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Abstract

Accretion onto compact objects plays a central role in high-energy astrophysics. The

process of accretion can substantially affect the magnetic field strength and geometry

(e.g., via the magneto-rotational instability or dynamo processes) and the accreting

plasma density. The presence of the compact object itself can significantly affect

the character and structure of the accreting plasma as well as its emission. This is

especially true, in the case of an accreting black hole, when a significant fraction of

the emission originates or passes near the horizon. To address this, we develop a

manifestly covariant magnetoionic theory, capable of tracing rays in the geometric

optics approximation through a magnetized plasma in a general relativistic environ-

ment. This is discussed for both the cold and warm, ion and pair plasmas. We also

address the problem of performing polarized radiative transfer covariantly in these

environments, considering in particular the anisotropic nature of magnetized plasmas,

the gravitational redshift and Doppler shift, the transport of the polarization vector

along the ray, and the ellipticity of the plasma eigenmodes.

The presence of relativity qualitatively changes the dispersion relation, introducing

a third branch. In addition it significantly augments various polarized emission and

transfer effects in strongly sheared flows, such as jets. Additionally, we demonstrate

that it is possible, due to refraction coupled with the existence of a horizon, to generate

a net circular polarization regardless of the intrinsic polarization of the emission

mechanism. We find that this is not likely to be of significant importance for circular

polarization in AGN (including the Galactic center and M81). However, in the context

of X-ray binaries, this may produce measurable circular polarizations in the infrared.

We also develop a formalism for performing polarized radiative transfer through
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tangled magnetic fields. We find that for Faraday thick plasmas with a net magnetic

helicity (but not necessarily a net magnetic field) it is possible to generate a circular

polarization fraction which increases with frequency, as is observed to be the case

in the Galactic center. In this case the handedness of the circular polarization is

determined by the angular momentum of the accretion disk. This mechanism can be

applied to extragalactic AGN and naturally explains the low degrees of circular polar-

ization observed. As with the refractive mechanism, this may also be applied to X-ray

binaries, and predicts ∼ 10% polarization fractions at infrared wavelengths. Again,

this provides a significant motivation for the development of infrared polarimetry.
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Chapter 1

Motivation

Magnetized plasmas are common in the Universe. While they can arise in many

situations, the most exotic involve compact objects. Because accretion onto compact

objects can power high luminosities, these tend to be the most easily observed as well.

The presence of the compact object can play a significant role in the character of the

magnetized plasma and the resulting emission. The very process of accretion can

greatly alter the geometry and strength of the magnetic field (e.g., via the magneto-

rotational instability (MRI) or dynamo processes) and the density and composition of

the plasma. In addition, when a significant portion of the emission originates near, or

passes near to, the compact object general relativistic effects may become important.

Examples of when this may be the case include accreting black holes in active galactic

nuclei (AGN) with masses ∼ 106−9M�, stellar mass black holes in X-ray binaries

(XRBs) with masses ∼ 10M�. Neutron stars in the form of pulsars or magnetars also

provide an energetic environment in which both general relativity and plasma physics

enter. As a direct result, techniques to perform plasma calculations in a general

relativistic environment and with tangled magnetic fields are necessary to provide

quantitative comparison with recent and future spectropolarimetric measurements. In

the following sections some of the salient observational motivations and their contexts

are briefly discussed.
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1.1 AGN

1.1.1 General Observations

AGN are observationally characterized by broad-band continuum emission, extreme

luminosity, small angular size, and commonly strong variability. AGN spectra tend

to be flat, usually extending from the infrared to the X rays, and frequently reaching

as far down as the radio and up as far as the γ-rays. This broad range in frequencies

imply the presence of highly nonthermal particle populations.

Their high luminosities, which make it possible to observe them at high redshift

(z . 6) and thus make them important as cosmological tools, typically range from

1040 to 1048 erg/s and are frequently sufficient to outshine their host galaxies (∼
1044 erg/s). Based upon the Eddington limit, a lower bound may be placed upon

AGN masses,

M & 106

(

L

1044 erg/s

)

M� , (1.1)

which ranges from 105 to 1010 M�. Again this is comparable to the mass of a typical

host galaxy of 1010 M�, implying that AGN may also be dynamically important.

Despite being so luminous, AGN appear extremely compact. The most stringent

limits come in the form of observations of stellar orbits about the AGN in the Galactic

center (which will be discussed in more detail in Section 1.1.4). These restrict its size

to be no greater than 5 × 10−4 pc, despite having a dynamically measured mass of

3.5 × 106 M� (Schödel et al., 2003; Ghez et al., 2003). For more distant AGN such

direct measurements are not feasible. Nonetheless, it is possible to use their effective

temperatures and the observed flux to estimate their angular size. This places a limit

of

θ = 87(1 + z)2

(

Fobs

10−11 ergcm−2s−1

)1/2 (
Teff

103 K

)−2

µas , (1.2)

(Krolik, 1999), which while not nearly as constraining as the measurements of the

Galactic center is also relatively compact considering their luminosity and mass.

Many nearby AGN also exhibit jets with large radio lobes over kpc scales. These

jets are extremely well collimated and are known to be highly relativistic. Superlu-
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minal ejections along the jets have been measured to propagate with bulk Lorentz

factors greater than 20 (i.e., apparent velocities greater than 20c) (see, e.g., Keller-

mann et al., 2000; Denn et al., 2000). Highly nonthermal synchrotron emission can be

seen from the radio to the X rays from knots within some jets, implying an efficient

reheating mechanism and the presence of strong magnetic fields. Further evidence

of this has been provided by linear polarization measurements along the jets (Lister,

2001).

Combined, the first two properties suggest that AGN are powered by supermassive

black holes. In the case of the Galactic center, the observations of stellar orbits have

already ruled out a number of alternative models discussed in the literature, including

fermion balls (Schödel et al., 2002), boson stars (Torres et al., 2000), and clusters of

dark astrophysical objects (Maoz, 1998). In the context of distant AGN, and in

particular Seyfert 1 galaxies, additional spectroscopic observations in the soft X rays

have found a line-like feature that is typically interpreted as a fluorescence line of iron

in a low ionization state. This Fe Kα line is peculiar in that it is extremely broad and

asymmetric, presumably due to general relativistic effects within the ergosphere of a

rotating black hole (see, e.g., Tanaka et al., 1995; Pariev et al., 2001; Fabian et al.,

2002; Reynolds & Nowak, 2003). If this is correct, then not only are AGN inhabited

by supermassive black holes, but a sizable portion of the X-ray emission is arising

from very near the horizon (. 10M).

AGN have been known to vary on timescales ranging from minutes to years at all

energies (Barr et al., 1980; Glass, 1981). The X-ray variability (∼ 20%) timescales

(103−5 s) in particular have been shown to be correlated with the X-ray luminosity,

with longer time scales being associated with higher luminosities (Green et al., 1993;

Barr & Mushotzky, 1986). This has subsequently been shown to imply an inverse

relationship between X-ray variability and the central black hole mass (Papadakis,

2004). Flares in the X-ray (Baganoff et al., 2001) and the near infrared have also

been oberved (Genzel et al., 2003). More recently, simultaneous observations of X-

ray and near infrared flares in the Galactic center have been made (Schödel et al.,

2004; Eckart et al., 2004; Genzel et al., 2003). These have implied that the emission
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Object Type Point-like Broad-band Broad Lines Narrow Lines Polarized

Radio-loud quasars Yes Yes Yes Yes Some

Broad-line radio galaxies Yes Yes Yes Yes Weak

Narrow-line radio galaxies No No No Yes No

OVV quasars Yes Yes Yes Yes Yes

BL Lac objects Yes Yes No No Yes

Table 1.1: Listed are a number of the radio loud subclasses of AGN with some typical
characteristics (adapted from Krolik, 1999).

at these frequencies can originate within tens of gravitational radii (M in geometrized

units) at most in some AGN.

In addition to these generic properties, many AGN also exhibit a number of spe-

cialized properties which are not shared by the entire group. These may include

characteristics such as broad or narrow absorption lines, radio brightness, X-ray

brightness, variability, polarization, and even total luminosity, which serve to cat-

egorize AGN into a number of subclasses. Since, in the context of AGN, we will be

primarily concerned with radio observations, we have restricted ourselves to those

AGN which are radio loud. In Table 1.1.1 some of the typical characteristics of these

AGN are listed.

