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Abstract

The patterns in which individuals interact with each other have important con-

sequences for determining outcomes across a wide variety of contexts. One notable

phenomenon that relies on these interactions is social learning. Social learning oc-

curs when asymmetrically informed individuals have the opportunity to observe the

choices of others and to incorporate this information when making their own choices.

Under certain assumptions this process leads to information cascades in which the

ability to learn from others ceases before any sound conclusion is reached. To the

extent this theory is valid, the implications for information aggregation are quite

negative. However, casual empiricism suggests that such an inefficiency is unlikely:

many people making similar decisions over time are very unlikely to be continually

wrong. The first two chapters address this discrepancy.

Experiments that implement a standard social learning paradigm are reported.

A novel feature of the data is that we examine long sequences of decisions (up to

forty) and study the effects of different signal qualities. In contrast to standard

equilibrium predictions, a pattern of cascade formation, collapse, and re-formation is

routinely observed. The main implication of these dynamics is that learning continues

throughout the sequence of decisions, so that the truth is nearly revealed. Quantal

Response Equilibrium, augmented to allow for non-rational belief updating in the

form of base-rate neglect, explains nearly all the features of the data.

One assumption underlying most studies of observational learning is that the order

in which individuals choose is exogenously fixed. In many applications, however,

strategic considerations play a major role in determining the timing of decisions. To

understand how timing issues impact the ability to learn from others’ decisions, I

study a model in which decision times are strategic variables and individuals have

heterogeneous signal qualities. The main finding is that with two players, the player

with better information announces first in (the unique) equilibrium. Consequently,
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both players make the same decision, as in a herd, but because of the sorting effect, the

outcome is informationally efficient. It is also shown that the game ends immediately

as the time interval vanishes. In comparison to the standard exogenous sequence

assumption, welfare is always higher under strategic timing. When there are many

players, a herd forms immediately, and it is always on the correct action because early

decision makers have the best information, and their choices reveal the true state.

We next study a model that addresses how social networks form in strategic

settings. Individuals allocate a budget of resources across others, creating directed,

continuously valued links. In many applications, a (directed) link confers benefit to

both individuals involved in the link. By separating this benefit flow into “giving”

and “taking” components, we are able to study the implications for efficiency. The

main finding is that inefficiencies at equilibrium are due only to the giving of benefit.

We also relate network structures to underlying heterogeneity of players.

The final chapter analyzes large-scale social networks. The main question concerns

how correlation patterns in links across individuals affect the diffusion of a virus or

rumor. A surprise is that in all of the simulations considered, the Susceptible-Infected-

Susceptible (SIS) model behaves identically on networks with varying correlation

patterns. These are the first results in this context that isolate the role of correlation

structures.
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Chapter 1

Summary

Social interactions are a fundamental ingredient of everyday life, affecting many of

the decisions we make, ranging from whom to vote for in political elections, to what

kind of personal computer to buy, from how to invest financial assets, to what job

opportunities to explore. Despite the prevalence and importance of such examples,

until recently the vast majority of economics research—with important exceptions—

ignored most aspects of social interactions and, consequently, their possible implica-

tions for outcomes in these settings. This thesis, presented in the following chapters,

addresses a series of questions relating to the economic incentives and consequences

of social interactions.

The work contained herein adds to the understanding of social interactions from

a variety of perspectives. There are at least two dimensions along which the chapters

can be categorized. The first dimension is methodological. This thesis takes the per-

spective that, when feasible, the most powerful way to analyze a problem is through

the combination of rigorous formal modeling and sound empirical investigation. The

next chapter’s analysis is based on data collected from a series of laboratory experi-

ments. Experimental economics is quickly becoming one of the major paradigms of

modern research, and for good reason: laboratory experiments give researchers the
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ability to control the environment in which decision makers operate in ways that are

very useful, and usually impossible in the field.

The current application to social learning is a good example. As described below,

we will study a situation in which individuals observe a number of others making

a choice before having to make a similar choice themselves. It is thus important

to be able to assess what information individuals have when making their choices,

including their prior beliefs over an uncertain outcome, and which other individuals

they observed, as well as the information obtained by those other individuals at the

times of their decisions, and so forth. The use of laboratory experiments allows

researchers to obtain very high controls over these quantities, and thereby facilitates

the study of how people learn from the observations of others.

After Chapter 2, this thesis takes a formal mathematical approach to analyzing

social interactions in Chapters 3 and 4. This work is quite complimentary with

the experimental portion of the thesis, and together they provide some powerful

conclusions. Whereas the experimental data helps answer the positive questions of

“How do individuals behave, and what are the consequences for their welfare and the

long run behavior of their beliefs?,” the formal analysis is better suited to identifying

situations in which welfare tends to be higher and seeks to provide ways in which to

align the incentives of individuals so that they will find it optimal to make the choices

that are socially welfare-improving.

The final chapter uses computer simulations to explore a diffusion model on large

social networks. The particular question has proven very difficult to analyze analyti-

cally, and the scale of the problem is prohibitive to running experiments. It is in these

situations that simulations can reveal regularities that would otherwise be elusive.

One of the reasons that the combination of experiments, simulations, and math-

ematical modeling is useful is that the approaches are complimentary. In addition

to the fact that the methodologies are better suited to addressing different kinds of
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questions, a good theory is useful in designing experiments that will be the most infor-

mative, and good experiments give insights into the determinants of human behavior

that should be incorporated into theoretical models. This interplay is perhaps best

exemplified in Chapter 2 in which a long-run theoretical prediction motivated the

design of the experiments. The same theory also makes short-run predictions, which

are testable using our data. To the extent that the basic theory can not explain the

data, additional behavioral factors are identified that, when incorporated, are able to

better explain the data, and therefore generate a more adequate theory of behavior.

Incorporating these additional motivations into the theory requires a re-assessment

of its predictions, which is carried out to interesting conclusions.

The second dimension that these chapters can be categorized along is substantive.

That is, the chapters address fundamentally different issues related to the phenomena

of social interactions. The next two chapters are concerned with the idea of social

learning, in which individuals learn through the observation of others’ decisions before

making their own decision. The last two chapters deal with social networks in which

the main objects of study are the patterns in which individuals are connected to each

other and the consequences this structure has for the benefits individuals can obtain

from each other. The remainder of this summary explains in more detail the goals of

the subsequent chapters and how they are related to each other.

Clearly, one function of social interactions that could have economic consequences

is the exchange of ideas and information. The flow of information across individuals

can have large effects in many contexts, including fashion, fads, purchases of con-

sumer goods, product differentiation, and investments. In each of these examples,

the ability to observe others making a particular decision can affect the optimal de-

cision of the observer. The reason is very simple: in a common value framework,

where individuals all share the same interests but face aggregate uncertainty, observ-

ing another individual’s choice communicates what action that individual viewed as
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the optimal choice. If others have the same preferences (or preferences that differ in

certain known ways), then the fact that one person found a particular choice optimal

is valuable information to others. For this reason, when making decisions individuals

should pay attention to how others have behaved in similar situations and to what

information those individuals based their decisions on.

A first attempt at modeling the dynamics of choices and beliefs in such a context

works as follows (see Bikchandani et al. (1992)). There is a random state variable,

the outcome of which is unobserved, but there is a common prior distribution shared

by all. Individuals all have the same preferences, which are such that the optimal

action depends on the realization of the state variable. Each individual receives an

informative signal about the state variable and must make a decision from a specified

set of possibilities in an exogenously given sequence. The social learning element is

that each individual observes the entire history of decisions that precedes them (but

not the signals of those individuals).

Under certain symmetry assumptions, the equilibrium outcomes of this game have

a very negative information aggregation property. In particular, there is no equilib-

rium in which anyone learns more about the outcome of the state variable than the

amount of information contained in any two private signals. Thus even in arbitrarily

large populations, with many people observing the actions of many others, hardly

any learning takes place. In other words, the mechanism of social learning described

by this model is extraordinarily inefficient.

The next two chapters aim to identify mechanisms through which this negative

result may be alleviated or even reversed. The data presented in Chapter 2 are com-

pletely inconsistent with standard equilibrium predictions. The proposed explanation

relies on Quantal Response Equilibrium (see McKelvey and Palfrey (1995, 1998)).

In QRE, players systematically deviate from best responses by playing suboptimal

strategies with positive probabilities that are decreasing in the expected cost of the
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deviation. The model is closed by assuming that the statistical choice frequencies gen-

erated by the deviations are correctly predicted by other players so that the model

has the same equilibrium flavor as Nash equilibrium. QRE both explains many of

the features of our data and makes a long-run prediction about social learning: that

eventually the sequence of choices will perfectly reveal the outcome of the state vari-

able. The fact that our data is consistent with the short-term implications of QRE

provides strong evidence that the actual dynamics of this social learning paradigm

imply a positive information aggregation result in large populations.

The main message of Chapter 2 is that the random element to choices inherent

in actual human decision making provides a mechanism for much more information

to be transmitted than under the classical assumption of purely optimal behavior.

Chapter 3 describes a second mechanism that generates a higher level of information

aggregation than the standard model. The idea is to use time as a screening device

so that when an individual makes a decision, the timing of the announcement, in

addition to the content, transmits useful information to observers. There is good

reason to believe that the timing of decisions is informative. In many settings, the

time at which an agent makes her decision affects her payoff, and so modeling the

timing of the decision as a choice variable allows individuals to respond to differences

in their beliefs about the state variable through adjusting the time at which they

decide. The benefit of delaying a decision is the possibility of observing another’s

decision, which can be informative. The cost of delay essentially comes from explicit

temporal preferences so that making a correct decision is more valuable the sooner it

is made. Once individuals are thought of as having control over the timing of their

decisions, one should expect them to balance these effects optimally.

In the case where some individuals are better informed than others, the endoge-

nous timing of choices reveals important information about the quality of information

possessed by decision makers. When there are exactly two players, a unique equi-
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librium is identified in which the better informed individual announces first, and the

other individual mimics her decision. In other words, a herd forms in which the deci-

sions of both individuals are identical. But in contrast to the classical model, which

assumes a fixed order of decisions, the herd here is informationally efficient in the

sense that the decisions coincide with those of the first-best outcome, in which indi-

viduals pool their information before announcing. Still, the outcome is not perfectly

efficient, because time costs are incurred in order to identify the optimal decisions.

However, even when the delay costs are taken into account, average welfare is higher

in the case where individuals choose the time of their decisions. A second result per-

taining to large populations shows that with sufficiently many players, the outcome

of the state variable is learned very quickly, and an arbitrarily large proportion of the

population is able to obtain this information prior to announcing. Thus, the main

point from Chapter 3 is that the timing mechanism provides a means to improve the

information aggregation properties of social learning.

It is important to understand that the results from Chapters 2 and 3 depend on

the fact that everyone sees the entire history of decisions that have occurred prior to

their own announcements. When this assumption is relaxed, the results can change

dramatically. See Choi, Gale and Kariv (2005), Gale and Kariv (2003), and Celen

and Gale (2004) for models that address this question in a number of interesting ways.

One way to think about the information structure of the social learning paradigm is

through the notion of a social network. In this framework, individuals are identified

as nodes in the network, where a link from one node to another represents the idea

that the individual represented by the first node can observe the decision of the

second individual. Since every individual is capable of observing the actions of every

other individual, one way to represent the standard social learning model is through

a complete network–one in which every possible link is present. Of course, this is a

very special kind of network. In general, only a subset of links would exist in the
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network, representing the notion that some individuals are not in contact with each

other and can not observe each other’s actions, while others are in contact.

The concept of modeling observation patterns with network models is new in

economics, although related ideas have been present in the sociology literature for

decades. Moreover, we seek not just an understanding of how a particular network

structure affects the outcomes of a particular interaction, but also an understanding

of what kinds of networks structures will form in different kinds of settings. That

is, one would like to be able to model the choices of what links to form from an

understanding of the relative costs and benefits of maintaining different sets of links.

Since a general treatment of the incentives facing agents in networking situations has

not been developed, Chapter 4 takes a step towards understanding what kinds of

communication structures are likely to form among individuals strategically choosing

whom to interact with.

Since we are interested in modeling networking choices across a range of applications—

including, but not limited to, social learning—Chapters 4 and 5 consider social net-

works from two different points of view. Chapter 4 explores a model where the benefits

individuals derive from their relationships to others are described abstractly. This ap-

proach has several advantages. First, the relative simplicity of the model allows for

sharp analytical results characterizing the efficiency of equilibrium networks. This

is an important question because identifying situations in which equilibrium choices

tend to produce socially inferior outcomes allows one to focus on situations that could

benefit from intervention. Second, the utility specification is general enough to cap-

ture features shared by many social networking applications. The main ideas are (i)

that maintaining connections has (an opportunity) cost, (ii) that individuals benefit

from those to whom they connect, (iii) that some individuals are inherently more

valuable, and (iv) that being well-connected is another source of value.

Thinking about the social learning model, it is clear that observation is not nec-
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essarily a symmetric relationship. That is, one person could observe another without

the reverse relationship being possible. More generally, it is possible for one indi-

vidual to receive benefits from another without any benefits flowing in the opposite

direction. The model in Chapter 4 analyzes a setting in which this directed nature

of relationships is a key part of the analysis. Two cases are considered. In the first

case, individuals decide whom to derive benefits from, and in the second case, they

decide whom to pass benefits to. The main result is that, while in the first case

the equilibrium networks are necessarily efficient for the group, in the second case

they are essentially never efficient. In this sense, the source of inefficiency in contexts

where benefits flow in both directions is isolated as being due to benefits flowing in

one particular direction.

Whereas the incentive structure and its implied information requirements are best

suited for small populations, Chapter 5 explicitly considers the role of large-scale social

networks. The networks studied are chosen because they exhibit the full spectrum

of stylized facts that have been shown to characterize social networks. One of the

primary roles of social networks is to provide a means to pass things–information,

goods, ideas, behaviors–among a large group of people. However, the same networks

also serve to allow disease and viruses to propagate. These networks typically have

interesting correlation patterns in the placement of links between individuals, and we

aim to study the effect of those patterns on diffusion. Although there is intuitive

reason to expect such patterns to matter, the surprising result is that there is little

if any evidence to suggest the correlation patterns have an effect.

Although the issues explored in the following chapters are clearly distinct, they

are also inter-related. There are a great many aspects of social interactions to be

studied, and this thesis represents my enquiries into some of the issues that I have

found most interesting.



Chapter 2

Self-Correcting Information

Cascades

2.1 Summary

This chapter reproduces the work of “Self-Correcting Information Cascades,” a paper

written jointly with Jacob K. Goeree, Thomas R. Palfrey, and Richard D. McKelvey.

The part of the work conducted by the present author cuts across all aspects of the

paper and may be summarized as follows. The idea of conducting the experiments

reported in this chapter is due to McKelvey and Palfrey. The present author helped

identify optimal parameters under which the theoretical framework would be imple-

mented in the laboratory. Second, he shared in the work of actually running the

experiments at CASSEL (UCLA) and SSEL (Caltech). Next, the theoretical back-

ground outlined in this chapter is based largely on “Social Learning with Private and

Common Values” by Goeree, Palfrey, and Rogers (2006). The authors split, more or

less equally, the ideas on how to analyze the data, what body of theoretical models

to consider, and the mathematical programs to estimate the models considered.
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2.2 Introduction

An information cascade arises when a sequence of imperfectly informed decision mak-

ers, each of whom observes all previous decisions, has reached a point after which all

future decision makers will rationally ignore their private information. Hence, learn-

ing ceases as subsequent decision makers infer nothing new from observing any of

the actions. Information cascades are predicted to occur, possibly after very few

decisions, despite the wealth of information available and despite the common inter-

est of all decision makers (Banerjee 1992, Bikhchandani et al. 1992). This result,

if robust to variations in the basic model, has obvious and pernicious implications

for economic welfare and raises problematic issues for various applications of mass

information aggregation, such as bank runs, technology adoption, mass hysteria, and

political campaigns.

We conducted laboratory experiments with very long sequences of decision mak-

ers in canonical social learning environments. The data is examined and analyzed

through the lens of quantal response equilibrium (QRE), which makes systematic

predictions about the long-run dynamics of choice behavior, beliefs, and efficiency.

Some of these predictions are essentially the opposite of Nash equilibrium. Because of

the complicated dynamics implied by QRE, a careful test of many of these properties

of QRE demands the observation of long sequences. In addition, we vary the informa-

tiveness of individuals’ signals, which systematically affects the observable properties

of QRE dynamics.

The QRE approach to the analysis of data enables two additional innovations.

First, using a Logit equilibrium error structure we are able to structurally estimate

a parametric model of base-rate neglect and a cognitive hierarchy model of strategic

sophistication. The existence and magnitude of judgement fallacies in these environ-

ments have important systematic implications about efficiency and dynamics. Second,
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this structural estimation approach yields estimates of the entire trajectory of public

beliefs, for each sequence in the experiment. That is, the belief dynamics can be

estimated indirectly without eliciting beliefs from the decision makers.

We use the simplest possible social learning environment in our experiment be-

cause QRE makes especially crisp predictions in these environments, enabling rela-

tively straightforward tests of the predictions while at the same time simplifying the

structural estimation procedure. There are two equally likely states of nature, two

signals, two actions, and T decision makers. Nature moves first and chooses a state,

and then reveals to each decision maker a private signal about the state. The proba-

bility that a decision maker receives a correct signal is q > 1/2 in both states of the

world. Decision makers choose sequentially, with each decision maker observing all

previous actions (and her private signal). A decision maker receives a payoff of 1 if

she chooses the correct action and 0 otherwise. In this environment, learning never

progresses very far in a Nash equilibrium. In fact, regardless of T , the equilibrium

beliefs of all decision makers are confined to an interval centered around 1/2.

The need for an alternative theory of behavior in these environments is obvious

from looking at data from short decision sequences, such as those reported in Anderson

and Holt (AH) (1997).1 In that experiment, cascades are observed; however some

action choices are inconsistent with Nash equilibrium given the realized signals, and

many subjects exhibit such behavior. For example, Anderson and Holt (1997) observe

that in their experiment with q = 2/3 and T = 6, more than 25% of the time subjects

make a choice against the cascade after receiving a contradictory signal. And nearly

5% of subjects who receive a signal consistent with the cascade choose the opposite

action. Such deviations become even more pronounced in the experiments reported

below where we vary the signal precision, q = 5/9 and q = 6/9, and the number of

decision makers, T = 20 and T = 40. With this many decision makers we should

1Indeed AH use a recursive version of Logit equilibrium to describe their data.
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Table 2.1: Percentages of (broken) cascades in our data.

observe cascades arising in 100% of the sequences according to the theoretical model

of Bikhchandani et al. (1992). However, with T = 40, for instance, a cascade arises

and persists in only 8 out of 116 sequences (< 7%).

Table 2.1 gives an illustration of a few ways that the standard theory fares badly.

At a minimum, a plausible theory should explain two systematic features of the data.

First, off-the-Nash-equilibrium-path actions occur with significant probability. The

theory as it stands does not place adequate restrictions off the equilibrium path.

Second, deviations from equilibrium are systematic, indicating that such behavior is

informative! Why? Because going off the equilibrium path (i.e., choosing an action

opposite to the cascade) happens much more frequently if the player received a signal

contradicting the cascade choices, see Table 2.2. Indeed, when a break occurs, the

observed frequency with which the received signal was contradictory is 83%.2 This

should come as no surprise as a deviation following a confirmatory signal is a worse

deviation (e.g., in terms of expected payoffs, and also intuitively) than a deviation

following a contradictory signal.

The introduction of a random component in QRE ensures that all paths can be

reached with positive probability, so Bayes’ rule places restrictions on future rational

2When averaged over the four treatments. In the (q = 5
9 , T = 20), (q = 5

9 , T = 40), (q = 6
9 , T =

20), and (q = 6
9 , T = 40) treatments the numbers are 87%, 78%, 87%, and 82%, respectively.
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Table 2.2: Frequency of confirmatory/contrary signals when cascades are (not)
broken.

inferences and behavior when a deviation from a cascade occurs. Deviations from

optimal play occur according to a statistical process and players take these deviations

into account when making inferences and decisions. Moreover, deviations or mistakes

are payoff-dependent in the sense that the likelihood of a mistake is inversely related

to its cost.3

In this chapter, we demonstrate that QRE predicts the temporary and self-

correcting nature of cascades and also predicts several features of the long-run dy-

namics, as a function of signal informativeness. QRE predicts that with an infinite

horizon the true state will be revealed with probability one, i.e., learning is complete.

While no finite experiment can formally test this prediction, our ability to structurally

estimate public beliefs with QRE allows us to draw inferences about the rate at which

beliefs are converging to full revelation.4

Following the pioneering paper of Anderson and Holt (1997), there have been a

number of studies exploring different questions related to information cascades. Hung

3We only consider monotone quantal response equilibrium, where choice probabilities are
monotone in expected utilities, see McKelvey and Palfrey (1995, 1998) and Goeree, Holt, and Palfrey
(2005).

4Longer sequences of decisions could possibly be obtained from an Internet experiment where
agents are successively invited to participate (see Drehmann, Oechsler, and Roider, 2005).
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and Plott (2001) replicate the original findings and also explore information aggrega-

tion in a voting mechanism. Çelen and Kariv (2004) differentiate between information

cascades and herds. Huck and Oechssler (2000), Dominitz and Hung (2004), Nöth and

Weber (2003), and Oberhammer and Stiehler (2003) explore whether decision makers

are following Bayes’ rule in their updating process and find evidence that Bayes’ rule

is systematically violated. Some of the other extensions involve cascades in networks

(Choi et al., 2005), the effect of advice (Çelen et al., 2005), costly signals (Kübler

and Weizsäcker, 2004), and herd behavior in stock markets (Cipriani and Guarino,

2005; Drehmann et al., 2005). The negative relationship between the duration of a

cascade and the probability of collapse is demonstrated in Kübler and Weizsäcker

(2005) across several different studies and is consistent with our own findings and

with the predictions of the QRE model.

The remainder of the chapter is organized as follows. Section 2.3 describes the

basic model and presents the main theoretical properties of QRE dynamics, which

deliver hypotheses that are directly testable with data from our experiment. Section

2.4 explains the experimental design. Section 2.5 contains a descriptive analysis of

the data, focusing on cascade dynamics and choice behavior. Section 2.6 presents an

econometric analysis of the basic model and extensions that better explain the data.

Section 2.7 discusses the belief dynamics implied by the structural estimation and the

resulting efficiency properties of the data. Appendix A contains proofs and Appendix

B contains the basic estimation program.

2.3 The Basic Model

There is a finite set T = {1, 2, . . . , T} of agents who sequentially choose between one

of two alternatives, A and B. Agent t chooses at time t, and let ct ∈ {A, B} denote

agent t’s choice. One of the alternatives is selected by nature as “correct,” and an
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agent receives a payoff of 1 only when she selects this alternative, otherwise she gets

0. The correct alternative (or state of the world), denoted by ω ∈ {A,B}, is unknown

to the agents who have common prior beliefs that ω = A or ω = B with probability

1
2
. Further, they receive conditionally independent private signals st regarding the

better alternative. If ω = A then st = a with probability q ∈ (1
2
, 1) and st = b with

probability 1 − q. Likewise, when ω = B, st = b with probability q and st = a with

probability 1− q.

We will be concerned with the evolution of agents’ beliefs and how these beliefs

co-evolve with actions. Agent t observes the actions of all of her predecessors, but

not their signals. Thus a history Ht for agent t is simply a sequence {c1, . . . , ct−1}
of choices by agents 1, · · · , t − 1, with H1 = ∅. Agents care about the history only

to the extent that it is informative about which alternative is correct. So let pt ≡
P (ω = A|Ht) denote the (common knowledge) posterior belief that A is correct given

the choice history Ht, with p1 ≡ 1
2
, the initial prior. We first determine agent t’s

private posterior beliefs given the public beliefs pt and given her signal st. Applying

Bayes’ rule shows that if st = a, agent t believes that alternative A is correct with

probability

πa
t (pt) ≡ P (ω = A|Ht, st = a) =

q pt

q pt + (1− q)(1− pt)
. (2.3.1)

Likewise,

πb
t (pt) ≡ P (ω = A|Ht, st = b) =

(1− q)pt

(1− q)pt + q(1− pt)
(2.3.2)

is the probability with which agent t believes that A is correct if her private signal is

st = b. A direct computation verifies that πa
t (pt) > pt > πb

t (pt) for all 0 < pt < 1. In

other words, for any interior public belief an agent believes more strongly that ω = A

after observing an a signal than after observing a b signal.
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2.3.1 Nash Equilibrium

We first discuss the dynamics of beliefs and choice behavior in a Bayesian Nash

equilibrium. The unique trembling hand perfect equilibrium of the game, identified

by Bikhchandani et al. (1992), involves rapid convergence to an information cascade.

This pure cascade Nash equilibrium works as follows.5 The first agent chooses A

if s1 = a and chooses B if s1 = b, so that her choice perfectly reveals her signal. If the

second agent’s signal agrees with the first agent’s choice, the second agent chooses the

same alternative, which is strictly optimal. On the other hand, if the second agent’s

signal disagrees with the first agent’s choice, the second agent is indifferent, as she

effectively has a sample of one a and one b. For comparison to the Quantal Response

Equilibrium discussed next, we assume that the second agent randomizes uniformly

when indifferent.6 The third agent faces two possible situations: (i) the choices of the

first two agents coincide, or (ii) the first two choices differ. In case (i), it is strictly

optimal for the third agent to make the same choice as her predecessors, even if her

signal is contrary. Thus her choice imparts no information to her successors, resulting

in the onset of a cascade. The fourth agent is then in the same situation as the third,

and so also makes the same choice, a process which continues indefinitely. In case

(ii), however, the choices of the first two agents reveal that they have received one a

signal and one b signal, leaving the third agent in effectively the same position as the

first. Her posterior (before considering her private information) is p3 = 1
2
, so that her

signal completely determines her choice. The fourth agent would then be in the same

situation as the second agent described above, and so forth. Thus a cascade begins

after some even number of agents have chosen and |#A − #B| = 2, where #A is

5As we will see, almost all choice sequences in our laboratory data are inconsistent with the
behavior implied by this Nash equilibrium.

6This randomization holds in any Logit QRE. There are other Nash equilibria where players
randomize with different probabilities when indifferent, but none of these equilibria are trembling
hand perfect. In the unique trembling-hand perfect equilibrium indifferent players follow their signal
with probability 1. For details see Goeree et al. (2006).
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the number of decision makers who have chosen A and #B is the number of decision

makers who have chosen B.

One quantity of interest is the probability that “correct” and “incorrect” cas-

cades will form in equilibrium. First, the probability of being in neither cascade

vanishes rapidly as t grows. The probability of eventually reaching a correct cascade

is q(1+q)
2−2q(1−q)

, and the complementary probability of eventually reaching an incorrect

cascade is (q−2)(q−1)
2−2q(1−q)

.7,8 Once a cascade has formed, all choices occur independently of

private information, and hence public beliefs remain unchanged. The points at which

public beliefs settle are the posteriors that obtain after two consecutive choices for

the same alternative, beginning with uninformative prior.

2.3.2 Quantal Response Equilibrium

We now describe the logit quantal response equilibrium (QRE) of the model described

above. In the logit QRE, each individual t privately observes a payoff disturbance

for each choice, denoted εA
t and εB

t . The payoff-relevant information for agent t is

summarized by the difference εt ≡ εA
t − εB

t . Denote agent t’s type by θt = (st, εt). The

logit specification assumes that the εt are independent and obey a logistic distribution

with parameter λ.9,10 The disturbance, εt, can be interpreted in several different ways.

For example, it could represent a stochastic part of decision making due to bounded

rationality, or it could be an individual-specific preference shock that occurs for other

reasons. Irrespective of the interpretation of the noise, the resulting logit choice

7After the first two choices, the probabilities of the three regimes, correct cascade, no cascade yet,
or incorrect cascade, are: 1

2q(1 + q), q(1− q), and 1
2 (q− 2)(q− 1), respectively. More generally, after

2t choices, these probabilities are 1
2q(1 + q)

(
1−(q(1−q))t

1−q(1−q)

)
, (q(1− q))t, 1

2 (q − 2)(q − 1)
(

1−(q(1−q))t

1−q(1−q)

)
.

Taking limits as t approaches infinity yields the long-run probabilities of the three regimes.
8Thus as q increases from 1

2 to 1, the probability of landing in a good cascade grows from 1
2 to 1.

