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Abstract 
 
 
This thesis addresses the problem of inter-particle collisions in a viscous liquid. 

Experimental measurements were made on normal and oblique collisions between 

identical and dissimilar pairs of solid spheres. The experimental evidence supports the 

hypothesis that the normal and the tangential component of motions are decoupled during 

a rapid collision.  

 

The relative particle motion in the normal direction is crucial to an immersed collision 

process and can be characterized by an effective coefficient of restitution and a binary 

Stokes number. The effective coefficient of restitution monotonically decreases with a 

diminishing binary Stokes number, indicating a particle motion with less inertia and 

higher hindering fluid forces. The correlation between the two parameters exhibits a 

similar trend to what is observed in a sphere-wall collision, which motivates a theoretical 

modeling.  

 

The collision model developed in the current work includes a flow model and a revised 

rebound scheme. The flow model considers the steady viscous drag, the added mass force, 

and the history force. How the presence of a second nearby solid boundary affects these 

forces is investigated. A flow model is proposed with wall-correction terms and is used to 

predict an immersed pendulum motion towards a solid wall. General agreement with the 

available experimental data validates the model. The rebound scheme considers the 

magnitude of the surface roughness and the minimum distance of approach resulting from 

an elastohydrodynamic contact.  



 vi

The performance of the collision model in predicting the effective coefficient of 

restitution is evaluated through comparisons with experimental measurements and an 

existing elastohydrodynamic collision model that the current work is based on.  

 

Based on the current experimental findings, the tangential component of motion can be 

described by a dry collision model, provided that the material parameters are properly 

modified for the interstitial liquid. Two pertinent parameters are the normal effective 

coefficient of restitution and an effective friction coefficient.  
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Chapter 1 
 
 
Introduction 
 

 

1.1 Motivation 
 

A debris flow or slurry is a mixture of solid particles and liquid, and the motion of such a 

material characteristically exhibits both solid and liquid aspects. The particle interactions 

dominate the behavior of the dispersed phase, contributing to the solid-like behavior of a 

mixture as sustaining and resisting the external load. The continuous liquid phase 

lubricates the surfaces and mediates the particle collisions. However, because the liquid 

has a comparable density to the solid phase, the liquid motion and its non-negligible 

viscous and inertial effects introduce addition mechanisms for momentum transport and 

energy dissipation. 

 

Mixtures of this kind appear in many natural processes, such as rock slides and debris 

flows, meandering rivers and sedimentation processes. Particulate flows are also 

important in many industrial and engineering applications, including slurry transport, 

erosion, mining and milling engineering, and chemical and pharmaceutical processes. 

Despite the prevalence of these solid-liquid flows, a general theoretical model of the flow 

behavior is as yet unavailable, owing to the dual nature of the mixture. Most of the 

industrial processes are designed empirically, and flow control and system modifications 

are limited due to the poor understanding of the mixture as a bulk. With the advances in 
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current computational performance, future advances in flow simulation may provide an 

understanding of the mixture behavior under various flow conditions. The existing 

numerical schemes fall into two distinct groups.   

 

For flows with negligible fluid effects, the instantaneous particle-particle collisions 

dominate the bulk behavior. The numerical methods treat the mixture as a discrete system 

of particles whose interactions are usually described with a force-displacement relation 

that accounts for surface friction and particle collisions (Campbell 1990). For problems 

with increasing fluid effects, a modification on the particle interaction law would be 

crucial for a realistic simulation.  

 

Alternatively, if the interstitial liquid significantly affects the motion of the particles, 

simulations within a hypothesized continuum framework are usually sought. The two 

phases are described separately and their interactions couple the two equations through 

stress terms. A description of these terms requires a constitutive relation of the mixture 

and the interaction between the two phases at the particle level (Iverson 1997; Zhang and 

Prosperetti 1994). One extreme case is a suspension in which the solid particles possess 

nearly matching density to the ambient fluid. A solid particle in this case follows the local 

fluid motion and direct collisions are infrequent due to the lack of particle inertia relative 

to the flowing liquid. The continuum model describes the mixture as a liquid under the 

premise that the flow material constants can be modified to account for the presence of 

the suspended particles. Such a modification requires the knowledge of how a flowing 

particle interacts with the surrounding liquid and with other particles thorough long-range 

forces (Einstein 1906; Nott and Brady 1994). 

 

While extensive work has been done independently for each group of flows, a hybrid 

numerical scheme that bridges the two aspects is not readily available. Such a scheme 
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would simulate the important class of solid-liquid flows in which the motion of both 

phases is equally important in determining the bulk behavior. If a discrete scheme is to be 

used, the effects of the interstitial fluid could be accommodated by a new particle-particle 

interaction law. As for a continuum model, the material properties of a mixture would 

have to account for the dispersive interaction between the colliding solids. Either 

approach would require a realistic description of the local interactions between solid 

particles and the surrounding liquid. A successful model of the bulk behavior would thus 

depend critically on an exact description at a small scale. The work presented here 

represents a first step toward such a model. 

 

 

1.2 Background :  
Sphere motion towards a solid wall in a liquid 
 

The problem of a solid sphere moving towards a wall or another sphere in a liquid has 

been studied analytically by different researchers. If the surrounding liquid is idealized as 

incompressible and inviscid, the hydrodynamic force acting on the sphere can be found 

by potential flow theory (Lamb 1932; Milne-Thomson 1968), where the image method is 

applied to satisfy the wall boundary condition. For a viscous liquid, Brenner analyzed the 

constant approach of a sphere towards a wall at small Reynolds number (1961). A 

correction to the Stokes’ drag was developed to account for the presence of the wall, 

taking the form of a monotonically increasing drag with decreasing sphere-wall gap. If 

the solid surface is rigid and perfectly smooth, as assumed in the analysis, the sphere is 

predicted to fully stop before collision. Davis, Serayssol, and Hinch (1986) considered 

the elastic deformation of the solid surfaces owing to the increase in the interstitial fluid 

pressure upon impact. Such an approach followed the concept of elastohydrodynamic 

lubrication theory (EHL). Their work revealed the importance of solid inertia in 
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predicting the sphere’s motion in a liquid and resultant surface deformation. The particle 

Stokes number, 26p i fSt m U aπμ= , was defined to characterize the counterbalancing 

solid inertia and steady viscous drag for a sphere of radius a and mass pm that moves at 

velocity iU in a liquid of viscosity fμ . In the literature of solid-liquid flows, the particle 

Stokes number is usually represented as ( )Re 9p fSt ρ ρ= in terms of the solid-liquid 

density ratio and Re f i fU aρ μ= , the particle Reynolds number. McLaughlin (1968), 

Joseph, Zenit, Hunt, and Rosenwinkel (2001), and Gondret, Lance, and Petit (2002) 

investigated the immersed collision of a sphere on a wall experimentally. Following the 

definition of the dry coefficient of restitution, these researchers used the sphere impact 

and rebound velocities, iU and rU , to define an effective coefficient of restitution, 

r ie U U= − , for collisions in a liquid. This number characterizes the particle momentum 

change during an immersed collision. Within the examined impact conditions, the 

effective coefficient of restitution was found to decrease monotonically with diminishing 

particle Stokes number.  For an impact at high particle Stokes number, the fluid effects 

become negligible, resulting in a nearly unity restitution coefficient that approximates a 

dry impact. However, with increasing liquid viscosity or diminishing particle inertia, the 

sphere can no longer sustain its motion through the liquid and a critical particle Stokes 

number was found below which particle rebound does not occur.  

 

 

1.3 Dimensional analysis 
 

The sphere impact and rebound motion in a liquid with respect to a wall involves the 

following variables: impact and rebound velocities, iU and rU , solid and liquid densities, 

pρ and fρ , liquid viscosity, fμ , the diameter and surface roughness of the sphere, D  

and sσ . When elastohydrodynamic deformation of the solid surface is considered, the 

lubrication film thickness, 0δ , and the sphere Young’s modulus, E , are also important. 
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With three fundamental dimensions-mass, length, and time, these nine variables should 

form six dimensionless parameters that characterize the immersed collision according to 

Buckingham Pi Theorem. Five out of the six parameters can be readily found as the 

effective coefficient of restitution, r ie U U= − , the density ratio, p fρ ρ , the particle 

Reynolds number, Re f i fU aρ μ= , the normalized surface roughness and lubrication 

film thickness, s Dσ and 0 Dδ . The last parameter should relate the surface deformation 

to the lubrication pressure force and the elasticity parameter,
3 3
2 2

0~ f iU a Eε μ δ , 

developed by Davis, Serayssol, and Hinch (1986) is adopted. 

 

 

1.4 Thesis Outline 
 

The primary goal of this thesis is to investigate the collision between two solid surfaces 

when the effect of the surrounding liquid is non negligible, with an emphasis on the 

general physical principles of such a process. In addition to a clearer understanding of the 

motion in each phase, the knowledge obtained can be used as the building block for 

future numerical simulations that consider a granular mixture of equally important solid 

and liquid inertias. In particular, when the approach distance between two solid surfaces 

drops below the size of a computational grid, the collision model developed in this study 

would provide a way to estimate the rebound out to a separation greater than a grid cell. 

This would help to resolve the breakdown of the conservation of mass, a critical problem 

encountered in many numerical schemes. It could also save the time-consuming matching 

of the liquid pressure and the solid stress at the interface near contact. (Nguyen and Ladd 

2002; Potapov, Hunt, and Campbell 2001). 

 

In chapter 2, the results from a series of experiments investigating normal collision 

between two immersed spheres are presented. Controllable inter-particle collisions were 
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achieved using a dual-pendulum apparatus. The effects of the effective coefficient of 

restitution and the binary Stokes number are characterized. 

 

In order to explain the experimental findings, an equation that describes the approach of a 

sphere towards a wall is proposed in chapter 3. The relevant hydrodynamic forces, 

including the steady viscous drag, the added mass force, and the history force, are 

examined and modified accordingly for the presence of the wall and form a flow model 

describing the approach of a sphere to a wall. 

 

In chapter 4, the flow model is applied to predict an immersed pendulum motion towards 

a wall. A rebound scheme that considers the interaction of the surface asperities and the 

interstitial liquid is proposed. The flow model and the rebound scheme are combined as a 

collision model. The performance of this collision model in predicting an immersed 

collision process is evaluated by comparisons with the experimental measurements.  

 

Chapter 5 presents another set of experimental results on oblique immersed collisions 

between two identical spheres. The particle motion is decomposed into a normal and a 

tangential component along the line of centers. The normal component of motion is 

compared with the findings from chapter 2. The tangential component of motion is 

examined by comparing the data with predictions from dry contact models. This 

comparison illustrates the interstitial fluid effects and also suggests a general description 

of an oblique immersed collision.  

 

To understand further the flow physics of an immersed collision, the proposed flow 

model is examined with various impact conditions in chapter 6. Chapter 7 summarizes 

these investigations and discusses the general features of an immersed collision.  
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Chapter 2                         
 
 
Particle-Particle Immersed Normal Collision 
 

 

2.1 Introduction 
 

The head-on collision between two solid objects has long been a research topic in 

dynamics and solid mechanics (Goldsmith 1961; Johnson 1985). A collision is 

conventionally described as a compression process followed by a restitution phase. Upon 

contact, the solid deforms and stores part of the kinetic energy as strain energy. Some 

other kinetic energy propagates into the body with the shear, compression, or surface 

Rayleigh waves. Assuming negligible effects from reflections of these waves, the objects 

rebound during the restitution phase by recovering the elastic strain energy into kinetic 

energy. As a consequence of permanent plastic deformation, wave propagation, heat loss, 

and vibration, a certain amount of kinetic energy is lost. The dry coefficient of restitution 

is widely accepted as a measure of the overall momentum loss during impact and can be 

calculated from the ratio of the rebound to the impact velocities. This restitution number 

has been extensively investigated between various materials from low to high impact 

velocities. Collisions between soft and ductile materials result in lower restitution, and 

further reduction occurs at higher impact velocities due to the yielding of the soft material. 

However, since the impact experiment is often conducted in air or a vacuum environment, 

little research has been done regarding the surrounding liquid effects. If collision occurs 

in a liquid, additional surface deformation is possible due to the increase of 
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hydrodynamic pressure in the interstitial liquid. The viscous liquid also dissipates the 

energy and may further diminish the restitution process. 

 

Davis, Serayssol, and Hinch (1986) examined the collision of two deformable solid 

particles with a Newtonian interstitial fluid. Their analysis assumes a quasi-steady flow in 

the gap (Stokes regime), which is guaranteed by the thin gap width or the small size of 

the particles involved in the problem. A number that characterizes the ratio of particle 

inertia to the liquid viscous force is 

 

26
p im U

St
aπμ

= ,          (2.1) 

 

for a solid sphere of mass pm and radius a that moves at velocity iU in a liquid of 

viscosity μ . The quantity in equation (2.1) is referred to as Stokes number in the 

literature of solid-liquid two-phase flow and often represented by ( )Re 9p fSt ρ ρ=  

using the solid-liquid density ratio p fρ ρ and the particle Reynolds number 

0Re 2 .faU ν=  However, different definitions of Stokes numbers have been established 

in the following two works.  

 

First, Stokes (1851) studied the equation of motion of a pendulum in air to regulate a 

mechanical clock for a precise time standard. He derived the unsteady hydrodynamic 

force on the pendulum as: 

 

1 9( ) (1 )6 (1 )
2 2

S i
i f

S

dUF t aU m
dt

πβ
πμ

πβ
= + + +      (2.2) 

 

in the limit of high oscillation frequency. The first and second terms in equation (2.2) 
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resemble the Stokes steady drag and the added mass force respectively. Both force 

magnitudes are modified by the “Stokes number:”  

 
2

0

14( ) i
S

f

dUa
U dt

β
ν

= ,          

 

which depends on a characteristic sphere velocity 0U and the pendulum instant velocity 

iU . This Stokes number denotes the ratio of a diffusion time, 2
fa ν , to a time scale that 

characterizes the unsteadiness, ( )0 iU dU dt , of the sphere motion. The subscript “S” is 

used here to denote Stokes’ definition. More recently, Mei (1992) performed a set of 

numerical simulations to investigate the correlation between the unsteady drag and the 

oscillation frequency. Another Stokes number, subscripted with “M,” was defined:  
 

2 Re
2 4M

f

a Strωβ
ν

= = ,           

 

as a function of sphere Reynolds number and Strouhal number, 0Str a Uω= . If the 

sphere motion is expressed as 0 cosiU U tω= , the two definitions can be related by 
28S Mβ β= . Therefore, both Stokes numbers characterize the rate of diffusion with respect 

to the sphere translation, which accounts for the unsteadiness of the particle motion but 

not its inertia against the hydrodynamic forces. In order to distinguish between the 

different definitions, equation (2.1) is referred as the particle Stokes number in the current 

work.  

 

McLaughlin (1968) was the first to systematically investigate the particle collisions on a 

stationary wall in a liquid. A solid sphere was released towards the bottom of a vertical 

tube filled with aqueous glycerin solutions. The sphere rebound trajectory was used to 
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characterize the momentum and energy interactions between the sphere and the wall upon 

collision. The post-collision momentum recovery was shown to be a function of the 

sphere impact Reynolds number. His definition of momentum recovery can be interpreted 

as an effective coefficient of restitution and estimated based on the impact and rebound 

velocity in liquids as: 

  

r

i

Ue
U

= − .          (2.3) 

 

Equation (2.3) is conceptually equivalent to the use of dry coefficient of restitution to 

characterize the momentum loss during a dry collision.  

 

Barnocky and Davis (1988) dropped a sphere in air onto a target plate that was covered 

with a thin lubricant layer. The critical drop height for the occurrence of rebounds was 

determined. To ensure a rebound, the sphere should possess sufficient inertia to overcome 

the hindering fluid forces for a non-zero velocity upon contact. Therefore, a greater 

critical drop height was measured when the viscosity and thickness of the liquid layer 

were increased. Though the effective coefficient of restitution was not the focus of their 

investigation, the experimental findings suggest the hydrodynamic effects on the sphere 

motion that results in additional energy dissipation. Gondret et al. (2002) performed 

similar experiments to McLaughlin’s and confirmed the dependence of the effective 

coefficient of restitution on the particle Stokes number. Zenit et al. (1998) and Joseph et 

al. (2001) used a pendulum-like apparatus that permits a horizontal impact motion 

towards a vertical wall. Without the action of gravity on the near wall sphere motion, the 

resultant effective coefficient of restitution shows a similar dependence on the particle 

Stokes numbers to the previous research works. The comparison between the fore-

mentioned experiments was made by Joseph (2003), as reproduced in figure 2.1. 
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Figure 2.1. The effective coefficient of restitution as a function of the particle Stokes 
number for an immersed particle-on-wall normal collision in liquids. Steel and glass 
spheres collide on a stationary wall. (Ñ: McLaughlin 1968, ○: Gondret et al. 2002, and   
Δ: Joseph et al. 2001) 

 

When the sphere approaches the wall at high particle Stokes number, the viscous force 

becomes negligible, resulting in a nearly unity restitution coefficient, as if the collision 

took place in a dry medium. However, with decreasing particle Stokes number, the 

effective coefficient of restitution drops noticeably from drye . When the particle Stokes 

number falls below a critical value, a zero restitution coefficient is found, indicating no 

rebound motion, at least within the resolution of the image acquisition system. 

 

The dependence of drye on particle Stokes number raises the question of whether a 

particle-on-particle immersed collision displays a similar trend. If the fixed wall is 

replaced with an object of finite size, the fluid can move around the target more easily 
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upon impact. The mobility of the target particle necessitates the reexamination of the 

parameters: the effective coefficient of restitution and the particle Stokes number, which 

are used to characterize an immersed on-wall collision. In the current work, the 

experiments were conducted using spheres of identical size (D = 12.7 mm) but different 

materials. Collisions between identical and dissimilar materials were examined. The 

experimental results are presented with the effective coefficient of restitution and a 

binary Stokes number for a binary collision that will be defined in section 2.3.2. The 

inter-particle collision result is also compared with the on-wall data.  

 

 

 
2.2  Experiment setup 
 

2.2.1  Apparatus 

 

The particles were suspended as two pendulums in a viscous fluid, as shown in figure 

2.2(a), to achieve a controllable inter-particle collision. The current configuration was a 

hybrid of the apparatuses used by Zenit and Hunt (1998), Joseph et al. (2001) and Joseph 

and Hunt (2003). A new release mechanism was designed for large impact particles to 

minimize any disturbance to the surrounding liquid during operation. As shown in figure 

2.2(b), a V-shaped block was used to symmetrically support the impact particle whose 

swing motion was controlled by a gate. The gate was initially held in a closed position by 

a sturdy spring and, then suppressing the spring released the sphere at an angle 0θ . By 

changing the solid materials, the liquid, and the release angle, a wide range of impact 

conditions could be achieved. The string was 0.02 mm diameter nylon fishing line and its 

influence on the particle motion has been shown to be negligible (Joseph 2003). 

Sufficient time was allowed between experiments for the motion of the target sphere and 
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the liquid to settle down, ensuring a motionless target and a quiescent ambient fluid 

condition.  

( a ) ( b )
 

Figure 2.2. (a) Schematic experiment setup, side view, and (b) frontal sketch of the       
V-shaped release mechanism. 

 

To control the inter-sphere distance upon impact, a precision fixture plate was designed, 

as shown in figure 2.3. Along the longitudinal plate centerline, two holes were drilled 

with a spacing of one sphere diameter and fine slots were cut to the side of the plate, 

allowing the passage of strings. The plate was aligned with the V-block guiding groove, 

ensuring an in-plane swinging motion. The tank was leveled and as a final calibration, 

one test collision was recorded from the frontal side to verify a head-on normal collision 

before each set of experiments. 

 

t = 0 t > 0

1 1 2

 
Figure 2.3. Fixture plate and its configuration with respect to the release mechanism.  
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The sphere motion was recorded from the side or the bottom with a high-speed camera as 

described in Joseph (2003). The digital images were analyzed later to characterize the 

collision process. More details regarding the image processing can be found in section 

2.2.3. In the cases with steel spheres, direct illumination resulted in bright areas on the 

mirror-like surface, as shown in figures 2.4(a) and 2.4(b). The uneven surface contrast 

caused problems in determining the sphere edge during the post-collision image analysis. 

In addition, the sphere blocked the light, blurring out the contact area, and made it 

difficult to locate the collision precisely in time. These problems were alleviated by new 

illumination method-background lighting. The tank was wrapped by translucent paper 

and illuminated from behind. The resulting images, as shown in figure 2.4(c), had sharper 

edges than those obtained with direct light. Also, the dark particles contrasted with the 

liquid well enough to determine the surface contour even upon contact. The method of 

background illumination also worked for semi-opaque glass spheres, as shown in figure 

2.4(d). 
 

- 5 ms 0 ms

( a )

 

- 4 ms 0 ms

( b )
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0 ms- 5 ms

( c )

 

0 ms- 5 ms

( d )

 

Figure 2.4. Illumination effects. All the spheres are 12.7 mm in diameter. The camera 
position (side or bottom view), the sphere materials as impact-on-target, and the 
illumination method are as follows: (a) Bottom view, steel-on-steel, direct illumination. 
(b) Bottom view, steel-on-Delrin, direct illumination. (c) Side view, steel-on-steel, 
background illumination. (d) Side view, glass-on-glass, background illumination.  
 

 

2.2.2  Material properties 

 

(a) Solid properties 

 

Three types of 12.7 mm diameter solid spheres were used in the experiments: steel ball 

bearings, glass, and Delrin spheres. The spheres were identical to the ones used in Joseph 

(2003). The material properties and sphere surface roughness are summarized in Table 

2.1, including solid density pρ , Young’s modulus E , Poisson’s ratio ν , and the sphere 

surface roughness sσ . 
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Table 2.1. Properties of the spheres used in collision experiments (Joseph 2003) 

Material  3(kg/m )pρ  (GPa)E  ν  (μm)sσ  

Steel 7780 190 0.27 0.0236 

Glass 2540 60 0.23 0.134 

Delrin 1400 2.8 0.35 0.796 

 

 

(b) Liquid properties 

 

The surrounding liquid was water-based glycerol solution whose viscosity varies 

significantly with temperature. Therefore, the liquid temperature was measure before 

each collision. The apparent specific weight of the solution was measured using a 

hydrometer for each set of experiments. The mixture density and viscosity can be 

extrapolated from the tables once the mixture composition is determined. The apparent 

specific weight of the liquids used in the current study ranged from 0% to 80%, which 

corresponds to a density ranging from 990–1210 3kg m and a kinematic viscosity 

of 6 20.9 47 10 m s−− × . The solution properties with respect to apparent specific weight 

percentage are readily found (Joseph 2003). 

 

 

2.2.3  Image analysis 

 

A high-speed digital camera (Redlake MotionScope 8000S) was used to record the 

collision process at rates 1 kHz or higher. The true color (RGB) image was converted into 

a binary (black-and-white) format, as from figure 2.5(a) to 2.5(b), by properly tuning the 
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grayness threshold in ImageJ1. During conversion, the RGB index of each pixel was 

transformed into a grayscale with unity and zero indicating true white and black, 

respectively. If one pixel has grayscale higher than the designated threshold, it is     

 

converted into a white pixel; likewise a black pixel is created for pixels with grayscale 

lower than the threshold. The periphery of each sphere was determined by its peak 

contrast to the neighboring pixels with the outer radius representing the sphere surface. A 

black circle was obtained for steel and Delrin spheres, but a ring was generated for semi-

opaque glass particles, as show in figure 2.5(b). The interior unity (white) pixels were 

replaced with zeros to represent the actual occupancy of the solid material in figure 2.5(c). 

The sphere centers were located at the mean X- and Y- coordinates of all the black pixels 

(zeros).  
 

(a) (b)

 

(c)
 

Figure 2.5. Image conversion for a glass-on-glass collision (both 12.7 mm): (a) In RGB 
true color. (b) Black-and-white rings locating the spheres. (c) Filled binary image.  
                                                 
1 ImageJ is a Java-based free software. 
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Each frame was converted and analyzed to determine the time evolution of the particle 

trajectories. A typical result is shown in figure 2.6(a); in figure 2.6(b), the estimated 

distance between sphere centers is plotted. The sphere trajectories were fitted in a least-

squares sense (in MatLab) before and after the collision to calculate the impact and 

rebound velocities, 1iU , 1rU , 2iU , and 2rU . The resultant velocities slightly varied with 

respect to the averaging duration. An average over 20 milliseconds would not capture the 

actual slowdown for a rapid collision. However, a time period shorter than 5 milliseconds 

does not reflect the real approaching velocity but pronounce only the decelerating particle 

motion. An intermediate time period, 10 to 15 milliseconds, was chosen such that the 

standard deviations for the four velocities are of the same order of magnitude in one 

collision. 
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Figure 2.6. Time evolution of (a) the particle trajectories and (b) the distance between the 

sphere centers. For this collision, the impact and rebound velocities are 1 65.6 mm siU = , 

1 3.6 mm srU = , 2 3.2 mm siU = , and 2 58.8 mm srU = .  
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2.3 Physical parameters  
 

2.3.1  Coefficient of restitution in a liquid  

 

Four velocities, 1iU , 2iU , 1rU and 2rU , are involved in a particle-particle binary collision 

rather than the two velocities, iU and rU , for particle-wall collisions. Therefore a new 

definition of the coefficient of restitution is required. Together with the particle Stokes 

number defined in equation (2.1), the coefficient of restitution, calculated by equation 

(2.3), successfully characterizes the particle-wall immersed collision. Therefore, it is 

reasonable to adopt the conventional definition: 

 

1 2

1 2

r r

i i

U Ue
U U

−
≡ −

−
,         (2.4) 

 

for a binary collision as a measure of the momentum and thus the energy loss.     

Equation (2.4) was first proposed by Newton as a kinematical collision model based on 

his experiments of dry collisions between solid objects. A second collision model was 

proposed by Poisson who hypothesized that a collision is composed of a compression 

phase followed by a restitution phase.  
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Figure 2.7. Schematic collision process. 

