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Abstract 

 
Hemodynamics, or blood fluid dynamics, is of great importance in vascular biology and 

its role is well recognized in events ranging from atherosclerosis to wound healing.  The 

importance of hemodynamics during embryonic development, however, is less clear.  

The early vertebrate vasculature is established through two processes; vasculogenesis, 

which is the de novo formation of vessels and angiogenesis, which is the sprouting of 

new vessels from existing vessels and the remodeling of existing vessels.  The latter 

process, angiogenesis and vascular remodeling, is dependent on blood flow and does 

not occur if cardiac output is blocked.  As well, if blood flow is altered, such as with 

mutations that affect cardiac contraction, the early vessels also fail to remodel.  Flowing 

blood imparts a physical force, called shear stress, on the endothelial lining of the blood 

vessels.  Many genes known to be regulated by shear stress are important for vascular 

remodeling in the embryo. In this work, we investigate the role of shear stress on the 

remodeling process.  

Studying the role of shear stress in embryos requires the ability to measure changes in 

both fluid dynamics and vascular morphology as well as methods to alter shear stress 

levels.  In this work, we use an optical technique for the quantitative analysis of 

hemodynamics during early organogenesis in the mouse embryo.  We established the 

morphological changes that occur in the vasculature during remodeling and link these to 

the fluid dynamics that are present.  We establish the mechanical cues that are available 

to the endothelial cells and the type of flow present at various stages of development.  In 

order to understand how these mechanical cues affect embryonic development, we 

examine altered shear stress during development using a mutant mouse model in which 

the atrial cardiac contraction is lacking as well as inducing specific changes in shear 
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stress through chemical manipulation of the embryonic cardiovascular system.  These 

studies establish a link between the pattern of blood flow within the vasculature and the 

stage of cardiovascular development and enable analysis of the influence of mechanical 

forces during development. 
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The cardiovascular system is the first functional organ system to develop in the embryo 

and is critical to embryonic survival [1]. Malformations of the circulatory system are 

thought to account for approximately 10% of still births in humans.  In live births, there is 

a reported incidence of blood vessel and heart defects of 1%, making this the most 

common human birth defect [2]. In addition, gene ablation studies in mice show that 

when genes important to cardiovascular development are ablated, the embryos die at 

mid-gestation [3].  Though formation of a functional cardiovascular system is so critical 

to development, the mechanism through which the cardiovascular system is established 

is poorly understood.   

 

For the cardiovascular system to function properly, several components must merge and 

integrate, blood as the fluid, vessels as the conduits and the heart as the pump.  As 

such, the study of cardiovascular development can be divided into four areas, 

hematopoiesis or blood formation, vasculogenesis or the de novo formation of vessels, 

angiogenesis also called vessel sprouting, and heart development.  Understanding how 

these four fields come together, however, is essential for understanding how an 

operational cardiovascular system arises. 

 

Much of current cardiovascular research focuses on genes that are necessary for the 

formation of the developing cardiovascular system.  However, elucidation of the genetic 

mechanisms only reveals part of the picture. Proper formation of the cardiovascular 

system requires many dynamic input, some which are genetically encoded, others that 

arise by the transport of nutrients, and others still which are derived from the mechanical 

forces generated by blood flow.   I have focused my studies specifically on the 
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importance of blood flow and the possible regulatory role that fluid dynamics play during 

cardiovascular development. 

Cardiovascular Development 
 

Shortly after the mouse embryo implants into the uterine wall at 4.5 days of gestation 

(E4.5), the embryo gastrulates, whereby the three primary cell layers of the embryo are 

formed.  These cell layers are called ectoderm, mesoderm and endoderm.  Ectodermal 

derivatives include skin and neural tissue.  Cells that form most of the organs in the 

embryo are of mesodermal origin. Endoderm derivatives include the lungs, liver, 

stomach, intestines and other components of the digestive system.  After gastrulation, 

the embryo enters a period of development called organogenesis.  It is during this period 

of development that most of the organs of the embryo form.   

 

Vertebrate embryos in organogenesis are often staged by the number of somites 

present.  Somites are blocks of mesodermal cells that give rise to muscle and skeletal 

tissue.  The first somite appears in a mouse embryo at 8 days of gestation (E8.0) and 

then one somite forms every 1.5 hours thereafter.  Organogenesis begins at 7 days of 

gestation (E7.0) and at this point in development, the cardiovascular cells, both 

hematopoietic (blood-forming) and endothelial, are formed. 

 

Hematopoietic and endothelial precursors form in the mesodermal tissue of the embryo, 

receiving signals from the endoderm [4].  The induction of this differentiation seems to 

be largely driven by a protein called FGF-2 [5].  As these precursor cells form, they 

clump together, with the inner cells becoming erythroblasts, or primitive red blood cells, 
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and the outer cells flattening to become endothelial cells [6]. These precursors localize 

to the yolk sac, an extra-embryonic membrane that surrounds the developing embryo, 

and form a tight band of cells called the blood islands (Figure 1, pre-somitic stage).  The 

common inductive signals [7-11] and the co-localization of hematopoietic and endothelial 

cells have led to the idea of the hemangioblast, a common precursor of both cell types 

[12, 13]. 

 

Primitive hematopoiesis in the blood islands is very different from hematopoiesis in the 

mature organism.  Blood islands in the yolk sac produce mainly erythroblasts, or 

primitive red blood cells [14], though some megakaryocytes [15] and primitive 

macrophages may also be produced [16, 17].  In addition, these primitive erythroblasts 

differ from mature red blood cells in that they produce different haemoglobin than mature 

red blood cells, and are larger in size and nucleated [18].  Because these early red blood 

cells are nucleated, they are rounded rather than disc-like in shape.  Mammals represent 

the only vertebrate species that have enucleated red blood cells [19] and the 

evolutionary advantage of enucleated red blood cells is unclear. 

 

Endothelial precursors begin to expand from the blood islands much earlier than the 

hematopoietic cells (Figure 1, 1 somite stage) [20, 21].  It is not known if these precursor 

cells retain any “hemangioblast” characteristics once they leave the blood islands, 

though there is evidence that some cells of the endothelium throughout the embryo can 

produce erythroblasts during early cardiovascular development [22].  How the population 

of cells expands has not been established either, whether it is by de novo induction of 

endothelial precursor in the rest of the yolk sac or by cell division and migration from the 
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blood islands. In the chick embryo, it has been shown that angioblasts undergo 

extensive migration [23].  Similarities in mouse embryo development suggest that 

endothelial precursors in mammals have similar migratory capabilities. The endothelial 

precursors coalesce into strands that are referred to as the angioblastic cords (Figure 1, 

3 to 4 somite stage). The formation of these cords can also be induced in vitro by 

culturing endothelial cells on Matrigel, a membrane matrix [24].  These in vitro structures 

resemble capillaries, and given a high enough seeding population, will link to form 

vascular networks that are morphologically similar to the early vessels of the embryo. 

Interestingly,  the formation of these networks can be modeled based on paracrine 

growth factor production and diffusion [25].  The formation of angioblastic cords in 

mouse embryos begins at E8.0 (0 somites) and the entire yolk sac is covered in 

angioblastic cords 6 hours later at 4 somites [21].  Hematopoietic cells, however, are still 

clustered in the blood islands (Figure 1, 4 somites). 

 

In order to produce functional blood vessels, the angioblastic cords must then lumenize.  

The process of lumenization involves the formation of “slit-like spaces” between 

angioblasts [26].   The contents of these slits forms the primordial blood plasma [27].  

The exact timing of lumenization has not been firmly established and the mechanism of 

lumenization is poorly understood.  It is generally believed that the lumen forms by the 

production and coalescence of vacuoles within the endothelial cells [28].  Once lumens 

have formed within the endothelial cells, proper channels for blood flow are present. 

 

At the same time as endothelial and hematopoietic cells are forming in the yolk sac, the 

heart arises in the embryo proper (Figure 1).  As with hematopoietic and endothelial 
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precursors, heart tissue is derived from mesodermal tissue by late gastrulation [29].  

These initial heart cells are recognizable as an epithelial layer that forms a crescent 

between the embryonic and extra-embryonic regions of the embryo (Figure 1, 1 somite) 

[30].  By the 4 somite stage, the two sections of this crescent migrate to the midline and 

fuse to form a linear heart tube (Figure 1, 4 somite) [31].  The heart begins contractile 

activity essentially as it is forming, with the first beating cardiomyocytes being present at 

3 somites [32].   

 

Though there is a beating heart present by 3 somites, the exact onset of erythroblast 

circulation is not known.  Early hematopoietic cells are tightly associated with the 

endothelial cells through junctional proteins [28].  These cells must lose their attachment 

and become free within the vessel [28]. As such, the exact timing of the entry of 

erythroblasts into circulation has not been established. Studies on fixed samples by 

McGrath et al., have indicated that circulation begins between 4 and 6 somites because 

erythroblasts can be found outside the blood islands at this stage (Figure 1, 4 to 6 

somites).  Using Doppler Ultrasound, fluid motion can be detected at the 7 somite stage 

[33], but it may be difficult to detect initial flows with this method.  The entry of 

erythroblasts into circulation changes many of the characteristics of the blood, such as 

the viscosity [34], and therefore, the exact timing of these events is essential. 

 

After the onset of blood flow, the initial capillary plexus undergoes a remodeling process 

culminating in the formation of large vessels such as the vitelline veins and arteries 

(Figure 2).  Remodeling is characterized by changes in vessel morphology including the 

formation of large vessels, and recruitment of peripheral cell types [35]. The process of 
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remodeling is heavily dependent on flow.  Nearly a hundred years ago, Chapman 

showed by surgically removing the heart before the commencement of circulation that 

the peripheral vasculature formed, but failed to remodel without blood flow and pressure 

[36]. Manner et al., surgically removed the heart of young chicken embryos and 

incubated the embryos in high levels of oxygen to remove the effects of hypoxia, and 

found that though there were fewer deformities in the embryo proper, the remodeling of 

the vasculature still did not occur [37]. In the Ncx1 knockout mouse, the heart is formed 

but does not beat. In these embryos, the plexus forms in the yolk sac, but is never 

remodeled into vessels, even though other aspects of development, such as limb and 

organ development, are normal [38] . 

 

There are three main hypotheses as to why blood flow is important to remodeling. The 

first is that unnourished tissue releases hypoxic signals that induce the alteration of the 

blood vessels. The second possibility is that the commencement of the blood flow 

increases delivery of nutrients and signaling molecules that induce growth in endothelial 

cells. Lastly, the forces created by the flow itself could signal angiogenesis in the 

embryos. Forces from blood flow have been shown to cause changes in morphology, 

cytoskeleton organization, ion channel activation and gene expression within endothelial 

cells [39] and turbulent flows have been shown to increase cell turnover rates [40]. This 

research will explore the possibility that mechanical forces are necessary for vessel 

remodeling by measuring forces caused by flowing blood and correlating these forces 

with observed changes in vascular remodeling. 
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Shear Stress in the Cardiovascular System 
 

The vascular endothelium is the interface in the cardiovascular system between the 

blood vessel wall and the flowing blood.  As such, these cells are exposed to both shear 

stress, the tangential force caused by the flowing of the blood, and blood pressure, a 

force perpendicular to the vessel wall.  These forces can act as a signaling mechanism 

upregulating or activating many genes including genes that are important to 

cardiovascular development such as PDGF-β [41],  connexin43 [42] and Flk1 [42].  

Understanding what intracellular changes occur when cells are exposed to shear stress 

is an active area of research. 

  

One of the open questions in the field is how endothelial cells can sense the presence of 

shear stress.  This ability to sense shear stress, called mechanotransduction, may result 

from ion channels expressed on endothelial cells, which can be activated by the stretch 

caused by the flowing blood.  Activation of the channels causes an increase in 

polarization of the cells and an increase in intracellular calcium [43].  This signaling 

mechanism appears consistent with many of the genes that are activated within minutes 

of the onset of flow, however, it does not explain many of the long term changes 

associated with exposure of endothelial cells to shear.  The most likely candidates for 

mechanotransduction of shear stresses are the junctional complexes that link endothelial 

cells to each other or to the extra-cellular matrix.  The cytoskeleton anchors to other cells 

through adherens junctions [44].  Shear stress induces changes in the organization of 

the adherens junctions and causes complex formation which include VE-cadherin and β-

catenin [45].  Connections between the cytoskeleton and the extra-cellular matrix 
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through integrins are also important.  Activation of various integrins has been shown to 

be essential for many shear stress responses (for review, see [46]).  Though the exact 

mechanism of shear response remains elusive, it seems likely that changes in the 

cytoskeleton and its connection to the surrounding environment are crucial to the 

process.   

 

Understanding the role of shear stress in biology is complicated by the fact that different 

types of flow seem to differentially induce gene expression (for review, see [46]).  Thus, 

it is not enough to analyze the level of shear stress present, but one must also look at 

whether the flow is laminar or turbulent, and the role of oscillatory shear stress.  The 

presence of laminar flow, which is a type of fluid flow where the streamlines of the fluid 

motion are parallel, has been found to have atheroprotective effects on blood vessels 

[47].  Laminar shear stress reduces levels of apoptosis [48] and induces many anti-

apoptotic genes, such as Bcl-XL [49].  Though laminar flow prevents apoptosis, it also 

keeps cells from proliferating by inhibiting DNA synthesis [50, 51].  Through microarray 

analysis, it is known that physiological levels of laminar shear stress downregulates 

more genes than it upregulates [52].  Disturbed flow, a term which includes both 

turbulent flow and eddies caused by laminar flow separation, is a much more biologically 

active flow.  It is rarely seen in the mammalian cardiovascular system and is generally 

indicative of disease.  Vessel bifurcations are prone to flow separation and eddy 

formation, and it was observed that atherosclerotic plaques formed preferentially at 

these locations [53].  From in vitro work, it was found that large gradients of shear stress, 

such as those present during oscillatory flow, caused endothelial cell migration and 

proliferation [54].  Turbulence induces apoptosis by the activation genes such as the Fas 



 

Chapter 1 – Introduction   

 

10

receptor [55], and increases cell proliferation rates [40].  Thus, the type of shear stress, 

the gradients of shear stress and the magnitude of shear stress are all important 

considerations when analyzing endothelial cells’ response to shear stress. 

 

The flow patterns present in blood vessels are highly complex and variable.  As such, in 

vitro studies are inherently limited to approximations of flows that cells would normally 

experience.   Analysis of shear stress response in vivo, however, is difficult.  Work using 

cDNA microarrays has been used to quantify changes in gene expression in vivo when 

flow is chronically increased or decreased and these results agree with many of the 

gene changes seen in vitro [56].  To correlate these results to the levels of shear stress 

or the type of flow present in the blood vessel requires a better understanding of the flow 

dynamics present in vivo. 

 

Blood Fluid Dynamics 
 

The mature vasculature is made up of arteries, arterioles, capillaries, venules and veins.  

The arterioles, venules and capillaries make up the microcirculation, which is defined as 

any vessel with a diameter less than 180 µm [57].  In the early embryonic plexus, the 

range of vessel diameter present is between 10 and 100 µm and therefore the flow is 

most similar to flow in mature microcirculation than any other vessels of the adult.  Much 

of the research into blood fluid dynamics, however, has focused on larger structures 

such as the heart and major vessels because measurements are problematic in the 
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smallest vessels.  As such, the knowledge of the blood fluid dynamics that is applicable 

to the embryonic case is limited.   

 

One of the characteristic of flow in microcirculation is the presence of very low Reynold’s 

number flow.  The Reynold’s number is the ratio of the viscous forces to inertial forces in 

a flowing fluid.  As inertial forces become more important, and the Reynold’s number 

increases, flow will become turbulent.  The switch to turbulent flow occurs at a Reynold’s 

number of approximately 2100 for flow in tubes.  The exceedingly low Reynold’s number 

in embryonic blood vessels (<<1) indicates that viscous forces dominate.  In such a flow 

regime, inertial effects can effectively be ignored.  

 

The other parameter of importance in establishing the type of flow present in a blood 

vessel is the Womersley number (α).  The Womersley number describes the relative 

importance of the transient inertial forces due to the pulsatility of the flow as compared to 

the viscous forces [58].  When flow oscillates, the velocity must be equal to zero at the 

wall of the vessel because of high frictional forces.  This causes a viscous boundary 

layer to be present near the vessel wall.  Flow in the centre of the vessel, however, is 

inertial and pulsatile.  The Womersley number describes the relative thickness of the 

viscous boundary layer as compared to the diameter of the vessel.  In embryonic blood 

flow, because the pulse is slow (~1 beat per second) and the vessel diameters are small, 

the Womersley number is very small (<< 1).  As such, a quasi-steady state can be 

assumed where the viscous effects dominate throughout the entire vessel and fully 

developed laminar flow is expected to be present throughout the cardiac cycle [59]. 
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With very small Reynold’s and Womersley number, an analytical solution to the basic 

equations of flow is possible.  The law of conservation of momentum as applied to a fluid 

is called the Navier Stoke’s equation.  It states that: 

 

gpv
Dt

vD ρµρ +∇−∇=
r

r
2 . 

 

Given the relative importance of viscous forces over inertial forces, both transient and 

convective acceleration can be ignored from the equations of flow.  As well, the 

gravitational term can be ignored because of the low Reynold’s number.  This simplifies 

the Navier Stoke’s equation to: 

 

   µ∇
2 r v = ∇p . 

 

This equation is known as Stoke’s equation.  The simplifications make the equation 

linear and no longer dependant on time.  From these equations, we expect blood flow to 

have a laminar velocity profile throughout the cardiac cycle.  Laminar flow in a pipe has a 

parabolic velocity profile described by the equation: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

max 1
R
rVV , 

where Vmax is the velocity at the centre of the vessel. 
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The assumption in these equations is that blood behaves as a Newtonian fluid.  

Newtonian fluids have a constant viscosity at all shear rates.  Blood, however, consists 

of particles, or the red blood cells, suspended in the blood plasma.  In large blood 

vessels, this primarily causes an increase in the viscosity and the fluid can be treated as 

a homogenous Newtonian fluid [60].  In smaller vessels and at low shear rates, the 

presence of red blood cells causes blood to exhibit non-Newtonian behavior [34].  As the 

diameter of the vessels approaches the diameter of a red blood cell, the fluid motion can 

no longer be thought of as a homogenous fluid [61]. The boundary layer, in which no 

blood cells are found, is no longer a small fraction of the total tube diameter.  Vessels as 

small as 22 µm, however, can be considered as homogeneous liquids with an apparent 

viscosity determined by the shear rate and tube hematocrit, or volume fraction of red 

blood cells [62].  Most vessels within the embryo fall within this range and therefore 

blood can be treated as homogenous. 

  

Another important consideration when analyzing the rheology of blood in embryos is that 

early erythroblasts are spherical, rather than bi-concave [18], which affects the visco-

elastic characteristics of blood.  Many of the non-Newtonian properties of blood are due 

to the elasticity and shape of the red blood cells.  For bi-concave cells, the hematocrit, or 

volume percent of the blood taken up by red blood cells, can be as high as 58% without 

deformation of the cells [63].  Spherical blood cells, however, do not allow for such a 

high packing density.  Research has been done comparing other enucleated forms of 

blood, such as avian blood, to human nucleated blood and no significant effect of the 

nucleation was found at hematocrits below 50% [64].  As such, the nucleation of 
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erythroblasts in embryonic development is not expected to have significant effects on the 

visco-elastic properties of the blood. 

 

There are many important morphological differences between vessel of microcirculation 

and of the embryo that affect the flow properties.  Pulsatile flow is not present in mature 

microcirculation because the pulses are attenuated by the time they reach the capillaries 

[65].  Since all vessels in the embryo fall within the category of microcirculation, pulsatile 

flow is often found in these vessels.   

 

In addition to differences in hemodynamic properties, there are many important 

morphological differences between mature microcirculation and embryonic vasculature.  

Mature capillaries are surrounded by support cell types, such as pericytes and smooth 

muscle cells, that affect the vessel’s elasticity and reaction to hemodynamic stimuli.  