9This arises when εA
t and εB

t are i.i.d. extreme-value distributed.
10The properties derived in this section hold for all atomless error distributions that have full sup-

port over the interval [−1, 1]. The logit specification is convenient because its behavior is determined
by a single parameter with a natural “rationality” interpretation.
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model implies that the stronger the belief that A is correct, the more likely action A is

chosen. The logit QRE model assumes that the distribution of the payoff disturbances

is common knowledge.11 The logit QRE is calculated as the sequential equilibrium

of the resulting game of incomplete information, where each player observes only her

own type θt.

It is straightforward to characterize the optimal decision of agent t given her type

θt and the history Ht (which determines public beliefs pt). The expected payoff of

choosing A is πst
t (pt) + εt, and that of selecting alternative B is 1 − πst

t (pt). Thus

given agent t’s signal, the probability of choosing A is given by12

P (ct = A|Ht, st) = P (εt > 1− 2πst
t (pt))) =

1

1 + exp(λ(1− 2πst
t (pt)))

, (2.3.3)

and B is chosen with complementary probability P (ct = B|Ht, st) = 1 − P (ct =

A|Ht, st). When λ → ∞ choices are fully rational in the sense that they do not

depend on the private realizations εt and are determined solely by beliefs about the

correct alternative. It is easy to show that the logit QRE converges to the pure

cascade Nash equilibrium in which indifferent subjects randomize uniformly.13 On

the other hand, as λ approaches 0 choices are independent of beliefs and become

purely random.

The belief dynamics also depend on λ. To derive the evolution of the public belief

that A is correct, note that given pt there are exactly two values that pt+1 = P (ω =

A|Ht, ct) can take depending on whether ct is A or B. These are denoted p+
t and

p−t , respectively. The computation of the posterior probabilities p+
t and p−t given pt

is carried out by agents who do not know the true state, and so cannot condition

11In general, the distributions of payoff disturbances in a logit QRE need not be the same for every
decision maker, but these distributional differences would be assumed to be common knowledge.

12Note that indifference occurs with probability zero under the logit specification and hence plays
no role.

13This is because for any λ ∈ (0,∞), an agent chooses equi-probably when indifferent.
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their beliefs on that event. In contrast, the transition probabilities of going from pt

to p+
t or p−t (i.e., of a choice for A or B) depend on the objective probabilities of a

and b signals as dictated by the true state. Thus when computing these transition

probabilities, it is necessary to condition on the true state. Conditional on ω = A,

the transition probabilities are:

T ω = A
t = P (ct = A|Ht, ω = A)

= P (ct = A|Ht, st = a)P (st = a|ω = A)

+ P (ct = A|Ht, st = b)P (st = b|ω = A)

=
q

1 + exp(λ(1− 2πa
t (pt)))

+
1− q

1 + exp(λ(1− 2πb
t (pt)))

,

with the probability of a B choice given by 1 − T ω = A
t . Similarly, conditional on

ω = B, the probability that agent t chooses A is

T ω = B
t =

1− q

1 + exp(λ(1− 2πa
t (pt)))

+
q

1 + exp(λ(1− 2πb
t (pt)))

.

Using Bayes’ rule, we now obtain the two values that pt+1 may take as

p+
t ≡ P (ω = A|Ht, ct = A) =

ptT
ω = A

t

ptT ω = A
t + (1− pt)T ω = B

t

, (2.3.4)

and

p−t ≡ P (ω = A|Ht, ct = B) =
pt(1− T ω = A

t )

pt(1− T ω = A
t ) + (1− pt)(1− T ω = B

t )
. (2.3.5)

These expressions can be used to derive the following properties of the belief dynam-

ics (see Appendix A for proofs), where without loss of generality we assume the true
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state is ω = A.

Proposition 1. For all λ > 0 there is a unique logit QRE with the following proper-

ties:

(i) Beliefs are interior: pt ∈ (0, 1) for all t ∈ T .

(ii) Actions are informative: p−t < pt < p+
t for all t ∈ T .

(iii) Beliefs about the true state rise on average: E(pt+1|pt, ω = A) > pt for all

t, t + 1 ∈ T .

(iv) Beliefs converge to the truth: conditional on ω = A, limt→∞ pt = 1 almost

surely.

2.3.3 Classification of Cascades Observed in the Laboratory

We distinguish several kinds of cascade-like behavior.14 A pure A (B) cascade is said

to form at time t ≤ T if after period t − 1 the number of A (B) choices exceeds the

number of B (A) choices by 2 for the first time, and all choices from t to T are A (B)

choices. Thus, for example, if T = 6 and the sequence of choices is {A,B,A, A, A,A},
then we say a pure A cascade forms at t = 5. In periods 5 and 6, we say that the

decision makers are in a pure A cascade. Note that any pure cascade beginning at

time t will have length T − t + 1.

A temporary A (B) cascade or A (B) craze15 is said to form at time t ≤ T if after

period t − 1 (but not after period t − 2) the number of theoretically informative A

(B) choices16 exceeds the number of theoretically informative B (A) choices by 2 and

14One might argue for using the term “herd” instead of cascade, since cascade refers to belief
dynamics, while “herds” refer to choice dynamics. In the context of quantal response equilibrium,
this distinction is artificial, since neither herds nor cascades can last forever. All choices occur with
positive probability at every point in time, and learning never ceases.

15According to the Oxford English Dictionary (1980), a craze is defined as a “great but often
short-lived enthusiasm for something.”

16Choices made during a (temporary) cascade are called theoretically uninformative.
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some decision maker τ , with t ≤ τ ≤ T , makes a contrary choice.17 The number

of periods decision makers follow the cascade, τ − t, defines its length. Thus in the

sequence of decisions {A, A,B} we say that an A cascade of length zero occurs at

t = 3.

Temporary cascades are particularly interesting because subsequent play of the

game is off the Nash equilibrium path. Moreover, if the sequence is long enough it is

possible for a new cascade to form after a temporary cascade has broken. Following

AH, we define a simple counting procedure to classify sequences of decisions and

determine whether a new cascade has formed. This ad hoc counting rule roughly

corresponds to Bayesian updating when the probability that indifferent subjects follow

their signals equals the probability that subjects who break cascades hold contrary

signals.18 Under the counting rule, every A decision when not in a cascade increases

the count by 1 and every B decision when not in a cascade decreases the count by

1. Recall that we enter the first cascade of a sequence when the count reaches 2 or

−2. Then the decisions during the cascade do not change the count, until there is an

action that goes against the cascade, which decreases the count to 1 if it was an A

cascade or increases the count to −1 if it was a B cascade. The count continues to

change in this way, until the count reaches either 2 or −2 again, and then we are in

a new cascade, which we call a secondary cascade.

We distinguish three different kinds of secondary cascades. One possibility is that

actions cascade on the same state as the previous cascade: a repeat cascade. The

other possibility is that the actions cascade on a different state: a reverse cascade.

A self-correcting cascade is a cascade that reverses from the incorrect state to the

correct state.

17These definitions extend in a natural way to more complex environments.
18These conditions are closely approximated in our data, where we find 85% of indifferent subjects

go with their signals and 84% of cascade breakers received contrary signals.
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2.3.4 Hypotheses

A wide range of observable implications follow from the theoretical results about the

logit equilibrium in these dynamic games of incomplete information. We distinguish

four categories of hypotheses depending on their object: cascade length and frequency,

self-correction of cascades, efficiency of decisions, and belief dynamics. Most of these

hypotheses are in the form of the comparative statics with respect to the two main

treatment parameters, q and T .

Testable implications of the logit QRE. For all λ > 0 observed behavior in the

unique logit QRE will have the following properties:

1. Cascades: Frequency and length19

(C1) For any q and sufficiently large T , the probability of observing a pure cascade

is decreasing in T , converging to 0 in the limit. For any q and T > 2, the

probability of observing a temporary cascade is increasing in T , converging to

1 in the limit.

(C2) For any T , the probability of a pure cascade is increasing in q.

(C3) For any q, the expected number of cascades is increasing in T .

(C4) For sufficiently large T , the expected number of cascades is decreasing in q.

(C5) The probability that a cascade, which has already lasted k periods, will break

in the next period is decreasing in k.

(C6) For any q, the average length of cascades is increasing in T .

(C7) For any T , the average length of cascades is increasing q.

19Several of these hypotheses are only sensible if T is sufficiently large. At least 2 periods are
required for any cascade to form, and at least 6 periods are required to observe a cascade and its
reversal. For example, {A,A,B,B, B, B} is the shortest possible sequence for a reverse from an A
cascade to a B cascade, and {A, A,B, A} is the shortest possible sequence for a repeated A cascade.
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2. Self-Correction

(SC1) Incorrect cascades are shorter on average than correct cascades.

(SC2) Incorrect cascades are more likely to reverse than correct cascades (self-correction).

(SC3) Correct cascades are more likely to repeat than incorrect cascades.

(SC4) Later cascades are more likely to be correct than earlier ones.

(SC5) A decision maker with a contradictory signal is more likely to break a cascade

than a decision maker with a confirmatory signal.

3. Efficiency: The probability of correct decisions

(E1) The ex ante (i.e., before decision maker t has drawn a private signal) probability

of a correct decision is increasing in t. An interim version of this statement is

true, but only conditional on receiving an incorrect signal.20

(E2) The probability of a correct decision is higher for a correct than for an incorrect

signal.

(E3) The probability of a correct choice is increasing in q.

4. Beliefs: Informational efficiency

(B1) For each q, on average the public belief on the true state is closer to 1 in the

final period of the T = 40 treatments than in the T = 20 treatments.

(B2) For each t, on average the public belief on the true state is closer to 1 in the

q = 6/9 treatments than in the q = 5/9 treatments.

20It is not true conditional on receiving a correct signal. To see this, note that the interim
probability of a correct decision at time t = 1 with a correct signal approaches 1 as λ diverges as it is
optimal to follow one’s signal. In later periods it is bounded away from 1 because of the probability
of a cascade on the wrong state.



24

(B3) For all treatments, on average the public belief on the true state is increasing

in t.

These hypotheses follow from a few basic properties implied either by QRE or by

the informative signal process itself. We list them below,21 and refer to them in the

ensuing discussion that explains the intuition of the hypotheses. For any positive

value of λ:

1. There is a (positive) lower bound on the probability a decision maker chooses

either decision, because payoffs are bounded. This lower bound is independent

of beliefs.

2. The higher the public belief on a state, the greater the probability the decision

maker will choose the optimal action for that state.

3. If a decision maker breaks a cascade, he is much more likely to have a contra-

dictory signal than a confirmatory signal.

4. The higher is q, the more likely it is that any given cascade will be correct.

5. In a correct cascade, confirmatory signals are more likely than contradictory

signals.

6. In an incorrect cascade, confirmatory signals are less likely than contradictory

signals.

7. When an action is taken at time t, the public belief on the corresponding state

increases. That change in public belief is an increasing function of q.

8. The higher the public belief on the true state, the higher the probability the

decision maker receives a signal favoring that state.

21The proofs are straightforward and are omitted.
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9. The expected change in beliefs in the true state from t to t+1 is always positive.

Hypothesis (C1) (which applies to T > 2) follows from (1) which implies that the

probability a cascade breaks in any round is strictly positive. Hypothesis (C2) follows

from (3),(4), and (5). Hypothesis (C3) follows because the probability that a first

cascade has formed is increasing in T , the probability that a cascade has formed and

broken is increasing in T , the probability that a cascade has formed and broken and

then another one has formed is increasing in T , and so forth.

Hypothesis (C4) is more complicated and can only be proved for T sufficiently

large. For example, if T = 2, then the expected number of cascades is simply the

probability that exactly one cascade occurs, which is the probability of two either

correct or two incorrect signals, which is q2 +(1−q)2. This expression is increasing in

q. The difficulty is that there are two opposing effects of increasing q. The probability

of a cascade forming is increasing in q but the probability of a cascade breaking is

decreasing in q. For sufficiently large T the latter effect dominates because decisions

are more frequently in a cascade than not in a cascade. The higher is λ, the greater

must be T for this to be true.

Hypothesis (C5) follows from (2) and (6). Hypotheses (C6) and (C7) follow from

(2), (6), and (8) and the fact that the probability of a cascade breaking once you

are in a cascade is decreasing in q. Hypothesis (SC1) follows from (3), (4), and (5).

The logic behind the next two hypotheses about self-correction, (SC2) and (SC3), is

fairly obvious. They follow from (7) and the fact that decision makers are more likely

to receive correct than incorrect signals. Hypothesis (SC4) is a consequence of the

self-correction process and follows from (2) and (8). Hypothesis (SC5) is equivalent

to (3).

The efficiency hypotheses address the frequency of correct decisions. First, on

average, efficiency will increase over time because expected public belief converges
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monotonically to the true state (the ex ante part of E1). Second, decision makers

who receive a correct signal are obviously more likely to make the correct decision

than decision makers with incorrect signals (E2), but this difference will decline over

time, because the public belief on the true state converges to 1 (interim part of E1).

Third, efficiency should be positively affected by signal informativeness in three ways.

There is the direct effect that more good signals are received with a higher q, but

there are two indirect effects as well: with more informative signals, social learning is

faster because actions are more informative and, conditional on being in a cascade,

the cascade is more likely to be correct.22 Because these three effects all go in the

same direction, there should be a difference in efficiency in the different q treatments.

All the C, SC, and E hypotheses are tested with simple direct tests on sam-

ple means. However, (C3), (C4), (C6), and (C7) can be strengthened because the

comparative statics results on length and frequency of cascades holds for the entire

distribution of lengths and frequencies, not just the means.

Because beliefs, unlike actions, are not directly observable, we test the B hypothe-

ses by estimating beliefs using our QRE structural estimation approach. Thus the

analysis of beliefs in our data is quite different and depends on the estimation, so

we discuss the results about beliefs later, after presenting the QRE estimates of the

underlying parameters of the model.

While some of these properties are also true for the initial few decisions in the

pure cascade Nash equilibrium, the effects vanish quickly with longer sequences. An

exception is (E3). In the perfect Nash equilibrium, the probability of a correct decision

is approximately equal to the probability of ending up in a correct cascade, which

quickly approaches q2/(q2 + (1− q)2) and rises with q.

22Another minor effect going in the same direction is that with a higher q the posterior beliefs
are, on average, further from 1

2 , so the expected payoff difference between a correct and incorrect
action is generally increasing in q.
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For the purposes of evaluating and explaining empirical data, it is clear that any

reasonable model must allow for the possibility of noise or trembles. However, it is

important to note that the structure of the noise in QRE is essential to almost all

of the qualitative predictions we derive. A model with payoff-uncorrelated trembles

would generate very different predictions which, as we show below, would not be

consistent with the data. In such a model, if the sequence (A, A,B) is observed, then

for small tremble rates, the only way to rationalize the deviating B choice is through

a tremble, which means that the decision imparts no information about the private

signal, since the tremble rate is independent of beliefs. Thus, cascades will form and

persist in such a model (modulo occasional trembles) just as in the standard Nash

equilibrium. Because the standard information cascade logic applies to this setting,

no information is learned from observing long decision histories, so that posterior

beliefs are constrained to an interval around the prior. For instance, when q = 6/9

and there is a tremble rate of ε = 0.05, terminal beliefs are 0.22 and 0.78. At these

beliefs, subjects who get a signal contrary to the cascade have posteriors of 0.63

and 0.37, respectively, so that breaking the cascade with a contrary signal results in

expected losses of 41%.

2.4 Experimental Design

The two innovations of our experimental design are the use of much longer choice

sequences and the use of different signal precisions. These innovations allow us to

assess the predictions of the logit QRE model in ways that are not possible with past

designs and to gain insights into how the basic models might be improved.

The experiments reported here were conducted at the Social Sciences Experimen-

tal Laboratory (SSEL) at Caltech and the California Social Sciences Experimental

Laboratory (CASSEL) at UCLA between September 2002 and May 2003. The sub-
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Table 2.3: Experimental sessions.

jects included students from these two institutions who had not previously partici-

pated in a cascade experiment.23

The experiments employ a 2×2 design, where we use two values of both the signal

quality q and the number of individuals T . Specifically, q takes values 5/9 and 6/9,

and T takes values 20 and 40. The number of games in each experimental session is

denoted M . Table 2.3 summarizes the design.24

In each session, a randomly chosen subject was selected to be the “monitor” and

the remaining subjects were randomly assigned to computer terminals in the labo-

ratory. All interaction among subjects took place through the computers; no other

communication was permitted. Instructions were given with a voiced-over Powerpoint

presentation in order to minimize variations across sessions.25 After logging in, the

23There was one subject who had previously participated in a related pilot experiment.
24The design is not balanced with respect to subject pool because Caltech’s laboratory has a

maximum capacity of 32 subjects. In the estimations reported below we checked for subject pool
effects but found no major differences in parameter estimates.

25See www.hss.caltech.edu/̃ rogers/exp/ for the instructions.



29

subjects were taken slowly through a practice match (for which they were not paid)

in order to illustrate how the software worked and to give them a chance to become

familiar with the process before the paid portion of the experiment commenced.

Before each match, the computer screen displayed two urns. For the q = 5/9

treatment, one urn contained 5 blue balls and 4 red balls and the other contained 4

blue balls and 5 red balls. For the q = 6/9 treatment, one urn contained 6 blue balls

and 3 red balls and the other contained 3 blue balls and 6 red balls. The monitor was

responsible for rolling a die at the beginning of each game to randomly choose one of

the urns with equal probabilities. This process, and the instructions to the monitor

(but not the outcome of the roll), were done publicly. At this point, the subjects saw

only one urn on the computer screen, with all nine balls colored gray, so that they

could not tell which urn had been selected. Each subject then independently selected

one ball from the urn on their screen to have its color revealed. Then, in a random

sequence, subjects sequentially guessed an urn. During this process, each guess was

displayed on all subjects’ screens in real time as it was made, so each subject knew

the exact sequence of guesses of all previous subjects. After all subjects had made a

choice, the correct urn was revealed and subjects recorded their payoffs accordingly.

Subjects were paid $1.00 for each correct choice and $0.10 for each incorrect choice.

Subjects were required to record all this information on a record sheet, as it appeared

on their screen. Due to time constraints, the number of matches (sequences of T

decisions) was M = 30 in each T = 20 session and M = 20 in each T = 40 session.26

After the final game, payoffs from all games were summed and added to a show-up

payment, and subjects were then paid privately in cash before leaving the laboratory.

Before discussing the results, we comment briefly on the choice of parameters in

the experimental design. Regarding T , and M , it is clear that more observations give

a more complete picture of the dynamics and allow better statistical tests. There is

26A few sessions contained fewer sequences due to technical problems; see Table 2.3.
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a tradeoff given time constraints for experimental sessions, in that longer sequences

(higher T ) require fewer repetitions (lower M). Given that variation in T is central to

our design, we decided that the larger value T = 40 was sufficient to study choice and

belief dynamics, while allowing time for enough repetitions (20 or 30) to accurately

estimate the theoretical models and do statistical tests. With respect to the signal

precision q, we wanted values that generated enough difference in behavior to be

readily observed. However, too much separation in the values would make the data

less interesting, since if q is close to one, nearly all subjects receive signals that indicate

the true state, so that we would expect the vast majority of sequences of choices to

cascade instantly (ie, when the true state is A, for all T decisions to be a). On

the other hand, if q is close to one-half, posteriors will not move far away from the

neutral prior, and we would expect the choice data to be nearly uniformly random.

Last, their is the consideration that, in order to minimize differences in presentation

across treatments, we wanted the denominator–which corresponds to the number of

balls in each jar in the experimental screen–to be constant across values of q. Since

balancing these effects is a non-trivial problem, we chose the experimental values

through a comprehensive study of simulations of data generated according to QRE.

Although the choice is nonetheless somewhat arbitrary ex ante, the results below show

that these aims were met (see, e.g., Tables 2.4 and 2.5, as well as Figure 2.1, and

many of the following tables and figures for evidence that the data is non-degenerate

and significantly different across treatments).

2.5 Results I: Cascades, Self-Correction, and Effi-

ciency

In this section, we examine the aggregate properties of our data. The analysis is

focused by the hypotheses in the previous section about cascade frequency and length,
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Table 2.4: Percentages of pure cascades by treatment.

self-correction of cascades, and efficiency of decisions.

2.5.1 Infrequency of Pure Cascades; Frequency of Tempo-

rary Cascades

In AH’s experiment with only T = 6 decision makers, all cascades were necessarily

very short. In contrast, our experiments investigated sequences of T = 20 and T = 40

decision makers, allowing for the first time an opportunity to observe long cascades,

the length distribution of temporary cascades, and the self-correcting property. As

Table 2.4 clearly demonstrates, pure cascades essentially do not happen in the longer

matches. The cascades that persisted in the AH experiments simply appear to be

pure cascades, a likely artifact of the short horizon. Our numbers are comparable

to those of AH when we consider only the first six decision makers in our sequences.

These numbers are given in the row marked “First 6” in Table 2.4. In contrast, we

observe pure cascades in only 17 out of 206 sequences with T = 20 decision makers,

and only 8 of 116 sequences with T = 40 decision makers.

The final columns of Table 2.4 give the predicted frequency of pure cascades

according to the Nash equilibrium (and out of sample predictions from the QRE-

BRF model, which we explain and discuss in a later section). The Nash equilibrium
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Table 2.5: Percentages of temporary cascades by treatment.

probability of a pure cascade with T decision makers is 1− (q(1− q))T/2.

The data contradict the Nash predictions in three ways. First, there are far fewer

pure cascades than theory predicts. Second, there are far fewer than were observed

in past experiments with very short decision sequences. According to theory, the

frequency of pure cascades should increase with T but in fact the data show the

opposite. Third, the frequency of pure cascades in the data is steeply increasing in

q, while the Nash equilibrium predicts almost no effect. In our data, pure cascades

occurred nearly five times as often in the q = 6/9 treatment than when q = 5/9

(20/150 compared to 5/172).27

In contrast to pure cascades, temporary cascades are common in all treatments.

Table 2.5 shows the frequency of temporary cascades in our data. The rows and

columns mirror Table 2.4, but the entries now indicate the proportion of sequences in

a given treatment that exhibit at least one temporary cascade that falls apart. Clearly,

for large T , essentially all cascades we observe are temporary. With the short horizon

of the AH experiment, temporary cascades occur only in about one-fourth of the

sequences.

27Further evidence indicates this continues to increase with q. In a single additional session with
q = 3/4 and T = 20, we observed pure cascades in 28/30 sequences.
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Table 2.6: Number and lengths of cascades by treatment.

2.5.2 Number and Lengths of Temporary Cascades

With larger T , we almost always observe multiple temporary cascades along a single

sequence. Table 2.6 (top) displays the average number of cascades in each treat-

ment. The number of temporary cascades rises with the sequence length, T , and

falls with the signal precision, q, not only on average, but also in the sense of first

order stochastic dominance; see the top panel of Figure 2.1. This evidence supports

hypotheses (C3) and (C4). The table and the figure also show the Nash prediction of

exactly 1 cascade per sequence, independent of q and T , and out-of-sample predictions

generated by the QRE-BRF model (discussed later).

Figure 2.2 graphs, separately for each treatment, the empirical probability of col-

lapse as a function of the duration of the cascade: i.e., the probability of a collapse in

period t+s, given the cascade started in period t. This probability is sharply decreas-

ing in s. In other words, longer cascades are more stable (Kübler and Weizsäcker,

2005), which is predicted by QRE but is not true in the Nash equilibrium. This

finding supports hypothesis (C5).

The average length of temporary cascades for each treatment is displayed in Table

2.6 (bottom), and the complete distributions of length are shown in Figure 2.1 (bot-
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Figure 2.1: The left panels depict the observed distributions of the number of
cascades (top) and of cascade lengths (bottom), color-coded by treatment: dark
(light) gray lines correspond to q = 5/9 (q = 6/9) and they are solid (broken)
for T = 40 (T = 20). The right panels show predictions of the Nash and QRE-
BRF models. In the top right panel, the solid line that jumps to 100% at 1
corresponds to Nash predictions and the other lines the QRE-BRF predictions.
In the bottom right panel, the lines that jump to 100% at T − 2 correspond to
Nash predictions and the others to QRE-BRF predictions.
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Figure 2.2: Chance of cascade breaking as a function of cascade length. The
lines show 5-period moving averages of the probability of a break in each of the
treatments (color-coded as in Figure 2.1).

tom).28 Average length of temporary cascades rises with the sequence length, T when

q = 6/9 but not when q = 5/9, with the difference insignificant at the 5% level in the

latter case. Average length also rises with the signal precision, q, for both T = 20

and T = 40. Thus we find strong support for (C7) but only weak support for (C6).

A comparison of the entire distribution of lengths is given in the top panel of Figure

2.1. The table and the figure also show the Nash prediction of exactly 1 cascade per

28To compute the Nash predictions for cascade lengths, recall that a cascade can only begin after
an even number of choices. For t even, the probability that a cascade forms after t + 2 choices
conditional on one not having yet formed after t choices is 1− 2βq(1− q), where β is the probability
that an indifferent subject follows her signal. In the data, β = 0.85. Since upon forming, a cascade
persists through period T , the predicted length distributions of temporary cascades can be calculated
easily.
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sequence, independent of q and T , and out-of-sample predictions generated by the

QRE-BRF model (discussed later).

2.5.3 Off-the-Equilibrium-Path Behavior

Given that the vast majority (92%) of cascades are temporary and short in duration,

and nearly all (90%) sequences in our data exhibit multiple cascades, an immediate

conclusion is that there are many choices off the (Nash) equilibrium path. Table 2.2

in the Introduction characterizes a subset of these choices for the different treatments

as a function of the deviating decision maker’s signal. The table shows the behavior

of what we call cascade breakers, since these are all terminal decisions of a temporary

cascade.

Over all treatments, cascades were broken a total of 1081 times. These contrary

actions were five times more likely to be taken by subjects with contradictory signals

than with confirmatory signals (898 compared with 183). In fact, if we compare the

rates of breaking cascades for decision makers with contradictory versus confirmatory

signals, the difference is even starker (37% compared to 6%). This supports hypothesis

(SC5).

The behavior of decision makers immediately following a cascade breaker also

plays a critical role in the dynamics. Because the first break is so informative, a

second break moves beliefs close to .5, essentially eliminating the trend in beliefs that

had developed during the cascade.

As expected, the probability of a second break by the next decision maker is

sharply increased. Approximately 75% of the decision makers immediately following

a cascade break follow their signals. A player who observes a signal consistent with

the recent cascade of course should rationally follow the cascade, a prediction that is

borne out by our data: 90% of these decision makers follow the action corresponding
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Table 2.7: Percentages of choices confirming/contradicting the recent cascade
after a break.

to the recently broken cascade. Only 10% are secondary deviators who follow the

recent break. Thus, they behave roughly the same as they would have if the cascade

had never been broken. Those who received contradictory signals behaved much

differently. Well over half (56%) of the decision makers with contradictory signals

are secondary deviators. Pooling over all treatments, they outnumber the secondary

deviators with confirmatory signals by a factor of five to one (277 compared to 58).

Table 2.7 gives a complete breakdown of the choices directly following a cascade break,

by treatment.

The two key conclusions of this subsection are that play off the equilibrium path

occurs frequently and is highly informative, setting the stage for self-correction. As

a result, we will find that the long-run implications of the standard theory are com-

pletely contradicted by the data.

2.5.4 Repeated and Reversed Cascades: Self Correction

Since this off-path behavior is central to the dynamic properties of QRE (where such

behavior is actually not off-path) and to the resulting convergence of beliefs, our
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Table 2.8: Frequency of repeated and reversed cascades by treatment.

experimental design with much longer sequences allows us to better observe the kinds

of complex dynamics predicted by the theory, in particular the phenomenon of self

correction.

Table 2.8 shows the average number of repeated and reversed cascades per se-

quence, by treatment, and also gives theoretical expectations according to the Nash

and out-of-sample QRE-BRF predictions (explained later). While such cascades are

not possible in the Nash equilibrium, the latter model predicts the observed number

of reversed and repeated cascades remarkably well.

Table 2.9 shows how frequently correct and incorrect cascades repeat or reverse

themselves.29 The number of repeat cascades is increasing in T and decreasing in q,

which is consistent with the QRE model.

