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Lagrangian Averaging, Nonlinear Waves, and Shock Regularization

by

Harish S. Bhat

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

In this thesis, we explore various models for the flow of a compressible fluid as well as

model equations for shock formation, one of the main features of compressible fluid flows.

We begin by reviewing the variational structure of compressible fluid mechanics. We

derive the barotropic compressible Euler equations from a variational principle in the

material frame. The particle relabeling symmetry of fluid mechanics is explained, and

the material-frame Lagrangian is shown to be invariant under this symmetry. We then

show how the barotropic compressible Euler equations arise from a variational principle

in the spatial frame. Writing the resulting equations of motion requires certain Lie-

algebraic calculations that we carry out in detail for expository purposes.

Next, we extend the derivation of the Lagrangian averaged Euler (LAE-α) equations

to the case of barotropic compressible flows. The aim of Lagrangian averaging is to

regularize the compressible Euler equations by adding dispersion instead of artificial

viscosity. Along the way, the derivation of the isotropic and anisotropic LAE-α equations

is simplified and clarified. The derivation in this paper involves averaging over a tube of

trajectories ηε centered around a given Lagrangian flow η. With this tube framework,

the LAE-α equations are derived by following a simple procedure: start with a given

action, expand via Taylor series in terms of small-scale fluid fluctuations ξ, truncate,

average, and then model those terms that are nonlinear functions of ξ. Closure of the

equations is provided through the use of flow rules, which prescribe the evolution of the

fluctuations along the mean flow.
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We then analyze a simple one-dimensional Lagrangian averaged model, a subcase of

the general models derived above. We prove the existence of a large family of traveling

waves; these solutions correspond to homoclinic orbits in the phase plane. Computing

the dispersion relation for this model, we find it is nonlinear, implying that the equation

is dispersive. Since the amount of dispersion in the model is controlled by α, we expect

that the zero-α limit will be highly oscillatory. We carry out numerical experiments

that show that the model possesses smooth, bounded solutions that display interesting

pattern formation. Finally, we relate the mathematical features of this model to other

models for solitary waves in compressible fluids, and to other solitary wave phenomena

that occurs in air.

Finally, we examine a Hamiltonian partial differential equation (PDE) that regular-

izes the inviscid Burgers equation without the addition of standard viscosity. Here α is a

small parameter that controls the amount of regularization we have added to the inviscid

Burgers equation. We show the existence of a large family of traveling front solutions

that connect two different states. These solutions correspond to heteroclinic orbits in

the phase plane. Using the method of characteristics, we also analyze the initial-value

problem and prove well-posedness for a certain class of initial data. We prove that in

the zero-α limit, without any standard viscosity, solutions of the PDE converge strongly

to weak solutions of the inviscid Burgers equation. We provide numerical evidence that

this strong limit satisfies an entropy inequality for the inviscid Burgers equation. We

demonstrate a non-local Hamiltonian structure for the PDE.
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Chapter 1

Variational Compressible Fluids

1.1 Glossary

Let us first introduce important symbols and terms. We will assume familiarity with

these concepts, at the level of a first reading of [1]:

Bijection A function that is both one-to-one and onto
Diffeomorphism A differentiable bijection with differentiable inverse
Diff(M) Space of diffeomorphisms on M
Ωk(M) Space of k-forms on M
Den(M) Space of volume forms on M
X(M) Space of vector fields on M

C∞(M)
Space of real-valued,
infinitely differentiable functions on M

L(E,F )
Space of linear maps between
Banach spaces E and F

GL(E,F )
Space of invertible linear maps between
Banach spaces E and F

ϕ∗(·) Pullback by ϕ
ϕ∗(·) Push-forward by ϕ
div(u) Divergence of vector field u
£X(·) Lie derivative with respect to the vector field X
iX(·) Interior product with the vector field X
d Exterior derivative

v[ One-form associated to the vector field v
ω] Vector field associated to the one-form ω
Tf Tangent mapping of f
Df Fréchet derivative of f
⊗ Tensor product
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1.2 The Setting

We begin with the Euler equations for a compressible fluid, written in the traditional

form using Euclidean coordinates on a Euclidean space:

∂ρ

∂t
+ div(ρu) = 0 (1.1a)

∂u

∂t
+ div

(
ρu⊗ ρu

ρ

)
= −∇p (1.1b)

Here ρ is the density, ρu is the momentum, and p is the pressure. As can be gleaned

from (1.1), the density and pressure are scalar fields, while the momentum (and velocity

u) are vector fields. Shortly, we will be much more specific about these objects. We

assume that the pressure and density are related via the barotropic law

p = κργ , (1.2)

for constants κ, γ > 0. We are typically interested in (1.1) in a few different settings:

P1. The fluid lives in a container (manifold) M with smooth boundary ∂M . In this

case, we assume that M is compact and that, restricted to the boundary, u is

parallel to the boundary ∂M .

P2. The fluid lives in a compact manifold M without boundary, e.g., a periodic box.

We may think of this as a special case of P1 in which ∂M = ∅.

P3. The fluid lives in a non-compact manifold M without boundary, e.g., all of R
3. In

this case, as the analytical details of the problem become clear, we must specify

decay conditions on the density and velocity as ‖x‖ → ±∞.

We refer to Chapter 9, §2 of [1] and [15] for derivations of (1.1). Here we shall focus on

answering the question of how to represent (1.1) as an infinite-dimensional Lagrangian

dynamical system. To avoid analytical details, we shall confine ourselves to the case

P2 in which the fluid lives in a compact boundaryless manifold. This will enable us to

spend more time thinking about the geometric structures underlying the compressible
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Euler equations. Let us remark, however, that if one is interested in P1 or P3, it is

possible to modify our derivations accordingly. Along the way, we shall mention where

the appropriate modifications must be made.

The variational structures we describe are an outgrowth of topological hydrodynamics,

a discipline set into motion by the seminal papers of Arnold [3] and Ebin and Marsden

[22]. Arnold’s paper was the first to view the motion of an incompressible fluid as

geodesic motion on an appropriate group of diffeomorphisms. The Lagrangian for the

incompressible Euler equation is a quadratic, positive definite function and can therefore

be used to define a metric. The ensuing Euler-Lagrange equation is then precisely the

geodesic equation for this metric. The paper of Ebin and Marsden made this point of

view rigorous, and demonstrated its utility by proving beautiful analytical results on the

short-time well-posedness of the incompressible Euler and Navier-Stokes equations. For

a recent and highly readable introduction to topological hydrodynamics, we recommend

[49], while for an encyclopedic treatment of topics in this field, one must consult [4].

Finally, an overview of the field from a PDE point of view may be found in the book

review [78].

Not nearly as much work has been done on the compressible side of the story. Here the

dominant concern in analyzing (1.1) is the formation of shock waves, or discontinuities in

the field variables. It is now well-known (see [11]) that for generic initial data ρ(x, 0) =

ρ0(x) and u(x, 0) = u0(x), the resulting solutions ρ(x, t) and u(x, t) are smooth only on

short time intervals t ∈ [0, T ]. We refer to the maximum such T as the break time of

the solutions. Beyond the break time, the solutions ρ(x, t) and u(x, t) are discontinuous,

meaning that we have to work with the weak form of (1.1). This process occurs without

regard for the initial smoothness of the fields, i.e., the functions ρ0 and u0.

Returning to geometric considerations, one finds that the compressible equations are

not the equations for geodesic flow on Diff(M), the group of diffeomorphisms of M .

The reason is simple: the Lagrangian is no longer positive definite, and does not define

a metric. One can apply a Kaluza-Klein construction and enlarge the configuration

space of the problem; then the compressible equations will describe geodesic motion on

the enlarged space. However, it is unclear whether this procedure will yield any useful
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information, and we will not pursue this angle here.

Nonetheless, one can still consider compressible fluid motion as either a Hamiltonian

or a variational problem on an appropriate group of diffeomorphisms. For example, [21]

used the variational principle for compressible flow to show that in the incompressible

limit, i.e. Mach number → ∞, solutions of (1.1) converge to solutions of the incompress-

ible Euler equation. As with other papers in the early history of topological hydrody-

namics, the mathematical developments take place on the group of diffeomorphisms, i.e.

the material or Lagrangian picture. This is in contrast to the spatial or Eulerian picture

we have assumed when writing (1.1). Let us now take a moment to review what these

terms mean.

1.3 Material and Spatial Pictures

Historically, the variational structure of the equations for compressible fluid motion was

first developed in the material picture, rather than the spatial picture we have assumed

in (1.1). Let us examine what each picture looks like at a specific time t. For the

time being, to ease the exposition, we will suppose that functions and fields are much

smoother than they need to be for the mathematics to work.

In the spatial picture, at each time t, we have a vector field ut ∈ X(M) and a scalar

function ρt ∈ C∞(M). At each point x ∈ M , the vector ut(x) gives the velocity of the

fluid at x. Similarly, ρt(x) is the density of the fluid at x. Note that while the fluid

is sloshing around in M , the points x ∈ M themselves do not move—these points are,

philosophically, just like the tick marks on a number line.

In the material picture, at each time t, we have a diffeomorphism ηt ∈ Diff(M).

For each X ∈ M , ηt(X) gives the deformation of X. Initially, at t = 0, there is no

deformation, so η0(X) ≡ X. This means we may use X as a particle label, and think of

ηt(X) as the position of particle X at time t.

Generalizing both pictures to a time interval [0, T ], we see that both u and ρ are
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curves on the appropriate spaces. That is, the velocity field is a curve

u : [0, T ] → X(M)

that assigns, to each t ∈ [0, T ], the velocity field ut ∈ X(M). Similarly, the density is a

curve

ρ : [0, T ] → C∞(M),

and the material motion η is a curve

η : [0, T ] → Diff(M).

From our descriptions of both pictures, we deduce the relationship between the two:

∂

∂t
η(X, t) = u(η(X, t), t). (1.3)

The left-hand side of (1.3) is the velocity of the particle labeled X at time t. At this time

t, this particle has been deformed from its initial location at X ∈M to its new location

at η(X, t) ∈M . The right-hand side of (1.3) is the velocity at the point in space given by

η(X, t). It is clear that these two expressions refer to precisely the same measurement.

Remarks.

1. In continuum mechanics, the material picture is often called “Lagrangian” while

the spatial picture is called “Eulerian.” To avoid confusion with the Lagrangian

functions and Euler-Lagrange equations of variational calculus, we will stick with

the terms material and spatial.

2. Our description might lead one to believe that the spatial description of the fluid

requires two fields, u and ρ, while the material description requires only one: η.

Of course, the fluid has density in the material picture as well! The idea here is

that once we specify an initial density field ρ(X, 0), our full knowledge η of the

subsequent deformation of the fluid should be enough to determine the density
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field ρ(X, t) at all later times. Intuitively, “we know where each particle is going.”

Indeed, suppose that the domain M is an open subset of R
n. Then write µ =

ρdnx, where dnx is the canonical volume form on R
n. Transforming the continuity

equation (1.1a) to the material picture, we find

µ(X, t) =
(
ηt

)
∗
µ(X, 0), (1.4)

confirming our intuition. We will often write µ0(X) = µ(X, 0).

This brief summary of the material and spatial pictures will be enough for our purposes.

For an extensive discussion of the geometry and kinematics behind continuum mechanics,

we refer the reader to [55].

Passing from material to spatial coordinates is an example of symmetry reduction.

In simple terms, for a barotropic compressible fluid in the material picture, we require

η, η̇, and µ0 to determine the current configuration of the fluid. In the spatial point of

view, we require only u and µ. To get a hint as to why one fewer variable is required in

the spatial picture, let us note that the relationship between the two pictures (1.3) can

be rewritten as u(x, t) = ∂tη(η
−1(x, t), t) or for short,

u = η̇ ◦ η−1. (1.5)

In other words, the diffeomorphism η enters the material version of (1.1) only in a

particular combination with η̇. Suppose we now relabel each particle X by ϕ(X) where

ϕ is some arbitrary diffeomorphism. This amounts to replacing η by η ◦ ϕ in (1.5).

Making the substitution, we will find that

∂t (η ◦ ϕ) ◦ (η ◦ ϕ)−1 = η̇ ◦ ϕ ◦ ϕ−1 ◦ η−1

= η̇ ◦ η−1

= u.

This is the particle relabeling symmetry of fluid mechanics. Later, we will show that the
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kinetic and potential energies of the fluid are invariant under particle relabeling as well.

Before we prove this, let us provide some historical references. Our goal is not to offer

an exhaustive history of the subject, but instead to point out a few sources for the main

ideas that we present in this expository chapter.

The role of reduction in the geometric structures underlying compressible flow was

not explained until 15-20 years after Arnold’s paper [3]. Historically, the Hamiltonian

point of view came first, in [57, 58, 38]. These papers lay an expansive foundation for

theories of semidirect product type, of which compressible fluids is but one example.

Semidirect products arise in continuum mechanics when, in addition to the primary

field variables, there are other quantities, transported by the main fields, that play a

dynamical role in the problem.

In the case of compressible fluids, in addition to u, we have ρ, which from (1.1a)

we see is somehow being transported by the flow. Note that in the material picture,

i.e., prior to reduction, the density µ0 is simply a parameter. Once we know η and η̇,

we determine µ using (1.4)—we do not solve any differential equation for µ. Somehow,

in the spatial picture, i.e. after symmetry reduction, the density becomes a dynamic

variable which couples with the other field variables as in (1.1a). Semidirect product

theory is a general toolbox for working with mechanical systems of this type.

Among their many results, the papers [57, 58, 38] explain how to derive the Poisson

bracket for compressible flows in spatial variables by starting from the material picture

and carrying out symmetry reduction. The resulting bracket is called the semidirect

product Lie-Poisson bracket; using it, one can realize (1.1) as Hamilton’s equation on

the appropriate space.

The basic idea on the Lagrangian side is as follows. In the material picture, the

variational principle underlying the equations of fluid mechanics is the classical stationary

action principle. There are no constraints on variations δη, and the equation of motion

corresponding to stationary points of the action is precisely the Euler-Lagrange equation.

When one moves to the spatial picture, the situation changes. Now one has to guarantee
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that variations δu give rise to varied vector fields uε that are indeed expressible as

uε = η̇ε ◦ (ηε)−1

for some diffeomorphism ηε. In short, the variations δu must be constrained, meaning

that the variational principle is different from the classical one. The resulting equation

of motion is therefore different from the usual Euler-Lagrange equation, and it goes by

the name of the Euler-Poincaré (EP) equation. Again, in the case of a compressible

fluid, we must deal not only with variations δu but also variations δρ. This gives rise to

the semidirect product EP equation. All of this is explained in detail in [40], which also

contextualizes the EP equation in the history of mechanics. Note that an alternative

exposition of the fluid mechanical part of the story can be found in [66].

Now we shall go ahead with presenting some of the details of the theory discussed in

[40]. Our aim is to be pedagogical, and make explicit many of the calculations required

to view the barotropic compressible Euler equations (1.1) as a semidirect product EP

system. This framework will be used in subsequent chapters to produce new equations

of motion that automatically respect various symmetries.

1.4 Material Lagrangian

Our goal is to present a variational principle, in the material picture, for the Euler

equations for barotropic compressible flow. Indeed, we will show that (1.1b) is precisely

the Euler-Lagrange equation associated with the following Lagrangian. Let G = Diff(M)

and V ∗ = Den(M). Then we define the Lagrangian L : TG× V ∗ → R by

L(η̇, µ0) =

∫

M

[
1

2
‖η̇‖2 −W

(
[η∗µ0] ◦ η

)]
µ0, (1.6)

where η̇ ∈ TηG. The Lagrangian has the usual form of kinetic energy minus potential

energy. We assume the fluid is barotropic, meaning that the pressure is a function only

of the fluid’s density. This forces the potential energy to also be a function only of the

fluid’s density. The density µ0 is the density as a function of material points in the fluid,
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at time t = 0.

Note that (1.6) is not positive definite; hence (1.6) does not define a metric, and

we cannot interpret the Euler-Lagrange equation associated with (1.6) as a geodesic

equation associated with some metric on G× V .

Details. Let us explain what we mean by ‖ · ‖ in (1.6). We assume that the manifold

M has a Riemannian metric 〈〈 , 〉〉m, and that this induces a volume form ν. In words,

the metric is a smooth map m 7→ 〈〈 , 〉〉m that assigns to each point m ∈ M an inner

product on the tangent space TmM . We use this to define a weak Riemannian structure

on G. Namely, on the tangent space TηG, we have, for α, β ∈ TηG, the inner product

〈〈α, β〉〉 =

∫

M
〈〈α(m), β(m)〉〉η(m) ν(m). (1.7)

If we are interested in problem P3, where the manifold M is non-compact and bound-

aryless, we must specify decay conditions. That is, unless the integrand vanishes rapidly

outside a compact set K, the overall integral (1.7) may not be finite. For problems P1

and P2, where M is compact, there is no problem, since

∣∣∣∣
∫

M
f(m)ν(m)

∣∣∣∣ ≤ ‖f‖L∞

∫

M
ν(m) = ‖f‖L∞vol(M) <∞.

We present without proof the fact that for a given diffeomorphism η ∈ G,

TηG = { smooth maps X : M → TM such that πM ◦X = η}.

With this, it is clear that for each m, the vectors α(m) and β(m) belong to the tangent

space Tη(m)M , so we can at least see that formula (1.7) makes sense. (Sometimes the

elements of TηG are called vector fields that cover the diffeomorphism η. See [55].) Then

we have, for all η̇ ∈ TηG,

‖η̇‖2 = 〈〈η̇, η̇〉〉.

Of course, to actually show that (1.7) is a weak Riemannian structure, we must do more

work. See §9 in [22].
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1.4.1 Equations of motion

We obtain equations of motion by applying Hamilton’s principle directly to the Lagran-

gian (1.6). That is, for the action

S =

∫ T

0
Ldt,

we will compute δS, assuming that the variations ηε are fixed at t = 0 and t = T . By

δη =
d

dε

∣∣∣∣
ε=0

ηε,

this will give δη = 0 at the endpoints t = 0 and t = T .

Before computing δS, it is worth making the following point: in this thesis, we will

never be able to derive mass conservation equations from variational principles, in either

the spatial (1.1a) or material (1.4) forms. These equations will not pop out of δS = 0

the way that the momentum equation (1.1b) will. Instead, one shows (1.1a) or (1.4)

from first principles; here we will take these equations as given.

Let us continue with the derivation of the Euler-Lagrange equation associated with

the Lagrangian L. As a warning, the computation that follows is not general—in order

to proceed in a general, global fashion we would have to introduce a smooth affine

connection on G and compute using the covariant derivative. This calculation is carried

out in detail in both [21] and §6.1 of [71]. We will not have use for such geometric

machinery beyond this calculation, so we limit ourselves to the case when M = R
n, in

which case it is fine to treat ∇ as the ordinary gradient. Once we derive the Euler-

Lagrange equation for L, our goal will be to change from material to spatial coordinates

and recover the momentum equation (1.1b) in ordinary Euclidean space/coordinates.
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Write µ0 = ρ0 dnx where ρ0 ∈ C∞(M). Then

δS =

∫ t2

t1

∫

M

[
η̇iδη̇i

−W ′
(
(det∇η)−1ρ0(m)

) (
−(det∇η)−1(∇η)−T · ∇δηρ0

)]
ρ0 dnx dt

=

∫ t2

t1

∫

M

[
η̇iδη̇i

+W ′
(
(det∇η)−1ρ0(m)

) (
(det∇η)−1 ∂(η−1)j

∂xi

∂(δη)i

∂Xj
ρ0

)]
ρ0 dnx dt.

Because the variations δη vanish at the boundary, an integration by parts gives

δS =

∫

M

{
−η̈iδηiρ0

− ∂

∂Xj

[
W ′

(
(det∇η)−1ρ0(m)

) (
(det∇η)−1 ∂(η−1)j

∂xi

)
ρ2
0

]
δηi

}
dnx.

If δS is to be zero for all δη, then η must satisfy

ρ0η̈
i = − ∂

∂Xj

[
W ′

(
(det∇η)−1ρ0(m)

) (
(det∇η)−1 ∂(η−1)j

∂xi

)
· ρ2

0

]
. (1.8)

In the above derivation, we have assumed ∂M = ∅. If we were interested in problem P1,

when M has a smooth non-empty boundary ∂M , we would have to specify boundary

conditions on η. Furthermore, whenever we integrate by parts on spatial variables, we

would have to treat the boundary term that arises: if we want this term to disappear,

we have to choose the behavior of δη on ∂M accordingly.

1.4.2 Substitution of variables

We now express (1.8) in the spatial variables u and ρ, in order to compare it with the

Euler equation in spatial variables (1.1). We will need the following fact: the spatial

density ρ(x, t) is related to the material density ρ0(X) by

ρ(η(X, t), t) =
ρ0(X)

det∇η(X, t) . (1.9)
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This follows by writing (1.4) as
(
ηt

)∗
µ = µ0

and carrying out the pull-back operation in the usual way. For short, we will write (1.9)

as

ρ ◦ η =
ρ0

det∇η . (1.10)

Differentiating the relation u ◦ η = η̇ gives

η̈ =
∂u

∂t
◦ η + (∇u ◦ η) · u ◦ η. (1.11)

Substituting (1.10-1.11) into (1.8), we have

[(det∇η)ρ ◦ η]
(
∂u

∂t
◦ η + (∇u ◦ η) · u ◦ η

)i

= − ∂

∂Xj

[
W ′ (ρ ◦ η)

(
ρ ◦ η · ∂(η−1)j

∂xi
(det∇η)ρ ◦ η

)]
.

Composing on the right with η−1 everywhere, we obtain

(det∇η ◦ η−1)ρ

(
∂u

∂t
+ ∇u · u

)i

= − ∂ηk

∂Xj

∂

∂xk

[
W ′(ρ)ρ2 ∂(η−1)j

∂xi
det∇η ◦ η−1

]
. (1.12)

Here we have introduced the “spatial coordinates” xk = ηk(X, t) and used the local

coordinate calculation
∂

∂Xj
=
∂xk

∂Xj

∂

∂xk
=

∂ηk

∂Xj

∂

∂xk
.

We expand the right-hand side of (1.12) into three terms:

− ∂ηk

∂Xj

{(
∂

∂xk

[
W ′(ρ)ρ

] ∂(η−1)j

∂xi
ρdet∇η ◦ η−1

)

+ [W ′(ρ)ρ]

(
∂ρ

∂xk
· ∂(η−1)j

∂xi
det∇η ◦ η−1

+ ρ
∂

∂xk

(
∂(η−1)j

∂xi
det∇η ◦ η−1

))}
.
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The last term is actually zero:

∂ηk

∂Xj

∂

∂xk

(
∂(η−1)j

∂xi
(x) · 1

det(∇η−1)

)

=

(
∂ηk

∂Xj

∂2(η−1)j

∂xk∂xi

1

det(∇η−1)

)
− 1

(det(∇η−1))2
∂

∂xi
(det∇η−1)

=

(
∂ηk

∂Xj

∂2(η−1)j

∂xk∂xi

1

det(∇η−1)

)
− 1

(det(∇η−1))2
∂ηn

∂Xm
det∇η−1 ∂

2(η−1)m

∂xi∂xn

= 0.

From η(η−1(x, t), t) = x we deduce

∂ηi

∂Xj

∂(η−1)j

∂xk
= δi

k.

Putting everything together, we can simplify (1.12) all the way to:

(
∂u

∂t
+ ∇u · u

)i

= − ∂

∂xi

[
W (ρ) + ρW ′(ρ)

]
. (1.13)

Now assuming

p(ρ) = ρ2W ′(ρ),

we see that (1.13) is equivalent to

ρ

(
∂u

∂t
+ ∇u · u

)i

= − ∂p

∂xi
. (1.14)

Multiplying the continuity equation (1.1a) by u and adding the result to (1.14) produces

the desired momentum equation (1.1b). Note that when p = κργ , the above assumption

reduces to taking the potential energy

W = κ

∫ ρ

ρ0

σγ−2dσ =
κ

γ − 1

(
ργ−1 − ργ−1

0

)
.

This is precisely what one finds in derivations from first principles in the barotropic

regime (see, e.g., [15] or [85]).
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1.4.3 Discussion

Let us summarize what we have done so far. We started with a Lagrangian in the

material picture (1.6), and by computing the variation of the associated action, we

derived an Euler-Lagrange equation (1.8). Next we showed that by changing variables

from the material to spatial pictures, we could derive the standard form of the momentum

equation (1.1b) from (1.8).

This begs the question: what happens if we make a change of variables, from material

to spatial, at the level of the Lagrangian (1.6) ? Can we then directly derive (1.1b) from

this new Lagrangian? It turns out that this idea is in the right direction. We will see

that with respect to a certain reduced Lagrangian l(v, µ), the momentum equation (1.1b)

will be a special case of the semidirect product Euler-Poincaré equation

∂

∂t

δl

δv
= −ad∗

v

δl

δv
+
δl

δµ
� µ. (1.15)

In order to understand what all the parts of this equation mean, we now review some

basic properties of the infinite-dimensional Lie groups and Lie algebras that underly the

compressible Euler equations. Our aim is to present a primer for the reader interested in

the variational side of semidirect product theory. We will carry out in detail a number of

calculations specific to the compressible fluid context; note that all of these calculations

can be generalized and adapted to a variety of continuum mechanical settings.

1.5 Spaces and Actions

We start with the group G = Diff(M). Before continuing, let us mention that, though

G is a smooth manifold, G is not a Lie group in the ordinary sense. Multiplication in

the group G is given by composition of diffeomorphisms, i.e. given γ1, γ2 ∈ G,

γ1 · γ2 = γ1 ◦ γ2.

Then, for any φ ∈ G, the group multiplication determines

• the right translation map, Rφ : G→ G, with Rφ(γ) = γ ◦ φ, and
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• the left translation map, Lφ : G→ G, with Lφ(γ) = φ ◦ γ.

Differentiating Rφ and Lφ with respect to γ, we obtain for ξ ∈ TγG,

TRφ(γ) · ξ = ξ ◦ φ

TLφ(γ) · ξ = Tφ ◦ ξ.

For G to be a classical Lie group, both Rφ and Lφ must be C∞ maps. We see that

TRφ does not depend on derivatives of φ; repeating the differentiation, it is clear that

Rφ ∈ C∞(G,G). Meanwhile, TLφ involves Tφ, which is merely continuous. Hence

Lφ ∈ C1(G,G), and G fails to be a Lie group in the classical sense.

However, it is well-known that G can be regarded as a certain kind of generalized Lie

group—see [69] for a detailed exposition of such issues. We remark only that all results

and calculations that follow do not depend on properties special to classical Lie groups.

Finally, the Lie algebra of Diff(M) is a Lie algebra in the classical sense.

Returning to the general problem, we introduce the vector space V = C∞(M). For

our purposes, we will write the dual of V as V ∗ = Den(M), the space of all C∞ volume

forms on M . If the manifold M has dimension n, then

Den(M) = {µ ∈ Ωn(M) | µ(m) 6= 0 for all m ∈M}.

We pair an element f ∈ V with µ ∈ V ∗ by

〈
µ, f

〉
=

∫

M
f µ.

1.5.1 G action on V

Let us define an action of G on V by

ΦV
γ (f) = γ∗(f).
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What we have here is a map which associates a linear isomorphism ΦV
γ to each element

γ ∈ G. We will sometimes write this action more compactly using concatenation:

γf = ΦV
γ (f) = γ∗(f).

The action is clearly a right action:

γ1γ2f = (γ1 ◦ γ2)
∗(f)

= γ2
∗(γ1

∗(f))

= γ2γ1f

1.5.2 Induced G Action on V ∗

The G action on V induces a right action on V ∗ via the inverse of the dual of ΦV
γ . We

now calculate the dual isomorphism
(
ΦV

γ

)∗
. Given f ∈ V and ω ∈ V ∗,

〈(
ΦV

γ

)∗
(ω), f

〉
=

〈
ω,Φγ(f)

〉

= 〈ω, γ∗(f)〉

=

∫

M
γ∗(f)ω

=

∫

M
γ∗(f γ∗(ω))

=

∫

M
f γ∗(ω)

=
〈
γ∗(ω), f

〉
.

This shows that
(
ΦV

γ

)∗
(ω) = γ∗(ω), and with this, we can define the action of G on V ∗:

ΦV ∗

γ (ω) =
[(

ΦV
γ

)∗]−1
(ω)

= (γ∗)
−1(ω)

= γ∗(ω)

The proof that this is a right action of G on V ∗ is identical to the case of G acting on V .
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1.5.3 Semidirect Product Group and Algebra

We will be concerned with the semidirect product space GsV ∗, which is a group con-

sisting of the set G× V ∗ equipped with the product

(γ1, ω1) · (γ2, ω2) = (γ1 · γ2, ω2 + γ2ω1).

The Lie algebra g of G consists of the space TeG equipped with the appropriate bracket.

As we mentioned earlier, for a given diffeomorphism γ ∈ G,

TγG = { smooth maps X : M → TM such that πM ◦X = γ}.

Since the identity element e ∈ G is the identity map idM on M

TeG = { smooth maps X : M → TM such that πM ◦X = idM}

= X(M).

