x) = σ(x,D)f =
1

(2π)2

∫

R2

eix·ξσ(x, ξ)f̂(ξ) dξ, (2.27)

with the convention that D = −i∇. It is of type (1, 0) and order m if σ obeys the estimate

|∂α
ξ ∂

β
xσ(x, ξ)| ≤ Cα,β · (1 + |ξ|)m−|α|

for every multi-indices α and β. Unless otherwise stated, all pseudodifferential operators in

this thesis are of type (1, 0). An operator is said to be smoothing of order −∞, or simply



48

smoothing if its symbol satisfies the above inequality for every m < 0. Observe that this is

equivalent to the property that T maps boundedly distributions in the Sobolev space H−s

to functions in Hs for every s > 0, in addition to a strong localization property of its kernel

G(x, y) which says that for each N > 0, there is a constant CN > 0 such that G obeys

|G(x, y)| ≤ CN · (1 + |x− y|)−N (2.28)

as in [79](Chapter 6).

Now set

a(x,D) =
m∑

k=1

Ak(x)Dk − iB(x),

and its principal part

a0(x,D) =
m∑

k=1

Ak(x)Dk,

so that equation (2.25) becomes ∂tu+ia(x,D)u = 0. The matrices a(x, ξ) (resp. a0(x, ξ)) are

called the symbol of the operator a(x,D) (resp. a0(x,D)). Note that a0(x, ξ) is homogeneous

of degree one in ξ; a0 also goes by the name of dispersion matrix.

It follows from the symmetry of Ak and B that for every set of real parameters ξ1, . . . , ξm,

the matrix a0(x, ξ) =
∑

k Ak(x)ξk is also symmetric and thus admits real eigenvalues λ0
ν(x, ξ)

and an orthonormal basis of eigenvectors r0
ν(x, ξ),

a0(x, ξ)r0ν(x, ξ) = λ0
ν(x, ξ)r

0
ν(x, ξ). (2.29)

The eigenvalues being real and the set of eigenvectors complete is a hyperbolicity condition

and ensures that equation (2.25) will admit wave-like solutions. We assume throughout this

thesis that the multiplicity of each λ0
ν(x, ξ) is constant in x and ξ.

By analogy with the special case of constant coefficients, a first impulse may be to

introduce the components r0
ν(x,D) · u, where r0ν(x,D) is the operator associated to the

eigenvector r0ν(x, ξ) by the standard rule (2.27). In particular this is how we defined hyper-

curvelets from curvelets in Section 1.2.2. Unfortunately, this does not perfectly decouple

the system into m polarized modes—it only approximately decouples. Instead, we would

achieve perfect decoupling if we could solve the eigenvalue problem

a(x,D)rν(x,D) = rν(x,D)λν(x,D). (2.30)
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Here, each Λν = λν(x,D) is a scalar operator and Rν = rν(x,D) is an m-by-1 vector of

operators. Equation (2.30) must be understood in the sense of composition of operators.

Now let fν be the polarized components obeying the scalar equation

∂fν

∂t
+ iΛνfν = 0, (2.31)

with initial condition fν(0, x) and consider the superposition

u =
∑

ν

uν , uν = Rνfν .

Then u is a solution to our initial-value problem (2.25). (We will make this rigorous later,

and detail the dependence between the initial values u0 and the fν(0, ·).)
The following result shows how in some cases, (2.30) can be solved up to a smoothing

remainder of order −∞. When all the eigenvalues λ0
ν(x, ξ) are simple, the exact diagonal-

ization is, in fact, possible. The situation is more complicated when some of the eigenvalues

are degenerate; further decoupling within the eigenspaces is in general not possible. This

complication does not compromise, however, any of our results.

The theorem is due to Taylor [84], Stolk and de Hoop [81].

Lemma 2.3. Suppose our hyperbolic system satisfies all the assumptions stated below

(2.25). Then there exists an m-by-m block-diagonal matrix of operators Λ and two m-by-m

matrices of operators R and S such that

a(x,D)R = RΛ + S,

where Λ, R and S are componentwise pseudodifferential with Λ of order one, R of order

zero, and S of order −∞. Each block of Λ corresponds to a distinct eigenvalue λ0
ν whose

size equals the multiplicity of that eigenvalue. The principal symbol of Λ is diagonal with

the eigenvalues λ0
ν(x, ξ) as entries.

Let us provide an alternative, easier proof of the Taylor-Stolk-de Hoop lemma.

Proof. We already argued (2.30) is not just the eigenvalue problem for the symbol a(x, ξ)

for the composition of two operators does not reduce to a multiplication of their respective

symbols. Instead, it is common practice [41] to define the twisted product of two symbols σ
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and τ as

(σ ] τ)(x,D) = σ(x,D)τ(x,D),

so that (2.30) becomes the symbol equation a ] rν = rν ] λν . Note that D = −i∇. The

explicit formula for the twisted product is, in multi-index notation2,

σ ] τ =
∑

|α|≥0

1

α!
∂α

ξ σD
α
x τ.

We can see that σ ] τ is the product στ up to terms that are at least one order lower (because

of the differentiations in ξ).

Recall the decomposition of the symbol a(x, ξ) into a principal part a0(x, ξ) =
∑

k Ak(x)ξk,

homogeneous of degree one in ξ, and a remainder B(x) homogeneous of order zero. It follows

that the eigenvalues λ0
ν(x, ξ) of a0(x, ξ) are homogeneous of degree one, and the correspond-

ing eigenvectors r0
ν(x, ξ) may be selected as homogeneous of degree zero (and orthonormal).

Up to terms of lower order in ξ, the original problem (2.30) therefore reduces to the eigen-

value problem a0(x, ξ)r0ν(x, ξ) = r0ν(x, ξ)λ
0
ν(x, ξ) for the symbol a0. It is then natural to

look for a solution rν , λν of (2.30) as a perturbation of r0
ν , λ

0
ν by lower-order terms.

Consider first the case in which each eigenvalue λ0
ν is simple and define the expansions

rν ∼ r0ν + r1ν + r2ν + . . . , λν ∼ λ0
ν + λ1

ν + λ2
ν + . . .

so that rn
ν is of order −n in ξ and λn

ν of order −n+ 1 i.e.,

|∂α
ξ ∂

β
x r

n
ν (x, ξ)| ≤ Cα,β(1 + |ξ|)−n−|α|,

and similarly for λn
ν . We plug these expansions in the twisted product, or equivalently in

(2.30), and isolate terms of identical degree.

The contribution at the leading order is, of course, a0r0ν = λ0
νr

0
ν and the remainder is of

the form a ] r0ν − r0ν ] λ
0
ν ; put e0ν as its principal symbol. The zero-order equation reads

(a0 − λ0
ν I)r

1
ν = −e0ν + r0νλ

1
ν , (2.32)

2All the pseudodifferential operators considered in this paper are of type (1, 0) therefore all such polyho-
mogeneous expansions are valid.
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which admits a solution if and only if the right hand side has a zero component in the

eigenspace spanned by r0
ν . This is possible if λ1

ν is selected so that

−e0ν + r0νλ
1
ν ⊥ r0ν ⇔ λ1

ν = r0ν · e0ν .

It follows that equation (2.32) admits the family of solutions

r1ν = (a0 − λ0
ν I)

−1(−e0ν + r0νλ
1
ν) + f1r

0
ν ,

where f1 is actually a scalar function of x and ξ, and homogeneous of degree -1 in ξ. Our

proof does not exploit this degree of freedom.

It is clear that one can successively determine all the λn
ν ’s and rn

ν ’s in a similar fashion.

Let en
ν be the principal symbol of a ] (r0

ν + . . .+ rn
ν ) − (r0ν + . . .+ rn

ν ) ] (λ0
ν + . . .+ λn

ν ), then

the equation at the order −n is

(a0 − λ0
ν I)r

n+1
ν = −en

ν + r0νλ
n+1
ν ,

and is solved exactly like (2.32).

Suitable cutoffs of the low frequencies guarantee convergence of the series for rν and λν .

As is standard in the theory of pseudodifferential operators [75, 85], one selects a sequence

of C∞ cut-off functions χn(ξ) = χ(εnξ) for some χ vanishing inside a compact neighborhood

of the origin, and identically equal to one outside a larger neighborhood. Then ε is taken

small enough so that

rν(x, ξ) =
∞∑

n=0

rn
ν (x, ξ)χn(ξ), λν(x, ξ) =

∞∑

n=0

λn
ν (x, ξ)χn(ξ)

are converging expansions in the topology of C∞. As a result, the remainder sν = a ] rν −
rν ] λν also converges to a valid symbol which, by construction, is of order −∞, i.e., obeys

|∂α
ξ ∂

β
xsν(x, ξ)| ≤ Cα,β,N · (1 + |ξ|)−N−|α|

for every N > 0. The lemma is proved in the case when all eigenvalues of the principal

symbol are simple.

Consider now the case of a multiple eigenvalue λ0, say. Suppose the corresponding
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eigenspace is of dimension p and spanned by r0
1, . . . , r

0
p. The reasoning for simple eigenvalues

does not apply because the p solvability conditions are too many for purely diagonal lower-

order corrections. Instead, the block corresponding to λ0 is now perturbed as




λ0 · · · 0
...

. . .
...

0 · · · λ0


+




λ1
11 · · · λ1

1p

...
. . .

...

λ1
p1 · · · λ1

pp


+




λ2
11 · · · λ2

1p

...
. . .

...

λ2
p1 · · · λ2

pp


+ . . .

where each λn
ij is homogeneous of degree −n+1 in ξ. At the leading order, The p equations

relative to λ0 are

(a0 − λ0 I)r1j = −e0j +

p∑

i=1

r0i λ
1
ij , (2.33)

where e0j is the principal symbol of a ] r0
j −r0j ] λ0. Solvability requires that the projection of

the right-hand side on each of the r0
i , i = 1, . . . , p vanishes. This unambiguously determines

all the components of the p-by-p block λ1 as

λ1
ij = r0i · e0j .

All blocks relative to other eigenvalues are solved for in a similar way, yielding a block-

diagonal structure for the zeroth order correction λ1. Each block should have dimension

equal to the multiplicity of the corresponding eigenvalue in order to meet the solvability

requirements.

The perturbed eigenvectors r1
1, . . . , r

1
p are determined as previously once the λ1

ij are

known. The same reasoning applies at all orders and thereby determines Λ and R. Con-

vergence issues are addressed using cutoff windows just as before.

The above construction indeed provides efficient decoupling of the original problem

(2.25) into polarized modes. The following lemma is a straightforward consequence of

Lemma 2.3 although we have not been able to find it in the literature. See [81] for related

results.

Lemma 2.4. In the setting of Lemma 2.3, the solution operator E(t) for (2.25) may be
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decomposed for all times t > 0 as

E(t) = Re−itΛL+ S̃(t),

where the matrices of operators Λ and R are defined in Lemma 2.3 and S̃(t) is (another)

matrix of smoothing operators of order −∞. In addition,

1. L is an approximate inverse of R, i.e., RL = I and LR = I (mod smoothing).

2. L is a pseudodifferential of order zero (componentwise).

Observe that e−itΛ inherits the block structure from Λ, and is diagonal in the case where all

the eigenvalues λ0
ν are simple.

Proof. Begin by observing that R = r(x,D)—as an operator acting on L2(R2,Cm)—is in-

vertible modulo a smoothing additive term. This means that one can construct a parametrix

L so that LR = I and RL = I with both equations holding modulo a smoothing operator.

To see why this is true, note that the matrix r(x, ξ) is a lower-order perturbation from

the unitary matrix r0(x, ξ) of eigenvectors of the principal symbol a0(x, ξ). The inverse of

r0(x, ξ) is explicitly given by `0(x, ξ) = r0(x, ξ)∗. The symbol of L can now be built as an

expansion `0 + `1 + . . ., where each `n(x, ξ) is homogeneous of degree −n in ξ and chosen

to suppress the O(|ξ|−j) contribution in RL − I as well as in LR − I. This construction

implies that L is pseudodifferential of order zero (componentwise). All of this is routine

and detailed in [41](page 117).

In the sequel, S, S1 and S2 will denote a generic smoothing operator whose value may

change from line to line. The composition of a pseudodifferential operator and a smoothing

operator is obviously still smoothing. Set f = Lu and let A = a(x,D), so that ∂tu = −iAu.
On the one hand, u = Rf − Su and

∂tu = R∂tf − S∂tu = R∂tf − SAu. (2.34)

On the other hand, Lemma 2.3 gives

Au = ARf −ASu = RΛf + S1f + S2u = RΛf + Su (2.35)
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Comparing (2.34) and (2.35), and applying L gives

∂tf = −iΛf + Su. (2.36)

This can be solved by Duhamel’s formula,

f(t) = e−itΛf(0) +

∫ t

0
e−i(t−τ)ΛSu(τ) dτ. (2.37)

We now argue that the integral term is, indeed, a smoothing operator applied to the initial

value u0.

• First, the evolution operator E(t) = e−itA has a kernel K(t, x, y) supported inside

a neighborhood of the diagonal y = x and for each s ≥ 0, is well known to map

Hs(R2,Cm) boundedly onto itself [57]. Therefore, SE(τ) maps H−s to Hs boundedly

for every s > 0 and has a well localized kernel in the sense of (2.28). This implies that

SE(τ) is a smoothing operator.

• Second, Section 2.4.3 shows that e−itΛ is, for small t, a FIO of type (1, 0) and order

zero, modulo a smoothing remainder. The composition of a FIO and a smoothing

operator is smoothing. For larger t, think about e−itΛ as the product (e−i t
n

Λ)n for

appropriately large n.

• And third, the integral extends over a finite interval [0, t] and may be thought as an

average of smoothing operator—hence smoothing.

In short, f(t) = e−itΛf(0) + Su0. Applying R on both sides of (2.36) finally gives

u = Re−itΛLu0 + S1u0 + S2u = (Re−itΛL+ S)u0

which is what we set out to establish.

It remains to see that the evolution operator e−itΛ for the polarized components has the

same block-diagonal structure as Λ itself. This is gleaned from equation (2.36): evolution

equations for two components fν1 , fν2 (corresponding to distinct eigenvalues) are completely

decoupled.
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2.4.3 The Fourier Integral Operator Parametrix

Lemma 2.4 explained how to turn the evolution operator E(t) into the block-diagonal rep-

resentation e−itΛ. In this section, we describe how each of these blocks can be approximated

by a Fourier integral operator. The ideas here are standard and our exposition is essentially

taken from [43] and [75]. The original construction is due to Lax [57].

Let us first assume that all eigenvalues of the principal symbol a0(x, ξ) are simple. This

is the situation where the matrix of operators Λ (Lemma 2.3) is diagonal with elements Λν .

Put Eν(t) = e−itΛν , the (scalar) evolution operator relative to the νth polarized mode. We

seek a parametrix Fν(t) such that Sν(t) = Eν(t) − Fν(t) is smoothing of order −∞.

Formally,

f(t, x) =

∫
Eν(t)(e

ix·ξ) f̂0(ξ) dξ.

Our objective is to build a high-frequency asymptotic expansion for Eν(t)(e
ix·ξ) of the form

eiΦν(t,x,ξ)σν(t, x, ξ), (2.38)

where σν ∼ σ0
ν + σ1

ν + . . . with σn
ν homogeneous of degree −n in ξ, and Φ homogeneous of

degree one in ξ.

As is classical in asymptotic analysis, we proceed by applying Mν = ∂t + iΛν to the

expansion (2.38) and successively equate all the coefficients of the negative powers of |ξ|
to zero, hence mimicking the relation MνEν(t)(e

ix·ξ) = 0 which holds by definition. For

obvious reasons, we also impose that (2.38) evaluated at t = 0 be eix·ξ. Note that, in

accordance to Lemma 2.3, Λν is taken as a polyhomogeneous expansion
∑

j≥0 λ
j
ν(x,D),

where each symbol λj
ν(x, ξ) is homogeneous of degree −j + 1 in ξ.

After elementary manipulations, one finds that the phases must satisfy the standard

Hamilton-Jacobi equations
∂Φν

∂t
+ λ0

ν(x,∇xΦν) = 0, (2.39)

with Φν(0, x, ξ) = x · ξ. The amplitudes σn
ν are successively determined as the solutions of

transport equations along each Hamiltonian vector field,

∂σn
ν

∂t
+ ∇ξλ

0
ν(x,∇xΦν) · ∇xσ

n
ν = Pn(σ0

ν , . . . , σ
n
ν ), (2.40)
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where Pn is a known differential operator applied to σ0
ν , . . . , σ

n
ν .

In the case where some eigenvalue λ0
ν has multiplicity p > 1, the construction of a FIO

parametrix goes the same way, except that Λν denotes the p-by-p block corresponding to

λ0
ν in the matrix Λ of Lemma 2.3. Also each σn

ν is now a p-by-p matrix of amplitudes.

It is important to notice that Φν may be defined only for small times, because it would

become multivalued when rays originating from the same point x0 cross again later. This

typically happens at cusp points, when caustics start developing. We refer the interested

reader to [43, 89].

We skipped a lot of justifications in the above exposition, in particular on convergence

issues, but these technicalities are standard and detailed in some very good monographs.

The following result summarizes all that we shall need.

Lemma 2.5. Define t∗ as half the infimum time for which a solution to (2.39) ceases to

exist, uniformly in ν and ξ. In the setting of Lemma 2.3, denote by Λν a block of Λ and

Eν(t) = e−itΛν . Then for every 0 < t ≤ t∗, there exists a parametrix Fν(t) for the evolution

problem ∂tf + iΛνf = 0 which takes the form of a Fourier integral operator,

Fν(t)f0(x) =

∫
eiΦ(t,x,ξ)σν(t, x, ξ)f̂0(ξ) dξ.

For each t ≤ t∗, the phase function Φν is positive-homogeneous of degree one in ξ and

smooth in x and ξ; the amplitude σν is a symbol of type (1, 0) and order zero. The remainder

Sν(t) = Eν(t) − Fν(t) is a smoothing operator of order −∞.

Proof. The proof is for the most part presented in [75](Pages 120 and below). See also

[36, 43, 85].

2.4.4 Sparsity of Smoothing Terms

The specialist will immediately recognize that a smoothing operator of order −∞ is very

sparse in a curvelet frame. This is the content of the following lemma.

Lemma 2.6. The curvelet entries of a smoothing operator S obey the following estimate:

for each N > 0, there is a constant CN such that

|〈ϕµ, Sϕµ′〉| ≤ CN · 2−|j+j′|N (1 + |xµ − xµ′ |)−N . (2.41)
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Note that (2.41) is a stronger estimate than that of Theorem 1.1. Indeed, our lemma

implies that

|〈ϕµ, Sϕµ′〉| ≤ CN · ω(µ, µ′ν(t))
−N

which is valid for each N > 0 and regardless of the value of ν.

Proof. We know that S maps H−s to Hs for arbitrary large s, so does its adjoint S∗. As a

result,

|〈ϕµ, Sϕµ′〉| ≤ |〈S∗ϕµ, ϕµ′〉|1/2|〈ϕµ, Sϕµ′〉|1/2

≤ ‖S∗ϕµ‖1/2
Hs ‖ϕµ′‖1/2

H−s‖ϕµ‖1/2
H−s‖Sϕµ′‖1/2

Hs

≤ C · ‖ϕµ′‖H−s‖ϕµ‖H−s ≤ C · 2−(j+j′)s.

Next, recall that curvelets have an essential spatial support of size at most O(1) × O(1).

(Coarse scale curvelets have support size about O(1) × O(1) and the size decreases at

increasingly finer scales.) The action of S is local on this range of distances, so that

|〈ϕµ, Sϕµ′〉| ≤ CN · (1 + |xµ − xµ′ |)−N .

for arbitrary large N > 0. These two bounds can be combined to conclude that the matrix

elements of S are negligible in the sense defined above.

2.4.5 Proof of Theorem 1.1

Let us first show how the first assertion on the near-exponential decay of the curvelet matrix

elements follows immediately from the second one, equation (1.19). Let a be either a row

or a column of the curvelet matrix and let |a|(n) be the nth largest entry of the sequence

|a|. We have

n1/p · |a|(n) ≤ ‖a‖1/p
`p

and, therefore, it is sufficient to prove that the matrix E has rows and columns bounded in

`p for every p > 0. Consider the columns. We need to establish

sup
µ′,ν′

∑

µ,ν

|E(t;µ, ν;µ′, ν ′)|p ≤ Ct,p, (2.42)
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for some constant Ct,p > 0 growing at most like Cpe
Kpt for some Cp,Kp > 0.

The sum over ν and the sup over ν ′ do not come in the way since these subscripts take

on a finite number of values. The fine decoupling between the m one-way components,

crucial for equation (1.19), does not play any role here.

Let us now show that there exists N so that

∑

µ

ω(µ, µ′)−Np ≤ CN,p,

uniformly in µ′. We can use the bound (A.2) with Np in place of N for the sum over k and

`. This gives
∑

µ

ω(µ, µ′)−Np ≤ CN,p ·
∑

j≥0

2−|j−j′|Np · 22|j−j′|,

which is bounded by a constant depending on N and p provided again that Np ≥ 2.

Hence we proved the property for the columns. The same holds for the rows because the

same conclusion is true for the adjoint E(t)∗; indeed, the adjoint solves the backward initial-

value problem for the adjoint equation ut = A∗u, and A∗ satisfies the same hyperbolicity

conditions as A. We can therefore interchange the role of the two curvelets and obtain

sup
µ′,ν′

∑

µ,ν

|E(t;µ′, ν ′;µ, ν)|p ≤ Ct,p.

Note that the classical interpolation inequality shows that E(t) is a bounded operator from

`p to `p for every 0 < p ≤ ∞.

We now turn to (1.19). Let us assume first that all eigenvalues λ0
ν of the principal

symbol a0 are simple. According to Lemmas 2.4 and 2.5, each matrix element E(t; ν; ν ′) =

eν · E(t)eν′ of E(t) can for fixed (possibly large) time t > 0 be written as

E(t; ν; ν ′) =
m∑

ν′′=1

Rν,ν′′(e−i t
n

Λν′′ )nLν′′,ν′ + Sν,ν′(t). (2.43)

We have taken n large enough—proportional to t—so that e−i t
n

Λν is a Fourier integral

operator (mod smoothing) for every ν. Each Rν,ν′ and Lν,ν′ is pseudodifferential of order

zero and Sν,ν′(t) is smoothing.

Thanks to Lemma 2.6, we only need to prove the claim for the first term of (2.43) which

follows from Theorem 2.1 in Section 2.5 about the sparsity of FIOs in a curvelet tight frame.
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As is well known, the ray dynamics is equivalently expressed in terms of Hamiltonian

flows 



ẋ(t) = ∇ξλ
0(x(t), ξ(t)), x(0) = x0,

ξ̇(t) = −∇xλ
0(x(t), ξ(t)), ξ(0) = ξ0,

(2.44)

or in terms of canonical transformations generated by the phase functions Φν ,





x0 = ∇ξΦ(t, x(t), ξ0),

ξ(t) = ∇xΦ(t, x(t), ξ0),
(2.45)

provided Φ(t, x, ξ) satisfies the Hamilton-Jacobi equation ∂Φ
∂t + λ0(x,∇xΦ) = 0 with initial

condition Φ(0, x, ξ0) = x · ξ0. We obviously need this property to ensure that the geometry

of FIOs is the same as that of hyperbolic equations.

Pseudodifferential operators are a special instance of Fourier integral operators so the

theorem equally applies to them. For E(t;µ, ν;µ′, ν ′) = 〈ϕµ, E(t; ν; ν ′)ϕ′
µ〉 we get

|E(t;µ, ν;µ′, ν ′)| ≤ CN

m∑

ν′′=1

∑

µ0

· · ·
∑

µn

ω(µ, µ0)
−Nω(µ0, µ1ν′′(

t

n
))−N · · ·

ω(µn−1, µnν′′(
t

n
))−Nω(µn, µ

′)−N ,

for all N > 0. Inequality (2.26) then follows from repeated applications of properties 3 and

4 of the distance ω, see proposition 2.1. The power growth in t of the overall multiplicative

constant comes from the number of intermediate sums over µ0, . . . , µn. There are n+ 1 ∼ t

such sums and they each introduce the same multiplicative constant CN .

The reasoning is the same when at least some eigenvalues λ0
ν are degenerate. The sub-

script ν ′′ now denotes the flows i.e., the eigenvalues λ0
ν′′ not counting their multiplicity. Each

Rν,ν′′ is a row vector, e−i t
n

Λν′′ a matrix and Lν′′,ν′ a column vector. The FIO parametrix

for e−i t
n

Λν′′ was constructed in such a way that only one flow hν′′ appears in the majoration

of its curvelet elements (componentwise). There is no intermediate sum over ν0, . . . , νn and

this is the whole point of decoupling the polarized components before constructing the FIO

parametrix.
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2.4.6 Relation to Hypercurvelets

In Section 1.2.2 we introduced hypercurvelets as “polarized” curvelets which would not split

into m molecules along the m different flows. In light of Section 2.4.2, it is interesting to

reformulate our main result (2.26) in terms of hypercurvelets. We recall that

ϕ
(0)
µν (x) = r0ν(x,D)ϕµ(x) =

1

(2π)2

∫
eix·ξr0ν(x, ξ)ϕ̂µ(ξ) dξ.

Corollary 2.1. Define E(0)(t;µ, ν;µ′, ν ′) = 〈ϕ(0)
µν , E(t)ϕ

(0)
µ′ν′〉. Then under the same as-

sumptions as those of Theorem 1.1 we have for all N > 0

|E(0)(t;µ, ν;µ′, ν ′)| ≤ CtN · [ω(µ, µ′ν′(t))−N + 2−j′
∑

ν′′ 6=ν′

ω(µ, µ′ν′′(t))−N ]. (2.46)

The main contribution to the right-hand side is due to the ν ′th flow. All other flows

are weighted by the small factor 2−j′ (which is about equal to |ξ|−1 on the support of

ϕ̂µ′). In other words, there might be some “cross talk” between the various components

corresponding to the different flows but it is at most smoothing of order −1, hence small at

small scales.

Proof. Equation (2.46) follows from Theorem 1.1 and the fact that the adjoint of the matrix

operator R0 whose columns are the R0
ν = r0ν(x,D) is an approximate left inverse for R0—

up to an error smoothing of order −1. Indeed, by the standard rules for composition and

computation of the adjoint of pseudodifferential operators,

(R0
ν)

∗R0
ν′ = ((r0ν)

∗ ] r0ν′)(x,D)

= ((r0ν)
∗r0ν′)(x,D) + order −1

= δνν′I + order −1.

We have used the fact that the dispersion matrix a0(x, ξ) is assumed to be symmetric, hence

admits an orthobasis of eigenvectors r0
ν(x, ξ). We then conclude from Theorem 2.1 applied

to pseudodifferential operators of order −1.
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Alternatively, we could have defined hypercurvelets as

ϕ
(∞)
µν = rν(x,D)ϕµ(x) =

1

(2π)2

∫
eix·ξrν(x, ξ)ϕ̂µ(ξ) dξ.

This would have given the same result.3 The reason why we did not use hypercurvelets in

the preceding sections is that they do not necessarily constitute a suitable practical basis to

decompose wavefields onto. We do not even know if they always constitute a frame. Digital

implementation would also seem less obvious.

2.5 Representation of FIOs

The purpose of this section is to show that Fourier integral operators admit a sparse and

well organized structure in a curvelet frame. The main result, Theorem 2.1, is a key step in

completing the discussion of the previous section. (Observe that by construction, the FIOs

encountered in the previous section satisfy all the assumptions stated in Section 2.1 right

below (2.1).) As in the previous section, we will restrict the discussion to x ∈ R2 which is

no loss of generality, see Section 2.6.

2.5.1 Main Results

In the introduction section, we detailed a notion of Hamiltonian correspondence for hyper-

bolic equations. This correspondence also exists for FIOs and is “encoded” in the phase

function Φ of the FIO. It is called the canonical transformation associated to Φ, and is

defined as the mapping (x, ξ) → (y, η) of phase-space

x = ∇ξΦ(y, ξ), η = ∇xΦ(y, ξ). (2.47)

As suggested in Section 2.4.5, this formulation is equivalent to that involving trajectories

along the bicharacteristic flow as in equation (1.10), provided the phase function solves an

appropriate Hamilton-Jacobi equation.

This canonical transformation induces a mapping of curvelet subscripts, denoted by

µ′ = h(µ). It is defined via the closest point (xµ′ , ξµ′), on the curvelet lattice, to the image

of (xµ, ξµ) by the canonical transformation. We can already remark that mistaking a point

3We can only conjecture that the decoupling should be better if we use the improved ϕ
(∞)
µν .
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(xµ′ , ξµ′) for one of its neighbors will not compromise the following result, only increase the

value of the constant CN in front of the estimate.

The main result for this section reads as follows.

Theorem 2.1. Let T be a Fourier integral operator of order m acting on functions of R2,

with the assumptions stated above, and T (µ;µ′) denote its matrix elements in the complex

curvelet tight frame. Then with h the curvelet index mapping and ω the distance defined in

(2.19), the elements T (µ;µ′) obey for each N > 0

|T (µ;µ′)| ≤ CN · 2mj′ω(µ, h(µ′))−N ,

for some CN > 0. Moreover, for every 0 < p ≤ ∞, (T (µ, µ′)) is bounded from `p to `p.

The interpretation of Theorem 2.1 is in strong analogy with that of Theorem 1.1.

Namely, a FIO has the property of transporting and warping a curvelet into another

curvelet-like molecule. (Again, the choice of using complex-valued curvelets is not essential,

as a real curvelet would be mapped onto two molecules.)

The proof of Theorem 2.1 relies on the factorization of T on the space-frequency support

of ϕµ as a nice pseudolocal operator T1,µ followed by a smooth change of variables, or

warping T2,µ. This decomposition goes as follows.