Averaging over the four treatments shows that when a correct cascade breaks, it

reverses to an incorrect one in approximately 6% of all cases (39/637). In contrast,

an incorrect cascade that breaks leads to a self-corrected cascade in more than 21%

of all cases (66/369). This confirms hypotheses (SC2) and (SC3).

Table 2.9 also lists the initial, final, and total number of correct and incorrect

29The percentages listed ignore terminal cascades, since they can neither repeat nor reverse, by
definition.
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Table 2.9: Transitions between correct and incorrect cascades in our data.

cascades by treatment. In all four treatments, the fraction of incorrect cascades is

always lower among the final cascades compared with the initial cascades. Overall,

initial cascades were incorrect nearly 35% of the time (114/322) and final cascades

were incorrect only 27% of the time (87/322). This supports hypothesis (SC4).

2.5.5 Efficiency

How frequently are actions correct? How does this change over time? And how does

this change as a function of signal informativeness? These questions can be directly

answered in our data by checking the proportion of correct decisions, since both the

state and the action of each individual are observed in the data.

There are two important observations to note before delving into the analysis of

the efficiency results. First, the probability of a correct decision, and the way that

probability changes over time, will be much different for decision makers who received

correct versus incorrect signals. Decision makers with incorrect signals will do badly

at the beginning, but will do increasingly well over time. Decision makers with correct

signals will do very well at the beginning (perfectly in the Nash equilibrium), but will
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do worse for a while until the public belief gets close enough to 1. Second, overall

efficiency is extremely sensitive to the specific sequence of signals individuals receive

and also (in a quantal response equilibrium) to the specific action choices. Since

in 20 rounds there are over one million possible signal sequences (and many more

signal-action sequences), our experimental data represent only a small fraction of the

possible sequences. Therefore, there is a lot of sample variation.

Figure 2.3 shows the time-dependence of decision accuracy, by treatment. The

middle column displays the actual data, averaged across all experimental sequences,

with the four rows each corresponding to a treatment: (q = 6/9, T = 20) top row,

(q = 6/9, T = 40) second row, (q = 5/9, T = 20) third row, and (q = 5/9, T = 40)

bottom row. In each graph, the thick solid black line shows the fraction of correct

choices for all signals; the dashed (upper) and thinner (lower) lines display the fraction

of correct choices for correct and incorrect signals, respectively.

It is useful to contrast the data with the efficiency predictions of Nash equilibrium,

which are displayed in the left column of the same graph, again based on the actual

signal draws in the experiment. In the Nash equilibrium, decision accuracy quickly

becomes independent of signals, reflecting the formation of pure cascades where all

learning stops and all future decisions are the same.30 The decision accuracy for

(in)correct signals (rises) falls for a few rounds and then levels off. As a result, the

unconditional decision accuracy increases for only a short amount of time as nearly all

cascades are formed in the first five periods and never break. This contrasts sharply

with the dynamics in the actual data, where unconditional decision accuracy continues

to rise as the sequence of decision makers passes through cycles of temporary cascades

that break and re-form.

30As an illustration of the sample variation induced by the specific sequence of signal draws,
decision makers in the q = 5/9, T = 20 treatment by chance drew many more correct signals in the
early rounds than did decision makers in the q = 5/9, T = 40 treatment. This is most easily seen
by comparing the Nash predictions of decision accuracy for the two treatments.
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Figure 2.3: Decision accuracy along the sequence of decision makers by treat-
ment: (q = 6/9, T = 20) top row, (q = 6/9, T = 40) second row, (q = 5/9,
T = 20) third row, and (q = 5/9, T = 40) bottom row. In each graph, the
thick solid black line shows the fraction of correct choices for all signals, the
dashed red line for correct signals, and the thin blue line for incorrect signals.
The lines show moving averages: a point at time t represents average decision
accuracy between t − 2 and t + 2 for 3 ≤ t ≤ T − 2. The left column gives
Nash predictions, the middle column data, and the right column QRE-BRF
simulations, all based on the actual signals used in the experiment.
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There is a strong signal dependence that persists throughout the experiment. The

decision accuracy for incorrect signals is always less than for correct signals in the

actual data in every round t, providing strong support for (E2). For incorrect signals,

there is a clear and persistent upward trend in decision accuracy (due to information

aggregation)and there is a small, early downward trend for decision makers with

correct signals, as hypothesized (the interim part of E1). For decision makers with

correct signals this levels off and even reverses sign later because later cascades are

more likely to be correct due to the phenomenon of self-correction.

For a more formal statistical test of hypotheses E1-E3, Table 2.10 shows the results

of a Probit regression with six independent explanatory variables: t, q, q ∗ t, signal,

signal ∗ t, match. Signal is a dummy variable that takes on the value of 1 if the

signal is correct. The variable q ∗ t is an interaction of signal informativeness and

time period,31 which, according to hypothesis H4, should be positive. The variable

(signal ∗ t) is an interaction between time and signal correctness. From hypothesis

H1, the effect of t on decision accuracy should be positive only for incorrect signals,

with a possible small negative effect for correct signals. Match is a variable that is

included to control for possible experience effects.32 Notice that we do not include T

in the regression because the theory does not predict any effect except through the

variable t.

The second column of Table 2.10 shows the estimated coefficients with standard

errors in parentheses. All coefficients have the expected sign and are statistically

significant. These results deserve closer inspection for at least two reasons. First, the

regression is not based on any kind of structural model of decision making. Second,

there are obvious dependencies in the data and un-modelled sources of error, including

quantal response errors and variation in signal sequences. (The third and fourth

31Here q ∗ t equals 0 if q = 5/9 and q ∗ t equals t if q = 6/9.
32Match=1 corresponds to the first sequence in a session and ranges up to 20 or 30 depending on

whether T equals 40 or 20, respectively.
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Table 2.10: Probit estimation of the effects of q and t on efficiency.

columns of the table are discussed later.)

Finally, it is natural to ask whether efficiency is higher under the QRE-BRF model

than it is under the standard Nash model. Information is aggregated better under

QRE-BRF (see Proposition 1) but decision-making is worse in this case as subjects

are prone to errors. Figure 2.5 shows that efficiency levels are increasing with time

under the QRE-BRF model throughout the duration of the experiment. In fact, in

the long run as T grows large, beliefs in the QRE-BRF model converge to the true

state so that private beliefs and public coincide, independent of signals. Using the

pooled data to estimate the parameters of the QRE-BRF model, we can compute the

asymptotic decision accuracy: 0.99, i.e., almost full allocative efficiency is achieved

in this limit.

2.5.6 Summary of Results

Here we summarize our findings by relating them to the properties of the logit QRE

discussed in Section 2.3.4.

• (C1) and (C2): The occurrence of pure cascades decreases with T and increases
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with q. The effect of T is obvious from comparing the different rows in Table

2.4. Both for q = 5/9 and q = 6/9, the percentages of pure cascades fall quickly

with each successive row. Comparing columns 1 and 3 and columns 2 and 4 in

Table 2.4 shows the effect of signal informativeness.

• (C3 and C4): The number of cascades increases with T and decreases with q.

See Table 2.6 and Figure 2.1. Longer sequences have more cascades because

they allow for more cycles of formation and collapse. These effects are barely

noticeable in short sequences: AH’s experiment averaged slightly more than 1

cascade per sequence.

• (C5): The probability of collapse sharply decreases as a function of the duration

of the cascade. See Figure 2.2.

• (C6 and C7): Cascade lengths increase with T for q = 6/9 and increase with

q. The effect of T can be decomposed as follows. First, and most obvious, if

T is short then some cascades that would have lasted longer are interrupted at

T . Second, by (C5) longer cascades are less likely to break. The two effects

combined result in a fat tail of the length distribution and in a mass of cascades

at T − 2; see Table 2.6 and Figure 1. The effect of T is observed in the q = 5/9

data, where the distributions of cascade lengths are very similar for the T = 20

and T = 40 treatments.

• (SC1): Correct cascades last longer on average. The observed average lengths

of (correct, incorrect) cascades in the different treatments are: (2.55, 2.24) for

q = 5/9 and T = 20, (2.08, 1.91) for q = 5/9 and T = 40 , (3.42, 2.85) for

q = 6/9 and T = 20, and (8.31, 5.50) for q = 6/9 and T = 40.

• (SC2) and (SC3): Reverse cascades are usually self-correcting, and repeat cas-

cades are usually correct. See Table 2.9. Across the four treatments, the prob-
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ability that a reversed cascade is self-correcting is 63% (even though there are

many more correct than incorrect cascades to reverse from). It is this feature

of the dynamics that produces the full information aggregation result of Propo-

sition 1.

• (SC4): Later cascades are correct more frequently than earlier ones. See Ta-

ble 2.9, which lists the number of (in)correct cascades among initial and final

cascades.

• (SC5): Cascades are almost always broken by decision makers with contradictory

signals. See Table 2.2.

• (E1): Ex ante efficiency is increasing in t. Efficiency is increasing in t, condi-

tional on an incorrect signal. Efficiency is initially decreasing in t conditional

on a correct signal, but this eventually reverses (see Figure 3).

• (E2): Correct signals lead to more efficient decisions than do incorrect signals.

Again, see Figure 3.

• (E3): More informative signals lead to more efficient decisions. See Figure 2

and Table 2.10.

The final three hypotheses, (B1)-(B3), address the evolution of beliefs during a se-

quence and are discussed in section 2.7. The next section describes the QRE estima-

tion and our base rate fallacy model.

2.6 Results II: Estimation

We start by describing the estimation procedure for the basic logit QRE model. The

only parameter is the slope of the logit response curve, which in the context of these

games can be interpreted as a proxy for rationality, experience, and task performance
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skill. In subsequent subsections, we jointly estimate logit and other parameters, using

standard maximum likelihood estimation. For comparability, we choose to normalize

payoffs in all experiments to equal 1 if a subject guesses the state correctly and 0

otherwise.33

Since subjects’ choice behavior depends on λ, public beliefs follows a stochastic

process that depends on λ. The evolution of the public belief can be solved recursively

(see equations (2.3.4) and (2.3.5)), so implicitly we can write pt(c1, · · · , ct−1|λ). Given

{λ, st, (c1, · · · , ct−1)}, the probability of observing player t choose A is:

P (ct = A|λ, st, c1, · · · , ct−1) =
1

1 + exp(λ(1− 2πst
t (pt(c1, · · · , ct−1|λ))))

,

and P (ct = B|λ, st, c1, · · · , ct−1) = 1 − P (ct = A|λ, st, c1, · · · , ct−1). Therefore, the

likelihood of a particular sequence of choices, c = (c1, · · · , cT ), given the sequence of

signals is simply:

l(c|λ) =
T∏

t=1

P (ct|λ, st, c1, · · · , ct−1).

Finally, assuming independence across sequences, the likelihood of observing a set of

M sequences {c1, · · · , cM} is just:

L(c1, · · · , cM |λ) =
M∏

m=1

l(cm|λ).

The estimation results for the logit QRE model are given in Table 2.11. A detailed

estimation program written in GAUSS is contained in Appendix B. The λ estimates

for the four treatments are quite stable and the pooled estimate is close to that

estimated from the AH data. Notice that the estimated value of λ for the (q = 5/9,

33Recall that in the experiment subjects received $1 for a correct choice and $0.10 for an incorrect
choice. The difference of $0.9 is normalized to 1 unit in the estimations. Without this normalization
the estimates reported below would be multiplied by a factor of 1/.9.
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T = 20) treatment is somewhat greater than the other three treatments. This may

reflect a subject pool effect, since that treatment was the only one that used mostly

Caltech students.

Since comparison with Nash equilibium does not provide a particularly informative

benchmark for the logit QRE, the following three subsections consider extensions and

alternatives to the basic model. This allows us to access the extent to which the choice

behavior in our data is explained by quantal response-type decision errors as opposed

to other sources, such as non-Bayesian updating and non-rational expectations.34

Using parametric specifications we measure the extent of certain types of these biases

in the data.

2.6.1 Incorporating the Base Rate Fallacy

In their seminal article, Kahneman and Tversky (1973) present experimental evidence

showing that individuals’ behavior is often at odds with Bayesian updating. As

noted in the introduction, there is considerable evidence in the literature on cascade

experiments that players are non-Bayesian. We explore two of these here. First, a

particularly prevalent judgement bias is the Base Rate Fallacy (BRF), or as Camerer

(1995, pp. 597-601) more accurately calls it, “base rate neglect.” In the context

of our social learning model, the base rate fallacy would imply that agents weight

the public prior too little relative to their own signal. Because past experiments

have been suggestive of these effects, we construct an analytical model of this and

estimate it using the error structure of the Logit equilbrium.35 We formalize this

idea as a non-Bayesian updating process in which the private signal is counted by

the decision maker as α signals, where α ∈ (0,∞).36 Rational agents correspond to

34Huck and Oechssler (2000) find strong evidence of violation of Bayesian updating in a similar
context.

35Some error structure is required for the estimation because the α-BRF model is deterministic.
36This could also be loosely interpreted as a parametric model of “overconfidence” bias in the

sense of Griffin and Tversky (1992). Kariv (2005) and Nöth and Weber (2003) use this terminology.



48

α = 1, while agents have progressively more severe base-rate fallacies as α increases

above 1.37

While agents over-weight their private signals we retain the assumption that they

have rational expectations about others’ behavior. This implicitly assumes that α

is common knowledge (as well as λ). The updating rules in (2.3.1) and (2.3.2) now

become

πa
t (pt|α) =

qα pt

qα pt + (1− q)α(1− pt)
(2.6.6)

and

πb
t (pt|α) =

(1− q)α pt

(1− q)α pt + qα(1− pt)
, (2.6.7)

respectively.38

The public belief, pt, in equations (5.1) and (5.2) is derived recursively using (2.3)-

(2.5). In particular, this means that subjects not only overweight signals, but also

take into account that other subjects overweight signals too, and the public belief is

updated accordingly. Thus, for α > 1, the public belief is updated more quickly than

in the pure Bayesian model.

There is good reason to think this model may better describe some features of the

data. First, when α = 1 QRE predicts that indifferent agents randomize uniformly.

However in the data 85% of indifferent subjects follow their signals, which is consistent

with α > 1.39 Second, when α > 1, cascades take longer to start.40 The base rate

fallacy therefore provides one possible explanation for the prevalence of length zero

37Values of α < 1 correspond to under-weighting the signal, or “conservatism” bias, as discussed
in Edwards (1968) and Camerer (1995, pp. 601-2). Although this latter kind of bias has less support
in the experimental literature, it is sufficiently plausible that we choose not to assume it away.

38From these equations, it is easy to see that for α > 1 the learning process is faster as agents’
choices depend more on their own signals, in the sense that the expected change in posterior is
greater.

39A subject is indifferent when the counting rule applied to previous decisions and the subject’s
private signal balances to zero.

40For example, after two A choices the third decision maker need not choose A if she sufficiently
overweighs her b signal.
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temporary cascades in our data set (see Figure 1).

The estimation results for the QRE-BRF model are reported in the second panel

of Table 2.11. For all treatments, the BRF parameter, α, is significantly greater

than 1.41 To test for significance we can simply compare the log-likelihood of the

QRE-BRF model to that of the constrained model (with α = 1) in the top panel.

Obviously, the BRF parameter is highly significant.42 Furthermore, the constrained

model yields a significantly (at the 0.01 level) higher estimate of λ for all treatments.

There is at least one alternative interpretation to the finding that subjects respond

too strongly to their signal. By doing so, they are giving better information to later

decision makers, which increases efficiency and raises the expected utility of the other

players in the game. Evidence from experiments on public goods and some game

theory experiments suggest some degree of altruism by subjects. Conceivably, what

we are calling a base rate neglect (or overweighting of signals) may simply be a

manifestation of altruistic behavior. However, there is some counter evidence that

suggests this is probably not the case. First, if altruism is the motivating force, one

would expect higher estimates of α for T = 40 than for T = 20. This is not the

case. Second, once would expect less overweighting of signals in later periods than

in earlier periods. We tested for this and found no significant effect. Therefore, our

interpretation is not that subjects are behaving altruistically, but rather the source

of the distortion is a probability judgement fallacy.

2.6.2 Incorporating Non-Rational Expectations

Rather than simply over-weighting private information relative to the base rate (pub-

lic belief), it is possible that players update incorrectly because they do not have

41Similar results are reported by Çelen and Kariv (2004).
42For the pooled data the difference in log-likelihoods is nearly 200. A simple t-test also rejects

the hypothesis that α = 1, with a t -statistic of 14.6. Tests conducted for the AH data also reject
the constrained model, with a slightly lower estimate of α.
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rational expectations about the driving parameters of the model. The QRE model

implicitly assumes that λ is constant across the population and common knowledge.

In particular, if players believed other players’ λ were lower than it truly was, then

beliefs, and hence choice dynamics, would be qualitatively similar to those under a

base rate neglect. The reason is that when choices are believed to be generated by a

noisier process, players draw weaker inferences about predecessors’ signals from ob-

serving their choices. Accordingly, we consider a model that allows for separate belief

and action precision parameters, as proposed by Weizsäcker (2003). These different

parameters are labelled λa (action lambda) and λb (belief lambda). That is, players

choice probabilities follow the logit choice function with parameter λa but they believe

that other players’ choice probabilities follow a logit choice function with parameter

λb.
43 We call this the non-rational expectations model, or QRNE model.

The estimation results for the QRNE model are also given in Table 2.11. While

this two-parameter model performs significantly better than the QRE model, the

increase in likelihood is smaller in magnitude than the increase of QRE-BRF relative

to the simple QRE.

An advantage of using the QRE model is that we can explore the relative impor-

tance of different biases, by nesting them in the same model. In this case we can see

whether the BRF bias is more or less important in our data compared to updating

failures due to irrational expectations about other players’ error probabilities. When

BRF and QRNE are combined so that the model includes both sources of bias, the

action and belief λ are virtually identical when estimated from the pooled data, and

the increase in likelihood from the QRE-BRF model is barely significant. A similar

conclusion holds for the AH data, indicating that the assumption of rational expec-

tations (λa = λb) is (approximately) valid in both data sets, while α > 1 indicates a

robust effect of base rate neglect.

43See Kübler and Weizsäcker (2004) for a more extensive discussion of this model.
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2.6.3 An Alternative Model: Cognitive Heterogeneity

It is instructive to consider other models with non-quantal response sources of noise

that could also potentially explain our data. This helps to check the validity of our

basic story for choice behavior, in light of the observation that the Nash equilibrium

does not provide a way to challenge any of the predictions of QRE. One natural

question to ask is where the source of scatter (error) in our data is really coming

from. In QRE, it is assumed to come entirely from payoff-monotone choice errors,

and this behavior is assumed to be homogeneous across the population. An alternative

possibility is that this apparent noise in the data is due to some kind of underlying

heterogeneity. We explore one possible model of heterogeneity in this section.

Although there are many options, a natural first step is to suppose that some play-

ers behave completely randomly, while other players optimize against such behavior.

Camerer, Ho, and Chong (2003) extend this idea to allow for multiple levels of sophis-

tication.44 Specifically, level 0 players are random, and all other players use optimal

strategies given their beliefs. Level 1 players believe all the other players are level 0,

level 2 players believe all others are a mixture of level 0 and level 1, and so forth. The

proportion of level k players in the population is given by a Poisson distribution with

parameter τ . That is, the probability of a level k player in the population, given the

Poisson parameter τ , is equal to τkeτ

k!
. Thus, for example, if τ = 1.5 then the distrib-

ution of types 0, 1, 2, 3, ... is equal to (0.22, 0.33, 0.25, 0.125, ...). Players are assumed

to have truncated rational expectations, i.e., level k players believe all other players

are a mixture of levels less than k, with their relative probabilities given by the true

Poisson distribution. Thus, again using the example of τ = 1.5, 22% of the players

are simply randomizing, 33% are optimizing assuming they face only rational players,

25% are optimizing assuming they face a mixture of level 0 and level 1 in proportions

44Stahl and Wilson (1995) explored a related but different model with levels of sophistication to
study behavior in experimental games. See Camerer, Ho, and Chong (2003) for a discussion of the
differences between the two models.
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equal to 2
5

and 3
5
, and so forth. Therefore, assuming the model is correct, very high

level types have very accurate beliefs about the distribution of types. This implies

they also have accurate beliefs about the distribution of strategies in the population,

and therefore they are almost optimizing. This is called the cognitive hierarchy (CH)

model.

The presence of randomizing level 0 players will lead higher-level players to im-

plicitly discount the information contained in the choices of their predecessors. In

this way the CH model can pick up some of the same features of the data as QRE.

To see this, it is instructive to look at exactly what the behavior of the lowest three

types are. Level 0’s of course are just random. Level 1’s simply follow their own sig-

nal, since they assume there is no useful information in the observations of previous

decision makers (they are believed to be totally random). Level 2’s optimize against

a mixture of such players, so they simply act as if each previous decision is a noisy

(but informative) signal about the signals of earlier decision makers. Again using the

example of τ = 1.5, if the second mover is a level 2 player and observes the first player

choose A, he believes that the first mover received an A signal with probability 4
5

and

a B signal with probability 1
5
. Thus, such a player’s posterior on state A will be less

than q. That is, level 2’s have dampened updating, but also note that level 2’s will

reach a point quickly where they no longer follow their own signal. In the example

above, they will act exactly like a player following the Nash equilibrium and will herd

after one of the decisions has been chosen two more times than the other decision.

(This is independent of q.) Furthermore, like QRE, CH is “complete” in the sense

that it is consistent with any sequence of choices and signals. Hence we can obtain

maximum likelihood estimates of the parameter τ via the same methodology, without

using QRE; see Table 2.11.

We also estimate CH together with QRE to allow for further comparison with

QRE. To do so, we suppose that each agent is assigned a level k in the hierarchy, as
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in CH, but quantal responds to her beliefs, as in QRE. Thus CH-QRE is a model

parameterized by (τ, λ), which are assumed to be common knowledge. All three

models (CH, QRE, and CH-QRE) are then re-estimated with the inclusion of the

BRF parameter α to allow for the possibility of over- or under-weighting of private

information in each case; see Table 2.11. Note that the estimates for the combined

QRE-BRF-CH model are stable across data sets and generally result in the highest

likelihood. All three are significant factors, based on likelihood ratio tests, and leaving

out any one of these factors changes the magnitudes of the other estimates.

A surprising finding is that the estimate for τ is larger in magnitude than has been

typically found in other settings. Camerer, Ho, and Chong (2004) report estimates

in the range of 1.5 to 2.5, while our estimate in the combined model is 2.9 (with a

standard error of 0.10). This appears to be due to an interaction between τ , λ, and

α. The estimate of τ in the pure CH model is 1.9, and its estimate in the CH-QRE

model (without BRF) is 2.5. Combining QRE and CH also leads to substantially

larger estimates of λ. The reason for this is that both are rationality parameters that

substitute for each other. The 0 types in the CH model absorb a lot of the randomness

in the QRE model. In other words, the random behavior that can only be explained

by 0 types in the CH model is also explained by quantal response randomness. Hence

we find relatively low values of either parameter if the models are estimated separately,

but both increase significantly when the models are combined.

2.6.4 Implications of Estimates for the Data

The QRE-BRF model is simple and intuitively appealing and we use it to create sim-

ulated data for comparisons with the actual data.45 For each of the four treatments,

45The QRE-CH-BRF model would have been an alternative model for simulation, but the addi-
tional randomness of 0-level types would have necessitated many more simulated sequences. Because
the fit improvement over QRE-BRF is negligible, we decided to use the simpler QRE-BRF model
for our simulations.
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Table 2.11: Parameter estimates for the different models with standard errors
in parentheses.
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we used the data from the other three treatments to obtain out-of-sample estimates

for λ and α. We then applied the out-of-sample estimates to the signals realized in the

experiment to obtain simulated choices for the treatment. Based on this simulated

data set we computed descriptive statistics about the numbers, lengths, and types of

cascades: pure and temporary, repeated and reversed, self-correcting, etc. These are

reported in the right two columns of Tables 2.4 and 2.5 (pure and temporary cascades,

respectively), and the second and fifth rows of Tables 2.6 and 2.8 (numbers/lengths

of cascades and reversals, respectively). Because the simulations were constructed

using out-of-sample estimates of λ and α, they represent out-of-sample predictions of

the properties of cascades in our data, which makes a comparison to the actual data

meaningful. Indeed, the match with the actual data is quite remarkable.

We are also able to construct out-of-sample simulated efficiency dynamics in the

the same way for each of the four treatments, again using the actual sample draws.

These are displayed in the four charts in the right-hand column of Figure 2.3. Again,

it reproduced the patterns observed in the data.

To check the robustness of our findings and to check it against the theoretical

model, we generated two simulated data sets based on the QRE-BRF model, using

the pooled estimates λ = 4.23 and α = 2.46. The first of these simulations uses the

same signal sequences as in the laboratory experiment but decisions are generated by

the QRE-BRF model. The second simulation uses a completely new draw of signal

sequences. The Probit estimations based on the simulated data sets are reported in

columns 3 and 4 of Table 2.10. While there are some small differences in magnitude,

all coefficients of theoretical interest are significant with the correct sign.46 Note that

the log-likelihoods for the simulated data are higher than for the real data. This is

46The only notable difference is the experience variable, which is not significant in the simulation
using a new batch of signal sequences, suggesting that its significance was spurious, due to more
favorable order of signals in later matches. (Indeed, there is no reason that experience should have
had a significant effect in the first simulation.) In any case, the magnitude of the experience effects,
to the extent they may possibly not be spurious, is negligible.
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likely caused by the fact that the simulations assume homogeneous agents, while we

would expect some heterogeneity to be present in the laboratory data.

2.7 Results III: Estimated Belief Trajectories

We use belief estimates generated from the QRE-BRF model to examine both the

the informational efficiency and to address hypotheses about the evolution of beliefs

(B1-B3). How well is the information from private signals aggregated? How high is

the public belief on the correct alternative after a sequence of decisions? How does

this vary with our treatment variables, q and T?

2.7.1 Informational Efficiency

As shown in Proposition 1, in a QRE the public belief about the correct alternative

increases on average with t and converges to 1 as T approaches infinity. The con-

vergence is slower for the q = 5/9 treatments than for the q = 6/9 treatments. Of

course, in any finite sequence, information cannot possibly reveal the correct alterna-

tive because of a combination of noise in the signal generation process and noise in

the decision making process. Moreover, this noise in signal generation is compounded

by strategic considerations that affect the social learning process.

Although we do not observe beliefs directly, we can use the theoretical QRE-

BRF model together with the observed choice data to obtain estimated public belief

paths.47 This is done for every sequence in the experiment. Using the pooled estimates

λ = 4.23 and α = 2.46, each sequence of action choices implies a unique public belief.

This is illustrated in Figure 4, which shows the belief paths for all sequences in one

of the q = 6/9 and T = 20 sessions. The belief trajectories for other sessions exhibit

47Domowitz and Hung (2003) recently reported a social learning experiment using a belief elici-
tation procedure.
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Figure 2.4: Estimated beliefs using the QRE-BRF model for all sequences in
one of the (q = 5/9, T = 20) sessions.

similar features. Here the horizontal axis represents the sequence of decisions, and the

vertical axis represents the belief about the correct alternative. Each upward tick in

the belief paths corresponds to a correct choice and each downward tick corresponds

to an incorrect choice. Theoretically, for long enough sequences, the belief paths for

almost all sequences should converge to 1.

The simplest way to test Hypotheses (B1)-(B3) is to average the public belief

about the correct alternative across all sequences for a given treatment. This produces

the four curves in the left panel of Figure 2.5. The middle and right panels depict

simulated average beliefs using the QRE-BRF model and Nash model, respectively.

The curves are obviously consistent with the theoretical hypotheses.48

The comparison between the different q treatments is a weak test since the paths

are constructed using the theoretical model. That is, even if the sequences of signals

and decisions were exactly the same for all sequences in q = 6/9 and q = 5/9 session,

the q = 6/9 curves necessarily would lie strictly above the q = 5/9 curves. That

said, the ordering also reflects a salient difference between our q = 5/9 and q = 6/9

data, namely that cascades fall apart more quickly and are more often incorrect in

48The right-most panel shows that the difference between the two q = 6/9 treatments is caused
by the particular signals drawn in these treatments.
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Figure 2.5: Estimated public beliefs about the true state by treatment (coded
as in Figure 2.1). In the left panel, estimated beliefs are based on observed
signals and decisions. The middle panel is based on the average of 100 QRE-
BRF simulations of decisions, always using the same sequence of signals as
in the experiment. The right panel shows estimated beliefs implied by Nash
decisions based on the sequence of signals employed in the experiment.

the q = 5/9 data than in the q = 6/9 data (see Tables 2.5-2.8 of the previous section).