Therefore, as a vector space, g = X(M). Now let us introduce two spaces

XR = Lie algebra of all right-invariant vector fields on Diff(M),

XL = Lie algebra of all left-invariant vector fields on Diff(M),

as well as the notation

XL
ξ = Left-invariant vector field associated with ξ,

XR
ξ = Right-invariant vector field associated with ξ.

There are several ways to define XL
ξ and XR

ξ —there is no unique, canonical choice. For

the sake of concreteness, the reader may wish to think of

XL
ξ (φ) = Tφ ◦ ξ,

XR
ξ (φ) = ξ ◦ φ.



18

Now we may state and prove an important fact: the Lie algebra bracket on g is minus

the Jacobi-Lie bracket on M .

Proposition 1. Suppose we define the bracket on g via

[ξ, η]g := [XL
ξ ,X

L
η ](e). (1.16)

Then

[ξ, η]g = −[ξ, η]M ,

where the bracket [ξ, η]M is the standard Jacobi-Lie bracket of vector fields on M .

Proof. Let φ denote the diffeomorphism on G defined by φ(g) = g−1. One can show that

f : XL → XR defined by f(X) = φ∗(X) is a Lie algebra isomorphism. Furthermore one

can easily compute

Teφ · ξ = −ξ

for all ξ ∈ g. Now we have, for η ∈ g,

f(XL
η )(e) = (Tφ ◦XL

η ◦ φ−1)(e)

= Teφ ◦XL
η (e)

= Teφ ◦ (T (idG) ◦ η)

= Teφ · η

= −η.



19

Then

[ξ, η]M = [f(XL
−ξ), f(XL

−η)]M

= [φ∗(X
L
−ξ), φ∗(X

L
−η)]M

= φ∗[X
L
−ξ,X

L
−η](e)

= f(XL
[−ξ,−η]g

)(e)

= −[−ξ,−η]g

= −[ξ, η]g.

The flip side of this proposition is that if we instead define the Lie algebra bracket on

g using right-invariant vector fields, the minus sign disappears. We include this result

and its proof for pedagogical purposes—in practice, we always define the Lie algebra

bracket on g using left-invariant vector fields.

Proposition 2.

[XR
ξ ,X

R
η ](e) = [ξ, η]M .

Proof. Let us verify that XR
ζ as defined above is right-invariant. Set Rγ(β) = β◦γ, right-

translation on Diff(M). Then, for all smooth maps ζα : M → TM such that πM ◦ ζ = α,

it is clear that TαRγ · ζα = ζ ◦ γ. This then implies

TeRγ ·XR
ζ (η) = (ζ ◦ η) ◦ γ

= ζ ◦ η ◦ γ = ζ ◦Rγ(η)

= XR
ζ ◦Rγ(η),

as required. With this in mind, we use the local formula for the bracket (again, the

Jacobi-Lie bracket of vector fields on Diff(M)):

[XR
ξ ,X

R
η ](e) = DXR

ξ (e) ·XR
η (e) −DXR

η (e) ·XR
ξ (e)

= D(ξ) · η −D(η) · ξ
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and this is the local formula for the Jacobi-Lie bracket of vector fields on M .

Now that we have established the basic Lie algebra structure of g, we can answer a

number of questions regarding induced algebras and induced actions. That is, starting

with

• γ ∈ G = Diff(M),

• f ∈ V = C∞(M),

• µ ∈ V ∗ = Den(M),

• ξ, η ∈ g = X(M), and

• θ ⊗ ν ∈ g∗ = Ω1(M) ⊗ Den(M),

we will arrive at the following results:

G action on V : γf = γ∗(f)

G action on V ∗ : γµ = γ∗(µ)

Lie algebra bracket on g : [ξ, η]g = −[ξ, η]M

g action on V : ξf = £ξf

g action on V ∗ : ξµ = £ξµ

Ad action of G on g : Adγξ = γ∗ξ

Ad∗ action of G on g∗ : Ad∗
γ(θ ⊗ ν) = γ∗(θ ⊗ ν)

ad action of g on g : adξη = [ξ, η]g = −[ξ, η]M

ad∗ action of g on g∗ : ad∗
ξ(θ ⊗ ν) = (£ξθ + θ divνξ) ⊗ ν

� : V × V ∗ → g∗ : f � µ = df ⊗ µ

Now we go ahead with systematically filling in the details in this table.
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1.5.4 The dual algebra g
∗

We will take g∗ to be the space of one-form densities:

g∗ = {ω ⊗ µ : ω ∈ Ω1(M), µ ∈ Den(M)}

Then for ξ ∈ g, θ ⊗ µ ∈ g∗ the pairing between the two elements is given by

〈θ ⊗ µ, ξ〉 =

∫

M
θ(ξ)µ.

1.5.5 Induced g action on V

The action of G on V induces an action of g on V . We use Φ : G→ GL(V, V ) to denote

the original action: Φ(γ) = γ∗( · ). Then we can compute TeΦ : g → L(V, V ) as follows.

Fix ξ ∈ g and write ξ as a tangent vector to a curve γε on G = Diff(M):

ξ =
d

dε

∣∣∣∣
ε=0

γε where γ0 = idG.

Then for f ∈ V ,

(TeΦ · ξ)(f) =
d

dε

∣∣∣∣
ε=0

(γε)∗(f) = £ξf,

by the dynamic definition of the Lie derivative. From now on we will use concatenation

to denote the action of g on V , so that for ξ ∈ g and f ∈ V ,

ξf = £ξf.

1.5.6 Induced g action on V ∗

The g-action on V ∗ is defined as minus the dual map (i.e. linear algebraic adjoint) of

the g-action on V . We can also start with the action of G on V ∗; this action induces a

g-action on V ∗. Both g-actions on V ∗ are in fact the same, as we will now show. Take
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µ ∈ V ∗, f ∈ V , and ξ ∈ g. Then

〈
µ,£ξf

〉
=

∫

M
(£ξf)µ

=

∫

M
(£ξ(fµ) − f£ξµ)

=

∫

M
(diξ(fµ) + iξd(fµ)) −

∫

M
f£ξµ

Since fµ is an n-form, d(fµ) = 0. Also, since ∂M = ∅, Stokes’ theorem implies that

∫

M
diξ(fµ) = 0.

Therefore, we have
〈
µ,£ξf

〉
=

〈
−£ξµ, f

〉
,

so the g-action on V ∗ is

ξµ = £ξµ.

Verifying the calculation using the alternate approach, we start with the G-action on

V ∗ denoted by Ψ : G → GL(V ∗, V ∗), where for each γ ∈ G, Ψ(γ) = γ∗( · ). Then we

compute TeΨ : g → L(V ∗, V ∗). As before, we fix ξ ∈ g and write

ξ =
d

dε

∣∣∣∣
ε=0

γε where γ0 = idG.

Then

(TeΨ · ξ)(µ) =
d

dε

∣∣∣∣
ε=0

(γε)∗(µ) = £ξµ

by the dynamic definition of the Lie derivative.

1.5.7 Adjoint action (group)

We start with the conjugation map

Iγ(η) = γ · η · γ−1.
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We can then write the adjoint action as

Adγξ = TeIγ · ξ

= Tγ ◦ ξ ◦ γ−1

= γ∗ξ

1.5.8 Dual of adjoint action (group)

Next on our list is the Ad∗ action. We take ω ⊗ µ ∈ g∗, ξ ∈ g, and γ ∈ G. Then the

calculation runs as follows:

〈
Ad∗

γω ⊗ µ, ξ
〉

=
〈
ω ⊗ µ,Adγξ

〉

=
〈
ω ⊗ µ, γ∗ξ

〉

=

∫

M
iγ∗ξω µ

=

∫

M
γ∗(iξγ

∗ω)µ

=

∫

M
γ∗(iξγ

∗ω γ∗µ)

=

∫

M
iξγ

∗ω γ∗µ

=
〈
γ∗ω ⊗ γ∗µ, ξ

〉

=
〈
γ∗(ω ⊗ µ), ξ

〉
,

so

Ad∗
γ(ω ⊗ µ) = γ∗(ω ⊗ µ).

1.5.9 Adjoint action (algebra)

Moving to the Lie algebra, we have another pair of adjoint actions. The adjoint action

on the Lie algebra is simply the bracket

adξ : g → g

adξη = [ξ, η]g = −[ξ, η]M .
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1.5.10 Dual of adjoint action (algebra)

Fix ω ⊗ µ ∈ g∗ and η ∈ g. Then the calculation runs as follows:

〈
ad∗

ξ(ω ⊗ µ), η
〉

=
〈
ω ⊗ µ, adξη

〉

= −
∫

M
ω · [ξ, η]M µ.

Now we apply the following identity:

i[ξ,η]ω = £ξiηω − iη£ξω.

We apply Cartan’s magic formula to the first Lie derivative:

£ξiηω = diξiηω + iξdiηω

Note that iηω is a function, so iξiηω = 0. Then the divergence theorem yields

∫

M
iξdiηω µ = −

∫

M
iηω divµξ µ.

Hence

−
∫

M
ω · [ξ, η]M µ =

∫

M
iη(£ξω + ωdivµξ)µ,

which means that

ad∗
ξ(ω ⊗ µ) = (£ξω + ωdivµξ) ⊗ µ.

1.5.11 Diamond map

So far we have discussed actions of a group on a vector space, or to be precise, maps which

give a correspondence between group elements and linear maps of the vector space to

itself. Of course, there are other maps of interest. For each f ∈ V , we define ρf : g → V

by

ρf (ξ) := ξf = £ξf.
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Algebraically, what we have is a map Ψ : V → L(g, V ) that assigns the linear transfor-

mation ρf to each element f ∈ V . Then, using the same approach as before, we may

compute the dual map ρ∗f : V ∗ → g∗ as follows: for a ∈ V ∗,

〈
ρ∗f (a), ξ

〉
=

〈
a, ρf (ξ)

〉

=
〈
a,£ξf

〉

=

∫

M
£ξf a

=

∫

M
df · ξ a

=
〈
df ⊗ a, ξ

〉
,

proving that ρ∗f (a) = df ⊗ a. Hence we have the associated map Ψ′ : V → L(V ∗, g∗)

that assigns to each f ∈ V the linear transformation ρ∗f . In the notation of [40], we have

in fact computed the diamond map

� : V × V ∗ → g∗

f � a := Ψ′(f)(a) = df ⊗ a

1.6 Symmetries of the Lagrangian

Now that we have determined all the various spaces and actions that will be of relevance

in the semidirect product theory, let us now revisit the Lagrangian L defined in (1.6).

Recall that we showed that transforming the Euler-Lagrange equation for L from material

to spatial variables gives precisely the momentum equation (1.1b). This hints at the fact

that we may be able to transform the Lagrangian L itself from the material to the spatial

picture. In order to do this, we will have to exploit a certain symmetry of the Lagrangian.

1.6.1 Induced action of G on TG

Before we show that L is invariant under the action of the group G = Diff(M), we revisit

the action of G on TG. For each γ ∈ G, let Φg : G → G denote the action of γ on G.
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Specifically,

Φγ(η) = η ◦ γ.

This action induces an action on each tangent space TηG. Specifically, we have the map

TΦγ : TG→ TG which acts as follows. Fix η̇ ∈ TηG. We can write this element of TηG

as η̇ = d
dε

∣∣
ε=0

ηε where η0 = η. Then

TηΦγ · η̇ =
d

dε

∣∣∣∣
ε=0

Φγ(ηε)

=
d

dε

∣∣∣∣
ε=0

ηε ◦ γ

= η̇ ◦ γ.

Hence we obtain the action of γ on TG:

γ · (η, η̇) := TΦγ · (η, η̇) = (η ◦ γ, η̇ ◦ γ).

Or since η̇ ◦ γ ∈ TηDiff(M), we can ignore the effect of the action on the base point of

the tangent vector and write

γ · η̇ = η̇ ◦ γ.

The group G acts on Den(M) via pullback, i.e. γµ = γ∗µ. (Though some actions

considered are actually right actions, we will always write the group variable on the

left.) Using this G-action, we may prove

Proposition 3. The Lagrangian L defined in (1.6) by

L(η̇, µ0) =

∫

M

[
1

2
‖η̇(m)‖2 −W

(
[η∗µ0](η(m))

)]
µ0.

is invariant under the action of G = Diff(M).
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Proof. We compute

L(γ · (η̇, µ)) = L(η̇ ◦ γ, γ∗µ)

=

∫

M

[
1

2
‖η̇ ◦ γ‖2 −W

(
[(η ◦ γ)∗γ∗µ] (η ◦ γ)

)]
(γ∗µ).

Recall that

(η ◦ γ)∗(γ∗µ) = η∗γ∗γ
∗µ = η∗µ,

so that

L(γ · (η̇, µ)) =

∫

M

[
1

2
‖η̇ ◦ γ(m)‖2 −W

(
[η∗µ](η ◦ γ)(m)

)]
(γ∗µ).

Noting that γ∗(f) = f ◦ γ, we see that

L(γ · (η̇, µ)) =

∫

M
γ∗

[
1

2
‖η̇(m)‖2 −W

(
[η∗µ](η(m))

)]
(γ∗µ).

Now applying the change of variables theorem, we have

L(γ · (η̇, µ)) =

∫

M

[
1

2
‖η̇(m)‖2 −W

(
[η∗µ](η(m))

)]
µ = L(η̇, µ),

proving G-invariance.

1.6.2 Reduction

Now we can write down the reduced Lagrangian. For u ∈ X(M), and µ ∈ Den(M), set

l(u, µ) = L(u ◦ η, η∗µ). (1.17)

This implicitly defines the spatial velocity as u = η̇ ◦ η−1. It is clear that u is a tangent

vector based at the identity element of Diff(M). Also note that µ = η∗µ0 or µ0 = η∗µ.

L(u ◦ η, η∗µ) =

∫

M

[
1

2
‖u ◦ η‖2 −W

(
η∗µ

)]
η∗µ.



28

Using the properties of pullback, we write

L(u ◦ η, η∗µ) =

∫

M
η∗

([
1

2
‖u‖2 −W (µ)

]
µ

)
.

Now by the change of variables theorem,

l(u, µ) =

∫

M

[
1

2
‖u‖2 −W (µ)

]
µ, (1.18)

which is our final expression for the reduced Lagrangian l : g×V ∗ → R where, of course,

g×V ∗ = X(M)×Den(M). In what follows, we will use the following notation: µ = ρdnx,

where dnx is the canonical n-form on M and ρ ∈ C∞(M).

1.7 Variational Principles in the Spatial Picture

The reduced Lagrangian l(u, µ) defined in (1.18) is clearly intended to be the Lagrangian

for the momentum equation (1.1b) in spatial variables. To realize this intention, we must

go about the business of deriving the momentum equation from the reduced Lagrangian,

which we demonstrate in two ways.

1.7.1 Equations of Motion I: Variational Principle

Our first path from the reduced Lagrangian l to the equations of motion will involve the

reduced variational principle. That is, given the action

s(u, µ) =

∫ T

0
l(u, µ) dt, (1.19)

we wish to solve the variational equation

δs(u, µ) · (δu, δµ) = 0 (1.20)

for critical points (u, µ). Previously, in the material picture, we took free variations δη.

That is, as long as the variations ηε were fixed on the boundary ∂M , we were happy to



29

choose any tangent vector

δη =
d

dε

∣∣∣∣
ε=0

ηε

as a variation. Now that we have changed our point of view and reduced the Lagrangian,

we must keep in mind the relationships between the spatial and material pictures:

u = η̇ ◦ η−1

µ = η∗µ0.

A natural question arises: even if δη is allowed to vary freely, are there restrictions on

the possible variations δu and δµ? The answer is that variations in these variables will

be constrained to be of the specific form

δu =
∂w

∂t
+ [u,w],

δµ = −£wµ,

where w = δη ◦ η−1 vanishes at the endpoints t = 0, T .

1.7.2 Derivation of Constraints

Before proceeding, we confirm that the above constraints are natural. They arise pre-

cisely from the relationship between the unreduced (η, ρ0) and reduced (v, ρ) variables.

Free variations of the former correspond to constrained variations of the latter.

To see this, we start with the relationship between the reduced and unreduced velocity

variables, u = η̇ ◦ η−1, and calculate variations. First we write

uε = η̇ε ◦ (ηε)−1,

which implies that

δu :=
d

dε

∣∣∣∣
ε=0

uε = δη̇ ◦ η−1 + ∇η̇ · d
dε

∣∣∣∣
ε=0

(ηε)−1
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Now because (ηε)−1 ◦(ηε) = id, we can differentiate both sides with respect to ε at ε = 0.

This yields the following formula:

d

dε

∣∣∣∣
ε=0

(ηε)−1 = −∇η−1 · δη ◦ η−1.

Applying this to our earlier expression for δu, we have

δu = δη̇ ◦ η−1 −∇η̇ · ∇η−1 · δη ◦ η−1.

Defining w = δη ◦ η−1, we find that

∂w

∂t
= δη̇ ◦ η−1 + ∇δη · ∂

∂t
(η−1).

We can calculate the very last term in this formula by differentiating η−1 ◦ η = id with

respect to t, resulting in
∂

∂t
η−1 = −∇η−1 · η̇ ◦ η−1.

Substituting into our earlier expression for ∂w/∂t, we have

∂w

∂t
= δη̇ ◦ η−1 −∇δη · ∇η−1 · η̇ ◦ η−1

= δη̇ ◦ η−1 −∇w · u.

Using what we have so far, along with the fact that

∇u = ∇η̇ · ∇η−1,

we have

δu =
∂w

∂t
+ ∇w · u−∇u · w =

∂w

∂t
+ [u,w]. (1.21)

Next, using basic facts about the pullback of volume forms, we write

ρ ◦ η =
1

det∇ηρ0.
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Taking variations,

δρ ◦ η + ∇ρ · δη = − ρ0

det∇η (∇η)−T · ∇δη,

where the final · denotes pairing of linear transformations. That is, A · B = tr(ATB).

Now we solve for δρ, obtaining

δρ = −∇ρ · w − ρ tr(∇η−1 · ∇δη).

In coordinates,

tr(∇η−1 · ∇δη) = (∇η−1)ij(∇δη)ij

=
∂(η−1)i

∂xj
· ∂(δη)j

∂Xi

=
∂(δη ◦ η−1)j

∂xj
= div(w).

Therefore,

δρ = −∇ρ · w − ρdiv(w) = −div(ρw). (1.22)

Note from (1.21) and (1.22) that when w vanishes, both δu and δρ vanish. Then it is

sufficient, when we vary the action (1.19), to consider variations δu and δρ such that w

vanishes at the endpoints t = 0 and t = T .

1.7.3 Critical Points of l

Having verified the constraints, let us directly compute the variational equation (1.20)

with the Lagrangian and action defined in (1.18-1.19):

δs · (δu, δρ) =

∫ T

0

∫

M

{[
uiδui −W ′(ρ)δρ

]
ρ+

[
1

2
‖u‖2 −W

]
δρ

}
dx dt

Using the constraints (1.21) and (1.22), we have

δs · (δu, δρ) =

∫ T

0

∫

M

{
ui

[
∂wi

∂t
+
∂wi

∂xj
uj − ∂ui

∂xj
wj

]
+W ′(ρ)

∂

∂xi
(ρwi)

}
ρ

−
(

1

2
‖u‖2 −W

)
∂

∂xi
(ρwi)

}
dx dt.
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Integrating by parts and assuming that w vanishes at the endpoints t = 0 and t = T , we

have

δs · (δu, δρ) =

∫ T

0

∫

M

{
− ∂

∂t
(uiρ)wi − ∂

∂xj
(uiujρ)wi − ui ∂u

i

∂xj
ρwj

− ∂

∂xi
[W ′(ρ)ρ]ρwi +

∂

∂xi

[
1

2
‖u‖2 −W (ρ)

]
ρwi

}
dx dt.

Since δs · (δu, δρ) = 0 for all w, we must have

− ∂ui

∂t
ρ− ui ∂ρ

∂t
− ui

,ju
jρ− uiuj

,jρ− uiujρ,j

− ujuj
,iρ− [W ′(ρ)ρ],iρ+ [ujuj

,i −W ′(ρ)ρ,i]ρ = 0,

where we have used subscripts to denote spatial derivatives. Noting cancellations and

regrouping the remaining terms, we have

∂

∂t

(
ρui

)
+

∂

∂xj

(
ρuiuj

)
= −ρ ∂

∂xi
[W (ρ) + ρW ′(ρ)].

By again taking p(ρ) = ρ2W ′(ρ), we will find that this equation is equivalent to

∂

∂t

(
ρui

)
+

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
. (1.23)

This is precisely the momentum equation (1.1b).

1.7.4 Equations of Motion II: Euler-Poincaré Equation

We can also derive the equations of motion from the reduced Lagrangian by making use

of the Euler-Poincaré equation from semidirect product reduction theory:

∂

∂t

δl

δu
= −ad∗

u

δl

δu
+
δl

δµ
� µ.
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1.7.5 Derivatives of l

In order to apply the Euler-Poincaré equations of motion, we must first calculate the

variational derivatives of l(u, µ). First

〈
δl

δu
, ξ

〉
=

d

dε

∣∣∣∣
ε=0

l(uε, µ) where
d

dε

∣∣∣∣
ε=0

uε = ξ

=
1

2

d

dε

∣∣∣∣
ε=0

∫

M
‖uε‖2 µ

=
1

2

∫

M

d

dε

∣∣∣∣
ε=0

‖uε‖2 µ

=

∫

M
〈u, ξ〉‖·‖ µ

= 〈u[ ⊗ µ, ξ〉

where the [ operation is pointwise with respect to 〈·, ·〉‖·‖, i.e.

u[(ξ) = 〈u, ξ〉‖·‖.

Hence
δl

δu
= u[ ⊗ µ. (1.24)

Note that W only depends on the ρ “part” of µ, not on the canonical volume form dnx

part. To formalize this notion, we write

W (µ) = W (ρdnx) = Ŵ (ρ).

Here W : Den(M) → C∞(M). Using Ŵ , we can write an alternate expression for

DW : Den(M) → L(Den(M), C∞(M)) as follows. Let µ = ρdnx and µ′ = ρ′ dnx. Then

DW (µ) · µ′ =
d

dε

∣∣∣∣
ε=0

W (µ+ εµ′)

=
d

dε

∣∣∣∣
ε=0

Ŵ (ρ+ ερ′)

=
∂Ŵ

∂ρ
(ρ) · ρ′ = Ŵ ′(ρ)ρ′.
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Furthermore, for densities µ, µ1, and µ2, we have

〈DW (µ) · µ1, µ2〉 =

〈
Ŵ ′(ρ)ρ1, µ2

〉

=

∫

M
Ŵ ′(ρ)ρ1µ2

=

∫

M
Ŵ ′(ρ)ρ1ρ2 dnx

=

∫

M
Ŵ ′(ρ)ρ2µ1

=

〈
Ŵ ′(ρ)ρ2, µ1

〉

= 〈DW (µ) · µ2, µ1〉

Armed with these facts, we proceed:

〈
δl

δµ
, α

〉
=

d

dε

∣∣∣∣
ε=0

l(u, µε) where
d

dε

∣∣∣∣
ε=0

µε = α

=

∫

M

d

dε

∣∣∣∣
ε=0

[
1

2
‖u‖2 −W (µε)

]
µε

=

∫

M

[
1

2
‖u‖2 −W (µ)

]
α+ µ [−DW (µ) · α]

=

〈
1

2
‖u‖2 −W (µ), α

〉
− 〈DW (µ) · α, µ〉

=

〈
1

2
‖u‖2 −W (µ) − DW (µ) · µ, α

〉
,

so we must have
δl

δµ
=

1

2
‖u‖2 − Ŵ (ρ) − Ŵ ′(ρ) · ρ. (1.25)

1.7.6 Plugging into Euler-Poincaré

In an earlier calculation (see §4.10), we established that for ξ ∈ g and θ ⊗ ν ∈ g∗,

ad∗
ξ(θ ⊗ ν) = (£ξθ + θdivνξ) ⊗ ν.
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Using this and the variational derivative (1.24) in the semidirect product EP equation

(1.15) gives the evolution equation

∂

∂t
(u[ ⊗ µ) = −(£uu

[ + u[divµu) ⊗ µ+
δl

δµ
� µ. (1.26)

Because divµu is a scalar function, the two objects −u[divµu⊗ µ and −u[ ⊗ divµuµ are

equivalent. Thus when we subtract from (1.26) the mass conservation equality

u[ ⊗ ∂µ

∂t
= −u[ ⊗ (divµv)µ,

we find that (1.26) simplifies to

∂u[

∂t
⊗ µ = −£uu

[ ⊗ µ+ d

(
δl

δµ

)
⊗ µ. (1.27)

Note that we have used an earlier computation (see §4.11) to evaluate the diamond map.

Now we apply Cartan’s magic formula and the variational derivative (1.25) to obtain

∂u[

∂t
+ diuu

[ + iudu
[ =

1

2
diuu

[ − dW (µ) − d(DW (µ) · µ). (1.28)

A coordinate computation verifies that

1

2
diuu

[ + iudu
[ = [∇u · u][.

We use this in (1.28) and take sharps of both sides, resulting in

∂u

∂t
+ ∇u · u = − [dW (µ) + d(DW (µ) · µ)]] . (1.29)

As before, if we take p(ρ) = ρ2W ′(ρ) we find that the equation reduces to

∂u

∂t
+ ∇u · u = −∇p

ρ
. (1.30)

This is identical to (1.14), and as we explained earlier, taken together with the continuity

equation (1.1a), it is also equivalent to the momentum equation (1.1b).



36

1.8 Discussion

We have shown three different ways of deriving (1.1b) from a variational principle:

A1. Start with the material Lagrangian (1.6), apply Hamilton’s principle, and trans-

form the resulting equation (1.8) to the spatial picture.

A2. Start with the spatial Lagrangian (1.18) and apply Hamilton’s principle with con-

straints (1.21) and (1.22).

A3. Start with the spatial Lagrangian (1.18), compute variational derivatives (1.24)

and (1.25), and then compute the semidirect product EP equation (1.15).

Note that this constitutes a “verification by hand” of most of the Euler-Poincaré Theorem

for Continua (see Theorem 6.1 in [40]), when this theorem is applied specifically to the

compressible fluid system. We remark that the general theorem is quite powerful. The

reader who has followed the Lie-algebraic calculations in the previous sections is well-

equipped to apply the theorem to any problem of interest in continuum mechanics.

Of the three approaches, A1 is the least preferable. The coordinate computations

were very complicated, and indeed they were not valid except in flat Euclidean space. We

could have introduced tools from Riemannian geometry to effect a global computation,

and for the barotropic compressible Euler equation, this would have been reasonable.

However, we can easily envision a case where the Lagrangian L may be more complicated

and contain higher-derivative terms. This would be the case if say, we carried out a

series expansion inside the Lagrangian (1.6). Then either the local or global approaches

to writing the Euler-Lagrange equation for L would be intractable to implement.

Approaches A2 and A3 require roughly the same amount of work. Method A2 can

be applied very näıvely, while A3 requires knowledge of the computations performed in

Section 1.5. In the next chapters, we shall use A2 especially if we wish to change one or

more of the constraints on the variations. In other cases, we shall use A3.

Both approaches A2 and A3 have many attractive features: we do not have to worry

about the calculation being valid only locally. Because the semidirect product EP equa-

tion arises via symmetry reduction, the equation automatically makes sense in both the
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material and spatial pictures. Finally, because we are working in the spatial picture, the

variables u and ρ belong to vector spaces and we can add and multiply with impunity.

Note that we cannot add two diffeomorphisms φ and ψ and hope to get a diffeomorphism

back, even in Euclidean space1. As we will see, carrying out a certain kind of (additive)

Taylor expansion inside the Lagrangian is one way of deriving new model equations for

compressible fluid motion.

1Consider φ(x) = x and ψ(x) = −x. Both are diffeomorphisms of R, but their sum (φ+ ψ)(x) = 0 is

not even invertible.
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Chapter 2

Lagrangian Averaging for Compressible Fluids

2.1 Introduction

Historical Remarks. The incompressible case will be discussed first. The Lagran-

gian averaged Euler (LAE-α) equations for average incompressible ideal fluid motion first

appeared in the context of averaged fluid models in [40, 39]. Dissipation was added later

to produce the Lagrangian averaged Navier–Stokes (LANS-α) equations, also known as

the Navier–Stokes-α equations.1

Remarkably, the LAE-α equations are mathematically identical to the inviscid second

grade fluid equations introduced in [72], except for the fact that the parameter α is

interpreted differently in the two theories. In the case of LAE-α and LANS-α, the

parameter α is a spatial scale below which rapid fluctuations are smoothed by linear and

nonlinear dispersion.

As in, for example, the work of [86] on nonlinear waves, the distinctive feature of the

Lagrangian averaging approach is that averaging is carried out at the level of the varia-

tional principle and not at the level of the Euler or Navier–Stokes equations, which is the

traditional averaging or filtering approach used for both the Reynolds averaged Navier–

Stokes (RANS) and the large eddy simulation (LES) models. As such, the variational

1Sometimes the term “viscous Camassa–Holm (VCH) equations” ([12]) has been used, but this ter-

minology is a little unfortunate since the n-dimensional version of the CH equations, also known as the

EPDiff equations, arise via Euler–Poincaré reduction of H1 geodesics on the group of all diffeomorphisms

and not the volume-preserving ones (see [37]).
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procedure does not add any artificial viscosity, a physical reason to consider the LAE-α

or LANS-α equations as good models for incompressible turbulent flow. Moreover, it

has been proven that the α models are computationally very attractive (see [13, 65]).

