MEASUREMENTS OF WHITE LINES IN TRANSITION
METALS AND ALLOYS USING
ELECTRON ENERGY LOSS SPECTROMETRY

Thesis by
Douglas Harvey Pearson

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1992
(Defended September 30, 1991)



ii

© 1992
Douglas Harvey Pearson

All Rights Reserved



iil

For Mom



iv

Acknowledgements

It is a pleasure to thank the people who have contributed to my
education.

First, I would like to thank my advisor, Professor Brent Fultz, for
his guidance and support through my years at Caltech. His cheerful
nature and enthusiasm for science provided a friendly and motivating
atmosphere that greatly facilitated this work.

I would also like to thank Dr. Channing Ahn for generously sharing
with me his expertise in electron microscopy and energy loss spectrometry.

In addition, my sincere thanks goes to Professor Gabriel Kojoian for
inviting me to participate in his undergraduate research programs, and to
Professor James Seal for his insightful answers to my questions in research
and academics. Their guidance and encouragement through my
undergraduate and graduate years have helped me immensely.

I would also like to thank Professor Peter Rez for providing a copy
of the Hartree-Slater computer code used in this work and for many
interesting discussions on the topic bf energy loss near edge structure.

I am also grateful to Carol Garland for her technical assistance.

Most of all, I would like to thank my mother for everything. None

- of this would have been possible without her.



This work was supported by the United States Department of Energy
under contract DE-FG03-86ER45270. The transmission electron
microscopy 'facility was supported by the National Science Foundation
under grant DMR-8811795. The Gatan 666 parallel EELS spectrometer was
acquired through an equipment grant from Caltech's Program in

Advanced Technologies, supported by Aerojet, General Motors, and TRW.



vi

Abstract

This thesis addresses the interpretation of the peaks known as
"white lines" found at the onsets of the Ly and L3 absorption spectra of 3d
and 44 transition metals and alloys. These peaks arise from excitations of
2p core electrons to unoccupied outer d states at transition metal atoms.
Recent work has suggested that differences in white line intensities
observed between pure transition metals and associated compounds may
be used to infer changes in the occupancies of the corresponding d states
local to a given atom species. These prior studies, however, have focused
on compounds of only a few transition metals. A systematic investigation
of the relationship between white line intensity and d-state occupancy for
3d and 44 transition metals had not yet been done.

In this work an experimental analysis of the white lines for the 34
and 44 transition metals was carried out using electron energy loss
spectrometry (EELS), and a linear decrease in white line intensity with
increasing d state occupancy was found for both transition series. These
results suggest that the intensities of the white lines reflect the occupancies
of the outer 4 states in 34 and 44 transition metals, which are known to
increase linearly with atomic number. In addition, these empirical
correlations provide a straightforward method for measuring changes in
3d or 4d state occupancy.

In an application of this work, L2,3> spectra were measured for a
number of binary copper alloys, Fe-Co alloys of varying composition, and

several binary nickel alloys. Significant changes in the intensities of the
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white lines were observed in some cases. Changes in 3d occupancies
inferred from these measurements were in agreement with other
measurements and density-of-states calculations from the literature where

available.
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Chapter 1 Introduction

This chapter serves as an introduction to the thesis. In §1.1 a review
of recent work on the interpretation of white lines in the Ly and L3
absorption spectra of transition metals is presented. In §1.2 a description
of electron energy loss spectrome:ry (EELS) in the transmission electron
microscope is presented. Further remarks and an outline of the

remainder of the thesis are presented in §1.3.

1.1 White Lines in L; and L3 Absorption Spectra

Some of the most distinctive features observed in the x-ray
absorption spectra and electron energy loss spectra of transition metals are
the peaks known as "white lines" found at the onsets of the Ly and L3
absorption edges. These peaks, which are quite intense for the early
transition metals and diminish in intensity toward the right of each
transition series, were first correctly interpreted by Mott (1949) as being due
to excitations of 2p core electrons in an atom to unoccupied d-like states
above the Fermi level. The peaks have been called white lines because
they were originally observed as overexposed regions on the photographic
film originally used to record x-ray absorption spectra (Veldkamp, 1935).

Absorption spectra may be measured using either electron energy
loss spectrometry (EELS) or x-ray absorption spectrometry (XAS). In a
typical energy loss experiment in a transmission electron microscope, one
directs a monoenergetic beam of electrons through a specimen and
subsequéntly analyzes their energy distribution. An incident electron that

promotes an excitation in the sample must suffer an equal energy loss, and



the recorded energy loss spectrum therefore displays peaks and edges
corresponding to the various types of excitations.

As an example, the L, 3 absorption edge for elemental nickel
obtained with EELS is shown in Figure 1.1. A one-electron description for
this excitation process is shown schematically in Figure 1.2. In the one-
electron picture of the L; 3 edge, an incident electron excites a 2p1 /2 or a
2p3/2 core electron in an atom to an unoccupied state above the Fermi
level. It is assumed that the presence of the resulting core hole has no
effect on the other electrons in the atom. Because of spin-orbit splitting,
the energy of the 2p3/; electrons lies above that of the 2p /5 electrons, and
the aésociated L3 edge therefore occurs at an energy loss lower than that of
the Ly edge.

Since the 2p core electrons are essentially atomiclike, the dipole
selection rules (Gasiorowicz, 1974, for example) favor excitations to final
states with s and d character. As illustrated in Figure 1.2, transition metals
may possess a large density of d-like states above the Fermi level, yielding
white lines of proportionate intensity. In addition, since the 2p electrons
are atomiclike and the outer d states are rather tightly bound to a given
atom, the intensities of the white lines are expected to reflect the
unoccupied d-like density of states local to that atom species. Neglecting
the white lines, the edge appears as somewhat of a step function due to the
spin-orbit splitting of the initial 2py/2 and 2p3 /7 states. The relative
heights of the steps reflect the 2:1 ratio of the numbers of initial states (four

2p3 /2 electrons and two 2py /7 electrons).
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Figure 1.1. Ly 3 absorption edge for Ni metal obtained by EELS. White
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A number of x-ray absorption studies based on the one-electron
approximation have attempted to relate changes in white line intensities
observed du'ring compound formation to changes in the occupancies of
the corresponding outer d states. Lytle et al. (1979) compared L3 white line
intensities for a number of iridium, platinum, and gold compounds with
those of the respective pure metals and concluded that the differences in
the white line intensities reflected changes in the occupancies of the local
5d states that were due to compound formation. In a similar study,
Horsley (1982) compared the sum of the normalized L3 and Ly white line
intensities observed in several platinum and iridium compounds with
those >observedr in pure metals. The changes in the total normalized white
line intensity were found to correlate with changes in the number of 54
holes determined from band structure calculations. Mansour et al. (1984)
extended this work by establishing a proportionality between the total
normalized white line intensity and the number of 5d holes from band
structure calculations for pure platinum metal. He then used this
proportionality to correlate changes in the total normalized white line
intensity to changes in the number of 5d holes in a platinum catalyst.
Using a similar approach, Sham (1985, 1987) and Sham et al. (1989)
determined changes in the occupancies of the outer d states for a number
of gold, palladium, and nickel compounds.

In other studies Brown et al. (1977) and Mattheiss and Dietz (1980)
included spin-orbit splitting in tight-binding band structure calculations
for platinum metal and found that the unoccupied 5d states were of the

j=5/2 character. They concluded that the L3 absorption edge should



therefore show a white line, while the L; edge should not, since dipole
selection rules require 2p3/; electrons to couple to both ds/9 and d3/; states,
and 2p1 /7 electrons to couple only to (filled) d3/7 states. These predictions
were largely consistent with experimental observations. In an application
of this work, Morrison et al. (1985) used EELS to investigate the angular
momentum character of the unoccupied 34 states local to Fe atoms in
FeGe alloys. Pease et al. (1986) conducted a similar experimental study on
the unoccupied 34 states local to Cr atoms in a CrAu alloy.

Other studies have focused on the ratio of the L3 white line
intensity to the Ly white line intensity for the early 3d transition metals.
As discussed by Thole and van der Laan (1987), a 2:1 ratio reflecting the
relative numbers of initial states is expected since the spin-orbit splitting
in the 34 band is small compared to the band width. Leapman and Grunes
(1980), however, pointed out that the observed ratios did not follow the
expected 2:1 value for the early 3d transition metals. Zaanen et al. (1985)
showed that these anomalous ratios could be partially explained by atomic
multiplet effects. Specifically, they showed that the multiplet structure of
the excited atom may result in overlapping transitions from 2pj /2 and
2p3/2 siates for the early 3d metals where the spin orbit splitting is small.
Atomic multiconfigurational calculations of Waddington et al. (1986)
agreed with these results, thus questioning the applicability of using L3
and Lj white lines to probe the total angular momentum character of the
final 3d states for the early 3d transition metals. In addition, Stern and
Rehr (1983) have questioned the general use of the one-electron

approximation itself and have suggested that many-body effects under the



influence of the core hole may be significant in interpreting the structure
at absorption edges. They have shown, however, that the many-body
problem reduces to a one-electron problem for transitions to an initially
empty shell or for transitions that fill a shell.

This review of previous work suggests that there is evidence that
the white lines of absorption spectra may be useful in obtaining
information about the occupancy of the outer d states at transition metal
atoms, but that the interpretation is not straightforward and is not
- completely understood. In spite of the considerable amount of previous
work, an experimental study encompassing the pure metals of the 3d and
4d transition series to investigate systematically the relationship between
white line intensity and d-state occupancy had not been undertaken. Such
a study was the main thrust of this thesis. As the present work focuses on
the analysis of absorption spectra obtained by EELS, a review of this

technique is presented in the following section.

1.2 Transmission Electron Energy Loss Spectrometry (EELS)

Electron energy loss spectrometry (EELS) has evolved considerably
since the early energy loss measurements of electrons reflected from the
surfaces of copper and other metals by Rudberg (1930). Today, electron
energy loss spectrometers are commonly attached to transmission electron
microscopes and are used, for example, in chemical microanalysis, in
determining radial distribution functions in solids through the analysis of
extended energy loss fine structure (EXELFS), and in obtaining density of

states information by interpreting the fine structure (near edge structure)



found at absorption edges . More detailed information on these topics
may be found in the recent books by Egerton (1986) and Disko et al. (1991).
In addition, EELS has recently been used outside its conventional
implementation for the in-situ characterization of semiconductor surfaces
during growth by molecular-beam epitaxy (Atwater and Ahn, 1991).

A typical configuration of an EELS spectrometer attached to a TEM
is shown schematically in Figure 1.3. A detailed description of EELS
instrumentation used in this work will be given in Chapter 3. As shown
~ in the diagram, an incident electron beam of well-defined energy, typically
100 keV to 300 keV, passes through a sample, through the imaging optics
of the microscope, and into an energy loss spectrometer. Some of the
incident electrons will pass through the sample unscattered, some will be
elastically scattered, and some will be inelastically scattered (will suffer an
energy loss). The spectrometer may be thought of as a "magnetic prism,"
which bends the electron beam via the Lorentz force, F = -¢ v x B, where -¢
is the charge on the electron, v is its velocity, and B is the magnetic field.
For v initially perpendicular to B as shown in Figure 1.4, electrons of a
given energy follow a circular trajectory of radius R. Equating the Lorentz
force to the centripetal force, F = mv2/R, one finds that R = eB/mv. Thus,
electrons with relatively lower velocities, hence lower kinetic energies,
undergo larger deflections. The electrons are therefore spatially separated
according to energy and may be counted with an appropriate detection

system. If the detector is positioned to accept electrons that traverse
| roughly one fourth of the circular orbit, the spectrometer is called a 90°

prism spectrometer.
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Figure 1.3. Schematic of an energy loss spectrometer attached to a
transmission electron microscope.
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Figure 1.4. Trajectory of an electron passing through a constant magnetic
tield oriented perpendicular to its velocity.
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To illustrate some of the features typical of energy loss spectra,
consider the energy loss spectrum shown in Figure 1.5 obtained from a
thin polycrystalline specimen of Ni metal. As the recorded intensity
encompasses a wide dynamic range, a change in the detector sensitivity of
approximately 1000 is used when acquiring spectra. This gain change is
seen as an abrupt step in the spectrum, in this case, near an energy loss of
375 eV. The energy loss region from 0 eV to approximately 50 eV is
commonly called the "low loss" region, and contains the most intense part
- of the spectrum. At zero energy loss, one finds the "zero loss" peak, with a
full width at half maximum (FWHM) of perhaps a few eV or less,
depending upon the energy distribution of the incident electron beam.
This peak is associated with unscattered electrons, elastically scattered
electrons, and phonon scattered electrons for which the corresponding
energy losses are less than the instrumental resolution. Immediately
following the zero loss peak is the portion of the low loss region
dominated by excitations of plasmons (plasma oscillations) and excitations
of valence/conduction electrons to unoccupied states above the Fermi
level. In this case a plasmon peak is observed at approximately 23 eV. At
an energy loss of 68 eV is the Ni Mj 3 absorption edge, where the
spectroscopic notation refers to the excitations of Ni 3p1/2 and 3p3/2
electrons to states above the Fermi level. Finally, at an energy loss of 855
eV is the Ni Lj 3 absorption edge, caused by excitations of Ni 2p1,2 and
2p3/2 core electrons to states above the Fermi level as described in the

previous section.
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In general, metals will possess low loss features similar to those
shown in Figure 1.5. The specific absorption edges present, however, as
well as the ehergies at which they occur will depend upon the chemical
composition of the sample under examination. In addition, the shapes of
the edges can depend somewhat on the presence of multiple inelastic
scattering, as it is likely in that some incident electrons will undergo more
than one energy loss event. This effect can largely be removed from the

spectra, however, using deconvolution techniques described in Chapter 2.