Let ϕµ be a fixed curvelet centered around the lattice point (xµ, ξµ) in phase-space. The

phase of our FIO can be decomposed as

Φ(x, ξ) = Φξ(x, ξµ) · ξ + δ(x, ξ), φµ(x) = Φξ(x, ξµ). (2.48)

In effect, the above decomposition “linearizes” the frequency variable and is classical, see

[68, 79]. With these notations, we may rewrite the action of T on a curvelet ϕµ as

(Tϕµ)(x) =

∫
eiφµ(x)·ξeiδ(x,ξ)σ(x, ξ)ϕ̂µ(ξ) dξ. (2.49)

Now for a fixed value of the parameter µ, we introduce the decomposition

T = T2,µT1,µ,
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where

(T1,µf)(x) =

∫
eix·ξbµ(x, ξ)f̂(ξ) dξ, (T2,µf)(x) = f(φµ(x)), (2.50)

with bµ(x, ξ) = eiδ(φ−1
µ (x),ξ)σ(φ−1

µ (x), ξ)). This decomposition allows the separate study of

the nonlinearities in frequency ξ and space x in the phase function Φ. The point is that

both T1,µ and T2,µ are sparse in a curvelet tight frame—only for very different reasons.

Theorem 2.2. Let (ϕµ)µ be a tight frame of curvelets compactly supported in frequency.

For each µ, T1,µ maps ϕµ into a curvelet molecule mµ with arbitrary regularity R, uniformly

over µ in the sense that the constants in estimates (2.12) and (2.13) do not depend on µ.

As we shall see, the proof of Theorem 2.2, presented in Section 2.5.2, relies on the

property of compact support in frequency of the ϕµ. In contrast the corresponding result

for the operators T2,µ which we present next, is extraordinarily simplified if one uses curvelets

compactly supported in space. Although well localized in space, the tight frame introduced

in Section 2.2 does not meet this requirement. In order to circumvent this technical difficulty,

we introduce compactly supported curvelet atoms in Section 2.5.3. They are built on the

model of atomic decompositions, standard in approximation theory [42].

Theorem 2.3. Let (ρµ)µ be a family of complex-valued curvelet atoms, compactly supported

in space, with regularity R. Denote by h the canonical index correspondence associated to

Φ, as defined above. For each µ, T2,µ maps ρµ into a molecule mh(µ) of the same regularity

R, uniformly over µ.

The latter theorem says that the “warped” atom ρµ ◦ φµ is still an atom, only its scale,

orientation, and location may have been changed. That a smooth warping preserves the

sparsity of curvelet expansions is a result of independent interest.

The remaining three sections are devoted to the proofs of Theorems 2.2, 2.3 and 2.1. The

dependence of φµ upon µ is not essential in proving Theorems 2.2, 2.3 as the only property

of interest is that the derivatives of φµ are bounded from above and below uniformly over µ

(which follows from our assumptions about Φ). This is the reason why in the next sections

we will drop the explicit dependence on µ and work with a generic warping φ.
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2.5.2 Proof of Theorem 2.2

We will assume without loss of generality that our curvelet ϕµ is centered near zero (k = 0)

and is nearly vertical (θµ = 0).

Set mµ = T1ϕµ. We first show that mµ obeys the smoothness and spatial localization

estimate of a molecule (2.12). With the same notations as before, recall that mµ is given

by

mµ(x) =

∫
eix·ξbµ(x, ξ)ϕ̂µ(ξ) dξ, bµ(x, ξ) = eiδ(φ−1(x),ξ)σ(φ−1(x), ξ). (2.51)

To study the spatial decay of mµ(x), we introduce the differential operator

Lξ = I − 22j ∂
2

∂ξ21
− 2j ∂

2

∂ξ22
,

and evaluate the integral (2.51) using an integration by parts argument. First, observe that

LN
ξ e

ix·ξ =
(
1 + |2jx1|2 + |2j/2x2|2

)N
eix·ξ.

Second, we claim that for every integer N ≥ 0,

|LN
ξ [bµ(x, ξ)ϕ̂µ(ξ)]| ≤ C · 2−3j/4. (2.52)

(The factor 2−3j/4 comes from the L2 normalization of ϕ̂µ.) This inequality is proved in

appendix A.2. Hence,

mµ(x) =
(
1 + |2jx1|2 + |2j/2x2|2

)−N
∫
LN

ξ [bµ(x, ξ)ϕ̂µ(ξ)] eix·ξ.

Since |LN
ξ [bµ(x, ξ)ϕ̂µ(ξ)]| ≤ C · 2−3j/4 and is supported on a dyadic rectangle Rµ, of length

about 2j and width 2j/2, we then established that

|mµ(x)| ≤ C · 23j/4

(
1 + |2jx1|2 + |2j/2x2|2

)N .
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The derivatives of mµ are essentially treated in the same way. Begin with

∂α
x (eix·ξbµ(x, ξ)) =

∑

β+ϕ≤α

∂β(eix·ξ) ∂ϕ(bµ(x, ξ))

=
∑

β+ϕ≤α

∂ϕ(bµ(x, ξ)) ξβeix·ξ

Therefore, the partial derivatives of mµ are given by

(∂α
xmµ)(x) =

∑

β+ϕ≤α

Iβ,ϕ(x), (2.53)

where

Iβ,ϕ(x) =

∫
eix·ξ∂ϕ

x (bµ(x, ξ))ξβϕ̂µ(ξ) dξ. (2.54)

First, observe that on the support of ϕ̂µ, |ξ|β obeys |ξ|β ≤ C ·2jβ1 ·2jβ2/2. Second, the term

∂ϕ
x b(x, ξ) is of the same nature as bµ(x, ξ) in the sense that it obeys all the same estimates

as before. In particular, we claim that for every integer N ≥ 0,

|LN
ξ [∂ϕ

x bµ(x, ξ)ξβϕ̂µ(ξ)]| ≤ C · 2−3j/4 · 2jβ1 · 2jβ2/2. (2.55)

Hence, the same argument as before gives

|Iβ,ϕ(x)| ≤ C · 23j/4 · 2jβ1 · 2jβ2/2

(
1 + |2jx1|2 + |2j/2x2|2

)N .

Now since β ≤ α, we may conclude that

|(∂α
xmµ)(x)| ≤ C · 23j/4 · 2jα1 · 2jα2/2

(
1 + |2jx1|2 + |2j/2x2|2

)N .

This establishes the smoothness and localization property.

The above analysis shows that mµ is a “ridge” of effective length 2−j/2 and width 2−j ;

to prove that mµ is a molecule, we now need to evidence its oscillatory behavior across

the ridge. In other words, we are interested in the size of the Fourier transform at low

frequencies (2.13)–(2.16).
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Formally, the Fourier transform of mµ is given by

m̂µ(ξ) =

∫ ∫
eix·(η−ξ)bµ(x, η)ϕ̂µ(η) dxdη. (2.56)

We should point out that because the amplitude b is not of compact support in x, the

sense in which (2.56) holds is not obvious. This is a well known phenomenon in Fourier

analysis and a classical technique to circumvent such difficulties would be to multiply mµ

(or equivalently bµ) by a smooth and compactly supported cut-off function χ(εx) and let ε

tend to zero. We omit those details as they are standard.

Set D1 = −i ∂
∂x1

. To develop bounds on |m̂µ(ξ)|, observe that

DN
1 e

ix·η = (η1)
N .

An integration by parts then gives

m̂µ(ξ) =

∫ ∫
eix·ηDN

1

(
e−ix·ξ bµ(x, ξ)

)
η−N
1 ϕ̂µ(η) dxdη.

Hence,

m̂µ(ξ) =
N∑

m=0

cm ξm
1 F̂m(ξ),

where

Fm(x) =

∫
eix·η(∂n−m

x1
b(x, ξ)) η−n

1 ϕ̂µ(η) dη.

Note that Fm is exactly of the same form as (2.54)—but with η−n
1 instead of ηβ—and

therefore, the exact same argument as before gives

|Fm(x)| ≤ C · 23j/4 · 2−jn

(
1 + |2jx1|2 + |2j/2x2|2

)N .

We then established

‖F̂m‖L∞ ≤ ‖F‖L1 ≤ Cm · 2−3j/4 · 2−jn,

which gives

|mµ(ξ)| ≤ C · 2−3j/4 · 2−jn · (1 + |ξ|n),

as required. This finishes the proof of Theorem 2.2.
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The careful reader will object that we did not study the case of coarse scale curvelets; it

is obvious that coarse scale elements are mapped into coarse scale molecules and, here, the

argument would not require the deployment of the sophisticated tools we exposed above.

We omit the proof.

2.5.3 Atomic Decompositions

As we will see later, to prove our main result and especially Theorem 2.3, it would be most

helpful to work with tight frames of curvelet compactly supported in space. Unfortunately,

it is unclear at this point how to construct such tight frames with nice frequency localization

properties. However, there exist useful atomic decompositions with compactly supported

curvelet-like atoms. We now explore such decompositions.

In this section, the notation fa,θ refers to the function obtained from f after applying a

parabolic scaling and a rotation

fa,θ(x) = a−3/4f (DaRθx) , Da =


1/a 0

0 1/
√
a


 ,

and where Rθ is the rotation matrix which maps the vector (1, 0) into (cos θ,− sin θ). Note

that this is an isometry as

‖fa,θ‖L2 = ‖f‖L2 .

In [73], Smith proved the following result: let ψ̃ be a Schwartz function obeying
ˆ̃
ψ(1, 0) 6=

0; then one can find another Schwartz function ψ, and a function q(ξ) such that the following

formula holds

q(ξ)

∫

a≤1

ˆ̃
ψa,θ(ξ)ψ̂a,θ(ξ) adadθ = r(ξ); (2.57)

here r is a smooth cut-off function obeying

r(ξ) =





1 |ξ| ≥ 2

0 |ξ| ≤ 1
,

and q is a standard Fourier multiplier of order zero; that is, for each multiindex α, there

exists a constant Cα such that

|∂α
ξ q(ξ)| ≤ Cα(1 + |ξ|)−|α|.
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This formula is useful because it allows us to express any object whose Fourier transform

vanishes on {|ξ| ≤ 2} as a continuous superposition of curvelet-like elements. We now make

some specific choices for ϕ. In the remainder of this section, we will take ψ̃(x) = ψ(−x)
and the function ψ of the form

ψ(x1, x2) = ψD(x1)ϕ(x2), (2.58)

where both ϕ and ψD are compactly supported and obey

Suppϕ ⊂ [0, 1], SuppψD ⊂ [0, 1].

We will assume that ϕ and ψD are C∞ and that the function ψD has vanishing moments

up to order D, i.e., ∫
ψD(x1)x

k
1 dx1 = 0, k = 0, 1, . . . , D. (2.59)

For each a ≤ 1, each b ∈ R2 and each θ ∈ [0, 2π), introduce

ψa,θ,b(x) := ψa,θ(x− b) = a−3/4ψ (DaRθ(x− b)) ; (2.60)

and given an object f , define coefficients by

CCT (f)(a, b, θ) =

∫
ψa,θ,b(x)f(x)dx. (2.61)

Now, suppose for instance that f̂ vanishes over |ξ| ≤ 2, then (2.57) gives the exact recon-

struction formula

f(x) =

∫

a≥1
CCT (q(D)f)(a, b, θ)ψa,θ,b(x)µ(dadθdb), (2.62)

with µ(dadθdb) = adadθdb. In the remainder of this section, we will use the shorter notation

dµ for µ(dadθdb).

As is now well established, the reproducing formula may be turned into a so-called

“atomic decomposition.” Not surprisingly, our atomic decomposition will just mimic the

discretization of the curvelet frame as introduced in Section 2.2. With the notations of that

section, we introduce the cells Qµ defined as follows: for j ≥ 0, ` = 0, 1, . . . , 2bj/2c − 1 and
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k = (k1, k2) ∈ Z2, the cell Qµ is the collections of triples (a, θ, b) for which

2−(j+1) ≤ a < 2−j , |θ − θµ| ≤
π

2
2−bj/2c

and

D2−jRθµb ∈ [k1, k1 + 1) × [k2, k2 + 1).

Note that
∫
Qµ
dµ = 3π/2 for j even, and 3π for j odd. We may then break the integral

(2.62) into a sum of terms arising from different cells, namely,

f(x) =
∑

µ

αµρµ(x) (2.63)

where

αµ = ‖CCT (q(D)f)‖L2(Qµ), (2.64)

ρµ(x) =
1

αµ

∫

Qµ

CCT (q(D)f))(a, b, θ)ψa,θ,b(x) dµ.

Of course, the decomposition (2.63) greatly resembles the tight frame expansion, com-

pare (1.9). In particular, the atoms ρµ are curvelet-like in the sense that they share all the

properties of the tight frame (ϕµ)µ – only they are compactly supported in space. In the

remainder of the chapter, we will call these elements curvelet atoms. Below are some crucial

properties of these atoms. Please note that we are not talking about wave atoms here, but

merely a specific type of curvelet-like waveforms which happen to be named “atoms” as

well.

Lemma 2.7. Rewrite the atoms ρµ as ρµ(x) = 23j/4a(µ)
(
D2−jRθµx− k

)
. In other words,

ρµ is obtained from a(µ) after parabolic scaling, rotation, and translation. For all µ, the a(µ)

verify the following properties.

• Compact support;

Supp a(µ) ⊂ cQ. (2.65)

• Nearly vanishing moment along the horizontal axis; let m = D/2. Then for each
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k = 0, 1, . . . ,m, there is a constant Cm such that

∫
a(µ)(x1, x2)x

k
1 dx1 ≤ Cm · 2−j(m+1). (2.66)

• Regularity; for every multiindex α

|∂α
x a

(µ)(x)| ≤ Cα. (2.67)

In (2.66) and (2.67), the constants may be chosen independently of µ and f .

Proof. See appendix A.2

Needless to say that curvelet atoms are molecules with spatial compact support, compare

lemma 2.7 with the definition of a molecule. Finally, observe (and this is important) that

it is of course possible to decompose a molecule into a series of atoms

mµ =
∑

µ′

αµµ′ρµ′ .

The coefficients would then obey the same estimate as in lemma 2.1

|αµµ′ | ≤ CN · ω(µ, µ′)−N , (2.68)

and in particular, for each p > 0,

sup
µ

∑

µ′

|αµµ′ |p < Cp.

This is briefly justified in appendix A.2.

2.5.4 Proof of Theorem 2.3

As mentioned earlier, curvelet atoms depend in a nonessential way upon the object f we

wish to analyze and we shall drop this dependence in our notations. To prove Theorem 2.3,

recall that we need to show that for each curvelet atom ρµ with regularity R, the “warped”

atom ρµ ◦ φ is also a curvelet atom, with the same regularity.
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As in Section 2.5.3, we suppose our curvelet atom is of the form

ρµ(x) = 23j/4a(µ)(D2−jRθµ(x− xµ)),

where a(µ) obeys the conditions of Lemma 2.7. (Here, the location xµ may be formally

defined by xµ = (D2−jRθµ)−1kδ.) Define yµ and Aµ by

yµ = φ−1(xµ), and Aµ = (∇φ)(yµ) (2.69)

so that

φ(y) = xµ +Aµ(y − yµ) + g(y − yµ).

With these notations, it is clear that the warped atom ρµ ◦φ will be centered near the point

yµ; that is,

ρµ(φ(y)) = 23j/4a(µ)
(
D2−jRθµ(Aµ(y − yµ) + g(y − yµ))

)
.

To simplify matters, we first assume that Aµ is the identity and show that ρµ◦φ is a curvelet

atom with the same scale and orientation as ρµ. Later, we will see that in general, ρµ ◦ φ
is an atom whose orientation depends upon Aµ, and whose scale may be taken to be the

same as that of ρµ. Assume without loss of generality that θµ = 0 and yµ = 0 (statements

for arbitrary orientations and locations are obtained in an obvious fashion) so that

ρµ(φ(y)) = 23j/4a(µ) (D2−j (y + g(y))) = 23j/4b(µ)(D2−jy), (2.70)

with

b(µ)(y) = a(µ) (y +D2−jg(D2jy)) .

The atom a(µ) is supported over a square of sidelength about 1; likewise, b(µ) is also com-

pactly supported in a box of roughly the same size—uniformly over µ. We then need to

derive smoothness estimates and show that b(µ) obeys

|∂αb(µ)(y)| ≤ Cα, |α| ≤ R. (2.71)

Over the support of ρµ ◦ φ, g = (g1, g2) deviates little from zero and for each k = 1, 2, gk
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obeys

|gk(y)| ≤ C · 2−j , |∂αgk(y)| ≤ C · 2−j/2, |α| = 1.

Similarly, for each α, |α| > 1,

|∂αgk(y)| ≤ Cα. (2.72)

These estimates hold uniformly over µ. It follows that for |y1|, |y2| ≤ C and each α, the

perturbation g obeys

2j · |∂αg1(2
−jy1, 2

−j/2y2)| ≤ Cα, 2j/2 · |∂αg2(2
−jy1, 2

−j/2y2)| ≤ Cα. (2.73)

The bound (2.71) is then a simple consequence of (2.73) together with the fact that all the

derivatives of a(µ) up to order R are bounded, uniformly over µ.

We now show that ρµ ◦ φ exhibits the appropriate behavior at low frequencies.

ρ̂µ ◦ φ(ξ) =

∫
e−ix·ξρµ(φ(x)) dx

=

∫
e−iφ−1(x)·ξρµ(x)

dx

| det∇φ|(φ−1(x))
.

We will use the nearly vanishing moment property of ρµ. Set

Sξ(x) = e−iφ−1(x)·ξ/| det∇φ|(φ−1(x));

note that over the support of ρµ and for each N ≤ R, we have available the following upper

bound on the partial derivative of Sξ

|∂N
1 Sξ(x)| ≤ CN · (1 + |ξ|)N .

Classical arguments give

ρ̂µ ◦ φ(ξ) =
n−1∑

k=0

∫
∂k

1Sξ(0, x2)

k!
dx2

∫
ρµ(x1, x2)x

k
1 dx1dx2 + E, (2.74)

where E is a remainder term obeying

|E| ≤ Cn · 2−3j/4 · 2−jn · sup |∂n
1 Sξ(x)| ≤ Cn · 2−3j/4 · 2−jn(1 + |ξ|n). (2.75)
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The near-vanishing moment property gives that each term in the right-hand side of (2.74)

obeys the estimate in (2.75). This proves that the Fourier transform of ρµ ◦ φ obeys

|ρ̂µ ◦ φ(ξ)| ≤ Cn · 2−jn(1 + |ξ|n)

as required.

We now discuss the case where the matrix Aµ is not the identity. In this case, (2.70)

becomes

ρµ(φ(y)) = mµ(Aµy),

with

mµ(y) = 23j/4a(µ) (D2j (y + g̃(y))) , and g̃(y) = g(A−1
µ y).

Our assumptions about FIOs guarantee that |A−1
µ | is uniformly bounded and, therefore, it

follows from the previous analysis that mµ is a curvelet atom. As a consequence ρµ ◦ φ is a

curvelet atom with the same regularity R since it is clear that bounded linear transforma-

tions of the plane map curvelet atoms into curvelet atoms.

2.5.5 Proof of Theorem 2.1

Let ϕµ0 be a fixed curvelet and decompose T as T2,µ0 ◦ T1,µ0 . First, Theorem 2.2 proved

that T1,µ0ϕµ0 is a curvelet molecule mµ0 which we will express as a superposition of curvelet

atoms ρµ1

T1,µ0ϕµ0 = mµ0 =
∑

µ1

β0(µ1, µ0)ρµ1 .

Second, for each µ1, Theorem 2.3 shows that T2,µ1ρµ1 is a molecule mh(µ1) at the location

h(µ1). We are not exactly in that setting since in T2,µ0ρµ1 , the subscripts do not, in

general, match. This does not pose any difficulty since Theorem 2.3 can be understood as

a statement concerning general warpings φ. We can define the map hµ0 as induced by the

transformation (x, ξ) → (y, η) given by

x = ∇xΦ(y, ξµ0), η = ∇ξ(y, ξµ0)
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(compare this with equation (2.47)). Then, according to Theorem 2.3, T2,µ0ρµ1 is a

molecule mhµ0 (µ1) at the location hµ0(µ1). So

〈ϕµ2 , T2,µ0ρµ1〉 = β1(µ2, hµ0(µ1)).

Hence,

〈ϕµ2 , Tϕµ0〉 =
∑

µ1

β1(µ2, hµ0(µ1))β0(µ1, µ0).

Of course, both β0 and β1 obey very special decay properties.

• By Theorem 2.2 and Lemma 2.1, |β0(µ1, µ0)| ≤ Cn · ω(µ1, µ0)
−N for arbitrarily large

N > 0, provided that the selected atoms are regular enough.

• By Theorem 2.3 and Lemma 2.1, |β1(µ2, hµ0(µ1))| ≤ CN · ω(µ2, hµ0(µ1))
−N for arbi-

trarily large N > 0, provided that the selected atoms are regular enough.

Theorem 2.1 now follows from the observation that

∑

µ1

ω(µ2, hµ0(µ1))
−N · ω(µ1, µ0)

−N ≤ Cn · ω(µ2, hµ0(µ0))
−(N−1), (2.76)

This is an immediate consequence of properties 3 and 4 of the pseudodistance ω, see propo-

sition 2.1.

Cases involving coarse scale elements are treated similarly and we omit the proof. The

boundedness from `p to `p for every p > 0 follows from the same argument as in the proof

of Theorem 1.1.

2.6 Discussion

All along we specialized our discussion to the special case where the dimension of the spatial

variable is n = 2. It is clear that nothing in our arguments depends upon this specific

assumption. Indeed, we could just as well construct tight frames of curvelets in arbitrary

dimensions by smoothly partitioning the frequency plane into dyadic coronae, which would

then be angularly localized near regions of sidelength length 2j in the radial direction and

2j/2 in all the other directions; in order to this, we would use smooth partitions of the unit

sphere of Rn into spherical caps of radius about 2−j/2. All of our analysis would apply as
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is, and would prove versions of Theorem 1.1 in arbitrary dimensions.

Our main result assumes that the coefficients of the equation (1.7) be smooth. In many

applications of interest, however, the coefficients may be smooth away from singular smooth

surfaces. In geophysics for example, we typically have different layers with very different

physical properties. A very important question would be to know how our analysis would

adapt to this situation. In fact, it seems natural to believe that sparsity would continue to

hold in this more general setting. Intuitively, the wave group would still be approximated

by rigid motion along the Hamiltonian flow. Only, one would need to account for possible

reflections/refractions. A curvelet hitting a singularity at a small angle of incidence would

typically produce two curvelets, a reflected and a refracted curvelet. This is merely an

intuition which one would need to justify by a careful analysis quantifying the behavior of

a curvelet near the interface (here, the singular surface). We regard this type of question

as an important extension to this work.
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Chapter 3

Fast Discrete Curvelet Transforms

This chapter is organized as follows. Section 3.1 introduces the main ideas underlying

the wrapping-based digital implementation of curvelets. Its mathematical properties are

then detailed in Section 3.2. Section 3.3 discusses refinements and extensions of the ideas

underlying the discrete transforms while Section 3.4 illustrates our methods with a few

numerical experiments. Finally, we conclude with Section 3.5 which explains connections

with the work of others, and outlines possible applications of these transforms. A few open

problems are listed in the conclusion (Chapter 5).

The software package CurveLab implements the transforms proposed in this paper, and

is available at http://www.curvelet.org. It contains the Matlab and C++ implementa-

tions of both the USFFT-based [16] and the wrapping-based transforms. Several Matlab

scripts are provided to demonstrate how to use this software. Additionally, three different

implementations of the 3D discrete curvelet transform are also included.

3.1 Digital Curvelet Transforms

In this chapter, we propose an implementation of the curvelet transform which is faithful to

the mathematical transformation outlined in section 2.2. These digital transformations are

linear and take as input Cartesian arrays of the form f [t1, t2], 0 ≤ t1, t2 < n, which allows

us to think of the output as a collection of coefficients cD(j, `, k) obtained by the digital

analog to (2.8)

cD(j, `, k) :=
∑

0≤t1,t2<n

f [t1, t2]ϕD
j,`,k[t1, t2], (3.1)
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where each ϕD
j,`,k is a digital curvelet waveform (here and below, the superscript D stands

for “digital”). As is standard in scientific computations, we will actually never build these

digital waveforms which are implicitly defined by the algorithms; formally, they are the

rows of the matrix representing the linear transformation and are also known as Riesz

representers. We merely introduce these waveforms because it will make the exposition

clearer and because it provides a useful way to explain the relationship with the continuous-

time transformation.

Let us now introduce the architecture of the curvelet transform.

3.1.1 Digital Coronization

In the continuous-time definition (2.7), the window Uj smoothly extracts frequencies near

the dyadic corona {2j ≤ r ≤ 2j+1} and near the angle {−π ·2−j/2 ≤ θ ≤ π ·2−j/2}. Coronae

and rotations are not especially adapted to Cartesian arrays. Instead, it is convenient

to replace these concepts by Cartesian equivalents; here, “Cartesian coronae” based on

concentric squares (instead of circles) and shears. For example, the Cartesian analog to the

family (Wj)j≥0, Wj(ω) = W (2−jω), would be a window of the form

W̃j(ω) =
√

Φ2
j+1(ω) − Φ2

j (ω), j ≥ 0,

where Φ is defined as the product of low-pass one dimensional windows

Φj(ω1, ω2) = φ(2−jω1)φ(2−jω2).

The function φ obeys 0 ≤ φ ≤ 1, might be equal to 1 on [−1/2, 1/2], and vanishes outside

of [−2, 2]. It is immediate to check that

Φ0(ω)2 +
∑

j≥0

W̃ 2
j (ω) = 1. (3.2)

We have just seen how to separate scales in a Cartesian-friendly fashion and now examine

the angular localization. Suppose that V is as before, i.e., obeys (2.6) and set

Vj(ω) = V (2bj/2cω2/ω1).
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We can then use W̃j and Vj to define the “Cartesian” window

Ũj(ω) := W̃j(ω)Vj(ω). (3.3)

It is clear that Ũj isolates frequencies near the wedge {(ω1, ω2) : 2j ≤ ω1 ≤ 2j+1, −2−j/2 ≤
ω2/ω1 ≤ 2−j/2}, and is a Cartesian equivalent to the “polar” window of Section 2.2. Intro-

duce now the set of equispaced slopes tan θ` := ` · 2−bj/2c, ` = −2bj/2c, . . . , 2bj/2c − 1, and

define

Ũj,`(ω) := Wj(ω)Vj(Sθ`
ω),

where Sθ is the shear matrix,

Sθ :=


 1 0

− tan θ 1


 .

The angles θ` are not equispaced here but the slopes are. When completed by symmetry

around the origin and rotation by ±π/2 radians, the Ũj,` define the Cartesian analog to the

family Uj(Rθ`
ω) of Section 2.2. The family Ũj,` implies a concentric tiling whose geometry

is pictured in Figure 3.1.1

By construction, Vj(Sθ`
ω) = V (2bj/2cω2/ω1 − `) and for each ω = (ω1, ω2) with ω1 > 0,

say, (2.6) gives
∞∑

`=−∞
|Vj(Sθ`

ω)|2 = 1.

Because of the support constraint on the function V , the above sum restricted to the angles

of interest, −1 ≤ tan θ` < 1, obeys
∑

all angles |Vj(Sθ`
ω)|2 = 1, for ω2/ω1 ∈ [−1+2−bj/2c, 1−

2−bj/2c]. Therefore, it follows from (3.2) that

∑

all scales

∑

all angles

|Ũj,`(ω)|2 = 1. (3.5)

1There are other ways of defining such localizing windows. An alternative might be to select Ũj as

Ũj(ω) := ψj(ω1)Vj(ω), (3.4)

where ψj(ω1) = ψ(2−jω1) with ψ(ω1) =
p

φ(ω1/2)2 − φ(ω1)2 a bandpass profile, and to define for each
θ` ∈ [−π/4, π/4)

Ũj,`(ω) := ψj(ω1)Vj(Sθ`
ω) = Ũj(Sθ`

ω).

With this special definition, the windows are shear-invariant at any given scale. In practice, both these
choices are almost equivalent since for a large number of angles of interest, many φ would actually give
identical windows Ũj,`.
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Figure 3.1: The figure illustrates the basic digital tiling. The windows Ũj,` smoothly localize
the Fourier transform near the sheared wedges obeying the parabolic scaling. The shaded
region represents one such typical wedge.

There is a way to define “corner” windows specially adapted to junctions over the four

quadrants (east, south, west, north) so that (3.5) holds for every ω ∈ R2. We postpone this

technical issue to Section 3.3.2.

The pseudo-polar tiling of the frequency plane with trapezoids, in Figure 3.1, is already

well-established as a data-friendly alternative to the ideal polar tiling. It was perhaps

first introduced in two articles that appeared as book chapters in the same book, Beyond

Wavelets, in 2003. The first construction is that of contourlets [31] and is based on a cascade

of properly sheared directional filters. On the other hand, ridgelet packets [40] are defined

directly in the frequency plane via interpolation onto a pseudo-polar grid aligned with the

trapezoids.

In the next section we explain the rest of the architecture, based on the wrapping opera-

tion. Candès and Donoho proposed another implementation, via USFFT, which is described

in [16]. In a nutshell, the two implementations differ in the way curvelets at a given scale and

angle are translated with respect to each other. In the USFFT-based version the translation

grid is tilted to be aligned with the orientation of the curvelet, yielding the most faithful

discretization of the continuous definition. In the Wrapping version the grid is the same for

every angle within each quadrant – yet each curvelet is given the proper orientation. As a

result, the wrapping-based transform may be simpler to understand and implement.
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3.1.2 Digital Curvelet Transform via Wrapping

The “wrapping” approach assumes a regular rectangular grid to translate curvelets at each

scale and angle, and defines “Cartesian” curvelets as

c(j, `, k) =

∫
f̂(ω)Ũj(S

−1
θ`
ω)ei〈b,ω〉 dω. (3.6)

In the above formula we will take b ' (k12
−j , k22

−j/2), taking on values on a rectangular

grid. This formula for b is understood when θ ∈ (−π
4 ,

π
4 ) or (3π

4 ,
5π
4 ), otherwise the roles of

L1,j and L2,j are to be exchanged.