Although sharing the same general technique (use of averaging and asymptotic meth-

ods in the variational formulation), several alternative derivations of incompressible LAE-

α equations exist in the literature. One of these derivations (see [34]) uses the generalized

Lagrangian mean (GLM) theory developed in [2].

An alternative derivation of the incompressible LAE-α and LANS-α equations was

given in [60] by using an ensemble average over the set of solutions of the Euler equations

with initial data in a phase-space ball of radius α while treating the dissipative term via

stochastic variations. The derivation also uses a turbulence closure that is based on the

Lagrangian fluctuations, namely a generalization of the frozen turbulence hypothesis of

Taylor (see [83]).

Rigorous analysis aimed at proving global well-posedness and regularity of the three-

dimensional isotropic and anisotropic LANS-α equations can be found in, for example,

[27, 59, 60]. However, global existence for the inviscid three-dimensional LAE-α remains

an open problem.

From a computational viewpoint, numerical simulations of the α models (see [13, 65])

show that the LANS-α equations give computational savings comparable to LES models

for forced and decaying turbulent flows in periodic domains. For wall-bounded flows, it

is expected that either the anisotropic model or a model with varying α needs to be used;

the computational efficacy of these methods on such flows remains to be demonstrated.

As far as the compressible case is concerned, the only papers we know of are those of

D. D. Holm [34, 35]. Later, we shall discuss the relation between Holm’s work and the

present work.

We refer the interested reader to [59, 60] for a more detailed history of the PDE

analysis for LAE-α and LANS-α equations and to [65] for a survey and further references

about the numerical aspects of these models.
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Motivation. In compressible flows there are two major problems at higher wave num-

bers, or small scales, that require special attention. These are (a) turbulence for high

Reynolds number flows (common with incompressible flows) and (b) strong shocks. In

both cases the challenge lies in the appropriate representation of small-scale effects. For

turbulence, the energy cascade to smaller scales can be balanced by viscous dissipation,

resulting in the viscous regularization of the Euler equations.

Historically, viscous dissipation has been used to regularize shock discontinuities.

This includes adding to the Euler equation nonphysical and artificial viscous terms and

Fourier’s law for heat transfer in the shock region (see, e.g., [53, 75]). This way, the

steepening effect of the nonlinear convective term is balanced by dissipation. We believe

that Lagrangian averaging is a reasonable alternative way to regularize shock waves.

The net effect of Lagrangian averaging is to add dispersion instead of dissipation to the

Euler equations; that is, one adds terms that redistribute energy in a nonlinear fashion.

In other, rather different situations, the technique of balancing a nonlinear convective

term by dispersive mechanisms was used by [52] for the KdV equation and by [47, 45]

for plasma flows.

The competition between nonlinearity and dispersion has, of course, resulted in re-

markable discoveries, the most famous being solitons, localized waves that collide elas-

tically, suffering only a shift in phase. The robustness of solitons in overcoming strong

perturbations is largely due to a balance between nonlinearity and linear dispersion. Note

that in Lagrangian averaging the energy redistribution mechanism that is introduced is

nonlinear and might yield other interesting features that warrant further investigation.

Another feature of the compressible Lagrangian averaged Euler-α equations is that

in turbulent flows with shocks the effect of shocks and turbulence are simultaneously

modeled by the same technique, namely the Lagrangian averaging method.

Issues Addressed in This Chapter. In this chapter we apply the averaged Lagran-

gian methodology to derive the isotropic and anisotropic averaged models for compress-

ible Euler equations.

One goal of this chapter is to present a clear derivation of the averaged equations. We
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are particularly interested in separating the two issues of averaging and modeling. In the

derivation, a new ensemble averaging technique is proposed and investigated. Instead of

taking clouds of initial conditions, as in [60], we average over a tube of trajectories ηε

centered around a given Lagrangian flow η. The tube is constructed by specifying the

Lagrangian fluctuations ξε = ηε ◦ η−1 at t = 0 and providing a flow rule which evolves

them to all later times. The choice of flow rule is a precise modeling assumption which

brings about closure of the system.

For the incompressible case we assume that fluctuations are Lie advected by the

mean flow (or frozen into the mean flow as divergence-free vector fields), and we obtain

both the isotropic and the anisotropic versions of the LAE-α equations. The advection

hypothesis is the natural extension to vector fields of the classical frozen turbulence

hypothesis of Taylor (see [83]) stated for scalar fluctuations.

The second goal of this work is to extend the derivation to barotropic compressible

flows. This problem has already been considered by Holm (see [35]) in the context of

GLM motion. In this work, an alpha model appears as a GLM fluid theory with an

appropriate Taylor hypothesis closure. However, even though [35] enumerates several

frozen-in closure hypotheses, the averaged equations are derived only for the case when

the fluctuations are parallel transported by the mean flow. In our work we will consider

a more general advection hypothesis to study the compressible anisotropic case. In

addition, a physically based new flow rule is introduced to deal with the isotropic case.

The averaging technique consists of expanding the original Lagrangian with respect

to a perturbation parameter ε, truncating the expansion to O(ε2) terms, and then taking

the average. It turns out that the averaged compressible Lagrangian depends on the

Lagrangian fluctuations ξ′ only through three tensor quantities which are quadratic in

ξ′. In the terminology of [35] these tensors represent the second-order statistics of the

Lagrangian fluctuations. Evolution equations for these tensors are derived from a core

modeling assumption: a prescribed flow rule for the time evolution of the fluctuations ξ′.

The flow rule gives us closure, allowing us to apply Hamilton’s principle to the averaged

Lagrangian and thereby derive an equation for the mean velocity u.

The organization of the rest of the chapter is as follows. In section 2.2 we describe a



42

general procedure for Lagrangian ensemble averaging. This procedure is then applied to

the action for incompressible fluids in section 2.3 to demonstrate our derivation technique.

The general procedure is applied again in section 2.4, this time to the more complex

case of barotropic compressible fluids. Section 2.5 is devoted to modeling issues; here

the strategy of modeling the evolution of Lagrangian fluctuations ξ′ using flow rules is

discussed in detail. In section 2.6 we derive the averaged equations for incompressible and

compressible models in both isotropic and anisotropic versions. The appendix provides

technical details about the fluctuation calculus used throughout the chapter.

Main Results. The main result of this chapter is the derivation of compressible La-

grangian averaged Euler equations with

• anisotropic modeling of fluid fluctuations—see equations (2.49);

• isotropic modeling of fluid fluctuations—see equations (2.51).

In addition, we provide an improved derivation of the incompressible isotropic and

anisotropic LAE-α equations.

2.2 General Lagrangian Averaging

A mathematical setting for a certain class of compressible fluid flow problems will be

given first. After describing the general procedure for Lagrangian averaging, the specific

case of the Euler action for fluids will be considered.

Let M be an open subset of R
N representing the containing space of a fluid. Suppose

we are given a Lagrangian for a compressible fluid, L(ψ, ψ̇, µ0), where ψ ∈ Diff(M), the

space of diffeomorphisms of M , (ψ, ψ̇) ∈ TDiff(M), and µ0 ∈ ΛN (M), the space of N -

forms on M . Fix a time interval [0, T ], and let C(Diff(M)) be the path space of smooth

maps from [0, T ] into Diff(M). Then the action S : C(Diff(M)) × ΛN (M) → R is

S(η, µ0) =

∫ T

0
L(η(t), η̇(t), µ0) dt.
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We seek an averaged action Sα(η, µ0), where α is a length scale characterizing the coarse-

ness of the average. Taking η and µ0 as given, we shall describe how to compute Sα(η, µ0).

Remark. It is important to emphasize that for both S and Sα, η is merely a test curve.

It is not an extremal of the action S. We are trying to average the action S itself, not

any fluid dynamical PDE or the solutions of such a PDE. Our final product Sα should

not depend at all on an initial choice of the test curve η.

Tube Initialization. The first step is to take ξε(x, t) to be a family of diffeomorphisms

about the identity. That is,

for each ε ≥ 0, ξε(·, t) ∈ Diff(M) for all t, and

at ε = 0, ξε(x, t) = x for all x, t.

Define the vector fields ξ′ and ξ′′ via

ξ′ =
∂

∂ε

∣∣∣∣
ε=0

ξε and ξ′′ =
∂2

∂ε2

∣∣∣∣
ε=0

ξε.

Use ξε to construct a tube of material deformation maps that are close to η by letting

ηε(X, t) = ξε(η(X, t), t), or, written more compactly,

ηε = ξε ◦ η. (2.1)

Here, X is a material point in the reference configuration. Define the spatial velocity by

uε(x, t) = η̇ε((ηε)−1(x, t), t), where ηε is a given material deformation map. Compactly

written, this reads as

uε = η̇ε ◦ (ηε)−1. (2.2)

The map uε is a time-dependent vector field on M ; i.e., for each ε ≥ 0, and for all t,

uε(·, t) ∈ X(M).
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Averaging. The existence of an averaging operation 〈 · 〉 will now be postulated. The

properties this operation is required to satisfy and an example of such an operation will

be given shortly.

Relationship Between uε and u. It is desirable to have the fluctuations ξε centered,

on average, about the identity: 〈ξε(x, t)〉 = x for all positions x at all times t. What is

actually needed is that for n ≥ 1,

〈
∂nξε

∂εn

∣∣∣∣
ε=0

〉
= 0. (2.3)

In other words, the nth-order fluid fluctuation vector fields should all have mean zero.

Restricting the map to be centered about the identity means simply that the average

will not be skewed in an arbitrary direction. ¿From (2.2) and (2.3) one can derive

〈uε ◦ ξε(x, t)〉 = u(x, t). (2.4)

Equation (2.4) shows in which sense the average of uε is u in a Lagrangian-mean theory

defined by 〈ηε(·, t)〉 = η(·, t). This equation is closely connected with the generalized

Lagrangian-mean description of [2], where the Lagrangian-mean velocity ūL and the

fluctuating Eulerian velocity uξ are related in a similar way.

Density. For the nonaveraged Lagrangian L, µ0 is a parameter in the sense of Lagran-

gian semidirect product theory; see Chapter 1 and [58, 39]. The physical interpretation

of µ0 is as follows. Since µ0 is an N -form on M , it can be written as

µ0 = ρ0 dx
1 ∧ · · · ∧ dxN ,

where ρ0 is a smooth function onM . Now ρ0(X) is the density of the fluid at the material

point X in the reference configuration. This is in contrast to the spatial density ρε(x, t),

which gives us the density of the fluid at the spatial point x at time t. Defining

µε = ρε dx1 ∧ · · · ∧ dxN , (2.5)
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one has the relationship

(ηε)∗µ0 = µε. (2.6)

Fluctuation Calculus. Because uε and ρε will be expanded, the ε-derivatives of

uε and ρε need to be calculated. First, define

u′ =
∂

∂ε

∣∣∣∣
ε=0

uε and u′′ =
∂2

∂ε2

∣∣∣∣
ε=0

uε. (2.7)

By differentiating (2.2), one finds expressions for u′ and u′′ in terms of u, ξ′, and ξ′′. The

calculations can be performed intrinsically using Lie derivative formulae—the results, as

found in [60], are

u′ = ∂tξ
′ + [u, ξ′], (2.8a)

u′′ = ∂tξ
′′ + [u, ξ′′] − 2∇u′ · ξ′ −∇∇u(ξ′, ξ′). (2.8b)

In these formulas, the bracket [x, y] = £xy is the standard Jacobi–Lie bracket of vector

fields on M (see, for example, [1]). Next, define

ρ′ =
∂

∂ε

∣∣∣∣
ε=0

ρε and ρ′′ =
∂2

∂ε2

∣∣∣∣
ε=0

ρε. (2.9)

One obtains expressions for ρ′ and ρ′′ in terms of ρ, ξ′, and ξ′′ by differentiating (2.6)

(see the appendix for the detailed calculations). The results are

ρ′ = − div(ρξ′), (2.10a)

ρ′′ = div(div(ρξ′ ⊗ ξ′)) − div(ρξ′′). (2.10b)

Averaging Operation. In the above development, an averaging operation has been

implicitly used. The properties it is required to satisfy will now be spelled out. Let

F(Y ) mean the space of smooth, real-valued functions on a manifold Y . If Y is infinite-

dimensional, then smoothness is understood in the sense of infinite-dimensional calculus

with respect to, for example, suitable Sobolev topologies. These infinite-dimensional
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technicalities will not be required in any detail in this chapter, and so may be treated

formally.

As before, the set M is the containing space of the fluid, and α is a small positive

number. Let X be an appropriately chosen space of fields, designed to model “fluid

fluctuations,” on M , and consider the space Y = [0, α] × X. Assume that there is an

averaging operation

〈 · 〉 : F(Y ) → F(M)

satisfying the following properties for f, g ∈ F(Y ), a, b ∈ R, ψ ∈ F([0, α]), and h ∈ F(X):

Linearity: 〈af + bg〉 = a〈f〉 + b〈g〉, (2.11)

Independence: 〈ψh〉 =
1

α

(∫ α

0
ψ(ε) dε

)
〈h〉, (2.12)

Commutativity:

〈∫
f dx

〉
=

∫
〈f〉 dx, (2.13)

〈∂f〉 = ∂〈f〉, where ∂ = ∂t or ∂ = ∂xi . (2.14)

Here, ψh ∈ F(Y ) is defined as the pointwise product. Note that if ψ is a constant,

then the first and second requirements are compatible.

For compressible flow, the space of fluid fluctuations is X = X(M). For incompressible

flow, the space of divergence-free vector fields is used instead, i.e., X = Xdiv(M). In

general, X = TIdentityX, where X is the space to which the tube maps ξε belong.

Example. Let µ be a probability measure on the unit sphere S in X(M), and define

the average of a (vector-valued) function f(ε, w) on [0, α] × S by

〈f〉 :=
1

α

∫ α

0

∫

S
f(ε, w) dµ(w) dε.

One checks formally that this is an example of an averaging operation that satisfies

the desired properties.
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2.3 Incompressible Flow Revisited

Before applying the averaging technique to the case of compressible flow, we shall first

derive averaged equations for incompressible flow, equations which have already been

derived in the literature. The presentation given here has the advantage of being easily

generalized to compressible flows. This advantage stems from the careful use and in-

terpretation of modeling assumptions on the fluctuations ξ′—only intuitive assumptions

are required regarding the mean behavior of the fluctuations, as well as a first-order

Taylor hypothesis. Furthermore, great care has been taken to separate the algebraic

issues involved with the averaging procedure from the modeling issues.

In the incompressible case, fluid fluctuations are modeled using the volume-preserving

diffeomorphism group on M , which is denoted by Diffvol(M). Therefore, the tube con-

struction from the previous section now reads as follows: let ξε(x, t) be a family of

volume-preserving diffeomorphisms about the identity. That is,

for each ε ≥ 0, ξε(·, t) ∈ Diffvol(M) for all t, and

at ε = 0, ξε(x, t) = x for all x, t.

This forces ξ′(·, t) to be a divergence-free vector field for all t.

Averaged Lagrangian for Incompressible Fluids. Let us start with the standard

Lagrangian

l(uε) =

∫

M

1

2
‖uε‖2 dx (2.15)

and expand uε in a Taylor series about u:

uε = u+ εu′ +
1

2
ε2u′′ + O(ε3). (2.16)

Substituting this expansion into (2.15) gives

l(uε) =

∫

M

1

2
‖u2‖ + εu · u′ + ε2

2

(
‖u′‖2 + u′′ · u

)
+ O(ε3) dx. (2.17)
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Let l̂(uε) be the truncation of l to terms of order less than ε3. Using formulas (2.8),

u′ and u′′ can be rewritten in terms of u, ξ′, and ξ′′. We do this in order to write l̂ as a

function only of u, ξ′, and ξ′′. Making the substitutions and rewriting in coordinates,

l̂(uε) =

∫

M

1

2
uiui + ε

(
ui(∂tξ

′i) + uiujξ′
i
,j − uiξ′

j
ui

,j

)

+
ε2

2

(
(∂tξ

′i)(∂tξ
′i) + 2(∂tξ

′i)ξ′
i
,ku

k − 2(∂tξ
′i)ui

,kξ
′k + ξ′

i
,ju

jξ′
i
,ku

k

− ξ′
i
,ju

jui
,kξ

′k − ui
,jξ

′jξ′
i
,ku

k + ui
,jξ

′jui
,kξ

′k − 2(∂tξ
′i
,j)ξ

′jui − 2ξ′
i
,jku

kξ′
j
ui

− 2ξ′
i
,ku

k
,jξ

′jui + 2ui
,kjξ

′kξ′
j
ui + 2ui

,kξ
′k
,jξ

′jui − ui
,jkξ

′jξ′
k
ui

)

+
ε2

2

(
(∂tξ

′′i)ui + ujξ′′
i
,ju

i − ξ′′
j
ui

,ju
i
)
dx, (2.18)

where the notation ui
,j means ∂ui/∂xj . Throughout this chapter, there is an implied sum

over repeated indices. The averaged Lagrangian for incompressible flow is now simply

lαin = 〈l̂〉.

Zero-Mean Fluctuations. Before undertaking this computation, recall from sec-

tion 2.2 that the fluctuation diffeomorphism maps ξε are required to have as their average

the identity map. This statistical assumption regarding the behavior of the fluctuations

is the first modeling assumption:

〈ξ′〉 = 0 and 〈ξ′′〉 = 0. (2.19)

This point would not be worth belaboring, except that, when combined with the proper-

ties of our averaging operation (2.11)–(2.14), assumption (2.19) forces all linear functions

of ξ′, ξ′′, and their derivatives to also have zero mean. Applying this fact to (2.18) causes

the entire O(ε) group and the second O(ε2) group (i.e., the last line of (2.18)) to vanish

inside the average.

We continue analyzing (2.18): the only remaining terms are (1/2)uiui and the first

O(ε2) group. Within this O(ε2) group, we integrate certain terms by parts and notice
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that all terms involving time derivatives of ξ′ group together:

(∂tξ
′i)(∂tξ

′i) + 2(∂tξ
′i)ξ′

i
,ku

k + ξ′
i
,ju

jξ′
i
,ku

k

=
(
(∂tξ

′i) + ξ′
i
,ju

j
)(

(∂tξ
′i) + ξ′

i
,ku

k
)

=

∥∥∥∥
Dξ′

Dt

∥∥∥∥
2

, (2.20)

where D/Dt is the material derivative:

D

Dt
= (∂t + u · ∇). (2.21)

We then simplify the remaining non-time-derivative terms from (2.18), integrating by

parts to remove second-order spatial derivatives. The final expression for the averaged

incompressible Lagrangian is

lαin(u) =

∫

M

{
1

2
‖u‖2 +

α2

2

[〈∥∥∥∥
Dξ′

Dt

∥∥∥∥
2
〉

− 1

2

〈
tr(∇ξ′ · ∇ξ′)

〉
‖u‖2

]}
dx. (2.22)

Modeling of ξ′. Immediate application of Hamilton’s principle to (2.22) does not yield

a closed system of equations. Namely, we have initial (t = 0) data for ξ′ but no way to

compute this vector field for t > 0. Our approach in what follows will be to write down,

based on physical considerations, an evolution law, or flow rule, for ξ′.

A flow rule consists of a prescribed choice of φ in the following evolution equation

for ξ′:
Dξ′

Dt
= φ(u, ρ, ξ′). (2.23)

Given a choice of ξ′ at t = 0, this equation will uniquely determine ξ′ for t > 0. Let us

assume we have a linear flow rule,

Dξ′i

Dt
= Ωijξ′

j
, (2.24)

where Ωij is allowed to depend on u and ρ but not on ξε or its derivatives. The caveat

here is that our choice of Ω must be compatible with incompressibility; in particular,

div ξ′ = 0 at t = 0, and Ω must be chosen such that ξ′ remains divergence-free as it
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evolves. At this stage, one might raise the issue of the tube ξε and request a concrete

description of the whole object. Such a description is unnecessary; in order to close the

system of evolution equations resulting from (2.22), we need only describe the evolution

of the first-order fluctuation field ξ′. Now defining the Lagrangian covariance tensor

F = 〈ξ′ ⊗ ξ′〉 (2.25)

and using the linear flow rule (2.24), the Lagrangian (2.22) can be rewritten as

lαin(u) =

∫

M

{
1

2
uiui +

α2

2

[
ΩijΩikF jk − 1

2
F ij

,iju
kuk

]}
dx. (2.26)

Here we have used the fact that ξ′ must be divergence-free.

Advection Flow Rule. The first flow rule we shall consider results from setting Ωij =

ui
,j:

Dξ′i

Dt
= ui

,jξ
′j. (2.27)

Using the definition of the material derivative, it is trivial to see that this flow rule is

equivalent to Lie advection of ξ′: ∂tξ
′ = −£uξ

′. This advection hypothesis is the vector

field analogue of the classical frozen turbulence hypothesis of Taylor introduced in [83].

This hypothesis is widely used in the turbulence community (see [16] for instance, for

usage of this hypothesis even in the sense of Lie advection of vector fields). More recently,

this generalized version of the Taylor hypothesis has been used to achieve turbulence

closure in the derivation of incompressible LAE-α equations (see [59, 60]) or in the work

of Holm (see [35]) on averaged compressible models using the GLM theory.

The advection flow rule (2.27) is perhaps the most obvious choice for Ω that is

compatible with incompressibility. Note that if div ξ′ = 0 at t = 0, then differentiating

(2.27) with respect to xi yields

∂t

(
div ξ′

)
= ui

,jξ
′j
,i − ξ′

i
,ju

j
,i = 0.

Therefore, div ξ′ = 0 for all t > 0. Using this flow rule, both anisotropic and isotropic
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models shall be developed. For incompressible flow, no other flow rules will be considered.

Incompressible, Anisotropic, Inhomogeneous Flow. In this case, the flow rule is

used to derive an evolution equation for the covariance tensor F . Time-differentiating

F ij = 〈ξ′iξ′j〉 and using (2.27) yields the Lie advection equation ∂tF = −£uF . Equipped

with an evolution equation for F , we can apply Hamilton’s principle to (2.26) and derive

a closed system with unknowns u, the average velocity, and F , the covariance tensor.

Carrying this out, one finds that the anisotropic LAE-α equations are given by the

following coupled system of equations for u and F :

∂t(1 − α2C)u+ (u · ∇)(1 − α2C)u = − grad p, (2.28a)

div u = 0, (2.28b)

∂tF + ∇F · u− F · ∇u−∇uT · F = 0, (2.28c)

where p is the fluid pressure, and the operator C is defined by

Cu = div[∇u · F ]. (2.29)

When α = 0, the system (2.28a)–(2.28b) reduces to the incompressible Euler equation.

Note. Start with the generic incompressible averaged Lagrangian (2.26) and substitute

the advection flow rule (2.27). Now integrate the last term by parts and use div ξ′ = 0.

The result is

lαin(u) =

∫

M

{
1

2
‖u‖2 − α2

2
u · [∇∇u : F ]

}
dx, (2.30)

which is exactly the Lagrangian used in [60] to derive the anisotropic LAE-α equations.

However, in [60] the second-order Taylor hypothesis

D

Dt
〈ξ′′〉 ⊥ u,

where the orthogonality is taken in L2, is necessary to achieve closure. Our choice of

modeling assumptions rendered unnecessary any such hypothesis on the second-order
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fluctuations ξ′′. Second-order Taylor hypotheses, unlike the first-order hypothesis re-

tained from [60], do not have much precedent in the turbulence literature, as discussed

above.

Incompressible, Isotropic, Homogeneous Fluids. To model the motion of an

approximately isotropic fluid, we take the covariance tensor F to be the identity matrix,

i.e.,

F ij =
〈
ξ′

i
ξ′

j
〉

= δij . (2.31)

The choice of F ij = δij is a modeling assumption, and thus will be valid only for flows

which almost preserve this property. Note that (2.31) is strictly inconsistent with the

advection flow rule, and thus can be regarded only as an approximation.

For the case of incompressible isotropic mean flow, we assume that (2.31) holds;

then differentiating this equation with respect to xk and xj and using the fact that ξ′ is

divergence-free, we have 〈
ξ′

i
,jξ

′j
,k

〉
= −

〈
ξ′

i
,jkξ

′j
〉
.

Hence
〈
tr(∇ξ′ · ∇ξ′)

〉
=

〈
ξ′

i
,jξ

′j
,i

〉
= −

〈
ξ′

i
,jiξ

′j
〉

= 0,

and the Lagrangian (2.22) simplifies to

lαin,iso(u) =

∫

M

{
1

2
‖u‖2 +

α2

2

〈∥∥∥∥
Dξ′

Dt

∥∥∥∥
2
〉}

dx. (2.32)

We emphasize that this is only an approximation, so that

lαin,iso(u) ≈ lαin(u)

along fluid trajectories u(t) for which the covariance tensor is approximately the identity.

Now using the flow rule given by (2.27), the averaged Lagrangian lαin from (2.32) becomes

〈∥∥∥∥
Dξ′

Dt

∥∥∥∥
2
〉

= ui
,ju

i
,k

〈
ξ′

j
ξ′

k
〉

= ui
,ju

i
,j, (2.33)
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where we have used the isotropy assumption (2.31). Hence, (2.32) becomes

lαin(u) =

∫

M

{
1

2
‖u‖2 +

α2

2
‖∇u‖2

}
dx. (2.34)

This expression for the averaged Lagrangian in the isotropic case is identical to the one

derived in [59]. Now applying either Hamilton’s principle or Euler–Poincaré theory, we

obtain the standard isotropic LAE-α equations

∂t(1 − α2∆)u+ (u · ∇)(1 − α2∆)u− α2(∇u)T · ∆u = − grad p, (2.35a)

div u = 0, (2.35b)

where p is the usual fluid pressure.

2.4 Averaged Lagrangian for Compressible Flow

Having understood the incompressible case, we now turn to the compressible case. The

procedure is identical in all aspects, except we must now keep track of density fluctua-

tions. Start with the reduced Lagrangian for compressible flow:

l(uε, ρε) =

∫

M

(
1

2
‖uε‖2 −W (ρε)

)
ρε dx. (2.36)

The fluid is assumed to be barotropic, meaning thatW , the potential energy, is a function

only of ρ, the fluid density. Now expand the velocity and density in Taylor series

uε = u+ εu′ +
1

2
ε2u′′ + O(ε3),

ρε = ρ+ ερ′ +
1

2
ε2ρ′′ + O(ε3)

(2.37)

and also expand the potential energy W :

W (ρε) = W (ρ) + εW ′(ρ)ρ′ +
1

2
ε2(W ′′(ρ)ρ′

2
+W ′(ρ)ρ′′) + O(ε3).
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Substituting these expansions into the reduced Lagrangian gives

l(uε, ρε) =

∫

M

(
1

2
‖u‖2 −W (ρ)

)
ρ

+ ε

[(
u · u′ −W ′(ρ)ρ′

)
ρ+

(
1

2
‖u‖2 −W (ρ)

)
ρ′

]

+ ε2
[
1

2

(
(‖u′‖2 + u′′ · u) − (W ′′(ρ)ρ′

2
+W ′(ρ)ρ′′)

)
ρ

+ (u · u′ −W ′(ρ)ρ′)ρ′ +
1

2

(
1

2
‖u‖2 −W (ρ)

)
ρ′′

]
+ O(ε3) dx.

(2.38)

This expansion is now truncated, leaving out all terms of order ε3 and higher. Denote

the truncated Lagrangian by l̂(uε, ρε), and define the averaged Lagrangian lα by

lα(u, ρ) = 〈l̂(uε, ρε)〉. (2.39)

We now outline the procedure by which we arrive at a final written expression for the

averaged Lagrangian lα. The algebra is straightforward but tedious, so details will be

omitted.

1. Use (2.8) and (2.10) to rewrite (2.38) in terms of only u, ρ, and the fluctuations

ξ′, ξ′′.

2. Remove two kinds of terms that vanish inside the average:

(a) linear functions of ξ′ or ξ′′,

(b) linear functions of derivatives (either spatial or temporal) of ξ′ or ξ′′.

Note: see “zero-mean fluctuations” in section 2.3 for justification.

3. Carry out the averaging operation. As in the incompressible case, the only quan-

tities left inside the average should be nonlinear functions of ξ′.
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The end result for the averaged Lagrangian for compressible flow is

lαcomp(u, ρ) =

∫

M

{
1

2
ρ‖u‖2 − ρW (ρ) + α2

[
1

2
ρ

〈∥∥∥∥
Dξ′

Dt

∥∥∥∥
2
〉

− 1

2
w′(ρ)

〈
div(ρξ′)2

〉
− 1

2
w(ρ)

〈
div div(ρξ′ ⊗ ξ′)

〉
]}

dx.

(2.40)

We have introduced w, the enthalpy,2 defined by

w(ρ) = W (ρ) + ρW ′(ρ). (2.41)

2.5 Flow Rule Modeling

In deriving the expressions (2.40) and (2.22) for the averaged Lagrangians, no assump-

tions were made regarding how the Lagrangian fluctuations ξ′ evolve. In this section we

describe one possible strategy for modeling ξ′. Note that such a strategy is necessary

to achieve closure for the evolution equations associated with the Lagrangians (2.40) or

(2.22).

