
C h a p t e r  2  

ANALYSIS OF ON-AXIS HOLOGRAPHY WITH 

FEMTOSECOND PULSES 

2.1 CAPTURE OF NONLINEAR PULSE PROPAGATION WITH 

PULSED-HOLOGRAPHY 

Very high intensity levels can be achieved with femtosecond pulses due to their short time 

duration. Ultrashort pulses can significantly change the properties of the medium through 

which they propagate, which in turn alters the pulse itself. Much can be learned about the 

propagation of pulses from the changes in the material properties. The time scale of the 

changes ranges from instantaneous to permanent. Ultrafast nonlinear index changes can be 

as fast as a femtosecond or last for several picoseconds. Plasma generated through 

ionization of the material has a lifetime on the order of nanoseconds, while index changes 

due to heating can last for milliseconds. There can also be a permanent effect on the 

material, such as in the case of laser ablation or permanent index changes due to melting. 

Pulsed holography provides an ideal way to observe these index changes. The index 

changes can be reconstructed from the phase information in the hologram, while the 

duration of the pulse provides time resolution to focus on the time window of interest. We 

have used an on-axis [1] holographic setup, in which a femtosecond probe pulse captures 

the changes in the material properties. The holographic camera records either a single 

hologram with high spatial resolution (4µm) or a time-sequence of four holograms 

(holographic movie) with reduced spatial resolution. The main advantage of using on-axis 

holography is that there is no need for reference pulses, as both the signal and reference are 

generated from a single probe pulse. The holograms are recorded on a CCD camera and 

reconstructed numerically [2-4]. Multiple holograms can be captured on a single frame of 
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the CCD camera by spatially separating them (spatial multiplexing). With the multiple 

frame capture, the time evolution of the pulse propagation is captured in a single-shot 

experiment. 

In this chapter we briefly discuss the sources of nonlinear index changes that can be 

observed with femtosecond pulses. The Kerr effect (third order optical nonlinearity) 

generates a positive index change with a femtosecond to picosecond duration. Ionization of 

the medium (plasma formation) results in a negative index change with a lifetime on the 

order of nanoseconds. The changes in the material properties are captured by a weak probe 

pulse, which temporally and spatially overlaps with a strong pump pulse. The short 

duration of the pulses plays a major role in the overlap and interaction of the pulses. The 

interaction can be analyzed using some simple geometrical arguments. The main limitation 

of on-axis holography is the appearance of twin images when the hologram is 

reconstructed. The reconstruction is distorted by the appearance of a defocused virtual 

image along with the real image. We will discuss how this affects the accuracy of our 

measurements and present an iterative algorithm to remove the effect of the twin image. 

Finally we discuss the coupling between spatial and temporal resolution limits of on-axis 

holograms. The following chapter describes the holographic camera in detail and the results 

for pulse propagation through different materials. 

2.2 INDUCED NONLINEAR INDEX CHANGES 

2.2.1. Kerr effect 

The advantage of the holographic recording is that it captures the index changes due to both 

the Kerr nonlinearty (in general positive) and plasma generation (negative index change), 

along with changes in the amount of light transmitted by the material. When the intensity 

of the incident light is very high, the nonlinear contributions to the polarization of the 

medium must be taken into account. If the electric due to the incident light is small 

compared to the atomic electric field, the polarization can be expanded in a power series: 
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where χ(n) is a tensor of order (n+1) that represents the nth order response of the material 

and Pi and Ei are the ith vector components of the polarization and the electric field, 

respectively. The three terms on the right hand side are the linear response of the material, 

the second order nonlinear response and the third order nonlinearity, respectively. The 

nonlinear terms can generate a polarization at frequencies different from that of the incident 

light, for example, the second order term is responsible for second harmonic generation. It 

is known that for isotropic materials the second order response vanishes [5]. The term 

responsible for a self-induced nonlinear index change in the material is the third order 

response: 

EEP NL 2)3(χ= . (2.2) 

This is commonly referred to as the Kerr effect. The response of the material is 

proportional to the square of the electric field. This can also be written as an index of 

refraction with a linear contribution, which is constant, and a nonlinear contribution that 

depends on the intensity of the light [6]: 

Innn 20 += , (2.3) 

where n0 is the refractive index of the material, n2 is the Kerr coefficient of the material and 

I is the light intensity. The Kerr coefficient can be positive or negative, and depends on the 

duration of the incident light and the frequency. For CW light or long laser pulses 

(microseconds) the thermal response of the material dominates resulting in a negative n2. 