1.1.2 Unified Model of AGN

Perhaps not surprisingly, many of the properties in the previous section can be ex-

plained by a model powered by an accreting supermassive black hole (see, e.g., Urry

& Padovani, 1995; Blandford, 1985). As schematically shown in Figure 1.1, central

features of this model include jets, a geometrically thick accretion flow or molecular

torus, a hot corona, and outflows of varying types. Based upon the geometry of the

line of sight of the observer, this model can reproduce the varied properties of the

different types of AGN. Blazars result when the line of sight lies within the jet, pro-

ducing a high degree of variability due to precessing and shocking jets and high flux

due to the extreme beaming. Broad-line radio galaxies are produced when the line

of sight passes through the inhomogeneous outflows in the evacuated funnel, but not
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the jet, leading to broad absorption lines as a result of the high proper motions of

clumps in the outflows. Narrow-line radio galaxies are observed when the line of sight

passes through the accretion flow directly.
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Figure 1.1: Diagram of the main features of the Unified Model of AGN. In partic-
ular, the central supermassive black hole, geometrically thick accretion flow, inho-
mogeneous outflow, magnetic fields, jets, hot corona, and the winds are shown. For
reference, the lines of sight associated with the different types of observed AGN are
also shown.

The hard X-ray emission is produced via Comptonization of soft disk photons in

the hot corona (presumably heated by magnetic reconnection), with the rest of the

emission due to the disk or the outflows. It is currently unclear where the majority of

the emission originates, but the aforementioned Fe Kα fluorescence line implies that a

significant portion of the luminosity is from the innermost regions. Nonetheless, the

so-called Unified Model is therefore able to explain in a single model (i) the prodigious

energy output of AGN, (ii) the high degree of variability in blazars, (iii) the broad and

narrow line features in the different types of AGN, (iv) the high effective temperature,
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and (v) the point-like nature of most AGN.

1.1.3 Polarimetric Observations

Polarization has long been recognized as diagnostic of the magnetic structure of AGN.

More recently, spectropolarimetry has been important in constraining AGN models.

As a result, there have been a number of polarization surveys of AGN. Many of these

have focused upon linear polarization, which is presumably due to jet emission. These

tend to be polarized at the 1-10% level (see, e.g., Saikia & Salter, 1988, and references

therein), and has usually been interpreted as providing evidence for strong, ordered

magnetic fields within the jets (see, e.g., Lister, 2001). However, of more interest here

are the circular polarization surveys.

In one of the earliest catalogs of circular polarization measurements in AGN,

Weiler & de Pater (1983) detected circular polarization at the 2σ level in 46 of 120

sources. Unfortunately, more than two circular polarization measurements were made

on only 55 of the 120 objects. In all cases the circular polarization was found to be

less than 0.5% despite the fact that the linear polarization fraction was as high as

10%. As discussed in Saikia & Salter (1988), there was no correlation between the

linear and circular polarization fractions. While not surprising, considering that the

mechanisms for linear-to-circular conversion depend upon many of the details of the

source, it does suggest that the circular polarization may be produced in a region

distinct from that producing the linear polarization.

In a subsequent study by Komesaroff et al. (1984), 22 compact extragalactic radio

sources (ostensibly quasars and BL Lac objects) were monitored at 5 GHz for a six

year period. During this time both the total intensity, linear, and circular polariza-

tion were measured. In 16 of the 22 objects circular polarization was detected at

the 4σ level or greater (but still at the few tenths of a percent level). In general,

the circular polarization had the highest fractional variability (typically greater than

60%), followed by the linear polarization (about 50%), and the intensity (about 25%).

Despite this heirarchy, there appeared to be no correlation in the variability between
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these components. There were instances of the polarization angle rotating by more

than 90◦ without any significant change in the circular polarization fraction. The fact

that the circular polarization rarely changed sign suggested that this variability was

not due to cancellation between orthogonally polarized regions, as implied in some

cases for the linear polarization, further differentiating the two.

More recent observations with sensitivities to circular polarizations as low as 0.01%

were performed by Rayner et al. (2000). In these it was found that BL Lac objects and

quasars had a systematically higher circular polarization fractions than non-blazar,

radio-loud AGN. Furthermore, high levels of variability and flat/inverted spectra were

associated with circular polarization detections, again suggesting that it is produced

in a compact region.

Homan et al. (2001) have carried out parsec-scale polarization observations of 40

radio-loud AGN. In 11 circular polarization was detected at the 3σ level. Of these,

6 had been previous observed by Komesaroff et al. (1984), and 5 had been found to

have maintained their sense of polarization, demonstrating the presence of long term

(& 20 yr) stability in this property. These observations were distinct from earlier

measurements due to their tremendously increased spatial resolution. The circular

polarization was found to be associated with either the jet base or the radio core,

in stark contrast to the linear polarization. Together with the previous observations,

this implicates the central black hole and associated accretion flow in the production

of the observed circular polarization.

1.1.4 Low-Luminosity AGN (Sgr A∗& M81)

A subset of galactic nuclei are extremely underluminous (cf. luminosities of 1027 –

1030 erg/sHz with 1037 – 1043 erg/sHz for normal AGN). Nonetheless, despite being

substantially sub-Eddington, these objects still show features characteristic of AGN,

including flat spectra and high brightness temperatures.

The best-known low-luminosity AGN (LLAGN) is Sgr A∗, the radio point source

associated with the Galactic center. A number of observations have found circular
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polarization between 1.4 and 15 GHz at the ∼ 1% level (Bower et al., 1999; Sault &

Macquart, 1999; Bower et al., 2002). Despite this, linear polarization is not present

at these frequencies, in contrast to circular polarization in blazars. However, linear

polarization without significant circular polarization has been found at significantly

higher frequencies (112 GHz) (Aitken et al., 2000; Bower, 2003), implying a significant

change in the environment over this range in wavelengths. The circular polarization

varies on timescales no longer than days by as much as 100% despite having a constant

sign over more than two decades (Bower, 2003). The largest variations appear to

be associated with the transition from a low to flaring state in which the spectral

index of the polarization fraction in the flaring state may reach as high as +1 (Bower,

2003). It is remarkable that the circular polarization fraction increases with frequency

until reaching a high-frequency cutoff (presumably below 112 GHz). The typical

mechanisms by which circular polarization is produced, e.g., synchrotron emission,

Faraday conversion, etc., result in both a large linear polarization and a circular

polarization fraction that decreases with increasing frequency. Hence, the polarization

measurements in Sgr A∗ imply either a nontrivial environment or the presence of a

novel polarization mechanism.

A radio survey (8.4 GHz) for polarization in LLAGN was performed by Bower

et al. (2002). Of 11 sources, 3 were observed to have statistically significant levels

of linear polarization (0.3–1.7%) and 1, M81, with a significant circular polarization

(0.25%). In many ways M81 appears very similar to Sgr A∗. These include the total

luminosity, the presence of an inverted radio spectra, and similar circular and linear

polarization behavior below 22 GHz. Of particular interest is the fact that as with

Sgr A∗, in M81 the circular polarization fraction increases with frequency at GHz

frequencies, suggesting that this may be a generic behavior.

Recently, a putative jet-like feature has been observed in the X rays in Sgr

A∗ (Baganoff, 2004). It can be distinguished from the diffuse X-ray background

by the hardness of its spectrum (4 − 8 keV as opposed to 2 − 4 keV). This feature is

normal to the Galactic plane, and aligned with magnetic filiments at 30 pc. It ends

in two X-ray lobes (emitting near 2 keV) which require an input power on the order
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of 1039 erg/s. This has fueled speculation upon the source of the radio emission in

the Galactic center, and in particular, whether it is produced in an accretion flow or

the formative region of a jet. Bower et al. (2004) have limited the region responsible

for the emission at 7mm to be less than 50 M across. This coupled with the lack of

linear polarization below approximately 100 GHz and degree of circular polarization

between 2 and 15 GHz implies that the forming radio jet would need to be relatively

wide (& 15M across), heavily pair dominated (the lepton to baryon ratio must be in

or above the thousands), and must be expanding laterally by this stage, limiting the

size of the acceleration mechanism to 10 − 20M .

In each of these observations, either the innermost regions of the accretion flow

or the base of the jets are implicated in the production of the circular polarization.

In the context of the former, general relativity becomes important and can play a

dominant role if the emission region is small enough. In the latter, special relativis-

tic shearing flows will be present. Since these regions are expected to be hot and

thus highly ionized, plasma physics can be expected to be important as well. Both

relativity and plasma physics can alter the spectral properties via gravitational lens-

ing and refraction. In particular, it is possible to significantly alter the polarimetric

properties via plasma transfer effects and differential refraction of the two polariza-

tion eigenmodes of the plasma coupled with general relativity. Therefore, as more

detailed and sensitive polarimetric observations become available, it is necessary to

develop a covariant plasma theory to make polarimetric predictions given particular

AGN models.