1.3° General Remarks and Outline

}The aims of the work reported in this thesis were twofold. The first
was to investigate the quantitative relationship between the intensities of
the white lines and the occupancies of the corresponding outer d states at
transition metal atoms. An experimental analysis of the energy loss
spectra for the pure 3d and 44 transition metals was performed, and the
relative intensities of the white lines were found to decrease linearly in a
manner consistent with the linear filling of the 3d and 4d bands. This
result made possible the second aim, which was to investigate changes in
the intensities of the white lines that were due to alloying and solid state
phase transformations with the goal of inferring changes in the
occupancies of the outer d states.

A variety of transition metal alloys were investigated in the latter
work. A number of binary copper alloys were chosen for study since, in
pure form, copper has no white lines because of its full 3d band. The

presence of any white lines at the copper L 3 edge that are due to a
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depletion of 34 electrons as a result of alloying would then be easily
observed. In addition, Fe-Co alloys of varying composition were
examined. The charge transfer effects in Fe-Co that were due to alloying
had been studied by other researchers in our group using Mossbauer
spectrometry, providing results with which to compare the EELS
measurements. Measurements on several nickel alloys were also
performed.

The remainder of the thesis is outlined as follows. In Chapter 2 the
inelastic scattering of fast electrons and methods of removing multiple
inelastic scattering from spectra are briefly reviewed. In Chapter 3 EELS
instrumentation and experimental procedures are described. In Chapter 4
the analysis of the white lines from spectra of the 3d and 44 transition
metals is presented which provides, given certain assumptions, an
empirical procedure for measuring changes in the occupancies of the outer
d states at transition metal atoms. Atomic Hartree-Slater calculations of
the white line intensities are presented for comparison. In Chapter 5, L3
absorption spectra for the various alloys are presented, and changes in the
d state occupancy local to copper atoms are inferred from the data. These
measurements are compared to other measurements as well as density of
states calculations from the literature where available. The measurements
are also discussed in terms of the heats of formation of the alloys. A
summary of the results is presented in Chapter 6, and absorption spectra

for the pure 3d and 44 transition metals are presented in Appendix 1.
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Chapter 2  Electron Scattering in the Electron Microscope

In this chapter the scattering of fast electrons as it pertains to
electron energy loss spectrometry is discussed. In §2.1 the inelastic
scattering of electrons by atoms is briefly reviewed. The discussion largely
follows that of Egerton (1986). Methods of removing the unwanted

multiple inelastic scattering from energy loss spectra are discussed in §2.2.

2.1 Scattering of Electrons by Atoms

Consider the scattering of a fast electron by an atom. The
kinematics of the scattering process is illustrated in Figure 2.1. As
indicated, a fast electron suffers an inelastic collision with an atom and is
deflected by an angle 6 from its original path. The wave vectors of the
electron before and after the collision are given by ko and kj respectively,

and the change in wave vector is given by

q=ko-k;. (2.1)

It is customary to assume that the scattering is symmetric in the azimuthal
angle, such that Figure 2.1 has rotational symmetry about kgy. In that case
“the vector notation may be dropped and the scattering process may be
described in terms of the scalar wave numbers and the angle 0.
To establish the relationship between energy loss and the scalar
wave numbers note thét conservation of energy gives Wy, - E = W,, where
Wp and Wa are the total energies of the electron before and after the

collision, and E is the energy loss. This gives
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Figure 2.1. Scattering kinematics for an electron inelastically scattered by
an atom. »
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[(mo @2 + h2ke2c21/2-E = [(mo @2 + h2kg2c2]1/2, 2.2)

which reduces to

2 B E2
SRR o2’ (2.3)

where y = (1- v2/c2)"1/2, It is worthwhile to note that Equation 2.3 is
independent of the scattering angle, and therefore all scattered wave
vectors of the same length represent inelastic events with the same energy
loss. In Figure 2.1 this means that there is a minimum value of g, qmin, for
a given energy loss. In addition, once a given energy loss has been
specified, 6 uniquely determines q and vice versa. Therefore, there is also
a maximum value of ¢, max, determined by the maximum scattering
angle for which electrons will be collected by the spectrometer, which is in
turn governed by the microscope/spectrometer geometry. This maximum
scattering angle is commonly called the collection angle, B. Thus, the
scattered intensity is a function of both q and E, which are independent
aside from E specifying a value of qmin.

In an ionizing collision, the incident electron scatters from an atom
through the Coulomb interaction and excites the atom from an initial
state, |i>, to a final state, |f>. In an energy loss experiment, such scattered
electrons are collected over a rénge of q and are analyzed according to
energy (or energy loss). The intensity represented in an energy loss
spectrum as function of collection angle and energy loss is given by

(Egerton, 1986):
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d
IE, B) =N k() 55 (E, B). 24

In this expression N is the number of atoms per unit area in the éample
illuminated by the incident beam, I(B) is the total number of electrons
collected by the spectrometer through some collection angle B, and do/dE
is an energy-differential cross section per atom for electrons collected
through B and scattered into an energy element dE about an energy loss E,
i.e., a cross section per unit energy.

The evaluation of do/dE was first performed by Bethe (1930) and
subsequently reviewed in detail by Inokuti (1971). In the first Born
approximation, which assumes that the potential acts as a weak

perturbation to the incident fast electron, do/dE is given by (in SI units)

) {max
do 87 h 1 .
aE = m f’glg | <fleqr|i> I 2 dq, (2.5)

dmin

where r is the position vector of the incident electron, a, is the Bohr
radius, brno is the rest mass of the electron, and v is the speed of the
incident electron. The matrix element is evaluated over the coordinates
of all the atomic electrons. In the derivation of this expression, it is
assumed that only one scattering event occurs. In addition, the sum over
all energy-degenerate initial and final states is implicitly assumed in
Equation 2.5. Furthermore, <f! is considered a continuum wave function

normalized per unit energy, i.e.,
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(=)

J. | <fg ! fE> | 21r2dr =3 (E-E), (2.6)
0

and Equation 2.5 is therefore dimensionally correct.

Although Equation 2.5 is derived solely from atomic scattering
considerations, calculations based upon it reproduce the overall edge
shapes observed in the energy loss spectra of solids for the excitations of
atomiclike core electrons quite well. Leapman et al. (1980) calculated the
" K, L, and M ionization cross sections for a number of elements in the one-
electron approximation using Hartree-Slater wave functions and found
good agreement with observed spectra. Similar calculations by Ahn and
Rez (1985) were also in good agreement with observed spectra.

Equation 2.5 may also be generalized and used in calculations of the
fine structure at ionization edges that is due to solid state effects. In this
case it is customary to replace the sum over the degenerate, continuum
(final) states with a density of final states representative of the solid
(Manson, 1978). As the core (initial) electron states are filled, only the

density of final states need be considered. This generalization gives

Jmax

do 8  h2 1 : .

E - s ® f¥ | <fleiaT] i>|2dgq. @7
Jmin

In Equation 2.7, the wave functions are those appropriate to the solid, and
the units for n(E) again make the equation dimensionally correct.

Using this expression Weng et al. (1989) calculated the near-edge



2

structure at the K and L absorption edges of a number of compounds with
substantial accuracy. The one-electron, initial-state wave functions were
obtained from Hartree-Slater calculations, while the density of states and
final-state wave functions were obtained from pseudoatomic-orbital band-
structure calculations. In similar work Miiller et al. (1982) calculated the
fine structure at the K, L, and M edges for some of the 3d and 4d transition
metals using a linearized, augmented, plane-wave method. The results
were in good agreement with observed spectra as well.

As mentioned, these expressions are based upon the assumption
that the incident electron undergoes one inelastic scattering event. In
practice, however, some incident electrons are likely to suffer more than
one inelastic scéttering event. Processing techniques for removing the
effects of this multiple, inelastic scattering from energy loss spectra are

discussed in the next section.

2.2 Multiple Inelastic Scattering

Contrary to the single scattering process described in the previous
section, there is a significant probability that an incident electron will
suffer more than one energy loss event. The likelihood of multiple
'inelastic-scattering processes increases with specimen thickness. This
effect is observed as a replication of the low-loss behavior following the
threshold of an absorption edge. Two approximate deconvolution
methods are widely used to retrieve the single scattering contribution
from energy loss spectra: the Fourier-log method and the Fourier-ratio

method. ‘Both methods were used in this study.
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The Fourier-log method, originated by Burge and Misell (1968) and
Misell and Jones (1969) and later improved upon by Johnson and Spence
(1974), assumes that the scattering events are independent and follow a
Poisson statistical distribution in their order of scattering. These authors
have shown that the measured intensity in an energy loss spectrum, I(E),
can be written as

1

I(E) = Z(E) = [&(E) + L S(E) +

2z SESE + .. ], 28)

Whére»Z(E) represents the zero loss peak, 8(E) is a delta function, S(E) is the
single scattering contribution, I, is the incident-beam intensity, and *
denotes a convolution. The approach is to take the Fourier transform of
both sides of Equation 2.8, in which case the convolutions become
multipications and the term in brackets can be summed as an exponential

series to yield

1) } (2.9)

Se) =Ly In {f(‘é‘)‘

Here, the primes denote the Fourier transform. In principle, taking the
invefse Fourier transform of Equation 2.9 retrieves the single scattering
contribution unbroadened by the instrumental resolution, but in practice
the inverse transform contains considerable noise. The noise may be

~ avoided, however, by reconvoluting with a Gaussian of width equal to

that of the zero-loss peak (Johnson and Spence, 1974). The result is a
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deconvoluted (single scattering) spectrum uncorrected for the
instrumental broadening of the zero-loss peak.

Regarding practical applications of the deconvolution, it is necessary
to remove any gain changes in the spectra (see Figure 1.4) by suitably
scaling the low-loss region. The high-energy region of the core-loss data
must then be extrapolated to zero in order to minimize any discontinuity
effects in the inverse transform. Following the deconvolution, the core-
loss edge may be isolated from the preceding background by fitting a
- power-law function to a 50-100 eV region of the background and
extrapolating it under the core-loss edge (Egerton, 1986). This function is
then s'ubtractedr from the deconvoluted core-loss edge.

The Fourier-ratio method (Egerton and Whelan, 1974), which was
also used in this study, amounts to treating the low-loss region as an
"instrument function" for the core-loss absorption edge. In this method
one first removes the pre-edge background intensity from the edge and
then smoothly extrapolates the high-energy region of the core-loss edge to
zero in order to minimize discontinuity effects. One then takes the
Fourier transform of the core-loss region, divides by the Fourier transform
of the low-loss region, and takes the inverse transform to obtain the single
scattering contribution to the core-loss intensity. Noise problems may
again be avoided by reconvoluting with a Gaussian of width equal to that
of the zero-loss peak.

Both methods have advantages. The Fourier-log method is
generally useful since it deconvolutes the entire energy loss spectrum, low

loss as well as core loss. The Fourier-ratio method, however, cannot
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provide a single scattering spectrum for the low-loss region since the low-
loss region is, by definition, the "instrument function." This method
does, hdwever, have the advantage that the low-loss spectrum and core-
loss spectrum may be obtained separately, reducing data-acquisition times.
This option is particularly useful when the core-loss edge of interest occurs
at very large energy losses. The Fourier-ratio method was used to
deconvolute spectra for the 44 transition metals for just this reason.

When applied to the same data, both methods yield the same results

- (Egerton et al. 1985).

It should be noted that both of these methods are, however,
approximate, since the scattered intensity is a function of both energy loss
and scattering angle. Deconvoluting with respect only to energy implicitly
assumes that essentially all of the scattered electrons have been collected,
but in pfactice’ this is not the case, as the collection angle is limited by the
microscope/spectrometer geometry. It is therefore useful to know how
large the collection angle should be to make the applications of these
deconvolution routines justifiable.

A rough indication of the appropriate collection angle may be

~obtained by examining Equation 2.5. Differentiating with respect to q, thus
removing the integral, yields a double-differential cross section, d?c/dEdq,
which is a function of both q and E. This double-differential cross section
can be expressed as a function of scattering angle, 8, rather than g, by

- noting from Figure 2.1 that

g2 = ko2 + k92 - 2kkqcos6. (2.10)
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Neglecting the matrix element for the moment, one finds for small angles

d?c o 1
dEAQ (92 + GEZ)Z !

(211

where dQ is a solid angle element and 6g is the "characteristic scattering

angle" given by (Bethe, 1930):

OE =7 (2.12)

where E, is the incident-beam energy. It is worthwhile to note that 65 is
the classical scattering angle in "billiard-ball" collisions. Thus, for a given
energy loss, E, the angular distribution of scattered electrons is the square
of a Lorentzian of half-width 6g. Equation 2.11, however, describes only
single scattering. To describe double scattering, this expression should be
convoluted with itself, as all the electrons represented in this distribution
are themselves sources for subsequent scattering. Higher orders of
multiple scattering are obtained through successive convolutions of
Equation 2.11. Therefore, to apply the deconvolution procedures described
safely, the collection angle should be considérably larger than 9g.

In a more detailed calculation, Stephens (1980), using a Monte Carlo
technique, estimated the fractional error by which double inelastic
scattering would be oversubtracted in an angle-independent

deconvolution for 80 keV incident electrons. The results indicated that
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error would be less than 10% for energy losses up to 1600 eV, using a
collection angle equal to the characteristic angle of 10 mrad.

In a.more recent study, Egerton and Wang (1989) estimated that the
error in removing double scattering by angle-independent deconvolution
would be less than 10% for edge energies below 5 keV, given a collection
angle of 10 mrad and 100 keV incident electrons. It is worthwhile to note
that in this case the collection angle is less than half of the characteristic
angle of 25 mrad.

Another assumption implicit in these deconvolution procedures is
that the sample is of uniform thickness. Johnson and Spence (1974)
estimated the error in an angle-independent deconvolution that was due
to a wedge-shaped sample of nominal thickness t with slightly decreasing
thickness. They found that compared to a sample of uniform thickness t,
double inelastic scattering would be slightly undersubtracted in a wedge
sample with a small thickness variation.

In summary, when applying angle-independent deconvolution
- procedures, one should prepare samples as uniformly thin as possible and
choose collection angles considerably larger than the characteristic
scattering angle, 8g. The fractional errors in removing multiple scattering
should then be less than 10%.

