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Abstract

In the last half century, biologists have made great strides towards understanding the intricate

structure of the cell and the relation between this structure and cellular function. Single-molecule

techniques and advances in microscopy have also significantly changed the way in which biologists

ask and answer questions. As biological measurements and techniques have become increasingly

quantitative, they have allowed biologists to ask ever more quantitative questions: How do the

molecular machines, which comprise the cell function microscopically? Can we understand the

design principles that govern the structure and function of biological systems on a microscopic

scale? One outcome of this new generation of quantitative biological questions is the need to greet

quantitative experiments with models at a higher level of abstraction than the traditional cartoons

of molecular biology. In this thesis, I present two such quantitative models.

In the first half of this thesis, I present a physical model for mechanotransduction. Mechanosen-

stive channels are the central agents employed by cells to transduce mechanical stimuli. Our senses

of hearing and touch are both examples of this functional motif. The Mechanosensitive Channel

of Large conductance (MscL) is arguably the simplest and best studied mechanosensitive channel.

I present analytic estimates for the forces and free energy generated by bilayer deformation which

reveal a compelling and intuitive model for the function of the MscL channel, analogous to the

nucleation of a second phase. The competition between hydrophobic mismatch of the protein with

the surrounding membrane and tension results in a surprisingly rich story, which can provide both

a quantitative comparison to measurements of the opening tension for MscL when reconstituted in

bilayers of different thickness and qualitative insights into the function of the MscL channel and

other transmembrane proteins.

In the second half of this thesis, I examine models for the mechanics of DNA. DNA bending,

on length scales shorter than a persistence length, plays a central role in the translation of genetic

information from DNA to cellular function. Quantitative experimental studies of these biological

systems have led to a renewed interest in the short-contour-length polymer statistics relevant for

describing the conformational free energy of DNA bending induced by protein-DNA complexes.

The recent DNA cyclization studies of Cloutier and Widom have questioned the applicability of

the canonical semiflexible polymer theory, the wormlike chain model, to DNA bending on biological
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length scales. We describe a new class of polymer models that can resolve the proposed discrepancy

between short and long-contour-length bending. These models explain the spectacular success of

the wormlike chain model in describing many traditional DNA mechanics experiments, as well as

its failure to describe the short-contour-length mechanics of DNA. In particular, I present two toy

models for DNA bending which capture the short-contour-length behavior observed by Cloutier and

Widom. These toy models make quantitative predictions for chain statistics of DNA, observable

in DNA mechanics experiments and of central importance to the qualitative description of cellular

function, from chromosomal DNA packaging to transcription and gene regulation to viral packaging.
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Chapter 1

The mechanics of life: an
introduction

Open a biochemistry text book and you will be presented with intricate diagrams of the biochemical

reactions that drive the essential processes of life [1]. From cellular respiration to the transcription of

DNA, the cell is portrayed as biology’s chemical reactor, containing a rich mix of biological molecules.

Is the study of biology anything more than determining the concentrations of the components of the

cell and tabulating the rate constants for all reactions? The most compelling evidence against such

a simplistic picture is provided by the complex and organized structure of the cell itself.

Over the last fifty years, electron microscopy has revealed the intricate structure of cellular or-

ganelles and protein complexes on the nanometer length scale [2]. For example, it was discovered

that the mitochondrion, the power plant of the cell, was composed of an inner and outer membrane

[3, 4]. The inner compartment (the matrix) is interdigitated by intricately-shaped membrane com-

partments called cristae [3]. The structure, or shape, of these cristae appears to be actively regulated

by the cell and intimately related to function [5].

The interplay between structure and function, illustrated by the mitochondrion, is generic in

the cell. Even for individual proteins, function is also intimately linked to structure. Proteins are

inactive unless folded into the correct conformation [4] and their function is accompanied and, in

many cases, driven by conformational changes. But to discuss the function in terms of individual

proteins again oversimplifies the subtlety of biological processes and the importance of structure!

Proteins rarely work alone. Most processes in the cell involve complexes of ten or more proteins [6].

Often these processes also involve additional components: nucleic acids or the cell membrane. In

fact, I shall discuss examples of both in this thesis! These complexes perform highly organized and

coordinated activities. Although the existence of this coordination was long recognized, it is now

directly observable. Single-molecule techniques allow biologists to watch reactions unfold by directly

observing the conformational changes of individual protein and complexes. For instance, one can

observe the rotary motion of the enzyme F1F0 ATP synthase [7].
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These ordered movements, which would otherwise violate the second law of thermodynamics,

are possible only by the hydrolysis of ATP to ADP. At physiological concentrations, this reaction

is essentially irreversible and therefore these ATP driven processes typically proceed in only one

direction [8]. This repetitive, machine-like motif of function was beautifully illustrated by a recent

study of the mobility of the molecular motor Myosin V. These experiments directly observed the

processive, “hand-over-hand” motion of the motor along actin filaments [9].

The chemical reactor analogy of the cell is misleading precisely because it fails to account for

the importance of cellular structure and the structural organization and coordination of the vast

majority of cellular processes. In fact on the microscopic scale, the cell more closely resembles

a factory, whose interconnected assembly lines are ordered and organized [6]. The machines on

this assembly line are protein complexes, each consisting of many protein subunits, that function

processively due to the hydrolysis of ATP.

1.1 Mechanics and structure

In biology, function is determined by structure, but structure is determined by both chemistry and

mechanics. From the intricate and dynamic structures of organelles like the mitochondria [5] to

the conformational changes of proteins, mechanics and statistical mechanics describe the dynamic

structure of the cell. Many protein machines actively convert chemical energy to mechanical work to

remodel this structure. A short list of these processes might include DNA replication, transcription,

translation, organelle transport, cellular mobility and adhesion, and protein folding [10].

The role of mechanics is not limited to these active processes alone. For example, the mechanics

of DNA plays an integral role in gene regulation, the process by which the cell regulates the synthesis

of proteins. In a common regulatory motif, rare, thermally-driven configurations, in which DNA

is tightly bent, are captured by gene regulatory proteins to create DNA loops [11, 12]. Regulatory

DNA looping depends sensitively on the mechanics of DNA [13, 14, 15, 16]. Although this looping

motif can be described in the language of biochemistry, the looping equilibrium constant depends

both on chemistry (the affinity of DNA for the binding site) and on mechanics (the free energy

of bending DNA). The predominance of structure in cellular pathways and processes implies that

function is subject to the mechanics of the molecular machines that comprise the cell.

The work described in this thesis describes two examples of the rich interplay between biological

function, structure, and mechanics. The first half of this thesis presents a simple model for an ex-

ample of the biological phenomena of mechanotransduction, the cellular transduction of mechanical

stimuli. The second half of the thesis is a reexamination of DNA mechanics applied to biological

systems.

Although the atomic structures of the subjects of our study are known, we have not concerned
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ourselves with the atomic details of these processes. Instead, we have described these systems with

coarse-grained models that significantly reduce the number of degrees of freedom. The advantages of

such models over direct simulation are well known. All atom simulations, although much in vogue in

biology today, cannot even approach the time scales required to describe most biologically relevant

processes. A long simulation of a relatively modest biological system can probe the nanosecond

time regime, whereas the relevant time scale for many of the processes we shall describe here is

milliseconds and beyond. Furthermore, theoretical models offer a level of insight into processes that

is difficult to achieve via simulation alone. Good theoretical models give researchers more than a

list of atomic coordinates; they build a framework in which to understand experimental results and

make quantitative predictions. They build intuition for the function of biological processes.

On the other hand, the simple coarse-grained techniques employed in this thesis are limited in

scope and applicability. As we have discussed above, many of the most important processes in the

cell are complicated structurally. We have chosen to study processes that are inherently simple.

As the hydrogen atom has served as the proving ground for the ideas in quantum mechanics, we

hope that the detailed study of simple biological systems will result in insight into more complicated

processes which are not directly tractable by theoretical techniques.

1.2 Mechanotransduction and MscL

The cellular phenomena of the detection or transduction of mechanical stimuli is called mechan-

otransduction. Examples of mechanotransduction are as varied as our own senses of hearing, touch,

and pain, to blood pressure, cell volume, and turgor control [17]. Underlying all these phenomena

is a common and important functional motif, the mechanosensitive channel. Membrane channels

are an essential component of the cellular transport system across membranes. They are ion se-

lective pores in the membrane that undergo a gating transition between open and closed states.

Mechanosensitive channels are mechanically gated.

In Chapters 2-4, we investigate the gating mechanism of one of the best characterized mechanosen-

sitive channels: the Mechanosensitive Channel of Large conductance (MscL). The MscL channel is

believed to function as an osmo-regulator or emergency relief valve for membrane pressure in bac-

teria. In Chapters 3 and 4, we present analytic estimates for the forces and free energy generated

by membrane-protein interactions. We argue that these calculations reveal a compelling and intu-

itive model for MscL channel gating analogous to the nucleation of a second phase. This simple

model results in a surprisingly rich story, which can provide both a quantitative comparison to

measurements of opening tension for MscL when reconstituted in bilayers of different thickness and

qualitative insights into the function of the MscL channel and other transmembrane proteins.
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increasing
tension
increasing
tension

Figure 1.1: Channel gating and nucleation. The MscL channel is a protein pore in the membrane
with two conductance states: open and closed. When the channel is gated by membrane tension,
it undergoes a conformation change which nearly doubles the radius of the channel and opens an
internal pore. The membrane-protein interaction energy (GM) is an important part of the free
energy budget of the channel. GM consists of a line tension (f) induced by the deformation of the
membrane at its boundary with the channel, and a contribution from the membrane tension (α).
These two contributions lead to the classic nucleation free energy plotted as a function of channel
radius (R) above. At a critical radius (R = α/f), the channel becomes unstable to opening. This
remarkably simple model describes many features of channel function.

1.2.1 Road map for the MscL Chapters

Chapter 2 introduces the concepts of mechanotransduction and mechanosensation and briefly out-

lines the role of the mechanosensitive channel in these phenomena. This chapter also contains

a brief introduction to biological membranes, channels, and the experimental techniques used to

study mechanosensitive channels.

Chapter 3 is a short chapter that develops the analogy between the gating of mechanosensitive

channels and nucleation, culminating in the results shown in Fig. 1.2.1. This chapter summarizes

the most exciting results from an extensive framework developed for studying membrane-protein

interactions, which is present in detail in the following chapter. We show that this simple nucleation

model makes both qualitative and quantitative predictions that agree with experimental measure-

ments of MscL channel gating. Finally, we discuss the general implication of membrane-protein

interactions to channel gating.

Chapter 4 is a detailed development of the framework for studying membrane-protein interactions

that was applied in the previous chapter. This model is an effective elastic theory for membrane

mechanics, built upon the work of many other authors. To investigate mechanotransduction and

the function of the MscL channel, it was necessary to improve and extend the existing models. We

make extensive estimates of the various contributions to the membrane-protein interaction energy

and apply these results to describing the gating of the MscL channel as a function of the membrane
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characteristics. The gating model provides a systematic method for understanding a new series of

MscL experiments that study the significance of membrane-protein interactions experimentally. The

membrane-protein-interaction framework developed in this chapter can also be applied to studies of

the function of other transmembrane proteins.

1.3 The high-curvature mechanics of DNA

Simply stated, DNA mechanics is of central importance to both biology and physics. From a

biological perspective, DNA bending is ubiquitous in the cellular processes involved in the translation

of genetic information from DNA to cellular function. DNA bending figures prominently in processes

from chromosomal DNA packaging, to transcription, and gene regulation, to viral packaging. From

a biophysical perspective, DNA bending is one of the few problems which is tractable from both

a theoretical and experimental perspective. One of the crowning achievements of biophysics is the

description of the statistical mechanics of double stranded DNA by the Wormlike Chain model [18],

and the agreement between this theory and experimental measurements of the extension of single

DNA molecules under an external force [19].

Despite these notable theoretical and experimental successes, recent DNA cyclization studies have

revealed that for bending on the short length scales actually relevant for most biological processes, the

accepted theories of DNA mechanics may fail dramatically. Cloutier and Widom [20] have reported

that there is at least a three-order-of-magnitude (103) discrepancy between the predictions of theory

and experimental measurements! (See Fig. 1.3.) These measurements suggest that highly-curved

DNA configurations may be orders-of-magnitude more probable than predicted by the accepted

theory of DNA statistics and have the potential to completely change our understanding of DNA

bending in a biological setting.

In Chapters 5-8, we reexamine the accepted theoretical model for DNA statistical mechanics:

the Wormlike Chain model. This model is equivalent to a theory of fluctuating linear-elastic rods.

We demonstrate that the success of the Wormlike Chain model in describing many DNA mechanics

experiments does not rule out the possibility that the WLC model fails dramatically to account for

the short-contour-length cyclization of DNA sequences as proposed by the experiments of Cloutier

and Widom [20]. Thermal fluctuations disguise the underlying mechanics of the polymer. The

universal long-contour-length chain statistics of stiff polymers is predicted by the WLC model. (See

Fig. 1.3.)

1.3.1 Road map for the DNA mechanics chapters

Chapter 5 is an introduction to DNA mechanics. We first outline a number of biological processes

in which DNA bending plays an integral role. We then introduce the accepted model of DNA
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Figure 1.2: Does the Wormlike Chain model fail? The cyclization J factor measured by Cloutier
and Widom [20] (red) is compared to theoretical prediction of the Wormlike Chain model (blue) in
the left-hand panel. The J factor, defined in chapter 5, is the propensity of DNA to spontaneously
cyclize. The measurements of Cloutier and Widom posit that the propensity of 94 base pair DNA
sequences to cyclize is more than three-orders-of-magnitude higher than predicted by the WLC
model! For long-contour-length sequences, the WLC model fits experimental measurements. In
Chapter 8, we show that the WLC model predicts the generic long-contour-length behavior of
stiff polymers. For short-contour-length chains, the statistics are model dependent. The length
scale dependence of polymer theories is illustrated schematically in the right-hand panel. Although
the chain statistics of DNA and the WLC model may be dramatically different for short-contour-
length chains, as the length scales probed by experiment grow, the chain statistics of DNA becomes
indistinguishable from the WLC model. At sufficiently long contour length, both models converge
with the predictions of the Gaussian chain model (green).
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mechanics, the Wormlike Chain model. Finally, we introduce the concepts of effective concentration

and the J factor and explain the DNA cyclization assay that figures prominently in our discussions

of DNA mechanics.

In Chapter 6, we introduce an exact analytic theory of the chain statistics of linear-elastic poly-

mers that undergo a kinking transition at high curvature. We show that the resulting theory, the

kinkable Wormlike Chain model, reproduces both the low-curvature linear-elastic behavior which

is already well described by the Wormlike Chain model, as well as the high-curvature softening

observed in the experiments of Cloutier and Widom [20]. Finally, we discuss possible microscopic

realizations of kink formation for DNA bending.

The kinkable Wormlike Chain model is the simplest example of a class of generalized theories we

shall introduce in chapter 8. Chapter 7 outlines the limitations of the kinkable Wormlike Chain model

described in the previous section. Although high-curvature conformations of DNA are observed,

DNA kinking does not seem to be generic at high curvature as implied by the kinkable Wormlike

Chain model. We then present some atomic force microscopy (AFM) measurements of the bending

energy of DNA, which motivate a less dramatic elastic breakdown. Finally, we briefly outline several

recent conflicting experimental studies.

In Chapter 8, we present a near-exact theory of a class of generalized polymer models. The

linear-elastic bending energy density is replaced by a bending energy density which is an arbitrary

function of curvature. This class of generalized theories includes the kinkable Wormlike Chain model

presented in chapter 6. We show that the Wormlike Chain model describes the generic long-length-

scale behavior of stiff polymers, implying that there are many polymer models with dramatically

different short-length-scale chain statistics, that are identical at long-contour-length. We discuss this

behavior as an application of the renormalization group. In particular, we show that generalized

theories are nearly indistinguishable from the Wormlike Chain model in force-extension and long-

contour-length cyclization measurements. At sufficiently short contour lengths, the Wormlike Chain

model fails to describe the chain statistics of the general models. Short-contour-length cyclization

experiments, like those performed by Cloutier and Widom [20], may access this regime. Finally we

discuss the significance of these results in the context of the current, muddled experimental picture.
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Chapter 2

Mechanotransduction and MscL

2.1 Introduction to mechanotransduction

Even the smallest, simplest bacteria must sense mechanical stimuli to survive! The cellular phenom-

ena of the detection or transduction of mechanical stimuli is called mechanotransduction. Examples

of mechanotransduction are as varied as our own senses of hearing, touch, and pain, to blood pres-

sure, cell volume, and turgor control [1]. Underlying all these phenomena is a common and important

functional motif: the mechanosensitive channel. In the next two chapters, I will present a simple,

analytic theory that describes the function of one of the most extensively studied mechanosensitive

channels: the Mechanosensitve channel of Large Conductance (MscL).

In this chapter, I will first briefly describe how mechanosensitve channels give rise to the phenom-

ena of mechanotransduction. In Sect. 2.1.1, I begin by reminding the reader about the functional

role of membranes and channels in the cell. Sect. 2.1.2 explains the role of mechanosensitive chan-

nels in the phenomena of mechanosensation in multicellular organisms. Our senses of touch and

hearing are examples of mechanosensation. Sect. 2.2 introduces an example of mechanotransduction

in prokaryotic cells: the osmo-regulating Mechanosensitve channel of Large Conductance (MscL).

The MscL channel is thought to function as an emergency relief valve for bacteria [2]. If the pres-

sure across the bacterial membrane becomes dangerously high, the MscL channel opens and relieves

the pressure. In chapters 3 and 4, the MscL channel will serve as a case study for simple analytic

models of mechanosensitive channels. Sect. 2.2.1 explains why osmo-regulating channels like MscL

are controlled by membrane tension rather than the pressure difference over the membrane. Sect. 2.3

briefly describes how membrane channels are studied experimentally and what are the experimental

observables. Sect. 2.5 introduces membrane-protein interactions and shows experimental evidence

for the importance of these interactions to channel function. Sect. 2.5.1 introduces an analogy be-

tween nucleation and channel gating that will be developed in the next two chapters. We close this

chapter with a road map of the next two chapters.
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Figure 2.1: Biological membranes. Above is a schematic drawing of the membrane structure. The
membrane is composed of a lipid bilayer punctured by many transmembrane proteins. These proteins
perform many essential functions; in particular there are carrier and channel proteins which promote
the transport of molecules across the membrane. (Figure from Ref. [4]).

2.1.1 Biological membranes

The cell membrane essentially forms the barrier between the cell (cytoplasm) and the outside world

(periplasm) or the intercellular space in multicellular organisms. In eukaryotic cells, the cellular

organelles are also membrane bound. Although this biological membrane is sometimes referred to as

a lipid bilayer membrane, this is a misnomer since biological membranes have a very large number

of constituent proteins in addition to lipid molecules. Indeed, the ratio by mass of protein to lipid

in some prokaryotic membranes can be four to one! In our own cells, the mass ratio of proteins to

lipids is typically one to two [3]. Fig. 2.1.1 shows a schematic illustration of a biological membrane

with constituent proteins.

In the test tube, lipid bilayer membranes can self-assemble in polar solutions due to the hydropho-

bic interaction of the tail groups of the lipid molecules, which aggregate into bilayers, exposing their

polar head groups.1 (See Fig. 4.3.3.) Some constituent proteins can also be reconstituted into the

artificial membrane.

The membrane provides a barrier for large and polar molecules. The impermeability of membrane

to charged ions is of particular importance biologically since membrane potentials, the voltage drop

over the membrane, have many uses in biology including energy storage and signal transduction.

The cell must constantly exchange molecules across the membrane barrier. Although many of

these processes are active, requiring energy, many transport processes are diffusively driven through

membrane channels. These channels are simply membrane proteins that form pores in the membrane.

Although transport through the channel is passive, they are typically ion-selective and have open

and closed conformations [4, 6].

The conformational change of a channel protein between conductance states is called gating.

1 Other non-lamellar phases are possible, but these are typically not of great biological interest [5].
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lipid: lipid bilayer:

hydrophobic
hydrocarbon tail

hydrophilic
polar head group

Figure 2.2: Lipids molecules. Lipid molecules are composed of a polar head group and hydrophobic
hydrocarbon tails. The lipid molecules can self-assemble into bilayers in polar solutions like water.
The tails aggregate to expel the polar solvent.

Channel gating can be triggered in a number of ways. The most common triggers are ligand binding,

membrane voltage, and mechanical gating.

2.1.2 Mechanosensation and mechanosensitive channels

Mechanosensation derives from mechanosensitive channels, which are typically force-gated. It is

worth noting that such a picture is very natural biologically. The force is transduced by coupling

it to the gating of a mechanosensitive ion channel [7]. When the channel opens, it depolarizes the

membrane by permitting a large number of ions to flow across the membrane. This electro-chemical

signal can then be propagated and amplified by voltage sensitive channels [4, 7, 6].

In many eukaryotic force transducers, the mechanosensitive channel is coupled to both an extra-

cellular anchor and the cytoskeleton of the cell [7]. The cytoskeleton is internal protein scaffolding

which gives many eukaryotic cells their structure [4, 8, 9]. Fig. 2.1.2 shows a schematic drawing of

these linkages.

One of the important biological model systems for mechanosensation is C. elegans, a small worm.

C. elegans is a convenient model system since it has a small, sequenced genome (100 Mbp), it con-

sists of less than one thousand cells, and has a three day life cycle [10]. A genetic screen, testing

the response of the worms to the touch of an eyelash, determined a set of mutants with defective

mechanosensation (mec mutants) [7]. Most of these gene products are believed to constitute the

mechanotransduction complex. For instance, the protein responsible for the extracellular anchor,

linkers, and mechanosensitive channel have all been identified and match the general outlined dis-

cussed above [7]. Although the story in many higher organisms is less complete, it is worth noting

that the mechanosensitive channel responsible for our own sense of hearing has recently been iden-

tified [11].
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Figure 2.3: Schematic mechanism for mechanosensation. Mechanosensitive channels drive the phe-
nomena of mechanosensation. These channel are force gated. The channel is coupled mechanically
to both the cytoskeleton of the cell as well as an extracellular anchor. Mechanical stimuli deflect
the extracellular anchor with respect to the cytoskeleton [7]. Once the mechanosensitive channel
opens, ions pass through the channel generating an electro chemical signal, which is then amplified
and transmitted by other voltage-gated channels [4, 6]. (Figure after Ref. [7].)

2.2 Mechanosensation in prokaryotic cells

Despite the comparative simplicity of the mechanoreceptor of C. elegans, it is still far too complicated

to assemble in vitro. In particular, it is necessary to assemble the many different components

after reconstituting the mechanosensitive channel in the membrane. Furthermore, although many

of the protein components of the mechanoreceptor have been identified, there is comparatively

little structural information about them [7]. Quantitative studies of the microscopic mechanism of

mechanosensation have therefore focussed on still more simple systems, prokaryotic cells.

Although prokaryotic cells are significantly simpler than even single-celled eukaryotes, they still

exhibit mechanosensitive behavior. One of the best studied of the mechanosensitive channels is the

MscL channel in E. coli. Homologues of this channel are found in many other prokaryotes [2, 1].

MscL is an acronym for MechanoSensitive Channel of Large conductance (2-3 nS) [2].

The MscL channel is believed to function as an osmo-regulator, an emergency relief valve for

membrane pressure [2]. If the E. coli bacterium experiences a sudden osmotic down shock, for

instance if it is suddenly moved from growth media to water, the osmotic pressure over the membrane

dramatically increases. As the internal pressure increases, so does the membrane tension. If the

bacterium is unable to relieve the membrane tension, the membrane will lyse or burst. (This lysis

tension is on order 10 dyne/cm [12].) E. coli has several lines of defense against such a scenario,

but MscL, with its large 2 to 3 nS conductance can relieve this pressure more quickly than several
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Figure 2.4: Bacteria are protected from osmotic shock by several mechonsensitive channels. The
diagram above summarizes the differences between channels: channel topology, channel current, and
open-state probability as a function of membrane tension. MscL, the MechanoSensitive Channel
of Large conductance, has the largest open-channel conductance (3.5 nS), but is activated at the
highest tension, very close to the critical lysis tension. MscS, the MechanoSenstive Channel of
Small conductance, has a 1 nS conductance but is activated at a lower tension than MscL. (MscK
is similar to MscS.) Note that the current trace shows the response of two channels. MscM, the
MechanoSensitive Channel of Mini conductance, has a conductance of just 100-200 nS, but is gated
at the lowest tension. Again the trace shows the response of several channels. (Figure from Ref. [13].)

other mechanosensitive proteins present in E. coli but with smaller open channel conductance [2].

(See Fig. 2.2.)

2.2.1 MscL is tension gated

How does MscL sense the building membrane pressure? There are at least two possibilities2: the

channel gating can either couple to the pressure difference itself or the resulting membrane tension.

A simple calculation reveals that the channel is most likely tension gated.

For the long-length-scale bending that gives rise to gross shape of the E. coli bacterium, the

forces due to membrane bending elasticity are irrelevant and force balance is achieved by Laplace’s

2One might imagine that MscL could also couple to structural components of the bacterium, like the bacterial cell
wall, and be force gated. But experiments conclusively show that MscL functions in the absence of the bacterial cell
wall [2].
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Figure 2.5: Does MscL protein open like the valve of a pressure cooker? Above are two schematic
pictures for the function of MscL. Is the channel gated by pressure as depicted on the left or by the
membrane tension as depicted on the right. In the text we explain that unlike a pressure cooker
valve, MscL is opened by membrane tension.

law of soap bubbles relating the tension and pressure,

P =
2α
R
, (2.1)

where we denote the tension α, the pressure P , and R is the radius of curvature of the bacterial

membrane, which is on order a micron. The free energy associated with conformational changes of

the channel with respect to the pressure are of order

∆GP = `3P, (2.2)

where ` is the length scale of the channel, which is on order nanometers. The free energy change

due to tension are of order

∆Gα = `2α. (2.3)

The ratio of the free energy due to tension to that due to pressure is [1]

∆Gα

∆GP
=
R

2`
∼ 1000. (2.4)

Since the radius of curvature is so large compared with the size of the channel, free energies associated

with membrane area changes give rise to free energy orders-of-magnitude larger than conformational

changes driven directly by pressure.

2.3 Patch clamp experiments

Remarkably, electrophysiologists have long been able to directly observe the behavior of single ion

channels [6]. Indeed, despite the great interest currently swirling around single-molecule biophysics,

electrophysiologists have been doing single-molecule experiments on ion channels for decades. These
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Figure 2.6: Electrophysiology: the patch clamp. Above is a schematic diagram of the patch clamp
experiment used to measure channel currents. A membrane patch is created from a cell or vesicle
by positioning a micro-pipette next to the membrane and applying suction on the micro-pipette.
The glass pipette forms an extremely tight seal with the membrane allowing current to pass through
the membrane channels only. The electrical current, generated by the passage of ions through the
channel, is then measured. For MscL, the current is measured as a function of the applied pressure
difference over the membrane. The radius of curvature of the membrane is observable. The Laplace
law relates the radius of curvature and pressure difference to the membrane tension. (Figure from
Ref. [4].)

experiments exploit an experimental technique called patch clamp recording [6]. In this technique,

a micro-pipette is pressed against the cell (or vesicle) membrane to form a tight seal. (See Fig. 2.3.)

This seal is to a good approximation impermeable [6]. The electric current through the membrane

patch, corresponding to the passage of ions through the channels, can then be measured as a function

of the voltage drop over the membrane.

To study mechanosensitive channels like MscL, the ion current is measured as a function of the

pressure difference over the membrane. The radius of curvature of the membrane patch is observable

under a microscope. The tension can then be computed using the Laplace law:

α = 1
2PR, (2.5)

where P is the pressure difference, α is the tension, and R is the radius of curvature of the membrane

patch.

A patch clamp recording for a single MscL channel is shown in Fig. 7.3.1. In this experiment,
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Figure 2.7: The patch clamp recording from a single MscL channel. The channel gating of the MscL
channel is stochastic, fluctuating between states. Panel A shows low time resolution data where the
time scale bar is 800 ms. Panel B shows an enlarged interval where the time scale bar is 80 ms.
Panels C and D show smaller intervals still where the time scale bar is respectively 15 and 20 ms.
To analyze the data, it is binned into states based on conductance. Histograms of the data appear
to implicate a five state system, but the channel stays predominantly in the open (O) and closed
states (C). In this recording, the membrane tension is 12.3 dyn/cm and the probability of the open
state is 0.67. (Figure from Ref. [14].)

MscL has been reconstituted into a PC lipid bilayer at low enough MscL concentration that single

channels are observed in a typical membrane patch [14]. One important feature to note from the

current trace is that the channel inhabits states of well defined conductance. Typically these states

can be picked out from a histogram of the channel current. (States correspond to peaks.) Even

if the channel were described by two, very well defined conductance states, these peaks would be

smeared out by the practical resolution limits of patch clamp experiments. Even in an idealized

experiment, there are still fluctuations in the current due to the electrical resistance of the channel

(Johnson noise). The fluctuation-dissipation theorem predicts the dependence of Johnson noise on

the resistance and bandwidth of the experiment.

For the most part the channel is either in a closed state with negligible conductance or an open

state with a fixed conductance. Three additional short-lived sub-states have also been identified

with intermediate conductance [14]. We shall assume that these well defined conductance states

correspond to well defined channel conformations.

The second important feature of the patch recording is that the channel behavior is stochastic; it

fluctuates between conductance states as one would expect for a molecular scale channel undergoing



18

8 9 10 11 12 13 14

Tension ® (dyn/cm)

{6

{4

{2

0

2

3

¢
G

O
C

(k
T

)

Figure 2.8: The free energy difference between the open and closed states as a function of the
membrane tension. The linear dependence on tension suggests that the area difference between the
two states is constant. See the discussion in Chapter 4. Data from Ref. [14].

thermally-induced transitions. Clearly the language of statistical mechanics will be important to

describing the function of the channel. In order to interpret the channel recordings quantitatively, the

records are idealized by assigning a channel state as a function of time based upon the instantaneous

conductance. (See Fig. 7.3.1.) It is typically assumed that the transitions are Markovian (without

memory) and are described by a set of first-order rate equations. Channels appear to be well

described by this model. The rate constants are then fit to the experimental data. For MscL, the

typical transition rates vary from hertz to tens of kilohertz [14].

The relative free energies of the states can be computed from their respective probabilities using

the Boltzmann distribution:

∆Gij = −kT log
Pi

Pj
, (2.6)

where Pi is the probability of state i and ∆Gij is the free energy difference between states i and j.

The free energy difference between the open and closed states as a function of membrane tension is

plotted in Fig. 2.3.

We shall discuss this free energy in great detail in the next two chapters. For the moment,

let us look at the general behavior of the channel. The opening tension (the tension at which the

open and closed probabilities are equal) is 11.8 dynes/cm [14]. Experiments show that the lysis

tension for membranes is on order 10 dynes/cm [12]. (This opening tension will depend on the

properties of the lipid bilayer.) This high gating tension is one of the motivations for the biological

explanation of MscL as an emergency pressure relief valve. Note that the channel is also very

sensitive to the pressure. For each dyne/cm drop in the membrane tension, the ratio of the open

to the closed probabilities decreases by almost a factor of four. For an emergency relief valve, this

tension sensitivity is incredibly important. When the MscL channel opens, the pore is on order

thirty angstrom in diameter, implying that many small molecules can escape from the bacteria.

Clearly the MscL channel must open only in emergencies.

The most striking feature of the free energy difference between the open and closed state is that
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it depends linearly on the membrane tension. (See Fig. 2.3.) This is exactly the tension dependence

one would näıvely expect for a two state system if each state had a fixed area under external tension.

The free energy difference between states would then be

∆GOC = ∆G0 − α∆AOC , (2.7)

where ∆G0 is constant with respect to the tension and ∆AOC is the area difference between states

the open and closed states. Clearly high tension stabilizes the open state with its larger radius. The

sensitivity of the channel, the slope of the free energy with respect to tension, is the area difference

between states ∆AOC = 6.5 nm2. This measurement of the area change is large for a channel

protein.3 This large area change is a consequence of opening a 3 nm pore in channel core and must

correspond to a very significant conformational change in the protein.

2.4 The MscL crystal structure

The crystal structures of the MscL and MscS channels were recently solved by Doug Rees’ group

at Caltech [17, 18].4 The MscL channel structure shows that the channel is a homopentamer with

two transmembrane alpha helices per subunit. (The structure is shown in Fig. 2.4.) The crystal

structure appears to be that of the closed conformation of the channel since the inner pore is tightly

constricted by the transmembrane alpha helices. (This is not obvious from Fig. 2.4 since the side

groups of the amino acids are not drawn in the cartoon.)

The crystal structure of the MscL channel provides many valuable insights into its function

[19, 20, 16, 15, 13]. For instance, the structure of the closed state has provided the basis for building

atomic scale models of the open-state structure aided by computational techniques [20, 16]. These

open-state models can then be tested using a number of different techniques: cross-linking [20, 15],

electron paramagnetic resonance spectroscopy, and site-directed spin labeling [16]. These techniques

have lead to very detailed, atomic-level models of channel gating.

2.5 The importance of membrane-protein interactions

A common perception in the structural biology community is that protein conformation is everything.

Rob and I had likewise initially been very interested in the protein structure of MscL. In fact, it

was the crystal structure of the closed state that interested us in the channel in the first place. But,

as we began estimating the free energies associated with the interaction of the protein with the

3 In fact, it is thought that this measurement significantly underestimates the area change base on structural
arguments [15, 16].

4This was no mean feat as the crystallization of membrane proteins is particularly difficult since the presence of
the membrane is structurally important.
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Figure 2.9: The MscL channel crystal structure. The channel is a homopentamer with two trans-
membrane helices per subunit. In the figure above, each subunit, although identical, is colored
differently to distinguish the individual protein subunits. The transmembrane helices are labeled
TM1 and TM2. There is a third cytoplasmic alpha helix which protrudes into the cell interior. This
five helix complex is thought to function as a filter [13]. Figure from Ref. [17].

membrane, we were struck by how large these interaction energies were for the MscL channel; they

were on order the gating free energy. The importance of these interactions was soon demonstrated

experimentally by Perozo and coworkers [21] who showed that the gating tension depends sensitively

on the membrane characteristics. Fig. 4.4.2 shows the channel opening probability as a function

of the applied pressure for the MscL protein reconstituted into several different lipid membranes.

The thickness of the lipid membrane is roughly proportional to the number of carbons in the tail

group (acyl chain length) [22]. Perozo and coworkers demonstrated that the gating tension rises

dramatically with the thickness of the bilayer.

2.5.1 An analogy to nucleation

Motivated by the sensitivity of the channel function to the membrane characteristics demonstrated

by the experiments of Perozo and coworkers [21] and by our own estimates of the membrane-protein

interaction energy, we proposed a very simple model for the gating of mechanosensitive channels.

This model harnessed the membrane-protein interaction energy as the spring that opposes tension

and keeps the channel from opening spontaneously.

High sensitivity to membrane tension implies that the area change between the open and closed

states (∆A) is large. This large expansion during channel gating implies a significant restructuring

of the membrane, since the interface with the protein has also significantly grown with the areal

expansion of the channel. As we mentioned above, since the membrane must typically be deformed

to accommodate the channel, these membrane-protein interactions act to stabilize the closed state of

the channel. This interface energy is proportional to the length of the membrane-protein interface.
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Figure 2.10: The MscL gating tension depends on the thickness of the lipid bilayer. In the plot above,
the open-state probability of the channel is plotted as a function of the applied pressure difference
over the bilayer for three different bilayers. The bilayer lipids are phosphatidylcholine with acyl
chain lengths of 16, 18, and 20. It is assumed that the radius of curvature of the membrane patch,
though unobserved, is constant and identical in each of these experiments. Under these assumptions
the tension is proportional to the pressure difference over the membrane. This data therefore shows
a dramatic rise in the gating tension (the tension at which PO = 0.5) as a function of the bilayer
thickness (acyl chain length). Figure from Ref. [21].

Energy contributions with this scale are generically called line tensions. To summarize, the channel

experiences a competition between the tensile forces from membrane tension and compressive forces

due to the line-tension induced by membrane-protein interaction.

An analogous competition occurs in the canonical nucleation problem. (When a small region of

the nucleating phase forms, for example a precipitate in solution, there is a competition between a

surface tension, which in turn scales as the area of the interface with solution (R2) that favors the

decay of the precipitate, and a bulk term which scales like the volume (R3) that favors the growth

of the precipitate.) Due to the difference in the radial dependence of these two competing energetic

contributions, there is an energetic barrier to nucleation. Below a critical radius, the interface energy

dominates and the radius of precipitate is unstable to decay. But once the precipitate reaches this

critical radius, the bulk term dominates and the precipitate is unstable to further growth.

A similar competition exists for channel gating. The energetic contribution from the line tension

scales as the interface size (R) and the contribution due to the tension scales as the area (R2) of

the channel. In the next chapter we will show that this nucleation picture can both describe many

qualitative features of the channel function, for instance the short lifetime of the sub-states, as well

as making quantitative predictions about the size of the opening tension and its dependence on the

properties of the lipid bilayer, in agreement with recent experiments [21]. These calculations high-

light the importance of membrane-protein interaction in describing the function of transmembrane

proteins and in particular mechanosensitive proteins.
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2.6 Summary of MscL Chapters

The next two chapters investigate the analogy between nucleation and channel gating, the membrane-

protein interactions, and the function of the MscL protein. Chapter 3 is a short paper that focuses on

results directly applied to the MscL protein. This chapter summarizes the most exciting results from

an extensive framework developed for studying membrane-protein interactions. This framework, an

effective elastic theory for membrane mechanics, builds upon the work of many other authors.

To investigate mechanotransduction and the function of the MscL protein, we improved upon the

existing models and summarized these general results applied to the MscL protein in a second paper

which is reproduced in chapter 4. This Chapter is quite long and contains many detailed calculations,

but also the analysis of some new experimental data.
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Chapter 3

Analytic models for
mechanotransduction: gating a
mechanosensitive channel

This chapter is a reproduction of Ref. [1].

Analytic estimates for the forces and free energy generated by bilayer deformation reveal a

compelling and intuitive model for MscL channel gating analogous to the nucleation of a second

phase. We argue that the competition between hydrophobic mismatch and tension results in a

surprisingly rich story, which can provide both a quantitative comparison to measurements of opening

tension for MscL when reconstituted in bilayers of different thickness and qualitative insights into

the function of the MscL channel and other transmembrane proteins.

3.1 Introduction

The mechanosensitive channel (MscL) is a compelling example of the interaction between a protein

and the surrounding bilayer membrane. The channel is gated mechanically by applied tension and

is believed to function as an emergency relief valve in bacteria [2]. MscL is a member of a growing

class of proteins that have been determined to be mechanosensitive [3], [4]. The dependence of

the conductance on applied tension has been studied extensively in patch clamp experiments [5],

[6], [7]. In terms of the observed conductance, these studies have revealed that the channel is very

nearly a two state system. MscL spends the vast majority of its life in either a closed state (C)

or an open state (O) characterized by a discrete conductance. When the bilayer tension is small,

the protein is exclusively in the closed configuration. As the tension grows, the open state becomes

ever more prevalent, until it dominates at high tension. The simplest structural interpretation of

this conductance data is to assume that each discrete conductance corresponds to a well defined

channel conformation. This assumption seems to be compatible with the conductance data. Patch

clamp experiments have also revealed that there are at least three additional discrete, intermediate
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conductance levels [5] suggesting three additional short lived substates (S1-S3). Rees and coworkers

[8] have solved the structure for one conformation that appears to be the open state [7], [8] using

X-ray crystallography. MscL has also been trapped in the open state [9],[7]. Betanzos et al. [9] have

probed the open-state structure using disulfide crosslinking while Perozo et al. [7] have used electron

paramagnetic resonance spectroscopy (EPR) and site-directed spin labeling (SDSL) to deduce its

geometry. Sukharev et al. [10] have also proposed an open state conformation based on structural

considerations.

The conformational landscape of the MscL channel is extremely complex, depending on a huge

number of microscopic degrees of freedom which are analytically intractable. Even from the stand-

point of numerical calculations, this number is still very large [11]. As an alternative to a detailed

microscopic picture of MscL, we consider a simplified free energy function where we divide the free

energy of the system into two contributions, namely,

G = GP +GM, (3.1)

where GP is the free energy associated with the conformation of the protein and GM is the defor-

mation free energy from the bulk of the bilayer [12]. In general, these two terms are coupled. The

conformation of the protein depends on the forces applied by the bilayer. The bilayer deformation

is induced by the external geometry of the protein. We denote this external geometry with a state

vector, X, which captures the radius of the channel as well as its orientation relative to the surround-

ing bilayer as described in more detail below. We calculate the induced bilayer deformation energy,

GM(X), by minimizing the free energy of the bilayer and solving the resulting boundary value prob-

lem using an analytic model developed for the study of bilayer mechanics [13] and protein-bilayer

interactions [12], [14], [15], [16]. We then apply asymptotic approximations to the exact solutions

of this model for cylindrically symmetric inclusions, permitting all of the results to be expressed,

estimated, and understood with simple scaling relations. The advantage of this model is that it

permits us to characterize the protein-bilayer system in a way that is at once analytically tractable

and predictive. There is a wealth of useful, physical intuition to be gleaned from this model relating

to both the function of MscL and more generally that of mechanosensitive transmembrane proteins.

In a forthcoming paper, we will show that the mechanics of the bilayer must play an integral role in

mechanotransduction and channel function. Specifically, we will present detailed analytic estimates

of the free energy generated by bilayer deformation induced by the channel and show that these free

energies are of the same order as the free energy differences measured by Sukharev et al. [5]. These

analytic calculations reveal a compelling and intuitive model for the gating of the MscL channel

which is the subject of this current paper. The competition between hydrophobic mismatch and

applied tension, in the presence of radial constraints, generates a bistable system that is implicitly a
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Figure 3.1: The bilayer-inclusion model. The geometry of the inclusion is described by three pa-
rameters: the radius, R, the hydrophobic thickness, W , and the radial mid-plane slope, H ′. The
hydrophobic mismatch, 2U , is the difference between the hydrophobic protein thickness, W , and
the bilayer equilibrium thickness, 2a. We assume the surfaces of the bilayer are locally normal to
the interface of the inclusion, as depicted above, implying that the mid-plane slope is related to the
interface angle: H ′ = tan θ.

mechanosensitive channel. Furthermore, this simple model provides a picture, which is both qualita-

tively and quantitatively consonant with the measured dependence of the free energy on acyl chain

length as observed by Perozo et al. [6]. In addition, these results may also explain the stabilization

of the open state by spontaneous-curvature-inducing lysophospholipids observed by Perozo et al.

[6], although more experiments are required to check the consistency of this proposal.

3.2 The energy landscape of the bilayer

In the calculations considered here, the geometry of the protein, characterized by the conformational

state vector X, is described by three geometrical parameters X = (R,W,H ′), where R is the radius

of the channel, W is the hydrophobic thickness, and H ′ is the mid-plane slope. See Fig. 4.2.1 for

details. Although we have parameterized the conformation space of the protein with these three

parameters, in this paper, we will focus on the radial dependence alone, claiming that even in

this reduced description, the model provides a rich variety of predictions that are compatible with

previous observation and suggest new experiments. The radial dependence of the bilayer deformation

energy is particularly important for MscL since the radius undergoes a very large change between

the open and closed states [10]. The bilayer deformation energy1 can be written explicitly in terms

of the channel radius as

GM = G0 + f · 2πR− α · πR2, (3.2)

where G0 and f do not explicitly depend on R and α is the applied tension which triggers channel

gating. G0 is a radially-independent contribution to the deformation energy which is a function of

the other geometrical parameters of the protein. Its importance in gating the channel is most likely

1This energy is derived in the Appendix.
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secondary since it is independent of R and it will be ignored in the remainder of the discussion.

The dependence of bilayer deformation energy on applied tension can be explained intuitively [4].

The free energy contribution for a small change in the channel area due to the applied tension can

be written −αdA, which is the two dimensional analogue of the −PdV term for a gas in three

dimensions. At high enough applied tension, the state with the largest inclusion area will have the

lowest free energy.

The line tension, f , contributes an energy proportional to the circumference and is a natural

consequence of the interface between two different materials. The radial dependence of line tension

is linear since the size of this interface is proportional to the circumference. In what follows, we

will discuss the two dominant contributions to this line tension: thickness deformation [12], [14],

[15] and spontaneous curvature [16]. Though we note that we have treated a wide variety of other

contributions to be discussed elsewhere. The thickness deformation free energy is induced by the

mismatch between the the equilibrium thickness of the bilayer and the hydrophobic thickness of the

protein. The importance of this hydrophobic mismatch in the function of transmembrane proteins

has already been established [17]. The bilayer deforms locally to reduce the mismatch with the

protein as shown in Fig. 4.2.1. Symbolically, the thickness deformation energy is [12],

GU = fU · 2πR = 1
2KU

2 · 2πR, (3.3)

where K = 2×10−2 kT Å
−3

is an effective elastic modulus defined in the on-line supporting material

and is roughly independent of acyl chain length and U is half the hydrophobic mismatch as defined

in Fig. 4.2.1. Naturally the energetic penalty for this deformation is proportional to the mismatch

squared since the minimum energy state corresponds to zero mismatch. The area of that part of

the bilayer which is deformed is roughly equal to the circumference of the channel times an elastic

decay length. As a result, the contribution of thickness deformation to the total free energy budget

scales with the radial dimension of the channel. We also note that the thickness deformation free

energy is always positive.

In contrast, the free energy induced by spontaneous curvature can be either negative or positive.

Physically, this free energy comes from locally relieving or increasing the curvature stress generated

by lipids or surfactants that induce spontaneous curvature [16], [18], [19]. Again the radial depen-

dence of this free energy will be linear since the effect is localized around the interface. Since the

leaflets of the bilayer can be doped independently [6], the spontaneous curvatures of the top and

bottom leaflets, C±, can be different. It is convenient to work in terms of the composite spontaneous

curvature of the bilayer, C ≡ 1
2 (C+−C−). The contribution to the deformation energy arising from



29

spontaneous curvature is given by [16]

GC = fC · 2πR = KBCH
′ · 2πR, (3.4)

where H ′ is the mid-plane slope and KB = 20(a/20 Å)3 kT , is the bending modulus, which roughly

scales as the third power of the bilayer thickness. We will discuss these results in more detail else-

where. Notice that if C and H ′ have opposite signs, the deformation energy and the corresponding

line tension, fC , will be negative. We note that the elastic theory of membrane deformations associ-

ated with proteins like MscL permit other terms (such as mid-plane deformation, for example), that

can be treated within the same framework and which give rise to the same radial dependence as

that described here. However, for the purpose of characterizing the energetics of MscL, these other

terms are less important than the two considered here.

Typically, in the absence of large spontaneous curvature, the line tension, f , will be dominated

by the mismatch and will be positive. A potential of the form described by equation 3.2 is depicted

schematically in Fig. 3.2. In this figure, we have implied that there are steric constraints for the range

of radii accessible to the protein. Assuming that there is a lower bound on the radius of the inclusion

is very natural. It can be understood as the radius below which the residues begin to overlap. This

steric constraint will generate a hard wall in the protein conformation energy, forbidding lower

radii. Similar, but slightly more elaborate arguments can made for an upper bound. The bilayer

deformation energy generates a barrier between small radius and large radius states. The location

of the peak of this barrier is the turning point R∗ ≡ f/α. At small tension, the turning point is

very large and is irrelevant since it occurs at a radius not attainable by the channel due to the steric

constraints, but as the tension increases the position of the turning point decreases. This behavior is

reminiscent of the competition between surface tension and energy density for nucleation processes

which give rise to a similar barrier (e.g., [20]).