1.2 X-ray Binaries

While much of this work was initially motivated by polarimetric observations in

LLAGN, X-ray binaries (XRBs) provide an stellar mass analogue. Hence, many

of the effects discussed for LLAGN can also be applied to these systems as well.
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1.2.1 General Properties

Stellar mass black holes (10M�) are the expected evolutionary end point of massive

stars. Approximately ∼ 300 million such black holes are believed to exist in the

Galaxy (Van den Heuvel, 1992; Brown & Bethe, 1994; Timmes et al., 1996), however

due to the considerable difficulty in observing these, only a small number have been

detected. Traditionally this has been accomplished by observing compact object bi-

naries, specifically X-ray binaries. More recently, micro-lensing has been used as a

technique to observe Galactic halo black holes. However, due to the serendipitous

nature of the event required (a black hole must transit near a star in the Large or

Small Magellanic clouds), the number of micro-lensing events is also small. Further-

more, this does not provide a method to study the detected black holes further after

the micro-lensing event. Therefore, X-ray binaries provide the only current known

environment in which stellar mass black holes may be studied in detail.

The most straightforward way to distinguish X-ray binaries containing black holes

from those containing neutron stars is to measure the mass of the compact object. To

date, no neutron stars with masses greater than 2M� have been found to exist, nor

is one expected for theoretical reasons (see, e.g., Shapiro & Teukolsky, 1983). Hence

providing a lower limit on the mass function of the compact companion of 2.5M� is

sufficient to demonstrate that the X-ray binary does not contain a neutron star. This

has been done in 17 of the 18 “confirmed” stellar mass black holes (see Table 1.2).

If a mass limit is not available, circumstantial evidence can come in the form of

exhibiting a subset of the characteristic spectral/temporal states, or a lack of type

I X-ray bursts. The current theory of type I X-ray bursts involves thermonuclear

reactions on the surface of an accreting neutron star. Therefore, the lack of type

I X-ray bursts may imply the lack of a stellar surface and hence the presence of a

horizon (Narayan & Heyl, 2002).
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Object Mass (M�) FX-ray (µJy) D (kpc)
V518 Per 3.2 − 13.2 3 × 102 2.6 ± 0.7
LMC X-3 5.9 − 9.2 6 × 101 50 ± 2.3
LMC X-1 4.0 − 10.0 3 × 101 50 ± 2.3
V616 Mon 8.7 − 12.9 5 × 104 1.2 ± 0.1
MM Vel 6.3 − 8.0 8 × 102 5.0 ± 1.3
KV UMa 6.5 − 7.2 4 × 101 1.8 ± 0.5
GU Mus 6.5 − 8.2 3 × 103 5 ± 1.3
IL Lupi 7.4 − 11.4 1.5 × 104 7.5 ± 0.5
V381 Nor 8.4 − 10.8 7 × 103 5.3 ± 2.3
V1033 Sco 6.0 − 6.6 3.9 × 103 3.2 ± 0.2
V821 Ara — 1.1 × 103 4
V2107 Oph 5.6 − 8.3 3.6 × 103 8 ± 2
V4641 Sgr 6.8 − 7.4 1.3 × 104 7.4 − 12.3
V406 Vul 7.6 − 12 1.5 × 103 11
V1487 Aql 10.0 − 18.0 3.7 × 103 11 − 12
Cyg X-1 6.9 − 13.2 2.3 × 103 2.0 ± 0.1
QZ Vul 7.1 − 7.8 1.1 × 104 2.7 ± 0.7
V404 Cyg 10.1 − 13.4 2 × 104 2.2 − 3.7

Table 1.2: Listed are the 18 “confirmed” black hole binaries and some of their asso-
ciated properties (adapted from McClintock & Remillard, 2003).

1.2.2 Analogy with AGN

Stellar mass black holes in X-ray binaries in the low/hard or quiescent state share

many of the features of LLAGN. Both are tremendously underluminous accreting

black holes (McClintock et al., 2003). However, the considerable difference in the

mass scale must be taken into account. Some simple scaling laws can be obtained in

terms of the radiative efficiency (η ≡ L/Ṁc2) and the accretion rate (Ṁ). At this

point it is necessary to differentiate between the rate at which mass is supplied and

that at which it is accreted.

Radiatively inefficient accretion flows (RIAFs) onto black holes have been impli-

cated in many LLAGN. The radiative efficiency can be low in two limiting situations:

when the accreting matter is substantially optically thick so that the photon diffu-

sion time is long in comparison to the accretion timescale, and when the accreting

matter is extremely tenuous. In this later case, the electrons and the protons can not
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couple efficiently and hence the gravitational binding energy of the baryons can not

be effectively transferred to the emitting electrons.

RAIFS are typically introduced to explain extremely sub-Eddington luminosities

in which putative radiative efficiencies prevented the accreting matter from releas-

ing its binding energy before crossing the horizon (see, e.g., Shapiro et al., 1976;

Ichimaru, 1977; Rees et al., 1982). Despite this, in order to reproduce the low lumi-

nosity observed in LLAGN, extremely small accretion rates are still necessary. It was

subsequently realized that the accreting matter necessarily had a positive Bernoulli

constant, and hence was in some sense unbound (Blandford & Begelman, 1999). This

resulted in the so-called advection dominated inflow-outflow solutions (ADIOS). In

these the vast majority of the accreting gas leaves the system in the form of a wind

as a result of the accretion of the remaining gas. The low luminosity is then due

to the limited amount of gas that is actually accreted, despite reasonable radiative

efficiencies. The primary distinction between the ADAF and ADIOS models is in the

manner in which the accretion power is limited. In the former, the matter available

to be accreted is assumed to be small, i.e., it is supply limited. In the later, despite

having substantial amounts of mass available, the amount actually accreted is small,

i.e., it is demand limited.

If the mass accretion rate is given in terms of the Eddington rate (see, e.g., equation

1.1), Ṁ = εṀEdd, the luminosity will be proportional to M :

ηṀc2 = L ∝ εṀEdd ∝ εM . (1.3)

This will also be proportional to the local density near the horizon of the black hole,

and hence the plasma density (since it is likely to be highly ionized), by

Ṁ ' 4πM2cβρ , (1.4)

where β is the inflow speed. From equipartition, this may be related to the total

energy stored in the magnetic field (B), divided by the typical timescale (M/c), and
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hence

L ∝ ηM2B2 . (1.5)

Therefore, combining this with equation (1.3), the resulting dependence of the cy-

clotron and plasma frequencies (ωB and ωP , respectively) is

ωP ∼ ωB ∝
√

ε

ηM
. (1.6)

As a result, the frequencies at which interesting plasma effects appear can be expected

to scale as
√

ε/ηM .

In the context of the Galactic center, the presence of two X-ray lobes, which are

presumably powered by shocking winds from an accretion disk, imply that mass is

supplied at nearly 1022 g/s. Of this, approximately 1% is accreted by the black hole,

giving εSgrA∗ ' 2 × 10−4. Therefore, in order to produce the putative luminosity

observed it is necessary for ηSgrA∗ ∼ 10−5. If both the radiative efficiency and accre-

tion rate in units of the Eddington rate are similar for XRBs, then if the peculiar

radio polarization properties of LLAGN are a result of plasma effects, they would be

expected to appear in the infrared. By varying the radiative efficiency and accretion

rate this can be moved into the optical and ultraviolet. Currently, there have not

been any measurements of infrared polarization of black holes, stellar mass or other-

wise. Therefore, the analogy of XRBs with LLAGN provides a strong motivation for

extending polarimetry into the infrared.

1.3 Neutron Stars

The third known class of general relativistic objects are neutron stars. Pulsars are

perhaps the most obvious place in which to apply a general relativistic plasma theory.

Refraction has been shown to have considerable effects upon pulse profiles (see, e.g.,

Barnard & Arons, 1986; Arons & Barnard, 1986; Petrova, 2000; Weltevrede et al.,

2003), and while general relativity may not be important in the emission region,

the dynamical nature of the problem is greatly simplified by the use of a covariant
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formalism.

A less obvious but more tractable application to neutron stars is in the context

of magnetar atmospheres. It has been shown that magnetar strength fields (1013 G)

polarize the vacuum, leading to plasma-like transfer and refractive effects (see, e.g.,

Lloyd et al., 2003; Heyl et al., 2003; Shaviv et al., 1999). Lai & Ho (2003a) have

shown that the transition from standard plasma effects to those associated with the

birefringence of the vacuum can produce polarimetric signatures in the X rays diag-

nostic of the magnetic field structure in the neutron star atmosphere. However, this

is a highly anisotropic environment due to the presence of the ultra-strong magnetic

field. As a result, the radiative transfer properties are strongly dependent upon the

direction of propagation of the photons (Lai & Ho, 2003b). Therefore, the inclusion

of refraction can have a strong effect upon the magnitude and type of polarimetric

properties that would be expected, despite the fact that the neutron star atmosphere

is on the order of a centimeter deep.