 

As shown in figure 2.7, the impact sphere, of mass 1m , impacts the target sphere, of mass 

and velocity 2m and 2iU , at a velocity 1iU . During the compression phase, the contact 

force rises and deforms both spheres and the two moves together at the group velocity: 

 

1 1 2 2
0

1 2

i i
G

mU m UU
m m
+

=
+

,         (2.5) 

which is derived from the conservation of linear momentum. The compression process 

affects the momentum of each sphere as: 

  

1 1 1 0

2 2 2 0 ,
i c G

i c G

mU P mU
m U P m U

− =⎧
⎨ + =⎩

         (2.6) 

 

where the compression impulse,
0

( )c

c cP F d
τ

τ τ= ∫ , is the time integration of the 

compression force up to time cτ . The compression force ( )cF t and duration cτ can be 

found by considering the stress distribution in both spheres and is a function of the 

material elasticity and the relative impact velocity. Hertz contact theory can be applied as 
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the first approximation, assuming a fully elastic deformation. However, without explicitly 

evaluating the integral, the contact impulse can be found by combining equations (2.5) 

and (2.6) to get: 

 

 1 2
1 2

1 2

( )c i i
m mP U U

m m
= −

+
.         

 

Similar expressions for the restitution phase are readily found as: 

 

1 0 1 1

2 0 2 2

G r r

G r r

mU P mU
m U P m U

− =⎧
⎨ + =⎩

,                   

 

involving three unknowns,
0

( )r

r rP F d
τ

τ τ= ∫ , 1rU , and 2rU , with only two equations. 

Poisson’s hypothesis of r cP e P= can be used as the third equation to determine the post-

collision velocities as: 2
1 1 1 2

1 2

(1 ) ( )r i i i
mU U e U U

m m
= − + −

+
and  

1
2 2 1 2

1 2

(1 ) ( )r i i i
mU U e U U

m m
= + + −

+
.  

 

The coefficient of restitution is calculated as the ratio of restitution to compression 

impulse and can be expressed as the ratio of relative velocities before and after the 

collision: 

 

1 2

1 2

r r r

c i i

P U Ue
P U U

−
= = −

−
.                    (2.7) 

 

Equation (2.7) is equivalent to Newton’s empirical expression in equation (2.4) for a 

normal collision with no friction or rotation that imparts tangential forces on the particles.  
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2.3.2 Binary Stokes number 

 

For a general binary immersed collision between objects of similar or dissimilar materials, 

sizes, and impact velocities, a binary Stokes number is proposed by considering the 

hydrodynamic effects on the two approaching spheres. Following Poisson’s hypothesis, 

an immersed collision is also decomposed into a compression and a restitution phase. The 

momentum change of the impact sphere, including the hydrodynamic effects, is written 

as: 

 

1 1 1 1i c c GmU H P mU− − = ,                  (2.8a) 

 

with some intermediate group velocity GU . The new term 1 10
( )fc

c cH h d
τ

τ τ= ∫  estimates 

the hydrodynamic impulse by integrating the total fluid force 1( )ch t up to time fcτ . The 

spheres make contact at fcτ , initiating the physical compression process with a solid 

compression force. The compression force is integrated from fcτ to fc cτ τ+ to determine 

the solid impulse cP . After the general compression phase terminates at time fc cτ τ+ , the 

general restitution phase commences and a momentum balance equation can be found for 

the impact sphere as: 

 

1 1 1 1G r r rmU H P mU− − = .                 (2.8b) 

 

The sphere is decelerated by the fluid force 1( )rh t , yielding the hydrodynamic rebound 

impulse 2

1 10
( )f

r rH h d
τ

τ τ= ∫ . A second set of equations can be derived for the target 

sphere with hydrodynamic impulses 2cH and 2rH as: 
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2 2 2 2i c c gm U H P m U− + = ,                     (2.8c) 

2 2 2 2g r r rm U H P m U− + = .                 (2.8d) 

 

For both spheres, the solid impulses cP and rP are identical due to the mutual surface 

contact. However, the hydrodynamic impulses are in general different, owing to the 

different particle sizes, solid densities, particle velocities, and ambient flows. 

 

Using equations (2.8a)–(2.8d), the coefficient of restitution can be manipulated into: 

 

1 2 1 2
*

1 1 2 2 1 21 2

1 2 1 2 1 2
*

1 1 2 2 1 2

r r r r r r r
g g

r r

i i c c c c cr r
g g

H P H P P H HU U
m m m m m m mU Ue

U U H P H H HP PU U
m m m m m m m

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − − − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= − = − =

− ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

*
1 2

*
1 2

( )                       
( )

r r r H

c i i H

P m U U
P m U U
+ Δ −Δ

=
+ Δ −Δ

,                

 

where ( ) 1*
1 21 1m m m −= +  is defined as the reduced mass of the particle system. The 

hydrodynamic effects are grouped into the parentheses subscripted “H.” For a dry binary 

collision, there is no velocity change due to the fluid force, which corresponds to 

Poisson’s hypothesis for dry coefficient of restitution r cP e P= . For a particle-wall 

immersed collision, where 2 2 0r iU UΔ = Δ = and *
pm m= , the coefficient of restitution,  

 
*

11
*

1 1

( )
( )

r p r Hr r

i c p i H c

P m UU Pe
U P m U P

+ Δ
= − = =

+ Δ
,  

 

can be interpreted as the ratio of the generalized restitution and compression 

impulses, *
cP and *

rP . The term 1( )p i Hm UΔ represents the additional momentum change 
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of the impact sphere due to the action of the hydrodynamic impulses. Therefore, for a 

sphere traveling at higher particle Stokes numbers, the momentum change 1( )p i Hm UΔ  

will be smaller, resulting in a higher value of e . This correlation suggests a non-simple 

dependence of the coefficient of restitution on St .  

 

For a binary collision, the generalized impulses include the momentum change of the 

target sphere and the resulting expression is: 

 
* *

1 2
* *

1 2

( )
( )

r r r r H

c c i i H

P P m U Ue
P P m U U

+ Δ −Δ
= ≡

+ Δ −Δ
.  

 

Analogous to a particle-on-wall collision, the second term in the denominator represents 

the total momentum change in the particle system upon approaching and is assumed to be 

the controlling parameter for the total momentum loss during a collision. Following the 

correlation between 1( )p i Hm UΔ and St , a binary particle Stokes number is proposed as: 

 
*

*26
rel

B
m U

St
aπμ

= .                     (2.9) 

The particle system possesses reduced mass *m and a reduced radius ( ) 1*
1 21 1a a a −= + , 

while 1 2rel i iU U U= − is the initial relative velocity between the two spheres. The 

numerator of equation (2.9) provides a measure of available momentum in the solid 

phases that sustains the particle motion through the liquid and is identical to the original 

definition given in Davis, at al. (1986). Their definition was obtained upon solving the 

equation of motion for two approaching spheres whose motion is decelerated by the 

lubrication force.  

 

The denominator estimates the total viscous dissipation by multiplying the effective 



 25

viscous force, *6 rela Uπμ , with a forcing duration *
rela U . For a particle-wall collision, 

the time interval is ia U and the original particle Stokes number, equation (2.1), is 

recovered using *
1m m= , rel iU U= , and the viscous force 6 iaUπμ . For a binary collision 

between spheres of equal size, as used in the current experiments, the binary Stokes 

number can be manipulated into: 

 
*2 Re

9
p

B rel
f

St
ρ
ρ

= ,                   

 

with a reduced density ( ) 1*
1 21 1pρ ρ ρ −= + and a Reynolds number Re 2rel rel faU ν=  

based on relative velocity between the particles. Similarly, equation (2.1) can be written 

into ( )Re 9p fSt ρ ρ= , which is widely used in the two-phase flow literature.  

 

 

2.4 Normal collisions between spheres of identical sizes 
 

2.4.1 Identical spheres 

 

The spheres used in the experiments were all 12.7 mm in diameter and were made of 

steel, glass, or Delrin. The effective coefficient of restitution for collisions between 

identical spheres is plotted versus the binary Stokes number in figure 2.8. A monotonic 

decrease in e with decreasing binary Stokes numbers is observed. A critical binary Stokes 

number for zero coefficient of restitution, 2 ~ 8BCSt = , was found, indicating either a 

fully stopped impact sphere before reaching the target or a zero relative velocity after 

collision. For some collisions in the most viscous liquid investigated in this study 

( 5 24.3 10 m sfν
−≈ × ), the two spheres moved as a group after the impact, yielding zero 
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restitution. The target sphere did not accumulate sufficient inertia to overcome the 

hydrodynamic forces and thus was unable to escape from the impact sphere. The critical 

binary Stokes number is lower than the value for particle-wall collisions ( 7 ~ 12CSt = ), 

which may result from the mobility for the target particle.  
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Figure 2.8. Effective coefficient of restitution as a function of binary Stokes number for 
immersed normal collisions between identical spheres (D = 12.7 mm). The pair material 
is steel (□), glass (○), and Delrin (Δ) respectively. The error bars estimate the uncertainty 
in calculating the sphere velocities. 
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2.4.2  Dissimilar spheres 

 

Within the same range of liquid viscosities, experiments involving collisions between 

spheres of identical size (12.7 mm) but dissimilar materials were also conducted. As 

shown in figure 2.9, a similar trend is observed of a monotonic decrease of coefficient of 

restitution with diminishing binary Stokes number.  
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Figure 2.9. Effective coefficient of restitution as a function of binary Stokes number for 
immersed normal collisions between dissimilar spheres. The sphere material is 
abbreviated by “s,” “g,” and “d” for steel, glass, and Delrin. For the legend character pair, 
the impact sphere is represented with its material abbreviation followed by the target 
material abbreviation. Therefore, steel-on-glass collisions (ä) are denoted by the pair “s-
g,” etc. 
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In figure 2.10, the collision data for dissimilar spheres are compared with the results for 

identical pairs. The general agreement between the two data sets supports the use of the 

coefficient of restitution 1 2 1 2( ) ( )i i r re U U U U= − − − and the binary Stokes number 
* *26B p relSt m U aπμ=  to characterize the general binary immersed collision while a target 

sphere, initially stationary, is free to move upon impact.  
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Figure 2.10. Immersed inter-particle normal collisions between identical and dissimilar 
spheres. 

 

To summarize, Poisson’s impulse hypothesis, relating the compression and restitution 

process with the coefficient of restitution, was applied to estimate the total momentum 

change upon impact for an immersed binary collision. Both impulses were extended to 

include the hydrodynamic forces. The coefficient of restitution thus serves as a measure 

of the momentum loss during an immersed collision between both similar and dissimilar 
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particles. The generalized compression impulse suggests a definition of the binary Stokes 

number for the pair and is shown to be well correlated with the coefficient of restitution.  

 

 

2.4.3  Comparison with particle-wall collision 

 

Furthermore, the inter-particle collision data are compared with the results of fully 

immersed collisions between a sphere and a stationary wall. As shown in figure 2.11, 

regardless of the target size and mobility, both dynamic collision process can be 

characterized by e and BSt , with the ambient fluid effects on the particle motion being 

imbedded in BSt . The effective coefficient of restitution for an immersed inter-particle 

collision is slightly greater than the value for particle-wall collision, which can be 

attributed to the mobility of the target sphere. Moreover, boundary layers develop along 

the solid surfaces when the interstitial liquid is squeezed out upon the approach, a layer of 

which undergoes strong viscous dissipation consuming the momentum of the impact 

sphere. Such dissipation becomes weaker when the target is of finite size because of a 

smaller boundary layer. Thus a slightly greater e for particle-particle immersed collisions 

is observed. 

 

The inter-particle collision data revealed a smaller critical binary Stokes number than the 

results of particle-wall collision, a reduction of which might be attributed to the mobility 

of the target particle. It will be shown in chapter 3 that the presence of the target increases 

the hydrodynamic forces with decreasing interstitial distance. The augmentation is 

smaller for a smaller target due to an easier flow passage around the object and less 

particle inertia is required to sustain a motion through the liquids upon approaching and 

receding. Therefore, for collisions on a target of finite size, zero restitution is observed at 

smaller binary Stokes number than the critical values found for on-wall impacts.   
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Figure 2.11. Comparison of the inter-particle and the particle-wall immersed collisions. 

 

For 20 40BSt ≈ − , the glass-on-glass collisions resulted in higher restitution than the 

collisions involving other materials. This high restitution might be attributed to a large 

rebound distance between two glass surfaces than between other surfaces, which results 

in smaller hydrodynamic forces upon contact. Such an inverse dependence of the total 

fluid force on the gap width will be examined in chapter 3. The glass spheres used in the 

experiments have higher surface roughness than the steel ball bearings. Though the 

Delrin particle has an even rougher surface, the stiffer glass asperity deforms less. 

Therefore, as an overall consequence, two glass surfaces rebound at a greater separation 

yielding smaller hydrodynamic forces; less kinetic energy is dissipated in the fluids for 

the glass pair and hence a greater restitution is found. Similarly, collisions between steel 

and glass spheres resulted in higher restitution than between other materials at 
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around 50 130BSt ≈ − , which is illustrated in figure 2.12. A linear-linear plot is used for 

this interested regime of BSt . The interplay of the surface elements could also explain the 

higher restitution for steel-on-glass collisions at around 10BSt ≈ than for steel-on-steel 

impacts. However, the enhancement is less pronounced due to smaller particle inertia. For 

collisions at such low binary Stokes numbers, the hydrodynamic forces dominate the 

particle motion, diminishing the surface property effects on the rebound.   
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Figure 2.12. An enhanced restitution due to rebounds at a greater separation that occurs 
between particles of high and stiff asperities, such as glass spheres.  
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2.5 Particle motion with zero coefficient of restitution 
 

In some immersed collisions, particularly those involving the most viscous liquid in the 

current experiments, the target sphere was observed to move, prior to contact, in the 

same direction as the incoming sphere. The momentum of the impact sphere is 

transmitted to the target by the pressure front built up in the incompressible interstitial 

liquid layer.  

 

For a collision between two glass spheres at ~ 2BSt , the target motion was noticeable 

when the impact sphere was about one-fifth of a sphere diameter, as may be seen in  

figure 2.13. For this particular case, both spheres had diameter of 12.7 mm. Over the 

investigated duration of 500 ms, the target moved about 0.07 D, yielding a velocity of 

about 1.8mm/s before the two surfaces touched. The liquid was so viscous in this case 

that the impact motion nearly ceased upon touching. Following the impact, the two 

seemed suspended together in the liquid and were slowly brought down to the lowest 

pendulum position by gravity.  
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Figure 2.13. Time evolution of the interstitial gap for a glass-on-glass collision that 
results in zero restitution due to the nearly stopped impact sphere motion. Both glass 
spheres are 12.7 mm in diameter.   

 
Unlike a particle-wall immersed collision where zero restitution results from either a fully 

stopped sphere upon contact or one that possesses insufficient rebound inertia for further 

reverse motion, an inter-particle collision can retain a post-collision group motion while a 

zero restitution coefficient is determined by equation (2.4). As depicted in figures 2.14(a) 

and 2.14(b), the target was accelerated from a non-zero velocity by the collision impulse. 

However, the impulse did not supply sufficient inertia for the target particle to overcome 

the hydrodynamic forces to separate further from the impact sphere. As a consequence, 

the two moved at a group velocity GU that is always lower than the dry group 

velocity, 1 1 2 2
0

1 2

i i
G

mU m UU
m m
+

=
+

 from equation (2.5), due to the surrounding fluid effects. In 

these figures, zero time is located when the gap drops to zero. 
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Figure 2.14. Time evolution of the interstitial gap for impacts that result in zero 

restitution but non-zero particle motion after collision: (a) steel-on-glass and (b) steel-on-

steel collisions. All the spheres are 12.7 mm in diameter.   
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If the group velocity in liquid, GU , is scaled by the dry group velocity, 0GU , the group 

efficiency number, 

 

0

G
G

G

Ue
U

= ,                        

 

serves as an index of how efficient the pair particles move together under hydrodynamic 

forces. In figure 2.15, the binary Stokes number BSt is used to estimate the total fluid 

force, as in the previous sections. When Ge is plotted against BSt , a decline in the group 

efficiency number is observed when the binary Stokes number drops below 2, at which 

value the viscous force surpasses the solid inertia and severely dissipates the group 

motion. Since this type of group motion was rarely observed within the current impact 

conditions, further experiments would be needed for a quantitative description. 
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Figure 2.15. Group efficiency number with respect to the binary Stokes number. Error-
bars represent the uncertainty in calculating the velocity of each sphere. 
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2.6 Summary  
 

To summarize, Poisson’s impulse hypothesis that relates the compression and restitution 

process with the coefficient of restitution was used to estimate the total momentum loss 

during an immersed collision, between similar and dissimilar particles. The generalized 

compression impulse suggests a new definition of pertinent particle Stokes number for an 

inter-particle immersed collision-a binary Stokes number, BSt . This number is shown to 

be well correlated with the effective coefficient of restitution. While the effective 

coefficient of restitution, e , measures the resultant energy loss upon collision, the 

ambient fluid effects are imbedded in the binary Stokes number. Despite the target size 

and mobility, the inter-particle collision data follow a similar trend to the results of 

particle-wall collisions. The general agreement supports the usage of e and BSt to 

characterize such a rapid dynamic process. 

 

Interesting phenomenon, such as pre-collision target motion and a group motion of the 

particle pair, was also observed in the experiments. The target mobility and the 

incompressible surrounding liquid are essential for such findings, which have never been 

reported from the on-wall immersed collision experiments and can never occur in a dry 

medium. 
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Chapter 3  
 
 
Wall Effects on the Hydrodynamic Forces 
 

 

In chapter 2, a general correlation between the effective coefficient of restitution and the 

binary Stokes number was found for both inter-particle and particle-wall immersed 

collision. The monotonic decrease in the effective coefficient of restitution with 

diminishing binary Stokes number is expected to reveal the underlying physics of an 

immersed collision. A model that reproduces the correlation would be of particular use. 

The degree of collapse of the two data sets suggests the modeling of the sphere-wall 

collision as a first attempt to address how a second solid boundary affects the particle 

approaching motion. In order to describe the sphere motion in the proximity of wall, the 

conventional hydrodynamic forces, developed for the motion of a single sphere in an 

unbounded fluid domain, require modifications. The three forces examined in this chapter 

are: the steady viscous force, the added mass force, and the Basset history force.   

 

 

3.1 Background 
 

Stokes (1845) derived an expression for the force exerted on a steadily moving solid 

sphere in an unbounded viscous incompressible fluid. This relation now bears his name-

Stokes’ drag law. Besides the steady viscous drag, the added mass force that accounts for 

the unsteadiness in the motion of an object in a fluid is also important. A lesser known 



 38

history force, which depends on the development of an unsteady boundary layer, was 

derived by Basset (1888) and Boussinesq (1885) independently for the force on a sphere 

that oscillates in the Stokes flow regime. Since then, extensive work has been done to 

extend these analytical expressions for a broader range of flow conditions. A thorough 

review can be found in Michaelides (1997).  

 

The problem of the approach of a solid sphere towards a wall or another sphere in a 

viscous fluid forms an entire field of study. Brenner (1961) developed a correction term 

to Stokes’ drag for a rigid sphere with steady motion towards a wall at small Reynolds 

number. This value increases with diminishing gap width and converges to the classical 

lubrication theory when the gap drops to zero. Cox and Brenner (1967) applied a 

perturbation technique to extend this finding to sphere motion at higher Reynolds number 

where the liquid inertia becomes non-negligible. The new expression requires only a 

small gap Reynolds number, 2g fRe = Uδ ν , and can be used for particle motion beyond 

Stokes regime. As for the added mass force, the presence of the wall introduces to the 

flow a new boundary condition that can be satisfied using the image method. The 

procedure is outlined in Lamb (1932) and Milne-Thomson (1968) and modifications on 

the total fluid kinetic energy can be expressed as an infinite sum that also grows with 

decreasing interstitial gap. The infinite series through which the relation is presented is 

cumbersome and difficult to implement in a computation. Thus a simplified expression is 

developed in section 3.3 followed by the modifications of the history force.  
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3.2 Viscous drag  
 

3.2.1 Moderate Reynolds number effects  

 

When the sphere is far away from wall, the viscous drag is calculated as: 

 

6 ( )DF aU Reπμ φ= − ,                    (3.1) 

 

where the correction on the Stokes’ drag, ( )Reφ , accounts for higher Reynolds number 

effects and is a function of the particle Reynolds number, 2 fRe = aU ν . It can be related 

to the steady state drag coefficient, ( )DC Re , by: 

 

( )( )
24
DReC ReReφ = .                    (3.2) 

 

Through out this work, the expression of 0.687( ) 1 0.15Re Reφ = + is used for 800Re <  

(Clift, Grace, and Weber 1978). When the sphere moves close to the wall, the classical 

lubrication theory predicts a force that increases as the inverse of the gap width-a singular 

behavior not captured by equation (3.1).  

 

 

3.2.2 Wall effects on the steady viscous drag 

 

When the sphere moves closer to the wall, the small gap width ensures a Stokes’ flow 

between the solid surfaces. When the solid sphere moves at constant speed 

perpendicularly towards a wall at U , Brenner (1961) solved the quasi-steady Stokes’ 

equation and found the viscous drag force as: 



 40
 

*6 ( )DF aUπμ λ δ= − ,                     

 

where the non-dimensional gap, * aδ δ= , is scaled by the sphere radius a . The 

correction factor, *( )λ δ , takes the form of an infinite series: 

 

( )*
2 2 21

1 2

4 ( 1) 2sinh(2 1) (2 1)sinh 2sinh 1
3 (2 1)(2 3) 4sinh ( ) (2 1) sinhn

n n n n
n n n n

α αλ δ α
α α

∞

=

⎡ ⎤+ + + +
= −⎢ ⎥− + + − +⎣ ⎦

∑ ,           (3.3) 

 

where * 1 *( ) cosh ( 1)α δ δ−= + . Cox and Brenner (1967) extended equation (3.3) for flow 

at higher Reynolds number, where the convective acceleration of the interstitial liquid 

becomes important and required only small gap Reynolds number 2 fRe Uδ ν= . The 

new wall correction term depends on both the gap width and the particle Reynolds 

number and is given by: 

 

* *1
4* *

1 1 1( , ) 1 (1 ) log
5

Re Reλ δ δ
δ δ

⎡ ⎤≈ + ±⎢ ⎥⎣ ⎦
.                 (3.4) 

 

Cox and Brenner’s sign convention is adopted. For an approaching sphere, a plus sign in 

front of the particle Reynolds number is used and it is switched to a negative when the 

sphere rebounds from the wall. The wall-modified viscous drag can thus be written as: 

  
*6 ( , )DF a U Reπ μ λ δ= − .                  (3.5) 

 

Since the viscous drag is a consequence of vorticity diffusion, a smooth transition from 

equation (3.1) to equation (3.5) is expected. Thus the two equations are matched at 

distance where the two corrections, ( )Reφ and *( , )Reλ δ , converge to a single value.  
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3.3 Added mass force 

 

Since the motion of the approaching sphere is intrinsically unsteady, the effects of the 

added mass and the history forces must be included. For an unsteady sphere moving in a 

viscous quiescent fluid that extends to infinity, various simulations (Chang and Maxey 

1995; Kim, Elghobashi, and Sirignano 1998; Bagchi and Balachandar 2003) have 

revealed the presence of an unsteady force that can be described by the added mass force. 

Once the particle Reynolds number exceeds the Stokes flow regime, the vorticity is 

confined to the boundary layer and has little effect on the upstream flow. Therefore 

potential flow is expected to describe the upstream flow motion, whether the wall is 

present or not. However, the conventional potential flow function does not account for 

the new boundary condition at the wall. Thus the wall effects are considered as follows. 

 

3.3.1 Added mass force in the presence of a wall 

 

When a solid sphere moves towards a wall at velocity ( )U t , the total kinetic energy in the 

fluid phase can be calculated as: 

 

2 2 *

1 0

1 1( ) 1 3 ( ) 1 3 ( )
4 4

n
f f

n
T m U t m U t Wμ δ

μ

∞

=

⎡ ⎤⎛ ⎞
⎡ ⎤= + = +⎢ ⎥⎜ ⎟ ⎣ ⎦

⎝ ⎠⎣ ⎦
∑ ,               (3.6) 

 

where 34 3f fm aπ ρ= is the mass of liquid displaced by the sphere (Milne-Thomson 

1968). In order to satisfy the boundary condition of no penetrating flow at the wall, a 

series of dipole images are placed across the wall, resulting in the infinite sum 
1 0

n

n

μ
μ

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  
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in equation (3.6). The successive terms are 31
0 2 Uaμ = , ( )3

1 0 1 1p qμ μ= , 

( )3
2 1 2 2p qμ μ= , , where 1

1 2
p a
q h

= , 2
2

2 2 (2 )
p a
q h a h

=
−

are functions of sphere center-

to-wall distance *( 1)h a δ= + . A recurrence relation is given as ( )3
1n n n np qμ μ −=  

and
2 2

2 2 2n n
a a ap q
h h h

=
− − −

is the nth convergent to the continued fraction. This 

infinite sum,
1 0

n

n

μ
μ

∞

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , thus is solely a function of scaled interstitial gap, * 1h aδ = − , and 

will be denoted by *( )W δ and referred as the wall correction term hereafter.  

 

The time rate of change of the total kinetic energy in the fluid phase is used to calculate 

the work done by the moving sphere. Thus, the wall-modified added mass force on the 

sphere may be derived as: 

 
*

* *1 1 3 ( )( , ) 1 3 ( )
( ) 2 4AM f f

dT dU dWF t m W m U
U t dt dt dt

δδ δ⎡ ⎤= − = − + −⎣ ⎦ .             (3.7) 

 

The first term involving dU dt on the right-hand side of equation (3.7) is similar to the 

conventional added mass force. However an extra fluid mass, *3 ( )W δ , that a sphere 

needs to expel when accelerating, is found. The second term that includes the time 

derivative of *( )W δ may be manipulated into: 
 

*
2

*

3 ( ) 3
4 4

f
f

mdW dWm U U
dt a d
δ

δ
− = ,                  (3.8) 

 

which can be interpreted as an unsteady opposing pressure force by analogy to the 

pressure term in Bernoulli’s equation. 
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(a) Behavior of the wall correction term *

1 0

( ) n

n
W μδ

μ

∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

For a simpler expression, the dimensional distance between the sphere center and the 

wall, h aδ= + , is used in this section instead of the interstitial gap. Since the consecutive 

terms of the infinite series, ( )3
1n n n np qμ μ −= , are expressed in terms of continued 

fraction, ( )n np q , further simplification is possible. The nth convergent to the continued 

fraction, 

 
2 2

2 2 2
n

n

p a a a
q h h h

=
− − −

,  

 

can be used to find a general relation between np s and nq s as follows. Starting 

with 0 0p = and 0 1q = , write: 
 

0

0

1

1 2 2 ( )p
q

p a a
q h h a
= =

−
 and 2 1

1

2

2 22 2 ( )pa
h q

p a a
q h h a

= =
− −

,  

 

by induction and a recurrence relation can thus be found as: 
 

1

1 22 ( )n

n

n n
p

n n nq

p aqa
q hq aph a

+

+

= =
−−

.                  (3.9) 

 

By equating the numerator and the denominator on both sides of equation (3.9), the 

following set of equations is obtained: 
 

1

1 2
n n

n n n

p aq
q hq ap

+

+

=⎧
⎨ = −⎩

.                                        (3.10) 
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An equation that governs the nq s can be found after canceling the np terms in equation 

(3.10) as: 

 
2

1 12 0n n nq hq a q+ −− + = .                     (3.11) 

 

The general solution of equation (3.11) can be shown to be: 

 
n n

nq A Bα β= + .                              (3.12) 

 

The numbers, α and β , are the roots of the equivalent 2nd order equation 
2 22 0s hs a− + = and can be found readily as: 

 

2 2, h h aα β = ± − .                               