The actual determination of the collection angle depends on
whether the data are obtained in image mode or diffraction mode. The
situation for image mode is illustrated schematically in Figure 2.2.
Although the lens configuration shown is considerably oversimplified,

one can see that the collection angle is dependent upon the presence of an
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Figure 2.2. Collection-angle geometry for energy loss spectra collected in a
transmission electron microscope in image mode.
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objective éperture placed at the back focal plane of the objective lens. In
the complete absence of an objective aperture, the collection angle will be
determined by some other physical limiting feature of the microscope. For
the Philips EM 430 microscope used in this study, this physical limitation
is the differential pumping aperture situated near the first projector lens
(Philips Electronics, 1991). In addition, as shown in Figure 2.2, electrons
that originate from the region of the sample whose image intersects the
spectrometer collection aperture will be collected by the spectrometer.

In diffraction mode, the situation is somewhat simpler since a
diffraction pattern is projected onto the viewing screen with an effective
camera length chosen by the operator. As illustrated in Figure 2.3, the
collection angle is simply determined by the width of the spectrometer
aperture and the camera length. The maximum collection angle
attainable in diffraction mode is considerably smaller than that attainable
in image mode, however. At the shortest camera length setting of 80 mm
on the Philips EM 430, a collection aperture of 5 mm yields a collection
angle of approximaytely 31 mrad, whereas in image mode the maximum

collection angle is well over 100 mrad.
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Figure 2.3. Collection-angle geometry for energy loss spectra collected in a
transmission electron microscope in diffraction mode.
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Chapter 3 Instrumentation and Experiniental Procedures

In this chapter the experimental procedures and instrumentation
used in this study are discussed. The sample preparation methods are
described in §3.1. Routine characterization methods are described in §3.2.
The energy loss data acquisition and processing methods are described in

§3.3.

3.1 Sample Preparation

Transmission electron microscopy samples of elemental transition
metals and various alloys were required for this study. The alloys CuZr,
CuypZry, CuTi, CuPd, CuAu, NizAl, Ni3V, and Fe-Co (of varying
composition) were prepared from elemental metals of at least 99.99%
purity either by induction melting on a water cooled silver hearth in an
argon atmosphere or by arc melting on a water cooled copper hearth in an
argon atrhosphere. The resulting ingots were inverted and remelted
several times to ensure homogeneity. The mass losses after melting were
» negligible, so the chemical compositions of the alloys were assumed to be
those of tne respective stoichiometric compounds.

Thin alloy foils were then prepared by quenching molten droplets
of the alloys between copper disks using an Edmund Buhler Ultra Rapid
Quencher, shown schematically in Figure 3.1 The apparatus is operated by
levitating and melting a small piece of the ingot (~ 150 mg) in a purified
argon atmosphere, using a 2.2 MHz radio frequency (RF) power supply
connected to a conically shaped copper coil. When the current to the coil

is removed, the molten droplet falls, triggering a detector, which causes
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Figure 3.1. Ilustration of the rapid queﬁching apparatus.
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two polished Cu pistons to accelerate toward each other. The pistons
smash the droplet as it falls, rapidly quenching it into a foil approximately
50 um in thickness, commonly called a "splat." Depending upon the
thermal conductivity of the sample and the resulting thickness of the
splat, quench rates of 106 °K/sec are attainable. In addition to the alloys

mentioned, a CuPt alloy was prepared directly in the rapid quencher.
Wires of the pure metals were twisted together, levitation-melted, and
immediately rapidly quenched.

For energy loss analysis in the TEM, electron transparent samples
less than about 100 nm in thickness were required. A number of
preparation techniques were used to prepare these samples. For many of
the elemental transition metals, disks 3 mm in diameter were cut from
pure, thin foils and were then electrochemically polished with a Fishione
jet electropolisher, using appropriate chemical solutions. In other cases,
pure metal films less than 100 nm in thickness were prepared by thermal
evaporation, electron-beam evaporation, and direct-current ion sputtering
~ onto single-crystal NaCl substrates. The resulting films were then floated
off the substrates in water and picked up with Cu TEM grids.

Electrochemical thinning was used to prepare TEM samples from
most of the alloy foils. An acceptable chemical thinning solution was not
found for CuPt, however, so this sample was first mechanically thinned to
a thickness of approximately 5 microns on a VCR Dimpler and was then
ion-milled with a VCR dual-gun argon ion-mill to its final thickness. The
TEM sample-preparation techniques used for the various metals and

alloys are summarized in Table 3.1.
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Metal or Alloy TEM Sample-Preparation Technique

Ti 40 nm thin film sputtered between 15 nm
Cr buffers to prevent oxidation.

\ Thin film by sputtering
Cr Thin film by sputtering (see Ti)
Fe Thin foil polished at 10°C

20% perchloric acid, 80% acetic acid

Co Thin CoFe foil polished at 10°C
20% perchloric acid, 80% acetic acid

Ni Thin foil polished at 10°C
20% perchloric acid, 80% acetic acid

Cu ~ Thin foil polished at -30°C
33% nitric acid, 67% methanol

Zr Thin foil polished at -30°C
5% perchloric acid, 95% methanol

Nb Thin foil polished at -10°C
20% sulfuric acid, 80% methanol

Mo Thin foil polished at -10°C
20% sulfuric acid, 80% methanol

Ru Thin film by electron-beam evaporation

Table 3.1. TEM sample-preparation techniques for metals and alloys.
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Metal or Alloy TEM Sample-Preparation Technique

Rh Thin film by thermal evaporation
Pd Thin film by thermal evaporation
Ag Thin foil polished at 10°C

20% perchloric acid, 80% acetic acid
CuPd Thin foil polished at 10°C

25% perchloric acid, 75% acetic acid
CuAu Thin foil polished at 10°C

25% perchloric acid, 75% acetic acid
CuZr Thin foil polished at -30°C

33% nitric acid, 67% methanol
CuyoZry ’ Thin foil polished at -30°C

33% nitric acid, 67% methanol
CuTi Thin foil polished at -30°C

33% nitric acid, 67% methanol
CuPt Thin foil dimpled, then ion-milled
NiszV Thin foil polished at 10°C

10% perchloric acid, 90% acetic acid

Fe-Co Thin foils polished at -30°C
25% perchloric acid, 75% ethanol

Table 3.1 continued. TEM sample-preparation techniques for metals and
alloys.
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3.2 Routine Characterization of Alloys

‘The structures of the rapidly quenched alloy splats were
characterized using x-ray diffraction. A General Electric XRD-5 6-26
diffractometer (Cr Ko radiation) and a Philips 6-26 diffractometer (Cu Ko
radiation) were used to analyze the Cuj9Zr7, NizV, and Fe-Co alloys. An
INEL CPS 120 x-ray diffractometer (Co Ka radiation and graphite incident
beam monochromator) was used to analyze the CuZr, CuTi, CuPt, CuAu,
CuPd, and NizAl alloys. This instrument, shown schematically in Figure
3.2, utilizes a geometry in which the sample, x-ray beam, and detector are
all rigidly fixed. The x-ray beam strikes the sample surface at an incident
angle, a, and diffracted x-rays are collected in parallel over a 127° range
with the large-angle detector. The 6-26 geometry is shown for a particular
set of grain orientations.

For finely grained or amorphous samples these instruments

provide powder diffraction patterns such as the one for CuPd shown in
- Figure 3.3. At room temperature, the equilibrium crystal structure of
CuPd ié the BZ (ordered bcc) structure. At temperatures above
approximately 600°C, however, the structure transforms to a disordered fcc
solid solution. The diffraction pattern shown in Figure 3.3 indicates that
the disordered fcc structure was obtained as a result of the rapid quenching
process. The room-temperature, equilibrium crystal structures and the
structures obtained after rapid quenching are summarized in Table 3.2.

The equilibrium crystal structure data were taken from Massalski (1990).
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127° parallel detector
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Figure 3.2. Diagram of the parallel-detection x-ray diffractometer.
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Alloy
CuypZrz

Cu”Zr

CuPd
CuAu
Cult

CuTi
NizAl
Ni3zV
FeCo
Fegp.6C09.4
FegoCo31

Fe39Co7p
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Equilibrium Structure

orthorhombic
(Ni1pZr7 prototype)

B2 (ordered bcc)
(above 715°C)

B2 (ordered bcc)

L1 (ordered tetragonal)

L1y (ordered rhombohedral)
B11 (ordered tetragonal)

L1 (ordered fcc)

DOy, (tetragonal)

B2 (ordered bcc)

bee

bec

bee

As Quenched

amorphous

amorphous

fcc

fcc

fcc
amorphous
L1y

fce

g 8 8 %

Table 3.2. Crystal structures for equilibrium and rapidly quenched alloys.
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The enthalpies of ordering in Ni3V and FeCo and the enthalpy of
crystallization in CujgZry were measured with a Perkin-Elmer DSC-4
differential scanning calorimeter. These data were obtained for
comparison to electron-transfer measurements as described in Chapter 5.

The DSC apparatus is shown schematically in Figure 3.4. The
instrument heats an empty reference crucible (an aluminum pan) at a
constant heating rate while adding slightly more or less heat to the
crucible containing the sample so as to maintain them at the same
temperature. The difference in the heat-flow rates versus temperature (or
time) provides the DSC "scan,” which shows peaks or valleys when the
sample undergoes endothermic or exothermic transformations. The area
of the peak (integrated heat flow) gives the total heat of the
transformation.

Sample and reference pans were heated under flowing argon gas at
a heating rate of 20°C/min. Two DSC scans from 50°C to 600°C were
obtained from each sample, the second immediately following the first.
The first scan provided the crystallization or ordering treatment. The
second scan (on the now transformed sample) provided the "baseline”
scan. The second scan was subtracted from the first, isolating the signal
that was due to the transformation. The instrument was calibrated for
temperature and heat-flow rate using the known melting temperature and
heat of fusion of indium.

For illustration, the "difference” scan for the rapidly quenched NizV

alloy is shown in Figure 3.5. An exothermic peak is observed beginning
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Figure 3.4. Schematic of the DSC sample and reference pan arrangement.
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near 400°C, the integrated peak area corresponding to an enthalpy release
of approximately 4 kJ/mole.

The*'TEM used in this study was a Philips EM 430 transmission
electron microscope equipped with an EDAX 9900 energy-dispersive x-ray
(EDX) analyzer. The computer hardware for the EDAX unit consisted of a
PDP-11 computer with a multichannel analyzer. The analysis software
was that provided by EDAX. The Philips EM 430 served mainly as an
electron source for the energy loss spectrometer. However, it was used to
obtain routine structural information from the alloy samples. In addition,
the EDAX unit was used to verify chemical compositions of the alloy
samples. The alloys were found to be stoichiometric to within the 5%

uncertainty in the EDX analysis.

3.3 EELS Data Acquisition and Processing

The experimental equipment central to this study consisted of a
Gatan 607 serial-detection electron energy loss spectrometer, which was
* mounted to the bottom of the optical column of the Philips EM 430 TEM.
Later in the study, however, a Gatan 666 parallel-detection electron energy
loss spectrometer was also used to obtain data. The Gatan 607, shown
schematically in Figure 3.6, is a serial-acquisition spectrometer that
incorporates a 90° magnetic prism to separate spatially electrons of
different kinetic energies. The spectrometer is equipped with magnetic
focusing lenses for maximizing the energy loss signal onto the
scintillator/photomultiplier tube detector as well as an electrostatically

isolated drift tube for changing the kinetic energy of the electrons by fixed
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Figure 3.6. Simplified schematic of the Gatan 607 energy loss spectrometer.



offsets for.acquiring spectra from different energy loss regions. During
operation, the magnetic field strength of the prism is systematically varied
to scan elettrons of different energies across a fixed entrance slit to the
detector.

The Gatan 666 is qualitatively similar in function except that it is a
parallel acquisition unit with a detector that consists of a single-crystal
yttrium-aluminum garnet (YAG) scintillator, fiber-optically coupled to a
linear photodiode array. Instead of scanning the energy loss spectrum
across a fixed slit, 1024 channels of data are simultaneously counted and
recorded.

The control and acquisition software used in conjunction with the
Gatan 607 was supplied by EDAX and implemented on a PDP-11 computer.
Control and acquisition software for the Gatan 666 was supplied by Gatan
and implemented on a Macintosh II microcomputer. In addition, software
from both manufacturers contained various processing routines, some of
which were used in this study.

The Gatan 607 spectrometer was used to.obtain energy loss spectra
from the elemental 34 transition metals as well as the CuygZry, Ni3V, and
Fe-Co alloys. Electron transparent samples of the 3d metals were analyzed
while operating the TEM in diffraction mode at 200 kV using a camera
length of 80 mm and a spectrometer collection aperture of 3mm, yielding a
collection angle of approximately 19 mrad. In comparison, the
characteristic scattering angle for single scattering described in Chapter 2, is
approximately 3 mrad for data collected through 1200 eV. Thus, the data

were collected through scattering angles much larger than the
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characteriétic angle. The spectra were collected with a dispersion setting of
0.4 eV/channel, and the energy resolution (FWHM of the zero-loss peak)
so obtained was approximately 2.0 eV. These spectra were then transferred
to a Digital Equipment Corporation MicroVax II and processed by Fourier-
log deconvolution.

The Gatan 666 spectrometer, acquired at a later time during this
study, was used to obtain energy loss spectra from the 44 transition metals
as well as from CuZr, CuTi, CuPd, CuAu, CuPt, and NizAl. Electron
transparent samples were analyzed in image mode at 200 kV with a
spectrometer collection aperture of 3 mm at magnifications of 3560 X to
5070 X. As the Gatan 666 spectrometer can only collect 1024 channels of
data simultaneously, the low-loss and core-loss spectra were acquired
separately. No objective aperture was used, and the collection angle thus
limited by the differential pumping aperture (Philips Electronics, 1991) was
approximately 180 mrad. In comparison, the characteristic scattering angle

for data collected through 3600 eV is approximately 9 mrad. The
» dispersion setting used for the 4d metals was 1.0 eV/channel and provided
an energy resolution of approximately 3.0 eV. Data from the alloys were
acquired with a dispersion setting of 0.5 eV/channel, providing an energy
resolution of approximately 3.0 eV.