Preliminary Observation. Assuming ξ′ evolves via a linear flow rule, as in (2.24),

the vector field ξ′ appears in the averaged Lagrangian (2.40) only as part of the following

three expressions:3

F ij =
〈
ξ′

i
ξ′

j
〉
, (2.42a)

Gi =
〈
ξ′

i
ξ′

j
,j

〉
, (2.42b)

H =
〈
ξ′

i
,iξ

′j
,j

〉
. (2.42c)

Note that F is the same Lagrangian covariance tensor from the incompressible derivation.

In terms of these quantities, the averaged compressible Lagrangian is given in coordinates

2Any function w satisfying ∇w = (∇p)/ρ, where p is pressure, is called enthalpy. Our definition of w

implies w,i = 2W ′(ρ)ρ,i + ρW ′′(ρ)ρ,i = (ρ2W ′(ρ)),i/ρ = p,i/ρ, as required.
3Similar tensors appear in [34]; they are referred to as second-order statistics of the Lagrangian

fluctuations.
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by

lαcomp(u, ρ) =

∫

M

{
1

2
ρuiui − ρW (ρ) + α2

[
1

2
ρΩijΩikF jk

− 1

2
w′(ρ)

(
ρ,iρ,jF

ij + 2ρρ,jG
j + ρ2H

)
− 1

2
w(ρ)

(
ρF ij

)
,ij

]}
dx.

(2.43)

Time-differentiating (2.42a)–(2.42c) and using the linear flow rule (2.24) results in evo-

lution equations for F , G, and H:

∂tF
ij = ΩikF kj + ΩjkF ki − ukF ij

,k , (2.44a)

∂tG
i = ΩikGk − ukGi

,k + F ijΩkj
,k +

〈
ξ′

i
ξ′

j
,k

〉
(Ωkj − uk

,j), (2.44b)

∂tH = 2Ωik
,i G

k − ukH,k + 2
〈
ξ′

j
,kξ

′i
,i

〉
(Ωkj − uk

,j). (2.44c)

Flow Rules. For compressible flows, two flow rules will be considered. We define them

first and then go on to consider their relative merits and demerits:

(I) Advection: Ωij = ui
,j .

(II) Rotation: Ωij = 1
2(ui

,j − uj
,i).

Advection. For our anisotropic model, we shall advect ξ′ and treat the quantities F ,

G, and H as parameters in the final system, each of which will have its own evolution

equation. Substituting Ωij = ui
,j into the system (2.44) gives

∂tF = −£uF, (2.45a)

∂tG = −£uG+ F · grad(div u), (2.45b)

∂tH = 2grad(div u) ·G− u · gradH. (2.45c)

One advantage of the advection flow rule is that it automatically closes the system (2.44).

For a general choice of Ω, the system involves 〈ξ′iξ′j,k〉 and 〈ξ′j,kξ′
i
,i〉, which cannot be

expressed solely in terms of F , G, and H.
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Rotation. For our isotropic model, we want to know whether the evolution equation

(2.44a) for F preserves the isotropy relationship F = Identity. Suppose F ij = δij at

t = 0. Then substituting into (2.44a) reveals that

∂t|t=0F
ij = Ωij + Ωji. (2.46)

If Ω is antisymmetric, we have ∂t|t=0F = 0, and F (x, t) = Identity solves (2.44a) for all t.

We wish to know whether this solution is unique. This is guaranteed by a straightforward

generalization of the results concerning linear hyperbolic systems of first-order equations

from [24], assuming sufficient smoothness of u.

We conclude that antisymmetry of Ω is sufficient to guarantee that the initial data

F = Identity is, in fact, preserved for all t. Then an immediate choice of a tensor Ω that

is antisymmetric is given by the rotation flow rule (II). This form has a very attractive

physical interpretation. Putting the linear flow rule equation (2.24) together with (II)

gives us
Dξ′

Dt
= ω × ξ′, (2.47)

where ω = curlu is the vorticity vector. The last equation can be interpreted in the

sense that fluctuations are rigidly transported by the mean flow, with a local angular

velocity given by the vorticity vector.

Finally, the rotation flow rule (II) does not by itself close the system (2.44). When

using this flow rule, we shall assume that G = 0 and H = β2.

2.6 Equations for Averaged Dynamics

Here we shall write down two systems of coupled PDEs which describe the evolution of

the average velocity and density in a compressible flow. Each PDE is derived from an

associated averaged Lagrangian.

Compressible, fully Anisotropic, Inhomogeneous Fluids. By substituting (I)

into the Lagrangian (2.40), we obtain closure: the Lagrangian no longer depends ex-
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plicitly on ξ′, instead depending on the tensors F , G, and H, for which a self-contained

system of evolution equations (2.45) has already been derived—see section 2.5 for details.

Applying Hamilton’s principle directly to (2.43) yields an evolution equation for u, the

average fluid velocity. We write this equation using the operator A, which is defined as

(Av)i =
1

ρ

(
ρvi

,jF
jk

)
,k
. (2.48)

We also write w̃ = ρw′(ρ), where ′ means d/dρ as usual. The anisotropic compressible

LAE-α equations are

(
∂tu

n + un
,iu

i
)

= (1 − α2A)−1 1

ρ

{
−ρw,n − α2

2

[
ρ

(
F ijuk

,iu
k
,j

)
,n

+ F ij
,ijρw̃,n

+ F ij
,nρ,iw̃,j +

(
F ij

,nρ
)
,ij
w̃ + 2Gi

,nρw̃,i + 2Gi (ρw̃,n),i +
(
Hρ2w̃′

)
,n

]}
, (2.49a)

∂tρ = − div(ρu), (2.49b)

∂tF = −∇F · u+ F · ∇u+ ∇uT · F, (2.49c)

∂tG = −u · ∇G+G · ∇u+ F · grad(div u), (2.49d)

∂tH = 2grad(div u) ·G− u · gradH. (2.49e)

Well-posedness. We now sketch a rough well-posedness argument for the system

(2.49). Assume that the tensor F is positive definite. By this it is meant, since F

is a (2, 0) tensor, that for any one-form θ, the contraction F : (θ ⊗ θ) is positive ev-

erywhere. Given the ρ-weighted inner product 〈f, g〉 =
∫
f g ρ, we have 〈f,−Af〉 =

−
∫
f 1

ρ

(
ρf,jF

jk
)
,k
ρ =

∫
f,jF

jkf,k ρ > 0. Since −A is a positive definite linear operator,

the kernel of (1 − α2A) is trivial, and we expect that (2.49) is well-posed.

It would be of analytical interest to see to what extent the “geodesic part” of these

equations defines a smooth spray in the sense of [22], and which holds for the EPDiff

equations (that is, the n-dimensional CH equations), as explained in [37].
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Compressible, isotropic, inhomogeneous. For this case we use flow rule (II), which

can be written in vector notation as

Ω =
1

2

(
∇u−∇uT

)
.

Recall that this flow rule is compatible with an isotropic choice of the covariance tensor,

i.e., F ij = δij . We further assume that G = 0 and H = β2 for some constant β. Using

flow rule (II) along with these extra assumptions in the general Lagrangian expression

(2.43) gives us a Lagrangian in only two variables:

l(u, ρ) =

∫

M

(
1

2
ρ‖u‖2 − ρW (ρ) + α2

[
1

4
ρ
(
‖∇u‖2 − tr(∇u · ∇u)

)

− 1

2
w′(ρ)

(
‖∇ρ‖2 + ρ2β2

)
− 1

2
w(ρ)∆ρ

])
dNx, (2.50)

where w(ρ) = W (ρ) + ρW ′(ρ) is the enthalpy introduced in (2.41). Regarding this

as a Lagrangian in u and µ = ρ dNx, one uses the semidirect product Euler–Poincaré

equations (1.15) to derive the system

∂t(ρv) + (u · ∇) (ρv) + α2 div (ρΩ · ∇u) + ρv div u = −∇p̃, (2.51a)

∂tρ+ div(ρu) = 0, (2.51b)

with the modified momentum ρv and modified pressure p̃ given by

ρv = ρu+ α2 div (ρΩ) , (2.52)

∇p̃ = ∇p+ α2β2ρ∇
(
ρw′ +

1

2
ρ2w′′

)
. (2.53)

Here are explicit coordinate expressions for two slightly complicated objects:

ρvi = ρui +
1

2
α2

(
ρ
(
uj

,i − ui
,j

))
,j
,

div (ρΩ · ∇u) =
(
ρΩkiui

,j

)
,k
.
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The following convention for divergences of tensors has been used: given a 2-tensor Aij,

we set

(divA)j = Aij
,i .

That is, the contraction implicit in the divergence operation always takes place on the

first index.

Observations.

• In the case of homogeneous incompressible flow, where ρ is constant and div u = 0,

the definition of ρv in (2.52) reduces to

v =

(
1 − 1

2
α2∆

)
u,

which after rescaling α to get rid of the factor of 1/2 is precisely the v one finds in

treatments of the incompressible LAE-α and LANS-α equations.

• The above does not work in one spatial dimension. The problem is that here

Ω reduces to (ux − ux)/2 = 0, which clearly does not describe transport at all.

For a one-dimensional isotropic model one may very well want to forget about

antisymmetry of Ω and instead use something such as the advection flow rule. One

may, quite reasonably, conclude that the only meaning of isotropy in one dimension

should be reflection symmetry.

2.7 Future Directions

The Initialization Problem. Perhaps the largest unsolved problem for the Lagran-

gian averaged equations is the initialization problem. A concise statement of the problem

reads as follows:

Given initial data u0(x) for the Euler equation, how does one obtain initial

data U0(x) for the LAE-α equation?
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Let us look at this problem in slightly more detail. Let u denote the solution of the

incompressible Euler equations for initial data u0, i.e., u(x, 0) = u0(x). Similarly, let U

denote the solution of the incompressible, isotropic LAE-α equations (2.35) for initial

data U0.

Now U should be, in some sense, the mean flow of the fluid. This means that U0

should be the mean flow of the fluid at time t = 0, implying that U0 should be, in some

sense, an “averaged” or “filtered” version of u0. The question is, How does one derive U0

from u0? Another way of phrasing this question is, How do we describe (approximately)

the initial state of the fluid (given exactly, for our purposes, by the field u0) using only

the mean flow variable U0?

Numerous methods have been used to initialize the LAE-α equations for use in nu-

merical simulations, but none of these methods has any theoretical foundation. There

is also no theory regarding how one should filter a full Euler flow u, or even a family of

flows uε, in order to obtain a mean flow that could be compared with the full LAE-α

trajectory U . In this respect, (2.4), which states that

〈uε ◦ ξε(x, t)〉 = u(x, t),

is not helpful: we have no way to compute the fluctuation diffeomorphism group ξε.

Therefore, we have no way to compute the left-hand side 〈uε ◦ ξε〉.
The difficulty can be summarized in the following commutative diagram. Here S is

the standard Euler action and Sα is the Lagrangian averaged action.

S
Lagrangian average

//

��

Sα

derive PDE,

solve numerically
��

u
the missing link

//_________ U

Solid arrows represent steps that we know how to carry out. The dashed arrow represents

the one step that we do not know how to carry out. Our strategy for this problem will

be to develop methods by which we can test different filters for obtaining U0 from u0 in

practice.
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Treatment of Densities. Another area for further investigation involves our treat-

ment of the density tube µε. There are two questions to ground us:

1. We have tacitly assumed that at t = 0, for all ε and all x,

µ(x, t) = µε(x, t).

An argument similar to the one made above in our discussion of the initialization

problem can be made here. Namely, µ(x, 0) represents the mean density at time

t = 0. Meanwhile, µε(x, 0) represents the true density of the fluid at time t = 0.

These two quantities need not be equal. This prompts the following question: how

would we carry out the procedure from sections 2.2 and 2.4 with tubes in which

each trajectory does not have the same initial density µ(x, 0)?

2. As our derivation of the averaged compressible equations stand, we have derived

the fact that the “mean” density µ was advected by the mean flow U : ∂tµ = −£Uµ.

Substituting µ = ρ dNx and using the definition of divergence yields the standard

continuity equation

∂tρ+ div(ρU) = 0.

In both RANS and LES treatments of averaged/filtered flow, the mean flow U

satisfies a modified continuity equation rather than the standard one. Therefore,

why does the Lagrangian averaged mean density µ satisfy the usual continuity

equation?

The two questions regarding densities are, in fact, related. To see this, let us suppose

that, given the initial density µ0 associated with the center line of our tube η, we have

a method for constructing a family of initial densities µε
0 for each of the other curves in

the tube ηε. Now defining4

µε(t) = (ηε
t)∗µ

ε
0 and µ̄(t) = 〈µε(t)〉,

4Note that 〈µε(x, t)〉 6= µ(x, t).
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we will find that µ̄(t) = ρ̄(t) dNx satisfies a modified continuity equation

∂tρ̄(t) + div(ρ̄u) + div

〈
ρε

(
εu′ +

1

2
ε2u′′

)〉
= 0.

To close this equation, we either must carry out the average directly or must expand ρε

about a suitable trajectory and make modeling assumptions.

Filtered Lagrangians. We have seen that the current averaging procedure leads to

complicated averaged equations. Furthermore, there is no clear way to evaluate numer-

ically the flow rules we have proposed on physical grounds. One of our immediate goals

is to investigate a filtering approach, still at the level of the Lagrangian, which will lead

to simpler averaged models that can be tested numerically. The filtering approach we

have in mind begins with a decomposition of the velocity field

u = ū+ u′ and ρ = ρ̄+ ρ′ (2.54)

into mean and fluctuating components. This would replace the Taylor expansion (2.37) of

uε and ρε that we carried out in the present work and would therefore lead to Lagrangians

and equations with much less algebraic complexity. As opposed to the axiomatic averag-

ing operation 〈 · 〉, the filter shall be specified concretely. We expect this to help greatly

with the initialization and density problems discussed above; furthermore, the filtering

approach leads naturally to questions about the relationship between LES and LAE-α

models.

Simpler Models. As we previously noted, the flow rule approach developed in this

chapter does not yield a one-dimensional compressible averaged model. By employing

the filtering approach, one may derive the grangian

l(ρ, u) =

∫ (
1

2
uv −W (ρ)

)
ρ dx, (2.55)

where v =
(
1 − α2∂2

x

)
u. To derive this Lagrangian, we filter only the velocity, leaving

density and potential energy alone. This is the compressible analogue of the filtered
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Lagrangian used in deriving the CH equation [9]. The analysis and numerical simulation

of the new equations presented in section 2.6 of this work will be difficult. The analysis of

the PDE associated with (2.55) is much easier. In particular, we expect that numerical

studies of this one-dimensional model will yield insight into the dynamics of the higher-

dimensional equations.

Entropy. In the derivation of our compressible averaged models, we have made the

barotropic assumption W = W (ρ). We expect the resulting barotropic model to be

useful in computing mean flow quantities in regimes where we are not concerned with

strong physical shocks, for example in climate models. The next major step forward

will be to remove the barotropic assumption and derive a model that is valid in regimes

where we are concerned with shocks.

To this end, we have derived an averaged model for the general case, where the

potential energy has the form W (ρ, S), where S is the entropy. This model, which

consists of a system of equations for ρ, u, and S, also involves the pressure p. Therefore,

in order to close the system, we require an equation of state relating p to ρ and S. The

open question now is as follows: given an equation of state for the compressible Euler

system, what is the equation of state relating the averaged variables to one another? In

other words, how does Lagrangian averaging interact with the thermodynamics of the

system? We hope that analyzing a finite-dimensional case of this interaction will shed

light on this issue.

Connections with Kevrekidis’ Coarse/Fine Methods. Given a description of any

mechanical system, not necessarily involving fluids, in the form of a Lagrangian `, we can

carry out the procedure described in section 2.2 to find an averaged Lagrangian 〈`〉. From

this we can derive equations of motion for the average dynamics of the original system.

Changing our language slightly, we say that we have a general method for extracting

the “coarse” dynamics of a mechanical system whose full description involves motions

on both fine and coarse scales.

Another method for computing the coarse-scale dynamics of a mechanical system
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has been put forth in [48]. Kevrekidis’s method does not involve trying to write down

equations of motion which govern the coarse dynamics. Instead, he offers an algorithmic

approach, the crux of which is as follows. The coarse dynamics of a system are found

by lifting the initial (t = t0) state to an ensemble of initial states, integrating each using

the full equations until some small final time t = ε has been reached, and projecting the

resulting t = ε states onto a single state. This t = ε state is then extrapolated to a state

at some desired t = tf > 0. By iterating this process and tuning the lifting, projection,

and extrapolation operations, this method can be used to recover the coarse dynamics

of the system.

Now the question that begs to be asked is as follows: for the case of fluid dynamics,

how different are the coarse dynamics provided by the LANS-α equation from the coarse

dynamics one would obtain by following Kevrekidis? The difficulty in answering this

question lies in implementing a full fine-scale integrator for fluids that one could success-

fully embed inside Kevrekidis’s coarse-scale algorithm. We look forward to tackling this

task soon.

2.8 Appendix: Fluctuation Calculus Details

Before proceeding with any derivations, we state the Lie derivative theorem for time-

dependent vector fields: if the vector field Xλ has flow Fλ, then

d

dλ
F ∗

λYλ = F ∗
λ

(
∂Yλ

∂λ
+ £Xλ

Yλ

)
. (2.56)

Our task now is to derive equations (2.10). Starting with (2.6), let us move ηε to the

right-hand side of the equation:

µ0 = (ηε)∗ µε. (2.57)

The strategy is to differentiate with respect to ε and use the Lie derivative theorem

(2.56). The intrinsic definition of divergence

£ζ(ν) = (divν ζ) ν (2.58)
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and the canonical volume form dNx = dx1 ∧ · · · ∧ dxN will both be used in what follows.

Note that div ζ with no subscript on the div means £ζ(d
Nx). Before applying the Lie

derivative theorem, note that the vector field

W ε =
∂

∂ε
ηε ◦ (ηε)−1 (2.59)

has flow ηε. A simple computation yields

∂

∂ε

∣∣∣∣
ε=0

W ε = ξ′′ −∇ξ′ · ξ′. (2.60)

Then we start with ρ′:

∂

∂ε
µ0 = 0 =

∂

∂ε
(ηε)∗ µε by differentiating (2.57)

= (ηε)∗
(
∂µε

∂ε
+ £W εµε

)
by (2.56)

= η∗
(
µ′ + £ξ′µ

)
at ε = 0

=⇒ µ′ = −£ξ′µ,

ρ′ dNx = −
(
£ξ′ρ

)
dNx− ρ

(
£ξ′d

Nx
)

by (2.5),

ρ′ dNx = −
(
∇ρ · ξ′ + ρdiv ξ′

)
dNx by (2.58)

=⇒ ρ′ = − div
(
ρξ′

)
.
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Next we compute ρ′′:

∂2

∂ε2
µ0 = 0 =

∂2

∂ε2
(ηε)∗ µε

= (ηε)∗
(
∂2

∂ε2
µε + £W ε

∂µε

∂ε
+

∂

∂ε
(£W εµε) + £W ε£W εµε

)

=⇒ 0 = η∗
(
µ′′ + 2£ξ′µ

′ + £ξ′′−∇ξ′·ξ′µ+ £ξ′£ξ′µ
)

=⇒ µ′′ = −£ξ′′µ+ 2£ξ′£ξ′µ− £ξ′£ξ′µ+ £∇ξ′·ξ′µ,

ρ′′ dNx = −
(
div(ρξ′′)

)
dNx+ div(div(ρξ′) ξ′) dNx+ div(ρ∇ξ′ · ξ′) dNx

=⇒ ρ′′ = −
(
div(ρξ′′)

)
+

((
ρξ′

i
)

,i
ξ′

j
)

,j

+
(
ρξ′

j
,iξ

′i
)

,j

= −
(
div(ρξ′′)

)
+

(
ρξ′

i
ξ′

j
)

,ij

= −
(
div(ρξ′′)

)
+ div div

(
ρξ′ ⊗ ξ′

)
.
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Chapter 3

A Dispersive Regularization of 1D Gas Dynamics

3.1 Towards Simpler Models

The model equations introduced in the previous chapter were designed to cope with both

turbulence and shock formation in compressible fluids. However, these lengthy equations

involved high-order derivatives and inverse elliptic operators in many dimensions. For

example, the anisotropic model (2.49) is a system of five equations, but the unknown

tensor F defined in (2.42a) may contain up to nine scalar entries. For this reason, either

numerical or analytical investigations of the model equations is difficult.

More importantly, an analysis of the full models we wrote down is not necessary

at this stage. Before analyzing the full equations of motion, we should look into basic

features of Lagrangian-averaged compressible models that may be unique to the com-

pressible regime. Therefore, in this chapter we consider one-dimensional models. By

doing so, we extract the dynamics of wave propagation from the Lagrangian-averaged

compressible models, and minimize the influence of turbulent dynamics. Note that two-

and three-dimensional Lagrangian averaged compressible models will feature all the com-

plexity of incompressible turbulence together with shock formation. A one-dimensional

(1D) model is something unique to compressible flow: if we try to enforce incompress-

ibility, i.e.

div u = 0,

in a 1D model, we end up with ux = 0 and a constant velocity field. Hence 1D com-



69

pressible fluid models do not have any incompressible counterpart. Examining one-

dimensional (1D) models will enable us to answer the following questions:

1. What types of wave motions are supported by Lagrangian-averaged models for

compressible flow?

2. Can Lagrangian-averaged models for compressible flow be used to approximate

shock wave solutions of the compressible Euler equations?

Let us first present the simplest possible 1D Lagrangian averaged model for barotropic

compressible flow. Here ρ is density, u is velocity, and p is pressure. We assume that the

p(ρ) is given by the state equation p = κργ . Also, we use the definition of v given by

v := u− α2uxx. (3.1)

The system, which we shall call System I, is derived from the Lagrangian

l =

∫ [
1

2

(
ρu2 + α2ρu2

x

)
− ρW (ρ)

]
dx. (3.2)

The semidirect product Euler-Poincaré equations for this Lagrangian are

ρt + (ρu)x = 0 (3.3a)

wt + (uw)x − 1

2

(
u2 + α2u2

x

)
x

= −px

ρ
(3.3b)

where we define w via

ρw := ρv − α2ρxux. (3.4)

Using (3.4), we can show that (3.3b) is equivalent to the following equation for u only:

ρut + ρuux − α2 (ρxuxt + ρxuuxx + ρuxuxx + ρuxxt + ρuuxxx) = −px. (3.5)

Remark. If we set α = 0, the system (3.3) reduces to the compressible barotropic Euler

equations. However, the behavior of solutions of (3.3) as α → 0 may be very subtle, as

we will explain later.
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Outline of this chapter. In §2, we will motivate System I in a few different ways,

showing how it can be derived from the full-blown models of the previous chapter or from

a simple filtering argument. We also compare System I with a similar model that has

appeared in the literature. Next, in §3, we describe various wave propagation properties

of System I, including a large class of traveling wave solutions. In §4, we numerically

study the initial-value problem for System I, with an eye towards checking its shock-

approximation qualities. Finally, in §5, we compare System I with other models for wave

propagation in compressible flows. We conclude with §6, which explains future projects

involving System I.

Summary of results. Regarding the two questions posed above, we will show that:

1. System I supports intriguing wave phenomena and pattern formation, raising many

questions of mathematical interest. Also, System I is, in a certain sense, a “com-

pressible” generalization of a well-known dispersive wave equation.

2. System I does not approximate shock solutions of the compressible Euler equations.

However, the wave solutions of System I indicate where/how we should look for

a Lagrangian-averaged model for compressible flow that is capable of capturing

shocks.

3.2 Motivation and Derivation

Let us explain how we arrived at the kinetic energy terms in the Lagrangian (3.2). It

should be understood that the kinetic energy in (3.2) is a replacement for the usual

compressible Euler kinetic energy, which is

∫
ρu2 dx. (3.6)

The potential energy term that we use,

∫
ρW (ρ) dx, (3.7)
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is precisely the potential energy for compressible Euler.

Favre Filtering. The kinetic energy term for System I is

1

2

∫
ρ

(
u2 + α2u2

x

)
dx. (3.8)

We arrive at this term by filtering (3.6) via a simple procedure that we shall now describe.

Suppose there is a filter f 7→ f which satisfies four basic properties:

P1. af + bg = af + bg for scalar constants a and b

P2. f = f .

P3. fg = fg.

P4. (f)x = (fx) and (u)t = (ut)

Following [25] or [80], we define the Favré, or density-weighted, filter as follows:

f 7→ f̃ =
ρf

ρ
. (3.9)

The reader can easily verify that properties P1-P3 of the f 7→ f filter are true for the

Favré filter as well. Note that if we decompose f = f + f ′, we must have f = f + f ′.

Then property P2 forces f ′ = 0. The same holds for the Favré filter.

Mass transport. One might ask why we use two different filters. With our setup, we

filter the continuity equation and find

0 = ρt + (ρu)x = ρt + (ρu)x = ρt + (ρũ)x. (3.10)

Therefore, the filtered variables ρ and ũ satisfy the ordinary continuity equation. Note

that if we define the volume form µ = ρ dx, then we find that (3.10) implies

∂µ

∂t
= −£ũµ.
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This means that if we define the filtered material motion η̃ by ˙̃η = ũ ◦ η̃, the filtered

material density will satisfy

ν = η̃∗ν0,

where ν(X, t) = µ(η̃(X, t), t) and ν(X, 0) = ν0. We conclude that Favré filtering respects

standard mass transport in both the spatial and material frames. This is a desirable

feature of the approach.

Filtered kinetic energy. Introducing the decomposition u = ũ + u′, we filter the

kinetic energy (3.6):

∫
ρu2 dx =

∫
ρũ2 dx =

∫
ρ

(
˜̃u2 + 2 ˜̃uu′ + ũ′2

)
dx. (3.11)

Note that the cross-term ˜̃uu′ vanishes, by application of P3 and P2:

˜̃uu′ = ũũ′ = 0.

By applying P3 and P2 in the same way, we derive ˜̃u2 = ũ2. Now we make one assump-

tion: ∫
ρũ′2 dx ≈

∫
α2ρũ2

x dx. (3.12)

Here α is a small parameter with units of length. Justification of (3.12) stems from two

arguments:

1. The left-hand side of (3.12) is a weighted L2 norm of the fluctuations u′. In order

to produce a closed model, we must estimate this norm in terms of ũ only. A

reasonable candidate for the estimate is a measure of how wiggly ũ is—and this

is precisely the right-hand side of (3.12). We introduce α, a small parameter with

units of length, as the effective filter width. That is, we want our estimate to

respect that fact that as the filter becomes finer, i.e., as α → 0, less mass from u

goes into u′. That is, ∫
ρũ′2 dx→ 0 as α→ 0.
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2. If we carry out the same filtering procedure in the incompressible regime, we will

find that the modeling assumption

∫
‖u′‖2 dnx ≈

∫
α2‖∇u‖2 dnx.

yields the H1 kinetic energy found in LAE-α models.

Putting all of this together, we see that (3.11) becomes

∫
ρu2 dx ≈

∫
ρũ2 + α2ρũ2

x dx. (3.13)

Remarks.

1. In the previous chapter, we derived a rather general form of an averaged Lagrangian

for compressible flow. The averaging in that derivation took place over small-

scale material-frame fluctuations ξε. These fluctuations in the material picture

induce fluctuations u′, u′′ and ρ′, ρ′′ in the spatial picture. If we ignore the density

fluctuations, then the final averaged Lagrangian reduces to

lαcomp(u, ρ) =

∫

M

{
1

2
ρ‖u‖2 − ρW (ρ) +

α2

2
ρ

〈∥∥∥∥
Dξ′

Dt

∥∥∥∥
2
〉}

dx. (3.14)

If we now assume that the fluctuations ξ′ are Lie-advected by the mean flow u and

that the Lagrangian covariance tensor is the identity, i.e.,

∂tξ
′ = −£uξ

′

〈
ξ′

j
ξ′

k
〉

= δjk,

we will find that 〈∥∥∥∥
Dξ′

Dt

∥∥∥∥
2
〉

= ui
,ju

i
,k

〈
ξ′

j
ξ′

k
〉

= ‖∇u‖2 ,

and the kinetic energy from (3.14) becomes

1

2

∫

M
ρ ‖u‖2 + α2ρ ‖∇u‖2 dx.
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Restricting to one spatial dimension yields the kinetic energy for System I.

2. Also in the previous chapter1, we mentioned that we would consider the 1D model

with Lagrangian

l =

∫
1

2
ρuv − ρW (ρ) dx,

where v = u−α2uxx. Unfortunately, the “kinetic energy” ρuv suffers a fatal defect

since it fails to be positive definite. Note that when ρ is not present, we have, by

integration by parts, ∫
uv dx =

∫
u2 + α2u2

x dx.

However, when ρ is present, one obtains instead

∫
ρuv dx =

∫ [
ρ− 1

2
α2ρxx

]
u2 + α2ρu2

x dx. (3.15)

The most we can guarantee about ρ is that ρ(x, t) > 0 always. This, however, is not

sufficient to enforce positivity of the quantity in square brackets in (3.15). Indeed,

for any M < 0 it is possible to find ρ > 0 such that ρ(x) − (1/2)α2ρxx(x) < M for

all x in a set of positive measure. Hence
∫
ρuv dx is not bounded from below and

cannot be used as a kinetic energy.