                      

To solve for the unknown constants, A and B , in equation (3.12), the two relations, 

0 1q A B= + = and 1 2q A B hα β α β= + = = + , are applied, using equations (3.10) and 

(3.12) in addition to the first value of nq . The unknown constants can be expressed in 

terms of α and β as ( )A α α β= − and ( )B β α β= − − . A general expression for np  

and nq then follows: 

 
1 1

.

n n

n

n n

n

q

p

α β
α β

α βαβ
α β

+ +⎧ −
=⎪ −⎪

⎨
−⎪ =⎪ −⎩

                                           

 

The nth term in the wall correction term can now be expressed as: 
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3 3 3 3* *
2 1

* 1 * 1
0 2 1

n n
n n

n

p p p
q q q

μ α β
μ α β+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
= × × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

,                      

 

in terms of the scaled roots: 

 

* * *2

* * *2

1

1 ,

a h h

a h h

α α

β β

⎧ = = + −⎪
⎨

= = − −⎪⎩
           

 

where the quantity, *h , is the scaled center-to-wall distance * * 1h h a δ= = + . The wall 

correction term can be expressed as a function of the scaled interstitial gap *δ : 

 
3* *

*
* 1 * 1

1

( ) n n
n

W α βδ
α β

∞

+ +
=

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠
∑ .                            (3.13) 

 

The advantage of using equation (3.13) instead of its original expression with the 

successive multiplication term,
3

1

n
i

i i

p
q=

⎛ ⎞
∏⎜ ⎟
⎝ ⎠

, resides in its explicit dependence on *h and  

thus *δ , which helps the analysis on the series convergence. Figure 3.1 shows the 

behavior of *( )NW δ , which is the partial sum of the first N terms in equation (3.13). 

When compared to the numerical sum of the first 100 terms, *
5 ( )W δ – *

7 ( )W δ show good 

convergence to the numerical sum even at small gaps. 
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Figure 3.1. The collapse of the partial sum *( )NW δ , N = 3–7, onto the numerical sum of 

100 terms presented in the gray dots. 
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Figure 3.2. Discrepancy between *
5 ( )W δ and *

100 ( )W δ for * 0.02δ < . 
 

As shown in figure 3.2, when the scaled gap *δ drops below 0.02, the partial sum 
*

7 ( )W δ yields a closer estimation to the numerical value *
100 ( )W δ . At * 0.02δ = , 
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* *
7 100( ) 0.995 ( )W Wδ δ≈ and * *

7 100( ) 0.98 ( )W Wδ δ≈ at * 0.002.δ = Therefore, the 7-term  

partial sum is used as an approximation for *

1 0

( ) n

n
W μ

δ
μ

∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ and its explicit form is  

given as, with * * 1h δ= + : 
 

*
7 *3 *2 3 *3 * 3 *4 *2 3 *5 *3 * 3

*6 *4 *2 3 *7 *5 *3 * 3

1 1 1 1 1( )
8 (4 1) (8 4 ) (16 12 1) (32 32 6 )

1 1  .                
(64 80 24 1) (128 192 80 8 )

W h
h h h h h h h h h

h h h h h h h

= + + + +
− − − + − +

+ +
− + − − + −

                             (3.14) 

 

 

(b) Derivative of *( )W δ  

 

The derivative of *( )W δ with respect to *δ is now sought in order to calculate the 

opposing pressure term in equation (3.8). Since
0

nμ
μ

⎛ ⎞
⎜ ⎟
⎝ ⎠

is analytic for all *δ , term-by-term 

derivative is valid. The partial sum of the derivative * *
1 0

N
N n

n

dW d
d d

μ
δ δ μ=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ is evaluated  

and the value with the first 40 terms agrees with that obtained using 100 terms, as shown 

in figure 3.3. Therefore, 40 terms were used for further approximation with reasonable 

computational time. 
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Figure 3.3. Derivative of the wall correction term is numerically evaluated using the first 
40 and 100 terms. 
 

 

When the 40-term numerical value is compared to the 3-term partial sum in figure 3.4, 

the 3-term approximation compares well with the numerical value for * 2h > where 

*

3
*

2

0.004
h

dW
dδ =

= − is only 0.003 % greater than the value of
*

40
*

2h

dW
dδ =

. At a smaller 

distance, * 1.2h = ,
*

3
*

1.2

0.0418
h

dW
dδ =

= − deviates from
*

40
*

1.2

0.0424
h

dW
dδ =

= − by 1.5% of 

the value with 40 terms. Therefore, the derivative of the wall correction term is calculated 

with the first 3 terms for a gap width * 1δ >  as: 

 

 
* *2 *

3
* *2 *2 *2 3 *2 *2 4 *2 *2 3

*4 *2 *2

*4 *2 *2 4 *2 *2 *4 *2

1 3 (4 3)
128 ( 1)(2 1) 2( 1)(4 1) 2( 1)(4 1)

8 -8 1 1 (2 -1)- .
128 ( -1)(2 -1) 16 ( -1) 16 ( -1)

dW h h h
d h h h h h h h

h h h
h h h h h h h

δ
−

= − +
− − − − − −

+
− +

           (3.15a) 
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Figure 3.4. Comparison between the 40-term and 3-term partial sums.  

 

At a position closer to the wall, the singularity at * 0δ = dramatically slows down the 

series convergence, as shown in figure 3.5.  
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Figure3.5. The 3-, 5-, and 7-term partial sums of the derivatives deviate from the 40-term 
partial sum when * 0δ → .  

 

Hence to approximate the derivative of the infinite series within reasonable computation 

time, the numerical partial sum of the first 40 terms was fitted with Mathematica ® in the 
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least-square sense over *0.0001 1δ≤ ≤ yielding: 

 

4 * 1 2 *1 2 2 *
*

2 * 4 * * 1 2

0.241 2.3 10 0.311 6.6 10

9.8 10 log( ) 2.06 10 log( ) ,

FdW
d

δ δ δ
δ

δ δ δ

− − −

− − −

≈ − × − + ×

+ × − ×
                  (3.15b) 

 

with a standard deviation of 49.24 10−× . Since algebraic functions were insufficient to 

capture the series behavior, logarithm functions were used for a more compact fit.  

 

To patch the two expressions, the numerical difference, 3
* *
F dWdW

d dδ δ
− , between equations  

(3.15a) and (3.15b), was estimated for the optimal position. Though the position 
* 1.99δ = yielded the smallest difference of 92.8 10 ,−× the position * 1.0δ = with a 

difference of 62.54 10−× will be used, with comparable accuracy to the computation in 

chapter 4, for a simpler formulation. To summarize, the derivative of the wall correction 

term was evaluated numerically and a hybrid expression in equation (3.15c) will be used 

throughout this work: 
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                               (3.15c) 
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The 3-term expression is extrapolated to the wall and compared with the curve-fitted 

expression in figure 3.6. The underestimation of the derivative by equation (3.15a) is 

obvious. 
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Figure 3.6. Comparison between the 3-term approximation and the hybrid-formulation. 

 

 

3.4 History force  
 

While the added mass force accounts for the form drag due to unsteady particle motion, 

the history force addresses the viscous effects that are not included in the steady viscous 

drag discussed in section 3.2. As discussed in Crowe et al. (1998), this force accounts for 

the temporal delay in the boundary-layer development when the relative velocity between 

a solid surface and its adjacent fluid varies in time.  

 

After Stokes (1851) developed the hydrodynamic force for a solid sphere oscillating in a 

viscous unbounded fluid, Basset (1888) and Boussinesq (1903) generalized Stokes’ 



 52

solution by considering all possible oscillating frequencies. The total hydrodynamic force 

for an arbitrary sphere translation in an unbounded quiescent liquid is: 

 

3 2

0

2 16 ( ) 6
3

t

f
f

dU dU dF aU t a a
dt d t

τπμ π ρ πμ
τπν τ

= − − −
−∫ ,             (3.16) 

 

where the first two terms represent the steady viscous force and the added mass force 

respectively. The last term is the history force, which depends on the sphere acceleration 

history. The force has a time kernel 1 2t− that diminishes the effects from the earlier sphere 

acceleration. The derivation can be found in Landau and Lifshitz (1987), where the 

arbitrary sphere velocity is represented as a Fourier integral. They solved the equation of 

motion in the frequency space and transformed back to the time domain by an inverse 

Fourier integral over the whole frequency domain. The inversion is conceptually identical 

to both Basset’s and Boussinesq’s earlier derivations and gives an equivalent expression, 

as the last term in equation (3.16):  

 

2

0

16
t

H
f

dU dF a
d t

τπμ
τπν τ

= −
−∫ .                (3.17) 

 

All three derivations assume a creeping flow condition in an unbounded fluid domain. 

Thus equation (3.17) is subject to modifications for higher Reynolds number flow 

conditions and the presence of the wall. 
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3.4.1  Moderate Reynolds number effects 

 

To extend the classical history force for a moderate Reynolds number flow condition, 

Mei and Adrian (1992) performed a detailed numerical simulation to investigate the 

unsteady hydrodynamic force on a sphere when the relative velocity between a solid 

sphere and the ambient flow oscillates at small amplitudes and low frequencies. A new 

kernel was found to decay faster than 1 2t− as Stokes’ solution is for oscillations at small 

amplitude but high frequencies. 

  

The numerical result for finite Reynolds number was matched with the analytic solution, 

equation (3.17), to obtain a modified history force: 

 

0

6 ( )
t

H
dUF a K t d
d

πμ τ τ
τ

= − −∫ ,                                        (3.18) 

 

With a new kernel

21 21 4 3 2

2 3

( ) ( ) ( )
( )

2 (Re)
f

f H

t U t t
K t

a a f
π τ ν τπτ

ν

−
⎧ ⎫⎡ ⎤− −⎡ ⎤⎪ ⎪− = + ⎢ ⎥⎨ ⎬⎢ ⎥

⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

using a fitted  

function (Re) 0.75 0.105ReHf = + . The new kernel collapses to the conventional history 

force kernel 1 2( )t τ −− at small times but gives a faster decay as 2t− for longer times. The 

history force for a higher Reynolds number flow thus has a shorter memory. Though 

numerical investigation was performed for Re 100< , the applicability of equation (3.18) 

for translational motion at higher Reynolds numbers is expected. The reason follows.  
 

Consider boundary layer development over a plate that oscillates in its own plane. The 

alternating motion changes the sign of the vorticity generated at the surface. As the 

positive and the negative vorticity diffuse, they cancel each other, limiting the viscous 
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penetration, which results in a confined viscous penetration depth and thus a limited 

boundary layer growth (Batchelor 1967). This mechanism explains the characteristic 

transverse length scale that Mei and Adrian (1992) observed in their simulation of an 

oscillating flow over a stationary sphere. For a sphere traveling at higher Reynolds 

numbers, the boundary layer is more confined, which validates the use of equation (3.18) 

for Reynolds numbers beyond 100.  

 

Kim, Elghobashi, and Sirignano (1998) further extended Mei and Adrian’s result by 

considering a complete range of oscillating conditions.  They examined both small and 

large oscillation amplitudes and developed a kernel based on Mei and Adrian’s 

formulation but with modifications for further unsteadiness. With a new function ( )G t  

and a fitted coefficients, 1C , the modified kernel takes the form:  

 

111 2 12 1 3 2

2 '3

( ) ( ) ( )
( ) ( )

2 (Re)

CC

C

f

H

t U t t
K t G

a a f
π τ ν τπτ τ

ν

−
⎧ ⎫⎡ ⎤− −⎡ ⎤⎪ ⎪− = + ⎢ ⎥⎨ ⎬⎢ ⎥

⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

.                       (3.19) 

 

The new coefficient 1 2.5C = differs from the value 2 used by Adrian and Mei. A second 

coefficient 2 0.126C = in the function '
20.75 ReHf C= + can be compared to Adrian and 

Mei’s fitted result of 0.105. The newly added coefficient ( )1( ) 1 1 ( ) ( )G t t M tβ= +  

highly depends on the instantaneous flow behavior. This time-varying coefficient depends 

on a primary acceleration number, 1 2
2 ( )( ) a d U VM t

dtU V
−

=
−

, and another fitted 

function { }4 41
5 3( ) 1 ( ) [ ( ( ) ( ) )]C C

r r rt C t C t tβ φ φ φ+= + + . The fitted function, β , depends on 

constants 3 0.07C = , 4 0.25C = , 5 22.0C = , and the ratio 2 1( ) ( ) ( )r t M t M tφ = , which also 
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depends on a secondary acceleration number 
2 2

2 3 2

(2 ) ( )( ) a d U VM t
dtU V
−

=
−

. In the current 

study, the kernel developed by Kim, Elghobashi, and Sirignano (1998) in equation (3.19) 

is used with a zero ambient flow velocity V.  

 

 

3.4.2  Wall effects on the history force 

 

As shown in the previous section, the history force is known as an unsteady viscous force 

that depends on the sphere acceleration history, which is related to the temporal delay of 

the boundary layer development due to unsteady surface motion. The physical meaning 

of this force can be interpreted as follows. When a stationary infinite flat plate is 

impulsively accelerated to a constant speed, 0U , the viscous flow in the upper half 

plane ( 0)y ≥ can be readily found, as this corresponds to Stokes’ first problem:  

 

0

( , ) 1 erf
4 f

u y t y
U tν

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

.                 (3.20) 

 

The wall shear stress can be calculated from equation (3.20) to be 0 .fU tτ μ πν=  

Describe a general unsteady plate motion as a series of infinitesimal step changes, as 

sketched in figure 3.7, the cumulative wall shear stress at a later time, t , is found as: 

 

0 1 2

1 2

( ) ...
f

U U Ut
t t t t t

μτ
πν

⎡ ⎤Δ Δ Δ
= + + +⎢ ⎥

− −⎢ ⎥⎣ ⎦
,                     (3.21) 

 

using the linearity of low Reynolds flow. 
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Figure 3.7. Infinitesimal stepwise acceleration of the plate. 
 

 

The history force per unit plate area is obtained from equation (3.21) by replacing the 

discrete sum with a continuous time integral, 
0

t

H
f

dU dF
d t

μ τ
τπν τ

=
−∫ , so that the 

classical expression in equation (3.17) is developed. 

 

For a sphere that is translating at 0U , an axisymmetric boundary layer is generated from 

the front stagnation point. For an axisymmetric flow, Mangler’s transformation can be 

applied to simplify the equation of motion. With the coordinates defined in figure 3.8, the 

transformation: 

 
2

0

0

( )x r zx dz
a

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ , 0 ( )r xy y

a
= , u u= , and 0

0 0

v v dra y u
r r dx
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

, 

 

reduces the three-dimensional momentum equation into a two-dimensional boundary 

layer equation. The function 0 ( , )r x y represents the distance from the line of symmetry 

and 0 ( ) sin( )r x a x a= is readily found for a sphere (Panton 1995). 
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  Figure 3.8. Coordinates for the Mangler’s transformation. 

 

The velocity field in the transformed boundary layer equation may be expressed as a 

series sum: 

 

0

( )
i

i
i

u x xc
U a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ,                               

 

where the coefficients depend on the shape of the object and the potential flow field 

outside the boundary layer (Schlichting 1960). The shear stress along the sphere surface, 

in terms of Mangler’s variable, can be found as:  

 
3 5

3 2
0

3
1.39155 0.54615 0.0379fx x x xU

a a a a a
ρ μ

τ
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= − + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
,           (3.22) 

 

which reveals a 3 2 order dependence on the tangential flow velocity at the sphere 

surface. 

 

As discussed in section 3.3.1, with a solid wall present in front of the moving sphere, the 

potential flow requires modifications and a wall-modified tangential velocity at the 



 58

sphere surface is expected. The potential function for the flow between the wall and the 

approaching sphere can be constructed by considering the symmetry case where two 

identical spheres move towards each other along their line of centers. As shown in    

figure 3.9, a solid sphere 1S approaches the wall from a distance h at velocity 0U . The 

requirement of no penetrating flow at the wall is first met by placing an image 

sphere 2S from a distance h across the wall that moves towards 1S at the same 

magnitude of speed. 
 

 

r
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θ
θ

h
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U0
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S1 S2

U0
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h
h

 
Figure 3.9. Schematic sketch of the potential flow problem when a solid sphere moves 

towards a solid wall. 

 

However, the addition of this image sphere introduces a new normal flow on the surface 

of sphere 1S . Thus a second image sphere (dipole) of certain strength is added to 

counterbalance such an induced surface flow at a certain distance from the center of 1S . 

The boundary condition of the image sphere 2S is now subjected to further modification 

with an additional image dipole. This process continues and the resulting potential 

function φ is found to be: 
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        (3.23) 

 

where iμ and if are functions of the scaled distance * * 1h δ= + . The first square bracket  

preceding 2

cos
r
θ includes the series of image dipoles that are related to the approaching 

sphere 1S ; the first subgroup, 2 4

0 0

1 μ μ
μ μ

⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠
, represents the sequential images inside 

the sphere that are used to match the no penetrating flow boundary condition at 

the 1S surface, while the second subgroup, 3 51

0 0 0

μ μμ
μ μ μ

⎛ ⎞
− + + +⎜ ⎟
⎝ ⎠

, corresponds to the  

images for the wall boundary condition. The second square bracket followed by cosr θ  

is the approximate contribution from the image sphere 2S . The corresponding subgroups 

are for the boundary conditions at the 2S surface and the wall respectively. It is noted that 

equation (3.23) should be used as an approximation of the potential flow only in the 

proximity of sphere 1S . 

 

To illustrate how the wall affects the potential function, equation (3.23) is compared with 

the potential function for a single solid sphere translating at the same velocity 0U  in an 

unbounded fluid domain,  
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3

0 0 2

cos
2
a U

r
θφ = ,                               

 

in figure 3.10 at a radial position of 1.1r a = . The front stagnation point is located 

at 0θ = . The partial sum of equation (3.23) is used as an approximation correct to 12h∗ − . 

When the sphere is far from the wall, the no-wall potential value is recovered. 
 

no wall

f

q

d* = 0 . 1

d*  = 1 . 0

d*  = 0 . 5

 
Figure 3.10. Potential functions with and without wall at different gaps ( 1.1r a = ).  
 

With the wall modified potential function, the radial and tangential velocities are  

calculated using ru
r
φ∂

=
∂

and 1u
rθ

φ
θ
∂

=
∂

. As shown in figure 3.11(a), the surface  

tangential velocity is augmented by the presence of the wall. A smaller gap width induces 

a greater tangential velocity along the sphere surface due to the sequential opposing 

image dipoles. However, no such augmentation is observed in the radial velocity, as 

shown in figure 3.11(b). The wall modified radial flow velocity equals the no-wall value, 

validating the no penetrating flow boundary condition required at the sphere surface. 
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Figure 3.11(a). Tangential flow velocity at the sphere surface at different gaps.  
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Figure 3.11(b). Radial flow velocity at the sphere surface at different gaps.    

 

It is proposed that the wall affects the history force by amplifying the tangential flow 

velocity. An augmentation factor *( )HK δ can be found by dividing the wall-modified 

tangential velocity by the no-wall value, 0 sin
2

U θ− , at the sphere surface: 
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− −

+ +
− + − +

           (3.24) 

 

Equation (3.24) is plotted in figure 3.12 as a monotonically increasing function of 

decreasing normalized gap width.  
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Figure 3.12. Augmentation factor for the wall-modified history force as a function of the 
scaled gap width. 

 

With the wall-modified surface tangential velocity, *
0( )HK Uδ , the shear stress in 

equation (3.22) is modified accordingly: 
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                    (3.25) 
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When equation (3.25) is compared to the no-wall shear stress, equation (3.22), the terms 

inside the curly brackets represent the same shear stress distribution over the sphere as 

the no-wall value. The only difference is the augmentation factor *( )HK δ that is raised to 

the power of 3/2 , in accordance with the shear stress dependence on the surface 

tangential velocity. Therefore, integrated with equation (3.19), the wall-modified history 

force is proposed as 

 

* * 3 2

0

( , ) 6 ( ) ( )
t

H H
dUF t a K K t d
d

δ πμ δ τ τ
τ

= − −∫ .                          (3.26) 

 

The factor *( )HK δ accounts for the wall effects on amplifying the shear stress at the 

sphere surface. The effects of motion at higher Reynolds number are imbedded in the 

new history kernel ( )K t τ− given by equation (3.19). Note that the incoming sphere also 

generates a boundary layer along the solid wall when the fluid is squeezed out of the gap. 

This second boundary layer might change the shear stress distribution over the 

approaching sphere surface, the terms in the curly bracket of equation (3.25), but it is 

assumed to be negligible in the current work.  

 

 

3.5  Summary 
 

In this chapter, three conventional hydrodynamic forces are modified for the presence of 

the wall and are found to diverge when the interstitial gap drops to zero. Moreover, the 

effects of a higher Reynolds number flow are addressed by using an empirical relation or 

a fitted expression from simulation results. 
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Chapter 4     
 
 
Immersed Pendulum Motion Towards a Solid 
Wall 
 

 

In chapter 3, the conventional hydrodynamic forces on a solid sphere were investigated 

for a collision process beyond Stokes flow regime. A flow model, including the steady 

viscous force, the added mass force and the Basset history force, was proposed with 

modifications for the effects at higher Reynolds flow conditions and for the presence of 

wall. In order to validate the proposed model, a pendulum motion towards a solid wall is 

simulated and will be compared with the available experimental measurements in this 

chapter. In addition, the impact of two solid surfaces with interstitial liquid layer is also 

investigated. A rebound scheme that considers different contact mechanisms is proposed 

and implemented in the current computation. The predicted rebound motion is examined 

with the trajectory of an actual pendulum rebound. The proposed collision model, 

comprising the flow model from chapter 3 and the new rebound scheme, is applied to 

estimate the effective coefficient of restitution as a function of particle Stokes numbers. 

By comparing the model prediction to the experimental results, the performance of the 

proposed collision model is evaluated.  
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4.1 The equation of motion 
 

The equation of motion for an immersed pendulum was derived in chapter 3, taking into 

account the wall modifications on all non-conservative hydrodynamic forces. The 

schematic representation of the problem of an immersed pendulum motion towards a wall 

is shown in figure 4.1 with the relevant variables. The circumferential position of the 

sphere center s is scaled by the total arc length 0s Lθ= calculated with pendulum string 

length L  and release angle 0θ . The time and the circumferential velocity are scaled with 

two characteristic convective scales, as *
Ct t T= and *

Cu u U= , subject to the 

requirement of 0C CT U Lθ= .  

 

Lθ

a

s u(t)

 

Figure 4.1. Schematic representation of a pendulum motion towards a fixed wall in 
liquid.  
 

To estimate the characteristic velocity cU , it was assumed that the effective potential 

energy is fully dissipated by the steady viscous force when the sphere travels the whole 

arc at velocity CU . The following equation balances the potential energy by the 

dissipative viscous work: 

 

34 ( ) 6 (Re )
3 p f C Ca g H aU sπ ρ ρ πμ φ− Δ = ,                 (4.1) 
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for a sphere of radius a and density pρ that moves in a liquid of viscosity fμ and 

density fρ . The experimental relation for modifying the steady viscous force for higher 

Reynolds number (Re)φ is given in equation (3.2) and 0(1- cos )H L θΔ = . Equation (4.1) 

can be manipulated into:  

 

0

0

(1 cos )4Re (Re )
9C C Arθφ

θ
−

= ,                      (4.2) 

 

where Re 2C C fa U ν= is the characteristic Reynolds number and 3 2( 1)s

f fAr ga ρ
ρ ν= − is 

the Archimedes number that characterizes the ratio of the effective gravity to the viscous 

drag for an immersed object motion. Iteratively solving equation (4.2) determines the 

characteristic convective velocity CU and the resulting convective time CT . Besides CT  

at characterizes the time required for an immersed pendulum motion towards the wall, 

there are other time scales important to the problem, including the diffusion time 

scale, 2
fa ν , and the period for a pendulum motion, L g , with negligible liquid effects. 

However, only the characteristic convective time CT results in non-dimensional equations 

of motion of comparable order of magnitude over all the impact conditions investigated 

in this chapter. 

 

The relationship between the Archimedes number and the convective Reynolds number 

from equation (4.2) is illustrated in figure 4.2 for a pendulum motion at a release angle 

of 15 . The Archimedes number increases monotonically with increasing ReC . Due to the 

square of liquid viscosity in the denominator, the Archimedes number is in general of 2–4 

orders of magnitude greater than the characteristic Reynolds number.  
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Figure 4.2. Archimedes number as a function of the characteristic Reynolds number for 
an immersed pendulum motion from 0 15θ = . 
 