However, that the curves are increasing in t is not an artifact of the construction,

but simply reflects the fact that there are more good cascades and fewer bad cas-

cades toward the end of a session than toward the beginning. In summary, we find

strong support for hypotheses (B1), (B2), and (B3), and somewhat weaker support

for hypothesis (B4).

2.8 Conclusion

This chapter reports the results of an information cascade experiment with two novel

features: longer sequences of decisions and systematic variation of signal informa-

tiveness. According to standard game theory, neither of these treatments should be

interesting, and neither should produce significantly different results. We find, how-

ever, that both of these treatment effects are strong and significant, with important

implications for social learning, information aggregation, and efficiency.
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The longer sequences have several interesting features. First, there is almost a

complete absence of pure cascades and a proliferation of temporary cascades, includ-

ing many repeated, reversed, and self-correcting cascades. Standard theory predicts

that longer sequences will have more permanent cascades and that temporary, re-

peated, reversed, and self-corrected cascades never occur. Relatively uninformative

signals lead to less stable dynamics, in the sense that cascades are much shorter, more

frequent, and reverse more often. These subtle but important features of the dynamics

are impossible to detect in the short sequences employed in previous experiments.

To explain the observed features of the dynamics and the dependence on signal

informativeness, we consider the logit quantal response equilibrium (QRE). In addi-

tion, we apply QRE as a structural model to estimate base rate neglect and to test for

heterogeneity in levels of rationality. We find both to be significant factors in observed

behavior. In particular, subjects tend to overweight their signals, or, alternatively,

underweight the public prior generated by past publicly-observed choices.

Our experimental results confirm a wide range of hypotheses about the number

and frequency of different kinds of cascades, efficiency, and belief dynamics. Most

of these hypotheses follow logically from the informativeness of signals and a basic

property of the QRE: deviations from rationality occur and their likelihood is inversely

related to their cost. In the context of information cascades, this property implies

that cascade breakers more often than not hold contrary signals and, hence, that

deviations from cascades are highly informative. Learning continues in a QRE even

after a cascade forms or breaks, and temporary, repeated, reversed, and self-correcting

cascades arise as equilibrium phenomena. While standard cascade theory predicts

that learning ceases after a few initial decisions, our data show that information is

continuously being aggregated, providing evidence for the QRE prediction that for

long enough sequences public beliefs would be approximately correct.



Chapter 3

The Strategic Timing of Social

Learning

3.1 Introduction

When individuals share a common objective but are faced with limited information,

they may base their decisions partly on the observable actions of others. Empirical

evidence to this effect is provided in the previous chapter. There are also examples

from the field. For instance, portfolio managers tend to bias their investment decisions

towards the decisions of their colleagues.1 In seminal papers, Banerjee (1992) and

Bikhchandani, Hirshleifer, and Welch (1992) explore settings where each of a set of

ex-ante identical agents receive private signals and publicly guess the outcome of a

state variable in a predetermined sequence. The common prediction of these models

is that at some point a predominance of choices for a particular action overwhelms

any privately held information. At this point all remaining decision makers also take

the same action, even if it is contradicted by their signals.

It is this phenomenon that has come to be known as an information cascade.

1See, for example, Scharfstein and Stein (1990).
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A cascade entails an informational inefficiency in that once decisions do not reflect

signals, there is no mechanism by which private information can be distributed to

other agents and aggregated, and the process of social learning halts. Thus even

in large economies where there is an abundance of distributed information, with

substantial probability most individuals make suboptimal decisions.

In this standard setup, the order in which agents make decisions is fixed exoge-

nously. Yet there may be interesting phenomena that drive the observed timing of

decisions in the field. One factor is that as the number of announcements grows,

inferences based on these decisions become more accurate on average. Consequently,

individuals who decide later in the sequence expect to do better.2 On the other hand,

there is typically an explicit cost to delay. For instance, a financial manager making

an investment decision pays the cost of holding a suboptimal portfolio while collecting

the information to make her decision.3 The choice of which candidate to endorse in

a national election also has an important timing element. As more endorsements are

made public, the likely winner becomes known with better certainty, but endorsing

a candidate too late in the campaign may pay smaller benefits. Consider also the

decision by a group of firms about whether to adopt a new production technology.4

The profitability of the technology is uncertain. Each firm would like to observe the

adoption by other firms before making its decision, as this provides valuable infor-

mation. Yet delaying the decision is costly since there is a possibility that the firm

is using a suboptimal technology in the interim. Thus there is an inherent tension

between deciding early and late that must be resolved. At equilibrium, agents bal-

ance this tradeoff optimally, realizing that others are simultaneously making the same

calculations. This interaction is modeled below by allowing timing decisions to be

strategic variables in a social learning game.

2Gale (1996) explains this logic in some detail, and also provides an overview of related phenomena
from the herding literature.

3Dasgupta (2000) examines this setting in more detail.
4See Kapur (1994) for an analysis of technology diffusion.
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The model presented below may be summarized as follows. Agents are asymmet-

rically informed about a binary state variable. Signals are conditionally independent

and take values on the unit interval, with a monotonic likelihood ratio. Agents must

publicly guess the outcome of the state variable at a time of their choosing. The

payoff is positive only when the guess is correct, and future payoffs are discounted

at a common rate so that waiting is costly. We characterize equilibrium outcomes in

this setting and the implications for efficiency.

Notice that, as opposed to the canonical model, the accuracy of private informa-

tion is heterogeneous. Signals vary in quality, ranging from uninformative to fully

revealing the state variable.5 The combination of strategic timing and differential

signal quality drives the intuition of the analysis below. To illustrate, consider the

situation of a worker seeking employment, where job offers are publicly observable. It

seems likely that some potential hirers would have better information regarding the

worker’s quality than others. For instance, some firms may gain more information

from the interview or may personally know those who wrote recommendation letters.

Further, firms with better information could use this difference to gain a strategic

advantage over other firms in the hiring process, e.g., by making quicker decisions.

Another example derives from bank runs, as experienced in the United States before

the institution of federal deposit insurance.6 Under this interpretation of the model,

the timing of deposit withdrawals is related to an individual’s private information.

Those with the strongest beliefs that the bank is insolvent should be the first to act.

But taking this action is costly if the bank does not fail, so there is an incentive to

delay in order to observe the others’ decisions.

This chapter provides an explanation of how rational agents with differing infor-

mation qualities behave when they strategically choose the timing of their decisions.

5Thus signals are unbounded in the sense of Milgrom (1979). Smith and Sorenson (2000) contains
a thorough analysis of social learning in the case of unbounded signals.

6Caplin and Leahy (1994) studies a model of market dynamics with an application to bank runs.
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Since utility depends only on an agent’s own action and the state of the world, all

strategic interactions are due solely to an informational externality. We show that in

two player games there is a unique equilibrium. It exhibits monotonic “sorting,” i.e.,

agents with better information decide earlier, and those with lower quality signals

behave more patiently and incur more delay cost in order to learn from others. In

this model, continuously varying signal qualities are important for the existence of a

symmetric equilibrium in pure strategies, since signal quality differentiates agents and

breaks indifferences about the timing decision that would otherwise occur. As the

time grid becomes increasingly fine, the equilibria approach a limit where all action

occurs immediately, and delay costs vanish. Since the sorting improves as the time in-

tervals shrink, the agent with the lower quality signal learns from the better-informed

agent with probability converging to one, and the equilibrium outcome approaches

the first best. However, this limit outcome can only be supported as an equilibrium in

continuous time under a particular “tie-breaking” assumption regarding simultaneous

decisions. Further, since the equilibria in the discrete games are unique, there is no

other approachable equilibrium in the continuous game.7

The main emphasis of this chapter concerns how the welfare properties of social

learning are affected by the strategic timing of decisions relative to exogenous se-

quencing, for which welfare implications are very negative. Despite the equilibrium

phenomenon of herding, information is aggregated efficiently in the present model

due to the sorting property when there are only two agents. Yet these outcomes are

not fully efficient because of the delay cost implicit in the sorting. We find that effi-

ciency increases monotonically as the time intervals shrink, and, as mentioned above,

approaches the first best outcome in the limit. For any finite time interval, aggregate

welfare is higher in the endogenous timing model than in the standard exogenous

7Several authors have provided general existence theorems for discontinuous games, including
Reny (1999), Jackson, Simon, Swinkels, Zame (2002), Dasgupta and Maskin (1986a,b), and Milgrom
and Weber (1985). Despite the fact that none of these results are readily applicable to the present
model, we are also able to find asymmetric equilibria, although they are not perfect.
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sequence model. In games with many players full efficiency is approximated when the

time intervals are short. The reason is that with unbounded signals, there are always

some signals that produce a dominant strategy to announce immediately, and with

many players some individuals receive such signals and reveal the true state to others

with high probability. Thus the message of this chapter is positive in the sense that

we view the assumptions of this model as more appropriate in many settings, and

welfare is unambiguously higher in this setting.

The rest of the chapter is organized as follows. The next section describes in

more detail how the present model relates to existing literature and highlights this

chapter’s contributions. Section 3.3 presents the model for the case of two players.

Section 3.4 contains the equilibrium characterization and the convergence result that

as time intervals vanish the game ends immediately. Section 3.5 then generalizes the

model to allow for a large number of players and analyzes equilibrium outcomes in

that context. The comparison of information aggregation and efficiency to the case

of exogenous ordering of decisions is handled in Section 3.6. Some extensions and

limitations of the model are discussed in Section 3.7. Finally, Section 3.8 concludes.

Proofs of some main results and technical details are included in Appendix C.

3.2 Related Literature

A number of authors, including Chamley and Gale (1994), Gul and Lundholm (1995),

Chamley (2004), and Zhang (1997), have also analyzed models of social learning in

which timing decisions are strategic variables. Interestingly, the results of these mod-

els are mixed and, in contrast to the exogenous sequencing models, depend crucially

on modeling assumptions about the nature of time, uncertainty, and the richness

of the type and action spaces. Consequently, it is difficult to draw unambiguous

conclusions regarding welfare implications.
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Chamley and Gale (1994) consider an investment model where there is only one

action, but infinite delay is not a dominated strategy. The most important difference

from the current chapter is that there is no notion of differentiated signal quality. Be-

cause of this, social learning does not lead to welfare gains in their model. The reason

is that the only symmetric equilibrium involves mixing probabilities that cause agents

to be indifferent between announcing and delaying, so that informational gains are

exactly balanced by delay costs in equilibrium. One reason for the welfare improve-

ment in the present chapter is that the timing of announcements reveals information

about signal qualities, which can not happen in Chamley and Gale (1994). A common

finding of these models, however, is that the game ends quickly as the time interval

shrinks.

The model of Gul and Lundholm (1995) operates in continuous time and uses

a continuous action space, and again signals are not differentiated by quality. The

focus of that study is on “clustering,” the tendency of announcements to be closer

together than if they were made independently. Under their utility specification they

find that social welfare is lower than in the standard exogenous sequencing model,

which is the opposite result of the present chapter. As before, time can not serve as

a screening device for worse informed agents to learn. A second effect is that, since

time is continuous, the relevant comparison to the exogenous sequencing case involves

no discounting for later announcers. This suggests one sense in which the modeling

of time as a discrete quantity may be more appropriate in social learning models.

Building on the work of Chamley and Gale (1994), Chamley (2004) incorporates

differential signal quality into the model, which generates results more similar to this

model: (i) as the time intervals vanish, the game ends immediately, and (ii) the true

state is asymptotically revealed as the number of players diverges. Interestingly, how-

ever, he finds a multiplicity of equilibria with widely varying information aggregation

properties. This contrasts with the present model for which we find a unique equi-
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librium8 with unambiguous welfare implications. For instance, a rush in which all

agents announce immediately constitutes an equilibrium in Chamley (2004) but not

in the present chapter. This contrast is due to the fact that there are two possible

announcements in the present context, so that agents with neutral beliefs will find it

optimal to delay given that others are announcing. Another difference resulting from

the number of possible announcements is that if ever there is a period in which no

agent makes an announcement, the game effectively ends.9

The most closely related work to the present model is Zhang (1996). The signal

structure there is more general than the one defined below, with the important dif-

ference that signals there are bounded, whereas in this model there is a possibility

of being arbitrarily well informed. Action takes place in continuous time. In the

unique symmetric equilibrium there is delay, followed by an immediate cascade based

on the (single) highest quality signal. This result, however, depends crucially on an

additional source of uncertainty that has no counterpart here.10 The present model

also has a unique equilibrium, without restricting attention to symmetric strategy

profiles, which does not converge to the continuous time result found by Zhang. Fur-

ther, with many players herding is inefficient in Zhang’s model whereas the opposite is

true here. These differences relate to the presence of unbounded signals in my model.

With many players, unbounded signals guarantee that some agents announce early

on, and the information conveyed from their choices reveals the state variable with

high probability. As a result, the asymptotic welfare properties are opposite in the

two models. Despite the similarity of these models, Chamley (2004) argues for the

8This is without restricting attention to symmetric equilibria a priori, as do Chamley and Gale
(1994) and Gul and Lundholm (1995).

9This property is due to the fact that there is only one kind of announcement, and so a period with
no announcements reveals the worst possible news about the profitability of announcing. As such,
the equilibrium analysis in Chamley (2004) can make use of a “two-step” property that effectively
allows the payoff from announcing to be compared with the payoff from delaying exactly one period,
rather than having to compute the continuation value of delay as a function of others’ strategies
over all future periods.

10Zhang’s model includes an ex ante unknown cost of adopting either action that is publicly
revealed at the time of the first announcement.
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importance of analyzing a discrete time version of Zhang’s model.11 In fact, Chamley

(2004) conjectures that there may be multiple equilibria in such a game. This chapter

suggests that this is not true.

One contribution of this chapter is that, when combined with other results from

the previous literature, one now obtains a rather complete picture of how various

modeling assumptions about information and timing translate into different results.

With respect to the information structure, two general points can be made. First,

when signals are unbounded, the implications for welfare in large economies are pos-

itive. With arbitrarily accurate signals and many individuals, there will always be

some individuals who are sufficiently sure about the true state that it can not benefit

them to delay, and their decisions collectively reveal the state to all other individuals,

who then have nothing else to gain and so announce correctly immediately following

the first announcers. In contrast, when signals are bounded the welfare results re-

main negative: inefficient herds may still arise under strategic timing since the option

value of delay must balance the cost. Second, when signal quality is homogenous,

symmetric equilibria typically involve mixed strategies in order to balance the mar-

ginal benefits and costs of delay to maintain indifference, whereas with a continuum

of signal qualities the model may admit symmetric pure strategy equilibria where

agents with better qualities announce earlier.

With respect to the modeling of time, one finding is that equilibria in discrete time

games may not converge to the equilibria of corresponding continuous time games.

For instance, a result that is somewhat robust in the literature is that as discrete time

intervals vanish, all action takes place instantly in the limit, whereas such equilibria

are not easily supported in continuous time.

11See footnote 13 in that paper.
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3.3 Model

There is a countable set of dates T r = {0, r, 2r, . . .}∪ {∞}, with the interval between

consecutive dates given by r > 0, at which agents in a set N = {1, 2}make decisions.12

The payoff-relevant states of the world are given by ω ∈ Ω = {A,B}. Agents have

uniform prior beliefs regarding the true state, so that Pr(A) = Pr(B) = 1/2. The

model is one of incomplete information. Agents receive signals pi ∈ [0, 1], i = 1, 2.13

Conditional on ω, the pi’s are independently and identically distributed with pdf

f(p|ω) =





f(p|A) = 2p , if ω = A

f(p|B) = 2(1− p) , if ω = B
with support [0, 1].

Thus low realizations of p are evidence of state B while high realizations are evidence

of A. In particular, a signal of p = 1/2 is uninformative, while signals of p = 0

or p = 1 perfectly reveal the true state, so that the signals are unbounded.14 The

unconditional distribution of types is given by

f(p) =
1

2
(f(p|A) + f(p|B)) ,

which is uniform on the unit interval. The most important feature of the signal

structure is the monotone likelihood ratio. More general structures are discussed in

Section 3.7. All elements of the model, except the realizations of the signals and the

state variable, are common knowledge among the agents.

Each agent must guess the state of the world and so chooses a ci ∈ C = {a, b}
12The notation T is used in place of T r when no confusion arises.
13We use the phrases “agent with signal p” and “agent of type p” interchangeably for convenience,

even though the language “signal” is more accurate.
14Smith and Sorenson (2000) analyze social learning in a general framework with unbounded

signals and exogenous ordering of decisions.
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and a time ti ∈ T at which to make her announcement. Denote by xt
i ∈ X ≡ C ∪{0}

agent i’s action at date t, with the interpretation that xt
i = 0 records the event that

i did not make an announcement at t, and let xt = (xt
1, x

t
2) be the profile of actions

at time t. A history ht at time t specifies whether or not each agent has made an

announcement and, if so, what the announcement was and the time at which it was

made. Thus we can write ht = ∪τ∈T :τ<tx
τ , with the convention that h0 = ∅.15 A

strategy for i specifies an action to take at every history. Let P(Z) denote the set

of probability distributions over a set Z. A behavioral strategy σi for i maps signals

and histories into probability distributions over X, specifying the probabilities that

i announces a, announces b, and delays, respectively.16 Denote by σ = (σ1, σ2) the

profile of strategies.

Agents receive a payoff of one if they guess correctly and zero otherwise. A

common instantaneous discount factor γ > 0 accounts for temporal preferences, so

that the present value of guessing correctly at time t is exp(−γt). Denote the game

so defined by Gr.

Given the instantaneous discount rate γ and interval length r, one immediately

infers that δ ≡ exp(−γr) is the effective period-to-period discount factor. Treating

temporal preferences as fixed and exogenous, there is a one-to-one correspondence

between δ and r, such that δ → 1 as r → 0. In discussing the results below, we make

use of this equivalence.

Agents use Bayes’ Law to update their beliefs. Let πi(pi, t, h
t, σ) represent i’s

belief that the true state is A at time t conditional on i’s type pi and on the history

ht, given the strategy profile σ. Thus after observing her type and before the game

15To formally express the fact that each agent can make only one announcement, write Ht for the
set of possible histories at time t and let H = ∪t∈THt denote the space of all histories. We require
that for all ht ∈ H, xτ

i 6= 0 ⇒ xτ ′
i = 0 for all τ < τ ′ < t.

16The restriction that only one announcement may be made can be written as follows: for all
pi ∈ [0, 1] and all ht ∈ H, σi(pi, h

t) = (0, 0, 1) whenever there exists τ < t such that xτ
i 6= 0.
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starts, agent i’s posterior belief is given by

πi(pi, 0, ∅, σ) =
f(pi|A)P (A)

f(pi|A)P (A) + f(pi|B)P (B)
= pi.

We use perfect Bayes Nash equilibrium (PBNE) as the solution concept.17 In the

next section we find a unique PBNE. In fact, the game is dominance solvable, so that

the equilibrium strategy profile is determined through iterative elimination of strictly

dominated strategies.

Although the set of strategies is quite large, a few observations greatly restrict the

set of possible equilibrium strategies. First, note that if the other agent announces

first, the unique best response is to make a decision immediately thereafter since there

is no possible benefit in delaying further, and delay is costly. Thus after one agent

announces, the other agent announces as quickly as possible, payoffs are realized, and

the game effectively ends. Second, note that if an agent announces before her oppo-

nent, she should always announce a if and only if πi(pi, t, h
t, σ) ≥ 1/2.18 Given these

two simple observations, the equilibrium strategies for i can then be fully described

by a mapping si : [0, 1] → P(T ) that gives the distribution of stopping times at which

an agent will announce as a function of her type pi provided the other agent has not

yet announced. We will be primarily concerned with pure strategies, which in this

reduced form may be expressed by a measurable function si : [0, 1] → T . That is, i

is willing to wait only until time si(pi) to make her announcement and will announce

earlier if and only if her opponent announces first. Clearly, any equilibrium strategy

must satisfy si(0) = si(1) = 0, as an agent who knows the true state with certainty

17Let gi(·|pi, t, h
t, σ) denote i’s probability assessment of j’s type given her own type, the time,

the current history, and strategy profile σ. A PBNE is characterized by a strategy profile σ and a
belief profile g such that for i = 1, 2, j 6= i, (i) σi specifies a best response to σj at every history given
beliefs gi, and (ii) gi is consistent with Bayes’ Law at every history that is reached with positive
probability under σ.

18The results are not sensitive to how we specify an agent’s decision when she is indifferent between
the two choices, as this occurs with zero probability.
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has nothing to gain by delaying and would still incur the cost, i.e., she has a strictly

dominant strategy.

In what follows we will be predominantly concerned with symmetric equilibria.

In such cases, subscripts on strategies and beliefs are dropped when no confusion

arises. In addition, the equilibrium strategies we find treat the two states of the

world symmetrically. Formally, we have the following:

Definition 1 A strategy si for i is information-symmetric if for all 0 ≤ p ≤ 1/2,

si(p) = si(1− p).

Thus information-symmetric strategies are symmetric mappings about the uninfor-

mative signal (p = 1/2), which means that we can restrict attention to the quality of

an agent’s type, as measured by q = |p−1/2|. Note that when agents use information-

symmetric strategies, beliefs about the true state πi(pi, t, h
t, s) change only when an

announcement is made. To see this, note that whenever a type p < 1/2 plans to

announce at a time t, there is a corresponding type 1− p who also plans to announce

at t. Thus agents learn nothing about the likelihood of the true state through the

passage of time, unless an announcement is made.19

We refer to PBNE that are both symmetric and information-symmetric as SISPBNE.

Since under information-symmetric strategies we can restrict attention to types p ≤
1/2, a SISPBNE in pure strategies (pure SISPBNE) is fully described by a function

s∗ : [0, 1/2] → T . So s∗ gives the planned stopping time for each signal quality an

agent may have.

3.4 Equilibrium Analysis

The equilibrium strategies below satisfy the following:

19See Appendix C for a formal statement and proof of this important fact.
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Definition 2 Given γ > 0, fix r > 0 and an information-symmetric pure strategy

si for i in Gr. si is characterized by cutpoints if there exist a number k < ∞ and

numbers 0 = p0 < p1 < · · · < pk = 1/2 such that if pl−1 < p < pl then si(p) = (l−1)r,

l = 1, . . . , k.

Notice that any strategy characterized by cutpoints satisfies two properties. First,

there can be no “empty dates,” meaning that for any l < k, there exists a set of

positive measure of types for which s(p) = lr. Second, a monotonicity condition

is satisfied, in the sense that as an agent’s signal quality q increases, her stopping

time (weakly) decreases. We can now characterize the equilibria of Gr. The follow-

ing proposition shows that Gr has a unique equilibrium and that it is symmetric,

information-symmetric, in pure strategies, and characterized by cutpoints.

Proposition 1 Fix r > 0 and γ > 0. Gr has an (essentially) unique PBNE s∗.

Moreover, s∗ is symmetric, information-symmetric, in pure strategies, and character-

ized by cutpoints.

Proof. See Appendix C.

The intuition for Proposition 3 is as follows. That there exists a symmetric and

information-symmetric equilibrium results from the ex-ante symmetry of the game.

Uniqueness is obtained by iteratively eliminating strictly dominated strategies in the

following way. At time zero, there is a group of types of each agent that is sufficiently

well informed that waiting can not possibly be beneficial–the cost of delaying is too

high even if by waiting one period they could learn the outcome of the state variable.

Given that these types must announce at time zero in any equilibrium, it turns out

there is enough expected benefit from waiting to induce all less well-informed agents

to delay. This is shown through iteratively eliminating the strategies “announce

immediately with positive probability” for types who are increasingly well informed,

starting from the uninformative type (p = 1/2), until only the types who had the
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Figure 3.1: The equilibrium strategy s∗(p) as a function of type p for r = 0.045
and γ = 1.

dominant strategy to announce remain. Then at the next date, if neither agent has

announced, it is common knowledge that both agents are not so well informed that

they dropped out at the previous date. The same logic is applied again, so that of

those types remaining, some agents can not possibly gain enough from waiting to

offset the cost, etc. This construction results in a unique equilibrium. Figure 3.1

depicts a typical equilibrium strategy. In this case, the maximum length of the game

in equilibrium is 4r.

Proposition 3 provides a strong result characterizing the equilibrium of Gr. Note

that for any fixed temporal preference γ, as r decreases, the cost of delaying one period

decreases, and so agents become more willing to delay on the margin. This means that

as r tends to zero, the cutpoints depicted in Figure 3.1 shift continuously towards the

boundaries of the unit interval, additional cutpoints enter from the midpoint p = 1/2,

and the number of potential periods grows without bound. Since the marginal cost

of delaying one period approaches zero as time progresses, one could imagine that for

sufficiently small r, the game could last an infinite number of periods with positive

probability. The next result shows that this is in fact not possible, i.e., that Gr must
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end in finite time for every positive r.

Proposition 2 For every γ > 0 and r > 0, Gr ends in finite time. That is, there

exists k < ∞ such that s∗(p) < kr for all p ∈ [0, 1] in the unique equilibrium s∗.

Proof. See Appendix C.

The proof is established as follows. First from the proof of Proposition 3 (see

Appendix C), we have an equation that implicitly defines the cutpoint pl as a function

of the previous cutpoint pl−1 for any δ < 1. This equation may be solved to provide

an explicit function pl = pl(pl−1; δ), which is graphed in Figure 3.2. The properties

of this function can be used to derive a positive minimum distance between any

consecutive cutpoints pl and pl−1, i.e., a minimum interval length d(δ) of types who

plan to announce at time (l − 1)r. Graphically, the interval length pl(pl−1; δ) − pl−1

is the vertical distance between the bold curve pl(pl−1; δ) and the dashed 45o line at

the point p = pl−1. The cutpoint function takes valid values pl ≤ 1/2 up to the point

pl−1 = v, where the function crosses the value 1
2
. Thus the red line segment depicts

the smallest possible interval length d for a given δ, which is always positive. Given

this bound, the maximal number of equilibrium intervals, which corresponds to the

maximum number of periods the game can last, is 1/2d.

One consequence of Proposition 3 is that unless the agents happen to announce

simultaneously, they will necessarily make the same decision. To see why this is so it is

enough to consider the decision problem facing an agent whose opponent has already

announced. Given the sorting nature of equilibrium, the first announcer has strictly

higher signal quality, so the posterior beliefs of the second announcer are dominated

by the information from the decision of the first announcer, independent of which

state the second announcer’s private information indicates. That is, in equilibrium,

πi(pi, t, h
t, s∗) ≥ 1/2 if xτ

j = a for some τ < t. Thus the second announcer finds it

optimal to make the same announcement as the first announcer. The only way in
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Figure 3.2: The equilibrium cutpoint function pl(pl−1; 0.956).

which the announcements of the two agents can differ is if they decide simultaneously,

in which case they have approximately the same quality of information, and neither

agent learns from the announcement of the other.

Having characterized the equilibrium, we now turn attention to analyzing the

comparative statics as r tends to zero. By the results of the previous section, we know

that the equilibrium strategy s∗ partitions the set of types p ≤ 1/2 into intervals,

where each interval of types is willing to wait until the same time to announce,

conditional on the other agent having not previously announced. For a fixed δ, call

the number of equilibrium cutpoints k(δ). Thus the game necessarily ends by time

rk(δ), since at each date there must be some interval of types planning to announce.

By Proposition 4, k(δ) < ∞ for all δ < 1. Note however that k(δ) diverges to infinity

as δ approaches unity, meaning that as the time intervals become vanishingly small,

the number of periods that the game potentially lasts becomes infinite. The relative

rates at which r and k change determines the limiting behavior of equilibrium timing.

The next result shows that as r becomes vanishingly small, the game ends imme-

diately.
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Theorem 1 For every γ > 0, Gr ends immediately as the time interval vanishes.

That is, limr→0 rk(δ) = 0.

Proof. See Appendix C.