3. Using different formalism and an averaging procedure that differs from both that of

Chapter 2 and the Favré-filtering approach, D. D. Holm has derived the “Eulerian

mean polytropic gas equations” (see [34]). Holm’s potential energy is precisely the

same as ours, and his kinetic energy is

1

2

∫
ρ

(
u2 + wu2

x

)
dx,

where w = 〈ξ′ξ′〉 is an “evolving width,” i.e., mean covariance of material frame

fluctuations. Our kinetic energy corresponds to taking this mean covariance to be

constant and positive: w = α2. Holm derives the following evolution equation for

1See “filtered Lagrangians,” “simpler models,” and equation (2.55) in Chap. 2, §7.
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w:

wt + uwx = 0.

Hence w(x, t) = α2 is the global unique solution corresponding to the initial data

w(x, 0) = α2. So w = α2 is in fact an invariant manifold of initial conditions for

the general Eulerian mean model. Holm points this out and refers to our model as

the “polytropic gas alpha model.” No analysis of solutions of the model is carried

out.

3.2.1 Equations of Motion

We regard the Lagrangian (3.2) as a functions of the vector field u and the volume

form µ = ρ dx. The equations of motions corresponding to these Lagrangians are the

semidirect product Euler-Poincaré equations:

∂

∂t

δl

δu
= − ad∗

u

δl

δu
+
δl

δµ
� µ. (3.16)

For a detailed derivation of these equations of motion and general definitions of all the

terms involved, we refer to [40]. In the case we consider, where all functions, fields, and

forms are defined over a one-dimensional manifold, we only need the forms of the ad∗

and � operators as specified in Chapter 1. For a 1−form θ and a vector field u, we have

ad∗
u(θ ⊗ dx) = (£uθ + θ div u) ⊗ dx (3.17)

= (diuθ + iudθ + uxθ) ⊗ dx

= (diuθ + uxθ) ⊗ dx.

Also, for a scalar function f and a 1−form µ, we have

f � µ = df ⊗ µ. (3.18)

We compute the variational derivatives δl/δu and δl/δµ for the Lagrangian (3.2), and

then use these expressions in (3.16).



76

3.2.2 Derivation of System I

We begin computing the Euler-Poincaré equations for the Lagrangian (3.2). The com-

putations lead to
δl

δu
=

(
ρu− α2ρuxx − α2ρxux

)
dx⊗ dx. (3.19)

The quantity inside parentheses is actually the momentum for System I, which we denote

ρw = ρv − α2ρxux. (3.20)

Using this definition, the formula (3.19) becomes

δl

δu
= ρw dx⊗ dx. (3.21)

By applying formula (3.17) to (3.21), we get:

ad∗
u

δl

δu
= [(ρuw)x + ρuxw] dx⊗ dx. (3.22)

The computation of δl/δµ gives

δl

δµ
=

1

2

(
u2 + α2u2

x

)
− s(ρ), (3.23)

where s(ρ) is the enthalpy, defined by

s(ρ) = W (ρ) + ρW ′(ρ). (3.24)

We introduce the pressure function p using

sx =
px

ρ
. (3.25)

By using (3.18) and (3.25) we can write

δl

δµ
� µ =

[
1

2
ρ

(
u2 + α2u2

x

)
x
− px

]
dx⊗ dx. (3.26)
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Plugging (3.21), (3.22) and (3.26) into (3.16) we obtain the momentum equation for

System I:
∂

∂t
(ρw) + (ρuw)x + ρuxw − 1

2
ρ(u2 + α2u2

x)x = −px, (3.27)

where ρw is given by (3.20). We also recall that the semidirect product theory treats

the volume form ρ dx as an advected quantity. This assumption leads to the continuity

equation:
∂ρ

∂t
+ (ρu)x = 0. (3.28)

By combining (3.27) and (3.28) we can derive:

wt + (uw)x − 1

2

(
u2 + α2u2

x

)
x

= −px

ρ
. (3.29)

In terms of u, the PDE (3.29) reads

ρut + ρuux − α2 (ρxuxt + ρxuuxx + ρuxuxx + ρuxxt + ρuuxxx) = −px. (3.30)

3.2.3 Conserved Energies

The Lagrangian (3.2) is of the formK−V , whereK and V stand for kinetic and potential

energy, respectively. As one might expect, the system conserves an energy of the form

K+V . In fact, more is true. We state without proof that starting from the Hamiltonian

h =

∫ [
1

2

(
ρu2 + α2ρu2

x

)
+ ρW (ρ)

]
dx, (3.31)

one may apply the semidirect product Lie-Poisson equations (see [58]) to derive System

I. Since h contains no explicit time-dependence, we have by Noether’s theorem the easy

consequence that h is conserved in time along solutions of System I. Of course, because

we are dealing with an infinite-dimensional Hamiltonian system, this energy conservation

is, at this stage, purely formal. To rigorously verify this, we would have to prove that

the initial-value problem for System I is well-posed in the appropriate function spaces.

As an example, we might seek a proof that given ρ(x, 0) ∈ W 1,1(R) ∩W 1,∞(R) and

u(x, 0) ∈ H2(R), the solution ρ(·, t) ∈ W 1,1 ∩W 1,∞ and u(·, t) ∈ H2 for all t > 0. If
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we had this proof then, trivially, dh/dt = 0 along the solution. We will not prove any

results on the initial-value problem for System I here. We merely note that when we

solve System I numerically, we expect that wherever the solution is smooth, the energy

h will be conserved.

3.3 Traveling Waves

Typically, one searches for traveling wave solutions by way of the ansatz

u = u

(
x− ct

α

)
and ρ = ρ

(
x− ct

α

)
. (3.32)

However, System I is Galilean invariant. By this we mean that the equations (3.3a) and

(3.5) are unchanged by the transformation

x̃ 7→ x+ u0t

ũ 7→ u+ u0,

for any u0 ∈ R. This implies that if the system has traveling wave solutions u(x − ct)

for some fixed c = c0, then it has solutions for all c. Hence for System I it is sufficient

to consider c = 0, so we take the ansatz

u = u(x/α) and ρ = ρ(x/α). (3.33)

This traveling wave form includes a factor of α−1 in the argument, which we shall see

eliminates α from the resulting traveling wave ode. In what follows, the primes represent

differentiation with respect to the variable z = x/α.

Continuity equation. We start with (3.3a) and introduce the ansatz (3.33), resulting

in

uρ′ + ρu′ = 0,
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or

ρ′/ρ = −u′/u. (3.34)

This can be trivially integrated, and the answer is

ρ = B/u. (3.35)

for an arbitrary constant B.

Momentum equation. Next we consider (3.3b), with pressure term given by p = κργ .

Using the ansatz (3.33) and equation (3.34) in (3.4), we find that w is related to u by

w = u− u′′ +
u′2

u
. (3.36)

The barotropic state equation becomes

p′

ρ
= κγργ−2ρ′. (3.37)

Using (3.34-3.37) in equation (3.3b), we can derive

u′ − u′′′ = κγBγ−1u−γ−1u′. (3.38)

Trivially integrating both sides, we obtain

u′′ = u+ κBγ−1u−γ − C1, (3.39)

where C1 ∈ R is an arbitrary constant. As this is a single second-order equation, we

may chose values for the various constants and plot the phase portrait numerically—see

Figure 3.1 for the specific case κ = 0.4, γ = 1.4, B = 1, C1 = 2. The phase portrait

features two fixed points marked in red. The left fixed points is clearly a nonlinear center

surrounded by periodic orbits. The right fixed point is a saddle with a homoclinic orbit

plotted in green. Note that the only trajectories that remain bounded as z → ±∞ are

the homoclinic orbit and the periodic orbits contained inside.
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Figure 3.1: Sample phase portrait u vs. u′ for ODE (3.39), with κ = 0.4, γ = 1.4, B = 1,

C1 = 2.

There is a line of essential singularities at u = 0. Existence and uniqueness of

solutions hold for initial conditions in the set {(u, u′) ∈ R
2 s.t. u 6= 0}, including points

arbitrarily close to u = 0. However, it is possible for two or more different trajectories

to have α- or ω-limit sets2 consisting of the same point on the line u = 0.

Now let us attempt to show that the general phase portrait of (3.39) resembles what

we saw numerically in Figure 3.1.

It is obvious that (3.39) is Hamiltonian. Let K(u′) = u′2/2 denote the kinetic energy;

then, with the potential energy

V (u) = −1

2
u2 + C1u+

κBγ−1

γ − 1
u1−γ , (3.40)

we may write the Hamiltonian for (3.39) as

H(u, u′) = K(u′) + V (u). (3.41)

2Here we mean α- and ω-limit sets in the dynamical systems sense (see [1]). There is no connection

between this and the α that we use elsewhere.
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Note: for γ = 1, the potential V (u) must be modified, as must the following discus-

sion. We tacitly assume γ 6= 1 in what follows. Continuing, the fixed-energy level set

H(u, u′) = C2 is given by the locus of points (u, u′) that satisfy

1

2
u′

2 − 1

2
u2 +C1u+

κBγ−1

γ − 1
u1−γ = C2. (3.42)

The equilibria of (3.39) are the extrema of V . Hence we search for zeros of

V ′(u) = −u+C1 − κBγ−1u−γ . (3.43)

Let us keep in mind that C1, C2, and B are constants that appear in the ODE only—they

do not appear anywhere in System I, as is obvious from (3.3). By adjusting the values

of these parameters, one can obtain an infinite number of traveling wave solutions for

System I. To show this, we first prove

Lemma 1. Given any pair of distinct reals u1, u2 with the same sign, there exist B and

C1 such that V ′(u1) = V ′(u2) = 0. This is true for all κ, γ > 0.

Proof. Regard u1, u2, κ, and γ as given and solve the system

−u1 + C1 − κBγ−1u−γ
1 = 0

−u2 + C1 − κBγ−1u−γ
2 = 0

for B and C1. One finds that

B =

[
1

κ

(
u2 − u1

uγ
2 − uγ

1

)
(u1u2)

γ

]1/(γ−1)

C1 =
u1+γ

1 − u1+γ
2

uγ
1 − uγ

2

.

C1 is well-defined since u1 6= u2. Because u1 and u2 have the same sign, for all κ, γ > 0,

the argument inside square brackets in the expression for B is always positive. Hence

we may always raise this argument to the 1/(γ − 1) power, so B is well-defined.

Now that we have established that the equilibria of (3.39) may be arbitrarily chosen,
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we should examine their stability.

Lemma 2. Suppose u1, u2 satisfy the hypotheses of Lemma 1, and suppose |u1| < |u2|.
Then u1 is stable and u2 is unstable for all κ, γ > 0.

Proof. First suppose 0 < u1 < u2. Differentiating (3.43), we have

V ′′(u) = −1 + κγBγ−1u−γ−1. (3.44)

We evaluate this at u = u1 and u = u2 and use the formula for B given by Lemma 1 to

obtain

V ′′(u1) = −1 + γ
u2

u1

1 − (u1/u2)

1 − (u1/u2)γ
(3.45a)

V ′′(u2) = −1 + γ
u1

u2

1 − (u2/u1)

1 − (u2/u1)γ
. (3.45b)

The signs of (3.45a-3.45b) are determined by the behavior of the function

f(x) = −1 +
γ

x

1 − x

1 − xγ
. (3.46)

Let us list some facts about f that can be shown using elementary calculus:

lim
x→0

f(x) = +∞

lim
x→1

f(x) = 0

lim
x→+∞

f(x) = −1

f ′(x0) = 0 ⇐⇒ 1 + γ(1 − x0) = x−γ
0

f ′(x0) = 0 =⇒ f ′′(x0) < 0.

It is impossible for a function to have only local maxima while decreasing from +∞ to

zero, and then from zero to −1. Hence f does not have any critical points on (0,∞),

implying f ′(x) < 0 for all x > 0. Now we return to (3.45a-3.45b). Because u1 and u2
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Figure 3.2: Potential energy for the Hamiltonian ODE (3.39).

have the same sign,
|u1|
|u2|

=

∣∣∣∣
u1

u2

∣∣∣∣ =
u1

u2
.

As |u1|/|u2| < 1 and f(x) > 0 for x < 1, we have V ′′(u1) > 0, so u1 is stable. Similarly,

since f(x) < 0 for x > 1 and |u2|/|u1| > 1, we have V ′′(u2) < 0, so u2 is unstable.

Using Lemmas 1 and 2, for any κ, γ > 0, and for any u1, u2 satisfying 0 < u1 < u2,

we may fix various constants so that the potential energy V is as shown in Figure 3.2.

To answer the question of what happens when we choose u2 < u1 < 0, an inspection of

the potential (3.40) reveals that we must specify γ, at least in the exponent of u. The

constant γ in the barotropic state law is the ratio of specific heats for the compressible

fluid. For an ideal gas, we may derive (see [85]) the relationship γ = 1 + 2/n, where n

is the total number of degrees of freedom for each gas molecule. With this in mind, it

is clear that 1 − γ = −2/n and hence the potential V is invariant under the reflection

u 7→ −u, C1 7→ −C1. Then V satisfies

lim
u→0

V (u) = +∞

lim
u→±∞

V (u) = −∞,
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and the behavior of V for u < 0 is given by the reflection of Figure 3.2 across the u = 0

line.

For the purposes of solving the System I PDE, we are interested in solutions u(z)

of the ODE (3.39) that stay bounded as z → ±∞. From the above description of the

potential together with the energy integral (3.42), it is clear that such solutions exist

when

V (u1) ≤ C2 ≤ V (u2).

Indeed, if we set C2 = V (u2), we find that the solution of

1

2
u′

2
= V (u2) − V (u)

is the homoclinic orbit for the fixed point (u, u′) = (u2, 0). Taking C2 such that V (u1) <

C2 < V (u2), we find that (3.42) describes periodic trajectories of the system. Let us

quickly summarize this result:

Lemma 3. Let κ > 0 be arbitrary and let γ = 1 + 2/n for some positive integer n.

Given any u1, u2 of the same sign, we may choose B and C1 such that the Hamiltonian

ODE (3.39) has a homoclinic orbit u(z) that connects the u2 equilibrium with itself. The

solution u(z) is a real-analytic function of z.

Proof. Without loss of generality, suppose |u1| < |u2|. Examine Figure 3.2 and denote

by u∗ the first point of intersection of the upper dashed line with the blue V (u) curve.

That is, define u∗ such that |u∗| < |u1| and

V (u∗) = V (u2).

Imagine a fictitious particle situated on the graph, that starts from rest at the point

(u∗, V (u2)). This particle will reach (u2, V (u2)) in an infinite amount of “time.” That
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is, the trajectory (u(z), u′(z)) that emanates from (u(0), u′(0)) = (u∗, 0) satisfies

lim
z→±∞

u(z) = u2

lim
z→±∞

u′(z) = 0.

This is the homoclinic trajectory in question, connecting the fixed point (u2, 0) to itself.

Note that we may force |u∗| to be as small as we want by choosing |u1| sufficiently small.

That the solution u(z) is real-analytic follows3 from the fact that the right-hand side of

(3.39) is a real-analytic function of u away from the singularity line u = 0.

Solving the PDE. The technique of finding traveling wave solutions of a PDE by

searching for homoclinic orbits of an associated ODE can be found in Chapter 3 of

[56]. In our case, the analogy is trivial, because the homoclinic solutions u(z) of the

Hamiltonian ODE (3.39) are related to solutions of the System I PDE by the ansatz

(3.32).

Because of Galilean invariance, we investigated only the c = 0 case of this ansatz.

For arbitrary c, it is a simple matter to see that (3.39) would now possess a line of

singularities at u = c instead of at u = 0. Adjusting the results accordingly, we arrive at

the following:

Theorem 1. Let α > 0 and c ∈ R be arbitrary. Let κ > 0 be arbitrary and let γ = 1+2/n

for some positive integer n. Given any u1, u2 such that u1 − c and u2 − c have the same

sign, the System I PDE (3.3) considered on the domain (x, t) ∈ R × R has either of two

possible traveling wave solutions.

1. In case u2 > u1 > c, we have the depression wave solution u(x, t), ρ(x, t) such that

lim
x→±∞

u(x, t) = u2

u(ct, t) = u∗

ρ(x, t) =
B

u(x, t) − c
,

3For a proof that a real-analytic vector field possesses real-analytic integral curves, see [6, Chap. 6.10].
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where c < u∗ < u1.

2. In case u2 < u1 < c, we have the elevation wave solution u(x, t) such that

lim
x→±∞

u(x, t) = u2

u(ct, t) = u∗

ρ(x, t) =
−B

u(x, t) − c
,

where u1 < u∗ < c.

Proof. In what follows, we label the points such that c < |u1| < |u2|. As all the con-

stants in the theorem satisfy the conditions of Lemmas 1, 2, and 3, we may solve the

Hamiltonian ODE (3.39) for a homoclinic orbit u0(z) that connects u2 to itself. We take4

ρ0(z) =
±B

u0(z) − c
,

and choose either the plus sign if u(z) > c or the minus sign if u0(z) < c. The solution

then satisfies ρ0 > 0 everywhere. Now it is clear from the ansatz (3.33) that the functions

u(x, t) = u0 ((x− ct)/α)

ρ(x, t) = ρ0 ((x− ct)/α)

satisfy System I, i.e., the PDE system 3.3, for all x and all t. Then we may compute the

movement of the trough/peak of the wave:

u(ct, t) = u0(0) = u∗

as in Lemma 3.

Physical solutions. In many physical differential equations, one seeks solutions with

a finite amount of energy, at least in some appropriate norm. Not all the solutions we just

4Note that the constant B entered the ODE analysis only through its γ−1 power. Since γ−1 = 2/n,

none of the ODE results change if we replace B with −B.
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described satisfy this criterion. Indeed, if one fixes c > 0 and considers the depression

wave solution from Theorem 1, one finds that as x → ±∞, u(x, t) → u2 > 0. The Lp

norm of this solution is unbounded for any p <∞.

Let us pick out the solitary wave solutions of System I. These are traveling wave

solutions u(x, t) that decay to zero as x→ ±∞. For c > 0, we take u2 = 0 and u1 such

that 0 < u1 < c. Then the elevation wave solution is a solitary wave. For c < 0, we

again take u2 = 0 and u1 such that c < u1 < 0. Then the depression wave solution is a

solitary wave.

To summarize, for System I, we can have localized waves of elevation (u > 0) that

travel to the right at speed c, and localized waves of depression (u < 0) that travel to

the left at speed c. The amplitudes of both types of waves are bounded above by c, the

absolute value of the wave speed.

Because these solitary wave solutions decay to zero as x→ ±∞, we expect that they

are bounded in certain Lp norms. We will not make this statement precise here. It

would be interesting to check this, and also check whether the solitary waves are local

minima of the Hamiltonian functional (3.31) associated with System I. This would be a

first step towards proving stability of the solitary waves, an issue we will not address in

this thesis.

Periodic boundary conditions. Let us reconsider System I on the finite domain

x ∈ [0, T ], and impose periodic boundary conditions:

u(x, 0) = u(x, T ) (3.47a)

ρ(x, 0) = ρ(x, T ). (3.47b)

Now when we examine the traveling wave ODE (3.39), we must search for periodic

solutions. However, it is already clear from Figure 3.2 that there are an infinite number

of periodic solutions. Just imagine a fictitious particle starting from rest at any point

on the V (u) curve strictly between the dashed lines V (u1) and V (u2). The particle will

oscillate (forever) inside the potential well with some period T < ∞. As we did before,
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we can use this periodic solution of the ODE and the ansatz (3.33) to generate a traveling

wave solution of the System I PDE, now posed with periodic boundary conditions (3.47).

Note that on the periodic interval, all traveling wave solutions are bounded in any

Lp norm. This is a trivial consequence of the fact that on a compact interval, all smooth

functions are integrable. We conjecture that the periodic version of System I may support

a wealth of phenomena that may not occur for System I posed on the real line.

Dispersion relation. For any wave equation, knowledge of the dispersion relation

ω(k) is quite important. If ω(k) is linear, then the phase speed ω/k is constant with

respect to k, implying that waves of different wave number all propagate at the same

speed. In such a case, we refer to the dynamics as hyperbolic. If ω(k) is nonlinear, then

the phase speed ω/k is not constant with respect to k, implying that waves of different

wave number propagate at different speeds. In such a case, if we start with a packet

consisting of several wavenumbers and let is propagate under the dynamics of the wave

equation, we will find that the packet will disperse, or spread out, in space. In this case,

we refer to the dynamics as dispersive.

With this terminology, now widely used but originally due to Whitham (see [86]), the

1D barotropic compressible Euler equation is a nonlinear hyperbolic equation. Typical

behavior in such a system is steepening of wave profiles and the formation of sharp

discontinuities, or shock waves. As we have seen, System I has a large family of solitary

wave solutions, which is typical of nonlinear dispersive equations such as the Korteweg-

de Vries (KdV), Nonlinear Schrödinger (NLS), and sine-Gordon equations. As we shall

now see, System I is indeed a dispersive system, but this is not the full story.

In order to compute the dispersion relation for System I, we shall have to deal with

both the continuity equation (3.3a) and the velocity equation (3.5). The first equation

is unchanged from the compressible Euler context, and therefore retains its hyperbolic
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character. Indeed, linearizing (3.3a) about a constant solution5 via

ρ(x, t) = ρ0 + ε exp i(kx− ωt) (3.48)

u(x, t) = u0 + ε exp i(kx− ωt), (3.49)

we will obtain, at first-order in ε, the linear dispersion relation

ω(k) = (u0 + ρ0)k.

This is the standard approach for obtaining dispersion relations, but it simply does not

work for System I. The reason is that System I consists of a coupled hyperbolic-dispersive

system. If we use the näıve approach of (3.48) and (3.49) in both the hyperbolic part

(3.3a) and the dispersive part (3.5), we will not produce anything meaningful.

Therefore, we generalize the usual procedure. We retain the usual expression (3.49)

for u consisting of a small sinusoidal perturbation from a constant state. Note that this

is a traveling wave solution, with phase velocity c = ω/k, so we expect from our earlier

analysis that ρ(x, t) will take the form

ρ(x, t) =
B

u(x, t) − ω/k
, (3.50)

for some constant B to be specified later. For now, we assume the existence of δ such

that

u0 −
ω

k
= δ = O(ε0) � ε. (3.51)

Later we shall determine a closed-form expression for δ. Now we must check that (3.49-

5The reader will verify by inspection that System I possesses the constant solution ρ(x, t) = ρ0 and

u(x, t) = u0.
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3.50) solves the continuity equation (3.3a). We compute

ρx = −Bεik exp i(kx− ωt)

(u− ω/k)2
(3.52)

ρt =
Bεiω exp i(kx− ωt)

(u− ω/k)2
(3.53)

ux = εik exp i(kx− ωt), (3.54)

and the reader may verify that using this together with (3.49-3.50), we have

ρt + ρxu+ ρux = 0.

Hence we move on to the velocity equation (3.5), which we write as follows:

ut + uux − α2

(
ρx

ρ
(uxt + uuxx) + uxuxx + uxxt + uuxxx

)
= −px

ρ
. (3.55)

We are interested in the O(ε) terms from (3.55). First let us put (3.49) together with

(3.51) to get

u− ω

k
= δ +O(ε) = O(ε0). (3.56)

At this point, it is clear that ux, uxx = O(ε) and that

ρx

ρ
= − ux

u− ω/k
=

O(ε)

O(ε0)
= O(ε).

Already we may eliminate three O(ε2) terms from (3.55) and rewrite it as

ut + uux − α2 (uxxt + uuxxx) = −px

ρ
. (3.57)

Now we choose the scalings B = O(ε) and κ = O(ε1−γ) in order to achieve the following
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balance:

ρ =
B

u− ω/k
= O(ε),

p = κργ = O(ε),

px

ρ
= κγργ−1 ρx

ρ
= O(ε).

Hence all terms from (3.57) are O(ε), so we may proceed to compute the dispersion

relation. Note that from (3.56) we have

1

u− ω/k
=

1

δ +O(ε)
=

1

δ
+O(ε),

and raising both sides to the γ power, we obtain

(u− ω/k)−γ = δ−γ

where we are ignoring a term of order O(εγ). In light of this, we may compute px/ρ:

px

ρ
= −κγBγ−1δ−γεik exp i(kx− ωt).

Remembering that the right-hand side of (3.57) has a minus sign, we obtain, after sub-

stitution of our px/ρ result and (3.49),

−ω(1 + α2k2) + u0k(1 + α2k2) = κγBγ−1δ−γk.

This leads to

ω(k) = u0k − κγBγ−1δ−γ k

1 + α2k2
.

Now we may attempt to “back out” an expression for δ. Let us compute

δ = u0 −
ω

k
= κγBγ−1δ−γ(1 + α2k2)−1.
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Solving for δ and raising the answer to the γ power, we obtain

δγ =

(
κγBγ−1

1 + α2k2

) γ

γ+1

.

Now the dispersion relation becomes

ω(k)

k
= u0 −

(
κγBγ−1

1 + α2k2

)1/(γ+1)

. (3.58)

Camassa-Holm. Interestingly, the dispersion relation for System I bears a resem-

blance to that of the Camassa-Holm equation:

vt + uvx + 2vux = 0 (3.59a)

u− α2uxx = v. (3.59b)

This equation was originally derived in [9] by vertically averaging the Hamiltonian for

shallow water waves. Equation (3.59) is a completely integrable equation with a bi-

Hamiltonian structure. Its geometric and analytical properties have been extensively

studied. To compute its dispersion relation, we follow the usual procedure of taking

sinusoidal perturbations about a constant solution as in (3.49). We obtain

ω(k)

k
= u0 +

2u0

1 + α2k2
. (3.60)

Also note that the Camassa-Holm equation (3.59) is the Euler-Poincaré equation for the

Lagrangian

l(u) =

∫
u2 + α2u2

x dx.

Comparing this with the System I Lagrangian (3.2), we see that both in terms of ge-

ometry and wave dynamics, System I can be considered a “compressible” version of

Camassa-Holm.

Zero-α limit of solutions. It is clear from the dispersion relation (3.58) that α is not

only a length scale that arises in the filtering/averaging derivation, but also a measure
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of dispersion in the model. For α > 0, the dispersion relation ω(k) for System I depends

nonlinearly on k. This means that both the phase velocity ω/k and the group velocity

dω/dk depend on the wavenumber k. System I, and more specifically the momentum

equation (3.5), is a dispersive regularization of the 1D barotropic compressible Euler

equation.

Suppose we solve System I, on either the real line or a periodic interval, with initial

data ρ(x, 0) = ρ0 and u(x, 0) = u0. Let us explicitly label the α-dependence of the

resulting solution by writing it as uα(x, t), ρα(x, t). The next question to ask is: what

happens to these solutions as α → 0, or in other words, how do solutions of System

behave in the zero-dispersion limit?

Let us take a slight digression and discuss the zero-dispersion limit of the Korteweg-de

Vries (KdV) equation:

ut + uux + εuxxx = 0 (3.61)

u(x, 0) = u0(x)

The zero-ε limits of solutions of this equation is a zero-dispersion limit, and it has been

pursued quite vigorously in the literature (see [52]). It is trivial to take ε → 0 in the

KdV equation itself, and one obtains the (inviscid) Burgers equation

ut + uux = 0 (3.62)

u(x, 0) = u0(x)

Taking ε→ 0 in the solutions of the KdV equation is a completely different matter. The

basic idea is that globally in time, as ε→ 0, the solutions uε(x, t) of (3.61) equations do

not converge to solutions of the limiting equation, which is (3.62). There is, of course,

much more to the story than that:

• Assuming that u0(x) contains at least one point x0 at which u′0(x) < 0, the resulting

solution u(x, t) of (3.62) will develop a discontinuity in finite time. This happens

regardless of how smooth u0(x) is. Let T denote the earliest time at which the
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solution u(x, t) breaks—we refer to T as the break time.

• Now, for t < T , solutions uε(x, t) of the KdV equation (3.61) converge strongly to

solutions u(x, t) of the Burgers equation (3.62) with the same initial data.

• However, for t > T , solutions uε(x, t) of the KdV equation do not converge in

any sense to weak solutions u(x, t) of the Burgers equation. The solution uε(x, t)

becomes highly oscillatory as ε vanishes—these oscillations are bounded in L∞ but

their frequency increases. In fact, it can be shown that uε(x, t) converges weakly to

a solution of the Whitham modulation equation for KdV, which is quite different

from the Burgers equation.

The above results summarize the content of the series of papers by Lax and Levermore

([52]) on the zero-dispersion limit of the KdV equation. One should also mention the

contributions of Venakides, who established many results on the fine structure of the

oscillations that develop as ε→ 0, as well as Deift and Zhou, who have framed the zero-

dispersion limit as a Riemann-Hilbert problem ([18]). The Riemann-Hilbert approach

has also been used (see [46] and [84]) to analyze the semiclassical, or zero-dispersion,

limit of the Nonlinear Schrödinger equation:

iεut +
1

2
ε2uxx + |u|2u = 0 (3.63)

u(x, 0) = u0(x).

Qualitatively identical phenomena, including high-frequency oscillations and weak limits,

have been discovered in this case.