With the effective mass, * * *1( ) (1 3 ( ))
2

s

f

M Wρδ δ
ρ

= + + , a set of dimensionless equations 

was found for the pendulum motion as follows: 
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*
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** * *
* * *2 * * *

* 2 * *0
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t
H
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KdU Ar dW U dUM U K t d
dt d d

δδ θ φ τ τ
δ τ

⎧
=⎪⎪

⎨
⎪ = − − − −
⎪⎩

∫
     

                      (4.3) 

 

The first equation calculates the pendulum circumferential velocity and the second 

equation is the momentum balance equation for the sphere. The dimensionless forces on 

the right-hand side of the momentum equation are the effective gravity, the opposing 

pressure force, the steady viscous drag, and the history force respectively.  
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The correction for higher Reynolds number effects on the steady viscous drag, (Re)φ , is 

replaced by Brenner’s wall correction term, *( ,Re)λ δ± , when the sphere moves close to 

the wall. Since the viscous diffusion is a continuous process, a smooth transition was 

guaranteed by matching the local values of (Re)φ and *( ,Re)λ δ+ . At large convective 

Reynolds number, the viscous drag and the history force become negligible and the 

effective gravity and the pressure force govern the pendulum motion. The dimensionless 

factor 2ReCAr in the effective gravity term is plotted as a function of ReC in figure 4.3. 

The quantity of this value remains of order unity even at large Reynolds numbers, 

indicating the case where the effective gravity drives the pendulum motion without 

significant viscous dissipation. Moreover, the opposing pressure force, which is a result 

of potential flow theory, is independent of viscosity.  
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Figure 4.3. The preceding dimensionless factor of the effective gravity in the momentum 
equation of equation (4.3). The release angle is 0 15θ = .  
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The history kernel, in terms of the dimensionless variables, is: 
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The pendulum starts from zero velocity with the effective gravity as the only driving 

force. Thus the initial conditions: 
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are used when the set of equations (4.3) is solved numerically. 

 

 

4.2 Rebound in a liquid 
 

Theoretically, the singularity * 0δ = requires that all of the hydrodynamic forces increase 

to infinity at the wall, resulting in a fully stopped sphere prior to contact. Since the 

surface is neither perfectly smooth nor rigid, as assumed in the theory, rebound is 

observed in real immersed collisions. Therefore, a criterion of where and how the sphere 

should rebound is crucial to any collision model. The first work that solves the minimum 
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lubrication film thickness for two approaching surfaces is by Davis et al. (1986). They 

applied the elastohydrodynamic lubrication theory (EHL) which couples the interstitial 

fluid pressure with the solid surface deformation and numerically investigated the 

collision between two deformable elastic spheres. The findings are crucial to the rebound 

mechanism proposed in the current work. Thus their analysis is summarized in the 

following section. 

 

 

4.2.1 EHL collision of two solid spheres  

 

(a) Outline of the paper by Davis et al. 1986 

 

As depicted in figure 4.4, a perfectly smooth but deformable solid sphere, of mass pm  

and radius a , approaches the stationary wall in a liquid of viscosity μ  from a distance δ  

with local velocity .U The sphere motion is described by two kinetic equations: 

( )d dt U tδ = − and 26 ,pm dU dt a Uπμ δ= − assuming that the lubrication force 

dominates the hydrodynamic forces. 
 

i0

 

Figure 4.4. Schematic of elastohydrodynamic collision of a sphere on a stationary wall in 
a viscous liquid. 
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These two equations can be combined, yielding the sphere deceleration as a function of 

the separation as: 

 
26

p
dU am
d

πμ
δ δ
= .                        (4.4) 

 

With the initial velocity 0iU U= at 0iδ δ= , equation (4.4) can be integrated to determine 

the local approach velocity U at location δ : 

 

0
0

0

1 ln( ) /i
i

i

U St
U

δ
δ

= − ,                                 (4.5) 

 

which depends on the impact particle Stokes number, 2
0 0 6 .i p iSt m U aπμ=  The gap δ  

depends on the instantaneous surface deformation as estimated by Hertz contact theory. 

The stress distribution on the solid surface is required to match the pressure in the liquid 

phase, which couples Hertz contact theory with the lubrication theory at the interface. 

The initial separation where the fluid force starts to deform the surface, 0iδ , is assumed to 

be comparable to the lubrication film thickness. Davis et al. (1986) found a dimensionless 

elasticity parameter that quantifies the tendency of elastic deformation under the 

lubrication pressure force as: 

 
3

2

5
2

*
0

0

4 i

i

E U aμε
δ

= .                    (4.6) 

 

Besides the impact velocity and the initial film thickness, equation (4.6) also depends on 

the sphere size, the liquid viscosity, and the reduced elastic modulus 

( ) ( )* 2 2
1 1 2 21 1E E Eν π ν π= − + − that depends on the Poisson’s ratio iν and the Young’s 

modulus iE of each sphere (i = 1, 2). In addition to the elasticity parameter, the minimum 
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approach distance mδ for a collision involving significant surface deformation was also 

obtained: 
 

2
5

0
1
3m iδ δ ε≈ .                              (4.7) 

 

The factor 1 3 in equation (4.7) was extrapolated from their simulation result, as 

reproduced in figure 4.5. Once the impact Stokes number exceeds a certain threshold, the 

minimum approach distances asymptote to a constant value over a wide range of ε . The 

asymptotic value decreases slightly with increasing Stokes numbers but a non-zero 

constant is expected for Stokes numbers greater than 20. Throughout this chapter, 

equation (4.7) will be applied to estimate the minimum approaching distance. 
 

 

Figure 4.5. Minimum distance of approach for a deformed sphere as a function of the 
elasticity parameter and the particle Stokes number. (Figure 13 of Davis et al. 1986) 
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(b) Comments 

 

In order to apply the EHL results, equations (4.5), (4.6), and (4.7), it is crucial to have a 

good estimate of the initial film thickness 0iδ . In the Tribology literature, the shearing 

film thickness for a steady roller pair can be found as a function of the rolling velocity, 

the normal load, the liquid viscosity, and the size and the elastic properties of the rollers 

(Gohar 1988). However, the film thickness for an unsteady squeezing sphere pair has not 

been studied. The lack of successful experimental investigations is mainly due to the 

difficulty in measuring such a rapid, unsteady process. 

 

In Davis et al. (1986), the only condition imposed on 0iδ is to be small with respect to the 

sphere radius a . They use 0 0.01i aδ ≈ for the aerosol and hydrosol particles. The size of 

these fine particles guarantees small particle Reynolds number and the lubrication force 

reasonably approximates the actual total hydrodynamic force. As mentioned in chapter 3, 

the wall-modified Stokes’ drag behaves as the lubrication force when both the normalized 

gap, * aδ δ= , and the local Reynolds number approach zero. It is thus of special interest 

to compare the lubrication force, *
lub 6F aUπμ δ= , with the wall-modified Stokes’ drag, 

*6 ( ,Re)F aUπμ λ δ+= . Brenner’s correction, *( ,Re)λ δ+ , is given in equation (3.4). In 

figure 4.6, the normalized distance, * *0.99 ( ,Re)δ λ δ+= , where the wall-modified 

Stokes drag reaches 99% of the lubrication force is plotted as a function of impact 

Reynolds number Rei . For motion with Re 0.1i ≤ , the dimensionless gap *δ asymptotes 

to 0.011, corresponding to the value suggested by Davis et al. (1986) for fine particles.  
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Figure 4.6. The normalized gap at which the wall-modified Stokes’ drag reaches 99% of 
the classical lubrication force at the same impact Reynolds number. 

 

However, large solid particles that possess sufficient inertia to overcome the hindering 

hydrodynamic forces can collide at a Reynolds number greatly higher than 0.1, which 

invalidates the quasi-steady flow condition. The dynamic pressure field in the wall-

modified added mass force-the second term of equation (3.6)-may result in additional 

surface deformation. Therefore, a direct reading from figure 4.6 will underestimate the 

undeformed separation 0iδ and result in erroneous calculation with EHL theory. For a 

collision at Re 50i ≈  and 14iSt ≈ , the normalized lubrication film thickness is estimated 

to be * 4
0 10iδ

−≈ from figure 4.6. If the added mass force, after scaling by p C Cm U T , is 

compared with the lubrication force in figure 4.7(a), the wall-modified added mass force 

exceeds the lubrication force at a distance of about 0.02a . As indicated in figure 4.7(b), 

the wall-modified added mass force surpasses lubF , by two orders of magnitude, when 

the gap drops to the estimated film thickness. Thus, under the investigated impact 

0iδ δ≈
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conditions of Re 50i ≈ and 14iSt ≈ , the total liquid force should start deforming the solid 

surface at a distance greater than 0.02a . If the wall-modified added mass force was to be 

included in an extended EHL theory, the initial film thickness 0iδ should be thicker than 

the estimation considering only the lubrication force. 
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Figure 4.7. Comparison of the added mass and the lubrication force as a function of 
normalized gap for an immersed collision at Re 50i ≈ and 14iSt ≈ : (a) upon approaching 
and (b) at the estimated film thickness. 

(a) 

(b)  
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Furthermore, in addition to the steady viscous drag and the added mass force, the history 

force may become important for the approach motion towards the wall. Hence, the EHL 

model in general will underestimate the actual hydrodynamic forces. The uncertainty in 

estimating the initial separation 0iδ also poses a limitation on extending the EHL theory, 

referring equation (4.5), to an impact at higher Reynolds and Stokes numbers. Thus, it is 

important to consider the full hydrodynamic model-the momentum equation in equation 

(4.3)-for an accurate pendulum motion towards a stationary solid wall.  

 

The inclusion of the added mass force brings to the problem a new time scale that 

depends on the sphere acceleration. If the added mass force affects the particle motion at 

a rate slower than the force due to solid deformation, the conventional EHL theory should 

serve as a good model for the approach motion. The competition between this 

hydrodynamic deceleration time, ( )i iU dU dt , and the deforming strain rate should 

provide a measure of how crucial the added mass force is in any collision model.  

 

 

4.2.2  Contact mechanism in liquid 

 

For a fully immersed collision, the minimum approach distance from EHL theory 

provides a length scale to determine the rebound distance. A second length scale, 

provided by the actual asperity height, should also be considered. With these two length 

scales, the contact mechanism for an immersed collision may be separated into the 

following three cases. 
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Case I: Asperity contact 

 

Consider a solid particle that is rigid but not perfectly smooth. Upon collision, the 

physical asperity contact occurs at a distance commensurate to the surface roughness sσ , 

resulting in a surface deformation as illustrated in figure 4.8. Like a dry collision, the 

restitution impulse rebounds the particle so long as the deformation is not fully plastic. 

The hydrodynamic effects are assumed to be negligible during the contact and the 

immediate rebound velocity can be characterized using the dry coefficient of restitution 

as r dry iU e U= − . 

σs

Ui

Ur

 
Figure 4.8. Sphere collides and rebounds via an asperity contact. 

 

 

Case II: Wet contact (EHL contact) 

 

When the liquid is being squeezed during a collision, the hydrodynamic pressure built up 

in the gap can deform the solid surfaces as delineated in the EHL theory. The minimum 

approach distance mδ can be found using equation (4.7). Once the two deformed surfaces 

come to the minimum approach distance, the stored strain energy is released and the 

restitution process commences. Since Hertz contact theory assumes fully elastic 

deformation, no energy is lost in the solid phase. Therefore, for an EHL contact, the 

instant rebound velocity should take the negative value of the instant impact velocity, 

i.e., r iU U= − .  
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Case III: Mixed contact   
 

Under some impact conditions, the two length scales are comparable to each other. The 

developing lubrication force flattens the asperities and delays the physical contact to a 

distance smaller than the dry surface roughness .sσ  Mixed contact mechanism is 

proposed in this section to estimate the instant rebound velocity at the new asperity height.  

As shown in figure 4.9, the asperity is modeled as a semi-sphere with a radius 

commensurate to its undeformed height sσ . The deformation is treated as a spherical 

indenter under axisymmetric loading (Johnson, 1985). Due to the smallness of the 

asperity, the deformation is assumed to be fully plastic and is estimated as: 

 
2 2s srσ σΔ = ,                    (4.8) 

 

where *40 sr E Yπ σ≈ is the characteristic radius of the contact area and Y is the yield 

strength of the deforming material. Equation (4.8) may be rewritten as: 

 
* 2(40 )

2s s s
E Y kπσ σ σΔ = = .                         

 

Using this expression, the impact sphere is proposed to rebound at the deformed asperity 

height (1 ) sk σ− . The typical value of k for a collision between a steel ball bearing and a 

Zerodur wall is about 1 8 . This material pair has * 12 16 10E Pa− −≈ × and 86 10Y Pa= × . 

On a Delrin-on-Zerodur collision, the typical value of k becomes about 1 12 with a 

corresponding material constant * 10 11 10E Pa− −≈ × and 80.4 10 .Y Pa≈ × The physical 

asperity contact results in an energy loss in the solid phase that can be characterized 

by drye , as an asperity contact. 
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Figure 4.9. Asperity deforms as a hemispherical indenter under lubrication force. 

 

Furthermore, the liquid trapped between the asperities will further reduce the kinetic 

energy. A measure of such hydrodynamic effects may be obtained by considering the 

particle momentum change due to inter-asperity fluid forces. As shown in figure 4.10, 

consider the interaction between the impact sphere and two asperities in the contact area. 

Since the asperity is of micron scale, it is assumed that the local trapped fluid motion can 

be described as a squeezing lubrication force: 

 
26 i sf a Uπμ σ= ,                            

 

depending on the asperity height. The number of such inter-asperity liquid wells, N , 

depends on both the contact area and the number density of the asperities over the sphere 

surface. The lubrication liquid wells across the contact area decelerate the impact sphere 

motion as N parallel springs.  Thus the total liquid force may be estimated as the sum 

over all such localized squeezing lubrication forces: 

 
26 i sF N a Uπμ σ= .             

 

Consider a forcing duration s iT UσΔ ≈ , a quantity that characterizes the ratio of the 

sphere inertia, p im U , to the total inter-asperity dissipating force may be estimated as:  
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26
p im U

st
N aπμ

= ,                               (4.9) 

 

similar to the particle Stokes number. Equation (4.9) can be readily rewritten in terms of 

the impact particle Stokes number as ist St N= .       
 

 

σs

Ui

 

Figure 4.10. Interaction between the impact sphere and the fluid trapped between the 
surface asperities, which dissipates more kinetic energy and reduce the restitution during 
a mixed contact.  

              

In chapter 2, the kinetic energy loss into the liquid phase is estimated by relating the 

resultant sphere momentum change to the inverse of the local particle Stokes number. 

Similarly, the additional energy loss into the trapped liquid wells across the contact area 

is first correlated to the momentum change of the sphere, p im UΔ , which then reveals the 

inverse dependence on the particle Stokes number. Therefore, a dissipation parameter, η , 

is proposed as: 

 

p c p i

p c

m U m U
m U

η
Δ − Δ

= −
Δ

,                               (4.10) 
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where the actual momentum change was scaled by the critical momentum loss, p cm UΔ , 

that leads to zero restitution. With the inverse relationships, ~ 1p c c cm U st N StΔ = and 

~p i im U N StΔ , the dissipation parameter may be manipulated into: 

 

1 c

i

St
St

η = − .                               (4.11) 

 

At high particle Stokes numbers, the inter-asperity fluid effects are negligible due to the 

large particle inertia and equation (4.11) results in a nearly unity η . Zero η  indicates the 

case that a sphere collides at a non-zero velocity, loses all its kinetic energy to the inter-

asperity liquid, and does not rebound. To characterize the total energy loss in both phases 

during a mixed contact, the dry coefficient of restitution is multiplied by the dissipation 

parameter, and the instant rebound velocity is obtained as r dry iU e Uη= − . To incorporate 

collisions at i cSt St< , the dissipation parameter is set to zero since a fully stopped sphere 

should be expected for an impact with such low particle inertia. 

 

 

4.2.3 Determination of the critical Stokes number 

 

The experiments involving particle-wall collisions with liquid effects revealed the 

existence of a critical Stokes number cSt below which rebound from the wall does not 

occur. As stated in chapter 2, such phenomenon can be attributed to either a fully stopped 

sphere upon contact or a sphere with insufficient rebound inertia to depart from the wall. 

In EHL theory, the sphere deforms and comes to rest at the minimum approach 

distance, mδ , at the end of the compression phase. Using 0iU = at mδ , the minimum 

critical Stokes number required for rebound can be estimated from equations (4.5) and 
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(4.6): 

 

0ln( ) ln(3) 0.4 ln( ) 1.0986 0.4ln( )c i mSt δ δ ε ε= = − = − .                        (4.12) 

 

The critical Stokes number depends on the elasticity parameter, ε , which reveals the 

coupling of the lubrication force with the particle inertia and the elastic properties. 

McLaughlin (1968) reported a value of 9.3cSt = for a steel sphere vertically colliding on 

a hardened steel anvil; the predicted critical Stokes number for this case is as low 

as 4.84cSt = .i Gondret et al. (2002) dropped steel spheres vertically towards an optical 

quality glass wall, and a critical Stokes number of 11cSt ≈ can be extrapolated from their 

results. However, equation (4.12) predicts 5.3cSt = ii for this impact condition, a value 

that is again lower than the experimental result. With a pendulum apparatus, Joseph et al. 

(2001) were able to achieve immersed collisions with no gravity acting in the direction of 

impact and rebound. For collisions between glass spheres and a glass-like Zerodur wall, 

the predicted critical Stokes number is roughly 6.7cSt ≈ iii but a value of 9cSt = was 

found in the experiments. The prediction given by the EHL model is generally lower than 

                                                 
 
I McLaughlin: The liquid viscosity and density are 2.39Pa sμ = ⋅ and 

31246 kg m .fρ =  The steel sphere diameter is 6.35 mm and the impact velocity 
is 0.41m s . The wall is made of hardened steel and assumed to have the same 
elastic material properties as the sphere: 128GPaE ≈ and 0.286ν ≈ . The 
elasticity parameter is 43.61 10ε −≈ × . 

 
ii Gondret et al.: 0.1Pa sμ = ⋅ and 3965kg mfρ = . The steel sphere of 5 mm has 

240GPaE = , 0.3ν = , and 37800kg msρ = . The glass wall has 60GPaE = and 
0.24ν = . The elasticity parameter is 52.76 10ε −≈ × . 

 
iii Joseph et al.: 21.29 10 Pa sμ −= × ⋅ and 31163kg mfρ = . The glass sphere, of 6.35 

mm diameter, has 60GPaE = , 0.24ν = , and 32540kg msρ = . The Zerodur 
wall has 91GPaE = and 0.24ν = . The elasticity parameter is 77.73 10ε −≈ × . 
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the experiment results, which may be attributed to the debatable use of 0 0.01i aδ = when 

estimating the elasticity parameter.  

 

More recently, Davis et al. (2002) proposed a different rebound distance, rδ , by equating 

the elastic deformation force, *2r ra Eδ δ , with the lubrication force, 2
lub 6F a Uπμ δ= , 

at rδ δ= . Instead of solving equation (4.5), they arbitrarily chose 0 2iU U= to estimate  

lubF . The rebound distance was found to be: 

 
2

5
01.23r iδ δ ε= ,                                                   (4.13) 

 

which differs from the minimum approaching distance, mδ in equation (4.7) by a constant. 

This constant can be readily found as 3.69r mδ δ≈ . With the new rebound distance, the 

critical Stokes number can be estimated as: 

 

0ln( ) 0.207 0.4ln( )c i rSt δ δ ε= = − − .                                                (4.14) 

 

Equation (4.14) results in a smaller critical Stokes number than that obtained from 

equation (4.12), and thus yields a prediction that deviates even further from the 

experiment data. In addition to the uncertainty in the initial distance, 0 0.01i aδ = , the 

arbitrary squeezing velocity 0 2iU U= might raise other problems when using the EHL 

collision model. To avoid these issues, the experimental critical Stokes number was used 

when calculating the dissipation number in equation (4.11). 
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4.2.4  Alternative prediction of the coefficient of restitution 

 

Instead of numerically solving the sphere motion with all the hydrodynamic forces, a 

theoretical prediction is possible if only the lubrication force is considered. Barnocky and 

Davis (1988) used equation (4.5) for the sphere approach velocity, assuming this value up 

to the rebound distance cδ , as illustrated in figure 4.11(a). The instantaneous rebound 

velocity was calculated as: 

 

0
0 01 log( )i

r dry i dry i i
c

U e U e St Uδ
δ

⎡ ⎤
= − = − −⎢ ⎥

⎣ ⎦
,               (4.15) 

 

assuming an asperity contact. Joseph et al. (2001) extended Barnocky’s analysis to the 

rebound motion and obtained the rebound velocity: 

 

0 0
0

0 0

log( )r r i
i

ci i

U U St
U U

δ
δ

= −  ,                 (4.16) 

 

after the sphere has bounced back to 0iδ , as shown in figure 4.11(b). Combining 

equations (4.16) and (4.5), the effective coefficient of restitution, 0 0r ie U U= − , can be 

expressed as a function of drye , 0iSt , and the length scale ratio 0i cδ δ as: 

 

0

0

1
log( )dry i

EHL dry
i c

e
e e

St
δ
δ

+
= − .                 (4.17) 

 

The subscript “EHL” in equation (4.17) is used to denote the application of EHL theory.  
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Figure 4.11. Schematic immersed collision process: (a) impact and (b) rebound. 
 

 

More recently, Davis et al. (2002) used the new rebound distance, rδ , to determine the 

instantaneous rebound velocity as given by equation (4.15). The wet coefficient of 

restitution was defined in terms of the quantities preceding the initial impact 

velocity 0iU as:  

 

0

0

log( )(1 )i r
wet dry

i

e e
St
δ δ

= − ,                                           (4.18) 

 

with which the immediate rebound velocity could be determined as 0r wet iU e U= − . This 

expression is similar to the instant rebound velocity, r dry iU e Uη= − , proposed in    

section 4.2.2 for a mixed contact. Therefore, a comparison of the predicted rebound 

motion with the two instantaneous rebound velocities will be presented in section 4.6, 

along with other simulation results.  
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4.3 Rebound in simulation 
 

4.3.1 Summary of the rebound schemes 

 

For each simulation, the impact velocity was first calculated and then used to estimate the 

minimum approaching distance, mδ , given by equation (4.7). This distance was compared 

with the dry surface roughness, sσ , to determine the contact mechanism, the rebound 

distance cδ , and the rebound velocity rU . The types of rebound schemes are summarized 

in Table 4.2.  
 

Table 4.2. Summary of rebound mechanism for a fully immersed collision 

Contact type Criterion Rebound distance cδ Rebound velocity 

Asperity Case I s mσ δ>  sσ  r dry iU e U= −  

EHL Case II s mσ δ<  mδ  r iU U= −  

Mixed Case III s mσ δ≈  (1 ) sk σ−  r dry iU e Uη= −  

 

For collisions of glass and steel spheres with impact velocities between 40 and 

360 mm s , the mean dry coefficient of restitution was found by Joseph et al. (2001) to be 

0.97 0.02drye = ± , without direct dependence on the impact velocity. Therefore, 

0.97drye = was used in the simulation. 

 

 

4.3.2 Velocity at wall 

 

The immersed pendulum motion, described by equations (4.3), is solved with a fourth-

order Runge-Kutta method. Since uniform time steps are used, the sphere never reached 
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the rebound distance cδ in an integral number of time steps. Thus, a proper extrapolation 

scheme is necessary to estimate the impact velocity and the corresponding hydrodynamic 

forces at cδ . The fluid forces are singular at the wall, which makes conventional linear 

extrapolation inadequate for this estimation. To address this issue, Neville’s algorithm is 

used (Press et al. 1996). As shown in figure 4.12, the sphere moves across the rebound 

distance, represented by the gray dashed line, from time step k to 1k + , during this time 

the velocity drops dramatically from *
kU to *

1kU + due to the hydrodynamic forces. If the 

velocities at the five consecutive positions, *
kδ to *

4kδ − , prior to the rebound distances are 

used, Neville’s extrapolation gives * 0.31iU = at *
cδ . However, if *

kU and *
1kU + are used to 

linearly interpolate the impact velocity, a smaller value, * 0.29iU = , is found. By reducing 

the time increment, the deviation between the two schemes can be reduced at the expense 

of computational overhead. Thus, Neville’s algorithm is chosen for the current work and 

more details regarding the numerical method can be found in the reference. The impact 

time iT is linearly interpolated as * * *( )i N k c kT t Uδ δ= + − . 
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Figure 4.12. Extrapolation of the instant impact velocity is compared with the linearly 
interpolated value at the rebound distance. 
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4.3.3 Hertzian contact time and initial rebound condition 

 

Once the sphere reaches the rebound distance, the restitution process commences and at 

least one Hertzian contact time, Hτ , elapses before the two spheres rebound from each 

other. If the sphere deformation remains fully elastic, the contact duration can be obtained 

as: 
 

1
* 2 5( )

2.87 p
H

i

E m
aU

π
τ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.                 

 

An extended time is expected if plastic deformation occurs (Johnson 1985). When a 12.7 

mm diameter steel ball bearing collides on a stationary Zerodur wall with an immediate 

impact velocity 100mm/siU = , the contact duration is 0.04msHτ ≈ which is beyond the 

resolution of the current image acquisition system. Thus, the sphere is made to rebound 

at iT with a modified rebound velocity rU in the simulation. The reversal of the sphere 

motion in zero time requires infinitely large impulse acting in the rebound direction. Such 

process takes at least half a Hertzian contact time in a real restitution process and this is 

not included in the current collision model. The estimated Hertzian contact time 

corresponds to 2 to 4 of the time steps used in the current simulation. 

 

Moreover, at the point of rebound, the sphere has not yet departed from the wall. The 

momentarily ceased particle motion thus results in zero viscous drag. The instantaneous 

added mass force is also zero since the particle is not expelling any liquid. The history 

force, however, remains nonzero due to its effects accumulated from 0t = to iT . 

 

 

 



 89

4.4 Simulation results 
 

To validate the proposed model for an immersed pendulum collision with a wall, the 

predicted trajectory was compared with the corresponding experiments conducted by 

Joseph (2003). In the simulations, all the material properties and the apparatus 

dimensions were set in accordance with the experiment setups, including the string length, 

the pendulum release angle, the liquid properties, and the size, the materials, and the 

surface properties of the spheres. The trajectories from a given simulation were processed 

in the same manner as in the experiments-a least-square fitting over the same period of 

time-to estimate the corresponding velocities. The quantity, expRe , denotes the impact 

Reynolds number based on an experimentally measured impact velocity. A predicted 

velocity was used to calculate simRe . Besides verifying the proposed collision model, the 

pendulum motions at various impact Reynolds and particle Stokes numbers were also 

investigated.   