These are not present in the embryo until after remodeling has occurred [6, 66]. Also, 

mature vasculature is lined with a layer of glycoproteins called the glycocalyx as well as 

a much thicker layer of absorbed plasma proteins called the endothelial surface layer 

[67]. The endothelial cell layer increases microvascular resistivity [68].  It is not known 

whether the embryonic blood vessels contain a glycocalyx, however, the much thicker 

(500 nm vs. 70 nm [67]) endothelial surface layer is unlikely to be present since many of 

the proteins known to form the layer are not expressed in the early embryo.  Thus, 

embryonic vasculature represents a much simpler situation than mature circulation.  

Whereas the vessels of mature microcirculation could be described as elastic, reactive 

tubes that are lined with a porous solid, the embryonic vasculature resemble more a 

simple rigid tube of endothelial cells. 
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Based on the above considerations, it is possible to calculate many of the hemodynamic 

parameters of the flow through embryonic vasculature.  This calculation requires 

knowledge of the velocity profile in the blood vessels and the hematocrit, or packing 

density of the red blood cells.  Only by measuring these quantities within the embryo will 

it be possible to understand the role of hemodynamics in vascular remodeling. 

 

Design Principles of Vascular Beds 
 

Not only can individual cells react to fluid dynamics and shear stress, it is also known 

that networks of vessels adapt to chronic changes in flow.  It is important to note that the 

flow rate in any given vessel is not only dependent on the flow resistance of the given 

vessel, but also on the flow resistance of all vessels upstream or downstream from it.  If 

flow is reduced in a vessel, there is a chronic decrease in the vessel diameter [69-71].  

Though the flow and diameter change in these experiments, measured wall shear rate 

remains constant [71] indicating the ability of the network to normalize shear stress upon 

chronic changes in flow.  As such, the reaction of endothelial cells to shear stress is 

most relevant when considering it as part of a whole network.   

 

A common method for predicting the final configuration of vascular networks is to 

minimize a cost function.  When the cost function is configured to minimize the total 

energy required to drive and maintain blood, the results describe the relation between  
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the diameters of parent and daughter branches in the vasculature, such that: 

 

3
2

3
1

3 DDDo += . 

 

This is known as Murray’s law [72]. A consequence of Murray’s law is that a constant 

shear stress should be present within the vascular system [73].  In the chick embryo, it 

was found that Murray’s law does hold within the early vasculature, even before the 

appearance of smooth muscle cells that actively regulate diameter with respect to shear 

stress [74].  Regression of the diameter data did, however, predict an actual exponent 

closer to 2.8.  This value for the exponent can be obtained if wall tissue mass is chosen 

as the cost function to be minimized.  In fact, it has been suggested that the production 

of vessel wall tissue is a limiting factor during embryonic development [75].  The fact that 

embryonic vasculature can be modeled by cost functions, however, indicates that even 

at very early stages the vasculature can respond to hemodynamic load on the vessels. 

 

Though Murray’s law predicts constant shear stress within the vasculature, 

measurements on mature cardiovascular system have shown that shear stress in 

arteries and capillaries is fairly constant, however shear stress levels are much lower in 

veins [76].  One of the largest differences between the arterial and venous system is the 

level of pressure in the system.  It is well established that vascular networks react to 

both shear stress and pressure. Chronic elevation in shear stress leads to increased 

vessel diameter, whereas chronic increases in pressure lead to decreased vessel 

diameter [77, 78].  This work has led to a pressure-shear hypothesis whereby shear 

stress levels are a function of local pressure [76].   
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There are several important considerations when applying design principles developed 

for microcirculation to embryonic vessels.  In mature vasculature, functional 

requirements, such as nutrient and oxygen delivery, must have priority over the energy 

costs of the flowing blood.  Many of the metabolic needs of the embryo, however, are 

met by diffusion from the maternal circulation. In addition, mature vascular networks 

have the ability to transmit information from one vessel segment to another through gap 

junctions, which are intercellular channels [79].  The importance of this communication in 

embryos, however, is not clear since mice that lack vascular gap junctions survive until 

about birth (Simon & McWhorter, 2002).  Establishing the vascular design principles that 

control embryonic remodeling is therefore essential to the understanding of 

cardiovascular development. 

 

Hemodynamics in Embryos 
 

The role of fluid dynamics and shear stress in embryonic development is even less clear 

than in mature circulation.  Recent work has shown however that proper fluid dynamics 

are essential, even at the earliest stages of development.  Hove et al. analyzed the fluid 

dynamics present during zebrafish heart development and perturbed the fluid dynamics 

by inserting beads within the flow in the heart [80].  This perturbation resulted in the 

heart failing to undergo looping, a process involved in heart chamber formation, and 

failing to form the third chamber of the fish heart called the bulbus.  Blood flow patterns 

in the heart and dorsal aorta of the developing mouse embryo have also been 

investigated using ultrasound-biomicroscopy [33, 59, 81, 82].  This work has been 
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extended to mutant phenotypes, analyzing flow velocities in the NFATc1-/- mutant in 

which the aortic and pulmonary valves fail to form resulting in abnormal circulatory 

patterns and embryonic lethality [83].  Taken together, the work from these labs shows 

that proper hemodynamic conditions are essential for normal development, and that a 

failure to establish proper flow leads to embryonic mortality. 

 

Work on the blood vessels, rather than the heart, is even more limited.  Over one 

hundred years ago, Thoma (1893) observed that within embryos, vessels that carry the 

most blood flow enlarge, while vessels that carry little flow regress [84].  Twenty years 

later, Chapman (1918) theorized from his experiments where the heart of chick embryos 

was surgically removed, that the initial vasculature was laid down by purely hereditary 

principles and the subsequent development occurred purely by mechanical forces [36].  

Measurements of hemodynamic parameters in chick embryos have also been reported 

in the literature [75, 85], however these are generally limited to older embryos because 

of the difficulty in measuring flow and pressure in young embryos.  If the role of blood 

fluid dynamics in development is to be understood, it will require the development of new 

techniques specific to the problem.  In this work, I present two such techniques, one 

which gives researchers access to developing mammalian embryos through embryonic 

culture, and a second which allows the velocity of flowing embryonic erythroblasts to be 

measured. 
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Concluding Remarks 
 

The main aim of this research is to expand the knowledge of how blood flow relates to 

embryonic development.  The role of hemodynamics has been recognized in several 

cardiovascular diseases, such as atherosclerosis, and in normal function, such as 

microvascular remodeling.  What is less clear is whether these same forces play roles in 

other areas of the cardiovascular system. Many diseases, such as pancreatic cancer 

[86], are caused by the improper reactivation of developmental gene cascades.  Though 

such a large quantity of research shows that blood flow is biologically active, it is 

generally believed that signals from hypoxic, or oxygen starved, tissues are the cause of 

remodeling and that the forces caused by blood flow have no role in the early embryo.  

As such, this work endeavors to show that: 

1. Blood flow initiates remodeling of the vascular plexus. 

2. Increases in shear stresses caused by the onset of erythroblast circulation are 

necessary for remodeling to occur. 

3. Altered hemodynamic conditions alone can cause defects in vascular remodeling 

within the embryo. 

 

By imaging fluid dynamics and assessing the forces on the endothelial cells during the 

period of development where the heart begins to beat, the relation between the flow 

forces and the restructuring that occurs can be investigated. This has been done using a 

static embryo culture technique (Chapter 2, [87]) that allows embryos to be observed 

over a period of 24 hours. In order to measure flow profiles, a technique developed for 

measuring blood flow in adult microcirculation has been adapted to embryonic blood 
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flow.  In this method, a confocal laser scanning microscope is used to scan a single line 

perpendicular to the flow in a vessel to measure flow velocity (Chapter 3, [88]).  This 

work allows us to characterize vascular and hematopoietic development, as well as to 

characterize the flow dynamics present in these early vessels (Chapter 4, Jones et al., 

submitted).  The work also compares these forces during normal development to fluid 

forces present during abnormal development in order to understand how mutants differ 

from the normal developmental course (Chapter 5, Jones et al., in preparation). 

 

The development of the mature vasculature is a complex, multi-step process. By 

focusing on one aspect, the earliest flow, some of the most important physical forces on 

the vasculature are explored. There is a great need for this research. With 

cardiovascular disease so common a congenital defect, it is essential to understand the 

causes of normal and abnormal development. This research goes beyond past 

experiments where the normal flow patterns are explored and instead links these flows 

to changes in the vasculature during development. 
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Figure 1 – Timeline of Cardiovascular Development.  Changes in the embryo, as well as 

endothelial cells (blue), hematopoietic cells (red) and the heart are shown with respect to 

somite stage.  Both endothelial and hematopoietic cells begin as a tight cluster in the 

proximal section of the yolk sac.  Endothelial cells, however, begin to expand to cover 

the yolk sac earlier than hematopoietic cells.  The heart begins as a crescent shaped 

tissue.  Cardiac precursors then migrate to the midline to form a linear heart tube.  The 

linear heart tube then undergoes a looping process as the first step in formation of a 

chambered heart. 

 

Figure 2 – Vascular Remodeling.  Blood vessels are highlighted using antibodies to 

PECAM, an endothelial marker.  The network of the vasculature is initially patterned in 

honey-comb configuration (A).  As the vessels mature, they organize such that larger 

vessels branch to feed smaller vessels (B) in a process known as vascular remodeling. 
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Summary 

Due to the internal nature of mammalian development, much of the research performed 

is of a static nature and depends on interpolation between stages of development.  This 

approach cannot explore the dynamic interactions that are essential for normal 

development.  While roller culture overcomes the problem of inaccessibility of the 

embryo, the constant motion of the medium and embryos makes it impossible to observe 

and record development.   We have developed a static mammalian culture system for 

imaging development of the mouse embryo.  Using this technique, it is possible to 

sustain normal development for periods of 18-24 hours.  The success of the culture has 

been evaluated based on the rate of embryo turning, heart rate, somite addition, and 

several gross morphological features.  When this technique is combined with fluorescent 

markers, it is possible to follow the development of specific tissues or the movement of 

cells.  To highlight some of the strengths of this approach, we present time-lapse movies 

of embryonic turning, somite addition, closure of the neural tube and fluorescent imaging 

of blood circulation in the yolk sac and embryo. 
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Introduction 

Through sophisticated genetic manipulation and examination of naturally occurring 

mutations, hundreds of genes have been identified that play key roles in early mouse 

development.  As more is learned about genetic hierarchies that control morphogenesis, 

additional questions arise concerning how cells behave in response to both molecular 

and environmental cues.  Mutations can cause a multitude of results, from absence of 

certain structures to malformations of embryonic tissues.  Defects can result from 

changes in cell fate, apoptosis of progenitor cells, lack of differentiation of progenitors or 

from incorrect cell migration.  Thus, it is important to understand how cells interact in 

normal development and how mutations change these interactions, resulting in abnormal 

development.  

Because mouse embryos develop in utero, most of what is known about dynamic events 

such as gastrulation and neural tube closure has been deduced from static images of 

embryos at successive stages of development.  Dynamic cellular interactions have been 

studied in other, more accessible systems, such as Xenopus, zebrafish or avian 

embryos.  In these systems, labeled cells can be visualized over time using time-lapse 

light microscopy to determine migration trajectories and behaviors, to observe cell-cell 

contacts, as well as to determine cell fate relationships. Such approaches have been 

limited in the early mouse embryo because culture conditions suitable for time-lapse 

microscopy have not been established.  While embryos up to late 7.5 days post coitum 

(dpc) can be grown in static cultures suitable for imaging, older embryos, from 8.5-dpc 

onwards, have traditionally been cultured in roller flasks [1].  It has generally been 



 

Chapter 2 - Imaging of Mammalian Embryos Using Embryo Culture  

   

40

thought that the gas exchange provided by roller culture was essential for normal 

embryonic development.  

Here we present a robust, static culture method for embryos isolated from 8.5-dpc to 

9.5-dpc.  We show that by controlling pH, gas exchange and evaporation, embryos at 

these stages can be grown in a culture dish placed directly on the microscope stage, 

enabling time-lapse analysis of their development.  Normal development is sustained for 

at least 18-24 hours. Several critical parameters of the growth media and culture 

environment were tested and are described here.  Time-lapse movies of embryos in 

culture are provided, illustrating the success of the technique.  

 

Results 

The goal of these experiments is to provide a method for observation of the development 

of the post-implantation mouse embryos.  For meaningful results, in vitro development 

must recapitulate in utero development.  Because roller culture is an accepted means of 

culturing mouse embryos, the initial goal of this research was to develop growth 

conditions comparable to roller culture.  Success was judged by several factors.  For 

8.5-dpc embryos, the ability of the embryos to turn was recorded and compared with in 

vivo and roller culture results.  The embryos were also examined for normal head fold 

closure, heart looping, vascular development and heart rates, as compared to in vivo 

growth.  Embryos were staged using a system that consisted of 22 stages defined by 

images of freshly dissected 8.5-dpc embryos (described in Table 1, images not shown).  

A more traditional staging system, such as the one proposed by Brown & Fabro [2] was 
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not used since the system requires the removal of the yolk sac to evaluate many 

features.  Since 8.5-dpc embryos were cultured with the yolk sac intact, it would not 

have been possible to evaluate the initial age.  For 9.5-dpc embryos, rate of somite 

addition and heart rate were used as the main criteria for normal development.  Since 

somite addition relates linearly to embryonic growth, we used this criterion to assess 

extent of embryonic growth [2].  Heart rates were measured throughout the culture 

period. 

Culture Chambers and Temperature Control of Embryos on the 
Microscope Stage 

Embryos were cultured in Labtek chambers consisting of two plastic culture wells 

attached to a coverslip via a silicon gasket.  Embryos were imaged from below, through 

the coverslip, with an inverted microscope. Embryos were cultured three per chamber.  

In order to keep the medium static, yet enable aeration and pH regulation, the inside of 

the culture chamber was supplied continuously with heated humidified gas.  The whole 

system, including the microscope optics, was kept at constant temperature using a 

chicken egg incubator heater enclosed within a mylar-insulated box (Figure 1; described 

in detail in the Materials and Methods section). 

Culture Media and Additives 

The first culture condition that was optimized was the composition of the medium.  The 

literature on roller culture highlighted the need for high quality rat serum, as well as a 

wide range of possible media additives [3].  These included vitamins [4], glucose [1] [4], 

transferrin [5], inositol [1], albumin [5] and HEPES buffer.  Complete DMEM/F12 medium 
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was chosen as a starting point for the medium formulation because it already contained 

vitamins, glucose and inositol. 

As with other published culture methods, a high concentration of rat serum in the 

medium was found to be essential [3].  Commercial sources of rat serum were tested 

and results compared to those obtained from serum freshly prepared in our own lab (see 

Table 2). Commercial sources of rat serum were adequate for normal culture of 9.5-dpc 

embryos, resulting in the development of embryos with normal heart rates and somite 

addition rates (Table 2).  After optimization with the 9.5-dpc embryos, the best of these 

commercial sera, from Seracare, was then tested for culture of 8.5-dpc embryos.  These 

embryos never completed the turning process in the commercial sera.  Therefore, our 

homemade serum was used for all subsequent studies.    

We tested HEPES buffer solution as a means to regulate pH fluctuations in the medium. 

Two different concentrations (5 and 10 mM) were tested. For both concentrations, 

similar final pH values were measured at the end of the culture period (average pH for 

5mM HEPES was 7.5 (±0.3, n=34); 7.6 (±0.2, n=20) for 10 mM HEPES).  The desired 

pH should be between 7.0 and 7.2.  As such, a greater level of control over the pH is 

necessary and will be discussed later.  A concentration of 10 mM HEPES was used for 

all subsequent cultures.   

Transferrin is an iron storage protein produced both by maternal tissues and by the yolk 

sac [6].  Based on previously reported uses of transferrin in whole embryo culture [7], a 

concentration of 10 µg/mL was tested. Embryos cultured in the presence of 10 µg/mL of 

transferrin had significantly lower heart rates (average of 40 beats per minute or bpm, 
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n=12 for 8.5-dpc, n=6 for 9.5-dpc) by the end of the culture period.  Therefore, transferrin 

was omitted from subsequent cultures. 

Albumin is an essential blood component and is also known to deteriorate quickly in 

preparations of rat serum [5].  We therefore tested whether the addition of albumin could 

improve the culture. Albumin collected from chicken egg whites was added at a range of 

concentrations, from 50 µL to 250 µL per mL of media.  The embryos cultured under 

these conditions had no heartbeats after 24 hrs of culture (n=12), even though 

temperature and pH were kept constant for the entire culture period. 

Based on these experiments the preferred medium composition consists of 50% rat 

serum, 50% DMEM/F12, supplemented with HEPES and Pen-Strep (see Materials and 

Methods). 

Aeration of Culture Chamber 

Because roller culture offers better gas exchange than static culture, the effects of 

aeration and diffusion were investigated.  Even with proper medium formulation, static 

cultures were still not as successful as cultures in roller flasks.  pH levels were too high 

by the end of culture (average of 7.6 compared with a desired 7.2, as previously 

reported) and the percentage of 8.5-dpc embryos that turned was also low (11%, n=38).  

It has previously been reported that the yolk sac becomes a barrier to nutrient transport 

after the embryo has turned [8].  We tested whether the yolk sac was hindering nutrient 

transport by culturing 9.5-dpc embryos with and without yolk sacs (n= 12, n=70 

respectively), and found that the presence of the yolk sac impedes development.  9.5-

dpc embryos cultured with yolk sacs did not survive 24 hours in culture (as defined by 
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the absence of a heartbeat).  Therefore, the yolk sac was removed for 9.5-dpc embryos, 

while younger embryos were cultured with intact yolk sacs. 

The effects of gas flow rate were also investigated since gas transfer rates are lower in 

static culture.  Rapid evaporation from the medium was observed at high flow rates.  

However, even at low flow rates, some evaporation occurred and was found to be 

detrimental to the embryonic development, suggesting that embryos are sensitive to 

even small changes in the concentration of medium components or secreted waste 

products.  Evaporation causes yolk sacs of 8.5-dpc embryos to become wrinkled and 

caused the circulation in the yolk sac to stop.  Under these conditions, the embryos did 

not complete the turning process. Evaporation is apparently not a problem in roller 

culture where the embryo chambers are maintained at higher backpressures.  The 

backpressure creates a resistance to the flow, resulting in lower inlet gas flow rates.  

Static culture maintains the chamber pressure at atmospheric levels and so gas flow 

rates are much higher. 

Several steps were taken to minimize evaporation of the medium.  The gas mixture was 

bubbled through a heated humidifier before it entered the culture chamber.  The 

chamber was sealed with Teflon tape, allowing gas to exit, but trapping moisture.  The 

gas flow rate was also set as low as the regulator would allow.  These conditions worked 

well for 9.5-dpc embryos.  For the earlier embryos, it was necessary to take additional 

steps to minimize evaporation. This was achieved by placing a thin layer of mineral oil 

over the medium. This layer helped maintain pH at normal levels (7.0 to 7.2).  Under 

these conditions, the percentage of embryos that turned rose from 10.5% (n=38) to 

41.4% (n=82) (Table 3).  The yolk sacs of the embryos cultured with mineral oil were 
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smooth and circulation in the yolk sac was constant.  Heart rates of the embryos cultured 

in mineral oil were also more in line with previously published rates for freshly dissected 

embryos [9].   

Development of 8.5-dpc Embryos in Culture 

During normal embryogenesis, in the 24 hours between 8.5-dpc and 9.5-dpc, many 

important developmental changes occur.  Most notably, the heart begins to beat and the 

embryos turns, becoming physically separated from the yolk sac.  These milestones 

were recorded to assess normal growth.  Embryos grown for 24 hours in culture (Figure 

2, a-b) were compared to freshly dissected 9.5-dpc embryos (Figure 2, c).  The cultured 

embryos were found to match freshly dissected embryos both in size and appearance.  

In all cultured embryos (n=82), blood flow could readily be observed in the vascular 

channels of the yolk sac and embryo as well as in the heart.   During culture, the heart 

rate increased from 92.2 ± 21.7 to 107.2 ± 27.1 bpm, as stated in Table 3.  These rates 

do not vary significantly from rates published for freshly dissected embryos [9].  Even 

after 24 hours in culture, the embryos still had very strong heartbeats and good flow 

through their blood vessels.  This can also be observed in several of the time-lapse 

movies presented in the subsequent section. 