It is reasonable to conclude that analyzing the zero-α limit of System I is most likely

a subtle and mathematically challenging problem. Furthermore, it seems unlikely that,

as α → 0, we can extract information about gas dynamics from the solution uα(x, t),

ρα(x, t) of System I. That is, even if uα and ρα converge to some functions as α→ 0, this

convergence is likely to be weak, and the limit functions are not likely to be solutions of

the 1D barotropic compressible Euler equations.
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3.4 Initial-value Problem

We wish to study not only the traveling wave solutions of System I, but also the general

initial-value problem for unknown functions ρ : U × [0,∞) → R and u : U × [0,∞) → R:

ρt + (ρu)x = 0 (3.64a)

ρut + ρuux − α2 (ρxuxt + ρxuuxx + ρuxuxx + ρuxxt + ρuuxxx) = −px (3.64b)

ρ(x, 0) = ρ0(x) (3.64c)

u(x, 0) = u0(x). (3.64d)

As usual, we take p = κργ . The analytical problem consists of finding an appropriate

spaces of functions such that if ρ0 and u0 are chosen from those spaces, then the solutions

ρ(x, t), u(x, t) of (3.64) remain in those spaces for all t > 0. We will not attempt a

theoretical investigation of this problem here, but instead pursue a numerical treatment.

In order to sidestep issues regarding the decay of solutions as x → ±∞, we will take

the domain U to be a compact interval equipped with the standard periodic boundary

conditions (3.47).

We wish to test whether solutions of (3.64) approximate the shock wave solutions of

the 1D barotropic compressible Euler equations. Of course, we already have evidence

that this approximation is not going to be terribly good. From our results on traveling

wave solutions, we know that there exists an initial condition u0 (and an associated

initial condition ρ0) consisting of an upward-pointing pulse. This initial condition u0 is

rigidly transported to the right at a speed c by System I. No steepening, and indeed no

change whatsoever in the shape of the wave occurs as it propagates.

This is already in sharp contrast with the solution of the 1D compressible Euler

equation with the same initial data. In this case, the velocity field u would steepen and

eventually form a shock wave at the point of inflection of u0. At the instant at which this

shock forms, the L2 energy of the solution would drop. By comparison, the L2 energy

of the traveling wave solution stays constant for all time.
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Description of the numerical method. We describe how to numerically solve Sys-

tem I (3.3a, 3.5) on the interval [0, 1] with periodic boundary conditions. We use the

barotropic law p = κργ , with κ = 0.4, γ = 1.4. Pseudospectral techniques, as described

in [28], play a large role in the method. First, we write the systems in semidiscrete form

ρρρt = F(ρρρ,u) (3.65a)

ut = G(ρρρ,u), (3.65b)

where ρρρ = (ρ1, . . . , ρN ) and u = (u1, . . . , uN ). Here, ρi(t) ≈ ρ(xi, t) and ui(t) ≈ u(xi, t),

where xi, i = 1, . . . , N , are grid points in the interval [0, 1]. We use the equispaced grid

given by xi = (i− 1)∆x with ∆x = 1/N .

The method carries the quantities ρρρ and u in physical space. We pass to Fourier

space using the FFT only when we take derivatives. Before applying the inverse FFT to

any quantity in Fourier space, we always use a two-thirds dealiasing rule. By this rule,

the highest one-third wavenumber components of the spectrum are set to zero.

We see from (3.3a) that the ρ dynamics for System I is given by the standard con-

tinuity equation. Then, our function F(ρρρ,u) is merely a pseudospectral approximation

of the derivative −(ρu)x. In words, we first compute the product (ρρρu)i = ρiui and take

the FFT of the result. After multiplying by 2πik, where k = (−N/2 + 1, . . . , N/2), and

dealiasing, we take the inverse FFT, and multiply by −1.

Now we describe the construction of G for System I. Let us group all time-derivative

terms from equation (3.5) in the following way:

Aut = −uux + α2

(
ρx

ρ
uuxx + uxuxx + uuxxx

)
− px

ρ
, (3.66)

where A =
[
Id−α2(ρx/ρ)∂x − α2∂xx

]
. Again we use standard pseudospectral techniques

to discretize and compute the right-hand side of (3.66); let us write the result of this as b.

To discretize the operator A, we use standard high-order finite-difference approximations
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for ∂x and ∂xx. These approximations are, respectively (see [43, Chap. 7.1]):

D1 =
1

∆x
Γ0

[
Id−1

6

(
∆2

0

)
+

1

30

(
∆2

0

)2
]

+ O(∆x5) (3.67)

D2 =
1

∆x2

[(
∆2

0

)
− 1

12

(
∆2

0

)2
+

1

90

(
∆2

0

)3
]

+ O(∆x6), (3.68)

where Γ0 and ∆2
0 are operators on the space of vectors z = (z1, . . . , zN ), defined by

(
∆2

0z
)
k

= zk+1 − 2zk + zk−1 (3.69)

(Γ0z)k =
1

2
(zk+1 − zk−1) . (3.70)

Because we impose periodic boundary conditions on the system, we use the convention

that zk = zk+N for all k. With this convention, the operators D1 and D2 can be written

as matrices that include the periodic boundary conditions. We denote these matrices by

D1 and D2, respectively.

Let r denote the result of computing ρx/ρ pseudospectrally. Now we are ready to

write the discretization A of the operator A:

A = Id−α2 diag(r)D1 − α2D2. (3.71)

Here diag(r) is the diagonal matrix with r1, . . . , rN on the diagonal. We remark that

the component-wise product of the vectors r and z can be written as the matrix-vector

product diag(r)z.

Then the discretization of (3.66) becomes

Aut = b, (3.72)

which implies G(ρρρ,u) = A−1b.

Having now described the construction of F and G, we solve the ODE system (3.65)

with the fourth-order Runge-Kutta method. We remark that in practice, for System I,

the presence of a third-derivative term on the right-hand side of (3.66) necessitates a

CFL condition of ∆t ∝ (∆x)2.
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Initial data. Using the method just described, we performed numerical experiments

for System I with the following initial conditions: the gauss data

ρ(x, 0) =
1

100
sin(2πx) +

1

2
,

u(x, 0) =
1

2
exp(−25(x− 1/2)2),

and the sine data

ρ(x, 0) =
1

100
sin(2πx) +

1

2
,

u(x, 0) =
1

2
sin 2πx+

3

2
.

We take α = 0.03. We solve until t = 5 at resolution N = 1024. As the solutions evolved

in time, we kept track of the energy (3.31) of the solution. All solutions presented in

this work preserved their initial energy to within 0.1%. See Figure 3.3 for the solutions

to System I for gauss and sine initial data. Movies of these solutions are available at

http://www.cds.caltech.edu/~bhat/pub/.pde1/

Unfortunately, our studies of the initial-value problem for System I indicate that it

is not well-suited for the approximation of shock solutions of the compressible Euler

equations. If one used either the gauss or sine initial conditions in the compressible

Euler equations, the resulting solutions would contain shock waves at points of inflection

of u. In all of our numerical experiments on System I, we have not seen any wave profiles

that resemble smoothed or approximate shock waves.

For both ρ and u, the numerical solution retains its smoothness and stays bounded.

Various wave-like structures of similar width appear and propagate to the right. Based

on this and the fact that the energy stays very nearly constant, we conjecture that the

systems are well-posed for sufficiently smooth initial data. However, analytic results on

well-posedness need to be further investigated.

We note that especially in the evolution of ρ(x, t) given the sine initial data, we

see the emergence of numerous symmetric patterns and oscillations that hint at deep,

fundamental structures for System I. This includes geometric structures such as higher-
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(c) ρ - sine
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(d) u - sine

Figure 3.3: The solution of System I with gauss and sine initial data, respectively.

The figure shows the solution until t = 1.5 and t = 1, respectively. We performed runs

until t = 5, and the solution manifests the same wave-like behavior, while preserving the

energy h to within 0.1% of its initial value.
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order symmetries for System I that are waiting to be discovered, as well as algebraic

structures such as Lax pairs and other objects related to complete integrability. System I

already has one Hamiltonian structure, the semidirect product Euler-Poincaré structure

mentioned above (see (3.31)). If System I possessed another compatible Hamilonian

structure, then it would be completely integrable in the sense of Lax.

3.5 Comparisons with Other Models

Solitary waves in compressible fluids. There have been just a handful of published

studies on solitary waves in compressible fluids, featuring two main ideas. The first main

idea is to use asymptotic expansions of the compressible Euler equations. At first order,

such an expansion yields the linear wave equation of acoustics. The next step is to

carry the expansion to higher order, and then apply the usual assumptions of weakly

nonlinear theories to derive wave amplitude equations of Korteweg-de Vries (KdV) type.

This procedure is carried out in [76], for a compressible fluid with free boundary, in [73],

for a vertically unbounded compressible fluid, and in [77], for a two-layer compressible

fluid bounded above and below by rigid plates. It is interesting to note that the resulting

models are not precisely the classical KdV equation but instead feature time-dependent

coefficients:

At + f(t)AAx + g(t)Axxx = 0. (3.75)

We may infer that these models are different from System I in one important sense: the

effective dispersion relation for (3.75) is time-dependent. This implies that it would be

highly unlikely for (3.75) to have any traveling wave solutions. Furthermore, (3.75) is

unlikely to have a Lagrangian structure or a conserved energy, as its derivation proceeded

along the lines of classical asymptotics at the level of the equation of motion.

Of course, models such as (3.75) may be used in the regime where f and g are slowly

varying function of time. In this case, an adiabatic approximation may be used, with

some care, to show that the solutions of (3.75) consist of the usual sech2 pulse solutions

of KdV with a trailing shelf that degenerates into a train of dispersive waves as t→ ∞.

This procedure is carried out in [32], and the resulted presented there do not match the
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behaviors we see in numerical simulations of the initial-value problem for System I.

The second main idea is to generalize, to the case of compressible flow, a solitary

wave model that has already been derived for incompressible flows. This is the approach

of [62, 63] and [31], who seek “compressible” version of either the KdV or Benjamin-

Davis-Ono (BDO) equation. The BDO equation models interval waves in a stratified

incompressible fluid of infinite depth. These derivations are different from those described

above in that new model equations are derived from first principles rather than by

carrying out asymptotic expansions on old models. As such, the resulting equations may

possess conserved quantities or even Lagrangian/Hamiltonian structures. These papers

do not analyze the dynamics of the new model equations in any detail, and we are not

aware of studies of these equations anywhere else in the literature. A hint as to why this

must be the case is considered next.

Acoustic solitary waves, morning glories and undular bores. We are aware of

two physical scenarios in which solitary wave formation occurs in a gas.

The first is the recently discovered acoustic solitary wave, which was predicted the-

oretically in 1992 and verified experimentally in 2004 (see [81] and references therein).

The situation described is quite different from open air: Sugimoto considers a tube of air,

with a periodic array of resonators attached to the tube. Each resonator is a cavity of a

certain size that sits transverse to the tube. Using a piston, the air is forced at the left

end of the tube, generating a solitary wave that propagates to the right. If the resonators

were not present, the initial compression wave would break and the resulting shock wave

would propagate down the tube. This suggests the application for Sugimoto’s discovery:

the suppression of shocks in tunnels used by high-speed trains.

As interesting as this is, the only connection to System I is that the mathematical

model of the acoustic solitary waves is a coupled system of non-local, nonlinear dispersive

wave equations. By non-local it is meant that writing the equations in the abstract form

ut = N(u, ux, uxx, . . . ), (3.76)

we find that N depends on the values of its arguments at only one instant of time t,
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but at more than one point x. Note that System I is also non-local: as we saw in

(3.66), writing the u-equation in the form (3.76) requires inverting the elliptic operator

A. Inverting this operator requires knowledge of the right-hand side of (3.66) at all

points in the domain. These sorts of nonlinear, non-local, dispersive wave equations are

exceedingly rare in the literature; hence we point out this similarity between the model

equations of acoustic solitary waves and System I.

The second situation in which solitary wave formation occurs in a gas is the occur-

rence of so-called “morning glory” waves in the atmosphere, especially above the Gulf of

Carpenteria in Australia. As described in [29], these are long, nonlinear internal waves

that occur close to the ground. The internal atmospheric wave can be seen when suffi-

cient moisture exists so that the wave formation occurs together with the formation of

a roll cloud. This roll cloud can be more than 100 km long, though it is typically 1-2

km wide and 1 km deep. In [61], field measurements of morning glories are used to infer

that the internal waves are undular bores.

As described in the recent study [23], an undular bore is a type of “dissipationless

shock wave.” Mathematically, this kind of solution arises in the following way. Given

certain initial conditions for the shallow water equations, the solution breaks; one or

more of the spatial derivatives of the solution blows up in finite time, producing a sort

of shock wave. However, beyond the break time and behind the point of blow-up, high-

order dispersion effects remain significant. The discontinuity propagates with a train

of dispersive oscillations. This sort of wave solution consisting of a discontinuity plus

dispersive oscillations is what we would expect from the zero-α limit of System I and

other conservative, dispersive α models derived using the Euler-Poincaré machinery.

These physical situations are far removed from the concerns that motivated the

derivation and analysis of System I in the first place. Therefore, we do not expect

System I to magically turn out to be an accurate model for any of these phenomena.

However, we do expect that because other model equations are close to System I in a

strictly mathematical sense, the techniques used to analyze System I will be applicable

elsewhere.
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3.6 Future Projects

First we briefly list projects of mathematical interest involving System I:

• One project is to study the Casimirs of System I and use them to determine the

stability of the traveling wave solutions.

• The Lagrangian (3.2) consists of a kinetic energy minus a potential energy. One

can apply a Kaluza-Klein construction and turn this Lagrangian into a positive-

definite metric on a certain enlarged space. It would be of analytical interest to

study the geodesic spray associated with this metric. For one, it may yield a new

method of proving existence/uniqueness for regularized gas dynamical equations.

• Another project is to apply a Painlevé test to System I to determine whether it is

completely integrable in the sense of Lax pairs. We may also study the relationship

between System I and a completely integrable hierarchy of equations derived from

the barotropic Euler equations by [7].

Leaving behind the mathematical issues, we next list projects of physical interest that

seek to use the knowledge gained from the System I analysis:

• We found that the phase portrait for the Hamiltonian ODE (3.39) contains one

saddle and one center. The homoclinic trajectory associated with the saddle cor-

responds to the traveling wave solution of System I. Now, what if instead of one

saddle and one center, we had two saddles? Then we might expect a heteroclinic

connection between the two saddles. This would correspond to a different kind of

traveling wave solution: a traveling front, or smoothed shock profile.

• As we saw, System I is a dispersive wave equation. Generally speaking, the zero-

dispersion limits of such equations feature high-frequency oscillations and weak

convergence. What if, after our averaging procedure and subsequent application

of the variational principle, we had derived a non-dispersive regularized equation,

i.e., one with the linear dispersion relation

ω(k) = ck,
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for some constant c? In this case, we might legitimately expect that in the zero-α

limit, solutions of the regularized equation converge strongly to solutions of the

compressible Euler equations.

• Finally, instead of working with the 1 + 1 system of density and momentum or

density and velocity, we might profit from taking a step back and working with

the inviscid Burgers equation (3.62). This is the simplest mathematical model

for shock formation. If there is no way to regularize (3.62) using some sort of

Hamiltonian/Lagrangian equation, then that indicates there may be no way to

regularize gas dynamics either.

These tasks are of short-term interest, and we consider one possible answer to these

questions in Chapter 4.

As a longer-term project of physical interest, we must extend our range of models to

the full compressible system of equations, i.e., not just the barotropic case. In the full

Euler system, one has conservation laws for mass, momentum, and energy. The energy

equation is coupled together with a thermodynamic equation of state. The full Euler

system is the one whose shock waves matter for most physical applications. Assuming we

have answered, in a conclusive and satisfactory way, the questions of short-term interest,

we may consider the full Euler system.
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Chapter 4

A Hamiltonian Regularization of the Inviscid

Burgers Equation

4.1 Introduction

In this chapter, we consider the following quasilinear evolution equation:

ut + uux − α2utxx − α2uuxxx = 0, (4.1)

with α > 0. By introducing the Helmholtz operator,

H = Id−α2∂2
x, (4.2)

we may rewrite (4.1) as

vt + uvx = 0, (4.3)

where

v = Hu. (4.4)

The main goal of this chapter is to show that (4.1) represents a valid regularization

of the Burgers equation. That is, the solutions uα(x, t) of (4.1) with initial data

uα(x, 0) = u0(x),
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converge strongly, as α→ 0, to the unique, weak entropy solution of the Cauchy problem

for the inviscid Burgers equation

ut + uux = 0, (4.5a)

u(x, 0) = u0(x). (4.5b)

For the sake of exposition, let us mention without proof a few well-known facts. We

are primarily concerned with the case when u′0(x) < 0 for at least one point x ∈ R. In

this case, regardless of how smooth u0(x) is, the classical solution u(x, t) of the Burgers

equation exists only until a break time T (see Section 4.3 and [44]). Therefore, we work

with the weak form of (4.5). When u′0 has mixed sign, there exists a global weak solution

u(x, t) of (4.5). The solution is not unique unless we impose an additional constraint,

which is called an entropy inequality by analogy with gas dynamics. Here we will work

with the Oleinik inequality given by

u(x+ a, t) − u(x, t)

a
<
C

t
, (4.6)

for every a > 0, t > 0 and x ∈ R, where C is a constant that depends only on u0. Taken

together, the system (4.5-4.6) has a unique weak solution u(x, t) globally in time, for a

large class of initial data u0.

Viscous regularizations. It is well known that if one desires to capture the physically

relevant solutions of (4.5), one can solve the viscous Burgers equation

ut + uux = νuxx, (4.7a)

u(x, 0) = u0(x). (4.7b)

Let uν(x, t) denote the solution of the Cauchy problem (4.7). We emphasize that even

for rough initial data u0 ∈ L∞, the solution uν(x, t) exists uniquely and globally in time,

in the classical sense, for each ν > 0. Now suppose we fix u0 and repeatedly solve (4.7a)

with a sequence of values for ν, i.e. {νk} such that limk→∞ νk = 0. Then we will find
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that the resulting solutions uνk converge strongly to a function u that is the unique weak

entropy solution of the Cauchy problem (4.5).

Suppose we ask whether there are useful viscous mechanisms besides uxx. One can-

didate is filtered viscosity, e.g. H−1uxx, which has been analyzed in [74, 54, 51]. It is

shown that this sort of filtered viscosity leads to solutions uν that enjoy uniform L∞

bounds and uniform L1 contraction properties. Strong convergence to the weak entropy

solution in the ν → 0 limit is proved via the Kruzhkov BV theory [50].

More recently, the use of hyper-viscosity (e.g. (−1)n+1∂2n
x u) has been analyzed in

[82]. Here it is shown that under the assumption that the solution uν stays bounded in

L∞, there is strong convergence as ν → 0 to the weak entropy solution.

Compared with regularizations that have appeared in the literature, the regulariza-

tion (4.1) does not involve standard viscous mechanisms. Using the definition (4.2) of

H, we may verify that

ut + uux = −3

2
α2H−1

(
u2

x

)
x
. (4.8)

is formally equivalent to (4.1). The right-hand side of (4.8) represents a nonlinear

smoothing term that differs from standard viscosities, which are all linear in the un-

known u. Currently, we are unaware of previous works which have used the right-hand

side term in (4.8) as a regularizing term for shock-forming hyperbolic equations.

Previous results on equation (4.1). Equation (4.1) has appeared previously in the

literature, as the b = 0 member of the b-family proposed in [17]:

vt + uvx + buxv = 0. (4.9)

Various results regarding the complete integrability (for b = 2 and b = 3) and traveling

wave solutions of (4.9) may be found in [17, 42, 36, 41, 19, 20, 64, 10]. In what follows,

we will discuss the results from this collection that specifically deal with the b = 0 case

of (4.9).

Physical motivation for the b-family is provided in [19, 20], which show that (4.9)

is an asymptotically equivalent approximation of the shallow water equations. That is,
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suppose we write the classical equations for surface waves in shallow water, and then

apply a weakly nonlinear expansion in the regime where (I) the waves’ amplitude is

much smaller than their length and (II) the waves’ amplitude is much smaller than the

mean depth of the water. Restricting the model to unidirectional waves and truncating

at quadratic order in the perturbation parameters, we obtain a family of pde’s that can

be transformed into the b-family via certain Kodama transformations. In [86] we find

this same technique applied at linear order in the perturbation parameters to recover

the Korteweg-de Vries equation.

In [17], the b-family is realized as the Euler-Lagrange equation corresponding to a

certain Lagrangian density. As the authors point out, this Lagrangian structure breaks

down when b = 0. The authors do propose a Hamiltonian structure that appears well-

defined for the b = 0 case, though they do not prove here that the proposed structure in

fact satisfies the requirements for Hamiltonian operators as described in, e.g., [68].

The Hamiltonian structure of the b-family (4.9) is given by (see [42]):

vt = −b2B δH
δv

, H =
1

b− 1

∫
v dx. (4.10a)

B = v1−1/b∂xv
1/b(∂x − α2∂3

x)−1v1/b∂xv
1−1/b. (4.10b)

As the authors of [42] state, “when b = 1 the Hamiltonian must be modified; for b = 0

the operator B can be redefined.” In [42], they prove that except in these special cases,

the functional/operator pair given in (4.10) satisfies the Jacobi identity and is a valid

Hamiltonian structure for the b-family (4.9). In this chapter, we will show that the

proper redefinition of (4.10) in the b = 0 case is also a valid Hamiltonian structure.

Hence (4.1) is Hamiltonian in a certain sense.

Classical traveling wave solutions for the b = 0 equation are briefly discussed in [41].

It is shown that the b = 0 equation has peakon solutions of the form

u(x, t) = ±c exp(−|x− ct|/α),

but numerical experiments reveal that these solutions are unstable. There is another
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class of traveling wave solutions, the so-called “ramps” and “cliffs,” which look like

viscous shock profiles. The authors provide numerical evidence that these traveling wave

solutions are stable.

Formally similar non-viscous regularizations. In various other pde’s that have

appeared in the literature, we may find the terms α2utxx and α2uuxxx from (4.1) either

separately or in combination with other terms. Let us discuss a few such cases, with

an eye on the extent to which these pde’s constitute a regularization of the Burgers

equation.

Goodman and Lax considered in [30] a dispersive finite-difference scheme whose so-

lutions behave, as the meshsize goes to 0, like solutions of the zero dispersion limit of the

KdV equation [52]. By ignoring higher order terms in ∆ (the meshsize), the difference

scheme investigated in [30] approximates the solution of

ut + uux +
1

6
∆2uuxxx = 0. (4.11)

In [30], it is shown that, as long as the solution u of the Cauchy problem (4.5) is smooth,

the solution of the difference scheme with the same initial data converges strongly to u

as ∆ → 0. However, beyond the time at which the classical solution of (4.5a) breaks, the

solution of the finite difference scheme develops high-frequency oscillations and ceases to

converge strongly in the ∆ → 0 limit. The solution of the difference scheme does converge

weakly, but its weak limit—in the sense of distributions—is not a weak solution of the

Burgers equation.

Compared to (4.1), the equation (4.11) does not contain the mixed derivative term

utxx. Also, in (4.11), the nonlinear term uuxxx enters with a plus sign. A pde that

contains the mixed derivative term utxx, but not uuxxx is the RLW (regularized long

wave) or BBM (Benjamin-Bona-Mahoney) equation,

ut + ux + uux − α2uxxt = 0, (4.12)

introduced in [70, 5] as a model for the unidirectional propagation of long waves in certain
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nonlinear dispersive systems. By dropping the term ux in (4.12), one can consider the

following regularization of the Burgers equation:

ut + uux − α2uxxt = 0. (4.13)

The solutions of (4.13) and (4.12) behave similarly. It is well-known that, generically,

initial data for (4.13) breaks up into a sequence of solitary waves, followed by a dispersive

tail. As α → 0, numerical experiments indicate that the solutions of (4.13) do not

converge (in any sense) to a weak solution of the Burgers equation.

Whitham’s family. We use the Green’s function of the Helmholtz operator (4.2) given

by

G(x) =
1

2α
exp

(
−|x|
α

)
, (4.14)

and write (4.8) as

ut + uux = −3

2
α2

∫

R

G(x− y)
(
u2

y

)
y
(y, t)dy. (4.15)

Now let us turn our attention to the general equation proposed by Whitham (see [86,

Section 13.14]), as the simplest equation that combines dispersive and nonlinear effects:

ut + uux +

∫

R

K(x− y)uy(y, t)dy = 0, (4.16)

where K(x) is a convolution kernel. When we compare Whitham’s equation1 with our

equation we notice that the right-hand side of (4.16) is linear in uy(y, t), while the right-

hand-side of (4.15) is quadratic in uy(y, t).

In writing (4.16), one of Whitham’s objectives was to model the breaking and peaking

of shallow water waves. The specific form of (4.16) is motivated by the fact that the

1Many beautiful results on the initial-value problem and long-time asymptotics of (4.16) may be found

in the monograph [67].
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dispersion relation for this equation is given by

ω(k) = kK̂(k), (4.17)

where K̂ is the Fourier transform of K. Of course, one can invert this, and design an

equation of the form (4.16) with any prescribed dispersion relation. The idea now is

to find K such that: (1) the right-hand-side of (4.17) closely approximates the true

dispersion relation for shallow water waves, at least in the regime of interest, and (2) the

resulting equation (4.16) is easier to analyze than the full shallow water equation.

In our case, by considering sinusoidal perturbations about a constant solution u = u0,

we find the dispersion relation for (4.1):

ω(k) = u0k. (4.18)

Hence (4.1) is not a dispersive wave equation. Returning for a moment to the b-family

(4.9), we see that the dispersion relation for the whole family is

ω(k) = u0k + u0
bk

1 + α2k2
. (4.19)

Hence the b-family is dispersive for b > 0. We expect that small-dispersion oscillations

typical of dispersive equations such as KdV or BBM will play a role in the zero-α limits

of the b-family for all b > 0. Again, the b = 0 equation under consideration in this

chapter does not produce oscillations in the zero-α limit.

The equation that is obtained from (4.16) with the Helmholtz kernel K = G is called

the Burgers-Poisson equation and is formally equivalent to the system

vt + vvx = ux,

uxx = u+ v.

As shown in [26], the Burgers-Poisson equation features wave breaking in finite time.

Furthermore, [26] shows that the α→ 0 limit of the Burgers-Poisson equation is similar
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to the zero dispersion limit of the KdV equation (see [52]). That is, the limits of solutions

of the Burgers-Poisson equation are weak limits; these weak limits satisfy the limiting

equation (Burgers) only in the regime where Burgers has smooth, classical solutions. In

other words, one cannot recover shock solutions of Burgers by considering zero-dispersion

limits, in the strong or weak sense, of solutions of Burgers-Poisson.

Summary. Numerical simulations reveal that though (4.1) is Hamiltonian, solutions

of (4.1) dissipate energy in all Lp norms for p > 1. In comparison, a smooth solution

of the Burgers equation (4.5) preserves the L2 energy of u until the break time T . For

the Burgers equation (4.5), shock formation, and subsequent evolution of discontinuous

weak solutions, occurs with a corresponding decay in the L2 energy of u.

Roughly speaking, equation (4.1) is dissipative enough to approximate shock solu-

tions of the Burgers equation, but conservative enough to retain a certain non-canonical

Hamiltonian structure. Though (4.1) is formally similar to certain shallow water model

equations, it is neither dispersive nor completely integrable. This hints at why, when α

goes to zero, we see the strong convergence typical of zero-viscosity limits instead of the

oscillations and weak convergence typical of zero-dispersion limits.

Outline of this Paper. In Section 4.2, we prove the existence of a large class of

traveling front solutions for (4.1). We study the initial-value problem of (4.1) in Section

4.3 and prove well-posedness of solutions assuming that v(x, 0) > 0 for all x. Next, we

consider the α→ 0 limit. In Section 4.4 we show that solutions of (4.1) converge strongly

in the zero-α limit to weak solutions of the inviscid Burgers equation. Next, in Section

4.5, we provide numerical evidence that the weak solution that is selected in the α→ 0

limit is indeed the entropic, or physically relevant, solution. We discuss the Hamiltonian

structure of (4.1) in Section 4.6. Finally, in Section 4.7, we discuss future directions in

which we plan to take this line of research.
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4.2 Traveling Front Waves

We now demonstrate that (4.1) has traveling wave solutions of the form

u(x, t) = u

(
x− ct

α

)
.

These solutions consists of fronts, or shock-like profiles, connecting two different states:

lim
x→−∞

u(x, t) = uL, lim
x→+∞

u(x, t) = uR. (4.20)

Remark. Equation (4.1) is Galilean invariant, i.e. invariant under the mapping

x 7→ x+ u0t,

u 7→ u+ u0.

In precise terms, if u(x, t) solves (4.1), then so does u(x, t) = u(x− u0t, t) + u0, for any

u0 ∈ R. Hence we could eliminate the wave speed c from the proceedings and search for

stationary solutions u(x, t) = u(x/α) only. We choose not to do this in order to show

that the Rankine-Hugoniot relationship,

c =
1

2
(uL + uR) , (4.21)

holds for all traveling wave solutions.

Traveling waves. Let us search for solutions of the form

u(x, t) = u

(
x− ct

α

)
.

This choice of u forces v(z) = u(z) − u′′(z), with z = (x − ct)/α. Substituting this into

(4.3), we obtain the equation

−cv′ + uv′ = 0. (4.22)



114

This equation is third-order in u′. However, we can find an integral of motion, reducing

the equation to second-order in u′. Noting that u′v is an exact differential, i.e.