 

The results are categorized with respect to the contact mechanism: asperity, EHL, or 

mixed contacts. In each category, different impact Reynolds and particle Stokes number 

were simulated for those cases in which the experimental data were available. For a more 

concise documentation, the experiment impact velocity iU , the liquid viscosity fν , and 

the solid-to-liquid density ratio s fρ ρ are summarized in a table for each case. Also 

included are expRe , simRe , expSt , and simSt . The predicted impact and rebound velocities 

were used to estimate the effective coefficient of restitution, sim r ie U U= − , the value of 

which is compared with the experiment result, expe , at the end of each subsection. 
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4.4.1 Asperity Contact at sσ ; rebound with r idryU e U= −  ( 0.97drye = ) 

 

(a) High impact Reynolds and Stokes numbers: (Re = 970, St = 840) 

 

In figure 4.13, the collision of a steel ball bearing on a Zerodur wall in pure water 

( 22.5 C ) is compared with the corresponding simulation result. The sphere is 12.7 mm in 

diameter and the pendulum release angle is 10θ = . The steel ball bearing has a root-

mean-square surface roughness of 52.36 10 mm ,sσ −= × which is greater than the 

estimated minimum approach distance, 66.71 10 mm.mδ
−≈ × Therefore, the surface 

roughness is used to determine the rebound distance cδ . The interfacial distance δ is 

scaled by the sphere diameter D . 

 

 
exp
imp ( mm s)U  viscosity fν

2(mm s) exp
impRe  sim

impRe  P Fρ ρ  exp
impSt  sim

impSt  

145 0.95 969 971 7.8 840 841.5 
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Figure 4.13. Time evolution of (a) sphere 
trajectory and (b) velocity perpendicular to 
the wall. (c) Velocity variation versus 
normalized distance from wall. The 
simulation result is indicated by the solid 
line while the experiment data are plotted 
with open circles.  
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The current model is able to reproduce the pendulum motion. However, a discrepancy in 

the rebound motion is observed when the sphere recedes to a distance of about 0.5D  

from the wall. Despite the discrepancy at later times, the predicted trajectory in        

figure 4.13(a), is in good agreement with the experiment up to 15 milliseconds after the 

collision, which is sufficient for the calculation of an effective coefficient of restitution. 

The experiment gives exp 0.91 0.005e = ±  and sim 0.91 0.0024e = ±  is determined from the 

model. 

 

(b) High Reynolds number, moderate Stokes number: (Re = 745, St = 211) 

 

A glass sphere of diameter 12.7 mm is released in pure water ( 25 C ) at 0 12θ = . An 

asperity contact is ensured in this case as the surface roughness, 41.305 10 mm,sσ −= ×  

compares with minimum approach distance of 51.51 10 mmmδ
−≈ × . The simulation results 

are plotted in figure 4.14 along with the experiment data. 

 
exp
imp ( mm s)U  viscosity fν

2(mm s) exp
impRe  sim

impRe  P Fρ ρ  exp
impSt  sim

impSt  

106.7  0.896 756 758 2.55 214 214.8 
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As the previous case, the incoming pendulum motion is captured by the current model. 

The simulated rebound motion also agrees with the experiment data until nearly 30 

milliseconds after the collision, up to a distance of about 0.4D from the wall. The 

experimental effective coefficient of restitution is exp 0.83 0.0032e = ± , which again 

agrees with the simulation result, sim 0.83 0.0015e = ± .   

 

(c) Moderate Reynolds number, low Stokes number: (Re = 210, St = 56) 

 

A glass sphere (D = 12.7 mm) collides on the Zerodur wall in water-glycerol mixture 

at 24 C from 0 20θ = . The minimum approach distance, 51.69 10 mmmδ
−= × , is again an 

Figure 4.14. Time evolution of (a) sphere 
trajectory and (b) velocity perpendicular 
to the wall. (c) Velocity variation versus 
normalized distance. The simulation 
result is indicated by the solid line while 
the experiment data are plotted with open 
circles. 
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order of magnitude smaller than the surface roughness, 41.305 10 mmsσ −= × . Therefore, 

the asperity contact mechanism is responsible for the rebound of the sphere.  

 

 
exp
imp ( mm s)U  viscosity fν

2(mm s) exp
impRe  sim

impRe  P Fρ ρ  exp
impSt  sim

impSt  

90.98  2.63 220 216 2.34 57.2 56.2 
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As the cases of higher impact Reynolds numbers, the current model predicts the incoming 

motion well. The rebound motion is also captured until roughly 10 milliseconds after the 

collision. However, the model underestimates the hydrodynamic forces and yields a 

velocity higher than the actual rebound motion, as shown in figures 4.15(b) and 4.15(c). 

Figure 4.15. Time evolution of (a) sphere 
trajectory and (b) velocity perpendicular 
to the wall. (c) Velocity variation versus 
normalized distance. The simulation 
result is indicated by the solid line while 
the experiment data are plotted with open 
circles.  
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Possible explanations for this discrepancy will be presented in section 4.5. Nevertheless, 

the simulation gives an effective coefficient of restitution of sim 0.69 0.0033e = ± which is 

only 1.47 % higher than the experimental value of exp 0.68 0.0081e = ± .  

 

(d) Low Reynolds and Stokes numbers (Re = 34, St = 8) 

 

A 12.7 mm glass sphere is released from 0 20θ = in a viscous water-glycerol mixture 

at 24 C . An asperity height of 52.3 10 mmmδ
−= × together with a minimum approach 

distance 41.305 10 mmsσ −= × again ensures an asperity contact. As shown in figure 4.16, 

the pendulum motion is decelerated by the hydrodynamic forces and a full stoppage is 

predicted from the model, although a slight rebound is observed in the experiment. 

However, the small reverse velocity is too small to overcome the hindering 

hydrodynamic force and thus results in zero restitution, as predicted in the model. 

 
 

exp
imp ( mm s)U  viscosity fν

2(mm s) exp
impRe  sim

impRe  P Fρ ρ  exp
impSt  sim

impSt  

50 7.46 33.5 35 2.19 8.2 8.5 
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4.4.2 EHL contact at mδ ; rebound with r iU U= −  

 

Moderate Reynolds and Stokes number (Re = 30, St = 21) 

 

The 12.7 mm steel ball bearing is released in water-glycerol mixture ( 24 C ) from 

0 18θ = . For this particular impact condition, the minimum distance is found to 

be 55 10 mmmδ
−= × , twice as thick as the dry surface asperity height, 52.36 10 mmsσ −= × , 

resulting in an EHL contact. The simulation is presented with the experimental results in 

figure 4.17.  

 
exp
imp ( mm s)U  viscosity fν

2(mm s) exp
impRe  sim

impRe  P Fρ ρ  exp
impSt  sim

impSt  

99 21.6 29.1 29.5 6.55 21.2 21.5 

 

 

 

 

 

 

 

Figure 4.16. Time evolution of (a) sphere 
trajectory and (b) velocity perpendicular 
to the wall. (c) Velocity variation versus 
normalized distance. The simulation 
result is indicated by the solid line while 
the experiment data are plotted with open 
circles.  
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Though the calculated impact motion corresponds with the experiment data, the predicted 

rebound ceases more quickly than the actual motion. This excessive deceleration is due to 

the singular hydrodynamic force at the wall that may over-decelerate the sphere motion if 

too small a rebound distance is used. The uncertainty in estimating 0iδ results in a 

questionable usage of mδ as the rebound distance. An estimation using 0 0.01i aδ = , that 

was suggested for particle motion at low Reynolds number, will result in a mδ smaller 

than the estimation using 0 0.01i aδ < . If the sphere is made to move to a distance smaller 

than the actual value in the simulation, the over-estimated hydrodynamic forces will 

result in an over-decelerated sphere motion. Nevertheless, for this impact condition, the 

minimum approach distance still exceeds the surface roughness. A complementary 

simulation made with asperity contact resulted in rebound motion in figure 4.17 (b) that 

Figure 4.17. Time evolution of (a) sphere 
trajectory and (b) velocity perpendicular 
to the wall. (c) Velocity variation versus 
normalized distance. The simulation 
result is indicated by the solid line and 
the experiment data are plotted with open 
circles. In (b), the rebound that results 
from an asperity contact is also shown, in 
which the motion ceases within 10 ms. 
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further deviates from the actual motion. The experimental effective coefficient of 

restitution is exp 0.14 0.023e = ± which means the prediction made by the 

simulation, sim 0.07 0.026e = ± , is unrealistically small. Since this is the only set of 

experiments resulting in EHL contact, further investigation is required in order to validate 

the proposed contact mechanism. 

 

 

4.4.3 Mixed contact at (1 ) sk σ− ; rebound with r idryU e Uη= − × ×  

 

(a) Moderate Reynolds number and Stokes numbers (Re = 180, St = 136) 

 

A 12.7 mm steel ball bearing is released from 0 20θ = in a water-glycerol mixture 

at 24 C . The surface roughness of 52.36 10 mmsσ −= × is comparable to the minimum 

separation, 53.5 10 mm,mδ
−= × yielding a mixed contact. The sphere rebounds at a 

distance (1 ) 7 8c s skδ σ σ= − = with velocity r dry iU e Uη= − , where 0.91η = from 

equation (4.11) with 12cSt = . 

 
exp
imp ( mm s)U  viscosity fν

2(mm s) exp
impRe  sim

impRe  P Fρ ρ  exp
impSt  sim

impSt  

190.3 6.73 179.6 180.8 6.82 136.1 137 
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As shown in figure 4.18, good agreement with the incoming pendulum is observed. 

However, the rebound motion deviates from the experiment data sooner than in the cases 

with asperity contact. The least-square curve fitting over ten milliseconds yields a value 

of sim 0.76 0.004e = ± that is higher than the experiment data exp 0.73 0.018e = ± . To 

illustrate the importance of a proper contact mechanism, the sphere is also made to 

rebound as in an asperity contact; the results are shown by the dotted line 1, which 

determines sim1 0.82e = that deviate from expe . A second comparison is made using Davis 

coefficient of restitution, wet drye e η= × , to estimate the initial rebound velocity, 

0r wet iU e U= − × , in the simulation. The corresponding trajectories are shown by the 

dashed line 2. A second least-square curve fitting gives sim2 0.79e = , which again exceeds 

the experimental value. 

Figure 4.18. Time evolution of (a) sphere 
trajectory and (b) velocity perpendicular 
to the wall. (c) Velocity variation versus 
normalized distance. The open circles 
plot the experiment data and the model 
prediction are indicated by the solid line. 
The dotted line 1 assumes asperity 
contact. The dashed line 2 uses wete by 
Davis et al. (2002) for the instant rebound 
velocity. 
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(b) Moderate Reynolds and Stokes numbers (Re = 90, St = 70) 

 

A 12.7 mm steel ball bearing is released from a smaller release angle of 0 8θ = in a 

water-glycerol mixture at 24 C . The minimum approach distance, 52.68 10 mmmδ
−= × , is 

comparable to the surface roughness, 52.36 10 mmsσ −= × , ensuring a mixed contact.  
 
 

exp
imp ( mm s)U  viscosity fν

2(mm s) exp
impRe  sim

impRe  P Fρ ρ  exp
impSt  sim

impSt  

93.8 6.44 91.6 93 6.83 69.5 70.6 

 

In figure 4.19, the predicted incoming motion, indicated by the solid line, agrees well 

with the experimental trajectory. With the mixed contact mechanism, the model is able to 

capture the rebound motion up to 20 milliseconds after collision. The predicted effective 

coefficient of restitution, sim 0.58 0.007,e = ± agrees well with the experimental value, 

exp 0.59 .002e = ± . However, at later times, the model is inadequate for the pendulum 

motion. A simulation with asperity contact, shown by the dotted line 1, gives sim1 0.74e = , 

the value of which exceeds expe by 27 %. Usage of the Davis coefficient of restitution 

results in a different rebound trajectory, indicated by the dashed line 2, and the effective 

coefficient of restitution is found to be sim2 0.72e = , disagreeing with the experimental 

result. For this impact, 0.83η = from equation (4.11) using 12cSt = . 
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The large deviation from the experimental trajectory using asperity contact illustrates the 

importance of a correct contact model when the interstitial fluid is non-negligible. The 

proposed model, which assumes a quiescent ambient flow, cannot predict the long-term 

rebound trajectory. However, the near-wall post-collision trajectory is captured 

satisfactorily, which enables a reliable estimation of the effective coefficient of restitution 

that is important in real engineering problems. 

 

 
 
 
 

Figure 4.19. Time evolution of (a) sphere 
trajectory and (b) velocity perpendicular 
to the wall. (c) Velocity variation versus 
normalized distance. The solid line plots 
the current model prediction with a 
mixed contact rebound scheme. The 
dotted line 1 uses asperity contact while 
the dashed line 2 applies the Davis 
rebound scheme. 
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4.5 Wake Structure 
 

The main deficiency of the current model is the overestimated rebound speed when the 

sphere reverses its direction, which was observed in all the cases regardless of the 

rebound scheme. The discrepancy may be attributed to the assumption of a quiescent 

ambient flow that differs from the actual flow field.  

 

As shown in figure 4.20, during the impact, an attached vortex ring is generated and 

attaches to the rear sphere surface. When the sphere collides with the wall, the vortex ring 

will move forward, stretch, and wrap around the sphere due to its own inertia. Therefore, 

the sphere rebounds into a wake in which the fluid motion is far from quiescent. Higher 

viscous dissipation is expected in the real flow than the value estimated in the current 

hydrodynamic model. The effects of the ambient wake and the induced flow field on the 

rebound trajectory will be more pronounced when the sphere rebounds with less inertia. 

The model prediction hence deviates increasingly from the real rebound trajectory with 

decreasing particle Stokes number.  
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Figure 4.20. Flow visualization of a particle-wall immersed collision. A 12.7mm 
diameter Delrin collides on the Zerodur wall at 210iSt ≈ and Re 770i ≈ . The wall is 

indicated with the dashed line on the right of each frame. A complicated vortical flow 
structure around the sphere is observed after collision at t = 0 (Joseph 2003). 
 
 
 
 

4.6 Prediction of the effective coefficient of restitution  
 

In section 4.4, the general agreement between the simulation results and the 

corresponding experiment data validated the hydrodynamic model described in chapter 3 

as well as the proposed contact mechanisms. The model can then be applied to estimate 

the effective coefficient of restitution in a general immersed collision, which is the 

ultimate goal of the current work. By changing the liquid viscosity, the solid to liquid 

density ratio, the particle size, and the pendulum release angle, various impact Stokes 

numbers were achieved in the current computation. Since the contact mechanism is 
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highly dependent on the solid elasticity and the particle surface property, the comparison 

is made for a glass or steel impact sphere separately. 

 

4.6.1 Collision of glass spheres on the Zerodur wall 

 

The first comparison with the experiment data is made using glass spheres of diameter 

4.00, 6.00, and 6.35 mm. The root-mean-square surface roughness is 0.051μmsσ ≈ for 

the 4.00 mm sphere and 0.135 μm for the other two (Joseph 2003).  The simulation was 

conducted using an asperity height and a radius that together yielded an asperity ratio 

of 52 10s aσ −= × , corresponding to that of the actual glass spheres. The predicted 

effective coefficient of restitution is plotted with the experiment data in figure 4.21. Also 

shown is the prediction by the EHL collision model, namely equation (4.17) 

with 0.97drye = . Since the glass spheres possess high surface roughness, an asperity 

contact was used to rebound the sphere. No further efforts were made to verify the 

contact mechanism by comparing the minimum approach distance with the asperity 

height prior to collision. 

  

As shown in figure 4.21, the prediction from the current model (Δ) is in acceptable 

agreement with the experiment data (○, □, and ◊). The EHLe predictions are plotted in 

dashed lines for different 0c iδ δ ratios. Joseph (2003) comments that using a value 

of 3
0 10c iδ δ −= provides the best fit to the experiment data. When the impact Stokes 

number is greater than 50, the EHL collision model with 3
0 10c iδ δ −= predicts a higher 

restitution than both the experimental data and the current model findings. The reason for 

this overestimation of e in the EHL collision model may result from the neglecting of the 

wall-modified added mass force. Hence, less kinetic energy is lost in the EHL collision 

model than in the current model, which results in a higher restitution. At lower particle 

Stokes numbers, the EHLe prediction drops below the experimental data while the current 
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collision model predicts a matching restitution. The fluid affects the particle motion and 

surface deformation more significantly at a smaller particle Stokes number, where mixed 

contact may occur besides of the investigated asperity contact.  
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Figure 4.21. Comparison of the predicted effective coefficient of restitution for fully 
immersed collisions between glass spheres and the Zerodur wall. 

 

 

4.6.2 Collision of steel spheres on the Zerodur wall 

 

Due to the small surface roughness, 0.024 μm,sσ = of the steel ball bearings, both 

asperity and mixed contact rebound schemes were examined with the experimental data 

in figure 4.22. Under identical impact conditions, asperity contact results in higher 

restitution than mixed contact. The comparison with the experimental data suggests the 

presence of different contact mechanisms at different particle Stokes numbers.  
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Figure 4.22. Comparison of the predicted effective coefficient of restitution for fully 
immersed collisions between steel ball bearings and the Zerodur wall. Both asperity and 
mixed contact rebound schemes are applied. 

 

As shown in figure 4.22, for 400iSt > , the model predictions with asperity contact shows 

reasonable agreement with actual collisions, as in the case of glass collisions. 

Between 50 400iSt = − , the lubrication layer may become comparable to the asperity 

height and using a mixed contact rebound scheme provides a better fit than using asperity 

contact. At 20St ≈ , asperity contact begins to occur, as indicated by the collapse of the 

experiment data with the model predictions at low particle Stokes numbers. This might be 

attributed to mδ decreasing with decreasing impact velocity, the dependence of which can 

be found as 2
5~m iUδ using equations (4.6) and (4.7) if all other parameters are kept the 

same. 

It has been noted in both chapter 2 and in the experimental literature that a general trend 

of the correlation between the effective coefficient of restitution and the particle Stokes 



 106

number is found from the experiments. Such monotonic dependence is predicted in both 

the EHL and the current collision model. However, a careful examination of the current 

simulation results reveals the importance of the rebound scheme. Employed with 

identical impact conditions, the rebound velocity from a mixed contact is always lower 

than that from an asperity contact due to the additional energy loss in the inter-asperity 

liquid. When the simulation results are plotted together, as in figure 4.23, it may be seen 

that glass spheres retain higher restitution than steel ball bearings at the same particle 

Stokes number. Comparing the two asperity contacts, glass spheres with rougher surfaces 

than steel ball bearings rebound at greater interstitial distances. Since the hydrodynamic 

forces are singular at zero gap, rebound at a larger separation assures less hindering 

forces. Therefore, for asperity contact, a higher restitution should be expected for rough 

particles than polished ones if the impacts occur at identical particle Stokes numbers. 
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Figure 4.23. The experimental effective coefficient of restitution is compared with the 

predictions from the current model with different rebound schemes.  
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4.7 Summary 
 

A set of equations is proposed for the collision of a fully immersed pendulum sphere on a 

stationary flat wall. Good agreement is observed between the model prediction and the 

experiment data, indicating that the model is adequate to describe the incoming sphere 

motion over a wide range of Reynolds and particle Stokes numbers. Three rebound 

mechanisms are proposed by comparing the dry surface asperity height with the EHL 

minimum approach distance. When a pseudo-dry contact is ensured by large surface 

roughness, the sphere rebounds at a velocity that is reduced by the dry coefficient of 

restitution. The resulting rebound trajectory compares well with experiments, validating 

the prediction of the effective coefficient of restitution using the current collision model. 

However, when the EHL minimum approach distance exceeds or equals the surface 

roughness, an EHL or a mixed contact occurs. When the surface asperity deforms by the 

compression impulse, additional particle kinetic energy is lost into the inter-asperity 

liquid. In addition to the loss in the solid phase, a dissipation parameter, which depends 

on the ratio of the critical Stokes number to the impact Stokes number, is proposed to 

characterize such dissipation. The actual rebound trajectory is captured over a period long 

enough to obtain a reasonable estimate of the effective coefficient of restitution. The 

predicted rebound motions deviate more at later times than those for an asperity contact, 

due to less rebound inertia. Despite this discrepancy in the far-field velocity profile, the 

predicted effective coefficient of restitution is in general agreement with the experimental 

findings over a wide range of impact conditions for smooth particles.  

A possible explanation for the over-estimated rebound velocity in the current model, 

regardless of the contact mechanism, is the neglecting of the actual flow structure 

induced by the impact motion. For a real collision in liquid, a vortex ring is formed by the 
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impact sphere motion and its interaction with the rebound sphere generates a complicated 

flow structure in the surrounding liquid. This induced flow field contradicts the quiescent 

ambient flow condition assumed in the current hydrodynamic model. The neglecting of 

the actual vortical flow underestimates the viscous dissipation and results in a faster 

rebound speed in the long term. A good model for such additional dissipation should 

improve the predicted rebound motion. Besides the omission of the ambient flow 

structure, the proposed collision model does not incorporate the time required for solid 

deformation. The Hertz elastic contact time determines the least duration and is found to 

be small enough to validate the zero time approximation in the current collision model, 

for collisions between steel and glass materials. However, longer contact duration than a 

Hertzian time should be expected when plastic deformation commences. Under such 

circumstances, a better estimation of the contact time is required and in the simulation, 

the rebound time should be shifted to accommodate the occurrence of such a slow solid 

deformation.  
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Chapter 5   
 
 
Oblique Collision Between Two Spheres in a 
Liquid  
 

 

The immersed normal collision between two solid surfaces was investigated in the 

previous chapters. The experimental apparatus was specifically designed to ensure an in-

plane collision where the contact force goes through the sphere centers affecting only the 

sphere translation that is constrained to two dimensions. However, such a controlled 

interaction seldom occurs in reality, where the impact sphere can impart torque on the 

target resulting in the sideway motion or rotation of the target sphere. Thus oblique 

collisions between identical spheres were experimentally investigated in this chapter in 

an attempt to understand the rich behavior of a general inter-particle immersed collision.  

 

 

5.1  Background 
 

5.1.1  Normal component of motion  

 

Joseph and Hunt (2004) conducted the experiments of fully immersed oblique collisions 

between a sphere and a stationary wall. At the sphere center of mass, the sphere motion 

was decomposed into a normal and a tangential component with respect to the normal of 

the wall in figure 5.1. They define the normal coefficient of restitution, n rn ine U U= − , as 
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the ratio of the normal components of the rebound and the impact velocities. The normal 

particle Stokes number, cosn iSt St θ= , is calculated by equation (2.9) using the normal 

component of the impact velocity.  
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Figure 5.1. Schematic representation of the sphere-on-wall oblique collision and the 
relevant parameters. For both the impact and the rebound motion, indicating by ,j i r= , 

cosjn j jU U θ= and sinjt j jU U θ= . 

 

The correlation between the two parameters exhibits similar behavior to that discovered 

in head-on collisions, the correlation of which is reproduced in figure 5.2. The same trend 

was also observed by Kantak and Davis (2004) where a sphere was dropped onto a tilted 

wall layered with a lubricant film. Within the range of normal Stokes number examined 

in their work, 0 30nSt< < , the normal coefficient of restitution was also found to 

decrease monotonically with diminishing normal particle Stokes number without 

noticeable effects from the impact angle iθ . Kantak and Davis (2004) thus concluded that 

the normal component of an oblique collision is independent of the tangential motion. 

This experimental finding may be used to support the assumption by Joseph and Hunt 

(2004) that the tangential interaction between the two surfaces is not significantly 

affected by the surface deformation in the normal direction.  
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cos θi

 

Figure 5.2. Normal coefficient of restitution as a function of normal particle Stokes 
number for oblique collisions in aqueous solutions of glycerol (Joseph and Hunt 2004). 

 

5.1.2  Tangential component of motion  
 

(a) At the contact point 

 

To characterize the tangential interaction during impact, Joseph and Hunt (2004) 

compared their experimental results to a dry collision model by Maw et al. (1976). Two 

dimensionless parameters are proposed in the model to characterize the dependence of 

the rebound angle on the tangential compliance developed over the contact area for a 

general dry oblique collision. The first parameter is the modified radius of gyration, 
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2(1 )(1 1 )

(2 )
Kνχ

ν
− +

=
−

,          

 

where the radius of gyration, ( )1 22
pK I m a=  depends on the moment of inertia I , the 

mass pm , and the characteristic radius a of the object. The second parameter, the non-

dimensional angle of incidence, is defined as 

 

,2(1 )
(2 )

it cp
i

C in

U
U

νψ
μ ν

−
=

−
,                   (5.1a) 

 

which depends on the Poisson’s ratio ν , the Coulomb friction coefficient Cμ , the impact 

normal and the tangential velocities, inU and ,it cpU , at the contact point upon impact. The 

impact tangential velocity, ,it cp it iU U aω= + , depends on both the tangential and angular 

velocities at the sphere center of mass, itU and iω . Similarly, the non-dimensional angle 

of reflection can be calculated as 

 

,2(1 )
(2 )

rt cp
r

C in

U
U

νψ
μ ν

−
=

−
,                  (5.1b) 

 

using the tangential rebound velocity, ,rt cp rt rU U aω= + , at the contact point using the 

rebound tangential and angular velocities at sphere center. By plotting rψ with respect 

to iψ , Maw et al. found general agreement between their three-dimensional numerical 

simulation and the nearly two-dimensional experiments on the dry oblique collision 

between a disk and a wall. Kharaz et al. (2001) experimentally investigated the collision 

of an elastic sphere on a wall whose rebound motion corresponds to Maw’s prediction 

and is illustrated in figure 5.3. 
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ψ
r

ψ
i  

Figure 5.3. Non-dimensional angle of reflection, rψ , as a function of the angle of 
incidence, iψ . This is a reproduction of Figure 3 in Kharaz et al (2001). 

 

For an oblique collision with 1iψ ≤ , which corresponds to regime I in figure 5.3, the 

sphere sticks to the wall when the surface is deformed by the normal compression 

impulse. After the maximum compression, the elastic strain is recovered causing the 

sphere to rebound in the normal direction. During the restitution process, the tangential 

compliance results in an annulus of micro-slip that spreads inwards until it covers the 

whole contact area establishing gross slip. If the sphere collides with an incidence 

angle 1 4 1iψ χ< < − in regime II , the impact commences with tangential gross slip. 