The difficulty behind this approach is that, in the frequency plane, the window Ũj,`[n1, n2]

does not fit in a rectangle of size ∼ 2j × 2j/2, aligned with the axes, in which the 2D IFFT

could be applied to compute (3.6). After discretization, the integral over ω becomes a

sum over n1, n2 which would extend beyond the bounds allowed by the 2D IFFT. The

resemblance of (3.6) with a standard 2D inverse FFT is, in that respect, only formal.

To understand why respecting rectangle sizes is a concern, we recall that Ũj,` is supported

in the parallelepipedal region

Pj,` = Sθ`
Pj .

For most values of the angular variable θ`, Pj,` is supported inside a rectangle Rj,` aligned

with the axes, and with sidelengths both on the order of 2j . One could in principle use the

2D inverse FFT on this larger rectangle instead. This is close in spirit to the discretization

of the continuous directional wavelet transform proposed by Vandergheynst and Gobbers

in [86]. This seems ideal, but there is an apparent downside to this approach: dramatic

oversampling of the coefficients. In other words, whereas the previous approach showed

that it was possible to design curvelets with anisotropic spatial spacing of about n/2j in

one direction and n/2j/2 in the other, this approach would seem to require a naive regular

rectangular grid with sidelength about n/2j in both directions. In other words, one would

need to compute on the order of 22j coefficients per scale and angle as opposed, to only

about 23j/2 in the USFFT-based implementation. By looking at fine scale curvelets such

that 2j ³ n, this approach would require O(n2.5) storage versus O(n2) for the USFFT

version.

It is possible, however, to downsample the naive grid, and obtain for each scale and angle
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a subgrid which has the same cardinality as that in use in the USFFT implementation. The

idea is to periodize the frequency samples as we now explain.

As before, we let Pj,` be a parallelogram containing the support of the discrete localizing

window Ũj,`[n1, n2]. We suppose that at each scale j, there exist two constants L1,j ∼
2j and L2,j ∼ 2j/2 such that, for every orientation θ`, one can tile the two-dimensional

plane with translates of Pj,` by multiples of L1,j in the horizontal direction and L2,j in

the vertical direction. The corresponding periodization of the windowed data d[n1, n2] =

Ũj,`[n1, n2]f̂ [n1, n2] reads

Wd[n1, n2] =
∑

m1∈Z

∑

m2∈Z

d[n1 +m1L1,j , n2 +m2L2,j ]

The wrapped windowed data, around the origin, is then defined as the restriction ofWd[n1, n2]

to indices n1, n2 inside a rectangle with sides of length L1,j × L2,j near the origin:

0 ≤ n1 < L1,j , 0 ≤ n2 < L2,j .

Given indices (n1, n2) originally inside Pj,` (possibly much larger than L1,j , L2,j), the corre-

spondence between the wrapped and the original indices is one-to-one. Hence, the wrapping

transformation is a simple reindexing of the data. It is possible to express the wrapping of

the array d[n1, n2] around the origin even more simply by using the “modulo” function:

Wd[n1 mod L1,j , n2 mod L2,j ] = d[n1, n2], (3.7)

with (n1, n2) ∈ Pj,`. Intuitively, the modulo operation maps the original (n1, n2) into their

new position near the origin.

For those angles in the range θ ∈ (π/4, 3π/4), the wrapping is similar, after exchanging

the role of the coordinate axes. This is the situation shown in figure 3.2.

Equipped with this definition, the architecture of the FDCT via wrapping is as follows:

1. Apply the 2D FFT and obtain Fourier samples f̂ [n1, n2], −n/2 ≤ n1, n2 < n/2.

2. For each scale j and angle `, form the product Ũj,`[n1, n2]f̂ [n1, n2].
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ω2

ω1

L1,j

L2,j

Figure 3.2: Wrapping data, intially inside a parallelogram, into a rectangle by periodicity.
The angle θ is here in the range (π/4, 3π/4). The black parallelogram is the tile Pj,` which
contains the frequency support of the curvelet, whereas the gray parallelograms are the
replicas resulting from periodization. The rectangle is centered at the origin. The wrapped
ellipse appears “broken into pieces” but as we shall see, this is not an issue in the periodic
rectangle, where the opposite edges are identified.

3. Wrap this product around the origin and obtain

f̃j,`[n1, n2] = W (Ũj,`f̂)[n1, n2],

where the range for n1 and n2 is now 0 ≤ n1 < L1,j and 0 ≤ n2 < L2,j (for θ in the

range (−π/4, π/4)).

4. Apply the inverse 2D FFT to each f̃j,`, hence collecting the discrete coefficients

cD(j, `, k).

It is clear that this algorithm has computational complexity O(n2 log n) and in practice,

its computational cost does not exceed that of 6 to 10 two-dimensional FFTs, see Section

3.4 for typical values of CPU times. In Section 3.2, we will detail some of the properties

of this transform, namely, (1) it is an isometry, hence the inverse transform can simply be

computed as the adjoint, and (2) it is faithful to the continuous transform.
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3.1.3 FDCT Architecture

We finally close this section by listing the key elements of the implementation.

1. Frequency space is divided into dyadic annuli based on concentric squares.

2. Each annulus is subdivided into trapezoidal regions.

3. The wrapping operation uses extension by periodization to localize the Fourier samples

in a rectangular region in which the IFFT can be applied. For a given scale, this

corresponds only to two Cartesian sampling grids, one for all angles in the east-west

quadrants, and one for the north-south quadrants.

4. Both forward transforms are specified in closed form, and are invertible, with inverse

in closed form.

5. The design of appropriate digital curvelets at the finest scale, or outermost dyadic

corona, is not straightforward because of boundary/periodicity issues. Possible solu-

tions at the finest scale are discussed in Section 3.3.

3.2 FDCT via Frequency Wrapping

3.2.1 Riesz Representers

The naive technique suggested in Section 3.1 to obtain oversampled curvelet coefficients

consists of a simple 2D inverse FFT, which reads

cD,O(j, `, k) =
1

n2

∑

n1,n2∈Rj,`

f̂ [n1, n2]Ũj,`[n1, n2]e
2πi(k1n1/R1,j+k2n2/R2,j). (3.8)

The superscripts D,O stand for Digital, Oversampled. As before, Rj,` is a rectangle of

size R1,j × R2,j , aligned with the Cartesian axes, and containing the parallelogram Pj,`.

Assume that R1,j , R2,j divide the image size n. Then it is not hard to see that the coeffi-

cients cD,O(j, `, k) come from the discrete convolution of a curvelet with the signal f(t1, t2),

downsampled regularly in the sense that one selects only one out of every n/R1,j × n/R2,j

pixel.

In general the dimensions R1,j , R2,j of the rectangle are too large, as explained earlier.

Equivalently, one wishes to downsample the convolution further. The idea of the wrapping
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approach is to replace R1,j and R2,j in equation (3.8) by L1,j and L2,j , the original dimen-

sions of the parallelogram Pj,`. In order to fit Pj,` into a rectangle with the same dimensions,

we need to copy the data by periodicity, or wrap-around, as illustrated in Figure 3.2. This

is just a relabeling of the frequency samples, of the form

n′1 = n1 +m1L1,j , n′2 = n2 +m2L2,j ,

for some adequate integers m1 and m2 themselves depending on n1 and n2.

The 2D inverse FFT of the wrapped array therefore reads

cD(j, `, k) =
1

n2

L1,j−1∑

n1=0

L2,j−1∑

n2=0

W (Ũj,`f̂)[n1, n2]e
2πi(k1n1/L1,j+k2n2/L2,j). (3.9)

Notice that the wrapping relabeling leaves the phase factors unchanged in the above formula,

so we can also write it as2

cD(j, `, k) =
1

n2

n/2−1∑

n1=−n/2

n/2−1∑

n2=−n/2

Ũj,`[n1, n2]f̂ [n1, n2]e
2πi(k1n1/L1,j+k2n2/L2,j).

It is then easy to conclude that we have correctly downsampled the convolution of f with the

discrete curvelet, this time at every other n/L1,j × n/L2,j pixels. The following statement

establishes precisely this fact, i.e., that the curvelet transform computed by wrapping is as

geometrically faithful to the continuous transform as the sampling on the grid allows.

Proposition 3.1. Let ϕD
j,` be the “mother curvelet” at scale j and angle `,

ϕD
j,`(x) =

1

(2π)2

∫
ei〈x,ω〉Ũj,`(ω) dω,

and ϕ]
j,` denote its periodization over the unit square [0, 1]2,

ϕ]
j,`(x1, x2) =

∑

m1∈Z

∑

m2∈Z

ϕD
j,`(x1 +m1, x2 +m2).

2The leading factor 1
n2 is not the standard one for the inverse FFT (that would be 1

L1,jL2,j
), but this

choice of normalization is useful in the formulation of proposition 3.1. Yet another choice of normalization
will be made later to make the transform an isometry.
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In exact arithmetic, the coefficients in the East and West quadrants are given by

cD(j, `, k) =
1

n2

n−1∑

t1=0

n−1∑

t2=0

f [t1, t2]ϕ
]
j,`(

t1
n

− k1

L1,j
,
t2
n

− k2

L2,j
). (3.10)

This is a discrete circular convolution if and only if L1,j and L2,j both divide n. For angles

in the North and South quadrants, reverse the roles of L1,j and L2,j.

Proof. By definition, the East and West coefficients are given by the formula

cD(j, `, k) =
1

n2

L1,j−1∑

n1=0

L2,j−1∑

n2=0

e2πik1n1/L1,je2πik2n2/L2,jW (Ũj,`f̂)[n1, n2].

Let us change n1 and n2 to n′1 = n1 +m1L1,j , n
′
2 = n2 +m2L2,j , for appropriate integers

m1, m2 (themselves depending on n1 and n2) so that (2πn′1, 2πn
′
2) ∈ Pj,`, or more con-

cisely, “n′1, n
′
2 in tile.” This is the unwrapping transformation, and leaves the phase factors

unchanged. Notice that n1 = n′1 mod L1,j and n2 = n′2 mod L2,j . We can then use the

definition of wrapping in equation (3.7) to rewrite

cD(j, `, k) =
1

n2

∑

n1,n2 in tile

e2πik1n1/L1,je2πik2n2/L2,j Ũj,`[n1, n2] f̂ [n1, n2].

We recall that the index-to-sample correspondence in the frequency plane is just

Ũj,`[n1, n2] = Ũj,`(2πn1, 2πn2).

It is also valid for f̂ , if we introduce f̂(ω1, ω2) as the trigonometric interpolant of the array

f̂ [n1, n2]. Notice in passing that f̂(ω1, ω2) is periodic in ω outside of the fundamental cell,

so we actually have

f̂(2πn1, 2πn2) = f̂ [(n1 +
n

2
) mod n− n

2
, (n2 +

n

2
) mod n− n

2
] (3.11)

for every (n1, n2) ∈ Z2. With this convention the data f [t1, t2] itself can be viewed as

samples f( t1
n ,

t2
n ) of f , the inverse (continuous) Fourier transform of f̂ restricted to the

fundamental cell.

Using this continuous representation of the data, along with equation (3.12) in the case
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when the modulo is triggered in equation (3.11), cD(j, `, k) obeys

cD(j, `, k) =
1

n2

∑

n1,n2 in tile

ei2π(k1n1/L1,j+k2n2/L2,j) ϕ̂D
j,`(2πn1, 2πn2) f̂(2πn1, 2πn2)

and since ϕ̂j,` is compactly supported, one can extend the sum above to (n1, n2) ∈ Z2.

Introduce the Dirac comb

c(ω1, ω2) =
∑

n1∈Z

∑

n2∈Z

δ(ω1 − 2πn1)δ(ω2 − 2πn2).

and rewrite cD(j, `, k) as

cD(j, `, k) =
1

n2

∫

R2

e
iω1

k1
L1,j e

iω2
k2

L2,j c(ω)ϕ̂D
j,`(ω)f̂(ω) dω.

Our claim follows from Parseval’s identity which states that
∫
ûv̂ = (2π)2

∫
uv. Indeed, the

inverse Fourier transform of f̂ is given by

F−1(f̂(ω))(x) =
n−1∑

t1=0

n−1∑

t2=0

δ(x1 −
t1
n

)δ(x2 −
t2
n

)f [t1, t2],

while for the other

F−1(e
−iω1

k1
L1,j e

−iω2
k2

L2,j c(ω)ϕ̂D
j,`(ω))(x) =

1

(2π)2
ϕ]

j,`(x1 −
k1

L1,j
, x2 −

k2

L2,j
).

The Parseval formula then gives (3.10). For the North and South quadrants, the proof is

identical after swapping L1,j and L2,j .

Notice that the actual value of xµ, the center of ϕµ(x) in physical space, is implicit in

formula (3.10). If ϕµ is centered at the origin when k1 = k2 = 0, then

xµ = (
k1

L1,j
,
k2

L2,j
)

when the angle is −π/4 ≤ θ` < π/4, and

xµ = (
k1

L2,j
,
k2

L1,j
)
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for angles π/4 ≤ θ` < 3π/4.

3.2.2 Isometry and Inversion

In practice the curvelet coefficients are normalized as follows,

cD,N (j, `, k) =
n√

L1,jL2,j

cD(j, `, k),

where L1,j , L2,j are the sidelengths of the parallelogram Pj,`. Equipped with this normal-

ization, we have the Plancherel relation

∑

t1,t2

|f [t1, t2]|2 =
∑

j,`,k

|cD,N (j, `, k)|2.

This is easily proved by noticing that every step of the transform is isometric.

• The discrete Fourier transform, properly normalized,

f [t1, t2] →
1

n
f̂ [n1, n2]

is an isometry (and unitary).

• The decomposition into different scale-angle subbands,

f̂ [n1, n2] → {Ũj,`[n1, n2]f̂ [n1, n2]}j,`

is an isometry because the windows Ũj,` are constructed to obey
∑J

j=0

∑
` Ũj,`(ω)2 = 1.

• The wrapping transformation is only a relabeling of the frequency samples, thereby,

preserving `2 norms.

• The local inverse Fourier transform (3.9) is an isometry when properly normalized by

1√
L1,jL2,j

.

Owing to this isometry property, the inverse curvelet transform is simply computed as

the adjoint of the forward transform. Adjoints can typically be computed by “reversing”

all the operations of the direct transform. In our case,
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1. For each scale/angle pair (j, `), perform a (properly normalized) 2-D FFT of each

array cD,N (j, `, k), and obtain W (Ũj,`f̂)[n1, n2].

2. For each scale/angle pair (j, `), multiply the array W (Ũj,`f̂)[n1, n2] by the correspond-

ing wrapped curvelet W (Ũj,`)[n1, n2] which gives

W (|Ũj,`|2f̂)[n1, n2].

3. Unwrap each array W (|Ũj,`|2f̂)[n1, n2] on the frequency grid and add them all to-

gether. This recovers f̂ [n1, n2].

4. Finally, take a 2-D inverse FFT to get f [t1, t2].

In the wrapping approach, both the forward and inverse transform are computed in

O(n2 log n) operations, and require O(n2) storage.

3.3 Extensions

3.3.1 Curvelets at the Finest Scale

The design of appropriate basis functions at the finest scale, or outermost dyadic corona, is

not as straightforward for directional transforms like curvelets as it is for 1-D or 2-D tensor-

based wavelets. This is a sampling issue. If a fine-scale curvelet is sampled too coarsely, the

pixelization will make it look like a checkerboard and it will not be clear in which direction

it oscillates anymore. In the frequency domain, the wedge-shaped support does not fit in

the fundamental cell and its periodization introduces energy at unwanted angles.

The problem can be solved by assigning wavelets to the finest level. When j = J , the

unique sampled window ŨJ [n1, n2] is so constructed that its square forms a partition of

unity, together with the curvelet windows. A full 2D inverse FFT can then be performed

to obtain the wavelet coefficients. This highpass filtering is very simple but goes against

the philosophy of directional basis elements at fine scale. Wavelets at the finest scale are

illustrated in Figure 3.7 (top row).

In this section, we present the next simplest solution to the design of faithful curvelets at

the finest scale. For simplicity let us adopt the sampling scheme of the wrapping implemen-

tation, but a parallel discussion can be made for the USFFT-based transform. As above,
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denote by J the finest level. By construction, the standard curvelet window Ũj,`[n1, n2] is

obtained by sampling a continuous profile Ũj,`(ω1, ω2) at ω1 = 2πn1, ω2 = 2πn2. When

j = J , the profile Ũj,` overlaps the border of the fundamental cell but can still be sampled

according to the formula

ŨJ,`[(n1 +
n

2
) mod n− n

2
, (n2 +

n

2
) mod n− n

2
] = ŨJ,`(2πn1, 2πn2). (3.12)

The indices n1, n2 are still chosen such that ŨJ,` is evaluated on its support. The latter

is by construction sufficiently small so that no confusion occurs when taking modulos. In

effect we have just copied ŨJ,` by periodicity inside the fundamental cell. The windows

ŨJ,`(ω1, ω2) must be chosen adequately so that the discrete arrays ŨJ,`[n1, n2], now with

n1, n2 = −n/2 . . . n/2 − 1, obey the isometry property together with the other windows,

J∑

j=0

∑

`

|Ũj,`[n1, n2]|2 = 1.

In fact, this is the case if ŨJ,` is chosen as in Section 3.1 (after an appropriate rescaling).

Periodization in frequency amounts to sampling in space, so finest-scale curvelets are just

undersampled standard curvelets. This is illustrated in Figure 3.7 (middle row). What do

we loose in terms of aliasing? Spilling over by periodicity is inevitable, but here the aliased

tail consists of essentially only one-third of the frequency support. Observe in Figure 3.7

(middle right) that a large fraction of the energy of the discrete curvelet still lies within the

fundamental cell. Numerically, the non-aliased part amounts to about 92.4% of the total

squared `2 norm ‖ϕD
j,`,k‖2

`2 . The “checkerboard” look of undersampled curvelets, mentioned

above, is shown in Figure 3.7 (bottom right).

Accordingly, the definition of wrapping of an array d[n1, n2], in the presence of under-

sampled curvelets, is modified to read:

Wd[n1 mod L1,j , n2 mod L2,j ] = d[(n1 +
n

2
) mod n− n

2
, (n2 +

n

2
) mod n− n

2
] (3.13)

The new modulo that appears in the above equation (compare with (3.7)) prevents data

queries outside [0, n]2, which would otherwise happen if equation (3.7) were used naively.

Instead, data is folded back by periodicity onto the fundamental cell, ultimately resulting
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in aliased basis functions.

The definitions of forward and inverse curvelet transforms, as well as their properties,

otherwise go unchanged. Proposition 3.1 and its proof do not have to be changed either:

they are already compatible with equation (3.13).

3.3.2 Windows over Junctions Between Quadrants

The construction of windows Ũj,` explained in Section 3.1.1 make up an orthonormal parti-

tioning of unity as long as the window is supported near wedges that do not touch neither

of the two diagonals. There are 8 “corner” wedges per scale calling for a special treatment,

and corresponding to angles near ±π/4 and ±3π/4, see Figure 3.3 on the left. In these

exceptional cases, creating a partition of unity is not as straightforward. This is the topic

of this section.

It is best to follow Figure 3.3 while reading this paragraph. Consider a trapezoid in the

top quadrant and corresponding to an angle near 3π/4 as in the figure. The grey trapezoid

is the corner wedge near which the curvelet is supported, but the actual support of the

curvelet is the nonconvex hexagon bounded by the dash-dotted line. As before, the corner

curvelet window is given as a product of the radial window Wj and of the angular window

Vj,`,

ϕ̂D
j,`(ω) = Wj(ω)Vj,`(ω).

We decompose the corner window Vj,` into a left-half and a right-half. The right-half is

given by the standard construction presented earlier. It is a function of ω1
ω2

. The left-half

of the window is constructed as a member of a square-root of a partition of unity designed

in a frame rotated by 45 degrees with respect to the Cartesian axes. The left-half of the

window is a function of ω1+ω2
ω1−ω2

. The left and right-halves agree on the line where they

are stitched together (on the figure, it is the tilted line, first to the right of the diagonal

ω1 = −ω2). Along the border line, they are both equal to one and they have at least a couple

of vanishing derivatives in all directions. Again, the partition of unity can be designed so

that all these derivatives are zero. By construction, our set of windows obeys the partition

of unity property, equation (3.2).
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Figure 3.3: Left: The corner wedges appear in grey. Right: Detail of the construction of a
partition of unity over the junction between quadrants.

3.3.3 Other Frequency Tilings

The construction of curvelets is based on a polar dyadic-parabolic partition of the frequency

plane, also called FIO tiling, as explained in Section 2.2. However, the approach is flexible,

and can be used with a variety of choices of parallelepipedal tilings, for example, including

based on principles besides parabolic scaling. For example:

• A directional wavelet transform is obtained if, instead of dividing each dyadic corona

into C ·2bj/2c angles, we divide it into a constant number, say 8 or 16 angles, regardless

of scale as in [71]. This can be realized by dropping the requirement that wedges be

split as scale increases.

• A ridgelet transform is obtained by subdividing each dyadic corona into C · 2j angles.

This can be achieved by subdividing every angular wedge every time the scale index

j increases (not just every other time, as for curvelets.)

• A Gabor analysis is obtained if, instead of considering bandpass concentric annuli of

thickness increasing like a power of two, we consider the thickness to be the same for

all annuli. In other words, coronae with fixed width are substituted for dyadic coronae.

The number of wedges into which an annulus should be divided is proportional to its

length, or equivalently, its distance to the origin.

• More generally, one can create an adaptive partitioning of the frequency plane that

best matches the features of the analyzed image. This is the construction of ridgelet
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packets as explained in [40]. A best basis strategy can then be overlaid on the packet

construction to find the optimal partitioning in the sense that it minimizes an additive

measure of “entropy”, or sparsity.

In all these cases the wrapping strategy carries over without essential modifications and

yield tight or nearly tight frames. The design problem is reduced to the construction of a

smooth partition of unity that indicates the desired frequency tiling.

3.3.4 Higher Dimensions

Curvelets exist in any dimension [15]. In 3 dimensions for example, curvelets are little plates

of sidelength about 2−j/2 in two directions and thickness about 2−j in the orthonormal

direction. They vary smoothly in the two long directions and oscillate in the short one (the

3D parabolic scaling matrix is of the form diag(2−j/2, 2−j/2, 2−j)). Just as 2D curvelets

provide optimally efficient representations of 2D objects with singularities along smooth

curves, 3D curvelets would provide efficient representations of 3D objects with singularities

along smooth 2D surfaces, and more generally, of objects with singularities along smooth

manifolds of codimension 1 in higher dimensions.

The algorithms for 3D discrete curvelet transforms are similar to their 2D analogs. We

first decompose the object into dyadic annuli based on concentric cubes. Each annulus

is subdivided into trapezoidal regions obeying the usual frequency parabolic scaling (one

long and two short directions), see Figure 3.4. (Note that they are now 6 components

corresponding to the 6 faces of the cube.)

Figure 3.4: The dyadic-parabolic frequency tiling in 3D. Curvelets are supported near the
gray regions.
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Both transforms carry over to 3 dimensions and we only rehearse the minor modifica-

tions.

1. The 3D FDCT via wrapping just wraps the 3D parallelepipeds instead of their 2D

analogs.

2. The construction of junction windows (described in Section 3.3.2 for 2D FDCTs) is a

little more delicate since one needs to consider more cases. One possible solution is to

develop a partition of unity over the unit sphere which is then mapped onto the cube.

The detailed algorithm and numerical results of the 3D transform will be presented

in a future report.

In short, 3D FDCTs follow exactly the same architecture as 2D FDCTs, and the forward,

adjoint, and inverse transforms all run in O(N logN) for Cartesian arrays of size N = n3

voxels.

3.3.5 Nonperiodic Image Boundaries

An (unfortunate) consequence of using the DFT to define our transform is that the image is

implicitly considered as a periodic array. The leftmost and rightmost pixels in a given row,

or the top and bottom pixels in a given column, are considered immediate neighbors as much

as ordinary adjacent pixels are. By construction, a substantial number of basis functions

appear to be supported on two (or more) very distant regions of the image, because they

overlap the image boundary and get copied by periodicity. Let us call them “boundary

curvelets.”

Periodization may result in unwanted curvelet-looking artifacts near the image bound-

ary, for example in image denoising experiments. The reason for the presence of these

artifacts, however, is not the same for curvelets and for wavelets. In order to understand

this phenomenon, we need to sort curvelets according to their orientation.

1. Boundary curvelets that are aligned with a boundary edge mostly respond to the

artificial discontinuity created by periodization. Since the basis elements very closely

follow the boundary, the visual effect of a big coefficient is minor.

2. Boundary curvelets misaligned with respect to the boundary edge are assigned big

coefficients when they respond to geometrical structure on the opposite side of the
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image, across the edge. This causes the most severe visual artifacts.

In the remainder of this section, we present a few (somewhat naive) solutions to artifacts

of type 2, when boundary curvelets are misaligned.

The most obvious remedy is to pad the image with zeros to make it twice larger in

both directions. The curvelet transform is then applied to the extended image, increasing

the redundancy by a factor 4. The blank surrounding region is large enough to prevent

boundary curvelets from wrapping around. The inverse or adjoint transform would then

would have an extra step, clipping off the extra pixels.

If we postulate that artifacts of type 2 are caused by boundary curvelets forming an

angle greater than 45 degrees with the edge, then it is not necessary to zeropad in all

directions. The image should only be extended horizontally for mostly horizontal curvelets,

and vertically for mostly vertical curvelets. The zeropadding will make the image twice

larger in only one direction, depending on the orientation of the subband considered. In

this case, the increase in redundancy is only of a factor 2.

In principle it would be advantageous to make the width of the zeropadding not only

angle-dependent, but also scale-dependent. More precisely, the width of the padding does

not have to be bigger than a factor times the length of misaligned curvelets, i.e., C ·2−bj/2c.

The gain in redundancy would be obvious. There is a complication, however, in considering

scale-dependent or even angle-dependent paddings. Different subbands will correspond to

different grids and extra care will be needed to properly re-design the transform to make

it an isometry. It will be necessary to rethink the notion of discrete partition of unity to

accommodate interpolation between different grids.

We have not pursued this issue much further, but a better handling of image bound-

aries would improve the current architecture of the curvelet transform for image processing

applications.

3.4 Numerical Examples

We start this section by displaying a few curvelets in both the spatial and the frequency

domain, see Figures 3.5 (coarsest scale curvelets), 3.6 and 3.7 (curvelets at the finest level

where one can choose between wavelets and curvelets). Localization in both space and

frequency is apparent. The digital curvelets seem faithful to their continuous analog. In the
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Figure 3.5: At the coarsest level, curvelets are nondirectional and are Meyer scaling func-
tions. (a) Spatial-side. The color map is as follows: white is most negative, zero corresponds
to some tone of grey, and black is most positive. (b) Frequency-side (modulus of the Fourier
transform). The level of grey indicates values from zero (white) to one (black).

spatial domain, they are smooth along and oscillatory across the ridge. In the frequency

domain, they are sharply localized.

Next, Tables 3.1 and 3.2 report the running time of both FDCTs on a sequence of arrays

of increasing size. TFwd, TInv and TAdj are running times of the forward, inverse and adjoint

transforms respectively (we only give TInv for the FDCT via wrapping since the inverse is

the same as the adjoint). The column TFwd/TFFT gives the ratio between the running time

of the FDCT and that of the FFT on an array of the same size. The accuracy or `2-error

is computed as ‖f − CInvCFwdf‖`2/‖f‖`2 where CInv and CFwd are the the forward and

inverse FDCTs. The FDCT via wrapping achieves machine accuracy because of the exact

numerical tightness of the digital transform. The FDCT via USFFT also achieves high

accuracy, i.e. of the order of 10−6. Although both transforms have low running times, the

USFFT transform is somewhat slower; this is due to the interpolation step in the forward

transform and to the CG iterations in the inverse transform.

Image size TFwd(s) TInv(s) TFwd/TFFT `2 error

128 × 128 0.040458 0.039520 11.2383 4.5450e-16
256 × 256 0.174807 0.176519 8.8286 4.8230e-16
512 × 512 0.829820 0.868141 6.0793 4.8908e-16

1024 × 1024 4.394066 4.482452 7.7224 5.6303e-16
2048 × 2048 20.01692 23.02144 7.7567 6.3018e-16

Table 3.1: Running time and error for the wrapping-based transform.
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Figure 3.6: Curvelets at increasingly fine scales. The left panels represent curvelets (real
part) in the spatial domain (as functions of the spatial variable x). The right panels show
the modulus of the Fourier transform (as functions of the frequency variable ω). The color
map is the same as in Figure 3.5.

We then illustrate the potential of FDCTs with several examples. The wrapping-based

implementation has been used for all experiments. In the first example, we compare the

decay of the coefficients of the curvelet and various wavelet representations on images with

curve-like singularities. Our first input image—shown in Figure 3.8 (a)—is singular along

a smooth curve and is otherwise perfectly smooth (this image is de-aliased to remove the
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Figure 3.7: Wavelets and curvelets at the finest scale. Meyer wavelet in space (a) and
frequency (b). Undersampled curvelet in space (c) and frequency (d). (e) Zoom of (a). (f)
Zoom of (c).

artifacts due to pixelization). To compensate for the redundancy of the curvelet transform

and to display a meaningful comparison, we extract a fraction of the entries of the curvelet

coefficient table so that the number of curvelet and wavelet coefficients is identical. The

extracted curvelet entries are renormalized to preserve the overall `2 norm. Figure 3.8 (b)



98

Image size TFwd(s) TAdj(s) TInv(s) TFwd/TFFT `2 error

128 × 128 0.088832 0.091578 1.006522 24.6756 1.4430e-06
256 × 256 0.376838 0.390533 4.002353 19.0322 8.8154e-07
512 × 512 2.487052 2.579102 35.09599 18.2202 5.3195e-07

1024 × 1024 16.47702 16.87764 129.3631 28.9579 3.2390e-07
2048 × 2048 62.42980 65.09365 566.1732 24.1920 3.4305e-06

Table 3.2: Running time and error for the USFFT-based transform.

shows the values of the coefficients sorted in decreasing order of magnitude. The faster

the decay, the better. The sparsity analysis is complemented by the quantitative study

of partial reconstructions of f , where we have again used redundancy compensation as

explained above. Figure 3.8 (c) shows the PSNR of best m-term approximation,

PSNR = 20 log10

(
max(f(x)) − min(f(x))

‖f − fm‖2

)
(dB)

where fm is the partial reconstruction of f using the m largest coefficients in magnitude,

in the curvelet (or wavelet) expansion (note that because of the redundancy of the FDCT,

there are better ways of obtaining partial reconstructions).