To assess the extent of embryonic turning, we compared our static culture technique 

with roller culture.  Our culture conditions resulted in 41.4% of embryos turning (n=82), 

as compared to 58.3% of embryos turning in roller culture (n=19). Only embryos older 

than stage 9 (first heart fibrillations visible) were included in these statistics.  It is thought 

that all embryos above stage 9 have the ability to turn in culture, although error could be 
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introduced since it is difficult to pre-determine an embryo’s potential to turn.  The 

average initial stage of the embryos was 13.1 ± 2.6 for static culture and 12.9 ± 3.0 for 

roller culture.  Turning has, in the past, been the largest impediment to static culture for 

embryos this age.  The high rate at which embryos turned in static culture highlight the 

success of this technique. 

Development of 9.5-dpc Embryos in Culture 

Development of 9.5-dpc embryos is characterized by the onset of organogenesis, 

significant changes in embryonic size and the maturation of many of the head features.  

The size and morphological traits of cultured 9.5-dpc embryos (Figure 2, e) and freshly 

dissected 10.5-dpc embryos (Figure 2, f) are grossly indistinguishable.  

During normal embryonic development, somites are added at a rate of approximately 

one pair every hour and a half [10].  The somite addition rate can be taken as a 

“biological clock” and was monitored as a sign of embryonic health during culture.  As 

seen in Figure 4, somite addition rates measured in culture were quite consistent with 

the somite addition rates reported for embryonic development in vivo [3].  After 24 hours, 

the tissue becomes quite opaque, possibly because of the initiation of tissue necrosis 

late in culture.  As such, 9.5-dpc embryos should not be cultured past 18 hours. 

Because heart rates appear to be very sensitive to small changes in the local 

environment, the heart rate was again used as an indicator of embryonic health.  Heart 

rates are shown in Figure 3 for 9.5-dpc embryos cultures and are compared to 

previously published data [9].  The published rate for 9.5-dpc was measured in whole 

embryos, however the rate for 10-dpc embryos was measured in isolated hearts [9].  
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Embryo heart rates in static culture appeared to remain constant over the 24-hour 

incubation period. The difference between our rates and published rates after 24 hours, 

though not statistically significant, could be due to the comparison of whole embryo heart 

rates and those from isolated hearts.  After 24 hours in culture, the standard deviation of 

the heart rates of the cultured embryos became quite large.  Therefore, the culture 

period was never extended beyond 24 hours.  

Time-Lapse Movies 

Because this static embryo culture system was developed with the aim of using 

fluorescent or bright field imaging to observe mammalian development, several movies 

were made to demonstrate the success of the technique.  These are provided here in 

panel form and as time-lapse movies in the supplemental material that is presented on 

the Internet. 

In the first movie (Figure 5, also see the supplementary video 1), we show neural tube 

closure in the hindbrain region.  The neural folds approximate in a caudal to rostral 

manner, as occurs in vivo.  Interestingly, small, dynamic groups of cells are evident at 

the midline during closure, indicating that some cells may delaminate during this 

process.    

Another major event in the development of 8.5-dpc embryos is axial rotation or turning 

(Figure 6, shown in the supplementary video 2).  The embryo is clearly seen rotating its 

upper body away from the yolk sac.  The body detaches from the yolk sac in a rostral-

caudal direction, leaving only the caudal end attached.  Clearly highlighted is the 
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posterior closure of the ventral side.  The head and heart disappear and then reappear 

below the caudal end of the embryo.   

The addition of somites was followed (Figure 7, see also supplementary video 3) in 9.5-

dpc embryos.  Embryos typically start off with 12 somites and progressively add somites 

through the culture period.  The somites are labeled as they are added using asterisks 

(Figure 7). The rate of somite addition matches that reported for freshly dissected 

embryos [10].  

The last movie highlights the main strength of this technique, which is the ability to follow 

fluorescently labeled cell movements in tissues.  The embryo shown carries a green 

fluorescent protein (GFP) reporter that is expressed specifically in primitive erythroblasts 

[11].  This allows the direct observation of blood flow in the yolk sac and the embryo and 

reveals normal circulation (Figure 7, as well as supplementary video 4).  Careful 

inspection also provides insight into early changes in vascular morphology.  By including 

a marker such as a GFP, it is now possible to observe dynamic interactions in 

mammalian embryos that lead to the formation of differentiated tissues. 

 

Discussion 

It has generally been assumed that the most significant limitation of static culture of post-

implantation embryos is diffusion.  We present results that clearly show that this problem 

is not as restrictive as was previously thought.  This is especially highlighted by the high 

rate at which 8.5-dpc embryos were able to complete the turning process under static 
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conditions and the constant rate of somite addition in the 9.5-dpc embryos.  Though the 

ability to culture embryos of this stage under static conditions in incubators was reported 

previously [12], the technique had never been expanded to direct microscopic 

observation. With this goal in mind, we have optimized environmental conditions for 

normal embryonic development on the microscope stage. 

It is not solely the diffusion limitation of static culture that prevents proper development 

on microscopic stages, but the greater difficulties in controlling environmental conditions.  

In roller culture, high pressure reduces gas flow rates to very low levels, minimizing 

evaporation.  Similarly, in tissue incubator cultures, the extremely humid environment 

minimizes evaporation and concentration of the medium.  Since it is not feasible to reach 

a humidity level similar to tissue incubators during culture on the microscope stage, it 

was necessary to take further steps to prevent evaporation, through the addition of a 

very thin layer of mineral oil. 

The ability to culture mouse embryos within a chamber accessible to microscopy 

overcomes the limitations of visualizing the cellular dynamics of mouse development.  

While the technique is limited in providing an 18-24 hour window on development, it 

improves upon roller culture in that embryos can be continuously observed over this 

period.  With the growing number of transgenic mouse lines expressing fluorescent 

marker proteins, it should be possible to observe the localization of any gene product 

and to track the movement and development of cells expressing that gene.   

We are working to extend this technique in two ways.  First, preliminary results using 

7.5-dpc embryos (n=9, data not shown) show promise that younger embryos too can 

develop normally in static culture.  Second, work is also underway using the technique to 
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observe cellular development in mutant strains.  Through time-lapse imaging, we should 

be able to bridge the gap between gene function and the subsequent changes in 

morphology.  

 

Materials and Methods 

Dissection 

Male breeder mice were mated with CD-1 females overnight.  The presence of a vaginal 

plug was taken as 0.5-dpc.  Embryos were collected on the morning of the eight or ninth 

day as noted in a plexiglass hood heated to 37°C with a chicken incubator heater (Lyon 

Electric Company # 115-20). Dissecting outside of the heated hood causes decreased 

viability.  Dissecting medium was prepared by mixing 45 ml of D-MEM/F-12 (Gibco # 

11330032) with 4.5 ml of heat-inactivated fetal bovine serum (Gibco # 16140063) and 

0.5 ml of pen-strep solution (Irvine Scientific # 9366).  The dissecting medium was 

warmed to 37°C prior to dissection.  Females were euthanized with CO2 followed by 

cervical dislocation.  The uterine horns were dissected out and placed in warmed 

dissecting medium and the embryos isolated.  Yolk sacs were left intact on 8.5-dpc 

embryos but were removed for 9.5-dpc embryos.  For the imaging of neural tube closure, 

the yolk sac of 8.5-dpc embryo was removed. 

Rat Serum 

Though several sources of commercial rat serum were investigated, it was found that the 

best cultures came from serum that we made ourselves.  Both the blood collection site 
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and the anesthetic in the commercial sources were presumed to be the cause of the 

lower quality serum.  In particular, the use of ether as the anesthetic is likely to be 

essential because it can be completely eliminated by aeration [13].   

Rat serum was prepared from blood collected from the dorsal aorta of male rats [3] using 

the following modifications.  Blood was collected into vacutainer tubes (Becton-Dickinson 

# 366512) using a butterfly needle (Becton-Dickinson # 367283).  After collection, the 

blood was centrifuged at 2500 rpm for 20 minutes. The plasma was isolated and 

supernatant from multiple rats were pooled.  The serum was then centrifuged again at 

2500 rpm for 10 minutes to remove remaining cells.  The supernatant was heat-

inactivated at 56°C for 30 minutes with the lid removed to allow the ether to evaporate.  

The serum was then filtered using a 0.45 µm filter and aliquoted into 1 mL samples.  

These samples were stored in a –80°C freezer.  

Incubation and Culturing of Embryos 

The culturing medium consisted of 1 mL D-MEM/F12, 1 mL heat-inactivated rat serum, 

20 µL Pen-Strep and 20 µL HEPES buffer solution 1M (Irvine Scientific, Cat No. 9319).  

The medium was sterile filtered with a 0.2 µm filter and allowed to equilibrate, with the lid 

off, in a CO2 incubator for 1 hour.  The dissected embryos were then transferred to 

culture chambers (Nunc Lab-tek, 2 chambers/ coverglass, Cat No. 155380) with a 

minimal amount of the dissecting media using a transfer pipette.  Three embryos were 

placed per chamber and 2 mL of the culturing media was added.  For the 8.5-dpc 

embryos, the medium was then covered with a very thin layer of mineral oil (Sigma # 

M8410).   
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After transfer to the chamber slides, the embryos were pre-incubated for one hour at 

37°C, 5% CO2 in a tissue incubator and then still-photographed at 2.5x magnification.  

Initial heart rate and somite counts were made and the pH of the media was measured 

by removing a drop of medium.  The pre-equilibration in a CO2 incubator reliably 

adjusted the initial pH to 7.2. 

In order to properly aerate the chambers, a hole was made in the side of the Lab-Tek 

chamber lid using a soldering iron.  Inlet gas (5% CO2, balance air) was passed through 

a bubbler to humidify the air.  The bubbler was custom built by the Caltech Glass Shop, 

however, most commercially available gas-washing bottles can be used for this purpose.  

The flow rate was set as low as the regulator could operate.  The chamber was sealed 

using Teflon tape.  

The bubbler, culture chamber and a dissecting microscope were all placed within a 

heater box that was constructed around the microscope from cardboard (4mm thick) 

covered with thermal insulation (Reflectix Co.; 5/16” thick, foil-foil insulation).  The 

temperature was set to 37 °C using an egg-incubator heater (Lyon Electric Company # 

115-20) and allowed to warm for several hours before culture to prevent thermal drift of 

the microscope components.  This arrangement is shown in Figure 1. 

Static images of the embryos were taken at 6 hours, 12 hours and 24 hours.  The heart 

rate and somite numbers were counted visually at these intervals.  The intermediate 

measurements were found to harm the 8.5-dpc embryos and were eliminated in later 

studies. For the 8.5-dpc embryos, initial and final heart rates were measured and the 

extent of development was assessed by head fold closure, maturation of the vasculature 
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and ability to turn. After 24 hours, the embryos were fixed in 4% paraformaldehyde 

overnight at 4°C and then transferred to PBS (Ca2+
 and Mg+ free) and stored at 4 °C. 

Time-Lapse Imaging 

In order to image the 8.5-dpc embryos, it was necessary to immobilize the embryos.  

This was done by tying a hair around the deciduas and resting the ends of the hair on 

the bottom of the chamber.  Older embryos were more stable in the culture dish and 

therefore were not immobilized. 

The embryos were imaged with either bright-field or confocal microscopy. Single images 

were taken every five minutes.  The bright-field images were taken on an inverted 

microscope (Zeiss Axiovert) using a SIT camera (Hamamatsu) and acquired using 

VIDIM (VIDeo IMaging) software written by Scott Fraser, Jes Stollberg and Gary Belford 

for Imaging Technology Incorporated Series 151 image processors.  The confocal 

images were taken on two distinct inverted confocal microscopes (BioRad MRC600; 

Zeiss LSM PASCAL).  All images were taken at 5X magnification, except for the somite 

addition time-lapse, which is at 2.5X magnification. 
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 Tables 

Table 1 – Summary of staging system used for 8.5 dpc embryos 

Characteristic of Embryonic Development Stage 

Formation of neural plate 1 
Appearance of first somite 4 
Formation of linear heart tube 5 
First heart beats 10 
Commencement of head fold closure 11 
Heart begins looping 12 
Fusion of head folds 15 
Beginning of axial rotation 17 
Axial rotation 50% complete 19 
Completion of axial rotation 22 
 

Table 2 - Comparison of Rat Serum Collection Techniques 

Supplier Anesthetic Source Sex No. of Somites 
After Culture of 

9.5-dpc 

Percent 
Turning at 

8.5-dpc 
Gibco (Carlsbad, CA) CO2 Jugular 

Bleed 
Mixed 
sex 

20.0 ± 2.4 N/A 

Seracare, Inc. 
(Oceanside, CA) 

CO2 Cardiac 
collection 

Male 
only 

22.2 ± 4.0 0% 

Biochemed 
Pharmacologicals, Inc. 
(Winchester, VA) 

CO2 Jugular 
Bleed  

Mixed 
sex 

23.2 ± 2.0 N/A 

Home-made serum Ether Dorsal 
Aorta 

Male 
only 

21.3 ± 3.7 10.5% 
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Table 3 - Results from Culture With and Without Mineral Oil Addition 

 Percent 
Turning 

Initial Heart Rate 
(bpm) 

Final Heart Rate 
(bpm) 

n= 

Static Culture without 
Mineral Oil 

10.5 91.2 ± 26.5 60.3 ± 37.0 38 

Static Culture with 
Mineral Oil 

41.4 92.2 ± 21.7 107.23 ± 27.09 82 

Freshly Dissected 
Embryos (Porter et 
Rivkees, 2001) 

100 80 ± 2 91 ± 3 N/A 
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Figure 1. Experimental System.  Modified Labtek chambers were placed on the 

microscope stage.  The chambers were sealed with Teflon to prevent the evaporation of 

media.  The gas mixture (5% CO2, balance air) was humidified before flowing over the 

media.  The entire setup was contained within an insulated box and heated to 37°C.  

The actual arrangement of the heater box (with top and side panels missing) is shown in 

frame A, as well as a schematic of the system in panel B. 

Figure 2.  Embryo Culture Comparison with Embryo Development In Vivo.  8.5-dpc (a) 

and 9.5-dpc (d) embryos before culture and after 24 hours in static culture (b & e), which 

are compared with embryos that have developed for an equivalent period in vivo from 

8.5-dpc (c) and 9.5-dpc (f).  Magnification is 4X for a-c, and 2.5X for frames d-f.   

Figure 3. Heart Rates During Culture. Heart rates were followed as indicators of 

embryonic health and compared with data from Porter & Rivkees, 2001.  The left-hand 

columns, which represent the 8.5-dpc embryos before and after culture (light gray), are 

compared with freshly dissected embryos (dark gray).  On the right-hand side, columns 

represent the heart rate before and after culture for 9.5-dpc embryos (light gray) that are 

compared with freshly dissected embryos from the same age (dark gray). 

Figure 4. Comparison of Somite Addition During Culture and In Vivo.  The number of 

somites of 9.5-dpc embryos in culture were counted (solid line) at t=0, 6 and 12 hours 

and compared with the in vivo rates (dashed line).  A final somite count at 24 hours was 

not performed because the embryos had become quite opaque and it was difficult to 

count somites accurately. 
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Figure 5.  Time-Lapse of Neural Tube Closure in the Hindbrain Region.  Panels illustrate 

hindbrain fusion in an 8.5-dpc embryo.  The yolk sac was removed for this movie. The 

time-lapse covers a 14-hour period of time.  The associated movie was imaged at a rate 

of one frame every 5 minutes and the panels present every 45th frame. 

Figure 6. Time-Lapse of Embryonic Turning.  The time-lapse covers an 11-hour period 

of time.  In this time, the embryo goes from a being u-shaped to rotating into “fetal 

position.”  In the process, the embryo detaches from the yolk sac.  The head (Hd), heart 

(Hrt) and somites (S) are labeled on the diagram.  The imaging rate was one frame 

every 5 minutes, and the panels present every 40th frame. 

Figure 7. Time-Lapse of Somite Addition.  Frames illustrate somite addition in a 9.5-dpc 

embryo. The time-lapse covers a 13.5-hour period of time.  The asterisk (*) marks new 

somites that have been added since the last panel.  The addition of the somites is better 

seen in the accompanying time-lapse movie.  The images in the movie were taken every 

five minutes, and the panels represent every 50th frame. 

Figure 8. Blood Circulation in an 8.5-dpc Cultured Embryo. Panels illustrate the 

circulating red blood cells (in green) in an 8.5-dpc embryo that expresses GFP driven by 

the ε-globin promoter.  [11] The time-lapse covers a 12.5-hour period of time during 

which the embryo is undergoing turning.  The location of the anterior (A) and posterior 

(P) extremities of the embryo has been noted, as well as the dorsal aorta (DA) and the 

heart (H) when visible.  The images were taken every 5 minutes, and the panels 

represent every 50th frame from the movie. 
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Summary 

The pathogenesis of many congenital cardiovascular diseases involves abnormal flow 

within the embryonic vasculature, resulting either from heart malformations or from 

defects in the vasculature itself.  Extensive genetic and genomic analysis in the mouse 

has led to the identification of an array of mutations that result in cardiovascular defects 

during embryogenesis.  Many of these mutations cause secondary effects within the 

vasculature which are thought to arise because of altered fluid dynamics.  Presumably, 

cardiac defects disturb or reduce flow, leading to the disruption of the mechanical signals 

necessary for proper vascular development.  Unfortunately, a precise understanding of 

how disruptions in flow lead to secondary defects in the vasculature has been hampered 

by the inadequacy of existing analytical tools.  Here we use a fast line-scanning 

technique for the quantitative analysis of hemodynamics during early organogenesis in 

the mouse embryo and present a model system for studying cellular responses during 

the formation and remodeling of the mammalian cardiovascular system. Flow velocity 

profiles can be measured as soon as the heart begins to beat, even in newly formed 

vessels. These studies establish a link between the pattern of blood flow within the 

vasculature and the stage of heart development and enable the analysis of the influence 

of mechanical forces during development. 

 



 

Chapter 3 - Measuring Hemodynamics During Development  

 

71

Introduction    

Abnormalities in the growth and development of the cardiovascular system are among 

the most common congenital birth defects [1, 2] and show a large degree of variability, 

indicating that cardiovascular development relies on a complex set of signals. Using 

model systems such as the mouse, great strides are being made in elucidating the 

molecular signaling pathways involved in early heart and blood vessel formation (for 

review, see [3]).  Through both single gene targeting approaches and large scale 

screens (for review, [4]) a growing number of mutants are being identified with defects in 

hematopoiesis [5-7], endothelial cell formation and organization [8-10], and 

cardiogenesis [3, 11, 12]. 

In addition to genetic regulation, mechanical signals imparted through frictional forces 

created by blood flow are also essential for normal development. If flow is interrupted 

during embryonic development, heart and vascular defects arise [2, 12-17].  In vitro 

studies have revealed that the shear stress caused by fluid flow can induce changes in 

the morphology and activity of cultured endothelial cells, causing cell alignment, 

proliferation, and activation of gene expression and enzyme function [18-22].  

Interestingly, several gene products whose expression and activation are influenced by 

flow in cultured endothelial cells are also necessary for development [18, 19, 22, 23].  All 

of these data suggest that shear stress may act as a key regulator of development, but 

very few studies have related shear stress levels to specific cellular events in the 

embryo. 
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A large gap exists between the precisely controlled flow and quantitative evaluations 

performed in vitro and the complex dynamic interactions that occur during early 

circulation in vivo.  This is largely due to the fact that methods for quantitative 

hemodynamic analysis of newly formed vessels in vivo have not been established.  In 

this study, we show that quantitative flow measurements can be made in early mouse 

embryos at a time when the cardiovascular system is first forming.  Using confocal laser 

scanning microscopy (CLSM) to image mouse embryos (day 8.5 to 10.5) that express 

green fluorescent protein (GFP) in primitive erythroblasts [24], velocity measurements 

were made in vessels ranging from the diameter of a single blood cell (10 µm) up to 

several hundred microns. Close inspection of velocity profiles revealed that both laminar 

and disturbed flows are present in the early yolk sac.  Therefore, cells are exposed to 

both laminar and oscillatory shear stress during development.  In support of the 

hypothesis that mechano-sensory signals play a role in development, laminar shear 

stress levels were consistent with the levels of shear stress known to affect the 

morphology and molecular signaling of endothelial cells in vitro.  Thus, it is possible to 

use quantitative methods to study the remodeling of embryonic vasculature. Moreover, 

changes in the acceleration and deceleration of flows were seen as the heart matured, 

showing that velocity measurements can be used to study heart development. The 

model system described here, in combination with mutant analysis, will provide a 

powerful approach for studying cardiovascular development and the role of mechano-

sensory signals.   
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Results 

Measurement of Blood Velocities in Embryonic Yolk Sac 
Microvasculature 
 
We have focused our studies on blood flow in the developing yolk sac of the early 

mouse embryo.  In mammals, the first site of red blood cell production is in the yolk sac, 

an extraembryonic, multi-layered membrane surrounding the embryo proper. Both blood 

and endothelial cells differentiate in the yolk sac prior to the development of a functional 

heart (beginning at 7.5 days post coitum (dpc) in the mouse), but vessel remodeling 

occur after the heart starts beating and blood flow begins.   