1.4 Fundamental Physics

In addition to modeling the observed properties of astronomical objects, there are

several fundamental reasons to develop a covariant formulation of plasma physics.

First and foremost is that it offers a way to probe strong field relativity using po-

larization observations. That strong field relativity will play a significant role in the

polarimetric properties of black hole systems has been appreciated for some time now

(see, e.g., Connors & Stark, 1977; Connors et al., 1980; Laor et al., 1990). Because

significant polarization effects only occur for photons that pass near the horizon, us-

ing polarization it is possible to select out photons that necessarily probe this region

of spacetime. However, this presumes the existence of an accretion disk model that

is at least partially understood. Note that because purely general relativistic effects

are achromatic for λ � M , using polarized and unpolarized spectra it should be

possible to deconvolve those effects that are due to general relativity and accretion

disk physics. This will be altered by the presence of plasma effects appearing at low



16

frequencies, which may be be used as an additional constraint.

The second area of fundamental astrophysics that can be probed in this way

is accretion disk physics. If the behavior of the black hole is assumed, then the

observed spectral and polarimetric properties depend only upon the accretion flow.

There has been considerable effort expended in the astrophysical community to do

just this. However, much of this has either ignored general relativity (which is a good

approximation for emission distant from the horizon) or ignored significant plasma

effects. Currently there has been no study which includes refractive plasma effects.

Despite the fact that refraction would appear to complicate this procedure, and would

occur only at low frequencies, it would provide a direct measurement of the plasma

density and distribution. While for low frequencies the photosphere may be large,

polarization measurements may be able to select out emission from near the horizon.

Hence, if measured, refraction would be an invaluable tool in constraining accretion

physics.
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Chapter 2

Previous Work

A great deal of work has been done on understanding polarized radiative transfer.

These investigations have principally been focused upon either polarized emission,

transfer effects, or general relativistic effects. Few have been concerned with covari-

ant formulations of plasma theory and none have considered the full problem of an

accreting compact object.

2.1 Intrinsic Emission

The most straightforward way in which to produce a polarized flux is by a polar-

ized emission mechanism. The best-known example in astrophysics is synchrotron

emission, first discussed by Westfold (1959). As is well-known, synchrotron emission

can produce high degrees of linear polarization (as high as 100% for sufficiently steep

power-law electron distributions). It is possible for a moderately relativistic electron

distributions to generate some circular polarization as well, however, this is reduced

by the inverse of the typical Lorentz factor of the emitting electron distribution (Legg

& Westfold, 1968). In the limit of nonrelativistic electrons, this simply reduces to

the cyclotron resonances which are known to be highly circularly polarized (see, e.g.,

Rybicki & Lightman, 1979).

Radiative physics can be significantly complicated by the presence of a plasma.

The most obvious difference is the change in phase velocity that enters into the

Liénard-Wiechert potentials, the so-called Razin suppression (see, e.g., Rybicki &



18

Lightman, 1979). However, in nonuniform or anisotropic plasmas (e.g., a magnetized

plasma), care must be taken in choosing which quantities are evolved via the transfer

equations and in how the emissivities and absorptivities are calculated. Nonethe-

less, a considerable literature exists regarding the techniques involved in calculating

the transfer coefficients and emissivities for warm plasmas (see, e.g., Montgomery &

Tidman, 1964; Bekefi, 1966; Krall & Trivelpiece, 1973).

Obtaining a net polarization from a macroscopic source via a polarized intrinsic

emission mechanism requires some large scale structure. In the case of synchrotron or

cyclotron emission, this requires a large scale ordered magnetic field. Furthermore, in

order to reproduce the peculiar polarimetric properties of LLAGN, some secondary

processing of the photons must occur to remove the predominant linear polarization.

2.2 Plasma Transfer Effects

The study of polarized transfer effects through magnetized media dates back to the

discovery of Faraday rotation (Faraday, 1846). Since that time a considerable liter-

ature has developed regarding the polarized radiative transfer through magnetized

plasmas. The two primary plasma transfer effects are Faraday rotation, which results

in a rotation of the plane of polarization, and Faraday conversion (also known as Fara-

day pulsation, generalized Faraday rotation, and Faraday repolarization), which leads

to the cyclical creation and destruction of circular polarization (Sazonov & Tsytovich,

1968; Sazonov, 1969; Jones & O’Dell, 1977b,a). Both are a result of the difference in

the phase velocities between the two electromagnetic plasma eigenmodes. While Fara-

day conversion typically is discussed in the context of pair plasmas, both can occur

in ion plasmas as the plasma eigenmodes are generally elliptically polarized. Faraday

rotation and polarization have been employed in attempts to explain the polarimetric

properties of LLAGN (Beckert & Falcke, 2002). However, as described in Macquart

(2002), Faraday rotation and conversion make strong predictions for the frequency

dependence of polarization fractions, which are not present in the observations. Of

course, this may be the result of significant structure in the source.
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A more stringent requirement upon transfer effects is the strong depolarization

of linear polarization at low frequencies. Strong Faraday depolarization necessarily

eliminates circular polarization created via Faraday pulsation as well. Furthermore,

in regions which are strongly Faraday depolarized, a consistent handedness for the

circular polarization would not be expected unless a highly ordered environment was

present. Inhomogeneous environments (and in particular inhomogeneous magnetic

fields) have begun to be theoretically investigated. Studies have fallen loosely into

three categories: (i) investigations of slowly varying inhomogeneous materials and the

resulting geometric phase effects (see, e.g., Budden & Smith, 1976; Jones & O’Dell,

1977a; Enßlin, 2003), (ii) discussions of scintillation by inhomogeneous screens (Mac-

quart & Melrose, 2000), and (iii) attempts to calculate emergent properties after

averaging over a large number of field reversals (Ruszkowski & Begelman, 2002). Ap-

plications of the first and the third to the polarimetric observations in Sgr A∗ have

found it necessary to assume significant structure in the magnetic field, usually due

to an weak average homogeneous magnetic field. Highly variable circular polarization

can be produced by scintillation (Macquart & Melrose, 2000). In this case, small-scale

inhomogeneities in the source or an intervening screen produce small random phase

shifts along an initially smooth plane wave. Due to the anisotropic nature of mag-

netized plasmas, the magnitudes of these phase shifts will differ for the two plasma

eigenmodes, creating small regions of circular polarization via a process similar to

Faraday conversion. In this case, the variability will likely be dominated by that of

the screen, and will occur over the timescale which inhomogeneities change appre-

ciable (e.g., the eddy turn over time if the inhomogeneities are due to turbulence).

However, the net polarization produced via scintillation must necessarily vanish un-

less there is a considerable amount of structure in the scintillating screen itself. All

of these mechanisms have difficulty reproducing the long term stability in the sign

of polarization. An alternative in which the polarization sense is determined by the

angular momentum (the only other axial vector in the problem), in an accretion disk

involving tangled fields (a net field is unnecessary) is analyzed in Part III.

None of these effects account for general or special relativistic effects or for refrac-
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tive effects. As a result, these must be modified appropriately to apply to a general

relativistic environment. Furthermore, as stated it does not appear likely that any of

these transfer effects alone could produce the observed polarimetric behavior.

2.3 General Relativistic Transfer Effects

The importance of gravitational lensing upon the spectral and polarimetric proper-

ties of accreting black holes was first appreciated by Connors & Stark (1977). They

considered the case of an optically thick accretion disk with a scattering atmosphere

orbiting a stellar mass black hole in the context of an XRB. While the standard elec-

tron scattering theory, first worked out by Chandrasekhar (1960), predicts degrees of

X-ray polarization as high as 10%, general relativistic effects (via disk lensing), and

special relativistic effects (via Lorentz boosting of the emission regions and polariza-

tion vectors), serve to depolarize the emission substantially. These calculations were

carried out by directly integrating the parallel transport equations. Subsequent cal-

culations using more physically motivated disk models were performed by making use

of a complex spinor constant that is admitted by type (2,2) spacetimes (the Penrose-

Walker constant), and in particular the Kerr spacetime (see, e.g., Chandrasekhar,

1992; Connors et al., 1980; Walker & Penrose, 1970). Since refractive plasma effects

can be safely ignored at X-ray energies, the paths taken by the photons are simply

null geodesics. Associated with each null vector is a spinor, which may be decomposed

into the space orthogonal to the null vector itself. As a direct result, it is possible to

cast the polarization unit vector as a spinor and hence utilize the Penrose-Walker con-

stant to parallel propagate the polarization unit vector without explicitly integrating

the parallel transport equations.