Under the Coulomb friction, the relative velocity between the two surfaces decreases to 

zero and the tangential contact mechanism changes immediately from gross slip to 

complete sticking. The subsequent surface interaction then follows the process in 

regime I . For a collision in regime III where 4 1iψ χ≥ − , unidirectional gross slip 

continues through the whole collision process corresponding to a rigid body sliding. The 

dry friction coefficient can be estimated by solving the equation of motion at the contact 
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point in the tangential direction with respect to different tangential contact mechanisms. 

When impact occurs with gross slip, 4 1iψ χ≥ − , the friction coefficient can be estimated 

by: 

 

, ,
22(1 1 )

rt cp it cp
C

in

U U
K U

μ
−

=
+

,         (5.2) 

 

using the tangential velocities at the contact point before and after the collision, ,it cpU  

and ,rt cpU  (Maw et al. 1981).  For impact involving sticking, the friction coefficient can 

be estimated by 

 
*

, ,
*

( )
2(1 cos( ))

rt cp t cp
C

t in

U U t
t U

μ
ω

−
=

+
,        

 

with a characteristic time *t that depends on the surface deformation, the normal and the 

tangential compliances within the contact area, the radius of gyration, and the mass of the 

sphere. The friction coefficient also depends on the characteristic frequency tω which is 

another function of the sphere mass and the tangential compliance in the contact area. 

More details can be found in Maio and Renzo (2004) where a linearized collision model 

for a frictional-elastic dry collision between spheres is developed. 

 

However, when oblique collisions occur in a liquid, the effective friction coefficient 

Cμ can change dramatically. Joseph and Hunt measured the effective angle of incidence 

and rebound, ,i it cp inU UΨ = and ,r rt cp inU UΨ = , to estimate Cμ for immersed oblique 

collisions using equation (5.2). The friction coefficient is in general lower than the value 

between the corresponding dry surfaces due to the interstitial liquids. The dry friction 

coefficient between Zerodur wall and the same steel ball bearing used in the current work 

was measured to be 0.11 0.003dryμ = ± . The coefficient drops to 0.02Cμ ≈  when the 
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collision occurs in liquid. A slight increase in the friction coefficient is observed with 

increasing tangential Stokes number, sint iSt St θ= , as shown in figure 5.4. Since the 

shearing lubrication force depends linearly on the surface relative velocity, a more 

frictional interaction is observed at higher tSt due to greater relative tangential velocity. 

Joseph (2003) also attributed the rising lubrication force to a thinner liquid film due to a 

greater impact angle. For collisions of rough glass particles, the liquid may be confined 

between the surface asperities. Upon the squeezing surface motion, the hydrodynamic 

pressure of the trapped liquid increases locally changing Cμ dramatically to a value that 

corresponds to the measurements between dry glass surfaces.  

 

Cμ

iθSt sin
 

Figure 5.4. Effective friction coefficient, Cμ , as a function of tangential impact Stokes 
number, sint iSt St θ= , for an immersed oblique collision of different spheres. This is a 
reproduction of Figure 4.16 of Joseph (2003). 

 

With the effective friction coefficient, Joseph and Hunt (2004) discovered a similar 

dependence of rψ on iψ to that observed in a dry system, as shown in figure 5.5. The 

agreement suggests that the tangential surface interaction during an immersed oblique 
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collision can be described as a dry system with the premise that the effective friction 

coefficient, Cμ , can be properly estimated for the interstitial liquid effects.  
 

ψi

ψi

 

Figure 5.5. Non-dimensional angle of reflection, rψ , as a function of incidence angle, iψ , 
for an oblique particle-wall collision in a glycerol-water mixture. This is reproduced from 
Figure 12 of Joseph and Hunt (2004). 

 

 

(b) At the center of mass 

 

Besides the properties at the contact point, the tangential motion at the sphere center of 

mass provides a second method to investigate the tangential surface interaction. 

Conventionally, the contact normal is defined by the line of centers upon impact, as 

shown in figure 5.6, which serves as the reference for motion decomposition. The normal 

and tangential impulses act at the contact point and alter the linear and angular velocities 

of each sphere at their centers of mass. As delineated in chapter 2, the sphere motion after 
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a head-on dry collision can be fully described using Poisson’s hypothesis as the required 

additional equation. However, for an oblique collision, the normal and the tangential 

components of motion are coupled through Coulomb’s friction law. The two spheres may 

interact with initial sticking or sliding in the tangential direction resulting in different 

normal and tangential compliances in the contact area. Thus the two spheres rebound at 

different velocities and angles correspondingly. As shown in figure 5.6, when the lower 

sphere impacts a stationary target with velocities 1iU and 1iω at an impact angle 1iθ from 

the contact normal, the rebound angles of each sphere can be found as follows 

(Goldsmith 1961). 
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Figure 5.6. Impact of two spheres in a plane motion. 

 

If the surface motion involves sticking, which corresponds to a contact point motion in 

regime I or II of Maw’s model, the post-collision normal and tangential velocities can be 

found as: 
 

1 11r n i n
M eU U
M
−

=
+

,                   (5.3a) 
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The rebound motion depends on the normal impact velocity 1i nU , the impact angular 

velocity 1iω , and the mass ratio 1 2M m m= . The quantity e is the dry normal coefficient 

of restitution. Dividing the tangential velocity by the normal component yields the 

tangents of the rebound angle for both spheres as: 
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,                 (5.3f) 

 

which also depend on the impact angle 1iθ . This sticking contact will be referred as 

1GS collision model hereafter. 

 

For collision at greater impact angle, the sphere surfaces slide on each other 

corresponding to a contact point motion in Maw’s regime III . The friction force changes 

the tangential velocities and the rebound angle after collision into: 

 

1 1 1
1

1r t i t C i n
eU U U
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= −
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2 1(1 )
1r t C i n

MU e U
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1 1
1 1tan tanr i C

M e
M e M e

θ θ μ+ +
= −

− −
,                 (5.4c) 

2tan r Cθ μ= ,                   (5.4d) 

 

involving a friction coefficient Cμ ; this model will be denoted as 2GS collision model. 

The normal rebound velocities, 1r nU and 2r nU , are the same from both models.  

 

 

5.2 Experiment setup 
 

5.2.1 Apparatus 
 

The fixture plate used in the experiment of particle-on-particle immersed normal collision 

was modified to allow oblique collisions. Along the slot for the target sphere, five 

consecutive holes were drilled 1.5mm apart, as depicted in figure 5.7(a). By locating the 

target string in different positions, oblique collisions could be achieved in a specific 

orientation. The 0-position was located along the plate centerline, resulting in the 

configuration for normal collisions as used in chapter 2. As shown in figure 5.7(b), the 

smallest impact angle in the current setup was achieved by a 0-1 formation where the 

impact sphere swings along the plate center line while the target sphere was suspended 1-

position. The largest impact angle, 1 60iθ ≈ , was achieved using a 0-3 formation. The 

bottom view of the particles was recorded for the lateral motion. The marker on the 

bottom surface was used to track the sphere rotation necessitating direct illumination. A 

typical image is shown in figure 5.7(c). 
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Figure 5.7. (a) Modified fixture plate. (b) Oblique collision in a 0-1 sphere formation. (c) 
Bottom view of a sphere pair in a 0-3 formation. 

 

 

5.2.2 Sphere surface properties 

 

Besides Delrin and glass particles, two kinds of steel spheres were used. The steel ball 

bearings used previously are categorized as class 1 steel while class 2 steel is used to 

indicate unpolished steel spheres. The surface roughness of class 2 steel was estimated to 

be 0.272μm based on its SEM surface images. When the two steel surfaces are compared 

in figure 5.8, the surface of class 2 steel, presented in the right column, contrasts sharply 

with the smooth steel ball bearing on the left column. 
 

 

 

 

 

( c )
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Figure 5.8. SEM images of the two classes of steel particles. The left column presents the 
results for class 1 steel (ball bearing) and the surfaces of class 2 steel (unpolished sphere) 
are shown in the right column. Both are of diameter 12.7mm . 
 

 

5.2.3 Image processing 
 

The motion of each sphere center was tracked in ImageJ as described in section 2.1.3 and 

indicated with 1C and 2C in figure 5.9(a).  On each frame, the centroid of the marker was 

estimated, as denoted by the triangle A or B on each sphere. The arctangent of the slope 

of line 1AC measured the inclination angle 1iα of the impact sphere. Line 2BC was used 

to measure 2iα for the target sphere. With the time evolution of the inclination angles, a 

line was fitted over 15 milliseconds before the collision to estimate the corresponding 

angular velocities. When in contact, the line 1 2C C defined the contact normal as shown in 

figure 5.9(b). Prior to the collision, the impact angle 1iθ was defined by the contact 

normal and the line fitted through 15 position points of the impact sphere. The other 

angles were estimated similarly. The target sphere remained stationary before collision 

under most of the investigated impact conditions. Thus the target impact angle 2iθ was set 

to zero. The translational velocities of each sphere were calculated by the distance a 

sphere travels from the previous frame. The mean value of 15 consecutive frames before 
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and after collision were calculated for 1iU , 1rU , 2iU , and 2rU . A typical result depicting 

the trajectories of an oblique collision is shown in figure 5.9(c). 
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Figure 5.9. Bottom view of an oblique collision between two Delrin spheres in water for 
(a) the marker centroid and the inclination angle of the impact sphere, (b) the contact 
normal and the impact angle. (c) Time evolution of the particle trajectory. The sphere 
velocities are 1 11.94 cm siU = , 2 0.95 cm siU ≈ , 1 4.48 cm/srU = , and 2 8.24 cm srU = . 
For this collision, the effective coefficient is 0.39e ≈ while 22.3BSt = . 

 

 

5.2.4  Parameters 

 

Analogously to an immersed particle-on-wall oblique collision, an inter-particle oblique 

collision is decomposed into a normal and a tangential component with respect to the 

contact normal. The normal and the tangential components motion of the impact sphere 
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are 1 1 1cosi n i iU U θ= and 1 1 1sini t i iU U θ= as shown in figure 5.10 and the post-collision 

velocities are calculated similarly as 1 1 1cosr n r rU U θ= and 1 1 1sinr n r rU U θ= . The target 

velocities are estimated likewise.  
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Figure 5.10. Decomposition of the impact motion with respect to the contact normal into 
a normal and a tangential components as 1 1 1cosi n i iU U θ= and 1 1 1sini t i iU U θ= . 
 

With the decomposed velocity components, the effective normal coefficient of restitution 

for an immersed inter-particle oblique collision is defined as 

 

1 2

1 2

r n r n
n

i n i n

U Ue
U U

−
= −

−
.         (5.5) 

 

The correlation between the normal coefficient of restitution, n rn ine U U= − , and the 

normal particle Stokes number, 26n p inSt m U aπμ= , for an immersed particle-on-wall 
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collision suggests the normal binary Stokes number:  

 
*

1 2
*2

( )
6

r n r n
n

m U USt
aπμ
−

= ,         (5.6) 

 

for inter-particle oblique collision using the relative normal velocity. 

 
 
5.3  Normal component of motion 
 

In figure 5.11, the effective normal coefficient of restitution, equation (5.5), is plotted 

against the normal binary Stokes number, equation (5.6), for oblique collisions between 

identical spheres. A monotonic decrease in ne is observed with decreasing normal binary 

Stokes number nSt . Zero restitution is observed at a critical number around 6 ~ 8nSt =  

where the spheres possess nearly identical normal velocities after collision. The two 

classes of steel spheres resulted in nearly the same ne when the collision occurred 

at 10 30nSt< < . 
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Figure 5.11. Normal coefficient of restitution as a function of normal binary Stokes 
number for immersed oblique collisions between identical spheres. 

 

In figure 5.12, the current measurements are compared with the data from fully immersed 

normal collisions, including particle-wall impact and inter-particle collisions between 

identical or dissimilar pairs of spheres. Since the experiment covered a wide range of 

impact angle, the general agreement between the oblique and the normal data should 

validate the assumption that the normal component of motion can be decoupled from the 

tangential component during an immersed oblique collision, despite the size and the 

mobility of the target. In other words, the knowledge of the immersed normal inter-

particle collision, as developed in the previous chapters, can be used to describe the 

normal component of motion of an immersed oblique collision in terms of ne and nSt .  
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5.4  Tangential component of motion 
 

The normal component of motion of immersed oblique inter-particle collisions has been 

shown to follow the behavior of a normal collision, which is in agreement with the 

experimental findings for particle-wall oblique collisions (Joseph and Hunt 2004; Kantak 

and Davis 2004). These investigations suggest that the normal component of motion is 

independent of the tangential surface interaction. In order to completely describe an 

oblique collision, the tangential component of motion is required. The tangential contact 

mechanism is first examined at the contact point by comparing the effective angles of 

incidence and rebound, iΨ and rΨ , with Maw’s collision model followed by the 

investigation at the sphere center of mass. 

 

 

5.4.1 Properties at the contact point  

 

With a stationary wall, the impact takes place at nearly the same location ensuring 

consistent target surface condition. However, the mobility of the target sphere may 

change the surface orientation and result in contact at different locations yielding more 

scatter in measuring Cμ between two colliding spheres. Since the effective angles, rΨ  

and iΨ , correlate to Maw et al.’s non-dimensional angles by a constant, 

2(1 ) / (2 )Cν μ ν− − , the dependence of rΨ on iΨ should reveal the same contact 

mechanism. Figures 5.13(a)–(c) present the results with respect to the dashed diagonal 

that indicates a specular reflection for frictionless surfaces. 
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Figure 5.13. Effective angle of reflection as a function of the effective incidence angle 
for immersed oblique collisions between: (a) steel ball bearings, 0.02μmsσ ≈ and 
500 2400nSt< < ; (b) unpolished steel spheres, 0.2μmsσ ≈ and 25nSt < ; (c) Delrin 
spheres, 0.1μmsσ ≈ and 40 200nSt< < . 

 

Only the collisions between smooth steel ball bearings result in rebounds close to a 

specular reflection in figure 5.13(a). The measurements with class 2 steel exhibit a similar 

rebound to that observed using Delrin particles, as shown in figures 5.13(b) and (c). Both 

deviate from specular reflection indicating frictional surface contact due to their rough 

surfaces. When the sphere impacts at 0 0.5i< Ψ ≤ , the effective reflection angles reveal a 

regime that may correspond to an initial sticking at the contact point as observed in 

regimes I of Maw’s model. In particle-wall oblique collisions, a negative reflection angle 

is clearly observed, as shown in figure 5.5, indicating the reverse tangential motion of the 

impact particle, a motion of which requires large tangential contact impulse. The mobility 

of the target sphere and the presence of interstitial liquid reduce both the asperity contact 

(c) 
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and the contact duration resulting in weak tangential contact impulse. Thus a 

negative rΨ is rarely seen in an immersed inter-particle collision. 

 

To see more clearly how the surface asperity change the tangential interaction, the 

reflection angles for the two classes of steel spheres are compared in figure 5.14. By 

comparing the data at different normal Stokes numbers, more specular reflection with less 

scatter is observed for collisions at 500nSt > than the ones for 25nSt ≤ since the particle 

has higher inertia to overcome the hydrodynamic forces. When the sphere impacts 

at 25nSt ≤ and 1.0iΨ > , the rebound between class 2 rough steel spheres deviate further 

from specular reflection than between a ball bearing pair, which can be attributed to the 

large surface roughness. 
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Figure 5.14. Comparison of the effective reflection angle as a function of effective angle 
of incidence for oblique collisions between different steel spheres at two ranges of normal 
Stokes numbers.  
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5.4.2 Properties at the sphere centers of mass 

 

(a) Rebound angle 

 

Since the tangential contact is short for an inter-particle collision, the particle angular 

velocities remain nearly zero through the collision process with the current experimental 

setup. Thus the rebound motion at the sphere centers of mass should capture the principal 

dynamics. The impact and rebound angles, 1iθ , 1rθ , 2iθ , and 2rθ , were measured at the 

sphere center of mass with respect to the contact normal for both particles. Recall 

that 2 0iθ ≈ for most of the current impact conditions. Figure 5.15 presents the rebound 

angle of the impact sphere. For collisions between two ball bearings at 500nSt > , the 

rebound angle changes abruptly when the impact angle drops below 10 degrees. However, 

if the smooth ball bearings collide at 25nSt < , a smooth transition is observed. Due to the 

lack of particle inertia, their relative motion in the tangential direction may be 

synchronized by the action of the interstitial viscous liquid. As for collisions of class 2 

steel or Delrin pair of particles, the rebound angle also changes continuously with 

decreasing impact angle. The smooth trend can be explained by physical asperity 

interaction in the tangential direction. 

 

The rebound angle of the target sphere is also plotted against the impact angle, 1iθ , in 

figure 5.16. Though the data scatter more than the rebound of the impact sphere, the 

target rebound angle, 2rθ , decreases with diminishing 1iθ . The nearly zero rebound angles 

for steel collisions at 25nSt < can be attributed to weak tangential impulse. For the 

collisions between the ball bearings at higher normal Stokes number, non-zero rebound 

angle is observed with less scatter, due to the larger particle inertia and the smoother 

surface property. The intermittent asperity interaction may be the reason for the larger 

scatter of Delrin data than the other particle pairs.  
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Figure 5.15. Rebound angle of the impact sphere as a function of the impact angle at the 
sphere centers of mass.  
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Figure 5.16. Rebound angle of the target sphere as a function of the impact angle at the 
sphere centers of mass. This is a complementary result to figure 5.15. 
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If two dry colliding surfaces are perfectly smooth, their post-collision trajectories will 

form a 90-degree angle. When an oblique collision occurs in liquid, the interstitial fluid 

layer affects the tangential surface interaction resulting in a smaller angle. An effective 

rebound angle can be defined  

 

2 1

2
r r

rbd

θ θ
π
−

Π = ,         (5.7) 

 

as the ratio of the measured included angle, 2 1r rθ θ− , to the dry frictionless rebound 

angle, 2π . A small value should indicate strong hydrodynamic forces that dissipate the 

total tangential momentum in the solid phase. To characterize the fluid effects, the 

tangential binary Stokes number, tSt , is used instead of the normal component. The tSt  

measures the particle tangential inertia with respect to the shearing hydrodynamic forces 

and can be calculated as 

 
*

1 2
*26

i t i t
t

m U U
St

aπμ
−

= ,                  (5.8) 

 

using the relative tangential velocity at the sphere centers. The result is plotted in figure 

5.17 where a nearly 90-degree angle, indicated by unity 1rbdΠ = , is observed at high tSt . 

With large tangential Stokes number, the fluid is negligible and the effects of asperity 

contact are also minor to the rebound motion. The measurements with Delrin particles 

show larger scatter due to greater asperity height and a greater number density across the 

surface (Joseph and Hunt 2004). 
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Figure 5.17. Effective rebound angle as a function of the tangential Stokes number. Unity 

rbdΠ indicates a 90-degree angle between the rebound trajectories. 
 

The effective rebound angle is also plotted with the impact angle in figure 5.18. Impacts 

at higher Stokes number result in rebounds closer to 1rbdΠ = , indicating negligible 

hydrodynamic effects. The deviation becomes large when the impact angle decreases. At 

lower impact angle, the surface asperity interacts more thoroughly due to greater normal 

compression impulse. The weaker shearing motion also diminishes the lubrication of the 

interstitial liquid. Thus, oblique collision at smaller impact angle and lower particle 

inertia would undergo more frictional surface interaction resulting in rebound trajectories 

that deviate further from 90 degrees.  
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Figure 5.18. Effective rebound angle as a function of impact angle.  

 

(b) Rebound velocity 

 

To further examine the tangential contact mechanisms, the experimentally measured 

rebound velocities are compared to the predictions from 1GS and 2GS collision models 

using equations (5.3a)–(5.3f) and equations (5.4a)–(5.4d). Recall that 1GS model 

involves initial sticking in the tangential surface interaction while 2GS considers initial 

sliding. Since both models require the normal coefficient of restitution, the 

measured ne are used. The rebound angle of the impact sphere is first examined as a 

comparison to the observation in figure 5.15. The measured ne is averaged over the 

corresponding data in certain ranges of nSt as a function of impact angle 1iθ .  

 

For an immersed oblique collision between steel ball bearings at 500 2400nSt< < , the 

averaged normal coefficient of restitution is 10.0017 0.96n ie θ= − + . To examine 2GS , 
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the friction coefficient measured by Joseph and Hunt (2004) is supplemented in addition 

to ne . The prediction from 1GS model is compared with the actual measurements in 

figure 5.19 while 2GS is applied with ne and 0.02Cμ = , as well as ne and 0.11dryμ = . A 

general agreement is found between the actual rebound angle and the predictions 

from 1ne GS− and 2n Ce GSμ− − models. Both models capture the drop of 1rθ  when 

1 20iθ < . This supports the hypothesis that the tangential motion during an immersed 

oblique collision can be described by an existing collision model, as long as the model 

parameters, ne and Cμ , are estimated with the hydrodynamic effects. Using dryμ  in 

2GS results in a smaller rebound angle due to overestimated surface friction indicating 

the significance of lubricating effects especially when 1iθ drops below 30 degrees.  
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Figure 5.19. Rebound angle at impact steel ball bearing center as a function of impact 
angle when 500 2400nSt< < .  

 

If the ball bearing collides at 25nSt < , the averaged effective normal coefficient of 

restitution is 10.0076 0.41n ie θ= − + . The discrepancy between the experimental data 

measurements and the predictions using dry model constants is more pronounced. A 
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high drye requires sufficient elastic surface deformation for large restitution impulse, 

which seldom occurs for impact with small particle inertia. The interstitial liquid 

lubricates the surfaces diminishing the physical contact further decreasing the surface 

deformation. Using dryμ in 2GS again overestimates the surface interaction and results 

in a rebound angle smaller than the actual findings, as shown in figure 5.20. When 

compared with the nearly constant 1rθ in figure 5.19, the rebound angle decreases with 

decreasing 1iθ for collisions at 25nSt < . At small impact angle, the slow tangential 

component of motion is further decelerated by the shearing lubrication force. The 

interstitial liquid motion may further synchronize the surface motion due to the lack of 

particle inertia, which explains the smooth decline. 
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Figure 5.20. Rebound angle at impact steel ball bearing center as a function of impact 
angle when 25nSt < . 

 

The significance of a pertinent friction coefficient is demonstrated when the rebound 

angle of a Delrin impact sphere is investigated in figure 5.21. For collisions 

between 40 200nSt< < and 1 50iθ < , the averaged normal coefficient of restitution is 
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10.0011 0.68n ie θ= − + while 10.0066 0.96n ie θ= − + if 1 50iθ ≥ . The factory specification 

of the dynamic friction coefficient for Acetal Homopolymer (Delrin), 0.2dryμ = , is 

adopted and the value, 0.1Cμ = , measured for a pair of lubricated Nylon rollers is used. 

As the previous two cases, both 1ne GS− and 2n Ce GSμ− − collision models capture the 

experimental findings but using dryμ in 2GS results in erroneous prediction including a 

reverse motion that seldom occurs in an immersed inter-particle collision. Similar to the 

collision between steel ball bearing collisions at 25nSt < , the diminishing particle inertia 

explains the decrease of 1rθ with decreasing 1iθ . A slightly higher rebound angle is 

observed when comparing figure 5.21 to figure 5.20, which can be attributed to both 

higher particle inertia and more asperity interaction in the tangential direction for a 

rougher Delrin surface.  
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Figure 5.21. Rebound angle at the impact Delrin sphere center as a function of impact 
angle when 40 200nSt< < . 

 

The prediction of the target rebound angle is examined in figure 5.22. Unlike the success 

in estimating 1rθ , the predicted 2rθ seldom agrees with the experimental measurements 
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except at small 1iθ . The discrepancy may be attributed to the pre-collision target motion 

that contradicts the stationary condition assumed in the model. It is also noted that the 

target rebound angle never exceeds 10 degrees, which is a consequence of weak 

tangential impulse due to the mobility of the target sphere and the lubricating interstitial 

liquid. 
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The collision models are further examined in figure 5.23 where the predicted tangential 

rebound velocity of the impact sphere is compared with the experimental data. The 

diagonal solid line plots y x= . Both models have comparably good prediction for 

collisions at 500nSt < but 1GS outperforms 2GS for collisions at high nSt .   

 

(a) (b)

(c) Figure 5.22. Rebound angle of the target 
sphere for immersed oblique collisions 
between:  
(a) steel ball bearings at 500nSt > ,  
(b) steel ball bearings at 25nSt < , and  
(c) Delrin spheres at 40 200nSt< < . 
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Figure 5.23. Comparison of the predicted post-collision velocity of the impact sphere 
using (a) 1GS and (b) 2GS ( 0.02Cμ = ).  

 

The value 0.02Cμ = was measured between a steel ball bearing and a Zerodur wall, a 

target of which has a smoother surface, 0.016μmsσ = , than the current ball bearing target. 

If a friction coefficient is chosen higher than 0.1Cμ = , a more realistic prediction from 

(a) 

(b) 
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2GS is observed in figure 5.24 illustrating again the importance of a proper model 

constant. Having model constants modified for the hydrodynamic effects, the two models 

provide comparable predictions to the actual measurements. Though different tangential 

surface interactions are considered in the two models, their predictions collapse due to the 

short contact duration and the lubricating interstitial liquid, whose effects are included in 

the effective model constants. However, the measurement of Cμ for a rapid collision 

process is usually difficult and prone to errors, especially with an unconstrained target. 

Hence the 1ne GS− model is proposed to be a more practical model than the 

2n Ce GSμ− − collision model that requires an accurate Cμ .  
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Figure 5.24. 2GS  prediction with a higher lubricated friction coefficient. 

 

The model performance on predicting the tangential target rebound velocity is examined 

in figure 5.25. The weak tangential impulse yields a slow target motion that scatters more 

than the impact sphere rebound motion. The asperity contact for Delrin particles and the 

high particle inertia of steel ball bearing may result in rebound faster than the model 

prediction, which corresponds to the data above the solid line. 
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Figure 5.25. Comparison of the predicted tangential rebound velocity of the target sphere 
using (a) 1GS and (b) 2GS ( 0.02Cμ = ) collision models.  