The heating of the material causes a density change and a negative index change. If the 

material is studied with ultra-short pulses, on the order of tens of picoseconds or shorter, 

the excitation is too short for thermal effects to play a role. In this case the main 

contributions are the instantaneous electronic response of the material (with a time constant 

of the order of a femtosecond) and the molecular response (with time constants on the order 

of picoseconds). The instantaneous response corresponds to the electronic response in the 

atom or molecule to the incident electric field, while the molecular response corresponds to 
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excitation of the molecules (vibration, rotation, etc.). The ultra-fast Kerr effect is positive 

for most material, although some exceptions have been found in some special polymers [7]. 

For any given material, then, the strength and sign of the Kerr effect that is observed will 

depend on the duration of the incident laser pulses. For excitation with 150-femtosecond 

pulses, it is possible to observe both electronic and molecular responses, although the 

electronic response dominates in general.  

A positive Kerr response means that a non-uniform laser beam will experience self-

focusing. For example, a beam with a Gaussian spatial profile will have a higher intensity 

at the center of the beam. There will be an index change in the material that is higher near 

the center of the beam and vanishes at the edge of the beam. This index change will act as a 

lens and focus the beam. A laser pulse will experience self-focusing if its power is higher 

than a critical value, defined as [5]: 
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where λ is the laser wavelength. At the critical power, the nonlinearity exactly cancels the 

effect of diffraction; the beam becomes self-trapped and propagates with a constant 

diameter. This is, however, an unstable equilibrium. If the power is initially below the 

critical value the beam will diffract, and if the power is above the critical value the beam 

will continue to self-focus until another mechanism acts to balance the self focusing. This 

balancing can lead to the formation of optical spatial solitons and will be discussed in detail 

in the following chapters. When the power of the pulses is much greater than the critical 

power (P > 100 Pcr) the beam will break up into multiple filaments, each one carrying 

approximately the critical power. Any initial modulation (noise) in the input beam will be 

amplified by the self focusing process, eventually resulting in the beam breaking up into 

smaller beams, or filaments (Fig. 2.1).  
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2.2.2. Index change due to plasma generation 

If the intensity of the filaments exceeds the breakdown threshold of the material, free 

electrons are generated. For excitation with ultrashort (femtosecond) pulses, the dominant 

mechanism for plasma formation is multi-photon absorption. A single electron will absorb 

multiple photons at the same time, and the medium becomes ionized. The plasma generated 

induces a negative index change, which can balance the positive index change of the Kerr 

effect. The plasma index change is given by: 
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where ω = 2.36 x 1015 s-1 is the angular frequency of the laser and  ωp is the plasma 

frequency: 
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where N is the electron density, e = 1.6 x 10-19 C is the charge of the electron, m = 9.1 x 10-

31 kg is the mass of the electron and ε0 = 8.85 x 10-12 C2s2m-3kg-1 is the permittivity of free 

space. The plasma density can thus be calculated if the index change is measured. The 

plasma index change can stabilize the self-focusing due to the Kerr effect [8, 9]. As the 

filaments continue to focus and the intensity increases, the plasma density and negative 

index change also increase. Eventually the negative index change becomes strong enough 

so as to defocus the light, at which point the intensity and plasma density decrease, leading 

to a new cycle of self focusing. Some energy is lost through the ionization process, so 

eventually the cycle stops when the power in the beam is no longer above the critical 

power. In the absence of plasma, a higher nonlinearity (fifth order nonlinearity) can act to 

balance the self-focusing through a saturation of the index change [10]. Which effect 

becomes dominant depends on the material properties and the intensity and duration of the 

pulses.  
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2.3 INTERACTION AND OVERLAP OF FEMTOSECOND PULSES 

The holographic recording technique uses a strong pump pulse that interacts with the 

material and a weak probe pulse that captures the changes in the material. Any 

instantaneous changes in the material properties will be captured only when the pump and 

probe overlap temporally and spatially. Long-lasting changes in the material, lasting longer 

than a few hundred femtoseconds, can also be observed after the pump pulse has traversed 

the material. The instantaneous changes will reveal a snapshot of the pump pulse traversing 

the material, while the long lasting changes will appear as a trail behind the moving pulse. 