The yolk sac is an excellent model for studying early hemodynamics because it is a 

simple system, consisting of only a few different cell types compared to the adult, yet 

vascular development can be followed from the initial differentiation of endothelial cells 

to the formation of remodeled vessels in a few short days.  In addition, by studying fluid 

dynamics in the yolk sac, movement artifacts produced by the heart beat are minimized.  

To aid in visualizing blood flow in the yolk sac, whole mouse embryos expressing GFP in 

primitive erythroblasts [24] were grown in culture on the stage of a confocal laser 

scanning microscope [25].   

To examine flow regimes and quantify the level of shear stress, the velocities of 

erythroblasts within the vessel and the hematocrit must be determined.  To accomplish 

this, we have adapted a technique originally developed for measuring blood flow in adult 

microcirculation in which a confocal laser scanning microscope is used to scan a single 

line parallel with the flow in a vessel to measure flow velocity [26].  We altered the 
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technique by scanning perpendicular, rather than parallel, to the direction of flow in order 

to measure vessel size, hematocrit and the flow profile through the vessel, all of which 

are necessary for calculating shear stress.   

In traditional confocal laser scanning microscopy (CLSM), a laser that excites a given 

fluorochrome in a cell is scanned across a field of view while a detector simultaneously 

collects the emission signal, pixel by pixel, to produce a two-dimensional image (Figure 

1B). For instance, for a single image that is 512 x 512 pixels, the laser scans across the 

field of view, collecting 512 pixels worth of data in a straight line and then moves to the 

next line to acquire the next row of pixels. Therefore, the time to acquire the whole 

image depends on the acquisition time for each line, the number of lines and the time it 

takes for the laser to turn around to scan the next line.  Scanning the whole field of view 

is often too slow for capturing very rapid dynamic events, but line scanning, (repeatedly 

scanning a single line) can be used as an alternative if enough image data is gathered 

from a single row of pixels.    

For the method described here, the laser was used to repeatedly scan along a single 

line positioned perpendicular to vessels of various sizes in the mouse yolk sac (white 

line, Figure 1A).  The scan line acts like a photo-finish camera at a race, imaging a 

single row of pixels and collecting partial images of blood cells as they pass that point in 

the vessel. Slower moving blood cells are imaged more often than rapidly moving cells 

as they cross the scan line. Velocity can be measured by determining how many times 

the same cell was imaged and, thus, how long it took for the cell to cross through the line 

scan.  To determine the velocity of a cell, line scans are reconstructed as 2-dimensional 

images (L vs. t) (Figure 1B). The length of the streak that is produced by the image of 
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the cell can be directly related to velocity, given that the line scanning speed, pixel size, 

any movement perpendicular to the vessel, and the cell diameter are known (Figure 1C) 

(see also Materials and Methods).  This calculation is simplified by the fact that early 

embryonic erythroblasts are spherical throughout all embryonic stages imaged (Figure 2) 

and do not appear to deform significantly during flow (data not shown). Therefore, the 

optical plane of the cell being imaged is inconsequential, because the two-dimensional 

image of the cell will always be circular and the distance traveled can be related to the 

diameter.   

Using this method, the minimum velocity that can be measured will be determined by the 

number of scans, whereas the maximum limit is determined by scan speed of the 

instrument (see Materials and Methods).  Routinely, 3000 lines are scanned, giving a 

theoretical lower limit of 3.7 µm/s, while the fastest velocity that can be measured by our 

current system is 13000 µm/s.  In the yolk sac, measured flow velocities ranged between 

18.5 and 6000 µm/s.  Since measurements of the fastest velocities in the yolk sac were 

well under the theoretical limit, we made velocity measurements in the dorsal aorta at 

8.5 dpc, where measurements showed that flow traveled up to 9400 µm/s.  To determine 

the error rate for these measurements, a mass balance analysis was performed (see 

Material and Methods).  Less than 7% error was observed, indicating that this method 

provides valid measurements of flow velocity. 

Line scanning was used to assess the velocity of the blood in yolk sac vessels in 

embryos at 8.5, 9.5 and 10.5 dpc (Figure 3A-C). We observed a range of velocities in 

the embryo at the three stages examined.  At the earliest stage examined, just after 

circulation begins, the channels in the vascular plexus are of similar size, yet flow 
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velocities were found to be quite variable.  At 9.5 and 10.5 dpc, vessels varied in size 

from approximately 50 µm to 200 µm.  At these stages, both velocities and the size of 

vessels are highly variable, but blood flow appears to travel at similar velocities in 

vessels of the same size.  It is unknown whether velocity at 8.5 dpc is a predictor of the 

vessel size at later stages (see Discussion).   

Determining Blood Flow Profiles in the Developing Yolk Sac 
 
Line scanning perpendicular to the vessel was used to obtain flow profiles from vessels 

of the yolk sac.  Flow profile is used to show directionality with respect to vessel 

structure.  While it is generally assumed that early embryonic blood flow is laminar [27], 

this has not been shown directly.  Laminar flow is characterized by steady movement 

with a straight trajectory, without mixing.  Flow velocity has a parabolic profile with 

respect to vessel diameter, such that cells in the middle of the vessel travel faster than 

cells slowed by friction near the vessel walls.  In addition to laminar flow, blood flow can 

exhibit more complex profiles.  Yolk sac vessels are too small and flow is too slow to 

produce turbulence, but areas of flow separation and vessel branching can produce 

eddies or other disturbed flows.  Disturbed flows can be characterized by cells moving in 

irregular or circular motions within the vessel.  Both laminar and disturbed flows were 

detected within the yolk sac.  Figure 4A shows the L vs. t plots of steady flow along a 

single axis.   Cells move predominately along the axis of the vessel parallel to the wall, 

with limited movement along the perpendicular axis.  Velocity profiles of steady flow 

regions are parabolic at peak (systole) and non-peak (diastole) velocities (Figure 4B), 

confirming that flow is indeed laminar in these regions.  Figure 4C shows the L vs. t plot 

of a region where an eddy is present.  A disturbed pattern of flow is seen, where the 
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relative angle of the line scan streaks change with respect to one another.  Velocities 

plotted along the diameter of the vessel do not fit a parabolic profile (Figure 4D) and, 

therefore, are non-laminar.     

Hematocrit Measurements in Embryonic Circulation 
 
To calculate shear stress, hematocrit as well as the flow velocity and flow profile are 

needed.   Hematocrit was measured directly in individual yolk sac vessels from 8.5 to 

10.5 dpc.  Figure 5A shows hematocrit values found at different stages of development.  

Hematocrit was observed to increase slightly between 8.5 and 10.5 dpc, from about 15% 

to 20% of total intra-vascular volume.  Furthermore, there is a linear relationship 

between vessel diameter and hematocrit in individual embryos that is statistically 

significant (average p=0.074) and is independent of developmental stage (Figure 5B).  

This relationship between vessel size and hematocrit is called the Fahraeus effect [28], 

and has never been reported in an embryonic system. 

Laminar Shear Stress (LSS) in Embryonic Flow 
 
The levels of LSS were calculated in different sized vessels at different times during 

development (Figure 6) using a correlation to approximate blood viscosity [29] based on 

shear rate and hematocrit (see Materials & Methods). LSS values ranged from 0.40 to 

5.16 dynes/cm2, consistent with shear stress levels known to modulate the expression 

and subcellular localization of proteins important in normal vascular development such 

as Flk-1 and other growth factor receptors.  At 8.5 dpc, the levels of shear stress were 

not related to the vessel size, while at both 9.5 and 10.5 dpc, shear stress values were 

higher in larger vessels.  In addition, the magnitude of shear stress increased from 9.5 

dpc to 10.5 dpc, a time when vessels undergo remodeling.  
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Change in Flow with Heart Development 
 
Between 8.5 and 10.5 dpc, the heart is transformed from a linear tube to a looping heart 

consisting of multiple chambers and developing valve primordia (endocardial cushions).  

To determine how the periodicity of flow changes during heart development, blood 

velocities were plotted with respect to time (Figure 7).   Yolk sac vessels were compared 

that had approximately equal maximum velocities.  For the earliest embryos examined 

(8.5 dpc), when the future heart is still a linear tube, velocity increased and decreased 

gradually with an irregular frequency (Figure 7A).  For 9.5 dpc embryos, in which the 

endocardial cushions are more pronounced, velocity increased steeply and abruptly, 

decreasing slowly thereafter (Figure 7B).  Finally, for 10.5 dpc embryos, velocity 

increased steeply and rapidly, and then decreased sharply (Figure 7C).  These changes 

in acceleration and deceleration of the flow cycle likely reflect the improvement in heart 

function from 8.5 to 10.5 dpc.   

 

Discussion     

Here we present novel measurements of fluid dynamics in the early mammalian 

cardiovascular system.  Using confocal line scanning, we can accurately measure flow 

velocities, flow profiles and hematocrit in embryonic microvasculature.  We have 

characterized changes in blood flow through the yolk sac of early mouse embryos and 

have calculated levels of shear stress induced by blood flow. 
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Primitive Erythroblast Movement During Yolk Sac Development 
 
In the mouse embryo, blood cells continue to differentiate and proliferate as circulation 

begins.  Hematocrit measurements in the early embryo increased steadily as the 

embryos developed further.  In addition, even at the earliest stage examined, hematocrit 

was directly dependent on vessel size.  In larger vessels, we observed a higher 

percentage of erythroblasts.  This relationship, the Fahraeus effect [28], has previously 

been demonstrated in vivo in adult tissues [30], but it has never been reported in 

embryos. Even though individual vessels in a single embryo can vary in size by up to 

three-fold, the relationship between vessel size and hematocrit is maintained. 

 

The hematocrit measurements presented here reflect those cells that were actively 

moving through the vasculature.  Consistent with previous studies [31], we also 

observed many primary erythroblasts that did not circulate freely (data not shown).  In 

fact, in some cases, primary erythroblasts remained at the site where they formed and 

others were carried to new sites and became trapped.   It is not known if the fate of 

circulating vs. non-circulating blood cells is different. For example, non-circulating blood 

cells eventually may be eliminated by programmed cell death or fail to proliferate. 

Flow Patterns and Shear Stress During Embryonic Development 
 
We have measured levels of laminar shear stress between 0-5.5 dyn/cm2 in embryos 

from 8.5 to 10.5 dpc. Similar levels of LSS have been shown to induce notable 

responses in cultured endothelial cells.  In vitro, these levels of shear stress are 

associated with endothelial cell alignment and have been shown to induce the 

expression of numerous transcription factors, cell adhesion molecules, enzymes, and 
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cell signaling molecules, including growth factors and growth factor receptors known to 

play a role in development (for review, see [32]).  For instance, the expression of Platelet 

Derived Growth Factor (PDGF) A [19] and B receptors [23] is induced in the presence of 

LSS.  In the absence of PDGF signaling in the embryo, the recruitment of mural cells 

and pericytes that stabilize nascent vessels during remodeling is disrupted.[33, 34] LSS 

also induces the expression of several members of the TGF-beta signaling pathway, 

such as TGF-beta1 [18] and its mediators Smad 6 and 7 [20].  TGF-beta signaling is 

required for the remodeling of the vascular plexus and mature vessels do not form in 

mice with null mutations in TGF-beta 1 or its receptor [35-37]. Vascular Endothelial 

Growth Factor Receptor 2 (VEGFR2) is also activated in the presence of shear stress in 

vitro, altering its subcellular localization [22].  Embryos lacking VEGFR2/Flk-1 do not 

form vessels in the yolk sac [38], but VEGF signaling may be required at later stages of 

hematopoietic and vascular development, since it remains expressed in endothelial cells 

throughout embryonic development [39].  Our data shows that the levels of shear stress 

in developing vessels in the yolk sac are similar to the levels shown in vitro to regulate 

key factors necessary for remodeling.   

Interestingly, LSS levels vary in yolk sac vessels of 8.5 dpc embryos, even though the 

vessels themselves are similar in size.  At 9.5 and 10.5 dpc, vessel size becomes highly 

variable, but LSS values are similar in vessels of the same size.  The transition from the 

uniformly-sized vascular channels in the primitive plexus to the formation of individual 

vessels of variable size represents a major event in vascular remodeling.  It is possible 

that the level of shear stress within early vessels directly affects the size or extent of 

remodeling in that same vessel one or two days later.  We have begun more in depth 

studies to determine if the level of shear stress at the plexus stage can be used to 
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predict vessel size or extent of remodeling that follows.  As discussed below, 

examination of mutants with impaired flow may be critical to understanding precisely 

how the level of shear stress relates to specific remodeling events.   

In addition to laminar flow, we also detected eddies or disturbed flows. From in vitro 

studies, it is known that laminar and disturbed flows produce different types of force or 

shear stress which in turn have differential effects on endothelial cells.  Oscillatory shear 

stress (OSS) induced by eddies [40] correlates with increased cell proliferation.  In fact, 

both the magnitude of shear stress and local fluctuations in shear stress may be 

important mechano-sensory signals [40].  Cell proliferation, in addition to other factors, 

is thought to contribute to the formation of atherosclerotic plaques which often form at 

branch points in arteries [41].  In development, OSS may play a part in vessel growth at 

the branch point or may signal the proliferation of endothelial cells during vasculogenesis 

and remodeling.  Although it is possible to calculate the magnitude of laminar stress 

using line scanning, the line scanning method cannot be used to determine the level of 

OSS.  Continuous particle tracking is needed for measuring forces exerted by particles 

with circular or irregular trajectories.  Others have made measurements of OSS and 

even turbulent flows using high-speed imaging and correlation techniques such as 

Digital Particle Image Velocimetry [16]; however, high-speed fluorescence imaging is 

often hampered by poor sensitivity and may not be feasible for these studies. 

Hemodynamics and Cardiac Development 
 
Recently there has been an increased interest in the relationship between blood flow 

and heart and vessel development.  In zebrafish, it has been shown that blocking fluid 

flow, thereby reducing shear stress, results in heart defects [16]. In silent heart mutants, 
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where flow is impaired [17], patterning defects are seen in the intersegmental arteries.  

In the mouse, the heart does not form properly if flow is stopped through ablation of 

Ncx1, a Na+/Ca+ exchanger [12].  Also, in Myosin Light Chain 2a (MLC 2a) mutant 

embryos, the atria and endocardial cushions do not develop properly [42]. It is 

noteworthy that these mice also have defects in the yolk sac vasculature even though 

the MLC 2a gene is only expressed in cells within the heart.  These and other mutants 

provide a unique opportunity to study the relationship between fluid dynamics and 

vascular development since flow is disrupted in a way that does not also directly 

interfere with the development of endothelial cells. 

In addition to studying shear stress, subtle defects in valve function and cardiac muscle 

development can be detected by examining the periodicity of flow through the heart, 

providing greater insights into how flow is disrupted in the presence of cardiac 

abnormalities.  The measurements of flow periodicity shown here are similar to the 

Doppler waveforms produced by ultrasound [43], but can be obtained using a confocal 

microscope which is more readily available in many research labs.   

Mechano-Sensory Signals and Vascular Remodeling 
 
The data we describe here shows that it is possible to explore the relationship between 

mechano-sensory and biochemical signals involved in vessel development and 

patterning at a cellular level.  We have shown that mechanical forces that act on 

endothelial cells can be measured using CLSM.  CLSM is also a powerful tool for 

imaging changes in endothelial cell morphology and expression of signaling molecules, 

making it possible to study how variations in blood flow effect vascular remodeling.  
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Thus, we have developed a robust model system for studying how mechano-sensory 

signals function in the development of the mammalian cardiovascular system.   

 

Materials and Methods 

Dissection 
Homozygous ε-globin:GFP male breeder mice [24] were mated with CD-1 females 

overnight.  The presence of a vaginal plug was taken as 0.5 dpc.  Embryos were 

collected on the morning of the eighth, ninth or tenth day in a Plexiglas hood heated to 

37°C using a chicken incubator heater (Lyon Electric Company # 115-20). Dissecting 

medium consisted of 90% D-MEM/F-12 (Gibco, #11330032), 8% heat-inactivated fetal 

bovine serum (Gibco, #16140063), 1% HEPES buffer solution 1M (Irvine Scientific, # 

9319) and 1% Pen-Strep solution (Irvine Scientific, # 9366).  The medium was warmed 

to 37°C prior to dissection.  Females were euthanized with CO2 followed by cervical 

dislocation.  The uterine horns were removed and placed in warmed medium and the 

embryos isolated, keeping yolk sacs intact.   

The embryos were stained with Cell Tracker Orange (Molecular Probes, C-2927; 1:500 

in dissecting medium) for 15 minutes to visualize the vessel wall.  Embryos were kept in 

a tissue culture incubator at 37°C during staining.  The embryos were then washed twice 

with warm dissecting medium and transferred to culture medium in a Nunc Lab-Tek 

chamber (2 chambers/ coverglass, #155380).  The culture medium consisted of 50% D- 

MEM/F-12 and 50% rat serum (for production, see [25]) supplemented with 10 µL/mL 



 

Chapter 3 - Measuring Hemodynamics During Development  

 

84

Pen-Strep and 10 µL/mL HEPES buffer. Embryos were pre-incubated for 1 hour at 37°C 

and 5% CO2 in a tissue culture incubator to allow heart rates to stabilize. 

Confocal Microscopy 
 
Embryos were imaged on a Zeiss LSM 510 or a Zeiss LSM PASCAL microscope.   The 

culture system has recently been described by Jones et al [25]. Line scan imaging was 

done at a magnification of 20x.  An initial whole field image of the blood flow was made 

and overlaid with a line to record the position of the line scan.  The laser was then 

located at this position and scanned for 3000 lines.  Laser line scan rates were between 

384 and 960 µsec per line.  Pixel size depended on the length of the laser line.  

Velocity Calculation 
 
Line scans were reconstructed as L vs. t images such as the one shown in Figure 1.  

Pixel data collected from the line scans were arranged into an image with the line data 

on the horizontal axis and time on the vertical axis. Using this approach, the length of 

each streak (∆t) can be related to the time it takes for the cell to move across the scan 

line with a given pixel dimension. Since cells do not always move parallel to the vessel 

wall, movement along the axis of the scan line must also be accounted for and is given 

by ∆L.  With these measurements, velocity can be calculated using the following 

equations: 

The time for one blood cell to pass over the laser line, tRBC, is calculated using the t-

displacement of the streak (∆t, in number of lines) and the scan rate (VSCAN, in µs/line): 

tRBC = (∆t-1) *VSCAN . 
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Primitive erythroblasts are spherical (Figure 2).  Irrespective of which z-plane of the cell 

is imaged, the distance traveled is equivalent to the cell diameter, D, measured in pixels.  

Therefore, the distance traveled is given by: 

Distance = D*SPIXEL , 

where SPIXEL is the pixel size (µm/pixel). 

To determine the component of the velocity perpendicular to the laser line, Vy, the 

distance traveled is divided by the time taken to pass over the laser line: 

 Vy =
D*SPIXEL

(∆t−1)* VSCAN

 . 

If there is also a component of the velocity parallel to the laser line, it can similarly be 

calculated using: 

Vx =
∆L *SPIXEL

(∆t−1)* VSCAN

 , 

where ∆L is the measured displacement in the L- direction.   

Using these equations, the overall velocity is given by: 

 V =
SPIXEL ∆L2 + D2

(∆t−1)* VSCAN

 . 

Clumps of primitive erythroblasts could not, in general, be analyzed using this technique.  