Theorem 1 is established by deriving an upper bound k̄(δ) on the number of

equilibrium cutpoints and showing that rk̄(δ) limits to zero. The proof is essentially

an application of L’Hopital’s rule; it is constructing the upper bound k̄(δ) that requires

work. As in the proof of Proposition 4, the properties of the function pl(pl−1; δ) (see

(C.4) in Appendix C) are exploited. Using a linear approximation to pl(pl−1; δ) instead

of the actual function, one can define alternative equilibrium cutpoints zl with the

property that zl ≤ pl for all l ≤ k. Because of the linearity, the recurrence relation

that defines the {zl} can be solved. Setting this expression equal to 1/2 defines k̄(δ),

the number of cutpoints that result by using the approximation to pl(pl−1; δ), which

is an upper bound on the actual number of cutpoints.

3.5 Many Players

In this section we expand the model to allow for an arbitrary finite number of agents.

Let the set of agents be N = {1, 2, . . . , n}, n < ∞. Denote these games by Gr
n,

where all other aspects of the game are unchanged. The details of this extended

model are difficult to work out precisely, so we are not able to explicitly characterize

the equilibria as in the case of two players. The main difficulty is that with many

players, there are many subgames that must be considered at all dates after t = 0.

This problem is avoided when n = 2 because there is only one interesting history to

consider at any date, namely, that both players have not yet announced. In contrast,

there are many nondegenerate histories with several players.

When there are more players, there is more information that may be learned from

the announcements of others. Thus one would expect individuals to behave more



77

patiently, that is, to wait longer in equilibrium, all else equal. While this is in fact

true, we can show that as the number of players grows large, the game necessarily ends

quickly. The intuition is that no matter how many players there are, there is always a

positive mass of types with good information who cannot be induced to delay t = 0,

since even if they could learn the true state with certainty by delaying one period, the

cost of delay (given r > 0) outweighs this benefit. As n grows, the probability of at

least one player having such a signal approaches one. Thus as the number of players

becomes large, the announcements of these players reveal the true state with near

certainty after the first date t = 0. Let L(p) denote the maximum realized length

of Gr
n in any equilibrium given the n-vector of signals p= (p1, p2, . . . , pn). Our next

result states that for any positive r, the probability that the game ends after one

period converges to one as n diverges.

Proposition 3 Fix r > 0 and γ > 0. For every ε > 0 there exists n̄ such that

Pr(L(p) = r) > 1− ε for all n > n̄.

Proof. By definition of Gr
n, the maximal continuation value of delay at t = 0 is

δ = exp(−γr) < 1. Thus for all p < 1 − δ and p > δ announcing at 0 is a strictly

dominant strategy for every n. Thus for each n there will be some cutpoint 1− δ ≤
pn

1 ≤ 1/2 such that all p < pn
1 announce at t = 0. Assume that ω = B (the case of

ω = A is parallel). Note that β ≡ Pr(pi < pn
1 |ω = B) > Pr(pi > 1 − pn

1 |ω = B),

since in state B low signals are more likely. Let nB = #{i | pi < pn
1} be the number

of agents who announce b at 0 as a function of p. By a law of large numbers, for

every ε > 0, limn→∞ Pr(|nb/n − β| < ε) = 1. It follows that for every ε > 0,

limn→∞ Pr(π̃i(pi, x
0) < ε) = 1, where π̃i(pi, x

0) represents the posterior obtained from

signal pi and actions x0. Thus as n → ∞ beliefs converge to the true state after

time 0, and so the marginal benefit of delay at the next date r approaches 0 since

there is nothing more to be learned. Therefore all remaining types find it optimal to
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announce at t = r, since the cost of delay is strictly positive.

Since Proposition 3 is true for all r > 0, we can also state as a corollary that as

r goes to zero, the probability that the game ends almost immediately is arbitrarily

close to 1 for sufficiently large n. Note also that herding is observed in the equilibrium

outcomes of Gr
n for large n. In particular, all agents who announce at time 0 do so

independently from each other (so that most but not all of these agents announce

correctly), but then all agents who delayed at 0 learn the true state and make the

same optimal decision at time r. In contrast to the standard cascade model, where

the order of announcements is fixed, there is no informational inefficiency associated

with the herding. In fact, the opposite is true: all agents in the herd are announcing

correctly with arbitrarily high probability. Observe also that as r tends to zero,

the proportion of agents who decide at t = 0 vanishes, and these agents announce

correctly with probability converging to 1. Thus full efficiency is approximated in

large economies for small r. These observations are summarized in the following:

Proposition 4 Fix γ > 0. For every t̄ > 0, ε > 0, and η < 1, there exists an r > 0

and n̄ that satisfy

(i) delay efficiency: Pr(L(p) < t) > 1− ε, and

(ii) informational efficiency: Pr(#{i |xi=ω}
n

> η) > 1− ε for all n > n̄.

Proof. By Proposition 3 for any r < t̄ there exists n̄ to satisfy the first claim. For

any r, the first cutpoint p1 approaches δ = exp(−γr) as n diverges. Therefore, we can

choose r small enough and n̄ big enough so that the individuals announcing at time

zero (i) are an arbitrarily small proportion of individuals and (ii) are arbitrarily well

informed. This implies that an arbitrarily high proportion of individuals announce

correctly with arbitrarily high probability, satisying the second claim.
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Given γ, for any n there is a maximum amount of time r̄n that a player with an

uninformative signal is willing to wait to see the others’ announcements. When r = r̄n

agents with every other signal strictly prefer to announce immediately, rather than

waiting until time r. When n = 2, an uninformed player compares the expected utility

of announcing at zero, which is 1/2, to the expected utility of waiting, in which case

he sees the other player’s announcement, resulting in an expected utility of (3/4)δ, so

that r̄2 = (1/γ) ln(3/2). By the argument above, as n grows, the expected utility of

delay when r = r̄n converges up to δ, so that r̄n approaches (1/γ) ln(2). It is in this

sense that players become more patient as n increases. However since the amount of

time agents are willing to wait does not increase too dramatically with n, it may be

possible to bound the length of Gr
n for arbitrary values of n, although we do not have

this result.

3.6 Information Aggregation and Efficiency

The model aims to provide an explanation of how rational agents with heterogeneous

signal qualities will use time as a screening device to learn about others’ private in-

formation. We have determined that when agents choose the timing of their decisions

strategically, they order themselves in a manner such that those with the best infor-

mation decide first, and those with worse information are willing to wait in order to

learn from early decision makers. Thus it is natural to measure the extent to which

information is aggregated more efficiently in the endogenous timing model relative

to the standard social learning setup, where an exogenous order is assigned to the

players.

For tractability we consider the limiting case δ → 1 with two players. We first

examine the welfare properties of the standard exogenous sequencing model as a

benchmark for comparison to the present model. To do so, we suppose that before
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the game starts, and independently of the signal realizations, agents are randomly

assigned a position in the queue, so that each agent is equally likely to be the first or

second announcer.

Let Cori denote the event that i announces the correct state, i.e., xi = ω. The

probability that the first agent guesses correctly is given by

Pr(Cor1) = Pr(Cor1|A) = Pr(p1 ≥ 1/2|A) =

∫ 1

1/2

f(p|A)dp = 3/4.

Given the optimal decision rule of player 1, the probability that player 2 announces

correctly is 13/16.20 Note that this is consistent with the observation made above

that agents who decide later in the sequence do better on average, in the sense that

they announce correctly with higher probability. But deciding later is also costly. To

make the fairest comparison with the strategic timing setting, we assume that the

value of announcing correctly is 1 for player 1 and δ < 1 for player 2. Thus being

the second announcer is preferred if and only if (13/16)δ > 3/4, or for fixed discount

rate γ, if r < (1/γ) ln(13/12). The ex ante expected sum of utilities in the exogenous

sequencing model is

U ex(δ) = 3/4 + (13/16)δ.

The welfare properties under strategic timing also depend on δ, but in a more

complicated way. Specifically, as δ decreases from 1, two things happen: (i) the

probability that the players announce simultaneously, and hence no learning occurs,

increases (from 0) and (ii) the game typically lasts longer, so greater delay costs are

incurred. The exact welfare properties are difficult to work out in closed form for

δ < 1, so we consider the limiting case of welfare as δ → 1, since in this case we can

20Pr(Cor2) = Pr(Cor2|A) = Pr(x2 = a|A, x1 = a) Pr(x1 = a|A) + Pr(x2 = a|A, x1 = b) Pr(x1 =
b|A) = Pr(p2 > 1/4|A) Pr(p1 > 1/2|A) + Pr(p2 > 3/4|A) Pr(p1 < 1/2|A) = (15/16)(3/4) +
(7/16)(1/4) = 13/16.



81

easily derive explicit comparisons between the two models.

The probability that the first announcer (i.e., the one with higher signal quality)

is correct can be worked out as Pr(Cor1) = Pr(Cor1|A) = Pr(p1 ≥ 1/2|A, |p1−1/2| ≥
|p2− 1/2|) = 5/6. Since the second decision maker always makes the same announce-

ment as the first, Pr(Cor2) = 5/6 as well. Thus we find that the difference in social

welfare from endogenous timing is (5/3−(3/4+13/16)) when there is no discounting,

or almost 7%. The intuition is that, conditional on receiving a relatively uninforma-

tive signal, the exogenous sequencing forces a player to announce first with probability

1/2, whereas when announcements are timed strategically, with high probability the

poorly informed agent will learn from her opponent’s signal and thus make a more

informed announcement.

As δ decreases from 1, the expected welfare improvement from strategic timing

increases so that the difference of 7% as δ → 1 provides a lower bound on the so-

cial utility differential between the models. The reason is that as δ decreases in

the exogenous sequencing model, the second decision maker is penalized with cer-

tainty, whereas when announcement times are chosen strategically, each player al-

ways chooses whether or not to delay and is willing to delay only if she expects to

benefit from doing so. For example, if both agents are sufficiently well informed,

then both announce at time zero, and no delay costs are incurred. Notice that

when δ is sufficiently small (less than 2/3), both agents will announce indepen-

dently from each other at t = 0, regardless of their signals. Thus the ex ante

probability that each is correct is 3/4, and therefore U en(δ) = 3/2. In this case,

U ex(δ) ≤ 3/4 + (13/16)(2
3
) = 31/24 ≈ 1.3, so that the increase in welfare from en-

dogenous timing is at least 15%. Finally observe that for δ < 2/3 the expected social

welfare in the endogenous timing model is constant, whereas it continues to decrease

in the exogenous sequencing model. The welfare gains provided by the opportunity

to strategically time announcements always fall short of full efficiency for δ < 1 since
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either a delay cost is incurred by at least one agent, or else both agents announce

independently at time 0, in which case no social learning takes place. Yet the limit

point of the equilibrium outcomes as δ tends to one is the first best outcome.

A different basis of comparison between the models is to ask how frequently both

agents announce the pooled information state, that is, the optimal choice if all pri-

vate information were aggregated prior to announcing. Clearly, this happens with

probability one under strategic timing in the limit δ → 1, since the agent with the

more informative signal always announces “first” in equilibrium. On the other hand,

in the worst case scenario for the endogenous timing model, δ is small enough that

all types announce at 0, no learning occurs, and the pooled information state is an-

nounced by both agents with probability (3/4)2 + (1/4)2 = 5/8. In the exogenous

sequencing model, in contrast, this happens about 79% of the time independently of

δ.21 Even though whenever δ is small enough that both agents announce the pooled

information state more frequently in the exogenous sequencing model, the effect of

greater delay costs dominates this informational advantage, so that expected welfare

remains higher under strategic timing.

3.7 Extensions

3.7.1 Continuous Time

Most of the results extend to a continuous time setting in the following way. Consider

instead of Gr a game played in continuous time with “reaction lags.” That is, players

may make an announcement at any time t ≥ 0, but there is a strictly positive finite

time that it takes to observe, process, and react to an announcement by another

player. By a slight abuse of notation, call this parameter r > 0. Thus if j makes an

21Note that the pooled information state is A if and only if p2 > 1 − p1. Thus one needs to
compute Pr(p1 > 1/2, p2 > 1, 4 | p2 > 1− p1)+Pr(p1 < 1/2, p2 < 3/4 | p2 < 1− p1) conditional on ω.
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announcement at some time tj, i can not incorporate that information into her own

decision until time tj + r. If i announces between tj and tj + r, it must be because

she had already planned to do so, for she did not have time yet to react to j’s an-

nouncement. In such a case i makes her decision independently of j’s announcement.

Denote by Γr the continuous time game so defined with reaction lag r.

The next lemma states that in any equilibrium of Γr, agents will announce only

at the discrete times T r that are allowed in the corresponding discrete time game Gr.

Lemma 1 Given γ > 0, fix r > 0 and consider any PBNE σ∗ of Γr. Then T r has

full measure under σ∗i (p) for all p ∈ [0, 1], i = 1, 2.

Proof. We claim that in any PBNE of Γr, agents will make decisions only at times

kr, k = 0, 1, . . . with probability one. Consider times τ ∈ (0, r). Any strategy that

places positive probability on announcing at such times is strictly dominated by the

strategy that is identical to σ∗i except for shifting that mass to time t = 0, since

conditional on being correct, the payoff at 0 is strictly greater, and, by hypothesis,

no information can be acquired by any τ < r. Therefore beliefs must not change

before time r. Thus if an agent does not make an announcement at t = 0, she will

wait at least until t = r. Next consider times τ ′ ∈ (r, 2r). Announcing at such times

with positive probability is strictly dominated by announcing at r instead. Given

that agents will not announce at times τ ∈ (0, r), no information will arrive in (r, 2r),

implying that beliefs are again constant on this interval, and conditional on being

correct, the payoff at r is strictly greater than at any time after r. Thus if an agent

has not announced at r, she will wait at least until 2r. The claim follows in this

fashion by induction on k. Thus in Γr agents will announce only at times that are

allowed by Gr.

Lemma 1 establishes a connection between the games Gr and Γr, which can be

extended to show that the equilibrium outcomes in discrete and continuous time
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coincide for any r > 0.

3.7.2 Costly Information

Thus far we have presumed that agents are endowed with private information and

that the quality of the information varies randomly across agents. Further, we as-

sumed that agents use this information strategically in choosing when to make an

announcement and have observed that, in equilibrium, those with better information

do better on average. It is then natural to ask by what means agents acquire their

information.

In this section, we suppose that information is available to the agents, but that

there is a cost to gathering it and that better information is more costly. One way to

model this is to introduce an information source that sells signals to players. Suppose

that before playing the “announcement game” Gr, players have the opportunity to

simultaneously and privately purchase information. Any player who chooses not to

buy information would begin the game with the initial prior P (A). The information

source offers a menu of contracts, selling signals of higher qualities at higher prices.

Recall that q = |p − 1/2| ∈ [0, 1/2] denotes the quality of a signal p. The menu

takes the form of a function c(q) with c(0) = 0, c′ > 0 and c′′ ≥ 0. Conditional on

purchasing a quality q, the signal indicates the correct state with probability q +1/2.

Thus signals of highest quality, q = 1/2, perfectly reveal the true state ω while signals

of lowest quality, q = 0, which reveal no information, are equally likely to be correct

or incorrect.

The value of signal quality is determined by the equilibrium welfare properties of

the model. In particular, we must consider the expected utility of a player with signal

quality qi. Again consider the limiting case δ → 1 since it is the most tractable for this

analysis, and the welfare properties of Gr approximate this limit for small r. In this
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case, the two players always make the same announcement, and this announcement

is based solely on the better of the two pieces of information. Thus players’ welfare

is determined by the quantity max{q1, q2}. Signal quality can be viewed as a pure

public good since both players benefit equally from either player purchasing a high

quality signal. Given signal qualities, expected utilities are given by ui(q1, q2) =

1/2 + max{q1, q2} − c(qi).

If c(qi) = qi it is easy to check that there is a continuum of asymmetric pure

strategy Nash equilibria of the purchasing game, where one agent does not purchase

information and the other agent purchases an arbitrary signal quality. There is also

a unique symmetric Nash equilibrium, where both agents purchase no information.

Note that the strategy of not purchasing (qi = 0) is weakly dominant, and that it is

a strict best response to any positive purchase by the other agent.

Allowing more general cost functions reduces the multiplicity problem and al-

leviates the perverse result that in the symmetric equilibrium, no information is

purchased. In particular, assume c′(0) < 1, c′′ > 0, and c′(1/2) ≥ 2. Then there

are exactly two asymmetric equilibria, where one agent chooses qi = 0 and the other

chooses qj = q∗ given by c′(q∗) = 1. There is also a symmetric equilibrium where each

agent mixes between qi = 0 and qi = q∗ with probabilities c(q∗)/q∗ and 1− c(q∗)/q∗,

respectively. Thus the probability of purchasing information decreases with the cost

of the optimal signal c(q∗) and increases with the optimal quality q∗. In all these

equilibria information is under-provided with probability one relative to the socially

optimal arrangement where one agent purchases no information and the other pur-

chases the quality characterized by c′(qo) = 2.
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3.7.3 Risk Aversion

We have assumed throughout the discussion that players are risk neutral. One in-

teresting extension is to explore the implications of more general risk preferences.

In the risk neutral case, the expected utility of announcing at time zero with belief

π is u(π) = max{π, 1 − π}. A risk averse agent has a utility function satisfying

ũ(π) < max{π, 1− π} for π ∈ (0, 1), since the certainty equivalent to the lottery π is

less than it’s expected value. We would like to be able to describe the qualitative ef-

fects that this has on the model’s equilibrium predictions. Consider the case n = 2 for

simplicity. The primary effect is that risk averse agents behave more patiently–they

are willing to pay a greater cost in order to reduce uncertainty about the state vari-

able. One can verify this directly by transforming the utility functions in the equation

that define the equilibrium cutpoints (see (C.2) in Appendix C) and re-solving. Upon

doing this, the result is that the cutpoints shift towards the boundaries so that the

maximum number of periods the game may last k̄(δ) (weakly) increases. That is, the

length of the game typically increases with risk aversion. In a particularly extreme

form of risk aversion, ũ(1/2) → 0. Yet even in this case, it can be verified that the

game will end in finite time for any δ < 1. Thus the main results do not depend on

assuming a particular form of risk preferences. I have not verified that as δ tends to

one that the game ends immediately for arbitrary utility functions, but I conjecture

that this is true.

3.7.4 Other Utility Functions

The game we have analyzed has a specific payoff structure. One may wish to extend

the model by allowing for more general utility functions. There are several interesting

directions this could take. The first is to relax the maintained assumption of common

interest. That is, one could assume that in addition to the common value component,
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there is an idiosyncratic private value of choosing either alternative. Indeed most

of economic theory presumes that choices reflect private preferences, rather than an

attempt to identify a common objective. In a model of exogenous sequencing, Goeree,

Palfrey, and Rogers (2006) explore such a setting and find that the true state becomes

known with certainty as the number of players diverges. The effect of introducing

private values is that the information from observing a decision is reduced, since the

decision may reflect an idiosyncratic taste, rather than a signal about the common

value aspect. Thus the conjecture is that agents would behave less patiently, since

the expected benefit of delay is decreased.

A second possibility is to dispense with the pure information externalities envi-

ronment. Note that doing so would complicate strategic aspects of the game, since

it would introduce signalling issues. That is, when a player cares about how her

announcement will effect the decisions of those who announce later, her optimal de-

cision rule is much more difficult to characterize in general. One could assume that

the utility of a player depends on the true state and the group decision (as defined

by an appropriate voting rule), as opposed to the private decision.22 Such a model

could, as a special case, maintain the common interest assumption and capture situ-

ations such as committee decisions and jury verdicts. In this case, the motivation to

announce quickly given a strong signal could arise either from the desire to signal this

fact to those who follow or, as is the case above, from an explicit cost to waiting (or

a combination of the two). Extending the model in this direction seems particularly

interesting.

One could also imagine settings where individual interests are not perfectly aligned.

This could arise in reputational models of information cascades,23 or in competitive

environments, such as a patent race. The strategic timing aspects of these situations

are more difficult to analyze, as there exists a tension between announcing correctly

22See Hung and Plott (2001) for an experimental study of such an environment.
23See, for instance, Scharfstein and Stein (1990) or Zwiebel (1992).
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and quickly, and giving away information to others, which could be costly.

3.7.5 Relaxing Assumptions of the Model

The model presented above is somewhat restrictive in a number of ways. However,

many of the results presented would still obtain under more general specifications.

For instance, the assumption that the initial priors place equal weight on both states

is not essential. Suppose instead that P (A) ∈ (0, 1). Then the signal that results in

a flat posterior is p = 1 − P (A), rather than p = 1/2. The important part about

a player’s signal is her resulting posterior beliefs about the true state, which derive

partially from her beliefs about the other players’ information. Thus this generaliza-

tion does not alter the fact that the game ends in finite time, and converges to zero

length as the time interval vanishes. Note, though, that the definition of information-

symmetry would have to be suitably modified. One natural way to do this is to phrase

the definition in terms of posteriors rather than signals. In addition, the signal struc-

ture could also be suitably generalized. The essential feature of the conditional signal

distributions, in addition to having convex support and well-behaved densities, is

the monotone likelihood ratio property. That is, we require that higher types yield

higher posterior beliefs for state A. It would be possible to prove analogues of the

main results under less restrictive assumptions. Note, however, that an explicit wel-

fare comparison between endogenous timing and exogenous sequencing models, as in

Section 3.6, would be considerably more difficult.

3.8 Conclusion

This chapter provides a framework in which it is convenient to analyze the properties

of social learning where agents with differing signal qualities strategically choose the

time at which to make their decisions. One nice feature of the model is a particu-
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larly simple and strong equilibrium characterization for the case of two players. The

uniqueness of equilibria allows for unambiguous welfare comparisons to the standard

model of exogenous sequencing. The primary finding is that expected social welfare

is higher when timing is endogenous and that this difference increases with the length

of time between consecutive decisions. Another important finding is that, in sharp

contrast to the standard model, information is used efficiently. There is no possibility

of getting “stuck” in a situation where players may be choosing a suboptimal action

despite the prevalence of useful information. Moreover this finding is not shared by

similar models. For instance, in Zhang (1997), after the first agent has made an

announcement, all agents decide immediately with the same announcement, so that

interesting dynamics of social learning may not be apparent.

Because of the necessity to allow instantaneous reactions in a continuous time

model, the results of the discrete time model presented here may be more appropriate

where there are institutional features that create lags. We may conclude that although

a herd forms under strategic timing, the optimal timing decisions of agents are such

that the herd is based on the best pieces of information in the economy, rather than

on a random selection from the private information. This suggests that herds may be

more often “right” than would be suspected from the model of exogenous sequencing.

A final conclusion of the model may be drawn from the result that the information

problem is solved asymptotically as n grows. Thus for large economies, one would

expect that after an initial period where the best informed agents announce, at some

point announcements occur very fast. This feature of the model may help to explain

the dynamics of phenomena such as bank runs and currency crises.



Chapter 4

A Strategic Model of Network

Status

4.1 Introduction

People devote much of their time to maintaining relationships with each other. In

addition to having certain qualities independent of their social position, some aspects

of what a person has to offer depend on who their acquaintances are. For instance,

some people are more likely to pass on job offers because of their professional contacts,

and others are likely to introduce two friends with common interests because they

know many similar people. The process of network formation and its impact on the

flow of information and services across individuals or organizations has broad impli-

cations. The ease with which one finds information on the world wide web, the spread

of infectious and electronic viruses, (un)employment dynamics, international trade,

and co-authorship structures, to name just a few examples, have all been studied

and shown to crucially depend on network structures.1 From individuals’ viewpoints,

1See, for instance, Myers and Shultz (1951), Rees and Shultz (1970) for early studies of em-
ployment contacts, Calvó-Armengol and Jackson (2001, 2004) for models of employment dynamics,
Adamic (1999) for analysis of www data collected by James Pitkow that demonstrate short path
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these relationships affect the range of available opportunities, the amount of informa-

tion to which they have access, or their relative influence in the system. From a social

perspective, the structure of relationships affects overall system performance, such as

how quickly and widely information is transmitted, or how efficiently resources are

allocated. Thus it is important to understand the incentives facing agents in these

situations in order to gain insight into what kinds of structures are likely to form and

how these relate to structures that are optimal for the group.

Much has been learned through the study of strategic network formation,2 yet

nearly all of the formal modeling of network formation treats links as binary quan-

tities, that is, links are either present or absent.3 While this adds tractability to

the analysis, it is clearly a simplification of the kinds of links that are observed in

many applications of interest. Relationships such as friendships, trade partnerships,

and research collaborations are characterized not only by the presence or absence of

pairwise interactions, but also by the intensity, frequency, or reliability with which

they occur.

The importance of considering links with different strengths originates in the work

of Granovetter (1973, 1983). Allowing for the possibility of variable-strength links

adds two important ingredients: (i) the ability to study finer details of individual

linking decisions and how they adjust to (small) changes in the underlying charac-

teristics of others, and (ii) the possibility to analyze macro-level consequences of the

tradeoffs involved in adjusting resources across an actor’s maintained links, includ-

lengths, Auerbach et al. (1984) for an analysis of contacts between homosexuals with AIDS, and
Casella and Rauch (2001) for an anlysis of international trade.

2Jackson and Wolinsky (1996) and Bala and Goyal (2000) are seminal contributions on which
much of this literature is based. See Jackson (2003) for a thorough review.

3A recent exception is Bloch and Dutta (2005), who derive partial characterizations for a variety
of cases and find that optimal linking decisions are either all-or-nothing or involve equal spread.
Goyal (2005) discusses implications of allowing for more general link qualities. Goyal, Konovalov,
and Morága (2005) consider a special form of variable strength links in the context of joint R&D
investments among firms and derive a number of interesting predictions in that setting. Calvo-
Armengol and Jackson (2001) model employment dynamics in a network setting that allows for very
general information structures that can be interpreted as a weighted graph.
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ing what kinds of configurations are stable and efficient for the group in this richer

environment.

In settings where network structures are important, some kind of service or in-

formation is transferred across actors. When two actors are connected, they each

typically receive benefits from the other (though possibly in an asymmetric way).

Thus an actor’s investment in a link affects the direct flow of benefits not only to

himself but also to the other actor involved in the relationship. In the analysis be-

low, we separate these components, or directions, of benefit flow into “taking” (T)

and “giving” (G) and analyze these extreme cases. Separating these effects into the

taking and giving components proves useful for analyzing the efficiency properties of

equilibrium networks. An important lesson is that the taking component is efficient,

whereas the giving component need not be. A number of additional questions arise:

How should people allocate their time devoted to others, and how do their optimal

linking choices change with a change in an individual’s intrinsic quality? How are

values affected by an increase in linking capacity?

Even though many applications have elements of both, there are some contexts

that correspond closely to one or the other cases of unidirectional flow analyzed here,

as the following examples argue.

The giving model is relevant where the quantification of reputation is important.

Examples include measuring the imputation of trustfulness in online P2P networks,

the influence of scientific journals, and determining popularity in social friendship

networks. In all these cases agents choose whom to “nominate” or promote by their

actions. Calculations similar to the framework presented here have indeed been uti-

lized in some of these contexts.4 In the case of P2P networks, which are becoming

increasingly prevalent in online applications, a prevalent issue is how to trust certain

4Beth, Borcherding, and Klein (1994) and Kamvar, Schlosser, and Garcia-Molina (2003) examine
the case of trust networks and have results that are suggestive of the model proposed here. Palacio-
Huerta and Volij (2004) formally study the problem of journal rankings.
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network nodes. A system of recommendations provides one answer to this problem.

The model predicts what kinds of recommendation patterns are likely to emerge when

nodes make their decisions in order to increase their own level of trust, and as we

will see, suggests that these decisions are typically subotimal as far as maximizing

the reputation of the group.

The taking model can be viewed as a strategic setting for the model of interper-

sonal influence proposed by Friedkin (1991, 1998) and Friedkin and Johnsen (1990).

Influence is often a desired quality, and so it is natural to think of a model of influ-

ence in a strategic setting. In this context the intrinsic values represent the quality of

information they possess. Agents choose how to spend their effort gaining access to

the value of others. The fact that some people are more active, or better able, to get

value from others will be modeled through allowing some agents to maintain a richer

set of connections than others. Individuals who have much asked of them are central.

The analysis will tie the intrinsic quality and networking ability of the individuals to

the idea of centrality. As will be shown, the equilibrium choices in this setting will

necessarily be optimal for the group.