Although the conformational landscape of the MscL channel is certainly very complicated, there

is an intriguing possibility that the channel harnesses the elastic properties of the bilayer, which

quite naturally provide the properties we desire in a mechanosensitive channel: a stable closed state

at low tension and a stable open state at high tension. In effect, we will treat the bilayer deformation

energy as an external potential with respect to the conformational energy landscape of the protein.

The physical effects of the radial dependence of the bilayer deformation energy on the inclusion

conformation can be recast in a more intuitive form by appealing to the induced tension, which

accounts not only for the applied far field tension, but also for induced tension terms due to bilayer

deformation. The applied tension is not the whole story! The generalized forces are obtained by

differentiating the bilayer deformation energy with respect to bilayer excursions. The net tension
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Figure 3.2: The bilayer deformation energy landscape. The bilayer deformation energy is plotted
as a function of the radius for different values of applied tension. The solid curves represent the
bilayer deformation energy with a positive line tension, f , for various different tensions (0 < α1 <
α2 < α3 < α4). The competition between interface energy and applied tension naturally gives rise
to a bistable potential when the radial domain is limited by steric constraints. The gray regions
represent radii inaccessible to the channel due to steric constraints. These constraints are briefly
motivated in Sect. 3.2. If the line tension is negative, depicted by the dotted curve, the potential is
never bistable.

induced by the bilayer on the inclusion interface is

αΣ = α− f

R
, (3.5)

where we have denoted the net tension αΣ since we have already used α to denote the applied tension.

For radii smaller than the turning point, R∗, the bilayer deformation energy is an increasing function

of radius and therefore the net tension is negative and acts to compress the channel. For radii larger

than that at the turning point, the bilayer deformation energy is a decreasing function of radius and

the net tension is positive and acts to expand the channel. The combination of these constraints

and the bilayer deformation energy lead to a bistable system where the closed and open states

correspond to the constraint-induced radial minimum and maximum, respectively. Recall that the

net tension on the closed state will be compressive as long as its radius is smaller than that at the

turning point, namely, RC < R∗. This inequality defines the range of applied tension over which

the closed state is stabilized by the bilayer deformation energy. The net tension on the open state

will be expansive as long as its radius is greater than that at the turning point: RO > R∗. This

inequality defines the range of applied tension over which the open state is stabilized by the bilayer

deformation energy. There is an intermediate range of tensions for which both states are stabilized

by the bilayer, f/RO < α < f/RC . The bilayer deformation energy naturally destabilizes the open

state for applied tension below this range while stabilizing the closed state for applied tensions up to
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the limit of this range. Both effects help to prevent the channel from leaking at low applied tension.

This bistability is precisely the desirable behavior for a mechanosensitive channel designed to relieve

internal pressure and yet surprisingly little is required from the protein conformational landscape,

GP , except for steric constraints which arise very naturally. In Fig. 3.2, we have depicted the way

in which MscL mimics this mechanical analogue by using the sum of a schematic protein energy and

the bilayer deformation energy to form energy minima corresponding to the open and closed states.

Our discussion of the role of the bilayer enables us to make some rather general observations about

the nature of the substates. In order to generate a substate, we assume that there is more than one

gating transition in the protein conformational energy. One gating transition would correspond to a

closed to open transition. An additional gating transition allows three conductance states. We will

assume that these transitions are themselves bistable in nature since the conductance data would

seem to imply the lifetimes of the transition states are very short compared to the conductance

states [5]. In other words, the conformational gating transition occurs near a local maximum in

the conformational free energy. If we add two such transitions to GP , we generate a substate

of intermediate radius between these two transition state radii. A schematic example of this is

illustrated in Fig. 3.2. Sukharev et al. [5] have shown that all the substates are short lived and

have estimated the areas of each state based on the tension dependence of their free energies.2

Specifically, they have shown that the radii of the substates lie between the open and closed state

radii. If the bilayer deformation dominates the free energy of the states, the ephemeral nature of

the substates is a natural consequence of their intermediate radii. The compressive tension due to

the mismatch stabilizes the state of lowest radius at low applied tension. At high applied tension

the bilayer stabilizes the state with highest radius. All the states with intermediate radii are never

stabilized by the bilayer and are therefore short lived. Our deceptively simple mismatch model quite

naturally leads to short lived substates at intermediate radii.

3.3 Results

The patch clamp experiments of Perozo et al. [6] go beyond the earlier work of Sukharev et al.

[5] by providing experimental values for the free energy difference between the open and closed

states for bilayers of several thicknesses. These results can be compared with our predictions. In

order to apply our model, we must determine the geometrical parameters of the state vector X for

the open and closed states and in particular the open and closed radii. The radius of the closed

state is known from X-ray crystallography [8]: RC ∼ 23 Å. Structural studies [10] and EPR and

SDSL [7] experiments have suggested an open state radius of roughly RO ∼ 35 Å. In order to

estimate the line tension and free energy generated by hydrophobic mismatch, we must determine

2There is now evidence for additional substates [21].
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Figure 3.3: The total free energy. The total free energy, G, of the protein and bilayer are plotted
schematically as a function of channel radius. The bilayer deformation energy, GM, is represented by
the dotted curve. A schematic protein conformation energy is represented by the dashed curve. Their
sum gives the total free energy G. The protein energy has been chosen to contain a single substate,
S. There is a conformational energy barrier corresponding to changing the gate conformation of the
channel. These transitions occur at RCS and RSO. GP also contains steep barriers corresponding
to steric constraints. The radii of the conductance states are defined by the free energy minima of
G.

the hydrophobic thickness W . (We ignore the difference in hydrophobic thickness between the open

and closed states.) In principle, one might have thought this could be deduced from the atomic-level

structure of MscL, but in practice, real structures are complicated, often lacking a clear transition

from hydrophobic to hydrophilic residues on the interface. However, this width may be deduced from

the EPR and SDSL data of Perozo et al. [6]. EPR and SDSL experiments measure inter-subunit

proximity and spin-label mobility, respectively [6]. Compressive tension in the bilayer suppresses the

fluctuations of the protein, increasing the subunit proximity and reducing the spin label mobility.

In the experiments of Perozo et al. [6], the applied tension is low implying that the net tension is

dominated by the line tension, induced by thickness deformation (αΣ ∼ −KU2/2R), in the absence

of spontaneous curvature. This tension is compressive and proportional to the mismatch squared.

Therefore, when the mismatch is zero, the tension reaches a minimum, implying that mobility and

subunit separation should reach a maximum. The EPR and SDSL data of Perozo et al. [6] may

turn over for PC12 bilayers, implying that the mismatch is zero, which would imply in turn that

W ∼ 2an=12. But due to the quadratic dependence on U , the slope in the vicinity of the turnover is

small. Since PC lipids with acyl chain length shorter than n = 10 do not form stable bilayers [6], it is

difficult to extensively check the quadratic dependence on U . The predicted turnover would be more

pronounced for PC bilayers with n < 10. We shall see that this deduced hydrophobic mismatch is

compatible with the patch clamp measurements of Perozo et al. [6]. However, the interpretation of

this EPR data becomes more complicated when the thickness of the channel changes between the
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Figure 3.4: Free energy difference between open and closed states vs lipid acyl chain length. The
experimental data of Perozo et al. [6] for the free energy difference between the open and closed
states at zero tension, ∆G0, is plotted with black circles and error bars. The solid curve represents
the theoretical values for the bilayer deformation energy generated by a simple thickness deformation
model at zero tension, ∆G0,M. The dotted curve represents the translated ∆G0,M for an engineered
MscL channel with a hydrophobic thickness matching a PC14 bilayer.

open and the closed state as discussed in section 3.4.

Perozo et al. [6] have measured ∆G0, the free energy difference between the open and closed state

at zero tension3 for three acyl chain lengths. Using the value we have deduced for W , we can now

calculate the free energy difference between the open and closed states due to bilayer deformation at

zero tension, ∆G0,M, which is given by the line tension contribution alone as ∆G0,M = f2π∆R→

fU2π∆R, where ∆R is the difference between the open and closed radii. The theoretical result,

∆G0,M, is plotted with the experimental measurements of ∆G0 in Fig. 3.3. The agreement between

experiment and theory is embarrassingly good given the simple fashion in which we have chosen the

geometrical parameters and that we have neglected the protein conformational energy, GP , entirely.

There is a very important point to be made about these results. Perozo et al. [6] have measured

three data points and our model is quadratic, implying that we could have chosen the parameters of

our model to fit the data points perfectly since any three points lie on a parabola, but our parameters

have in fact been deduced independently rather than fit, which is why this correspondence with the

data is remarkable. This model corresponds to a channel where the free energy difference between

the open and closed states is dominated by the bilayer deformation rather than protein conformation.

Our model implies that ∆G0 for PC10, PC12, and PC14 should be very small. Unfortunately, these

bilayers have proved too weak for patch-clamp measurements of ∆G0 [6]. Certainly none of these

bilayers trap the channel in the open state [6].

3The free energy measured by Perozo et al. [6] is equivalent to the free energy at zero tension modulo several
assumptions [4].
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The opening tension is defined as the tension at which the open and closed state probabilities

are equal or, analogously, the tension at which the free energies of the open and closed states are

equal. The opening tension is

α1/2 =
f

R
+

∆GP

∆A
, (3.6)

where R ≡ 1
2 (RC + RO) is the mean radius, ∆GP is the difference in the open and closed state

protein conformation energy, and ∆A is the difference in open and closed state area. When the

bilayer deformation energy dominates, the opening tension is determined by the first term alone.

Changing the sensitivity of the channel is straightforward from this perspective. Changes in the

length of the hydrophobic region of the protein can increase or decrease the opening tension of the

channel. For example, MscL channels might be engineered with an expanded hydrophobic region

which matches PC14 bilayers. Our mismatch based theory would predict that the free energy versus

acyl chain length curve would simply be translated to higher n so that the minimum ∆G0,M is

realized for a PC14 bilayer. This shift should be measurable, reducing ∆G0 for PC16, PC18, and

PC20 bilayers. The reduction in mismatch may also allow MscL to be reconstituted into PC22

bilayers, allowing an additional data point. The proposed shift should also be measurable in EPR

and SDSL measurements of residue proximity and mobility. The maximum mobility and separation

should now be centered around n = 14, perhaps permitting a clear measurement of the rise in

induced tension for a PC10 bilayer predicted by the quadratic dependence of the line tension on the

mismatch.

Perozo et al. [6] have proposed that asymmetric bilayer stresses play a central role in MscL gat-

ing. They have proposed this model based on patch clamp, EPR, and SDSL experiments showing

that spontaneous curvature can induce MscL channel opening. Specifically, they find that MscL

reconstituted into PC vesicles with high enough concentrations of asymmetrically incorporated LPC

stabilizes the open state of the channel, while MscL reconstituted into PC vesicles with symmetri-

cally incorporated LPC, does not stabilize the open state. Unlike Keller et al. [22], Perozo et al.

have measured neither the spontaneous curvature for the mixed bilayer nor the free energy difference

between open and closed states as a function of LPC concentration. In the absence of these quan-

titative experimental results, it is difficult to make concrete comparisons between our model and

the experimental data. For large spontaneous curvature [22] but a relatively modest complementary

mid-plane slope, the free energy difference between the two states due to spontaneous curvature is

∆GC ∼ 2π(RO −RC)KBCH
′ = −16

(
20 Å
C−1

)(
H ′

−0.2

)
kT, (3.7)

an energy typically large enough to stabilize the open state. In section 3.2, we have made some rather

general arguments about the shape of the bilayer deformation energy landscape. We now return

to this picture briefly to discuss the consequences of spontaneous curvature. In our discussion, we
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assumed that the line tension, f , was typically positive, but we remarked that this need not be the

case in the presence of large spontaneous curvature. If f is negative, as depicted by the dotted curve

in Fig. 3.2, the only state stabilized by the bilayer is the open state, which very naturally gives

rise to the open state stabilization observed by Perozo et al. [6]. Alternatively, this result can be

understood from the predicted opening tension in equation 3.6. When ∆G0 is bilayer deformation

dominated, a negative f implies that the opening tension is itself negative! A compressive force is

required to stabilize the closed state. This argument gives a tantalizingly simple explanation for the

open state stabilization but in the absence of measured values for the spontaneous curvature induced

by LPC, we can only conclude that spontaneous curvature could stabilize the open states for rather

generic values of the parameters. An experimental consistency check of these results is fairly simple.

Perozo et al. have incorporated LPC asymmetrically. The same experiment might be repeated

with HII phase inducing lipids which can also be used to generate spontaneous curvature but of

the opposite sign. For the DOPC/DOPE system of Keller et al. [22], the spontaneous curvature is

known and tunable as a function of concentration. Our results predict that ∆G0 should be linear

in C [16] and compatible with equation 4.3.3.

In the argument above, we focused on the radial dependence of bilayer deformation free energy,

and fixed the other components of the state vector, X. In principle, there is a potentially important

piece of radial dependence we are missing. The internal conformation may effectively couple the

radius to the other parameters in the state vector X, adding additional implicit radial dependence.

For example, the thickness of the inclusion, W , is almost certainly a function of radius. It is also

very natural to couple the mid-plane slope to the radius. We have ignored these dependences in

order to develop an intuitive and simple one dimensional picture with as few undetermined constants

and couplings as possible. Provided that the bilayer deformation energy change is dominated by

the radial change, this simplified model is a useful tool for understanding the bilayer-inclusion

interaction. More elaborate models might easily be built from the general analytic framework we

have constructed. This framework will be described in a forthcoming paper.

3.4 Discussion

We have argued that the bilayer deformation energy is harnessed by MscL to govern channel gating.

Indeed, we have shown that a model which attributes the entire free energy difference between the

open and closed states to the bilayer deformation energy is compatible with the experimental data.

These results are somewhat surprising since it has been shown experimentally that the mutation

of a single residue in the vicinity of the channel gate, can significantly effect channel gating [23],

[24]. The protein conformational energy cannot be neglected in general. In fact, we have assumed

that the protein conformational energy is large enough to constrain the channel geometry since we
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have assumed it is the bilayer that deforms rather than the protein. In principle, the closed state

could have been stabilized by protein conformation alone, rather than mismatch, but exploiting

bilayer deformation provides a robust mechanism for mechanotransduction, a design principle which

functions in spite of the enormous number of nearly degenerate microstates endemic to proteins.

Even for proteins as simple as myoglobin, Frauenfelder et al. [25] have shown that the macroscopic

conformation corresponds to an enormous number of structurally distinct microstates. These ideas

have already been exploited for channel proteins. Goychuk and Hänggi [26] have used this degenerate

landscape to derive the empirical rate law for voltage gated channels. In light of these results, it

is very natural to suppose that the protein conformational energy of the MscL protein gives rise

to a vast number of nearly degenerate states as well. The bilayer deformation energy naturally

breaks this degeneracy and forms a mechanotransducing channel. The ensemble of microstates

we observe as the closed states is stabilized at low applied tension by the line tension, while the

ensemble of microstates we observe as the open state is stabilized by high applied tension. The

importance of bilayer deformation in mechanotransduction may help to explain why there are no

obvious sequence motifs associated with mechanosensitivity [27] since a mismatch requirement does

not imply sequence specificity. Harnessing bilayer elasticity does have one noted disadvantage.

The gating of a channel will be affected by the membrane environment that surrounds it. This is

precisely what the experiments of Perozo et al. [6] have shown. In realistic cell membranes there is

an enormous diversity of proteins and lipids which would imply that the free energy, and therefore

opening tension, in these membranes would be heterogeneous. Sukharev and co workers [21] have

evidence for exactly this variability for MscL in giant spheroplasts.

The reader may be concerned that we are attempting to invalidate the structural models of

Betanzos et al. [9], Sukharev et al. [10], Perozo et al. [7], and other investigators of the MscL

channel. This could not be further from the truth. Indeed much of the input to our model comes

from these investigations. Our aim is rather to model the physical principles [6] that have been

proposed with a simple, self-consistent model for channel membrane interaction. An objection to

our model as proposed above is that we fail to account for the change in the hydrophobic thickness

from closed to open-state. Indeed, it is difficult to envision a consistent atomic-scale model where the

thickness of the channel is not reduced as the radius is increased. Furthermore, data from Betanzos

et al. [9], Perozo et al. [7], and new data from Powl et al. [28] suggest that this added complexity

is probably more experimentally accurate. Although these more detailed considerations complicate

the story theoretically, in a forthcoming paper we will show that they do not significantly change

the energetic results of the model. The failure of our model to predict the same zero mismatch

lipid length for the closed-state as Powl et al. [28] is a consequence of the choice of one channel

thickness for both states. The price of the clarity and simplicity of our coarse-grained model is an

insensitivity to the degrees of freedom we ignore. For the sake of brevity in this short paper, we
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have focused on the physical mechanism we believe to be most essential to understanding the MscL

channel mechanics.

The correspondence between our simple theoretical model for the gating of the MscL channel and

experiment is at least strongly suggestive that this mechanism is exploited by the MscL channel.

Our model can also naturally explain the stabilization of the open state by LPC [6] as well as

the ephemeral nature of the substates [5]. The tractable nature and simplicity of the model allow

extensive analytic calculations to be made, which have in turn lead to numerous experimental

predictions, discussed in section 3.3. Specifically we have predicted (i) a shift in the curve relating

the free energy difference and acyl chain length when the hydrophobic thickness of the channel is

altered and (ii) the dependence of the free energy on spontaneous curvature and, in particular, on

the concentration of spontaneous curvature-inducing molecules.

We have developed an extensive framework for studying bilayer-inclusion interactions in the MscL

system. The model we have discussed here is the simplest implementation of these results and a

more thorough description of the model will appear in a future paper. There are several very natural

extensions to the current work. For example, we have focused here on the radial dependence only,

but, as we have briefly alluded to in section 3.3, there are two additional geometric parameters which

may also play important roles in the function of the MscL channel. More detailed measurements of

the rates and free energies of the various states will no doubt prove our simplified model incomplete

and provide motivation and insight into a more detailed model of channel gating. The simplicity

and generality of the competition between applied tension and a line tension, regardless of its

source, suggests that it may be a quite general phenomena for mechanotransduction. We hope

to apply similar ideas to other mechanosensitive systems. More generally, we are also intrigued

by the possibility of finding analogous bilayer deformation driven conformational changes for other

transmembrane proteins that do not exhibit mechanosensitive function, perhaps illuminating a more

general qualitative design principle for the function of transmembrane proteins.
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3.6 Appendix: Lipids

When discussing the lipids used by other authors, we have used the same naming convention they

employed: 10:0 dicaproyl-phosphatidylcholine (PC10), 12:0 dilauroyl-phosphatidylcholine (PC12),

14:1 dimirstoyl-phosphatidylcholine (PC14), 16:1 dipalmitoleoyl-phosphatidylcholine (PC16), 18:1

dioleoyl-phosphatidylcholine (PC18,DOPC), 20:1 Eicossenoyl-phosphatidylcholine (PC20), lysophos-

pholipid (LPL), lysophosphatidylcholine (LPC), dioleoyl-phosphatidylethanolamine (DOPE).
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3.7 Supporting Methods

3.7.1 Lipids

We performed calculations based on elastic moduli measured by Rawicz et al. [29]. To extrapolate

the effects of changes in the acyl chain length, we use the moduli for a typical 18:1 phosopholipid

(1,2-dioleoyl-sn-glycero-3-phosphocholine) and the scaling relations listed below,

2a = 40.7 Å ∝ a1

KA = 0.576 kT Å
−2 ∝ a1

KB = 21 kT ∝ a3

K = 2.1× 10−3 kT Å
−2 ∝ a0,

(3.8)

where 2a is the equilibrium thickness of the bilayer, KA is the area expansion modulus, KB is the

bending modulus, and

K ≡
√

2
(
K3

AKB

a6

)1/4

, (3.9)

is the composite elastic modulus appearing in the line tension, fU. The proportionality to bilayer

thickness is approximate only and is deduced from treating the bilayer as a thin shell. For more

elaborate models and scaling arguments, see Rawicz et al. [29]. By fitting the Peak-to-Peak head

group thickness [29] for saturated and monounsaturated lipids, we find that the relation between

bilayer thickness and acyl chain length is roughly

2a = 1.3n+ 17 Å. (3.10)

Again, more elaborate models and scaling arguments are found in Rawicz et al. [29].

3.7.2 Line Tension

In terms of h(r), the bilayer mid-plane position, and u(r), half the difference of the bilayer thickness

and the equilibrium thickness, the mean curvature contributions to the free-energy density are [13]

GB = KB
2 [
(
∇2h

)2
+
(
∇2u

)2︸ ︷︷ ︸
M

−C+∇2[h+ u]− C−∇2[u− h]︸ ︷︷ ︸
∂M

], (3.11)

where the variation of the M terms contribute to the action in the bulk (bilayer), the ∂M terms

are total derivatives and can be evaluated at the interface, the constant terms are dropped, KB is

the bending modulus for the bilayer, and C+ and C− are the spontaneous curvatures of the upper
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and lower leaflets, respectively. The tension contribution to the free energy density is [15]

Gα = α
2 (∇h)2︸ ︷︷ ︸

M

, (3.12)

where the thickness deformation term can be ignored. The interaction free energy density between

the two layers is [12]

GI =
KA

2a2
u2︸ ︷︷ ︸

M

, (3.13)

where KA is the area expansion modulus and a is the equilibrium thickness of a leaflet.

The equilibrium equations that result from the minimization of u(r) and h(r) are

0 =
δG[u, h]
δu

=
[
KB∇4 +

KA

a2

]
u(r), (3.14)

0 =
δG[u, h]
δh

=
[
KB∇4 − α∇2

]
h(r). (3.15)

In the asymptotic regime, large R, we can ignore the curvature of the interface and replace the

Laplacians with d2/dr2. For u(r), the radially decreasing solutions are exponentials with complex

wave numbers

β± = −
(

KA

a2KB

)1/4

e±iπ/4. (3.16)

For h(r), there is only a single radially decreasing solution with decay length,

βh =
√

α

KB
. (3.17)

At the interface, the bilayer deforms to match the hydrophobic thickness of the protein,

u(R) = U = 1
2W − a. (3.18)

If the inclusion interface is relatively flat and the top and bottom surfaces of the bilayer are normal

to the inclusion interface as depicted in Fig. 1, the radial slope of u(r) is zero at the interface,

u′(R) = 0, (3.19)

although this too may be used as a geometrical parameter [16]. For h(r), we set the radial slope at

the interface,

h′(R) = H ′. (3.20)
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At infinity, the bilayer is unperturbed, implying

u(∞) = 0, (3.21)

u′(∞) = 0, (3.22)

h(∞) = 0. (3.23)

The equilibrium solutions can be found by matching the boundary conditions above.

The line tension is

f =
∫ ∞

R

dr (GB + Gα + GI) . (3.24)

Integrating this equation by parts twice yields a bulk term proportional to the equilibrium equations,

which is zero because the equations are satisfied, and surface terms. The total line tension is,

f = 1
2KU

2︸ ︷︷ ︸
fU

+ 1
2

√
KBαH

′2︸ ︷︷ ︸
fH

+KBCH
′︸ ︷︷ ︸

fC

, (3.25)

where K has been defined in Eq. 2, C ≡ 1
2 (C+ − C−) is the composite spontaneous curvature, and

fH is the midplane deformation contribution to the line tension, which is typically small enough to

ignore.
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Chapter 4

The membrane-protein interactions
of mechanosensitive channels

This chapter is a reproduction of Wiggins and Phillips, 2005.

In this paper, we examine the mechanical role of the lipid bilayer in ion channel conformation

and function with specific reference to the case of the mechanosensitive channel of large conductance

(MscL). In a recent paper (Wiggins and Phillips, 2004), we argued that mechanotransduction very

naturally arises from lipid-protein interactions by invoking a simple analytic model of the MscL

channel and the surrounding lipid bilayer. In this paper, we focus on improving and expanding

this analytic framework for studying lipid-protein interactions, with special attention to MscL. Our

goal is to generate simple scaling relations that can be used to provide qualitative understanding

of the role of membrane mechanics in protein function and to quantitatively interpret experimental

results. For the MscL channel, we find that the free energies induced by lipid-protein interaction are

of the same order as the free energy differences between conductance states measured by Sukharev

et al. (1999). We therefore conclude that the mechanics of the bilayer plays an essential role in

determining the conformation and function of the channel. Finally, we compare the predictions of

our model to experimental results from the recent investigations of the MscL channel by Perozo et

al. (2002a,b), Powl et al. (2003), Yoshimura et al. (2004), and others and suggest a suite of new

experiments.

4.1 Introduction

The mechanosensitive channel of large conductance (MscL) is a compelling example of the interaction

of a membrane protein and the surrounding lipid bilayer membrane. MscL is gated mechanically

(Blount and Moe, 1999) and belongs to a growing class of proteins that have been determined

to be mechanosensitive (Gillespie and Walker, 2001; Hamill and Martinac, 2001). In a recent

short paper (Wiggins and Phillips, 2004), we have argued that the mechanics of the bilayer is an
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important partner in the phenomena of mechanotransduction and channel function. In particular,

we considered a simplified model where only the radius of the channel changes in transitions between

the open and closed state. In this paper, we present our free energy calculations in more generality

and detail. Specifically, we have calculated the free energy due to the bilayer deformation as a

result of the presence of a membrane protein using an analytic model developed for the study of

bilayer mechanics (Canham, 1970; Helfrich, 1973; Evans, 1974). Many of the theoretical techniques

exploited here have already been used with success in describing the role of the bilayer in the

mechanics of the Gramicidin channel (e.g., Huang, 1986). In this paper, we have applied asymptotic

approximations to the exact solutions of this model, permitting many of the important results to

be expressed, estimated, and understood with simple scaling relations. These scaling relations are

then applied to estimate the relative importance of each and every term in the bilayer free energy

budget. We find that the bilayer deformation free energy can be of the same order as the free

energy differences between conformational states of the MscL channel as measured by Sukharev

et al. (1999). These results strongly suggest that bilayer deformation plays an important role in

determining the protein conformation, and therefore function, of transmembrane proteins in general,

and MscL in particular. Although we have explicitly estimated the size of the bilayer deformation

energy exclusively for the geometry of MscL, the results can easily be re-evaluated and reinterpreted

in the context of other transmembrane proteins and mechanosensitive channels, in particular MscS

(Bass, 2002) Alamethicin (Opsahl and Webb, 1994), etc. We emphasize that our goal in this current

work is not to attempt a quantitative understanding of all of the degrees of freedom of the channel

and bilayer, but rather to build a tractable model for the role of bilayer mechanics in the function of

the MscL channel, while developing the model in more detail than in our previous paper (Wiggins

and Phillips, 2004).

The MscL channel is gated by membrane tension and has been studied extensively in patch

clamp experiments (Sukharev et al., 1999; Perozo et al., 2002a). While several substates have been

identified (Sukharev et al., 1999), the channel typically resides in one of two primary conductance

states. At low tension the channel is almost exclusively closed (C). As the tension is increased the

open state (O) becomes ever more prevalent, until it dominates at high tension. Rees and coworkers

have solved the structure for one conformation using X-ray crystallography which appears to be the

closed state (Chan et al., 1998). The open state has been modeled by a number of groups (Sukharev

et al., 2001; Betanzos et al., 2002; Perozo et al., 2002b).

The outline of the paper is as follows. In section 2, we briefly discuss the bilayer model, then

present a table of results which shows the relative importance of different free energy penalties for

bilayer deformation and then define the generalized forces we use to discuss the effects of bilayer

deformation induced by protein conformational change. In section 3, we estimate the sizes of the

bilayer deformation energy and forces for MscL, give a brief physical discussion of mechanisms that



46

give rise to the bilayer deformation energy, and discuss the scaling of these bilayer deformation

energies. In section 4, we compare our predictions for a two state MscL model to experimental

measurements made by Perozo et al. (2002a,b), Powl et al. (2003), Yoshimura et al. (2004), and

others. In the Appendix, we provide a unit conversion table, bilayer parameters and full names,

detailed derivations, and a discussion of the approximations used.

4.2 Free Energy of the Bilayer-Inclusion System

We begin by considering the free energy of the system as a whole: protein and bilayer. We assume

that the system is in thermal equilibrium and define the free energy differences between states in

the standard way

∆G(i) ≡ −kT log
(
Pi

PC

)
, (4.1)

where Pi is the probability of state i and the free energy differences are defined with respect to the

closed state. We can divide each of these free energies into two parts

G = GP +GM, (4.2)

where GP is the free energy associated with the protein’s conformation and GM is the free energy

induced in the bilayer by the protein inclusion and includes both a deformation free energy from

the bulk of the bilayer and an interaction energy at the interface between the inclusion and bilayer.

For the sake of brevity we will usually refer to both of these bilayer-related contributions to the

free energy as the bilayer deformation energy. While a complete understanding of channel gating

and function must encompass knowledge of both components of the free energy, GP and GM,

our analysis in this paper centers almost entirely on the bilayer deformation energy, GM. Several

groups have used molecular dynamics (MD) and related techniques to study GP or G in its entirety

(Gullingsrud et al., 2001; Gullingsrud and Schulten, 2002; Bilston and Mylvaganam, 2002; Elmore

and Dougherty, 2003; Gullingsrud and Schulten, 2003) but as is often the case for biological systems,

these studies have been handicapped by the size of the MscL system. It is too complex for direct

simulation on biologically relevant time scales. From an experimental standpoint, Sukharev et al.

have measured the free energy differences between different states (Sukharev et al., 1999) in MscL

and have found differences of order 10 kT . These results reveal the energy scale associated with MscL

gating and provide a reference by which different contributions to the free energy will be judged for

their importance.

Our first goal in what follows is to persuade the reader that GM is large enough to be of interest.

That is, since it is clear that there are several distinct contributions to the overall free energy budget,

we illustrate that the contribution due to the inclusion-induced bilayer deformation is comparable
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to the measured free energy differences between states. Since these contributions to GM are of the

same order of magnitude as ∆G, we conclude that the effects of bilayer deformation are potentially

interesting. Perozo et al. (2002a) have already answered this question experimentally, demonstrating

that bilayer characteristics such as lipid acyl chain length significantly effect the free energy.

4.2.1 The Calculation of the Bilayer Free Energy

The elastic deformation of the bilayer surrounding the channel is approximated with a model devel-

oped by Canham (1970), Helfrich (1973), and Evans (1974). Huang (1986) has applied this model to

calculate the deformation energies induced by inclusions. These calculations have been elaborated

upon by others, notably by Andersen and coworkers (Nielson et al., 1998; Lundbæk et al., 1996;

Lundbæk and Andersen, 1994; Goulian et al., 1998) and Dan and coworkers (Dan et al., 1994; Dan

et al., 1993; Dan and Safran, 1995; Dan and Safran, 1998). Specifically, Goulian et al. (1998) have

studied a similar model including applied tension. The bilayer deformation energy in this model is

given by

GM = G+ +G− +GI, (4.3)

where

G± =
∫
M
d2σ

(
1
4KB [tr S±(~x)∓ C±]2 +

KG

2
detS±(~x) + α±

)
, (4.4)

and

GI =
∫
M
d2σ 1

2KA

(
u
a

)2
. (4.5)

G± are the free energies due to the curvature and the tension in the top and bottom surfaces of the

bilayer and GI is the interaction free energy between these two surfaces. Locally, the curvature of the

top (or bottom) surface of the bilayer is described by the shape operator, S±(~x), a rank two tensor.

The trace of this tensor is twice the mean curvature and its determinant is the Gaussian curvature.

The energetic cost for increasing the mean curvature of the top (or bottom) surface of the bilayer

is the bending modulus, KB/2. The energetic cost for increasing the Gaussian curvature of the top

(or bottom) surface is the Gaussian bending modulus, KG/2. We have chosen this normalization so

that the effective moduli for the bilayer as a whole are KB and KG.

The addition of certain surfactants and non-bilayer lipids results in the lowest energy conforma-

tion of a single layer of lipids being curved (Israelachvili, 1991; Gruner, 1989). This spontaneous

curvature is introduced into the model through non-zero values of C±, the spontaneous curvatures

of the upper and lower layers of the bilayer, respectively. We define the composite and the mean
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spontaneous curvatures for the bilayer as

C ≡ 1
2 (C+ − C−), (4.6)

C ≡ 1
2 (C+ + C−), (4.7)

respectively. The energetic penalty associated with changes in the area of the top and bottom

surfaces of the bilayer are the tensions, α±, respectively. We assume that the tensions in the two

layers are equal since, on long time scales, the lipids can switch between the two leaflets in order

to equalize the tension. The total tension, α = 2α±, is an externally tunable parameter. (See

Appendix 4.7.5 for further discussion.) 2u is the difference between the local thickness of the bilayer

and the equilibrium thickness 2a. The energetic cost for changing the thickness of the bilayer is

the compression-expansion modulus, KA. For further discussion of the model, the reader is invited

to view the extensive discussions in the literature (Helfrich, 1973; Huang, 1986; Dan et al., 1994;

Goulian et al. 1998; etc.)

The presence of the channel will perturb the bilayer locally. To calculate the perturbation to the

free energy due to the channel, we will assume that the radius of curvature corresponding to the

vesicle or cell in which the inclusion is embedded is very large in comparison to the length scale of

the inclusion itself and that the perturbation due to the bilayer inclusion is small enough to allow

the equations to be linearized. In this approximation scheme, the bilayer deformation energy is

GM =
∫
M′

d2xG, (4.8)

where G is the expanded effective free energy density (written out in its expanded form in the

Appendix) and M′ is a Cartesian plane minus a circular inclusion of radius R. We can safely

integrate out to infinity since the perturbation to the free energy density is localized around the

inclusion. To construct the effective free energy density we describe the out-of-plane displacements

of the upper and lower surfaces of the bilayer with the functions h+(~x) and h−(~x), respectively, on

M′, as shown in Fig. 4.2.1. It is more transparent to work with the linear combinations of these

two functions (Fournier, 1999), namely,

h(~x) = 1
2 (h+ + h−), (4.9)

u(~x) = 1
2 (h+ − h−)− a, (4.10)

where h is the average position of the upper and lower surfaces of the bilayer which we will refer to

as the mid-plane and u is half the difference of the bilayer thickness and the equilibrium thickness.

The overall structural picture is shown in Fig. 4.2.1 where the localized perturbation of the bilayer

is depicted schematically.



49

W

z

a

U

−θ+

- θ-

h+(r)

h-(r)

h(r)
u(r)+a

F

α

F

τu τh
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Figure 4.1: A schematic picture of the bilayer-inclusion model. The geometry of the inclusion is
described by four parameters: the radius R, the thickness W , and the radial slopes H ′

± of the top
and bottom surfaces of the bilayer, respectively. If the surfaces of the bilayer are locally normal
to the interface of the inclusion, as depicted above, H ′

± = θ± in the small angle approximation.
The bilayer equilibrium thickness is 2a. The fields h±(r) are the z displacements of the top and
bottom surfaces of the bilayer, respectively. Their average is the mid-plane displacement, h(r), and
half their difference is u(r) + a. u(r) is the local thickness deformation of a single leaflet of the
bilayer. At the interface, twice this deformation, 2U , is the hydrophobic mismatch, W − 2a. The
generalized forces on the inclusion induced by the bilayer are depicted for positive values. F is the
expansion-compression force, α is the tension, τh is the mid-plane torque, and τu is the shape torque.

A minimization of the effective free energy (Huang, 1986) gives two decoupled differential equa-

tions (Fournier, 1999) for the equilibrium configuration in the fields u(~x) and h(~x), namely,

0 =
[
KB∇4 − α∇2 + Ka

a2

]
u (4.11)

0 =
[
KB∇2 − α

]
h, (4.12)

which are again discussed at length in the literature (Huang, 1986; Nielsen et al., 1998; Fournier,

1999). The solution to these equations for the fields h(~x) and u(~x) can be written in terms of

modified Bessel functions in cylindrical coordinates (Huang, 1986).

Due to the hydrophobic residues of the protein inclusion, we assume that the bilayer adheres to the

external surface of the protein. As will be described in more detail below, the matching condition at

this surface dictates half the boundary conditions for the bilayer (the remaining boundary conditions

dictate that the bilayer is unperturbed at infinity). We consider proteins with azimuthal (cylindrical)

symmetry. While the Mscl channel is not truly azimuthally symmetric, as a homo-pentamer, it is

highly symmetric, at least in the closed state as the X-ray crystallography structure has demonstrated

(Chang et al., 1998). In order to clearly distinguish values of the functions at the boundaries from

the corresponding functions themselves, we will denote these parameters with capital letters. We

fix the bilayer thickness, 2U + 2a, to match the hydrophobic thickness of the protein, W , at the

interface, r = R:

u(R) = U = 1
2W − a. (4.13)
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2U is called the hydrophobic mismatch since it is the difference between the equilibrium thickness

of the bilayer, 2a, and the thickness of the protein, W . For real proteins it is quite difficult to

define exactly what one means by this region since real structures are not purely hydrophobic in

the transmembrane region. The closed state and a proposed model of the open state colored by

hydrophobicity are depicted in Fig. 4.2.1.

We also specify the radial derivatives of h± at the boundary as

h′±(R) = H ′
± (4.14)

or alternatively,

H ′ ≡ h′(R) = 1
2 (H ′

+ +H ′
−), (4.15)

U ′ ≡ u′(R) = 1
2 (H ′

+ −H ′
−), (4.16)

where ′ is the derivative with respect to r, the radial distance from the inclusion. A physical

interpretation of these slopes might be to assume the bilayer’s surfaces are normal to the protein’s

surface at the boundary, although this need not be the case (Nielson et al., 1998). At infinity we

assume that the bilayer is unperturbed which may be cast in mathematical terms as

h(∞) = 0, (4.17)

u(∞) = 0. (4.18)

Solving the equilibrium equations for a given set of boundary conditions and plugging these solutions

into the surface integral for bilayer deformation energy results in the bilayer deformation energy for

a given configuration of the protein (Huang, 1986). Each protein configuration corresponds to a

different outcome for the bilayer deformation energy. This energy has been divided into several

contributions based on the physical mechanism giving rise to it. In Table 6.1, we present a summary

of these results. Brief derivations may be found in the Appendix. Generally, the bilayer deformation

energies lend themselves to simple scaling laws, except for two cases: thickness and mid-plane

deformation. In these cases the exact results to the model are somewhat complicated and the

results that appear in the table are limits which are derived and discussed in the Appendix.

4.2.2 Connection between H ′
± and Channel Geometry

Recall from the discussion above that the energetics of the composite system of the inclusion and

the bilayer depends in part on the geometric parameters H ′
± that determine how the bilayer joins

the protein at the interface. The appropriate bilayer slope boundary condition is still somewhat
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37.5 Å

10 Å

Figure 4.2: Models of the closed and open states colored by hydrophobicity (Sukharev et al., 2001).
While the general region spanned by the membrane is evident from the hydrophobic regions on the
protein interface, it is difficult to precisely define the thickness of this region. A closed states thickness
has been inferred from the data of Powl et al. (2003) and this region is schematically marked on the
model of the closed state. Additional confirmation of this estimate for the hydrophobic thickness
comes from the simulation of Elmore and Dougherty (2003).

of an open question. Some authors have treated these conditions as free, minimizing the bilayer

deformation energy with respect to them, while others have assumed that the bilayer surfaces are

normal to the protein surface (see refs. in Nielson et al., 1998). Most of our results will be expressed

in terms of H ′
± which is independent of any particular assumption about these boundary conditions,

though we will assume the normal interface boundary conditions in our concrete physical discussions.

We will also discuss the free boundaries briefly. If we assume that the mid-plane of the lipid bilayer

interface is normal to the protein and that transmembrane domains M1 and M2 are rigid and aligned

this dictates that

H ′ = H ′
+ = H ′

− (4.19)

U ′ = 0. (4.20)

This can be recast verbally as the statement that the top and bottom surfaces of the bilayer have

the same slope at the boundary and there is no bend in the inclusion interface. In the small angle

limit, H ′ can be replaced by the angle away from normal of the interface. If we do introduce a bend

in the middle of the interface, the orientations of the upper and lower interfaces are independent.

Assuming that the interface of the bilayer is normal to the protein surface, we can replace the slopes

with the angles away from normal, θ±, (Dan and Safran, 1998) in the small angle limit, as pictured

schematically in Fig. 4.2.1.
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4.2.3 Forces, Torques, and Tensions

The physical effects of bilayer deformation on the inclusion conformation can be recast in a more

intuitive form by appealing to forces, tensions, and torques rather than free energies. For example,

most of the bilayer deformation energies will generate a tension on the interface due to their radial

dependence. The applied tension, α, is not the whole story! The generalized forces are obtained by

differentiating the bilayer deformation energy with respect to bilayer excursions. Implicitly, these

generalized forces are defined through

dGM = −αΣdA− τ+dH
′
+ − τ−dH

′
− − FdW, (4.21)

where A ≡ πR2 is the area of the protein, H ′
± are the slopes of the bilayer surfaces at the interface,

and W is the thickness of the hydrophobic region of the protein. Explicitly, these generalized forces

may be written as

αΣ ≡ − 1
2πR

(
∂GM
∂R

)
T,W,H′

±

, (4.22)

τ± ≡ −
(
∂GM
∂H ′

±

)
T,A,W,H′

∓

, (4.23)

F ≡ −
(
∂GM
∂W

)
T,A,H′

±

. (4.24)

Since we have already used α to denote the applied tension, we use αΣ to denote the net radial

tension on the inclusion interface; the sum of the applied tensions and other bilayer deformation

induced contributions. When the tension is positive, it is tensile. F is the compression-expansion

force, normal to the plane of the bilayer, acting on the inclusion. When the compression-expansion

force is positive, it acts to induce inclusion-thickness expansion. τ± are cylindrical torques acting

on the top and bottom surfaces of the inclusion around the mid-plane. It will usually be more

convenient to work with the torques complementary to H ′ and U ′ rather than H ′
±. We define the

mid-plane torque as the cylindrical torque on the interface as a whole

τh ≡ τ+ + τ− = −
(
∂GM
∂H ′

)
T,A,W,U ′

. (4.25)

When the mid-plane torque is positive, it acts to induce increases in the mid-plane slope. This

cylindrical torque is generated by bending stresses alone and is therefore related to the principal

curvatures at the boundary (Landau and Lifshitz, 1986) through the relation

τh
C

= −KB

(
R−1
‖ +R−1

⊥ − C
)
−KGR

−1
‖ , (4.26)
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where C is the circumference of the inclusion, R−1
‖ and R−1

⊥ are the principal curvatures at the

boundary of the midplane, in the directions parallel and perpendicular to the boundary, respectively.

(For azimuthally symmetric surfaces the principal curvatures are always radial and azimuthal, and

furthermore the azimuthal curvature is R−1
‖ = −r−1 sin θN where r is the cylindrical radius, and θN

is the angle of the upward surface normal away from vertical. For example, see Boal, 2002.) We can

define the shape torque as the cylindrical torque complementary to U ′

τu ≡ τ+ − τ− = −
(
∂GM
∂U ′

)
T,A,W,H′

. (4.27)

When the shape torque is positive, it induces radial expansion at the mid-plane and radial com-

pression at the outer surfaces of the bilayer. When the shape torque is negative, it induces radial

compression at the mid-plane and radial expansion at the outer surfaces of the bilayer. The bending

stress picture of the shape torque is somewhat more complicated than for the mid-plane torque

due to the interaction between the two layers. The generalized forces are depicted in Fig. 4.2.1 for

positive values and their physical interpretation and size are discussed in Sect. 4.3.

4.2.4 Relation between pressure gradients and generalized forces

Another way to recast the interaction between the membrane protein and the surrounding bilayer is

by introducing the notion of pressure gradients. Cantor (1997, 1999) has made calculations of the out-

of-plane pressure gradients in the bilayer. He has shown that the pressure is compressive in the middle

of the bilayer and expansive near the surface. Cantor (1997) and de Kruijff (1997) have discussed the

effects of this gradient on protein conformation. If the α-helices (MscL’s transmembrane domains M1

and M2) can be interpreted (to a first approximation) as rigid, the effects of this pressure gradient

are to produce a tension and cylindrical torques. The tension on the interface is the integrated

bilayer pressure,

αP =
∫ a

−a

dz P (z), (4.28)

where z is the position in the bilayer, running from −a to a. This integrated tension must be the

net tension αΣ. If we allow the inclusion to have a hinge at z = 0, cylindrical torques about this

circumference are induced on each section of the inclusion. (See Fig. 4.2.1) In the small angle limit,

these cylindrical torques are

τ+,P = R

∫ 2π

0

dφ

∫ a

0

dz P (z)z, (4.29)

τ−,P = −R
∫ 2π

0

dφ

∫ 0

−a

dz P (z)z, (4.30)
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Physical Mechanism Energy (GM) for MscL

Areal Deformation GA = −α ·A 10kT

Gaussian Curvature GG = −πKG

(
H ′ 2 + U ′ 2

)
1kT

Spontaneous Curvature GC = KB

(
CH ′ + CU ′

)
· C 10kT

Bilayer Interface Gσ = σW · C 10kT

Mid-Plane Deformation † GH = 1
2

√
αKBH

′ 2 · C < kT

Thickness Deformation † GU = 1
2KU

2 · C 10kT

Table 4.1: Summary of results for inclusion-induced bilayer free energies. The free energies are
written symbolically followed by an estimate of the size of the contribution to the nearest order
of magnitude for a typical MscL system in patch clamp experiments. In the following section
more detailed estimates are made. The free energies have been factored to emphasize their radial
dependence. Tension-like terms are proportional to the area, A ≡ πR2. Line-tension-like terms are
proportional to the circumference, C ≡ 2πR. K is a composite elastic constant defined in Sect. 4.3.6.
σ is an interface energy discussed in Sect. 4.3.4. †Dominant scaling for asymptotic results.

where the torques have been defined to match our previous definitions in Sect. 4.2.3, when the angles

made by two surfaces of the interface, θ±, are defined such that

θ± = H ′
±. (4.31)

The τ±,P must correspond to our τ±. The effects of the pressure gradient on our constrained system

are neatly reduced to three of the generalized forces we have already discussed. The fourth force,

F , is just the integrated shear stress.

4.3 Free Energy Estimates and Physical Interpretation

In Sect. 4.2, we summarized the bilayer model and presented the lowest order contributions to the

bilayer deformation energy in Table 6.1. The aim of the present section is to revisit each of these

individual contributions to the overall free energy, estimate its magnitude for MscL, and discuss the

scaling and physical mechanism giving rise to the bilayer deformation energy. In order to estimate the

bilayer deformation energies, we need structural information for MscL. From X-ray crystallography

data (Chang et al., 1998), in the closed state, MscL appears to have an external radius of roughly

23 Å. Sukharev et al. (2001) have speculated that the open state’s external radius is roughly

35 Å. We use typical bilayer elastic parameters as summarized in the Appendix. In addition,

the Appendix contains a brief discussion of the scaling of these parameters with bilayer thickness.
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αα

Figure 4.3: A cartoon of areal deformation. Tension, represented by the arrows, is transmitted
through the bilayer to the inclusion. For positive biaxial tension, radial expansion of the inclusion
reduces the free energy of the bilayer. The vesicle or cell can be viewed as a bilayer reservoir where
tension is the energetic cost per unit area of bilayer in the local system.

Numerical results are multiplied by scaling relations to remind the reader what values have been used

in their computation and how the free energies scale with changes in inclusion geometry, tension,

etc.