It was necessary to disregard a small subset of erythroblasts whose edges could not be 

clearly distinguished.   
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Line scan images where the erythroblasts passed over the laser line in fewer than 3 

scans were discarded. Under these circumstances, diameter measurements may be 

inaccurate, as it is impossible to know if the laser has imaged the erythroblast close to 

the center of the cell.  The top line scanning rate of the Zeiss PASCAL LSM is 384 

µs/line for a line 512 pixels long.  For a red blood cell with a diameter of 10 µm, the 

theoretical maximum velocity that can be measured is 13021 µm/s if the vessel diameter 

is less than 20 µm wide (using a 20x lens) or 10400 µm/s if the vessel is up to 460 µm in 

diameter. 

Validation of Method 
 
To validate these measurements, a mass balance on merging yolk sac vessels was 

calculated.  Because inflow must equal outflow, the sum of the volumetric flow rate of the 

two input vessels at a bifurcation should add to the volumetric flow rate of the larger 

vessels into which the two smaller vessels merge, as long as differences in density are 

negligible.  

 

Assuming a parabolic profile, the maximum velocity is twice the average velocity and so 

the volumetric flow rates can be calculated from: 

Q =
Vmax

2
π r2 = Vavπr 2 . 

The pulsatile nature of the flow can be ignored for this calculation since flow within the 

embryonic vasculature is within the Stoke's flow regime (Re << 1) and the Womersley 

parameters is known to be much less than one [27]. 
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Because line scans were performed sequentially, a simultaneous comparison of flow 

rates could not be made.  Therefore, the volumetric flow rate was calculated using two 

different methods to verify that the calculations were unbiased and the results from each 

method were comparable, with very little error. In the first method, the average of the top 

2% of all measured velocities for a vessel was taken as Vmax. In the second method, the 

mean velocity of all the flow rates was taken as Vav. The error associated with the mass 

balance (5% to 7%; data not shown) was minimal, indicating a high level of accuracy in 

the measurements. Errors in individual velocity measurements were minimized by 

averaging multiple determinations.  

To analyze the components that introduced the most error, a sensitivity analysis was 

performed.  Errors in scan rate and pixel size are related to the microscope software and 

are expected to be minimal. The most sensitive variable to measurement error was the t-

dimension of the streak.  At the fastest flow rates that can be measured, streaks often 

had fewer than 5 line scans, which could easily introduce significant error, especially if 

the length was underestimated.  The strength of this method, however, is that by 

measuring every single red blood cell, so many measurements are made that errors are 

minimized through data regression. 

Calculation of Hematocrit 
 
A scan through the center of the vessel was used as representative of the flow present 

in the whole vessel since non-disturbed laminar flow is parabolic (Figure 4).  Our 

calculations assume that the vessel is spherically cylindrical, because the difference in 

dimension on each axis is on the scale of one or two red blood cells.  The center of a 

vessel along the z-axis was determined by changing the focal plane to reveal the widest 
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cross-section. The hematocrit was calculated by first cropping the images to include only 

regions of blood flow as assessed by the location of the vessel walls. The image was 

then converted to gray-scale and a threshold was applied to the image such that pixels 

were either pure white or pure black.  The intensity at which the threshold was applied 

was chosen by increasing the zoom on the image to visualize the individual pixels and 

finding the level at which the size of the red blood cell streaks between the black and 

white and the grayscale image were in agreement.  The percentage of white pixels 

within the image was used as the hematocrit. 

Calculation of Laminar Shear Stress (LSS) 
 
 
The velocity data during a pulse was plotted versus x- position within the line scan image 

to give the velocity profile within the blood vessel (as in Figure 4).  The location of the 

pulse was assessed visually and only the velocity data during the peak flow was used.  

The data was regressed using parabolic profile.   

V = ar2 + b , 

where V is the velocity, r is the radial position of the measurement and a 

and b are the regression results.   

The vessel radius, R, is found from the x-intercept. 

R =
−a
b

. 

This value was compared to the measured diameter based on cell-tracker orange 

staining. If there was a large difference between actual and calculated diameter, data 
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from that pulse was rejected.  This occurred in less than 10% of the scans and was 

generally caused by blood flow in which all the red blood cells were located near the 

center of the vessel.  The shear rate was calculated based on the slope of the regressed 

line at the vessel wall. 

γ
•

= −
dV
dr r=R

= −2aR , 

where γ
•

 is the shear rate.   

The apparent viscosity for embryonic mouse blood was approximated using data from 

adult human blood [29] because no relevant work has been done on embryonic mouse 

blood.  The apparent viscosity of human blood is very likely to be similar to embryonic 

mouse blood, despite the fact that red blood cells in the mouse embryo are nucleated. 

Studies have shown that at low shear and low hematocrit, viscosity is comparable 

between nucleated avian blood and enucleated human blood [44].  The shear rate data 

and the hematocrit data for each pulse were inserted into a 6th order logarithmic 

regression for calculating blood viscosity at low shear rates [29]. 

The shear stress is calculated by multiplying the shear rate by the apparent viscosity. 

τ = µapp γ
•

. 
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 Figure 1. Line Scanning Image to Measure of Blood Flow. Line scans were performed 

perpendicular to the direction of blood flow on transgenic embryos that express GFP in 

their primitive erythroid cells [24]. The white line represents the location of the scans 

within an x-y image of the yolk sac (A).  The green fluorescence represents red blood 

cells and the red color is cell tracker orange staining used to visualize the vessel walls. 

Line scanning at this location yields a L vs. t image (B).  Several measurements were 

made on these L- vs. t images.  They include the L- and t- location of the beginning of 

the streak, the L- and t- dimensions of the streak, and the diameter of the streak (C). 

Figure 2. Confocal Image of Primitive Red Blood Cells Showing Spherical Shape.  A 

confocal z-series was taken of red blood cells in 8.5 dpc (A) and 10.5 dpc (B) transgenic 

embryo that expresses GFP in primitive erythroblasts, to confirm their spherical shape.  

Both an x-y frame and an x-z frame are shown.  For the 8.5 dpc, slices were taken at 

40x magnification and were 0.2 µm apart with a total of 145 slices.  The 10.5 dpc embryo 

was imaged using a 63x lens and the slices were 0.83 µm apart with a total of 20 slices.  

The 8.5 dpc image has been digitally zoomed 150% to bring it onto the same scale as 

the 10.5 dpc image. 

Figure 3.  Comparison of Velocities at Different Embryonic Stages. The velocity of the 

blood flow versus vessel diameter was plotted for 8.5 dpc (A), 9.5 dpc (B) and 10.5 dpc 

(C) embryos.  Vmax represents the maximum velocity during the pulses, which was 

calculated by regressing the velocity profile according to a parabolic profile.   

Figure 4. Imaging Flow Pattern Within the Vessels.  An L. vs. t image of the line 

scanning across two vessels (A) shows blood cells moving uni-directionally in one vessel 
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(left), indicating the presence of a laminar flow and re-circulating in the other vessel 

(right), indicating the presence of an eddy within the flow.  The velocity of blood in a 

vessel with steady, unidirectional flow was plotted both in systole and diastole (B) with 

regard to position within the blood vessel. The velocity shows a parabolic profile that fits 

the expected shape for laminar flow. 

Figure 5. Hematocrit Measurements from the Line Scans.  The average hematocrit was 

plotted with respect to age (A) and shows a slight increase.  The hematocrit vs. diameter 

was plotted (B) for a typical 10.5 dpc embryo.  The plot exhibits the Fahraeus-Lindqvist 

effect for blood flow in small tubes. 

Figure 6.  Shear Stress Values.  Shear stress was calculated in vessels of different size 

at 3 stages of development.  Data from older embryos (E9.5 and E10.5) increases with 

increasing diameter.  Shear stress values before the capillary plexus has remodeled 

(E8.5) however, are more scattered, showing no defined pattern. 

Figure 7.  Blood Flow Velocity Changes With Heart Development.  The measured 

velocity vs. time was plotted for embryos at stage 8.5 dpc (A), 9.5 dpc (B) and 10.5 dpc 

(C).  The pulse is visible at all ages; however, it becomes more discrete as embryos 

develop. 
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Figure 4 
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Figure 7 

 



  108  

 

 

 

Chapter 4 

 

Initiation of Circulation and Vascular Remodeling in 

Mammalian Embryos. 

 



 

Chapter 4 – Initiation of Circulation and Vascular Remodeling  

 

109

 Summary 

The role of hemodynamics, or blood fluid dynamics, in cardiovascular 

development remains controversial.  It is known that early event in angiogenesis 

and vascular remodeling are dependent on blood flow, however, mechanisms for 

the induction of remodeling by blood flow have not been established.  Mechanical 

cues, such as shear stress, are imparted on early endothelial cells by blood flow.  

The timing of initiation of vascular remodeling, the exact onset of blood flow and 

the relationship between these two events must be considered together in order 

to understand what signaling cues are available to the vasculature to initiate 

remodeling.  Here we analyze the initiation of blood flow using a transgenic 

mouse that expresses GFP in primitive erythroblasts and measure the shear 

stress levels when circulation is first established.  We show that both 

morphological changes in the vasculature and the appearance of molecular 

markers of remodeling correlate to periods of high shear stress.  
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Introduction 

Formation of a functional vascular system is a critical and complex process. 

During murine development, both vasculogenesis and hematopoesis begin in the 

extra-embryonic yolk sac.  Angioblasts and primitive erythroblasts first appear at 

E7.0 [1, 2], initially forming together in blood islands, and are thought to form 

from a common precursor, the hemangioblast, that derives from the primitive 

streak of the embryo proper [1, 3, 4].    As the population of endothelial 

precursors expands through the yolk sac, cells aggregate and interconnect to 

form angioblastic cords [5], which then form intracellular lumens [6], creating a 

channel for blood flow. This honeycomb-shaped network of blood vessels that 

connects the embryo to the yolk sac is known as the capillary plexus.   

 

A vital step in the development of the embryo is the remodeling of the yolk sac 

capillary plexus.  On a gross level, vascular remodeling is characterized by both 

changes in vessel size and in branch angles between vessels [7].  Some vessels 

regress, while others are transformed from small caliber vessels to large ones.  

The remodeling process occurs quickly; the most prominent changes are 

apparent within twenty-four hours in both chick and mouse embryos.  In mutant 

strains, embryos that fail to undergo remodeling die between E10.5 and E11.5, 

two to three days after the onset of blood flow [8-12].  Mutations that effect 

vascular remodeling can be grouped into two distinct categories, mutations in 
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genes that function directly in endothelial cells and precursors [9-11], and 

mutations that effect heart function [8, 12].  It has been hypothesized that 

vascular defects in the second class of mutants occur because of abnormal 

blood flow patterns.  This idea is supported by several studies that show that 

blood flow is necessary for proper vascular development.  If the heart is removed 

[13] or the outflow of the heart is blocked [14, 15], remodeling does not occur.  

Thus, vascular remodeling in the yolk sac depends both on genetic and 

epigenetic signaling events, but little is known about how these pathways are 

related. 

 

In vitro studies performed with cultured endothelial cells show that these cells are 

able to sense mechanical force such as shear stress (for review, see [16]), a 

tangential force imported on the vessel wall by the flowing blood.  Shear stress 

can cause cells to align to direction of flow [17] and can activate signaling 

pathways that are important for cardiovascular development [18-22].  Identifying 

when these mechanical cues are first present and whether the levels are 

consistent with those shown to act as signals is essential for understanding how 

mechanical cues relate to vascular remodeling. 

 

Though flow is essential, exactly when erythroblasts begin circulating is not firmly 

established.  Primitive erythroblasts have been observed outside the blood 

islands in fixed embryos at four somites although it is not known if they had been 
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actively circulating before fixation [23].  Using Doppler Ultrasound, flow has been 

observed as early as the 7 somite stage [24], however, it is not clear if this 

method has enough resolution necessary to measure the initiation of slow flows 

in small caliber vessels.  Because remodeling is at least partially dependent on 

proper blood flow, it is essential to establish the precise time when flow begins. 

 

In this paper, we have used high-resolution, confocal time-lapse microscopy to 

ascertain the precise stage at which blood flow begins, to measure changes in 

shear stress in yolk sac vessels and to define dynamic changes in vessels soon 

after flow begins.  We show that primitive erythroblasts enter into circulation (7-

10 somite stage) after a prolonged period of plasma flow that begins as soon as 

the heart starts beating (3 somite stage).  By measuring the levels of shear stress 

in the early yolk sac, we show that endothelial cells are exposed to a transient 

rise in shear stress soon after erythroblasts begin circulating.  Furthermore, 

cellular changes associated with remodeling (vessel regression, changes in 

vessel orientation and expression of junction and support cell markers) occur 

coincident with peak levels of shear stress. By developing a timeline of events 

using methods with high temporal and spatial resolution, it is possible to establish 

which developmental changes are related to flow and those that are 

independent.  From these studies, it is clear that vascular remodeling initiates 

just after erythroblasts enter circulation, suggesting that forces produced by flow 

signal changes in vascular morphology. 
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Results 

Initiation of Blood Flow 

To determine the series of events in early circulation, we took confocal time-

lapse images of epsilon-globin: GFP transgenic embryos starting at 

approximately the 6 somite stage (Movie 1, Figure 1).  During the first hour of the 

time-lapse movie, the heart beats but no circulating erythroblasts are seen 

(Figure 1A, H).  A single immobile erythroblast is visible within one of the vessels 

(red arrow, Figure 1A), however, the rest of the blood remains in the blood 

islands (outside the field of view).  As erythroblasts begin to enter the circulation, 

the hematocrit, or volume percentage of red blood cells in vessels, is initially low 

and fluctuates from one frame to another (Figure 1B).  The initial immobile 

erythroblast remains stationary for 3.5 hours as other erythroblasts circulate in 

adjacent vessels. Finally, all erythroblasts within the field of view are circulating, 

increasing the hematocrit within individual vessels.   

 

To verify the results from our time-lapse analysis, we examined several litters of 

live embryos at early somite stages to determine precisely when circulating blood 

cells were observed (Table I).  Until the 4 somite stage, erythroblasts are mainly 

confined to the blood islands.  Isolated erythroblasts were occasionally observed 

outside the blood islands and even in the dorsal aorta from the 4-6 somite stage 

agreeing with previously published results [23], but these cells were immobile 
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and were not actively circulating.  Primitive erythroblasts are not found moving 

continuously throughout the capillary plexus until the 7 or 8-somite stage. Hence, 

the presence of erythroblasts outside the blood islands at early stages (4-6 

somites) was not a reliable indicator of erythroblast circulation, which begins at 7-

8 somites. 

 

Once circulation begins, the circulating fraction of erythroblasts steadily 

increases. Both the change in hematocrit as well as improvement in heart 

performance will dramatically affect the mechanical forces acting on endothelial 

cells.  Thus, we measured shear stress in the embryonic vessels using confocal 

line scanning as described in Jones et al. 2004 (Chapter 3, Figure 2). At 8 

somites, a significant systole and diastole is not present within the blood flow and 

hematocrit fluctuates.  Therefore, it is necessary to use average shear stress 

measurements based on the location of the erythroblast within the vessel.  From 

10 somites onward, peak shear stress during systole is reported.  The highest 

measured shear stress occurs at the 11 somite stage, with shear stress levels 

reaching 3.2 dyn/cm2 (Figure 2).  These levels remain high until the 13 somite 

stage.  After this stage, there is a reduction in shear stress and a smaller range 

of values in any given embryo.  When the data is plotted with respect to 

diameter, shear stress is related to vessel size after this point (data not shown), 

as previously reported for E9.5 and E10.5 embryos [25]. 
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Presence of Plasma Flow 

Our data from above clearly indicates that erythroblasts do not begin to circulate 

until the 7-8 somite stage, yet the heart starts beating at the 3 somite stage 

(Table 1).  Since a functioning pump is present, we tested whether plasma 

circulation could be detected prior to the flow of erythroblasts. Fluorescent 

dextran was injected into the heart of the early stage embryos (Figure 3). 

Embryos were allowed to recover only ten minutes after injection and then were 

imaged to determine if the dextran spreads through the plexus. A ten minute 

incubation period prevents the vessels from filling by diffusion such that the 

presence of fluorescence in the yolk sac can only be explained by fluid flow.  In 0 

and 1 somite stage embryos, injected dextran remained confined to the site of 

injection in the heart (data not shown).  In most embryos at the 2 somite stage, 

dextran did not flow into the yolk sac (5 of 6 embryos, Figure 3A-B), but flow was 

observed in one embryo at this stage (Figure 3D-E). From 3 somites onward, 

dextran reliably filled the capillary plexus in the ten minutes following injection 

into the heart (20 of 20 embryos; Figure 3C & F). 

 

To confirm the presence of plasma flow in early vessels, we used Fluorescence 

Recovery After Photobleaching (FRAP) (for review, see [26]).  For this method, 

the plexus is filled with fluorescent dextran and a 100µm2 area is bleached within 

a fluorescent field of view. The recovery of fluorescence in the bleached area is 
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measured to calculate the rate of diffusion. When flow is present, the apparent 

diffusion coefficient, referred to here as the perfusion coefficient, is much higher 

than in the case of pure diffusion.  To determine the pure diffusion coefficient in 

the absence of flow, FRAP was performed using in embryos where the heart 

beat was intentionally arrested.  Dextran diffused at 51 µm2/s (n=8, std dev= 21) 

in embryonic blood plasma at 37°C. From the 3 somite stage onward, perfusion 

coefficients were an order of magnitude higher than measurements for pure 

diffusion (Figure 4A).  By 6 somites, some flows were too fast to be measured by 

FRAP.  The variability of plasma flow measurements are likely to relate to the 

proximity to the heart (Figure 4B).  These experiments establish that there is 

circulation between the embryo and the yolk sac by the 3 somite stage, long 

before the embryonic blood contains primitive erythroblasts. 

 

Timing of Remodeling Events 

To understand how early hemodynamic events relate to remodeling, we 

investigated when remodeling of the vasculature was first apparent using 

molecular markers.  ZO-1 is a protein that is localized at cell-cell junctions and is 

upregulated in endothelial cells exposed to pressure [27]. Immunostaining for 

ZO-1 indicates that intercellular junctions between endothelial cells increases by 

the 13 somite stage (Figure 5A-C, red). Endothelial cells lining the blood vessels 

express much higher levels of ZO-1 than surrounding mesenchyme, and cell 
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shapes are elongated in the direction of the blood vessel (Figure 5B). Before this 

time, ZO-1 staining can be seen in cuboidal endoderm cells in the yolk sac 

(Figure 5A). 

 

Another step in the remodeling process is the recruitment of support cells, 

smooth muscle cells and pericytes.  Using an antibody to α-smooth muscle actin, 

α-SMA (Figure 5D-F, red), we examined when support cells first appear. α-SMA 

positive cells are not apparent in the yolk sac of 11 somite embryos (Figure 5D).  

The first α-SMA positive cells appear at 13 somites in loose clusters within the 

mesenchyme (Figure 5E). α-SMA positive support cells do not appear fully 

differentiated until E9.5, at which time they surround major vessels (Figure 5F). 

 

The markers that we have used above establish that there are clear changes in 

endothelial and support cells that occur coincident with the onset of peak shear 

stress flow.  To examine these dynamic events more closely, we used time-lapse 

imaging of embryos expressing GFP in endothelial cells under the control of the 

Tie-2 promoter [28].  Coincident with the entry of erythroblasts into the 

circulation, dynamic changes occur in the vascular plexus (Figure 6, Movie 2, 

embryo is initially at 8 somites). The endothelial marker, Tie-2, is not strong 

enough at early somite stages, but dextran injections show no significant 

changes in vascular morphology until blood cells start flowing (data not shown).  

At the start of the time-lapse sequence, large vascular spaces are present 
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separated by small avascular regions. Within several minutes of the start of the 

movie, avascular spaces enlarge as vessels become more defined.  Most 

vessels reduce in diameter, with some vessels regressing almost completely 

(arrow, Figure 6A-D).  Though vessels regress during this period, no vessel 

sprouting can be seen.  Cell divisions within endothelial cells are prevalent, as 

can be seen by the bright dividing nuclei (asterick, Figure 6C, D). Cells appear to 

remain associated with neighbors during divisions.   