To understand the way in which benefits accrue to agents through the network,

consider four points. First, each individual has an intrinsic value. Second, each

individual allocates a resource budget across links to others. Third, the benefit that

one individual receives from another is the product of the total value of the other

agent and the strength of the relevant link. Thus, more valuable agents and stronger

links confer greater benefit. Fourth, the total value of each agent is the sum of the

intrinsic value and the benefits from all of the connections to other agents. Thus

value is achieved both through intrinsic value and through high quality connections

to other high value agents.

To motivate this way of constructing utility, think of attempting to quantify schol-

arly potential among academic economists. One measure of quality is represented by
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the CV, which contains, e.g., a publication record. This corresponds to the intrinsic

quality of individuals. Another important consideration, though, is the content of

recommendation letters for hiring or promotion decisions, which represent the choice

variables in the model. Clearly, recommendations from different kinds of individuals

should be treated differently. In particular, recommendations from people who are

“highly regarded” should contribute more to an individual’s status. In the model,

being highly regarded comes from a combination of intrinsic value (i.e., good publi-

cations) and strong recommendations from other highly regarded individuals.

The benefit from a link depends on the value of the agent linked to, and the

value of the agent depends on its set of links and the values of its neighbors, and

so forth. Consequently, given linking choices, the equations that determine network

values must be solved simultaneously in order to compute utilities. Importantly,

this is true despite the fact that an agent’s utility depends explicitly on only those

links that directly involve the agent. The implicit dependence on the remaining links

enters through the values of those to whom the agent is directly connected. One

implication of this interdependence is the presence of “feedback effects,” whereby the

benefits associated with a particular link are counted many times. In the previous

example, one can think of the feedback effects in the following terms: if individual i

recommends individual j, then j’s status increases and (s)he is more likely to get a

good job, whereupon any recommendation or help that j provides to i becomes more

valuable.

Previous work has limited the extent to which link externalities are accounted for.

Consider the “connections model” of Jackson and Wolinsky (1996), where the utility

one agent derives from another is a function of the length of the shortest path between

the agents. There is no added value in having multiple paths (of any length) between

agents, even though redundancy may be an important consideration. In contrast, in

the present model a small change in the intensity of a link not only has a positive
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affect on the agents involved in the link, but also has an indirect positive affect on

every other agent who is in some way connected to them. A second feature of the

connections model is that the potential value of connecting to an agent is independent

of the network structure. However in some applications one might desire, for instance,

that this benefit depend on the degrees (number, or weight, of connections) of the

nodes involved. Unlike the connections model, this model considers such factors in

the utility calculation by assuming the recursive definition of values. Thus this work

is complimentary to much of the work that has stemmed from variations on the

connections model.

Another contribution is that heterogeneity among agents is allowed along two

dimensions. Agents may differ both in the measure of intrinsic quality or skill, and

also in the amount of resources they can expend forming links.5 Such heterogeneity

is both natural and important for the model. Some individuals have more social

interest or ability, and naturally form stronger links to others, while others are more

valuable contacts for reasons independent of their connections. These features of the

model admit a more interesting analysis of the strategic considerations involved in

link formation. For instance, when exogenous qualities are homogenous, the efficient

networks are the same under giving and taking behavior, but the distribution of value

can be very different. Second, when linking budgets are homogenous, giving behavior

is also efficient: budget differences are required to generate the inefficiency mentioned

above.

The rest of the chapter proceeds as follows. The next section, Section 4.2 presents

a simple example illustrating the intuition for the model. Section 4.3, interprets the

network values and connects them with various concepts in related fields. Section 4.4

formally presents the framework for modeling the network game. The main body of

5In the binary link case, Galeotti (2004), extending the work of Bala and Goyal (2005), allows
for similar kinds of heterogeneity. He finds that such heterogeneity is important in determining
equilibrium network configurations, but interestingly, the results differ from the ones presented here.
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results, characterizing which network structures are outcomes of Nash equilibria, and

which maximize aggregate utility, is contained in Section 4.5. The findings are related

to other work through a series of examples in Section 4.6, where the implications of

heterogeneity are emphasized. Finally, Section 4.7 concludes. Some technical results

and extensions are included in Appendix D.

4.2 A Preview of Network Effects

In this section we present a simple example to illustrate how utility accrues in the

model. First we briefly introduce some notation that formalizes the model and allows

us to relate this model to concepts in social networks below.

Consider a simple example with three actors, N = {1, 2, 3}. Each actor has a

common intrinsic value denoted αi and a budget of resources βi to allocate across

links to others, i ∈ N . For simplicity make the normalization αi = 1 for each i. The

list of budgets is given by β = (0.5, 0.1, 0.01), so that, for instance, agent 1 has five

times the linking resources of agent 2. Figure 4.1 depicts the Nah equilibrium and

socially optimal networks for two cases: when linking decisions represent the giving

of benefits (Model G), and when they represent the taking of benefits (Model T).

Observe that the equilibrium network in Model G is inefficient in the sense that the

sum of utilities, U = u1 + u2 + u3, is not maximized. In particular, agents invest

too heavily in others with large linking budgets relative to the efficient network.6 In

contrast, the equilibrium linking choices are efficient in Model T, a result that holds

true in general. Thus by separating the benefit transfers into the giving and taking

components, we show that the source of inefficiency is due only to the giving aspect.

Each arrow represents a direct link, with its label denoting the amount of resources

invested by the agent initiating the link. We will denote the resources i devotes to the

6More specifically, agents 2 and 3 invest too heavily in 1, and 1 invests too heavily in agent 2.
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Figure 4.1: Equilibrium and efficient networks in Models T and G.

link with j by φij, so that, for instance, φ12 = 0.34 in both networks depicted for Model

T. It will also be convenient to collect these choices in a matrix Φ = [φij]. It should

also be mentioned at this point that link strengths are derived from the investment

choices via a technology function f , so that the strength of the link from i to j is

f(φij). In this example we use f(x) =
√

x. To illustrate the calculation of utility,

consider agent 1in the taking case. We compute u1 = α1+f(φ12)u2+f(φ13)u3. Notice

that, as mentioned above, computing the utilities involves solving a set of equations

in u.
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4.3 Interpretation of Network Value: Network Cen-

trality, Interpersonal Influence, and Interde-

pendent Utilities

Although the computation of values is simple, some of the implications deserve com-

ment. In this section we provide some interpretation of the model and relate it to a

number of ideas proposed in other contexts.

The idea that value is determined in part by the value of one’s neighbors creates

the necessity for values to be determined simultaneously, since each individual’s value

may depend, through paths in the networks, on the values of all other agents. Consider

the following illustration. If an agent i connects to another agent j, i derives benefit

proportional to j’s utility from this link. Agent j’s utility is determined in part by

how well-connected she is. Thus if j strengthens a connection to a third agent k,

j’s value and, hence, i’s utility increase as well. Furthermore, if agent k increases

her value by strengthening one of her connections to yet another agent, this also has

a positive externality on i’s utility through an increase in agent j’s value, since j’s

neighbor k became more valuable. Of course, this effect is in addition to effects on

i through other paths. This logic shows that an increase in the quality of any link

increases the utilities of all agents who are not completely disconnected from the

augmented link, since an increase in any link quality brings the whole world closer

together, benefiting everyone. In this sense the model may be said to take full account

of network externalities, since a change in the quality of a link that does not involve

a particular agent still has an affect on her utility.

This idea has motivated a literature in the study of social networks that attempts

to measure the importance, status, influence, or centrality of a node in a network. The

earliest notions of centrality in the social network literature worked on binary networks
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and did not take all these considerations into account. For instance, one simple

measure of centrality is a node’s degree, the number (or total weight) of incoming

paths. While degree centrality is a useful concept, and certainly captures important

features of a node’s position, it ignores the origin of the incoming paths.7 In an effort

to allow for such a calculation, Katz (1953) developed the first notion that resembles

the calculation of values in this model. If Φ is a binary network of relationships, the

measure in Katz (1953) is a scaled version of (I − δΦ)−1α, where α is a vector of

ones, analogous to homogeneous intrinsic values, and δ < 1 is an attenuation factor.

Such an attenuation factor is necessary when dealing with binary networks rather

than the weighted graphs studied here or else the contributions from longer paths

cause the status measure to diverge to infinity. The fact that the links take fractional

values in the present chapter subsumes the role of the attenuation factor. The main

innovation of Katz’s approach to centrality is that it allows all paths in the network

to be considered, rather than calculating the centrality score based on some subset

of links, e.g., the set of links pointing to a given node in the case of degree centrality.

Building on Katz’s work, Hubbell (1965) introduced the measure (I − f(Φ))−1α,

where again, α is assumed to be a vector of ones, but which operates directly on a

weighted graph f(Φ).8 As Hubbell notes, this formulation mathematically resembles

the input-output model of interlinked sectors in an open economy due to Leontief

(1951).9 Hubbell’s work introduces a measure of centrality that very closely resembles

the formulation of utility here. While Katz’s goal was to derive a measure of status,

Hubbell aimed his work at clique identification by analyzing the properties of (I −
f(Φ))−1 to identify closely connected subgroups. While such an analysis is beyond

7Similar comments can be made about many other notions of centrality, including closeness,
betweenness and eccentricity, all of which do not take into account a node’s importance as a function
of its position in the network when computing its contribution to the centrality scores of others.
Wasserman and Faust (1994) (ch. 5) provide an excellent review of this literature, and Freeman
(1979) discusses their differences in applicability.

8Here denote a weighted matrix as f(Φ) for consistency with the model below.
9Some of the tools useful for analyzing these models originated from the study of Leontief’s model

and in general rely on results about linear systems, a good review of which is Gale (1960).
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the scope of this chapter, an interesting question is what kind of clique structures

form in the strategic setting studied here.

Related measures have gained popularity through the influential work of Bonacich

(1972, 1987, 2005) and others. Bonacich’s measure that is most relevant to this

model, in that it operates on weighted and asymmetric graphs, is essentially the

eigenvector corresponding to the largest eigenvalue of the network f(Φ). A number

of similar indices have been proposed by various authors; Poulin, Boily, and Mâsse

(2000) provide a useful review and comparison. Interestingly, many of the measures

can be calculated in a number of ways, including solving a linear system of equations,

computing an infinite sum of status contributions along paths of different lengths,

and a factor analytic approach, thus providing various ways to interpret the centrality

scores.

One way to understand our formulation of utility here is to view it as the outcome

of a repeated process of interactions occurring along the links of the network. This

is the approach taken by Friedkin (1991, 1998) and Friedkin and Johnsen (1990) in

studies of interpersonal influence. Under this approach, α is a vector of exogenous

qualities, which are shared across links during an infinite sequence of time periods. At

date t, the interaction is described by ut = α + f(Φ)ut−1, with u0 = α. At each date,

individuals receive a contribution from their own exogenous quality and contributions

proportional to their links to others and others’ acquired utility at the time.10 Under

our assumptions, the limit outcome of this process is u∞ = (I − f(Φ))−1α. As this is

the expression for utility functions in the model, utility can be viewed as the long-run

result of repeated interactions through the network.

This formulation makes it obvious that the utility vector, or limit outcome of the

10In this intertemporal formulation, it is not clear that the Nash equilibrium of the game with
utility functions u is the most compelling stability notion, since repeated game considerations may
become important. While such an analysis is outside the scope of this chapter, the game corre-
sponding to utilities u is relevant if players are patient, the choices must be made once and for all,
and interactions take place repeatedly thereafter.
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dynamic process, dominates the vector of exogenous quality α. In the context of

interpersonal influence, Friedkin (1991) refers to this effect as polarization, meaning

the tendency of opinions to drift towards a more extreme position due to repeated

social interactions (rather than to a separation of opinions within the group). The

mathematical reason for this is that the value in α is counted multiple times in the

computation of the utility vector. For our purposes, such a formulation captures syn-

ergies of interactions. For instance, research collaborations and joint R&D projects

are often thought to create output beyond what the parties would generate indepen-

dently. Katz (1953) rejected this kind of effect and proposed instead to normalize the

status measure explicitly so that his measure has a more relative interpretation.

The fact that the model here produces Hubbell’s status score as utilities provides

an interesting re-interpretation of status. That is, in this model agents seek to max-

imize their status when forming their links, as measured in the way suggested by

sociologists. Since the analysis here is strategic, one of the benefits of this chapter is

to understand what kinds of networks form when individuals are seeking explicitly to

maximize their status in the group. The results on efficiency then highlight when such

networks will and will not be efficient, in terms of maximizing the overall status of the

group. This chapter is not the first to make an economic connection to the centrality

literature. A very different connection is contained in Ballester, Calvó-Armengol, and

Zenou (2005), in which the equilibrium action is proportional to Bonacich centrality,

taking the network as given. Another paper, de Mart́ı Beltran (2005), is complimen-

tary to this model in that it asks what the optimal way is to distribute intrinsic value

among the agents as a function of an exogenously given network.

It is also interesting to note that the model is mathematically quite similar to

some of the work on interdependent utilities, as seen in Bergstrom (1989, 1999) and

Bramoullé (2001).11 Under that interpretation, the links in the network represent pa-

11Other contributions in this field include Hori (1997) and Shinotsuka (2003).
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rameters in utility functions that describe how individuals’ consumption utility affects

the happiness of others. Again the analysis here is very different principally because

that work always takes the network structure as given and addresses interesting ques-

tions that do not arise in the present chapter such as the effect of “negative links.”

On the other hand, this chapter takes individual attributes as given and asks which

network structures form Nash equilibrium outcomes and which structures maximize

aggregate utility in the group.

4.4 A Model of Link Formation

There is a finite set of agents N = {1, . . . , n}, n ≥ 2, endowed with publicly observed

intrinsic qualities α = (α1, . . . , αn) ∈ Rn
+ and budgets β = (β1, . . . , βn), with 0 < βi <

1 for each i ∈ N . The agents are players in a network formation game with strategies

φi = (φi1, . . . , φin) that satisfy φii = 0, φij ≥ 0 for all i, j ∈ N and
∑

j φij ≤ βi for all

i ∈ N . The intensity of the directed link ij is given by f(φij), where f(·) is increasing

and satisfies f(0) = 0.

We first distinguish two cases that relate to how link choices φij translate into link

intensities.

Assumption 1 (Concave specification) The function f : [0, 1] → R is continuously

differentiable, strictly increasing, strictly concave, f(0) = 0, limx→0 f ′(x) = ∞, and

satisfies (n− 1)f(maxi βi

n−1
) < 1.

The concave specification reflects the notion of diminishing returns to investment

in a link. It is convenient mathematically because it guarantees interior solutions for

equilibrium and efficient network structures. Essentially, analogous with the Inada

conditions on a production function, the first order conditions characterizing opti-

mal tradeoffs across links are very simple to write down under Assumption 1. An
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alternative assumption is the following.

Assumption 2 (Linear specification) The function f(·) is the identity mapping.

Hence under the linear specification the intensity of link ij is simply φij.

The bulk of the analysis hinges on which direction benefits flow through the net-

work. In Model T (for “take”) agent i setting φij > 0 confers benefits to i from j.

One can think of i placing phone calls to others in proportion to the φijs asking for

information. Given the linking choices and intrinsic values of others, agent i chooses

the relative amounts of benefits to receive from others from her budget of resources.

The opposite case is handled in Model G (for “give”). There, agent i setting φij > 0

confers benefits to j from i. In this case one can think of φij as representing a nom-

ination of j by i, as in the case of journal article citations. In this case an agent

chooses how to give benefit given the linking choices of all others.

The description of the network formation game is completed by formally defining

how network structures generate utilities. To this end, collect the strategy profiles

in the matrix Φ = [φij] and let f(Φ) denote the matrix with elements f(φij), i.e.,

f(Φ) is the network structure generated by strategy profile Φ. Total utility is the

sum of intrinsic value and the value derived through sharing others’ values via the

network structure. Let vi denote the (endogenously determined) component of i’s

utility derived from her relations in the network f(Φ), so that i’s (total) utility is

ui = αi + vi. In Model T,

vi =
∑

j

(αj + vj)f(φij),

whereas in Model G,

vi =
∑

j

(αj + vj)f(φji).

Notice that network values are linear combinations of the total utilities of other

players, weighted by the intensity of the corresponding link (which varies according
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to the taking or giving component of the model). Thus, for instance, in Model T, ui =

αi + vi = αi +
∑

j ujf(φij). Collecting these equations in matrix notation, we obtain

u = α + f(Φ)u, where u = (ua, . . . , un)′ and α = (αa, . . . , αn)′ are column vectors of

utilities and intrinsic values, respectively. Solving for u yields u = (I − f(Φ))−1α,

provided I−f(Φ) is invertible. Letting A = (I−f(Φ))−1, we have u = Aα. A similar

derivation for Model G produces u = A′α. Section ?? contains a more thorough

interpretation of the value computation and how it relates to various other models.

Notice that under either Assumption 1 or 2 the requirements on f(·) imply that

I − f(Φ) satisfies the dominant diagonal condition. It is well-known12 that in this

case

A =
∞∑

p=0

f(Φ)p.

That is, A can be written as the infinite sum of powers of the network structure

matrix f(Φ). Each of these matrices, in turn, has a natural interpretation. (f(Φ)p)ij

measures the total weight of all directed paths from i to j that have length p. Thus

the matrix A represents the total weight of all paths from i to j. Because individual

links take values strictly less than unity, longer paths have less weight. This is why

the dominant diagonal condition is sufficient for the above sum to converge.

4.5 Results

This section contains the main results of the analysis. In particular, we characterize

the equilibrium and efficient networks in both models for the concave and linear cases.

Following the literature on strategic network formation, we restrict attention to pure

strategy Nash equilibria. The concave specification in Models T and G is presented

first, followed by a discussion of the linear case.

12See, for example, Gale (1960) for a proof, and other related facts.
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4.5.1 Concave Specification

Most of the networks we focus on for the concave specification are interior networks,

in which all links have positive value: φij > 0 for all i, j ∈ N . One can think of these

networks as a generalization of the complete network from the binary link setting.

The results for the concave case rely on the following simple lemma, which de-

scribes how changes in individual link choices translate into changes in the components

of utility.

Lemma 1
∂aij

∂φkl
= f ′(φkl)aikalj.

Proof. See Appendix D.

Since utilities are linear combinations of intrinsic qualities, with weights given by

the matrix A, Lemma 1 shows how changes in strategies produce changes in utilities,

in a form that depends only on the entries of A. In particular, elements of A are

strictly increasing in Φ for interior networks.

We proceed with two propositions for Model G, characterizing the Nash networks

and the efficient networks, respectively.

Proposition 1 (Nash networks in Model G) In Model G under the concave specifi-

cation, there exist multiple Nash equilibria, at least one of which is interior. Interior

equilibria satisfy the conditions
∑

j φij = βi for all i ∈ N , and

f ′(φij)aji = f ′(φij′)aj′i

for all distinct i, j, j′ ∈ N . Non-interior equilibria have the form that a partition

of players exists such that there are no positive links between players in different

partitions, and links within a partition constitute an interior equilibrium restricted to

that group.
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Proof. See Appendix D.

Proposition 2 (Efficient networks in Model G) In Model G under the concave spec-

ification, a socially efficient network exists, is interior, and satisfies the conditions
∑

j φij = βi for all i ∈ N , and

f ′(φij)
∑

k

ajk = f ′(φij′)
∑

k

aj′k

for all distinct i, j, j′ ∈ N .

Proof. See Appendix D.

Notice that there are many non-interior Nash networks in Model G, for instance,

the empty network, which corresponds to a partition of singletons. The reason is

that if an individual i has no paths pointing to him, i.e., if φji = 0 for all j, then i

is indifferent over his entire strategy space. More generally, φij = 0 in equilibrium

implies that aji = 0, i.e., that there are no paths of any positive weight from j to

i. However, once the assumption of interiority is made, this indifference disappears,

and the model makes a sharp prediction.

The characterizations in Propositions 1 and 2 shed light on the (possible) differ-

ences between Nash and efficient networks in Model G. Efficiency requires a weakly

regular network in the following sense: the ratio of marginal link choices to agents

j and j′, f ′(φij)

f ′(φij′ )
, is constant across individuals i. When budgets are homogeneous,

this implies that strong regularity networks, where φij = β
n−1

for all i, j ∈ N , are

efficient. But in this case, strongly regular networks also form a Nash equilibrium.

Interestingly, there may also exist asymmetric interior equilibria even in symmetric

environments. Whether or not this occurs depends on the particular shape of f . If

it is sufficiently concave, then only the regular network is Nash. The difference be-

tween equilibrium and efficient networks arises under heterogeneous budgets because
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for efficiency, linking choices are determined by total connectivities
∑

k ajk, whereas

the equilibrium choices depend on individual connectivities aji.

The next result describes the relationship between Nash equilibria and efficient

networks in Model G.13

Theorem 1 Assume N ≥ 3. In Model G under the concave specification, there is an

efficient Nash equilibrium if and only if βi = β̄ for all i ∈ N .

Proof. See Appendix D.

Recalling the example presented in the introduction, the differences in budgets are

necessary (and sufficient) to generate the inefficiency possible under giving behavior.

The possibility of tension between equilibrium and efficiency, however, is not

present in Model T. The next result shows that Nash and efficient networks coin-

cide for all parameters under Model T.14

Proposition 3 In Model T under the concave specification, all Nash networks and

socially efficient networks are interior. They satisfy the conditions
∑

j φij = βi for

all i ∈ N , and

f ′(φij)uj = f ′(φij′)uj′

for all distinct i, j, j′ ∈ N .

Proof. See Appendix D.

The condition in Proposition 3 has a particularly simple structure. Individuals

allocate their budgets so as to balance the marginal values of their direct links, treating

the utility of others as fixed. Model T produces the unusual result that equilibrium

networks are necessarily stable. The intuition for this fact can be summarized as

13The proof of the “only if” part is not yet complete, so this statement is still a conjecture.
14This remark and the discussion after the proposition assume that the first order conditions

in Proposition 3 are uniquely satisfied. When this is true, the Nash and efficient networks must
coincide. While this has not been proven, it is true in all examples I have computed.



108

follows. Each individual i makes her linking choices in order to maximize her derived

network value. This means sending more effort to individuals with higher values, but

sending some effort to everyone because of the concavity of f . Now consider any

other individual j linking to i. j also makes her decisions selfishly and benefits from

having high value individuals to link to. It turns out that i’s optimal decision is also

optimal from j’s (and every other individual’s) point of view. Put differently, if j was

given the power to choose φi as well as φj, j’s choices for i would be the choices that

i finds optimal himself. This can be verified directly by considering the conditions

∂uj

∂φik
=

∂uj

∂φik′
, which generate the same characterization as i’s optimization problem

from Proposition 3.

This argument of course fails for Model G. Under giving behavior, individuals

control their utility only indirectly, in the sense that their linking choices confer

direct benefits to others, rather than to themselves. Thus, to optimize, an individual

i sends more effort to those agents who have the strongest paths back to i. When other

individuals make their linking choices to i, they care not what i’s network value is, as

in Model T, but instead how strong the paths are from i back to themselves. Thus the

linking choices of i are not in general optimal from any other agent’s perspective, and

this causes the tension between efficiency and equilibrium considerations. Another

observation that this logic highlights is that the first order conditions in Model G for

stability and efficiency do not depend on utilities or intrinsic values, but only on the

network, as measured by the entries in A. We have the following.

Corollary 1 In Model G under the concave specification, both the efficient and Nash

networks are independent of the intrinsic values α.

Recall that in the example from the introduction, the aggregate utilities at efficient

networks were the same under taking and giving. The next result shows that this

property depends on having homogeneous intrinsic values.
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Corollary 2 When αi = ᾱ for all i ∈ N , the efficient networks in Model T and Model

G coincide. Moreover, aggregate utility is the same across models at the efficient

solution.

Proof. See Appendix D.

However, there is not a clear relationship between the distribution of utility. Under

the taking model, utilities are ranked the same way as budgets, but this need not be

true under giving. Recall the example from the introduction where agent 2, who has

the middle-size linking budget, has the highest utility in the efficient network.

As mentioned above, the reason for this is that individuals care only about the

network structure when making their linking decisions and not about the intrinsic

values of the agents they link to. In Model T, however, changing α changes utilities

both through the direct effect and also through an equilibrium effect, whereby optimal

decisions change in response to the exogenous change.

4.5.2 Linear Specification

It is clear that the concavity of f is crucial in the preceeding analysis. The concave

specification makes the analysis easier, since optimal networks are mainly interior, and

the first order conditions simplify. This section considers the case of linear returns

to investment. The results here are less complete, since we are obliged to restrict

attention to special cases of the model’s parameters. Nonetheless, it is clear that the

shape of f can change the properties of the model substantially.

We begin with a definition of paired networks.

Definition 1 A network f(Φ) is said to be paired if for every i φij = Bi for some

j 6= i and for every i (except one agent in the case that n is odd), φij = Bi implies

φji = Bj. The network f(Φ) is assortatively paired if, in addition, players can be
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labeled so that α1 ≥ · · · ≥ αn, and φij = Bi implies j = i + 1 when i is odd and

j = i− 1 when i is even, for i = 1, 2, . . . , n− 1.

As before, none of the results for Model G depend on the intrinsic values α.

We show that under homogeneous budgets, the efficient networks are those that

exhaust all the budgets. There must be one equilibrium that is efficient, but there

are necessarily inefficient equilibria as well.

Proposition 4 Assume βi = β for all i ∈ N . In Model G, the efficient networks

are those networks for which
∑

j φij = βi for all i ∈ N . In addition, there are both

efficient and inefficient Nash equilibria.

Proof. See Appendix D.

That there are inefficient equilibria is obvious, as the empty network always forms

an equilibrium, although it is in weakly dominated strategies. An efficient equilibrium

exists in this case since the regular network is both efficient and Nash. The next

proposition handles the case where the budgets can be strictly ordered. In this case

we can label agents so that β1 > · · · > βn.15

Proposition 5 Assume β1 > · · · > βn. In Model G, all paired networks are Nash

equilibria. The unique efficient network is assortatively paired.

Proof. See Appendix D.

Thus even in the case of unequal budgets, with linear investment costs there is an

efficient equilibrium under giving behavior. We now turn to Model T.

Proposition 6 Assume αi = α and βi = β for all i ∈ N . The Nash and efficient

networks coincide in Model T and are those networks for which
∑

j φij = β for all

i ∈ N .

15This is without generality, once we have assumed the generic condition of distinct budgets.
Recall that the results are not sensitive to α.
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Proof.

We can also say something about when either the intrinsic qualities or linking

budgets are held constant across individuals, but not both. Notice that generically

(i.e., for almost all configurations of α and β, and almost all feasible Φ) utilities will

be strictly ordered. In this case, the model necessarily generates a star-like network

at equilibrium and at efficient outcomes, since it is strictly optimal for each agent to

take everything from the highest-utility agent (except that agent, who chooses the

next-highest-utility agent). Under special assumptions, we can identify which agent

must have the highest utility, and thus become the center of the star. In particular,

when the linking budgets are held constant across agents and there is a strict ordering

over intrinsic values, that each agent devotes her entire budget to the unique agent

with maximal intrinsic value (and the maximal agent chooses the next highest value).

Similarly, a parallel result holds when the intrinsic values are the same and the linking

budgets are ranked.

4.6 Network Structures and Heterogeneity

This section presents some examples to illustrate how the forces of the model operate.

In particular, we are interested in identifying how particular configurations of model-

ing parameters map into stylized network architectures that have attracted attention

in previous work. In a setting that incorporates variable link intensities, the set of

networks is considerably more complex than in the binary link case.
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4.6.1 Binary-Link Models

The most closely related work originates in Bala and Goyal (2000), which considers

a binary link model close to Model T.16 When there is no decay and players are

identical, Bala and Goyal (2000) show that strict Nash networks are either empty or

“wheels.”17 In the presence of decay, a partial characterization shows that strict Nash

networks are connected or empty, and include wheel, star, and complete networks,

depending on the parameters.18 For a range of parameters, strict Nash networks are

efficient.

Galeotti (2003) extends this analysis to allow for individual heterogeneity of costs

and values, which have natural counterparts here in terms of link budgets and intrinsic

values. Under the no-decay assumption, strict Nash networks in this model include

empty networks, wheels, and center-sponsored stars. When cost heterogeneity takes

its most general form, almost any minimally connected network is strict Nash. When

decay is allowed, strict Nash networks are difficult to characterize but include almost

all minimally connected graphs.