Laor et al. (1990) extended this analysis to AGN, albeit in the optical/ultraviolet

regime. Here they found results similar to those of Connors et al. (1980) and Connors

& Stark (1977). In both it was found that the polarization spectrum was diagnostic of

both the accretion theory and the spin of the central black hole. Qualitatively, higher

black hole spins allow the accretion disk to extend further down to the horizon, leading
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to larger lensing and boosting effects, and lower net linear polarizations.

Because a growing body of numerical simulations suggest that accretion flows may

be highly inhomogeneous (Hawley et al., 2001), some effort has been spent studying

the polarimetric properties of blobs of material (Bao et al., 1997) as a first approxima-

tion. Alternatively, a cylindrically symmetric disk illuminated by asymmetric corona

has also been considered (Bao et al., 1998; Dovciak et al., 2004). In both cases,

general relativity leads to spectral and polarimetric effects that are diagnostic of the

emission geometry.

In addition to gravitational lensing, the gravitational redshift has been shown to

be important. Perhaps the best-known example of a gravitational redshift in AGN

is the observation of the iron Kα line (see Section 1.1.1). In recent efforts both the

geometric and redshift effects have been incorporated in an attempt to model the

response (or lack thereof) of the Kα to variations in the hard X-ray emission (Matt

et al., 1997; Miniutti et al., 2003; Reynolds & Nowak, 2003).

There have been some attempts to include plasma effects with the aforementioned

general relativistic effects. Bromley et al. (2001) attempted to do this by evolving

the two plasma modes independently along null geodesics, thus mapping the intrinsic

polarization of the emission mechanism to the observer at infinity. However, the use

of the approximation in which the plasma eigenmodes can be evolved independently

is not valid in the limit of vanishing plasma density. Furthermore, since only high

frequencies were considered, this did not address the circular polarization measure-

ments.

In general, none of these calculations can be trivially extended into the radio

regime (or infrared in the case of XRBs) since they explicitly ignore refractive effects

which may become important at low frequencies.

2.4 Covariant Plasma Theory

Plasma theory, and more specifically magnetoionic theory, has been well developed

in the context of radio wave propagation in the ionosphere (see, e.g., Boyd & Sander-
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son, 1969; Budden, 1961; Ginzburg, 1970; Krall & Trivelpiece, 1973; Dendy, 1990).

This has typically been done via dynamics (cold plasmas) or kinetic theory (warm

plasmas), and has been successful in reproducing many of the radio phenomena in

the atmosphere.

There have been a number of attempts to develop a covariant plasma theory.

This was done earliest in the context of pulsar magnetospheres to account for the

dynamical nature of the environment (Barnard & Arons, 1986; Arons & Barnard,

1986; Petrova, 2000, 2002; Weltevrede et al., 2003), in which it was found that refrac-

tion had considerable implications for the pulse morphology. Kulsrud & Loeb (1992)

employed a variational approach to the unmagnetized plasma, deriving a covariant

dispersion relation and the appropriate equations to define rays in the geometric op-

tics approximation. Long wavelength waves in one-dimensional magnetized plasma

were considered by Gedalin et al. (1998) and Melrose et al. (1999). Besides being

one-dimensional, these are developed only for conditions appropriate for special rela-

tivistic applications. A two fluid approach was utilized in Melrose & Gedalin (2001)

to produce a fully covariant theory. However, due to the fluid treatment, it also is

limited to long wavelengths and is not a generalization of the magnetoionic theory

which has been so successful in the atmosphere.
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Chapter 3

Summary of This Work

In this work, we develop a covariant generalization of the well-known magnetoionic

theory. In Chapter 4, this is done in analogy with the nonrelativistic derivations

where possible in order to make use of the techniques used in conventional plasma

theory, facilitate comparison, and ensure consistency. Different plasma composi-

tions/environments are characterized solely by a covariant conductivity which allows

a wide degree of application, far beyond those discussed here.

The problem of radiative transfer is treated in Chapter 5. Polarized radiative

transfer is complicated by (i) the presence gravitational radiation, (ii) the presence

of the plasma, (iii) the anisotropy associated with the magnetic field, and most im-

portantly (iv) the highly refractive nature of the environment. The first three can be

partly addressed by evolving the photon occupation number, and appropriately de-

fined analogues of the Stoke’s parameters Q, U , V , instead of the Stoke’s parameters

directly. The last requires a detailed discussion of when the plasma eigenmodes are

and are not coupled. Fortunately, a detailed discussion of this does exist in the con-

ventional literature (see, e.g., Ginzburg, 1970), which may be subsequently extended

to a covariant form.

Some didactic example applications of the formalism developed in Chapters 4 and

5 are presented in Chapter 6 as well as applications to the Galactic center, M81, and

XRBs in Chapter 7. It is found that due to the presence of a horizon and refraction it

is possible to produce a predominantly circularly polarized signal. While this appears

to be only marginally plausible in the context of LLAGN, it does have interesting
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implications for XRBs.

In Part III, a completely distinct yet complementary problem is addressed, namely,

that of tangled magnetic fields. We find that in Faraday thick plasmas with a net mag-

netic helicity, though not necessarily a net magnetic field, it is possible to generate a

circular polarization signal which increases with frequency, reaching a high-frequency

cutoff. We then apply this to the Galactic center and XRBs, finding circular po-

larization fractions as high as 10%, again providing a motivation for polarimetric

observations in the infrared.

Finally, in Part IV we review the results and discuss the implications of this work

for polarimetry.

Unless otherwise noted, we use geometrized units (G = c = 1) and metric signa-

ture (− + ++).
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Part II

Covariant Magnetoionic Theory
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Chapter 4

Tracing Rays

The natural place to begin a study of plasma modes is the covariant formulation of

Maxwell’s equations (see, e.g., Misner et al., 1973):

∇µF
νµ = 4πJν and ∇µ

∗F νµ = 0 , (4.1)

where F νµ ≡ ∇νAµ − ∇µAν is the electromagnetic field tensor, ∗F νµ ≡ 1
2
ενµαβFαβ

is the dual to F µν (εµναβ is the Levi-Civita pseudo tensor) , and Jν is the current

four-vector. In order to close this set of equations, a relation between the current and

the electromagnetic fields is required. For the field strengths of interest here, this will

take the form of Ohm’s Law:

Jν = σν
µF

µαuα , (4.2)

where uµ is the average plasma four-velocity and σν
µ is the covariant generalization of

the conductivity tensor, defined by this relationship. As a result of the anti-symmetry

of F µν, the conductivity will in general have only nine physically meaningful compo-

nents, namely the spatial components in the slicing orthogonal to uµ. Nonetheless,

in order to investigate the behaviors of plasma modes in a general relativistic envi-

ronment, it is necessary to express the conductivity in this covariant fashion.

This can be more naturally expressed in terms of Eµ ≡ F µνuν and Bµ ≡ ∗F µνuν,

the four-vectors coincident with the electric and magnetic field vectors in the locally

flat center-of-mass rest (LFCR) frame of the plasma. In terms of Eµ and Bµ, the
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electromagnetic field tensor and its dual take the forms

F µν = uµEν − Eµuν + εµναβ uαBβ , (4.3)

∗F µν = Bµuν − uµBν + εµναβ uαEβ . (4.4)

Inserting these and Ohm’s law into Maxwell’s equations yields eight partial differential

equations,

∇µ

(

uνEµ − Eνuµ + ενµαβ uαBβ

)

= 4πσν
µE

µ , (4.5)

∇µ

(

Bνuµ − uνBµ + ενµαβ uαEβ

)

= 0 , (4.6)

which may be solved for Eµ and Bµ given an explicit form of the conductivity.

4.1 Geometric Optics Approximation

The general case can be prohibitively difficult to solve for physically interesting plas-

mas. Fortunately, the problem can be significantly simplified by making use of a

two length scale expansion (also known as the WKB, Eikonal, or Geometric Optics

approximations) in terms of λ/L, where λ and L are the wavelength and typical

plasma length scale, respectively. In this approximation it is assumed that the elec-

tric and magnetic fields have a slowly varying amplitude with a rapidly varying phase,

i.e., Eµ, Bµ ∝ exp (iS) where S is the action, and ∇µS = kµ defines the wave four-

vector. Then, to first order in λ/L, Maxwell’s equations are

kµ

(

uνEµ − Eνuµ + ενµαβ uαBβ

)

= 4πσν
µE

µ , (4.7)

kµ

(

uνBµ −Bνuµ + ενµαβ uαEβ

)

= 0 . (4.8)

At this point it is useful to point out a number of properties of Eµ and Bµ that

follow directly from their definitions and Maxwell’s equations.