Data acquired with the Gatan 666 spectrometer contained artifacts
and noise that were due to the response and gain fluctuations of the linear
photodiode array detector. These effects were minimized by dividing the
data by the response function followed by gain averaging over many data

channels (Shuman and Kruit, 1985). The approach was straightforward,
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but somewhat time consuming. Several spectra were collected for both
the low-loss and core-loss regions, each shifted by a few data channels
from the previous spectrum. These data were then divided by the
response function determined by uniformly illuminating the photodiode
array with no sample in place. This response function is shown in Figure
3.7. The individual spectra were then realigned to some common feature
in the spectrum and added. This latter step reduces noise by averaging the
channel-to-channel gain fluctuations of the detector. The low-loss and
core-loss spectra were then transferred to a Macintosh microcomputer and
deconvoluted by the Fourier-ratio method. The data collected and
processed according to these methods are presented and analyzed in the

following two chapters.
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Chapter 4 White Line Analysis and Interpretation

In this chapter the analysis and interpretation of the data are
described.s In §4.1 the procedure used to isolate and normalize the white
line intensity for the 3d and 44 transition metals is described, and the
resulting correlations between normalized white line intensity and outer
d state occupancy are presented. Atomic Hartree-Slater calculations of the
matrix element contributions to these correlations are presented in §4.2. A
discussion of these correlations, including their use for measuring changes

in outer 4 state occupancy, is presented in §4.3.

4.1 White Lines in 3d and 4d Transition Metals

In the previous chapter the experimental procedures used to acquire
and process the L 3 absorption spectra were described. The deconvoluted
Lp 3 edges for the 3d transiﬁon metals with pre-edge backgrounds
subtracted are shown in Figure 4.1. The corresponding data for the 44
transition metals are shown in Figure 4.2. Individual figures for these
data are given in Appendix 1. In both figures the spectra have been scaled
such that their background intensities are approximately equal in order to
illustrate the systematic decrease in white line intensity with the filling of
the outer 4 bands.

To establish the numerical proportionality between white line
intensity and d holes, the white lines were first isolated from the
background intensity and normalized. Figure 4.3 for niobium illustrates
the method used for analyzing the spectra for the 4d transition metals.

The background intensity was modeled by step functions since the edge
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Figure 4.3. L33 edge for niobium showing the method for isolating and
normalizing the white line intensities for the 4d transition metals.
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shapes fof silver, which has no white lines, resemble step functions. A
straight line was fit to the background intensity immediately following
each whité line over a range of approximately 50 eV. This line was then
extrapolated into the threshold region and set to zero at energies below
that of the white line maximum. The L; white line was further isolated by
- smoothly extrapolating the L3 background intensity under the L edge.

The areas in the white lines were then divided by the area in a
normalization window 50 eV in width beginning 50 eV past the L3z white
line onset and summed for each metal as a measure of the number of d
holes.

This approach is somewhat different from that used in the previous
white line studies mentioned in Chapter 1 (Horsley, 1982; Mansour et al.,
1984; Morrison et al., 1985). In those studies the white lines were isolated
using arctangent functions that connected the zero of intensity at the edge
onset to the background immediately following the white line. In
addition, those studies normalized the white lines by scaling the
background i-mmediately following the white line to unity. This
normalization procedure can be somewhat ambiguous, however, when
other fine stucture is present at the edge as is the case in some of the 4d
metals (see Figure 4.2). Normalizing the white lines to the background 50
eV past the edge onset avoids these ambiguities.

A plot of the normalized white line intensity versus 4d occupancy is
shown in Figure 44 The occupancy of the 44 states was determined by
assuming a valence electron configuration of 4dN-1s1, where N is the total

number of valence electrons, as this is approximately the configuration in
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the solid (Pettifor, 1977). A nearly linear correlation was obtained, with a

linear fit to the data given by
I = 0.094(1-0.092n), (4.1)

where I is the normalized white line intensity and n is the 44 occupancy.
That this correlation reflects the 4d occupancy can be shown by considering
the equation given by the linear fit. For this correlation to reflect
accurately the occupancy of the 4d band, it should have a maximum value
at n = 0 and should go to zero at n = 10. That is, the correlation should

have the form
I = K(1-0.1n), “4.2)

where K.is a constant.

A similar approach was used in the analysis of the 3d metals and is
illustradted for 'vanadium in Figure 4.5. In this case, the white lines were
isolated by modeling the background with a double step function. A
straight line was fit to the background immediately following the L7 white
line over a region of approximately 50 eV and was then extrapolated into
the threshold region. This line was then modified into a double step of
the same slope with onsets occurring at the white line maxima. The ratio
of the step heights is chosen as 2:1 in accordance with the multiplicity of
the initial states (four 2p3/2 electrons and two 2p1/2 electrons). The white

line area above this step function was then divided by the area in a
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Figure 4.5. Lp3 edge for vanadium showing the method for the isolating
and normalizing the white line intensities for the 3d transition metals.
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normalization window defined to be 50 eV in width beginning 50 eV past
the onset of the L3 white line. A plot of the normalized white line
intenéity versus 3d occupancy assuming a 3dN-1s1 valence-electron
configuration is shown in Figure 4.6. A nearly linear correlation was

obtained, and a least squares fit gave
I =1.06 (1-0.094n). (4.3)

That the sum of the Ly and L3 white line intensities should indeed
reflect the number of 4 holes may be seen by considering Equation 2.5.
Atomic one-electron calculations by Mattheiss and Dietz (1980) show that
the areas A and Az under the L) and L3 white lines, respectively, are

given by
2 1
A3=KR2p3/; ( shs/2+5hs/n ) (4.4)

and A2=KRop;/, (3h3/2). 45)

Here, h3/2 and hs /3 are the numbers of j = 3/2 and j = 5/2 d holes, R2p; /5
and R2p, /, are the radial matrix elements for the excitations of the 2p3/,
and 2p1/2 core electrons, and K is a normalization constant. The
expressions were evaluated using dipole selection rules while ignoring
excitations to outer s states, since the matrix elements for these transitions
are much smaller than those for excitations to d states. - In addition, the

contributions from the spherical harmonics to the transition strengths
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haVe alreédy been evaluated and aécount for the coefficients on h3 /7 and

hs/2. Taking R2ps,, and R2p, /, to be approximately equal, the sum of the

areas under the white lines is given by

6
Atotal = K Rop 15 (h3/2 +hs/2) = C Rap hegtar. (4.6)

Thus, the total white line area is proportional to the total number of d
holes.

The correlations in Figures 4.4 and 4.6 are potentially useful for
determining changes in outer d state occupancy upon alloying or during
solid-state phase transformations if corresponding changes in the
normalized white line intensity are observed. For example, if an
enhancement of 0.05 in the normalized intensity was observed after
alloying for a 3d metal, the correlation in Figure 4.6 would suggest that
about 0.5 electron/atom had léft the 3d states for that atom species on
~ average. Using Figures 4.4 and 4.6 for such measurements, however,
ignores the contribution of the matrix elements to the total intensity. The
evaluation of this contribution using atomic one-electron calculations is

the subject of the next section.

4.2 Atomic Matrix-Element Calculations

In Figures 4.4 and 4.6 the normalized white line intensity was
plotted versus d-state occupancy. This normalized intensity, however, is
;also a function of the radial matrix elements (Equation 4.6) as well as the

background intensity to which the white lines are normalized. The
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significanée of these factors should therefore be evaluated before using the
correlations in these figures to measure changes in d state occupancy.

As inentioned in Chapter 2, atomic, one-electron calculations based
on Equation 2.5 have successfully reproduced observed edge shapes for the

excitations of core electrons (Manson, 1972; Leapman et al., 1980; Ahn and

- Rez, 1985). Atomic calculations were therefore also used here to model

the normalized white line intensity. Specifically, the calculation involved
dividing the white line contribution (excitations to unoccupied 3d and 44
states) in Equation 2.5 by the background contribution (excitations to
continuum states). The initial and final bound states were represented by
one-electron wave functions calculated using the Hartree-Slater computer
code of Herman and Skillman (Herman and Skillman, 1963). The final
continuum wave functions were calculated by directly integrating the
Schrodinger equation using the self-consistent potential generated by the
Hartree-Slater calculation. These continuum wave functions were then
normalized such their amplitude at 40 Bohr radii (essentially infinity) was
n-1/2¢-1/4 where ¢ is the continuum energy in Rydbergs (Cowan, 1981). An
overview of the calculations, a copy of the continuum wave function
code, and typical listings of computer input and output files are given in
Appendix 2.

In the limit q=0, only dipole transitions contribute to the matrix
element in Equation 2.5. At nonzero q, however, higher-order transitions
will also contribute. Calculations of Lj 3 spectra that include these higher
order transitions have shown, however, that they become significant only

at energies several hundred eV past the edge onset (Leapman et al., 1980;
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Okmnoto et al., 1991). For this reason, only dipole transitions were
considered in the calculations presented here. Furthermore, Equation 2.5
greatly simplifies under these conditions as the matrix element operator is
replaced by iq-r. Two straightforward integrations over q and r then
determine the total intensity. Since the object of the calculation was to
evaluate the ratio of the white line to continuum contribution rather than
to calculate absolute intensities, the integral over q was ignored. Under

these assumptions, the normalized white line intensity is approximately

|<3d (ordd) I r12p > 12
I=ny 100( == 4.7)

5£|<wlr|2p>|2de

Only transitions to final states with d symmetry are shown in this
equation, since transitions to states with s symmetry were found to be
negligible in comparison.

Calculations of the white line matrix elements were carried out
using oonfignrations representative of the solid with the addition of a 2p
core hole (excited-state configuration). The electron removed from the 2p
was placed in the d shell. The resulting conﬁgurations were then 2p5dNsl.
Here, N is the total number of s and 4 valence electrons. The continuum
matrix elements were also calculated using excited-state configurations. In
this case, the Hartree-Slater problem was solved for an ion with a 2p core
hole, and the continuum wave function was then calculated from the
resulting self-consistent potential. In addition, rather than evaluate the

denominator of Equation 4.7 by integrating over closely spaced energies
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frdm 50 eV to 100 eV, this term was approximated by linear interpolation
of the 50 eV and 100 eV matrix elements.

Examples of the calculated wave functions are shown in Figure 4.7
for nickel. Wave functions for the other transition metals are given in
Appendix 2. The 2p and 3d wave functions are those for the atom with
the core hole, and the continuum wave function is that for the ion with
the core hole. Squares of the matrix elements obtained from these
calculations are shown in Figures 4.8 and 4.9. Calculations of the
normalized white line intensity using these matrix elements according to
Equation 4.7 are shown in Figures 4.10 and 4.11. In the calculations for the
3d metals, the continuum window intensity was multiplied by 1.5 to
account for the Ly edge contribution to the experimental normalization
windows.

These atomic calculations ignore the fact that the atoms exist in a
solid. The effect of the solid may be taken into account approximately by
renormalizing the 3d and 4d wave functions for the various atoms within
their appropriate Wigner-Seitz spheres (Hodges et al., 1972). No correction
is necessary for the 2p wave functions as they already lie well within the
Wigner-Seitz radius. White line intensities calculated using these
renormalized wave functions are also shown in Figures 4.10 and 4.11. As

shown, the magnitude of the correction is small.
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4.3 Discussion of Correlations

'As shown in Figure 4.11, good agreement between calculations and
experiment was obtained for the 3d metals. Somewhat poorer agreement
was obtained for the 44 metals as shown in Figure 4.10. The poor
agreement for the early 44 transition metals may well be a result of the -
atomic nature of the calculations. Calculated absorption spectra from
Miiller et al. (1982) obtained from one-electron, solid-state calculations
were in good agreement with the spectra presented here for Nb through
Pd.

The agreement obtained for the 3d metals is good enough to
consider correcting the experimental data for the effects of the matrix
elements, thereby obtaining a correlation similar to that of Figure 4.6 that
is more appropriate for measuring changes in d occupancy. The correction
involves dividing the experimental data points of Figure 4.6 by the matrix
element éontributions on the right hand side of Equation 4.7. These
matrix element contributions, or correction factors, are shown in Table 4.1
and were cal'culated using the renormalized Wave functions. The
correction factor for copper was calculated using a 2p to 3d matrix element

without a core hole as the 34 states of copper are already filled.
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Metal Correction Factor
Ti 092
v .106
Cr 118
Fe 143
Co 155
Ni 169
Cu 172

Table 4.1. Matrix-element correction factors for the 3d transition metals.

Figure 4.12 shows the normalized white line intensities for the 34

transition metals thus corrected. A linear fit to the data gives
I=10.8 (1-0.10n) (4.8).

To measure d-occupancy changes during alléying using this correlation,
one first divides the normalized white line measurements by the
appropriate correction factor from Table 4.1 and then applies Equation 4.8.
This method further assumes, however, that the appropriate matrix
elements do not change during alloying. Atomic calculations suggest that
this is a reasonable assumption. For example, as discussed in Chapter 5, an

EELS measurement based upon the correlation in Figure 4.6 suggests that
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Cu 34 statés become depleted by about 0.3 electrons/atom when forming
amorphous CuZr. Atomic calculations show that the square of the 2p to
3d matrix element for the partially ionized atom differs by less than 3%
from that of the neutral atom.