Since the networks identified in the previous section are mostly interior networks,19

there is not a direct correspondence between the network structures that emerge

in this model and the networks studied in binary link models. However, much of

the flavor of the networks in the binary case can be seen in this model. Moreover,

this framework provides a way to adjust continuously between structures that are

reminiscent of prominent binary link networks, such as the complete network and

16These authors call this “one-way flow,” but do not consider the other direction of flow corre-
sponding to Model G. Instead, they also consider “two-way flow,” in which a directed link confers
benefits to both agents involved. Values are not computed in the recursive way considered here, but
depend only on the network only to the extent that it partitions nodes into components.

17A wheel is a strongly connected network in which each player maintains exactly one link, that
is, players can be numbered so that i links to i + 1 for all i = 1, . . . , n− 1, and n links to 1.

18Without decay, Bala and Goyal (2000) prove their results for very general payoff functions, but
when decay is present, as in the weighted networks in the present model, tractability requires using
a linear form as in the connections model.

19The only exception is the multiplicity of Nash networks in Model G, many of which are non-
interior.
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star network, and to tie those adjustments to underlying heterogeneity of individuals.

In fact, the networks often focused on in the binary link case are highly stylized and

do not match well with the large complex networks that are often cited as motivation

or applications. The additional flexibility of this model allows it to predict much

more complex relationships among agents that may potentially come much closer to

the kinds of networks found in the field.

4.6.2 Empty and Complete Networks

In binary link models, when costs are sufficiently high, empty networks are both

efficient and stable. The counterpart to high costs in this context is small linking

budgets, in which case all feasible networks converge to an empty network as budgets

vanish. In addition, the empty network is Nash in Model G for budgets of every size.

The reason for this difference is that the benefit flow in previous work corresponds

instead to the taking behavior of Model T.

At the other extreme, provided there is some decay (to allow for networks that are

not minimally connected), complete networks emerge for sufficiently small costs. In

the present context most Nash networks, and all efficient networks, are interior, which

is one form of “completeness,” in that every link has positive strength. However, a

stronger analogue of the complete binary network is the regular network with “equal

spread,” in which φij = βi

n−1
for all i, j ∈ N . In this case, every link is given equal

weight, so that all pairs of agents are directly connected and the network is symmetric

in a rather strong sense.

This arises in Model T when both budgets and intrinsic qualities are homogeneous.

The underlying symmetry of agents implies that the equilibrium and efficient network

is symmetric in this way. However, it is also possible for a regular network to occur

in the presence of budget and quality differences across agents, provided that they
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balance each other in exactly the right way. That is, if an agent has a high intrinsic

value, she must have a correspondingly low linking budget in order to induce the other

agents to treat her the same as the others. For example, consider 3 nodes with intrinsic

values α = (3, 2, 2). When budgets are β = (0.015, 0.1, 0.1), and the investment

function is f(x) =
√

x, each agent splits her linking budget equally among the other

two. However, it is possible that one agent’s intrinsic value is sufficiently high that no

matter how low her corresponding budget, agents always devote a majority of their

effort to the high-value agent. This is the case in the above example if α1 is increased

to 4. The reason is that one agent can become arbitrarily more valuable than the

others even on her own without any connections to the value of others.

Model G can also generate regular networks. In fact, it is in some sense biased in

that direction because of the fact that the optimal network structures do not depend

on intrinsic qualities. Thus, in contrast to Model T, differences in qualities do not

translate into differences in linking choices. The requirement for strong regularity

in Model G is identical budgets. Recall that this is the same condition that iden-

tifies when equilibrium networks are efficient. Hence under giving behavior, regular

networks are the only equilibrium networks that are efficient. But there can be asym-

metric equilibria even with identical budgets (and intrinsic values). For instance,

when f(x) = δxλ, and λ is sufficiently close to one, a 3-agent equilibrium exists in

which two agents devote a vast majority of their budget to the third agent, who splits

her own budget equally. This resembles a center-sponsored star.

4.6.3 Wheel and Star Networks

Although the wheel architecture is common in the binary link case, neither Model

T nor G produces networks with wheel structures. One reason is the presence of

decay considered here, which makes the conditions for generating wheel networks

more restrictive in binary link worlds. With decay, the heterogeneity of costs and
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values must take specific forms to generate a wheel. These forms do not occur in

this context. In Model T, the value of linking to any particular agent is the same

for everyone; so if it is optimal for one agent to devote a disproportionate share of

his resources to a particular agent, then it is optimal for others to do so as well.

In Model G, an agent can have linking values that differ across others because it

might have stronger paths to some agents compared to others. Nonetheless, there is

not a sufficient degree of heterogeneity generated to obtain a wheel-like network in

equilibrium.

A well-known network architecture that occurs robustly in “two-way flow” mod-

els is the star network, in which one node, the center, is connected to each of the

other nodes, and there are no other connections.20 In the case of directed networks,

stars can be either center-sponsored or periphery-sponsored (or a combination of the

two), depending on which agents maintain the links. The star network is indicative

of the role of “hubs” in real networks, where a few nodes have many connections.

The prevalence of hubs has important implications for network performance, mainly

through their role in decreasing the distances between nodes in the network.

Interestingly, the star network is not prominent in previous work on one-way flow

models, but it is easy to generate star-like networks in Models T and G. For instance,

if in either model there is a single agent distinguished by a larger linking budget, then

all other agents link more strongly to the distinguished agent, who then takes on a

central role. In Model T this happens because the larger budget allows greater access

to the value of others, which increases the value of linking to the agent with the large

budget. In Model G, the agent with the larger budget creates stronger paths through

the network to all other agents, which, on the margin, increases the incentive to link

to the distinguished agent. As the common budget level of the peripheral agents

20Jackson and Wolinsky (1996) and Bala and Goyal (2000) contain early theoretical treatments,
and Goeree, Riedl, and Ule (2005) extend the analysis and report on experiments. They find that
heterogeneity plays a major role in helping star networks to form empirically.
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vanishes, the prediction becomes exactly the center-sponsored star. On the other

hand, holding the budgets of the peripheral agents fixed, as the budget of the center

agent grows, peripheral agents devote larger and larger shares of their budgets to the

center, as in the periphery-sponsored star. As mentioned above, star-like networks

can occur in Model G even in symmetric environments.

A similar effect occurs in Model T when a single agent has a larger intrinsic value.

The effects on the linking decisions of others are the same: as the distinguished

individual becomes increasingly valuable, the remaining agents find it optimal to

devote more of their budget to the center. This situation is more closely analogous to

the periphery-sponsored star, since in this case the links pointing out from the center

do not increase in strength. The only changes are in the proportion of the budget

that periphery agents allocate to the center.

One implication of the model is that increasing either intrinsic value or the linking

budget is beneficial to the agent. In Model T, having a low intrinsic quality decreases

the incentives for others to link to the agent. But having a large linking budget can

more than compensate for what is lacked in intrinsic value. That is, an agent with

low intrinsic value can be the center of a star provided it has a large enough linking

budget. In this sense, investing in becoming “well-connected” can make up for a

low value and create enough value through paths to others to be a focal node in the

network.

With regards to efficiency, the results of the previous section are easy to apply. In

Model T the star network, when it forms, is always efficient. In Model G, it is never

efficient because stars form only when budgets are not homogeneous.

The predictions of the model, while being focused for any particular set of parame-

ters, are very flexible. In particular, many of the prominent networks from the binary

case have natural analogues in this environment. Moreover, we can relate these very

different outcomes to each other through the role of the underlying value and budget
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parameters in a way that adjusts smoothly between these predictions.

4.6.4 Fixed Costs, Interiority, and Binary Links

With the exception of some Nash equilibria in Model G, all of the stable and efficient

networks identified are interior. In other words, a fairly robust feature of this analysis

is that individuals tend to be connected, at least to some extent, to all other individ-

uals in the system. Such a structure may be descriptive of relatively small groups,

such as colleagues in an academic department, where people know each other. How-

ever, in large systems, such as the national collection of researchers in a field, this

prediction is clearly at odds with the observation that large networks tend to be very

sparse–each individual is connected to only a small proportion of the system.

One way to account for these facts is to introduce a fixed cost of initiating a link

into the model. This is a natural feature to model since we may think that initiating

a relationship takes some amount of resources, and only after that expenditure can

benefits be realized. For instance, there may be search costs of finding an individual’s

webpage, or researchers may have to spend some time coordinating their ideas before

becoming productive. Another example is that people may need to invest effort in

becoming compatible, such as adopting to new software choices, or learning a new

language.

To model this idea formally, define a new link technology function f̄ from the

original function f by f̄(0) = 0 and f̄(x) = c + f(x) for x > 0, where the fixed cost

is c > 0. If the fixed cost c is set at an appropriate level relative to the marginal

costs, then it would be possible to obtain interior networks for small group sizes n,

and to obtain increasingly sparser networks as n grows large. The reason is that the

presence of a finite fixed cost sets an upper bound on the number of connections each

individual can have. Thus it would be possible–and potentially optimal–to connect
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to everyone in small groups, whereas this would not be possible in large groups.

An additional advantage of allowing for fixed costs is that it allows a cleaner

comparison of the present model with models of binary links. In fact, the model

allowing for fixed costs nests, in a sense, both the model presented above and a purely

binary link model. To see this, note that as the c → 0 fixed costs vanish and we are

left with the original model. On the other hand, with c > 0, as the variable costs f ′

diverge, the model approaches a binary link model in that, while it may be useful to

invest a small amount in a link, further strengthening the link becomes prohibitively

costly. In other words, optimal decisions in such a model would take the form of

nearly homogenous link strengths across βi/c individuals. An open question with

fixed costs is what kind of network structures will form, and in particular, will they

be similar to those of binary link models? It should be noted that, even in the limit

where the present model approximated a binary link model, the utility specification

is different from previous models, and differences in predictions can be expected as a

result.

4.7 Conclusion

This is among the first studies of strategic network formation that incorporate links

of variable strength. In addition, the computation of network externalities is handled

in a way that considers all possible paths in the network, resulting in a formulation

that creates a bridge to the sociology literature on centrality in networks. A novel

feature of this work is that both equilibrium and efficient networks display interesting

heterogeneity in link strength, which other models of variable strength links do not

predict. Moreover, variations in link strengths are related to underlying characteristics

of individuals in intuitive ways. The model thus provides a better understanding of

the relationship between the underlying heterogeneity of individuals and the kinds of
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network structures that are likely to form.

While in some contexts maintaining a link confers benefits to both parties, there

are also situations where the flow of benefits is, at least primarily, in only one direction.

By separating the flow of benefits into taking and giving components, we are able to

derive new insights into the question of efficiency regarding stable network structures.

In particular, the source of inefficiency is identified with giving behavior, in which a

link investment by an individual confers benefits to the individual who is linked to.

However, the inefficiency is only present when there is heterogeneity across the linking

budgets of individuals; when this is not the case, both taking and giving behavior

generate efficient choices at equilibrium.

The role of budget constraints in the model is to bound link investments. One

way to make the level of investments endogenous is to replace the budget constraints

with a (convex) cost function. In this way one would be able to model not only the

relative allocation of link investments but also the total amount. A conjecture is

that the efficiency result of the taking model would no longer hold, since each link

investment generates a positive externality on others which is not accounted for in

the individual’s decision. Thus, while the relative investments would continue to be

socially optimal, the total amount of investments would be inefficiently low.

Another way of making the amount of link investments endogenous is by allow-

ing the resource budget to be strategically spent between self-investment and link

investment. The simplest way of accommodating this consideration is by allowing

self-linking in the form of φii > 0. Extra assumptions would have to be made to

ensure that A is well-defined, but otherwise the efficiency result of Model T would

remain intact. Another possibility is to allow individuals to allocate some of their

resource budget to increasing αi. Although it is less clear, one may still think the

efficiency result will continue to hold in Model T. Enriching the model along these

lines is a promising direction of future work.
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There are a number of interesting directions for future work. First, binary-link

studies have analyzed one-way flow (corresponding to Model T) and two-way flow

(where both parties benefit from the link) and have shown that different networks

arise at equilibrium in the two cases. Instead, we focus on two different kinds of

one-way flow: taking and giving. The model here can be easily extended to allow for

two-way flow.

Second, there are a number of models in the literature that predict different kinds

of networks corresponding to different kinds of heterogeneity in the population. It

will be important to relate the theoretical analysis to empirical studies to begin to

determine what kinds of network benefits are more appropriate for modeling. A

good example of such work is Goyal, van der Leij, and Moraga-González (2003),

who analyze a network of economists linked by joint research papers. Laboratory

experiments provide another useful tool for empirical examination of models, and

experiments incorporating variable link strengths promise to add insight into the

analysis of strong and weak links.

Last, the model could be made more general in terms of the separation of utility

flow. Combining the roles of give and take could take a number of forms. One idea is

to propose a utility model that is a convex combination of the utilities in the giving

and taking cases. The interpretation is that a fixed percentage of each investment

φij is spent benefitting i, and the remainder is spent benefitting j. Whenever there

is a non-trivial weight placed on the giving component, inefficiencies will remain in

equilibrium. Another idea is to allow giving and taking choices to be made separately

and simultaneously. A natural way to bound taking investments is by requiring them

to be no larger than giving investments, and assuming that giving is costly. The

utility calculations could be carried out similarly by assuming that the total flow

from i to j is the sum of what i gives to j and what j takes from i.



Chapter 5

The Role of Clustering in Diffusion

on Networks

5.1 Introduction

One of the primary reasons that it is important to study social networks is that they

are the systems through which many kinds of things are distributed. Applications

are as diverse as contagion of electronic viruses over computer networks, spreading of

rumor across citizens of a nation, or adoption of a new behavior among consumers.

This chapter considers diffusion of something—a disease or opinion, for instance—

through a network of individuals. The goal is to gain a deeper understanding of how

the characteristics of a network affect the properties of a diffusion process across its

nodes.

Individuals are connected to each other through a series of bilateral relationships.

We represent the agents as nodes in a network, and their relationships through links.

The diffusion process we consider is based on the Susceptible-Infected-Susceptible

(SIS) model common in epidemiology (see Bailey (1975)). There are two states,

susceptible and infected, with the former being the default. At the outset, a small
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proportion of nodes are randomly selected to be infected. In each discrete period that

follows, the states of individuals are randomly re-assigned according to the following

rule. Susceptible individuals are infected with a probability that depends on the

number of neighbors they have in the network and how many of them are currently

infected. Each infected individual recovers with some probability. We study the long-

run predictions of this process as a function of the correlation structure of the social

network.

Since the goal is to understand diffusion in large systems, it is important to study

networks that have realistic properties. For this reason we analyze network structures

that have features that have been shown to be exhibited by large-scale networks. We

focus on two aspects in particular.

The first is concerned with the degree of a node, or the number of links it is

involved in. The distribution of degree has been claimed to obey a power law in

many applications (see, for example Barabási and Albert (2000)). While this does

appear to be generally true in the upper tail of the degree distribution, the rest of the

distribution may not be scale-free (see Jackson and Rogers (2006) and the references

therein for details). The family of degree distributions we examine includes both scale-

free and random networks at the extreme, and a range of distributions in between

that fit observed networks remarkably well.

The second aspect is concerned with the correlation structure of the links in the

network. In the random networks first studied by Erdös and Rényi (1960), each link

is formed with some probability that is independent of the presence or absence of

other links. On the other hand, nearly all social networks exhibit correlations (see

Newman (2003, 2004) for detailed discussion and findings). One way to measure

this is through clustering coefficients, which measure the tendency of two friends of

a given node to themselves be connected. Social networks tend to have much higher

clustering coefficients than random networks with the same numbers of nodes and
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links.

The model of Jackson and Rogers (2006) generates networks that are particularly

well suited to our analysis for two reasons. First, the networks are realistic. The

degree distributions provide the best match to observed networks of any model that

we are aware of. Furthermore, the model generates networks with high clustering

coefficients, in contrast to other random network models, but as observed in the field.

Second, we are able to generate networks that have identical degree distributions but

different clustering coefficients, allowing for the first time the possibility of isolating

the role of clustering in the diffusion dynamics.

To illustrate the ideas behind the networks we will study in this chapter, consider

Figure 5.1. Nodes in corresponding positions each have the same degree in the two

networks, so the degree distributions are clearly identical. Yet the network structures

are clearly different. Notice that there are no triads in the right-hand network, so

that the clustering coefficient is zero. The left-hand network, however, contains two

triads out of four triples with at least two edges, so that the total clustering coefficient

is one-half. The larger networks analyzed below have essentially this same structure:

similar degree distributions with different levels of clustering.

We are concerned with three aspects of the diffusion process. First, it has been

shown in other contexts that there is a minimum necessary spreading rate in order to

achieve a long-run positive rate of infection. How does this cutoff rate vary with the

clustering coefficient? Second, in the case where there is long-run infection, how does

the steady state level of infection vary with the clustering coefficient? Last, does the

clustering coefficient affect the rate of convergence to the steady state?

There are a number of other studies that have been interested in these properties

of diffusion in the context of the SIS model and its variants. Lopez-Pintado (2004)

and Pastor-Satorras and Vespignani derive results relating the diffusion process to

differences in the degree distribution. Obtaining those results, however, requires
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Figure 5.1: The two networks have identical degree distributions, but different
correlation structures. The left-hand network has a total clustering of one-half,
and the right-hand network has a total clustering of zero.

assuming that the link formation process is independent, so that it is not possible to

study the role of clustering. Jackson and Yariv (2006) also study a diffusion process

that is more incentive-based than the SIS model studied here, but again, the results

are in reference to changes in the degree distribution. Eguiluz and Klemm (2002)

is the only other work of which we are aware that studies the role of clustering for

diffusion. However, that model considers a more restrictive form of the SIS model

and is built on a different model of network formation, and our results are not directly

comparable.

Holding the degree distribution fixed, we had the following conjectures about how

increasing the clustering coefficient affects diffusion dynamics. First, the minimal

spreading rate necessary for long-run infection will be lower. Second, the steady-state
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infection level will be lower. Third, convergence to the steady state will be slower.

The reasoning for these conjectures are as follows. When clustering is higher, there is

more overlap in the neighborhoods of linked nodes. Thus the total number of nodes

reachable in k links from a given node tends to be smaller. It should therefore take

more time for initial infection to spread, leading to the third conjecture. Also with

high clustering, there tend to be cliques in the population–groups of individuals with

many connections among them. Thus some individuals could be in a position where

they are consistently being re-infected, leading to the first conjecture. The second

conjecture follows similarly, since with more overlap in connections, one might expect

there to be larger portions of the population where the disease does not spread to.

The results confirm none of these conjectures. In fact, all of our simulations

suggest that clustering has no effect whatsoever on the diffusion process. We formally

describe the model in the next section. Then Section 5.3 reports on simulations

designed to test our hypotheses. Section 5.4 concludes.

5.2 The Framework

To fix ideas, we will speak of the spreading of disease across people, but it should be

understood that the model applies in other settings as well. This section describes

the framework in which we will simulate diffusion of a contagious disease through a

population. The next subsection describes the structure of the networks connecting

individuals. The following subsection formally describes the diffusion mechanism.

5.2.1 Random Networks

We consider a class of networks generated by the model of Jackson and Rogers (2006).

The model may be described as follows.
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For any node i ∈ N , let di(g) = |{j ∈ N | gji = 1}| denote the in-degree of i. Let

ni(g) = {j ∈ N | gij = 1} denote i’s neighborhood.

The network is generated as follows. Action takes place at a countable set of dates

t ∈ {1, 2, . . .}. At each time t a new node is added to the population. Let Nt denote

the set of all agents or nodes present at time t. Denote by g(t) the network consisting

of the links formed on the nodes Nt at the end of time t. That is, g(t) is an N ×N

matrix where entry g(t)ij indicates whether a directed link exists from node i to node

j. g(t)ij = 1 indicates the presence of a directed link while g(t)ij = 0 indicates the

absence of a directed link.

Links are formed as follows. Let us denote the new node born at time t by t. Upon

birth, the node t identifies mr nodes uniformly at random (without replacement) from

Nt−1. We shall call these “parent” nodes. The new node forms a directed link to a

given parent node with probability pr.

Additionally, (regardless of whether the node forms a link to the parent) the

node t meets other nodes in the parents’ neighborhoods. The new node t finds mn

nodes through these network-based meetings (over all parents). Let pn denote the

probability that the new node obtains a positive utility from linking to a given node

found through such a network-based meeting.

Let r = prmr

pnmn
denote the ratio of number of links formed through the random

meeting process to those through the network-based process. Denote the expected

number of links formed by m = prmr +pnmn. The following result appears in Jackson

and Rogers (2006) and relies on a mean-field approximation to the network formation

process. That is, one analyzes a continuous time process in which all changes happen

deterministically at a rate equal to their mean rates under the original process. This

defines a system of differential equations that can be solved to determine a steady

state.
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The limiting (as t grows) distribution of degree is

F (d) = 1−
(

rm

d + rm

)1+r

, (5.2.1)

for d ≥ 0.

Next, define the total clustering coefficient on a graph g by

C(g) =

∑
i;j 6=i;k 6=j,i ĝij ĝjkĝik∑

i;j 6=i;k 6=j,i ĝij ĝjk

,

where ĝij = max gij, gji. That is, the clustering coefficient C(g) ignores the direc-

tion of links by considering the symmetric graph formed by including a link whenever

at least one of the corresponding directed links is present.

Even though the model is constructed as a directed graph, the SIS model as

implemented here operates on symmetric relations so that clustering measures that

take direction into account are less relevant. An alternative way to define clustering

is to do so locally for each node and then average across nodes. We thus define

CAvg(g) =
1

n

∑
i

∑
j 6=i;k 6=j,i ĝij ĝjkĝik∑

j 6=i;k 6=j,i ĝij ĝik

.

In Section 5.3 we begin by showing that we can generate networks with the same

degree distribution but different clustering measures. This is because the degree

distribution depends only on m and r, but clustering is affected by changing pr,

which can be done without altering the degree distribution.

5.2.2 The Diffusion Process

As described above, we analyze an SIS model that is run on a network generated

according to the above process. Even though the network is generated in a directed
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fashion, from this point on we want to consider only the symmetric network ĝ. At

each date, an infected node recovers with probability δ. Let a(t)i denote the number

of i’s neighbors who are infected at time t. Then if i is susceptible at t, i becomes

infected with probability νf(n(t)i), a(t)i).

In the simulations below we use to formulations of the diffusion function. The first

is f(n(t)i), a(t)i) = a(t)i/n(t)i. The interpretation is that i interacts with exactly one

of her neighbors at each date, so that f gives the probability of interacting with

an infected neighbor. There second formulation is f(n(t)i), a(t)i) = a(t)i. In this

case, the interpretation is that individuals interact with all of their neighbors at each

date, so that when ν is small, i becomes infected from each of her neighbors with an

independent probability.

5.3 Simulations

We want to consider networks with the same degree distributions but different total

and average clustering coefficients. The low clustering (LC) networks are generated

according to the following parameters: T = 250,mr = 10, pr = .199,mn = 2, pn =

.983. The high clustering (HC) networks use: T = 250,mr = 2, pr = .992, mn =

2, pn = .983. Thus, in both the LC and HC networks, r = 1.01 and m = 3.95, so

that according to the result above, the networks should have the same distributions.

However, the parameterizations were chosen so that they would have maximal sep-

aration in clustering coefficients. This was accomplished through results in Jackson

and Rogers (2006) about limiting clustering coefficients, again based on a mean-field

approximation. These results show that clustering increases with pr provided that

r > 1 and that the sensitivity is greatest when r and m are small (and r > 1).

Ten LC and ten HC networks were generated. To check that their degree distrib-

utions are the same, consider Figure 5.2. Shown are average complimentary cdf’s for
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the two kinds of networks, where each point is the average proportion of nodes in the

network with at least the degree plotted on the horizontal axis. The LC networks are

shown with black dots and the HC networks with a solid curve. The distributions

are shown on a log-log scale, where it is clear that the degree distributions are very

similar. The slight difference in the upper tail is exaggerated in this scale, and is due

to the finite size of the networks.

1 2 5 10 20 50

0.001

0.005
0.01

0.05
0.1

0.5
1

Figure 5.2: Average degree distributions of LC (black dots) and HC (solid
curve) networks. The complimentary cdf is plotted against degree. Each point
is the average ccdf taken over the ten networks. The LC and HC networks
have very similar degree distributions.

We next verify that the total and average clustering measures are consistent within

the category and systematically higher for the HC networks. This data for all twenty

networks is shown in Table 5.1, and it is clear that the clustering is higher in the HC

networks as intended.

Extensive simulations have confirmed that there is little if any evidence for an

observable effect of clustering on the diffusion process using the LC and HC networks.

That is, the dynamics of diffusion look identical in every way across the two different

classes of network structures.

The following figures show some examples of SIS simulations on LC and HC
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Table 5.1: Total and average clustering measures for LC and HC networks
verifying that the HC networks indeed have higher clustering.

networks. In the first case we consider the first variation on f corresponding to the

case where individuals interact with all of their neighbors each period, and in the

second case we consider the f corresponding to the case where individuals interact

with one neighbor per period. The first example in Figure 5.3 shows diffusion on both

classes of networks converging to the same positive steady-state level of infection, at

exactly the same rates. The data represent averages of 200 SIS simulations, where

ν = 0.04 and δ = 0.1. Figure 5.4 tells a similar story, but for a parametrization that

implies that the infection will die out. In this case, δ has been increased to 0.5, and

the initial infection level is 50%, with the other parameters the same as in Figure

5.3. It appears that there may be a very slight effect in the direction that the HC

networks may collapse to zero infection somewhat slower.

5.4 Conclusion

This chapter has presented a model that is useful for studying the effects of clustering

measures on a dynamic diffusion process. This framework is particularly useful be-

cause the network structures studied are consistent on many dimensions with observed
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Figure 5.3: SIS simulations where the proportion of the infected population is
plotted against time. LC (dots) and HC (dashed curve) are essentially iden-
tical. The data represent averages of 200 simulations on randomly selected
networks. Initial infection is 5%, ν = 0.04, and δ = 0.1.

social networks. In addition to fitting data on degree distributions and clustering

measures, the networks also fit other features of social networks, including diameter

(maximum distance between any pair of nodes measured in the number of links re-

quired to go between them), correlation of degrees of linked nodes, and correlations

between degree and local clustering. Importantly, it is possible to vary the clustering

measures of the network while holding fixed the degree distribution, allowing one to

isolate the possible effects of clustering.

Surprisingly, we find very little evidence that clustering affects diffusion on any

dimension. The examples presented are, of course, not comprehensive. But similar

results hold for different values of ν and δ, as well as for other specifications of

the contagion function f . One might also conjecture that increasing the size of the

networks may change the results presented here. They appear not to. We have also

run simulations on networks with up to 2,000 nodes and have obtained results in line

with those presented above. It should be observed that the network formation model

we have used has only limited room to vary clustering while holding fixed the degree
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Figure 5.4: SIS simulations where the proportion of the infected population
is plotted against time, coded as in Figure 5.3. Now δ = 0.5 and the initial
infection is 50%, with the other parameters as in Figure 5.3. Time is plotted
on a log scale to make the convergence more clear.

distribution. This can be seen in Table 5.1, which shows that the clustering measures

typically differ by about a factor of two, despite the effort to optimize this dispersion.

Future research is needed to see if these results will hold up in the context of other

kinds of random networks.

Of course, analytic results would be desirable here. The reason they do not exist

is that directly analyzing the discrete dynamic system that governs link formation is

a difficult problem. The complication is that the probability a given node attracts

a new link depends on its current degree, so that there is a high degree of path-

dependence in the stochastics. It is for this reason that researchers have frequently

resorted to mean-field approximations. However, the mean-field approach necessarily

ignores the correlation structures that are necessary for high clustering, so that the

role of clustering can not be studied analytically using these techniques. We hope

the simulations provided here are suggestive of deeper results concerning diffusion in

complex social networks.