The trail can be due to the delayed Kerr response, with a time constant of picoseconds, or a 

plasma trail that lasts for a longer time (nanoseconds). The probe pulses, which propagate 

at an angle relative to the pump, are captured using a CCD camera (Fig. 2.1).  

 

Figure 2.1. Sketch of holographic capture. There are an instantaneous component of 

the index change and a trail behind the pulse that contribute to the signal on the 

probe pulse. The probe light is captured on a CCD camera. 

 

The angle difference between pump and probe is in the horizontal direction, as observed on 

the camera. Smaller angles lead to longer interaction lengths and increased signal strength 

as the phase changes in the probe accumulate over a longer distance. If the pump pulse 
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leaves a trail in the material that lasts longer than the time window of the experiment (a few 

picoseconds), then a probe arriving after the pump will capture the entire trail. An 

instantaneous effect, however, can only be captured when the pulses overlap temporally 

and spatially. For two ultrashort pulses propagating at an angle, the overlap region will be a 

thin strip at the midline between the two pulses (Fig. 2.2). The width of the overlap strip 

depends on the duration of the pulses and the angle between them: 
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where τ is the duration of the pulses, θ is the angle between the two beams inside the 

medium, c is the speed of light, n is the index of refraction, At is a  numerical factor that 

depends on the shape of the temporal envelope of the pulses and wt is the length of the 

pulses in space. The temporal profile of the pulses is approximately Gaussian, in which 

case At = 0.707.  

The total length of the overlap region is  

( ) so ADL
2sin θ

= , (2.8) 

where D is the diameter of the smaller (pump) beam, and As is a numerical factor that 

depends on the shape of the spatial beam profile. As observed on the CCD camera, the 

signal width in the horizontal direction will be a projection of both the width and the length 

of the overlap region. The size of the overlap region projected on the CCD camera can be 

approximated as: 
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The first term dominates for large beam diameter, while the second term becomes 

important for small beam diameters and small angles. The signal width on the CCD along 

the vertical direction will be equal to the pump beam diameter D.  
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If the time delay of the probe is changed the pulses will overlap at a different position, 

resulting in the motion of the pump pulse on the camera. The velocity of the pulse inside 

the medium can be calculated from the apparent velocity of the pulse on the camera: 

( 2tan θ
t
xv
Δ
Δ

= ), (2.10) 

where ∆x is the change in position of the pump in the camera, and ∆t is the time delay. For 

a 90-degree setup there is a one-to-one correspondence between the apparent and real 

speeds.  

 

Figure 2.2. Overlap region for two ultrashort pulses. The overlap region is a thin strip 

along the center line between the two pulses. The width of the strip is determined by 

the duration of the pulses, while the length of the strip is determined by the beam 

size. 
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2.4. DIGITAL RECORDING AND RECONSTRUCTION OF ON-

AXIS HOLOGRAMS 

2.4.1. On-axis holograms and the twin image problem 

The use of on-axis (self-referenced) holograms allows us to record holograms without 

having to separately generate a sequence of signal and reference pulses. The object is 

illuminated by a plane wave and the light scattered by the object interferes with the 

transmitted light (Fig. 2.3a). The intensity of the light field at the recording plane is 

captured with a CCD camera, which allows us to reconstruct the hologram numerically on 

the computer. Accurate holographic reconstructions can be obtained provided the amount 

of light scattered by the object is small compared to the transmitted light.  

The object is illuminated by a plane wave, which we normalize to be of unit amplitude. The 

complex light field at the object plane is:  

),(1),( yxOyxFO += . (2.11) 

O(x,y) is the complex disturbance of the light field induced by the object. We assume that 

the area covered by the object is small compared to the area of the illuminating beam (or 

the area of the camera, whichever is smallest). This ensures that at the detector the 

transmitted light field will be much stronger than the object field. 