4.3.1 Areal Deformation

The areal deformation free energy is the dominant tension-dependent term and typically provides

the mechanism for opening the MscL channel. The physical interpretation of this term is shown

schematically in Fig. 4.3.1. The form of this contribution is well understood (for example, see Hamill

and Martinac, 2001) and is analogous to the −PdV term for an ideal gas in three dimensions. For

areal deformations, the bilayer lipids act like a two-dimensional gas with a free energy change given

by

dGA = −αdA, (4.32)

where α is the tension. At high tension, the open state is favored due to its larger area. Sukharev

et al. (1999) have measured the opening tension to be α∗ = 1.2 pN Å
−1

. (α∗ is the tension at

which the channel is open half the time. This tension will depend on the bilayer in which the

channel is reconstituted but we use this number as the typical size of the opening tension.) The

areal deformation energy is

GA = −αA = −α πR2 ≈ −47
(
α

α∗

)(
A

AC

)
kT, (4.33)

and is plotted as a function of applied tension in Fig. 4.3.1. The way in which this free energy is

expressed is to normalize the tension in units of the opening tension, α∗, and the area in terms

of the closed state area, AC . As we expect, the typical free energies generated by radial changes

are large. This is no surprise since the tension acts as the switch between the closed state and the

larger open state. The most striking feature of this energy in comparison with those we will discuss

below is its areal dependence. This free energy scales as the square of the channel radius, whereas

almost all other contributions will roughly scale as the circumference. This scaling difference has

important consequences for the stability of the conductance states and will give rise to a picture
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Figure 4.4: The theoretical areal deformation free energies for the open (dashed line) and closed
state (solid line) as a function of applied tension.

of the tension-induced opening of the channel much like the picture used to discuss nucleation of

second phases. We have gone to some length to develop the importance of this scaling difference in

our previous paper (Wiggins and Phillips, 2004).

Experimental measurements have roughly confirmed the linear dependence of the free energy

difference on tension (Sukharev et al., 1999). This would suggest that the open and closed states are

relatively well defined, at least with respect to the channel radius. If the closed state, for example,

actually consisted of a heterogeneous mix of states, this would lead the dependence of the free energy

on tension to deviate from the linear relation predicted above. The fact that this has not been seen

indicates that well defined states are compatible with experiment.

4.3.2 Gaussian Curvature

Gaussian curvature normally contributes to the free energy topologically (independent of the local

shape of the bilayer). However, at the inclusion, the bilayer has a boundary which will allow non-

topological contributions to the free energy (E. Evans, personal communication). In the small-angle

limit, the Gaussian curvature free energy is

GG = −πKG

(
U ′ 2 +H ′ 2) (4.34)

as demonstrated in the Appendix. Measurements of the Gaussian curvature modulus are compatible

with a wide range of values: KG < −KB/2 (see references in Boal, 2002). We estimate that for

MscL, the free energy contribution from the mid-pane slope is

GG ≈ 0.7
(
−KG

KB

)(
H ′

0.1

)2

kT, (4.35)
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Bilayer Micelle HII-Phase

Figure 4.5: A schematic depiction of molecular shapes which influence spontaneous curvature (Is-
raelachvili, 1991). Molecules with a cylindrical shape, such as phospholipids, will assemble into
bilayers. Cone shaped molecules, such as lysophospholipids will assemble into micelles, the lowest
energy configurations. For our sign conventions, these cone shaped molecules induce negative spon-
taneous curvature. Inverted cone shape molecules, such as cholesterol, DOPC, and DOPE assemble
into HII phases (Gruner, 1989) and induce positive spontaneous curvatures. The size of the sponta-
neous curvature is thought to be related to the difference in size between the polar head group and
the acyl tails. Figure adapted from Lundbæk and Andersen, 1994.

where the deformation energy has been written in a dimensionless form in terms of the bending

modulus, KB , the closed state radius, and a modest interface angle of 0.1. (We expect the contribu-

tion from U ′ to be of the same order.) We have chosen this small angle since a large tilt angle for the

interface is not evident from the closed state structure or the modeled open state (see Fig. 4.2.1).

As indicated above, the free energy is typically fairly small unless H ′ or U ′ are large. Since GG is

radially independent, it induces no tension. On the other hand, Gaussian curvature does induce a

torque of the form

τ± = πKGH
′
±, (4.36)

which points toward H ′
± = 0 if KG < 0. The induced mid-plane torque is exactly what is expected

from the bending stresses in Eq. 4.26.

4.3.3 Spontaneous Curvature

Spontaneous curvature arises from the addition of detergents and non-bilayer forming lipids to the

bilayer. These molecular additions cause the lowest energy configuration of a single layer of lipids

to be curved. The general phenomenon of spontaneous curvature in lipid structures is reviewed

by Gruner (1989). In general, measurements of the spontaneous curvature, C, have been for HII

phase forming molecules where the positive spontaneous curvature can be deduced from the lattice

structure (Gruner, 1989; Chen and Rand, 1997; Keller et al., 1993). Values of C−1 = 20 Å
−1

(DOPE)

are experimentally attainable (Keller et al. 1993). Less is known about negative spontaneous

curvature, induced by micelle-inducing detergents and lysophospholipids. See Fig. 4.3.3 for a brief

discussion of molecular shape and spontaneous curvature. To induce a composite bending modulus

for the bilayer, the layers must be asymmetrically doped, though the molecules can exchange between

the leaflets and move within a leaflet to energetically favorable locations caused by localized regions
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αCαC

τu,Cu,C
τh,Ch,C
τu,C
τh,C

Figure 4.6: A schematic depiction of spontaneous curvature induced by several species of lipids in
the bilayer. The gray colored lipids depict a non-bilayer lipid which induces positive spontaneous
curvature. A tilted inclusion interface can lead to a reduction in the stress caused by the non-bilayer
lipids as depicted above. Spontaneous curvature induces both torques and tension at the interface.
For energetically favorable tilt, the tension acts to open the channel. The torque on the inclusion
from a bilayer leaflet with positive spontaneous curvature acts to increase tilt by expansive pressure
at the surface and compressive pressure at the mid-plane. When only one leaflet of the bilayer is
doped, both a mid-plane and a shape torque are induced but they cancel for the undoped leaflet.

of high complementary curvature (de Kruijff et al., 1977; Kumar et al., 1989). For the sake of making

an explicit estimate, we ignore these complications.

In the linearized theory, the spontaneous curvature contributes an interface term to the free

energy. In Fig. 4.3.3 an energetically favorable curvature is depicted. The free energy arising from

spontaneous curvature is

GC = 2πRKB

(
CH ′ + CU ′

)
≈ 15

(
R

23 Å

)(
20 Å

C−1, C
−1

)(
H ′, U ′

0.1

)
kT. (4.37)

These symbolic results are equivalent to those in Dan and Safran (1998). To estimate the size of

this contribution for MscL, we have written the free energy in a dimensionless form using the large

positive spontaneous curvature of a DOPE monolayer (C−1 = 20 Å) (Keller et al. 1993), a relatively

modest tilt angle (H ′ = 0.1), and the closed state radius. The comma notation is meant to denote

that this estimate is for either these values of C and H ′ or C and U ′. The resulting free energy can

be the same order of magnitude as the areal deformation energy, implying it may play an important

role in channel function.

Physically, the scaling can be easily understood with the example schematically illustrated in

Fig. 4.3.3. A protein that has a conical shape, which increases toward the periplasm, induces

membrane stress that may be relieved by complementary shaped lipids (which give rise to a positive

composite spontaneous curvature) as illustrated in the figure. The bilayer illustrated in the figure

also has positive mean spontaneous curvature (C > 0), which relieves the stress induced by the

hour glass shaped inclusion. This deformation energy is our first example of a line tension (a free

energy with a linear radial dependence.) This deformation energy is caused by interaction at the

protein interface whose size is proportional to the interface area and therefore proportional to the

radius of the inclusion. We have described in detail the significance of this linear dependence for

mechanotransduction elsewhere (Wiggins and Phillips, 2004).
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Spontaneous curvature gives rise to both a tension, due to the radial dependence of the free

energy, and torques, due to the dependence of the free energy on H ′ and U ′. The tension on the

boundary of the protein is

αC = −KB

R

(
CH ′ + CU ′

)
≈ −0.19

(
23 Å
R

)(
23 Å

C−1, C
−1

)(
H ′, U ′

0.1

)
, (4.38)

where we have estimated the size of the induced tension by writing it in a dimensionless form using

the same parameters as the deformation energy described above. This induced tension can have

either sign resulting in contributions which are either tensile or compressive. If curvature stress is

relieved by spontaneous curvature, it is energetically favorable to increase the radius and the tension

tends to open the channel while if the curvature stress is increased by the spontaneous curvature,

the tension will be compressive. The mid-plane torque is

τh,C = −2πRKBC ≈ −1.5× 102

(
R

23 Å

)(
20 Å
C−1

)
kT, (4.39)

which is again written in a dimensionless form as described above. The torque induces inclusion

conformations that would allow energetically favorable bending as explained above and depicted in

Fig. 4.3.3. The mid-plane torque is non-zero only for asymmetrically doped bilayers and its symbolic

form matches the spontaneous curvature term deduced from bending stress in Eq. 4.26. The shape

torque is

τu,C = −2πRKBC ≈ −1.5× 102

(
R

23 Å

)(
20 Å

C
−1

)
kT, (4.40)

which, for positive mean spontaneous curvature, acts to compress the mid-plane and expand the

outer surface region of the inclusion. (Again, we have written the torque in a dimensionless form as

described above.)

Keller at al. (1993) have studied the Alamethicin channel reconstituted into DOPC/DOPE

bilayers. This is a particularly beautiful system since the spontaneous curvature of the mixed bilayer

interpolates linearly with the relative concentration of the components, allowing a continuous range

of spontaneous curvatures. The bilayers of Keller et al. are symmetric, implying that C = 0. In this

case, the spontaneous curvature free energy is (Dan and Safran, 1998)

GC = 2πRKBCU
′, (4.41)

which would predict free energy differences between states to be linear in C which Keller et al.

(1993) have shown experimentally.
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Figure 4.7: The spontaneous curvature free energy as a function of the composite spontaneous
curvature C for various mid-plane slopes. At the top we have shown the corresponding concentration
ratio for the DOPE/DOPC system of Keller et al. (1993). For positive C, the bottom leaflet consists
of pure DOPC and the top leaflet is a DOPE/DOPC mix with mole fraction x of DOPE. For negative
C, the top leaflet consists of pure DOPC and the bottom leaflet is a DOPE/DOPC mix with mole
fraction x′ of DOPE. We have plotted the free energy for a range of spontaneous curvatures that
are larger than those that can be realized for DOPC/DOPE bilayers, since they may be relevant for
other lipids or detergent-lipid bilayers.

4.3.4 Bilayer Interface Energy

The bilayer and protein are glued together by hydrophobic-hydrophilic interaction forces which

are strong enough to hold the protein in the bilayer at a typical cytoplasmic pressure of several

atmospheres. It is natural to assume that in addition to the internal protein and bulk bilayer

energies there will be an interaction term from the interface. There are many complicated scenarios

which might be dreamed up, but the simplest is to assume that there is free energy proportional to

the area of protein and bilayer in contact, resulting in a free energy

GW = σ2πRW, (4.42)

where W is the thickness of the hydrophobic region. The constant of proportionality, σ, is the

interface energy and has units of energy/area. Thus far, we have concentrated exclusively on the

bilayer bulk for two reasons: (i) the continuum model is almost certainly a reasonable rough model

for the processes of interest, and (ii) the material parameters for the bilayer are known from earlier

experiments (Rawicz et al. 2000). In contrast, little is known about the validity of this model for

the interface nor is there any estimate for the size of σ, the interface energy. This class of interface
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terms gives rise to a tension and a compressive-expansive force

αW = −σW
R
, (4.43)

FW = −σ2πR. (4.44)

The effects of the tension and compressive force depend on the sign σ, the interface energy density.

When σ is positive, the interface is minimized, leading to compressive forces. When σ is negative

(the affinity of lipid and protein are high), the interface is maximized and the forces are expansive.

We have introduced this energy as a sanity check for our boundary conditions. We have somewhat

naively assumed that the membrane adapts to an arbitrary protein shape. This assumption certainly

fails when the adhesive forces attaching the membrane to the protein are not large enough to sustain

the strain in the membrane. It is therefore useful to develop an approximate expression for these

adhesive forces. We know the interface energy for a typical hydrophobic-hydrophilic mismatch

(Hamill and Martinac, 2001)

σ∗ = 25 cal mol−1 Å
−2

= 0.0418 kBT Å
−2
, (4.45)

which is large compared to the other tensions in the problem. The compressive force countering the

creation of this interface is

FW∗ = −σ∗2πR ≈ −2.5× 102

(
R

23Å

)
pN, (4.46)

where we have used the closed state radius to write the force in a dimensionless form. This force

can be interpreted as the critical force required to strip the protein from the bilayer. As we have

reasoned above, this force will be important when we consider the large deformation limit on forces

and energies due to thickness deformation.

4.3.5 Mid-Plane Deformation

The free energy associated with the deformation of the mid-plane of the bilayer is another contri-

bution in the overall free energy budget. These constant thickness deformations like those pictured

in fig. 4.3.5, are induced by conically shaped proteins. Mid-plane deformation contributes to the

bilayer deformation energy through both bending of the bilayer and from a corresponding increase in

bilayer area. The exact result to the linearized model is derived in the Appendix, but the dominant

contribution at high applied tension is given by

GH = πR
√
αKB (H ′)2 ≈ 0.6

(
R

23Å

)(
2a

40.7Å

)3/2 ( α
α∗

)1/2
(
H ′

0.1

)2

kT, (4.47)
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Figure 4.8: A conically shaped protein induces bilayer bending. In order to match a conical inclusion
interface, the bilayer must deform. The deformation leads to energetic contributions both from an
increase in bilayer area and from bilayer bending. Mid-plane deformation induces both a mid-plane
torque and a tension. The tension is always compressive. The mid-plane torque acts to reduce
interface tilt and restore the bilayer to its undeformed configuration. We estimate that the mid-
plane deformation energy is probably not important for MscL gating.

where the parameters used to write the deformation energy in a dimensionless form are the closed

state radius, the opening tension, and a modest interface tilt angle (H ′ = 0.1). The H ′2 dependence

of the mid-plane deformation energy is as one would expect since no bending corresponds to H ′ = 0

and results in the minimum energy (in the absence of spontaneous curvature). Dan and Safran (1998)

have discussed deformation energies with a similar dependence on H ′, but with a different size and

physical origin. Note that mid-plane deformation scales differently with the applied tension (α1/2)

from the other contributions and can therefore be distinguished from the other bilayer deformation

energies by measuring the tension dependence of the free energy. The approximation we have used

is not really valid for MscL at experimentally realizable tensions since the elastic decay length is

given by √
KB

α
≈ 27

(
2a

40.7 Å

)3/2 (α∗
α

)1/2

Å, (4.48)

where we have estimated the typical size of the decay length by writing it in a dimensionless form us-

ing the opening tension. (The size and scaling of the bending moduli are described in the Appendix.)

This decay length is roughly the same size as the channel radius. At high tension this length scale is

reduced thus improving the asymptotic result and also increasing the size of the energy. For MscL,

unless the bending modulus is significantly softened, we are unlikely to be able access this regime

since the lysis tension for bilayers is typically not much more than α∗ (Olbrich et al., 2000). The

scaling result we have derived overestimates the bilayer deformation energy. (See the Appendix for

further discussion.) Both the exact result and asymptotic result are plotted as a function of applied

tension in Fig. 4.3.5. In spite of this overestimate, the energy is still small compared with the areal

deformation, so we conclude that mid-plane deformation is probably not a key player in the free

energy budget for MscL. This effect has also been explored in a recent paper by Turner and Sens

(2004).

The dominant term in the mid-plane deformation energy scales linearly with R since the area of

the bilayer deformation is roughly proportional to the circumference. This radial dependence gives
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Figure 4.9: The mid-plane deformation energy is illustrated above as a function of tension. We
have plotted the approximate scaling result (dashed line) discussed below, the exact result to the
model (solid line) discusses in the Appendix 4.7.5, as well as the areal deformation energy for the
closed state, the opening tension α∗ (dotted line). All the energies are computed for the closed state
using an unrealistically large mid-plane slope (H=0.5) to exaggerate the effect. While the scaling
result is several kT larger than the exact result, it accurately reflects the scaling at high tension,
and provides a limit for the exact result. The α1/2 dependence of the mid-plane deformation energy
has not been observed experimentally.

rise to a tension:

αH =
1

2R

√
KBαH

′2 ≈ 7.0× 10−3

(
23 Å
R

)√
α

α∗

(
H ′

0.1

)2

pN Å
−1
, (4.49)

which acts to inhibit channel opening. For the typical constants chosen here, αH is about a hundredth

of the opening tension, again confirming that the mid-plane deformation is probably not important

for MscL conformation or function. Like the spontaneous and Gaussian curvature contributions, the

mid-plane deformation also places a torque on the protein

τH = −2πR
√
αKBH

′ ≈ −11
(

R

23Å

)√
α

α∗

(
H ′

0.1

)
kT, (4.50)

which we have written in a dimensionless form as described above. This is a restoring torque toward

the lowest energy configuration H ′ = 0 (in the absence of spontaneous curvature).

4.3.6 Thickness Deformation

The free energy contribution from thickness deformation results from changes in the separation

between the upper and lower surfaces of the bilayer induced by the hydrophobic mismatch between

the inclusion and the bilayer. This effect is depicted schematically in Fig. 4.3.6. The energetic

contribution from this mismatch can be quite significant. Bilayer thickness deformation has been
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Figure 4.10: Bilayer thickness deformation due to a hydrophobic mismatch. In order to match
the inclusion’s hydrophobic boundary, the bilayer thickness must be deformed. Microscopically, the
lipid tails are deformed as illustrated schematically above. The modulus for these deformations is
KA. For large mismatches, the energy contribution from thickness deformation can be quite signif-
icant. We estimate that this energy is important for MscL gating. Thickness deformation induces
a compression-expansion force, a tension, and a shape torque which are also depicted above. The
compression-expansion force acts to reduce the mismatch. The shape torque acts to induce interface
tilt to reduce the bilayer bending. The tension generated by a mismatch is always compressive.

studied by many authors, Mouritsen and Bloom (1984), Huang (1986), etc. and more recently by

Nielsen et al. (1998) and Goulian et al. (1998). These authors have all solved the model exactly, but

we introduce a large radius asymptotic expansion to significantly simplify our results. Expanding

the exact solution of the model in powers of the radius gives

GU = G
(0)
U +G

(1)
U + ... (4.51)

where G(n)
U ∝ R1−n. For MscL, the only important terms are the first two. In the Appendix we

have plotted both the approximate and exact solutions to demonstrate that the interesting physics

is captured by our approximations. Ignoring higher order terms, the resulting contribution is

GU = πR
[
KB (β+ + β−)

(
U ′ +

[
β+ + 1

2R

]
U
) (
U ′ +

[
β− + 1

2R

]
U
)
− αUU ′

]
, (4.52)

where

β± ≡

√
α±

√
α2 − 4KBKA/a2

2KB
. (4.53)

We can simplify this expression further by defining a low tension limit (Goulian et al., 1998):

α� 2

√
KBKA

a2
≈ 0.34

(
2a

40.7 Å

)
kT Å

−2 ∼ 10α∗ (4.54)

which is roughly satisfied for the critical tension measured by Sukharev et al. (1999). (See the

Appendix for details about the scaling and size of the elastic moduli. The tension above has been

put into a dimensionless form using the parameters for a PC lipid of acyl length 18.) One might

worry that for small bilayer thickness the small tension limit would no longer be satisfied, but we
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will show that the opening tension is also reduced in this case. In the low tension limit, β± is

β± = e±
iπ
4

(
KA

a2KB

) 1
4

= e±
iπ
4 β. (4.55)

We will refer to β as the inverse decay length since it defines the length scale over which the thickness

deformation perturbation decays. This length scale is given by

β−1 =
(
KBa

2

KA

)1/4

≈ 11
(

2a
40.7 Å

)
Å. (4.56)

This decay length defines the large radius limit, which is satisfied even for the closed state of MscL

since RC > β−1.

The dominant contribution at large radius is G(0)
U , which corresponds to ignoring the curvature

of the interface entirely (Dan et al., 1993). To estimate the typical size of this contribution, we set

U ′ = 0

G
(0)
U = πRKU2 ≈ 1.6

(
R

23 Å

)(
U

1 Å

)2

kT, (4.57)

where we have written the deformation energy in a dimensionless form using the closed state radius,

a small mismatch (U = 1 Å), and the effective elastic modulus K, defined

K ≡
√

2
(
KBK

3
A

a6

) 1
4

≈ 2.16× 10−2 kT Å
−3
. (4.58)

This is the result listed in Table 6.1. Since large mismatches are possible and the deformation

energy grows as the square of the mismatch, this contribution can be very significant. This U2

dependence, analogous to a linear spring, is exactly what we expect since the minimum energy

occurs for a perfect thickness match between the protein and bilayer (U = 0). Mouritsen and Bloom

(1984, 1993) were the first to discuss this dependence. Its phenomenological significance has been

stressed by Lundbæk et al. (1996). The thickness deformation energy is a function of both KA,

the local thickness deformation modulus, and the bending modulus, KB . Physically, KB provides a

compatibility condition for adjacent lipids which sets the size of the deformed region. The thickness

deformation energy is also roughly linear in R since the area of the bilayer deformed is roughly

proportional to the channel circumference. The size of thickness deformation energy and its radial

dependence imply that G0
U is almost certainly important in the energetics of MscL. Unless both

U ′ and U are zero or cancel, this term will contribute due to the radial expansion of the channel

between the closed and open states. Even if the height of the hydrophobic region were to remain

unchanged, this contribution would still be very significant (See Wiggins and Phillips, 2004). Let us

mention, as a brief aside, that the functional form of G0
U is a very pleasing result since, although the

prefactor K appears to depend on the bilayer width, a, it is roughly independent of a! Please see
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the Appendix for a brief argument. Because this scaling is not obvious and we will often use scaling

arguments, we write the result in terms of K to alleviate the temptation of thinking K ∝ a−3/2.

One of the difficulties in implementing this model is the uncertainty concerning boundary con-

ditions and in particular what slopes should be assigned for the bilayer-inclusion interface. One of

the possibilities studied by other authors (Helfrich and Jakobsson, 1990), is to treat U ′ as a free

parameter and minimize the free energy with respect to it. In the asymptotic limit this calculation

becomes very simple. Taking the low tension limit (α = 0), and choosing U ′ to minimize G(0)
U , gives

a free energy half that which is obtained by näıvely assuming U ′ = 0, namely,

G
(0),Min
U =

πR

2
KU2. (4.59)

As a result, we argue that the qualitative conclusions–the importance of this correction–are indif-

ferent to the particular choice made for this boundary condition, but quantitatively the choice of

boundary conditions can have a significant effect.

Although G(0)
U dominates at large radius, for MscL-like geometries, G(1)

U is roughly as large. G(1)
U ,

which is radially independent, is

G
(1)
U = 2π

(
KBKA

a2

)1/2

U2 ≈ 1.1
(

2a
40.7 Å

)(
U

1 Å

)2

kT, (4.60)

for U ′ = 0, where the energy has been put in a dimensionless form using the closed state radius,

and a small mismatch (U = 1 Å). As can be seen above, for the closed state, this energy is almost

as large as the dominant scaling term G
(0)
U and is also proportional to U2. In general, the effects

of this term on channel gating are not as pronounced since it is radially independent and will not

contribute a term to the free energy difference between the open and closed states proportional to

∆R. Likewise, it will not contribute to the tension. The asymptotic expressions for the thickness

deformation energy are compared with the exact results to the linearized theory in Fig. 4.7.5 in the

Appendix. We plot the thickness deformation energy for the closed state in Fig. 4.3.7, in the next

section.

To develop physical intuition into how thickness deformation affects the channel conformation

and function, we calculate the generalized forces induced on the inclusion. The tension is

αU = −KU
2

2R
≈ −2.0× 10−2

(
23 Å
R

)(
U

1 Å

)2 pN
Å
, (4.61)

which has been written in a dimensionless form as described above. The induced tension acts to close

the channel. For a 1Å mismatch, the tension is roughly a sixtieth of what Sukharev et al. (1999)

measured for the opening tension, but for larger mismatches, the tensions can become comparable,

significantly reducing the net tension or, at small enough applied tension, becoming the dominant
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Figure 4.11: Bilayer thickness deformation saturates when the energy required to further deform
the membrane is equal to the interface energy required to create a hydrophobic-hydrophilic interface.
This failure of the bilayer to conform to the protein is depicted schematically above.

contribution. Since tensions of this size are responsible for triggering the channel to switch from the

closed to the open conformation, this calculation strongly suggests that the thickness deformation

energy plays an important role in channel function and conformation. The thickness deformation

also generates a shape torque

τu,U = −2πR
√
KAKB

a

(
1 +

1√
2βR

)
U (4.62)

when U ′ = 0. We can estimate the dominant term at large radius

τu,U ≈ −25
(

R

23 Å

)(
2a

40.7 Å

)(
U

1 Å

)
kT, (4.63)

which has been written in a dimensionless form as described above. The shape torque can be quite

large for large mismatches. Its sign depends on the mismatch U .

4.3.7 Saturation of Thickness Deformation

Due to the quadratic dependence of the thickness deformation energy on mismatch, it is initially

energetically favorable to deform the thickness of bilayer, rather than expose the hydrophobic region

of the protein to the solvent. But, this quadratic dependence also implies that the energetic cost of

further deformation will continue to grow, until, at a critical mismatch, it becomes more costly than

exposing this added region to the solvent. This critical mismatch is related to the compression force

on the inclusion due to the thickness deformation. Recalling that U ≡ W/2 − a, the compressive

force on the protein is

FU = −πR
2
K (W − 2a)

(
1 +

√
2

βR

)
≈ −54

(
R

23Å

)(
W − 2a

1Å

)
pN, (4.64)

which has been written in a dimensionless form as described above. The change in the thickness

deformation energy for increasing the hydrophobic region of the protein from W to W + dW is

−FUdW whereas to expose the added region to solvent results in an energy increase of −FW∗dW .
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At the critical mismatch, these two forces are equal

FW∗ = FU (W ). (4.65)

Solving for 2U gives the critical mismatch

2U∗ ≡ |W − 2a| = 4σ∗

K
(
1 +

√
2

βR

) ≈ 5 Å, (4.66)

which has been estimated for an acyl length 18 PC lipid bilayer and the closed state radius. The

details of the saturated thickness deformation energy are worked out in the Appendix. This saturated

deformation energy is compared to the thickness deformation energy and experimental deformation

energies measured by Powl et al. (2003) in Fig. 4.3.7. For large mismatch, there are discrepancies

between the experimental data and all the theoretical models. It is unclear whether the lipid finds a

more energetically efficient method for offsetting the mismatch. In principle lipid packing calculations

could answer these types of questions, but typically they are too constrained to capture this type of

behavior. We shall return to this question in the next section.

Over the course of this entire section, we have provided a term-by-term dissection of the various

contributions to the free energy of deformation associated with channel gating. The main point of

this exercise has been to provide a framework for thinking about the connection between ion channel

gating and the corresponding perturbations induced in the surrounding lipid bilayer membrane.

4.4 Application to MscL Gating

The conformational landscape of the MscL protein is certainly extremely complex, depending on

a large number of microscopic degrees of freedom which are analytically intractable. Even from

the standpoint of numerical calculations, this number is still very large (Gullingsrud et al., 2001).

What is the point of examining what is presumably only half the story by treating the bilayer

analytically? The purpose of this model is to pose a theoretical problem simple enough to be

completely soluble, yet not so simple that it bears too little resemblance to the complex system it

represents. By understanding the consequences of the simplest models, we develop a framework in

which to understand the richer dynamics of the real system, whether approximated by molecular

dynamics simulations or studied in experiments. There is a wealth of useful, physical intuition to

be gleaned from this model relating to both the function of the mechanosensitive channel (MscL)

and that of mechanosensitive transmembrane proteins in general.

As we have argued in the previous section, the bilayer deformation energy is comparable to the

measured free energy differences between states for the MscL channel. Therefore the bilayer must
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Figure 4.12: Interface and thickness deformation energy of the closed state compared to experimental
data from Powl et al. (2003) as a function of lipid bilayer thickness. The red curve is the hydrophobic
interface energy (GW ) without thickness deformation (the limit as K →∞.) The green curve is the
exact thickness deformation energy (GU exact) without saturation. The cyan curve is the asymptotic
thickness deformation energy (GU ) without saturation (the limit as σ∗ →∞.) The blue curve is the
saturating thickness deformation energy (GUW , see the Appendix for details). The o’s and +’s are
the experimental values measured by Powl and coworkers for TbMscL and EcoMscL respectively.
We have chosen the closed state thickness of the channel (WC = 37.5 Å) to match the thickness
of the bilayer at the minimum of the experimental bilayer deformation energy. This thickness is
compatible with the known closed state structure. For small mismatches there is a much better
qualitative agreement between the thickness deformation energy than the hydrophobic interface
theory. For large mismatch, the experimental data points are significantly smaller than the energy
predicted by theory. We discuss this apparent discrepancy in the next section.
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play an important role in determining the free energy balance between states, altering the channel

function. It is also likely that the forces generated by bilayer deformation can significantly perturb

the conformation of the states themselves. Indeed, to the extent that membrane deformations induce

conformational changes in the protein itself, the structure of the protein itself becomes lipid context

dependent, complicating predictions. At present, we treat the protein as a black box which gives

us a fixed geometry for state i described by the state vector Xi, and a protein conformational free

energy, GP,i. As we have discussed above, the geometry of the channel in the ith conformational state

is described by the radius (Ri), the hydrophobic thickness (Wi), and the two angular parameters

that we usually interpret as the shape of the protein’s interface (U ′i ,H
′
i). Please see Fig. 4.2.1 and

Sect. 4.2.2. These protein parameters are combined, for economy of notation, into the state vector

Xi,

Xi ≡ (Ri,Wi, U
′
i ,H

′
i). (4.67)

We assume these protein parameters are fixed by internal conformation and do not depend on the

parameters of the bilayer membrane such as the lengths of the lipid tails or the concentration of

spontaneous curvature inducing lipids, nor on the applied tension, α. We will call this simplified

picture the static conformation approximation. Explicitly, we assume the free energy takes the form

Gi = GP,i +GM(Xi), (4.68)

for state i where GP,i and Xi are independent of the bilayer parameters and the applied tension.

In principle, we can try to determine the unknown state vectors, Xi, by varying the membrane

parameters and the applied tension. Of course the primary advantage of the static conformation

approximation is that it allows simple predictions to be made relating to the channel gating. This

model is probably reasonable for relatively modest changes to the bilayer parameters provided that

the free energy wells corresponding to the conductance states are relatively sharp and well defined

with respect to changes in the state vector Xi.

4.4.1 Opening Probabilities for Two State System

The difference in free energy between the open and closed states is defined as

∆G = −kT log
PO

PC
= ∆GP + ∆GM, (4.69)

where Pi is the probability of state i, and ∆ here is the difference between open and closed. Notice

that this expression is independent of the free energies of the other states as a result of working with

the ratio of the open and closed probabilities. For ease of interpretation, it is convenient to further
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subdivide the free energy by subtracting off the areal deformation contribution such that

∆G = ∆GP + ∆G0
M − α∆A, (4.70)

where the ∆G0
M is the bilayer deformation energy less the areal contribution. Since we expect

the only tension dependence to come from the linear areal deformation term, the measured ∆G

should be linear in tension. What would a non-linear behavior tell us? It would signal that there is

additional tension dependence in the terms above. Provided that we are convinced the bilayer terms

are correct, it would signal that the static conformation approximation is failing: the conformation

of the state is tension dependent! Data from Sukharev et al. (1999) have shown that ∆G is at least

fairly linear in tension. Assuming that linear dependence discussed above is correct, the slope with

respect to tension of the free energy gives us the area change:

∆A = −∂∆G
∂α

(4.71)

and the free energy can be written in a convenient form (Hamill and Martinac, 2001)

∆G = ∆A
(
α1/2 − α

)
, (4.72)

where α1/2 is the opening tension (where the probability of being open or closed is equal) and is

given by

α1/2 =
∆GP + ∆G′M

∆A
=

∆G0

∆A
, (4.73)

where ∆G0 is the free energy change with the areal deformation contribution removed or alternatively

the free energy difference at zero tension. When the free energy is written in terms of the opening

tension (Eq. 4.72), it is clear that changes in the lipid parameters, such as the equilibrium thickness

for example, lead to a simple offset of the opening tension, leaving the dependence of the ratio of

open to closed probabilities versus applied tension otherwise unchanged, as Perozo et al. (2002a)

have observed. This observed offset behavior is indirect evidence that the change in the area between

the closed and open states is roughly independent of the bilayer parameters, implying that the open

and closed states are fairly well defined, at least radially. In the rest of the paper we will refer to

∆G0 as the free energy difference, dispensing with the subscript.

In patch clamp experiments, the tension is controlled indirectly via the pipette pressure. The

pressure and tension are related using Laplace’s law:

P =
2α
R
, (4.74)

whereR is the radius of curvature of the membrane patch. Typically it is assumed that this curvature
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is roughly constant during the experiment (e.g., Hamill and Martinac, 2001) which implies that

opening pressure is proportional to the opening free energy

∆G0 = P1/2

[
∂G

∂P

]
P1/2

, (4.75)

where the derivative of G is expected to be constant since it is ∆AR/2.

4.4.2 Mismatch and Gating

Before we begin our analysis in earnest, we wish to quickly remind the reader of the differences in

the current model from that in our recent short paper (Wiggins and Phillips, 2004). In our previous

paper we developed a simplified version of the model described above. The only geometrical change

between the open and closed states was in the channel radius. In that model, the energetics of the

bilayer deformation energy is one dimensional and can be analyzed as a competition between the

bilayer line tension and the applied tension (Wiggins and Phillips, 2004)

GM = f · 2πR− α · πR2, (4.76)

where f is the line tension and where the only free parameter is the effective thickness of the

protein which we fit using the data of Perozo et al. (2002a). On the other hand, the simplifications

associated with this model (i.e., we did not differentiate between the thickness of the open and closed

states) leave it unable to reproduce the data of Powl et al. (2003) which essentially measures the

bilayer deformation of the closed state. In spite of this limitation, this simple theory based upon

the competition between the line tension and applied tension reveals that (i) the acyl chain length

dependence of the opening free energy as measured by Perozo et al. (2002a,b) is very naturally

explained by the thickness deformation energy and can qualitatively explain that (ii) spontaneous

curvature could lead to open state stabilization and that (iii) the substates of the channel should be

short lived. In this section, we undertake a more quantitative analysis in which we allow the open and

closed states to have different hydrophobic thicknesses. In particular, we analyze the experimental

data from three different classes of experiments in detail. First, we focus on the opening free energy

measurements by Perozo et al. (2002a). Next, we analyze the lipid-MscL interaction data from

Powl et al. (2003) and finally, we consider the recent mutation studies by Yoshimura et al. (2004)

who altered amino acids in the transmembrane region of MscL. Note that we argue that our model

should be viewed more as serving as an interpretive tool than as a scheme for fitting experimental

data. As will be seen in the discussion to follow, the act of interpreting the data from these various

experiments consistently suggests that the usual view of static protein structures that are lipid

independent may have to be amended.
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Figure 4.13: The theoretical free energy difference compared to the experimental data of Perozo et
al. (2002a) for different choices of the geometric parameters characterizing the open state thickness.
The thickness deformation energy is plotted for a closed state thickness of WC = 37.5 Å and several
different open state thicknesses. Each curve is shifted to pass through the data point at an acyl
chain length of 1 6. An open state thickness of WO ∼ 36 Å give a reasonable fit to the experimental
data. Perozo and coworkers also have electron paramagnetic resonance data for bilayers with acyl
chain lengths n ≥ 10 which suggest that the channel is closed (∆G ≥ 0) in the absence of applied
tension.

Perozo et al. (2002a) have measured the opening free energy of the channel for three bilayers

with acyl chain lengths 16, 18, and 20. We will fix the thickness of the closed state (WC = 37.5 Å)

based on experimental data from Powl et al. (2003) and corroborating computational evidence from

Elmore and Dougherty (2003). This assignment seems reasonable based on the distribution of the

hydrophobic residues in the closed state crystal structure as illustrated in Fig. 4.2.1. We now vary

the open state thickness, WO, and compare the resulting opening free energy versus lipid acyl chain

length to the experimental data of Perozo et al. (2002a). While Perozo and coworkers have measured

the opening free energy for only three acyl chain lengths, their electron paramagnetic resonance

(EPR) data suggests that even in acyl chain length 10 lipid bilayers, the channel does not open

spontaneously in the absence of applied tension. This qualitative information provides an additional

constraint for the theory to satisfy (∆G ≥ 0 for n ≥ 10). We find that for WO ∼ 36 Å, we have

the best agreement with the experimental data. The comparison between the theoretical opening

free energy and the measured values as a function of acyl chain length is depicted in Fig. 4.4.2. Our

fit with the experimental data is reasonable considering the complexity of the channel system and

the naivete of the static conformation model. The inability of the theory to fit the data exactly

is to be expected from a model where the elastic constants have been fit to scaling laws and the

subtle conformational changes of the protein are ignored. As noted earlier, we view our model as a

framework for interpreting previous experiments and suggesting new ones, as well as for providing

intuition, rather than as a fitting scheme. As is clear from the figure, it is quite difficult to satisfy
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Figure 4.14: The theoretical line tension for MscL compared with the line tension estimated from
the measurements of East, Lee and coworkers (East and Lee, 1982; O’Keeffe et al., 2000; Powl et al.,
2003). The experimental data for several different proteins has been aligned so that the minimum
line tension is assumed to correspond to zero mismatch. In the small mismatch regime, there is very
reasonable agreement between theory and the measurements. At large mismatch the story becomes
more complicated. There is significant variation between proteins, and even between Eco and Tb
MscL. These variations may signal conformational changes in the protein. The methods of East and
Lee are only sensitive to the free energy in the first layer of lipids surrounding the proteins. It is
therefore natural to expect the theoretical line tension to be larger than the measured line tension.
We have plotted the saturating thickness deformation energy (GUW ) for interface energies σ = ∞
(solid), σ = σ∗ (dotted), and σ = σ∗/2 (dashed) since σ∗ probably underestimates the saturation
effect since the interface of the bilayer which would initially be exposed to solvent is not extremely
hydrophobic (e.g. White and Wimley, 1999).

both the large mismatch opening free energy for acyl length n = 20 and the constraint that the

channel be closed (∆G ≥ 0) for acyl length n ≥ 10. In light of the proposed structures for the

open state (Sukharev et al., 2001a,b; Betanzos et al., 2001; Perozo et al., 2002a,b), our predicted

change in channel thickness is quite modest. (See Fig. 4.2.1.) An open state with a smaller thickness

satisfies neither the large n nor the small n limits.

We must treat the predictions of the theory with care when the mismatch is large since the

theoretically predicted bilayer deformation energies are probably large enough to lead to protein

conformational changes, violating our static geometry approximation. That is to say, either or

both the closed and open states of the protein deform significantly. This systematic uncertainty

is not a peculiarity of our models but a quite general uncertainty. For example, it is unclear that

the lysophosphatidylcholine (LPC) stabilized conformation observed by Perozo et al. (2002a,b) is

in precisely the same conformation as the open state of the channel stabilized by applied tension,

reconstituted in a PC18 bilayer. One experimentally accessible probe to conformational changes

is a precise measurement of the applied tension dependence of the free energy difference between
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states. If the open and closed states are significantly perturbed by the applied tension, we would

expect a deviation from the linear dependence (Eq. 4.71) of the free energy on applied tension.

Alternatively, precise measurements of the area change between the open and closed states in different

bilayers might show that the area change is lipid context dependent. We revisit the question of

conformational changes below. At present, we conclude that experimental data of Perozo et al.

(2002a,b) is compatible with the model. Due to both the approximate nature of the static geometry

approximation and the systematic uncertainties inherent in patch clamp measurements of channel

opening free energies (E. Evans, personal communication) it is important not to place too high a

premium on the precise fitting of the data of Perozo et al. (2002a).

A more direct experimental method for analyzing the free energy of the MscL closed state has

been exploited by Powl et al. (2003). East, Lee and coworkers (East and Lee, 1982; O’Keeffe et

al., 2000; Powl et al., 2003) have developed Trp fluorescence spectroscopy to study lipid-protein

interactions. Their technique measures the lipid-protein binding constant for channels reconstituted

in liposomes. The log of this binding constant is the free energy difference between lipids at the

boundary and lipids in the bulk of the bilayer (See Powl et al., 2003 for details.) This free energy per

lipid can then be converted into a line tension at the interface. While this experimental technique

provides a very direct measurement of the free energy per lipid, it is only sensitive to the free energy

in the first layer of lipids surrounding the protein where there is direct interaction between lipid and

protein. Powl et al. (2003) measure a minimum line tension for an acyl chain length of 16, which

roughly corresponds to a thickness of 37.5 Å. We assume that this chain length corresponds to zero

mismatch, implying that the thickness of the closed state equals the equilibrium thickness of the

bilayer:

WC = 2a16. (4.77)

We can now compute a theoretical line tension for the closed state as a function of acyl chain

length. In Fig. 4.4.2, we compare the experimental measurements of this line tension to the thickness

deformation line tension predicted by theory. In the small mismatch regime, there is very reasonable

agreement between theory and measurement. This is a nontrivial result since although we have fit

the data to choose the minimum of the line tension, the curvature of the line tension (the second

derivative with respect to the protein thickness) is predicted by the bending moduli of the membrane

measured at very small curvature on µm length scales! At large mismatch, the predictions of

the theoretical model are significantly higher than the experimentally measured values. There are

several possible explanations for this discrepancy: (i) the predictions of the theory are too large for

large mismatch signaling the onset of nonlinear elastic effects, for example, (ii) there are systematic

problems comparing this competition assay to the deformation energy, or (iii) conformational changes

in the protein reduce the size of the mismatch. For the moment, let us assume that the theory is
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incorrect for large mismatch (i). If we use the measured line tension, f exp
U , for a given mismatch,

we can estimate the bilayer deformation free energy change between the open and closed states

∆G′ = [f exp
U · 2πR]O − [f exp

U · 2πR]C , (4.78)

where the ′ is used to differentiate this computed free energy difference from that measured by Perozo

et al. (2002a). ∆G′ can then be compared to the measured values of Perozo et al. (2002a) (∆G) with

the aim of examining the internal consistency of the model and both datasets. For WO = 36 Å, the

free energies are presented in Table 4.2. Remember that the numbers from Perozo are the total free

energy change between states, the sum of both the membrane and protein free energy changes, while

those we have estimated from the data of Powl include only the membrane interaction term. As

before we will assume that the conformation and energy of the protein are roughly static, independent

of the bilayer lipid acyl chain length. We therefore expect the free energy differences of Perozo and

Powl to differ by a constant, corresponding to the protein conformational free energy difference,

∆GP . To eliminate the ∆GP contribution, we examine the relative changes in the opening free

energy relative to the opening free energy for the acyl chain length 16 bilayer

∆∆G ≡ ∆G−∆G16. (4.79)

The data of Powl et al. (2003) predicts the difference between the acyl chain lengths 16 and 18

(∆∆G18 ≈ ∆∆G′18), but fails spectacularly to predict the difference between the acyl chain lengths

16 and 20 (∆∆G20 6= ∆∆G′20). The agreement for small mismatch is no surprise since there is

reasonable agreement between the measured line tension of Powl et al. (2003) and theory. But for

large mismatch the measured line tension is just far too small to match the data of Perozo et al.

(2002a). The reader may wonder whether this situation might be mitigated by changing the value of

WO. However, it is very difficult to reconcile such small values of the line tension with the measured

free energy differences of Perozo. Perhaps the most distinct characteristic of the data of East, Lee and

coworkers is the variation in the line tension for large mismatch between proteins and even between

Eco and Tb MscL. This would seem to suggest, as they have speculated (Powl et al., 2003) that

conformational changes in the protein (iii) are the most attractive explanation for large mismatch

dependence of the line tension. As we have already speculated, we expect the static conformation

approximation to break down for large mismatch. It is difficult to rule out that there may be

systematic problems with comparing the results of this competition assay to theoretical estimates

for a single component bilayer. The environment in the bulk of the mixed bilayer is different from

that of a single component bilayer. Furthermore, for large mismatches, a very significant fraction

of the deformation energy is not localized in the first ring of lipids surrounding the protein and

hence, is not revealed in the measurements of Powl et al. We would expect these membrane related
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n ∆G (kT ) ∆∆G (kT ) ∆G′ (kT ) ∆∆G′ (kT )
16 4 0 1.5 0
18 9.4 5.4 6.6 5.1
20 23.5 19.5 7.5 6

Table 4.2: Summary of the free energy differences measured by Perozo et al. (2002a) and those
predicted from the line tension measured by Powl et al. (2003). n is the acyl chain length, ∆G is
the free energy differences between the open and closed state measured by Perozo et al. and ∆G′

is the deformation free energy difference predicted using the data of Powl et al. The relative free
energy changes are defined ∆∆G ≡ ∆G−∆G16 and ∆∆G′ ≡ ∆G′ −∆G′16. (See the Appendix for
more details on this calculation.)

systematic errors to be independent of the protein, in contrast to experimental observations. A

much more meaningful comparison to the data of Perozo et al. (2002a) might be attempted if

the same measurements were repeated for the MscL channel trapped in the open state (perhaps

via crosslinking). This direct measurement of the bilayer interaction free energy would be a useful

addition to the experimental story and provide a direct experimental test of our predicted value of

the open channel thickness, WO.

In our previous paper (Wiggins and Phillips, 2004) we proposed that the width of the hydrophobic

region of the protein could be engineered to adjust the gating tension of the channel. Shortly after our

paper appeared, Yoshimura et al. (2004) published data describing precisely this type of experiment.

Yoshimura and coworkers mutated residues in the hydrophobic region of the protein to hydrophilic

asparagine and studied the gain/loss of function in the mutants. Single mutations were shown

to possess significant loss of function phenotypes especially for mutations at the boundaries of the

hydrophobic interface region of the channel. Yoshimura and coworkers also measured the the relative

increase in gating pressure which is roughly proportional to the ratio of the opening free energies

(see Eq. 4.75). Of the mutated channels which Yoshimura and coworkers were able to gate, there

were mutations which gated at 1.5 times the wild-type pressure. The most severe loss of function

mutations did not gate up to pressure of roughly twice the wild type gating pressure. Theoretically,

we can estimate the change in the opening free energy due to these alterations in the protein-lipid

interface. For a small change in the hydrophobic width of the channel (dW = dWO = dWC)

d∆G = −(∆FU ) dW ≈ −3.5
(
dW

1 Å

)
kT, (4.80)

for typical values (WO = 36 Å, WC = 37.5 Å, and n = 18). (Since these patch-clamp measurements

were performed in spheroplasts rather than synthetic liposomes, the effective lipid parameters are

unknown.) We expect the change in the opening tension to be roughly

∆α1/2 =
d∆G
∆GA

α1/2 ≈ 0.3
(
dW

1 Å

)
α1/2, (4.81)
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where we used the same parameters as above to estimate the relative change in the opening tension.