 

In order to quantify changes in early vessels, the average vessel diameter 

(Figure 6E), the branch angle between vessels (Figure 6F) and the long axis of 

the avascular regions, called Feret’s diameter (Figure 6G), were measured from 

the frames of the time-lapse movie.  The average diameter reduces during the 

angiogenic process, with larger changes occurring early (within the first 4 hours) 

in the time-lapse movie.  The growth of the avascular space, as measured by 

Feret’s diameter, occurs at a regular, linear pace.  The branch angle between 

vessels, however, did not change significantly during the time-lapse sequence 

indicating that, at least initially vessel morphology is modified without significant 

changes in the branch pattern. 
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Discussion 

The Initiation of Circulation 

 
Linking changes in blood flow with changes in vascular morphology is critical to 

understanding the role of hemodynamics in vessel remodeling. In this work, we 

have established the precise timeline for blood flow between the embryo and the 

yolk sac and we have discovered that blood flow starts in two phases, an initial 

plasma flow phase (3 somites) which presumably is low viscosity and low shear 

stress, and a later higher viscosity, peak shear stress erythroblast circulation 

phase (7-10 somites) (Figure 8).  We find that the earliest morphological changes 

in vessel structure, judged by cellular dynamics and molecular markers, occur 

coincident with the onset of erythroblast circulation. We also show that there is 

transient peak in shear stress following the entry of blood cells into circulation, 

suggesting that the initiation of vascular remodeling events is related to changes 

in shear stress.   

 

The high-resolution, dynamic methods that we employed have allowed us to both 

observe when flows begin as well as quantify the velocity of flows.  Previous 

studies assumed that flow began at 4 somites, because blood cells were found in 

the embryo [23]. We also observed a number of non-circulating, globin-positive 

erythroblasts adjacent to vessel walls in the yolk sac and the embryo at the 4-6 

somite stage, but these cells were stationary and possibly differentiated in situ.  
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While it is generally assumed that most blood cells form in the blood islands, 

others have shown that endothelial cells isolated from the yolk sac can give rise 

to hematopoetic lineages [29].  Our data is consistent with the presence of 

hemogenic endothelium in the early yolk sac and embryo. 

 

Dynamic Morphological Changes Related to Remodeling 

We have shown that several key morphological changes in vessel structure 

occur directly after erythroblasts enter into circulation.  Using time-lapse imaging, 

we have shown that there is a dynamic reduction in the average vessel diameter 

in the early plexus, despite obvious cell proliferation.  Decreasing vessel 

diameter correlates with the appearance of ZO-1 expression in endothelial cells 

suggesting the decrease in vessel diameter results from cells forming tight 

junctions with their neighbors.  Close associations between endothelial cells are 

necessary to prevent fluid from leaking from the vessel walls, an important event 

in remodeling.    

 

Mechanical vs. Biochemical Signals 

Instead of providing mechanical stimulus, blood flow could be necessary for 

remodeling because key signaling molecules are delivered to early vessels.  The 

data presented here show that plasma circulation, capable of carrying nutrients, 

proteins and small molecule signals, is established for many hours before overt 

signs of remodeling are observed.  While it is still formally possible that the 
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release of signaling molecules into the circulation is a precisely timed event, the 

data presented here show a strong correlation between the initiation of 

remodeling and the entry of erythroblasts into circulation, suggesting that this 

transition is necessary for vascular remodeling to begin.  Though it is unlikely that 

paracrine signals induce remodeling, plasma flow could carry factors that have a 

role in priming or sensitizing the endothelial cells to react to later stimuli.   

 

The Role of Mechanical Forces in Early Development 

Quantitative measurements of shear stress levels in early vessels show a 

transient peak in shear stress soon after cells enter the circulation.  The levels of 

shear stress are highest as the capillary plexus initiates remodeling and correlate 

strongly with morphological change in the plexus.  Shear stress is capable of 

regulating the expression of many proteins, some of which are known to be 

essential for proper cardiovascular development [30].  For instance several 

studies have shown that shear stress can induce the transcription of Flk-1, a 

tyrosine kinase receptor for Vascular Endothelial Growth Factor (VEGF) [31], as 

well as activate the receptor and cause nuclear translocation [20].  Flk-1 is 

involved in the initial formation of hematopoetic and endothelial cell lineages in 

the embryo [1, 2]. Because early cell differentiation is disrupted in Flk-1 null 

mutant embryos, its role in remodeling is poorly understood.  Interestingly, recent 

evidence from ES cell differentiation studies indicates that the proliferation of Flk-

1+ cells was dramatically increased upon exposure to low levels of shear stress, 
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1.5 dyn/cm2 [32].  These studies showed that it was the shear stress and not 

shear rate which affected proliferation of Flk1 positive cells.  Shear rate is 

dependent only on the velocity of the fluid, whereas shear stress is dependent on 

both shear rate and viscosity.  We find that changes in vascular morphology 

correlate with the entry of erythroblasts into circulation which dramatically affects 

fluid viscosity and hence, the shear stress.  Thus, it is possible that the 

proliferation of Flk-1+ cells in the yolk sac depend on shear stress signals. 

Proliferating Tie-2 positive cells are clearly seen at the onset of flow (Figure 1; 

Movie 1). 

 

In addition to Flk-1 signaling, transcription of PDGF signaling molecules have 

also been shown to be modified by shear stress. PDGF can act as a smooth 

muscle mitogen [33] and mutants in components of the PDGF signaling pathway 

have significantly reduced numbers of α-SMA-positive support cells that are 

needed for vessel stabilization [34, 35]. mRNA transcription of PDGF is graded 

with respect to shear stress in endothelial cells exposed to levels between 0 and 

6 dyn/cm2, but constant at higher shear stress [36]. Recent studies have also 

shown that abrupt changes in shear stress may be even more instructive to 

endothelial cells than chronic shear stress [37] and PDGF-A is differentially 

regulated by step increases in shear stress as compared to gradual increases in 

shear stress [38].  Here we have shown that α-SMA positive cells appear in the 

yolk sac by 11 somites, at times when shear stress levels are at a transient peak 
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(~3.5 dyn/cm2). Soon after, support cells are recruited to surround vessels in the 

yolk sac.  Thus, shear stress may induce the transcription of PDGF, which then 

recruits the migration of peripheral cell types toward the vessel.  

 

Although there is a strong correlation between shear stress and the initiation of 

remodeling, it is likely that this is not the only mechanical force involved in 

remodeling. Endothelial cells are also known to respond to circumferential strain, 

a perpendicular force caused by fluid pressure (for review, see [39]). 

Circumferential strain can increase cell-cell junctions [40]  and can cause the 

upregulation of junction proteins such as ZO-1 [27].  Thus, an increase in 

pressure could be responsible for some of the dynamic events in remodeling that 

we have described; however, it is not currently feasible to measure pressure 

levels in such small vessels making it difficult to test this hypothesis. 

 

Blood Flow in Vessel Patterning and Arterio-Venous Differentation 

The role of fluid dynamics in vascular development has also been studied in 

other systems such as in Avians and in Zebrafish [41, 42].  It is generally 

accepted that the initial pattern of the vasculature is laid down without influence 

from flow dynamics.  We studied Flk1 expression in the early embryos and found 

that Flk1 positive cells were present throughout the yolk sac by the 3 somite 

stage and lined vessels when plasma flow is initiated (data not shown). These 

results agree with data from chick, zebrafish and mouse showing that the pre-
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pattern of endothelial lined vessels is present before the onset of flow [5, 43-45].  

Thus, the initial patterning of vessels is not determined by fluid flow; however, as 

suggested above, the subsequent control of proliferation, vessel growth, and 

regression which are needed for remodeling are likely to depend on fluid derived 

forces.  

 

Since even low levels of plasma flow are present by 3 somites, it is essential to 

re-investigate whether arterio-venous (A-V) differentiation is genetically pre-

determined.  By our staging criteria many markers of A-V identity are not 

expressed until after erythroblasts circulate, well after plasma circulation has 

begun.  EphrinB2, an arterial marker, is expressed in the heart and dorsal aorta, 

but not yet in the yolk sac, at the 7 somite stage.  Notch4 expression, another 

arterial marker, is restricted to the heart, vitelline vein and dorsal aorta in the 3 to 

5 somite mouse embryo [46].  Interestingly, one would expect the dorsal aorta 

and heart, the first locations of A-V markers, to experience relatively high 

pressure from plasma flow as compared to the yolk sac.  Thus, the temporal 

correlation between fluid flow and the expression of these markers needs to be 

re-examined before it can be determined if A-V identity is determined prior to flow 

and thus, is purely genetically determined. 
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Conclusions 

Here we have shown that the initiation of vascular remodeling coincides with the 

entry of erythroblasts into circulation; an event that is preceded by a significant 

period of plasma flow.  These data do not show that shear stress provides a 

necessary signal for remodeling, but by building a timeline of hemodynamic and 

morphological events during remodeling, we can constrain our model and focus 

on those events that are likely to depend on fluid flow.  Currently, we are 

exploring ways to alter hemodynamic properties to test how cells respond to 

these changes and to build a better understanding of the events that are 

necessary for proper vessel remodeling.   
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Materials And Methods 

Dissection and Embryonic Culture 

Breeding pairs of mice were mated overnight.  The presence of a vaginal plug in 

the morning was taken as 0.5 dpc.  Embryos were collected on the morning of 

the eight day and cultured as previously described [47].  ImageJ software 

(http://rsb.info.nih.gov/ij/) was used to calculate the Feret’s diameter for avascular 

spaces on images to which a black and white threshold was applied.  Objects 

that were smaller than the area of 2 erythroblasts (less than 200 µm2) were 

ignored since some erythroblasts do not express GFP.  Average diameter and 

average branch angle was measured using Adobe Photoshop. 

 

Shear Stress Calculations 

Embryos were dissected and placed in culture media and allowed to recover for 

one hour in the incubator. They were then transferred to the heated microscope 

stage.  An initial image at 20x magnification was taken and the location of the 

velocity measurement marked. The laser line was set to line scanning mode, and 

the single laser line across a vessel was scanned repeatedly for 3000 lines.  The 

amount of time that an erythroblast is imaged is directly related to the velocity of 

the erythroblast, as previously described [25].   
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Dye Injection 

After dissection, embryos were allowed to recover in dissecting media for 30 

minutes.  A pulled quartz needle (Sutter Instruments) was filled with 10,000 MW 

Texas Red dextran or fluorescein dextran (Molecular Probes, No. D-1828 and D-

1281, respectively) and a picospritzer II (General Valve Corp.) was used to inject 

small volumes of dye into the heart tube.  Embryos were then returned to the 

incubator for 10 minutes before imaging.   

 

Fluorescence Recovery After Photobleaching 

Embryos were injected with 10,000MW fluorescein dextran (Molecular Probes, 

No. D-1821), and transferred to Nunc Lab-Tek chambers (No. 155380) with 

culture media. The embryos were allowed to recover in a tissue incubator for an 

hour, to ensure that dye was present in all vessels and that heart rates were 

normal.   The microscope (Zeiss LSM5 PASCAL) was preheated to 37°C using a 

heater box [47].  Using a 20x lens, an initial image of the plexus was taken, and 

the location of the bleach marked.  Scan speeds were set to 100 msec per frame 

and the aperture was set fully open.  The region of interest was scanned 

repeatedly at 10% laser power to obtain initial fluorescence levels.  The laser 

power was increased to 100% to bleach.  The laser power was subsequently 
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returned to 10% and 500-600 frames were collected.  Embryos were transferred 

to separate wells and somites were counted. 

 

Mean fluorescence with respect to time for the region of interest was exported to 

a spreadsheet.  The recovery curve was fit to the equation: 
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where F(t) is the fluorescence intensity, F0 is the initial post-bleach 

fluorescence intensity, FF is the final level of fluorescence recovery, 

I0 and I1 are zeroth and first order Bessel’s Functions, and τ is the 

characteristic diffusion time.   

 

The bleach area was divided by characteristic diffusion time to give the 

measured diffusion rate.  This is subsequently referred to as a perfusion rate 

since flow is present. 

 

Immunohistochemical Staining 

For ZO-1 staining, embryos were fixed overnight in methanol:DMSO (4:1), and 

then stored in methanol.  Embryos were rehydrated and blocked with 2% nonfat 

dried milk in PBS.  Embryos were incubated overnight at 4°C with primary 
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antibodies (Zymed, No. 61-7300) at a 1:100 dilution with dried milk in PBS.  

Embryos were washed with 0.5% Triton and 2% nonfat dried milk in 10mM Tris.  

Embryos were incubated overnight at 4°C with secondary antibodies (Molecular 

Probes, No. A-11009) and then washed. 

For staining of α-SMA, embryos were fixed in 4% PFA overnight at 4°C.  

Embryos were washed 4-5 times with 0.1% Triton in PBS and then incubated 

overnight at 4°C with fluorescently conjugated primary antibodies (Sigma, No. 

C6198) at 1:100 dilution in 0.1% Triton.  Embryos were washed 4-5 times, for 1 

hour each.   
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Tables 
 
Table I – Expansion of blood islands and onset of erythroblast circulation 
 
Somite stage 0-2 3 4 5 6 7 8 9 10 11 
           

Average Heart Rate (bpm) 0 18 32 38 36 40 38 53 60 64 
           

Blood islands only 6 3 3 3       

Some expansion proximal to 
blood islands   1 2 2      

Extensive blood island 
expansion    3 4 1     

Some flow, in distal yolk sac    1  8 5 3 1  

Full flow present       3 5 6 4 

           
Total (number of embryos 
observed) 6 3 4 8 6 9 8 8 7 4 
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Figure 1 – Time-Lapse of the Initiation of Erythroblast Circulation.  The initiation 

of erythroblast circulation was followed using time-lapse microscopy (Movie2) in 

an embryo expressing GFP (green) in its erythroblasts [48].  The embryo starts at 

6 somites, before erythroblasts circulate. The time-lapse is focused on the yolk 

sac (YS), and the heart (H) and somites (S) can be seen.  Erythroblasts enter 

circulation within 11 frames.  Images were taken every 6 minutes at 10x 

magnification on a Zeiss LSM5 PASCAL for a total of 12.1 hrs.   

Figure 2 – Shear Stress with Respect to Somite Stage.  Shear stress was 

calculated using confocal line scanning [25].  Shear stresses are highest, up to 

3.5 dyn/cm2, during the initial stages of vascular remodeling between 10 and 13 

somites.   

Figure 3 – Dextran Injection Into The Cardiac Crescent.  10,000MW fluorescent 

dextran was injected into the heart (Hrt) of embryos at various stages.  The 

embryos were incubated for 10 minutes, and imaged to determine when dextran 

would fill the yolk sac capillary plexus (YS) by plasma flow.  Examples of plexus 

that do not fill (A & B, arrow) and that do fill (D & E, arrow) at the 2 somite stage 

are shown.  Head folds (HF) are also visible.  The plexus fills consistently from 3 

somites onward (3 somites, C; 7 somites, F). 

Figure 4 – Perfusion Coefficients Measured Using FRAP.  Fluorescence 

Recovery After Photobleaching (FRAP) was used to calculate perfusion 

coefficients within the early embryonic blood vessels to assess the presence of 
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flow with respect to somite stage (A).  The wide range of perfusion coefficients is 

thought to arise from the more or less tortuous paths of flow through the yolk sac 

between the heart and dorsal aorta (B). 

Figure 5 – Antibody Staining of Remodeling Markers.  Antibodies stain for ZO-1 

(red, A-C) and α-SMA (red, D-F) in the vasculature of the yolk sac at 11 somites 

(A, D), 13 somites (B, E) and 21-29 somites (C, F). Erythroblasts that express 

GFP (green) are also present.  ZO-1 initially highlights cell-cell junctions in all 

tissues, but becomes elevated in endothelial cells by 13 somites.  The 

expression becomes significantly higher in endothelial cells than surrounding 

tissues by E9.5 (F). α-SMA stains for the recruitment of peripheral cells and can 

first be observed at 13 somites (E).  By E9.5 (F), α-SMA positive cells envelope 

the large vessels of the yolk sac. 

Figure 6 – Time-Lapse of Microvascular Remodeling.  Endothelial cells of the 

yolk sac were followed through time-lapse microscopy (A-D, Movie 1) using a 

transgenic mouse that expresses GFP (green) in its endothelial cells [28].  The 

embryo is initially at 8 somites stage.  Vessel diameters reduce and endothelial 

cells divide during remodeling (bright spots). Images were taken every 10 

minutes at 10x magnification on a Zeiss LSM5 PASCAL for a total of 11.7 hrs.  

The average vessels diameter (E), Feret’s diameter for the avascular region (F) 

and the branch angle between vessels (G), was followed through the frames to 

assess changes in morphology. 
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Figure 7 – Model of Cardiovascular Development.  As the heart begins 

contracting at 3 somites, it induces flow of the primordial plasma.  The flow 

increases in magnitude and by 7 somites, erythroblasts begin entering the 

circulation.  At 9 somites, remodeling of the vascular network begins.  Shear 

stress levels are high when erythroblasts first circulate, but begin to reduce at the 

13 somite stage. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Summary 

Many cardiovascular mutants exist in which the embryonic vascular plexus fails to 

remodel due to altered cardiac function.  Vascular defects are assumed to be secondary 

to cardiac defects, due to altered fluid dynamics in the vasculature.  Presumably, the 

altered flow produced in these mice is unable to induce proper mechanical signaling 

within the vasculature and this mechanical signaling is required to initiate vascular 

remodeling. This hypothesis, however, has not been tested because of the difficulty in 

measuring fluid dynamic aspects of the phenotypes.  Using a transgenic mouse that 

expresses GFP in primitive erythroblasts, we characterize hemodynamic inefficiencies in 

Myosin Light Chain 2a knock-out mice. Null mutations in MLC2a result in a specific heart 

defect; atrial contraction of the heart is silent, but the ventricle can beat normally.  We 

find that these mice exhibit increased oscillatory flow, decreased plasma flow velocities 

and a failure of erythroblasts to enter the circulation.  In order to link the flow phenotype 

to the vascular deficiencies, we have phenocopied individual aspects of the 

hemodynamic insufficiencies in order to establish the importance of the individual flow 

defects to vascular remodeling and link these to changes in proliferation and protein 

expression.  We show that it is not only important for flow to be present, but that viscous 

flow, as provided by the entry of erythroblast into circulation, is essential for proper 

vascular remodeling. 
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Introduction 

The early embryonic vasculature is established through two processes: vasculogenesis, 

which consists of de novo formation of blood vessels, and angiogenesis, which involves 

both the remodeling of existing vessels and the sprouting of new vessels [1].  The first 

site of vasculogenesis in the mouse is the yolk sac and this process consists of the 

specification of angiogenic cells, and subsequently of the migration and interconnection 

of these angiogenic cells leading to the formation of a honeycomb-shaped network of 

blood vessels known as the vascular plexus.  During angiogenesis, the early plexus 

remodels to form a network resembling more mature vasculature with larger vessels 

branching to form progressively smaller vessels.  The remodeling process happens 

quickly, with the most prominent changes occurring within twenty-four hours in both 

chick and mouse embryos, and is critical to embryonic survival, such that embryos that 

fail to remodel die as early as E10.5 (for example, see [2-6]).  Remodeling involves 

changes in vessel morphology and recruitment of peripheral cell types [7].  The 

mechanism through which remodeling occurs, however, is poorly understood. 

 

Remodeling of the vascular plexus is dependent on the presence of blood flow.  When 

the heart is removed [8, 9] or prevented from beating [5], remodeling does not occur.  

Gene ablation studies in mouse have shown that disrupting early heart function can lead 

to vascular defects in the yolk sac as well.  Mutations in several genes, including Ncx1-/- 

[5], MEF2c-/- [10], Cx45-/- [4], MLC2a-/- [11], and Titin-/- [12] all show a failure in yolk sac 

remodeling due to poor circulation.  In one such study, the vascular abnormalities 

caused by the deletion of N-cadherin were rescued by cardiac specific expression of 
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either N- or E-cadherin [13] indicating that the vascular defects were secondary to the 

heart defects and probably due to abnormal blood flow.   

 

While it is well accepted that proper blood flow is required for remodeling of the vascular 

plexus, it is not known what aspect of blood flow is necessary.  Blood serves as an 

oxygen and nutrient carrier and improper flow could result in increased hypoxia or 

nutrient starvation.  Flowing blood also produces mechanical forces on the endothelial 

cells, such as shear stress which is a force tangential to the endothelial cells, and 

pressure which is a force perpendicular to the endothelial cells.  It is known that 

endothelial cells can perceive both these forces and such mechanical triggers are able 

to induce changes in gene expression within endothelial cells (for review, see [14]).  