The field at the hologram plane, a distance z from the object plane, is obtained by 

convolving the object field with the Fresnel convolution kernel [11]: 

[ ] ),(),(1),( yxhyxOyxF zH ⊗+= , (2.12) 

where hz(x,y) is the Fresnel convolution kernel: 
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The convolution can be calculated on the computer using Fast Fourier Transforms. If FH 

(x,y) is known, the object field can be reconstructed exactly applying the Fresnel 

convolution kernel in the opposite direction (-z). However, the hologram captures only the 

intensity of the light at the hologram plane: 

[ ] 22 ),(),(1),(),( yxhyxOyxFyxH zH ⊗+== . (2.14) 

If we now try to reconstruct the object field from the intensity measurement using the 

Fresnel convolution kernel, the reconstructed field contains the desired object field plus an 

extra term: 

),(),(),(1),(),(),( 2 yxhyxOyxOyxhyxHyxF zzR −
∗

− ⊗++=⊗= . (2.15) 

The first term on the right-hand side represents the transmitted light (plane wave). The 

second term is the object field and the third term is a twin image, which is the conjugate of 

the object field diffracted by a distance of -2z. A term of order square of the object field 

was neglected. The holographic reconstruction contains the desired amplitude and phase 

information, but is distorted by the presence of the twin image (Fig. 2.3b) [1, 12]. For small 

objects, the distortion will in most cases appear in the form of fringes around the object. 

The twin image problem is caused by the loss of the phase information when the hologram 

is recorded (the camera captures only the intensity of the light field). The twin image is 

present in both optically and digitally reconstructed on-axis holograms. The problem is less 

severe for small objects and large recording distance z, in which case the twin image will 

appear as background noise around the true object.  

The digital holograms also contain 3-D information about the object. The hologram can be 

numerically re-focused at different planes by changing the distance z in the Fresnel kernel 

(equation 2.13), bringing different object features to focus and revealing three-dimensional 

structure. We will show an example of this in the next chapter.   
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Figure 2.3. Recording and reconstruction of on-axis holograms. (a) Recording 

geometry. (b) Both a real and a virtual image appear in the reconstruction. 

 

2.4.2. Numerical reconstruction for small objects 

In our experimental setup for single frame capture, the distortion due to the twin image 

does not significantly affect accuracy of the reconstruction. The pump pulse breaks up into 

small filaments with a diameter of 4 µm to 15 µm and lengths of approximately 1 mm. 

After a magnification factor of 12 a filament covers only a small fraction of the recording 

area (the CCD sensor area is 14.8 mm x 10.2 mm).  

We have performed numerical simulations to calculate the distortion induced by the 

presence of the twin image. The diffraction pattern due to a filament with a diameter of 8 
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µm and a length of 500 µm was calculated for a recording distance of 25 cm. The 

accumulated phase change for a beam that traverses the filament is 1 rad, caused by an 

index change in the material. The magnification, pixel size and number of pixels are the 

same as in the experimental apparatus (M = 12, 2184 x 1472 pixels, 6.8 µm pixel size). The 

phase change and filament size are comparable to those observed experimentally for 

plasma filaments generated in air, as described in the following sections (with the 

difference that the plasma generates a negative index change). The light propagation from 

the object plane to the recording plane is calculated numerically using the Fresnel 

convolution Kernel (equations 2.12-13). The intensity pattern at the recording plane is used 

to calculate the reconstruction at the object plane. Figure 2.4a shows a cross section of the 

phase of the input and reconstructed light field. The reconstruction agrees very well with 

the simulated filament at the position of the filament. The maximum phase change and 

width of the input and reconstructed filaments differs by less than 5%. The inset shows a 

close-up of the filament region. Outside the filament area the reconstruction shows the 

fringes characteristic of the twin image. In the experimental images two filaments may 

appear in close proximity, so we also simulated two filaments with 8 µm diameter 

separated by 16 µm (Fig. 2.4b). In this case there was also good agreement between the 

input and the reconstruction, with the characteristic fringes outside of the object area. The 

error, however, increases rapidly with object size. In the next section we present an iterative 

technique that can reduce the distortion when the object occupies a larger fraction of the 

hologram area. 
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Figure 2.4. Simulation of phase reconstruction from on-axis holograms. a) Cross 

section of simulated (red, solid line) and reconstructed (black, dotted line) phase 

filament with 8 µm diameter. b) Simulation and reconstruction of double filament. 