(Remember that the relative change in the opening tension and pressure will be the same if the

patch radius is roughly constant.) The free energy changes corresponding to reducing the size of the

hydrophobic interface of the protein by a few Angstrom might energetically account for the observed

increase in gating pressure and perhaps for those channels which did not gate. We hope to see this

experiment repeated in synthetic liposomes where we would have more theoretical control of the

system or alternatively studied with the methods employed by Powl et al. (2003) so that the change

in the line tension for the closed state might be measured. We cannot rule out that more subtle

mechanisms are responsible for the changes in the gating sensitivity. For example, in molecular

dynamics simulations Gullingsrud and Schulten (2003) have drawn attention to the significance of

the region of the protein interface on which the tension is applied.

Computationally, thickness deformation of the membrane has been observed in molecular dy-

namics simulations performed by Elmore and Dougherty (2003). Their simulations of MscL in the

closed conformation for lipid acyl chain lengths 10-18 reveal that the lipids at the interface deform

to offset the mismatch, at least in silico. Their simulations have also captured a complementary

reduction in the protein hydrophobic interface thickness, a conformational change which violates

our static conformation approximation (as well as the implicit static conformation approximation

in Perozo et al., 2002b, or Sukharev et al., 2001) but which we have speculated may play a role in

the discrepancy between our theoretical predictions and experimental measurements. This protein

deformation could, in principle, be used to further generalize our analytic model, replacing the static

conformation approximation with a model allowing protein deformation induced by the membrane,

though the effective spring constant penalizing lipid-induced protein shape changes would need to

be determined computationally. In fact, the spring constant for the closed state could be deduced

from the data already provided by Elmore and Dougherty (2003). This more general model would

be a natural extension to the model discussed here.

4.4.3 Spontaneous Curvature and Gating

While we have discussed several quantitative studies of acyl chain length versus free energy, the

effects of spontaneous curvature on gating has, to our knowledge, only been studied by Perozo et

al. (2002a,b). Perozo and coworkers have shown that bilayers asymmetrically doped with LPC, a

spontaneous-curvature-inducing surfactant, can stabilize the open state in the absence of tension. In

our recent paper (Wiggins and Phillips, 2004) we showed that spontaneous-curvature-induced line

tension could result in precisely this effect. However, we have been unable to make a quantitative

analysis of this idea since the opening free energy has not been measured as a function of LPC

concentration. (See predictions in Fig. 6.11.) We expect the concentration dependence of the free

energy difference to be linear in LPC concentration. More complicated scenarios are also possible.
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If the interface tilt is induced by LPC, we would expect a roughly quadratic rather than linear

dependence on LPC concentration.

4.5 Conclusion

The MscL channel is an appealing system in which to study lipid-protein interactions since its

function is to couple tension in the lipid membrane to protein conformation. During the gating

transition, the channel undergoes a very large conformation change, dramatically expanding radially

and leading to a significant local rearrangement of the lipid bilayer. The deformation free energies

induced by this rearrangement and their role in channel gating has been the focus of this paper.

While many uncertainties remain, we believe the start of a consistent story has begun to emerge

from experiment. Indeed, we speculate that the framework described here might prove useful in

analyzing the function of any ion channel whose gating leads to perturbations in the surrounding

membrane.

Our goal in this paper has been to build an analytic framework in which to provide quantitative

interpretation and compare experimental results on MscL gating. To that end, we have expanded

and improved upon an existing simple analytic membrane-protein model and applied it to mechan-

otransduction and the MscL system. In Sect. 4.3, we have estimated the size of various contributions

to the deformation energy of the membrane and have discussed the scaling of these contributions. In

Sect. 4.4, we have shown how this model, when coupled with a simple two state static conformational

model of the MscL channel qualitatively and quantitatively agrees with most all of the experimental

features of channel gating, although one important geometrical parameter, the open state thickness

of the protein, must still be fit. As part of our analysis, the model suggests that the assumption

that protein conformational states are independent of their lipid context (such as the lengths of the

lipids that the channel is reconstituted in) is perhaps not borne out experimentally, making struc-

tural models of gating even more subtle. Beyond the interpretation of existing experimental data,

we have proposed a number of experiments which we believe will further elucidate the mechanisms

of channel gating. Specifically, additional experiments analogous to those performed by Powl et

al. (2003) with the channel locked into the open state could provide topical information about the

conformation of the open state and its interaction with the membrane. Such data, when combined

with the data already available for the closed state, would allow a direct comparison to the gating

free energies measured by Perozo et al. (2002a) and a test of our predictions of how the free energy

depends on the geometry of the open state. We still believe that a more controlled version of the

experiments preformed by Yoshimura et al. (2004), when combined with careful modeling would

allow the sensitivity of the channel to be tuned by changing the size of the hydrophobic interface.

We hope that these experiments will be repeated in synthetic liposomes where the theoretical model
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is easier to apply. Finally, we suggest the need for a detailed test of the static conformation approx-

imation by a careful measurement of the area change between states as a function of both applied

tension and acyl chain length. We hope that the approximations developed in this paper will be

useful in precisely formulating quantitative experimental questions.

4.6 Acknowledgments
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4.7 Appendix

4.7.1 Units and Conversions

Throughout the paper, we use kT at T = 300 K as our energy scale and Åas our fundamental length

scale. Tension is in units of pN Å
−1

. This table provides the conversion to “real life” units:

T = 300 K (4.82)

1 kT = 4.143× 10−14 erg = 4.143× 10−21 J = 0.5988 kcal mol−1 (4.83)

1 kT Å
−1

= 41.43 pN = 4.143× 10−11 N (4.84)

1 kT Å
−2

= 41.43 pN Å
−1

= 4.143× 10−1 N m−1 (4.85)

1 kT Å
−3

= 4.143× 1010 dyne cm−2 = 4.143× 109 Pa = 3.0570× 107 mmHg (4.86)
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Figure 4.15: Accuracy of lipid model. In the top panel, we plot lipid bilayer thickness versus acyl
chain width. There is reasonable agreement between the linear fit and the data provided that the
lipid is not poly-unsaturated. In the bottom panel the effective spring constant K is plotted versus
lipid bilayer width. K is roughly independent of the bilayer thickness. All data from Rawicz et al.
(2000).

4.7.2 Bilayer Parameter Model

We recommend Rawicz et al. (2002) (from which we have taken the table below) for a brief review

of the mechanics of bilayers. There is a subtlety which we haven’t discussed in the paper relating

to the difference between peak to peak head group thickness which is measured from X-ray crys-

tallography and mechanical thickness–that portion of the tail of the lipid which is deformed. The

mechanical thickness of the bilayer is roughly 1 nm less than the peak to peak thickness (Rawicz et

al., 2000). When we discuss the scaling of the moduli, it is this thickness that we really consider.

This uncertainty is compounded by the question of how this thickness relates to the hydrophobic

thickness of the bilayer. The thickness of the interface between the hydrophobic region and the

hydrophilic region is also difficult to define (White and Wimley, 1999). The MscL protein itself does

not really have a sudden transition between hydrophobic residues and hydrophilic ones, meaning

that one cannot really start with the structure and say definitively what the hydrophobic thickness

is. This model is at best a caricature which attempts to capture the essential mechanics and it is

for this reason we have not tried to differentiate between all these different thickness and replaced

them all with a single approximation.

Having taken this spartan view of the bilayer, we assume the bilayer acts as if there were only
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Length 2a KA KB

Lipid (atoms) Å (kT/Å
2
) (kT )

diC13:0 13 34.1± 0.5 0.576± 0.03 14± 2
diC14:0 14 35.2± 0.6 0.565± 0.05 14± 2

C18:0/1* 18 40.7± 0.6 0.568± 0.03 21± 2
diC18:1c9 18 36.9± 0.4 0.638± 0.04 20± 2
diC18:2 18 34.9± 0.3 0.596± 0.05 10± 2
diC18:3 18 34.3± 0.6 0.588± 0.08 9.3± 1
diC20:4 20 34.4± 0.7 0.603± 0.02 10± 1
diC22:1 22 43.7± 0.5 0.634± 0.02 29± 3

Table 4.3: Lipid bilayer parameters. kT for T = 300 K. * indicates the lipid numbers used for
standard values in calculations. Tail Length is the number of Carbon atoms which comprise each
of the two tails. The full names of the lipids are: 1,2-ditridecanoyl-sn-glycero-3-phosphocholine
(diC13:0); 1,2-dimyristoyl-sn-glycero-3-phosphocholine (diC14:0); 1-oleoyl-2-stearoyl-sn-glycero-3-
phosphocholine (C18:0/1); 1,2-dioleoyl-sn-glycero-3-phosphocholine (diC18:1c9); 1,2-dilinoleoyl-sn-
glycero-3-phosphocholine (diC18:2); 1,2-dilinoleoyl-sn-glycero-3-phosphatidylcholine (diC18:3); 1,2-
diarachidonoyl-sn-glycero-3-phosphocholine (diC20:4); 1,2-dierucoyl-sn-glycero-3-phosphocholine
(diC22:1).

one elastic constant governing its behavior, the (effective) Young’s Modulus of the lipid tails

E =
ε

2

(
∆V
V

)2

(4.87)

where E is the elastic energy density, V is the volume and ε is the Young’s modulus. The only

length scale for the bilayer is its thickness 2a so all the rest of the elastic moduli for the bilayer scale

with ε and the number of powers of a required to get the right units. These dimensional analysis

arguments predict

KB ∝ a3, (4.88)

KA ∝ a1, (4.89)

K ∝ a0. (4.90)

This is a rough scaling, not a physical law, but it is sufficient for our calculations. (See Fig. 4.7.2.)

For a more rigorous argument and experimental results, see Rawicz et al., 2000. Table 4.7.2 gives

the measured values for the elastic constants of a typical bilayer taken from Rawicz.

For estimates of bilayer thickness as a function of acyl chain length, we have fit the peak to peak

head group separation to acyl chain length for the saturated lipids above as shown in Fig. 4.7.2. We

have used the relation:

2a = 1.3n+ 16.6 Å, (4.91)

although slightly more elaborate formulas are offered in Rawicz et al. (2000). When discussing the
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lipids used by other authors, we have used the same naming convention they employed: PC12 (12:0

dilauroyl-phosphatidylcholine), PC10 (10:0 dicaproyl-phosphatidylcholine), PC16 (16:1dipalmitoleoyl-

phosphatidylcholine), PC18 (18:1 dioleoyl-phosphatidylcholine), PC20 (20:1 Eicossenoyl-phosphatidylcholine),

PE (18:1 dioleoyl-phosphatidylethanolamine), LPL (lysophospholipid), LPC (lysophosphatidylcholine),

DOPC (dioleoylphosphatidylcholine), and DOPE (dioleoylphosphatidylethanolamine).

4.7.3 Effective free energy density

The mean curvature contributions to the free energy density are

GB = KB

2

(∇2h
)2

+
(
∇2u

)2︸ ︷︷ ︸
M

− 2
(
C∇2h+ C∇2u

)︸ ︷︷ ︸
∂M

 , (4.92)

where the variation of the M terms contribute to the action in the bulk (bilayer), the ∂M terms

are total derivatives and can be evaluated at the interface, and constant terms are dropped. The

Gaussian curvature contributes only at the boundary, not in the bulk, and will be calculated exactly

below. The tension contributions to the free energy density are

Gα =
α

2

[
(∇h)2 + (∇u)2

]
︸ ︷︷ ︸

M

(4.93)

where as before, the variation of the M terms contribute to the action in the bulk (bilayer). The

interaction free energy density is

GI =
KA

2a2
u2︸ ︷︷ ︸

M

. (4.94)

4.7.4 Equilibrium equations and solutions

The equations that result from the variation of u and h are

0 =
δG[u, h]
δu

=
[
KB∇4 − α∇2 +

KA

a2

]
u, (4.95)

0 =
δG[u, h]
δh

=
[
KB∇4 − α∇2

]
h. (4.96)

One Laplacian can be dropped from the equation for h and amounts to the freedom for rotations of

the bilayer in the x, z and y, z planes and displacements along the z axis. We choose a configuration

by specifying the equilibrium position of the plane. Assuming cylindrical symmetry, these equations

are satisfied by the modified Bessel function K0

1
r∂rr∂rK0(βr) = β2K0(βr), (4.97)
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resulting in the solutions

u(r) = A+K0(β+r) +A−K0(β−r), (4.98)

h(r) = BK0(βHr), (4.99)

where β± and βH are given by

β± ≡

√
α±

√
α2 − 4KBKA/a2

2KB
, (4.100)

βH ≡
√

α

KB
, (4.101)

where the branch cuts for the square roots are along the negative real axis. β± need not be real and

in fact if

α2 < 4KBKA/a
2, (4.102)

the β± are complex and u oscillates as it decays. The boundary conditions can be used to determine

the constants A± and B as

A± = −
K∓U

′ + β∓UK
′
∓

β±K ′
±K∓ − β∓K±K ′

∓
, (4.103)

B =
H ′

βHK ′
0(βHR)

, (4.104)

where

K± ≡ K0(β±R),

K ′
± ≡ K ′

0(β±R).

For large z, the Bessel functions can be replaced by their asymptotic approximation as

K0(z) →
√

π

2z
exp(−z) (4.105)

K ′
0(z) → −

(
1 +

1
2z

)√
π

2z
exp(−z). (4.106)

The relevant length scale for u is the decay length for thickness deformation:

β−1 ≡
(

KA

KBa2

)−1/4

∼ 11 Å < RMscL. (4.107)

Since the decay length is shorter than the channel radius, we can expand our results in βR. By way

of contrast, the length scale for mid-plane deformation is typically much larger since the restoring
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force, in the form of the tension, is relatively weak

β−1
H =

√
KB

α
∼ 27

√
α∗
α

Å. (4.108)

At low tension the length scale is even larger. Fortunately we will see that when the analytic approx-

imation breaks down, the mid-plane energy is irrelevant in comparison with the other contributions

anyway.

4.7.5 Calculation of Free Energy

Except for the areal deformation term, the free energy can be calculated on the boundary by inte-

grating by parts:

G[h, u] =
∫
M′

d2x G, (4.109)

=
∫
M′

d2x

(
u
δG

δu
+ h

δG

δh
+ α

)
+
∫

∂M′
ds n̂ · (...) , (4.110)

where the variations in the integral over the bilayer M are zero since the equations for equilibrium

are satisfied. The surface integrals come from integration by parts. The spontaneous and background

curvature contributions are

GC ≡ −
∫
M′

d2x
(
C+∇2h+ − C−∇2h−

)
, (4.111)

= −
∮

∂M′
dn̂ · KB

2 (C+∇h+ − C−∇h−) , (4.112)

= πRKB

(
C+H

′
+ − C−H

′
−
)
. (4.113)

The energy contributions from thickness deformations of the bilayer are

GU =
1
2

∮
∂M′

dn̂ ·
(
KB

[
∇u∇2u− u∇3u

]
+ αu∇u

)
, (4.114)

= πR(−r̂) ·
(
KB

[
∇u∇2u− u∇3u

]
+ αu∇u

)
|R, (4.115)

= πRKB

(
β2

+ − β2
−
) (
K+U

′ − β+UK
′
+

) (
K−U

′ − β−UK
′
−
)

β−K+K ′
− − β+K−K ′

+

− αUU ′, (4.116)

= πR
[
KB (β+ + β−)

(
U ′ +

[
β+ + 1

2R

]
U
) (
U ′ +

[
β− + 1

2R

]
U
)
− αUU ′

]
, (4.117)

where GU contains all the free energy terms in u except those proportional to C± and the asymptotic

approximation has been used in the last line of the derivation. Consider the simple limit when U ′ = 0,

namely,

GU = πKB (β+ + β−) [β+β−R+ (β+ + β−)]U2 (4.118)
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Figure 4.16: Validity of asymptotic approximation for dimensionless thickness deformation free
energy. The curves above depict the difference between the exact result (eqn. 4.116, solid curve),
the asymptotic expansion (eqn. 4.118, dashed curve), and the dominant scaling result (shown in
Table 6.1, dotted curve). There is excellent agreement between the approximate result and exact
result for radii relevant for MscL: R̂ > 1.

where we have discarded terms in lower powers of R. To address the validity of this approximation,

we compare this result with the exact result. We make the radius dimensionless using the inverse

decay length in the low tension limit

β ≡
(

KA

KBa2

)1/4

, (4.119)

R̂ ≡ βR. (4.120)

We define a dimensionless thickness deformation free energy,

GU = πKBU
2β2ĜU . (4.121)

The exact result and the approximation are compared in Fig. 4.7.5.

The free energy associated with the deformation of the mid-plane is

GH =
1
2

∮
∂M′

dn̂ ·
(
KB

[
∇h∇2h− h∇3h

]
+ αh∇h

)
, (4.122)

= πR(−r̂) · [αh∇h]R , (4.123)

= πKBH
′2R̂

[
K0
|K′

0|

]
R̂

(4.124)

where R̂ ≡ βHR. The last line is the exact result of the model. If we apply the asymptotic
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Figure 4.17: Validity of asymptotic approximation for dimensionless mid-plane deformation free
energy (Eq. 4.126). The curves above depict the difference between the exact result (eqn. 4.124,
solid curve), the asymptotic expansion (eqn. 4.125, dashed curve), and the dominant scaling result
(Table 6.1, dotted line). For MscL the prefactor πKBH

′2 is typically less than kT implying that the
greatest error (when the tension is 0) is a fraction of a kT at most.

approximation, the result reduces to

GH = πKBH
′2
[
R̂− 1

2 +O( 1
R̂

)
]
. (4.125)

The asymptotic approximation is violated for small tensions but the result is typically acceptable

since the relative error in the energy when the tension is small is irrelevant. The prefactor is typically

less than a kT and as can be seen in fig. 4.7.5 the error is at most half this prefactor. We define a

dimensionless mid-plane deformation free energy

GH = πKBH
′2ĜH . (4.126)

The dimensionless energy defined above is compared with the approximate value in Fig. 4.7.5.

The Gaussian curvature contribution can be calculated exactly and has no local effect because

it is related to a well known topological invariant, the Euler characteristic:

2πχ ≡
∫
M
d2σ detS−

∫
∂M

ds k, (4.127)

where detS is the Gaussian curvature and

k ≡ tanb∇at
b, (4.128)
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is the curvature of the boundary where ~t is the unit tangent on the boundary and ~n is the outward

pointing unit normal to the boundary. See Polchinski, 1998, for example. In terms of the Euler

Characteristic, the Gaussian curvature contribution is

GG = KG

(
2πχ+

∫
∂M

ds k

)
. (4.129)

χ depends on membrane topology alone and can be dropped since changes in protein conformation

do not effect the membrane topology. The Gaussian bending energy is therefore exactly

GG = KG2π cos θ, (4.130)

where θ is the angle of the bilayer away from horizontal at the interface. For the bilayer model in

the small angle approximation this is

GG = −KGπ

2
(
H ′ 2

+ +H ′ 2
−
)

= −KGπ
(
H ′ 2 + U ′ 2

)
. (4.131)

The Gaussian curvature contribution induces bending of the protein to relieve the bending of the

bilayer. Existing measurements are consistent with

KG < − 1
2KB , (4.132)

(see Boal, 2002 for references) but we will assume that the magnitudes are similar. If this is the

case, none of these corrections is particularly relevant for MscL.

Finally we calculate the areal deformation term. Before explaining the calculation, let us define

precisely what we mean by the tension. The tension we are discussing is the applied tension, not

a surface tension. Changes in the inclusion conformation do not effect the area of the bilayer–it

is assumed that there is some small change in the global conformation which absorbs this area

change. Furthermore these conformational changes do not change the tension since we assume that

the bilayer is much larger than the size of the inclusion. Since the area of the bilayer is essentially

fixed–at least the number of lipid molecules in the bilayer is fixed–the tension we discuss here is the

applied tension rather than a surface tension.

The global conformation of the bilayer acts as a bilayer reservoir. The free energy cost for

increasing the bilayer area of our small system is

dGA = αdAM = −αdAP (4.133)

where the change in the proteins area is minus that of the bilayers. As mentioned above we assume

that the reservoir is large enough that changes in the protein conformation have no effect on the
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WO = 28.0 Å.
n 2a (Å) UO (Å) UC (Å) fO (kTnm−1) fC (kTnm−1) ∆G (kT )
16 37.4 4.7 0.0 0.93 0.0 20
18 40.0 6.0 1.3 1.1 0.15 22
20 42.6 7.3 2.6 1.2 0.7 16

WO = 36 Å:
n 2a (Å) UO (Å) UC (Å) fO (kTnm−1) fC (kTnm−1) ∆G (kT )
16 37.4 0.7 0.0 0.07 0.0 1.5
18 40.0 2.0 1.3 0.4 0.15 6.6
20 42.6 3.3 2.6 0.8 0.7 7.5

Table 4.4: Details of the computation for the comparison between the data of Perozo and Powl.

tension.

4.7.6 Saturation of Thickness Deformation

If the mismatch 2|U | is less than 2U∗, then the mismatch is entirely absorbed by thickness defor-

mation. The maximum thickness deformation free energy, corresponding to a mismatch of 2U∗, is

GMax
U =

4πRσ2
∗

K
(
1 +

√
2

βR

) = 14 kT, (4.134)

evaluated for the closed state. For larger mismatches, 2U∗ is absorbed by the thickness deformation

while 2(|U | −U∗) is exposed to the solvent. The combined interface and thickness deformation free

energy for |U | > U∗ is

GUW = σ∗2πR (2|U | − U∗) . (4.135)

This correction does not dramatically effect the qualitative picture of the thickness deformation

discussed above. In fact, in fig. 4.3.7 we have plotted the deformation energies for interface energy

alone, thickness deformation alone, and the corrected thickness deformation to show that for the

range of bilayer widths of interest in this problem, there is little difference between thickness defor-

mation and the corrected thickness deformation, while ignoring thickness deformation altogether in

favor of interface energy alone results in a significant error.

4.7.7 Details of the Perozo vs Powl comparison

Below we have estimated the bilayer deformation energy based on the EcoMscL data of Powl et al.

(2003). For the closed states, we have simply used the values measured by Powl and coworkers. For

the open state, we have used a fixed value of WO listed below and estimated the mismatch. From

the mismatch, we have reinterpreted the data of Powl et al. (2003) as a function of mismatch (see

Fig. 4.4.2) to estimate the line tension. From the line tensions, we then compute the deformation
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energy difference (∆G ≡ 2π [fORO − fCRC ]). These computations appear in Table ??comp.
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Chapter 5

All about DNA mechanics

“Why is this interesting?”, Jané Kondev remembers asking John Marko after hearing him describe

his recent seminal work with Carlos Bustamante [1] on the extension of single DNA molecules with an

optical trap. When Bustamante’s article appeared in Science, many of the practitioners of traditional

biology were probably thinking the same thing. Was there a better reason for physicists to be pulling

on single molecules of double stranded DNA than a demonstration of technical prowess? Did this

experiment tell biologists anything they did not already know about DNA?

Phil Nelson (U. Penn.), Rob Phillips, and I have recently been reexamining the accepted models

of DNA statistical mechanics with these very questions in mind. This work was motivated by some

very striking experimental results from Tim Cloutier and Jon Widom (Northwestern) [2], which

suggested that DNA is very much more flexible on short length scales than suggested by force-

extension experiments. What makes these results particularly exciting is that DNA bending, on

the short length scales probed by the experiments of Cloutier and Widom, plays an integral role in

many biological processes. These experimental results seemed to upend much we thought we knew

about DNA mechanics and therefore much we thought we knew about biological systems which bend

DNA.

In these next four chapters, I shall describe a lot of work, only part of which is completely finished

(Chapter 6). The DNA bending project has been an active collaboration between experimentalists

and theorists. In the last two or three months, the experimental picture has changed significantly,

several times! In fact, as I am writing this chapter, the wind has shifted yet again. These new

experiments are outlined in Chapter 7.

In this chapter, I will briefly motivate our work on the mechanics of DNA. In Sect. 5.1, I explain

why DNA bending is interesting from a biological perspective. In Sect. 5.2, I quickly outline the ac-

cepted model of DNA mechanics, the wormlike chain model, and briefly derive some technical results

that we shall use in later chapters. In Sect. 5.3, I explain the concept of “effective concentration”

and describe how this concept links DNA looping and DNA cyclization experiments. In particular,

I relate the J factor, measured in cyclization measurements (like the experiments of Cloutier and
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Figure 5.1: The bending of DNA is ubiquitous in the cellular processes associated with genome
management. In the figure above, we depict cartoons of the crystal structures of three biological
processes that bend DNA. The bacteriophage φX174, a virus that infects bacteria, is a DNA bending
expert. The protein capsid shell, shown in the figure, is densely packed with the virus genome which
assumes a spool conformation. Our own genome is tightly wrapped around many protein spools,
called histone core particles (shown in the second panel). The complex, consisting of the protein
and the DNA, is called a nucleosome. DNA bending is also intimately involved in gene regulation.
The lac repressor is a simple example of a very common motif in which gene regulatory proteins
loop DNA. (These images are taken from David Goodsell, the Protein Data Bank.)

Widom) to chain statistics. In Sect. 5.4, I present the experimental results of Cloutier and Widom

[2] and discuss their implication for high-curvature DNA bending. Finally, in Sect. 5.5, I present a

summary of the following chapter on DNA mechanics in which I describe an exact statistical me-

chanics theory of kinkable semi-flexible polymers and discuss the application of this theory to DNA

mechanics.

5.1 Translating genetic code into biological function

DNA was referred to by Francis Crick as one of the two great polymer languages of biology [3], the

repository of the genetic information that makes us what we are [4]. This genetic code contains

the blueprint for the construction of proteins, Crick’s “second great polymer language of biology.”

Proteins are the machines responsible for biological function on a microscopic scale.

The basic set of processes associated with protein expression (synthesis) are called the central

dogma of molecular biology. The DNA sequence, the genetic code, is first transcribed into a messenger

RNA transcript. I think of this process as going to the library and copying a paper from a journal.

The library is the permanent repository of papers, but when I need to use something, I make a

temporary copy of just that piece of the archive. The cell’s genome is the library’s archive and my

photocopy is the messenger RNA. The cell, like me, cannot copy the entire archive, it is too costly.
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Beads-on-a-string

Chromatin Fiber

Figure 5.2: DNA packaging in eukaryotic cells. The figure above is a schematic illustration of
the many levels of structural organization that exist in a mitotic chromosome. The fundamental
packaging unit of chromatin is the nucleosome complex: a histone core (yellow) tightly wrapped
one-and-three-quarter times by double-stranded DNA (red). This figure is from Ref. [5].

Nor can it use the original copy. It might damage this copy or another process might need use the

same gene. In fact, at any one time in the cell, there are typically many RNA transcripts of a few,

essential genes. The RNA transcripts are then translated into many copies of the gene product, the

protein.

5.1.1 DNA packaging

Of course things are not quite that simple. A eucaryotic cell’s library is called the nucleus. The

nucleus is the organelle in which the genome is stored. Much like the complicated system in our own

Caltech library, the cell also has an organized system for storing its genome. Consider the physical

length of our genome: there are roughly three billion base pairs, each a third of a nanometer in

length. If the genome were stretched out, it would be roughly a meter in length! The cell nucleus

has just one millionth this diameter (∼ 1 µm)!

Different organisms have learned to cope with this “DNA packaging problem” in different ways.

eukaryotic cells—like those that we are composed of—have several scales of DNA packaging. On the

shortest length scale, DNA is tightly wrapped around protein “spools” called histone core particles.

These protein spools are roughly 11 nm in diameter. One complex, ∼ 200 bp of DNA wrapped

around the histone core, is called the nucleosome (See Fig. 5.1.1). Nucleosomes collectively form

fibers called chromatin. Due to the large number of nucleosomes required to package our genome,

histones are by far the most common DNA binding protein in eukaryotic cells [4]. The typical state
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Figure 5.3: DNA bacteriophages are protein capsids tightly packed with DNA. Panel A shows a
cartoon of the crystal structure of the capsid of bacteriophage φX174. The genome is believed to
be packaged in an inverse-spool configuration, starting from large radius coils and working inwards
as depicted schematically in panel B. Panel C shows experimental evidence for the spool packaging
hypothesis. This image is from a three dimensional reconstruction of a T7 phage, generated by cryo-
electron tomography [6]. The dark rings in the image correspond to the ordered DNA spool. The
inner radius of the DNA spool is believed to be a few nm [6, 7]. (Panel A is from David Goodsell,
at the Protein Data Bank. Panel C is from Ref. [6].)

of our DNA, due to the high-curvature induced by histones, is very much more condensed than free

DNA in solution.

To see what a huge affect histones have on DNA condensation, it is useful exercise to estimate

how much space the DNA would take up in absence of any confinement. As we shall discuss later,

thermal fluctuations bend DNA spontaneously. The mean squared end-to-end distance of a long

polymer in solution is [8] 〈
∆ ~X 2

〉
= bL, (5.1)

where L is the polymer contour length and b is the Kuhn length which is proportional to the stiffness

of the polymer. (We shall define it more precisely later in the chapter.) For DNA, the Kuhn length

is 100 nm. The mean squared end-to-end distance is approximately the square of physical length of

the polymer in solution. To estimate the volume that DNA occupies in solution, we shall cube this

approximate length

Vfree ∼ (bL)3/2 ∼ 10−10 m3 = 0.1 µL. (5.2)

A tenth of a micro-liter may seem pretty small, but in lab we routinely pipette volumes of just 2

µL! By contrast the volume of the nucleus is

Vnucleus ∼ (1 µm)3 = 10−9 µL, (5.3)

one one-hundred-millionth of the free DNA volume! This incredible condensation is predominantly

the work of the histone.
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The properties of nucleosomes are of great biological interest because chromatin forms the sub-

strate for all eukaryotic-cellular processes associated with DNA: from transcription to replication,

recombination, DNA repair, and cell division [9]. The chemical and physical properties of chromatin

are intimately related to the mechanics of tightly bent DNA. I shall give one explicit example of this

interplay in Sect. 5.4.

Perhaps viruses face a more pronounced “DNA packaging problem” than even eukaryotic cells.

Although biologists argue about whether viruses should be counted as organisms, they replicate

their genetic information with amazing efficiency. Viruses are parasites that cannot self replicate,

but they are one of the smallest replicating genetic units [4]. Viruses are weight conscious. For

example, nearly all of the genome sequence of a virus is coding sequence; whereas a very large

fraction of our own genome (90%) does not appear to code for proteins at all! In fact, there are

many known examples of regions of virus genomes that code for multiple proteins at once.

The virus is a parsimonious traveler to meet the challenges of efficient transfer from host to

host, while protecting its genome. Like eukaryotic cells, viruses must pack their long genomes by

tightly bending their DNA. Many bacteriophage, viruses which infect bacteria like that pictured in

Fig. 5.1, achieve this tight packaging by compressing their DNA into a very small protein capsid

shell, typically less than 50 nm in diameter. The DNA is packed into the capsid in an inverse spool

configuration by a DNA packaging motor. As the capsid fills from its periphery, the motor must

insert DNA coils of increasingly high curvature (See Fig. 5.1.1). The end of the genome is probably

packed with a radius of curvature of just a few nanometers! The energy expended in this packaging

processes to bend the DNA is not wasted, but stored, like a compressed spring, to be used to infect

another host. This amazing story is told in many other places [7], but by almost all accounts the

mechanics of tightly-bent DNA plays a starring role!

5.1.2 Transcriptional regulation

In the previous section, I alluded to the fact that only ten percent of our genome codes for proteins.

Even in the coding regions, not all proteins are expressed (synthesized) at once. In fact, only very

few “housekeeping genes” are generically expressed in all of our cells all of the time. The rest are

“turned on” only when they are needed. How does the cell control its genetic information and ensure

that the correct genes are expressed?

Many gene regulatory mechanisms have been discovered over the past fifty years but one of the

most important and universal mechanisms controls the transcriptional process itself. If no protein

is needed, no RNA transcript is produced. This regulatory mechanism is called transcriptional

regulation. On the microscopic scale, gene regulatory proteins that bind particular sequences of

DNA, called operators, interact with the cellular machinery responsible for transcription. Gene

regulatory proteins exist which exert both positive (activation) and negative (repression) control
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Figure 5.4: DNA looping is a common functional motif in eukaryotic gene regulation. The EM mi-
crograph shows two DNA loops formed in the CyIIIa cis-regulatory region of the sea urchin genome.
These DNA loops are the result of regulatory proteins trapping rare looped DNA conformations.
(This figure is taken from Ref. [10].)
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Figure 5.5: Transcriptional regulation and chain statistics. DNA looping is a common motif in
transcriptional regulation, the mechanism by which the cell regulates transcription. The lac operon
is an example of regulatory looping in a procaryotic cell. The gene regulatory protein lac repressor
can bind to two operators and induce a loop, increasing its affinity for the DNA. Panel A shows
the crystal structure of the repressor bound to DNA. (This panel is taken from David Goodsell,
the Protein Data Bank.) Panel B shows a schematic drawing of the looping mechanism. The lac
repressor can capture rare thermal fluctuation that bring the auxiliary operator into proximity with
the DNA binding domain of the protein. (This panel is taken from Ref. [11].) Panel C shows
a schematic depiction of the effective concentration of the auxiliary operator (blue dot) once the
primary operator is bound to the repressor (the pin). The intermediate DNA (red line) acts as a
tether which increases the local, effective concentration of the auxiliary operator in the vicinity of
DNA binding domain. (This panel is adapted from Ref. [4].)
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over transcription.

One extremely important and common motif in transcriptional regulation is DNA looping. DNA

looping is induced by gene regulatory complexes which bind the DNA at more than one operator.

(See Fig. 5.1.2) DNA looping implies that the regulatory control region can be thousands of base

pairs in length and can include many different operators and therefore it can be sensitive to many

different stimuli. Such complicated regulatory machinery is generic in eukaryotic cells and especially

in multicellular organisms. A typical example is the 2500 base pair Endo16 cis-regulatory region in

the Sea Urchin. In this regulatory circuit, more than 40 different looping configurations are possible

[12, 10]! (See Fig. 5.1.2.)

From a biological perspective, we would like to understand and predict the levels of gene tran-

scription in these systems. The formation of DNA loops implies that DNA chain statistics plays

an integral role in determining the function of these regulatory circuits. Once the gene regulatory

complex has bound one operator, the DNA, between this operator and those adjacent to it, acts as

a tether, increasing the effective concentration of the adjacent operators at the regulatory complex.

This mechanism is illustrated in Fig. 5.1.2. If the operators are too closely spaced, the inherent

stiffness of the DNA can hold the two operators apart, preventing a gene regulatory complex from

binding both operators. As a result, the behavior of gene regulatory circuits depends sensitively

on the base pair spacing of the operators. In Sect. 5.3, we shall return to the idea of effective

concentration and develop it more rigorously.

Fortunately, procaryotic cells exhibit regulatory circuits which do not loop in forty different

configurations! These systems provide an in vivo proving ground for understanding gene regulatory

looping. For example, in E. coli, the lac operon has been extensively studied. The binding of the

lac repressor induces a DNA loop and represses the transcription of the gene lacZ. (See Fig. 5.1.2.)

The stability of the induced DNA loop is measured indirectly by measuring protein expression as a

function of inter-operator spacing (loop length) [13, 14, 15, 16]. (See Fig. 5.1.2.)

5.2 DNA chain statistics and the wormlike chain model

How do we describe the conformation of double-stranded DNA quantitatively? The molecular scale

of DNA implies that the correct language is statistical mechanics. The thermal forces that buffet

DNA molecules play an essential role in dictating its conformation and physical properties. For

instance, consider the physical size of DNA molecules in solution. Thermal fluctuations bend DNA

randomly. In fact thermal forces bend DNA so efficiently on the length scales observable by visible

light microscopy that DNA must be stretched out in order to see its linear structure. Fig. 5.2.1

depicts the thermally induced bending of DNA molecules adsorbed to mica and then visualized

via Atomic Force Microscopy (AFM). On the length scales accessible by visible light microscopy
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Figure 5.6: Gene expression depends sensitively on the inter-operator spacing (loop size). When
the lac repressor binds to DNA, it induces the formation of a DNA loop by binding two DNA
sequences called operators [14, 15]. The inset panel shows a schematic diagram of this process.
When the repressor is bound, the gene is not expressed. Repression is proportional to the inverse of
the protein expression. The plot shows the level of repression as a function of inter-operator spacing
in base pairs (the length of the loop). The peak repression occurs when the looped complex is most
stable. Mysteriously, this optimum loop length is just 70 base pairs, just half the persistence length
of DNA and roughly one sixth of the optimum cyclization contour length. (Plot from Ref. [14]. Inset
figure from Ref. [11].)

(& 250 nm), DNA is typically bent. But on length scales shorter than about 50 nm, DNA is not

efficiently bent by thermal forces and the polymer remembers its orientation. The length scale at

which thermal bending “switches off” is called the persistence length.

5.2.1 The random walk model

If we concern ourselves only with the gross spatial distribution of long polymers, a random walk

model will suffice to describe the polymer. (This model is known as the freely jointed chain.) Since

the polymer begins to forget its orientation after a persistence length, we can treat the conformation

as a series of steps in random directions. We shall define the length of these steps to be the Kuhn

length, b. (We shall relate this length to the persistence length in a moment.) Since the directions

of all steps are uncorrelated in the random walk model, it is straightforward to work out the average

squared displacement 〈
∆ ~X 2

〉
= b2N = bL, (5.4)

where 〈〉 denotes the average over all random flights, N is the number of steps, and the contour

length L is the number of steps times the length of each step. We have already taken advantage of

this result in Sect. 5.1.1 to discuss the physical size of DNA in solution.
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Figure 5.7: DNA configurations in two dimensions. DNA will adsorb to mica in 10 mM Mg. The mica
binds the DNA weakly enough that the DNA can equilibrate on the surface. The equilibrated DNA
configurations can then be traced with an Atomic Force Microscope (AFM). Thermal fluctuations
bend the DNA randomly as is evident from the two dimensional DNA conformations pictured above.
On sufficiently short length scales, DNA is typically straight as illustrated by the enlargement of
one short section of the chain. The length scale above which DNA is efficiently bent by thermal
forces is the persistence length (ξ ∼ 50 nm). (The data in this figure is from Thijn van der Heijden,
Fernando Moreno, and Cees Dekker at Delft.)

5.2.2 The wormlike chain model

Although the freely jointed chain model is useful for describing long sequences of DNA, we need a

more quantitative model for studying DNA on length scales on order the persistence length. Clearly

a model of freely-jointed, rigid links does not realistically describe DNA on length scales comparable

to the Kuhn length.

Semi-flexible polymers have been described with great success by a surprisingly simple statistical

mechanics theory: the wormlike chain (WLC) model [17, 18]. This model is equivalent to the

statistical mechanics of fluctuating linear-elastic rods [18]. In its simplest incarnation (twist free),

the model is completely specified by a single parameter, the bending modulus of the rod [18].

We begin by coarse graining the conformation of the polymer to a space curve ~X(s), parameter-

ized by its arc-length s ∣∣∣d ~X(s)/ds
∣∣∣ = 1. (5.5)

The polymer tangent vector and curvature are

~u(s) = d ~X(s)/ds, (5.6)

~κ(s) = d~u(s)/ds, (5.7)

respectively. The magnitude of the curvature is the inverse radius of curvature; the radius of the

circle locally fit to the conformation at arc length s. The polymer is assumed to be inextensible,

which is a very good approximation for DNA. There is a well defined total contour length L.
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The bending energy density of a linear elastic rod (ε) is quadratic in the curvature

ε(s) = 1
2ξκ

2(s), (5.8)

where ξ ≈ 50 nm kT300 K is the bending modulus in thermal units1. This expression is the canonical

bending energy of a slender rod from continuum mechanics. On dimensional grounds, this is the

dominant contribution to the bending energy for small deflections. This expression can be derived

for toy rod models like that illustrated in Fig. 5.2.3. The total energy is the integrated bending

energy density

E =
∫ L

0

ds ε(s). (5.9)

Note that we neglect chain-chain interactions which play a negligible role in the high-curvature chain

statistics that will be our focus.

5.2.3 The mechanical limit

For highly-bent DNA configurations, the contribution of thermal fluctuations can be ignored. The

free energy is dominated by the lowest energy configuration. For example, consider the free en-

ergy associated with wrapping DNA tightly around the histone core particles to form nucleosomes.

(See Fig. 5.1.1.) The roughly cylindrical shape of the histone core particle determines the DNA

conformation. The bending energy of the wrapped DNA can be estimated from Eq. 5.9

E ≈ 1.75× ξπ

R
≈ 50 kT, (5.10)

where 1.75 is the number of times the DNA wraps the histone core particle and the radius of curvature

is roughly 5.5 nm. The estimated bending energy predicted by the wormlike chain is extremely large,

but is thought to be offset by the coulomb attraction between the negatively charged DNA and the

positively charged histone core particle [9]. There is a variation of roughly 7 kT in the relative

histone binding free energies of different sequences [9]. I leave it as an exercise for the reader to

show that a 14 percent sequence dependent change in the elastic constant could account for this

variation.

As we have already discussed, the tight-bending of DNA is ubiquitous in biology. The bending

energies predicted by the elastic-rod model are typically very large compared with kT . Polymer

physics experiments that probe DNA mechanics typically probe a different bending regime where

the entropic contribution to the mechanics is of central importance.

1 The thermal units in this paper assume that the temperature is 300 K.
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Figure 5.8: The bending of elastic rods. Above is a schematic spring model that can be used to
derive the slender rod bending energy. This energy is understood to be the small deflection limit for
continuum rods. The balls represent schematic atoms and the springs represent bonds. (This figure
is taken from Ref. [19].)

5.2.4 Chain Statistics

For most applications, thermal fluctuations of DNA cannot be neglected and we must consider the

statistical mechanics of the polymer. In the canonical ensemble, the Boltzmann distribution relates

probability of a particular micro-state Γ to its energy

PΓ = Z−1 exp−EΓ, (5.11)

where Z is the partition function, determined by normalization, and we work in energy units of

kT . The distribution functions of the polymer theory are calculated by performing path integrals

over all possible intermediate chain configurations. For example, the tangent distribution function,

the probability density of final tangent ~uf given initial tangent ~ui for a chain contour length L, is

written

G(~uf , ~ui;L) = Z−1

[∫
[d~u(s)] exp−E[~u(s)]

]~uf

~ui

, (5.12)

where the measure [d~u(s)] denotes integrations over all intermediate tangents between ~ui at arc-

length 0 and ~uf at arc-length L, and Z is the partition function determined by normalization.

5.2.5 The equivalence of the WLC model to a free quantum particle

Note to the reader: This section is somewhat technical in nature and is not essential for understanding

the rest of the chapter.

To evaluate the path integral in Eq. 5.12, we exploit a well-known trick that relates the path

integral and Schrödinger equation methods of quantum mechanics [20]. The quantum propagator

for a free particle written in the path integral formalism is

K(~uf , t; ~ui, 0) = Z−1

[∫
[d~u(t)] exp iS[~u(t)]

]~uf

~ui

, (5.13)
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Figure 5.9: The equivalence of the WLC model to a free quantum particle on a unit sphere. The
WLC model tangent distribution function and the quantum propagator for a free particle on a unit
sphere are mathematically related by an analytic continuation of time to imaginary arc length. The
tangent of the polymer is reinterpreted as the position of the particle. The sum over all intermediate
tangents in the statistical mechanics model is mathematically equivalent to the sum over all classical
trajectories in the quantum propagator.

where K is the propagator or Greens function for the time evolution of a state in the spatial represen-

tation, ~u is interpreted as a position vector, Z is a constant determined by unitarity (normalization),

and S is the classical free particle action which is a functional of the position ~u

S[~u(s)] =
∫ t

0

dt′ 1
2m~̇u

2, (5.14)

which, like the energy, is a functional quadratic in the derivative of ~u. Comparing the free quantum

particle (FQP) and the wormlike chain (WLC) path integrals, the only significant difference is that

the exponent of the FQP path integral is imaginary. We “fix” this problem by analytically continuing

time to imaginary arc-length. The table below summarizes the equivalence relation:

WLC ⇔ FQP

G ⇔ K

~u(s) ⇔ ~u(t)

s ⇔ it

ξ ⇔ m.

Note in particular that time has been analytically continued to imaginary arc-length and the target

space in which the particle moves is not three dimensional Euclidian space (R3) but the surface of

a unit sphere (S2 = {~u ∈ R3|~u 2 = 1}).

Having specified the equivalence between the quantum propagator (K) and the tangent distribu-

tion function (G), we now exploit the Schrödinger equation method to find the quantum propagator.

Remember that the propagator is the transition amplitude of the time evolution operator U [21]:

K(~uf , t; ~ui, 0) = 〈~uf | U(t) |~ui〉 , (5.15)
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where |~u 〉 is a ket state in the spatial representation on S2. For a time independent Hamiltonian,

the time evolution operator is

U(t) = exp−iHt, (5.16)

where H is the Hamiltonian operator. For a free quantum particle on S2, the Hamiltonian operator

is

H =
p2

2m
= −∇

2

2m
=
L2

2m
, (5.17)

where p is the momentum operator on S2 which is the Laplace-Beltrami operator on S2 in the

spatial representation. The Laplace-Beltrami operator can be reinterpreted as the orbital angular

momentum operator (L2) in three dimensions.

The eigenstates of L2 are well known; they describe the angular wave functions for the Hy-

drogen atom and other quantum central force problems. Typical we choose a set of states which

simultaneously diagonlize both L2 and Lz, the z component of the angular momentum

Lz |lm〉 = m |lm〉 (5.18)

L2 |lm〉 = l(l + 1) |lm〉 , (5.19)

for non-negative integers l and integers m on the interval [−l, l]. The states of this “angular mo-

mentum” representation are the spherical harmonics in the spatial representation

〈~u | lm〉 = Y m
l (~u ), (5.20)

which form a complete set of states.

We have implicitly solved the Schrödinger equation by finding the spatial representation of the

angular momentum states. Eq. 5.15 relates this solution of the Schrödinger equation to the path

integral approach. By applying the substitutions outlined in the table, we have solved for the tangent

distribution function exactly [18]

G(~uf , ~ui;L) = K(~uf , L/i; ~ui, 0) =
∞∑

l=0

l∑
m=−l

Y m
l (~uf ) Y ∗m

l (~ui) exp− l(l+1)L
2ξ . (5.21)

This result forms the basis for the derivation of many other important results. In particular, Andy

Spakowitz and Zhen-Gang Wang have used this result to derive exact results for the tangent-spatial

and spatial distribution functions for the WLC model [22, 23].
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5.2.6 What is the persistence length?

Let us return briefly to the definition of the persistence length. In Sect. 5.2, we defined the persistence

length as the length scale on which the polymer “remembered its direction.” We now return to make

a more precise definition.

Consider the expectation of the tangent at arc-length s dotted into a tangent at arc-length s′

〈~u(s) · ~u(s′)〉 = f(|s− s′|), (5.22)

where the brackets 〈A〉 denote the ensemble average of A and f is a function determined by the chain

statistics. Eq. 5.22 is a quantitative measure of how well the polymer remembers its orientation.

For tangents separated by many persistence lengths of contour length, we expect the tangents to be

uncorrelated and Eq. 5.22 is zero. If s equals s′, the tangents are clearly the same and Eq. 5.22 is 1.

Qualitatively, the persistence length defines the contour length on which the tangents are correlated.

Eq. 5.21 allows a direct computation of Eq. 5.22:

〈~u(s) · ~u(s′)〉 = exp−|s−s′|
ξ , (5.23)

where ξ is the bending modulus (Eq. 5.8) which has units of length (when kT=1). This bend-

ing modulus has exactly the right physical properties to be what we have qualitatively called the

persistence length. We shall therefore define the persistence length as the decay length in Eq. 5.23.