The second input image—shown in Figure 3.9 (a)—is a synthetic seismogram corre-

sponding to the acoustic response of a one-dimensional layered medium to a point source.

The decay of the coefficients and the partial reconstruction error for this image are shown

in Figure 3.9 (b) and (c) respectively. Our experiments suggest that FDCTs outperform,

by a significant margin, traditional wavelet representations on these types of image data.

Synthetic seismic images seem to be the ideal setting for curvelets because they are pre-

pared as solutions to a wave equation in simple layered media, with a bandlimited point

excitation. The solution itself is therefore very close to being bandlimited. We are in the

setting of proposition 3.1: when the data are oscillatory yet properly sampled, curvelets

are expected to be completely faithful to the continuous transform, explaining the good

denoising performance.

The second example is denoising. The original image is the seismogram used in the

previous example (see Figure 3.9 (a)). The noise-to-signal ratio is set to 10%, which cor-

responds to PSNR = 20.0 dB. A denoising algorithm based on our curvelet transform

results in an image with PSNR = 37.6 dB. (see Figure 3.10 (c)) while a traditional wavelet

denosing algorithm (Symmlet 8 in WaveLab, shift-invariant hard thresholding at 2.5σ) gives
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Figure 3.8: Sparsity analysis of the curvelet and wavelet representations of a singular object.
(a) Input image. (b) Magnitude of the coefficients sorted in descending order. (c) PSNR
for partial reconstruction with the m largest coefficients in magnitude. The horizontal line
at 40 dB indicates a typical “visually acceptable” level of reconstruction.

PSNR = 30.8 dB. (see Figure 3.10 (d)). The curvelet denoising algorithm used above is

a simple shift-invariant block-thresholding of the wrapping-based curvelet transform (with

curvelets at the finest scale) and is available as Matlab code in CurveLab. (For an image of

size 1024 × 512, the whole procedure runs in less than 90 seconds on a standard desktop.)

In the introduction chapter, we pointed out that curvelets were especially well-adapted

to simultaneously represent the solution operators to large classes of wave equations and

the wavefields that are solutions to those equations. In our third example, we consider the

constant coefficient second-order wave equation with periodic boundary condition

utt − ∆u = 0 x ∈ [0, 1) × [0, 1).
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Figure 3.9: Sparsity analysis of the curvelet and wavelet representations of a seismogram.
(a) Synthetic seismogram corresponding to the acoustic response of a one-dimensional lay-
ered medium to a point source, courtesy of Eric Verschuur and Felix Herrmann. The x-axis
is the offset from the source and the y-axis is time. (b) Decay of the coefficients. (c) Partial
reconstruction error, measured in PSNR.

We discretize the domain with a 512-by-512 Cartesian grid, and take as initial wavefield a

delta function located at the center of the domain, see Figure 3.11 (a). The solution at a

later time is known analytically, and may therefore be computed exactly. We use the FDCT

to compress the wavefield at time t = 0.25 and t = 0.75. Figures 3.11 (b) and (c) show the
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approximate wavefields reconstructed from only 1.25% of the curvelet coefficients. In both

cases, the relative `2 error is about 10−5.

We have seen that the wavefield is well-approximated by just a few curvelets and now

study the compressibility of the wave propagator Et. For simplicity, assume Et acts on

scalar wavefields. From a theoretical point of view, it is known that the entries of Et(µ, µ
′) =

〈ϕµ, Etϕµ′〉 taken from an arbitrary row (fixed µ) or column (fixed µ′) decay faster than

any negative power law. Figure 3.11 (d) plots the decay of the matrix coefficients (sorted

by decreasing magnitude) for several columns of the propagator matrix Et at t = 0.75

while (e) plots the relative truncation error for those same columns. “Scale” in the legend

refers to the scale j ′ corresponding to µ′, the index of the column. Observe that for every

column, we achieve a relative error of order 10−5 by using about 1% of the largest curvelet

coefficients. The data are shown as is; no compensation for redundandy has been made in

this experiment.

3.5 Discussion

The transform introduced in this chapter was designed with the goal of being as faithful to

continuous curvelets as possible. The main step of the transform is to window the data in

frequency with prescribed windows, sampled on the same grid as the data. This sampling

in frequency is the only distortion that curvelets incur in the digital transforms. This issue

is inevitable but minor, since it is equivalent to periodization in space where curvelets decay

fast. Recall that the other potential source of error, spatial sampling, is a nonissue here

since curvelets are nearly bandlimited.

The wrapping variant is to our knowledge the fastest curvelet transform currently avail-

able. Computing a direct or inverse transform in C++ takes about the same time as 6 to

10 FFTs using FFTW (available at http://www.fftw.org), which can hardly be improved

upon.

3.5.1 Relationships with Other Works

The notion of directional multiscale transform originated independently in different fields

in the early nineties. Without the claim of being exhaustive, let us only mention continuous

wavelet theory [67] and steerable pyramids in the field of computer vision [71, 70]. The latter
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approach was the first practical, data-friendly strategy to extract information at different

scales and angles.

A more recent, very interesting attempt at implementing low-redundancy curvelets,

was introduced by Minh Do and Martin Vetterli, in [32]. The construction is based on a

filterbank decomposition of the image in both scale and angle. The resulting basis functions

are called “contourlets,” and form a tight frame with redundancy 4/3. The contourlet

transform has a very fast O(n2 log n) implementation as well, at least when contourlets are

selected to be compactly supported. The only problem with this construction is that it

is not faithful to the idea of the curvelet transform in the sense that for most choices of

filters in the angular filterbank, contourlets are not sharply localized in frequency. On the

practical side, this means that contourlets lack smoothness along the ridge in the spatial

domain and exhibit spurious oscillations which may be of source of numerous problems,

especially if one wants to use these transforms for scientific computing. On the theoretical

side and to the best of our knowledge, contourlets do not allow to formulate as strong

theorems in approximation and operator theory as in [15, 20].

The idea of using concentric squares and shears is also central to the construction of

tight-frames of “shearlets”, by Guo, Kutyniok, Labate, Lim, Weiss and Wilson in a recent

series of papers [44, 45, 56] starting with [44]. In these papers, they show how to built

wavelets or multiwavelets from composite dilations and translations. The architecture is

very similar to that of curvelets.

3.5.2 Possible Applications

Just as the wavelet transform has been deployed a countless number of times in many

fields of science and technology, we expect fast digital curvelet transforms to be widely

applicable—especially in the field of image processing and scientific computing.

In image analysis for example, the curvelet transform may be used for the compression

of image data, for the enhancement and restoration of images as acquired by many common

data acquisition devices (e.g., CT scanners), and for postprocessing applications such as

extracting patterns from large digital images, detecting features embedded in very noisy

images, enhancing low contrast images, or registering a series of images acquired with very

different types of sensors.

Curvelet-based seismic imaging already is already a very active field of research, see for
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example the recent papers [47, 49] as well as several expanded abstracts by Felix Herrmann

and his collaborators, currently available at http://slim.eos.ubc.ca/.
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Figure 3.10: Image denoising using curvelets. (a) The Original image (zoom). (b) Noisy
image (Gaussian white noise with σ = 10% of the maximum intensity), PSNR = 20.0 dB.
(c) Denoised image using curvelets, PSNR = 37.6 dB. (d) Denoised image using wavelets,
PSNR = 30.8 dB.
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(a) (b) (c)

(d) (e)

Figure 3.11: Compression of the wavefield and of the solution operator to the wave equation
with periodic boundary conditions. (a) The initial condition is a delta function located at
the center of the domain. (b) Approximate solution at t = 0.25. (c) Approximate solution
at t = 0.75. Both approximations only use 1.25% of nonzero curvelet coefficients. (d)
Magnitude of the matrix entries (rearranged in descending order) of the solution operator
Et at t = 0.75 taken from three columns corresponding to three curvelets at various scales.
(e) For the same three columns, truncation error obtained by keeping the m largest entries,
measured in PSNR.
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Chapter 4

Wave atoms and time upscaling of

wave equations

In this chapter, we show how wave atoms can be used to formulate a fast algorithm for

wave propagation in smooth, periodic, 2D inhomogeneous media.

We already know that wave atoms offer a uniquely structured representation of the

time-dependent Green’s function in the sense that the resulting matrix is universally sparse

over the class of C∞ coefficients, even for “large” times. Additionally, we will show that

the wave atom matrix has a natural low-rank block structure after separation of the spatial

indices.

In Section 4.1 we give a more precise description of wave atoms, including a fast digital

transform. Section 4.2 introduces the repeated squaring algorithm, its refinement involving

the separated wave atom representation, and complexity estimates. We present numerical

experiments in Section 4.3. The rest of the chapter is then devoted to stating and proving

estimates of ε-separation ranks in various situations.

4.1 Wave Atoms

In this section we show how to implement wave atoms as a fast digital transform. The

requirements we put on a family of basis function to be called “wave atoms” are quite

stringent and will be made precise in Section 4.1.1. They have to do with uniform space-

frequency localization, and put the general architecture introduced in Section 1.2.4 on solid

ground. To the best of our knowledge, none of the transforms in the repertoire of modern

computational harmonic analysis satisfies these localization conditions.
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4.1.1 Definition of Wave Atoms

We write wave atoms as ϕµ(x), with subscript µ = (j,m,n) = (j,m1,m2, n1, n2). All five

quantities j,m1,m2, n1, n2 are integer-valued and index a point (xµ, ξµ) in phase-space, as

xµ = 2−jn, ξµ = π2jm, C12
j ≤ max

i=1,2
|mi| ≤ C22

j . (4.1)

where C1, C2 are two positive constants left unspecified for convenience, but whose values

will be implied by the specifics of the implementation. Heuristically, the position vector

xµ is the center of ϕµ(x) and the wave vector ξµ determines the centers of both bumps of

ϕ̂µ(ξ) as ±ξµ. Note that the range of m needs to be further reduced to m2 > 0, (or m2 = 0

and m1 > 0,) to account for the central symmetry of the Fourier transform of real-valued

functions about the origin in ξ. Some further restriction on n (cutoff in space) and j (cutoff

in scale), are of course necessary in practice, but not for the description of a frame of L2.

Wave atoms then need to obey a localization condition around the phase-space point

(xµ, ξµ).

Definition 4.1. (Wave Atoms) Let xµ and ξµ be as in equations (4.1) for some C1, C2.

The elements of a frame of wave packets {ϕµ} are called wave atoms when

|ϕ̂µ(ξ)| ≤ CM ·2−j(1+2−j |ξ−ξµ|)−M+CM ·2−j(1+2−j |ξ+ξµ|)−M , for all M > 0, (4.2)

and

|ϕµ(x)| ≤ CM · 2j(1 + 2j |x− xµ|)−M , for all M > 0. (4.3)

It is of course possible to restrict the decay order or even moderately alter the definition

of xµ and ξµ—and still call the basis functions “wave atoms”—but this is a refinement we

will not address here.

The parabolic scaling is encoded in the localization conditions as follows: at scale 2−2j ,

or frequency |ξµ| ∼ 22j , the essential frequency support is of size ∼ 2j (for each bump) and

the essential spatial support is of size ∼ 2−j . Note that the subscript j indexes the different

“dyadic coronae,” whereas the additional subscript m labels the different wave numbers ξµ

within each dyadic corona.
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4.1.2 Properties

In the same spirit as curvelets, there is a natural notion of pseudodistance in phase-space

associated to wave atoms.

Definition 4.2. Let µ = (j,m,n) and µ′ = (j′,m′,n′) be two wave atom subscripts. The

wave atom pseudodistance ω(µ, µ′) is defined as

ω(µ, µ′) = 1 + 2min(j,j′)|xµ − xµ′ | + 2−max(j,j′)|ξµ − ξµ′ |.

The motivation for this definition is the interpretation of ω a lattice distance in phase-

space. Consider the graph with wave packet indices µ as nodes, and connection between

two nodes if and only if the corresponding wave packets are neighbors, that is if

• either j = j ′, m = m′ and |n − n′| = 1;

• or µ and µ′ correspond to adjacent frequency tiles and |xµ−xµ′ | = minµ′′=(j′,m′,n′′) |xµ−
xµ′′ |.

Then ω(µ, µ′) is proportional to the minimum number of edges needed to connect µ and µ′.

Of course ω is not a distance in the strict sense, but it is symmetric, satisfies the quasi-

triangle inequality ω(µ, µ′′) ≤ C(ω(µ, µ′) + ω(µ′, µ′′)), and is invariant under Hamiltonian

flows, ω(µ(t), µ′(t)) ³ ω(µ(0), µ′(0)).

The main purpose of ω is that it allows us to formulate a key almost-orthogonality

estimate.

Lemma 4.1. Let ϕµ and ϕ̃µ be two collections of wave atoms, in the sense of Definition

4.1. Then for every M > 0 there exists a constant CM > 0 such that

|〈ϕµ, ϕ̃µ′〉| ≤ CM · ω(µ, µ′)−M .

Proof. We will make use of the following elementary bump convolution convolution inequal-

ity (see [65] p. 56), valid when a ≥ a′ and, say, M ≥ 2,

∫ ∞

−∞
(1 + a|x|)−M (1 + a′|x− x0|)−M dx ≤ C

a
(1 + a′|x0|)−M . (4.4)
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Assume without loss of generality that j ≤ j ′. Combining (4.4) with the frequency

localization estimate (4.2), we obtain

∫
|ϕ̂µ(ξ) ˆ̃ϕµ′(ξ)| dξ ≤ CM · 2−j′(1 + 2−j′ |ξµ − ξµ′ |)−M . (4.5)

Similarly, combining (4.4) with the spatial localization estimate (4.3), we obtain

∫
|ϕµ(x)ϕ̃µ′(x)| dx ≤ CM · 2j(1 + 2j |xµ − xµ′ |)−M . (4.6)

The conclusion follows by taking the geometric mean of (4.5) and (4.6), and noticing

that

(1 + 2−j′ |ξµ − ξµ′ |)−M (1 + 2j |xµ − xµ′ |)−M ≤ (1 + 2−j′ |ξµ − ξµ′ | + 2j |xµ − xµ′ |)−M .

Almost orthogonality is one ingredient in the proof of the main sparsity result, theorem

1.1, hence the resemblance of statements.

4.1.3 Implementation of Wave Atoms: 1D Warmup

In practice, wave atoms will be constructed from tensor products of adequately chosen 1D

wave packets.

We will first build a one-dimensional family of real-valued wave packets ψj
m,n(x), j ≥

0,m ≥ 0, n ∈ Z, centered in frequency around ± ξj,m = ±π2jm, with C12
j ≤ m ≤ C22

j ; and

centered in space around xj,n = 2−jn. The one-dimensional version of the parabolic scaling

dictates that the support of (each bump of) ψ̂j
m,n(ξ) be of length O(2j) while ξj,m = O(22j).

The desired corresponding tiling of frequency is illustrated at the bottom of Figure 4.1.

Filterbank-based wavelet packets naturally come to mind as a potential definition of

an orthonormal basis satisfying these localization properties. They also come with fast

algorithms. The wavelet packet tree, defining the partitioning of the frequency axis in 1D,

can be chosen to have depth j when the frequency is ∼ 22j , as illustrated in Figure 4.1.

However, there is a well-documented problem associated with standard wavelet packets,

namely that the sense in which they satisfy frequency localization is rather weak. It is

an unavoidable feature of the filterbank architecture that the uncertainty (product of time
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and frequency deviations) increases with the frequency, instead of remaining close to the

Heisenberg bound. For references for precise estimates of the “wavelet packet curse,” see

[69, 88]. As a result, in our context, we cannot hope to satisfy the wave atom definition

using basis functions which come from a wavelet packet analysis.

An elegant solution to the frequency localization problem has been given by Lars Ville-

moes in [88]. The trick consists in exhibiting adequate symmetric pairs of compactly sup-

ported bumps in frequency, given by the formula

ψ̂0
m(ξ) = e−iξ/2

[
eiαmg(εm(ξ − π(m+

1

2
))) + e−iαmg(εm+1(ξ + π(m+

1

2
)))

]
,

where εm = (−1)m and αm = π
2 (m+ 1

2). The function g is an appropriate real-valued, C∞

bump function, compactly supported on an interval of length 2π, and chosen such that

∑

m

|ψ̂0
m(ξ)|2 = 1.

Then the translates ψm(t − n) form an orthonormal basis of L2(R). This construction

provides a uniform tiling of the frequency axis,1 in the sense that every bump in frequency

has the same support size, 2π.

Multiscale tilings like the one in Figure 4.1 can be obtained by combining dyadic dilates

and translates of ψ̂0
m on the frequency axis. We need to introduce the subscript j to index

scale, and write our basis functions as ψj
m,n(x). To preserve orthonormality of the ψj

m,n(x),

the profile g needs to be asymmetric in addition to all the other properties, in the sense

that

g(−2ξ − π

2
) = g(

π

2
+ ξ)

for ξ ∈ [−π/3, π/3], with g itself supported on [−7π/6, 5π/6]. We say g(ξ) is “left-handed”,

whereas g(−ξ) is “right-handed”. As a result, the uniform partitioning of the frequency axis

is obtained as an alternating sequence of staggered left-handed and right-handed bumps. A

scale doubling can be achieved by concatenating two left-handed bumps at scales differing by

a factor 2. Figure 4.1, bottom row, depicts the Villemoes system where three scale doublings

have been implemented and marked by crosses. Remark in passing that scale halving could

be implemented using right-handed bumps at different scales, but scale quadrupling is

1For specialists, the secret to avoiding the Balian-Low no-go theorem is to use two bumps in frequency.
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impossible using the present scheme.

As for labeling, note that the couple (j,m) refers to a point on the wavelet packet tree;

the depth at that point is J − j, where J is the maximum depth, and m can be interpreted

as the number of nodes on the left at the same depth (nodes are not necessarily leaves).

This is the standard indexing scheme for wavelet packets used in [62]. The translation step

is now 2−j at scale j, whereas each bump in frequency is supported on an interval of length

2j × 2π. Choosing the “parabolic tree” as in Figure 4.1 amounts to specifying the wave

vector ξj,m, defined as the center of the positive frequency bump, as

ξj,m = π2jm ∼ 22j

The resulting basis of wavelet packets {ψj
m(x− 2−jn)} is orthonormal for L2(R).

The implementation of the Villemoes wavelet packets is rather straightforward in the

frequency domain. For each wave number ξj,m, the coefficients cj,m,n can be seen as a

decimated convolution at scale 2−j ,

cj,m,n =

∫
ψj

m(x− 2−jn)u(x) dx,

By Plancherel,

cj,m,n =
1

2π

∫
e−i2−jnξψ̂j

m(ξ)û(ξ) dξ

Assuming that the function u is accurately discretized at xk = kh, h = 1/N , k = 1, . . . , N ,

then up to some small truncation error,

cj,m,n ' 1

2π

∑

k=2π(−N/2+1:1:N/2)

e−i2−jnkψ̂j
m(k)û(k). (4.7)

If the data ψ̂j
m(k)û(k) were supported in an interval of length 2j × 2π, then the above

sum could be restricted to values of k inside that interval, and computed efficiently using

a reduced inverse FFT, of size 2j . In reality the support properties of g are such that the

data is supported inside two disjoints intervals of size 2j+1π, symmetric about the origin.

The sum (4.7) can still be computed by a reduced inverse FFT provided ψ̂j
mû is folded

by 2j+1π-periodicity inside an interval of size 2j+1π centered about the origin. This trick

was already used for the implementation of the discrete curvelet transform and is called
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wrapping, see chapter 3. The simple algorithm for wavelet packets is then the following.

• Perform a FFT of size N of the samples u(xk).

• For each pair (j,m), wrap the product ψ̂j
mû by periodicity inside the interval [−2jπ, 2jπ].

Then perform an inverse FFT of size 2j of the result to obtain cj,m,n.

• Repeat over (j,m).

The complexity of each inverse FFT at scale j is O(j2j), and there are O(2j) frequency

bumps at scale j, indexed by m, so the total complexity is

∑

0≤j≤J

O(j22j) = O(J22J) = O(N logN),

with N = 22J .

Since the cj,m,n are coefficients in an orthonormal basis, the inverse transform is simply

the adjoint and can be computed by reversing all the steps in the above algorithm.

• For each (j,m), perform a FFT in n of cj,m,n, of size 2j , then unwrap the result on

the frequency axis around the support of ψ̂j
m.

• Sum the contributions corresponding to all the couples (j,m).

• Perform an inverse FFT, of size N , to obtain u(xk).

Likewise, the complexity of the inverse transform is O(N logN).

The decomposition into two bumps, of positive and negative frequency respectively, can

be written

ψ̂j
m,n(ξ) = ψ̂j

m,n,+(ξ) + ψ̂j
m,n,−(ξ) (4.8)

with the symmetry relation ψ̂j
m,n,−(ξ) = ψ̂j

m,n,+(−ξ) which owes to the real-valuedness of

ψj
m,n. After preforming a Hilbert transform, Hψj

m,n is another orthonormal basis of L2(R).

In the frequency domain, Hilbert transformation amounts to taking a linear combination of

the two bumps with weights (−i, i) instead of (1, 1):

̂
Hψj

m,n(ξ) = −iψ̂j
m,n,+(ξ) + iψ̂j

m,n,−(ξ). (4.9)
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Figure 4.1: The wavelet-packet tree corresponding to wave atoms. Textbook material on
wavelet packet trees can be found in [62], chapter 8. The bottom graph depicts Villemoes
wavelet packets on one half of the frequency axis. The dot indicates the frequency where a
change of scale occurs.

Even though we made a point that the Villemoes basis functions do not come from a

standard multiresolution analysis, we still continue to call them “wavelet packets” in what

follows.

Finally, we would like to mention Eric Kolaczyk’s approach [55] for the implementation

of Meyer wavelets, and by extension Villemoes wavelet packets, based on local cosine win-

dowing of the frequency axis. His approach explains in a transparent manner the aliasing

cancellations during inversion of the wavelet transform, though the implementation looks

involved in contrast to the “wrapping” approach.

4.1.4 Implementation of Wave Atoms: 2D Extension

Two-dimensional orthonormal basis functions with 4 bumps in the frequency plane can be

formed by individually taking products of 1D wavelet packets. As we did in earlier sections,

let us abbreviate µ = (j,m,n), where m = (m1,m2) and n = (n1, n2). We write

ϕ+
µ (x1, x2) = ψj

m1
(x1 − 2−jn1)ψ

j
m2

(x2 − 2−jn2),

The Fourier transform is also separable, namely

ϕ̂+
µ (ξ1, ξ2) = ψ̂j

m1
(ξ1)e

−i2j(n1x1) ψ̂j
m2

(ξ2) e
−i2j(n2x2).
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A dual orthonormal basis can be defined from the Hilbert-transformed wavelet packets,

ϕ−
µ (x1, x2) ≡ Hψj

m1
(x1 − 2−jn1) Hψ

j
m2

(x2 − 2−jn2).

It is easy to see from relations (4.8) and (4.9) that the recombination

ϕ(1)
µ =

ϕ+
µ + ϕ−

µ

2
, ϕ(2)

µ =
ϕ+

µ − ϕ−
µ

2
,

provides basis functions with two bumps in the frequency plane, symmetric with respect

to the origin, hence directional wave packets. Together, ϕ
(1)
µ and ϕ

(2)
µ form the wave atom

frame and may be denoted jointly as ϕµ. The price to pay in considering both ϕ
(1)
µ and ϕ

(2)
µ

is an increase of a factor 2 in the redundancy. Wave atoms otherwise remain a tight frame,

in the sense that
∑

µ

|〈ϕ(1)
µ , u〉|2 +

∑

µ

|〈ϕ(2)
µ , u〉|2 = ‖u‖2.

They also satisfy all the wave atom properties, by construction.

As the reader might have noticed, the construction is not a simple tensor product because

there is only one scale subscript j. This is akin to the construction of “nonstandard,” or

MRA wavelet bases in 2D where the point is to enforce the same scale in both directions,

hence an isotropic aspect ratio. The resulting tiling of the frequency plane is shown in

Figure 4.2.

In practice, the algorithm for wave atoms is based on the obvious generalization of the

1D wrapping strategy to two dimensions – except for a slight complication. The admissible

tilings of the frequency plane at scale j are restricted by

max
i=1,2

|mi| = 4nj + 2,

for some integer nj depending on j. In Figure 4.2, we check that this property holds with

n0 = 0, n1 = 1 and n2 = 2. The rationale for this (benign) restriction is that a window

needs to be left-handed in both directions near a scale doubling (for positive frequencies),

and that this parity needs to match with the rest of the lattice. The rule is that ψ̂j
m,+ is

left-handed for m even and right-handed for m odd, so for instance ψ̂2
3(ξ1)ψ̂

2
3(ξ2) would not

be an admissible window near a scale doubling, whereas ψ2
4(x1)ψ

2
4(x2) is admissible (and
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its tile is indicated in Figure 4.2 by a dot).

In complete analogy with the 1D case, the complexity of wave atoms is of course

O(N2 logN).

The adjoint wave atom transform is still an inverse (actually the Moore-Penrose pseudo-

inverse) because the frame is tight. As explained previously, it is computed by reversing all

the operations in the direct transform, and also takes O(N 2 logN) operations.

Note that the same 2D recombination strategy, but based on standard wavelet packets

instead of Villemoes packets, has already been considered in the field of image processing

under the name “dual-tree M-band wavelets,” see [24].

Let us conclude this section by mentioning that, in the present implementation, most

wave atoms have an infinite number of (directional) vanishing moments in the sense that

∫
ϕµ(y1, y2)y

k
1 dy1 = 0, for all k ≥ 0, for all y2, (4.10)

where y1 is the spatial coordinate along the wave vector ξµ, and y2 is perpendicular. This

property follows from the fact that most atoms ϕ̂µ(ξ) vanish in a (large) strip including the

origin, oriented in the direction perpendicular to ξµ. In contrast, those few atoms obeying

ϕ̂µ(0) 6= 0 form the small minority of “coarse scale” wave atoms, when j = 0.

4.1.5 The Orthobasis Variation

In practice, one may want to work with an orthonormal basis instead of a tight frame to

represent the wave equation, for example ϕ+
µ (x). The consequence of this choice is that

each basis functions would oscillate in two distinct directions, instead of one.

4.2 Main Algorithm

The description of the main algorithm will be split into two parts. The basic repeated

squaring algorithm only exploits sparsity of the wave atom matrix of the propagator E(t)

and is detailed in Section 4.2.1. The refinement based on separation of spatial indices comes

as a modification of the basic repeated squaring algorithm, and is explained in Section 4.2.2.
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Figure 4.2: The wave atom tiling of the frequency plane. Only the first quadrant is shown.
The dot below the ω axis indicates the same change of scale as in Figure 4.1 and corresponds
to the basis function denoted ψ2

4(x1)ψ
2
4(x2) in the text.

4.2.1 Basic Repeated Squaring

Let us denote u(t) for the couple (p(t), ∂p
∂t ), and write the wave equation as the first-order

system ∂u
∂t = Au with initial condition u(0) = u0. The generator is

A =


 0 I

c2(x)∆ 0


 . (4.11)

We define the propagator E(t) from u(t) = E(t)u0 = etAu0.

Since the solution u(t) has two components, we need to introduce e1 = (1, 0) and

e2 = (0, 1). The wave atom matrix elements are

E(t;µν;µ′ν ′) = 〈E(t)ϕµ′eν′ , ϕµeν〉.

We write Ẽ(t;µν;µ′ν ′) for its numerical approximation. As mentioned in the introduction

we aim at building this matrix at dyadic times tn = 2n∆t, using a repeated-squaring
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strategy, based on the group property

E(2t;µν;µ′ν ′) =
∑

µ′′,ν′′

E(t;µν;µ′′ν ′′)E(t;µ′′ν ′′;µ′ν ′),

which in turn comes from E(2t) = (E(t))2 and the tight-frame property. The squaring is

efficient because the numerical approximation of the wave atom matrices is kept sparse at

all dyadic times, by putting to zero the small entries below a prescribed threshold.

Algorithm 4.1. (Wave-Atom Repeated Squaring) Choose a small time step ∆t and a small

tolerance ε. Denote by Trunc the operation of putting to zero all matrix elements below ε

in absolute value.

• Initialization: Obtain Ã(µν;µ′ν ′) an approximation to the wave atom matrix of the

generator A, then

Ẽ(∆t, µν;µ′ν ′) = δµν;µ′ν′ + ∆t Trunc(Ã(µν;µ′ν ′)).

• Iteration: Forecast the biggest entries’ location, then compute them as

Ẽ(2n+1∆t;µν;µ′ν ′) = Trunc
∑

µ′′,ν′′

E(2n∆t;µν;µ′′ν ′′)E(2n∆t;µ′′ν ′′;µ′ν ′).

• Terminate at time τ = 2n∗
∆t.

To compute the solution u(τ) at time τ , start with the coefficients

cµν(0) = 〈u0, ϕµeν〉,

perform the matrix-vector multiplication,

c̃µν(τ) =
∑

µ′ν′

Ẽ(τ ;µν;µ′ν ′)cµ′ν′(0),

and inverse transform, ũ(τ) =
∑

µν c̃µν(τ)ϕµeν . For times larger than τ , one should perform

several applications of E(τ) to the initial condition.

As alluded to in the introduction section, prediction of the location of the large matrix

elements is efficiently done using the Phase-Flow Method (PFM), see [90]. The truncation
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should be done to keep at most B elements per row (hence also per column), with B a

moderately large constant.