(i) uµE
µ = uµB

µ = 0, which follows directly from the definitions of Eµ and Bµ and
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the antisymmetry of F µν and ∗F µν .

(ii) kµB
µ = 0, which follows from equation (4.8) and the definition of Bµ.

(iii) EµB
µ = 0, which follows from ωEµB

µ = Eµkν
∗F µν = 0, where

ω ≡ −kµu
µ (4.9)

(chosen so that ω is positive) is the frequency in the LFCR frame and is assumed

to be nonzero.

(iv) ωBµBµ = −εµναβBµkνuαEβ, which also follows from equation (4.8), ωBµBµ +

εµναβBµkνuαEβ = Bµkν
∗F µν = 0.

Properties (i)-(iv) define Bµ in terms of kµ, Eµ, and uµ:

Bµ = − 1

ω
εµναβkνuαEβ . (4.10)

Substituting equation (4.10) into equations (4.3) and (4.4) gives

F µν =
1

ω
(kµEν − Eµkν) , (4.11)

∗F µν =
1

ω
εµναβ kαEβ . (4.12)

Inserting these back into Maxwell’s equations and combining yields

Ωµ
νE

ν = 0 , (4.13)

where

Ωµ
ν ≡ (kαkαδ

µ
ν − kµkν − 4πiωσµ

ν) (4.14)

defines the dispersion tensor.

Note that this is extremely general; all of the local physics is contained in the

conductivity tensor. The expressions for the electromagnetic field tensor and its dual

are for the radiation fields only. Hence, external fields appear only in the conductivity.
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4.2 Ray Equations

Rays are well defined in the context of geometric optics. These are curves which are

orthogonal at every point to the surfaces of constant phase (S). Given a relation in the

form of equation (4.13) it is possible to explicitly construct these rays. This has been

done in detail for Euclidean spaces (see, e.g., Weinberg, 1962). The generalization

to a Riemannian space is straightforward and will be done in analogy with Weinberg

(1962).

Consider the general case of an equation governing the dynamics of a field, Ψ, in

space time in terms of a linear operator, M,

M (∇µ, x
µ) Ψ = 0 . (4.15)

Expanding in a two length scale approximation, as in §2.1, gives to lowest order

M (kµ, x
µ)Ψ = 0 . (4.16)

This implies that detM (kµ, x
µ) = 0 along the rays of the wave field. This provides a

dispersion relation, D (kµ, x
µ), a scalar function of the wave four-vector and position

that vanishes along the ray. If the eigenvalues of M are nondegenerate, then this also

uniquely defines the polarization of Ψ.

The ray can now be explicitly constructed by employing the least action principle.

The action can be explicitly constructed from the wave four-vector and the position

by

S(τ1, τ2) =

∫ τ2

τ1

kµ
dxµ

dτ
dτ , (4.17)

where τ is an affine parameter along the ray. Let Γ be the hypersurface of constant

phase passing through the point xµ (τ1). By definition, kµ (τ1) is perpendicular to Γ.

By varying S (τ1, τ2) with respect to kµ and xµ, restricting xµ (τ1) to lie on Γ, it is
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possible to derive equations which define the ray,

δS =

∫ τ2

τ1

[

dkµ

dxν
δxν dx

µ

dτ
+ kµ δ

(

dxµ

dτ

)]

dτ (4.18)

=

∫ τ2

τ1

[

dkµ

dxν

dxµ

dτ
− dkµ

dτ

dxµ

dxν

]

δxνdτ + kµ δx
µ
∣

∣

∣

τ2

τ1
.

Because xµ (τ1) is restricted to lie upon Γ, kµδx
µ
∣

∣

τ1
= 0. Because at τ2 it is necessary

for kµ (τ2) = ∇µS → δS = kµ (τ2) δx
µ (τ2). These imply that the integral must vanish

for arbitrary variations. This will be generally true if there exists a scalar function

D (kµ, x
µ) such that

dxµ

dτ
=

(

∂D

∂kµ

)

xµ

and
dkµ

dτ
= −

(

∂D

∂xµ

)

kµ

, (4.19)

and hence,

dkµ

dxν

dxµ

dτ
− dkµ

dτ

dxµ

dxν
=

(

∂D

∂kµ

)

xµ

dkµ

dxν
+

(

∂D

∂xµ

)

kµ

dxµ

dxν

=
dD

dτ

dτ

dxν
= 0 ,

where the final equality follows from the fact that D is constant along the path

(namely D (kµ, x
µ) = 0). Therefore, equations (4.19) can be used to construct

a ray given initial conditions and a dispersion relation. These are covariant ana-

logues of Hamilton’s equations. Note that the affine parameterization depends upon

the particular form of the dispersion relation. For example, from D′ (kµ, x
µ) ≡

f (kµ, x
µ)D (kµ, x

µ) it is possible to construct the rays associated with D = 0, with

the affine parameters related by dτ ′ = dτ/f : i.e.,

dxµ

dτ ′
=

(

∂D′

∂kµ

)

xµ

= f

(

∂D

∂kµ

)

xµ

+D

(

∂f

∂kµ

)

xµ

= f
dxµ

dτ
, (4.20)
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and similarly for kµ. Hence, any convenient affine parameterization can be selected

by employing the appropriate function f .

While this derivation is done in some generality, here M = Ωµ
ν and Ψ = Eµ.

4.3 Ohm’s Law for Cold Plasmas

At this point it is necessary to determine an explicit form for the conductivity tensor

σµ
ν. For cold plasmas this can be obtained via dynamical arguments. Three assump-

tions are made in the derivations below; (i) the equations of motion of the electrons

are well approximated by the lowest-order perturbations, (ii) the motions of the elec-

trons are nonrelativistic, and (iii) the electrons execute motions over a small enough

region of space that all other forces may be considered constant. Assumptions (i) and

(ii) are often employed in standard plasma physics. Assumption (iii) will generally

be true as long as the geometric optics approximation holds.

4.3.1 Isotropic Cold Electron Plasma

This is considered as an example and a zero-field limit of the case where a constant

external magnetic field is applied (cf. Dendy, 1990).

It is useful to introduce an order parameter (ε) to linearize the force equations.

All field quantities are clearly of first order. In addition, the change in the velocity

of the charged particles is of first order (δuµ ≡ uµ − uµ ∝ ε exp(iS)). Then, the

electromagnetic force upon a single electron is given by

Fµ
EM

=F µνeuν (4.21)

= euµεEνuν − eεEµuνuν + eεµναβ uα εBβuν .

In the first and third terms only the deviation from uµ contributes, thus they are of

order ε2. In the second term uµuµ = −1+O(ε) hence there is a first-order contribution,

and Fµ
EM = eEµ. The force is related to uµ to first order in ε by Fµ

EM = −iωm δuµ.

The current is related to δuµ by Jµ = ene δu
µ. Therefore, the conductivity tensor is
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given by

σµ
ν = − ω2

P

4πiω
δµ
ν , (4.22)

where ωP ≡
√

4πe2ne/m is the plasma frequency.

4.3.2 Magnetoactive Cold Electron Plasma

In the presence of an externally generated magnetic field, Bµ, (defined in the LFCR

frame in the same way as Bµ), the electromagnetic force upon a single electron is

Fµ
EM

=F µνeuν (4.23)

= euµεEνuν − eεEµuνuν + eεµναβ uα (εBβ + Bβ) uν .

In contrast to equation (4.21), there is a first-order contribution from the third term in

this case. Hence, to first order Fµ
EM = eEµ +eεµναβ uα Bβ uν. It is useful to decompose

δuµ and Eµ into temporal, and spatial components along and orthogonal to Bµ:

δuµ
t ≡ (δuν u

ν) uµ , δuµ
‖ ≡

(Bνδuν

BαBα

)

Bµ ,

δuµ
⊥ ≡ δuµ − δuµ

t − δuµ
‖ , (4.24)

Eµ
‖ =

(BνEν

BαBα

)

Bµ , Eµ
⊥ = Eµ − Eµ

‖ . (4.25)

With these new definitions it is simple to show that the force equation separates into

−iωδuµ
t = 0 ,

−iωδuµ
‖ =

e

m
Eµ

‖ , (4.26)

−iωδuµ
⊥ =

e

m
Eµ

⊥ +
e

m
εµναβ uα Bβ δu⊥ ν .
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Clearly Jµ
‖ = − (ω2

P/4πiω)Eµ
‖ . The perpendicular component may be determined by

taking a second proper time derivative whence, to lowest order,

−ω2δuµ
⊥ = − iω

e

m
Eµ

⊥

+
e

m
εµναβ uα Bβ

( e

m
E⊥ ν +

e

m
ενγσε u

σBεδuγ
⊥

)

= − iω
e

m
Eµ

⊥ +
( e

m

)2

εµναβ uα Bβ E⊥ ν (4.27)

−
( e

m

)2

BνBν δu
µ
⊥ .