Chapter 6

Appendices

A Appendix to Chapter 2: Proof of Proposition 1

Proofs of (i) and (ii): The proof of (i) is by induction. Recall that p1 = 1
2
, so we

only need to show that 0 < pt < 1 implies 0 < p−t < pt < p+
t < 1. Equation (2.3.4)

can be expanded as:

p+
t =

qpt(1− Fλ(1− 2πa
t )) + (1− q)pt(1− Fλ(1− 2πb

t ))

(qpt + (1− q)(1− pt))(1− Fλ(1− 2πa
t )) + ((1− q)pt + q(1− pt))(1− Fλ(1− 2πb

t ))
,

with 1 > πa
t > πb

t > 0 defined in (2.3.1) and (2.3.2), and Fλ(x) = 1/(1 + exp(−λx))

the logistic distribution with parameter λ and support (−∞,∞). Since 1
2

< q < 1

and 0 < pt < 1 by assumption, the denominator exceeds the numerator: p+
t < 1. A

direct computation shows:

p+
t −pt =

pt(1− pt)(2q − 1)(Fλ(1− 2πb
t )− Fλ(1− 2πa

t ))

(qpt + (1− q)(1− pt))(1− Fλ(1− 2πa
t )) + ((1− q)pt + q(1− pt))(1− Fλ(1− 2πb

t ))
,



134

which is strictly positive because πa
t > πb

t . The proof that 0 < p−t < pt is similar. Q.E.D.

Proofs of (iii) and (iv): Let `t = (1− pt)/pt denote the likelihood ratio that A is

correct. For all t ∈ T we have:

E(`t+1 |ω = A, `t) = `t,

i.e. the likelihood ratio constitutes a martingale, a basic property of Bayesian up-

dating. Note that pt is a strictly convex transformation of the likelihood ratio

(pt = (`t + 1)−1), so

E(pt+1 |ω = A, pt) = E((`t+1 + 1)−1 |ω = A, `t) > (E(`t+1 + 1 |ω = A, `t))
−1 = pt,

by Jensen’s inequality and the fact that `+
t 6= `−t , see (ii). We sketch the proof of (iv).

See Goeree et al. (2006) for proof details, and Smith and Sorensen (2000) for a similar

argument if there are continuous signals with unbounded beliefs. First, limit points of

the stochastic belief process {pt}t=1,2,··· have to be invariant under the belief updating

process. But (ii) implies that pt+1 6= pt when pt 6= {0, 1}, so the only invariant points

are 0 and 1. Next, the Martingale Convergence Theorem implies that `t converges

almost surely to a limit random variable `∞ with finite expectation. Hence, `∞ < ∞
with probability one, which implies that p∞ > 0 with probability one and pt thus

converges to 1 almost surely. Q.E.D.

B Appendix to Chapter 2: Estimation Program

In the GAUSS program below we assume that the experimental data are stored in an

MT × 2 matrix called “data;” every T rows correspond to a single sequence, or run,

with a total of M runs, the first column contains subjects’ signals, and the second
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column contains subjects’ choices. The coding is as follows: A choices and a signals

are labelled by a 1 and B choices and b signals by a 0. The outcome of the procedure

is the log-likelihood for a single treatment (i.e., with a fixed precision, q, and fixed

length, T ) although it is easy to adapt the procedure to deal with pooled data.1

PROC loglikelihood(λ);

LOCAL logL,signal,choice,m,t,p,πa,πb,P(A|a),P(A|b),P(B|a),P(B|b),p+,p−;

logL=0; m=1;

DO WHILE m<=M;

p=1/2; t=1;

DO WHILE t<=T;

πa=qp/(qp+(1-q)(1-p));

πb=(1-q)p/((1-q)p+q(1-p));

P(A|a)=1/(1+exp(λ(1-2πa))); P(B|a)=1-P(A|a);

P(A|b)=1/(1+exp(λ(1-2πb))); P(B|b)=1-P(A|b);

p+=(pqP(A|a)+p(1-q)P(A|b))/((pq+(1-p)(1-q))P(A|a)+(p(1-q)+(1-p)q)P(A|b));

p−=(pqP(B|a)+p(1-q)P(B|b))/((pq+(1-p)(1-q))P(B|a)+(p(1-q)+(1-p)q)P(B|b));

signal=data[(m-1)T+t,1]; choice=data[(m-1)T+t,2];

IF signal==1 AND choice==1; p=p+; logL=logL+ln(P(A|a)); ENDIF;

IF signal==0 AND choice==1; p=p+; logL=logL+ln(P(A|b)); ENDIF;

IF signal==1 AND choice==0; p=p−; logL=logL+ln(P(B|a)); ENDIF;

IF signal==0 AND choice==0; p=p−; logL=logL+ln(P(B|b)); ENDIF;

t=t+1;

ENDO;

m=m+1;

ENDO;

RETP(logL);

ENDP;

1The procedure is simple because information cascade experiments concern individual decision-
making environments, not games, so there is no need to solve fixed-point equations to compute the
QRE.
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C Appendix to Chapter 3: Collected Proofs

C.1 Beliefs Change Only with Announcements

We claim that, given a signal pi and information-symmetric strategies s, πi(pi, t, h
t, s)

is constant on all times t and histories ht such that xτ
j = 0 for all τ < t. Informally,

an agent’s posterior beliefs about the true state can change only when the other agent

makes an announcement. Note, however, that as time passes, each agent does update

her beliefs about her opponent’s type, since given j’s strategy sj, the fact that the

opponent has not yet announced restricts the support of g(pj|pi).
2 In particular, let

the updated distribution of j’s type be g(pj|pi, t, h
t, s). Thus:

g(pj|pi, t, h
t, s) =

g(pj|pi)∫
S(t,ht,s)

g(pj|pi)dpj

(C.1)

where S(t, ht, s) denotes the support of g(pj|pi, t, h
t, s). By information-symmetry

of sj the set S(t, ht, s) is symmetric about 1/2. Thus it suffices to show that given

a prior belief pi, πi(pi, t, h
t, s) is constant for all histories where neither agent has

announced.

Also let π̃(p1, p2) = p1p2

p1p2+(1−p1)(1−p2)
denote the posterior on A given two condi-

tionally independent signals p1 and p2.

Using (C.1) we have:

πi(pi, t, h
t, s) =

∫

S(t,ht,s)

π̃(pi, pj)g(pj|pi, t, h
t, s)dpj

=

(∫

S(t,ht,s)

g(pj|pi)dpj

)−1 ∫

S(t,ht,s)

π̃(pi, pj)g(pj|pi)dpj

= 2pi

∫
S(t,ht,s)

pjdpj

2pi

∫
S(t,ht,s)

pjdpj + 2(1− pi)
∫
S(t,ht,s)

(1− pj)dpj

2Recall that gi(·|pi, t, h
t, σ) denotes i’s probability assessment of j’s type given her own type, the

time, the current history, and strategy profile σ, and that g = (g1, g2).
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= 2pi

∫
S(t,ht,s)

pjdpj

2
(
(2pi − 1)

∫
S(t,ht,s)

pjdpj + (1− pi)
∫
S(t,ht,s)

dpj

)

= pi,

where the last equality follows since:

∫

S(t,ht,s)

pjdpj = (2pi − 1)

∫

S(t,ht,s)

pjdpj + (1− pi)

∫

S(t,ht,s)

dpj

(1− pi)

∫

S(t,ht,s)

2pjdpj = (1− pi)

∫

S(t,ht,s)

dpj,

which follows from the symmetry of S(t, ht, s). Thus we have shown that when

strategies are information-symmetric, agents learn nothing about the true state solely

from the passage of time.

C.2 Main Results

Proposition 3 Fix r > 0 and γ > 0. Gr has an (essentially) unique PBNE s∗.

Moreover, s∗ is symmetric, information-symmetric, in pure strategies, and character-

ized by cutpoints.

Proof. Define π̃(p1, p2) = p1p2

p1p2(1−p1)(1−p2)
to be the posterior belief that ω = A given

two conditionally independent signals p1 and p2. Also define f(pj|p) = 2 (ppj + (1− p)(1− pj))

to be i’s probability assessment of pj given type p.

Given r and γ set δ = exp(−γr). Let p0 = 0 and for l > 0 define pl implicitly by:

1− pl =
δ∫ 1−pl−1

pl−1
f(p|pl)dp

(∫ 1−pl

pl−1

[1− π̃(pl, p)]f(p|pl)dp +

∫ 1−pl−1

1−pl

π̃(pl, p)f(p|pl)dp

)
(C.2)

on the domain (pl−1, 1/2]. It is straightforward to verify that the right-hand side of

(C.2) evaluated at pl = pl−1 is less than 1 − pl−1 and has derivative strictly greater

than −1 on (pl−1, 1/2], implying that there is at most one solution. Let k denote
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the greatest l for which (C.2) has a solution. We claim that for any r > 0 the

{pl}k
l=1 defined recursively by (C.2) are the cutpoints of the unique perfect Bayes-

Nash equilibrium of Gr. Note that by the symmetry of the game, whenever a type

p < 1/2 has a strictly dominated strategy to announce at some t, announcing at t

is also strictly dominated for type 1 − p. Thus we focus mainly on types p < 1/2,

although it should be understood that the behavior of types greater than 1/2 is also

being described.

We first prove that for all l = 1, . . . , k, conditional on neither player having an-

nounced by time (l − 1)r, all p ∈ (pl−1, pl) (and all p ∈ (1 − pl, 1 − pl−1)) have a

strictly dominant strategy to announce immediately. To do so, we compare i’s ex-

pected payoff of announcing at (l − 1)r to the maximal continuation value of delay,

i.e., the continuation value that obtains when j plays the continuation strategy that

is optimal from i’s perspective. Specifically, this strategy is to announce at (l − 1)r

if and only if qj > qi. Under this strategy, i learns all decision-relevant information

immediately (at time (l − 1)r) and is thus able to announce the pooled information

state at the next time lr. Equation (C.2) compares the value of announcing at (l−1)r

to this maximal continuation value. As noted above, (C.2) has either zero or one solu-

tion on pl ∈ (pl−1, 1/2]. If it has no solution, then all types strictly prefer to announce

at (l − 1)r since the payoff to announcing is greater than the maximal continuation

payoff, and the game ends. If it has a solution pl, then all types less than pl have a

strictly dominant strategy to announce at (l−1)r. Thus at (l−1)r, all types p < pl−1

have already announced, and so they are eliminated from the support in (C.2).

We next prove that all types p̃ ∈ (pl, 1/2] strictly prefer to delay at (l−1)r. To do

so, we first show that for any such p̃, given that all p ∈ (pl−1, pl) announce at (l−1)r,

type p̃ strictly prefers to delay at (l − 1)r provided all p′ ∈ (p̃, 1/2] delay at (l − 1)r.

We do this by comparing the value of announcing at (l− 1)r to a lower bound on the

continuation value of delaying. Specifically, we use the value at the strategy “delay at
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(l− 1)r, then announce at lr” when j uses a “worst case” strategy. This lower bound

obtains when j plays the strategy that only types p < pl announce at (l− 1)r. In this

case, we show that the expected payoff from delaying one period and then announcing

at lr (which is a lower bound on the continuation value of delay at (l − 1)r) in this

worst-case scenario is greater than the value of announcing at (l− 1)r. Consider the

following inequality that states this formally.

1− p̃ <
δ∫ 1−pl−1

pl−1
f(p|p̃)dp

(∫ 1−pl

pl−1

[1− π(p̃, p)]f(p|p̃)dp +

∫ 1−pl−1

1−pl

π(p̃, p)f(p|p̃)dp

)
(C.3)

It is straightforward to verify that (C.3) is satisfied for all p̃ ∈ (pl, 1/2].

This implies that for type p̃ = 1/2 announcing at (l − 1)r is strictly dominated.

Then since for every strategy sj of agent j, Eui(ti, sj|pi) is continuous in pi, there

exists ε > 0 such that announcing at (l−1)r is strictly dominated by the strategy “wait

at (l− 1)r, announce at lr” for all types 1/2− ε < p′ < 1/2. Let ε1 be the supremum

of all ε for which this holds. But then by (C.3) the fact that all types strictly above

1/2 − ε1 delay implies 1/2 − ε1 also delays. Then again by continuity, there exists a

largest ε2 such that all 1/2− ε1− ε2 < p′′ < 1/2− ε1 delay. But then type 1/2− ε1− ε2

has a strict preference to delay and we can take another open neighborhood to the left

who strictly prefer to delay, etc. Define the monotonic sequence pη = 1/2−∑η
n=1 εn.

Thus at each step, we know that all p > pη will wait. We claim that the pη must

converge to pl. To show this, suppose instead that pη converged to some p∗ > pl.

Then for every ε > 0 there exists an η such that pη − p∗ < ε. Thus after a finite

number η of rounds of iterative elimination of dominated strategies, all types p ≥ pη

wait at (l−1)r. Also note that by (C.3) if in addition all p∗ < p < pη waited at (l−1)r

then p∗ would have a strict preference to wait. But since pη − p∗ is arbitrarily small,

the probability that pj ∈ (p∗, pη) is arbitrarily small, implying that for ε sufficiently

small, player i with signal p∗ strictly prefers to wait given only that types p ≥ pη wait
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at (l − 1)r.

To summarize, the {pl} defined by (C.2) define the cutpoints of the unique equi-

librium of Gr. That is, at each date (l−1)r all types p < pl have a strict preference to

announce, and all types p > pl have a strict preference to delay. Type pl is indifferent

and thus may choose to delay with an arbitrary probability. But since the set of

indifferent types is of measure zero, their choices do not affect the expected utilities

of other types. Thus the game has an essentially unique equilibrium and is dominance

solvable.

Proposition 4 For every γ > 0 and r > 0, Gr ends in finite time. That is, there

exists k < ∞ such that s∗(p) < kr for all p ∈ [0, 1] in the unique equilibrium s∗.

Proof. Given the information-symmetry of s∗ from Proposition 3, we confine atten-

tion to types p ≤ 1/2. We can solve (C.2) explicitly for pl = pl(pl−1; δ) to obtain the

following:

pl = 1/2
(
1− 1/δ(1− 2pl−1) +

√
(1/δ − 1)(1− 2pl−1)

√
1/δ(1− 2pl−1) + 3− 2pl−1

)
.(C.4)

Thus (C.4) provides a way to recursively solve for the cutpoint pl, given only the

previous cutpoint and the discount factor δ. Let v(δ) = 1/2(3− 2/δ). It is straight-

forward to verify that pl(pl−1; δ) > pl−1 on [0, 1/2), is strictly increasing and con-

cave on [0, v(δ)], and satisfies pl(v(δ); δ) = 1/2 and pl(0; δ) > 1/δ − 1, so that

infpl−1≤v(δ) pl(pl−1; δ)−pl−1 = 1/δ−1. Therefore, the number of cutpoints is bounded

above by δ
2(1−δ)

< ∞.

Before proving Theorem 1, we first prove a useful lemma.

Lemma 2 Let k̄(δ) =
ln( (1/δ−1+m(δ))(3−2/δ(1+1/δ−m(δ)))

2(3−2/δ)(−1/δ+m(δ)) )
− ln(1/δ+m(δ))

, where m(δ) =
√

(1/δ − 1)(1/δ + 3).

For every δ < 1, k(δ) ≤ k̄(δ).
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Proof. Let v(δ) = 3δ−2
2δ

. Consider the line h(p; δ) through (0, pl(0; δ)) and (v(δ), 1/2).

By concavity of pl(·; δ), h(p; δ)− pl(p; δ) < 0 on (0, v(δ)). The vertical distance from

the 45o line to h(p; δ) is d(p; δ) = c(δ)p+ pl(0; δ), where c(δ) = 1/δ−m(δ)
3−2/δ

− 1 ∈ (−1, 0).

Consider the sequence {zk}, where zk+1 = zk +d(zk) and z0 = 0. This sequence would

describe the successive cutpoints if instead of using pl(p; δ) we use the line h(p; δ) to

compute cutpoints. Because h(p; δ) lies strictly below pl(p; δ) on (0, v(δ)), it follows

that the first cutpoint zk defined by h(p; δ) to lie above 1/2 occurs no earlier than

the first true cutpoint pk, defined by pl(p; δ) to do so. Using the linearity of d(·), one

can solve the recurrence relation to obtain zk = pl(0;δ)
c(δ)

((c(δ) + 1)k − 1). The claimed

upper bound k̄(δ) is derived by solving the equation zk = 1/2 for k.

Theorem 1 For every γ > 0, Gr ends immediately as the time interval vanishes.

That is, limr→0 rk(δ) = 0.

Proof. Fix γ > 0. By Lemma 2, it is enough to show that limδ→1
−1
γ

ln(δ)k̄(δ) = 0.

Applying L’Hopital’s Rule and re-evaluating the limit proves the result.

D Appendix to Chapter 4: Collected Proofs

Here we collect proofs that were omitted from the text.

Lemma 1
∂aij

∂φkl
= f ′(φkl)aikalj.

Proof. Differentiating AA−1 = I yields:

∂A

∂φkl

A−1 + A

(
∂A−1

∂φkl

)
= 0.

Right-multiplying by A and rearranging produces:

∂A

∂φkl

= A
∂f(Φ)

∂φkl

A,



142

after substituting I−f(Φ) = A−1. The result is just the scalar form of this identity.

Proposition 1 (Nash networks in Model G) In Model G under the concave specifi-

cation, there exist multiple Nash equilibria, at least one of which is interior. Interior

equilibria satisfy the conditions
∑

j φij = βi for all i ∈ N , and

f ′(φij)aji = f ′(φij′)aj′i

for all distinct i, j, j′ ∈ N .

Proof. The maximization problem of i, taking the strategies of others as given, is:

max
φi

∑

k

akiαk s.t.
∑

k

φik ≤ βi.

Assume that Φ−i is interior. Thus aji > 0 for all j 6= i, so i’s utility is strictly

increasing in each φij (by Lemma 1). Thus the budget constraint must bind. The

assumption that limx→0 f(x) = ∞ insures that any solution φ∗i is interior as well.

Therefore the necessary first order conditions are ∂ui

∂φij
= ∂ui

∂φij′
for all j, j′ 6= i. Since

∂u
∂φij

= ∂A′
∂φij

α, it follows that:

∂u

∂φij

= −A′∂(A′)−1

∂φij

A′α.

Using A′α = u and simplifying shows that:

∂u

∂φij

= f ′(φij)ui




aj1

...

ajn




.

The ith component of the derivative is simply f ′(φij)uiaji. Setting ∂ui

∂φij
= ∂ui

∂φij′
for all

j, j′ ∈ N produces the claimed expression for i. Existence of an interior equilibrium



143

is established as follows. Define an ε-strategy for i as one in which φij ≥ ε for all

j 6= i, and
∑

k φik = βi. So the space of profiles of ε-strategies is compact and convex.

It can be shownthat there exists an ε > 0 such that all best responses to ε-strategies

are ε-strategies. An argument parallel to the existence proof in Proposition 3, using

A(Φ) = (I − f(Φ))−1 (which has strictly positive elements on ε-strategies) in place of

u(Φ), and the first order conditions above instead of those from Model T, establishes

an equilibrium in ε-strategies, which is interior.

For non-interior equilibria, notice that aji > 0 implies φij > 0, because limx→0 f(x) =

∞. This implies that if aij > 0, then for any two agents k, l that have a path to or

from i or j, akl, alk > 0. Consider the finest partition such that there is no positive

link across partition elements. The argument implies that within a partition element,

links constitute an interior equilibrium restricted to that group. Finally, agents i, j in

different elements of the partition, who have no paths between them (aij = aji = 0),

do not have a unilateral profitable deviation of linking to one another.

Proposition 2 (Efficient networks in Model G) In Model G under the concave spec-

ification, a socially efficient network exists, is interior, and satisfies the conditions
∑

j φij = βi for all i ∈ N , and

f ′(φij)
∑

k

ajk = f ′(φij′)
∑

k

aj′k

for all distinct i, j, j′ ∈ N .

Proof. An efficient network exists since the choice sets are compact and U is contin-

uous in Φ. Since U =
∑

k uk is strictly increasing in Φ, which is implied by Lemma 1,

each budget constraint must bind. Also, since limx→0 f ′(x) = ∞, any optimum must

be interior: φij > 0 for all i, j. Interiority of the solution implies necessary first order

conditions are ∂U
∂φij

= ∂U
∂φij′

for all i, j, j′ ∈ N . From the proof of Proposition 1, we
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have:

∂U

∂φij

=
∑

k

∂uk

∂φij

= f ′(φij)ui

∑

k

ajk.

Substitution produces the claimed expression.

Theorem 1 Assume N ≥ 3. In Model G under the concave specification, there is an

efficient Nash equilibrium if and only if βi = β̄ for all i ∈ N .

Proof. (If) Assume βi = β̄ for all i ∈ N . We prove that the strongly regular

network is both Nash and efficient. In this case, aji = aj′i for all distinct j, j′, i ∈ N ,

and aii = ajj for all i, j ∈ N . Thus the first order conditions in Propositions 1

(Nash) and 2 (efficiency) are identical and reduce to f ′(φij) = f ′(φij′) for all i and

all j, j′ 6= i, which is satisfied at the strongly regular network. Verifying the second

order conditions for a maximum is straight-forward.

(Sketch of only if) Next assume there exist i, j so that βi 6= βj. The only Nash

equilibrium candidate for efficiency is an interior one, so it must satisfy the first

order conditions in Proposition 1. βi 6= βj implies that aji 6= aj′i for some j, j′, i at

an interior equilibrium, since a strongly regular network can not be an equilibrium.

Consider agents with the largest ratio
aji

aj′i
. Then

aji

aj′i
>

P
k ajkP
k aj′k

. This implies that i’s

Nash decision is inefficient, and we are done.

Proposition 3 In Model T under the concave specification, all Nash networks and

socially efficient networks are interior. They satisfy the conditions
∑

j φij = βi for

all i ∈ N , and

f ′(φij)uj = f ′(φij′)uj′

for all distinct i, j, j′ ∈ N .

Proof. Existence of an efficient network is clear since U is continuous and the strategy

sets are compact. Lemma 1 implies that each ui, and so also U =
∑

i ui, is strictly
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increasing in each φij, so that all budget constraints must bind in a Nash or efficient

network. Further, the assumption that limx→0 f ′(x) = ∞ implies that any Nash

or efficient network is interior. Therefore, maximizing U has necessary first order

conditions ∂U
∂φij

= ∂U
∂φij′

for all distinct i, j, j′ ∈ N . We have

∂U

∂φij

=
∑

k

∂uk

∂φij

= f ′(φij)uj

∑

k

aki.

Substituting into the first order conditions then produces the claimed conditions.

To show that a Nash equilibrium exists, let Si denote i’s strategy space, and set

S = ×Si. Define BRi(ū) : Rn
++ → Si as the unique φi that satisfies

∑
j φij = βi

and f ′(φij)ūj = f ′(φij′)ūj′ for all j, j′ 6= i, for given constants ū > 0. Set BR(ū) =

(BR1(ū), . . . , BRn(ū)). Let u(Φ) = (I − f(Φ))−1α denote utilities as a function

of choices. Then Q : S → S defined by Q(Φ) = BR(u(Φ)) has a fixed point by

Brouwer’s theorem, since S is convex and compact, and Q is continuous. Existence

follows because a fixed point Φ∗ = BR(u(Φ∗)) of Q is an equilibrium by construction.

Necessary first order conditions for i’s optimization problem, taking Φ−i as given, are

∂ui

∂φij
= ∂ui

∂φij′
for all distinct j, j′ 6= i. We have:

∂u

∂φij

=
∂A

∂φij

α = A
∂f(Φ)

∂φij

Aα (D.5a)

= f ′(φij)uj




a1i

...

ani




. (D.5b)

Substitution into the first order conditions produces the same conditions as before,

and we are done.

Corollary 2 When αi = ᾱ for all i ∈ N , the efficient networks in Model T and Model

G coincide. Moreover, aggregate utility is the same across models at the efficient
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solution.

Proof. Assume αi = ᾱ for all i ∈ N . In Model T, uj = ᾱ
∑

k ajk. Therefore the first

order conditions in Proposition 3 are identical to those in characterizing efficiency

in Model G in Proposition 2. Thus the efficient networks coincide. In both Models,

aggregate utility is proportional to the sum of all elements in A by the constant ᾱ

and so is the same across models.

Proposition 4 Assume βi = β for all i ∈ N . In Model G, the efficient networks

are those networks for which
∑

j φij = βi for all i ∈ N . In addition, there are both

efficient and inefficient Nash equilibria.

Proof. Since U is strictly increasing in each φij, the condition that
∑

j φij = βi for

all i ∈ N is clearly necessary for efficiency. To show that it is also sufficient, write

U =
∑

i

∑
j ajiαj =

∑
j αj

∑
i aji. When the budget constraints are exhausted, the

row sums of Φ are each β. This implies that the row sums of A are each 1
1−β

.3 Thus

U =
P

j αj

1−β
for all such networks. Since U is constant on these networks, they must

all be efficient. For the second claim, the empty network is Nash and is obviously

not efficient. Last, we claim that the strongly regular network, in which φij = β
n−1

for all i 6= j, is Nash. When N\{i} set each link equal to β
n−1

, then aki = ak′i for

all k, k′ 6= i. Thus
∂aji

∂φik
= ajiaki is constant across k. Thus aji is constant across all

strategies of i that exhaust its budget. Since any other strategy decreases ui, i has

no profitable deviation from the strongly regular network.

Proposition 5 Assume β1 > · · · > βn. In Model G, all paired networks are Nash

equilibria. The unique efficient network is assortatively paired.

Proof. In a paired network, aji = 0 for all but at most one j. When there is a

(unique) aji > 0, i’s unique best response is to devote the entire linking budget to j.

3See Wilansky (1951) for a result that implies this fact.
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If n is odd and there is an agent i such that aji = 0 for all j 6= i, then i is indifferent

over all strategies. It can be verified by direct computation that the assortatively

paired network generates maximal total utility out of all paired networks .

Proposition 6 Assume αi = α and βi = β for all i ∈ N . The Nash and efficient

networks coincide in Model T and are those networks for which
∑

j φij = β for all

i ∈ N .

Proof. Under these assumptions, ui = α
∑

j aij. A necessary condition for either

equilibrium or efficiency is that
∑

j φij = β for all i ∈ N . In this case, the row sums

of A are 1
1−β

(see the proof of Proposition 4). Thus ui = α
1−β

for every network that

exhausts budgets and is strictly smaller otherwise. This also proves that U = nα
1−β

when budgets are exhausted and is strictly smaller otherwise.
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Erdös, P. and A. Rényi (1960) “On the Evolution of Random Graphs,” Publication

of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17-61.

Freeman, L. (1979) “Centrality in Social Networks: Conceptual Clarification,” Social

Networks 1, 215-239.

Friedkin, N. (1991) “Theoretical Foundations for Centrality measures,” The American

Journal of Sociology 96(6), 1478-1504.

Friedkin, N. (1998) “A Structural Theory of Social Influence,” Cambridge: Cambridge

University Press.

Friedkin, N., and E. Johnsen (1990) “Social Influence and Opinions,” Journal of

Mathematical Sociology 15(3-4), 193-205.

Gale, D. (1960) “The Theory of Linear Economic Models,” New York: McGraw-Hill.

Gale, D. (1996) “What Have We Learned from Social Learning?” European Economic

Review 40, 617-628.

Galeotti, A. (2004) “One-way Flow Networks: The Role of Heterogeneity,” Tinbergen

Institute Discussion Paper.

Goeree, J., C. Holt, and T. Palfrey (2005) “Regular Quantal Response Equilibrium,”

Experimental Economics 8, 347-367.

Goeree, J., T. Palfrey, and B. Rogers (2006) “Social Learning with Private and Com-

mon Values,” Economic Theory 28(2), 245-264.

Goeree, J., A. Riedl, and A. Ule (2005) “In Search of Stars: Network Formation

among Heterogeneous Agents,” mimeo.

Goyal, S. (2005) “Strong and Weak Links,” Journal of the European Economic As-

sociation 3(2-3): 608-616.



153

Goyal, S., A. Konovalov, and J. L. Moraga-González (2005) “Hybrid R&D,” mimeo.
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Nöth, M. and M. Weber (2003) “Information Aggregation with Random Ordering:

Cascades and Overconfidence,” Economic Journal 113, 166-89.

Oberhammer, C. and A. Stiehler (2003) “Does Cascade Behavior Reflect Bayesian

Updating: An Experimental Study,” Working Paper, Max Planck Institute of

Economics.

Palacio-Huerta, I., and O. Volij (2004) “The Measurement of Intellectual Influence,”

Econometrica, 72(3): 963-977.

Pastor-Satorras, R., and A. Vespignani (2000) “Epidemic Spreading in Scale-Free

Networks,” Physical Review Letters 86(14), 3200-3203.
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