The insets shows a close-up of the filament and reconstruction. In both cases the 

reconstruction is accurate at the position of the filament. 

 

2.5. REMOVAL OF THE TWIN IMAGE 

As the size of the object relative to the recording area increases, the distortion due to the 

twin image becomes more severe. In the case when multiple holograms are multiplexed on 

a single frame of the CCD camera, the distortion can be significant. The twin image can be 

removed if the phase of the light at the recording plane is recovered. Digital holograms 

have the advantage that this distortion can be corrected numerically. A number of 

algorithms have been implemented to recover the phase of the hologram. One method uses 

a double exposure [13] to calculate the phase from two intensity measurements, while the 

most common method is to use an iterative algorithm [12, 14, 15]. Iterative techniques in 

general assume that the object is real, that is, the object affects only the amplitude of the 

light field. The real part of the initial reconstruction is used as the starting point, and the 
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reconstruction is iterated applying the constraint that the object reconstruction be real at 

each step. This method works well for image reconstruction; however, it does not allow 

one to recover both amplitude and phase.  

We have developed a variation of the iterative technique that allows us to reconstruct both 

amplitude and phase for objects that are small compared to the area of the hologram. The 

unknown that we need to recover in order to remove the twin image is the phase of the field 

at the hologram plane. We know that the phase and amplitude of the object reconstruction 

must be constant outside of the object area, given that it was originally illuminated with a 

plane wave. The light field that we want to recover is given by equation 2.11. After the 

initial reconstruction (equation 2.15) it is in general possible to estimate the size and 

position of the object, even though there is distortion from the presence of the twin image. 

The object reconstruction will be localized, while the twin image will be spread out due to 

diffraction. The initial reconstruction FR is used as the starting point of the iterative 

reconstruction. A new field is generated by applying the constraint of a plane wave 

illumination. Specifically, the constraint is applied by multiplying the reconstruction with 

an aperture function that is unity in the estimated object area and zero outside. The zeroed 

area is replaced by a uniform field with the mean amplitude and phase of the original field. 

The initial guess for the iterative algorithm is: 
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where A(x,y) is unity inside the estimated object area and zero outside. If the function 

A(x,y) is chosen properly, it will only affect the twin image: 
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∗ ⊗++= . (2.17) 

The light field at the hologram plane is calculated by numerically propagating the guessed 

, (2.18) 

object field FG1 by a distance z: 
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where the first term on the second line is what we want to recover, while the second term

due to the twin image. The effect of the aperture function A(x,y) is to reduce the strength of 

the contribution from the twin image at the recording plane. If A(x,y) is set to one 

 is 

everywhere, the sum of the contributions from the real and the virtual images results in a 

real field, and no phase information is recovered. For large recording distance z, the 

aperture function is effectively transmitting only the low frequency components of the twin 

image, thus reducing the phase modulation due to the twin image at the hologram plane. A 

corrected field is generated by combining the measured intensity with the reconstructed 

phase: 

( )[ ]),(Phaseexp),(),( 11 yxFiyxHyxF HH ∗= , (2.19) 

where H(x,y) is the intensity distribution of the hologram measured on the CCD camera, 

and Phase(FH1(x,y)) is the phase of FH1. The co

reconstruction and start a new cycle: 

rrected field is used to generate a new object 

[ ] ),(),(1),(),(),( 112 yxTyxOyxhyxFyxF zHR ++=⊗= −  , (2.20) 

where T1(x,y) is the distortion of the field due to the twin image that is left after 1 iteration. 

A second guess is generated using the same procedure as before: 

( ) [ ] ),(),(),(1),(1),(),(),( 122 yxTyxAyxOyxAyxFyxAyxF RG ++=−+= . (2.21) 

The new guess is used for a new iteration. The function Tn(x,y) will in general get weaker 

after each iteration. The process continues until the reconstruction no long

number of iterations depends on the amount of distortion in the initial reconstruction. A 

er changes. The 

stable reconstruction is generally achieved after 4-10 iterations. The performance of the 

algorithm can be monitored qualitatively by the decrease in the characteristic fringes 

around the object with each iteration or quantitatively using numerical simulations. It is 

important to choose the correct size for the aperture function. If the aperture is too small it 

will distort the reconstruction, as the object will fill the aperture area. If the aperture size is 

too large then it might not have a strong enough effect on the twin image. The most 
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efficient method to choose the aperture was to use the phase of the reconstruction to 

determine the size of the object, and to fine tune the aperture by looking at the results. We 

have seen that the shape of the aperture is not very critical unless the object is very 

asymmetric. A simple rectangular aperture has given good results in most cases.  