For the initialization, how to compute an approximation to the generator Aµν;µ′ν′ in an

efficient manner is best understood in the context of the separated wave atom representation,

so we postpone this discussion until the next section.

Let us finally remark that, in view of Theorem 1.1, the Trunc operation consists in

keeping track of two shifted diagonals, because there are two Hamiltonian flows. If instead

of the standard wave atoms ϕ
(1)
µ or ϕ

(2)
µ we use the orthobasis variation of Section 4.1.5,

ϕmu
+ = ϕ

(1)
µ +ϕ

(2)
µ , we could expect to have to trace four bumps. For small times, namely

t ≤ 1√
N

or a multiple thereof, we will see later in Section 4.2.3 that tracing is useful but not

necessary, so the gain due to lower redundancy may offset the frequency entangling. For

larger times, “clean” wave atoms with two bumps in frequency may be more appropriate.

4.2.2 The Separated Wave Atom Representation

In the wave atom representation of E(t), consider the submatrix left after fixing ν, ν ′ and the

wave vectors (j,m) and (j ′,m′). The remaining indices are those of the position vectors

n = (n1, n2) and n′ = (n′1, n
′
2). The separated wave atom representation is obtained by

seeking a low-rank approximation corresponding to separation of the spatial indices along

x1 vs. x2,

E(t; j,m,n, ν; j′,m′,n′, ν ′) =
r∑

k=1

σku
k
n1,n′

1
vk
n2,n′

2
+O(ε), (4.12)

where uk and vk have been normalized to unit `2 norm. Of course uk and vk depend on

j,m, ν; j′,m′, ν ′. The most efficient such decomposition, in the sense that the `2 norm

of the residual is minimized for fixed r, is the singular value decomposition of the block

(j,m, ν; j′,m′, ν ′) after reorganization of the matrix elements to make the row and column

indices (n1, n
′
1;n2, n

′
2) instead of (n1, n2;n

′
1, n

′
2).

Conversion from the standard to the separated wave atom representation, as an SVD

factorization of the reorganized submatrix, is however never done in practice. Instead, we

modify the repeated squaring strategy so that all computations are done on separated com-

ponents without ever forming the standard submatrix. Let us explain how both initialization

and matrix multiplication can be realized in this context.
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4.2.2.1 Initialization

The wave atom representation of the generator reads 〈ϕµν , Aϕµ′ν′〉, where ν = 1 refers to

the p(t) component, whereas ν = 2 refers to the ∂p
∂t component. The only non-trivial or

non-precomputable contribution is

〈ϕµ,2, Aϕµ′,1〉 =

∫

[0,1]2
ϕµ(x)c2(x)∆ϕµ′(x) dx. (4.13)

Our initialization strategy is based on separation of the integrand in x1 vs. x2. Since

c2(x) is a C∞ periodic function, its ε-separation rank is a small constant Cε = O(ε−1/M )

for all M > 0 (see Lemma 4.2) so we can write

c2(x) =

Cε∑

k=1

γ
(1)
k (x1)γ

(2)
k (x2).

The Laplacian operator is also nicely separated,

∆ =
∂2

∂x2
1

⊗ I + I ⊗ ∂2

∂x2
2

. (4.14)

As for wave atoms themselves, let us assume that we are using the separable “orthobasis”

variation, as in Section 4.1.5. For the full wave atoms there would be two separated terms

to write down instead.

We can then split the matrix element (4.13) into a finite number of separated compo-

nents,

〈ϕµ, c
2(x)∆ϕµ′〉 =

Cε∑

k=1

〈ψj
m1,n1

, γ
(1)
k

∂2

∂x2
1

ψj′

m′
1,n′

1
〉 〈ψj

m2,n2
, γ

(2)
k ψj′

m′
2,n′

2
〉

+ 〈ψj
m1,n1

, γ
(1)
k ψj′

m′
1,n′

1
〉 〈ψj

m2,n2
, γ

(2)
k

∂2

∂x2
2

ψj′

m′
2,n′

2
〉,

where all the inner products in the right-hand side are one-dimensional. Observe that the

above formula is exactly in “separated wave atom” form, as in equation (4.12).

The initialization algorithm computes all the factors in the above decomposition as

follows. Assume the segment [0, 1] has been discretized into N equispaced points. For each

(j′,m′
1, n

′
1),

1. Form ψj′

m′
1,n′

1
(x1) for x1 on the grid by applying the inverse 1D wavelet packet trans-
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form to the sequence of coefficients

cj,m1,n1 =





1 if j = j′,m1 = m′
1, n1 = n′1,

0 otherwise.

2. Apply γ
(1)
k

∂2

∂x2
1

to ψj′

m′
1,n′

1
(x). For accuracy purposes, all derivatives are discretized in

the Fourier domain.

3. Apply a direct wavelet packet transform to the result and obtain at once the inner

products with all the ψj
m1,n1(x1).

Repeat over all indices (j ′,m′
1, n

′
1). Repeat the algorithm, mutatis mutandis, for the inner

products involving no derivatives and the inner products involving x2 instead of x1. Do not

sum over k or multiply the factors as we are interested in the separated form only.

In practice, we may use a different time-integration scheme than Euler explicit for the

first time step. We have found the leap-frog scheme to be quite efficient.

4.2.2.2 Matrix Multiplication

We seek a fast algorithm for

E(2t; j,m,n, ν; j′′,m′′,n′′, ν ′′) = (4.15)
∑

j′,m′,n′,ν′

E(t; j,m,n, ν; j′,m′,n′, ν ′)E(t; j′,m′,n′, ν ′; j′′,m′′,n′′, ν ′′),

where each factor is given by (4.12). We fix the row index (j,m, ν) as well as the column

index (j′′,m′′, ν ′′), and for simplicity omit to write them in what follows.

We start by directly computing each sum over n′1 and n′2. There is one such sum for

each value of the intermediate index (j ′,m′, ν ′). Let us introduce

Uk
n1,n′′

1
(j′,m′, ν ′) =

∑

n′
1

uk
n1,n′

1
uk′

n′
1,n′′

1
(4.16)

and, similarly,

V k
n2,n′′

2
(j′,m′, ν ′) =

∑

n′
2

uk
n2,n′

2
uk′

n′
2,n′′

2
. (4.17)

We grouped (k, k′) into one single index k. If we also let σk = σkσk′ , and form the resulting
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diagonal matrix Σk, then the matrix element (4.15) can be written as

∑

j′,m′,ν′

U(j′,m′, ν ′) ΣV t(j′,m′, ν ′) ≡
∑

k

∑

j′,m′,ν′

Uk
n1,n′′

1
(j′,m′, ν ′)σkV

k
n2,n′′

2
(j′,m′, ν ′), (4.18)

Call K the maximum number of different values of the couple k; if k ≤ r, then K ≤ r2.

Call M the maximum number of different values of the triple (j ′,m′, ν ′). To obtain the

desired separated wave atom form we need not only compute those sums, but also factor

the result into its singular value decomposition,

Ũ Σ̃ Ṽ t ≡
∑

k̃

Ũ k̃
n1,n′′

1
σ̃k̃Ṽ

k̃
n2,n′′

2
, (4.19)

where Ũ and Ṽ are isometric matrices.

So we are faced with the problem of computing the SVD of a sum of matrices which

are almost in SVD form—because the columns of U(j ′,m′, ν ′) and V (j′,m′, ν ′) are not in

general orthogonal. We will proceed in two steps:

• We start by turning each U and V into isometric matrices. For each (j ′,m′, ν ′),

perform a QR decomposition to obtain an isometric matrix QU (j′,m′, ν ′) and an

upper triangular matrix RU (j′,m′, ν ′) such that

U(j′,m′, ν ′) = QU (j′,m′, ν ′)RU (j′,m′, ν ′).

Similarly, factor

V (j′,m′, ν ′) = QV (j′,m′, ν ′)RV (j′,m′, ν ′).

Gather the small factors in the middle and perform an SVD:

RU (j′,m′, ν ′) Σ Rt
V (j′,m′, ν ′) = U ](j′,m′, ν ′) Σ](j′,m′, ν ′) [V ]]t(j′,m′, ν ′).

Put to zero the small singular values in Σ](j′,m′, ν ′) below some threshold τ , so as

to keep at most O(r) of them. Then compute

U(j′,m′, ν ′) := QU (j′,m′, ν ′)U ](j′,m′, ν ′),



122

V (j′,m′, ν ′) := QV (j′,m′, ν ′)V ](j′,m′, ν ′),

and for simplicity call Σ(j ′,m′, ν ′) := Σ](j′,m′, ν ′). We have just orthogonalized

(4.18) at the (benign) expense of making each Σ matrix depend on (j ′,m′, ν ′).

• We can now simplify the sum over (j ′,m′, ν ′). Let us group terms two by two and

notice that a sum of two SVDs can be rewritten in matrix form as

U1 Σ1 V
t
1 + U2 Σ2 V

t
2 =

(
U1 V1

)

Σ1 0

0 Σ2




V

t
1

V t
2


 . (4.20)

The same strategy as above, involving two QR and one SVD decomposition, can

be invoked to compute the SVD of the right-hand side in the above equation. The

procedure can be applied to each couple of terms and repeated at the next level. This

way, the whole sum (4.18) can be reduced in a binary fashion into its SVD form,

leaving us with (4.19).

Standard linear algebra routines have been used for QR and SVD. It does not appear

that iterative algorithms for sparse SVD offer any improvement, in the present context, over

the standard algorithms.

4.2.2.3 Upscaled Timestepping

Once the separated wave atom representation of the wave propagator at time τ is available,

we can apply it to the initial condition as follows.

• Apply the wave atom transform to each component of the initial condition u0.

• For each j,m, ν and j ′,m′, ν ′, unfold the separated form to obtain the classical wave

atom representation. Not all matrix elements in the classical form need to be com-

puted, however. For a given (n1, n2), only a certain subset of positions subscripts

(n′1, n
′
2) will be relevant – only those for which the wave has been given enough time

to travel from xµ to xµ′ .

– For times τ . 2−j , a wave atom cannot travel essentially farther than its own

diameter, hence the restriction |n′−n| ≤ C for some constant C to be determined

empirically.
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– For times τ & 2−j , this rule becomes |n′ − n| ≤ C · t2j .

Once the restricted submatrices have been formed, we can compute the large matrix-

vector product of the propagator with the coefficients of the initial condition.

• Apply an inverse wave atom transform to get u(t) from its coefficients.

The same procedure, without the initial and final transforms, can be iterated to perform

timestepping with the “upscaled” time step τ , generally much larger than the CFL timestep.

As we will see from the complexity analysis in the next section, a reasonable choice of time

step is τ ' 1√
N

, whereas the CFL timestep is at most ∆t < 1
cmaxN when c(x) ≤ cmax. We

call “time upscaling” the possibility of using such a large time step, offered by an explicit

precomputation of the propagator.

4.2.3 Complexity Analysis

In this section we derive the total complexity for the repeated squaring scheme in separated

form (RS), as well as the subsequent upscaled timestepping (UTS). We will first formulate

the total computational cost as a function of N—the initial data is on an N -by-N grid—as

well as the various values of the ε-ranks r of submatrices corresponding to different wave

vectors (j′,m′, ν ′). In later sections we will carefully analyze how those ranks themselves

depend on N and on the geometry of the speed of sound, c(x).

We would like to make clear that the complexity estimates we are about to derive refer

to the total number of operations when we fix some small threshold ε below which the

singular values of submatrices are discarded. In practice, we observe that ε is very well

correlated to the overall L2 accuracy of the method (see Section 4.3), although we do not

prove the connection on a rigorous level in this thesis. This observation of course assumes

that the first time step in the initialization is itself made sufficiently accurate by taking ∆t

sufficiently small. Deriving accuracy estimates would imply dealing with sampling issues,

namely that a function cannot be compactly supported both in space and in frequency. To

obtain an L2 accuracy ε at time T = 1 we suspect that the threshold ε needs to depend on N

and ε like O(εN−1) as N → ∞, in order to compensate for the cumulative error introduced

by repeated squaring. In this scenario, the power of N in each complexity estimates would

need to be incremented by an arbitrarily small number δ – at the expense of a constant

depending on the choice of δ.
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As always, we assume that c(x) is C∞. We measure complexity in terms of elementary

floating point operations (flops). Let us remark once and for all that the two token indices

ν and ν ′ do not play a role in the complexity analysis since we are interested in asymptotic

results – up to constants.

4.2.3.1 Initialization

We start by observing that the initialization step of the repeated squaring can be done in

O(N2 logN) steps. Indeed, applying an inverse wavelet packet transform to find ψj
m1,n1(x1)

takes O(N logN) operations. Performing multiplication by a function or differentiation

takes at most the time of a FFT, O(N logN). Finally, applying a direct transform costs

O(N logN) again. Since there are O(N) values of the indices (j,m1, n1), and a constant

ε-separation rank Cε, the overall complexity is O(CεN
2 logN).

As we will see, initialization happens to make for a negligible fraction of the total

computing time.

4.2.3.2 Matrix Multiplication

Let us now consider the iteration step in the repeated squaring procedure, as described in

Section 4.2.2.2. Fix a fine time step ∆t and an upscaled time step τ = 2n∗
∆t. We need to

consider each scale j separately and recall that, by sparsity, we can always assume that j ′

is comparable to j. Ranks of submatrices are simply denoted by r, but let us keep in mind

that they depend on the time step τ and the frequency indices j,m, j ′,m′, as well as on the

desired accuracy level ε.

1. For fixed wave vectors, each subscript n1 or n2, or their counterpart with primes,

takes on O(2j) values. Since both k and k′ take on r values, a matrix such as Uk or

V k is of size O(22jr2). Each element of Uk or V k takes O(2j) operations to compute,

so the total complexity for forming two such matrices is O(23jr2).

2. One QR decomposition of Uk or V k takes on O(22jr4) operations. Each middle factor

RUΣRt
V is of size at most O(r2)-by-O(r2), so the SVD of their product costs O(r6).

3. After performing the center SVD, only O(r) singular values are kept (above the thresh-

old ε), so we can trim both RU and RV to O(r) columns. Computing each U = QURU

and V = QVRV takes O(22jr3) operations.
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4. In the binary reduction using QR and SVDs, each matrix U has size O(22j)-by-r, and

let us grossly over-estimate r by its maximum max r over (j ′,m′). Set M the total

number of relevant indices (j ′,m′). The total complexity for the binary reduction is

O(M(22j(max r)2 + (max r)3)).

Steps 1, 2 and 3 above are to be repeated for each value of (j ′,m′). In addition, there is

an outer loop on the output wave vector (j,m). The total complexity for one time doubling

in the separated wave-atom repeated squaring algorithm is therefore

Compl(RS, one step) ≤ C ·
∑

j,m

∑

j′,m′

(23jr2 + 22jr4 + r6 + 22j(max r)2 + (max r)3).

For each j there are O(22j) different values of m. We can use the inequality

∑

j′,m′

rp ≤ (max r)p−1 (
∑

j′,m′

r),

as well as the obvious max r ≤∑j′,m′ r, simplify and obtain

Compl(RS, one step) ≤ C ·
∑

j


(25j max r + 24j(max r)3 + 22j(max r)5) (

∑

j′,m′

r)


 . (4.21)

The number of time doublings is small and depends remarkably little on the choices we

make for ∆t and τ . As long as both quantities are taken to depend inverse polynomially

on N , the number of grid steps per dimension, the number of time doublings is O(logN).

The total complexity for the repeated squaring is therefore logN times the right-hand side

in equation (4.21).

We give very precise estimates for maxj′,m′ r in Section 4.4 and
∑

j′,m′ r in Section 4.5,

as a function of τ, ε and j (uniformly over m). In Section 4.6, we improve the bounds of

Sections 4.4 and 4.5 to take into account important special cases. In all cases, ranks and

sums of ranks depend weakly on ε, namely they are all of order O(ε−1/M ) for allM > 0 (with

a constant depending on M .) This slow growth rate is the signature of spectral accuracy.

The simple choice τ = 1√
N

, for example, is advantageous. We show in Theorem 4.1 that

the worst-case estimate is
∑
r ' max r ≤ Cε ·2j . In that case, the total complexity becomes

Compl(RS,worst) ≤ CεN
4 logN.
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For wave guides (when c(x) depend only on x1 or x2, but not both,) the estimates become
∑
r ' max r ≤ Cε · 2j/2, and

Compl(RS,wave guide) ≤ CεN
3 logN.

Other choices for τ give rise to a variety of different complexity estimates. The situation is

summarized in Figure 4.11.

4.2.3.3 Upscaled Timestepping

As we saw earlier, the complexity of the wave atom transform is O(N 2 logN).

The separated wave atom matrix should be unfolded into its classical form at every

upscaled time step. For fixed wave vectors, the submatrix E
n2,n′

2

n1,n′
1

is of size O(22j)-by-O(22j)

and comes in separated form with rank r. Because of the restriction on nearby positions,

all but Bj = max(2j , τ22j) rows and columns are kept, around n′1 = n1 and n′2 = n2.

These rows and columns are easy to identify in the separated components as well, see

equation (4.12), resulting in matrices uk and vk of size Bj-by-r. Explicitly forming E
n2,n′

2

n1,n′
1

from its separated components is a matrix-matrix product which takes O(B2
j r) operations.

The re-indexing of the relevant O(B2
j ) elements into the classical form E

n′
1,n′

2
n1,n2 takes O(B2

j )

operations. Note that the latter matrix is band-diagonal with band O(2−2jB2
j ).

One matrix-vector product involving E
n′

1,n′
2

n1,n2 then takes B2
j operations. Assuming that

the solution u(t) has a full set of wave atom coefficients (no particular sparsity pattern),

then unfolding must be done for each wave vectors (j ′,m′) (indexing columns) and (j,m)

(indexing rows), resulting in a total complexity

Compl(UTS, one step) ≤ C ·
∑

j,m

B2
j (
∑

j′,m′

r),

which can be rewritten more explicitly as

Compl(UTS, one step) ≤ C ·
∑

j


(24j + τ226j) (

∑

j′,m′

r)


 . (4.22)

Since T/τ upscaled time steps are necessary to reach time T (a multiple of τ), then the

total complexity is the right-hand side of (4.22) multiplied by τ−1.
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For example, when τ is chosen as 1√
N

, then inspection of Theorems 4.1 and 4.4 reveals

that the complexity estimate becomes

Compl(UTS,worst case) ≤ C ·N 3

in the worst case, and

Compl(UTS,wave guide) ≤ C ·N 2.75

in the case of wave guides. Estimates for different τ are summarized in Figure 4.11. By

comparison, recall that a pseudospectral method would be O(N 3 logN).

Complexity and computational times can yet be improved when the wave atom expan-

sion of the solution is uniformly sparse in time. Assume that u(t), 0 ≤ t ≤ T , can be

approximated to accuracy ε in `2 using a fraction ρ < 1 of all wave numbers ξµ – not

necessarily the same ones for different times. Then only the submatrices corresponding to

those wave numbers must be computed at all, resulting in a direct net improvement of ρ of

the complexity estimate for timestepping. For example, when u(t) is a single bandlimited

wavefront, then we can expect ρ ' N−1/2. The corresponding total complexity becomes

O(N2.5) in general and O(N 2.25) for wave guides.

Complexity gains due to sparsity of the solution are harder to obtain for the repeated

squaring, because it would demand identifying in advance which wave vectors are going to

contribute in the yet unknown solution at dyadic times. These wave vectors are part of

a “fat” manifold in phase-space. Such information could be obtained from a geometrical

optics solver such as the phase-flow method [90], but we do not consider such a refinement

in the present study.

Even though our complexity estimates may appear somewhat pessimistic, in particular

for the core repeated squaring, it is worth keeping in mind that the result of the computation

is not just one solution to the wave equation—it is the whole Green’s function in compressed

form. In particular, physical information of propagation of high frequencies can be read

directly from the wave atom matrix representation.
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4.3 Numerical Implementation and Examples

In this section, we apply the algorithm of Section 4.2.2 to several sample media. Theoretical

studies of some of these representative media will be presented in Section 4.6. We used the

orthonormal basis variation of Section 2.5 in all numerical experiments in this section.
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Figure 4.3: Four representative acoustic media. (a) wave guide, (b) bumps, (c) Gaussian
converging lens, and (d) linear mirror.

We study four typical velocity fields defined over the unit square [0, 1)2:

• Wave guide (Figure 4.3(a)). The index of refraction is defined by

η(x1, x2) = 1 + exp(−64 × (x1 −
1

2
)2).

• Bumps (Figure 4.3(b)). The wave speed is a simple trigonometric polynomial,

c(x1, x2) =
(3 + sin(4πx1)) · (3 + sin(4πx2))

16
.
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• Converging lens (Figure 4.3(c)). The index of refraction is given by

η(x1, x2) = 1 + exp(−64 × ((x1 −
1

2
)2 + (x2 −

1

2
)2).

• Linear mirror (Figure 4.3(d)),

c(x1, x2) = (0.75 + ρ(x1, x2)) · (x1 −
1

2
)

where ρ is a radial window function which smoothly extracts the center part of the

unit square [0, 1)2.

In each of these four cases, we apply the algorithm presented in Section 4.2.2 to generate

the propagator E(τ) at time τ = 1/16. The initial time step ∆t used is set to 2−10.

The thresholding constant ε is chosen to be 10−4 and the grid size N is 128. As we

pointed out already, the matrix E(τ) is organized as a collection of submatrices, which

are indexed by row index (j,m, ν) and column index (j ′,m′, ν ′). For each of the four

media, the corresponding plot in Figure 4.4 describes the time dependence of the ε-rank.

The solid curve is the maximum ε-rank over all submatrices, while the broken curve is the

maximum of the sums of the ε-ranks over all column indices (j ′,m′, ν ′) (for a fixed row index

(j,m, ν)). We compute these values at the dyadic time steps appeared in the construction

E(τ), namely tn = 2n · ∆t, and linearly interpolate the value at other times.

We use two typical initial condtions to study our upscaled timestepping algorithm. The

“line” initial condition (Figure 4.5(a)) is a smoothed indicator of {(x1, x2) : x2 = 1
2} while

the “pulse” (Figure 4.5(b)) is a smoothed delta function at the center of the domain. Both

initial conditions, which have significant energy in the high frequency modes, are adequate

for testing the numerical dispersion.

For each acoustic medium, we apply the upscaled time-stepping algorithm on these two

initial conditions. We are particularly interested in conservation of the energy and accuracy

of the wave profile. Since we start from the equation

ptt − c2(x)∆p = 0,



130

10
−3

10
−2

10
1

10
2

t

ε−
ra

nk

ε−rank of submatrices

 

 

Individual rank
Sum of ranks

10
−3

10
−2

10
1

10
2

10
3

t

ε−
ra

nk

ε−rank of submatrices

 

 

Individual rank
Sum of ranks

(a) (b)

10
−3

10
−2

10
1

10
2

10
3

t

ε−
ra

nk

ε−rank of submatrices

 

 

Individual rank
Sum of ranks

10
−3

10
−2

10
2

10
3

t

ε−
ra

nk

ε−rank of submatrices

 

 

Individual rank
Sum of ranks

(c) (d)

Figure 4.4: ε-rank of the submatrices. (a) wave guide, (b) bumps, (c) Gaussian converging
lens, and (d) linear mirror.
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Figure 4.5: Initial condition used in the upscaled time-stepping algorithm.
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the correct conserved energy is ∫ |pt|2
c2(x)

+ |∇p|2dx.

Figure 4.6 summarizes the time dependency of the relative errors of the energy integral (the

solid curve) and the wave profile (the broken curve).
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Figure 4.6: Relative error of the energy integral and the wave field. Left: “line” initial
condition. Right: “pulse” initial condition.

It is well known that standard finite difference methods for hyperbolic equations often

suffer from the problem of excessive numerical dispersion. This is particularly obvious when

one uses a typical central-difference leapfrog scheme. In the following two experiments, we

compare the numerical dispersion phenomenon in our upscaled time-stepping algorithm and

the standard leapfrog algorithm. The time step and the grid size are chosen to be the same

for both algorithms.

The first experiment involves the waveguide acoustic media and the “pulse” initial con-

dition. The three images in Figure 4.8 show the solution at t = 1/2 and t = 1 computed

using our method and the solution at t = 1 computed using the Leapfrog algorithm respec-
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converging lens
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Figure 4.7: Relative error of the energy integral and the wave field. Left: “line” initial
condition. Right: “pulse” initial condition.

tively. Notice that the ripples, which are the direct consequence of the numerical dispersion,

are clearly observable in the leapfrog solution. The second experiment (Figure 4.9), which

uses the bump acoustic media and the “line” initial condition, demonstrates the same phe-

nomenon.
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Figure 4.8: Numerical dispersion. Waveguide media and “pulse” initial condition. Left:
t = 1/2, wave atom method. Middle: t = 1, wave atom method. Right: t = 1, finite
difference method.
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Figure 4.9: Numerical dispersion. Bump media and “line” initial condition. Left: t = 1/2,
wave atom method. Middle: t = 1, wave atom method. Right: t = 1, finite difference
method.

In the last experiment, we study the complexity of the upscaled time-stepping algorithm.

As stated in Section 4.2.3, for certain types of acoustic media (e.g., wave guides), the

upscaled timestepping algorithm has lower complexity compared to the standard spectral

or pseudospectral methods, especially when the spatial discretization is refined. In fact, we

are able to observe this fact even when N is relatively small. Figure 4.10 presents the time

spent on applying a single upscaled time-step for various discretization size. For both the

waveguide and bump media, the curve of the upscaled time-stepping algorithm grows much

more slowly, and it becomes more efficient than the standard spectral method when N is

larger than 128. This observation are in complete conformity with the complexity estimates

in Section 4.2.3.
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Figure 4.10: Computational time of a single upscaled time step. In all cases, the small time
step is ∆t = 1/1024.
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4.4 Rank Estimates

The ε-rank r of a (possibly infinite) matrix Aij is the smallest number r such that Aij can

be approximated up to accuracy ε by a matrix of rank r in `2,

‖Aij −
r∑

k=1

uk
i v

k
j ‖2 ≤ ε.

The ε-separation rank, or just ε-rank r of a function f(x1, x2) is the smallest number of

separated components uk(x1)v
k(x2) necessary to approximate f(x1, x2) up to accuracy ε in

L2, i.e.,

‖f(x1, x2) −
r∑

k=1

uk(x1)v
k(x2)‖2 ≤ ε.

The main theoretical result of this chapter is a sharp bound on the ε-rank of reordered

submatrices of the propagator in the wave atom frame. As detailed earlier each submatrix of

interest has row index (n1, n2) vs. column index (n′1, n
′
2), but the separation isolates (n1, n

′
1)

vs. (n2, n
′
2). Hence the necessity of reordering the entries, to prepare the submatrix for

standard low-rank approximation. Notice that the size of the remainder, no more than ε,

is however measured in `2 in the original form (n1, n2) vs. (n′1, n
′
2), in complete conformity

with the goal of bounding the overall `2 norm of the error on the propagator.

Theorem 4.1. Assume the velocity profile c(x) is C∞. Consider the submatrix Ejmν;j′m′ν′(t)

obtained by fixing j,m, ν and j ′,m′, ν ′ in the wave atom representation of the propagator

E(t). It is of size O(22j)-by-O(22j), where |ξµ| = O(22j) and at finest scale 22j ' N . After

reordering (n1, n2;n
′
1, n

′
2) → (n1, n

′
1;n2, n

′
2), Ejmν;j′m′ν′(t) has ε-rank r bounded as follows.

• for t . 2−j, r ≤ Cε · (1 + t22j),

• for 2−j . t . 2−j/2, r ≤ Cε · 2j,

• for 2−j/2 . t ≤ T , r ≤ Cε · t222j,

with Cε ≤ CM ε
−1/M , for all M > 0, and Cε also depends on T .

The various values taken on by the bound on r are summarized in Figure 4.11. No-

tice that for large times the rank r is always obviously bounded by C22j , the size of the

submatrix.
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Before proving this result, we need to recall that the propagator E(t) can be approxi-

mated by an oscillatory integral, called the Lax parametrix, of the form

E(t)u(x) =
∑

`=±

∫
eiΦ`(x,ξ,t)a`(x, ξ, t)û(ξ) dξ +R1(t)u(x).

This formula is only valid for small times 0 ≤ t < T before caustics. For smooth C∞

media, each phase function is C∞, positive-homogeneous of degree 1 in ξ, and solves a

Hamilton-Jacobi equation,

∂Φ±(x, ξ, t)

∂t
= ±c(x)|∇xΦ±(x, ξ, t)|, Φ±(x, ξ, 0) = x · ξ. (4.23)

Each matrix-valued amplitude a` is a symbol of order 0 and type (1, 0), i.e., componentwise,

|∂α
ξ ∂

β
xa`(x, ξ, t)| ≤ Cα,β,t(1 + |ξ|)−|α|, for all α.

This condition is denoted a` ∈ S0. The remainder R1(t) is smoothing in the sense that it

turns tempered distribution into C∞ functions. This is the same setting as in [15], to which

we refer for details and justifications.

In what follows, we consider x ∈ R2, but u(t, x) with support in a subset Ω inside

the open unit square ]0, 1[2. Without loss of generality, we can make a`(x, ξ, t) compactly

supported through multiplication by an adequate cutoff equal to one on Ω and tapering

smoothly to zero outside [0, 1]2.

We will need the following two simple lemmas in the sequel.

Lemma 4.2. Let f ∈ C∞(]0, 1[2). Then the ε-separation rank of f obeys rε(f) ≤ CM ε
−1/M

for all M > 0, and some constant CM > 0. Furthermore, for each positive integer s > 0

there exists a constant Cs such that the same rank-rε(f) decomposition has error Csε when

measured in the Sobolev space W s,p, for all 1 ≤ p ≤ ∞.

Proof. It suffices to notice that the Fourier series coefficients of f decay like

|f̂ [k]| ≤ CM |k|−M .

Each Fourier mode is separable. Truncating the Fourier series to |k| ≤ K, by means of
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O(K2) terms, results in a squared L2 error

∑

|k|>K

|f̂ [k]|2 ≤ C
(0)
M K−M .

for allM > 0, and some other constant C
(0)
M > 0. HenceK can be chosen less than CM ε

−1/M

for some adequate choice of constant CM .