The functional form of Eq. 5.23 applies more generally. In fact, it is straightforward to show that

Eq. 5.23 holds for polymers that bend isotropically (no preferred direction) and whose curvature

is uncorrelated. This property is called multiplicitivity [24]. Eq. 5.23 can be integrated twice to

find the mean squared end-to-end distance [18]. In the long contour length limit, the mean squared

end-to-end distance is the same as the freely jointed chain model when the relation between the

Kuhn length (Eq. 5.4) is twice the persistence length.

In this section we have given a brief outline of the wormlike chain model and derived some of

its basic properties. Although the model was originally proposed in a slightly different form [17],

the WLC model describes the statistical mechanics of fluctuating linear-elastic rods. The model is

characterized by a single parameter, the persistence length. The persistence length is the correlation

length of the polymer tangent (Eq. 5.23), but it is also equal to the bending modulus divided by kT .

In the next three chapters, we shall investigate whether this simple model applies to the mechanics of

tightly-bent DNA. In the next section, we turn our attention to an important experimental technique

for probing DNA mechanics: cyclization.
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KD
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Figure 5.10: The cyclization assay: a schematic diagram. The linear monomer is a double-stranded
DNA sequence with single-stranded complementary ends. These single-stranded ends can hybridize
to form double stranded DNA. In standard cyclization experiments, the DNA backbone is then
covalently joined by the enzyme DNA Ligase.

5.3 Effective concentration

To understand how the experiments of Cloutier and Widom [2] probe high-curvature chain statistics

of DNA, we have to develop the concept of effective concentration. This concept is more generally

applied than simply analyzing the results of cyclization experiments. There are many biological

processes, like regulatory looping, for which the influence of DNA chain statistics on biological

function can be factored into an effective concentration. Experiments that measure the effective

concentration are important since these experiments sample the chain statistics in processes which

are functionally analogous to many biological processes that capture rare DNA conformations [13,

16].

In the DNA cyclization assay, double stranded DNA sequences with complementary single

stranded ends are cyclized into DNA loops and oligomers [25, 26, 27]. The effective concentra-

tion measured in this assay is called the J factor [25]. To understand this experiment, we shall

first consider an equilibrium DNA cyclization reaction. When sequences cyclize, the closed confor-

mations are stabilized by the hybridization (or base pairing) of the single stranded ends to form

double-stranded DNA. This process is drawn schematically in Fig. 5.3. There are still two nicks in

the DNA backbone, one on each side of the hybridized single-stranded DNA. Let us ignore these

nicks for the moment [28].

When describing the cyclization reaction, there are two important free energies to consider.

The first component is the free energy associated with the chain statistics; the free energy cost of

bringing the two ends into the configuration required to hybridize. The second component is the free

energy associated with the hybridization reaction itself which stabilizes the cyclized configuration.

Our interest is exclusively in the former although both contribute to the cyclization equilibrium

constant. Therein lies the problem with measuring the cyclization equilibrium constant for the

purpose of studying the chain statistics; it depends on the affinity of the ends for each other.

The trick for isolating the chain statistics is to compare the cyclization equilibrium constant

(KC) to the dimerization equilibrium constant (KD) for the same sequence. Remember that since
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the ends are complementary, two ends of the same molecule can hybridize but so can the ends of

two different molecules. Both processes involve the same hybridization reaction. The ratio of these

equilibrium constants is known as the J factor [25]

J ≡ KC

KD
. (5.24)

Remember that we define the equilibrium constants

KC ≡ [C]
[L]

(5.25)

KD ≡ [D]
[L]2

(5.26)

for the equilibrium concentrations of linear monomer [L], cycle [C], and dimer [D]. The J factor

therefore has units of concentration. Note that the definition of the J factor implies that when the

linear monomer concentration equals the J factor, cyclized and dimerized sequences are at equal

concentration. For lower linear monomer concentration, the cyclization reaction is dominant. For

higher linear monomer concentration, the dimerization reaction is dominant.

But in what sense is the J factor a concentration? Since we divide the cyclization equilibrium

constant by the dimerization equilibrium constant, the dependence on the interaction of the single-

stranded ends divides out. We shall show this more explicitly in a moment. If we think about

the reaction physically, the hybridization rate should depend linearly on the local concentration of

complementary ends, whether they be the complementary end of the same molecule or another.

The J factor is therefore proportional to the effective concentration of one end at the other with the

correct configuration to hybridize [25]. In the next section we shall derive this assertion.

5.3.1 Chain statistics and the J Factor

Consider the interaction between two complementary ends. The free energy change upon binding is

[28]

∆G = ∆Ubond + ∆Gconfig (5.27)

where ∆Ubond is the binding energy of the bond and ∆Gconfig is the change in chain-configurational

free energy due to the formation of the bond. We consider the free energy change for both cyclization

and dimerization reactions

∆GC ≡ −kT logKC , (5.28)

∆GD ≡ −kT logKD[L], (5.29)
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Figure 5.11: A schematic picture of a DNA operator binding to a protein binding site. In the J
factor calculation, we imagine a range of configurations in which DNA can bind. This range is given
by a volume δV and an orientational volume δΩ. In the calculation, we assume is that this range is
small. These parameters divide out of the resulting J factor. In the rightmost panel, we display the
intuitive picture of effective concentration. The DNA is fixed at one end, resulting in an effective
concentration of the operator (blue dot).

where we have introduced a factor of the monomer concentration into the dimerization free energy

definition so that the derivations for the two free energies are analogous.

We shall denote the generalized coordinates describing the relative displacement and orientation

of the end {qi}. In our case, these degrees of freedom include the relative spatial displacement of

the ends, the tangent of the polymer, as well as the relative twist [26].

The probability of the chain having some particular end configuration, specified by the coordi-

nates {Qi} and within admissible range {δqi}, is

P = ρ(Qi)
∏

dqi, (5.30)

where ρ is the probability density with respect to the coordinates {qi}. The free energy change

associated with assuming this configuration is therefore

∆Gconfig = −kT log ρ (Qi)
∏

i

δqi. (5.31)

Note that this free energy depends on the admissible range {δqi} which is not directly observable

[26]. This scenario is drawn schematically for a DNA-protein complex in Fig. 5.3.1.

For DNA hybridization, the ends of the DNA must not only be spatially coincident, but their

tangents must be aligned, and the twist of the helix must also be in registry. Therefore the qi and
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Qi are:

qi = (~x, cos θ, φ, ψ) (5.32)

Qi = (0, 1, 0, 0) (5.33)

where ~x is the end-to-end displacement, θ and φ describe the orientation of the final tangent with

respect to the initial tangent, and ψ is the twist mismatch. The Qi are the values of these coordinates

required for hybridization.

We can can now write the J factor in terms of the free energy change Eq. 5.27:

J = [L] exp[−(∆GC −∆GD)/kT ]. (5.34)

We shall assume that the hybridization energy is identical in the two configurations. The J factor

then depends only on the chain-configuration free energy

J = ρC [L]/ρD, (5.35)

where ρC and ρD are the probability densities for cyclization and dimerization respectively. ρC

depends on the chain statistics but dimerization probability density is simply the monomer concen-

tration times the orientational density which is isotropic in solution ρD = [L]/(4π ·2π). The J factor

is therefore [26, 27, 29, 18]

J = 8π2ρC , (5.36)

where ρC is simply the polymer distribution function evaluated for the cyclization end configuration.

For the most part, we shall be interested in the mechanics of DNA when the twist is unobservable.

Of course, the twist is observable in J factor, since DNA can only hybridize in twist registry, much

like an electric cord will not plug into the wall unless it is in twist registry with the wall socket. We

can approximately integrate out the twist degree of freedom by averaging the J factor over a helical

repeat since the helical repeat is 10 bp and reasonably small compared with the total length of the

sequence. In this case, the J factor becomes [29, 18]

J = 4πρ′C , (5.37)

where ρ′C is the probability density summed over the twist degrees of freedom, which results in a

twist free theory.

To generalize this calculation to protein-induced DNA looping, we need only change the definition

of ρC . That is, if the protein is stiff compared to DNA, it determines configuration of the DNA

operators. Instead of the probability density for the cyclization boundary conditions, the protein
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Figure 5.12: The results of a cyclization assay for DNA sequences of 116 bp and 94 bp. Gel
electrophoresis is exploited to separate the bands of different length and topology. Above, L is linear
monomer, C is cyclized monomer, LD is linear dimer, LT is linear trimer, CD is cyclized dimer, etc.
The DNA is radio labeled and the concentration of DNA in each band is determined by the band
intensity. Note that in the Ligase − column (Ligase is absent), there is only linear monomer. The
unligated sequences are not stable enough to maintain their structure when run on the gel. For the
116 bp sequence, there are three Ligase + columns run at different DNA concentrations. As the DNA
concentration is reduced, the bands corresponding to cyclized monomer increase in relative intensity
while the bands corresponding to linear dimer decrease in relative intensity in agreement with the
predictions of the kinetic equations. This concentration dependence is just one consistency check
that the bands are correctly labeled. Note also that the bands corresponding to linear sequences
run at the correct speed relative to the base pair ladder on the right-hand-side of the gel. This gel
is from Ref. [2].

would dictate some more general set of boundary conditions which would give rise to an effective

concentration. The relation between this looping J factor and the equilibrium constant is analogous

to that derived for cyclization. For instance for the lac repressor looping reaction shown in Fig. 5.1.2

panel B, the looping equilibrium constant is

Kloop =
[looped]

[unlooped]
= KopJ

′, (5.38)

where J ′ is the J factor evaluated for the correct operator-binding end configuration and Kop is

the equilibrium constant for the repressor binding the free (unlooped) auxiliary operator sequence.

The looping equilibrium constant depends on both DNA mechanics (J ′) as well as chemistry (Kop)

[13, 16, 11, 30].

5.3.2 Ligation, kinetics, and the cyclization assay

In the previous sections, I described a theoretical experiment in which the equilibrium concentrations

of monomer, dimer, and cyclized sequences could be measured. Experimentally tractable biochemical

cyclization assays are a little more complicated. Once the backbone nicks have been covalently sealed
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Figure 5.13: A schematic picture of the DNA cyclization assay. The linear monomer (L) can cyclize
or dimerize to form the ligation substrate (S). The ligase enzyme (E) can bind to this substrate
to form a substrate enzyme complex (SE). The ligation step then proceeds irreversibly to form the
ligated product (P ) on ligase release. (The figure is adapted from Ref. [26].)

(ligated), it is straightforward to measure the relative populations via gel electrophoresis.2 It is well

known that the gel mobility of sequences decreases with sequence length. (“Longer sequences run

more slowly.”) Fortunately, the circular topology of the cyclized sequences also reduces their gel

mobility, implying that the various products of the cyclization reaction can be separated on a gel,

and their concentrations measured by radio labeling. (See Fig. 5.3.2.)

The ligation reaction is performed with the enzyme T4 DNA ligase (E) which covalently joins the

backbone of a nicked substrate (S). The biochemical process is picture schematically in Fig. 5.3.2.

The kinetic equations are [26]

L
k12


k21

S, (5.39)

S + E
k23


k32

SE
k34→ P + E, (5.40)

where L is linear monomer, S is the ligase substrate, E is ligase, and P is the ligated product. Despite

the presence of the irreversible ligation step, we still wish to measure the ratio of the cyclization to

the dimerization equilibrium constants for the linear monomer to nicked substrate reaction. In the

kinetic regime where the ligation reaction is ligase limited,

k21 � k23[E], (5.41)

the equilibrium populations of cyclized and dimerized nicked substrates are sampled. Experimentally,

this condition is straightforward to check since the product concentration is linear in the ligase

concentration when the reaction is ligase limited. In this kinetic regime, the ratio of the ligated

cyclization rate to the ligated dimerization rate is the J factor [26].

2The lifetime of the un-ligated products is not long enough to run the gel.
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5.4 A startling discovery?

The nucleosome complex, the fundamental packing unit of DNA in Eukaryotic chromosomes, consists

of a histone octamer tightly wrapped by DNA. (See Fig. 5.1.) One interesting and unresolved aspect

of nucleosome formation is the sequence dependence of DNA-histone affinity. There is roughly a

three-order-of-magnitude variation in the affinity of different DNA sequences for the histone core.

Crystal structures of the nucleosome complex do not appear to support the common chemical motifs

of sequence specificity (helix-turn-helix, zink finger motif, etc. [4, 9]. It has therefore been proposed

that this variation in DNA-histone affinity could have an elastic origin.

The radius of curvature of the DNA that wraps the histone core is roughly 5 nm, a tenth of

the persistence length. The bending energy is therefore large compared to kT . Small, sequence-

dependent variations in the compliance of DNA could therefore lead to large variations in the overall

free energy of nucleosome formation. Rough, order-of-magnitude estimates suggest that variations

of only fifteen percent in the elastic modulus might be responsible for the observed variation in

affinity. (See Sect. 5.2.3.)

To test this proposal, Cloutier and Widom compared the relative free energies of cyclization and

nucleosome formation for 94 bp sequences. These DNA sequences were long enough to wrap the

nucleosome just once, implying that the end state conformation of the DNA is roughly the same in

both processes. These experiments confirmed that the sequenced induced variation in the relative

free energies of cyclization and nucleosome formation were linearly correlated with slope one. The

variation in the affinity of DNA for histones was predicted by their cyclization free energy, implying

that the variation in the affinity of DNA for histones was a result of DNA conformation only, rather

than the result DNA-protein interactions. This data is reproduced in Fig. 5.4.

The correspondence between cyclization and nucleosome formation was not unexpected, but

Cloutier and Widom also reported a much more surprising result, the measured J factor (the propen-

sity for sequences to spontaneously cyclize) was at least three orders of magnitude larger than that

predicted by the WLC theory [2]. This data is plotted in Fig. 5.4. These results suggested that

high-curvature DNA configurations might be orders of magnitude more probable than previously

estimated based on other measurements of the chain statistics. The cyclization measurements for

long-contour-length sequences were in excellent agreement with the WLC model, as were the results

from force-extension experiments. Could DNA really be significantly softer at high curvature than

predicted by the WLC model and yet still remain in excellent agreement with a host of previous

measurements, which all seemed to implicate chain statistics described by the WLC model? What

physical mechanisms could give rise to such a dramatic failure in the WLC model at high curvature?

These questions were of great relevance to biological systems. As we discussed in Sect. 5.1,

high-curvature DNA bending in DNA-protein complexes is ubiquitous. If the work of Cloutier and
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Figure 5.14: Histone affinity is DNA elasticity. In the plot above, the relative cyclization free energy
is compared to the relative nucleosome formation free energy for 94 bp sequences. These sequences
wrap the histone core once, implying that the DNA conformation in the nucleosome complex is
similar to conformation of the cyclized sequence. The linear correlation of these free energies with
slope one implies that the three-order-of-magnitude variation in DNA-histone affinity is mechanical
in origin since it is identical to the variation in the cyclization free energy. That is to say that this
variation is roughly independent of the presence of the protein and depends on the DNA conformation
only. (Plot from Ref. [2].)
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Figure 5.15: The WLC J factor (blue) is compared with measurements of the J factor from several
authors (black) [2, 31, 27, 26, 32]. The J factor measurements made for sequences in length incre-
ments of 1 or 2 bp are plotted with solid lines connecting the data points. Other measurements are
plotted as points. The WLC model does not include the twist modulation of the J factor evident in
the continuous sets of experimental data and discussed in Sect. 5.3.1. Our interest is in the twist-free
J factor (the J factor averaged over a 10 bp window). For long-contour-length sequences (L > 200
bp), the experimental data is well described by the WLC model. For 94 bp sequences, the J factors
measured by Cloutier and Widom [2] lie three to four orders of magnitude above the theoretical
predictions of the WLC model. To give the reader a feeling for the biological systems that induce
DNA bending on the length scales probed by cyclization experiments, we have drawn schematics
pictures of biological bending at the contour length corresponding to the same induced radius of cur-
vature. Nucleosome formation, phage packing, and transcriptional regulation all induce curvatures
of the size probed by short-contour-length cyclization experiments of Cloutier and Widom. We have
also drawn plasmid cyclization schematically at long-contour-length to show that some biological
bending also explores the entropic regime of the J factor.
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Widom was correct, it would dramatically change the way we thought about DNA bending. For

example, these experiments suggested that DNA regulatory looping might remain active for very

small DNA loops that would have been energetically forbidden in the WLC model. There was already

evidence from in vivo regulatory looping studies that seemed to suggest exactly this [13, 14, 15, 16]!

To understand DNA bending quantitatively in a biological context, the short-contour-length chain

statistics would need to be reexamined.

5.5 What’s wrong with the wormlike chain model

The experimental data of Cloutier and Widom [2] opened the door to the possibility that WLC model

might fail dramatically for tightly bent DNA configurations. What are the possible mechanisms of

this failure? Within the accepted framework of DNA mechanics, there are already two possible

explanations. It is already known that DNA was pre-bent [33, 34, 35, 32]. There are sequences, so

called A tracks, that are spontaneously curved in the absence of thermal fluctuations [36]. Also the

stiffness of DNA is also a function of sequence [37, 9, 2]. Could either of these complications lead to

the three-order-of-magnitude anomaly that Cloutier and Widom had observed? The answer is no.

In the interest of brevity I will not make these extensive arguments here.

Rob Phillips, Phil Nelson, and I became convinced that the problem could only be resolved

by changing the bending energy of DNA. Certainly from the perspective of macroscopic rods, it

is well known that the linear-elastic model breaks down at high curvature. How can this intuitive

picture be reconciled with years of experiments that showed that the WLC model described DNA

statistics? One possible answer is that the cyclization experiments of Cloutier and Widom [2] probe

a high-curvature regime of DNA bending that very few studies had probed before.

Our idea was to explore a model that included a rare, catastrophic breakdown of elasticity that

would only appreciably change the chain statistics at high curvature. Many macroscopic systems

kink, or localize curvature, in response to tight bending. Perhaps the most pedestrian example of this

phenomena is the drinking straw which has a very small elastic bending regime before undergoing

a kinking transition which buckles the straw. Back-of-the-envelope calculations showed that this

model could reproduce exactly the behavior observed by Cloutier and Widom [2] for very rare

kinking events. Not only that, but we would show that these kinks were nearly irrelevant to force-

extension experiments that fit the WLC model so well. Does DNA kink?
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Kondev, and Rob Phillips. Transcriptional regulation by the numbers: models. Current Opinion

in Genetics & Development, 15:116–124, 2005. 101, 103, 114

[12] R. W. Zeller, J. D. Griffith, J. G. Moore, C. V. Kirchhamer, R. J. Britten, and E. H. Davidson.

A multimerizing transcription factor of sea urchin embryos capable of looping DNA. Proc. Natl.

Acad. Sci. USA, 92:2989–2993, 1995. 102

[13] Karsten Rippe, Peter R. von Hippel, and J org Langowski. Action at a distance: DNA-looping

and initiation of transcription. Trends Biochem. Sci., 20(12):500–506, 1995. 2, 102, 110, 114,

118, 124, 152, 179

[14] J. Muller, S. Oehler, and B Muller-Hill. Repression of lac promoter as a function of distance,

phase and quality of an auxiliary lac operator. J. Mol. Biol., 257:21–29, 1996. 2, 102, 103, 118,

124, 152, 202

[15] J. Muller, A. Barker, S. Oehler, and B. Muller-Hill. Dimeric lac repressors exhibit phasedepen-

dent co-operativity. J. Mol. Biol., 284:851–857, 1998. 2, 102, 103, 118, 124, 152

[16] Karsten Rippe. Making contacts on a nucleic acid polymer. Trends Biochem. Sci., 26(12):733–

740, 2001. 2, 102, 110, 114, 118, 124, 152

[17] O. Kratky and G. Porod. Rotgenuntersuchung geloster fadenmolekule. Rec. Trav. Chim.,

68(12):1106–1122, 1949. 104, 109, 123, 125

[18] H. Yamakawa. Helical Wormlike Chains in Polymer Solutions. Springer, Berlin, 1997. 5, 104,

108, 109, 113, 123, 125, 137, 146, 160, 164, 192, 199, 202

[19] Rob Phillips and Jan’e Kondev. Physical Biology of the Cell. Garland Press, 2006. To be

published. 106

[20] R. P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill, New

York, 1965. 106, 130

[21] J. J. Sakurai. Modern Quantum Mechanics. Addison-Wesley, Reading, Massachusetts, 2nd

edition, 1994. 107, 131, 186, 187, 188, 207, 208

[22] A. J. Spakowitz and Z.-G. Wang. Exact results for a semiflexible polymer chain in an aligning

field. Macromolecules, 37:5814–5823, 2004. 108, 133, 138, 140, 144, 159, 169, 180, 193, 196, 211

[23] A. J. Spakowitz and Z.-G. Wang. End-to-end distance vector distribution with fixed end orien-

tations for the wormlike chain model. Phys. Rev. E, 2005. In preparation. 108, 169, 180, 192,

193, 211, 212



121

[24] A. Y. Grosberg and A. R. Khokhlov. Statistical physics of macromolecules. AIP Press, New

York, 1994. 109, 130, 137

[25] H. Jacobson and W. H. Stockmayer. Intramolecular reaction in polycondensations 1. The theory

of linear systems. J. Chem. Phys., 18(12):1600–1606, 1950. 110, 111, 146, 198, 199

[26] D. Shore, J Langowski, and R. L. Baldwin. DNA flexibility studied by covalent closure of short

fragments into circles. Proc. Natl. Acad. Sci. USA, 170:4833–4837, 1981. 110, 112, 113, 115,

117, 148, 173, 179, 198, 199

[27] D. Shore and R. L. Baldwin. Energetics of DNA twisting 1. Relation between twist and cy-

clization probability. Journal of Molecular Biology, 170(4):957–981, 1983. 110, 113, 117, 148,

173, 198, 199

[28] P. J. Hagerman. Investigation of the flexibility of DNA using transient electric birefringence.

Bioploymers, 20:1503–1535, 1981. 110, 111

[29] J. Shimada and H. Yamakawa. Ring-closure probabilities for twisted wormlike chains – appli-

cations to DNA. Macromolecules, 17:689–698, 1984. 113, 123, 149, 198, 199

[30] Lacramioara Bintu, Nicolas E Buchler, Hernan G Garcia, Ulrich Gerland, Terence Hwa, Jané
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Chapter 6

Exact theory of kinkable elastic
polymers

This chapter is a reproduction of Ref. [1].

The importance of nonlinearities in material constitutive relations has long been appreciated in

the continuum mechanics of macroscopic rods. Although the moment (torque) response to bending

is almost universally linear for small deflection angles, many rod systems exhibit a high-curvature

softening. The signature behavior of these rod systems is a kinking transition in which the bending

is localized. Recent DNA cyclization experiments by Cloutier and Widom have offered evidence that

the linear-elastic bending theory fails to describe the high-curvature mechanics of DNA. Motivated

by this recent experimental work, we develop a simple and exact theory of the statistical mechanics

of linear-elastic polymer chains that can undergo a kinking transition. We characterize the kinking

behavior with a single parameter and show that the resulting theory reproduces both the low-

curvature linear-elastic behavior which is already well described by the Wormlike Chain model, as

well as the high-curvature softening observed in recent cyclization experiments.

6.1 Introduction

The behavior of many semiflexible polymers is captured by the Wormlike Chain model [2, 3]. This

model amounts to the statistical mechanics of linearly-elastic rods[4] where the elastic energy is

microscopically a combination of both energetic and entropic contributions[5]. The mechanics of

DNA, a polymer of particular biological interest, has been studied extensively experimentally and

theoretically and its mechanical properties have been very well approximated by the Wormlike

Chain model (WLC)[6] and its successors such as the Helical Wormlike Chain model[3]. For example,

accurate force-extension experiments have shown that DNA is surprisingly well described by WLC[6,

7, 5], at least until the effects of DNA stretching become important at tensions of order 50 pN.

Despite the success of the WLC in describing DNA mechanics, recent DNA cyclization experi-
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ments by Cloutier and Widom[8] have shown a dramatic departure from theoretical predictions for

highly-curved DNA. These experiments suggest that the effective bending energy of small, cyclized

sequences of DNA is significantly smaller than predicted by existing theoretical models based upon

linear-elastic constitutive relations, in which the bending energy is quadratic in curvature. Similar

anomalies have been revealed in transcriptional regulation where DNA looping by regulatory proteins

remains active down to 60 base pair (bp) separations between the binding sites[9, 10, 11, 12, 13, 14].

From a continuum-mechanics perspective, this failure of the model at high-curvature is hardly

surprising; the importance of material nonlinearities has been appreciated for many years. In fact,

anyone who has ever tried to bend a drinking straw has observed that the straw will at first dis-

tribute the bending, as predicted by the linear theory, but as the curvature increases, the straw will

eventually kink, localizing the bending. This kinking behavior is the signature of nonlinear consti-

tutive softening at high curvature. Nonlinearities are certainly important in microscopic physical

systems, such as polymers, because the effective bending free energy, a combination of interaction

potentials and entropic effects, is only approximately harmonic. The possibility of kinking in DNA

was realized long ago by Crick and Klug, who proposed a specific atomistic structure for the kink

state [15]. Many authors have since found kinked states of DNA in protein–DNA complexes (see

for example [16]), but less attention has been given to spontaneous kinking of free DNA in solution,

even though Crick and Klug pointed out this possibility.

Our goal in this paper is to develop a simple, generic extension of the WLC model, introducing

only one additional parameter, the average number of kinks per unit length for the unconstrained

chain. The “kinks” are taken to be freely-bending hinge elements in the chain. This model is an

extension of the well known Wormlike Chain (WLC); we refer to it as the Kinkable Wormlike Chain

(KWLC). Although our model is not a detailed microscopic picture for DNA, it does capture the key

consequences of any more detailed picture of kink formation. As such, it serves as a useful coarse-

grained model to describe high-curvature phenomena in many stiff biopolymers, not just DNA [17].

Our main results are summarized in Figs. 6.5.2, 6.5.2, 6.6.2, and 6.6.3.

The KWLC is the simplest example of a class of theories that have been proposed and studied

by Storm and Nelson[18] and more recently by Levine[19]. It is simple enough that many results

are exact or nearly so. The method by which we obtain our exact results is analogous to the Dyson

expansion for time-dependent quantum perturbation theory. For the KWLC, the perturbation series

can be re-summed exactly.

For small values of our kinking parameter the KWLC model predicts nearly identical behavior to

the WLC—except when the rod is constrained to be highly curved. Such constraints induce kinking,

even when the kinking parameter is small. We will show in detail how the energy relief caused by this

alternative bending conformation can account for the observed anomalously high cyclization rate of

short loops of DNA[8] and anomalously high levels of gene expression[11, 12]. Further discussion
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of the applications of KWLC to DNA, will appear elsewhere[20]; the present paper focuses on the

mathematical details of the theory. Yan and Marko, and Vologodskii, have independently obtained

results related to ours [21, 22]. Also, Sucato et al. have performed Monte Carlo simulations of

kinkable chains to obtain information about their structural and thermodynamic properties [23].

The outline of the paper is as follows: in Sect. 6.2, we introduce the KWLC model in a discrete

form. In section 6.3, we compute the unconstrained partition function for the theory and show that

there is a sensible continuum limit. In section 6.4, we give an exact computation of the tangent

partition function of the continuum theory as well the moment-bend constitutive relation and the

kink number for bent polymer chains. We show that kinking causes an exact renormalization of the

tangent persistence length and we write exact expressions for the average squared end distance and

the radius of gyration. In Sect. 6.5, we exactly compute the Fourier-Laplace transform of the spatial

propagator and discuss various limits of these results. We also compute the exact force-extension

relation and the structure factor for KWLC. In Sect. 6.6, we compute the KWLC correction to the

Jacobson-Stockmayer J factor and the partition function for cyclized chains. We show that the

topological constraint of cyclization induces kinking and we compute the kink number distribution

explicitly. In Sect. 6.7, we discuss the limitations of KWLC. In the Appendix, we present a summary

of the Faltung Theorem which is required for computations and develop the small and large contour

length limits of the KWLC J factor.

6.2 Kinkable Wormlike Chain Model

Although the Wormlike Chain model was originally proposed to describe a purely entropic chain

without a bending energy[2], it is often interpreted as the statistical mechanics of rods with bending

energies quadratic in curvature[4, 24]. From a mechanical perspective, the success of the WLC model

is not surprising since the small amplitude bending of rods universally induces a linear moment

response. For WLC, the bending energy for a polymer in configuration Γ is

EΓ =
∫ L

0

ds
ξ

2

(
d~t

ds

)2

, (6.1)

where ~t(s) is the unit tangent at arc length s, L is the contour length, and ξ is the bending modulus.

Throughout this paper we will express energies in units of the room-temperature thermal energy

kBT = 4.1 × 10−21 J. For WLC it is well known that the bending modulus and persistence length

(the length scale over which tangent are thermally correlated) are equal in these units [5].

It is most intuitive to define our new model in terms of the discretized definition of WLC.

Accordingly, we divide a chain of arc length L into L/` segments of length `. There are then

N = (L/`) − 1 interior vertices, plus two endpoints (Fig. 6.2a). Next we replace the arc length
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Figure 6.1: a: The discretized KWLC is a chain of wormlike and kink-like vertices. In this
illustration N = 4; thus there are four vertices, of which one is kink-like. When a vertex i is
wormlike (σi = 1), the energy is given by the normal Wormlike Chain energy; if it is kink like
(σi = 0), the energy is ε, independent of θi. b: The continuum version of this theory. Although the
number of vertices is now infinite, the continuum limit maintains a finite average kink density.

derivative with the finite difference over the segment length `, replace the integral with a sum, and

introduce the spring constant κ ≡ ξ/`. The resulting energy is

EΓ =
N∑

i=1

κ
(
1− ~ti · ~ti−1

)
, (6.2)

where ~ti is the vector joining vertices i and i+ 1.

We introduce a similar discretized energy for the Kinkable Wormlike Chain model (KWLC). In

addition to the bending angle, there is now a degree of freedom at each vertex describing whether the

vertex is kink-like or wormlike. To describe this degree of freedom, we introduce a state variable,

σi at each vertex. When σi = 1, we say that the vertex is wormlike and the energy is given by

the discrete WLC energy at that vertex. When σi = 0, the vertex is kink-like and the energy is

independent of the bend angle at that vertex, but there is an energy penalty ε to realize the kink

state. This model is depicted schematically in Fig. 6.2. The energy for the model we have just

described can be concisely written as

E∗Γ =
N∑

i=1

[
κ
(
1− ~ti · ~ti−1

)
σi + ε(1− σi)

]
, (6.3)

where the ∗ denotes that this is the energy of the KWLC theory and ε is the energetic cost of

introducing a kink in the chain. Note that in general we denote KWLC results or equations with

a ∗. We will recover the WLC results when we take the kinking energy ε to infinity. While Storm
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and Nelson[25] and others[26, 27, 28, 29, 25, 19] have considered more general theories where the

kink energy is not assumed to be independent of the kink angle, much of the important physics can

already be studied in the simpler KWLC theory. Moreover, this theory has the significant advantage

of being analytically exact to a much greater extent than more general theories; it applies in the

limit where the kinks are only weakly elastic compared to the elastic rod.

6.3 Partition functions

For a summary of notation used in this article, see Appendix 6.12.

We have defined the KWLC model in terms of a discrete set of degrees of freedom. In the

next section, however, we shall wish to take advantage of the continuum WLC machinery. To this

end, this section formulates the continuum limit of the KWLC model. Beyond the computational

advantage, there is also an additional reason to go to the continuum limit. Fig. 6.2 describes the

kinking with two parameters, a density `−1 of kinkable sites and the kink energy ε. We wish to

describe the kinking in terms of a single parameter, to be called ζ (see Eq. 6.7). ζ essentially sets

the average number of kinks per contour length for a long, unstressed chain. In the continuum limit

of WLC, we take `→ 0 while holding the persistence length ξ and chain length L constant. To take

the corresponding continuum limit for KWLC, we will also hold ζ constant as `→ 0.

We begin by computing the partition functions for the WLC and KWLC and demonstrating

that there is a continuum limit of the KWLC. These unconstrained partition functions are required

for later computations. For this case, the partition function factors into independent contributions

from each interior vertex. In the continuum limit (κ → ∞), the partition function for each vertex

in the WLC model is

Q ≡ lim
κ→∞

∫
d2~ti exp [−κ(1− cos θi)] =

2π
κ
, (6.4)

where θi is the polar angle of ~ti defined using ~ti−1 as the polar axis, that is, cos θi ≡ ~ti · ~ti−1. The

measure d2~ti = d(cos θi)dφi denotes solid angle on the unit sphere. The total discretized partition

function for the chain of N + 1 segments is then

Zdiscrete(L) = 4πQN . (6.5)

The factor of 4π reflects one overall orientation integral, for example the integral over ~t0.

Similarly, the partition function for a single vertex of the KWLC theory is

Q∗ ≡ lim
κ→∞

∫
d2~ti (exp [−κ(1− cos θi)] + exp [−ε]) = Q

(
1 + 2κe−ε

)
, (6.6)

which we have written in terms of the corresponding WLC quantity Q. The total partition function
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for the chain of N + 1 segments is Z∗discrete(L) = 4π(Q∗)N .

In the small segment length limit, Eq. 6.6 shows that the probability of a vertex being kink-like

is 2κe−ε. Therefore the probability of kinking per unit length (for this unconstrained situation) is

ζ ≡ 2ξ
`2
e−ε =

4π
`Q

e−ε, (6.7)

where we have eliminated the bending spring constant, κ, in favor of the persistence length, ξ =

κ`. In order to recover a sensible continuum limit, we will hold the parameter ζ constant as we

take the segment length to zero. Note that we recover the WLC theory when we set ζ → 0. In

later sections we will discuss a formal “zero temperature” limit, in which simple mechanics (no

thermal fluctuations) describes the physics. This limit is a useful intuitive tool, not an experimental

prediction of the behavior of polymers frozen in solution. The “zero temperature” limit is taken

treating ζ as temperature independent, which is equivalent to either the short rod limit or the large

persistence length limit which we shall use interchangeably.

In the continuum limit, we must remove a divergent constant in the partition functions as N →

∞. Thus we define the path integral measure

[d~t (s)]~ti ≡
N∏

i=1

d2~ti
Q

, (6.8)

where Q is defined by Eq. 6.4. Note that unlike the discrete case, in this measure the starting

tangent vector ~t0 is not integrated, but is instead fixed to some given ~ti. The continuum partition

function corresponding to Zdiscrete(L) is then

Z(L) ≡
∫

[d~t (s)]~ti e
−E∗

= 1. (6.9)

With our choice of integration measure, Z(L) just equals one, independent of L.

The continuum KWLC partition function is now

Z∗(L) = lim
N→∞

(
1 +

ζL

N

)N

= eζL. (6.10)

The convergence of the partition function assures us that the continuum limit is well defined. As a

consistency check, we now compute the average kink number for the unconstrained chain

〈m〉 =
∂ logZ∗

∂ log ζ
= ζL, (6.11)

which confirms that ζ is indeed density of kinks. The expansion of the partition function in a power

series shows that the kink number distribution is also correct. We will repeat the average kink
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Figure 6.2: a. Diagrammatic representation of the kink expansion for the tangent partition
function. The dashed curve represents the KWLC theory and the solid curves represent the WLC
theory. It is convenient to collect the terms by kink number as shown. b. Detail of the two-kink
term, showing the relation to the underlying discrete model. ~ui and ~vi are the tangent vectors
flanking kink number i.

number calculation several times in the course of this paper for different constraints to show that

constraining the chain will affect the kink number.

6.4 Tangent partition function and propagator

In this section we compute the tangent partition function and propagator by using a method sym-

bolized in Fig. 6.4a. By tangent partition function Z(~tf ,~ti, L) we mean the partition function with

the initial and final tangents constrained (Eq. 6.12 below). Dividing the tangent partition function

by the unconstrained partition function Z(L) gives the probability density H(~tf ,~ti, L) for the final

tangent vector, given the initial tangent. We will refer to H as the normalized tangent partition

function, or propagator.

Most of the kink-related physics of the KWLC theory can be understood qualitatively from the

tangent partition function. Furthermore, the computation of the tangent partition function is more

transparent than the analogous spatial computation in which the end-to-end distance is constrained

along with the initial and final tangents. The tangent partition function for WLC is defined as

Z(~tf ,~ti;L) ≡
∫

[d~t (s)]~ti e
−E δ(2)[~tN − ~tf ], (6.12)

where the path integral is regularized as described above (Eq. 6.8). Due to the tangent constraint,

the partition function no longer factors into independent vertex contributions. The lower limit on

the integration denotes that the initial tangent ~t0 is held equal to ~ti; the final tangent ~tN , is set to

~tf by the delta function. We integrate (or sum) over the infinite set of intervening tangents in order

to generate the partition function. In this regularization scheme, the tangent partition function and
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tangent propagator are identical

H(~tf ,~ti;L) = Z(~tf ,~ti;L), (6.13)

since with our conventions the unconstrained WLC partition function is one. However, we will see

that this convenient identity does not hold for the KWLC: H∗ 6= Z∗.

While the direct evaluation of the path integral in Eq. 6.12 is difficult, it is well known that this

calculation is equivalent to finding the quantum-mechanical propagator for a particle on the unit

sphere[30, 31]. The tangents correspond to position, arc length corresponds to imaginary time, and

persistence length corresponds to mass. Thus, the tangent partition function is

Z(~tf ,~ti;L) =
〈
~tf
∣∣ e−HL

∣∣~ti〉 , (6.14)

where the Hamiltonian operator is defined as

H ≡ ~p 2

2ξ
, (6.15)

where ~p 2 is the Laplace operator on the unit sphere. The Hamiltonian is diagonal in the angular

momentum representation so the tangent partition function for WLC can be expressed as

Z(~tf ,~ti;L) =
∞∑

l=0

l∑
m=−l

Y m
l (~tf )Y m

l (~ti)∗Cl(L). (6.16)

In this expression, the Y m
l ’s are the Spherical Harmonics and the coefficients Cl are

Cl(L) = exp
[
− l(l + 1)L

2ξ

]
. (6.17)

It can easily be shown that this partition function has the required normalization by summing over

the final tangent to recover Z(L) = 1.

To compute the tangent partition function for KWLC, we proceed with the path integral in

exactly the same fashion, setting the initial tangent, integrating over an infinite set of intervening

tangents, and summing over the state vectors:

Z∗(~tf ,~ti;L) =
∑

{σ1,...,σN}

∫
[d~t (s)]~ti e

−E∗
δ(2)[~tN − ~tf ]. (6.18)

It is now convenient to collect the terms in contributions with a fixed number m of kinks and then

express the result in the continuum limit.

The first step in going from the definition of the discrete KWLC tangent partition function to the
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continuum limit is to reorganize the sum over {σn} as a sum over the number of kinks m. Each term

of this sum is in turn a sum over the positions ni of the kinks, for i = 1, . . .m. The only subtlety

here is introducing the correct limits on the sum to avoid over counting the kink states. The last

kink can be chosen at any arc-length location, but additional kinks must always be chosen with

smaller arc-length values than the following kink. This method is more convenient than introducing

“time ordering” and a factor of 1/m! to explicitly remove the over counting as is commonly done in

the Dyson expansion for time-dependent quantum perturbation theory[32].

The next step is to replace the kink position sums with integrals over the position of the kinks

as
ni+1−1∑

ni=i

→
∫ Li+1

0

dLi

`
, i = 1, . . .m , (6.19)

where Li ≡ ni` and we take Lm+1 = L. The structure of the arc length integrals is that of a series

of convolutions[33], which we write symbolically as ⊗. For example, if F (L) and G(L) are two

functions, then

(F ⊗G)(L) ≡
∫ L

0

dL1 F (L− L1)G(L1) . (6.20)

In the intervals between kinks, the chain is described by the WLC energy function. We can therefore

replace each partial path integral with a WLC propagator.

For every kink, there is one factor of Q−1 that has been introduced by the path integral nor-

malization (Eq. 6.8) but is not absorbed by the definition of the WLC propagator (eqns 6.18 and

6.13). The m factors of `−1, e−ε, and Q−1 can now be written as (ζ/4π)m (see eqn 6.7). Defining

Z∗ =
∑

mZ∗m, the terms in the kink-number expansion can thus be written (compare Fig. 6.4)

Z∗m(~tf ,~ti;L) = ζm

∫ m∏
j=1

d2~ujd
2~vj

4π
(
H(~tf , ~vm)⊗H(~um, ~vm−1)⊗ · · · ⊗H(~u1,~ti)

)︸ ︷︷ ︸
m+1

(L), (6.21)

The 2m angular integrations are over the incoming (~ui) and outgoing (~vi) tangents of the m kinks.

Eq. 6.21 has a very simple interpretation. The probability of creating a kink between L and L+dL

is just ζdL. We then sum over all possible configurations being careful to choose the integration

limits so as not to over count the kink states. At each kink, all orientational information is lost,

so that only tangent independent terms of the propagator contribute (those with angular quantum

number l = 0).

To compute the contour length convolution of propagators, it is convenient to work with the

contour length Laplace transformed propagators H̃ (Eq. 6.80). We shall denote the contour length

Laplace transformed functions with a tilde and use the variable p as the arc length Laplace conjugate

variable. Although we could avoid Laplace transforming the partition function at this juncture, we

use this method presently because it is analogous to our later computation of the spatial propagator.
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By the well known Faltung theorem (Eq. 6.84), the convolution of propagators is just the product of

Laplace transforms. Therefore, in terms of the transformed WLC propagators, the m kink KWLC

Laplace transformed partition function is

Z̃∗m(~tf ,~ti; p) = ζm

H̃(~tf ,~ti; p), m = 0

C̃m+1
0 (p)/4π, m > 0 .

(6.22)

To derive Eq. 6.22, note that Eq. 6.16 gives the WLC tangent propagator summed over the initial

tangent as C0(L), which equals 1 from Eq. 6.17. The corresponding Laplace transform is just

C̃0(p) = 1/p.

The m kink contributions to the KWLC transformed tangent partition function can now be

summed exactly (i.e. Z∗ =
∑

mZ∗m) because they form a geometric series, resulting in

Z̃∗(~tf ,~ti; p) = H̃(~tf ,~ti; p) +
1
4π

ζC̃2
0 (p)

1− ζC̃0(p)
. (6.23)

The m > 0 kink terms clearly contribute no tangent dependence. The inverse Laplace transform

can now be computed without complications, giving the exact KWLC tangent partition function

Z∗(~tf ,~ti;L) = H(~tf ,~ti;L) +
eζL − 1

4π
. (6.24)

Alternatively, we could have derived Eq. 6.24 by noting that the KWLC model is mathemat-

ically equivalent to a Quantum Mechanical system whose Hamiltonian is diagonal in the angular

momentum representation:

H∗ = −ζ |0, 0〉 ⊗ 〈0, 0|+H . (6.25)

Here | l,m〉 is the state with angular momentum quantum numbers l and m andH is the Hamiltonian

operator for the WLC. The only change to the theory is a “ground state energy” shift equal to −ζ.

The KWLC tangent propagator and its Laplace transform can now be evaluated using Eq. 6.10:

H∗(~tf ,~ti;L) =
Z∗(~tf ,~ti;L)
Z∗(L)

= e−ζL

[
H(~tf ,~ti;L) +

eζL − 1
4π

]
, (6.26)

H̃∗(~tf ,~ti; p) = H̃(~tf ,~ti; p+ ζ) +
ζ

4πp(p+ ζ)
. (6.27)

Fig. 6.4a compares the KWLC tangent propagator to the WLC theory with an illustrative value

ζ = 0.01/ξ. The two theories appear indistinguishable, and in fact we will find that many, but not

all, predictions of the models are essentially the same in this parameter regime.

In principle since the propagator is known exactly, everything in the theory can now be computed.

Of course this is an exaggeration since, even though the tangent propagator for WLC has long
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Figure 6.3: The tangent propagator and the tangent free energy as functions of the deflection angle
for the illustrative values L = 0.2ξ and ζξ = 10−2. The solid curves are KWLC and the dashed
curves are WLC with the same value of ξ. In the absence of kinking, the WLC distribution (H)
is essentially zero away from small deflection. For the small value of ζ chosen above, WLC and
KWLC are indistinguishable in the top panel. The presence of kinks adds a background level to the
propagator which is independent of θ, but is thermally inaccessible—too small to distinguish from
zero in the top panel, but is visible in the free energy in the lower panel. The tangent free energy
gives an intuitive picture of the system interpreted as as single-state system with an effective bending
modulus which saturates due to kinking. Most thermally driven experiments measure the polymer
distribution as it is pictured in the top panel and are therefore insensitive to the high-curvature
constitutive relation. But experiments which do probe this regime, short-contour-length cyclization
for example, will be extremely sensitive to the difference between the theories due to the large free
energy difference at large deflection.

been known, only recently have the exact expressions for the transformed spatial propagator been

derived[34, 35]. The free energy of the chains for both theories have the canonical relation with their

respective partition functions

F (θ;L) = − logZ(~tf ,~ti;L), (6.28)

where we have explicitly written the free energy in terms of the deflection angle defined by the dot

product of the initial and final tangents: cos θ = ~ti ·~tf . Up to this point we have written the partition

function and propagator as explicit functions of both the initial and the final tangent but the rigid

body rotational invariance of the energy implies that these functions depend only on the deflection

angle. To express any quantity in terms of the deflection angle, we set the initial tangent to be the

unit vector in the z direction and the final tangent to be the unit vector in the radial direction. θ

now assumes its canonical definition in spherical polar coordinates.

Fig. 6.4b compares the free energies of WLC and KWLC. Despite the similarity of propagators

(Fig. 6.4a), the free energies are quite different. To understand the significance of this free energy,

we imagine discretizing the chain at some segment length `. The free energy F (θ; `) gives us the

effective constitutive relation for single-state torsional springs in this new discretized theory. As

depicted in Fig. 6.4b, the potential energy of these springs is initially quadratic in deflection, but

saturates due to kink formation.
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Figure 6.4: The bending moment τ and average kink number 〈m〉 as functions of the tangent
deflection angle for illustrative values L = 0.2ξ and ζξ = 10−2. The solid curves are KWLC and the
dashed curves are WLC with the same bend persistence length. At small θ, the normalized bending
moment exhibits a linear spring dependence and the chain is unkinked. The limiting linear behavior
of the short rod limit is the dotted curve, labeled T = 0 corresponding to the mechanical limit of
WLC. For large deflection, the chain kinks and the moment drops to zero. This correspondence
between kinking and the moment is clearly illustrated in the short length limit depicted above.

6.4.1 Moment-Bend & kink number

To understand the interplay between chain kinking and deflection, it is helpful to explicitly compute

the relation between the deflection angle and the restoring moment (torque), as well as computing

the average kink number. Here we ask the reader to imagine a set of experiments analogous to

force-extension but where the moment-bend constitutive relation is measured. We compute the

constitutive relation in the usual way in terms of the deflection angle θ

τ(θ;L) ≡ − ∂

∂θ
F (θ;L), (6.29)

where F (θ;L) is the tangent free energy and θ is the deflection angle. In terms of the WLC bending

moment, Eq. 6.24 shows that the moment for KWLC has a very simple form:

τ∗(θ;L) = τ(θ;L)
Z(θ;L)
Z∗(θ;L)

, (6.30)

where τ is the WLC moment and Z and Z∗ are the tangent partition functions for WLC and KWLC,

respectively. The moment is plotted as a function of deflection in Fig. 6.4.1. For short chains, the

small deflection moments of the two theories initially coincide. But as the deflection increases, there

is a transition, corresponding to the onset of kinking, where the moment is dramatically reduced to

nearly zero. In Eq. 6.30, this transition is clear from the ratio of the partition functions. Remember

that the KWLC partition function is the sum of the WLC partition function and the m > 0 kink

partition functions. Before the onset of kinking, the WLC and KWLC partition functions are equal

since the kinked states do not contribute significantly to the partition function. For large deflection,
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the KWLC partition function is kink dominated and therefore the ratio in Eq. 6.30 tends to zero.