We have numerically tested the algorithm and seen a significant improvement in the 

accuracy of the reconstructions. The simulation is run for a detector size of 512 pixels by 

512 pixels (6.8 µm pixel size), about one fourth of the size of our CCD camera, and no 

magnification. We simulate an object field with Gaussian shape (width = 0.11 mm, length 

= 0.44 mm) with a positive phase change and absorption. The peak phase change is 1 

radian and the minimum amplitude transmittance is 70 %. These values are similar to those 

observed in several of the experiments. Figure 2.5 shows the amplitude of (a) the simulated 

object field, (b) the initial reconstruction and (c) the initial guess used for the iterative 

technique, while (d-f) shows the phase of the object, the reconstruction and the initial 

guess, respectively. Figure 2.6 shows the corrected amplitude and phase reconstructions 

after applying 2, 8 and 20 iterations of the algorithm. After 8 iterations the algorithm 

reaches a stable point and the reconstruction no longer changes. The minimum 

transmittance in the initial reconstruction is 87 %, compared to 74 % after the correction (8 

iterations), which is closer to the true value of 70%. Similarly, the peak phase change of the 

initial reconstruction is 0.50 radians and improves to 0.83 radians. The shape of the 

reconstructed field also improves significantly, note that the amplitude change is much 

narrower before the reconstruction. Figure 2.7 shows plots of a vertical cross section along 

the center of the image of the amplitude (Fig. 2.6a) and the phase (Fig. 2.6b) of the 

simulated object, the initial reconstruction and the corrected reconstruction after 8 

iterations. It is clear from these plots that the accuracy of the reconstruction improves 

significantly and that the ringing due to the twin image is reduced. We have run the 

simulation for objects of different sizes and different field strengths and seen significant 

improvement in most cases. Objects with sharp edges are in general easier to correct since 

they have well-defined boundaries. The reconstructed error depends on the object field and 

increases with object size. The size of the objects captured in our experiments is in general 
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smaller than the object used for the simulation, and the algorithm usually converges to a 

stable solution within 4-10 iterations. 

 

Figure 2.5. Simulation of object reconstruction. (a) Amplitude of simulated object 

field. (b) Initial amplitude reconstruction. (c) Intial guess for iterative reconstruction 

algorithm. (d-f) Phase of the light fields in (a-c), respectively. The phase is color 

coded such that red indicates a high value of the phase and blue corresponds to low 

values.  
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Figure 2.6. Amplitude and phase reconstructions with iterative algorithm. (a-c) 

Amplitude reconstructions after 2, 8 and 20 iterations. (d-f) Phase reconstruction 

after 2, 8 and 20 iterations. 

 

 

Figure 2.7. Cross sectional plots of simulated object (dashed black line), initial 

reconstruction (dotted red line) and the reconstruction after applying the correction 

algorithm (solid blue line). (a) Vertical cross section of the amplitude of the light 

along the center of the image. (b) Cross section of the phase. 
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Figure 2.8 shows the results of the correction algorithm when applied to an experimentally 

recorded hologram of a pulse propagating in water (the experimental results will be 

discussed in detail in the next chapter). Figure 2.8a shows a hologram recorded using 

approximately one quarter of the CCD area with the multiple-frame setup. The pump pulse 

generates an index change in the water, which induces a phase change in the probe pulse. 

Figure 2.8b-c shows the phase reconstruction before and after applying the correction 

algorithm (6 iterations). The fringes due to the twin image become much weaker and the 

detail around the object becomes sharper. Similar improvement was observed for most 

reconstructions. In the case of high resolution holograms with small filaments the 

improvement is not as significant since the initial reconstructions are already quite 

accurate. Finally, if a large phase change is measured it is necessary to unwrap the phase in 

order to calculate the index changes. Several algorithms have been developed to solve the 

problem of phase-unwrapping in 2-D. We have obtained good results with the algorithm 

developed by Volkov and Zhu [16]. 