As mentioned in Chapter 1, previous white line studies that have
correlated changes in d occupancy with changes in white line intensity
have obtained the proportionality only for individual metals using d
occupancies from band-structure calculations. This approach, however,
suffers from uncertainties in isolating small white line intensities for the
late transition metals as well as from inaccuracies in the band calculations.
The approach presented here avoids these problems, as the
proportionalitybetween white line area and 4 occupancy is not solely
dependent upon one metal but is determined by analyzing the systematics
across the entire series. Furthermore, it is useful to note that the previous
studies simply would not allow measurements on copper alloys, since
there is no white in the pure metal from which to develop the
proportionality. Measurements using the approach developed here on

various alloys (including copper alloys) are presented in the next chapter.
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Chapter 5 White Lines in Transition-Metal Alloys

In this chapter the results of the previous chapter are used to infer
changes inthe 3d occupancy at transition metal atoms in a number of
alloys. Spectra obtained for these alloys as described in Chapter 3 are
presented here and discussed in §5.1. A simple band theory of alloying
between transition metals is discussed in §5.2 in conjunction with the

measurements. A summary and conclusions are presented in §5.3.

5.1 Absorption Spectra from Alloys

A number of alloys were investigated in this study. Copper alloys
were emphasized because their 3d band is full in the pure metal. Any
enhancements of the white lines that were due to alloying would then be
easily discernible. Iron-cobalt alloys of various concentrations were also
studied, as iron d occupancy measurements were available for comparison
from Méssbauer spectrometry studies. Several nickel alloys were also
investigated.

Data obtained from amorphous CuZr and amorphous CuTi
obtained with the parallel acquisition spectrometer are shown in Figures
5.1 and 5.2. A spectrum from pure Cu (dotted line) is shown in each graph
for reference. The Cu spectra have been scaled to match those of the alloys
beyond the L white line. The enhancements of the white lines observed
in the alloys indicate that some electrons have left Cu 3d states on average
upon alloying. By determining the change in normalized white line
intensity in the alloy (using the Cu spectrum to isolate the white lines)

and applying Equation 4.3, one finds that approximately 0.3 electron/atom
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has‘ left the Cu 3d states in both alloys. The background structure in the
pure Cu spectrum leads to some ambiguity in the appropriate scaling,
however. Shifting the Cu spectrum up or down slightly by amounts
representative of the structure variations yields an uncertainty of + 0.1
electron/atom. In addition, applying the correction scheme of Table 4.1-
and Equation 4.8 reduces these numbers by 47%. In either case, however,
the measurement compares favorably with local density-of-states
calculations of Manh et al. (1987). Their tight-binding calculations for
amorphous CuZr predict a depletion of .31 electron/atom from copper 34
states that is due to alloying.

Data obtained from disordered fcc CuAu, CuPd, and CuPt are shown
in Figures 5.3-5.5. There appears to be little difference between the alloy
and the pure Cu spectra at the thresholds, although the scaling is again
somewhat uncertain because of variations in the background structure of
the spectra. The small enhancment in the L3 white line in the CuPt

spectrum corresponds to a depletion of about 0.05 electron/atom using
Equation 4.3. It is wbrthwhile to note that density-of-states calculationé for
CuAu by Kokko et al. (1990) show the d band in the alloy to be filled. Also,
calculations for disordered fcc CuPd by Winter et al. (1986) show the local
density of d states at copper atoms to be full.

Data obtained from amorphous CujgZr7 and pure copper (dotted
line), using the serial detection spectrometer, are shown in Figure 5.6.
White lines were again observed in the alloy spectrum, indicating that the
copper 3d states are slightly depleted because of alloying. Using Equation

4.3, this increased white line intensity corresponds to a reduction of
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appfoximately 0.3 £ 0.1 electron/atom. The uncertainty in the
measurement is again due to the uncertainty in scaling the Cu spectrum.
Application of the matrix-element correction reduces this number by 47%.

Data were also obtained from crystalline CujpZr;. After obtaining a
spectrum from the amorphous sample, the sample was heated in the
electron microscope until it crystallized, and another spectrum was
recorded from the same region. These data are presented in Figure 5.7.
The small decrease in the white line intensity in the crystalline material
(dotted spectrum) corresponds to an addition of 0.1 electron/atom
compared to the amorphous alloy using Equation 4.3. For comparison, the
crystallization enthalpy measured by DSC was 1.3 kcal/mole.

In addition, data were obtained from disordered and ordered NizV
using the serial-detection spectrometer. Again, the ordering treatment
was induced by heating the sample in the electron microscope, and spectra
were obtained from the same region of the specimen before and after
~ ordering. Several spectra were recorded and»processed individually in
each case. A typical spectrum for disordered NizV is shown in Figure 58
with a pure Ni (dotted) spectrum for reference. An average decrease in the
white line intensity was found, corresponding to an addition of 0.05 + 0.2
electron/atom to Ni 3d states through Equation 4.3. The uncertainty
represents the sum of the scatter in the Ni3V and Ni data. The matrix-
element correction reduces this number by 45%. Typical spectra obtained
before and after the heat treatment in the microscope are shown in Figure
5.9. The dotted line represents the spectrum from the ordered alloy. An

average increase in the white line intensity was found compared to the
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disordered alloy, corresponding to a depletion of 0.05 + 0.2 electron/atom
using Equation 4.3. For comparison the ordering enthalpy measured by
DSC was 1:0 kcal/mole.

Data were also obtained from disordered Fe-Co alloys with Co
concentrations of 9.4%, 30%, 50%, and 70%. Five spectra were obtained
from each alloy sample as well as from pure Fe. Typical spectra for the
disordered 50% alloy and pure Fe (dotted line) are shown in Figure 5.10.
Spectra for the other alloy concentrations appear similar to that shown in
Figure 5.10. Average values for the measured electron transfers using
Equation 4.3 are presented in Table 5.1 along with Mdssbauer spectrometry
measurements of Hamdeh et al. (1989) and linear combination of atomic
orbitals (LCAO) calculations of Richter and Eschrig (1988). The
uncertainties in the EELS measurements reflect the scatter in the white
line intensities observed for each set of spectra. General agreement is
observed, given the uncertainty in the EELS measurements. In addition,
two spectra were obtained from the 50% alloy after an ordering heat
treatment in microséope. Typical spectra for {he disordered and ordered
(dotted line) 50% alloys are shown in Figure 5.11. An average increase in
white line intensity was observed compared to the disordered alloy,
corresponding to a depletion of 0.05 + 0.3 electron/atom, using Equation
4.3. The matrix-element correction reduces this number by 35%. For

comparison, the ordering enthalpy measured by DSC was 0.9 kcal/mole.
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EELS
% Co _ (uncorrected) Hamdeh et al. Richter et al.
9.4‘7(: -3+ 4 +.07 —_—
30% -4 i 4 +.20 +.1
50% -2% .4 +.12 +.1
70% -4+ 4 +.04 +.1

Table 5.1. Changes in Fe d occupancy in Fe-Co alloys from EELS
measurements, Mdssbauer spectrometry measurements, and LCAO
calculations. Applying the matrix element correction reduces the EELS

measurements by 35%.

Lastly, data were obtained from Ni3zAl, using the parallel acquisition
spectrometer. This spectrum is shown in Figure 5.12 with a Ni spectrum
(dotted line) for reference. A small enhancement in the intensity was
observed vin the L3 white line as well as in the shoulder of the white line.
Ignoring the shoulder, the increased intensity corresponds to a depletion
of 0.1 electron/ atom from Ni 3d states. Including the shoulder, the value
is 0.2 electron/atom. The matrix-element correction reduces these
numbers by 45%. No published experimental or theoretical data were
available for comparison.

These results show that EELS is sensitive to d-occupancy changes
that result from alloying. Furthermore, the approach presented in
Chapter 4 allows a quantitative measurement of these d-occupancy
changes. For the alloys examined here, the measured changes in d

occupancy upon alloying were in agreement with data from the literature
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whére available. In addition, this technique may be useful for detecting d-
occupancy changes during phase transformations in favorable
circumstances. For the alloys investigated here, the d-occupancy changes
due to crystallization and ordering were small, as were the corresponding
crystallization and ordering enthalpies.

It is worthwhile to restate that these measurements reflect changes
in electrdn densities local to a given atom species because the 2p electrons
are atomiclike and the outer 4 states are tightly bound to a given atom. In
addition, the measurements were made on the assumption that the 2p to
3d (or 4d) matrix elements remained constant during alloying. As
mentioned in Chapter 4, atomic calculations suggest that this is a
reasonable assumption for small d-occupancy changes.

It should also be noted that other techniques for probing d-electron
densities may yield measurements different from those obtained by EELS.
In ultraviolet photoelectron spectroscopy, for example, the relevant matrix
elements clearly depend upon the entire spatial extent of the d-electron
wave functions. The wave functions presenfed in Appendix 2, however,
show that the 2p to 3d (or 4d)matrix elements of importance in white line

studies depend only upon the overlap in the core region of the atom.

5.2 Heats of Formation and d Electrons

Aside from detailed band-structure calculations, there are two well-
known models for predicting the heats of formation of alloys. The one
that has received perhaps the most attention since its introduction is the

Semiempirical "macroscopic-atom" model of Miedema et al. (1973, 1975).
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In this model, an alloy is regarded as being composed of Wigner-Seitz cells
of the elemental metals A and B. There are two terms that contibute to
the heat of formation in this model. The first is attractive and results
from a flow of charge that is due to the difference in work functions of the
metals. The second is repulsive and arises from the need to remove the
discontinuity in the charge density across the Wigner-Seitz boundary. As
noted by Pettifor (1987), the model lacks quantum mechanical justification
and requires judicious choices for values of the work function and charge
density terms for its predictive success.

An alternative model that has received considerable attention for
transition metals is the rectangular d band model of alloying due to
Pettifor (1978, 1979, 1983) based on the rectangular d band treatment of
cohesion by Friedel (1969). Friedel suggested that in evaluating the
cohesive energy that was due to thé broadening of atomic d-electron
energy levels into energy bands, one could approximate the actual d-
electron density of states by a rectangular density of states as shown in
Figure 5.13. The width and height of this rectangular density of states ére
given by W and 10/W, respectively, since there must be 10 total available
states for d electrons. The lowest lying and highest lying of these energy-
band states are generally called "bonding" and "antibonding," respectively,
because of their relative positioning with respect to the (assumed
degenerate) atomic energy level, Eq. The cohesive energy per atom in this
simple band picture may be calculated by subtracting the total energy of the
d electrons in the isolated atom from the total energy of the d electrons in

the energy band of the solid. Assuming that the rectangular 4 band is
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Figure 5.13. Rectangular energy band in the Friedel treatment of cohesion.
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centered about the atomic energy level, Eq, one finds

EF
‘ Ng W
Econ (per atom) = Ej n(E)EdE - NgEd = ——55— (10-Nd), (5.1)
0 ‘
% Ng W
| where Ep = Egq -5 and Ep=Eg+ 10 - (5.2)

A plot of the cohesive energies for the 44 transition metals taken from
Kittel (1976) are shown in Figure 5.14 along with those predicted by the
Friedel model. An average band width of 7.5 eV for the 44 series (Pettifor,
1977) was used to generate the solid curve. As shown in Figure 5.14, the
Friedel treatment reproduces quite well the empirical trend in both shape
and magnitude.

Although the actual d densities of states in transition metals are not
rectangular, the integrated densities of states as a function of energy are
] nearly linear (Moruzzi et al., 1978), such as would be obtained through a
rectangular band treatment. This agreement between the integral density
of states accounts for the success of the rectangular band treatment.
Although this model neglects cohesion resulting from the outer s
electrons as well as the repulsive forces that clearly must be present to
prevent the metallic lattice from collapsing, it nevertheless provides good
motivation for addressing the d electrons in models of alloying between
transition metals.

The Pettifor model for alloying between transition metals extends

the Friedel treatment by joining the energy bands for the individual
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metals inté a common alloy band as illustrated in Figure 5.15. Here Ep
and Ep are the atomic energy levels that split into bands of width W4 and
W respectively. The number of d electrons in each metal is given by N
and Ng. When atoms in the metals mix to form a common rectangular
band, the partial densities of states of the individual metal bands must
deform to avoid unphysically large electron transfers when filling the
common band. Pettifor has suggested skew rectangular partial densities of
states as shown. To fix the parameter "a" that determines the slope of the
partial density of states shown in Figure 5.15, Pettifor requires that Ep and
Ep lie at the centers of gravity of their respective partial bands in the alloy.

This constraint gives

a= Wag’ (5.3)

where AE = Eg-EA. The value of WaB may be determined by requiring
~ the second moment of the total density of states to be equal before and

after alloying. This constraint gives

1
W2)B = 5 (W25 + W2p) + 3AE2, (5.4)

The d-electron contribution to the alloy heat of formation is given by the
total electronic energy in the alloy band minus the total electronic energy

in the individual metal bands. These integrations yield
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AH = - i (AN)(AE) NaveWAB (10 — Nave)

1 1
+20 NgW3 (10-Ng) +710 NAWA(10 Na), (5.5)

where Nave is the average number of d electrons and AN = N - N5. Note
that this expression is independent of the form of the partial densities of
states. This is expected because the total alloy density of states that
determines the band energy is rectangular.

The electron transfer between the bands may be obtained by
integrating the partial density of states for atom A in the final band and
subtracting Na. This gives

AN 3 AE
AQA = 2 10 Nave (10 Nave) WAB (56)

Although Equations 5.5 and 5.6 indicate that AH and AQ are both
_ proportional to AN and AE, they also show that AH cannot be written as a
simple’functioh of AQ. Thus, although one might expect AH to scale
roughly with AQ, the equations do not suggest a simple proportionality.
Values of AH and AQ were calculated, using Equations 5.5 and 5.6
for some of the alloys discussed in the previous section. The results of
these calculations are shown in Table 5.2. Energies are given in eV, heats
of formation are given in kcal/mole, and electron transfers are in
electrons/atom. Miedema heats of formation (AH)s) compiled by de Boer
et al. (1988) are shown for comparison as are other heat-of-formation

measurements (AHgxp) from the literature. Bandwidths for Cu, Pd, Fe,
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and Co Wére determined from density-of-states calculations by Moruzzi et
al. (1978). The bandwitdths for Ti, Zr, and Pt were taken from Mattheiss
(1964); Pettifor (1977); and Mattheiss and Deitz (1980) respectively. In
addition, EA and Ep are the atomic energy levels from the Hartree-Slater
calculations, using dN-1s1 configurations.