 

 

(a) 

(b) 
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5.5 Conclusion 
 

Fully immersed inter-particle oblique collisions were investigated between identical 

spheres, including smooth steel ball bearings, unpolished steel spheres, and Delrin 

spheres. The collision was decomposed into a normal and a tangential component with 

respect to the contact normal defined by the line of centers when the spheres are in 

contact. The relevant parameters for an immersed normal collision, namely the effective 

coefficient of restitution and the binary Stokes number, were modified using the normal 

component of the sphere velocity. The correlation between the modified parameters, ne  

and nSt , exhibits the same trend as a head-on normal collision. Thus, the model that has 

been developed in chapters 3 and 4 can be used to describe the normal component of 

motion of an oblique collision. 

 

The tangential component of motion was examined in greater detail. In general, the 

tangential motion can be captured by the existing collision models as long as the model 

parameters, such as the effective friction coefficient and the normal coefficient of 

restitution, are properly modified for the hydrodynamic effects. The effective friction 

coefficient is sensitive to both the impact conditions and the surface properties. For the 

current impact conditions, the measurement of an effective friction coefficient is usually 

noisy due to the mobility of the target sphere and the difficulty in tracking the nearly zero 

sphere rotation. Thus Goldsmith’s second contact model that requires an accurate 

effective friction coefficient is of less practical value. Fortunately, the prediction with 

Goldsmith’s first model, requiring only the effective normal coefficient of restitution, in 

general agrees with the experimental data. The 1ne GS− collision model is proposed to be 

the relevant tangential contact model that can be integrated with the proposed collision 

model for the normal component of motion. The mobility of the target sphere 

dramatically changes the rebound motion of the target sphere that requires further 
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investigations. 

 

The tangential motion at the contact point was also compared to Maw’s theory that 

describes the dry surface tangential interaction. Because of the interstitial lubricating 

layer and the mobility of the target, pure sticking contact was rarely observed in the 

current experiments. With higher effective incidence angle, a sliding mechanism better 

describes the experimental findings and collisions at smaller angle may be captured by a 

sticking-then-sliding process.  
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Chapter 6  
 
 
Wall Influence Distance 
 

 

In chapter 4, the approach of an immersed pendulum predicted by the collision model 

was compared with various experimental measurements, and the good agreement 

obtained validated the model. In the comparisons, only the total hydrodynamic forces, 

rather than the individual components, were examined. For unsteady particle motion, 

real-time measurement of the fluid force is a challenging task and precise force 

decomposition is nearly impossible. The validated flow model can thus be used to 

investigate the detailed hydrodynamic forces, circumventing the experimental difficulties. 

In the first section of this chapter, the importance of each hydrodynamic force is 

examined at different impact conditions. Subsequently, a length scale should be defined 

to characterize the spatial interaction between the sphere and the wall due to the coupling 

of the surface motion with the interstitial liquid flow. This length scale can be used to 

indicate the distance to which the sphere’s motion can be described with the conventional 

fluid forces without any wall modification.  

 

 

6.1 Examination of the three hydrodynamic forces 
 

The flow model that describes the circumferential motion of a pendulum, ds dt , during 

its approach to a wall is: 
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* * *(Re, ) ( ) (Re, ).p G D AM H

ds U
dt

dUm F F F F
dt

δ δ δ

⎧ =⎪⎪
⎨
⎪ = − − −
⎪⎩

                             (6.1) 

 

Three hydrodynamic forces are included-the steady viscous drag, *(Re, )DF δ , the added 

mass force, *( )AMF δ , and the history force, *(Re, )HF δ . For each hydrodynamic force, 

the dependence on the non-dimensional gap, * aδ δ= , indicates a wall modification 

factor and the correction for the higher Reynolds number effects resides in the 

dependence on Re . It has been concluded that the prediction using the full flow model 

generally agrees with the experimental measurements. An additional set of simulations 

was conducted in which different hydrodynamic forces were set to zero. The resultant 

velocity profile was compared with the actual measurements to examine the importance 

of each fluid force. Through out this chapter, the forces are presented in their magnitudes. 

 

First, the motion of a sphere of density 2.54p fρ ρ= , impacting at particle Stokes number 

of 214St = , is simulated. As before, the particle motion predicted from the full flow 

model agrees with the experimental results, as indicated by the matching solid line and 

the open circles in figure 6.1. However, if either of both of the history and the added mass 

forces were excluded from equation (6.1), the velocity is overestimated. The neglecting 

of the history force results in a prediction that deviates further from the actual 

measurements than the exclusion of the added mass force.  
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Figure 6.1. Comparison of the predicted pendulum motion using the full or the partial 
flow model with 2.55p fρ ρ = , at 214St = . 

 

A second comparison is made with 2.0p fρ ρ= as a glass sphere in a water-glycerol 

mixture. For an impact at a lower particle Stokes number of 50St = , the result from the 

full flow model compares well with the experimental profile, as shown in figure 6.2. 

Without the history force, the velocity is overestimated. However, the exclusion of the 

added mass force results in an underestimation, suggesting a force, *( , )AMF t δ , that 

assists the sphere motion towards the wall. This phenomenon can be explained by the 

competition between the two terms in the wall-modified added mass force, as given in 

equation (3.7). This expression is reproduced below: 

 
*

* * 2
*

1 3 ( )( , ) 1 3 ( )
2 4AM f f

dU dWF t m W m U
dt d

δδ δ
δ

⎡ ⎤= − + −⎣ ⎦ .               (6.2)

  

Since the wall correction term *( )W δ remains a positive value for all *δ and its 

derivative is always negative and the second term in equation (6.2) may exceed the first 
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tem, resulting in a positive force that assists the pendulum motion towards the wall. 

When compared with the result in figure 6.1, for an immersed pendulum motion at a 

smaller particle Stokes number, the hydrodynamic forces decelerate the particle motion 

more easily resulting in faster decaying particle acceleration, dU dt , which yields a 

positive *( , )AMF t δ more likely. 
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Figure 6.2. The influence of each hydrodynamic force in determining the motion of a 
solid sphere of, 2.0p fρ ρ = , that approaches the wall at 50.St =  

 

Figure 6.3 shows the simulation results for a pendulum motion at 60St = , similar to the 

case examined in figure 6.2, but at a higher solid-to-liquid density ratio of 6.83p fρ ρ = . 

In addition to the observation that an incomplete flow model, especially without 
*( , )HF t δ , predicts an erroneous profile, the wall-modified added mass force becomes 

less important in assisting the pendulum motion towards the wall due to a higher solid-to-

liquid density ratio. Also noted is the sudden deceleration of the particle when it moves to 

a distance of about 0.3D . The abrupt change is not observed for the lighter sphere in 

figure 6.2, which decelerates steadily throughout the observed particle motion. In contrast, 
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the particle motion in figure 6.1, which impacts at a higher St , exhibits no significant 

deceleration until 0.1D .  
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Figure 6.3. The influence of each hydrodynamic force on the approach of a dense solid 
sphere of 6.83p fρ ρ = , that impacts at 68St = . 

 

To examine the effects of the three fluid forces on the particle motion, their evolution as a 

function of the scaled gap, * Dδ δ= , is compared at different impact Stokes numbers in 

figures 6.4(a)–(d). In these simulations, the sphere diameter, the solid-to-liquid density 

ratio, and the pendulum release angle are kept the same. Only the liquid viscosity is being 

increased to achieve a lower impact Stokes number. 
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Figure 6.4. The three hydrodynamic forces as a function of the scaled gap, Dδ , for the 
impact of a steel pendulum, 6.83p fρ ρ = , at (a) 488iSt = , (b) 198iSt = , (c) 42iSt = , and 
(d) 12iSt = . 

 

For all the investigated impact particle Stokes numbers, the steady viscous drag, DF , 

dominates the hydrodynamic forces throughout the impact. The wall-modified added 

mass force is small relative to the drag because both of the canceling of the two terms in 

equation (6.2) and of the large density ratio. Part of the impact motion, the history force 

exceeds the wall-modified added mass force. The added mass and the history force 

become comparable when the particle Stokes number drops to 12iSt =  in figure 6.4(d). 

The sign change of the history force, indicated by the flip of the profile, is observed in all 

cases for the following reasons. During the early stages of the pendulum motion, the 

sphere accelerates due to the effective gravity, resulting in an opposing history force. The 

hydrodynamic forces decelerate the pendulum as it moves towards the wall and 

eventually change the sign of ( )idU dt in the time integral. The history force may then 

accumulate into a positive force that drives the pendulum. This sign inversion occurs 

sooner for a pendulum motion at smaller particle Stokes number, as suggested by the 

current simulation results.  
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If scaled by the viscous force, the added mass force is in general of two orders of 

magnitude smaller than unity, as shown in figure 6.5. These results also indicated that this 

force becomes more important for impacts at smaller iSt . 
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Figure 6.5. The local added mass force scaled by the steady viscous force, as a function 
of scaled gap and impact particle Stokes number with 6.83p fρ ρ = . 

 

 

To obtain a general idea of how the added mass and the history force compare to the local 

viscous force, a series of simulation was performed over a range of impact particle Stokes 

numbers and different solid-to-liquid density ratios. The size, the string length, and the 

release angle of the pendulum were kept identical in these simulations. Different impact 

Stokes numbers were achieved by varying the liquid viscosity. The density ratios 

examined are p fρ ρ = 1.5, 2.54, and 7.6. The comparisons are made at different 

locations from the wall. 
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The ratio of the local added mass force to the local viscous force, AM DF F , is first shown 

in figure 6.6. In general, this force ratio increases with decreasing gap and density ratio. 

The dependence on the impact particle Stokes number exhibits a richer behavior than a 

monotonic relation. For an impact with a density ratio as high as 7.6, a monotonic 

increase of AM DF F is observed as St drops. However, with decreasing density ratio, an 

inversion of the correlation between AM DF F and St is observed at around 100St = . This 

might be attributed again to the canceling two terms in the wall-modified added mass 

force, one of which is sensitive to the local pendulum velocity and the other depends on 

the pendulum acceleration. 
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Figure 6.6. The local force ratio between the added mass force and the steady viscous 
force as a function of impact Stokes number, St , the gap width, * Dδ δ= , and the solid-
to-liquid density ratio, DR.  
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As for the local force ratio between the history and the viscous forces, H DF F , a more 

uniform correlation with the investigated parameters is observed, in figure 6.7. The 

inversion in the dependence of H DF F on St is again observed around 100St = , but in a 

convex manner rather than the concave inversion for AM DF F . Instead of being a result of 

the immediate particle motion as in AM DF F , this inversion is an accumulated 

consequence of the whole forcing history. From these sets of comparison, the local added 

mass and the history force are in general more important for a sphere that possesses a 

smaller density relative to the ambient liquid.  
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Figure 6.7. The local force ratio of the history mass force to the steady viscous force, as a 
function of impact Stokes number, St , the scaled gap width, * Dδ δ= , and the solid-to-
liquid density ratio, DR.  
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6.2  Influence distance 
 

In order to address the interaction between the two approaching solid surfaces when the 

effects of the interstitial liquid are non-negligible, a set of experiments was conducted by 

Joseph et al. (2001). By keeping all the pendulum setups and the solid and the liquid 

properties nearly identical, they were able to compare experimentally the wall-

decelerated velocity profile with that without wall. The two velocity profiles were scaled 

by the value when the sphere was of a distance of 1.5 diameters from the wall and a 

selection of their results is reproduced in figure 6.8. It is found that with decreasing 

particle Stokes number, the wall increasingly decelerates the sphere motion. It is also 

observed that the distance at which the deceleration becomes noticeable increases with 

decreasing St . It is this influence distance between the wall and the sphere that the 

following section addresses. 
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(a) St = 9 (μ f = 11.6x10-3 Pa s, ρp/ρ f = 2.15)

(b) St = 47 (μ f = 3.2x10-3 Pa s, ρp/ρ f = 2.27)

(c) St = 68 (μ f = 2.2x10-3 Pa s, ρp/ρ f = 2.29)

 

Figure 6.8. Comparison of the scaled velocity profile between a free swinging pendulum 
(�) and a pendulum motion towards a wall ( ) (Joseph 2003). 
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To define a length scale that quantifies the wall effects in a simulation, two computations 

are performed. The first one calculates the free pendulum motion and a second simulation 

is made with the full flow model that accounts for the presence of the wall. Since there is 

no impact velocity that can be defined for a free pendulum motion, the characteristic 

Reynolds number, ReC , is used to define the particle Stokes number, 

( )Re 9p f CSt ρ ρ= , in this section. The influence distance, fδ , is defined to be the gap 

where the velocity with the presence of the wall drops 1 % from the no-wall value. After 

the velocity profile of a free pendulum, NWU , is obtained, a reference profile 0.99 NWU  

can be found, as shown by the dashed and the dotted-dashed line respectively in figure 

6.9. The predicted velocity for the impact pendulum, *( )U δ , is calculated next, as shown 

by the solid line. The influence distance can be determined by the crossing of 0.99 NWU  

and *( )U δ . The case shown in figure 6.9 is for a pendulum of 7.6p fρ ρ =  

with Re 488C = .   
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Figure 6.9. Determination of the influence distance by the intersection of *( )U δ  and 
0.99 NWU . 

  



 158

To show the ability of capturing the wall effects in a simulation, the first comparison is 

made at Re 530C = but with different density ratios. The free pendulum motion in each 

case, NWU , is plotted along with the wall-inclusive profile, *( )U δ , in figure 6.10. It is 

observed that at smaller particle Stokes numbers, the wall-modified velocity deviates 

from NWU at a greater distance than the one observed for higher St . This observation 

agrees qualitatively with the experimental findings in figure 6.8. 
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Figure 6.10. The scaled velocity profile for three pendulum motion at identical ReC but 
different .p fρ ρ The free swing pendulum motion is plotted by the solid line with 
squares. The profile with the wall is indicated by the solid line. 

 

The effect of the density ratio is more pronounced when comparing the results 

between 100p fρ ρ = and 2.5p fρ ρ = at the same ReC in figure 6.11. Different sphere 

diameters are used for this particular simulation. The sphere trajectory with 

100p fρ ρ = resembles a pendulum motion in air, where no significant wall effects are 

predicted. However, for the case with a density ratio as low as 2.5,p fρ ρ =  the particle 

decelerates significantly at a gap 0.3Dδ ≈ . The latter motion simulates the motion of a 
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glass sphere at 48St = , corresponding to the case (c) in figure 6.8. The predicted velocity 

profile qualitatively agrees with the experimental observation. 
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Figure 6.11. The scaled velocity profile for pendulum motion at identical ReC but 
different .p fρ ρ  The free pendulum motion is plotted by the solid line with squares. The 
profile with the wall is indicated by the solid bold line. 

 

Similar computations were conducted for three density ratios, p fρ ρ = 7.8, 2.5, and 1.5, 

for the approach of steel, glass, and Delrin spheres respectively. An additional set of 

computations with a nearly matching solid-to-liquid density ratio, 1.1p fρ ρ = , was also 

performed. The pendulum string length is kept the same throughout the four sets of 

simulations. In order to achieve impacts over roughly the same range of particle Stokes 

numbers, 310 10 ,BSt≤ ≤ different particle sizes and pendulum release angles were used 

for each material. A larger particle and a greater release angle are used for impacts at a 

lower density ratio, and vice versa. The results are plotted in figure 6.12.  
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Except in the case of a nearly matching solid-to-liquid density ratio, p fρ ρ = 1.1, there 

exists a critical particle Stokes number that gives a minimum influence distance.  For the 

case of 7.6p fρ ρ = , this critical Stokes number occurs at 100 200St = − . For 

2.54p fρ ρ =  and 1.5, the minimum occurs around 10 30St = − and 10St ≈ . In the last 

extreme case, the influence distance shows a monotonic decrease with diminishing 

particle Stokes number. Within the investigated range of particle Stokes numbers, the data 

for 1.1p fρ ρ = appears to reach either a plateau or a minimum. Further simulation at 

low BSt would be needed to determine the fδ trend for a particle motion at such a low 

density ratio. 
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Figure 6.12. The dependence of the influence distance on the impact particle Stokes 
number and the solid-to-liquid density ratio.  

 

This inversion may be related to the concave and convex variations observed in the 

correlation between AM DF F , H DF F  and St . In general, AM DF F changes with St faster 
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than H DF F does. Thus, when the particle Stokes number starts to decrease from the 

critical value for the inversion in force ratios, AM DF F increases more than the decrease 

in H DF F . The resultant impact pendulum motion will thus deviate from the no-wall 

value at a greater distance yielding an increase in fδ . However, since the two unsteady 

hydrodynamic forces are sensitive to the forcing history, the different pendulum 

configurations adopted in the current simulation may bring to the problem new factors 

that need to be addressed, including the pendulum release angle and the size ratio of a L -

the ratio between the particle size and the string length.  

 

Over the investigated range of particle Stokes numbers, the influence distance in general 

increases with decreasing solid-to-liquid density ratio, which is in qualitative agreement 

with the experimental observations. A critical particle Stokes number is observed for a 

minimum fδ for 1.5p fρ ρ ≥ . This critical number decreases with decreasing density 

ratio while the resultant minimum influence distance increases with decreasing density 

ratio. 

 

 

6.3  Summary 
 

The proposed flow model was applied to investigate the local hydrodynamic forces 

during a pendulum impact on a wall. Since a collision process is intrinsically unsteady, 

the inclusion of the added mass force and the history force in the flow model is crucial 

for an accurate prediction. The two forces were shown to be of the same order of 

magnitude in the proximity of the wall. For a sphere of high solid-to-liquid density ratio, 

the added mass force is less important than for a light particle. Since both the added mass 

force and the history force depend strongly on the sphere forcing history, a rich behavior 

was observed in their dependences on the particle Stokes number and the density ratio. 
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An influence distance was defined to characterize the spatial interaction between the 

approaching surfaces. The full flow model was used to investigate how the particle 

Stokes number and the density ratio affect this length scale. Since the influence distance 

depends on the interstitial fluid motion, it exhibits complex correlation between the 

investigated parameters, which is in accordance with the observations for the fluid forces. 

However, a general trend was found that the influence distance decreases with increasing 

solid-to-liquid density ratio. Also noted is the existence of a critical impact Stokes 

number that results in a minimum influence distance for the investigated pendulum 

configuration. This critical value generally decreases with the density ratio. 
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Chapter 7 
 
 
Conclusion 
 

 

In the current work, the physics of an immersed collision have been investigated 

including the pre-collision and post-collision trajectories. Defining the normal along the 

line of centers when two spheres are in contact, the motion can be decomposed into its 

normal and tangential components of motion which are considered in this work with non-

negligible hydrodynamic effects. 

 

The experiments on the inter-particle immersed normal collision revealed two pertinent 

parameters that characterize the dynamic process. First, the effective coefficient of 

restitution serves as a measure of the particle momentum loss during one collision, taking 

into account the dissipation in both the solid and the liquid phases. The second parameter, 

the binary Stokes number, characterizes the particle inertia in terms of its ability to 

overcome the hydrodynamic forces sustaining the particle motion. The correlation 

between the two parameters exhibits a trend as observed in the experiments of particle-

wall immersed collisions. As the binary Stokes number decreases, the effective 

coefficient of restitution drops from unity. Zero restitution was found when the binary 

Stokes number decreases to a critical value, below which the particle pair possesses no 

relative motion after collision.  
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The tangential component of motion for an inter-particle oblique collision has been 

examined at the sphere centers of mass and also at the contact point where the particle 

rotation is considered. The mobility of the target particle and the interstitial liquid layer 

prevent a pure sticking contact while sliding motion is often observed at the contact point. 

It was shown that the rebound motion at the particle center of mass can be predicted by 

an existing contact model, as long as the model parameters can be modified for the liquid 

effects. Using the measured effective normal coefficient of restitution and a proper 

lubricated friction coefficient, the contact model is able to predict the rebound motion of 

the impact sphere, enabling a description of the post-collision motion of the impact 

sphere. Due to the mobility of the target sphere, the prediction of the rebound angle of 

this sphere needs modifications. However, a qualitative description is possible within the 

frame of this work.  

 

The normal effective coefficient of restitution has been determined to be the crucial 

parameter for an immersed collision. A general dependence on the binary Stokes number 

has been revealed for various immersed collisions–including the inter-particle collisions 

between identical or dissimilar spheres, as investigated in the current work, and the 

particle-wall collisions reported in the literature. The experimental finding motivated 

theoretical work that developed a flow model for the particle collision towards a wall and 

a feasible contact scheme. 

 

To build the flow model, three conventional hydrodynamic forces–the steady viscous 

drag, the added mass force, and the history force–are considered and they all require 

modifications for the presence of the wall. Besides Brenner’s wall correction on the 

steady viscous drag, the potential flow theory has been applied to modify the added mass 

force in this thesis. The presence of the wall introduces two new terms to the 

conventional added mass force–the first one behaves as an extra fluid mass that the 
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sphere needs to expel when accelerating and a second term affects the sphere motion like 

an additional dynamic pressure force. A modification on the history force is also proposed 

by considering the interplay of the unsteady boundary layer development and the wall-

modified pressure field of the potential flow outside the boundary layer. All three forces 

diverge when the gap drops to zero, which is responsible for the near-wall deceleration of 

the particle motion. Such wall-amplified effect has been confirmed by a general 

agreement between the actual velocity profile and the model prediction. 

 

As the last step of the building of the collision model, a rebound scheme has been 

developed that considers an asperity contact, an elstohydrodynamic contact, and a new 

mixed contact that considers the coupling between the first two schemes. Though no 

experimental evidence is available to validate the actual contact mechanism with the 

presence of interstitial liquid, the current collision model has been shown to better predict 

the effective coefficient of restitution than the existing EHL collision model, especially 

for an impact of a binary Stokes number about 100–400.  

 

In the extent of the current work, the characteristics of a fully immersed inter-particle 

collision have been developed. The seemingly simple geometry exhibits a rich 

phenomenon suggesting a complex bulk behavior that is still poorly understood. The 

scope of this research is to provide a more realistic interaction law found in most of the 

current simulations by either using the current experimental findings as an empirical 

relation or adopting the collision model developed in this thesis. The targeted flow 

problems are those mixtures with equally important liquid and solid effects.  
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Appendix 
 

This appendix provides the Fortran program used in chapter 4 for an immersed pendulum 

motion towards a wall.  

 

c-----Immersed Pendulum with wall [beyond creeping flow]-----------------  
c 
c factor on length scale (f_N:=Ltheta/2a) 
c History force: Kim's kernel 
c e_dry used (0.97 for steel and glass beads) 
c sign convention (u+,s- for approach)(u-,s- for rebound) 
c wall @ +a 
c Neville's algorithm for extrapolation 
c ** ds/dt = U 
c ** MpdU/dt = G -(Mp+Mf*/2)dU/dt -Fp-Fd-Fh 
c 
c-----------------------------------------fuling Jan/27/2006------------------------ 
       IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
       parameter (delt = 1.0D-3) 
       parameter (len =  1000/ delt, no=4) 
 parameter (conv  =1.0D-5,mo1=5,mo2=200,mo3=1) 
 parameter (conv2 =1.0D-8 ) 
 parameter (pi = 3.1415926D0) 
 real(8) dudt(len),u(len),t(len) 
 real(8) yprv(no),zprv(no),aprv(no) 
 open (1,file='PDW3A_a.txt') 
            open (2,file='PDW3A_b.txt') 
            open (3,file='PDW3A_c.txt') 
 
c--input parameter------------------------------------------------ 
c Ton: cha. conv. time, ReT: cha. Reynolds number  
c DR: density ratio, ang_ini: release angle, pd: particle diameter 
c sL: string length, xc: rebound position 
c----------------------------------------------------------------- 
        Ton = 1.4127D0 
        ReT = 198.952D0 
        DR = 7.6D0 
        ang_ini = 10.D0 
        pd = 6.35D0 
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        test = 0.6D0 
        sL = 105.D0 
        aL = 0.5D0*pd/sL 
        thre = conv 
        xc = 1.29D-6 
        e_dry = 0.97D0 
c--e_wet: dissipation parameter 
c        e_wet = 1.D0 
        e_wet = 1.D0-12.D0/12.8934D0 
c--initial angle in radians  
       s0 = ang_ini*pi/180.D0 
c--testing distances 
       p1 = 0.6D0 
       p2 = 0.1D0 
c--y: circumf. position, z: velocity 
       tini = 0.D0 
       yini = -1.D0 
       zini = 0.0 
c--uter field PD file 
      step = delt*10.D0 
      write (1,*) 'dia=',pd,'DR=',DR 
      write (1,*) 'Re=',ReT,'Ton=',Ton 
      write (1,*) 'aL=',aL,'iniang=',ang_ini 
      write (1,*) 'edry=',e_dry,'e_wet=',e_wet 
      write (1,*) 'xc=',xc 
      write (1,80) '1-tn','2-pos','3-h*','4-vel','5-vh','6-fg','7-fd', 
     &       '8-fa','9-fh','10-fp','11-dudt','12-ems','13-cd1','14-HF' 
      re = abs(zini) * ReT 
      cd = 1.D0 + 0.15D0 * re**(0.687D0) 
      hist = 0.D0 
      tn = tini 
      yn = yini 
      zn = zini 
      dudt = 0.D0 
c--Added mass subroutine (outer) 
      call amout(yn,aL,s0,w0,dw0) 
      aa = DR + 0.5D0*(1.D0 + 3.D0*w0) 
      dzdt = -(DR-1.D0)*(Ton**2.D0)*dsin(yn*s0)/aa/s0 
 
       m = 1 
       u(m) = zn 
       dudt(m) = dzdt 
       t(m) = tn 
c--impact motion (out-regime)------------------------- 
       do 10  i=1,9999999 
       call rk4 (tn,yn,zn,t,u,dudt,len,m,Ton,DR,aL,s0,ReT, 
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     &           step,ynn,znn) 
           yn = ynn 
           zn = znn 
           tn = tn + step 
 
       call histKim(tn,t,u,dudt,len,m,aL,s0,ReT,hist) 
       call Hfact(yn,aL,s0,H_N) 
       hist = hist * H_N 
       call derivg (yn,zn,Ton,DR,aL,s0,ReT,hist,ems, 
     &                 fg,fd,fp,fh,dzdt) 
           yh = dsin(yn*s0)/(2.D0*aL) 
 