The expression of the square of the error in W s,2 is (up to constants)

∑

|k|>K

|k|2s|f̂ [k]|2 ≤ C
(s)
M K−M ,

for all M > 0 but where the constant C
(s)
M is likely larger than C

(0)
M . Since K ≤ CM ε

−1/M ,

we certainly have a W s,2 error bounded by Csε for some constant Cs depending on s.

When p 6= 2, we conclude using the continuous Sobolev inclusion W 2+s,2 ⊂ W s,p, valid

for all 1 ≤ p ≤ ∞ in two dimensions.

Lemma 4.3. Let Φ(x, ξ, t) solve either Hamilton-Jacobi equation (4.23). Then, for 0 ≤
t ≤ T while the equation is well posed, the Hessian obeys

∇x∇xΦ(x, ξ, t) = tψ(x, ξ, t),

where each component of ψ is C∞ away from ξ = 0, and positive-homogeneous of degree 1

in ξ.

Proof. Write ∇x∇xΦ(x, ξ, t) as the integral ±
∫ t
0 ∇x∇xc(x)|∇xΦ(x, ξ, s)| ds, where the in-

tegrand has the same smoothness and homogeneity properties as Φ itself.

Proof of theorem 4.1. Let ε > 0. We seek a bound on the number r of separated terms in

〈ϕµeν , E(t)ϕµ′eν′〉 =
r∑

k=1

uk
n1,n′

1
(t)vk

n2,n′
2
(t) +Rn,n′(t),

where Rn,n′(t), as a matrix with row subscript n and column subscript n′, has `2 norm less

than ε. Note that all the quantities r, u, v and R depend on the parameters j,m, ν and
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j′,m′, ν ′, but we drop this dependence for simplicity of notations.

By construction, wave atoms have rank 2 in the frequency domain, namely

ϕ̂µ(ξ) =
[
ψ̂j

m1,+(ξ1)ψ̂
j
m2,+(ξ2) + ψ̂j

m1,−(ξ1)ψ̂
j
m2,−(ξ2)

]
e−i2−jn1ξ1e−i2−jn2ξ2 ,

Without loss of generality, at the expense of at most quadrupling the constants in front

of each estimate, we will drop the second term in the above parenthesis. This results in

considering each wave atom as having only one separated bump in the frequency plane, i.e,

having rank 1. We keep the notation ϕ̂µ(ξ) for these “amputated” atoms.

Call Sµ the support of ϕ̂µ(ξ); it can be inscribed in a ball centered at ξµ, and of radius

equal to 2j+1
√

2π. We will denote by χµ(ξ) a smooth and separable indicator function,

equal to one on Sµ, and zero on the complement of the larger set Sµ + {ξ : |ξ| ≤ 2j}.
Denote by E(ξ, η, t) the frequency kernel of E(t), namely

Ê(t)u(ξ) =

∫
E(ξ, η, t)û(η) dη.

By Parseval, the matrix elements are

〈ϕµ, E(t)ϕµ′〉 =

∫ ∫
ψ̂j

m1,+(ξ1)ψ̂
j
m2,+(ξ2)e

−i2−jn1ξ1e−i2−jn2ξ2E(ξ, η, t)

× ψ̂j′

m′
1,+

(η1)ψ̂
j′

m′
2,+

(η2)e
i2−j′n′

1η1e−i2−j′n′
2η2 dξ1dξ2dη1dη2, (4.24)

where the kernel is

E(ξ, η, t) = K(ξ, η, t) +R1(ξ, η, t), (4.25)

where

K(ξ, η, t) =
∑

`=±

∫
ei(Φ`(x,η,t)−x·ξ)a`(x, η, t) dx. (4.26)

In what follows we will drop the sum and the subscript ` (at the expense of doubling the

separation rank,) because ` = − is totally analogous to ` = +. We now seek results of

separation of K(ξ, η, t) in both ξ and η, on the frequency support of each wave atom, i.e.,

χµ(ξ)χµ′(η)K(ξ, η, t) =

r∑

k=1

K
(1)
k (ξ1, η1, t)K

(2)
k (ξ2, η2, t) +R2(ξ, η, t). (4.27)
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The following lemma shows that the size of the remainder R2 directly translates into a

remainder of comparable size for the submatrix of interest.

Lemma 4.4. Let T (ξ, η) be any kernel defining by extension a bounded operator T on

L2(R2). As usual, we denote µ = (j,m,n) and ϕµν = ϕµeν . For any (j,m, ν) and

(j′,m′, ν ′),

‖ 〈ϕµν , Tϕµ′ν′〉 ‖`2
n
′→`2

n

≤ ‖T‖L2
ην′

→L2
ξν

(4.28)

Proof. By the tight frame property,

‖T‖L2
ην′

→L2
ξν

= ‖ 〈ϕµν , Tϕµ′ν′〉 ‖`2
µ′ν′

→`2µν
.

Choose any set of indices (j,m, ν) and (j ′,m′, ν ′). The conclusion follows by restricting the

wave atoms matrix of T to rows indexed by (j,m, ν) and columns indexed by (j ′,m′, ν ′).

Notice that the remainder R1 does not pose any difficulty. Since it corresponds to a

smoothing operator on a bounded domain, we have the bound

|R1(ξ, η, t)| ≤ CM (1 + |ξ| + |η|)−M , for all M > 0,

so, in the spirit of Lemmas 4.2 and 4.4, a constant number Cε ∼ ε−1/M of (separable)

Fourier modes suffices to approximate the submatrix coming from R1 to accuracy ε/2 in

`2n′ → `2n.

It is also important to notice that for each fixed wave vector ξµ, only a few wave vectors

ξµ′ give rise to nonnegligible matrix elements. This is due to sparsity, and quantified in

Section 4.5. For the time being we only need to observe that, for those nonnegligible

entries, the wave vectors are comparable; very conservatively, |j − j ′| ≤ const. Also, the

particular value of m will be seen not to play any significant role. As a consequence, ε-

separation ranks essentially only depend on one of the two numbers j and j ′, say j. In the

sequel, we will look for a bound on r which depends solely on j, understanding that it holds

uniformly over all j ′,m′ and m.

We are now ready to split the proof into three parts, corresponding respectively to (1)

coarse scales, (2) fine scales in the regions of nonstationary phase, and (3) fine scales near

the locus of stationary phase.



140

4.4.1 Coarse Scales

The case of coarse scales, i.e., say j = j ′ = 0, needs to be considered separately because

the phase Φ(x, ξ, t) has in general a kink at the origin in ξ, that is, a discontinuity in the

gradient.

Let g(x, η, t) = eiΦ(x,η,t)a(x, η, t)χµ(η), so that

K(ξ, η, t) =

∫
e−ix·ξg(x, η, t) dx = ĝ(ξ, η, t),

where the Fourier transform is taken over the first variable only.

Take {ψλ} a 2D separable wavelet orthonormal basis, with super-algebraic decay in both

space and frequency, and expand g(x, ·, t):

g(x, η, t) = (
∑

λ∈Λ1

+
∑

λ∈Λ2

) cλ(x, t)ψλ(η).

Determine the subset of subscripts Λ2 such that

sup
x

sup
0≤t≤T

∑

λ∈Λ2

|cλ(x, t)|2 ≤ ε2

16π2
.

Since ∇ηg(x, ·, t) is discontinuous at the origin, but otherwise C∞ and compactly supported

in a O(1) region, it is a classical result from wavelet analysis that

|Λ1| ≤ CM ε
−1/M , for all M > 0.

This constant number of important subscripts in Λ1 correspond to large scales as well as

locations near the singularity.

Therefore,

K(ξ, η, t)χµ(η) =
∑

λ∈Λ1

ĉλ(ξ, t)ψλ(η) +R2(ξ, η, t).

Each coefficient cλ(x, t) inherits the C∞ smoothness of g, and is essentially supported near

the unit cube. By lemma 4.2, the ε-separation rank of ĉλ(ξ, t) is therefore O(ε−1/M ) for

all M > 0. In addition, each ψλ(η) is separable, and the sum runs over at most O(ε−1/M )

terms. So the overall separation rank for the sum is O(ε−1/M ) as well.

Let us now check that R2(ξ, η, t) generates an error which is the correct fraction of ε in
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L2. The squared Hilbert-Schmidt norm of R2, which bounds the squared L2 norm, is

∫ ∫
|R2(ξ, η, t)|2 dξdη =

∫ ∑

λ∈Λ2

|ĉλ(ξ, t)|2 dξ by Plancherel-wavelets,

=
∑

λ∈Λ2

∫
|cλ(x, t)|2 dx by Plancherel-Fourier,

≤ sup
x∈[0,1]2

∑

λ∈Λ2

|cλ(x, t)|2 ≤ ε2

16π2
.

We can now apply Lemma 4.4 to obtain a remainder of size ε/2 for each wave atom submatrix

of R2, with indices n,n′. Together with R1’s submatrices, also of size ε/2, the overall

remainder is of size at most ε. This finishes the proof for the coarse scales, with the result

that r = O(ε−1/M ).

4.4.2 Fine Scales, Stationary Phase

Consider µ and µ′ such that χµ(ξ) = χµ′(ξ) = 0 in a neighborhood of the origin ξ = 0. We

expect the integrand in equation (4.26) to be large near the points of stationary phase, i.e.

ξ = ∇xΦ(x, η, t). For each δ > 0, consider the sets

Xη
ξ (δ) = {x ∈ [0, 1]2; |ξ −∇xΦ(x, η, t)| ≤ 2jδ},

and their union

Xµ′

µ (δ) = {x ∈ [0, 1]2; there exist ξ ∈ suppχµ and η ∈ suppχµ′ , |ξ −∇xΦ(x, η, t)| ≤ 2jδ}.
(4.29)

Our aim is to find a smooth indicator p(x) equal to one for x ∈ Xµ′

µ (δ), and for which the

restricted kernel

Knonstat(ξ, η, t) =

∫
(1 − p(x))eiΦ(x,η,t)−ix·ξa(x, η, t) dx

is negligible in the L2 sense, ‖Knonstat‖2 ≤ ε/4. We will see in the next section that such

an estimate holds provided δ is chosen large enough; let us accept for the moment that it

can be taken of the form δ = O(ε−1/M ).

In this section we show how to build p(x) as a sum of functions qk(x), which define
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kernels

Kk(ξ, η, t) =

∫
qk(x)e

iΦ(x,η,t)−ix·ξa(x, η, t) dx, (4.30)

such that each Kk(ξ, η, t)χµ(ξ)χµ′(η) has ε-separation rank of order O(ε−1/M ) in ξ and η,

for all M > 0. An estimate on the overall rank is then expected, for then

K = Knonstat +

NB∑

k=1

Kk (4.31)

will be well separated by O(NBε
−1/M ) terms for all M > 0. In the rest of this section we

intend to estimate NB as a function of t as well as justify smallness of the non-separated

remainder.

The first observation is that the union in the definition of Xµ′

µ (δ) is not essential. More

precisely, let σ be the Lyapunov exponent of the bicharacteristic Hamiltonian system,

σ = sup
t≥0

1

t
log

(
sup

x∈[0,1]2
sup
ξ∈R2

|∇x∇ξΦ(x, ξ, t)|
)
.

For any ξ0, ξ ∈ suppχµ and η0, η ∈ suppχµ′ , we have the estimates

|ξ0 − ξ| ≤ C2j and |η0 − η| ≤ C ′2j′ ≤ C2j .

A Taylor expansion of Φ around η0 then reveals

Xµ′

µ (δ) ⊂ Xη0

ξ0
(Ceσtδ). (4.32)

This observation is important because it shows that the condition |ξ −∇xΦ(x, η, t)| ≤ 2jδ

is the strongest definition of the neighborhood of the locus of stationary phase which still

makes it independent of ξ and η.

The next step is to linearize the phase Φ(x, η, t) in η near some point η0 ∈ suppχµ′ .

The whole point of partitioning the frequency plane into indicators of radius O(2j), when

|η| ∼ 22j , is precisely to make the remainder non-oscillatory. More precisely, for η ∈ suppχµ′ ,

homogeneity of degree one in η implies the estimate

∂α
η [Φ(x, η, t) − η · ∇ηΦ(x, η0, t)] = O(|η|−|α|/2).
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For a proof, see [15], appendix B (p.55); or [79], chapter IX, pp. 406–407. This nonlinear

remainder can be absorbed in the amplitude, which we still denote a(x, η, t) for simplicity,

a(x, η, t)χµ′(η) := ei(Φ(x,η,t)−η·∇ηΦ(x,η0,t))a(x, η, t)χµ′(η),

without essentially changing its properties: the new amplitude aχµ′ is still of order zero

and type (1/2, 0), i.e.,

|∂α
η ∂

β
xa(x, η, t)χµ′(η)| ≤ Cα,β(1 + |η|)−|α|/2. (4.33)

The central argument now consists in performing Taylor expansions of the (linearized)

phase in x within adequately small balls Bxk
(ρk). Call f(x) = η · ∇ηΦ(x, η0, t). Then

f(x) = f(xk) + (x− xk)∇f(xk) +
1

2
(x− xk)

t∇∇f(y)(x− xk), (4.34)

where x, y ∈ Bxk
(ρk), and ∇∇f denotes the Hessian. The first genuinely non-separable

contribution comes from the off-diagonal quadratic term x1x2. We can still have control

over this term if we make it nonoscillatory, i.e., if we take ρk small enough that

ρ2
k|∇∇f(x)| ≤ C for x ∈ Bxk

(ρk). (4.35)

The point is that the constant C is independent of j. The quadratic term can then be

absorbed in the amplitude without essentially changing the latter, as was done previously

for the linearization in η.

We are then led to the geometric problem of covering the set Xµ′

µ (δ) with the smallest

possible number of balls Bxk
(ρk) in which the quadratic term is non-oscillatory. Let us first

lighten notations by writing g(x) for either ∂
∂x1

∇ηΦ(x, η0, t) or ∂
∂x2

∇ηΦ(x, η0, t). Uniform

boundedness of the quadratic term, as above, can be expressed as

|∇g(x)| ≤ C · 2−2jρ−2
k . (4.36)

As we saw in equation (4.32), the condition x ∈ Xµ′

µ (δ) can be reduced to x ∈ Xη0

ξ (C · δ),
which in turn reads

|g(x)| ≤ C · 2−j . (4.37)
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Notice that g(x), like the sound speed c(x), is C∞ for times t < T before breakdown of

the Hamilton-Jacobi equation on plane wave initial conditions. We then claim that, for any

smooth g(x) (C2 will suffice), the set where (4.37) holds can be covered by NB = O(2j)

balls in which (4.36) holds. The construction of such a covering necessarily depends on g(x)

itself, so we apologize to the reader for the following argument being a bit technical.

We switch to a continuous description of the problem by introducing a local ball radius

density ρ(x, j) which will help determine ρk = ρ(xk, j) at a collection of points xk still to

be determined. We set

ρ(x, j) =
1√

2j + 22j |∇g(x)|
. (4.38)

Two basic properties motivate this formula, namely that

• |∇g(xk)| ≤ 2−2jρ(xk, j)
−2, as required, and

• C · 2−j ≤ ρ(x, j) ≤ 2−j/2, for all x ∈ [0, 1]2.

It is important for what follows to check that formula (4.38) is consistent as a definition of

local radius, in the sense that

sup
x∈Bxk

(ρk)
ρ(x, j) ≤ Cc.o. · ρ(xk, j). (4.39)

This result is an easy consequence of Landau’s inequality and is justified in the appendix.

We call it the constant overlap property.

The collection of ball centers xk is now determined as follows. Start from a Cartesian

lattice yk = (k1, k2)b2
−j with k1, k2 integers and some small b > 0 to be determined. Assign

a ball of center ρ̃k = ρk/5 = ρ(xk, j)/5 to yk. The constant b is taken so that the union of

all the balls Byk
(ρ̃k) covers [0, 1]2. In general the balls significantly overlap and the covering

needs pruning, for instance by means of the following elementary covering lemma.

Lemma 4.5. Let G = {Byk
(ρ̃k)} be a family of closed balls with uniformly bounded radius.

Then there is a subfamily F ⊂ G of pairwise disjoint balls such that

⋃

Byk
(ρ̃k)∈G

Byk
(ρ̃k) ⊂

⋃

Byk
(ρ̃k)∈F

Byk
(5ρ̃k).

Proof. See [92], p. 7.
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The collection xk then emerges as the centers of the remaining balls and the radii are

chosen as ρk = 5ρ̃k.

Notice that, by construction, each point in the unit square is covered by at most a

constant number of balls Bxk
(ρk) (independent of j or ρk). This is because the constant

overlap property (4.39) can be iterated to yield

sup
x∈Bxk

(2ρk)
ρ(x, j) ³ ρ(xk, j).

(The notation A ³ B means A ≤ C · B and B ≤ C · A for some positive C which may

depend on some parameters, depending on context.) The balls overlapping with Bxk
(ρk)

therefore have radius comparable to ρk, so there can only be a constant number of them.

We are now ready to estimate the number NB of balls which cover X ≡ Xµ′

µ (δ). To

every lattice point yk, assign a weight

wk = 2−2j
∑

x`∈X:yk∈Bx`
(ρ`)

1

ρ2
`

. (4.40)

Since there are O(22jρ2
` ) grid points yk inside the ball Bx`

(ρ`), it is straightforward to check

that

NB ≤ C ·
∑

k

wk.

On the other hand, the constant overlap property (equation (4.39)) entitles us to see
∑

k wk

as a Riemann sum and bound

∑

k

wk ≤ C ·
∫

X

1

ρ2(x, j)
dx.

Using the definition (4.38), we get

NB ≤ C · (2j + 22j

∫

X
|∇g(x)| dx).

We claim that
∫
X |∇g(x)| dx ≤ C · 2−j . This fact follows from the following lemma, which

is a simple reformulation of the co-area formula for BV functions. For our application, we

let ε̃ = 2−j .
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Lemma 4.6. Let g ∈ C2([0, 1]2). For all ε̃ > 0, let Xε̃ = {x ∈ [0, 1]2, |g(x)| ≤ ε̃}. Then

∫

Xε̃

|∇g(x)| dx ≤ C · ε̃,

where C = 2 supt∈RH
1(∂Xt) and H1 is the Hausdorff measure, or length.

Proof. See the Appendix.

We have shown that NB ≤ C ·2j . Let us now translate this result into a separation rank

for the kernel K(ξ, η, t), by means of the smooth partition of unity qk(x) already alluded to

earlier in this section. Specifically, take a C∞ function χ(x) such that χ(x) > 0 for |x| < 1

and χ(x) = 0 for |x| ≥ 1. Consider the collection xk of all ball centers, including those

outside the set Xµ′

µ (δ). Then for each xk define

q̃k(x) = χ

(
x− xk

ρk

)
.

By Lemma 4.2, each q̃k(x) has ε-separation rank of order O(ε−1/M ) for all M > 0. The

partition of unity is then, in the usual manner, defined as

qk(x) =
q̃k(x)∑
k q̃k(x)

.

The constant overlap property, valid in a neighborhood of Xµ′

µ (δ), ensures that the smooth-

ness constants of qk(x) are comparable to those of q̃k(x), as long as xk is in or near Xµ′

µ (δ).

As a matter of illustration, Lemma 4.2 would apply to those qk(x) near Xµ′

µ (δ) and yields

an ε-separation rank of order O(ε−1/M ) for all M > 0. (In truth, we will apply Lemma 4.2

later to a more complicated amplitude involving qk(x).)

At this point, recall that we are trying to separate the restricted kernel (4.30) on supp

χµ× supp χµ′ , that we have linearized the phase in η and that we are linearizing it in x as

in equation (4.34). The point of qk(x) is that the quadratic contribution can be absorbed in

the amplitude without changing the symbol properties of the latter (equation (4.33)). The

new amplitude ak is defined from

qk(x)ak(x, η, t)χµ′(η) = qk(x)e
i
2
(x−xk)t∇x∇xη·∇ηΦ(y(x),η0,t)(x−xk)a(x, η, t)χµ′(η).
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The constant and linear contributions to the phase are

η · ∇ηΦ(xk, η0, t) + (x− xk) · ∇x(η · ∇ηΦ(xk, η0, t)) − x · ξ.

The first term, η · ∇ηΦ(xk, η0, t), and the third term −xk · ∇x(η · ∇ηΦ(xk, η0, t)) are both

independent of x and separable in η, so we can ignore them. What remains is a modified

kernel of the form

Kk(ξ, η, t) =

∫
qk(x)e

ix·(A(t)η−ξ)ak(x, η, t) dx, (4.41)

where A(t) = ∇x∇ηΦ(xk, η0, t). For sufficiently small times, that is t = O(2−j/2), it turns

out that Kk “looks enough like a pseudodifferential operator” and has constant ε-separation

rank. When t gets larger than 2−j/2, this property quickly degrades, however. In order to

justify these claims, consider the changes of variables

x′ =
x− xk

ρk
, ξ′ =

ξ − ξµ
2j

, η′ =
η − ηµ′

2j
. (4.42)

Translations and dilations do not affect separation ranks. Their effect is to normalize the

kernel so that the integral in x′ is in a region of size at most O(1) in x, and the range for

ξ′ and η′ is a ball centered at the origin, with O(1) radius. The new amplitude

bk(x
′, η′, t) = qk(x(x

′))ak(x(x
′), η(η′), t)χµ′(η(η′))

is a C∞ function whose smoothness constants do not depend on j or j ′ anymore, because

in the new variables, the symbol conditions (4.33) read

|∂α
η′∂

β
x′bk(x

′, η′, t)| ≤ Cα,β2j|α|(1 + |ηµ′ + 2jη′|)−|α|/2 ≤ Cα,β .

(We have used |ηµ′ | ³ 22j .) As for the phase, we have A(t) = I+ tP (t) by Lemma 4.3, with

P (t) = O(1) componentwise. Therefore,

x · (A(t)η − ξ) = ρk2
jx′ · (η′ − ξ′) + tρk2

jx′ · (P (t)η′ − ξ′) + OK. (4.43)

The term “OK” refers to quantities that depend either on x′, or on (η′, ξ′) – but not on all

three at the same time, hence absorbable in the amplitude.



148

Let us now distinguish three subcases, depending on how t asymptotically compares to

2−j/2. Recall that C2−j ≤ ρk ≤ C2−j/2.

4.4.2.1 Typical Times, 2−j . t . 2−j/2

If t . 2−j/2, then tρk2
j ≤ C and hence the second term in (4.43) is non-oscillatory and can

be absorbed in the amplitude b in a now standard manner. What remains is

∫
eiρk2jx′·(η′−ξ′)bk(x

′, η′, t)dx′ = (2π)2b̂k(ρk2
j(η′ − ξ′), η′)

and can be seen to have ε-separation rank O(ε−1/M ), by applying Lemma 4.2 to the properly

supported C∞ function b̂k (the diagonal scaling by ρk2
j is harmless.) The overall separation

rank is proportional to the number of balls used to cover the set Xµ′

µ (δ), hence of order

O(2j), as claimed in Theorem 4.1.

Note that Lemma 4.2 should actually be invoked with an adequate fraction of ε, to make

sure that

‖R2‖L2→L2 ≤ ε

4
. (4.44)

In the appendix we settle an inconspicuous complication arising in the justification of (4.44),

having to do with the fact that the separation remainder is actually a sum over O(2j)

contributions, as in equation (4.31).

An application of Lemma 4.4 now shows that each wave atom submatrix formed from

R2, with indices n, n′, has `2n′ → `2n norm at most ε/4.

4.4.2.2 Large Times, t & 2−j/2

If asymptotically t ≥ 2−j/2 then tρk2
j grows in j and a different definition of qk(x) is

necessary. More precisely, we repeat the covering argument of Xµ′

µ (δ) with a smaller local

ball radius density, given by

ρ(x, j) =
1√

t222j + 22j |∇g(x)|
.

All ball radii now obey ρk ≤ 1
t2j , hence the phase becomes ρk2

jx′ ·(η′−ξ′) + non-oscillatory,

as required. By repeating the previous counting argument, their total number is O(t222j).

The rest of the argument is otherwise identical.
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The conclusion is the same as before: the overall separation rank is proportional to the

number of balls used in the main partitioning argument, here O(t222j). The justification

that R2 gives rise to submatrices of norm ε/4 is the same as before.

4.4.2.3 Small Times, t . 2−j

For small times, the same argument would apply, but a major simplification of the problem’s

geometry allows us to prove a stronger result. By Lemma 4.3,

∇xΦ(x, η, t) = η +O(t|η|) = η +O(t22j).

For t ≤ C · 2−j there exists a value of δ for which the set Xη
η (δ) defined by the condition

|∇xΦ(x, η, t) − η| ≤ 2jδ covers [0, 1]2. So will Xµ′

µ (δ), which is bigger than Xη
η (δ). The

neighborhood of the locus of stationary phase is, therefore, the whole unit square.

We follow the same reasoning as before, and try to find a covering of [0, 1]2 with balls of

radius ρk in which the second-order term in the x-expansion of the phase is non-oscillatory.

For t = O(2−j) it suffices to take ρk = ρ0, identically equal to

ρ0 =
1√
t2j

.

Indeed, by Lemma 4.3,

ρ2
0|∇x∇xΦ(t, η, t)| ≤ C · ρ2

0t|η| ≤ C.

The collections of ball centers xk can be taken as the Cartesian grid

xk = (k1, k2)
1

2
t−1/22−j , k1, k2 ∈ Z.

This corresponds to O(1 + t22j) balls Bxk
(ρ0). The exact same reasoning as in the more

general case applies, and yields an overall ε/4-separation rank of order O(1 + t22j).
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4.4.3 Fine Scales, Nonstationary Phase

Let us now show that the nonstationary phase part yields a negligible contribution. Recall

that we have defined, for each δ > 0,

Xµ′

µ (δ) = {x ∈ [0, 1]2; there exist ξ ∈ suppχµand η ∈ suppχµ′ , |ξ −∇xΦ(x, η, t)| ≤ 2jδ}.
(4.45)

The partition of unity {qk(x)} introduced in the previous section can be used as smooth

indicators for the complement of Xµ′

µ (δ). Let Sout be the set {xk : Bxk
(ρk) ∩Xµ′

µ (δ) 6= ∅},
and

p(x) =
∑

xk∈Sout

qk(x).

Of course, p(x) depends on j, j ′ and δ but keeping track of this fact would make the

notations unnecessarily heavy. It follows from the definition of qk(x) that we have the

“maximal” smoothness condition

sup
x∈[0,1]2

|∂α
x p(x)| ≤ Cα · 2j|α|.

We can now readily estimate

R3(ξ, η, t) =

∫
ei(Φ(x,η,t)−x·ξ)(1 − p(x))a(x, η, t) dx.

Indeed, we claim that an adequate choice of δ implies ‖R3‖2 ≤ ε/4 in L2. To this end, let

us first check L2 boundedness. The smoothness property of p(x), along with the estimate

22j ∼ |ξ|, imply that the amplitude

σ(x, η, t) = (1 − p(x))a(x, η, t)

is a symbol of order zero and type (1, 1/2), in the sense that

|∂α
ξ ∂

β
xσ(x, ξ, t)| ≤ Cα,β(1 + |ξ|)−|α|+|β|/2.

As mentioned earlier, it is a beautiful application of the wave atom sparsity Theorem that

Fourier integral operators of type (1/2, 1/2), and in particular the kernel eiΦσ with σ as
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above, are bounded on L2.

Let us now show that the L2 bound can be made arbitrarily small, by an adequate

choice of δ. Consider the differential operator

L =
1

|ξ −∇xΦ(x, η, t)|2 (∆x − i∆xΦ(x, η, t)I),

which is chosen so that Lei(Φ(x,η,t)−x·ξ) = ei(Φ(x,η,t)−x·ξ). The operator L can be applied any

number of times to the exponential factor, and then moved to σ = (1 − p)a by integration

by parts. The effect on the amplitude σ is the following:

• Every 1
|ξ−∇xΦ(x,η,t)|2 , on the support of (1−p(x))χµ′(η), brings in a factor 1

δ222j , thanks

to the definition of the set Xµ′

µ (δ).

• Every L(1 − p(x)) yields a factor 22j , because of the smoothness property of p(x).

• Every ∆xΦ yields a factor 22j , by homogeneity.

• After integration by parts, the new amplitude obeys the same smoothness assumptions

as σ, hence is still a symbol of type (1, 1/2).

Therefore, we conclude that

δ2MLMσ(x, η, t)

is of type (1, 1/2), with smoothness constants depending on M , but independent of δ.

Invoking the general theory of FIOs, the L2 bound on R3 is therefore of the form

‖R3‖2 ≤ CMδ
−2M (4.46)

For fixed M , this bound can be made less than ε
8π by choosing δ as

δ ≥ C ′
M ′ε−

1
M′ , (4.47)

with M ′ = 2M and for some constant C ′
M ′ related to CM . The combination of this result

and Lemma 4.4 translates into a boundedness result for the corresponding submatrix in n,

n′, namely that its `2 norm is bounded by ε/4.

The proof is now complete, because the remainders R1, R2 and R3 are of size at most

ε/2, ε/4 and ε/4 respectively, hence add up to ε.
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4.5 Scattering Estimates

The objective of this section is to quantify the interactions, or energy transfer from an input

wave vector ξµ′ to other output wave vectors ξµ. As a result, we will obtain estimates on

the sum of ranks of submatrices, either on j,m, ν or j ′,m′, ν ′.

Theorem 4.2. Let Ejmν;j′m′ν′(t) be the submatrix corresponding to j,m, ν and j ′,m′, ν ′

in the separated wave atom representation of E(t). For any ε > 0, given (j ′,m′), let

Ωj′,m′(t) be the smallest set of wave vectors (j,m) such that setting E(t)jmν;j′m′ν′ = 0 for

(j,m) /∈ Ωj′,m′(t) and all ν, ν ′ results in an error less than ε in matrix `2 norm. Then the

cardinality of Ωj′,m′(t) obeys the bound

|Ωj′,m′(t)| ≤ Cε · (1 + t222j′),

where Cε ≤ CM ε
−1/M , for all M > 0.