  

Figure 2.8. Phase reconstruction of an experimentally recorded hologram. (a)

Hologram captured on the CCD camera using the movie setup. (b-c) Phase 

reconstruction before and after applying the correction algorithm. The light pulse 

propagates from left to right. The image size is 5.0 mm x 5.4 mm.  

 

 

a b ca b c

29



2.6 RECONSTRUCTION OF INDEX CHANGES 

The nonlinear index changes in the material can be recovered from the phase information 

in the hologram. A probe that traverses a material with an index change will accumulate a 

phase change that is proportional to the index change in the material: 

∫ Δ=Δ
L

dzzyxnyx
0

),,(2),(
λ
πφ , (2.22) 

where we assume a probe propagating in the z-direction, Δn is the index change and L is the 

length of the index change traversed  by the probe. L can be calculated from the beam size 

and the formulas in section 2.3. The previous formula can be used to reconstruct the index 

changes averaged over the z-direction: 

),(
2

),( yxnLyx
Δ=

Δ
λπ

φ , (2.23) 

where the term in brackets is the index change averaged in the z-direction. This formula can 

be used to reconstruct the transverse profile of index change from the measured phase 

changes. 

2.7. RESOLUTION LIMITS OF FEMTOSECOND HOLOGRAPHY 

The temporal resolution of the holographic reconstruction is limited by the duration of the 

laser pulses. When recording with CW light or long laser pulses, the spatial resolution of 

on-axis holograms is determined by the numerical aperture. The minimum resolvable 

feature is 

H
H NA

λδ 61.0= , (2.24)       
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where λ is the laser wavelength and NAH is the numerical aperture of the hologram: 

z
D

Dz
DNAH 2)2( 22

≈
+

= , (2.25)     

D is the detector size and z is the distance from the object to the recording plane (D is in 

general much smaller than z). In the case of digital holograms the resolution cannot exceed 

the detector pixel size unless the object is optically magnified. If magnification is used, the 

resolution will be determined by the smallest between the numerical aperture of the 

imaging system and numerical aperture of the hologram.  

 For very short pulses, however, the effect of the short coherence length needs to be taken 

into account. Consider a short pulse that illuminates a small object (Fig. 2.9a). The 

transmitted light (reference) is a plane wave, while the scattered light will propagate at a 

range of angles that depend on the spatial frequencies contained in the object. The time of 

arrival of the scattered light at the detector depends on the angle of propagation. Light 

scattered at larger angles (which corresponds to larger spatial frequencies) has to travel a 

longer distance to arrive at the detector. If the transmitted and scattered pulses do not 

temporally overlap on the detector they will not interfere, therefore limiting the effective 

numerical aperture. The maximum angle for which the scattered light will interfere with the 

transmitted plane wave is: 

z
cτθ −= 1cos , (2.26)     

where c is the speed of light and τ is the duration of the pulse. Assuming the duration of the 

pulse is much shorter than the travel time from the object to the detector (cτ << z), the 

angle becomes: 

pulsedNA
z
c

==
τθ 2sin . (2.27) 
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The effective numerical aperture will be the smaller of equations 2.25 and 2.27. For very 

short pulses (<100 femtoseconds) the coupling between temporal and spatial resolution can 

become a limiting factor, and it might require the use of optical magnification to achieve 

high resolution. The object can be magnified using a 4-F system (Fig. 2.9b) such that the 

object field is reproduced in the output plane with a magnification given by M = f2/f1. The 

advantage of using a 4-F system is that at the output of the system the reference will still be 

a plane wave. The effect of magnifying the object field is equivalent to reducing the 

curvature of the wavefront at the detector, thus reducing the difference in the arrival time 

between object and reference light fields. The maximum resolution that can be obtained for 

a given pulse duration is: 

Mc
z

MNApulsed
t

λ
τ

λδ
2

61.0161.0 == . (2.28) 

However, the requirement of having an object that is small relative to the recording area 

may impose a limit on the desired magnification. As a result, the object size, the 

magnification and the pulse duration all need to be considered in order to achieve the 

optimal design for a given application. We have found that for capturing the small 

filaments generated when the optical beam breaks up due to the nonlinear effects, a 

magnification of M = 12 provided good spatial resolution without compromising the 

accuracy of the reconstruction.  