Defining ω2
B ≡ (e/m)2BµBµ and solving for Jµ

⊥ = ene δu
µ
⊥ gives

δuµ
⊥ =

ω2
P

4π (ω2
B − ω2)

(

−iωgµν +
e

m
εµναβ uα Bβ

)

E⊥ ν . (4.28)

After substituting in the expressions for Eµ
‖ and Eµ

⊥ the total current is given by

Jµ = Jµ
‖ +Jµ

⊥ = − ω2
P

4πiω (ω2
B − ω2)

(

−ω2gµν+ω2
B

BνBµ

BαBα

−iω e

m
εµναβ uα Bβ

)

Eν . (4.29)

As a result, the conductivity tensor can be identified as

σµν = − ω2
P

4πiω (ω2
B − ω2)

(

−ω2gµν + ω2
B

BνBµ

BαBα

− iω
e

m
εµναβ u

α Bβ

)

. (4.30)

In a flat space, the spatial components of this can be compared to the standard result

(see, e.g., Boyd & Sanderson, 1969; Dendy, 1990).

4.4 Ohm’s Law for Warm Plasmas

For AGN and X-ray binaries, accreting plasma near the central compact object will

in general be hot. Even in low-luminosity AGN, accreting electrons can have γ’s on

the order of 10− 103 (see, e.g., Melia & Falcke, 2001; Narayan et al., 1998). In these

environments assumption (ii) in Section 4.3, that the motions of the electrons are

nonrelativistic, is no longer valid.
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For warm plasmas, ones in which the thermal velocities of the electrons are sig-

nificant compared to the phase velocities of the modes, it is possible to determine the

conductivities using the Vlasov equation just as in flat space (see, e.g., Dendy, 1990;

Boyd & Sanderson, 1969; Montgomery & Tidman, 1964):

uµ

(

∂f

∂xµ

)

pµ

+ Fµ
EM

(

∂f

∂pµ

)

xµ

= 0 , (4.31)

where pµ and f are the momentum and distribution function of the electrons, respec-

tively. The average plasma velocity, uµ, must now be averaged over temperature in

addition to the induced oscillations. Note that unlike the analyses of warm plasmas

in flat space, this must now be done in a manifestly covariant way. At this point

it is necessary to determine the form of the force, Fµ
EM, under which the system is

evolving.

4.4.1 Isotropic Warm Electron Plasma

In this case Fµ
EM = F µνeuν. Hence expanding the distribution function in terms of

the order parameter introduced in Section 4.3.1 to first order, f = f0 + εf1 + O(ε2),

and inserting into equation (4.31) gives

uµ

(

∂f1

∂xµ

)

pµ

+ eF µνuν

(

∂f0

∂pµ

)

xµ

= 0 . (4.32)

Considering the lowest order in the two length scale expansion of Section 4.1, this

may now be solved for f1:

f1 =
ieuν

uαkα

F µν

(

∂f0

∂pµ

)

xµ

, (4.33)

which is the covariant analogue of the expressions found in the kinetic theory literature

(see, e.g., Dendy, 1990).

Assuming that the plasma was originally charge neutral the current density is
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related to the perturbation in the distribution function, f1, by

Jµ = e

∫

d4p f1u
µ .

Then, using equation (4.11) this may be written in terms of Eµ as

Jµ = − ie
2

ω
kαEν

∫

d4p
uµ

uβkβ

[

uα

(

∂f0

∂pν

)

xµ

− uν

(

∂f0

∂pα

)

xµ

]

. (4.34)

From this it is clear that the conductivity tensor is

σµ
ν = − ie2

ωm
kα

∫

d4p
pµ

pβkβ

[

pα

(

∂f0

∂pν

)

xµ

− pν

(

∂f0

∂pα

)

xµ

]

. (4.35)

In order to make a connection with the expression derived in the previous section it

is convenient to integrate this by parts,

σµν =
ie2

ωm

∫

d4p

[

gµν −
kµpν + kνpµ

pαkα
+
kαk

αpµpν

(pβkβ)2

]

f0 , (4.36)

where the boundary terms vanish by virtue of the convergence of
∫

d4p f0. For the

cold plasma, f0 = nδ4(pµ −muµ), thus,

σµν = − ω2
P

4πiω

(

gµν +
kµuν + kνuµ

ω
+
kαk

αuµuν

ω2

)

. (4.37)

This differs from the result in Section 4.3.1 in two respects: terms proportional to uµ

and the term proportional to kµ. Because the conductivity enters Maxwell’s equations

only through a contraction with the electric four-vector, the former are superfluous.

The latter represents the sonic mode which appears in the dynamical calculation

of the conductivity only in the form of an infinite wavelength mode. For the two

transverse electromagnetic modes (Eµkµ = 0) this does agree.
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4.4.2 Magnetoactive Warm Electron Plasma

In the presence of an external magnetic field Fµ
EM has a zeroth-order contribution:

Fµ
EM

= eF µν uν + eF µν
Ex
uν , (4.38)

where, in terms of the external magnetic field (again defined in the LFCR frame),

F µν
Ex ≡ εµναβuαBβ, (cf. equation (4.3)). Expanding the Vlasov equation in the pertur-

bation parameter ε to first order and in the two length scale expansion (Section 4.1)

now gives

iuµkµf1 +
e

m
F µν

Ex
pν

(

∂f1

∂pµ

)

xµ

= − e

m
F µνpν

(

∂f0

∂pµ

)

xµ

. (4.39)

At this point it is useful to introduce a function η defined implicitly by

d

dη
=

e

m
F µν

Ex
pν

(

∂

∂pµ

)

xµ

. (4.40)

(cf. Lifshitz & Pitaevskii, 1981; Krall & Trivelpiece, 1973). In terms of η, the electron

momenta are determined by the equation

dpµ

dη
=

e

m
F µν

Ex
pν =

e

m
εµναβ uαBβpν . (4.41)

As in the cold case, this may be reduced to a two-dimensional problem by an appro-

priate decomposition of the momentum:

pµ
t = (pν u

ν)uµ , pµ
‖ =

( Bνpν

BαBα

)

Bµ ,

pµ
⊥ = pµ − pµ

t − pµ
‖ , (4.42)
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In terms of these, the system of equations for pµ reduce to

dpµ
t

dη
= 0 ,

dpµ
‖

dη
= 0 , (4.43)

dpµ
⊥

dη
=

e

m
εµναβ uαBβp⊥ ν .

This last equation is simply that governing cyclotron motion. Using the fact that

d/dη commutes with the metric (this is because the metric depends only upon xµ and

not pµ) it may be rewritten as a pair of uncoupled, second-order ordinary differential

equations:
d2pµ

⊥

dη2
+ ω2

Bp
µ
⊥ = 0 . (4.44)

This has solutions

pµ
⊥ = pµ

x cos(ωBη + φ0) + pµ
y sin(ωBη + φ0) , (4.45)

where pµ
x and pµ

y are a pair of bases which span the space perpendicular to uµ and Bµ,

and φ0 is a phase factor. By inserting this solution into equation (4.41) and matching

up trigonometric terms, pµ
y can be found in terms of pµ

x,

pµ
y =

1

ωB
εµναβ uαBβpx β . (4.46)

It is possible to now solve for η in terms of pµ, pµ
x, and φ0:

η =
1

ωB

[

arctan

(

eεµναβp
µpν

xu
αBβ

mωBp
ξ
xpξ

)

− φ0

]

. (4.47)

Inserting pµ(η) into f1 and f0 transform equation (4.39) into a first-order differ-

ential equation for f1. This has solution

f1 =

(

µ−1

∫

µβµdη

)

Eµ , (4.48)
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where

βµ ≡ e

ωm
kν

[

pν

(

∂f0

∂pµ

)

xµ

− pµ

(

∂f0

∂pν

)

xµ

]

, (4.49)

µ ≡ exp

(

−ikµ

∫

pµ

m
dη

)

. (4.50)

The integral for µ may be rewritten in terms of pµ by using equations (4.43) and

(4.44),
∫

(

pµ
t + pµ

‖

)

dη =
(

pµ
t + pµ

‖

)

η , (4.51)

∫

pµ
⊥dη =

1

ω2
B

∫

d2pµ
⊥

dη2
=

1

ω2
B

dpµ
⊥

dη

=
1

ω2
B

εµναβ uαBβp⊥ ν . (4.52)

Thus,

µ = exp

{

i

[(

ωuµ − Bνkν

BαBα
Bµ

)

η − 1

ω2
B

εµναβ k
νuαBβ

]

pµ

m

}

. (4.53)

With equation (4.45) this may be treated as a function of η, while with equation

(4.47) this may be treated as a function of pµ.