2u′v =
(
u2 − u′

2)′
,

we add u′v to both sides of (4.22) and integrate:

−cv + uv = −1

2
u′

2
+

1

2
u2 + C1, (4.23)

for arbitrary C1 ∈ R. Substituting for v, we obtain a second-order equation in u, which

can be rewritten as the first-order system





u′ = w

w′=
u2 − 2cu− 2C1 +w2

2(u− c)
.

(4.24)

At first glance, it appears that system (4.24) blows up on the line u = c. As we show

below, there do exist trajectories which cross this line in phase space. However, the line

of apparent singularities does have implications for the uniqueness of such trajectories.

We set aside such issues for the moment and move ahead to the phase portrait of this

ode system.

To guide our study, we numerically plot a sample phase portrait in Figure 4.1 for

the specific values c = 1, C1 = 0. Note the two fixed points connected by the “patched”

heteroclinic orbit, marked by arrows. Each half of the heteroclinic orbit is a straight line

segment. Note also the failure of uniqueness at the two points (u,w) = (1,±1). We shall

now explain these phenomena analytically.

Fixed Points. System (4.24) is invariant under the reflections w 7→ −w and u 7→
(2c− u). Hence the phase portrait is symmetric across the w = 0 and u = c lines.

The fixed points of (4.24) are located at (u−, 0) and (u+, 0) where

u− = c−
√
c2 + 2C1, u+ = c+

√
c2 + 2C1. (4.25)



115

−0.5 0 0.5 1 1.5 2 2.5

−8

−7

−6

−5

−4

−3

−2

−1

0

1

u

w

Figure 4.1: Phase portrait of (4.24) with c = 1, C1 = 0.

Take C1 > −(1/2)c2 in order for the two fixed points to exist. The fixed point are always

saddles, since the linearization of (4.24) about either fixed point is


0 1

1 0


 . (4.26)

Second integral of motion. The only missing pieces in the phase portrait are the

stable and unstable manifolds of the two saddle points. In particular, we would like to

prove the existence of a heteroclinic orbit that connects (u+, 0) to (u−, 0). In order to

do this, we further reduce (4.23) from a second-order equation to a first-order equation,

by finding another integral of motion.

Assume u′(z) = f(u(z)) and differentiate both sides with respect to z:

u′′ = f ′(u)u′ = f ′(u)f(u) =
1

2

d

du
f(u)2.

We know from (4.23) that

u′′ =
u2 − 2cu− 2C1 + u′2

2(u− c)
.
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Equating both expressions for u′′ and setting g = f2 yields the linear ode

dg

du
=
u2 − 2cu− 2C1 + g

u− c
.

Searching for solutions of the form g(u) = (u− c)h(u), we find that h(u) has to satisfy

h′(u) =
u2 − 2cu− 2C1

(u− c)2
.

Integrating, we find h(u). Then, by g(u) = (u− c)h(u), we arrive at

g(u) = u2 + (C2 − c)u+ c2 + 2C1 − cC2,

for an arbitrary constant of integration C2 ∈ R. Recalling g = f2 = (u′)2, we have

u′ = ±
√
u2 + (C2 − c)u+ c2 + 2C1 − cC2. (4.27)

As explained above, the constants c and C1 determine the location of the fixed points

in the phase plane. Suppose the fixed points have been determined, and that we wish

to plot a trajectory, say u′ = γ(u), passing through a given point (u0, u
′
0). We plug this

point into (4.27) and solve for C2. Using this value of C2, equation (4.27) now gives us γ,

and hence the trajectory we wished to plot, wherever it is defined. In this way, we may

use (4.27) to plot the phase portrait of (4.24) without resorting to numerical integration.

Line of singularities. The only place where this procedure might break down is along

the line u = c. Specifically, inserting u = c in (4.27), we find that C2 cancels out of the

expression, leaving only

u′ = ±
√
c2 + 2C1.

Therefore, all trajectories in the u > c half-plane that cross into the u < c half-plane (or

vice versa) must do so at one of these two points:

(c, s±) = (c,±
√
c2 + 2C1). (4.28)
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Hence uniqueness of solutions for (4.24) fails at the line u = c.

Examining (4.24), it is then clear that for δ > 0, h > 0, all trajectories starting from

(u, u′) = (c− δ, h) will move to the right towards the u = c line, intersecting at the point

(c,
√
c2 + 2C1). By symmetry, this picture may be appropriately extended to the cases

where δ < 0 and/or h < 0.

Stable/unstable manifolds. We return to the question of a heteroclinic orbit con-

necting the two fixed points (u±, 0) (see (4.25)). First, we substitute (u, u′) = (u+, 0) in

(4.27) to obtain

C2 = −c− 2
√
c2 + 2C1.

Then, for general (u, u′), we use this value of C2 in (4.27) and obtain

u′ = ±(u− (c+
√
c2 + 2C1)) = ±(u− u+).

This gives the stable/unstable manifolds for (u+, 0). By symmetry, we obtain for (u−, 0)

the analogous expression

u′ = ±(u− u−).

Surprisingly, the stable/unstable manifolds for the nonlinear system (4.24) consist of

straight lines connecting the fixed points (u±, 0) with the singular points (c, s±), given

by (4.28). Because these manifolds are straight lines, we may use the eigenvectors and

eigenvalues of the linearization (4.26) to determine, for each fixed point, which line is

stable and which is unstable.

PDE solutions. We may stitch together the unstable manifold of (u+, 0) and the

stable manifold of (u−, 0), producing the piecewise differentiable curve z 7→ (u(z), u′(z)),

which we call a patched heteroclinic orbit. By symmetry, the same construction works

in the u′ ≥ 0 half-plane. This patched heteroclinic orbits correspond to a solution

u(x, t) : R×R → R of the pde (4.1) with boundary conditions given by (4.20). Integrating

along the stable/unstable manifolds, we find the exact formulas for the traveling front
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Figure 4.2: Traveling wave solutions of (4.1) at fixed t, with α = 0.1, d = ±1.

solutions:

u0(x, t) =




uR − d exp(−(x− ct)/α) x > ct

uL + d exp((x− ct)/α) x < ct,

where uR = c+d and uL = c−d. As can be verified directly, u0(·, t) ∈ H2(R). However,

the second derivative u0
xx is discontinuous and therefore u0

xxx exists only in the sense of

a Dirac δ distribution. Nevertheless, we may verify directly that u0 solves either (4.8)

or the weak form of (4.1). Note also that u0(ct, t) = c = (uR + uL)/2, and that we have

the correspondence

• d > 0 means uR > uL and u0
x ≥ 0 everywhere.

• d < 0 means uR < uL and u0
x ≤ 0 everywhere.

See Figure 4.2 for plots of both the d > 0 and d < 0 exact solution, plotted at a fixed

instant in time. The width of these front solutions is governed only by α. Taking α→ 0

in any of the front solutions u(x, t) = u((x− ct)/α), we arrive at the function

u(x, t) =




uR x > ct

uL x < ct.
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Interestingly enough, this function is a global (weak) solution of the inviscid Burgers

equation.

4.3 Initial-value Problem

In this section we will study the regularity of solutions of (4.1) (or equivalently, (4.3))

for certain classes of initial data.

The material picture. Let us recall that the Burgers equation as it is usually written,

ut + uux = 0,

is, from the fluid dynamical point of view, an equation in spatial coordinates. That is,

the points x ∈ R are fixed measuring points—at each time t, the velocity of fluid moving

past x is recorded as u(x, t).

Another standard way of viewing continuum mechanical problems is the material

picture. Here we track particle positions: let η(X, t) denote the position at time t of the

particle which was initially at η(X, 0) = X. The relationship between the material and

spatial pictures is given by

∂tη(X, t) = u(η(X, t), t). (4.29)

Differentiating both sides of this expression in time, we obtain

∂2
t η(X, t) =

(
u(x, t)ux(x, t) + ut(x, t)

)
x=η(X,t)

.

We see that for any classical solution u of the Burgers equation, the material map η,

defined as the solution of (4.29), must satisfy

∂2
t η(X, t) = 0. (4.30)

Let us examine what happens when we try to go the other way, namely when we start

with the initial conditions η(X, 0) = X, ∂tη(X, 0) = V (X), and find the resulting unique
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solution of (4.30):

η(X, t) = X + tV (X).

So far, there is no problem: we have a smooth, global solution η(X, t). Problems arise

when we try to define u by formally inverting (4.29):

u(x, t) = ∂tη
(
η−1(x, t), t

)
. (4.31)

If V ′(X) ≥ 0 for all X, then ∂Xη(X, t) > 0 for all X and all t > 0. Then it is clear that

for each fixed t, the map X 7→ η(X, t) is a diffeomorphism of R. Indeed we can show

(using the Inverse Function Theorem) that η−1 will be as smooth as η. Then u defined

by (4.31) must be a global smooth solution of the Burgers equation.

However, if there exists X0 such that V ′(X0) < 0, then at the break time t0 =

−1/V ′(X0), we have ∂Xη(X0, t0) = 0. This means that two fluid particles have collided;

in this case, for t > t0, we cannot solve for η−1.

We have shown that solving the material problem (4.30) eventually produces a solu-

tion of the spatial problem, as long as we can guarantee that

∂Xη(X, t) 6= 0,

for all X and all t. With this in mind, we shift our attention from the Burgers equation

to the initial-value problem

vt + uvx = 0, (4.32a)

u− uxx = v, (4.32b)

v(x, 0) = v0(x). (4.32c)

Note that we have taken α = 1. Given a solution u(x, t) of (4.32a)-(4.32b), we may

construct

ũ(x, t) = u

(
x

α
,
t

α

)
. (4.33)

Then it is easy to check that ũ solves (4.1).
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Remark. The curves η(X, t) are commonly called “characteristics” and the condition

∂Xη(X, t) 6= 0

is simply the statement that characteristics do not cross. We offer the above explanation

to point out that employing the “method of characteristics” for the Burgers equation is

nothing more than shifting one’s view from the spatial to the material picture.

Material version of the regularized equation. Let us suppose that (4.32) holds

for a smooth function v(x, t). Then we may solve (4.32b) for u and define the associated

material map η as the solution of

∂tη(X, t) = u(η(X, t), t), (4.34)

subject to η(X, 0) = X. Then the usual calculation shows

d

dt
[v(η(X, t), t)] = 0,

which implies

v(η(X, t), t) = v(η(X, 0), 0) = v0(X). (4.35)

We will now use this fact to show that η is determined completely as the solution of a

certain ordinary differential equation that does not involve v(·, t), except at its initial

value v0. We begin by using the Green’s function of H = Id − ∂2
x to invert (4.32b):

u(x, t) =
1

2

∫

R

exp(−|x− y|)v(y, t) dy. (4.36)

Let us exploit (4.35) by changing variables with y = η(Y, t) and x = η(X, t), resulting in

u(η(X, t), t) =
1

2

∫

R

exp(−|η(X, t) − η(Y, t)|)v0(Y )∂Y η(Y, t) dY. (4.37)

We define the map ψ via

ψ(X, t) = v0(X)∂Xη(X, t). (4.38)
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Using (4.34), we then have

∂tη(X, t) =
1

2

∫

R

exp(−|η(X, t) − η(Y, t)|)ψ(Y, t) dY. (4.39)

We may derive an equation for ψ simply by differentiating (4.39) with respect to X:

∂tψ(X, t) = −1

2
ψ(X, t)

∫

R

sgn(η(X, t) − η(Y, t)) exp(−|η(X, t) − η(Y, t)|)ψ(Y, t) dY.

(4.40)

The pair (4.39-4.40) is an infinite-dimensional dynamical system for η and ψ. We concern

ourselves with the initial-value problem where η(X, 0) = X and, by (4.38), ψ(X, 0) =

v0(X).

A priori results. Wherever η and ψ are defined, they must satisfy two properties

that we present below. These results are adapted from the work of R. Camassa in [8].

Lemma 4. Suppose that v0 ∈ L1(R) and suppose η(X, 0) = X. Then for all t ≥ 0 such

that (4.39-4.40) hold, ∫

R

ψ(X, t) dX =

∫

R

v0(X) dX.

Proof. Define

φ(t) =

∫

R

ψ(X, t) dX. (4.41)

By differentiating both sides of (4.41) in time and using (4.40), we obtain

−2φ̇(t) =

∫

R

∫

R

ψ(X, t)ψ(Y, t) sgn(η(X, t) − η(Y, t)) exp(−|η(X, t) − η(Y, t)|) dY dX.

Antisymmetry of the integrand forces φ̇(t) = 0. Then, using definition (4.38) and

∂Xη(X, 0) = 1, we may conclude that for all t:

φ(t) =

∫

R

ψ(X, 0) dX =

∫

R

v0 dx.

Proposition 4. Suppose that v0 ∈ L1(R) is everywhere positive, and suppose that



123

η(X, 0) = X. Then for all X and all t ≥ 0 such that (4.39-4.40) hold,

∂Xη(X, t) 6= 0.

Proof. Suppose there exists (X0, t0) such that ∂Xη(X0, t0) = 0. Without loss of gener-

ality, assume that ∂Xη(X, t) > 0 for all X and all t ∈ [0, t0). By definition (4.38), we

have ψ(X, t) ≥ 0 for t ∈ [0, t0]. Because ψ and v0 are nonnegative, applying Hölder’s

inequality to (4.39) gives

∂tη(X, t) ≤
1

2
‖ψ(·, t)‖L1 =

1

2
‖v0‖L1 ,

by Lemma 4. It follows that

η(X, t) ≤ t

2
‖v0‖L1 +X, (4.42)

for all X and all t ∈ [0, t0]. Now let ζ(X, t) = 1/∂Xη(X, t). Then straightforward

computations and the sign-definiteness of ψ give, for all t ∈ [0, t0],

∂tζ(X, t)

ζ(X, t)
=

1

2

∫

R

sgn(η(X, t) − η(Y, t)) exp(−|η(X, t) − η(Y, t)|)ψ(Y, t) dY

≤ 1

2

∫

R

exp(−|η(X, t) − η(Y, t)|)ψ(Y, t) dY = ∂tη(X, t).

Now Gronwall’s inequality, ζ(X, 0) = 1, and (4.42) give

ζ(X, t) ≤ exp (η(X, t) −X) ≤ exp

(
t

2
‖v0‖L1

)
,

for t ∈ [0, t0]. Clearly ζ(X0, t0) is finite, contradicting ∂Xη(X0, t0) = 0.

Note that we have divided by ζ(X, t) and thus tacitly assumed ζ(X, t) 6= 0 for t ∈
[0, t0]. Suppose instead that ζ(X1, t1) = 0 for some X1 and some t1 ≤ t0. Then ζ(X, t) =

1/∂Xη(X, t) > 0 for all X and all t ∈ [0, t1). Again, straightforward computations and
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the sign-definiteness of ψ give, for all t ∈ [0, t1],

∂tζ(X, t)

ζ(X, t)
≥ −1

2

∫

R

exp(−|η(X, t) − η(Y, t)|)ψ(Y, t) dY = −∂tη(X, t).

Again using Gronwall’s inequality, ζ(X, 0) = 1, and (4.42), we have

ζ(X, t) ≥ exp(−η(X, t) +X) ≥ exp

(
− t

2
‖v0‖L1

)
> 0,

for t ∈ [0, t1], contradicting ζ(X1, t1) = 0.

Global well-posedness. Using these a priori results, we will now show that for certain

initial data, we have existence and uniqueness of η and ψ globally in time. We will use

standard theory for ordinary differential equations on Banach spaces (see [1, Chap.4]).

Here we sidestep the issue of the space of optimal well-posedness and consider the Banach

space Cb(R) of continuous and bounded functions on R, endowed with the supremum

norm.

Theorem 2. Define the vector field F by

F


η
ψ


 (X) =




1
2

∫
R

exp(−|η(X, t) − η(Y, t)|)ψ(Y, t) dY

−1
2ψ(X, t)

∫
R

sgn(η(X, t) − η(Y, t)) exp(−|η(X, t) − η(Y, t)|)ψ(Y, t) dY


 .

(4.43)

Then, for any v0 ∈ Cb(R) ∩ L1(R) such that v0 > 0, there exists a unique solution pair

η : [0,∞) → Cb(R), ψ : [0,∞) → Cb(R), that solves the initial-value problem

d

dt


η

ψ


 = F


η

ψ


 , (4.44)

η(0) = Id,

ψ(0) = v0.

Proof. The vector field F is clearly a Lipschitz continuous map from Cb(R) × Cb(R) to

itself. It is clear that η(0) = Id ∈ Cb(R). Choose ψ(0) = v0 ∈ Cb(R). Then, since Cb(R)

is a Banach space, the standard existence/uniqueness theorem for ordinary differential
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equations implies the existence of T > 0 and a unique pair

η ∈ C1([0, T ], Cb(R)),

ψ ∈ C1([0, T ], Cb(R)),

such that η and ψ solve (4.44). We shall now extend this to the time interval [0,∞). We

label the components of F by

F =


F1

F2


 ,

and first estimate

sup
X

∣∣∣F1[η, ψ](X)
∣∣∣ ≤ 1

2
sup
X

∣∣∣∣
∫

R

exp(−|η(X) − η(Y )|)ψ(Y ) dY

∣∣∣∣

≤ 1

2
sup
X

‖exp(−|η(X) − η|)‖L∞ ‖ψ‖L1

≤ 1

2
‖v0‖L1 .

Here, the last inequality is obtained using Lemma 4 and the fact that ψ > 0 (see equation

(4.38) and Proposition 4).

Estimating in a similar fashion, we have

sup
X

∣∣∣F2[η, ψ](X)
∣∣∣ =

1

2
sup
X

(
ψ(X)

∣∣∣∣
∫

R

sgn(η(X) − η(Y )) exp(−|η(X) − η(Y )|)ψ(Y ) dY

∣∣∣∣
)

≤ 1

2
sup
X

(
ψ(X) ‖sgn(η(X) − η) exp(−|η(X) − η|)‖L∞ ‖ψ‖L1

)

≤ 1

2
‖v0‖L1 sup

X
ψ(X)

≤ 1

2
‖v0‖L1‖v0‖L∞ sup

X
∂Xη(X, t)

In the proof of Proposition 4, we showed that it is impossible for η(X, t0) = ∞ for any

finite time t0 ∈ [0,∞). Hence for any T > 0, we have

sup
t∈[0,T ]

sup
X

∣∣∣F2[η, ψ](X)
∣∣∣ ≤ 1

2
‖v0‖L1‖v0‖L∞ sup

t∈[0,T ]
sup
X
∂Xη(X, t) <∞.
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Our estimates of F1 and F2 together show that for any T > 0,

sup
t∈[0,T ]

‖F [η, ψ]‖Cb×Cb
<∞.

Then by a standard theorem in ODE theory (see [1, Proposition 4.1.22]), we may extend

the solutions η and ψ for all time.

The solution η of the material form of the equations can now be used to construct

solutions v and u of the spatial form of the equations. We first note that under the

hypotheses of Theorem 2, we have enough information to show that ∂Xη(·, t) ∈ Cb(R) for

each fixed t ≥ 0. To see that ∂Xη(·, t) is continuous, note that ∂Xη(X, t) = ψ(X, t)/v0(X)

and v0 > 0. Furthermore, the proof of Proposition 4 gives us the bound

0 < ∂Xη(X, t) ≤ exp

(
t

2
‖v0‖L1

)
.

So it is clear that for each fixed t ≥ 0, supX |∂Xη(X, t)| <∞.

With this enhanced regularity of η, we can now prove global well-posedness of the

spatial problem.

Theorem 3. Given v0 bounded and positive such that v0 ∈ C1(R) ∩ L1(R), there exists

a unique global solution v(x, t) of (4.32) such that

v ∈ C1([0,∞), C1(R) ∩ L1(R)).

Proof. We have taken v0 satisfying the hypotheses of Theorem 2. Because η(·, t) ∈ C1(R)

and ∂Xη(X, t) > 0 for all t ≥ 0, the Inverse Function Theorem guarantees that η(·, t) is

a diffeomorphism, i.e., there exists η−1(x, t) such that

η(η−1(x, t), t) = x,

for all x ∈ R, and all t ≥ 0. Furthermore, η−1(·, t) ∈ C1(R). So we may invert the

relationship

v(η(X, t), t) = v0(X),
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and obtain, globally in time,

v(x, t) = v0(η
−1(x, t)).

Since v0 ∈ C1(R), we see that v(·, t) ∈ C1(R) for all t ≥ 0. It is also clear that v0 > 0

forces v(x, t) > 0 for all x and all t ≥ 0. Note also that because η is a diffeomorphism,

we may use it as a change of variables as follows:

∫

R

v(x, t) dx =

∫

R

v(η(X, t), t)∂Xη(X, t) dX

=

∫

R

ψ(X, t) dX

=

∫

R

v0(X) dX,

by Lemma 4. Hence, v > 0, v0 > 0 and v0 ∈ L1(R) imply v(·, t) ∈ L1(R) for all t ≥ 0.

Then we may define u globally in time by

u(x, t) =
1

2

∫

R

e−|x−y|v(y, t) dy.

Young’s inequality then gives u(·, t) ∈ L1(R) for all t ≥ 0, and indeed we have

u ∈ C1([0,∞), C3(R) ∩ L1(R)).

The reader may verify, using the fact that η and ψ solve the material form of the

equations, that v and u solve the spatial equation vt(x, t) + u(x, t)vx(x, t) = 0 for all x

and all t ≥ 0. Finally, note that η−1(x, 0) = x so v(x, 0) = v0(x).
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4.4 The α → 0 Limit.

Let us now examine in a different context the Cauchy problem

vt + uvx = 0, (4.45a)

u− α2uxx = v, (4.45b)

v(x, 0) = v0(x). (4.45c)

Suppose we fix initial data v0 bounded and positive such that

v0 ∈ C1(R) ∩ L1(R), (4.46a)

v′0 ∈ L1(R). (4.46b)

We will refer to this setup as the standard data for the Cauchy problem (4.45). Then

let vα(x, t) denote the unique solution to the Cauchy problem, which exists based on the

above conditions and Theorem 3 from Section 4.3. Now we can formulate the question:

what happens to uα(x, t) = H−1vα(x, t) in the limit as α → 0? Again, we may think of

this limiting process as repeatedly solving the Cauchy problem with fixed initial data v0

while taking values of α from a sequence {αn}, where αn ↓ 0 as n→ ∞.

Initial data. It is important to remember that as we repeatedly solve (4.45) with

decreasing values of α, the initial data v0 stays fixed. How does this affect uα(x, 0)? To

answer this, we introduce the Fourier transform

ψ̂(k) =

∫

R

e−2πikxψ(x) dx.

Since v0 ∈ L1(R), we may compute the Fourier transform v̂0. Using this and (4.45b), we

have

ûα
0 (k) =

v̂0(k)

1 + 4π2α2k2
,

where uα
0 (x) = uα(x, 0). It is clear that as α → 0, we have ûα

0 (k) → v̂0(k) for each k.

Moreover, for all α ≥ 0, we have ûα
0 (k) ≤ |v̂0(k)| for all k. Then, using the dominated
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convergence theorem and the Fourier inversion formula, we deduce pointwise conver-

gence: for each x,

uα
0 (x) → v0(x) as α→ 0.

Conservation properties/estimates. Recall from the previous section that η gives

particle trajectories corresponding to the velocity field u. We established in (4.35) that

v is constant along η. Three simple consequences of this fact will be very useful in

analyzing the zero-α limit.

Proposition 5. Given standard data for the Cauchy problem (4.45), the resulting solu-

tion vα(x, t) satisfies

‖vα(·, ·)‖L∞ = ‖v0(·)‖L∞ , (P1)

‖vα
x (·, t)‖L1 = ‖v′0(·)‖L1 (P2)

T.V. vα(·, t) = T.V. v0 (P3)

Proof. Given standard data, the Cauchy problem (4.45) has a unique smooth solution

vα(x, t) defined for all t ≥ 0. In this proof, we will omit the superscript α. From the

previous section, we know that if η describes integral curves of u, then we must have

v(η(X, t), t) = v0(X) (4.47)

for allX and all t ≥ 0. Note also that for each t, the mapX 7→ η(X, t) is a diffeomorphism

of R. Hence, if we define x = η(X, t), we see that

ess sup
x

|v(x, t)| = ess sup
X

|v(η(X, t), t)| = ess sup
X

|v0(X)| ,

which then implies (P1). Now let us differentiate (4.47) with respect to X:

∂xv(η(X, t), t)∂Xη(X, t) = v′0(X).

Because η(X, 0) = X, we know ∂Xη(X, 0) = 1. Proposition 4 then gives us ∂Xη(X, t) > 0
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for all X and all t > 0. So we may write

|∂xv(η(X, t), t)| ∂Xη(X, t) =
∣∣v′0(X)

∣∣ .

Integrating both sides, we obtain

∫

R

|∂xv(η(X, t), t)| ∂Xη(X, t) dX =

∫

R

∣∣v′0(X)
∣∣ dX.

Now we change variables via x = η(X, t) and obtain

∫

R

|∂xv(x, t)| dx =

∫

R

∣∣v′0(X)
∣∣ dX,

which is precisely (P2). Now (P3) follows immediately from (P2) together with the fact

that for a smooth function f ,

T.V. f =

∫

R

∣∣f ′(x)
∣∣ dx.

Already we can conclude based on Helley’s theorem (see Corollary A.7 in [33]) that

there exists a subsequence αj with limj→∞ αj = 0 such that vαj (x, t) converges almost

everywhere to a function v(x, t). To prove convergence in L1, we must do more work.

Proposition 6. Given standard data for the Cauchy problem (4.45), the solution vα(x, t)

may be used to define the function uα(x, t) = H−1vα(x, t). Then u satisfies

‖uα(·, ·)‖L∞ ≤M1, (H1)

‖uα(x+ h, t) − uα(x, t)‖L1 ≤ ω(|h|) for any h ∈ R, (H2)

‖uα(·, t+ k) − uα(·, t)‖L1
≤M3k, for any k > 0, (H3)

for t ∈ [0, T ]. Here, M1 is independent of α, M3 is independent of t, k and α and ω is

a nonnegative continuous function on [0,∞) with ω(r) ↓ 0 as r ↓ 0. Such a function ω

is called a modulus of continuity.
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Proof. Starting with

uα(x, t) =
1

2α

∫

R

e−
|x−y|

α vα(y, t) dy, (4.48)

we use (P1) to estimate

|uα(x, t)| ≤ 1

2α

∫

R

e−
|x−y|

α |vα(y, t)| dy

≤ ||v0(·)||L∞

1

2α

∫

R

e−
|x−y|

α dy = ||v0(·)||L∞ ,

proving (H1). Here, we also used

1

2α

∫

R

e−
|x−y|

α dx = 1. (4.49)

To prove (H2), we estimate

∫

R

|uα(x+ h, t) − uα(x, t)| dx ≤ 1

2α

∫

R

∫

R

e−
|x−y|

α |vα(y + h, t) − vα(y, t)| dy dx

=

∫

R

|vα(y + h, t) − vα(y, t)| dy 1

2α

∫

R

e−
|x−y|

α dx.

Hence, ∫

R

|uα(x+ h, t) − uα(x, t)| dx ≤
∫

R

|vα(x+ h, t) − vα(x, t)| dx. (4.50)

Then we use (P3) to conclude

∫

R

|vα(x+ h, t) − vα(x, t)| dx ≤ |h|T.V. vα(·, t) = T.V. v0. (4.51)

Finally, to prove (H3) we start from the following estimate, derived in the same way as

(4.50): ∫

R

|uα(x, t+ k) − uα(x, t)| dx ≤
∫ ∞

−∞
|vα(x, t+ k) − vα(x, t)| dx. (4.52)
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By integrating (4.3) from t to t+ k (k > 0), we have

∫

R

|vα(x, t+ k) − vα(x, t)| dx ≤
∫

R

∫ t+k

t
|uα(x, s)vα

x (x, s)| ds dx

≤ ||uα||L∞

∫ t+k

t
‖vα

x (·, s)‖L1 ds. (4.53)

Using (P2) and (H1), we may estimate the right-hand side of (4.53), resulting in

∫

R

|vα(x, t+ k) − vα(x, t)| dx ≤M1‖v′0‖L1k.

Now combining this with (4.52), we have the desired result.

Strong convergence to a weak solution of Burgers. Using the estimates given

above, we may prove the following

Theorem 4. Suppose we solve the Cauchy problem (4.45) with standard data. Using

the solution vα, let us define uα = H−1vα in the usual way. Then, as α → 0, passing if

necessary to a subsequence, there exists a function u(x, t) such that

uα → u in C([0,∞);L1
loc(R)).

The function u is a global weak solution of the initial-value problem (4.5) for the inviscid

Burgers equation.

Proof. The first part of the theorem concerns compactness, i.e. strong convergence of uα

in the zero-α limit. The three uniform estimates proved in Proposition 6 are precisely

the conditions of the L1 compactness theory for conservation laws. (See Theorem A.8

in [33] or Theorem 19.9 in [79] for modern accounts of this.) The specific result is that

there exists a subsequence αj → 0 such that {uαj (t)} converges strongly to a function

u(x, t), where u(·, t) ∈ L1
loc(R) for each t ≥ 0. The convergence is in C([0,∞);L1

loc(R)).