Proof. Fix ε > 0 and M > 0. For this proof, we will exploit the compression properties

of the wave propagator as in Theorem 1.1. The wave atom representation ẼB,N (t) of the

propagator E(t) is constructed as a matrix with two shifted band diagonals indexed by

ν = ±, each of them corresponding to a ball in phase space centered about ht,ν(µ′), and

defined through the wave atom metric ω. More precisely, the “shifted band diagonals” are

defined as the following set of wave atom subscripts:

SBD(µ′) =
⋃

ν=±
{µ : ω(µ, ht,ν(µ′)) ≤ r},

with r chosen such that |{µ : ω(µ, ht,ν(µ′)) ≤ r}| ³ B. Take B large enough so that

the right-hand side of the error estimate (1.20) obeys CMB
−M ≤ ε. Then of course r ≤

CM ε
−1/M . Note that an error ε in L2 for operators translates into an error ε in `2 for the

wave atom matrix, by the tight frame property. In turn, restriction to a certain subset of

rows and columns implies an error smaller than ε in `2 for the submatrix corresponding to

j,m, ν and j′,m′, ν ′.

To estimate the size of Ωj′,m′(t) it suffices to count the number of wave vectors (j,m)

which are part of at least one element µ = (j,m,n) of the union of the shifted band diagonals
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over all n′,
⋃

n′:µ′=(j′,m′,n′)

SBD(µ′).

To this effect, recall that the local wave vector ξ(t) = ∇xΦ(t, x) is obtained from the solution

of the Hamilton-Jacobi equation Φt = c(x)|∇xΦ| with initial condition Φ(0, x) = x · ξµ′ .

The range of all such wave vectors defines a region in the frequency plane, which can be

inscribed in a ball Q0 centered at ξµ′ and of radius majorized by C · t|ξµ′ | ≤ C · t22j′ .

The set of wave vectors ξµ defined through SBD(µ′) is slightly larger however, because the

radius r is nonzero, but can certainly be inscribed in a larger ball Qr of radius bounded by

C · t22j′ + Cε2
j′ .

It remains to count the number of tiling indicators χµ(ξ) whose supports intersect the

ball Qr. Near ξµ′ , the support of each indicator has radius O(2j′), so it suffices to use a

number of indicators bounded by

C ·
(
C · t22j′ + Cε · 2j′

2j′

)2

≤ Cε · (1 + t222j′).

This is the desired bound on the cardinality of Ωj′,m′(t).

A simple counting argument now allows us to formulate the following result, companion

to Theorem 4.1. The collection of bounds is summarized in Figure 4.11.

Corollary 4.1. Consider the submatrix Ejmν;j′m′ν′(t) obtained by fixing (j,m) and (j ′,m′)

in the wave atom representation of the propagator E(t) after reordering (n1, n2;n
′
1, n

′
2) →

(n1, n
′
1;n2, n

′
2). Denote by rj′m′

jm the maximum over ν, ν ′ of the ε-rank of Ejmν;j′m′ν′(t).

Then we have the bounds

• for t . 2−j,
∑

jm rj′m′

jm ≤ Cε · (1 + t22j),

• for 2−j . t . 2−j/2,
∑

jm rj′m′

jm ≤ Cε · t223j,

• for 2−j/2 . t ≤ T ,
∑

jm rj′m′

jm ≤ Cε · 22j,

with Cε ≤ CM ε
−1/M , for all M > 0, and Cε also depends on T . The same bounds are valid

for
∑

j′m′ r
j′m′

jm .

Proof. For t ≤ 2−j/2, or a constant multiple thereof, we can combine Theorem 4.1 with the

scattering estimate (4.2) to obtain the first two bounds. For t ≥ 2−j/2, it suffices to notice
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that the rank of each submatrix Ejmν;j′m′ν′(t) must be smaller than the number of nonzero

elements. After thresholding at level ε in `2, the number of nonzero elements in any of the

matrices Ejmν;j′m′ν′(t), for fixed m′, is bounded by Cε ·22j , by sparsity (Theorem 1.1). The

third bound follows.

The same bounds on
∑

j′m′ r
j′m′

jm stem from the observation that the adjoint operator

E∗(t) is obtained from the backward-in-time wave equation, which admits the same sparsity

and separation properties. Note that formulating bounds in terms of j or j ′ does not make

any difference since j ³ j ′ by sparsity.

4.6 Special Cases

In this section we continue the study of three of the four representative sample media

introduced in Section 4.3, as well as another medium called “misaligned wave guide,” this

time in the light of the rank estimates just obtained. In two cases (Wave Guide and Bumps)

the rank and complexity estimates turn out to be quite pessimistic and we are able to prove

better bounds under certain conditions. In the two other less favorable cases (Misaligned

Wave Guide and Linear Mirror), we give heuristic arguments that the rank bounds of Section

4.4 and 4.5 are in fact attained.

4.6.1 Wave Guides

We refer to a wave guide as an acoustic medium whose speed of sound depends only on one

coordinate, either x1 or x2. As always, it is also assumed to be C∞.

The rank bounds can be significantly improved for wave guides. In short, we show that

rank majorants for wave guides are in general the square root of the rank majorants in the

worst case.

Theorem 4.3. Assume the velocity profile depends only on x2 and is C∞. Consider the

submatrix Ejmν;j′m′ν′(t) obtained by fixing (j,m) and (j ′,m′) in the wave atom represen-

tation of the propagator E(t), after reordering (n1, n2;n
′
1, n

′
2) → (n1, n

′
1;n2, n

′
2). Then the

ε-rank of Ejmν;j′m′ν′(t) obeys

• for t . 2−j, r ≤ Cε · (1 +
√
t2j),
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• for 2−j . t . 2−j/2, r ≤ Cε · 2j/2,

• for 2−j/2 . t ≤ T , r ≤ Cε · t2j,

with Cε ≤ CM ε
−1/M , for all M > 0, and Cε also depends on T .

Proof. When the velocity profile c(x) does not depend on x1, it is easy to check that the

local wave numbers ∇xΦ±(x, ξ, t) do not depend on x1 either (although Φ± itself does).

The steps of the proof are then the same as for Theorem 4.1, except that the definition

of indicators qk(x) is a bit different. Instead of considering balls Bxk
(ρk), we will consider

horizontal strips Sx2,k
(ρk) centered at height x2 = x2,k and of width 2ρk. Equations (4.34)

through (4.37) then carry through unchanged, but a major simplification occurs in the

counting argument for NS , the number of strips necessary to make the restrictions of the

phase non-oscillatory on each qk(x). The problem is now one-dimensional, g depends on x2

only, so the local “strip width density” can be defined as

ρ(x2, j) =
1√

2j + 22j |g′(x2)|
, (4.48)

and the lattice yk can be replaced by a simpler one-dimensional sequence y2,k = kb2−j . In

contrast with equation (4.40), the weights wk assigned to y2,k must now be defined as

wk = 2−j
∑

x2,`∈X:y2,k∈Sx2,`
(ρ`)

1

ρ`
.

There are O(2jρ`) points y2,k inside the interval [x2,` − ρ`, x2,` + ρ`], so we have

NS ≤ C ·
∑

k

wk.

The corresponding integral is

NS ≤ C ·
∫

X

1

ρ(x2, j)
dx2.

We should now use (4.48) in combination with the bound
√

2j + 22j |g′(x2)| ≤ 2j/2(1 +

1
22j |g′(x2)|) and Lemma 4.6—also valid in dimension one—to obtain the improved bound

NS ≤ C · 2j/2.
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The rest of the proof then proceeds in an analogous way.

• For typical times 2−j . t . 2−j/2, the bound on r is the same as that for NS , namely

O(2j/2).

• For small times t . 2−j , the strip heights can be taken equispaced and equal to

x2,k = kbt−1/22−j ,

yielding NS = O(1 +
√
t2j) strips and a comparable rank r.

• For large times t & 2−j/2,

ρ(x2, j) =
1√

t222j + 22j |g′(x2)|
,

so r ' NS = O(t2j) by the previous argument.

These rank bounds are summarized in Figure 4.11. Let us remark at this point that the

rank plateaus at a value O(2j) for t ' 1, although the size of the matrix is ' 22j-by-22j .

This is obviously a consequence of the above theorem for times before caustics, but it turns

out the same result is also valid after caustics start forming. The justification of this more

general claim will follow from the analysis of the stronger bound on the sum of ranks over

j′ and m′, which we now present.

Theorem 4.4. Assume the velocity profile depends only on x2 and is C∞. Consider the

submatrix Ejmν;j′m′ν′(t) obtained by fixing (j,m) and (j ′,m′) in the wave atom represen-

tation of the propagator E(t), after reordering (n1, n2;n
′
1, n

′
2) → (n1, n

′
1;n2, n

′
2). Denote by

rj′m′

jm the maximum over ν, ν ′ of the ε-rank of Ejmν;j′m′ν′(t). Then we have the bounds

• for t . 2−j,
∑

jm rj′m′

jm ≤ Cε · (1 +
√
t2j),

• for 2−j . t . 2−j/2,
∑

jm rj′m′

jm ≤ Cε · t23j/2,

• for t & 2−j/2 ≤ T ,
∑

jm rj′m′

jm ≤ Cε · 2j,

with Cε ≤ CM ε
−1/M , for all M > 0, and Cε also depends on T . The same bounds are valid

for
∑

j′m′ r
j′m′

jm .
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Proof. We need a stronger version of the scattering estimate in Theorem 4.2, in the special

case of wave guides. The question is to determine the number of balls of radius ' 2j

(each containing a wave atom bump in frequency) necessary to cover the locus of local

wave vectors ∇xΦ±(x, ξ, t), when a union is taken over all possible values of x. We know

from the general case that this local wave vector cannot wander too far off ξ, namely

|ξ −∇xΦ±(x, ξ, t)| ≤ C · t22j , resulting in a covering by at most O(1 + t222j) balls.

In the case of wave guides, however, this locus is for each phase a one-dimensional smooth

curve Γξ, generated by the union of all wave vectors over the single coordinate x2 (because

the local wave vector is independent of x1). In addition, Γξ inherits the homogeneity of

degree one of Φ, which makes it homothetic in |ξ|. As a result, the length of Γξ is in fact

comparable to the diameter of the locus in the general case, O(t22j), so it only takes O(t2j)

balls of radius ' 2j to cover Γξ. As a result, the cardinality of the set of participating wave

vectors, in analogy with Theorem 4.2, is

|Ωj′,m′(t)| ≤ Cε · (1 + t2j).

The argument bounding sums of ranks over j ′ and m′ then goes on to follow from the

proof of Corollary 4.1, and we obtain

• for t . 2−j ,
∑

jm rj′m′

jm ≤ Cε · (1 +
√
t2j),

• for 2−j . t . T , before caustics,
∑

jm rj′m′

jm ≤ Cε · t23j/2.

Since we have so far relied on the existence of the phase functions Φ± in our reasoning, we

took the precaution of mentioning that the result is valid before the formation of caustics

(on plane wave initial conditions). The same bounds also hold when the sum is taken over

(j′,m′) instead of (j,m), for the same reasons as previously.

We however claim that a stronger estimate holds:
∑

j′,m′ r
j′,m′

j,m ≤ Cε ·2j , regardless of t,

even after caustics. This improves on the earlier bound when t & 2−j/2. In order to justify

this claim, we need to understand the effect of the wave guide structure on the submatrices

of interest, Ejmν;j′m′ν′(t) with row index n = (n1, n2) and column index n′ = (n′1, n
′
2). For

short, when the other parameters are encumbering, we also denote the submatrix by E
n′

1;n
′
2

n1,n2 .

The subscript ν takes on two values (±) so we omit it in what follows. Recall the

central sparsity result, Theorem 1.1, which states that for fixed µ = (j,m,n) the number of
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matrix elements above a threshold ε (in absolute value), spanned by the remaining indices

(j′,m′,n′), is a constant Cε = O(ε−1/M ) for all M > 0. Let us now make the exercise of only

fixing (j,m, n1): the number of elements above ε spanned by the other indices (j ′,m′,n′, n2)

is proportional to the number of n2’s, that is Cε · 2j . Fixing n1 means considering only a

subset of the rows, i.e. “mutilating” each submatrix E
n′

1,n′
2

n1,n2 . Surely, for fixed n1 the sum of

ranks of those mutilated matrices over j ′,m′ cannot exceed the total number of elements,

Cε · 2j . Re-ordering the submatrices as E
n2,n′

2

n1,n′
1

does not change that fact.

As we now consider different values of n1 (still for fixed j,m), we introduce no new

information. Because of the invariance of the problem under translations in x1, we obtain

the same wave atom matrix elements, albeit shifted circularly in n′
1. More precisely, the

invariance property reads

E
n′

1,n′
2

n1,n2 = E
n′

1+p,n′
2

n1+p,n2
,

where p is any integer and addition is understood modulo the bound on the number of n1.

Consequently, the rank of E
n′

1,n′
2

n1,n2 does depend on whether it is mutilated to a certain subset

of n1’s or not. The same is true for the sum of ranks over (j ′,m′), so the claim follows.

Again, the same bounds also hold when the sum is taken over (j,m) instead of (j ′,m′).

The proof is complete.

4.6.2 Bumps

The example “Bumps” belongs to a larger class of nondegenerate oscillating profiles, which

can be formalized as follows.

Definition 4.3. (Transversality) A smooth velocity profile c(x) > 0 is said to be transversal

when the following two conditions are satisfied:

1. The locus where the Hessian ∇∇c is singular is the union of a finite number of smooth

curves.

2. For every point x for which there exists two unit vectors d, d′ such that (d·∇)2c(x) = 0

and (d′ · ∇)3c(x) = 0, we have d · d′ 6= 0.

As can easily be checked, examples of transversal profiles include smooth and separable

functions c(x1, x2) = γ1(x1)γ2(x2) > 0 with γ′′′k nonzero when γ′′k vanishes, k = 1 or 2. In the
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“Bump” example, we have taken γ1(x) = γ2(x) = 3+sin(4πx)
16 . We also expect a sum of wide

bumps with random location and random positive amplitude to satisfy the transversality

condition with high probability.

A notable example of non-transversal profile, on the other hand, would be the innocent-

looking

c(x1, x2) = 2 + sin(2πx1) sin(2πx2),

for which condition 2 in definition 4.3 is violated.

The rationale for introducing “transversal” profiles is the following (obvious) asymptotic

relation for the phase Hessian,

∇x∇xΦ±(x, ξ, t) = ±t∇∇c(x) |ξ| +O(t2|ξ|).

For small times t = o(1), the locus of singularity of ∇x∇xΦ± is a deformation of that of

∇∇c. Such information allows to characterize the locus Xη
ξ (δ) of stationary phase in a

much more precise way than was done in the proof of theorem 4.1. As a result, the rank

estimates can be strengthened as follows. The results are reported in Figure 4.11.

Theorem 4.5. Assume c(x) is smooth and transversal, in the sense of definition 4.3.

Consider the submatrix Ejmν;j′m′ν′(t) obtained by fixing (j,m) and (j ′,m′) in the wave atom

representation of the propagator E(t), after reordering (n1, n2;n
′
1, n

′
2) → (n1, n

′
1;n2, n

′
2).

Then the ε-rank of Ejmν;j′m′ν′(t) obeys

• for t . 2−j, r ≤ Cε · (1 + t22j),

• for 2−j . t . 2−j/3, r ≤ Cε · 2j/2√
t
,

• for 2−j/3 . t ≤ T = o(1), r ≤ Cε · t2j,

with Cε ≤ CM ε
−1/M , for all M > 0.

Proof. As alluded to earlier, the condition T = o(1) ensures that the phases Φ± satisfy the

same transversality conditions as c(x).

The proof of the rank bound for t . 2−j is the same as previously, so let us consider

t & 2−j . As alluded to earlier, the condition T = o(1) ensures that the phases Φ± satify

the same transversality conditions as c(x). The purpose of the transversality condition is
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to allow a much more explicit description of the loci Xµ′

µ (δ) of stationary phase than in the

proof of Theorem 4.1.

Consider one phase function, say Φ = Φ+. Given a wave number η and a point x∗ ∈
[0, 1]2, only three scenarios can occur.

1. Assume ∇x∇xΦ(x∗, η, t) = 0. By transversality, we necesarily have

|(d · ∇)3Φ(x∗, ξ, η)| ≥ Ctranst|η|, (4.49)

uniformly over all unit vectors d. Let ξ0 = ∇xΦ(x∗, η, t). We would like to find good

bounds for the set

Xη
ξ0

(δ) = {x ∈ [0, 1]2 : |∇xΦ(x, η, t) − ξ0| ≤ δ2j}.

Once this is done, we can identify the wave atom subscripts µ, µ′ such that ξµ is

closest to ξ0, ηµ is closest to η0, and assert that Xµ′

µ (δ) has about the same size, up

to a constant, as Xη
ξ0

(δ). See the reasoning leading to equation (4.32).

Using a Taylor expansion around x∗ and Lemma 4.3 we first obtain

∇xΦ(x, η, t) = ξ0 +
1

2

∑

k1,k2

(x−x∗)k1(x−x∗)k2

∂2

∂xk1∂xk2

∇xΦ(x∗, η, t)+O(|x−x∗|3t|η|).

(4.50)

We can take the dot product of this relation with d(x) = x−x∗

|x−x∗| to get

d(x) · (∇xΦ(x, η, t) − ξ0) =
1

2
|x− x∗|2(d(x) · ∇x)3Φ(x∗, η, t) +O(|x− x∗|3t|η|).

The magnitude of a gradient is certainly greater than the absolute value of any direc-

tional derivative, so

|∇xΦ(x, η, t) − ξ0| ≥
1

2
Ctrans|x− x∗|2t|η| −O(|x− x∗|3t|η|).

When |x − x∗| = o(1) as the scale j or equivalently |η| ' 22j grows, then the

O(|x − x∗|3t|η|) remainder is asymptotically negligible and the behavior of Φ near

x∗ is governed by its third spatial derivatives. If we let x ∈ Xη
ξ0

(δ) then the condition
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defining the latter set implies

C · t|η||x− x∗|2 ≤ 2jδ,

which in turn shows that Xη
ξ0

(δ) is included in a ball centered at x∗, with radius ρX

proportional to 2−j/2√
t

. As t asymptotically exceeds 2−j we are indeed in the regime

where |x− x∗| = o(1), validating smallness of the Taylor remainder.

With this information on the extent of the set of near-stationary phase points, we are

ready to repeat the ball counting argument of Section 4.4.2. The argument consists

in exhibiting balls Bxk
(ρk) over which the phase is non-oscillatory in the sense that

for x ∈ Bxk
(ρk), it holds that

ρ2
k|∇x∇xΦ(x, η, t)| ≤ C. (4.51)

In the neighborhood of x∗ the phase Hessian obeys, componentwise,

|∇x∇xΦ(x, η, t)| ≤ C · t|η||x− x∗|,

which means that for x ∈ Xη
ξ0

(δ) we have

|∇x∇xΦ(x, η, t)| ≤ C · 23j/2
√
t.

To satisfy the non-oscillation condition (4.51), it suffices to take the ball radii rk

uniformly equal to

ρk ' 2−3j/4t−1/4. (4.52)

This choice corresponds to a covering of Xµ′

µ (δ) by NB balls, where

NB ≤ C ·
(
ρX

ρk

)2

= C · 2j/2t−1/2. (4.53)

This bound on NB will be interpreted later as a rank estimate, because the zero

Hessian scenario turns out to be the worst case (largest bound on NB.). To this end,

we now intend to review and compare the other two scenarios.
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2. Assume now that there exists a direction d along which

d · ∇xΦ(x∗, η, t) = 0 but d⊥ · ∇xΦ(x∗, η, t) 6= 0.

In the direction d, we can repeat the argument of scenario 1 to conclude that the

spatial extent of Xµ′

µ (δ) is of order ρX(d) = 2−j/2t−1/2. In the direction d⊥, the

situation is simpler because the Taylor expansion of ∇xΦ is the usual

∇xΦ(x, η, t) = ξ0 +
∑

k

(x− x∗)k
∂

∂xk
∇xΦ(x∗, η, t) +O(|x− x∗|2t|η|).

Repeating the sequence of steps leading up to (4.52), we obtain instead

ρX(d⊥) ' 2−jt−1.

It is straightforward to check that the phase is always non-oscillatory in the sense of

(4.51) over balls of radius ρk = 2−jt−1. We conclude that Xµ′

µ (δ) can be covered by

NB balls Bxk
(ρk), with

NB ≤ C · ρX(d)ρX(d⊥)

ρ2
k

= C · 2j/2
√
t. (4.54)

For times t = O(1) this bound is always smaller than (4.53), obtained in scenario 1.

3. Finally, assume that the phase Hessian is nonsingular. By the same argument as

above, the set Xµ′

µ (δ) can be inscribed in a ball of radius ρX ' 2−jt−1, over which the

phase is non-oscillatory, resulting in

NB ≤ C, (4.55)

independently of j. This latter bound is always smaller than (4.53) for times t & 2−j .

The conclusion of the above analysis is that the worst-case scenario arises when the

Hessian vanishes, for which NB ≤ C · 2j/2t−1/2. Before translating this bound into a rank

estimate, we must make sure that the off-diagonal linear term in the phase (see equation

(4.43)) is itself non-oscillatory. Recall that the normalizing change of variables (4.42) for x′
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was chosen so that x′ = O(1) as long as x ∈ Bxk
(ρk). In our case, we can choose it as

x′ =
x− xk

2−3j/4t−1/4
,

resulting in

x · (A(t)η − ξ) = (2jt−1)1/4x′ · (η′ − ξ′) + (2jt3)1/4x′ · (P (t)η′ − ξ′),

where A(t) = I + tP (t) (compare with (4.43)). The term involving P (t) is of order O(1) as

long as t . 2−j/3, therefore allowing to view the bound on NB as a rank estimate. That is

the content of the second bullet in Theorem 4.5.

For times t & 2−j/3, we resort to the same reasoning as previously, namely modifying

the change of variables as

x′ =
x− xk

(t2j)−1
.

This choice imposes a covering of Xµ′

µ (δ) by balls of radius ρk = 2−jt−1, resulting in

NB ≤ C ·
(

2j/2t−1/2

2−jt−1

)2

= C · t2j .

The corresponding rank estimate follows (bullet 3 in Theorem 4.5.) This concludes the

proof.

The corresponding result for sums of ranks is the following.

Theorem 4.6. Assume the velocity profile is tranversal and C∞. Consider the submatrix

Ejmν;j′m′ν′(t) obtained by fixing (j,m) and (j ′,m′) in the wave atom representation of the

propagator E(t), after reordering (n1, n2;n
′
1, n

′
2) → (n1, n

′
1;n2, n

′
2). Denote by rj′m′

jm the

maximum over ν, ν ′ of the ε-rank of Ejmν;j′m′ν′(t). Then we have the bounds

• for t . 2−j,
∑

jm rj′m′

jm ≤ Cε · (1 + t22j),

• for 2−j . t . 2−3j/5,
∑

jm rj′m′

jm ≤ Cε · 2j/2√
t
,

• for 2−3j/5 . t ≤ T = o(1),
∑

jm rj′m′

jm ≤ Cε · t222j,

with Cε ≤ CM ε
−1/M , for all M > 0. The same bounds are valid for

∑
j′m′ r

j′m′

jm .
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Proof. The justification is a combination of the bounds of Theorem 4.5 with a scattering

estimate, counting the number of wave vectors ξµ′ involved in each scenario on the phase

Hessian (see the proof of Theorem 4.5.) Fix a wave vector ξµ. The count is as follows:

1. We claim that the locus where the Hessian ∇∇c is identically zero contains at most

a finite number of points, in the case of transversal velocity profiles. Assume by

contradiction that it is not the case. By compactness there exists a sequence of points

xi in [0, 1]2 converging to some limit x∗ ∈ [0, 1]2, such that xi 6= x∗ and ∇∇c(xi) = 0.

Necessarily, by continuity, ∇∇c(x∗) = 0. Denote di = xi−x∗

|xi−x∗| . Since the unit circle

is compact, there exists a subsequence dij converging to some d ∈ S1. It is then a

simple matter to check to check that (d ·∇)∇∇c = 0, contradicting the transversality

condition in Definition 4.3.

The same property transfers to the phase Hessian for times t = o(1). Each point

x where ∇x∇xΦ±(x, ξµ, t) vanishes identically corresponds to one wave vector, ξ0 =

∇xΦ±(x, ξµ, t). As a consequence, there are at most a constant number of wave vectors

ξµ′ which belong in scenario 1, yielding a total combined rank

∑

(j,m)∈I

rj′,m′

j,m ≤ C · max{2j/2t−1/2, 2jt}. (4.56)

2. For scenario 2, we directly obtain from the transversality condition that the locus L
where the phase Hessian is singular is a one-dimensional manifold. So is the locus Γξµ

of wave vectors ξ = ∇xΦ±(x, ξµ, t), where x ∈ L. As in the proof of Theorem 4.4, the

intersection of Γξµ with the “scattering” ball Bξµ(Ct22j) can be covered by at most

O(t2j) indicators χµ′(ξ). As a result, the sum of ranks over (j,m) for scenario 2 is

∑

(j,m)∈II

rj′,m′

j,m ≤ C · 2jt · 2j/2t1/2 = C · 23j/2t3/2. (4.57)

3. Scenario 3 corresponds to all the wave vectors ξµ that are left out from scenarios 1 and

2. By Theorem 4.2, there are at most O(t222j) of them. Each of those wave vectors

corresponds to a submatrix with rank bounded by a O(1) constant, so the total count

is
∑

(j,m)∈III

rj′,m′

j,m ≤ C · 22jt2. (4.58)



165

It now remains to add equations (4.56), (4.57) and (4.58). The two last bullets in

Theorem 4.6 follow from the observation that (4.56) is asymptotically dominant when t .

2−3j/5, but (4.58) dominates when t & 2−3j/5.

4.6.3 Misaligned Wave Guide

A “misaligned wave guide” is an essentially one-dimensional profile c(x) whose redundant

coordinate is not aligned with x1 or x2. One such example is

c(x1, x2) = 2 − cos(2
√

2π(x1 − x2)),

which depends only on x1 − x2. We take the precaution to name those profiles essentially

one-dimensional, because they should also be smooth and periodic on the torus, a require-

ment incompatible with being a wave guide in other directions than vertical, horizontal, or

diagonal at 45 degrees as above.

The performance of our solver on “misaligned wave guide” is rather poor so we chose

not to report it in Section 4.3.

We intent to justify, albeit not in a rigorous manner, that misaligned wave guides prob-

ably saturate the rank bound r . 2j of Theorem 4.1, when t ' 2−j . We hope that this

example may help illustrate a central piece of the argument behind Theorem 4.1.

Locally near the diagonal x1 = x2, we have c(x1, x2) ' 1 + 4π2(x1 − x2)
2. The phases

Φ± therefore obey the small-time (and small |x1 − x2|) asymptotic relations

Φ±(x, ξ, t) ' x · ξ ± t(1 + 4π2(x1 − x2)
2)|ξ|.

Let us now explain why the most expensive contribution in the phase, in terms of the

resulting ranks, is the off-diagonal term proportional to tx1x2|ξ|. We had already alluded

to this fact in Section 4.4.2. We remind the reader that |ξ| ' 22j , so we will simply consider

the phase 2jx1x2.

In view of the proof of Theorem 4.1, we would like to bound the cardinality of a covering

of the locus Xη
ξ (δ) of near-stationary phase by balls inside which the phase satisfies the

stronger requirement of being non-oscillatory, see (4.35). For any given ξ = η and large

δ it is easy to see that the locus Xη
ξ (δ) actually covers the whole unit square. The phase
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Hessian is

∇x∇xΦ(x1, x2) = 2j


0 1

1 0


 ,

which implies a uniform ball radius ρk ' 2−j/2. It takes O(2j) balls of radius ρk to cover

the whole unit square, resulting in the announced bound r ' 2j for the rank.

4.6.4 Linear Mirror

A “linear mirror” is a profile c(x) which is locally of the form C + x · λ for some vector λ.

Of course x · λ is not compatible with smoothness and periodicity on the torus; see Section

4.3 for a good compromise.

Linear mirrors are representative of a class of profiles for which the rank bound of

Theorem 4.1 is expected to be sharp. Again, we will not provide a rigorous proof but only

give indications towards this claim.

In the region where c(x) = C + x · λ, the phases can be solved for explicitly,

Φ±(x, η, t) = x · η ± Ct|ξ| ± x · λ|λ| |η|(e
t|λ| − 1).

In analogy with equation (4.43), this expression can be linearized in η and rewritten as

x ·A(t)η+ OK. In our case, the matrix elements of A(t) are, for small time t, given as

Aij(t) = δij + t
λi

|λ|
ηj

|η| +O(t2).

In the notations of Section 4.4.2, we identify Pij = λi
|λ|

ηj

|η| . This is a prototypical non-diagonal

matrix. This example leads us to believe that the linear part of the phase genuinely affects

the rank estimates, and that we are not in presence of a proof artifact.

4.7 Discussion

So far we have assumed periodic boundary conditions for the wave equation inside the

unit square [0, 1]2, but simple modifications will allow the wave atom algorithm to work in

slightly more general settings.

First, we can consider standard boundary conditions like Dirichlet (u = 0 on the bound-

ary) or Neumann ( ∂u
∂n = 0) in the same domain [0, 1]2. The two cases can be handled in a
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straightforward manner by mirror extension of the computational domain to the periodized

square [0, 2]2 with velocity

c̃(x1, x2) =





c(x1, x2) if 0 ≤ x1, x2 < 1,

c(2 − x1, x2) if 1 ≤ x1 < 2, 0 ≤ x2 < 1,

c(x1, 2 − x2) if 0 ≤ x1 < 1, 1 ≤ x2 < 2,

c(2 − x1, 2 − x2) if 1 ≤ x1, x2 < 2.