Physically, once the chain is kink dominated, the moment must be zero since the kink energy is

independent of the kink angle. At zero temperature, the moment would be zero, but fluctuations in

which the chain becomes unkinked cause the moment to be nonzero. We discuss this effect in more

detail below.

To explicitly see that the reduction in the moment corresponds to kinking, we compute the

average kink number as a function of deflection

〈m〉 (θ;L) = − ∂F ∗

∂ log ζ
=

ζL

4πH∗(θ;L)
, (6.31)

which is depicted in Fig. 6.4.1. Note that when we remove the tangent constraint, we again find

that the average kink number is ζL. When the chain is constrained, the enhancement factor is pro-

portional to (H∗)−1. Note that this implies that the kink number will be reduced when the tangents

are constrained to be aligned and enhanced when the chain is significantly bent. In Fig. 6.4.1, the

kink-induced reduction in the moment can be seen to correspond to the rise of the kink number

from zero to one kink.

We will now compare these exact results to the mechanical or “zero temperature” limit. This

regime is equivalent to the large persistence length limit, where we can write the partition function

concisely as

lim
L→0

Z∗(~tf ,~ti;L) =
1
4π

[
2ξ
L

exp
(
− ξ

2L
θ2
)

+ ζL

]
; (6.32)

the WLC limit is recovered for ζ = 0. In the short length limit, the moment of the WLC chain is

simply linear in deflection: τ = −θξ/L. This moment is also plotted in Fig. 6.4.1. Even without

the complication of kinking, there is already one interesting feature of the exact WLC moment-bend

constitutive relation which needs explanation. For large deflection, the linear relation already fails

in the WLC model! This is a thermal effect which is best understood by going to the extreme

example of deflection θ = π. For any configuration, the contribution of a chain reflected through the

axis defined by the initial tangent will make the partition function symmetric about ~tf = −~ti. This

implies that the bending moments from these chains cancel. Away from θ = π, the cancellation is

no longer exact. In the mechanical limit, this effect is present but localized at θ = π due to the path

degeneracy.

In the mechanical limit, kinking is always induced by bending and at most one kink is nucleated.

In this limit, the KWLC bend-moment can be rewritten in terms of the kink number

τ∗(θ;L) = τ(θ;L)(1− 〈m〉), (6.33)



136

where the kink number is just the Heaviside step function,

〈m〉 (θ, L) = ΘH [θ − θ0], (6.34)

around a critical deflection angle

θ0 ≡
[
2L
ξ

log
2ξ
ζL2

]1/2

. (6.35)

For deflection less than the critical deflection, the kink number is zero and the moment is given by

the WLC moment. At the critical deflection angle, there is an abrupt transition to the kinked state

with kink number one and the moment zero. Precisely at the critical angle the free energy of the

kinked state and the elastically bent state are equal. Note that we have not discussed dynamics and

have assumed that the system is in equilibrium, not kinetically trapped.

The behavior of the KWLC theory for short contour lengths is nearly what one would expect from

mechanical intuition. Bending of the chain on short length scales induces a moment which is initially

linearly dependent on deflection. When the chain is constrained to a large deflection angle, kinking

is induced and the response of the chain to deflection is dramatically weakened. In the mechanical

limit, once kinking is induced, the moment is zero but for finite size rods, the ability of the chain

to fluctuate between the kinked states and unkinked states blurs the dramatic zero-temperature

transition between the kinked and unkinked bend response.

Our discussion here has focused principally on developing an intuition for the short chain limit.

From an experimental perspective, it is difficult to measure the moment-bend relation directly as

we have described, especially for short chains. While single molecule AFM experiments might probe

this relation, most of the information about the moment-bend constitutive relation comes from

indirect measurements of thermally-induced bending. For example light scattering, force-extension,

and cyclization experiments are all measures of thermally induced bending. As we shall explain,

only cyclization experiments with short contour length polymers are sensitive to the high curvature

regime of the moment-bend constitutive relation. For the most part, these thermally driven bending

experiments are only sensitive to the thermally accessible regime of the moment-bend constitutive

relation which corresponds to small curvature and therefore small deflection on short length scales, a

regime that is very well approximated by linear moment-bend constitutive relation. For long chains,

the initial linear response is weaker implying that the kinking transition is less pronounced. In fact

we shall see in the next section that for some of these indirect measurements of the low curvature

regime of the constitutive relation, the effect of the kinking will be indistinguishable from the linear

elastic response.
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6.4.2 Persistence length

Since many polymer characterization experiments are most sensitive to the thermally-accessible

weak-bending regime, it is clearly of interest to determine whether kinking changes this low-curvature

physics. Intuitively, we have already argued that, at least for small kink densities, many properties of

the polymer that do not explicitly probe the highly bent structure will remain essentially unchanged.

In this section, we will derive a number of exact results that show that the effects of kinking can be

described by a renormalization of the persistence length of WLC theory for some bulk features of

the polymer distribution, regardless of the magnitude of ζ.

The tangent-tangent correlation must be a decreasing exponential due to multiplicativity[5, 31]

and therefore we can discuss the decay length. The tangent persistence is

〈
~t∆ · ~t0

〉
= e−(ζ+ξ−1)∆, (6.36)

which can be computed by examining the limit of small ∆ and applying the tangent propagator (eqn

6.26). Since this result is identical to the WLC result except for the decay constant, we introduce

the effective persistence length

ξ∗ ≡
(
ξ−1 + ξ−1

kink

)−1
, (6.37)

where the kink length is defined as ξkink ≡ ζ−1. The form of this effective persistence length is not

surprising since a roughly analogous effect is observed adding two linear springs together or from

the combination of static and dynamic persistence length[36, 37, 38]. This tangent persistence result

immediately implies that an analogous exact renormalization occurs for both the mean squared end

distance

〈
R2
〉
KWLC

=
[〈
R2
〉
WLC

]
ξ→ξ∗

= 2Lξ∗ − 2ξ∗
(
1− e−L/ξ∗

)
(6.38)

and the radius of gyration

〈
R2

g

〉
KWLC

=
[〈
R2

g

〉
WLC

]
ξ→ξ∗

=
Lξ∗

3
− ξ∗2 +

2ξ∗3

L
− 2ξ∗4

L2

(
1− e−L/ξ∗

)
, (6.39)

since these result are simply integrations of the tangent persistence[4]. In experiments sensitive only

to the radius of gyration (static scattering for small wave number) or the average square end distance

(force-extension in the small force limit), the measured persistence length of the KWLC theory will

be the effective persistence length, ξ∗, regardless of the magnitude of ζ. In most systems of physical

interest, the kink length is much larger than the bend persistence length implying that, even if the

bend persistence were independently measurable, the difference between the effective persistence

length and the bend persistence length would be very small. In other words, the loss of tangent
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persistence due to kinking is negligible compared with the loss due to thermal bending since kinks

are rare on the length scale of a persistence length.

The tangent persistence corresponds to the first moment of the tangent propagator. Clearly the

renormalization we have discussed fails for higher order moments! At least in principle it is therefore

possible to determine the bend persistence from higher order moments of the distribution. From

an experimental perspective this corresponds to scattering experiments at large wave number, force

extension for large force, or cyclization experiments for short contour length. To predict the effects

of kinking in these experiments, we must compute the spatial propagator (the spatial distribution

function).

6.5 Tangent-spatial and spatial propagators

The spatial propagator K(~x;L) is defined as the probability density of end displacement ~x for

a polymer of contour length L. Similarly, the tangent-spatial propagator G(~x;~tf ,~ti;L) is defined

as the probability density of end displacement ~x with final tangent ~tf , given an initial tangent

~ti, for a chain of contour length L. Although in principle the theory is solved once the tangent

propagator is known, the moments of the spatial propagator, or spatial distribution function, are

more experimentally accessible than the tangent propagator. In particular, the J factor measured

in cyclization experiments, the force-extension characteristics, and the structure factor measured in

scattering experiments are all more directly computable from the propagators G and K. In this

section, we first compute the spatial propagator and then discuss its application to experimental

observables.

Following our computation of the tangent propagator, we compute the tangent-spatial and spatial

partition functions. Our solution relies on the same Dyson-like expansion of the partition function

in the kink number as was exploited to compute the tangent partition function. The only added

complication is that, in addition to the arc length convolution, we must also compute convolutions

over the 3d spatial positions of the kinks. By going to the Fourier-Laplace transformed propagator,

the convolutions again become products and the m kink contributions can be summed exactly.

Unfortunately the exact results of this computation will only be found analytically up to a Fourier-

Laplace transform, in part because the WLC theory itself is only known analytically in this form[34,

35].

We begin by writing the tangent-spatial partition function for the KWLC theory in an form

analogous to the tangent partition function in Eq. 6.18:

Z∗(~x;~tf ,~ti;L) =
∑

{σ1,...,σN}

∫
[d~t (s)]~ti e

−E∗
δ(2)[~tN − ~tf ]δ(3)[ ~xN+1 − ~x ], (6.40)
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where ~t0 is the initial tangent vector. The additional spatial Dirac delta function in the equation

sets a spatial constraint for the end displacement; in this expression, ~xN+1 ≡ `
∑N

n=0
~tn. We will

again collect the terms in this sum by kink number m. In the intervals between kinks, we again

introduce the WLC propagator, but this time we use the tangent-spatial propagator G, defined by

an expression analogous to Eq. 6.40, but with E in place of E∗.

Because we have normalized the unconstrained WLC partition function such that Z ≡ 1, the

tangent-spatial partition function and propagator are identical. It is convenient to introduce the

WLC spatial propagator

K(~x;L) ≡ 1
4π

∫
d2~t1d

2~t2 G(~x;~t1,~t2;L), (6.41)

where we sum over the final tangent and average over the initial tangent to derive the spatial

probability density. We also introduce the one tangent summed tangent-spatial propagator

G′(~x,~t;L) =
∫
d2~t1 G(~x;~t,~t1;L), (6.42)

which will allow us to concisely express intermediate results. Finally for economy of notation, we

write the convolutions over both the spatial position and arc length symbolically with ⊗, generalizing

the notation introduced in Sect. 6.4.

The m > 0 kink KWLC tangent-spatial partition function can be written in terms of the WLC

propagators:

Z∗m(~x;~tf ,~ti;L) =
ζm

4π

(
G′(~tf)⊗ [K⊗ ]m−1

G′(~ti)
)

(~x, L) , m > 0 . (6.43)

We now introduce the WLC Fourier-Laplace transforms of the propagators G′ and K. We denote

the transformed functions with a tilde. The Laplace conjugate of contour length L is p and the

Fourier conjugate of the end displacement ~x is the wave number ~k. The Faltung theorem (Eqs

6.79 and 6.84) allows us to replace the spatial-arc length convolutions with the products of the

Fourier-Laplace transformed propagators. The m kink KWLC transformed partition function is

Z̃∗m(~k;~tf ,~ti; p) = ζm

G̃(~k,~tf ,~ti; p), m = 0

G̃′(~k,~tf ; p)K̃m−1(~k; p)G̃′(~k,~ti; p)/4π, m > 0,
(6.44)

which is analogous to Eq. 6.22 for the tangent propagator.

As before, the transformed m kink contributions can be summed exactly in a geometric series.

Abbreviating the notation somewhat, the resulting tangent-spatial transformed partition function
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becomes

Z̃∗(~k;~tf ,~ti; p) = G̃+
ζG̃′G̃′

4π
(
1− ζK̃

) . (6.45)

We can also derive the KWLC transformed spatial partition function by averaging over the initial

tangent and summing over the final tangent. Applying the definition in Eq. 6.41 gives

Z̃∗(~k; p) =
K̃(~k; p)

1− ζK̃(~k; p)
. (6.46)

To compute the KWLC spatial and tangent-spatial propagators, we divide the constrained partition

functions by the unconstrained partition function (Eq. 6.10). The transformed tangent-spatial and

spatial propagators are

G̃∗(~k,~tf ,~ti; p) = LF

[
Z̃∗(~x,~tf ,~ti;L)

Z̃∗(L)

]
= Z̃∗(~k;~tf ,~ti; p+ ζ), (6.47)

K̃∗(~k; p) = LF

[
Z̃∗(~x;L)
Z̃∗(L)

]
= Z̃∗(~k; p+ ζ), (6.48)

where L is the arc-length Laplace transform and F is the spatial Fourier transform. The transformed

WLC spatial propagator is exactly known[34, 35]

K̃(~k; p) =
1

P0 +
A1
~k2

P1 + A2~k2

P2+
A3~k2

···

, (6.49)

where Aj and Pj are defined

Aj ≡
j2

4j2 − 1
, Pj ≡ p+

j(j + 1)
2ξ

. (6.50)

Because the KWLC transformed spatial partition function and propagator are functions of K̃, they

are also known exactly. In principle, both K and K∗ can be computed by inverting the transforms

numerically. In order to compute the KWLC tangent-spatial partition function and propagator, the

WLC tangent-spatial propagator, G, must also be known. Since G̃ is not known analytically, our

solution for the tangent-spatial partition function and propagator are formal. From the perspective

of computing experimental observables, K∗ will suffice for computation of the force-extension char-

acteristic, the structure factor, and surprisingly, the J factor, despite the tangent constraint in its

definition.
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6.5.1 Wave number limits

While we have written the exact transformed propagators for KWLC, like WLC, these transforms

cannot be inverted analytically. It is therefore useful to examine the exact transformed propagators

in several limits which can be computed analytically. First we consider the long length scale (k → 0)

limit. We find that KWLC and WLC are identical apart from the renormalization of the persistence

length (see Eq. 6.37):

lim
k→0

K̃∗ = lim
k→0

K̃ξ→ξ∗ =
[
p+

1
3

k2

p+ (ξ∗)−1
+ · · ·

]−1

. (6.51)

By expanding the exponential in the definition of the Fourier transform, it can be shown that this

result is equivalent to showing that R2 is exactly renormalized. In our discussion of the J factor it

will be convenient to consider an even more restrictive limit. We now add the additional restriction

that the chain is long (p → 0). In this limit we must recover the Gaussian chain (Central Limit

Theorem)

lim
k,p→0

K̃∗ = lim
k→0

K̃ξ→ξ∗ =
[
p+

ξ∗k2

3
+ ...

]−1

, (6.52)

which is the transformed Gaussian distribution function for Kuhn length 2ξ∗. When applicable, the

Gaussian distribution is a power tool due to its simplicity.

The opposite limit is the short length scale (k → ∞) and short contour length limit (p → ∞).

In this limit WLC and KWLC are identical, both approaching the rigid rod propagator

lim
p,k→∞

K̃∗ = lim
p,k→∞

K̃ = K̃ξ→∞ =
1
k

tan−1 k

p
. (6.53)

The rigid rod spatial propagator describes a polymer that is infinitely stiff. In the limit that we

analyze very short segments of the polymer, both the WLC and KWLC models appear rigid since

we have confined our analysis to length scales on which bending is thermally inaccessible. In this

limit, the propagators take a very simple form which is more tractable than either WLC or KWLC.

The rigid rod propagator is useful when discussing the limiting behavior of the J factor at short

contour length and is discussed in more detail in the Appendix.

6.5.2 Partition function in an external field and force-extension charac-

teristic

In force-extension experiments, a single polymer molecule is elongated by a bead in an external field.

The average extension of the polymer is measured as a function of external field strength. The forces

opposing extension are entropic. These entropic forces are caused by the reduction in the number

of available microstates as the polymer extension is increased. The persistence length defines the
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Figure 6.5: Force-extension characteristic for KWLC compared to WLC and Rigid Rod for L = 4ξ
and ζξ = 4. At low extension, the force-extension of KWLC (solid curve) approaches WLC (dashed
curve) with a persistence length equal to the effective persistence length of KWLC. At high extension,
the kink modes are frozen out and the KWLC force-extension characteristic approaches WLC (dotted
curve) with a persistence length equal to the bend persistence length of KWLC. Rigid Rod (dot
dashed curve) has been plotted for comparison. The extension of Rigid Rod corresponds to alignment
only.

length scale on which the polymer tangents are correlated. For small persistence length, the number

of statistically uncorrelated tangents is greater, which increases the size of the entropic contribution

to the free energy relative to the external potential. This deceptively simple physics implies that a

chain with a softer bending modulus acts as a stiffer entropic spring resisting extension.

To compute the force-extension relation, we must compute the partition function in an external

field f which can be concisely written in terms of the spatial partition function

Z~f (L) =
∫
d3x e

~f ·~xZ(~x;L) = Z̃(i ~f ;L), (6.54)

which is a particularly convenient expression since it is the Fourier-transformed partition function

with the wave number ~k analytically continued to i ~f . Note that this is the inverse Laplace transform

of Eq. 6.45. The average extension is

〈x(f)〉 =
∂

∂f
logZ~f , (6.55)

which may be computed by taking the inverse Laplace transform numerically. (See Sect. 6.9.2

for the numerical method.) The results are plotted in Fig. 6.5.2. In this figure, the KWLC theory

interpolates between two WLC limits at high and low extension. The low-force limit is clearly related

to low wave number limit (Eq. 6.51) via an analytic continuation of the wave number. Therefore

KWLC with effective persistence length ξ∗ and WLC with persistence length ξ∗ correspond in the

low-extension limit as can be seen in Fig. 6.5.2.
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Figure 6.6: Left: Semilog plot of the best fit of the WLC model (ζ = 0) to experimental data on the
force-extension relation of a single molecule of lambda DNA. Right: Best fit of the KWLC model
to the same data, taking ζξ = 0.05. The fits are equally good, even though this value of ζ is larger
than the one that we will argue fits cyclization data. Thus, force-extension measurements can only
set a weak upper bound on the value of ζ. (Data kindly supplied by V. Croquette; see [5].)

At high force, Fig. 6.5.2 shows that kinking becomes irrelevant and the extension of KWLC

and WLC both with bend persistence ξ are identical. In this limit, the chain is confined to small

deflection angles for which the effect of kinking is negligible, as can be seen in Fig. 6.4. In essence the

kink modes freeze out and measurement of the extension versus force measures the bend persistence

rather than the effective persistence length of the KWLC polymer chain.

These two regimes imply that in principle the value of ζ could be determined by the difference

between the persistence length measured at small and large extension. In practice, this is most likely

not practical. We have purposely chosen an unrealistically large value of ζ in Fig. 6.5.2, to illustrate

clearly the low- and high-extension limits. In more realistic systems, the difference between the

bend and effective persistence lengths would be small implying that it would be difficult to detect.

Furthermore, at low extension the effects of polymer-polymer interactions can act to either increase

or decrease the effective low extension persistence length. At high extension, polymer stretch also

acts to increase the extension at high force most likely obscuring the effects of the entropy reduction

due to the loss of the kink bending modes. Fig. 6.5.2 illustrates these remarks. The force-extension

characteristic is therefore unlikely to detect the high-curvature softening induced by kinking.

6.5.3 Structure factor

Another experimental observable used to characterize polymers is the structure factor, measured by

static light scattering, small-angle X-ray scattering, and neutron scattering experiments. Measure-

ments of the structure factor can probe the polymer configuration on a wide range of length scales.
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Figure 6.7: The structure factor and the role of effective persistence length. The solid curve is
the structure factor for KWLC with contour length L = 4ξ, and kink parameter ζ = 4/ξ. For
comparison, we have plotted the structure factor for WLC of the same contour length for identical
bend persistence lengths (dashed) and identical effective persistence length (dotted). At short length
scales (large wave number) the KWLC structure factor approaches that for WLC with an identical
bend persistence length. At long length scales (small wave number), the KWLC structure factor
approaches that for WLC with a persistence length equal to its effective persistence length ξ∗. We
have also plotted the structure factor for Rigid Rod (dot dashed curve) for comparison.

Symbolically the structure factor is

g(~k) ≡ 1
L2

∫ L

0

dsds′
〈
exp

[
i~k ·

(
~X(s)− ~X(s′)

)]〉
, (6.56)

where ~X(s) is the position of the polymer at arc length s and we have included an extra factor of the

polymer contour length in the denominator to make the structure factor dimensionless[34]. At high

wave number, the structure factor is sensitive to short length scale physics, whereas the polymer

length and radius of gyration can be measured at low wave number. The structure factor can be

rewritten in terms of the Laplace-Fourier transformed propagator

g(~k) =
2
L2
L−1

[
K̃(~k; p)
p2

]
, (6.57)

where L−1 is the inverse Laplace transform which can be computed numerically. (See Sect. 6.9.2

for the numerical method.) As we mentioned above, the leading-order contributions at small wave

vector are the polymer length and the radius of gyration

Lg(k) = L(1 + 1
3
~k2R2

g + ...) (6.58)
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Figure 6.8: The diagrammatic representation of the kink number expansion for cyclized polymers.
The dashed curve represents the KWLC theory which is the sum of the m kink contributions. In the
interval between the kinks, the polymer is described by WLC, represented by the solid curves. For
each m kink contribution, we sum over the kink position. In order to meet the tangent alignment
conditions for cyclized polymers, we close the chain at a kink for kink number one or greater.

where we have temporarily restored the length dimension of g. At large k, both WLC and KWLC

are rod-like or straight which gives an asymptotic limit for large wave number

g(k) → π

Lk
, (6.59)

since the chain is inflexible at short length scales.

To what extent can scattering experiments differentiate between WLC and KWLC? We have

already argued that kinking merely leads to a renormalization of the persistence length for the

radius of gyration, Rg, so both theories are identical at the low and high wave number limits. For

the rest of the interval, the theories do predict subtly different structure factors, but for small values

of ζ, the theories are nearly indistinguishable. Again, we have chosen to illustrate the structure factor

for an unrealistically large value of ζ, to exaggerate its effect. Like force-extension measurements,

scattering experiments are not sensitive to the high curvature physics since the signal is dominated

by the thermally accessible bending regime which is essentially identical to WLC.

6.6 Cyclized chains and the J factor

Although the theoretical study of the moment-bend constitutive relation is straightforward, it is

problematic experimentally to apply a moment and measure the deflection directly on microscopic

length scales. It is typically more convenient to let thermal fluctuations drive the bending, but as

we have discussed above, experiments which measure thermally-driven bending are typically not

sensitive to the rare kinking events. In contrast, cyclization experiments, although thermally driven,

are sensitive to bending at any length scale. These experiments measure the relative concentrations

of cyclized monomers to noncyclized dimers. By choosing the contour length of the monomers,

any bending scale may be studied provided the concentration of cyclized molecules is detectable.

Furthermore, these experiments are typically bulk rather than single molecule. In fact the data

motivating this work comes from recent DNA cyclization measurements of Cloutier and Widom[8]

who have shown that the cyclization probability is 104 to 105 times larger than that predicted by

WLC for DNA sequences with a contour length L ≈ 0.6ξ, while confirming that larger sequences
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(L > ξ) do cyclize at the rate theoretically predicted by the WLC 1

In cyclization measurements, the configurational free energy is isolated in the J factor which is

ratio of the cyclization equilibrium constant to the dimerization equilibrium constant[39]. This ratio

eliminates the dependence on the end-end interaction free energy. For non-twist storing polymers,

the J factor is proportional to the tangent-spatial propagator[39]

J = 4πG(0;~t,~t;L), (6.60)

which is the concentration of one end of the polymer chain at the other (~x = 0) with the correct

tangent alignment. The factor of 4π is due to the isotropic angular distribution of monomer in

free solution. Our analysis will neglect additional complications relevant to the study of real DNA.

First, in DNA the twist must also be aligned, which requires the use of a variant of WLC, Helical

Wormlike Chain[4]. This additional constraint modulates the J factor with a 10.5 bp period equal to

the helical repeat. Our interest here is in the value of the J factor averaged over a helical repeat for

which the effects of twist can be roughly ignored[4]. A second complication in real DNA is sequence

dependent prebending[40, 41]. We argue elsewhere that prebending effects alone cannot explain the

high cyclization rates observed for short DNA[20]; in this paper we focus instead on kink formation.

Although cyclization experiments are fairly straightforward, extracting mechanical information

from the results poses a difficult theoretical problem due to the combination of tangent and spatial

constraints. In fact, there is no exact analytic expression for the J factor in the WLC theory; the

following sections and appendices will develop the numerical methods we need.

6.6.1 The looping J factor

Due to these computational complications, we shall initially dispense with the tangent alignment

condition and compute a modified J factor that is relevant for processes that do not fix the tangents

of the chain. For example some protein-DNA complexes exhibit a behavior that is believed to be

better represented by looping (free end tangents) than cyclization (end tangents aligned) [14]. We

define the looping J factor as the ratio of the looping to the dimerization equilibrium constants.

The KWLC looping J factor, J∗L, can be written in terms of the spatial propagator as

J∗L = K∗(0;L), (6.61)

1Cloutier and Widom’s discussion assumed that the ligase enzyme used in their experiments acts in the same way
when ligating a single DNA or joining two segments. Although this assumption is standard in the field, it may be
criticized when the length of the DNA loop becomes not much bigger than the ligase enzyme itself. We believe that
effects of this type cannot account for the immense discrepancy between the measured J factor and that predicted by
the WLC theory.
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Figure 6.9: The KWLC looping J factor, J∗L, as a function of contour length plotted for various values
of the kinking parameter ζ. The numbers labeling the curves indicate the value of the dimensionless
quantity ξζ. WLC is the curve labeled 0. For large contour length L, the effect of kinking can be
accounted for by computing JL for the effective persistence length, ξ∗. But as the contour length
shrinks to a persistence length, the effect of kinking becomes dominant, even for small ζ. At short
contour length the looping J factor is one kink dominated and diverges in contrast to the WLC
looping J factor which approaches zero precipitously for short contour length.

which can be interpreted as the concentration of one end at the other. We have again neglected

the effect of twist. In this case the explicit 4π in Eq. 6.60 is not needed, as the definition of K

already includes an integral over angles.the angular distribution is irrelevant and therefore there is

no additional factor of 4π. Both from the standpoint of developing intuition and computational

convenience it is useful to explicitly expand K∗ in the kink number. We introduce the WLC closed

spatial propagator convolutions which we denote

K(m) ≡ [K⊗]m (0;L), (6.62)

where again the ⊗ represents both spatial and arc length convolutions. The computation of the

K(m) is discussed in Sect. 6.9.3. In terms of the K(m), the free tangent J factor is

J∗L = e−ζL
∞∑

m=0

ζmK(m+1), (6.63)

where we have defined the K(m) to be independent of the kinking parameter ζ. The kink number

sum is illustrated with a diagrammatic expansion in Fig. 6.6. The probability of the m kink state

can be concisely written in terms of the K(m)

Pm = e−ζLζmK(m+1)

J∗L
. (6.64)
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Figure 6.10: (Color.) The KWLC cyclization J factor as a function of contour length L for various
values of the kink parameter ζ. As discussed in the text, our theory does not include the twist
induced 10.5 bp modulation of the J factor. The numbers labeling the curves indicate the value of
the dimensionless parameter ξζ. The WLC theory corresponds to ζ = 0. For large contour length L,
the effect of kinking can be accounted for by computing the J factor using the effective persistence
length, ξζ. As the contour length L falls below a persistence length, kinking dramatically increases
the J factor, even for small ζ. For small L the chain is two kink dominated and diverges, in contrast
to the WLC theory which precipitously falls to zero at small L. Experimental cyclization data for
DNA are plotted for comparison, assuming ξ = 50 nm. (Data sources: CW[8], SB[42], SLB[43], and
VV[44].) At contour length L = 0.6ξ, the experimentally measured J factor is ≈ 104 times larger
than predicted by the WLC theoretical curve. The KWLC with ζξ = 10−2 correctly captures this
behavior, while matching the WLC theory at large contour length.

This expression can be interpreted as the kink number distribution for a looped chain, a constraint

that induces kinking in a manner roughly analogous to the tangent constraints already discussed in

detail. The looping J factor is plotted in Fig. 6.6.1. In this figure, we can see that the intuition we

developed computing the moment-bend constitutive relation is borne out in the looping J factor,

despite the fact that the process is thermally driven. In the short-length limit, the ability of the

chain to kink dramatically reduces the bending energy and increases the looping J factor. In the

short-length limit, a single kink is nucleated in a manner almost exactly analogous to the process

we have described in detail for the moment-bend constitutive relation. We will discuss these results

and their scaling in more detail after computing the KWLC J factor.

6.6.2 The cyclization J factor

Although the computation of the free tangent J factor is more direct and intuitive, the J factor with

tangent alignment is of more phenomenological interest. The computation begins with the tangent-

spatial partition function defined in Eq. 6.45 for end distance zero and aligned tangents. Since

the transformed WLC tangent-spatial propagator is unknown, it would initially appear to preclude

exploiting the exact results derived above. But intuitively we know the chain may be closed at any

point resulting in an identical J factor. For kinked chains, it is convenient to close the chain at a
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kink where the tangent alignment condition is no longer required. The only chains for which this

simplification cannot be applied are the unkinked chains for which the J factor is already known[3].

To show this explicitly, we write the transform of Eqn. 6.45 in its expanded form and specialize to

~t = ~t0 to obtain the cyclization partition function:

Z∗C(L) = G(0;~t,~t;L) +
∞∑

m=0

(
ζG′(~t )⊗ (ζK⊗)m

G′(~t )
)
(0;L). (6.65)

We can now use the composition property of the propagators to replace the initial and final tangent-

spatial propagators with a single spatial propagator. Some care is now required in performing the

convolution, as described in Appendix 6.9.1. The cyclization partition function then becomes (Eqn.

6.87)

Z∗C(L) = G(0;~t,~t;L) +
1
4π

∞∑
m=1

ζmL

m
K(m), (6.66)

where we have expressed the result in terms of the zero end distance spatial propagator convolutions,

K(m). The kink number sum is illustrated with a diagrammatic expansion in Fig. 6.6. This equation

has an analogous form to the looping J factor in Eqn. 6.63. The only complication here is that for

kinked chains, the state counting has subtly changed since we close the chain at a kink. For inverse

transform numerical computations, it is convenient to write a transformed partition function

Z̃∗C(k; p) = G̃+
1
4π

∂

∂p
log
[
1− ζK̃

]
, (6.67)

although the expression is understood to only have physical meaning when the chain is closed (~x = 0).

Our derivation of the cyclized partition function implies that the KWLC tangent-spatial propagator

is known for one special case

G∗(0;~t,~t;L) = e−ζLZ∗C(L), (6.68)

which is precisely the expression we need to compute the J factor. In terms of the KWLC tangent-

spatial propagator, the KWLC J factor is

J∗ = 4πG∗(0;~t,~t;L) = e−ζL
∞∑

m=0

ζmJ (m), (6.69)

where we have explicitly expanded the J factor in kink number. The J (m) are defined by

J (m) ≡

J, m = 0

Lm−1K(m), m > 0
. (6.70)

Fig. 6.6.2 compares experimental data to our theoretical calculation of J∗. Details of the calcu-
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Figure 6.11: The kink-number distribution compared for cyclized chains (solid curves) and uncon-
strained chains (dashed curves) as a function of contour length L. To illustrate constraint-driven
kinking, we have chosen the illustrative value ζξ = 10−2. At large contour length L, the cyclization
constraint is irrelevant but as the arc length shrinks to roughly a persistence length, the bending
energy required to cyclize the chain becomes significant and there is a dramatic transition to the
two kink state which dominates at short contour length. The contributions of one and m > 2 kink
states are secondary.

lation are discussed in Appendix 6.9.3. Note that setting the kink density to ζ ≈ 10−2/ξ = 0.2/µm

roughly reproduces the experimental cyclization data. Eq. 6.7 connects ζ to the density of vertices

` and the free energy cost ε of creating a kink. Assuming that the site density is just the DNA base

pair length ` = 0.34 nm, we can estimate the kink energy,

ε = ln
[

2ξ
`2ζ

]
≈ 15 kT ≈ 9 kcal/mol . (6.71)

Although we do not discuss detailed microscopic models in this paper, it is interesting to note that

molecular modeling studies have found that in B-form DNA, base pairs indeed open individually

and noncooperatively with an activation energy of 10–20kcal/mol [45].

6.6.3 Topologically induced kinking

It is useful to discuss kink number in chains that are topologically confined to be cyclized. These

chains have both the kink inducing tangent and spatial constraint. We can write the kink number

distribution concisely in terms of the J factor

Pm = e−ζLζmJ (m)

J∗
, (6.72)

which is analogous to Eq. 6.64 and depicted in Fig. 6.6.3.

The effects of kinking on the J factor are dramatic even when the kinking parameter ζ is small!

Fig. 6.6.2 shows that the WLC J factor precipitously decreases with loop contour length due to the
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increasing elastic energy required to close the loop

J ∼ e−2π2ξ/L. (6.73)

In dramatic contrast, the KWLC J factor, while tracking the WLC J factor at large contour length,

turns over at small contour length and increases divergently. Physically, this small contour length

divergence can be understood as an increase in the ratio of available cyclized to noncyclized states

which is roughly inversely proportional to the physical volume explored by the chain when one end

is fixed. This divergent increase in the density of states can also be seen for the Gaussian chain in

the short length limit, although this limit is not physical for polymer systems. For the Gaussian

chain, the J factor is monotonically decreasing with contour length since the only obstruction to

the ends finding each other is entropic, and the number of available noncyclized states scales like

L3/2 (Eq. 6.104). For KWLC, once the chain is kinked twice, it is advantageous to shorten the chain

which, while decreasing the degeneracy of the first kink location, ∝ L (Eq. 6.70), increases the density

of cyclized states, ∝ L−2 (Eq. 6.95). Therefore, there is a net L−1 scaling of the two kink term J (2)

(Eq. 6.70). In this limit, the contributions from chains with kink numbers greater than two scale

like Lm−3 (eqns 6.70 and 6.102), implying that at short lengths the two kink term dominates. In

addition, in most physically interesting scenarios the kinking parameter ζ is small. The probability of

m kink number state scales roughly like the average kink number for the unconstrained chain to the

mth power (Lζ)m (Eq. 6.69), which further decreases the importance of higher kink number states.

The dramatic transition from the zero kink to the two kink state at short contour length is evident in

Fig. 6.6.3. Interestingly, recent molecular-dynamics simulations on a 94 bp DNA minicircle indicate

the presence of two sharply kinked regions [46].

Physically, we can understand the onset of this transition by roughly comparing the free energies

of the two kink term and the zero kink term to find the length at which these two are roughly equal.

Here we merely wish to motivate our results as clearly and simply as possible so we shall ignore the

difference in the density of states, even though its effect is quantitatively important. We therefore

treat the free energy of the zero kink term as the bending energy only and the free energy of the

two kink term as twice the kink energy in the discrete model (Eq. 6.7):

2ε ∼ 2π2ξ

Lcrit
. (6.74)

When the bending energy equals the energy required to nucleate two kinks, the transition occurs. It

is important to remember that the ζ-dependence is relatively weak while the bending energy scales

like the inverse of the contour length. Below L ∼ ξ, the bending energy grows divergently implying

that even for very small kink densities, kinking always becomes important at short enough contour

length. That is to say, we are almost assured of observing elastic breakdown effects below contour
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lengths of roughly a persistence length.

Previously we had shown that for moment-bending, only a single kink was nucleated, in contrast

to the current example where the one kink contribution to the J factor, J (1), is of little scaling

importance since the chain must still bend as illustrated schematically in Fig. 6.6. This will not be

the case for the KWLC looping J factor, J∗L, which lacks the tangent constraint implying that only

one kink is required to relieve all the elastic bending. The one kink term of J∗L therefore diverges

like L−2 (Eq. 6.95) as explained above. J∗L is plotted in Fig. 6.6.1.

6.7 Discussion

Our main results are summarized in Figs. 6.5.2, 6.5.2, 6.6.2, and 6.6.3. We formulated a generaliza-

tion of the WLC model, in which a semiflexible polymer can develop flexible sites of an alternative

conformation. We found that taking the density of kinks in the unstressed polymer to be about 0.01

per persistence length has negligible effect on the force–extension relation, but vastly enhances the

probability of cyclization for chains shorter than a persistence length, as seen in recent experiments

on DNA [8].

Various microscopic mechanisms could furnish the kinking mechanism in DNA, for example

single-basepair flipout or strand separation [20]. But any complete, microscopic analysis of high-

curvature DNA conformations would also have to include a variety of effects, for example those

arising from the significant thickness of the DNA molecule on the few-nanometer scale of a short

circle, strong polyelectrolyte effects, and so on. We have taken the attitude that any net nonlinear

softening at high curvature will lead to generic new phenomena. By summarizing all such effects

into a single phenomenological parameter, our model focuses attention on the general mesoscale

physics of kinking. The KWLC’s generality also makes it a useful starting point for studying the

conformations of other stiff biopolymers, such as actin.

Other diagnostics of low-curvature physics, for example light scattering, also turned out to be

almost indistinguishable from the linearly-elastic Wormlike Chain model. It is only by conduct-

ing experiments that are explicitly sensitive to high curvature, that we can measure the nonlinear

response to bending. DNA cyclization offers one experimentally tractable measurement sensitive

to the high-curvature physics of free DNA in solution; we gave predictions for other, future tests,

for example the moment–bend relation and the kink number as a function of constraints. Indeed,

the predicted average number of kinks has direct structural implications for very small DNA loops,

and for processes involving such loops, for example, the looping implicated in some gene-regulatory

mechanisms [9, 10, 11, 12, 13, 14]. Recent simulations indeed suggest that spontaneous kinking may

play a role in such situations [46].

Some mathematical aspects of the model, for example the divergence of the theoretical J factor
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at small contour length (Fig. 6.6.2), are artifacts of the simplified picture we have proposed. The

small contour length divergence is due to the two kink term, which can close a loop without elastic

bending regardless of the contour length, via the creation of 180-degree kinks! Clearly due to the

finite thickness of the chain, this divergence is unphysical. We can consider a number of modifications

to the theory to fix this problem: kink angle cutoffs, kinks that are not perfectly flexible, etc. But all

these proposals require adding additional parameters to the model, rendering it both less tractable

and less predictive, since the additional parameter must then be fit to experimental data.

The KWLC is in essence a coarse-grained, effective theory for systems where kinking occurs and

the kinks are localized compared with the chain persistence length. Its virtue is that it offers a

simple way to characterize stiff biopolymers, and a quantitative guide to the mesoscale effects of

kinking. Thanks to this simplicity, we were able to compute many results in this paper exactly,

without extensive numerical simulation. We discuss the specific application of KWLC to DNA at

length elsewhere[20].
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6.9 Fourier & Laplace Transforms & convolution theorems

The relations listed below are well known[33] but essential to our derivations. We define the 3D

spatial Fourier Transform and inverse transform

F̃ (~k) ≡ F{F (~x)} =
∫
d3x F (~x)e−i~k·~x, (6.75)

F (~x) = F−1{F̃ (~k)} =
(

1
2π

)3 ∫
d3k F̃ (~k)ei~k·~x. (6.76)

The Faltung theorem states that Fourier Transform of a convolution is the product of the Fourier

Transforms

F{F ⊗G} = F̃ G̃, (6.77)

for functions F and G where the spatial convolution is defined

F ⊗G(~x) ≡
∫
d3x′ F (~x ′)G(~x− ~x ′). (6.78)

The generalization of the Faltung theorem is true for n functions

F{F1 ⊗ ...⊗ Fm} = F̃1...F̃m. (6.79)
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Figure 6.12: A schematic diagram of the coordinate transformation exploited to compute the circular
convolution. The crosses represent chain ends and dots represent kinks. The center line represents
a periodic coordinate system. For regular convolutions, we set the chain end to be the zero and
we compute the convolution in the s coordinate system. For the circular convolution, it is more
convenient to choose L1, the first kink arc length position as the zero and sum over the chain end
positions as represented by the s′ coordinate system.

We define the 1D contour length Laplace Transform and inverse transform

F̃ (p) ≡ L{F (L)} =
∫ ∞

0

dL F (L)e−pL, (6.80)

F (L) = L−1{F̃ (p)} =
1

2πi

∫
L
dp F̃ (p)epL, (6.81)

where
∫
L denotes a contour integral along the Laplace contour. The Faltung theorem states that

Laplace Transform of a convolution is the product of the Laplace Transforms

L{F ⊗G} = F̃ G̃, (6.82)

for functions F and G, where the arc length convolution is defined

F ⊗G(L) ≡
∫ L

0

dL′ F (L′)G(L− L′). (6.83)

The generalization of the Faltung theorem is true for m functions

L{F1 ⊗ ...⊗ Fm} = F̃1...F̃m . (6.84)

6.9.1 Circular convolutions

For the closed chain we need to evaluate a special type of convolution which is circular. By circular

we mean that the end points are identified so that the arc-length position of the chain ends is not

at an end point of the propagator. In this case it is convenient to redefine the arc-length coordinate

system to be zero at the position of the first kink, L1, and sum over the position of the chain ends

as depicted in Fig. 6.9.1. The m kink contribution to the partition function is therefore

Z∗m =
ζm

4π

[
(K⊗)m−1

LK
]
(0;L), (6.85)
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where the factor of L comes from the integration over the end position and varies in the convolution.

To simplify this result it is convenient to go to the transformed partition function

Z̃∗m = −ζ
m

4π
K̃m−1 ∂

∂p
K̃ = − ζm

4πm
∂

∂p
K̃m, (6.86)

where the L has been transformed into a p derivative. We now return from Fourier-Laplace space,

giving

Z∗m =
ζmL

4πm
[K⊗]m (0;L), (6.87)

which is written in terms of convolutions of the spatial propagator only.

6.9.2 Numerical inverse transforms

To compute the numerical inversions of the Fourier and Laplace Transforms involving the spatial

propagator, we first truncate the continued fraction [34] in Eq. 6.49, then we compute the numerical

inversion with the built-in Mathematica functions InverseLaplaceTransform and InverseFourierTransform.

In particular, the structure factor and partition function in an external field involve only a single

numerical inverse Laplace Transform.

6.9.3 J factor computation

We have chosen to present most of our results in the last section as explicit series in kink number

rather than writing them in the summed form (Eq. 6.48 and 6.67). The purpose is two fold. First

these expansions allow J to be computed efficiently for many small values of ζ, because the K(m)

are independent of ζ and only the first few must be computed explicitly for sufficient numerical

accuracy. Furthermore the K(m) are simply related to the kink number distribution allowing the

same computation to suffice for both results. Our computational discussion will mainly focus on

the short contour length limit where these kink number expansions converge quickly. As we have

already discussed at length, the large contour length limit can trivially be computed with the WLC

results using the renormalized effective persistence length, ξ∗. This corresponds to the k → 0 and

p→ 0 limit where the theories are identical. In fact, in this limit, we can use the Gaussian chain to

compute the J factor. This computation appears briefly in Appendix 6.11.

It is at short contour length where the two theories significantly diverge and kinking is induced.

As we have discussed above, in the limit as the contour length goes to 0, the polymer resembles a

rigid rod. It is problematic to directly compute the inverse transforms of K∗ or K numerically in

this limit since

K(0;L→ 0) ∝
∫ ∞

0

dk k sin kL, (6.88)

which, although it can be computed analytically by expanding sine into two exponentials then
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integrating them on different contours, is problematic numerically. It is therefore convenient to use

the expanded definition of K∗ in terms of the K(m) (eqn 6.62). In the short contour length limit, an

asymptotic expression already exists[4] for J and K(0;L).

Convolutions of K must still be computed. Numerical computations of the inverse transforms

of powers of K̃ are still problematic in the L → 0 limit since, while they are more convergent than

K, they must be integrated to large k where it is difficult to compute accurate Laplace transforms.

But this implies it is in precisely this limit that bending is really irrelevant and that the mechanics

of these kinked chains becomes kink dominated. Once there are two or more kinks, the chain can

now be closed without elastic bending. That is to say that, when these terms become difficult to

calculate numerically, they can be well approximated by the kinkable rigid rod! The kinkable rigid

rod is treated in Appendix 6.10. As a practical matter there is a small contour length regime (L ∼ 1),

between the rigid rod limit and the contour length at which numerical transform inversion are rapidly

convergent and where it is most convenient to use direct Monte Carlo integrations to compute the

K(m). These direct Monte Carlo integrations serve as a useful check on our other numerical and

analytic computations. For large dimensionless kink densities, the kink-number expansion is not

rapidly converging and direct numerical inversions of the exactly summed transformed results are

required. For most computations of the J factor at small kink density, the rigid rod approximation

suffices to compute the two kink term and the kink number sum can be truncated at this point as

illustrated schematically by Fig. 6.6.3.

6.10 Kinkable rigid rod

In this section we develop the theory of kinkable rigid rods, the infinite persistence length limit of

the KWLC. This theory is useful for discussing the short loop limit of the J factor. The rigid rod

tangent-spatial propagator is

G(~x,~tL,~t0, L) = δ(3)
[
~x− L~tL

]
δ(2)

[
~tL − ~t0

]
. (6.89)

The spatial propagator, K, is obtained by averaging and summing over the two tangents (Eq. 6.41)

K(~x, L) =
1

4πL2
δ [|~x| − L] . (6.90)

The Fourier and Fourier-Laplace transform spatial propagator are

K̃(~k, L) =
sin kL
kL

, (6.91)

K̃(~k, p) =
1
k

tan−1 k

p
. (6.92)
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In order to discuss the J factor limit, we will need the convolutions

K(m) ≡ [K⊗]m(0, L), (6.93)

which is proportional to the probability density of the end distance be 0 after arc length L and m−1

kinks. K(1) is zero since the rod is rigid and the ends cannot meet unless the chain kinks.

K(2) is also fairly straight forward. It is convenient to compute the convolution explicitly

K(2) =
1

2π2

∫ L

0

dL1

∫ ∞

0

dk k2 1
kL1

sin kL1
1

k(L− L1)
sin k(L− L1) (6.94)

=
1

2πL2
, (6.95)

where the Fourier transform delta function has been used to evaluate the integral.

The computation of K(3) requires some care. Again it is convenient to compute the convolution

explicitly

K(3) =
1

2π2

∫ L

0

dL1

∫ L

0

dL2

∫ L

0

dL3

∫ ∞

0

dk k2 ×

1
kL1

sin kL1
1
kL2

sin kL2
1
kL3

sin kL3 δ (L1 + L2 + L3 − L) , (6.96)

=
1

8π3

∫ L/2

0

dL1

∫ L/2

L/2−L1

dL2
1

(L− L1 − L2)L1L2
, (6.97)

=
π

16L
. (6.98)

For convolution number m > 3, we exploit the Fourier-Laplace transform method

K(m) =
1

2π2

∫ ∞

0

dk k2

∫
L
dp

(
1
k

tan−1 k

p

)m

epL (6.99)

=
1

2π2

∫ ∞

0

dk′ k′
2
∫
L
dp p3−m

(
1
k′

tan−1 k′
)m

epL, (6.100)

where we have made the substitution k′ = k/p. Now let us compute the k′ integral, which must be

done numerically. We now make the substitution tanx = k′. The integral in k′ becomes

Im ≡ m

m− 3

∫ π/2

0

dx tan3−m x xm−1, (6.101)

which we computed using Mathematica. The p integral is now a simple contour integral which gives

K(m) =
Im
2π2

Lm−4

(m− 3)!
, (6.102)

for m > 3. The first few values of I are computed numerically in Table 6.1.
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convolution Integral
number m Im

4 2.249
5 0.841
6 0.461
7 0.300
· · · · · ·

Table 6.1: Values for the numerically computed integral Im for the first few m.