Many of the genes that can be controlled by shear stress are essential to proper 

cardiovascular development, including PDGF-β [15],  connexin43 [16] and Flk1 [16].  In 

addition, flow causes changes in endothelial cell morphology such that the cells flatten 

and align with the direction of flow [17].  In Titin-/- embryos, a protein involved in cardiac 

contraction, abnormal endothelial morphology is present such that endothelial cells are 

more globular and do not flatten, reminiscent of cell shapes associated with migrating 

angioblasts rather than differentiated endothelial cells [12].  There is strong reason to 

suspect, therefore, that the forces caused by flowing blood during development are 

important and essential for proper vascular development.  The issue lies in the fact that 

fluid dynamic phenotype has never been measured and linked to changes in the 

vascular morphology. 
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Measuring blood flow dynamics in the early embryo is problematic. For older embryos or 

in larger vessels, it is possible to use Doppler Ultrasound to measure flow dynamics and 

this technique has been used to measure the flow abnormalities which lead to embryonic 

lethality in the NFATC1-/- embryo [18].  The small vessels of the remodeling yolk sac are 

not, however, accessible to ultrasound measurements.  In order to measure flow 

dynamics in these small vessels, we have previously developed a technique based on 

confocal line scanning using an embryo that expresses GFP in its primitive erythroblasts 

(Chapter 3, [19]).  This technique allows us to measure the hemodynamic phenotype of 

mutant embryos and ascertain the effect of these changes on the vascular morphology.  

Linking the changes in blood flow dynamics directly to the phenotype is critical to 

understand the role that blood flow plays in vascular remodeling. 

 

We now report on hemodynamic analysis of a mutant mouse, MLC2a-/-, which has 

cardiac deficiencies leading to vascular defects [11].  MLC2a is the atrial-specific myosin 

light chain, which is expressed specifically in the early embryonic heart and not the 

vasculature [20].  By breeding an erythroblast-specific GFP marker [21] into the 

MLC2a+/- background, we have been able to analyze the flow present in these mice.  We 

find that these mice exhibit decreased plasma velocity, increased oscillatory flow and a 

failure of erythroblasts to circulate properly.  We then proceeded to phenocopy aspects 

of these fluid dynamic deficiencies, either by inducing weakened blood flow without 

oscillatory flow or by preventing entry of the erythroblasts into circulation without 

weakening the heart, in order to establish which factors were the primary causes of the 

vascular phenotype.  The presence of increased oscillatory flow was not found to be the 

primary cause of the phenotype of the MLC2a-/- embryos since weakening the heart 
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alone was sufficient to induce the phenotype.  We find that preventing the entry of the 

erythroblasts into circulation can produce most aspects of the lack of remodeling 

phenotype.  This works shows that not only is flow important for vascular remodeling but 

that the viscous increase caused by the entry of the red blood cells is essential. 

 

Results 

The knock-out mice of atrial-specific myosin light chain (MLC2a) show a vascular 

phenotype in which angiogenic remodeling is inhibited [11]. Since the MLC2a gene does 

not normally function outside the heart, the vascular phenotype was thought to arise 

from altered blood flow. Our previous analysis of yolk sac circulation shows that in 

normal development blood circulation is established through a multi-step process.  First, 

plasma flow begins as the heart begins to beat (2-3 somites) and increases as the heart 

contractions become stronger.  Erythroblasts enter the circulation over the course of 

several hours (6 to 9 somite stage), increasing shear stress and perhaps acting as a 

signal for the initiation of vessel remodeling.  By the 13 somite stage, shear stress levels 

are reduced as vessel remodeling is underway (Jones et al., submitted, Chapter 4).  The 

nature of the circulatory defect in the MLC2a-/- embryos is unknown, including the stage 

at which MLC2a-/- circulatory development diverges from normal development.  If plasma 

flow is abnormal, erythroblast circulation could fail to be established.  Alternatively, the 

lack of atrial contraction in the MLC2a-/- embryos could result in lowered shear stress 

which could alter the mechanosensory signals necessary for triggering vascular 

remodeling. Another possibility is that poor atrial function could cause excessive 

regurgitation, leading to increased oscillatory shear stress within developing vessels.  
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To evaluate the potential role of altered flow in the abnormal development of the MLC2a 

knock-out embryos, we mated these mice to the є-globin::GFP mice [21], which express 

GFP in primitive erythroblasts, in order to analyze fluid dynamics in the yolk sac 

vasculature.  We first dissected the mice at various stages to observe the expansion of 

the blood islands and the formation of the plexus (Figure1, Table I).  Before 7 somites, in 

both heterozygous (Figure 1A) and homozygous knock-out mice (Figure 1B), the blood 

islands are tightly clustered in the proximal end of the yolk sac.  By 10 somites, the blood 

islands expand to fill the entire plexus and appear phenotypically normally in both 

heterozygous and homozygous mutant embryos (Figure 1D).  Homozygous knock-out 

embryos, however, fail to establish flowing erythroblasts by this stage, as seen in wild-

type embryos (Table I).  Defects in vascular remodeling can first be seen by the 13 

somite stage.  Wild-type and mutant embryos compared at E9.5 indicate that the 

vascular plexus does not remodel into mature vessels (Figure 1F).  Somites in mutant 

embryos are produced at the same rate as wild-type littermates, indicating that 

development as a whole is not delayed at this stage and that the phenotype is specific to 

the cardiovascular system. 

 

Next, we examined how erythroblasts fill the plexus since culture and observation under 

fluorescence microscopy of MLC2a homozygous null embryos showed that erythroblasts 

do not circulate freely (Table I).  Some small oscillatory motions are present; however, 

laminar flow that is normally established is not sustained.  Using time-lapse video 

microscopy as previously described (Chapter 2, [19]), we examined blood flow within 

wild-type and mutant yolk sacs.  Movie 1, Figure 2 shows the results of a time-lapse 

analysis of blood island expansion in MLC2a-/- embryos. During the first part of the time-
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lapse movie, erythroblasts appear and disappear very quickly from one frame to the 

next, indicative of some limited erythroblast motion.  Regions containing immobile 

erythroblasts appear and quickly expand to fill the plexus. This causes an increasing 

number of erythroblasts to become trapped.  The plexus fills quickly (within 22 frames, or 

2 hours) and most erythroblasts are stationary after this point (Figure 2, C-F).  While 

some limited erythroblast motion is initiated, erythroblasts appear to be taken up by the 

flow only briefly and motion of erythroblasts is intermittent. 

 

To determine the precise nature of the erythroblast motion in the yolk sac of MLC2a-/- 

embryos, time-lapse sequences were taken at a higher magnification (40x) using a 

faster frame rate of acquisition (2 Hz) to resolve the flows and to track individual cells.  

Image sequences taken at 2 frames per second (Figure 3, Movie 2) indicate that 

erythroblasts oscillate back and forth (Figure 3B). In wild-type embryos, the net motion of 

erythroblasts during a cardiac cycle is forward. We find that in MLC2a-/- embryos as 

much retrograde (backward) motion is present as anterograde (forward) motion.  The 

erythroblasts thus seem to oscillate in place rather than to flow within the early vessels.  

Though erythroblasts move with the blood flow in the mutant embryos, the net 

displacement within a cardiac cycle is limited because of the large amount of retrograde 

flow.   

 

Since defects were seen in the initial stages of erythroblast circulation, we next 

investigated whether plasma flow was normal in these embryos using Fluorescence 

Recovery After Photobleaching (FRAP). FRAP is a technique in which a small area of a 

fluorescent field of view is bleached and the recovery curve of the fluorescence is 
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measured [22].  Fluorescence recovery can arise either from flow of fluorescent 

molecules into the field of view or through diffusion.  In cases where flow is known to be 

absent, the rate of fluorescence recovery can be used to calculate a diffusion coefficient 

for fluorescently tagged molecules.  The presence of plasma flow can be assessed by 

the presence of large increases in the apparent or measured diffusion coefficients, called 

a perfusion coefficient, as compared to measurements for pure diffusion, with the 

magnitude of the increase indicative of the general level of flow present.  We injected 

10,000MW fluorescein-dextran into the heart of the embryos and then bleached square 

regions of interest within the vascular channels and followed the fluorescence recovery 

(Figure 4).  To measure the value for pure diffusion, we performed FRAP on embryos in 

which we specifically stopped cardiac contraction. In these embryos, we find that purely 

diffusive fluorescent recovery results in a diffusion coefficient of 51 µm2/s (n=8, std dev= 

21) for 10,000MW dextran in embryonic blood plasma at 37 °C.  In wild-type embryos, 

we find perfusion coefficients between 100 and 3500 µm2/s (Figure 4A). Since this is 

considerably higher than the pure diffusion rate in the absence of flow, we find that there 

is flow present at these stages. The measured perfusion coefficients are comparable 

between wild-type (Figure 4A) and knock-out (Figure 4B) littermates at the 4 somite 

stage.  As the embryos develop, however, there is a significant increase in the measured 

perfusion coefficient of wild-type embryos which is not matched in the knock-out 

embryos.  At the older somite stages, some vessels of wild-type embryos had flow that 

was too fast to measure (perfusion coefficient > 9000 µm2/s).  In knock-out embryos, the 

measured perfusion coefficients were never higher than 1000 µm2/s.  The measured 

perfusion coefficients represent an order of magnitude increase in measured perfusion 

coefficient over the purely diffusive case, indicating that flow is present.  While these 
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data indicate that the plasma is flowing in the MLC2a-/-embryos, we also find that the 

flow induced by the heart is much slower than normal. 

 

Slow plasma flow indicated that heart performance was reduced in MLC2a mutant 

embryos and we sought to determine whether the remodeling phenotype could be 

induced solely by reduced cardiac ejection volume. We treated the embryos with KB-

R7943, an Ncx1-specific inhibitor [23].  Ncx1 is a calcium-sodium exchange pump 

expressed specifically in cardiac tissue during early development [20].  Embryos that are 

treated with this compound develop normally and increase somite number at the same 

rate as control embryos (data not shown), but show reduced strength of cardiac 

contractions.  Though the vast majority of erythroblasts remain immobile (Figure 5C), as 

with the MLC2a-/- mice, a small number of erythroblasts flow within the embryonic 

vasculature (data not shown).  This is similar to the occasional erythroblasts that 

oscillate in the MLC2a-/- embryos, however, in the KB-R7943 embryos; these 

erythroblasts do not exhibit increased retrograde flow.  Blood islands expand from the 

initial tight band of erythroblasts, but most erythroblasts never circulate.  After culture, 

control embryos have several large diameter vessels coming off the dorsal aorta and 

feeding the yolk sac, a regular branching pattern and enlarged avascular spaces, all of 

which are characteristics consistent with vascular remodeling (Figure 5A, B). In treated 

embryos after culture, the vascular plexus lacks the large diameter feeding vessels and 

exhibits large vascular spaces separated by very small avascular regions (Figure 5C) 

similar to the unremodeled phenotype seen in the MLC2a-/- embryos. Plasma flow, as 

measured by FRAP (Table II), was in the same range for the KB-R7943 treated embryos 

(average, 750 µm2/s) as for MLC2a-/- embryos (average, 560 µm2/s) indicating that 
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slower plasma flow was induced by this treatment. These results indicate that the 

phenotype after treatment with the Ncx inhibitor is similar to that of the MLC2a-/- 

embryos. As such, the reduction in circulation caused by the weakened heart was 

sufficient to induce remodeling defects.   

 

Next, we sought to investigate whether the remodeling phenotype observed in the 

MLC2a mutant embryos results from lowered shear stress or the poor circulation of 

nutrients necessary for proper remodeling.  The viscosity of blood is significantly 

dependent on the hematocrit, or the percent of the volume taken up by the erythroblasts 

[24].  To test whether the viscous increase caused by the entry of the erythroblasts into 

circulation was essential, we prevented their entry by focally polymerizing acrylamide 

around the blood islands (see methods).  Experimental embryos were injected with 

acrylamide and ammonium persulfate (APS) into the heart and TEMED into the blood 

islands. Control embryos were injected with only acrylamide/APS into the heart, or 

injected with only TEMED into the blood islands or left uninjected. All control embryos 

developed normally, showing that the treatment did not injure the embryos.  The 

polymerization of the blood islands results in the majority of the erythroblasts remaining 

fixed in the proximal end of the yolk sac even at the 14 somite stage (Figure 6D) when 

most erythroblasts circulate in wild-type embryos (Figure 6A).  Since this treatment 

aimed to prevent entry of the erythroblasts into circulation without affecting heart 

function, we used FRAP to measure perfusion coefficients and perfusion coefficients 

which were similar to wild-type embryos of the same stage (Table II).  FRAP 

measurements on treated embryos measured perfusion coefficients (n=16) between 400 

and 6000 µm2/s (av. 3167, Table II) consistent with plasma perfusion coefficients 
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present when erythroblasts are fluidized in untreated embryos.  Some vessels in treated 

embryos contain flow too fast to measure using FRAP which is also seen in uninjected 

embryos. As such, plasma flow was normal in treated embryos.  In all control embryos, 

we observe the presence of large diameter vessels (Figure 6B), a more regular 

branching pattern and enlarged avascular spaces (Figure 6C), consistent with vascular 

remodeling. In treated embryos, avascular spaces are enlarged and the dilated vascular 

spaces of the unremodeled plexus disappear, consistent with the initial phase of 

vascular remodeling (Figure 6F).  The large blood vessels that form directly off the heart 

and dorsal aorta and feed the yolk sac, however, are not present by 14 somites (Figure 

6E). This phenotype is not equivalent to the phenotype of MLC2a-/- embryos. The two 

phenotypes, however, share many common characteristics. Vessels are able to initiate 

remodeling some aspects of vascular remodeling without high shear flow, but do not 

form large caliber vessels. 

 

Oscillatory flows have been shown to induce proliferation in cultured endothelial cells 

[25].  Since the MLC2a -/- embryos showed a similar phenotype to the KB-R7943 treated 

embryos that do not have oscillatory flow, we investigated whether there were secondary 

effects present in the form of increased cell proliferation. Using an antibody to phospho-

histone 3 to highlight replicating cells, GFP to identify red blood cells and DAPI to 

determine the total number of cells within an image, the percent of non-erythroblast cells 

that were replicating was measured in wild-type, mutant, KB-R7943 treated and 

acrylamide treated embryos (Figure 7).  MLC2a-/- embryos showed increased levels of 

proliferation as compared to all other experimental embryos.  Proliferation was more 

than two-fold higher in MLC2a-/- embryos than in stage-matched control embryos. 
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Discussion 

In trying to understand what aspects of blood flow are important for the vascular 

remodeling process, it is necessary to separate the various features of blood flow.  The 

MLC2a-/- mice have several defects in blood flow including: i) a weakened heart that 

leads to lower plasma flow velocities, ii) the lack of entry of the erythroblasts into 

circulation that leads to lower viscosity, and iii) the increase in retrograde flow, each of 

which could theoretically cause hemodynamic insufficiencies.  By phenocopying various 

aspects of the knock-out mice, we are able to investigate the role of each of these 

hemodynamic deficiencies. 

 

The presence of lower levels of plasma flow indicates that the heart could not induce 

regular plasma flow within the vasculature.  This is likely one of the reasons that the red 

blood cells do not enter circulation since a minimum flow velocity is required to suspend 

particles in a flowing fluid, known as the fluidization velocity.  We phenocopied the 

MLC2a-/- embryos without inducing oscillatory flow using treatment with the Ncx1 

inhibitor, KB-R7943.  The vascular phenotype of these treatments is identical to the 

MLC2a-/- mice, indicating that reduced cardiac output alone is sufficient to induce the 

failure of vascular remodeling.   

 

In order to separate the effects of the weaker heart from those of the entry of 

erythroblasts into circulation, we used focal polymerization around the blood islands.  

Plasma flow levels are similar to wild-type after polymerization, as indicated by the high 

perfusion rates measured by FRAP (Table II).  The results of the focal polymerization 

experiments show that some aspects of vascular remodeling are present without 
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erythroblast motion.  The embryonic plexus initially consists of large vascular regions 

separated by small avascular spaces.  As remodeling begins, the diameter of most 

vessels within the plexus decreases.  This is accompanied by growth of the avascular 

regions.  These changes are present when the erythroblasts are prevented from entering 

circulation through polymerization.  In the MLC2a-/- mice, this process does not occur 

and the vessels of the plexus remain dilated.  A strong heart does not only produce 

higher velocity flow, but would also produce higher pressure flow, and we are not able to 

establish which of the two is essential.  These results do, however, indicate a role for 

strong plasma flow during early vascular remodeling.   

 

It is important to note, however, that the appearance of large caliber vessels coming 

directly off the dorsal aorta does not occur in embryos where the blood islands have 

been immobilized.  Erythroblasts carry oxygen to the tissues as well as playing a role in 

the hemodynamics of the flowing blood.  The entry of erythroblasts into circulation 

increases the viscosity of the blood [24], and since the calculation of shear stress is 

dependent on both the velocity and viscosity of the fluid, this causes an increase in the 

shear stress on the endothelial cells.  The lack of large diameter vessels is not 

consistent with the role of erythroblasts as oxygen carriers since hypoxia is believed to 

stabilize the formation of large vessels [26] and lack of HIF1α signaling results in the 

failure of large caliber vessel formation [27, 28].  As well, whole embryo culture at this 

stage in the presence of carbon monoxide, which ablates oxygen carrying ability of the 

erythroblast, does not affect remodeling (unpublished results).  Increased shear stress, 

on the other hand, leads to increased vessel diameter [29].  We therefore believe the 
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lack of large vessel formation is due to the low viscosity, and therefore low shear stress, 

flow that is present due to absence of erythroblasts in circulation. 

 

Through embryo culture and time-lapse microscopy, we are able to detect the presence 

of oscillatory flow in the yolk sac of MLC2a-/- embryos.  When erythroblasts first begin 

circulating, the heart valves are not yet formed.  Though we observe significant 

retrograde flow in wild-type embryos (unpublished results), the net flow is forward.  In the 

MLC2a-/- embryos, there does not appear to be a net forward motion of the circulating 

erythroblasts.  The presence of this retrograde flow puts an abnormal load on the 

embryonic heart and may explain the severe chest edema observed in the knock-out 

embryos [11]. These results highlight the role of atrial contraction in preventing 

retrograde flow before the formation of the heart valves.  In the zebrafish wea mutants, 

the atrial myosin heavy chain (amhc) gene is disrupted leading to a silenced atrial 

contraction.  Circulation is present in these embryos, though inefficient [30].  The 

presence of increased retrograde flow, however, was not specifically investigated. Our 

results suggest that the atrial contraction is essential in blocking retrograde flow before 

valve formation.   

 

The presence of retrograde flow is especially important to vascular remodeling because 

this type of flow is known to be biologically active for mature endothelial cells (for review, 

see [14]). A significant amount of work has been done on the effect of oscillatory flows 

on endothelial cells because atherosclerotic plaques tend to form in regions where 

oscillatory eddies are present in the blood flow [31].  Since the failure to remodel 

required only reduced heart function and not oscillatory flow as shown by the KB-R7943 
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treatment, we do not believe that the presence of oscillatory flow was the primary reason 

for the failure of the yolk sac to remodel.  This is not to say that increased oscillatory flow 

does not have an effect during remodeling as indicated by the increased level of 

proliferation in the MLC2a-/- embryos as compared to the wild-type embryos, KB-R7943 

treated embryos and the acrylamide treated embryos.  We believe that the increase in 

proliferation is due to the oscillatory flow since reduced nutrient and oxygen delivery due 

to altered flow might result in lower, not higher levels of proliferation.  The effect of the 

increased proliferation, however, was not as significant as the effects caused by the 

weakened heart contraction. 

 

Taken together, our findings support an early role for fluid dynamics and more 

specifically shear stress during vascular development.  The presence of plasma flow 

alone, without the increase in viscosity caused by the entry of erythroblasts into 

circulation, does not allow for proper remodeling.  The presence of proper plasma flow in 

these embryos, as shown by the large perfusion coefficients, indicate that nutrients and 

growth factors can circulate and these components alone cannot induce remodeling. 