For the second half of the theorem, we go back to equation (4.1), which we repeat

here:

uα
t + uαuα

x − α2uα
txx − α2uαuα

xxx = 0. (4.54)
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We wish to prove that the α2 terms

α2uα
txx + α2uαuα

xxx,

converge weakly to 0 as α → 0. Suppose we have shown this; then, we may multiply

(4.54) by a test function ϕ that is compactly supported in R × [0,∞) and integrate in

space and time. Now taking α→ 0, we will find that the order α2 terms vanish, and we

are left with a function u that satisfies

∫ ∞

0

∫

R

uϕt +
1

2
u2ϕx dx dt = 0,

for all compactly supported ϕ. This is precisely the statement that u is a global weak

solution of the inviscid Burgers equation, and would prove the theorem.

For the first α2 term from (4.54), we have, for any compactly supported ϕ,

α2

∫ T

0

∫

R

uα
txxϕdx dt = −α2

∫ T

0

∫

R

uαϕtxx dx dt.

Using the convergence of the sequence uα, it is clear that this term converges to 0 as

α→ 0. For the second α2 term from (4.54), we may derive using integration by parts

α2

∫ T

0

∫

R

uαuα
xxxϕdx dt =

1

4
α2

∫ T

0

∫

R

(uα)2 ϕxxx dx dt −
3

2
α2

∫ T

0

∫

R

uαuα
xxϕx dx dt.

(4.55)

By using the boundedness and the convergence of uα, we conclude that the first term on

the right-hand side of (4.55) vanishes in the α → 0 limit. Regarding the second term,

by considering the boundedness of uα, it is enough to show that

α2

∫ T

0

∫

K
|uα

xx|dx→ 0,
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for any compact K. We have

∫ T

0

∫

K
|α2uα

xx| dx =

∫ T

0

∫

K
|uα − vα| dx

=

∫ T

0

∫

K

∣∣∣∣
1

2α

∫

R

e−
|x−y|

α vα(y, t) dy − vα(x, t)

∣∣∣∣ dx dt.

Here, we used (4.48) to obtain the second equality. Integrating by parts, we get

1

2α

∫

R

e−
|x−y|

α vα(y, t) dy = vα(x, t) +
1

2

∫

R

sgn(y − x)e−
|y−x|

α vα
y (y, t) dy.

Continuing, we find

∫ T

0

∫

K
|α2uα

xx| dx dt ≤
1

2

∫ T

0

∫

K

∫

R

e−
|y−x|

α |vα
y (y, t)| dy dx dt

=
1

2

∫ T

0

∫

K
|vα

y (y, t)| dy dt
∫

R

e−
|y−x|

α dx

= α

∫ T

0

∫

K
|vα

y (y, t)| dy dt,

where we used (4.49) for the last equality. From (P2), we conclude that the term

α

∫ T

0

∫

K
|vα

y (y, t)| dy dt

is of order O(α) and hence, goes to 0 as α→ 0. This completes the argument.

4.5 Entropy/Numerics

Using a standard finite-difference scheme, we solve the initial-value problem (4.45) nu-

merically with an eye towards checking the Oleinik entropy inequality (4.6). Here we

simply describe the numerical scheme, deferring discussion of its convergence properties

to future work. Then we discuss various numerical results for both short- and long-time

simulations.

Numerical scheme. Beginning with system (4.45), we truncate the spatial domain to

[−a, a]. Because the domain is now finite, we must impose artificial boundary conditions;
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we impose the condition that v vanishes for |x| > a. We discretize the domain [−a, a]
using an equispaced grid with N grid points. Let us denote this grid by xi = −a+ (i−
1)∆x, where i = 1, . . . , N , and the grid spacing is given by ∆x = 2a/(N − 1).

On this discrete domain, we consider the evolution in time of the vector v(t) =

(v1(t), . . . , vN (t)). We will suppose that vi(t) ≈ v(xi, t).

Following [43], we define two basic operators on R
N :

z 7→ ∆2
0z,

(
∆2

0z
)
k

= zk+1 − 2zk + zk−1, (4.56)

z 7→ Γ0z, (Γ0z)k =
1

2
(zk+1 − zk−1) . (4.57)

Here we use the convention that zk = 0 for k < 1 and for k > N . This corresponds to the

artificial boundary conditions discussed above. Note that the operators (4.56-4.57) are

in fact linear transformations of R
N and may be written in matrix form. Now in terms

of the operators (4.56-4.57), we may write the standard finite-difference approximations

to the first- and second-derivative operators ∂x and ∂2
x:

D1 =
1

∆x
Γ0

[
Id−1

6

(
∆2

0

)
+

1

30

(
∆2

0

)2
]

+ O(∆x5), (4.58)

D2 =
1

∆x2

[(
∆2

0

)
− 1

12

(
∆2

0

)2
+

1

90

(
∆2

0

)3
]

+ O(∆x6). (4.59)

With this notation, it is clear that the semidiscrete form of (4.45) is

vt = −
[(

Id − α2D2
)−1

v
]
D1v, (4.60a)

vj(0) = v(xj , 0), (4.60b)

where v(x, 0) is the initial data for the continuum problem, and where concatenation

of vectors means component-wise multiplication, i.e., (ab)k = akbk. The first-order

ODE (4.60) can now be solved numerically using the time-stepping algorithm of one’s

choice—we used a high-order explicit Runge-Kutta method.
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u(x,t)

x

-1 -0.5 0 0.5 1.0

0

0.2

0.4

Figure 4.3: The numerical solution of (4.45) for α = 0.3 with initial data (4.61). The

tallest curve, with a peak at x = −0.5, is the solution at t = 0. From left to right, we

then have the solutions at t = 1.25, t = 2.5, t = 3.75, and t = 5. As time passes, the

height of the pulse decays while its width increases.

Norm decay of solutions. First we present results for the following choice of initial

data

v(x, 0) = sech2

(
x+ 1/2

1/5

)
, (4.61)

for α = 0.3. With this choice of initial data, v(x, 0) > 0 so we are within the bounds of

our well-posedness and convergence theory. We solve the problem using N = 1024 grid

points. See Figure 4.3 for snapshots of the solution u(x, t) at t = 0, t = 1.25, t = 2.5,

t = 3.75, and t = 5. The initial profile does not shock or develop any singularities.

Instead, it decays steadily in a rather similar fashion as the solution of the viscous

Burgers equation (4.7a). To see this decay in three norms, we use the numerically
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Figure 4.4: ‖u(·, t)‖L1 , ‖u(·, t)‖L2 , and ‖u(·, t)‖L∞ as functions of t for the solution to

(4.45) with initial data (4.61) and α = 0.3.

computed solution to compute

‖u(·, t)‖L1 ,

‖u(·, t)‖L2 ,

‖u(·, t)‖L∞ ,

as functions of time t. The results are plotted in Figure 4.4, clearly showing the decay.

Here we see that the L1 norm of u stays constant in time, i.e.,

‖u(·, t)‖L1 = ‖u0‖L1 .

This is a simple consequence of the fact that we chose v0 > 0. For when v0 > 0, we know

that v(x, t) > 0 for all x ∈ R, t > 0. Then, using the Green’s function of Helmholtz

operator as in (4.48), we may deduce that u(x, t) > 0 for all x ∈ R, t > 0 as well. Then
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we have ∫

R

|u(x, t)| dx =

∫

R

u(x, t) dx =

∫

R

u0(x) dx =

∫

R

|u0(x)| dx,

showing that ‖u‖L1 must stay constant in time. Note also from Figure 4.4 that both

the L2 and L∞ norms of u are strictly decreasing in time. We showed the L∞ decay

property in the previous section—see Proposition 6. However, at this time, we have no

analytical method for deriving a uniform L2 decay law such as what is seen in Figure

4.4.

Entropy inequality: numerical evidence. In the previous section, we established

a basic convergence theory for (4.1). That is, we choose initial data v0 > 0, solve (4.1),

and label the solution as uα. Then we know that a subsequence of uα converges, in the

zero-α limit, to a function u. We know one more thing: this function u is a weak solution

of the inviscid Burgers equation (4.5) with initial data v0.

At the time of writing, this is where rigorous analysis ends. This is unfortunate, in

light of the fact that there are many weak solutions of the inviscid Burgers equation (4.5)

with initial data v0—the unique, physically relevant solution, is the one that satisfies the

Oleinik inequality (4.6).

We will investigate numerically the validity of

sup
x
uα

x(x, t) <
C

t
, (4.62)

where C does not depend on α. Fortunately, there is plenty of numerical evidence that

(4.62) holds uniformly in α. By implication, this is evidence that the strong limit u of

solutions of (4.1) does in fact satisfy the Oleinik inequality (4.6). Let us discuss some of

this numerical evidence.

We repeatedly solve (4.45) with the initial data

v0(x) = sech2

(
x+ 1/2

1/5

)
,

using successively smaller α values: α = 0.4, α = 0.3, and α = 0.2. We then plot the
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Figure 4.5: Plot of supx u
α
x(x, t) as a

function of t for three decreasing values

of α, from t = 0 to t = 7.

5 10 15 20 25 30 35 40 45 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

alpha=0.2
alpha=0.3
alpha=0.4

Figure 4.6: Plot of supx u
α
x(x, t) as a

function of t for three decreasing values

of α, from t = 5 until t = 50.

quantity

mα(t) := sup
x
uα

x(x, t) (4.63)

as a function of t for each of the three values of α. First we present Figure 4.5 which

shows (4.63) from t = 0 until t = 7. The same quantity (4.63) from t = 5 until t = 50

is plotted in Figure 4.6. Both plots lend one to believe that as α→ 0, the curves mα(t)

are uniformly bounded by a curve of the form C/t. The evidence becomes clearer when

we consider the same data on logarithmic axes. Taking the logarithm of both sides of

(4.62), we obtain for t > 1,

log (supx u
α
x(x, t))

log t
<

logC

log t
− 1, (4.64)

where C must not depend on α. With this in mind, we examine Figure 4.7, which shows

the same data as Figure 4.6 now plotted on a log-log scale. The numerically computed

slope of the linear part of this plot is less than −1.25, meaning that the numerically

computed solutions uα(x, t) all satisfy

log (supx u
α
x(x, t))

log t
< −1 < −1 +

logC

log t
, (4.65)
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Figure 4.7: Plot of log (supx u
α
x(x, t)) as a function of log t for three decreasing values of

α, from t = 5 until t = 50.

for any C > 1. Let us remark that we have run the same numerical test with differ-

ent choices of initial data, resolution, and values of α. In all cases, we find that the

numerically computed solutions satisfy (4.65).

There is solid numerical evidence that the solutions uα(x, t) satisfy (4.62). Because we

have not found any evidence that falsifies this claim, we theorize that the limit function

u(x, t) is indeed a weak entropy solution of the inviscid Burgers equation.

4.6 Geometric Structure

Consider the functional H : L1(R) → R defined by

H(v) =

∫

R

v dx, (4.66)

and the operator

D = −vx

(
∂x − α2∂3

x

)−1
vx. (4.67)
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This functional/operator pair is the b = 0 case of the Hamiltonian structure proposed in

[17] for the b-family (see (4.9)). Using these two objects, we write the infinite-dimensional

generalization of Hamilton’s equation:

vt = D
δH

δv
. (4.68)

Here δH/δv is the functional derivative, defined by

〈
δH

δv
, δv

〉
(v) =

d

dε

∣∣∣∣
ε=0

H (v + εδv) ,

where 〈· , ·〉 is the natural pairing.

Let us now show that (4.68) is precisely (4.1). Define

u(x, t) =
1

2α

∫

R

e−|x−y|/αv(y, t) dy.

so that Hu = v where H = Id−α2∂2
x as in (4.2). It is clear from (4.66) that δH/δv = 1.

Using this in (4.68) yields

vt = −vx

(
∂x − α2∂3

x

)−1
vx = −vxu,

which was what was desired. This calculation shows that the regularized equation (4.1)

is Hamiltonian, assuming of course that D is a valid Hamiltonian operator. The operator

D is Hamiltonian if the induced bracket {·, ·}, defined by

{F,G} =

∫

R

δF

δv
D
δG

δv
dx, (4.69)

is a Poisson bracket.

Definition 1. A Poisson bracket on a manifold M is a skew-symmetric, bilinear

operation { , } on C∞(M) satisfying both

1. the Jacobi identity {F, {G,H}} + {H, {F,G}} + {G, {H,F}} = 0; and

2. the Leibniz identity {FG,H} = {F,H}G + F{G,H},
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for all F , G, and H ∈ C∞(M).

Lemma 5. The bracket { , } induced by D is skew-symmetric.

Proof. Because the operator L = ∂x−α2∂3
x has only odd-ordered derivatives, integration

by parts gives

〈f,Lg〉 = −〈Lf, g〉,

where 〈 , 〉 is the natural pairing

〈f, g〉 =

∫

R

fg dx.

Hence we write L∗ = −L, which implies
(
L−1

)∗
= −L−1. We use this and the definition

of D to obtain

{F,G} = −
∫
δF

δv
vxL−1

(
vx
δG

δv

)
dx

= −
∫ (

L−1
)∗

(
δF

δv
vx

)
vx
δG

δv
dx

=

∫
L−1

(
vx
δF

δv

)
vx
δG

δv
dx

= −{G,F}.

Lemma 6. The bracket { , } induced by D satisfies the Jacobi identity.

Proof. Directly verifying the Jacobi identity for (4.69) requires copious amounts of alge-

bra, so we use the multi-vector formalism and Schouten bracket described in [56, Chap.

10]. Let us give a sketch of the proof first: using the bi-vector B defined by

B =
1

2
∂x ∧ D∂x, (4.70)

we realize the Poisson bracket as

{F,G} = iB (dF ∧ dG) . (4.71)

We will prove that the Schouten bracket of B with itself is zero. Then, by the Jacobi-
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Schouten identity (see [56, Thm. 10.6.2]), we know that the Jacobi identity holds for the

bracket { , }. First let us verify (4.71) by direct computation:

iB (dF ∧ dG) =
1

2

∫
δF

δv
D
δG

δv
dx− 1

2

∫
δG

δv
D
δF

δv
dx

=

∫
δF

δv
D
δG

δv
= {F,G},

where we have used skew-symmetry (Lemma 5). Next we use the definition of D and

L = ∂x − α2∂3
x to write

D∂x = −vxL−1(vx∂x),

which implies

−v−1
x Lv−1

x D∂x = ∂x.

Here we mean simply v−1
x = 1/vx. Using this, we compute the Schouten bracket:

[∂x ∧ D∂x, ∂x ∧ D∂x] = [∂x ∧ D∂x,−v−1
x Lv−1

x D∂x ∧ D∂x]

= −
∫

R

−v−2
x ∂x(D∂x) ∧ Lv−1

x D∂x ∧ D∂x + v−1
x L(−v−2

x )∂x(D∂x) ∧ D∂x ∧ D∂x dx.

The second term vanishes because D∂x ∧ D∂x = 0. For the first term, we evaluate

Lv−1
x D∂x = ∂x(v−1

x D∂x) − α2∂3
x(v−1

x D∂x)

= −v−2
x vxxD∂x + v−1

x ∂x(D∂x) − α2∂3
x(v−1

x D∂x).

Since D∂x ∧ D∂x = 0 and ∂x(D∂x) ∧ ∂x(D∂x) = 0, we are left with

[∂x ∧ D∂x, ∂x ∧ D∂x] = −α2

∫

R

v−2
x ∂x(D∂x) ∧ ∂3

x(v−1
x D∂x) ∧ D∂x dx.

The only contributions from the ∂3
x term that will matter are those that involve either
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∂2
x(D∂x) or ∂3

x(D∂x). With this in mind, we continue the computation:

= −α2

∫

R

v−2
x ∂x(D∂x) ∧ (−3v−2

x vxx∂
2
x(D∂x) + v−1

x ∂3
x(D∂x)) ∧ D∂x dx

= −α2

∫

R

−3v−4
x vxx∂x(D∂x) ∧ ∂2

x(D∂x) ∧ (D∂x)

+ v−3
x ∂x(D∂x) ∧ ∂3

x(D∂x) ∧ (D∂x) dx.

Integrating the second term by parts to move one derivative off the ∂3
x(D∂x) term, we

find that the entire expression cancels, proving that [B,B] = 0 as required.

Lemma 7. The bracket { , } induced by D satisfies the Leibniz identity.

Proof. We will use the fact that the Leibniz rule holds for functional derivatives:

δ(FG)

δv
=
δF

δv
G+ F

δG

δv
.

The proof of this consists of a simple calculation combined with the observation that

F (v) and G(v) do not depend2 explicitly on x. Using this, we evaluate

{FG,H}(v) =

∫

R

δ(FG)

δv
(v)D

δH

δv
(v) dx

=

∫

R

δF

δv
(v)G(v)D

δH

δv
(v) + F (v)

δG

δv
(v)D

δH

δv
(v) dx

= {F,H}(v)G(v) + F (v){G,H}(v),

where again we have used the fact that F (v) and G(v) are x-independent real numbers.

As v was arbitrary, we have shown that the Leibniz identity holds.

Theorem 5. The bracket { , } induced by D is a Poisson bracket.

Proof. By linearity of functional derivatives, it is clear that (4.69) is bilinear. Then the

preceding lemmas have established that the bracket is skew-symmetric and satisfies the

Jacobi and Leibniz identities.

2Note that this statement does not hold for the functional derivatives. For example, take F (v) =
R

v2 dx. Then clearly ∂x[F (v)] = 0. But (δF/δv)(v) = 2v and so in general ∂x[(δF/δv)(v)] 6= 0.
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Remark. The functional plus operator style of describing infinite-dimensional Hamil-

tonian systems generalizes certain objects that arise naturally for Hamiltonian systems

with finite degrees of freedom. Let us briefly review Hamilton’s equations for a classical

particle in R
n. Let q = (q1, . . . , qn) denote the particle’s position, and let p = (p1, . . . , pn)

denote its momentum. Then, given the function H : R
2n → R, Hamilton’s equations are

q̇i =
∂H

∂pi
, (4.72a)

ṗi = −∂H
∂qi

. (4.72b)

Let us write this more compactly: we introduce the the skew-symmetric matrix

J =


 0 1

−1 0


 ,

and the variable z =
(
q1, . . . , qn, p1, . . . , pn

)
. Then we may write (4.72) as

ż = J∇H(z).

Comparing with (4.68), we see two similarities: δH/δv is the infinite-dimensional version

of ∇H, while D can be thought of as a generalization of J. Moreover, we see that the

bracket (4.69) is inspired by the classical Poisson bracket in finite dimensions:

{F,G} = (∇F )T J∇G.

See [56, Chap. 3], [68, Chap. 7], and [14, 55] for further information on infinite-

dimensional Hamiltonian mechanics.

Casimirs. It happens to be the case that the bracket (4.69) defined using the operator

(4.67) has no non-trivial Casimirs. Let us quickly verify this. Suppose there exists a
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function G such that for all F , we have

{F,G} = 0.

By definition (4.69) of the bracket, this would imply that

∫

R

δF

δv
D
δG

δv
dx = 0,

for all F . The only way this can happen is if in fact

D
δG

δv
= 0.

This reads
(
∂x − α2∂3

x

)−1
(
vx
δG

δv

)
= 0.

Now applying
(
∂x − α2∂3

x

)
to both sides, we obtain

δG

δv
= 0,

so the only Casimirs are trivial. This is unfortunate—if we had even one non-trivial

Casimir, we could use it to prove stability of the traveling wave solutions via the energy-

Casimir method. As things stand, deciding the stability of the traveling wave solutions

of (4.1) is likely to be very challenging.

4.7 Future Directions

At this point, it should be clear that there are at least three problems of immediate

interest:

1. We should prove either that the limit u = limα→0 u
α is an entropy solution of the

inviscid Burgers equation, or we should demonstrate why the entropy condition

fails.

2. We should explore well-posedness for general initial data in a particular function
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space, extending the v0 > 0 result that we have already.

3. We should determine the stability of the traveling wave front solutions. In par-

ticular, it would be interesting if the upwardly-sloped (d > 0) traveling wave is

unstable while the downwardly-sloped (d < 0) traveling wave is stable.

Besides these immediate issues, there are several projects of longer-term interest sug-

gested by the current work.

Extension to higher dimensions. Consider the “vector Burgers equation:”

ut + (u · ∇)u = 0. (4.73)

Is it possible that the system

vt + (u · ∇)v = 0,

u− α2∆u = v.

regularizes the vector Burgers equation (4.73), just as (4.3) regularizes the scalar Burgers

equation?

Extension to one-dimensional gas dynamics. Consider one-dimensional isentropic

gas dynamics:

ρt + (ρu)x = 0, (4.74a)

(ρv)t +
(
ρu2 + p

)
x

= 0, (4.74b)
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where p = p(ρ). Might it be possible to regularize this system using a mechanism similar

to that of (4.1) ? One candidate system that comes to mind is

ρt + (ρu)x = 0, (4.75a)

(ρu)t + (ρuv + p)x = 0, (4.75b)

u− α2uxx = v. (4.75c)

Suppose there is zero-α convergence of (ρα, uα) to weak solutions of (4.74). Then is

(4.75) Hamiltonian in some sense?

Rough initial data. It is important to note that both standard and filtered viscosities

select the correct entropy solution even in the case of discontinuous initial data, where

u0 ∈ L∞ only. This allows one to legitimately use these viscous regularizations to

solve Riemann problems. It would be interesting to see whether we can solve Riemann

problems directly using (4.1). That is, what happens to (4.3) for initial data v0 ∈ L∞ ?

Other smoothing kernels. Another idea is to replace the Helmholtz operator with

another operator. For example, we could attempt to regularize Burgers’ equation via

vt + uvx = 0, (4.76)

where u and v are related in any number of ways. One interesting possibility is

û =
v̂

1 + α|k| .

Now v is, roughly speaking, the “square root” of the Helmholtz operator H applied to

u. Hence u is only one derivative smoother than v, whereas in (4.1), u is two derivatives

smoother than v. How smooth does u have to be, relative for v, for (4.76) to genuinely

regularize the Burgers equation?

Geometric structures. Finally, it would be interesting to determine where the Hamil-

tonian structure (4.66-4.67) comes from. The Hamiltonian functional (4.66) is linear in



149

the field variable and therefore does not have the meaning of a kinetic energy. Similarly,

what is the meaning of the non-local operator in (4.67)? Is there a Lagrangian structure

that yields (4.1)? Answering these questions will give us physical insight into why our

model works the way it does.
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finie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier

(Grenoble), 16:319–361, 1966.

[4] V. I. Arnold and B. A. Khesin. Topological methods in hydrodynamics, volume 125

of Applied Mathematical Sciences. Springer-Verlag, New York, 1998.

[5] T. B. Benjamin, J. L. Bona, and J. J. Mahoney. Model equations for long waves in

nonlinear dispersive systems. Phil. Trans. R. Soc. London, Ser. A, 272:47–78, 1972.

[6] G. Birkhoff and G.-C. Rota. Ordinary differential equations. Blaisdell, Waltham,

MA, second edition, 1969.

[7] J. C. Brunelli and A. Das. On an integrable hierarchy derived from the isentropic

gas dynamics. J. Math. Phys., 45:2633–2645, 2004.

[8] R. Camassa. Characteristics and the initial value problem of a completely integrable

shallow water equation. Discr. Cont. Dyn. Sys. Ser. B, 3(1):115–139, 2003.

[9] R. Camassa and D. D. Holm. An integrable shallow water equation with peaked

solitons. Phys. Rev. Lett., 71:1661–1664, 1993.



151

[10] C. Cao, D. D. Holm, and E. S. Titi. Traveling wave solutions for a class of one-

dimensional nonlinear shallow water wave models. J. Dynam. Differential Equations,

16:167–178, 2004.

[11] G.-Q. Chen and D. Wang. The Cauchy problem for the Euler equations for com-

pressible fluids. In Handbook of mathematical fluid dynamics, Vol. I, pages 421–543.

North-Holland, Amsterdam, 2002.

[12] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne. Camassa-Holm

equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett.,

81:5338–5341, 1998.

[13] S. Y. Chen, D. D. Holm, L. G. Margolin, and R. Zhang. Direct numerical simulation

of the Navier-Stokes alpha model. Phys. D, 133:66–83, 1999.

[14] P. R. Chernoff and J. E. Marsden. Properties of infinite dimensional Hamiltonian

systems, volume 425 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1974.

[15] A. J. Chorin and J. E. Marsden. A mathematical introduction to fluid mechanics,

volume 4 of Texts in Applied Mathematics. Springer-Verlag, New York, third edition,

1993.

[16] W. J. Cocke. Turbulent hydrodynamic line stretching: Consequences of entropy.

Phys. Fluids, 12:2488–2492, 1969.

[17] A. Degasperis, D. D. Holm, and A. N. W. Hone. Integrable and non-integrable

equations with peakons. In Nonlinear physics: theory and experiment, II (Gallipoli,

2002), pages 37–43. World Sci. Publishing, River Edge, NJ, 2003.

[18] P. Deift, S. Venakides, and X. Zhou. An extension of the steepest descent method

for Riemann-Hilbert problems: The small dispersion limit of the Korteweg-de Vries

(KdV) equation. Proc. Nat. Acad. Sci, 95:450–454, 1998.

[19] H. R. Dullin, G. A. Gottwald, and D. D. Holm. Camassa-Holm, Korteweg-de Vries-

5 and other asymptotically equivalent equations for shallow water waves. Fluid.

Dynam. Res., 33:73–95, 2003.



152

[20] H. R. Dullin, G. A. Gottwald, and D. D. Holm. On asymptotically equivalent shallow

water wave equations. Phys. D, 190:1–14, 2004.

[21] D. G. Ebin. The motion of slightly compressible fluids viewed as a motion with

strong constraining force. Ann. of Math., 105:141–200, 1977.

[22] D. G. Ebin and J. E. Marsden. Groups of diffeomorphisms and the notion of an

incompressible fluid. Ann. of Math., 92:102–163, 1970.

[23] G. A. El, R. H. J. Grimshaw, and A. M. Kamchatnov. Wave breaking and the

generation of undular bores in an integrable shallow water system. Stud. Appl.

Math., 114:395–411, 2005.

[24] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Math-

ematics. American Mathematical Society, Providence, RI, 1998.
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[67] P. I. Naumkin and I. A. Shishmarëv. Nonlinear nonlocal equations in the theory of

waves, volume 133 of Translations of Mathematical Monographs. American Mathe-

matical Society, Providence, RI, 1994.

[68] P. J. Olver. Applications of Lie groups to differential equations, volume 107 of Grad-

uate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993.

[69] H. Omori. Infinite-dimensional Lie groups, volume 158 of Translations of Mathe-

matical Monographs. Amer. Math. Soc., Providence, RI, 1997.

[70] D. H. Peregrine. Calculations of the development of an undular bore. J. Fluid.

Mech., 25:321–330, 1966.

[71] S. C. Preston. Eulerian and Lagrangian stability of fluid motions. Ph.D. thesis, State

University of New York at Stony Brook, 2002.

[72] R. Rivlin and J. L. Erickson. Stress-deformation relations for isotropic materials. J.

Rational Mech. Anal., 4:323–425, 1955.

[73] P. L. Sachdev and V. S. Seshadri. Long waves in inviscid compressible atmospheres:

Isothermal atmosphere. Phys. Fluids, 22:60–67, 1979.

[74] S. Schochet and E. Tadmor. The regularized Chapman-Enskog expansion for scalar

conservation laws. Arch. Rat. Mech. Anal., 119:95–107, 1992.

[75] A. H. Shapiro. The dynamics and thermodynamics of compressible fluid flow. Ronald

Press, New York, 1953.



157

[76] M. C. Shen and J. B. Keller. Ray method for nonlinear wave propagation in a

rotating fluid of variable depth. Phys. Fluids, 16:1565–1572, 1973.

[77] M. C. Shen and S. M. Sun. Asymptotic method for interfacial solitary waves in a

compressible fluid. Meth. Appl. Anal., 3:135–156, 1996.

[78] S. Shkoller. Bull. Amer. Math. Soc., 37:175–181, 2000.

[79] J. Smoller. Shock Waves and Reaction-Diffusion Equations, volume 258 of

Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York,

1983.

[80] C. G. Speziale, G. Erlebacher, T. A. Zang, and M. Y. Hussaini. The subgrid-scale

modeling of compressible turbulence. Phys. Fluids, 31:940–942, 1988.

[81] N. Sugimoto, M. Masuda, K. Yamashita, and H. Horimoto. Verification of acoustic

solitary waves. J. Fluid Mech., 504:271–299, 2004.

[82] E. Tadmor. Burgers’ equation with vanishing hyper-viscosity. Comm. Math. Sci.,

2:317–324, 2004.

[83] G. I. Taylor. The spectrum of turbulence. Proc. R. Soc. London Ser. A, 164:476–490,

1938.

[84] A. Tovbis, S. Venakides, and X. Zhou. On semiclassical (zero dispersion limit) so-

lutions of the focusing nonlinear Schrodinger equation. Comm. Pure Appl. Math.,

57:877–985, 2004.

[85] W. G. Vincenti and C. H. Kruger. Introduction to physical gas dynamics. Wiley,

New York, 1965.

[86] G. B. Whitham. Linear and Nonlinear Waves. Wiley-Interscience, New York, 1974.