The wave equation can then be solved up to some time T for ũ in the periodized extended

square [0, 2]2, and ũ mirror folded back onto [0, 1]2 using the rule

u(x1, x2) = ũ(x1, x2) − ũ(2 − x1, x2) − ũ(x1, 2 − x2) + ũ(2 − x1, 2 − x2)

if u is to satisfy Dirichlet boundary conditions, or

u(x1, x2) = ũ(x1, x2) + ũ(2 − x1, x2) + ũ(x1, 2 − x2) + ũ(2 − x1, 2 − x2)

if u is to satisfy Neumann boundary conditions. Some other choice of signs are possible

and would lead, for example, to Dirichlet on two opposite sides and Neumann on the two

other sides. For the wave atom algorithm to perform accurately on the extended domain,

we need to ensure sure that c̃(x1, x2) remains sufficiently smooth after mirror extension as

above.

The increase in complexity resulting from the doubling of N , the number of grid points

per dimension, may however be unacceptable in some applications. Readers interested in a

more elegant treatment of boundary considerations, in the context of some other basis of

bandlimited functions (prolate spheroidal wavefunctions,) should refer to the recent work

of Beylkin and Sandberg, [9].

More generally, if the computational domain can be mapped onto the unit square by

means of a smooth diffeomorphism, then it is only a matter of changing variables and

re-using the same algorithm on the transformed equation. More complicated geometries

or topologies would pose a significant challenge to wave-packet-type methods and their

treatment would go far beyond the scope of this thesis.

Finally, wave atoms seem to be a promising tool for implementing absorbing bound-
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ary conditions in the regime of high-frequency solutions. Assume for a moment that the

wavefield u(t, x) has frequency support obeying |ξ| ≥ λ, and that the profile c(x) is near

constant near the edges of the unit square. Then the computational domain can be extended

to include a surrounding buffer strip of width O( 1√
λ
) and constant sound speed, in which

outgoing wave atoms can be safely removed from the solution by putting the corresponding

matrix elements to zero. This should work provided the upscaled time step τ is of order

τ = O( 1√
N

).
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Chapter 5

Conclusion

5.1 Achievements

The main contribution of this thesis is perhaps the single message that thinking in terms

of geometric compression definitely creates opportunities for exciting new developments in

numerical analysis.

Our achievements are only a small part of that program. We showed that the Green’s

function of the wave equation in smooth media is represented as a sparse matrix in the

curvelet frame, as well as in the new wave atom frame. Those are essentially the only two

universal change of bases in which sparsity occurs.

Those new mathematical insights translate into efficient algorithms for the wave equa-

tion. We studied in detail an embodiment of the repeated squaring for the Green’s function

in which high-dimensional separation techniques in the wave atom domain play an essential

role, complementary to sparsity. The new algorithm has spectral accuracy and sometimes

competes favorably against a pseudo-spectral method when a given wave equation needs to

be solved several times with different initial conditions. In the process, we developed fast

discrete transforms of independent interest, for curvelet and wave atoms.

We call “time upscaling” the possibility of compressing the Green’s function for times

large than the CFL timestep, for the purpose of speeding up computations.

5.2 Outlook

The main Theorem 1.1 can be generalized in a variety of ways. The same sparsity question

can be posed in regimes of reflection and refraction through smooth interfaces – discontinu-
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ities of c(x)—and the answer is probably positive when the wavefield is ‘microlocally away’

from the interface, in a sense to be made precise.

We would regard as mathematically significant any result of conservation of curvelet

sparsity for nonlinear wave equations, e.g., with a nonlinearity of the type u3.

As for the curvelet transform, our architecture can be made more useful or attractive in

a number of ways and we discuss two opportunities.

• First, the redundancy of our transform is about 2.8 when wavelets are chosen at the

finest scale, and 7.2 otherwise. For certain image processing tasks, redundant trans-

formations may be of benefit, but for others, digital transforms with low redundancy

might be more desirable. It is not immediate how one could adapt our ideas to re-

duce the redundancy while keeping the isometry property and remaining faithful to

the continuous transform. In particular, it is not known whether one can construct

orthonormal bases of curvelets. We regard this problem as very significant and ex-

tremely challenging.

• Second, compactly supported (or at least exponentially decaying) curvelets would have

the potential to yield sparser expansions of images with geometrical regularity. We

consider the design of compactly supported curvelet tight frames as another interesting

open problem.

Additionally, although proposition 3.1 settles the accuracy question when data are ban-

dlimited, it remains to be studied how faithful the curvelet transform can be in the pres-

ence of aliased data. Aliasing occurs when, for example, a function with a discontinuity

is discretized by pointwise evaluation. In image processing this typically happens in the

neighborhood of an edge. Yet not all hope is lost, because of geometric regularity along the

edge. A complete theory of approximation for curvelets (or wavelets for that matter) needs

to solve this sampling issue.

Finally, the architecture of our wave atom solver can probably be improved in a variety

of ways. For example, predicting the values of the large curvelet/wave atom matrix elements

in some way involving geometrical optics is a natural idea. We have in mind a parametrix

construction, as in [74], coupled with the Phase-Flow Method for solving the Hamiltonian

ODE system.
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5.3 Thinking Outside the Grid

Trying to fit the “correct” applied harmonic analysis tool to a numerical analysis problem

is sometimes a discouraging experience – wavelet enthusiasts should be warned – but it has

the merit of offering its own intellectual challenges. We believe a research project is all the

more interesting if it ends up somewhere else than it was intended to. In our case:

• The Phase-Flow Method, developed by Lexing Ying and Emmanuel Candès in [90], is a

very clean answer to the problem of computing the position of shifted diagonals in the

curvelet matrix of wave propagators in optimal complexity. Without the underlying

motivation their project may never have seen the light of day.

• Developing a fast curvelet transform was an imperative prerequisite at the time we

started doing numerical experiments on wave equations. The code has since then been

made available (http://www.curvelet.org) and is now used in a variety of unexpected

contexts, mostly for inverse problems in seismic imaging involving denoising and com-

pression of ‘curvelet-looking’ bandlimited wavefronts. For more info, see for example

Felix Herrmann’s webpage http://slim.eos.ubc.ca.

• Creating a wave atom transform as an alternative to curvelets had been our next

milestone. It turns out that their construction raises some fundamental questions in

wavelet theory and filterbank architecture, if for example one wishes to make wave

atoms compactly supported in space.

• Our efforts to input some ideas from high-dimensional numerical analysis into the

wave atom solver, and the resulting interesting mathematics, is another testimony to

the challenges raised by the implementation of a sparsity-only method.

As we speak, information theory is being redefined by unorthodox ideas as part of the

quest for ideal data representation [23]. It is our hope that questioning conventional wisdom

could shape new research directions in scientific computing as well.
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Appendix A

Additional Proofs for Chapter 2

A.1 Additional Proofs for Section 2.2

Proof of proposition 2.1. These four properties were already formulated in [74], although

with a slightly weaker definition of pseudo-distance. Properties 1 and 2 are not proved in

that reference, and property 3 is not extensively documented. We give the justification for

these three results for completeness.

Claim (1). We are to show that d(µ, µ′) ³ d(µ′, µ). With eµ = ξµ/|ξµ|, this is

|〈eµ,∆x〉| + |∆x|2 + |∆θ|2 ³ |〈eµ′ ,∆x〉| + |∆x|2 + |∆θ|2.

It is sufficient to notice that

|〈eµ,∆x〉| + |∆x|2 + |∆θ|2 ³ |〈eµ,∆x〉| + |〈eµ′ ,∆x〉| + |∆x|2 + |∆θ|2.

In order to justify the nontrivial inequality, use the law of cosines illustrated in Figure A.1:

|〈eµ,∆x〉|2 + |〈eµ′ ,∆x〉|2 = sin2 |∆θ| (d2
µ + d2

µ′)

= sin2 |∆θ| |∆x|2 ± 2|〈eµ,∆x〉| |〈eµ′ ,∆x〉| cos |∆θ|

≤ sin2 |∆θ| |∆x|2 + 2|〈eµ,∆x〉| |〈eµ′ ,∆x〉|.

It follows that ||〈eµ,∆x〉| − |〈eµ′ ,∆x〉|| ≤ C · |∆θ||∆x| ≤ C · (|∆θ|2 + |∆x|2) and, therefore,

|〈eµ,∆x〉| + |〈eµ′ ,∆x〉| ≤ C · (2|〈eµ,∆x〉| + |∆θ|2 + |∆x|2).
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Figure A.1: Relative position and orientation of two curvelet molecules in x-space. The
ellipses indicate their essential support.

Claim (2). Recall that ω(µ, µ′) = 2|j−j′|(1 + 2min(j,j′)d(µ, µ′)). Let us show that

d(µ, µ′) ≤ C · (d(µ, µ′′) + d(µ′′, µ′)). To simplify notations, set in the coordinates defined by

{eµ, e⊥µ },

xµ = (0, 0) xµ′ = (x1, x2) xµ′′ = (y1, y2)

eµ = (1, 0) eµ′ = (cosα, sinα) eµ′′ = (cosβ, sinβ)

|θl − θl′′ | = |β| |θl′ − θl′′ | = |α− β|

It is enough to show that there exists ε > 0 such that

ε|x1| ≤ |y1| + | cosα(x1 − y1) + sinβ(x2 − y2)|

+ (|β| + |α− β|)(|y1| + |x1 − y1| + |y2| + |x2 − y2|),

because then (|β| + |α − β|)(|y1| + |x1 − y1| + |y2| + |x2 − y2|) ≤ C · (|β|2 + |α − β|2 +

|y1|2 + |x1 − y1|2 + |y2|2 + |x2 − y2|2). By contradiction let us assume that the inequality

fails. Then we must have |y1| < ε|x1|. It is always true that |x1 − y1| + |y1| ≥ |x1|
so it is necessary that |β| + |α − β| < ε. But then |α| < 2ε thus cosα > 1 − 4ε2 and

| sinα| < 2ε. The term | cosα(x1 − y1) + sinβ(x2 − y2)| is therefore always greater than

(1− 4ε2)|x1 − y1| − ε|x2 − y2|. But this quantity must also be less than ε|x1 − y1|, otherwise

its sum with |y1| would exceed ε|x1|. So we must have |x2−y2| > 1−ε−4ε2

ε |x1−y1|. But then
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the sum |y1| + |x1 − y1| + |x2 − y2| must dominate |x1|
2ε , which implies |β| + |α − β| ≤ 2ε2.

By induction, α = β = 0 and |y1| + |x1 − y1| ≥ |x1| yields a contradiction.

Claim (3). We need to establish that
∑

µ1
ω(µ0, µ1)

−N ·ω(µ1, µ2)
−N ≤ CN ·ω(µ0, µ2)

−(N−1).

We closely follow and expand the argument in [74]. We will need to use d(µ0, µ1) ³ d(µ1, µ0),

as we have just showed. Define Iµ1 by

Iµ1 := ω(µ2, µ1)
−N · ω(µ1, µ0)

−N

=
(
2|j2−j1|+|j1−j0|(1 + 2min(j2,j1)d(µ2, µ1))(1 + 2min(j0,j1)d(µ0, µ1))

)−N
.

To ease notations, put temporarily a0 = 2min(j0,j1), a2 = 2min(j2,j1), d01 = d(µ0, µ1), and

d12 = d(µ2, µ1). We develop a lower bound on (1 + a2d12)(1 + a0d01) = 1 + a2d12 + a0d01 +

a2d12a0d01. We make three simple observations: first,

a2d12 + a0d01 ≥ min(a2, a0)(d12 + d01) = A0, and d12 + d01 ≥ C · d(µ0, µ2);

second,

a2d12 + a0d01 ≥ max(a2d12, a0d01) ≥ max(a2, a0) min(d12, d01) = B0;

and third

a2d12a0d01 = max(a2, a0) min(a2, a0) max(d12, d01) min(d12, d01)

≥ max(a2, a0) min(a2, a0) min(d12, d01)
d12 + d01

2
= A0B0/2.

This gives

1 + a2d12 + a0d01 + a2d12a0d01 ≥ 1

2
(1 +A0 +B0 +A0B0) ≥

1

2
(1 +A0)(1 +B0).

We replace the values of A0, B0 by their expression, use the relation A0 ≥ d(µ0, µ2) and

obtain

Iµ1 ≤ C · 2−(|j2−j1|+|j0−j1|)N ·
(
1 + 2min(j2,j0,j1)d(µ2, µ0)

)−N
· (L1)

−N (A.1)

with

L1 = 1 + max(2min(j2,j1), 2min(j0,j1)) min(d01, d12).
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Note that

L1 = min
(
1 + max(2min(j2,j1), 2min(j0,j1))d12, 1 + max(2min(j2,j1), 2min(j0,j1))d01

)

≥ min
(
1 + 2min(j2,j1)d12, 1 + 2min(j0,j1)d01

)

and, therefore,

(L1)
−N ≤ max

(
(1 + 2min(j2,j1)d12)

−N , (1 + 2min(j0,j1)d01)
−N
)

≤ (1 + 2min(j2,j1)d12)
−N + (1 + 2min(j0,j1)d01)

−N .

In the sequel we will repeatedly make use of the bound

∑

k,`

(1 + 2qd(µ, µ′))−N ≤ C · 22(j−q)+ , (A.2)

valid for N ≥ 2, any real q and where the subscript + denotes the positive part. This

is justified as follows. Without loss of generality, assume that µ′ = (j′, 0, 0) so that the

curvelet γµ′ is nearly vertical and centered near the origin. We recall that ∆θ = π ·`·2−bj/2c,

` = 0, 1, . . . , 2bj/2c − 1, and xµ = RθµD
−1
j k, say. Then the left-hand side is

2bj/2c−1∑

`=0

∑

k∈Z2

(
1 + 2q(|2−j/2`|2 + |2−j/2k2|2 + |2−jk1|)

)−N
. (A.3)

For j ≥ q this can be seen as a Riemann sum and bounded—up to a numerical multiplicative

constant—by the corresponding integral

∫

R2

dx

2−3j/2

∫

R

dy

2−j/2
[1 + 2q(y2 + x2

2 + |x1|)]−N

which in turn is less than C · 22(j−q) provided N ≥ 2. For j ≤ q, the sum (A.3) essentially

consists of a few terms, giving a O(1) contribution. This gives the bound C · 22(j−q)+ .

By symmetry, we can now assume j0 ≤ j2. Let us consider three cases.

• 0 ≤ j2 ≤ j1. In that case we have the bound

(L1)
−N ≤ C · [(1 + 2j2d01)

−N + (1 + 2j2d12)
−N ].
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Summing this quantity over k1 and `1 i.e., over all µ1 that correspond to a given j1,

and using (A.2), we obtain for j1 ≥ j2

∑

µ1

Iµ1 ≤ C · (1 + 2j0d02)
−N

∑

j1≥j2

2−(2j1−j0−j2)N · 22(j1−j2)

≤ C · 2−(j2−j0)N (1 + 2j0d02)
−N = C · ω(µ0, µ2)

−N .

• 0 ≤ j1 ≤ j0. We now have

(L1)
−N ≤ C · [(1 + 2j1d01)

−N + (1 + 2j1d12)
−N ].

According to (A.2), the sum over k1 and `1 of (L1)
−N is bounded by a constant

independent of j1. The remaining sum is

∑

µ1

Iµ1 ≤ C · 2−(j0+j2)N
∑

j1≤j0

22j1N · (1 + 2j1d02)
−N .

Observe that 2j1N (1 + 2j1d02)
−N ≤ 2j0N (1 + 2j0d02)

−N , therefore

∑

µ1

Iµ1 ≤ C · 2−(j2−j0)N (1 + 2j0d02)
−N = C · ω(µ0, µ2)

−N .

• j0 ≤ j1 ≤ j2. In that case we still have

(L1)
−N ≤ C · [(1 + 2j1d01)

−N + (1 + 2j1d12)
−N ].

summed over k1 and `1 into a O(1) contribution. What remains is

∑

µ1

Iµ1 ≤ C · 2−(j2−j0)N (1 + 2j0d02)
−N

∑

j0≤j1≤j2

1

≤ C · ω(µ0, µ2)
−(N−1).

We conclude by collecting the estimates corresponding to the three different cases. Remark

that the loss of one (fractional) power of ω in the third case is unavoidable unless one modifies

its definition in the spirit of [74]. This would however make notations unnecessarily heavy.

Claim (4). See [74] p. 804.
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Proof of the inequality (2.21). Assume without loss of generality that µ = µ0. We may

express Sµ′(ξ) as Sµ′
0
(R∆θξ), with ∆θ = θµ − θµ′ . We begin by expressing the integral in

polar coordinates,

ξ1 = r cos θ (R∆θξ)1 = r cos(θ + ∆θ),

ξ2 = r sin θ (R∆θξ)2 = r sin(θ + ∆θ).

As we can see, the cosine factor is not crucial and we may just as well drop it. Consequently,

∫
|Sµ(ξ)Sµ′(ξ)|n dξ ≤ C·

∫ ∞

0
rdr

1

[1 + 2−jr]N
1

[1 + 2−j′r]N

×
∫ 2π

0
dθ[1 + a| sin θ|]−N [1 + a′| sin(θ + ∆θ)|]−N ,

where a = 2−j/2r
1+2−jr

and a′ = 2−j′/2r
1+2−j′r

. This decoupling makes the problem of bounding the

inner integral on the variable θ tractable. For example when a > a′ > 1, following [65] p.56,

∫ ∞

−∞
dθ[1 + a|θ|]−N [1 + a′|θ + ∆θ|]−N ≤ C · 1

a

1

[1 + a′|∆θ|]N .

We get other estimates for other values and orderings of a and a′. The integral on r is then

broken up into several pieces according to the values of a, a′, j and j′. It is straightforward

to show that each of these contributions satisfies the inequality (2.21).

A.2 Additional Proofs for Section 2.5

Proof of lemma 2.7. By definition a(µ)(x) = 2−3j/4mµ

(
D2−jRθµx− k

)
and, therefore,

a(µ)(x) =
1

αµ

∫
(Rf)(a, θ, b)a3/42−3j/4ψ(DaRθ(R

−1
θµ
D2j (x+ k) − b)) dµ

=
1

αµ

∫
(Rf)(a, θ, b)|A|1/2ψ (A(x− (β − k))) dµ, (A.4)

where A = DaRδD2j with δ = θ − θµ and β = D2−jRθµb.

Let us first verify the assertion about the support of a(µ). Recall that over a cell Qµ,

β ∈ [k1, k1 + 1) × [k2, k2 + 1), and hence for all b ∈ Qµ, we have

Suppψ (A(x− (β − k))) ⊂ Suppψ(Ax) + [0, 1]2.
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Next Suppψ(Ax) ⊂ A−1[0, 1]2 with A−1 = D2−jR−δD
−1
a . It is not difficult to check that

A−1[0, 1]2 ⊂ [c1, c2) × [d1, d2) which then gives (2.65).

There are several ways to prove the property about nearly vanishing moments. A possi-

bility is to show that the Fourier transform of a(µ) is appropriately small in a neighborhood

of the axis ξ1 = 0. We choose a more direct strategy and show that

∣∣∣∣
∫
ψ(A(x− β))xk

1 dx1

∣∣∣∣ ≤ Cm · 2−j(m+1). (A.5)

uniformly over the (a, θ, b) ∈ Qµ. The property (2.66) follows from this fact. Indeed,

∫
a(µ)(x1, x2)x

k
1 dx1 =

1

αµ

∫

Qµ

Rf(a, θ, b)dµ

∫
|A|1/2ψ(A(x− β))xk

1 dx1,

and the Cauchy-Schwarz inequality gives

∣∣∣∣
∫
a(µ)(x1, x2)x

k
1 dx1

∣∣∣∣ ≤ 1

αµ
‖Rf‖L2(Qµ)

(∫

Qµ

∣∣∣∣
∫

|A|1/2ψ(A(x− β))xk
1 dx1

∣∣∣∣
2

dµ

)1/2

=

(∫

Qµ

∣∣∣∣
∫

|A|1/2ψ(A(x− β))xk
1 dx1

∣∣∣∣
2

dµ

)1/2

.

The uniform bound (A.5) together with the fact that
∫
Qµ
dµ is either 3π or 3π/2 gives

(2.66).

We then need to establish (A.5). Let ∂2 be ∂/∂x2, recall that by assumptions (2.58)

and (2.59), we have that for all x2 ∈ R,

∫
∂n

2ψ(x1, x2)x
k
1 dx1 = 0, k = 0, 1, . . . , R,

and more generally, for each α 6= 0 and β

∫
∂n

2ψ(αx1 + β, x2)x
k
1 dx1 = 0, k = 0, 1, . . . , R. (A.6)

We shall use (A.6) to prove (A.5). Letting

A =


a11 a12

a21 a22



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and with the same notations as before, a simple calculation shows that a21 = −2−j sin δ√
a

. As

a ≥ 2−(j+1) and |δ| ≤ π/2 · 2−bj/2c, we have

|a21| ≤ c · 2−j . (A.7)

We then write

ψ(Ax) = ψ(a11x1 + a12x2, a21x1 + a22x2)

=
N−1∑

n=0

Dnψ(a11x1 + a12x2, a22x2)
(a21x1)

n

n!
+O((a21x1)

N )

and, therefore,

∫
ψ(Ax)xk

1 dx1 =

N−1∑

n=0

an
21

n!

∫
Dnψ(a11x1 + a12x2, a22x2)x

n+k
1 dx1 +O(aN

21)

Fix k ≤ D and pick N = D − k + 1 so that for n = 0, 1, . . . , N − 1, n+ k ≤ D. By virtue

of (A.6) all the integrals in the sum vanish and the only remaining term is O(aN
21) which

because of (A.7) is O(2−jN ). As a consequence, setting m = D/2, we conclude that

∣∣∣∣
∫
ψ(Ax)xk

1 dx1

∣∣∣∣ ≤ Cm · 2−j(m+1), k = 0, 1, . . . ,m;

this is the content of (A.5).

The careful reader will notice that inequality (A.5) or equivalently (2.66) is a weaker

statement than inequality (2.13) for the definition of nearly vanishing moments. There is

no doubt that the stronger estimate (2.13) also holds for curvelet atoms. The proof of this

fact uses standard arguments and we choose not to reproduce it here.

Last, the regularity property is a simple consequence of the Cauchy Schwarz inequality;

∣∣∣a(µ)(x1, x2)
∣∣∣ ≤ 1

αµ

∫
|Rf(a, θ, b)||A|1/2‖ψ‖L∞ dµ

≤ ‖ψ‖L∞ · 1

αµ
‖Rf‖L2(Qµ) ·

(∫

Qµ

|A|dµ
)1/2

= 2
√

3π · ‖ψ‖L∞ .

These last inequalities used the facts that |A| ≤ 4 for (a, θ, b) ∈ Qµ and
∫
Qµ

dµ ≤ 3π. Esti-
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mates for higher derivatives are obtained in exactly the same fashion–after differentiation

of the integrand. This finishes the proof of the lemma.

Proof of (2.68). Recall that

αµµ′ =

(∫

Qµ′

|R(q(D)γµ)(a, b, θ)|2 dµ
)1/2

.

The first thing to notice is that q(D)γµ is still a family of curvelet molecules, because q(ξ)

is a multiplier of order zero. Since ψa,θ,b also obeys the molecule properties, lemma 2.1

implies the corresponding almost-orthogonality condition. Integrating over Qµ′ does not

compromise this estimate, as can be seen by applying the Cauchy-Schwarz inequality.

Proof of inequality (2.52). Derivatives of γ̂µ and σ are treated using the following estimates.

|∂α
ξ γ̂µ(ξ)| ≤ Cα · 2−3j/42−α1j2−α2j/2

|∂α
ξ σ(φ−1(x), ξ)| ≤ Cα · 2−|α|j on Wµ = supp(γ̂µ).

We now develop size estimates for the phase perturbation δ. Following closely the discussion

in [79], p.407, we claim that on Wµ,

|∂α
ξ ∂

β
x δ(x, ξ)| ≤ Cαβ · 2−α1j2−α2j/2. (A.8)

The derivations in x add no complications. Hence, assume that β = 0. As the above result

(A.8) relies upon the homogeneity of the phase with respect to ξ, we recall a few useful

facts about homogeneous functions of degree one:

Φ = Φξ · ξ (Euler’s theorem),

Φξξ · ξ = 0 (differentiate the above relation),

∂α
ξ Φ = O(|ξ|1−|α|) .

It follows from the definition that δ(x, ξ1, 0) = 0 and likewise ∂δ
∂ξ2

(x, ξ1, 0) = 0. Thus for

every n, ∂nδ
∂ξn

1
(x, ξ1, 0) = 0 and ∂

∂ξ2
∂nδ
∂ξn

1
(x, ξ1, 0) = 0. Recall that the support conditions are
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|ξ1| ≤ C · 2j and |ξ2| ≤ C · 2j/2. Taylor series expansions about ξ2 = 0 together with

homogeneity assumptions give

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ2|2|ξ|−1−α1) = O(2−α1j),

∂

∂ξ2

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ2||ξ|−1−α1) = O(2−j/22−α1j),

∂α2

∂ξα2
2

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ|1−α1−α2) = O(2−α1j2−α2j/2) when α2 ≥ 2,

as claimed. The point about these estimates is that they exhibit exactly the parabolic

scaling of curvelets. We conclude

|∂α
ξ e

iδ(φ−1(x),ξ)| ≤ Cα · 2−α1j2−α2j/2 on Wµ

and therefore (2.52).
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Appendix B

Additional Proofs for Chapter 4

Proof of inequality (4.39). In what follows the notation sup refers to the supremum taken

over all x ∈ Bxk
(rk), and over all components of vector or matrix arguments. Put rk =

r(xk, j). We need to show that

sup |r(x, j) − rk| ≤ sup

∣∣∣∣
δr

δ|∇g|

∣∣∣∣ sup |∇g(x) −∇g(xk)| ≤ C · rk.

On the one hand,
δr

δ|∇g| = −1

2

22j

(2j + 22j |∇g(x)|)3/2
= −1

2
22jr3k. (B.1)

On the other hand,

|∇g(x) −∇g(xk)| ≤ rk sup |Hg(x)|, (B.2)

where Hg(x) is the Hessian of g. In order to estimate |Hg(x)|, recall Landau’s inequality

for the interval [0, 1] which reads

‖f ′‖∞ ≤ 2

h
‖f‖∞ +

h

4
‖f ′′‖∞,

for all 0 ≤ h ≤ 1 (see for example [3]). This inequality needs to be extended to two

dimensions and applied twice with ∂αg in place of f , α = (1, 0) and (0, 1) respectively (where

g is understood to be adequately extended to zero outside of Bxk
(rk)). Upon choosing

h = C · ‖∂αg‖1/2
∞ ≤ C · 2−jr−1

k ≤ 1, with the constant C determined by the condition h ≤ 1,

it follows that (the sup is still over x ∈ Bxk
(rk)),

sup |Hg(x)| ≤ C · sup |∇g(x)|1/2 ≤ C · 2−jr−1
k . (B.3)
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As always the constant C changes from line to line. From equations (B.1), (B.2) and (B.3),

we check that

sup |r(x, j) − rk| ≤ C · 2jr3k

This is dominated by C · rk because rk ≤ 2−j/2, and we are done.

Proof of lemma 4.6. The coarea for BV functions in the unit square Ω ⊂ R2 is

∫
|∇g(x)| dx =

∫ ∞

−∞
H1(g−1(t) ∩ Ω) dt. (B.4)

Written as above, the formula is valid for Lipschitz functions, the quantity |∇g(x)| must be

interpreted in a suitable measure-theoretic sense and the proof is rather technical. For C2

functions, the proof is more accessible and can be found in [92], pp. 76 and following.

In our case g ∈ C2([0, 1]2) so the level sets g−1(t) ∩ Ω of g have bounded Hausdorff-H1

measure for almost every t, and

g−1(t) ∩ Ω ≡ ∂Nt, a.e. t,

where Nt = {x ∈ Ω, g(x) ≤ t}. We can let Xt = Nt\N−t as in the wording, and apply the

coarea formula to the function defined as

g̃(x) =





g(x) if |g(x)| ≤ t,

−t if g(x) < −t,
t if g(x) > t.

Since sets of zero measure do not contribute in the integral in t, we obtain

∫

Xt

|∇g(x)| dx =

∫ t

−t
H1(∂Nt) dt ≤ 2t sup

u
H1(∂Nu).

We leave it as an exercise to the interested reader to prove that there is another, perhaps

more visual way to derive the above formula from the Reynolds transport theorem.

Proof of inequality (4.44).

Let ε̃ > 0 and r̃k(x
′, ξ′, t) be the separation remainder of bk(x

′, ξ′, t) for that ε̃ in L2. We
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invoke the strong version of Lemma 4.2 to obtain control on r̃k in W s,∞,

|∂α
ξ′∂

β
x′ r̃k(x

′, ξ′, t)| ≤ Cαβ ε̃.

In the original variables x and ξ, let rk(x, ξ, t) = r̃k(x
′, ξ′, t) so the condition becomes

|∂α
ξ ∂

β
x rk(x, ξ, t)| ≤ Cαβ ε̃(1 + |ξ|)−|α|/2+|β|/4,

i.e., rk
ε̃ is a symbol of order zero and type (1/2, 1/4). Owing to the decomposition Kstat =

∑
k Kk using indicators qk(x), the total separation remainder is actually the sum r =

∑
k rk.

Although each sum contains O(2j) terms, by the constant overlap property (4.39) for each

given x there is a constant number of terms (independent of j) contributing in
∑

k Kk.

Likewise, the separated components of qk(x) are all supported on balls centered at xk with

radius twice the diameter of supp(qk), so for each given x there is a constant number of

terms contributing in
∑

k rk. Hence the symbol property transfers to r,

|∂α
ξ ∂

β
x r(x, ξ, t)| ≤ Cαβ ε̃(1 + |ξ|)−|α|/2+|β|/4.

We conclude by standard pseudo-differential calculus that r is bounded in L2 with a norm

not exceeding Cε̃ for some constant C, which by choosing ε̃ small enough can be made less

than ε/4 as in equation (4.44). The point of the analysis is that the L2 bound on r is not

only small but independent of j.
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