As shown in Table 5.2, the model predicts the correct sign for the
heat of formation when AN is small, but fails when AN is large. In
addition, the model generally overestimates the heats of formation and
the electron transfers compared to their experimental values. In the case
of CuAu, the model fails completely as both constituents have full 4
bands. It should be noted, however, that AH is quite sensitive to the input
band parameters. For example, reducing the difference between E4 and Ep
by 20% for CuZr (leaving the other parameters unchanged) yields a heat of
formation of about -3 kcal/mole, a value close to that observed
experimehtally. This sensitivity, however, combined with the
inaccuracies of the input parameters, makes the model of questionable use
for accurately prediéting heats of formation of alloys. It does, however,
provide an interesting picture of alloying between transition metals and
suggests that AH should scale roughly with AQ. This scaling behavior,
however, was not observed between the d-occupancy measurements and
the experimental heats of formation. For example, although CuPd has a
larger heat of formation than CuZr and CuTi, it showed no electron
transfer, whereas CuZr and CuTi both showed a depletion of about 0.2

electron/atom from Cu atoms. Such discrepancies are not surprising
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Alloy ‘ Na, NB Ea,EB WA, Wp  AH AQas  AHM AHEgxp
CuZr 10, 3 -6.5,-33 40,78 +54 -0.9 81 -2.2a
CuTi 10,3 -6.5,-33 4.0,5.2 +25 =05 =31 -23a
CuPd 10,9 -6.5,-7.8 4.0,5.5 -8.0 -09 48 -26P
Cth 10,9 -6.5,-82 4.0,72 -8.0 -09 43 -1.6¢
CuAu 10, 10 0 0 -20 -1.8¢
FeCo 7,8 -52,-54 6.1,59 -0.5 +03 02 -1.6¢

a Kleppa and Watanabe (1982).

b Steiner and Hiifner (1981).

c Kubasbhewski and Catterall (1956).

Table 5.2. Heats of formation and electron transfers calculated from the
Pettifor model. Band widths, Miedema heats of formation, and heats of
formation from the literature are also shown. Energies are in eV, and

heats of formation are in kcal/mole.



102

given the simple nature of the model and the fact that it ignores s
electrons completely.
5.3 Summary and Conclusions

I have presented an analysis of the white lines found at the Lz and
L3 absorption edges for the 3d and 44 transition metals. Plots of the white
line intensity normalized to the trailing background were shown to reflect
the linear filling of the d states across both transition series. In addition,
the correlations between normalized white line intensity and d occupancy
provided a method for measuring changes in d occupancy that were due to
alloying and solid-state phase transformations.

The normalized white line intensity was modeled using atomic
wave functions from Hartree-Slater calculations. Although these
calculations deviated from the experimental data for the early 44
transition metals, the agreement for the 3d series permitted a correction of
the white line intensity correlation for the effects of the matrix elements.

- Measurements of d-occupancy changes that were due to alloying using
both the corrected and uncorrected correlations were in agreement with
calculations from the literature.

In addition, measurements of d-occupancy changes that were due to
alloying were not simply proportional to the corresponding heats of
formation, although a simple d-band model of alloying suggests that
electron transfers and heats of formation should roughly scale. The
discrepancy is not surprising given the simple nature of the model and the

fact that it ignores s electrons entirely.
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Appendix.l L3 Edge Spectra for the 3d and 4d Transition Metals
In the following pages, deconvoluted and background subtracted
Ly 3 edge spectra are presented for the 3d and 44 transition metals. These

data have been processed as described in Chapter 3.
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Figure A1.13. L3 spectrum for nickel.



3.0

2.5

2.0

1.5

1.0

Scaled Intensity

0.5

0.0

119

IIIIIIllllllll'lll.lllllllllll

BEREEEREN EN

‘llll|IIlllllIIIIIIllll|l||llllllll|llllIlll'lllll

(EEERU NN NN NN NS SRR NN NN

-
-}
-
—f
-t
-
-
-
—
-4
-
-
-
-
-
-
-

Ll 1 1

900 920

940 960
Energy Loss (eV)

Figure A1.14. Lj 3 spectrum for copper.

980

1000



120

Appendix 2 Hartree-Slater Calculations
The Hartree-Slater method of atomic-structure calculations is well
docum'entefi (Hartree, 1957; Herman and Skillman, 1963). I will briefly
describe the nature of the calculation and typical computer input/output.
The time-independent Schrédinger equation for a Z electron atom
assuming a nucleus of infinite mass and ignoring all but Coulomb

interactions is written as

Z
pi2  Ze? § : e2
{21 2m -~ 1 }+ |ri_rj|}\P(rLl'?J woes In)
1=

i>j

=EW¥(ry, 17, ..., In). (A2.1)

Here, pj is the momentum operator, ¥ is the wave function of the atom,
and rj denotes the position vectors of the electrons. In the Hartree
approximation, ¥ is approximated by a product of one-electron wave

functions, i.e.,

Y(ry, 12, .., tn) = Q1x)02(r2) . . . Oz(ry). (A2.2)

Minimizing the Hamiltonian through the variational principle yields Z
one-electron equationé which may be simplified by assuming that each
electron moves in a static potential due to the other Z-1 electrons. These Z
one-electron equations may be separated according to the usual angular

and radial parts. The ¢; are then given by
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di = Rn(r) Yim(6,0), (A2.3)

where Rpi(r) is a radial wave function and Yim(6,9) is a spherical
harmonic. The radial equations to be solved are
{ dz 1(1+1)

~7* 7+ VO } P = B P, (A2.4)

where Ppi(r) = r Rpi(r). In this equation E and V(r) are measured in units
of Rydbergs and r is measured in Bohr units. In addition, V(r) is the sum
of the nuclear Coulomb potential and the average Coulomb potential of
the electrons. The treatment thus far, however, ignores exchange, i.e., that
the total wave function should be antisymmetric. In the Hartree-Slater
method, exchange is taken into account in an approximate manner by
including in V(r) a free-electron exchange potential which is proportional
to the cube root of the electronic charge density. The code used in this

~ study incorporated a Kohn-Sham exchange potential, which is simply the
free-electron exchange potential multiplied by 2/3. In addition, since the
Hartree-Slater treatment assumes a spherically-symmetric static potential,
Coulomb-correlation effects are ignored.

At sufficiently large values of r, the nuclear potential and the total
electronic Coulomb potential cancel. In addition, the exchange potential
goes to zero since the charge density goes to zero, and therefore the entire
potential goes to zero. The treatment is therefore flawed, since an electron

at large r should see the nuclear potential screened by the other N-1
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electrons, i.e., the electron should not act upon itself. The code of Herman
and Skillman remedies this problem by forcing the potential to have the
correct asymptotic form.

The average, electronic Coulomb potential embedded in V(r)
depends on the spherically averaged, total, electronic charge density. Since
both this potential and the one-electron wave functions are unknown, the
problem must be solved self-consistently. This is accomplished in the
code by first solving the one-electron radial equations using a trial
potential and trial energy eigenvalues. The potential is then recalculated
from the total charge density obtained from the previous solution, and the
process is repeated until self-consistency is obtained. The numerical
integration techniques are described in detail in Herman and Skillman
(1963).

Input and output files for a nickel atom with a core hole are
presented in Tables A2.1 and A2.2 in the pages following this discussion.

The input and output files are organized as follows:

INPUT

lines 1-4: heading, control parameters, and integration grid
parameters '

lines 5-15: normalized starting potential
line 16: Z, number of core states, number of valence states, ionicity

lines 17-23: atomic configuration (label, angular momentum
numbers, occupation number, eigenvalue estimates)

lines 24-25: termination parameters
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QUTPUT

line 1: heading

line s2: Z, radial grid parameters, number of grid points
lines 3-27: outpuf potential as -V(r)*r/2

line 28: label output wave function #1, angular momentum
number, occupation, 0.5%energy eigenvalue

lines 29-53: output wave function #1 as r*R(r)

line 54: label output wave function #2, angular momentum
number, occupation, 0.5*energy eigenvalue

lines 55-79: output wave function #2 as r*R(r)

Wave functions generated for atoms of the 3d and 44 transition series are
presented in Figures A2.1 through A2.12. These wave functions were
generated using excited-state configurations as described in Chapter 4.

As mentioned in Chapter 4, I wrote a computer code to generate
. continuum wave functions using the self-consistent potentials from the
Herman-Skillman code. These wave functions were obtained through
numerical integration of Equation A2.4 by the Numerov method (Hartree,
1957) where E is now the continuum energy. For equations such as A2.4 of

the form
y'=F@)y, (A2.5)

the finite difference formula reads
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1
Vj+1 - 25 +yi-1 = @y + 5E+1y541 ~ 2Fyyj + Frayj)l, (A2.6)

where & is the distance between consecutive yj. Thus, an integration over
a linear grid of spacing 8 may be carried out if y is known at the first two
grid points.

These two starting values for P(r) (or y in A2.6) may be determined
using the first few terms of a series solution for A2.4 at small r. At small
enough r, V(r) is simply the nuclear potential, and the function F(r) in
A2.6 is given by

10+1) 2Z
F(r) = (r; )_T

-E. (A2.7)

The factor of 2 on the potential arises when the Schrédinger equation is

written in reduced form, where P(r) = r*R(r). A series solution of the form

P(r)=rb Zan rn (A2.8)
n=0

yields b=I+1 and the following first three coefficients:

Zag

ap Z2 E
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_ ap
a3 ="g (1+1) (+2) (21+3)

{ZE (l+4)-2 73}, (A2.11).

Thé value of ag may be arbitrarily chosen as unity since the wave function
is normalized following the integration.

The program initially calculates a wave function using a linear grid
spacing of 0.002 Bohr radii. A second wave function is then calculated
using a grid spacing of 0.001 Bohr radii. These wave functions are then
normalized to an amplitude of n—1/2 E-1/4 at forty Bohr radii (essentially
infinity) and compared with each other to verify that the integrations are
accurate. Maximum differences between the two wave functions
calculated in this manner were typically 0.1% of the maximum amplitude.
Continuum wave functions for ions of the 3d and 4d series are presented
in Figures A2.1 through A212.

Input and output files for generating a continuum wave function of
energy 50 eV and 1=2 are shown in Tables A2.3 and A2.4, respectively. In
~ addition to calculating the continuum wave function, the code also reads
in the associated 2p wave function and calculates its dipole integral with
the continuum function. The input and output files are organized as
follows:

INPUT
line 1: heading
line 2: Z, radial grid parameters, number of input radial grid points

lines 3-30: self-consistent potential
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line 31: 2p wave function heading, angular momentum number,
occupation, 0.5*energy eigenvalue

lines 32-59: 2p wave function

OQUTPUT

line 1: linear output grid spacing in Bohr units, maximum
difference between wave functions

line 2: dipole integral (twice)

lines 3+: tabular output of normalized, continuum wave function

A copy of the continuum code is presented at the end of this appendix.
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NICKEL .
0.667 -
0.0010 0.0500 2 3
0.0001 0.0001 441 0100 1 O

1.00000 0.98990 0.97960 0.96930 0.95890 0.94850 0.93830 0.92820 0.91930 0.90850
0.89900 0.88030 0.86230 0.84500 0.82830 0.81210 0.79660 0.78160 0.76720 0.75330
0.73990 0.71450 0.69070 0.66830 0.64710 0.62690 0.60770 0.58930 0.57180 0.55510
0.53910 0.50900 0.48120 0.45530 0.43120 0.40890 0.38810 0.36880 0.35090 0.33410
0.31840 0.28950 0.26360 0.24040 0.21960 0.20100 0.18440 0.16870 0.15660 0.14500
0.13460 0.11720 0.10320 0.09180 0.08250 0.07470 0.06820 0.06260 0.05800 0.05400
0.05050 0.04490 0.04050 0.03700 0.03440 0.03000 0.02500 0.02500 0.02500 0.02500
0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500
0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500
0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500
0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500 0.02500
28. 7 00.00

1S 100 2. -600.70

2S 200 2.-110.15

2P 210 5. -90.02

3S 300 2. -30.63

3P 310 6. -15.71

3D32010. -50

45400 1. -10
-1.
2.