The kinkable rigid rod theory, derived above, provides a very useful analytic check of the KWLC

model at short contour length. For short cyclized polymers, the bending between kinks can be ig-

nored since these segments are significantly shorter than a persistence length. As we have illustrated

above, the computation of the dominant two kink contribution is straightforward in this limit.

6.11 Gaussian limit

The Gaussian limit provides a useful analytic limit to the KWLC theory for long contour length. In

this limit, the length of the polymer makes the initial tangent condition irrelevant and describes the

spatial distribution for chain extensions short compared with the contour length.

For large L, we can work with the Gaussian distribution. The Gaussian distribution is

G(~x;~t,~t ′;L) =
1
4π

(
3

4πξL

)3/2

exp
[
−3~x 2

4ξL

]
(6.103)

for persistence length ξ. The J factor is

J = 4πG(0;~t,~t;L) =
(

3
4πξL

)3/2

. (6.104)

For KWLC, the persistence length is replaced by the effective persistence length ξ∗:

J∗ = 4πG∗(0;~t,~t;L) =
(

3
4πξ∗L

)3/2

. (6.105)

In the Gaussian limit, the convolution functions K(m) can be computed without difficulty:

K(m) =
Lm−1

(m− 1)!

(
3

4πξL

)3/2

. (6.106)

But this expression holds only when the number of kinks is small.
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6.12 Summary of notation

We imagine a chain of total contour length L, with L/` elementary segments of length `. Individual

segments will be referred to by their sequence number n = 0, . . . N , where N = (L/`) − 1, or by

arclength s = n`. A configuration Γ consists of a sequence of tangent vectors {~t0, . . . ,~tN}.

The stiffness parameter (WLC persistence length) ξ, one-vertex partition function Q, kink for-

mation energy ε, and kinking parameter ζ are defined in Sects. 6.2–6.3. ξ∗ and Q∗ are related

quantities relevant to the KWLC. The kink length is ξkink ≡ ζ−1.

The measure d2~t denotes solid angle on the sphere of unit vectors ~t. Square brackets denote the

functional measure [d~t (s)]~ti ; see Eq. 6.8.

The partition functions Z(L) and Z(~tf ,~ti;L) refer to unconstrained and constrained functional

integrals over a chain of length L in the continuum limit. Rotation invariance implies that the

constrained function depends only on the angle θ between the vectors, so we sometimes write it

as Z(θ;L). Discretized versions of the partition functions are denoted with the subscript “dis-

crete,” and KWLC versions with a star. Related quantities include the free energy F (θ;L) =

− logZ(θ;L) (Eq. 6.28) and the normalized tangent partition function (or propagator) H(~tf ,~ti;L) =

Z(~tf ,~ti;L)/Z(L). Laplace transforms of these functions on L are denoted with a tilde.

When it is important to maintain spatial information, we introduce space-dependent functions

Z(~x,~tf ,~ti;L) (Eq. 6.40), K(~x;L) (Eq. 6.41), and G′(~x,~t;L) (Eq. 6.42). Fourier–Laplace transforms

of these functions on ~x, L are again denoted with a tilde.

Laplace and Fourier transformations, and the corresponding convolution operation ⊗, are defined

in Appendix 6.9. Repeated convolutions of K give the functions K(m) (Eq. 6.62), and the related

J (m) (Eq. 6.70).

The partition function in an external force is Z~f (Eq. 6.54); the cyclization partition function is

Z∗C(L) (Eq. 6.65).

In an expansion in kink number, m labels the number of kinks and i = 1, . . . ,m labels which

kink is in question. The kinks are taken to be located at ni, or at arc length position Li = `ni.
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Chapter 7

On the experimental front

We now had an elegant model of DNA mechanics which could explain why DNA appeared to be

described by the Wormlike Chain model in all experiments except those that explicitly probed the

high-curvature bending of DNA. For the correct kink density, the KWLC model fit the experimental

data of Cloutier and Widom [1], but was this model the right model? Did it actually describe DNA?

Answering these questions required more experimental input. We had already been working

closely with Jon Widom, but in the ensuing months after publishing the KWLC paper (Chapter 6),

we also began actively collaborating with the Dekker group at Delft. This work would eventually

take me to the Netherlands to get to the bottom of some puzzling AFM data. Even more recently,

there have been two other surprising and seemingly contradictory experimental results that cloud

the interpretation of the experiments of Cloutier and Widom. This chapter informally describes

this experimental odyssey and evolution in our thinking about DNA bending that lead to the final

chapter on generalized models of polymer statistics.

7.1 Does DNA kink?

I had been fighting a quiet war against Rob Phillips and Phil Nelson. They were in favor of making

the mathematics in the KWLC paper as explicit as possible and I had been quietly trying to move

the mathematics into the Appendix. Eventually a truce of sorts was reached. We would write

two papers. In the long paper for Physical Review E (Chapter 6) the math would remain explicit,

but we would write a second paper for a biological audience. In this short paper, we would keep

the mathematics implicit and employ an approximate method and analytic results from Shimada

and Yamakawa [2] that allowed us to get to the answer without extensive calculations. The short

paper was never written, but I will come to that in a moment. The Physical Review E paper

[3] was published and very few people persisted with the paper long enough to reach the results,

especially biologists who were familiar with neither our notation nor the techniques and mathematics

we employed. It was an important lesson and a mistake I hope not to repeat.
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Figure 7.1: Non-convex bending energy densities induce kinking. Above are drawn three examples
of non-convex bending energies. Each of the three functions is non-super convex in curvature on the
interval (κ1,κ2). If the mean curvature of a rod, under a pure torque load, is on this interval, the
lowest energy configuration consists of a combination of regions of curvature κ1 and κ2. Examples
of these “two phase” configurations are drawn in Fig. 7.1.1.

A few biologists did look at the paper. One of these was Bob Schleif. Bob had helped discover

transcriptional DNA looping [4] twenty years ago and had seen many micrographs of bent DNA.

One of most interesting plots in the KWLC paper was a plot of the distribution in the number of

kinks for cyclized DNA. This plot made a clear prediction for tightly looped DNA. It was generically

kinked twice! Bob’s message for us was not only had he not seen two kinks generically, he couldn’t

remember seeing one! This was not irrefutable evidence against the KWLC model. In fact, kink-like

structures have been observed under some conditions [5, 6], especially when DNA is bound tightly

to proteins [7], but the KWLC model predicted that kinking should be generic for tightly bent

DNA. The KWLC model made bold predictions, but tacitly accused biologists of sleeping on the

job! Crick and Klug had in fact proposed that DNA might kink to bind to nucleosomes thirty years

before [8]. In the ensuing years, biologists had not observed that kinking was the generic pathway

of high-curvature DNA bending.

7.1.1 The kinking of macroscopic rods

The failure of the elastic constitutive relation does not necessarily imply kinking. Fosdick and James

[9] have studied macroscopic rod systems with energy densities that are arbitrary functions of the

curvature 1. The lowest energy configuration of a rod under a pure torque load (no force) is found

by identifying the intervals over which the energy density is super-convex. The super-convex domain

of a function is defined as domain on which the tangent line at any point on the function lies below

the function for the entire domain. Although this definition sounds technical, it is illustrated clearly

in Fig. 7.1.1 for three different non-super-convex functions.

1In principle arbitrary derivatives of curvature must also be considered. Physically these terms give rise to a
nucleation energy for kinks. I would like to thank Rick James for explaining this to me in June 2004 when he was at
Caltech on some personal business. He inspired me to think very generally about the DNA benidng problem.
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Figure 7.2: Kinking: the localization of curvature. For mean curvatures on the interval where
the bending energy density is non-convex (κ1,κ2), curvature is localized into kinks (regions of κ2).
For mean curvatures outside this interval, the curvature of the lowest free energy configuration is
uniform.

Let us assume there is only one interval, (κ1, κ2) over which the energy density fails to be super-

convex for positive curvature. This scenario is illustrated in Fig. 7.1.1. For mean curvatures not on

the interval (κ1, κ2), the minimum energy configuration has constant curvature.

But, for mean curvatures on the interval over which the bending energy density is non-convex, the

minimum energy configurations consists of regions of curvature κ1 and κ2. Regions with curvature

κ2 are the localized regions of high curvature or kinks. The kinked conformations are illustrated

schematically in Fig. 7.1.1 and the corresponding non-convex bending energy density is depicted in

Fig. 7.1.1. Increasing the mean curvature of the lowest energy configuration converts regions of κ1

to κ2, resulting in a linear dependence of the mean bending energy density on the mean curvature
2.

Kink-free DNA conformations imply that the bending energy density for DNA is not dramatically

non-convex on the length scales observable in electron micrographs. Clearly, the KWLC theory—

which kinks dramatically—is non-convex. Fig. 6.4 can be interpreted as the bending free energy

for a 10 nm contour length chain. This bending energy is non-convex due to the kinking transition

which saturates the bending energy after a kink is nucleated. The absence of kinking in micrographs

is evidence for a less-abrupt elastic breakdown.

7.2 Beyond kinking

Like Bob Schleif, Jon Widom was also convinced that the high-curvature softening was less dramatic

than that predicted by the KWLC model. Phil Nelson and I had favored the kink model in part

because it led to a tractable theory. Of course this was not a relevant argument in favor of DNA

being described by the KWLC model! Jon argued that he expected that the bending energy of the

DNA had the same rough dependence as WLC for small deflection but that the bending energy was

simply softer than the WLC model at high deflection but was not soft enough to kink. Based on

2In general there will also be a kink nucleation energy, an energy cost for the interfaces between kink regions and
non-kink regions. This complication does not significantly change our conclusions.
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the insight gained from continuum mechanics, the bending energy density must be approximately

convex.

Shortly after finishing the KWLC paper, Rob Phillips, Jon Widom, Phil Nelson, and I began

work on a short paper on DNA kinking for a biological audience. As we began to write a draft of

the short paper, Jon discovered an interesting experimental paper. Cees Dekker and coworkers had

published a measurement of the bending energy as a function of deflection angle for 5 nm segments

of DNA. The measured bending energy had roughly the form that Jon had proposed and did not

seem to fit either the WLC or the KWLC model.

7.2.1 AFM measurements of the bending energy of DNA

Individual DNA molecules are directly observable on the nm length scale in 2D via AFM [10, 11] and

EM experiments[12], and in 3D via Cryo EM Tomography [13]. If these molecules are in thermal

equilibrium, the chain statistics is also directly observable since it can be computed from the observed

conformations. For example, the tangent distribution function G(~tf ;~ti;L) for contour length L is the

conditional probability density of a final tangent ~tf at contour length L given an initial tangent ~ti at

contour length 0. This distribution function can be computed directly from observed conformations

by histograming the deflection angles (θ ≡ arccos~tf ·~ti) for contour length L segments of the chain.

The bending energy for the contour length L segment is then defined by the Boltzmann distri-

bution

EL(θ) = −kT logG(~er(θ);~ez;L), (7.1)

where ~er and ~ez are the unit vectors in the r and z directions respectively. Of course, the bending

energy as we have defined it here is really a bending free energy. For chain statistics calculations,

the distinction between energy and free energy is not meaningful since we describe a coarse grained

model. Note also that I have explicitly restored the thermal units in this equation in the interest of

clarity.

A number of authors have studied the chain statistics of DNA adsorbed to mica [10, 11]. Busta-

mante and coworker showed that when DNA is adsorbed in the presence of Mg2+ at concentrations

smaller than 10 mM, the persistence length of DNA is nearly identical to that measured in solution

[10]. The authors interpreted these results to imply that at low magnesium concentration, (i) the

DNA was weakly bound to the mica substrate and was free to equilibrate on the surface and (ii) the

bending energy of the chain was not significantly altered by interaction with the surface.

Dekker, van Noort, and coworkers recently employed the mica deposition technique to study

the effect of the DNA repair protein Rad50 on DNA curvature [11]. As a control, they computed

the DNA bending energy as a function of the deflection angle for 5 nm segments of DNA. These

measurements posit a bending energy of DNA, on the 5 nm length scale, that is poorly modeled by
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Figure 7.3: The bending energy of DNA on short length scales? The tangent distribution function
is measured as a function of deflection angle for 5 nm sections of long sequences of DNA absorbed to
mica via AFM [11]. The bending energy deduced from the tangent distribution function (Eq. 7.1)
(black dots) is significantly non-harmonic and can be approximately fit to the functional form A|θ|/`
(red curve). For comparison, the WLC bending energy is also shown (blue curve) for persistence
length 53 nm which accurately describes the long-length-scale DNA statistical mechanics but fits
the short-length-scale experimental data very poorly. We shall call the model based on the fit to the
experimental data the SEC model.

an elastic rod model. In fact the data is better fit by the bending-energy

E(θ) = A|θ| = 5.3|θ|. (7.2)

It is clear from Fig. 7.2.1 that the model is softer at high curvature than the WLC model with

persistence length 53 nm (we shall show that the persistence length of the model defined by Eq. 7.2

is 53 nm) and the energy is not non-convex. We will refer to this model as the Sub-Elastic Chain

model (SEC) since the constitutive relation (the bending energy) has a weaker dependence on the

magnitude of the curvature than the elastic rod model.

It seemed immediately clear to all of us that this bending energy must be incorrect since the

energy did not have a wide quadratic region at small deflection. The WLC model work well for

force-extension experiments and long-contour-length cyclization measurements, both of which were

sensitive to bending in this regime. To our surprise, when we computed the persistence length from

the SEC energy, it was 53 nm, correct for DNA. I then proceeded to compute the long-contour-

length tangent distribution functions. They were indistinguishable from the WLC model! How

could a theory that was so different from the WLC model on short-length-scales still give the correct

answer at long length scales? The answer was thermal fluctuations and the renormalization group.

The renormalization group was well known to me in other contexts (high-energy particle physics)

but I had forgotten it should also apply for systems as simple as DNA bending. Many physical

properties of complicated condensed matter systems have been described by a small set of theories

described in terms of renormalizable operators [14]. Regardless of the complicated structure of
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the theory at short length scales, the Renormalization Group guarantees that the long-length-scale

chain statistics will be described by a theory of renormalizable operators only. For stiff polymers,

only one such renormalizable operator exists with the right symmetries. As a consequence, all stiff

polymers share generic long-length-scale behavior: that described by the WLC model. Physically,

this loss of information is due to the averaging effect of thermal fluctuations. (Many microstates

contribute to any given macrostate.) But, on short enough length scales, the underlying structure of

the theory becomes important. Violations of the linear elastic theory, analogous to those observed

in macroscopic bending, are therefore predicted in experiments that probe the short-length-scale

bending of DNA: experiments like the cyclization experiments of Cloutier and Widom.

The renormalization group and the inextensibility of DNA essentially guaranteed that the force-

extension of the SEC model would be indentical to the WLC model. To check this, it was necessary

to expand the machinery developed by Spakowitz and Wang [15, 16, 17] for computing the spatial

distribution of the WLC model to analyze general theories. This turned out to be surprisingly easy!

As expected, the force-extension of the SEC model was essentially indistinguishable from the WLC

model. The last calculation was the most surprising. When we computed the J factor, it fit the

Cloutier and Widom data [1] without a fitting parameter.

We had a cute story and no kinking was required. Was it really so surprising that DNA was not

described by an elastic rod on short length scales? DNA was a complicated biomolecular polymer.

How could the elastic model do it justice? The only reason the elastic rod model worked was that

the renormalization group hid all the details.

7.3 On the experimental front...

Phil told our story at the Aspen Single Molecule Biophysics (Steve M. Block) conference. Cees

Dekker, whose data was the basis for our model, was in the audience. Cees’ paper had not been

about DNA mechanics. Had it been, he would have had much better statistics. When Cees returned

to Delft, he asked Fernando Moreno and Thijn van der Heijden to repeat the measurement of

the bending energy more carefully. Two weeks after Aspen, we had a new set of data from the

experimentalists (Fig. 7.3) which was as puzzling as it was exciting.

We had assumed that the bending energy was approximately linear in the deflection angle in

part due to poor statistics. But the new data was amazingly linear! Back of the envelope estimates

suggested that Dekker and coworkers had the resolution to measure the bending energy for 5 nm

segments of DNA. Most disturbing was the fact that the linear elastic regime which we assumed must

be there intuitively was nowhere to be seen. Cees seemed reasonably confident about the data, but

it seemed to us too good (too linear) to be true3. The other problem was what kind of microscopic

3That being said, hind sight is always 20-20.
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Figure 7.4: The new bending energy measurements of Dekker and coworkers. These new measure-
ments of the bending energy were perplexingly linear in the deflection angle. Even at small deflection,
where we intuitively expect the bending energy to be quadratic, the dependence resembled the SEC
model (E = |θ|).

mechanism could be responsible for this linear dependence. Why was it so linear? Like us, everybody

who had seen the bending energy was also bothered by this linearity, especially at small deflection.

Carlos Bustamante had basically told us he didn’t believe any of the data. Eventually, Rob and I

decided that I should go to Delft so I could learn more about the details of the experiment.

7.3.1 Trip to Delft

Phil, Rob, and I had been curious for sometime about exactly how the DNA conformations were

digitized and traced. (Carlos Bustamante had been especially vocal about checking this step very

carefully.) This was an essential step that had to be done correctly, but until this point we had been

unable to understand in detail how they had obtained their results. Cees and coworkers also agreed

that checking this step was essential. I discovered that the tracing algorithm had been written a

few years ago by van Noort, a postdoc who had since moved to another lab, with Thijn’s help. No

one remembered exactly how it worked. (My heart sank on hearing this.) Thijn and I eventually

found the code responsible for the tracing algorithm, but it was without comments and we had to

decipher the code to understand the algorithm.

After seeing the code, I knew we could do better. The next morning I wrote an improved tracing

code in Matlab. (This code appears in the Appendix, Sect. A.1.) I expected the new code to make

little difference since the tracing produced by the old code was to my eye good, although not perfect.

The new code streamlined the tracing processes significantly, and the traces seemed to be a tighter

fit to the AFM scan images. Fig. 7.3.1 shows a trace of AFM data generated by the new code.

Using the new code, we traced roughly one hundred, micron-length DNA molecules to get suf-

ficient statistics to compute the tangent distribution function. To my consternation, the improved

tracing algorithm did alter the bending energy as is evident in Fig. 7.3.1. It removed the sharp cusp
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Figure 7.5: Traced DNA conformations. The results of two tracing runs with different initial points
are shown in the figure above. The overlap of the black and white traces demonstrations that the
tracing algorithm repeatably finds the same trace independent of the starting point on the DNA
molecule.
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Figure 7.6: The bending energy of DNA revisited. The measured bending energy of DNA (blue
dots) fits the WLC model for small deflection (green curve). For large deflection the bending energy
may saturate. The SEC model (cyan) fits the data better than the WLC model at high deflection.
It is unclear whether the high-curvature events are artifacts of the adsorption process. Some of
these events resemble the bent conformation in the right-hand panel. The red coloring of the DNA
indicates that this high-curvature region sits higher off the mica than the rest of the DNA. Data
from Thijn van der Heijden, Fernando Moreno, and Cees Dekker (Delft).
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at zero deflection that we always had suspected was an artifact. But the data now fit the WLC model

in the small deflection regime. I had now had a chance to examine the data myself, and both Cees

and I were suspicious of the high deflection data. We could check that these high-curvature events

were not artifacts of the tracing procedure. But, were these highly-curved conformations artifacts

of the surface deposition procedure? Some of these high-curvature conformation appeared raised off

the mica surface in the AFM images. (See Fig. 7.3.1.) It was a difficult question to answer with

AFM experiments alone4. The cyclization data of Cloutier and Widom [1] had seemed to justify the

interpretation of these high-curvature events as representative of the chain statistics in solution—

high-curvature softening was required to reproduce the observed J factor—but this evidence was

now being challenged from another quarter!

7.3.2 Surprising results from Vologodskii

While I was still at Delft, I received a copy of a preliminary paper by Vologodskii and coworkers

[18] which claimed to have repeated Cloutier and Widom’s experiment, but found that the J factor

was in fact that described by the Wormlike Chain model! The paper claimed that Cloutier and

Widom were working in the wrong kinetic regime and their measurements were therefore invalid!

Jon Widom told us that the paper of Vologodskii and coworkers seemed solid and he could not

immediately refute their claims. I was giving an invited talk on DNA bending at the March APS

meeting in a few days. If the cyclization assay showed no anomaly, the AFM data was unpersuasive

alone. The data now seemed to point to the WLC model, at least on the length scales probed by

the experiments of Vologodskii and coworkers.

7.3.3 New data from Jon Widom

As I write this chapter, the evidence is again shifting. Widom and coworkers claim that their J

factor measurements are in the correct kinetic regime and the J factor for their experiment is as

published. It is important to note that these experiments are not exactly identical. The experiments

of Cloutier and Widom are at higher temperature5 and use a different sequence for the single-stranded

complementary ends which is more stable than that used by Vologodskii and coworkers [1, 18].

4The analysis we performed to check the consistency of the chain statistics measured by AFM does not appear
here in the interest of brevity. Phil performed a lot of this work for which I am very grateful. It is also worth noting
that Thijn van der Heijden and I performed some simulated experiments to try to estimate the accuracy of the AFM
technique for measuring the bending energy. I do not have space to explain this work here, but let me simply state
that the shape of the measured bending energy was suggestive even though the trace tended to underestimate the
polymer bending. This effect had been noted before in Ref. [11]. The AFM results are therefore suggestive but not
quatitative.

5The experiments of Cloutier and Widom are performed at 30oC versus 20o C for the experiments of Vologodskii
and coworkers.
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7.3.4 What have we learned?

As I write, there is no clear resolution to the inconsistencies between the measurements of Cloutier

and Widom [1] and those of Vologodskii and coworkers [18]. Are both experiments correct? Widom

and coworkers faced a lot of initial skepticism about their measurements but their reasoning seems to

have stood the test of time. Widom, having rechecked the controls of their experiment, is convinced

that their work is correct. It is worth noting that measurements of Cloutier and Widom for long-

contour-length J factors match the accepted values. It is also very likely that the experiments of

Vologodskii are also correct.

If both experiments are correct, they still differ in at least two aspects: temperature and the

affinity of the single-stranded “sticky ends.” Could the stability of the hybridized, complementary,

single-stranded ends be responsible for the three-orders-of-magnitude difference in the measured J

factors? The rapid pre-equilibrium kinetic scheme used in the experiment is very well established.

(For instance see reference in [19, 20].) Control experiments conclusively show that both experiments

are in the correct kinetic regime since the ligation reaction is linear in the ligase concentration and

is therefore ligase limited (Eq. 5.41). Although the kinetic regime should be carefully re-examined

in light of these experimental discrepancies, failure of the cyclization experiment on account of the

stability of the “sticky ends” is unlikely.

The temperature difference between the two conflicting experiments may be able to account for

the discrepancy between the experiments of Cloutier and Widom [1] and Vologodskii [18]. There

has been extensive work on the thermodynamic stability of DNA [21] due to its importance in the

design of PCR primers. AT-rich regions of DNA sequence begin to melt at 50o C. Once short regions

of double-stranded DNA melt (fully strand-separate), the short bubbles of melted DNA amount to

flexible hinges [22, 23]. In fact, Yan and Marko [24] have already proposed that local melting may

account for the high-curvature softening observed by Cloutier and Widom. Their model is very

similar to the KWLC model developed in Chapter 6 and the authors estimate the energetic cost of

nucleating a three-base-pair bubble is 6-10 kT (estimated from Ref. [21]). The kinking free energy

required to reproduce the J factor measurements by Cloutier and Widom is (Chapter 6)

G ≈ −kT log ζ`bp ≈ 10 kT, (7.3)

where ζ is the kink density and `bp is the length of a basepair, which is in rough agreement with

the bubble nucleation energy.

On-the-other-hand there are two convincing arguments against the canonical “melted-bubble”

senario: the presence of melted tracts would give the J factor a strong dependence on AT content

in the DNA sequence and nearly eliminate the helical phasing effect in the J factor as the total

DNA length is varied, both contrary to observation [25]. DNA melting is not clearly implicated or
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ruled out by the experimental data. Certainly the experimental data leaves open the possibility of

other, less-cooperative, thermally-activated bending significantly increasing the probability of high-

curvature bending. Unfortunately, this new experimental work is too recent to have been analyzed

in detail and it is too soon to draw any firm conclusions.

The AFM experiments performed by the Dekker group, while they hint about how the statistics

may deviate from the Wormlike Chain model at short contour length, are alone unconvincing evi-

dence for high-curvature softening. There are many possible systematic and experimental problems

with interpreting the bending energy from AFM conformations absorbed to mica. For instance it is

impossible to rule out the possibility that the mica substrate influences the chain statistics subtly.

Rare high curvature bending events may correspond to some process unrelated to the equilibrium

solution chain statistics. That being said, if cyclization experiments do continue to show that the

chain statistics in solution deviates from the WLC model, these AFM experiments may provide a

useful insight into the form of this failure.

7.3.5 General models for stiff polymers

Regardless of the outcome of the currently confusing experimental situation, these experiments have

motivated a critical re-examination of the mechanics of DNA in tightly-bent conformations. The next

chapter is a paper in preparation which quantitatively examines our central claim in this chapter:

although the mechanics of DNA may be significantly different from an elastic rod on the short length

scales most relevant for the description of biological processes, the Wormlike Chain model describes

the chain statistics of DNA as measured in most polymer physics experiments.

Chapter 8 develops a near-exact theory of the chain statistics of a class of generalized stiff

polymer models. These models have a bending energy density which is an arbitrary function of

curvature. For explicit computations, we use the SEC model, proposed in Sect. 7.2.1. As described

in Sect. 7.2.1, we show that a long contour length, the chain statistics of these generalized models is

generically described by the WLC model. In particular, we show that the WLC model is sufficient to

describe force-extension, solution scattering, and long-contour-length cyclization experiments. The

short-contour-length statistics are model dependent. We explicitly show that the SEC model can

reproduce the short-contour-length J factor measured by Cloutier and Widom [1]. Although the

muddled experimental picture prevents us from drawing any firm conclusion about the short-length-

scale statistics of DNA, these calculations explicitly demonstrate the importance of of performing

experiments, like short-contour-length cyclization, that are sensitive to the high-curvature DNA

mechanics most relevant for biological systems.
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Chapter 8

A generalized theory of stiff
polymers

DNA bending on length scales shorter than a persistence length plays an integral role in the trans-

lation of genetic information from DNA to cellular function. Quantitative experimental studies of

these biological systems have led to a renewed interest in the polymer statistics relevant for describ-

ing the conformational free energy of DNA bending induced by protein-DNA complexes. The recent

DNA cyclization studies of Cloutier and Widom have questioned the applicability of the canonical

stiff polymer theory, the wormlike chain (WLC) model, to DNA bending on biological length scales.

In this paper, we develop a near-exact theory of the chain statistics of a class of generalized stiff

polymer models. Our focus is on the theoretical development of these models and the computation

of experimental observables. To perform explicit calculations, we also introduce a toy model of

DNA bending. We show that the WLC model generically describes the long-length-scale chain

statistics of stiff polymers, as predicted by the Renormalization Group. In particular, we show

that the WLC model is sufficient to describe force-extension, solution scattering, and long-contour-

length cyclization experiments. In contrast, in experiments sensitive to the short-length-scale chain

statistics, the WLC model can fail dramatically. We demonstrate this explicitly by showing that our

toy model can reproduce the anomalously large short-contour-length cyclization J factor measured

by Cloutier and Widom. Finally, we discuss the applicability of these models to DNA chain statistics

in the context of new experimental data.

8.1 Introduction

The statistical mechanics of linear polymers has long attracted the attention of physicists and

chemists alike. A particularly important and successful application of polymer statistics has been

in the description of double stranded DNA (dsDNA) by the wormlike chain model (WLC). The

mechanics of DNA is of considerable biological relevance to describing the configurational free en-
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ergy of protein-induced DNA bending. These protein-DNA interactions are of central importance

to cellular function on a microscopic scale, from chromosomal DNA packaging, to transcription, and

gene regulation, to viral packaging [1]. Protein-DNA interactions typically induce short-length-scale

DNA bending which couples the chemical and physical properties of DNA [2, 3, 4]. In WLC model,

DNA is modeled as fluctuating linear elastic rod. Despite the apparent simplicity of this model, it

has been remarkably successful in describing many aspects of DNA mechanics and the statistics of

stiff polymers generally. In particular, WLC describes the extension of a single dsDNA molecule

under an external force with impressive precision [5].

Despite the notable theoretical and experimental success of the wormlike chain model, the recent

DNA cyclization studies of Cloutier and Widom [6] have questioned the validity of the WLC model

for describing the cyclization of short-contour-length sequences of DNA. In still more recent cycliza-

tion studies, Vologodskii and coworkers claim that the WLC model does accurately describe the

cyclization of short DNA sequences [7]. Due to the current, muddled experimental picture, it seems

imperative to reevaluate the WLC chain model theoretically. Specifically, we wish to answer the

questions: (i) How can such a simple theory describe DNA? (ii) Can the WLC model fail to predict

short-contour-length cyclization and still predict long-length-scale phenomena to great accuracy?

(iii) If we do expect the WLC model to fail, for which experiments does it fail? (iv) Would the

failure of the WLC model to describe DNA mechanics have any biological significance? The focus of

this paper will be the theoretical analysis of these questions and the development and discussion of

more general stiff polymer models. Although these ideas are widely applicable to polymers statistics

in general, the focus of this paper will be exclusively the mechanics of DNA. We shall attempt a

synthesis of the existing experimental knowledge to determine which aspects of DNA bending are

probed by existing experiments. In particular, we determine which experiments are most sensi-

tive to the DNA mechanics relevant for understanding biological systems. In the remainder of this

introduction, we shall quickly motivate the answers to the questions posed above.

8.1.1 Confronting two world views

First, to put the possible failure of the WLC model into perspective, it is helpful to consider the

bending of macroscopic rods. To engineers in the mechanics community, whose work has been

the study of macroscopic bending, the failure of a linear elastic model at high curvature is more

pedestrian than remarkable. The linear elastic theory is understood to apply only to the small

deflection limit. What is perhaps more remarkable to some in this community is that a linear

elastic model describes a macromolecular polymer at all, let alone to the accuracy illustrated by

force-extension measurements and long-contour-length cyclization experiments!

To put the remarkable success of the WLC model into perspective, it is helpful to consider DNA

mechanics from the perspective of the statistical mechanics of condensed matter systems. Many
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physical properties of complicated condensed matter systems have been described by a small set of

theories described in terms of renormalizable operators [8]. Regardless of the complicated structure

of the theory at short length scales, the Renormalization Group guarantees that the long-length-scale

chain statistics will be described by a theory of renormalizable operators only. For stiff polymers,

only one such renormalizable operator exists with the right symmetries. As a consequence, all stiff

polymers share generic long-length-scale behavior: that described by the WLC model. Physically,

this loss of information is due to the averaging effect of thermal fluctuations. (Many micro-states

contribute to any given macro-state.) But, on short enough length scales, the underlying structure of

the theory becomes important. Violations of the linear elastic theory, analogous to those observed

in macroscopic bending, are therefore predicted in experiments that probe the short-length-scale

bending of DNA: experiments like the cyclization experiments of Cloutier and Widom.

8.1.2 Summary

In this paper, we develop the qualitative framework outlined above by introducing a near-exact gen-

eralization of the wormlike chain model. This generalized theory, introduced in Sect. 8.2, describes

stiff polymers with local bending energies which are arbitrary functions of curvature. In Sect. 8.2.1,

we introduce an explicit toy model of DNA bending, the Sub-Elastic Chain model (SEC), moti-

vated by an experimentally measured tangent distribution function of DNA absorbed to mica [9]. In

Sect. 8.2.3, we illustrate a computational procedure for computing the tangent distribution function

for arbitrary contour length in generalized theories. In Sect. 8.2.6, we introduce the persistence

length in generalized theories. In Sect. 8.2.7, we explicitly show that these theories converge to the

WLC model at long contour length.

In the second half of this paper, we turn our attention to the spatial distribution of the polymer.

The spatial distribution is of particular importance for biological applications where the contribution

of chain statistics to biological function can often be formulated in terms of an effective concentration

or J factor. Physically, this effective concentration is just the probability density of the polymer

having the correct configuration for binding to the binding site of a protein. In Sect. 8.3, we introduce

a near-exact method for computing the spatial and tangent-spatial distributions of generalized stiff

polymer models in terms of a framework developed by Spakowitz and Wang [10, 11, 12] and others

[13]. In Sect. 8.3.1, we explicitly compute the spatial distributions for both the SEC and WLC models

for various contour lengths. We discuss the Renormalization Group applied to spatial distributions

and show the predicted convergence of the SEC and WLC models at long contour length. In

Sect. 8.3.2 and Sect. 8.3.3, we show that the force extension and the structure factor computed for

general theories are nearly identical to the WLC model results, implying that these experiments do

not probe the high-curvature chain statistics important for many biological processes. In Sect. 8.3.4,

we compute the cyclization J factor for generic theories. We show that the SEC model gives
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rise to the enhanced cyclization efficiency for short-contour-length sequences observed by Cloutier

and Widom [6] while leaving the long-contour-length J factor identical to that predicted by the

WLC model. Finally, we discuss the results of this paper in the context of the recent cyclization

measurements of Vologodskii and coworkers [7] and new preliminary AFM measurements of the

tangent distribution function.

8.2 Defining discrete link theories

In this paper, we shall discuss a class of generalized elastic models for the statistical mechanics

of isotropic, stiff, inextensible polymers. The theories we discuss in this paper will be applicable

to the description of polymers on length scales long comparable to the molecular structural length

scales. We shall idealize a stiff polymer as a space curve whose configurational free energy is a

local functional of the spatial configuration. Microscopically this configurational free energy is the

combination of entropic and energetic parts which depend on the underlying molecular structure of

the polymer. We will ignore the effects of excluded volume since we will be principally interested

in bending on very short length scales where these self interaction effects play a negligible role in

describing the chain conformation.

The bending energy density of general theories can be written in terms of the arc length, tangent

vector, and its derivatives:

ε = ε(~t, d~t/ds, d2~t/ds2, ..., s), (8.1)

where the energy density depends on arbitrarily high derivatives of the tangent vector ~t. We shall

not study this completely general model, but a restricted class of these models. First we shall assume

that the energy density is not explicitly dependent on the arc length s (homogeneous). Strictly, this

is not the case for DNA since both the helical pitch and the sequence dependence add arc length

dependence [2, 6]. But, we shall study the mechanics of DNA on length scales longer than helical

repeat (3.41 nm) where we can treat the DNA as rod like and assume that the sequence dependence

is weak. We shall also make the assumption that the theory is rotationally invariant under rigid

body rotations (isotropic). Last of all, we shall assume that the energy density depends on no higher

derivative terms than the curvature

~κ ≡ d~t/ds. (8.2)

Under these assumptions, the energy density is a function of the magnitude of the curvature only

ε = ε(κ), (8.3)

since the curvature is orthogonal to the tangent vector.
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Figure 8.1: Link and vertex numbering. The energy is a function of the deflection angles. The
deflection angle between links i and i+ 1 is θi.

Of these assumptions, the most subtle is that associated with discarding the derivatives of the

curvature. In the interest of brevity, we shall call this condition locality since it describes theories of

stiff polymers with the fewest derivatives of the tangents. It is not manifestly imperative that this

restricted class of models describes DNA. For example, on strictly dimensional grounds, there is no

reason to keep a term in κ4 over a term in (dκ/ds)2. We have chosen this subset of general models

motivated by Atomic Force Microscopy (AFM) experiments which we shall discuss in Sect. 8.2.2.

We shall return to this point again briefly in the discussion.

8.2.1 Statistical mechanics

We shall define the statistical mechanics theory in the canonical way. The probability of any micro-

state is given by the Boltzmann law:

P = Z−1 exp−E, (8.4)

where Z is the partition function determined by normalization and we have defined the energies E

in units of kBT . In fact, we shall simply define the energy by Eq. 8.4.

To define a statistical mechanics theory, the notion of an energy density is not sufficient. We

must also introduce a fundamental length scale on which to define the theory. To determine the

partition function Z, we must have an explicit method for enumerating all possible states. To be

explicit, we define the theory at scale ` by discretizing the configuration into links length `, separated

by torsional springs whose energy is a function of the deflection angle θi between adjacent links i

and i+ 1. This discretized chain is pictured schematically in Fig. 8.2. We shall interpret (or define)

the bending energy density by letting the bending energy be that for a uniformly bent arc with

deflection angle θi and length `:

Ei = `ε(κi), (8.5)

where κi = θi/`. The total bending energy E for a configuration of links is the sum of these vertex

energies.

In mechanics, a continuum model would be defined by the limit as the link length goes to zero.

In this limit, the energy is independent of the link length `. But this will not be the case in general
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statistical mechanics theories. The behavior of the theory, and experimental obeservables, depend

on the fundamental length scale `! There is however a one-parameter family of polymer theories in

which the scale dependence vanishes. These theories are described by a linear-elastic energy density

which is quadratic in the curvature

ε = 1
2ξκ

2. (8.6)

The statistics is completely described by the bending modulus ξ. This family of theories is the

wormlike chain model.

The systematic study of the length scale dependence of statistical mechanics theories is called

the Renormalization Group [8]. If we confine our interest to the description of the tangents of the

polymer, there is only one renormalizable term in the energy density with the right symmetries to

meet our assumptions. It is the energy density which describes the wormlike chain model, Eq. 8.6.

The fact that more general energy densities are not scale independent does not imply that these

energy densities result in poorly defined theories, it implies only that these theories must be defined

with respect to a fundamental length scale.

The assumption that the bending energy depends only on the curvature and not on higher order

derivatives of the tangent, implies that the vertex bending energy depends on the tangents of nearest

neighboring links only. This assumptions implies that the partition function for an N link chain

decouples into N − 1 factors of the single-link partition function:

q =
∫
d~ti+1 e

−Ei , (8.7)

where ti+1 is the out-going tangent of link vertex i. (See Fig. 8.2.) In the expression above, we

have written the sum over the final tangent implicitly since we do not wish to limit ourselves to a

particular dimension since both two and three dimensions are of experimental interest.

We now introduce the fundamental tangent distribution function. The tangent distribution

function is the conditional probability density for the final tangent, given an initial tangent. The

fundamental tangent distribution function is the distribution function over just one link, length `,

and is related to the vertex energy by the Boltzmann Law (Eq. 8.4)

g(~ti+1,~ti) ≡ q−1e−Ei , (8.8)

where ~ti and ~ti+1 are the initial and final tangent respectively and the deflection angle at vertex i is

cos θi = ~ti · ~ti+1. The chain statistics of the theory are completely determined by the fundamental

tangent distribution.
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8.2.2 Sub-Elastic Chain Model: A toy model

We shall now introduce an explicit toy model for DNA bending that is dramatically different from

the WLC model. Although all the symbolic results can be applied to the analysis of general stiff

polymer models, we shall use this simple model to compute experimental observables like the force

extension, the cyclization J factor, etc for an explicit generalized theory. The model we wish to

study has a bending energy which is softer than the elastic model for high curvature but reproduces

the long-length-scale predictions of the WLC model with a persistence length of roughly 50 nm.

We have already described one such model in another paper [14] and a similar model has also

been proposed by Yan and Marko [15]. In both cases, the high curvature softening was introduced

via kinking, or curvature localization. Although these models could reproduce the two desired

features mentioned above, they postulated that highly curved DNA should be generically kinked

[14]. These dramatic predictions have not been observed experimentally for DNA visualized via EM

or AFM experiments. It is well known in continuum mechanics that bending-energy densities that

are non-convex in curvature induce kinking when highly bent [16]. To avoid kinking, we shall place

an additional loose restriction on the model: the energy density is not dramatically non-convex in

curvature on length scales observable via EM or AFM experiments.

As we have tacitly implied above, the tangent distribution function is, in principle, observable in

2D via AFM [9] and EM, and in 3D via Cryo EM Tomography [17]. Eq. 8.8, relating the bending

energy and fundamental tangent distribution function, can be inverted and interpreted as a definition

of the bending energy1:

Ei(κ) = `ε(κ) ≡ − log g(~ti+1,~ti), (8.9)

where the fundamental length scale, the link length `, is interpreted as the resolution of the exper-

imental technique used to resolve the chain statistics. In Fig. 8.2.2, we show AFM data from van

Noort et al. [9] for the bending energy of DNA absorbed to mica. The bending energy has been

computed for a link length, `, of 5 nm. These measurements posit a bending energy of DNA, on the

5 nm length scale, that is poorly modeled by an elastic rod model. In fact the data is better fit by

the bending-energy density

ε(κ) = A|κ| = 5.3|κ|. (8.10)

We shall show that this bending energy has many of the features we desire. In particular, it is

already clear from Fig. 8.2.2 that the model is softer at high curvature than the WLC model with

persistence length 53 nm (we shall show that the persistence length of the model defined by Eq. 8.10

is 53 nm) and the energy is not non-convex. We will refer to this model as the Sub-Elastic Chain

model (SEC) since the constitutive relation (the bending energy) has a weaker dependence on the
1Of course, the bending energy as we have defined it here is really a bending free energy. For chain statistics

calculations, the distinction between energy and free energy is not meaningful since we describe a coarse grained
model.
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magnitude of the curvature than the elastic rod model.

The reader may have several quite substantive objections to the claim that Eq. 8.10 correctly

describes the bending energy of DNA in solution. These measurement were performed on DNA,

adsorbed to mica at low Magnesium concentrations, then rinsed and dried before the DNA confor-

mations were scanned using an AFM [9]. It is believed that (i) the adsorption of DNA to the mica

substrate is weak enough that the chain can equilibrate on the surface and that (ii) the mica does

not significantly affect the bending energy of the chain because the persistence length of the polymer

is roughly the same as that measured in solution [18]. There are also important limitations on the

accuracy of these measurements due to the AFM tip convolution, pixillation, and tracing algorithm

used to extract the bending angles [9]. Another objection to the proposed model is that the energy

is non-analytic at zero curvature.

We wish to use these experiments only to motivate a class of models in which the bending energy

becomes softer than quadratic at large deflection. For the moment, let us lay our fears aside and

analyze the SEC model to see what the consequences of the bending energy described by Eq. 8.10

are. Is this model, which is dramatically different from the WLC model on short length scales,

compatible with other measurements of DNA chain statistics on long length scales as suggested

by Renormalization Group arguments? Can this type of model reproduce the anomalously high

J factor observed by Cloutier and Widom [6]? To answer these questions, the detailed form of

the bending energy will not be particularly important. For instance, we could introduce a small

quadratic regime to the bending energy without significantly affecting the predictions of the model

or the fit to experiment. In the remainder of Sect. 8.2, we shall explicitly demonstrate that the

tangent distribution function of the SEC model approaches that predicted by the WLC model as

the contour length of the chain increases.

8.2.3 The propagator and composition

The locality assumption in the definition of the bending energy implies that each vertex bends

independently. The fundamental tangent distribution function is the conditional probability of a

final tangent, given an initial tangent for a single vertex. Computing the tangent distribution

functions for chains of several links is therefore straightforward. These conditional probabilities are

simply the product of conditional probabilities for single vertices, summed over the orientations of

the intermediate tangents [19]

G(~t,~t ′;N`) =
∫
d~t1...d~tN−2︸ ︷︷ ︸

N−2

g(~t;~t1) g(~t1;~t2)...g(~tN−3;~tN−2)︸ ︷︷ ︸
N−2

g(~tN−2;~t ′), (8.11)

where we have written the N link tangent distribution function as a function of the arc length, N`.

This notation is needlessly cumbersome. It is therefore convenient to introduce the propagation
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Figure 8.2: The bending energy of DNA on short length scales? The tangent distribution function
is measured as a function of deflection angle for 5 nm sections of long sequences of DNA absorbed
to mica via AFM [9]. The bending energy deduced from the tangent distribution function (Eq. 8.9)
(black dots) is significantly non-harmonic and can be approximately fit to the functional form A|θ|/`
(red curve). For comparison, the WLC bending energy is also shown (dotted blue curve) for persis-
tence length 53 nm which accurately describes the long-length-scale DNA statistical mechanics but
fits the short-length-scale experimental data very poorly. We shall call the model based on the fit to
the experimental data the SEC model. Note to reader: See also Fig. 7.3.1 for a fit to unpublished
AFM data.

operator (or transfer matrix [19])

G ≡
∫
dtdt′

∣∣~t 〉 g(~t,~t ′) 〈~t ′∣∣ , (8.12)

where 〈| and |〉 is the canonical bra ket notation of statistical mechanics (or quantum mechanics)

[20]. These states are a continuum basis:

〈
~t |~t ′

〉
= δ

[
~t− ~t ′

]
, (8.13)

where δ is the Dirac delta function on the space of unit tangent vectors.

The propagation operator, G, applied on a state gives the probability distribution after one

additional link. This property is called composition and is a direct result of the locality discussed

above. We can now rewrite Eq. 8.11 more concisely

G(~t;~t ′;N`) =
〈
~t
∣∣G...G ∣∣~t ′〉 =

〈
~t
∣∣GN

∣∣~t ′〉 , (8.14)

where the weighted sum, or path integral, over all intermediate configurations is now implicit. By

changing the basis in the next section, we shall show that this expression is also a convenient

computational tool for understanding general theories [19].
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8.2.4 Symmetry considerations

The tangent basis we have exploited to write the tangent distribution function is not particularly

convenient computationally since the operator is not expressed in its eignenbasis in which it is

diagonal. To find an eigenbasis for this operator, we exploit the rigid body rotational invariance

of the tangent distribution function. In D dimensions, the rigid-body-rotational invariance of the

model implies that the propagator commutes with the generators of rotation

[G,Lij ] = 0, (8.15)

where Lij = −Lji are the generators of rotation in the ij plane. The propagator therefore also

commutes with the Casimir operator, which corresponds to the total angular momentum:

L2 ≡ 1
2

D∑
i,j=1

LijLij . (8.16)

Since L2 and G commute, they share the same eigenbasis [20]. The angular momentum states span

the tangent space and are eigenvalues of L2:

L2 |lm〉 = l(l +D − 2) |lm〉 , (8.17)

where l is the total angular quantum number and we write the other angular quantum numbers

collectively as m. The propagator can therefore be expanded in this eigenbasis [19]

G =
∑
lm

gl |lm〉 〈lm| , (8.18)

where the gl are coefficients that depend only on the quantum number l but not on m. (If this

wasn’t the case, L2 and G would not commute.) We have now achieved our goal of diagonalizing

the propagator G.

Explicitly, in two dimensions, it is convenient to use the eigenfunctions [20]

〈
~t |lm

〉
=

1√
2π

exp−imθ, (8.19)

for m ∈ Z and l ≡ |m|. Note that the quantum number m is sufficient to describe the state but

we have introduced a second quantum number, l, which is invariant under a generalized notion

of rotational invariance in two dimensions which includes the the discrete transformation θ → −θ

which is a parity inversion.
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Figure 8.3: The evolution of the tangent distribution function. In the figure above, the WLC and
SEC tangent distribution functions are plotted as a function of the deflection angle θ for several
contour lengths. The linear dependence of SEC bending energy on the deflection angle of the
fundamental distribution function (L = ` = 5 nm) is lost at longer contour length. For L � `,
the tangent distribution approaches the WLC distribution function with a persistence length of 53
nm despite dramatically different behavior at short contour length. This loss of the short length
structure of the tangent distribution function is universal and explains the success of the WLC model
in describing many stiff polymer phenomena.