Thus, it is likely that the role of the early circulation of erythroblasts is to increase the 

blood viscosity in order to establish a proper and energy efficient cardiovascular loop 

before circulation is needed for nutrient and oxygen delivery. 

 

The other physical force which may be important for proper cardiovascular development 

is tangential strain caused by pressure.  Since pressure cannot currently be measured in 

vessels as small as those present in the early vasculature, it is difficult to establish the 

exact role pressure may play during development.  The presence of some aspects of 
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vascular remodeling in acrylamide treated embryos, such as the initial reduction in the 

diameter of many of the vessels in the yolk sac that is accompanied by growth of 

avascular regions, indicate a role for pressure as well as shear stress.  These changes 

are not present when heart contractions are weak which should cause lower pressure, 

such as in the MLC2a-/- embryos.  This work thus implicates a role for both pressure and 

shear stress during cardiovascular development. 

 

Though blood flow is known to be essential for embryonic vascular remodeling, the role 

of blood fluid dynamics remains controversial.  Many knock-out phenotypes that fail to 

remodel the yolk sac vasculature are believed to have abnormal fluid dynamics, 

however, these are rarely investigated.  By analyzing the fluid dynamics of the MLC2a-/- 

embryos, we are able not only to assess why these mice lack vascular remodeling but 

also assess the importance of various aspects of blood flow in the remodeling process.   

 

Materials And Methods 

Dissection and Embryonic Culture 

Breeding pairs of MLC2a+/-:є-globin::GFP mice [11, 21] were mated together and the 

presence of a vaginal plug in the morning was taken as 0.5 dpc.  Embryos were 

collected on the morning of the eighth day and cultured as previously described [32].   

 

For time-lapse microscopy, single images were taken every 6 minutes at a magnification 

of 20x (Plan-Neofluar 20x/0.5NA) on a Zeiss LSM 5 PASCAL.  Real time images of 

oscillatory motion were taken with 40x magnification, and individual cells were tracked 
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manually by connecting the center of the same cell in subsequent images.  Overlay of 

tracking images was performed using Adobe Photoshop. 

Fluorescence Recovery After Photobleaching 

Embryos were injected with 10,000MW dextran conjugated to fluorescein (Molecular 

Probes, No. D-1821) and put in culture.  FRAP was performed as previously described 

(Jones et al., submitted; Chapter 4).  

 

KB-R7943 Inhibition 

For KB-R7943 treatment, embryos were cultured in roller culture (BCI Engineering) 

rather than static embryo culture.  Embryos were somite stage matched between treated 

and control before culture, and three embryos were cultured in each vial.  Initial somite 

counts were between 5 and 7 somites.  Each vial contained 2 mL of cultured media, and 

for treated embryos 5 µL of 6 mM KB-R7943 (EMB Bioscience, No. 420336) was added 

to the media.  Embryos were kept in culture for 6 to 10 hours.  After culture, heart rates 

were measured and the expansion of the blood islands was imaged on a fluorescent 

dissecting microscope.  Texas Red-conjugated 10,000 MW dextran (Molecular Probes, 

No. D1828) was then injected into the heart of the embryos using a pulled glass needle 

and a Picospritzer II (General Valve Corp.).  Embryos were placed in a tissue culture 

incubator for 30 minutes, and then the plexus was imaged on a confocal microscope 

(Zeiss LSM 5 PASCAL) at 20x magnification (Plan-Neofluar 20x/0.5NA). 
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Acrylamide Immobilization 

Embryos were dissected at a stage between 3 and 5 somites.  A 98.8 v/v% 

acrylamide/bis-acrylamide (National Diagnostics, No. EC-890) and 1.2 v/v% ammonium 

persulfate (stock 20 w/v%) solution was prepared and injected directly into the heart of 

the embryos using a Picospritzer II (General Valve Corp.).  Two to three small volume 

injections were used rather than a single large volume injection to prevent damage to the 

heart.  Single large injections caused the heart muscle to stretch and even control 

embryos which were injected with only acrylamide did not develop normally in this case.  

Embryos were placed in a tissue culture incubator for 30 minutes to allow the acrylamide 

solution to circulate.  Embryos were then injected with TEMED directly into the blood 

islands of the yolk sac.  The blood islands were visualized using an є-globin::GFP 

transgenic line [21] on a fluorescent dissecting scope.  Several focal injections were 

performed in order to polymerize the entire circumference of the blood islands.  Three 

sets of controls were performed: a) uninjected embryos, b) embryos injected only with 

the acrylamide solution into the heart, and c) embryos injected with TEMED into the 

blood islands.  For all controls and experimental sets, embryos were then cultured in 

roller culture.  Three embryos were placed per vial with 2 mL of culture media.  Embryos 

were cultured for 10 hrs, until approximately the 14 somite stage.  After culture, the 

expansion of the blood islands was imaged on a fluorescent dissecting microscope using 

the GFP marker.  The vessel morphology was imaged in the same manner as with the 

KB-R7943 treated embryos. 
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Analysis of Replication in Yolk Sac 

Embryos expressing є-globin::GFP were fixed for one hour in 4% PFA at 4°C and then 

washed 4-5 times in PBS.  Embryos were blocked with 2% nonfat dried milk in PBS and 

then incubated overnight at 4°C with primary antibodies to Flk1 (PharMingen, No. 

555307) and phospho-histone 3 (Upstate, No. 06-570) at a 1:100 dilution with dried milk 

in PBS.  Embryos were washed with 0.5% Triton and 2% nonfat dried milk in 10mM Tris.  

Embryos were incubated overnight at 4°C with secondary antibodies conjugated to Cy3 

and Cy5 respectively and then washed.  Embryos were then stained with DAPI and 

imaged at 40x on a Zeiss LSM510 META.  The total number of cells (DAPI) and the total 

number of replicating cells (phospho-histone 3) were counted.  The number of replicating 

cells expressing erythroblast markers (є-globin:GFP) or endothelial cell markers (Flk1) 

were also recorded. The number of non-erythroblast cells that were replicating was 

calculated by subtracting the replicating erythroblasts from the total number of cells that 

are replicating, and dividing this number by total number of cells minus the number of 

erythroblast present. 
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Tables 
 
Table I – Expansion of Blood Islands and Erythroblast Circulation in MLC2a-/- 
Embryos 
 
 
 
KO Phenotype      
      

Somite stage 4-5 6-7 8-9 10-11 12-13 
Blood islands only 8 1  1  
Some expansion proximal to blood 
islands 1 6 5 1  
Extensive blood island expansion   2 5  

Full plexus   2  5 
  

     

Percent with circulating erythroblasts 0% 0% 0% 0% 0% 
  

     

N total 9 7 9 7 5 
      

WT Phenotype      
      

Somite stage 4-5 6-7 8-9 10-11 12-13 
Blood islands only 6 2    
Some expansion proximal to blood 
islands 7 4 1 1  
Extensive blood island expansion  6 17 4  

Full plexus   2 12 19 
  

     

Percent with circulating erythroblasts 0% 33% 85% 82% 100% 
  

     

N total 13 12 20 17 19 
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Table II – Phenotypic Comparison of Treatments 
 
 

 

 

 
 

 

 
Average Perfusion 
Coefficient (um2/s) Std Dev 

Wild-type 1400 1300 
 (n=12) 

MLC2a -/- 560 270 
(n=6) 

KB-R7943 Inhibition 750 510 
(n=8) 

Blood Island 
Polymerization 3200 1400 

 (n=7) 
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Figure 1 – Phenotype of MLC2a -/- Embryos.  Heterozygous (A, C, E) and knock-out (B, 

D, F) littermates at 7 somites (A-B), 10 somites (C-D) and approximately 23 somites (E-

F).  Plexus is highlighted by GFP-expressing erythroblasts [21].  Blood islands form 

properly (A, B) and expand within the plexus (C, D) however, the blood vessels of the 

plexus fail to remodel (E, F) as evidenced by the honeycomb pattern of the vessels and 

the lack of large diameter vessels (F). 

 

Figure 2 – Time-lapse of MLC2a Expansion from Blood Islands.  The expansion of the 

erythroblasts from the blood islands was followed using a transgenic mouse that 

expresses GFP in its erythroblasts [21].  The embryo is initially at the 9 somite stage.  

Erythroblasts enter the field of view within singles frames, indicative of the presence of 

flow.  They quickly become immobilized, however, and form blockages within the 

vessels.  As these blockages expand, an increasing number of erythroblasts are seen 

immobilized within the plexus.  Images were taken every 6 minutes at 10x magnification 

on a Zeiss LSM5 PASCAL for a total duration of 7 hrs.  Panel represents every 23rd 

frame or 2.3 hours. 

 

Figure 3 – Cell Tracking of Erythroblast Motion.  The motion of erythroblasts (green) 

within the vessels was imaged at 2Hz using a 40x objective lens on a Zeiss LSM5 

PASCAL. Panels represent every 5th frame.  The motion of some of the erythroblasts 

was tracked (B).  The cell tracking showed erythroblasts oscillating with as much 

retrograde (backward) motion as anterograde (forward).   
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Figure 4 – Perfusion Coefficients of Blood Plasma Measured by FRAP.  Fluorescence 

Recovery After Photobleaching (FRAP) was used to calculate perfusion coefficients with 

respect to somite stage within the early embryonic blood vessels in wild-type (A) and 

knock-out embryos (B).  The higher perfusion coefficients present in wild-type embryos 

indicate the presence of faster plasma flow. 

 

Figure 5 – KB-R7943 Inhibition of Cardiac Function.  KB-R7943 was used to reduce 

cardiac function in embryos.  KB-R7943 is an Ncx1 specific inhibitor which causes weak 

cardiac contractions [23]. Embryos were cultured for 6-10 hrs both without inhibitor (A, 

B) and with 9 µM KB-R7943 (C, D).  This concentration was found through dose 

response experiments to reduce the strength of cardiac contraction without causing 

cardiac arrest.  Control embryos show vascular remodeling where large diameter 

vessels appear (A) and avascular spaces enlarge (B).  Erythroblasts fail to enter 

circulation in treated embryos and remain as blood islands (C).  The vasculature remains 

completely unremodeled, showing small avascular pillars (D). 

 

Figure 6 – Polymerization of Blood Islands.  Erythroblasts were prevented from entering 

circulation by focal polymerization of acrylamide in the blood islands (D). Control 

embryos (A) show vascular remodeling including the formation of large diameter vessels 

(B) and enlargement of avascular spaces (C).  Treated embryos never establish large 

diameter vessels (E), but do undergo some remodeling as evidenced by the increase in 

avascular diameter as compared to vascular diameter (E-F). 
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Figure 7 – Analysis of Cell Division Rate in Yolk Sacs.  The presence of proliferation of 

non-erythroblast cells in the yolk sac of wild-type (WT), MLC2a-/- embryos, KB-R7943 

treated and acrylamide treated embryos embryos was assessed using antibodies to 

phospho-histone 3.  The percentage of undergoing cell division was assessed using a 

counterstain to DAPI.  The percentage of non-erythroblast cells undergoing division is 

much higher in the yolk sacs of MLC2a-/- embryo than in somite stage matched wild-type 

embryos, KB-R7943 treated embryos and acrylamide treated embryos. 
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Figure 2 
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Figure 7 
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Although it has been recognized for over a hundred years that blood flow is necessary 

for vascular remodeling, it is only recently that researchers have begun to investigate 

how endothelial cells respond to mechanical forces generated by blood flow.  The work 

described here focuses on relating quantitative differences in shear stress with the 

response of neighboring endothelial cells.  Biologists have many tools available to them 

for understanding changes in gene and protein expression within cells. The equivalent 

instruments for measuring biological forces, however, are not present.  Thus, the first 

step to understanding the role of mechanical forces in biology is to find methods to 

measure these forces.  The ability to measure blood flow velocity and shear stress in 

mammalian embryos provides one such technique ([1], Chapter 3).  This work has 

allowed velocity profiles and shear stresses to be calculated for the first time every within 

developing mammalian embryos and established that shear stress levels were within the 

range known to activate cell signaling. 

 

This work then continued to look at changes in vascular morphology during embryonic 

development in the context of the changes in blood flow that occur (Chapter 4).  This 

worked established that the initiation of vascular remodeling coincides with the entry of 

erythroblasts into circulation; an event that is preceded by a significant period of plasma 

flow.  The presence of this plasma flow constrained possible models of which events 

could be dependent on fluid flow, more specifically ruling out the possibility that 

paracrine signaling factors were carried by the blood in order to initiate remodeling 

events.   
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Having established that remodeling began just after the entry of erythroblasts into 

circulation, we tested whether the role of entry of the erythroblasts into circulation was to 

induce higher mechanical forces.  This was done using MLC2a mutant mice, which lack 

an atrial contraction in the heart, and specific chemical techniques to reduce shear 

stress (Chapter 5).  We found that whenever erythroblasts were prevented from entering 

the circulation, proper vascular remodeling was inhibited, even if the heart was normal.  

Other problems associated with the MLC2a-/- embryos, such as increased oscillatory 

flow, were secondary to problems associated with low shear stress flow.  This work 

showed that changes in viscosity due to the entry of erythroblasts into circulation are 

essential for the formation of large vessels.  Thus, by dissecting abnormal flow patterns, 

we begin to understand how blood flow, and the mechanical forces it imparts, are 

involved in normal cardiovascular development. 

 

Outstanding Issues 
 

Increasing Shear Forces During Vascular Remodeling 
 

The shear stress exerted on the blood vessels during development is dependent on 

several factors, including the velocity profile of the blood, the viscosity of the blood and 

the pulsatility of the flow, all of which change during development.  Though this makes it 

difficult to understand the role of fluid forces during development, it also gives us several 

parameters to adjust in order to change the shear force on the early blood vessels.  

Though my work has looked at altered shear stress, I was only successful at decreasing 
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shear stresses.  In order to understand the role of shear stress in cardiovascular 

development, it will be necessary to find methods to increase shear stress as well. 

 

The most obvious method to increase the shear stress on endothelial cells is to change 

blood flow velocity by altering the heart rate.  The embryonic heart rate can be altered by 

temperature and by exogenous chemical.  Changes in temperature, however, affect the 

viability of all cells in the embryo.  Also, chemicals known to increase the heart rate of 

adults often operate on proteins that are either not expressed in the heart at the early 

stages of heart development or their expression is not specific to the heart early in 

development.  Thus, the non-specificity of the effect of temperature and chemicals made 

interpretation of the results difficult.  As we begin to gain a better understanding of the 

molecules involved in heart development and contractile function, it should be possible 

to find compounds that control the embryonic heart rate specifically without additional 

side-effects. 

 

Shear stress levels can be altered not only by changing the velocity of the blood flow, 

but also by changing the viscosity of the blood.  In a similar way, it should be possible to 

increase the shear stresses by increasing the viscosity of the blood.  The use of 

erythropoietin, a protein involved in the control of red blood cell production, was used 

unsuccessfully in an attempt to increase embryonic blood production.  The injection of 

foreign substances that could affect the blood viscosity, including dextran, microspheres 

and liposomes, was also attempted.  The increases were never significant enough to 

affect development.  Several options, however, still exist.  Mouse mutants for the 

erythropoietin receptor exist that exhibit increased red blood cell production at birth [2].  
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The level of embryonic blood production has not been investigated in these mice.  

Another possibility is the use of materials whose viscosity can be altered after injection 

into the cardiovascular system, by catalyst addition or UV polymerization.  Therefore, it 

is technically feasible that a method for increasing the viscosity of blood in the embryo 

be found. 

Non-laminar Flow Patterns 
 

Disturbed flow patterns are known to be very biologically active (for review see [3]) and 

induce cell proliferation as well as apoptosis [4].  Disturbed flow patterns include 

turbulent flows as well as eddies caused by laminar flow separation.  The confocal line 

scanning technique we have used to calculate hemodynamic parameter ([1], Chapter 3) 

cannot measure shear stress present with such flow patterns.  This requires high-speed 

imaging and complicated cell tracking algorithms, technology that until recently was 

unavailable.  With the advent of these new tools, it should be possible to investigate 

where within the yolk sac disturbed patterns of flow are present and whether these 

locations correlate to areas of increased cell proliferation or gene upregulation. 

 

It will also be interesting to investigate the role of oscillatory flow during cardiovascular 

development.  MLC2a-/- embryos exhibit increased oscillatory flow (Chapter 5).  We 

found that this was not the primary cause of the defect but that it was biologically active.  

A model is required in which oscillatory flow is not accompanied by lower flow velocity.  

The knowledge that the atrial contraction is important for producing net forward flow aids 

in the search for an appropriate model organism.  Zebrafish models exist where atrial 

and ventricular contractions are not coupled as well as other models where defects 
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cause regurgitant flow in the heart.  Blood flow patterns in these fish have not been 

reported but may provide models for the effect of increased oscillatory flow during 

development. 

Oxygen Signaling and Vascular Remodeling 
 

In mature circulation, red blood cells function to carry oxygen to cells, however, it is not 

clear that this role is essential in the first few days of embryonic blood flow.  In chick [5], 

frog [6] and mouse embryos (unpublished results), culture with carbon monoxide, which 

effectively ablates oxygen transport by the blood, does not affect the early embryo or the 

remodeling of the vasculature.  Mouse embryos also undergo a process of axial rotation, 

or turning, in which the embryo rotates such that it detaches from the yolk sac and the 

only access to the extra-embryonic circulation is through two large vessels called the 

vitelline vessels.  Remodeling begins before the embryo turns, however, when both the 

yolk sac and the embryo proper have equal access to the maternal circulation.  These 

observations have lead to the idea that the initial role of the entry of erythroblasts into 

circulation is simply to increase the viscosity of the blood, and not to carry oxygen. 

 

The role of oxygen during remodeling can be investigated in several different ways.  If 

erythroblasts truly represent particles whose only initial function is to increase the 

viscosity of the blood, then the addition of microspheres should rescue mutants which 

lack erythroblast circulation.  One such mutant is the Scl/Tal-/- mouse in which no 

primitive erythroblasts form [7].   Secondly, a mutant mouse exists that has constituently 

active HIF-1α [8], which is the protein responsible for sensing low oxygen levels.  These 

mice are viable, though hypervascularized.  If mice that constitutively express HIF-1α 
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are mated to mice with problems with flow dynamics, the presence of vascular 

abnormalities would indicate that the problems were related to the flow dynamics and 

not caused by improper signaling for oxygen. This is especially true if cell viability in 

surrounding tissues is unaffected. 

Linking Fluid Dynamics To Genetics 
 

While understanding how mechanical forces are involved in remodeling is important, it is 

necessary to determine how epigenetic signals relate to genetic signaling cascades.  As 

in vitro studies unravel how endothelial cells sense shear stresses (for review, see [3]), it 

will be important to extend this work in vivo and establish whether similar signaling 

mechanisms are at work during development.  Enhancer elements have been isolated 

that are shear responsive [9, 10].  Using these enhancer elements to drive a reporter 

gene would give an in vivo marker of the location where fluid flow is most active.  This 

would not only show that shear stress is genetically active within the embryo but indicate 

the type of flow patterns that is most biologically important within the embryo. 

 

While it is still not clear how endothelial cells sense and transduce signals from 

mechanical force, many genes that are essential for this process are known, including 

VE-cadherin and integrins (for review, see [3]).  Endothelial cells which lack VE-cadherin 

fail to activate several shear-responsive genes, including Flk1, p38 and Akt1 [11].  Lack 

of VE-cadherin function in embryos causes embryonic lethality.  In these mutants, 

endothelial cells of the vasculature detach from their basement membrane [12]. Genes 

that are important for mechanotransduction, however, are expressed in both the heart 

and the vasculature, leading to cardiac defects that cause flow abnormalities.  Therefore, 
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if in vitro work on mechanotransduction is to be extended to developmental systems, it 

will require the production of mice in which the function of these genes important in 

shear stress sensing is removed specifically in the vasculature. 

 

The study of external stimuli, such as mechanical forces, on development has only 

recently begun to be addressed.  It represents an exciting intersection between various 

sciences, including physics, engineering and biology.  By studying early blood fluid 

dynamics, this work contributes to our understanding of how an efficient and functional 

cardiovascular system is established.  The many outstanding issues regarding the role 

of mechanical forces in cardiovascular development raised by this work will be the 

subject of further study.   
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