           if (mod(i,mo1).eq.0) then 
           fa =  -dzdt*(ems-DR)/ems + fp 
c--output yh : gap/D 
           vh = zn*dcos(yn*s0) 
           write (1,87) tn,yn,yh,zn,vh,fg,fd,fa,fh,fp,dzdt,ems,cd,H_N 
           end if 
       m = m + 1 
       u(m) = dabs(zn) 
       dudt(m) = dzdt 
       t(m) = tn 
c--matching of outer/inner viscous drag 
       if (yh .ge. -p1) then 
          if (yh .le. -xc) then 
          re = ReT * dabs(zn) 
          sc = dsin(yn*s0)/aL 
          be = 1.D0/dabs(sc) - 0.2D0*(1.D0+0.25D0*re)*dLOG(dabs(sc)) 
          cd = 1.D0 + 0.15D0 * (re**0.687D0) 
          print *,be,cd 
          if (dabs(be-cd) .le. test) then 
          goto 30 
          end if 
          else      
          goto 90 
          end if 
       end if      
       if (zn .le. conv2) then 
       print *, 'stop in outer regime' 
       goto 90 
       end if 
10   continue 
*********************************************************** 
*                !Near Wall regime!                             
*********************************************************** 
  30   print *,'near-wall regime' 
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c--Re_imp for Brenner's correction factor 
       Re_imp = ReT * dabs(zn) 
       step = delt/10.D0 
       mo4 = 5 
       write (2,*) 'dia=',pd,'DR=',DR 
       write (2,*) 'Re=',ReT,'Ton=',Ton 
       write (2,*) 'aL=',aL,'iniang=',ang_ini 
       write (2,*) 'edry=',e_dry,'e_wet=',e_wet 
       write (2,*) 'xc=',xc,'Re_imp',Re_imp 
       write (2,80) '1-tn','2-pos','3-h*','4-vel','5-vh','6-fg','7-fd', 
      &   '8-fa','9-fh','10-fp','11-dudt','12-ems','13-lamda','14-H_F' 
c--Added mass (inner regime)--------------------------------------------- 
      call amin(yn,aL,s0,w0,dw0) 
      aa = DR + 0.5D0*(1.D0 + 3.D0*w0) 
      sc = dsin(yn*s0)/aL 
      be = 1.D0/dabs(sc) - 0.2D0*(1.D0+0.25D0*Re_imp)*dLOG(dabs(sc)) 
c-------------------------------------------------------------------------------- 
      dzdt  = - (DR-1.D0)*(Ton**2.D0)*dsin(yn*s0)/aa/s0 
     &        - 9.D0*s0*dabs(be*zn)/aL/ReT/aa 
     &        - 0.75D0*s0*dabs(dw0)*zn*zn/aL/aa 
     &        - 9.0D0*s0*hist/aL/ReT/aa 
c--velocity, acceleration history string 
      u(m) = zn 
      dudt(m) = dzdt 
      t(m) = tn 
c--Neville's 
           yn05 = 0.D0 
           zn05 = 0.D0 
           yn04 = 0.D0 
           zn04 = 0.D0 
           yn03 = 0.D0 
           zn03 = 0.D0 
           yn02 = 0.D0 
           zn02 = 0.D0 
           yn01 = 0.D0 
           zn01 = 0.D0 
 
       do 40 i=1,99999999 
           yn05 = yn04 
    zn05 = zn04 
           yn04 = yn03 
           zn04 = zn03 
           yn03 = yn02 
           zn03 = zn02 
           yn02 = yn01 
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           zn02 = zn01 
           yn01 = yn 
           zn01 = zn 
       call rk41W(tn,yn,zn,t,u,dudt,len,m,Ton,DR,aL,s0,ReT,Re_imp, 
     &            step,ynn,znn) 
           yn = ynn 
           zn = znn 
           tn = tn + step 
       call histKim(tn,t,u,dudt,len,m,aL,s0,ReT,hist) 
       call Hfact(yn,aL,s0,H_N) 
       hist = hist * H_N 
 
       call deg1(yn,zn,Ton,DR,aL,s0,ReT,hist,Re_imp, 
     &    ems,fg,fd,fp,fh,bre,dzdt) 
 
c--output forces: viscous drag(fd), pressure(fp),history force(fh)------- 
       if (yn .le. -xc) then 
          if (yn .ge. -10.D0*xc) then 
  step = delt / 100.D0 
  mo4 = 1 
   end if 
   if (zn .ge. conv2) then 
          if (mod(i,mo4) .eq. 0) then 
          fa = -dzdt*(ems-DR)/ems + fp 
          yh = dsin(yn*s0)/(2.D0*aL) 
          vh = zn*dcos(yn*s0) 
          write (2,87) tn,yn,yh,zn,vh,fg,fd,fa,fh,fp,dzdt,ems,bre,H_N 
          end if 
          m = m + 1 
          u(m) = zn 
          dudt(m) = dzdt 
          t(m) = tn 
          else 
          print *,'stop before wall' 
          goto 90 
          end if 
       else 
c-----extrapolate velocity, acceleration at xc-------------------------- 
       write (3,87) tn,yn,yh,zn,vh,fg,fd,fa,fh,fp,dzdt,ems,bre,H_N 
       aprv = (/dudt(m-4), dudt(m-3), dudt(m-2), dudt(m-1)/) 
       yprv = (/yn05, yn04, yn03, yn02/) 
       zprv = (/zn05, zn04, zn03, zn02/) 
       tn = tn-step+(dabs(yn01)-xc)/dabs(zn01) 
       yn = -xc 
c--Neville's algorithm 
       call polint(yprv,zprv,no,-xc,zn,d_zn) 
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       call polint(yprv,aprv,no,-xc,dzdt,d_zn) 
       print *,'wall=',xc 
       write (2,87) tn,yn,yh,zn,vh,fg,fd,fa,fh,fp,dzdt,ems,bre,H_N 
       goto 50 
       end if 
  40   continue 
c-----!rebound!--------------------------------------------------------- 
  50  print *, 'rbd course' 
      zn = -zn * e_dry *e_wet 
      print *,'rbd velocity=',zn 
      u(m) = zn 
      t(m) = tn 
      step = delt/10.D0 
      write (3,*) 'dia=',pd,'DR=',DR 
      write (3,*) 'Re=',ReT,'Ton=',Ton 
      write (3,*) 'aL=',aL,'iniang=',ang_ini 
      write (3,*) 'edry=',e_dry,'e_wet=',e_wet 
      write (3,*) 'xc=',xc 
      write (3,80) '1-tn','2-pos','3-h*','4-vel','5-vh','6-fg','7-fd', 
     & '8-fa','9-fh','10-fp','11-dudt','12-ems','13-lamda','14-H_N' 
 
      do 60 i=1,99999999 
      call rk42W(tn,yn,zn,t,u,dudt,len,m,Ton,DR,aL,s0,ReT,Re_imp, 
     &           step,ynn,znn) 
            yn = ynn 
            zn = znn 
            tn = tn + step 
       call histKim(tn,t,u,dudt,len,m,aL,s0,ReT,hist) 
       call Hfact(yn,aL,s0,H_N) 
       hist = hist * H_N 
       call deg2(yn,zn,Ton,DR,aL,s0,ReT,hist,Re_imp, 
     &      ems,fg,fd,fp,fh,bre,dzdt) 
       if (yh .ge. -p2) then 
          if (zn .le. -conv2) then 
          if (mod(i,mo3) .eq. 0) then 
          fa =  -dzdt*(ems-DR)/ems + fp 
          yh = dsin(yn*s0)/(2.D0*aL) 
          vh = zn*dcos(yn*s0) 
          write (3,87) tn,yn,yh,zn,vh,fg,fd,fa,fh,fp,dzdt,ems,bre,H_N 
          end if 
          m = m + 1 
          u(m) = zn 
          dudt(m) = dzdt 
          t(m) = tn 
          else 
          goto 92 
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          endif 
   else  
   goto 90 
   endif 
  60   continue 
 
  80  format(1x,A16,1x,A16,1x,A16,1x,A16,1x,A16,1x,A16,1x,A16,1x,A16, 
     &       1x,A16,1x,A16,1x,A16,1x,A16,1x,A16,1x,A16) 
  87  format(1x,F16.8,1x,F16.8,1x,F16.8,1x,F16.8,1x,F16.8,1x,F16.8, 
     &       1x,F16.8,1x,F16.8,1x,F16.8,1x,F16.8,1x,F16.8,1x,F16.8, 
     &       1x,F16.8,1x,F16.8) 
 
  90  print *,'stop in out regime' 
  92  print *,'stop after rbd' 
  94  print *,'finish one collision' 
      pause 
      end 
c*********************************************************** 
c     History force: Kim et al. 
c********************************************************** 
      subroutine histKim(time,t,u,dudt,len,m,aL,s0,ReT,sum) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      real(8) t(len),u(len),dudt(len) 
c-----time: present time 
      pi=3.1415926D0 
      c1 = 2.5D0 
      c2 = 22.D0 
      c3 = 0.07D0 
      c4 = 0.25D0 
      c5 = 0.126D0 
      sum = 0.D0 
 
      do 200 j = 1,m-1 
      eta = (time - t(j)) 
      re  = ReT * dabs(u(j)) 
      vf3 = (dabs(u(j))/(0.75D0 + c5*re))**3.D0 
      if (j .eq. 1) then 
      G = 1.D0 
      dk  = (2.D0*pi*s0*eta/aL/ReT)**0.25D0 
     &       + G*(0.25D0*pi*s0*s0*eta*eta*ReT*vf3/aL/aL)**(1/c1) 
      else 
      ac1 = dabs(dudt(j))/(u(j)**2.D0) 
 
      if (dudt(j) .eq. 0.D0) then 
      beta = 0.D0 
      else 
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      acr = dabs(dudt(j)-dudt(j-1))/(t(j)-t(j-1))/dabs(u(j)*dudt(j)) 
      beta = c2 / (1.D0 + acr**(1.D0+c4)/c3/(acr+acr**c4)) 
      endif 
      G = 1.D0 / (1.D0 + beta*dsqrt(ac1)) 
      dk  = (2.D0*pi*s0*eta/aL/ReT)**(0.5D0/c1) 
     &       + G*(0.25D0*pi*s0*s0*eta*eta*ReT*vf3/aL/aL)**(1/c1) 
      endif 
      sum = sum + dudt(j)*(t(j+1)-t(j))/(dk**c1) 
200   continue 
      return 
      end 
 
c*********************************************************** 
c     Wall correction term for Added mass force (outer) 
c*********************************************************** 
      subroutine amout(pos,aL,s0,w,dw) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----h* :=h/a (where s*:=s/2a)-------- 
      w = 0.D0 
      dw = 0.D0 
      dh = dsin(dabs(pos)*s0)/aL + 1.D0 
      hh = dh**2.D0 
 
      w = 1.D0/(8.D0*(dh**3.D0)) + 1.D0/(4.D0*hh-1.D0)**3.D0 
     & +1.D0/(4.D0*dh*(2.D0*hh-1.D0))**3.D0 
     & +1.D0/(16.D0*hh*hh-12.D0*hh+1.D0)**3.D0 
     & +1.D0/(2.D0*dh*(16.D0*hh*hh-16.D0*hh+3.D0))**3.D0 
     & +1.D0/(64.D0*(hh**3.D0)-80.D0*hh*hh+24.D0*hh-1.D0)**3.D0 
     &+1.D0/(8.D0*dh*(16.D0*(hh**3.D0)-24.D0*hh*hh+10.D0*hh-1.D0))**3.D0 
 
      dw = 1.D0/(128.D0*hh*(hh-1.D0)*((2.D0*hh-1.D0)**3.D0)) 
     & - 1.5D0*dh*(4.D0*hh-3.D0)/((hh-1.D0)*((4.D0*hh-1.D0)**4.D0)) 
     & + 0.5D0*dh/((hh-1.D0)*((4.D0*hh-1.D0)**3.D0)) 
     & - (8.D0*hh*(hh-1.D0)+1.D0)/ 
     &   (128.D0*hh*hh*(hh-1.D0)*((2.D0*hh-1.D0)**4.D0)) 
 & + 1.D0/(16.D0*hh*(hh-1.D0)) 
 & -(2.D0*hh-1.D0)/(16.D0*hh*hh*(hh-1.D0)) 
      return 
      end 
c*********************************************************** 
c     Wall correction term on AM (inner) 
c*********************************************************** 
      subroutine amin(pos,aL,s0,w,dw) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----h* :=h/a (where s*:=s/2a)-------- 
      w = 0.D0 
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      dw = 0.D0 
      dh = dsin(dabs(pos)*s0)/aL + 1.D0 
      hh = dh**2.D0 
 
      w = 1.D0/(8.D0*(dh**3.D0)) + 1.D0/(4.D0*hh-1.D0)**3.D0 
     & +1.D0/(4.D0*dh*(2.D0*hh-1.D0))**3.D0 
     & +1.D0/(16.D0*hh*hh-12.D0*hh+1.D0)**3.D0 
     & +1.D0/(2.D0*dh*(16.D0*hh*hh-16.D0*hh+3.D0))**3.D0 
     & +1.D0/(64.D0*(hh**3.D0)-80.D0*hh*hh+24.D0*hh-1.D0)**3.D0 
     &+1.D0/(8.D0*dh*(16.D0*(hh**3.D0)-24.D0*hh*hh+10.D0*hh-1.D0))**3.D0 
 
      dw = 0.240636D0 - 0.000230238D0/(dh-1.D0)**0.5D0 
     &   - 0.310507D0*(dh-1.D0)**0.5D0 + 0.0660344D0*(dh-1.D0) 
     &   + 0.0979599*dLog(dh-1.D0) 
     &   - 0.000205554D0*dLog(dh-1.D0)/(dh-1.D0)**0.5D0 
      return 
      end 
c*********************************************************** 
c     History factor augmentaion factor H(epsilon) 
c*********************************************************** 
      subroutine Hfact(pos,aL,s0,HF) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----h* :=h/a (where pos = Ltheta/Ltheta0)------ 
      dh = dsin(dabs(pos)*s0)/aL + 1.D0 
      hh = dh**2.D0 
      h3 = dh**3.D0 
 
      HF = 1.D0 - 3.D0/(1.D0 - 4.D0*hh)**3.D0 
     &  - 0.015625D0/(dh - 2.D0*h3)**3.D0 
     &  + 3.D0/(1.D0 - 12.D0*hh + 16.D0*hh*hh)**3.D0 
     &  + 0.375D0/(3.D0*dh - 16.D0*h3 + 16.D0*hh*h3)**3.D0 
     &  + (0.375D0 - 0.03125D0/(1.D0 - 2.D0*hh)**3.D0)/dh**3.D0 
      HF = dabs(HF)**1.5D0 
      return 
      end 
******Outer PD********************************************** 
      subroutine derivg(pos,vel,Ton,DR,aL,s0,ReT,hsum,am, 
     &    f_grav,f_drag,f_pres,f_hist,dy) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----y:position/ z:vel 
c-----sref: reference gravity scale 
      dh = dabs(dsin(pos*s0)/aL) 
  if (dh .lt. 1.D0) then 
  call amin(pos,aL,s0,w,dw) 
  else 
         call amout(pos,aL,s0,w,dw) 
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  endif 
 
      am = DR + 0.5D0 * (1.D0 + 3.D0*w) 
      re = ReT * dabs(vel) 
      c_d = 1.D0 + 0.15D0*(re**(0.687D0)) 
 
      f_grav = - (DR-1.D0)*(Ton**2.D0)*dsin(pos*s0)/am/s0 
      f_drag = -9.0D0*s0*dabs(vel)*c_d/aL/ReT/am 
      f_hist = -9.0D0*s0*hsum/aL/ReT/am 
      f_pres = -0.75D0*s0*dabs(dw)*vel*vel/aL/am 
      dy = f_grav + f_drag + f_hist + f_pres 
      return 
      end 
******outer PD for RK4*************************************** 
      subroutine derivgRK4(pos,vel,Ton,DR,aL,s0,ReT,hsum,dy) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      dh = dabs(dsin(pos*s0)/aL) 
  if (dh .lt. 1.D0) then 
  call amin(pos,aL,s0,w,dw) 
  else 
         call amout(pos,aL,s0,w,dw) 
  endif 
      am = DR + 0.5D0 * (1.D0 + 3.D0*w) 
      re = ReT * dabs(vel) 
      c_d = 1.D0 + 0.15D0*(re**(0.687D0)) 
      dy = - (DR-1.D0)*(Ton**2.D0)*dsin(pos*s0)/am/s0 
     &     -9.0D0*s0*dabs(vel)*c_d/aL/ReT/am 
     &     -9.0D0*s0*hsum/aL/ReT/am 
     &     -0.75D0*s0*dabs(dw)*vel*vel/aL/am 
      return 
      end 
******Outer PD********************************************** 
      subroutine rk4(trk4,yrk4,zrk4,t,u,dudt,len,m,Ton, 
     &    DR,aL,s0,ReT,step,yout,zout) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----t,y,z: time, position, velocity inputs 
      real(8) t(len),u(len),dudt(len) 
      h6 = step/6.D0 
c-----xh:time, yh:position, zh: velocity 
      th = trk4 + 0.5D0*step 
      yh = yrk4 + 0.5D0*step*u(m) 
      zh = zrk4 + 0.5D0*step*dudt(m) 
c ----k2 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
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      dyt = dabs(zh) 
      call derivgRK4(yh,zh,Ton,DR,aL,s0,ReT,hsum,dzt) 
      yh = yrk4 + 0.5D0*step*dyt 
      zh = zrk4 + 0.5D0*step*dzt 
c ----k3 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
      dym = dabs(zh) 
      call derivgRK4(yh,zh,Ton,DR,aL,s0,ReT,hsum,dzm) 
      yh = yrk4 + step*dym 
      zh = zrk4 + step*dzm 
      dym = dyt + dym 
      dzm = dzt + dzm 
c ----k4 
      th = trk4 + step 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
      dyt = dabs(zh) 
      call derivgRK4(yh,zh,Ton,DR,aL,s0,ReT,hsum,dzt) 
      yout = yrk4 + h6*(u(m) + 2.D0*dym + dyt) 
      zout = zrk4 + h6*(dudt(m) + 2.D0*dzm + dzt) 
      return 
      end 
c********************************************************** 
c                  !near wall subroutines!                           
c**********************************************************  
      subroutine deg1(pos,vel,Ton,DR,aL,s0,ReT,hsum,Re_imp, 
     &    am,f_grav,f_drag,f_pres,f_hist,B,dy) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----Re_imp: inner field impact Reynold's number 
      call amin(pos,aL,s0,w,dw) 
      am = DR + 0.5D0 * (1.D0 + 3.D0*w) 
      re = ReT * dabs(vel) 
      c_d = 1.D0 
      dh = dsin(pos*s0)/aL 
      B = 1.D0/dabs(dh) - 0.2D0*(1.D0+0.25D0*Re_imp)*dLOG(dabs(dh)) 
      f_grav = - (DR-1.D0)*(Ton**2.D0)*dsin(pos*s0)/am/s0 
      f_drag = -9.D0*s0*c_d*dabs(B*vel)/aL/ReT/am 
      f_pres = -0.75D0*s0*dabs(dw)*vel*vel/aL/am 
      f_hist = -9.0D0*s0*hsum/aL/ReT/am 
      dy =  f_grav + f_drag + f_pres + f_hist 
      return 
      end 
******rebound subroutine************************************** 



 181
      subroutine deg2(pos,vel,Ton,DR,aL,s0,ReT,hsum,Re_imp, 
     &    am,f_grav,f_drag,f_pres,f_hist,B,dy) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----re0: inner field impact Reynold's number 
      call amin(pos,aL,s0,w,dw) 
      am = DR + 0.5D0 * (1.D0 + 3.D0*w) 
      re = ReT * dabs(vel) 
      c_d = 1.D0 
      dh = dsin(pos*s0)/aL 
      B = 1.D0/dabs(dh) - 0.2D0*(1.D0-0.25D0*Re_imp)*dLOG(dabs(dh)) 
      f_grav = - (DR-1.D0)*(Ton**2.D0)*dsin(pos*s0)/am/s0 
      f_drag = +9.D0*s0*c_d*dabs(B*vel)/aL/ReT/am 
      f_pres = -0.75D0*s0*dabs(dw)*vel*vel/aL/am 
      f_hist = -9.0D0*s0*hsum/aL/ReT/am 
      dy =  (f_grav + f_drag + f_pres + f_hist) 
      return 
      end 
******NW for RK4******************************************* 
      subroutine derk41W(pos,vel,Ton,DR,aL,s0,ReT,Re_imp,hsum,dy) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----Re_imp: inner field impact Reynold's number 
      call amin(pos,aL,s0,w,dw) 
      am = DR + 0.5D0 * (1.D0 + 3.D0*w) 
      re = ReT * dabs(vel) 
      c_d = 1.D0 
      dh = dsin(pos*s0)/aL 
      B = 1.D0/dabs(dh) - 0.2D0*(1.D0+0.25D0*Re_imp)*dLOG(dabs(dh)) 
      dy  = - (DR-1.D0)*(Ton**2.D0)*dsin(pos*s0)/am/s0 
     &      -9.D0*s0*c_d*dabs(B*vel)/aL/ReT/am 
     &      -0.75D0*s0*dabs(dw)*vel*vel/aL/am 
     &      -9.0D0*s0*hsum/aL/ReT/am 
      return 
      end 
 
******NW rebound for RK4************************************ 
      subroutine derk42W(pos,vel,Ton,DR,aL,s0,ReT,Re_imp,hsum,dy) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
c-----Re_imp: inner field impact Reynold's number 
      call amin(pos,aL,s0,w,dw) 
      am = DR + 0.5D0 * (1.D0 + 3.D0*w) 
      re = ReT * dabs(vel) 
      c_d = 1.D0 
      dh = dsin(pos*s0)/aL 
      B = 1.D0/dabs(dh) - 0.2D0*(1.D0-0.25D0*Re_imp)*dLOG(dabs(dh)) 
      dy  = - (DR-1.D0)*(Ton**2.D0)*dsin(pos*s0)/am/s0 
     &      +9.D0*s0*c_d*dabs(B*vel)/aL/ReT/am 
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     &      -0.75D0*s0*dabs(dw)*vel*vel/aL/am 
     &      -9.0D0*s0*hsum/aL/ReT/am 
      return 
      end 
******NW************************************************** 
      subroutine rk41W(trk4,yrk4,zrk4,t,u,dudt,len,m,Ton,DR,aL,s0, 
     &                 ReT,Re_imp,step,yout,zout) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      real(8) t(len),u(len),dudt(len) 
      h6 = step/6.D0 
      th = trk4 + 0.5D0*step 
      yh = yrk4 + 0.5D0*step*u(m) 
      zh = zrk4 + 0.5D0*step*dudt(m) 
c-----k2----------- 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
      dyt = dabs(zh) 
      call derk41W(yh,zh,Ton,DR,aL,s0,ReT,Re_imp,hsum,dzt) 
      yh = yrk4 + 0.5D0*step*dyt 
      zh = zrk4 + 0.5D0*step*dzt 
c-----k3----------- 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
      dym = dabs(zh) 
      call derk41W(yh,zh,Ton,DR,aL,s0,ReT,Re_imp,hsum,dzm) 
      yh = yrk4 + step*dym 
      zh = zrk4 + step*dzm 
      dym = dyt + dym 
      dzm = dzt + dzm 
c-----k4------------ 
      th = trk4 + step 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
      dyt = dabs(zh) 
      call derk41W(yh,zh,Ton,DR,aL,s0,ReT,Re_imp,hsum,dzt) 
      yout = yrk4 + h6*(u(m) + 2.D0*dym + dyt) 
      zout = zrk4 + h6*(dudt(m) + 2.D0*dzm + dzt) 
      return 
      end 
******NW rebound******************************************* 
      subroutine rk42W(trk4,yrk4,zrk4,t,u,dudt,len,m,Ton,DR,aL,s0, 
     &           ReT,Re_imp,step,yout,zout) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
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      real(8) t(len),u(len),dudt(len) 
      h6 = step/6.D0 
      th = trk4 + 0.5D0*step 
      yh = yrk4 + 0.5D0*step*u(m) 
      zh = zrk4 + 0.5D0*step*dudt(m) 
c-----k2----------- 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
      dyt = zh 
      call derk42W(yh,zh,Ton,DR,aL,s0,ReT,Re_imp,hsum,dzt) 
      yh = yrk4 + 0.5D0*step*dyt 
      zh = zrk4 + 0.5D0*step*dzt 
c-----k3----------- 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
      dym = zh 
      call derk42W(yh,zh,Ton,DR,aL,s0,ReT,Re_imp,hsum,dzm) 
      yh = yrk4 + step*dym 
      zh = zrk4 + step*dzm 
      dym = dyt + dym 
      dzm = dzt + dzm 
c-----k4------------ 
      th = trk4 + step 
      call histKim(th,t,u,dudt,len,m,aL,s0,ReT,hsum) 
      call Hfact(yh,aL,s0,HN) 
      hsum = hsum * HN 
      dyt = zh 
      call derk42W(yh,zh,Ton,DR,aL,s0,ReT,Re_imp,hsum,dzt) 
      yout = yrk4 + h6*(u(m) + 2.D0*dym + dyt) 
      zout = zrk4 + h6*(dudt(m) + 2.D0*dzm + dzt) 
      return 
      end 
*********************************************************** 
      subroutine polint(xa,ya,n,x,y,d_y) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      integer n,NMAX 
      real(8) dy,x,y,xa(n),ya(n) 
      parameter (NMAX=10) 
      integer i,m,ns 
      real(8) den,dif,dift,ho,hp,ww,c(NMAX),d(NMAX) 
      ns = 1 
      dif = dabs(x-xa(1)) 
 
      do 3011 i = 1,n 
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       dift = dabs(x-xa(i)) 
       if (dift .lt. dif) then 
           ns = i 
           dif = dift 
       endif 
       c(i) = ya(i) 
       d(i) = ya(i) 
3011    continue 
 
      y = ya(ns) 
      ns = ns-1 
 
      do 3013 m = 1,n-1 
       do 3012 i = 1,n-m 
           ho = xa(i) - x 
           hp = xa(i+m) - x 
           ww = c(i+1) -d(i) 
           den = ho-hp 
 
           if (den .eq. 0) pause 
           print *,'failure in polint' 
           den = ww /den 
           d(i) = hp * den 
           c(i) = ho * den 
 3012      continue 
       if (2*ns .lt. n-m) then 
           d_y = c(ns+1) 
       else 
           dy = d(ns) 
           ns = ns -1 
       endif 
       y = y + d_y 
 3013  continue 
      return 
      end 
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