In three dimensions, it is convenient to use the eigenfunctions [20]

〈
~t |lm

〉
= Ylm (θ, φ) , (8.20)

where the Ylm are the spherical harmonics where we typically choose m to be the quantum number

of the z component of the angular momentum which we have written L12.

The orthonormality of the basis implies that the gl are uniquely determined and can be deter-

mined in the usual way (Eq. 8.51 and Eq. 8.52). It is now straightforward to perform the N+1 link

path integral of Eq. 8.11

GN =
∑
lm

gN
l |lm〉 〈lm| , (8.21)

since the propagation operator is diagonal.

We return now to the SEC model proposed in Sect. 8.2.2. The N link tangent distribution func-

tion for the SEC model is shown in Fig. 8.2.4. This figure explicitly illustrates the scale dependence

of statistical mechanics theories. For short contour length chains, the WLC and SEC theories make

dramatically different predictions, but as the contour length of the chain increases, the differences

between the distribution functions of the two theories decrease until at long contour length, the

theories are essentially indistinguishable. This is the essence of the renormalization group: at short

length scales, the mechanics of the chain can be extremely complicated but the thermal fluctuations

sum over many intermediate configurations and hide the underlying complexity on longer length

scales. We shall show this for general theories in Sect. 8.2.7.
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8.2.5 Contour length continuation

Since we shall frequently be interested in the properties of the polymer on length scales much longer

than the fundamental link length `, it is useful to introduce a continuum dependence on arc length.

We therefore introduce the Hamiltonian operator defined

H ≡ −`−1 log G =
∑
lm

hl |lm〉 〈lm| , (8.22)

where the eigenvalues of the Hamiltonian operator are hl = −`−1 log gl and it is also diagonal in the

angular momentum representation. We call this operator the Hamiltonian operator because in the

WLC model, the statistical mechanics of the chain corresponds to a quantum particle on a D − 1

sphere. The tangent distribution function is equal to the quantum propagator where time has been

continued to imaginary arc length. The Hamiltonian operator is equal to the Hamiltonian of the

corresponding particle system.

In terms of the Hamiltonian operator, we can rewrite the N link propagator

GN = exp−HN`, (8.23)

where N` is the contour length corresponding to N links. The advantage of this reformulation

of distribution function is that it introduces a natural extension to fractional numbers of links by

replacing N` by the contour length L defined for all positive real numbers. We define the continuum

tangent distribution function

G (L) ≡ exp−HL, (8.24)

although rigorously, it is understood that this function is only defined for contour lengths equal to

an integral number of links.

8.2.6 The meaning of persistence length

What is the meaning of persistence length in general models like those of interest here? Persistence

length describes the length scale on which the polymer maintains its tangent orientation. For the

WLC model in D dimensions, the tangent persistence is

〈
~t(0) · ~t(L)

〉
= exp [−L(D − 1)/2ξ] , (8.25)

where ξ is the persistence length, which also appears in the energy density as the bending modulus

in Eq. 8.6. In general models, the tangent persistence (Eq. 8.25) has the same functional form but

ξ no longer corresponds to a bending modulus. We shall therefore simply use Eq. 8.25 to define the

persistence length of general models.
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The tangent persistence corresponds to the l = 1 mode of the propagator. (The tangent is a

vector; therefore it is spin 1.) Comparing Eqs. 8.24 and 8.25, the persistence length is

ξD ≡ (D − 1)/2h1, (8.26)

where h1 is the l = 1 eigenvalue of the Hamiltonian. Note that we have explicitly written a subscript

to denote the dependence on dimension. In the WLC model, ξ is independent of dimension, but in

more general models this is not the case.

The persistence length also controls the long-length characteristics of the polymer. Remember

that the mean-squared end-to-end distance can be written in terms of the tangent persistence

〈
~X2
〉

=
∫ L

0

dsds′
〈
~t(s) · ~t(s′)

〉
. (8.27)

Since Eq. 8.25 applies to both the WLC model and general models, the dependence of the mean

squared end-to-end distance on persistence length and contour length is identical to the WLC model.

The same is true for radius of gyration, which can also be written in terms of an integration of

Eq. 8.25. It is also well known that the long-contour-length spatial distribution of stiff polymers is

described by the Gaussian Chain model [21]. (This is a consequence of renormalization.) The width

of the Gaussian distribution is determined by the mean squared end-to-end distance therefore there

is the same relation between the the Kuhn length and the persistence length for general models as

for the WLC model.

We can immediately exploit Eq. 8.26 and Eq. 8.52 to analyze the SEC model. The persistence

length, computed for the SEC model in three dimensions is 53 nm which matches solution measure-

ments.

8.2.7 Stiff polymer limit

In this section, we examine the tangent distribution function in the stiff polymer limit and show that

the WLC model is universal at long contour length as predicted by the Renormalization Group. Our

explicit computations of the SEC tangent distribution function in Sect. 8.2.3 have already provided

one explicit example of this behavior, but we address this question generally in this section.

The stiff polymer limit, by definition, implies that the fundamental tangent distribution function,

g, is narrowly distributed around zero deflection. We will exploit this fact by expanding the basis

functions in the deflection angle and computing the eigenvalues of the propagator (Eq. 8.18) to lowest

order in the deflection angle. In dimension D, this calculation, although straightforward, requires

some technical mathematics. We therefore relegate the details of this calculation to the appendix,

Sect. 8.6.2, and present only the results.
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The propagator in the stiff polymer limit is

G = 1− `

2ξ
L2 +O[L4(`/ξ)2], (8.28)

where ξ is the persistence length defined by the l = 1 eigenvalue of the Hamiltonian operator

(Eq. 8.26). Note that the L2 term is understood to be small for small values of the angular quantum

number l since, in the stiff polymer limit, the link length ` is much shorter that the persistence length

ξ. The corrections are order L4
〈
θ4
〉

and scale as l4 for large l. Clearly this approximation holds

only for small angular quantum number l. It is convenient to compute the Hamiltonian operator

H =
1
2ξ
L2 +O[L4(`/ξ)2], (8.29)

which is identical to the WLC Hamiltonian to lowest order in the deflection angle. Again, the cor-

rection scales like l4 which implies that this relation holds only for small angular quantum numbers.

The correspondence between the Hamiltonian operators for general models and the WLC model

for small angular quantum numbers implies that the long-contour-length behavior of the polymer is

universal and determined by the persistence length alone. This correspondence is shown explicitly

for the SEC and WLC theories in Fig. 8.2.7. At long contour length, only states with small l

contribute since higher momentum states decay quickly. Remember that the propagator is

G = exp−HL, (8.30)

and the eigenvalues of HWLC scale as l2 for large l. The tangent distribution function is therefore

well approximated by the WLC model at long contour length:

lim
L�`

G(L) = GWLC(L). (8.31)

The details of the short-length-scale bending energy affect only the large l eigenvalues of the Hamilto-

nian operator and are therefore irrelevant at long contour length as predicted by the renormalization

group.

Although we have yet to compute the spatial distribution function, we have already explicitly

shown that measurements that are only sensitive to the long-length-scale chain statistics do not

determine the short-length-scale behavior of the theory and that violations of the wormlike chain

model, while disguised by thermal fluctuations at long contour length, are generic as the length

scales probed by experiment approach the fundamental or structural length scale of the chain.
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Figure 8.4: The eigen-spectrum of H for the SEC and WLC models. The eigenvalues of the Hamil-
tonian operator for the WLC and SEC theories are compared as a function of the angular quantum
number l. Both theories have an identical persistence length, ξ = h−1

1 = 53 nm. The eigenvalues
of the Hamiltonian are coincident for small l but diverge as l increases. The lth moment of the
distribution function decays as exp−hlL. The larger eigenvalues of the Hamiltonian, for which the
two theories differ, are therefore relevant only for small L, implying that the SEC and WLC chain
statistics are identical for long-contour-length chains.

8.3 The spatial distribution

For most applications, it is the spatial distribution of the polymer rather than the tangent distri-

bution function which is of phenomenological interest. From solution scattering to force-extension,

cyclization to looping, the spatial distribution function is directly observable. In this section, we

shall develop a near exact formalism for computing the spatial distribution function. Our focus will

be exclusively three dimensions but computations in other dimensions are a simple extension of the

methods discussed here.

The tangent-spatial distribution function is the probability density of end displacement ~X and

final tangent ~tf given an initial tangent ~ti for an arc length L chain. It is convenient to write the

tangent spatial distribution in terms of the spatial delta function [22]

G( ~X;~tf ,~ti;L) =
〈
~tf
∣∣ exp [−HL] δ3[ ~X −

∫ L

0

ds ~t(s)]
∣∣~ti〉 , (8.32)

where we have written the distribution function in the continuum limit. We shall reintroduce an

operational definition of this continuum limit in a moment.

To compute the tangent-spatial distribution function, we introduce an operator-valued spatial

distribution function [11]:

G( ~X;L) =
∫
d~td~t ′

∣∣~t 〉G( ~X;~t,~t ′;L)
〈
~t ′
∣∣ , (8.33)

which allows us to keep the tangents implicit in our expressions. We shall call this operator the
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spatial propagator since it obeys the composition property of Green Functions:

G( ~X;L+ L′) = G( ~X;L)⊗ G( ~X;L′), (8.34)

where ⊗ is the spatial convolution.

As usual, it will be convenient to work in the angular momentum basis with the matrix elements

Glml′m′( ~X;L) ≡ 〈l m| G( ~X;L) |l′ m′〉 , (8.35)

since this basis diagonalizes the Hamiltonian (although not the spatial propagator). Finding the

spatial propagator reduces to the ability to explicitly compute all the Glml′m′ .

We shall be able to derive exact expressions for the Fourier-Laplace Transform of the spatial

propagator in the continuum theory in terms of the transformed matrix elements (Eq. 8.35). We

adopt the Fourier Transform convention

G(~k;L) ≡ F
X→k

G( ~X;L) ≡
∫
d3X G( ~X;L) exp−i~k · ~X, (8.36)

and the Laplace transform convention

G̃(~k; p) ≡ L
L→p

G(~k;L) ≡
∫ ∞

0

dL G(~k;L) exp−pL. (8.37)

The derivation of the transformed matrix elements exploits the same techniques used recently by

Spakowitz and Wang [10, 11, 12] to derive exact results for the WLC model. The extension of these

results to the generalized theories considered here is straightforward. We shall therefore include only

a brief derivation in the Appendix (Sect. 8.6.3) although we discuss the results in the main text.

8.3.1 The spatial distribution function

In force-extension and solution scattering experiments the tangents of the polymer are not directly

probed by experiment; it is only the spatial distribution function rather than the tangent-spatial

distribution function which is observed. We shall therefore introduce the spatial distribution func-

tion, K( ~X;L), which is defined as the probability density that a contour length L polymer has

end displacement ~X. The spatial distribution function is the tangent-spatial distribution function

summed over the final tangent and averaged over the initial tangent:

K( ~X;L) ≡ 1
4π

∫
d~tfd~ti G( ~X;~tf ,~ti;L) = G0000( ~X;L), (8.38)
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where the last equality expresses the spatial distribution function in terms of a matrix element of

the spatial propagator.

The Fourier-Laplace transform of this matrix element, a continued fraction, is computed in

Eq. 8.78. For convenience, we write the explicit expression for the transformed spatial distribution

function below

K̃(~k; p) =
1

p+ h0 +
B1k

2

p+ h1 + B2k2

···

, (8.39)

where the hl are the eigenvalues of the Hamiltonian operator, Eq. 8.22, and the Bn coefficients are

defined as

Bn ≡
n2

4n2 − 1
. (8.40)

This expression is identical to that derived for the WLC model, except that the eigenvalues of the

Hamiltonian operator, hl, are those for a generic theory rather than the WLC eigenvalues. Otherwise

the expression is unchanged.

The spatial distribution functions for the WLC and SEC models are plotted in Fig. 8.3.1 for

several contour lengths. Again, what is striking about these results is the renormalization group

flow towards the WLC model at long contour length. Although the two theories make dramatically

different predictions for short-contour-length chains, the predictions converge at long contour length!

We also explicitly show the convergence with the gaussian chain model at contours lengths much

longer than the persistence length.

The loss of the short-length-scale structure of the theory can again be understood in terms of

the eigenvalues of the Hamiltonian operator. The levels of the continued fraction (Eq. 8.41) can

be understood as contributions from transitions to states of increasing angular quantum number

l. But these “high angular momentum” states decay quickly due to their large eigenvalues of the

Hamiltonian. (These eigenvalues of the Hamiltonian produce poles in the transformed propagator

at large-magnitude, negative values of p.) We can also understand the irrelevance of “high angular

momentum” states at long length in terms of the wave number k. Long length scales correspond

to small wave number. The levels of the continued fraction are multiplied by k2 and are there-

fore suppressed for small wave number, implying that the “higher angular momentum” states have

successively less relevance at long length scales.

It is also instructive to consider the long-length-scale limit of the spatial distribution function

since we know that this limit is describe by the gaussian chain model. The long-length-scale limit

corresponds to the limit of small k and contour dual number p. In this limit, the transformed spatial

distribution function is

K̃(~k; p) → 1

p+A1
~k2/h1

, (8.41)
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Figure 8.5: The spatial distribution for the WLC and SEC theories. All curves except the black
dotted curve have been computed using the inverse transform technique. To reassure the reader of
the validity of this technique, we have included a direct Monte Carlo integration for the shortest
contour length SEC curve (red). We have chosen the contour lengths of the chains to illustrate two
types of renormalization. At 50 nm for large deflection (R/L ∼ 0), The SEC (red) and WLC (blue)
theories differ by two orders of magnitude. For a 200 nm contour length, SEC and WLC predict
nearly identical distributions, but this distribution is clearly not Gaussian. For long contour length,
these theories renormalize to the Gaussian chain model (green).

which is just a Gaussian distribution with a Kuhn length of twice the persistence length (Eq. 8.25)

as we have already argued from computations of the mean-squared end-to-end distance and has also

been shown schematically for the SEC model in Fig. 8.3.1.

8.3.2 Force-extension

The force-extension of single polymer molecules has recently been the subject of considerable exper-

imental interest [5]. The experimental observable in these experiments, the extension of the polymer

under an external force, can be directly computed from the spatial distribution function. Typically

this force is applied to a bead, tethered to the polymer, using an optical or magnetic trap [23, 24, 5].

The restoring force against extension is entropic in nature (for inextensible polymers). This entropic

force is induced by the reduction in the number of micro configurations available to the chain as the

extension is increased. One of the triumphs of biophysics is the description of the extension of DNA

by an external force by the WLC model and the precise agreement between experiment and theory

as illustrated in Fig. 8.3.2. These experiments have been described as the strictest test of the WLC

model [5]. How do other stiff polymer models compare? Can these models reproduce the precise fit

to experiment? To answer these questions, we compute the force-extension for general models and

explicitly compare the extension in the SEC and WLC models in Fig. 8.3.2.

The partition function for a polymer under a constant external tension is related to the Fourier
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transform of the spatial distribution function via an analytic continuation of the wave number:

Z(~f ) =
∫
dDx K(~x;L) exp

[
~f · ~x

]
(8.42)

= L
L→p

−1 K̃(i ~f ; p), (8.43)

where ~f is the external force or tension. The partition function can be computed numerically by

truncating the continued fraction in Eq. 8.41 and applying the InverseLaplaceTransform function

in Mathematica. The extension or mean end distance is computed in the usual way:

〈x〉 =
∂ logZ
∂f

. (8.44)

The force-extension for the SEC and WLC models are compared in Fig. 8.3.2.

Despite the drastically different bending energy of the SEC model on short length scales, as

illustrated in Fig. 8.2.2, thermal fluctuations disguise these differences and give rise to an extension

almost identical to the WLC model. In retrospect, these results are hardly surprising. The theories

are identical at small extension due to the renormalization group and at large extension due to

inextensibility. Although, in principle, the high force limit is mathematically equivalent to probing

short length scales—they are related by analytic continuation—these differences are not large enough

to be experimentally observable. Physically, the rare high curvature bending regime, where the

difference between the models is most pronounced, is further suppressed by the application of tension.

For the study of DNA mechanics, force-extension measurements do probe the persistence length and

the inextensibility of DNA, but these experiments do not efficiently probe DNA elasticity on the

length scales of interest for many biological processes.

8.3.3 Structure factor

Another experimental observable used to characterize polymers is the structure factor, measured by

static light scattering, small-angle X-Ray scattering, and neutron scattering experiments. Measure-

ments of the structure factor can probe the polymer configuration on a wide range of length scales.

Symbolically the structure factor is

g(~k) ≡ 1
L2

∫ L

0

dsds′
〈
ei~k·[ ~X(s)− ~X(s′)]

〉
, (8.45)

where ~X(s) is the position of the polymer at arc length s and we have included an extra factor of the

polymer contour length in the denominator to make the structure factor dimensionless [10]. At high

wave number, the structure factor is sensitive to short length scale physics, whereas the polymer

length and radius of gyration can be measured at low wave number. The structure factor can be



197

0.1 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

f»=kT

=L

WLC

Expt
SEC

N
ot

 O
b
se

rv
ab

le
d
sD

N
A

 S
tr

et
ch

D x

D
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rewritten in terms of the transformed spatial distribution function

g(~k) =
2
L2

L
L→p

−1

[
K̃(~k; p)
p2

]
, (8.46)

where L−1 is the inverse Laplace transform which can be computed numerically. As we mentioned

above, the leading-order contributions at small wave number are determined by the polymer length

and the radius of gyration

Lg(k) = L(1 + 1
3
~k2R2

g + ...), (8.47)

where we have temporarily restored the length dimension of g. At large k, both WLC and SEC are

rod-like or straight which gives an asymptotic limit for large wave number

g(k) → π

Lk
, (8.48)

since the chain is inflexible at short length scales.

The structure factor is compared for the SEC and WLC models in Fig. 8.3.3. Again we find that

the two theories make nearly identical predictions. The reasoning is again similar to that explained

for force-extension. The two theories make dramatically different predictions for rare, highly bent

configurations but the structure factor is dominated not by these rare high curvature configurations

but by typical thermal bending. We therefore find that the structure factor, like force extension,

does not efficiently probe the high curvature statistics of the polymer.

8.3.4 Cyclization

The biochemical process of DNA cyclization is not in itself a process of particular biological impor-

tance 2 but cyclization experiments do provide a controlled, bulk experimental method for probing

the probability of rare, highly-curved DNA configurations [6, 27, 7]. In these experiments, linear

double stranded sequences with complementary single stranded ends are ligated into cyclized se-

quences or oligomers [28, 4, 25, 29, 30]. The cyclization reaction precedes via the capture of rare,

thermally activated configurations and is thought to be very similar to the process by which many

DNA-protein complexes are formed. Cyclization does have a very clear advantage over protein-

induced DNA looping as a method of probing the high-curvature mechanics of DNA: the chain

boundary conditions for cyclization (tangents aligned) are well known, in marked contrast to most

DNA-protein complexes where the relevant chain boundary conditions must be determined.

The cyclization assay is performed under conditions such that ligation reaction samples the equi-

librium populations of unligated cyclized and oligomerized polymers [4]. The ratio of the cyclization

2Bacteriophages are know to cyclize their genomes after ejection into a cell, but these genomes are typically many
thousands of base pairs and the barrier to cyclization is purely entropic.
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Figure 8.8: The cyclization J factor: probing the high-curvature chain statistics. In the figure above,
the cyclization J factor is plotted for the WLC and SEC models and compared with experimental
measurements [4, 25, 26, 6, 27]. The theoretical curves do not include the twist induced modulation
visible in the three continuous sets of experimental data [25, 22, 26, 27]. The renormalization group
predicts that the SEC model will be identical to the WLC model (ξ = 53 nm) for long-contour-length
sequences. But, for sequences shorter than two persistence lengths (.200 bp), the short-contour-
length chain statistics become important and the SEC J factor diverges from the WLC prediction.
In fact, for 94 bp sequences, the SEC J factor is three orders of magnitude larger than that predicted
by the WLC model, roughly matching the J factors measured by Cloutier and Widom [6, 27]. Our
theoretical results predict that this type of short-contour-length anomaly in the J factor is generic
for sufficiently short sequences. But, the contour at which the WLC model fails is model dependent.

equilibrium constant (KC) to the dimerization equilibrium constant (KD) is called the Jacobson-

Stockmayer factor [28] or J factor and is proportional to the tangent-spatial distribution function

of the polymer [4, 29]

J ≡ KC/KD = 4πG(0;~t,~t;L) = tr G(0;L), (8.49)

where G is the tangent-spatial distribution function for end-to-end displacement 0 and aligned end

tangents, for a contour length L polymer. The J factor can also be written as the trace of the

spatial propagator, which is computed in Sect. 8.6.4. Physically, the J factor is proportional to the

concentration of one end at the other with the correct (aligned) orientation for hybridization.

Our analysis neglects the condition that DNA twist must also be aligned, which requires the use

of models including the twist degree of freedom. This additional constraint modulates the J factor

with a 10.5 bp period equal to the helical repeat. Our interest here is in the value of the J factor

averaged over a helical repeat for which the effects of twist can be roughly ignored [22].

We compare the cyclization J factor for the SEC and WLC theories in Fig. 8.3.4. The J factor

for sequences with contour lengths greater than two persistence lengths have long been known to

match the predictions of the WLC model [4, 25]. For sequences shorter than two persistence lengths,

the figure illustrates the short-contour-length break down of the WLC model describing the chain

statistics of the SEC model. For example, for contour lengths of roughly 0.6 persistence lengths,

which correspond to loops with approximately the same radius of curvature as DNA bound to
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histones in nucleosome complexes, the SEC model J factor is three orders of magnitude larger than

predicted by the WLC model, in rough agreement with cyclization measurements of Cloutier and

Widom [6], as illustrated in Fig. 8.3.4.

The qualitative picture illustrated in the Fig. 8.3.4 (the WLC model describes long-contour-

length chain statistics, but fails at sufficiently short contour length) is the generic result from J

factor computations in general models. These results were qualitatively predicted by the renormal-

ization group ideas we have discussed throughout the paper. From an experimental perspective, the

cyclization assay is clearly a powerful technique for probing the short-contour-length chain statistics

of DNA. In particular, this technique has very clear advantages over force-extension and solution-

scattering experiments since (i) cyclization assays probe the chain statistics of DNA in a way that

is qualitatively similar to biological DNA looping applications and (ii) cyclization experiments are

incredibly sensitive to the differences between models at short contour length. The main short-

coming of cyclization assays is that it is difficult to determine the chain statistics from cyclization

experiments alone.

8.4 Discussion

In Sect. 8.2.2, we introduced the SEC model as a toy model for DNA bending, motivated by AFM

measurements of the chain statistics on short length scales. We proceeded to show that this simple

model exhibited the long-length-scale chain statistics of the WLC model, despite dramatically in-

creasing the probability of high-curvature configurations. In particular, we demonstrated that the

SEC model predicted a cyclization J factor in agreement with the measurements of Cloutier and

Widom [6]. More generally, we showed that this type of short-length-scale anomaly was generic in

generalized stiff chain models; but the length scale at which this failure occurs is model dependent,

not universal.

Unfortunately, the experimental picture of DNA bending on short length scales is still some-

what muddled. Vologodskii and coworkers have recently made measurements which suggest that the

experiments of Cloutier and Widom are flawed [7]. Their measurements suggest that the J factor is

that predicted by the WLC model, at least down to a contour length of 100 bp. Widom and coworker

have also recently repeated their own measurements and have confirmed their previous results. At

the moment, it is difficult to reconcile these two conflicting experiments experiments. (Please see the

extensive discussion in Sect. 7.3.4.) In this paper, we have argued that the failure of the WLC model

at short length scales is generic for stiff polymers. Certainly the renormalization group predicts that

WLC chain statistics are universal for stiff polymers at long length scales. On sufficiently short

length scales, it is also clear that the WLC model fails to capture the statistics of the complicated

macromolecular structure of DNA. But at what length scale does the WLC model begin to capture
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the statistics of DNA quantitatively? This length scale is determined by the underlying, molecular

structure of DNA. In our description of generalized theories, this length scale is integrally related to

the link length parameter.

Until now, we have treated the link length as a parameter of the model without discussing its

physical significance. In order to understand the role of the link length, it is useful to return to the

equation describing the tangent distribution of the polymer (Eq. 8.24)

G (L) ≡ exp−HL, (8.50)

which we rewrite here for convenience. This equation gives a recipe for computing the tangent

distribution function for any contour length, based on a fundamental tangent distribution function

of a contour length ` chain. But, this equation can also be evaluated for contour lengths shorter

than the link length, violating the spirit of the renormalization group. These distribution functions,

computed for contour lengths shorter than the link length, are not physically meaningful. On shorter

length scales, the polymer may not even be described by a theory which meets the assumptions we

made initially: (i) isotropic, (ii) homogeneous, and (iii) local. In fact, Eq. 8.29 implies that if the

stiff polymer were described by a theory satisfying (i)-(iii) at arbitrarily short length scales and the

bending energy was everywhere finite, the chain statistics would be described by the WLC theory!

It is precisely because at least one of these assumptions breaks down on short length scales that

polymers are not exactly described by the WLC model.

Determining the length scale on which the WLC theory breaks down is therefore related to

determining on what length scale our assumptions fail—this is the fundamental length scale. On

length scales sufficiently long compared with this fundamental length scale, the WLC model is

applicable. The general models discussed in the text provide a framework that is more generally

applicable than the WLC model. These models can describe the chain statistics before the WLC

model becomes applicable.

Is the SEC model of DNA plausible? The SEC model essentially implies that the fundamental

length scale is on order 5 nm. (If it were significantly smaller, the chain statistics at the 5 nm length

scale would be described by the WLC model.) Such a proposal is not ridiculously far fetched since

our assumption of homogeneity may fail. The link length, 5 nm, is not significantly longer than the

helical repeat of DNA. It has been proposed, for instance, that DNA may bend preferentially into

the minor groove and there is just one such location with the correct orientation every helical repeat

[2, 31]. On the other hand, sequence induced heterogeneity is probably fairly well averaged over the

5 nm length scale since this corresponds to nearly 15 bp. Failure of the locality assumption (iii),

the break down of the nearest neighbor interaction on these length scales, seems unlikely since it is

difficult to understand such a phenomena without bending-induced, long-range structural changes.
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Such structures have not been observed in the crystal structures of highly bent DNA on the 5nm

length scale. Based on these theoretical and structural arguments alone, failure of the WLC model

on these length scales, while possible, is not imperative.

Note to the reader: Please see the newly written experimental discussion in Sect. 7.3.4.

8.4.1 Unfinished business

For many biological applications of DNA chain statistics, the twist degrees of freedom are also of

great importance. For instance for DNA looping, moving an operator (the DNA binding sequence)

a few base pairs can change the looping probability by an order of magnitude [32]. This dramatic,

short-contour-length dependence arises from the necessity of bring the DNA operator into twist

registry with the binding site. The twist degree of freedom of DNA has also been described by

a fluctuating elastic rod, the Helical Wormlike Chain model (HWLC) [22]. At long length scales,

this modified WLC model has successfully described the twist dependence of DNA. But, there is

mounting evidence that the HWLC model breaks down. Bryant et al. [33] have demonstrated that

the restoring torque generated by twisted DNA saturates for high twist densities, implying that the

linear elastic model breaks down for highly twisted DNA. Cloutier and Widom have also shown that

the twist-induced modulation of the cyclization J factor is less for short sequences than predicted by

the HLWC model [27]. Although the bending of DNA for small twist densities may be adequately

described by the HWLC model, a generalized model of DNA, including twist, may be necessary

to describe the chain statistics of short sequences of looped DNA which are not naturally in twist

registry when bound. Such generalized models are in principle a straightforward extension of the

theory presented in this paper and the exact results for the HWLC model that have recently been

derived by Spakowitz [12].

8.5 Conclusion

In this paper, we have developed a class of generalized stiff polymer models in which the bending

energy density is an arbitrary function of curvature. To analyze the chain statistics of these models,

we develop a formalism which is analogous to the techniques used for describing the WLC model.

We demonstrate that the statistics of these general models are described by the WLC model at long

contour length, as predicted by the renormalization group. At short length scales, we show that

the predictions of these models can be dramatically different from the WLC model. Of particular

importance, we compute near-exact expressions for the transformed spatial and tangent-spatial

distribution functions with a method analogous to that recently exploited to find exact results for the

WLC model. These generalized models provide an explicit example of a non-renormalizable model

which is nearly exactly solvable. We exploit these general theoretical results to compute several
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important experimental observables: force-extension, the structure factor, and the cyclization J

factor. We explicitly perform these computations for a toy model of DNA bending, the Sub-Elastic

Chain (SEC) model. The predictions of this model are essentially indistinguishable from the WLC

model for force-extension, solution scattering, and long-contour-length cyclization measurements,

despite the dramatic differences between the bending energies of the two models on short length

scales. For short-contour-length cyclization experiments, general models generically predict that the

WLC model fails. In particular we compute the J factor for the SEC model and show that this

model could account for the anomalously large cyclization J factor measured by Widom and Cloutier

[6]. We expect these generalized models to be widely applicable for describing the high-curvature

statistics of other semiflexible polymers.
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8.6 Appendix

8.6.1 Explicit expressions for gl

It is straightforward to determine the gl eigenvalues of any propagator using the orthonormal eigen-

basis of the angular momentum representation. In two dimensions, the gl are

gl =
∫ π

−π

dθ g(~t(θ);~ez) exp ilθ, (8.51)
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where θ is defined as the angle away from the z axis: ~t(0) = ~ez. In three dimensions, the gl are

gl =
∫
d2~t g(~t(θ);~ez)Pl(~t · ~ez), (8.52)

where the Pl are the Legendre Polynomials and cos θ = ~t · ~ez.

8.6.2 Stiff polymer limit

In this section, we show that a narrowly distributed fundamental tangent distribution function

generically implies WLC statics at long contour length. In dimension D, this calculation, though

straight forward, requires some technical mathematics, but these technical details are not important

for the interpretation of the result.

We begin the derivation with the definition of the lth moment of the tangent distribution function

expressed in terms of the propagator Eq. 8.18

gl = 〈lm| G |lm〉 , (8.53)

where rigid-body-rotational invariance implies that gl is independent of m. We insert two complete

sets of states into the tangent representation

gl =
∫
d~t d~t ′

〈
lm |~t

〉 〈
~t
∣∣G ∣∣~t ′〉 〈~t ′|lm〉 , (8.54)

where we can now replace the matrix element of the propagator with the fundamental tangent

distribution function g(~t;~t ′) (Eq. 8.12).

Remember that this function depends only on the relative deflection angle of the tangents. We

therefore replace the integral over the second tangent with an integral over rotation matrices, R,

and make the substitution ~t ′ ≡ R~t:

gl =
∫
d~t dR

∣∣∣∣ dt′dR

∣∣∣∣ 〈lm |~t
〉
g(~t;R~t)

〈
~t
∣∣D†R |lm〉 , (8.55)

where we represent the change in measure symbolically and we have introduced the rotation operator

[20]

DR
∣∣~t 〉 ≡ ∣∣R~t 〉 . (8.56)

Our interest is in the case where the tangent distribution function is narrowly distributed. We

shall therefore expand the rotation operator, D, with respect to the rotation angles which we shall

assume are small. The rotation operator can be expanded in terms of these angles and the rotation



208

generators [20]

DR = exp−iθijLij (8.57)

= 1− iθijLij − 1
2θijLijθmnLmn + ..., (8.58)

where the θij = −θji are the components of the rotation angle which multiply the generators of

rotations in the ij plane.

To evaluate the integral over the rotation matrices, we must now choose a set of θ’s which

give a single cover of the tangent space. Since g(~t;R~t ) is independent of ~t, it is convenient to

temporally assume a coordinate system in which ~t is in the direction of the D axis. (We shall return

to the unrotated frame before performing the integral over ~t.) In this new coordinate system, it is

convenient to use the cover generated by the coordinates {θDi}1..D−1 while setting all other θ’s to

zero.

We shall denote the average taken with respect to the distribution function 〈 〉. Due to rigid-

body-rotational invariance around the D axis,

〈θiD〉 = 0, (8.59)

〈θiDθnD〉 =
〈
θ2
〉
δin/(D − 1), (8.60)

where θ2 ≡ θ2iD is the total deflection angle.

The remaining matrix elements can be put in a coordinate invariant form

〈lm| ~eD〉 〈~eD| LDiLDi |lm〉 = 〈lm| ~eD〉 〈~eD| L2 |lm〉 (8.61)

since the added terms in the Casimir operator, L2, are zero on |~eD〉. We can now reassume the

unrotated coordinate system by setting ~eD = ~t.

After integrating over the complete set of tangent vectors, the resulting moment is

gl = 1− 1
2 (D − 1)−1

〈
θ2
〉
〈lm| L2 |lm〉+O(L4

〈
θ4
〉
). (8.62)

Since this expression is only correct to O(θ4), it is convenient to replace 1
2θ

2 with 1− cos θ. We

can now use the definition of the persistence length given in Eq. 8.25 to eliminate the dependence

on 〈cos θ〉:

gl = 1− `

2ξ
〈lm| L2 |lm〉+O(L4`2/ξ2). (8.63)
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Finally, we reconstruct the propagator from its moments

G =
∑
l,m

gl |lm〉 〈lm| = 1− `

2ξ
L2 +O(L4`2/ξ2), (8.64)

which completes the derivation. This result is discussed in Sect. 8.2.7.

8.6.3 The transformed spatial propagator

To derive closed form expressions for the spatial propagator, we Fourier Transform the spatial

propagator over the relative displacement, ~X. In particular, we consider the Fourier Transform of

Eq. 8.34 since in Fourier space, the spatial convolutions are simply products:

G̃(~k;L+ L′) = G̃(~k;L)G̃(~k;L′). (8.65)

We shall choose the coordinate system so ~k is in the z direction.

We now wish to use this composition property of the spatial propagator to write a differential

equation for G. We will therefore consider G for a differential arc length dL and then expand the

Fourier Transform of Eq. 8.32 for arc length dL:

G̃(~k; dL) = I − AdL, (8.66)

where I is the identity operator and A ≡ H + ik cos Θ where Θ takes its canonical meaning in

spherical coordinates: cos Θ = ~t · ẑ. Substituting this expression into Eq. 8.65, we can write a

differential equation for G̃:
d

dL
G̃(k;L) = −AG̃(k;L). (8.67)

It is now convenient to make a Laplace transform over the arc length where p is the arc length

Laplace conjugate. After solving for the propagation operator, we have an operator equation for the

Laplace-Fourier Transform of the spatial propagator:

G̃(k; p) = {pI +A(k)}−1 = {pI +H+ ik cos θ}−1, (8.68)

but this expression is not explicit since it is written in terms of the inverse of an infinite dimensional

operator.

We can express cos Θ in the angular momentum basis. It is most convenient to define a set of

ladder operators:

cos θ = a+ + a−, (8.69)
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l = p + hl

= ikAl l+1 m

…
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~

Figure 8.9: Diagramatic rules for the propagator: diagrams and their algebraic representations.
Connected diagrams represent the products of their algerbraic representation. The matrix element of
the spatial propagator G̃l+1 m l′ m is the sum of all diagrams which begin at state l m and end at state
l′m with an arbitrary number of intermediate transitions. Horizontal lines represent propagation.
Vertical lines represent transitions induced by the wave number. G̃+

lmlm is the matrix element of
the spatial propagator where transitions to states with total angular momentum l− 1 or smaller are
forbidden. This matrix element is represented by the line with ellipses, representing all transitions
to states with higher l, and can be defined recursively in terms of G̃+

l+1 m l+1 m as illustrated above.
The definition of G̃−lmlm is analogous, but it is the sum of all diagrams with transitions to states
with total angular quantum number l and smaller.

where the ladder operators are defined

a+ ≡
∞∑

l=0

l∑
m=−l

Al+1,l,m |l + 1 m〉 〈l m| , (8.70)

a− ≡
∞∑

l=0

l∑
m=−l

Al,l+1,m |l m〉 〈l + 1 m| , (8.71)

and where the Al,l+1,m are:

Al,l+1,m = Al+1,l,m =

√
(l −m+ 1) (l +m+ 1)

(2l + 1) (2L+ 3)
. (8.72)

The ladder operators have the property that they increase (decrease) the total momentum quantum

number of a state by plus (minus) one.

8.6.4 Matrix elements of the spatial propagator

In this section, we will give explicit expressions for the matrix elements of the transformed spatial

propagator. The Hamiltonian is diagonal in the angular representation, so it is convenient to factor

the spatial propagator into diagonal and nondiagonal factors:

G̃(k; p) =
[
I + {pI +H}−1ik(a+ + a−)

]−1 {pI +H}−1, (8.73)
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and expand it in a power series

G̃(k; p) =
∞∑

n=0

[
−ik{pI +H}−1(a+ + a−)

]n {pI +H}−1. (8.74)

As a first step, we will compute a diagonal matrix element:

G̃lmlm = 〈l m| G̃(k; p) |l m〉 . (8.75)

Computing these matrix elements is achieved by grouping the infinite set of terms in Eq. 8.74 into

sub sets which can be summed exactly [10].

We introduce G̃+
l′ml′m which is the matrix element of the spatial propagator, a subset of the terms

in Eq. 8.74, in which there are only transitions to states with total momentum l = l′ or greater [10].

This matrix element can be defined recursively since only transitions to adjacent states are defined.

The matrix element is the sum over n of the matrix elements with n transition to and from the

l ≥ l′ + 1 states, which can be written in terms of G̃+
l′+1ml′+1m. The terms of this matrix element,

a geometric series, can be summed exactly [11]:

G̃+
lmlm =

1
p+ hl

∞∑
n=0

[
−k2A2

l,l+1,mG̃
+
l+1ml+1m

p+ hl

]n

=
[
p+ hl + k2A2

l,l+1,mG̃
+
l+1ml+1m

]−1

, (8.76)

This sum is pictured schematically in Fig. 8.6.4.

Similarly, we can define G̃−l′ml′m which is the matrix element of the propagation operator which

allows transitions to states with total momentum l = l′ or less:

G̃−lmlm =
[
p+ hl + k2A2

l,l−1,mG̃
−
l−1ml−1m

]−1

. (8.77)

In terms of G± we can now define the matrix element without transition restrictions by grouping

the transitions into sets that do not cross l = l′. These sets can be written in terms of the matrix

elements of G± and then summed in a geometric series [11]:

G̃lmlm =
[
p+ hl + k2A2

l,l+1,mG̃
+
l+1ml+1m + k2A2

l,l−1,mG̃
−
l−1ml−1m

]−1

. (8.78)

The diagonal matrix element computed above is sufficient for describing many observables of phe-

nomenological interest. Note that the only difference between this expression and the WLC expres-

sion is that the eigenvalues of the Hamiltonian operator have changed.

For some applications we will want completely general matrix elements G̃lml′m′ . We can again

define these general matrix elements in terms of the recursive definitions of G±. Again, the trick

to summing the terms is grouping them. In this general case, there are many equivalent ways of
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l
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Figure 8.10: General matrix elements. A diagram of the sum for the matrix element G̃lml+nm =
G̃l+nmlm. To compute the matrix element, we group the terms by the location of the first steps from
l+ n to l+ n− 1 and from l+ n− 1 to l+ n− 2 etc. In the diagram, these steps are represented by
the vertical lines. We use the G+ operator to sum over all possible diagrams with upward transitions
between these steps. These upward transitions are represented by the ellipses. We multiply by the
transition matrix element for each of the vertical lines. After we reach l for the first time we allow
all transitions up or down. This enumeration counts each contributing diagram once but this recipe
is not unique.

achieving this grouping. See the figure for an explanation of the set grouping. The matrix element

can be written [11]

G̃l+nmlm′ = G̃lml+nm′ = δm−m′G̃lmlm

n∏
q=1

−ikAl+q−1,l+q,mG̃
+
l+qml+qm. (8.79)

We have now explicitly solved for spatial propagator having written expressions for all the matrix

elements.

8.6.5 The computation of spatial distributions

In the last section, we have discussed near-exact expressions for the Fourier-Laplace transformed

spatial and tangent-spatial distribution functions. Exact closed-form expressions for these functions

are unknown and we must invert the transforms numerically to compute the distribution functions.

For contour lengths of about two persistence lengths and above, it is convenient to directly invert

the transforms numerically. Typically, we cut off the continued fraction at l = 15 and then use the

InverseLaplaceTransform function in Mathematica. We then integrate numerically to invert the

Fourier transform.

For contour lengths on order a persistence length and shorter inverting the transformed ex-

pressions is of very little practical convenience. The continued fraction in increasing momentum is

essentially an expansion around weak end-tangent correlation. For contour lengths shorter than a

persistence length, a larger l cutoff is required, significantly slowing the numerical inversions. In

addition, the numerical integration over the wave number becomes impractical since the numerical

integrations must be extended to very a large cutoff momentum. These convergence issues are not

unique to the continued fraction approach. For example, the transfer matrix approach is plagued by

similar shortcomings, requiring a considerable amount of numerical heroics at short contour length

[15].
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We dispense with such heroics here for another much simpler although less elegant solution in the

form of direct Monte Carlo integrations. Monte Carlo integration in the short-contour-length regime

is (i) numerically more efficient than direct inversion, (ii) requires very minimal implementation, and

(iii) serves as a useful check of our theoretical results. These checks appear few places explicitly in

the paper since the agreement between these two methods is excellent and the focus of this paper

is physics rather than numerical computations. The theoretical curves for the looping J factor and

cyclization J factor contain both inversion and Monte Carlo computations.
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Appendix A

Appendix

A.1 AFM Tracing Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Function TracerPicker %
% (Matlab) %
% %
% TracerPicker is an automated code for tracing polymer molecules %
% from %
% AFM traces. The user clicks on the start of the molecule and the %
% a second time to give the initial guess for the direction of the %
% polymer. Finally the user picks and end point at which to stop %
% the trace. The program then traces the polymer based on fitting %
% the height. The details are explained in more detail below. The %
% return value is an array of traced points seperated by a user %
% defined spacing. %
% %
% 3/16/2005 %
% Cees Dekker (Delft) and Rob Phillips (Caltech) Groups %
% %
% written by: %
% ----------- %
% Paul Wiggins %
% Thijn van der Heijden %
% Fernando Moreno %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ r, t, theta ] = tracer6( rawdata );

% choose the step size in nm and then convert to pixels by
% multiplying by 512/1000 to give the step size in pixels

stepsize = 2.5/(1000/512);

%stepsize = 5/(1000/512);
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% choose the radius (in pixels) of the region explored normal
% to the tangent in order to compute the the center of mass.
scansize = 3;

% the number of divisions of the region defined above. The data
% is interpolated at scannum points on each side of the guess to
% total distance scansize pixels.
scannum = 10;

% The code ends when the trace comes within endradius pixels of
% the end point input by the user.
endradius = 1.5*stepsize;

% max number of point traced
maxiter = 1000;

% open a figure inwhich to plot the density plot to be tracked by
% tracer5 then clear it and set the hold
figure(1);
clf;
hold on;

% we want to plot the density plot so that the pixels are draw
% centered around integer values... This command makes a mesh on which
% to plot the x height
junk = (1:512)-.5;
[Xb Yb] = meshgrid(junk,junk);

% density plot of heights
pcolor(Xb,Yb,rawdata);

% set the shading to avoid facets which are default. Facets make the
% image black since there are so many data points
shading flat;

% set the dynamic range of the data... in nm to be colored by p color
caxis([0,0.9]);

% make an array in which to store the traced data points
r = zeros(maxiter,2);

% prompt the user to define the start of the molecule
’find start of molecule’
junk = input(’hit enter when ready’);

% ginput gets the mouse clicks until enter is pressed
[x,y] = ginput;
’got points’
% load these coords into the first r value
r(1,:) = [x(1), y(1)];

% plot this point on the graph
plot(r(1,1),r(1,2),’wx’);
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% ask the user to input another point with the mouse to
% compute a guess for the initial tangent... again it
% waits for enter to begin...
’direction’
junk = input(’hit enter when ready’);

% ginput gets the positions of mouse clicks
[x,y] = ginput;

% and puts them into r2
r2 = [x(1),y(1)]
% and plots this point
plot(r2(1),r2(2),’wx’);

% prompts the user to give the end point of the molecule
% again wait for an enter before starting
’end point of molecule’
junk = input(’hit enter when ready’);

% the end position is stored in rend
[x,y] = ginput;
rend = [x(1),y(1)]
% plot it on the density plot
plot(rend(1),rend(2),’wx’);

% prompt the user to begin the calculation
’ready to go?’
junk = input(’hit enter when ready’);

% init tangent
t = r2-r(1,:);
t = t/norm(t);

% start the main tracing loop... the loop can end in two ways
% either the max iteration is reached set by maxiter or the end
% of the chain is found and the loop is stopped by a break command.
% ugly but effective

for c = 1:maxiter;

% plot current position and attempt to refresh the
% display to show the user where the code has gotten to
% this feature doesn’t yet work... I think.
plot(r(c,1),r(c,2),’k.’);
refresh;

% here is the break command that is used to end the loop when
% the end is found. If the distance between the current position
% and the end point is less that the end radius, the main
% loop breaks.
if( norm(r(c,:)-rend)<endradius)

break;
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end;

% Now I will explain the algorithm
% use the last tangent to guess the position
% of the next point distance stepsize away. We
% will find the true point iteratively...
for a=1:2;

% use the last tangent to guess the position
% of the next point distance stepsize away.

rn = r(c,:)+t*stepsize;
%plot(rn(1)+.5,rn(2)+.5,’w.’);

% compute a normal to the tangent
normal = [t(2),-t(1)];

% and project the data onto a segment defined
% by scanvec. scanvec is a vector with the

% distance at which the the data will be interpolated
% on the normal...

scanvec = ((-scannum):scannum)/scannum*scansize;

% get the length of this vector
sizescan = max(size(scanvec));

% now make the point at which we wish to interp
% the data. They are at the guessed position normal

% to the curve with the spacing given by scanvec.
rscanvec = zeros(sizescan,2);
rscanvec = scanvec’*normal + ones(sizescan,1)*rn;

% now we do the interpolation onto these point producing
% a vector of z values
z = interpolate_im3(rawdata’,rscanvec);

% Now we compute the center of mass by multiplying these
% z values (the mass) by their spacial positions

rnn = z’*rscanvec;

% and dividing by the sum of the z’s or the total mass
rn = rnn/sum(z);

% to give a new guess for the position of the curve...
% but this new point does not lie at the right distance
% so we will compute the tangent only... which in turn
% will update the the r guess... then we iterate to improve
% the guess

t = (rn-r(c,:))/norm(rn-r(c,:));
rn = r(c,:)+t*stepsize;
end;
% make the next point equal to the guess... which is now pretty
% good since we interated it...
r(c+1,:)=rn;
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end;

% end of the main loop... now we keep only the r values which we
% have traced. these will be returned since the function is array
% valued
r = r(1:c,:);

% plot the trace on the density plot
plot( r(:,1), r(:,2),’k’);

% and compute the tangents
t = (r(2:c,:)-r(1:c-1,:));
t = [t(:,1)./sqrt(t(:,1).^2+t(:,2).^2),t(:,2)./sqrt(t(:,1).^2+t(:,2).^2)];

% and the angles
theta = compute_theta(t);
figure(3);
clf;

% which are then plotted in a histogram
hist(theta,20)
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