For the experiments with single frame capture, the numerical aperture of the 4-F system is 

NA = 0.25, the magnification is M = 12, z = 300 mm, λ = 800 nm, τ = 150 femtoseconds 

and the size of the hologram is 10 mm x 10 mm. The resolution limit due to the pulse 

duration becomes δt = 2.3 µm, while the resolution limit due to the numerical aperture is δH 

= 2.4 µm. We are close to an optimum point where we are at the limit of both spatial and 

temporal resolution. Beyond this point, we would have to sacrifice temporal resolution to 

improve the spatial resolution, and vice versa. With this setup we have experimentally 

measured features as small as 4 µm (see Chapter 2). For the experimental parameters used 

for the multiple frame capture (described in the next section), recording distance z = 200 

mm and unit magnification (M = 1), the resolution limit imposed by the pulse duration is δt 

32



= 23 µm. For the same parameters, and a hologram size of 5 mm x 5 mm (only a fraction 

of the CCD sensor area is used for each hologram), the resolution limit due to the NA of the 

hologram is δH = 39 µm; therefore in this case the pulse duration is not the limiting factor. 

However, for τ < 52 femtoseconds, the pulse duration would become the limiting factor.  

In this chapter we have covered issues specific to on-axis recording; for a general 

discussion of the problem of image recovery in off-axis holography with ultrashort pulses 

see the discussion in Leith et al. [17].  

 

Figure 2.9. Resolution limit. (a) Coupling between temporal and spatial resolution. 

The time of arrival at the CCD sensor depends on the scattering angle. (b) The 

resolution can be improved by using a 4-F imaging system to magnify the object. 

 

Plane wave + 
scattered wave

tΔ

Scattering 
object

(a)

f1

Magnified 
image

Diffraction

CCD 
camera

f1 f2 f2

(b)

Plane wave + 
scattered wave

tΔ

Scattering 
object

(a)

Plane wave + 
scattered wave

tΔ

Scattering 
object

Plane wave + 
scattered wave

tΔ

Scattering 
object

(a)

f1

Magnified 
image

Diffraction

CCD 
camera

f1 f2 f2

(b)

f1

Magnified 
image

Diffraction

CCD 
camera

f1 f2 f2f1

Magnified 
image

Diffraction

CCD 
camera

f1 f2 f2

(b)

33



REFERENCES 

 
[1] D. Gabor, Nature 161, 777 (1948). 

[2] H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, et al., Journal of Physics-Condensed 

Matter 13, 10729 (2001). 

[3] Z. W. Liu, G. J. Steckman, and D. Psaltis, Applied Physics Letters 80, 731 (2002). 

[4] S. Schedin, G. Pedrini, H. J. Tiziani, et al., Applied Optics 40, 100 (2001). 

[5] R. Boyd, Nonlinear optics (Academic Press, San Diego, 2003). 

[6] G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 1995). 

[7] C. W. Dirk, W. C. Herndon, F. Cervanteslee, et al., Journal of the American Chemical 

Society 117, 2214 (1995). 

[8] A. Braun, G. Korn, X. Liu, et al., Optics Letters 20, 73 (1995). 

[9] A. Couairon, S. Tzortzakis, L. Berge, et al., Journal of the Optical Society of America 

B-Optical Physics 19, 1117 (2002). 

[10] A. Piekara, IEEE Journal of Quantum Electronics QE 2, 249 (1966). 

[11] J. Goodman, Fourier Optics (McGraw-Hill, New York, 1996). 

[12] G. Liu and P. D. Scott, Journal of the Optical Society of America A-Optics Image 

Science and Vision 4, 159 (1987). 

[13] M. H. Maleki and A. J. Devaney, Optical Engineering 33, 3243 (1994). 

[14] R. Gerchberg and W. O. Saxton, Optik 35, 237 (1972). 

34



[15] Y. Zhang, G. Pedrini, W. Osten, et al., Applied Optics 42, 6452 (2003). 

[16] V. V. Volkov and Y. M. Zhu, Optics Letters 28, 2156 (2003). 

[17] E. N. Leith, P. A. Lyon, and H. Chen, Journal of the Optical Society of America A-

Optics Image Science and Vision 8, 1014 (1991). 

 

 

35