Table A2.1. Computer input file for the'Herman-Skillman program.
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Nickel
28.00 0.001000 0.050000 192 i

0.2789914E+02 0.2789395E+02 0.2788848E+02 0.2788274E+02 0.2787669E+02 0.2787034E+02 0.2786365E+02 0.2785662E+02
0.2784923E+02 0.2784145E+02 0.2783327E+02 0.2782467E+02 0.2781563E+02 0.2780611E+02 0.2779611E+02 0.2778558E+02
0.2777451E+02 0.2776286E+02 0.2775061E+02 0.2773772E+02 0.2772416E+02 0.2770990E+02 0.2768400E+02 0.2767912E+02
0.2766253E+02 0.2764507E+02 0.2762671E+02 0.2760740E+02 0.2758709E+02 0.2756572E+02 0.2754325E+02 0.2751962E+02
0.2749477E+02 0.2746864E+02 0.2744116E+02 0.2741227E+02 0.2738189E+02 0.2734996E+02 0.2731639E+02 0.2728112E+02
0.2724405E+02 0.2720510E+02 0.2716419E+02 0.2712121E+02 0.2707609E+02 0.2702870E+02 0.2697896E+02 0.2692677E+02
0.2687201E+02 0.2681459E+02 0.2675437E+02 0.2669125E+02 0.2662512E+02 0.2655586E+02 0.2648335E+02 0.2640745E+02
0.2632807E+02 0.2624506E+02 0.2615832E+02 0.2606771E+02 0.2597311E+02 0.2587441E+02 0.2577148E+02 0.2566418E+02
0.2555240E+02 0.2543602E+02 0.2531493E+02 0.2518899E+02 0.2505809E+02 0.2492212E+02 0.2478093E+02 0.2463441E+02
0.2448244E+02 0.2432487E+02 0.2416158E+02 0.2399244E+02 0.2381731E+02 0.2363606E+02 0.2344856E+02 0.2325467E+02
0.2305429E+02 0.2284730E+02 0.2263361E+02 0.2241314E+02 0.2218587E+02 0.2195176E+02 0.2171083E+02 0.2146308E+02
0.2120857E+02 0.2094731E+02 0.2067932E+02 0.2040459E+02 0.2012308E+02 0.1983471E+02 0.1953939E+02 0.1923704E+02
0.1892759E+02 0.1861100E+02 0.1828729E+02 0.1795655E+02 0.1761891E+02 0.1727458E+02 0.1692379E+02 0.1656682E+02
0.1620395E+02 0.1583544E+02 0.1546154E+02 0.150824GE+02 0.1469843E+02 0.1430947E+02 0.1391570E+02 0.1351726E+02
0.1311433E+02 0.1270723E+02 0.1229640E+02 0.1188246E+02 0.1146616E+02 0.1104825E+02 0.1062944E+02 0.1021025E+02
0.9790981E+01 0.9371815E+01 0.8952834E+01 0.8534689E+01 0.8117722E+01 0.7703032E+01 0.7291972E+01 0.6886183E+01
0.6487513E+01 0.6097897E+01 0.5719260E+01 0.5353407E+01 0.5001939E+01 0.4666187E+01 0.4347167E+01 0.4045559E+01
0.3761708E+01 0.3495808E+01 0.3247477E+01 0.3016225E+01 0.2801399E+01 0.2602211E+01 0.2417794E+01 0.2247248E+01
0.2089663E+01 0.1944162E+01 0.1809890E+01 0.1686046E+01 0.1571886E+01 0.1466688E+01 0.1369796E+01 0.1280625F+01
0.1198558E+01 0.1123074E+01 0.1053686E+01 0.9899960E+00 0.9316005E+00 0.8779552E+00 0.8285437E+00 0.7829071E+00
0.7406237E+00 0.7012888E+00 0.6645465E+00 0.6300653E+00 0.5975127E+00 0.5666138E+00 0.5371078E+00 0.5087411E+00
0.4812762E+00 0.4545363E+00 0.4283673E+00 0.4026217E+00 0.3771830E+00 0.3520167E+00 0.3270885E+00 0.3024260E+00
0.2780425E+00 0.2540258E+00 0.2304772E+00 0.2011554E+00 0.1809151E+00 0.1607460E+00 0.1414533E+00 0.1231850E+00
0.1061839E+00 0.9044025E-01 0.7607326E-01 0.6321725E-01 0.5174765E-01 0.4176010E-01 0.3308054E-01 0.2573173E-01

2P 1 500 -3227

0.6393490E-03 0.7072150E-03 0.7825640E-03 0.8660878E-03 0.9585281E-03 0.1060678E-02 0.1173380E-02 0.1297531E-02
0.1434080E-02 0,1584178E-02 0.1749255E-02 0.1930908E-02 0.2130912E-02 0.2351244E-02 0.2594104E-02 0.2861942E-02
0.3157488E-02 0.3483669E-02 0.3843546E-02 0.4240454E-02 0.4678038E-02 0.5160285E-02 0.5691549E-02 0.6276691E-02
0.6921121E-02 0.7630785E-02 0.8412209E-02 0.9272534E-02 0.1021952E-01 0.1126167E-01 0.1240824E-01 0.1366939E-01
0.1505627E-01 0.1658101E-01 0.1825687E-01 0.2009831E-01 0.2212108E-01 0.2434235E-01 0.2678077E-01 0.2945667E-01
0.3239210E-01 0.3561098E-01 0.3913927E-01 0.4300507E-01 0.4723877E-01 0.5187320E-01 0.5694378E-01 0.6248867E-01
0.6854892E-01 0.7516862E-01 0.8239502E-01 0.9027871E-01 0.9887368E-01 0.1082375E+00 0.1184312E+00 0.1285198E+00
0.1415719E+00 0.1546597E+00 0.1688592E+00 0.1842501E+00 0.2009152E+00 0.2189406E+00 0.2384153E+00 0.2594308E+00
0.2820803E+00 0.3064584E+00 0.3326602E+00 0.3607804E+00 0.39091 18E+00 0.4231448E+00 0.4575657E+00 0.4942543E+00
0.5332830E+00 0.5747141E+00 0.6185982E+00 0.6649707E+00 0.7138495E+00 0.7652326E+00 0.8190938E+00 0.8753806E+00
0.8340099E +00 0.9948655E+00 0.1057794E+01 0.1122601E+01 0.1189049E+01 0.1256855E+01 0.1325686E+01 0.1395157E+01
0.1464834E+01 0.1534227E+01 0.1602798E+01 0.1669955E+01 0.1735060E+01 0.1797434E+01 0.1856362E+01 0.1911098E+01
0.1960883E+01 0.2004847E+01 0.2042533E+01 0.2072904E+01 0.2095363E+01 0.2109272E+01 0.2114068E+01 0.2109283E+01
0.2094563E+01 0.2069685E+01 0.2034569E+01 0.1989295E+01 0.1934113E+01 0.1869444E+01 0.1795886E+01 0.1714210E+01
0.1625347E+01 0.1530376E+01 0.1430509E+01 0.1327049E+01 0.1221354E+01 0.1114822E+01 0.1008843E+01 0.9047590E+00
0.8038301E+00 0.7071961E+00 0.6158490E+00 0.5306087E+00 0.4521050E+00 0.3807681E+00 0.3168267E+00 0.2603151E+00
0.2110868E+00 0.1688363E+00 0.1331263E+00 0.1034176E+00 0.7910168E-01 0.5953230E-01 0.4405513E-01 0.3203333E-01
0.2286850E-01 0.1601614E-01 0.1099493E-01 0.7391789E-02 0.4861986E-02 0.3125714E-02 0.1961975E-02 0.1201031E-02
0.7161652E-03 0.4154543E-03 0.2341538E-03 0,1280321E-03 0.6780474E-04 0.3470268E-04 0.1700334E-04-0.1423524E-05
—0.9911290E-07-0.5069822E-08-0.3134225E-10 0.1013431E-10 0.7118306E-13-0.1045987E-13 0.2637792E-15-0.5160609E-17
0.8985497E-19-0.7367197E-21-0.8859952E-23 0.4678755E-25 0.6473762E-27-0.4981788E-28-0.3544814E-29-0.1805091E-30
—0.6893620E-33 0.3551768E-33 0.3989437E-36-0.3068023E-36 0.8526707E-38 0.0000000E+00 0.0000000E+00 0.0000000E +00
0.0000000E +00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Table A2.2. Computer output file from the Herman-Skillman program.
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Nickel .

28,00 0.001000 0.050000 216

50.0000 2 0.0050
0.2789914E+02 0.2789395E+02 0.2788848E +02 0.2788274E+02 0.2787669E+02 0.2787034E+02 0.2786365E+02 0.2785662E+02
0.2784923E+02 0.2784145E+02 0.2783327E+02 0.2782467E+02 0.2781563E+02 0.2780611E+02 0.2779611E+02 0.2778558E+02
0.2777451E+02 0.2776286E+02 0.2775061E+02 0.2773772E+02 0.2772416E+02 0.2770990E+02 0.2769490E+02 0.2767912E+02
0.2766253E 402 0.2764507E +02 0.2762671E+02 0.2760740E+02 0.2758709E+02 0.2756572E-+02 0.2754325E 402 0.2751962E+02
0.2749477E+02 0.2746864E-+02 0.2744116E+02 0.2741227E+02 0.2738189E+02 0.2734996E+02 0.2731639E+02 0.2728112E4+02
0.2724405E +02 0.2720510E +02 0.2716419E+02 0.2712121E+02 0.2707609E+02 0.2702870E+02 0.2697896E +02 0.2632677E+02
0.2687201E+02 0.2681459E-+02 0.2675437E +02 0.2669125E+02 0.2662512E+02 0.2655586E-+02 0.2648335E.+02 0.2640745E+402
0.2632807E+02 0.2624506E+02 0.2615832E +02 0.2606771E+02 0.2597311E+02 0.2587441E+02 0.2577148E+02 0.2566418E402
0.2555240E+02 0.2543602E-+02 0.2531493E +02 0.2518809E-+02 0.2505809E+02 0.2492212E+02 0.2478093E+02 0.2463441E+02
0.2448244E+02 0.2432487E+02 0.2416158E+02 0.2399244E +02 0.2381731E+02 0.2363606E+02 0.2344856E+02 0.2325467E+02
0.2305429E+02 0.2284730E-+02 0.2263361E.+02 0.2241314E+02 0.2218587E+02 0.2195176E+02 0.2171083E+02 0.2146308E+02
0.2120857E+02 0.2084731E-+02 0.2067832F +02 0.2040459€+02 0.2012308E+02 0.1983471E+02 0.1953930E+02 0.1923704E402
0.1892759E +02 0.1861100E +02 0.1828720E+02 0.1795655E+02 0.1761891E+02 0.1727458E-+02 0.1692379E +02 0.1656682E+02
0.1620395E+02 0.1583544E+02 0.1546154E+02 0.1508249E+02 0.1469843E+02 0.1430947E+02 0.1391570E+02 0.1351726E+02
0.1311433E+02 0.1270723E-+02 0.1229640E+02 0.1188246E-+02 0.1146616E-+02 0.1104825E+02 0.1062044E+02 0.1021025E+02
0.9790981E+01 0.9371815E+01 0.8952934E+01 0.8534689E+01 0.8117722E+01 0.7703032E+01 0.7291972E+01 0.6886183E+01
0.6487513E+01 0.6097897E+01 0.5719260E+01 0.5353407E+01 0.5001939E+01 0.4666187E+01 0.4347167E+01 0.4045559E+01
0.3761708E+01 0.3495808E-+01 0.3247477E+01 0.3016225E+01 0.2801399E+01 0.2602211E+01 0.2417794E+01 0.2247248E+01
0.2089663E+01 0.1944162E+01 0.1809890E+01 0.1685046E-+01 0.1571886E+01 0.1466688E-+01 0.1369796E+01 0.1280625E+401
0.1198558E+01 0.1123074E+01 0.1053686E+01 0.9899960E-+00 0.9316005E-+00 0.8779552E-+00 0.8285437E+00 0.7829071E+00
0.7406237E+00 0.7012888E-+00 0.6645465E +00 0.6300653E-+00 0.5975127E-+00 0.5666138E-+00 0.5371078E+00 0.5087411E+00
0.4812762E+00 0.4545363E+00 0.4283673E+00 0.4026217E+00 0.3771830E+00 0.3520167E+00 0.3270885E+00 0.3024260E+00
0.2780425E+00 0.2540258E+00 0.2304772E+00 0.2011554E+00 0.1809151E+00 0.1607460E+00 0.1414533E+00 0.1231850E+00
0.1061839E+00 0.9044025E-01 0.7607326E-01 0.6321725E-01 0.5174765E-01 0.4176010E-01 0.3308054E-01 0.2573173E-01
2P 1 500 -3227
0.6393490E-03 0.7072150E-03 0.7825640E-03 0.8660878E-03 0.9585281E-03 0.1060678E-02 0.1173380E-02 0.1297531E-02
0.1434080E-02 0.1584178E-02 0.1749255E-02 0.1930908E-02 0.2130912E-02 0.2351244E-02 0.2584104E-02 0.2861942E-02
0.3157488E-02 0.3483669E-02 0.3843546E-02 0.4240454E-02 0.4678038E-02 0.5160285E-02 0.5691549E-02 0.6276691E-02
0.6921121E-02 0.7630785E-02 0.8412209E-02 0.9272534E-02 0.1021952E-01 0.1126167E-01 0.1240824E-01 0.1366939E-01
0.1505627E-01 0.1658101E-01 0.1825687E-01 0.2009831E-01 0.2212108E-01 0.2434235E-01 0.2678077E-01 0.2945667E-01
0.3239210E-01 0.3561098E-01 0.3913927E-01 0.4300507E-01 0.4723877E-01 0.5187320E-01 0.5694378E-01 0.6248867E-01
0.6854892E-01 0.7516862E-01 0.8239502E-01 0.9027871E-01 0.9887368E-01 0.1082375E+00 0.1184312E+00 0.1295198E+00
0.1415719E+00 0.1546597E+00 0.1688592E+00 0.1842501E+00 0.2009152E+00 0.2189406E+00 0.2384153E+00, 0.2594308E +00
0.2820803E+00 0.3064584E+00 0.3326602E +00 0.3607804E-+00 0.3909118E+00 0.4231448E+00 0.4575657E+00 0.4942543E 400
0.5332830E+00 0.5747141E+00 0.6185982E+00 0.6649707E+00 0.7138495E+00 0.7652326E+00 0.8190938E+00 0.8753806E+00
0.9340099E+00 0.9948655E+00 0.1057794E+01 0.1122601E+01 0.1189049E+01 0.1256855E+01 0.1325686E+01 0.1395157E+01
0.1464834E+01°0.1534227E+01 0.1602798E+01 0.1663955E+01 0.1735060E+01 0.1797434E+01 0.1856362E+01 0.1911098E+01
0.1960883E+01 0.2004947E+01 0.2042533E.+01 0.2072904E+01 0.2095363E+01 0.2108272E+01 0.2114068E+01 0.2109283E+01
0.2094563E+01 0.2069685E+01 0.2034569E+01 0.1989295E+01 0.1934113E+01 0.1869444E+01 0.1795886E+01 0.1714210E+01
0.1625347E+01 0.1530376E+01 0.1430509E+01 0.1327049E+01 0.1221354E+01 0.1114822E+01 0.1008843E+01 0.9047590E+00
0.8038301E+00 0.7071961E+00 0.6158490E +00 0.5306087E-+00 0.4521050E+00 0.3807681E-+00 0.3168267E+00 0.2603151E400
0.2110868E+00 0.1688363E+00 0.1331263E+00 0.1034176E+00 0.7910168E-01 0.5953230E-01 0.4405513E-01 0.3203333E-01
0.2286850E-01 0.1601614E-01 0.1099493E-01 0.7391789E-02 0.4861986E-02 0.3125714E-02 0.1961575E-02 0.1201031E-02
0.7161652E-03 0.4154543E-03 0.2341538E-03 0.1280321E-03 0.6780474E-04 0.3470268E-04 0.1700334E-04-0,1423524E-05
~-0.9911290E-07-0.5069822E-08-0.3134225E-10 0.1013431E-10 0.7118306E-13-0.1045987E-13 0.2637792E-15-0.5160609E-17
0.8985497E-19-0.7367197E-21-0.8859952E-23 0.4678755E-25 0.6473762E-27-0.4981788E-28-0.3544814E-26-0.1805091E-30
--0.6893620E-33 0.3551768E-33 0.3989437E-36-0.3068023E-36 0.8526707E-38 0.0000000E+00 0.0000000E+00 0.0000000E +00
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E +00 0.0000000E+00
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E +00 0.0000000E+00

A2.3. Computer input file for the continuum wave function program.



0.3200000E-01
0.3655345E-01
NICKEL
100.0000 .2
0.0000000E+00
0.3200000E-01
0.6400000E-01
0.9600001E-01
0.1280000E+00
0.1600000E+00
0.1920000E+00
0.2240000E+00
0.2560000E+00
0.2880000E+00
0.3200000E+00
0.3520000E+00
0.3840000E+00
0.4160000E+00
0.4480000E+00
0.4800000E+00
0.5120000E+00
0.5440000E+00
0.5760000E+00
0.6080000E+00
0.6400000E+00
0.6720001E+00
0.7040001E+00
0.7360001E+00
0.7680001E+00
0.8000000E+00
0.8320000E+00
0.8640000E+00
0.8960000E+00
0.9280000E+00
0.9600000E+00
0.9920000E+00
0.1024000E+01
0.1056000E+01
0.1088000E +01
0.1120000E +01
0.1152000E+01
0.1184000E+01
0.1216000E +01
0.1248000E+01

Table A2.4. Computer output file from the continuum wave function
program. Only the first page of output is shown.

-0.3742832E-03
0.3555345E-01

0.0000000E+00
0.2207376E-02
0.1337088E-01
0.3463111E-01
0.6359622E-01
0.9695385E-01
0.1315692E+00
0.1648803E+00
0.1949776E+00
0.2205576E+00
0.2408285E+00
0.2554014E+00
0.2641894E+00
0.2673234E+00
0.2650870E+00
0.2578670E+00
0.2461148E+00
0.2303164E+00
0.2109698E+00
0.1885696E+00
0.1635963E+00
0.1365104E+00
0.1077492E+00
0.7772587E-01
0.4682956E-01
0.1542647E-01
-0.1613901E-01
-0.4754314E-01
-0.7848173E-01
-0.1086694E+00
-0.1378388E+00
-0.1657408E+00
-0.1921440E+00
-0.2168348E+00
-0.2396183E+00
-0.2603181E+00
-0.2787768E+00
-0.2948571E+00
-0.3084415E+00
-0.3194331E+00

130
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Figure A2.1. Atomic wave functions for titanium.
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Figure A2.2. Atomic wave functions for vanadium.
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Figure A2.3. Atomic wave functions for chromium.
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Figure A2.4. Atomic wave functions for iron.
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Figure A2.5. Atomic wave functions for cobalt.
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Figure A2.6. Atomic wave functions for nickel.
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Figure A2.7. Atomic wave functions for zirconium.
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Figure A2.8. Atomic wave functions for niobium.
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Figure A2.11. Atomic wave functions for rhodium.
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PROGRAM MAIN
C THIS PRGRAM READS A SELF CONSISTENT POTENTIAL AND A CORE WAVE
C FUNCTION OBTAINED FROM A HARTREE SLATER CALCULATION AND
C CALCULATES A CONTINUUM WAVE FUNCTION AND ITS DIPOLE INTEGRAL WITH
THE CORE

C WAVE FUNCTION. THE INPUT FILE IS AS FOLLOWS:
C LINE1: TITLE
C LINE2: Z,R1,H1,NG (EXPONENTIAL GRID PARAMETERS)
C LINE3: ENERGY, ANG MOM NUMBER, DESIRED PRECISION (CONTINUUM FUNC)
C LINE 4+ POTENTIAL ON EXP GRID
C CORE HEADING, ANG MOM #, OCCUPATION #, ENERGY
c CORE WAVE FUNC ON EXP GRID
C THE RADIAL GRID IS GIVEN BY R=R1*EXP((N-1)*H1). NOTE THAT THE
C POTENTIAL IS GIVEN IN TABULAR FORMAT 8 COLUMNS WIDE AND IS
C THE MODIFIED HARTREE-SLATER POTENTIAL IS GIVEN AS R*V(R)/2.
g \
c
REAL*4 R(400),VR(400),1A(400),V2R(400),YCOR(400)
REAL*8 RLIN(50000),VRLIN(50000),YR(50000),YY(50000),F(50000)
REAL*8 Y2R(50000), YCORN(50000),Y2COR(400),PROD,DIP,ZZ,AA,BB,CC
REAL*4 HH,WAVL,MAX,H12,H56, MAXDIF,DIFF,E,EV,Z,R1,H1,QN1,EBI
INTEGER L,NG,ROWS,NUM,NMAX,L1,M
CHARACTER TAB
CHARACTER*10 TITLE
CHARACTER*6 LAB1
c
TAB=CHAR(9)
C
C READTITLE

READ(1,15)TITLE
15 FORMAT(A10)
C READ ATOM NUM, R1 AND H1 GRID PARAMS.# GRID POINTS
READ(1,17)Z,R1,H1,NG
17 FORMAT(F12.2,2F12.6,110)
C READ CONTINUUM ENERGY, ANG MOM #, AND DESIRED PRECISION
READ(1,20)EV,L
20 FORMAT(FS.4,15)
E=EV/13.6058
c
C INITIALIZE YY ARRAY TO ZERO
DO 73 I=1,50000
YY()=0.0
73 CONTINUE
c
C READ INPUT POTENTIAL ON RADIAL LOG GRID
ROWS=NG/8
DO 300 J=1,ROWS
READ(1,100) (IA(l), 1=1,8)
100 FORMAT(8E14.7)
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DO 2001=1,8
N=8*(J-1)+ ;
R(N)=R1*EXP((N-1)*H1)
VR(N)=-1A(l)*2/R(N)
200 CONTINUE
300 CONTINUE
hud
C READ CORE WAVE FUNCTION HEADING AND THEN WAVE FUNCTION
READ(1,302)LAB1,L1,QN1,EBI
302 FORMAT(A6,5,2F10.2)
READ(1,100)(YCOR(N),N=1,NG)

'C DO SPLINE FIT TO INPUT POTENTIAL
CALL SPLINE(R,VR,NG,1.E31,1.E31,V2R)
c
C PROVIDE PARAMETERS FOR INITIAL LINEAR GRID
HH=0.002
RMAX=R1*EXP((NG-1)*H1)
2 NMAX=INT(RMAX/HH)
c
C EVALUATE POTENTIAL ON LINEAR GRID USING SPLINT SUBROUTINE
DO 350 1=2,NMAX
X=HH* (1)
CALL SPLINT(R,VR,V2R,NG,X,Y)
VRLIN(l)=Y
350 CONTINUE
C .
C EVALUATE WAVE FUNCTION BY NUMEROV METHOD
c _
H12=HH*HH/12
H56=HH*HH*5/6
C PROVIDE STARTING YR VALUES, CAN'T USE R(1)=0 GRID POINT BECAUSE
_C  F(1) IS INFINITE, USE YR VALUES FROM SERIES SOLUTION FOR SMALL R
ZZ=1A(1)
=-Z2Z/(L+1)
BB=(ZZ*ZZ/(L+1)-0.5*E)/(2*L+3)
CC=(ZZ*E*(3*L+4)-2*ZZ*ZZ* Z2)/(6* (L+1)*(L+2)*(2*L+3))
YR(1)=0.0 .
YR(2)=(HH"*(L+1))*(1+AA*HH+BB*HH**2+CC*HH"*3)
YR(3)=((2*HH)**(L+1))*(1+AA*2*HH+BB*(2*HH)**2+CC* (2*HH)**3)
RLIN(1)=0.0
DO 410 N=2,NMAX
RLIN(N)=(N-1)*HH
F(N)=-(E-VRLIN(N)-(L*(L+1))/(RLIN(N}*RLIN(N)))
410 CONTINUE
DO 450 N=3,NMAX-1
A=(YR(N)*(2+H56*F(N)))-(YR(N-1)*(1-H12*F(N-1)))
YR(N+1)=A/(1-H12*F(N+1))
450 CONTINUE
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NORMALIZE WAVE FUNCTION OVER LAST CYCLE TO AN AMPLITUDE OF
1/((PI* 5)*(E*.25)) WHERE E IS IN RYDBERGS
NOTE: ONE CYCLE OF PLANE WAVE = 2*P| = ROOT(ENERGY)*WAVE LENGTH
FIND NUMBER OF POINTS TO SAMPLE ONE WAVE LENGTH
WAVL=2'3.1416/SQRT(E)
NUM=INT(WAVL/HH)
FIND MAX OF LAST "NUM" SEGMENTS AND NORMALIZE
MAX=YR(NMAX-NUM)
DO 470 I=NMAX-NUM+1,NMAX
IF (YR(I).GT.MAX) THEN
MAX=YR()
ENDIF
470 CONTINUE
DO 475 N=1,NMAX
YR(N)=YR(N)/(MAX*SQRT(3.1416)*SQRT(SQRT(E)))
475 CONTINUE
c
C CALCULATE NEW WAVEFUNCTION FOR HH=0.001 AND COMPARE TO PREVIOUS
C WAVE FUNCTION TO ESTIMATE PRECISION
c
IF (HH.EQ.0.001) THEN
GOTO 482
ENDIF
DO 480 I=1,NMAX
YY()=YR()
480 CONTINUE
HH=0.001
GOTO2 -
c
482 MAXDIF=0.0
DO 490 I=1,INT(NMAX/4)
DIFF=YR(2*I-1)-YY(l)
IF (DIFF*DIFF.GT.MAXDIF*MAXDIF) THEN
MAXDIF=DIFF
ENDIF
490 CONTINUE
c
486 FORMAT(E14.7,A1,E14.7)
c
C CALCULATE DIPOLE INTEGRAL USING TRAPEZOIDAL RULE
c
491 DIP=0.0
CALL SPLINE(R,YCOR,NG,1.E31,1.E31,Y2COR)
DO 522 1=2,NMAX
X=HH*(I-1)
CALL SPLINT(R,YCOR,Y2COR,NG,X,Y)
YCORN(l)=Y
522 CONTINUE

QOO0 O0

O



146

c - -
DO 524 N=1,NMAX-1
PROD=RLIN(N+1)*YCORN(N+1)*YR(N+1)+RLIN(N)*YCORN(N)*YR(N)
DIP=DIP+PROD*HH/2
524 CONTINU
C -
C WRITE THE WAVE FUNCTION Y(R) IN TAB FORMAT LINEAR DISPLAY GRID
C  WITH SPACING 0.04

M=INT(0.04/HH)

WRITE(9,486)HH, TAB,MAXDIF

WRITE(9,486)DIP,TAB,DIP

WRITE(9,15)TITLE

WRITE(9:20)EV,L

DO 492 N=1,INT(NMAX/M)

I=(N)*M+1

WRITE (9,486)RLIN(1), TAB,YR()
492 CONTINUE
c
c

STOP

END

SPLINE SUBROUTINE FROM NUMERICAL RECIPES

CO0O0

SUBROUTINE SPLINE(X,Y,N,YP1,YPN,Y2)
PARAMETER (MMAX=50000)
DIMENSION X(N),Y(N),Y2(N),U(MMAX)
IF (YP1.GT..99E30) THEN
Y2(1)=0.
U(1)=0.
ELSE
Y2(1)=-05 |
U(1)=(B/X2)-X())*(Y(-Y(1))/(X(2)-X(1))-YP1)
ENDIF
DO 11 1=2,N-1
SIG=(X(1)-X(-1)/(X(1+1)-X(i-1))
P=SIG*Y2(l-1)+2.
Y2()=(SIG-1.)/P
U=(6."((Y(+1)-Y(DVX(+1)-X(D)-(Y()-Y(I-1)
* XXX (1)-X(1-1))-SIG U(-1))P
11 CONTINUE
IF (YPN.GT..99E30) THEN
QN-=0.
UN=0._
ELSE
QN=05
UN=(3/(X(N)-X(N-1)))(YPN-(Y (N)-Y (N-1))/(X(N)-X(N-1))
ENDIF .
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Y2(N)=(UN-QN*U(N-1))(QN*Y2(N-1)+1.)
DO 12 K=N-1,1,-1
Y2(K)=Y2(K)*Y2(K+1)+U(K)
12 CONTINUE
RETURN
END
c
C SPLINT SUBROUTINE FROM NUMERICAL RECIPES
c
SUBROUTINE SPLINT(XA,YA,Y2AN,X,Y)
DIMENSION XA(N),YA(N),Y2A(N)
KLO=1
KHI=N
1 IF (KH-KLO.GT.1) THEN
K=(KHI+KLO)/2
IF(XA(K).GT.X)THEN
KHI=K
ELSE
KLO=K
ENDIF
GOTO 1
ENDIF
H=XA(KHI)-XA(KLO)
IF (H.EQ.0.) PAUSE 'Bad XA input.
A=(XAKHI)-X)H
B=(X-XA(KLO))H
Y=A"YA(KLO)+B*YA(KHI)+
* ((A**3-A)'Y2A(KLO)+(B**3-B)*Y2A(KHI))*(H**2)/6.
RETURN
END
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