As in the previous case, the current four-vector is then found by integrating over

the momentum portion of the phase space. This gives the conductivity tensor to be

σµ
ν = − e

m

∫

d4p pµ

[

µ−1

∫

µβνdη

]

(pµ) , (4.54)

where it has been emphasized that the interior integral is to be treated as a function

of the momenta.

4.4.3 Conductivity in Quasi-Longitudinal Approximation

In general, the integrals over η in equation (4.54) can be evaluated in terms of sums of

Bessel functions in an analogous fashion to that typically done for the nonrelativistic

case (see, e.g., Krall & Trivelpiece, 1973). Nonetheless, this can be significantly
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simplified by considering the case where (i) f0 is a function of P2 ≡ pµpµ and ε ≡
pµuµ only (typically f0 can be written in the form f(ε)δ(P2 + m2) where the delta

function is required to place the distribution on the mass-shell), (ii) εµναβ uαBβkµ = 0

(i.e., the quasi-longitudinal approximation), (iii) ωB � ω, and (iv) f0 is such that

pµuµ/m− 1 � 1 (i.e., cool, not hot).

Assumption (i) simplifies βµ,

βµ =
e

mω

∂f0

∂ε
kν (uµpν − uνpµ) . (4.55)

Note that because ε is independent of η, the terms involving f0 can now be brought

out of the innermost integral in equation (4.54). Assumption (ii) gives that kµp
µ
⊥ = 0

and hence,

µ = ei$η , (4.56)

where $ ≡ kµpµ/m. Therefore, the two integrals that must be done are

∫

pµ
‖e

i$ηdη = pµ
‖

µ

i$
, (4.57)

and
∫

pµ
⊥ei$ηdη =

(

gµν − e

i$m
εµναβ uαBβ

)

p⊥ ν
$2

$2 − ω2
B

µ

i$
. (4.58)

Therefore, in the quasi-longitudinal approximation,

f1 =
e

i$m

∂f0

∂ε

1

$2 − ω2
B

[

$2gµν − ω2
B

BµBν

BαBα
+
i$e

m
εµναβu

αBβ

]

pνEµ , (4.59)

where the definitions of pµ
‖ , p

µ
⊥, and Eµ were used. In the quasi-longitudinal approx-

imation, Eµ is orthogonal to the external magnetic field, Bµ. As a result, the there

are only two integrals that must be done in order to find the conductivity tensor:

Iµν
1 = − iω

m

∫

d4p
i$

$2 − ω2
B

pµpν ∂f0

∂ε

Iµν
2 = − iω

m

∫

d4p
1

$2 − ω2
B

pµpν ∂f0

∂ε
. (4.60)
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In terms of these, the conductivity is

σµ
ν = − e2

iωm

(

Iµγ
1 gγν −

e

m
Iµγ
2 ενγαβu

αBβ
)

. (4.61)

From equation (4.55) it follows that

pµpν
∂f0

∂ε
=
pµk

α

ω

(

pα
∂f0

∂pν
− pν

∂f0

∂pα

)

− kαpα

ω
pµuν

∂f0

∂ε
. (4.62)

Noting that the Iµν will only be contracted on the second index with terms orthogonal

to uµ (for Iµν
1 this is the electric field), the Iµν are given by

Iµν
1 = −i

∫

d4p
i$

$2 − ω2
B

pµ

(

$gνα − pνkα

m

)

∂f0

∂pα

Iµν
2 = − i

m

∫

d4p
1

$2 − ω2
B

pµ ($gνα − pνkα)
∂f0

∂pα
. (4.63)

Because there is already a term linear in ωB in equation (4.61), to lowest order in

assumption (iii) ω2
B may be neglected in the Iµν. Thus,

Iµν
1 =

∫

d4p pµ

(

gνα − pνkα

m$

)

∂f0

∂pα

Iµν
2 = −i

∫

d4p
pµ

$

(

gνα − pνkα

m$

)

∂f0

∂pα
. (4.64)

These may be integrated by parts to produce

Iµν
1 = −

∫

d4p f0

(

gµν − pµkν + pνkµ

m$
+

pµpν

m2$2
kαkα

)

Iµν
2 = i

∫

d4p
f0

$

(

gµν − 2pµkν + pνkµ

m$
+ 2

pµpν

m2$2
kαkα

)

. (4.65)

Note that in this case, Iµν
1 is simply the integral that had to be done for the warm

isotropic plasma (cf.equation (4.36)).

Assumption (iv) enters by expanding $ about ω. Define ℘2 ≡ ε2 − m2, i.e., ℘

is the magnitude of the spatial components of the momentum in the LFCR frame.
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Then, to second order in ℘,

$j ' (−ω)j

[

1 − j

(

pµBµk
νBν

mωBαBα

)

+
j(j − 1)

2

(

pµBµk
νBν

mωBαBα

)2

+ j
℘2

2m2

]

. (4.66)

Thus,

Iµν
1 ' −

∫

d4p f0

(

gµν +
pµpν

m2

kαkα

ω2

)

Iµν
2 ' −i

∫

d4p
f0

ω

{[

1 − ℘2

2m2
+

(

pµBµk
νBν

mωBαBα

)2
]

gµν + 2
pµpν

m2

kαkα

ω2

}

, (4.67)

where terms odd in pµ and terms ∝ kν have been dropped. The former is due to the

fact that f0 has been chosen to be an isotropic function of the spatial components

of the momentum in the LFCR frame and hence any odd terms will vanish upon

integration. The latter is allowed because, as stated earlier, these will only have

significance when contracted with terms orthogonal to kµ (for Iµν
2 this is results from

the quasi-longitudinal approximation in which kµ can be written in terms of uµ and

Bµ only). From symmetry it is clear that

∫

d4p f0
(pµBµ)2

BαBα
=

1

3
nem

2 〈f0〉2 , (4.68)

where

〈f0〉2 ≡
1

nem2

∫

d4p f0℘
2 . (4.69)

In addition, the off-diagonal components of the integrals over pµpν will vanish due to

the symmetry of f0. Because adding terms ∝ uν will not alter the physical solutions,

it is possible to replace
∫

d4p pµpνf0 with 1
3
nem

2 〈f0〉2 gµν. Lastly, note that

(kνBν)
2

BαBα
= ω2 + kαkα . (4.70)
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Therefore, the Iµν are given by

Iµν
1 ' neI1g

µν and Iµν
2 ' ne

iω
I2g

µν , (4.71)

where

I1 ≡ 1 +
1

3

kαkα

ω2
〈f0〉2

I2 ≡ 1 − 1

6
〈f0〉2 +

kαkα

ω2
〈f0〉2 . (4.72)

Because the terms multiplying I2 in the conductivity are already of first order (the

order of ωB is necessarily equal to or smaller than that of ℘ for the approximations

thus far to hold), to second order in small quantities in the conductivity, I2 ' 1. As a

result, with the lowest-order finite temperature corrections the conductivity is given

by

σµν ' − ω2
P

4πiω

(

I1gµν −
e

iωm
εµναβu

αBβ
)

(4.73)

For the cold plasma I1 = 1 and this does reduce to the appropriate expansion of the

conductivity derived in Section 4.3.2.

4.5 Dispersion Relations

Given the conductivities derived in Section 4.3 & Section 4.4 it is now possible to

obtain the associated dispersion relations. It is instructive to compare these to the

dispersion relation for massive particles (de Broglie waves):

D(kµ, x
µ) = kµkµ +m2 . (4.74)

That this does produce the time-like geodesics when inserted into the ray equations

is demonstrated in Appendix A.
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4.5.1 Isotropic Electron Plasma

The conductivity tensor obtained in Section 4.3.1 for the isotropic cold electron

plasma yields the dispersion tensor

Ωµ
ν =

(

kαkα + ω2
P

)

δµ
ν − kµkν . (4.75)

For the transverse modes, this gives the dispersion relation

D(kµ, x
µ) = kµkµ + ω2

P , (4.76)

(cf. Kulsrud & Loeb, 1992). For constant density plasmas this is nothing more than

the massive particle equation, cf. equation (4.74). For plasmas with spatially varying

densities this leads to a variable effective “mass”. Hence in general, photons in plas-

mas will not follow geodesics. This is a representation of the refractive nature of the

plasma.

4.5.2 Quasi-Longitudinal Approximation for the Cold Elec-

tron Plasma

When magnetic fields are present it is necessary to utilize the conductivity tensor

obtained in Section 4.3.2. In the quasi-longitudinal approximation the wave three-

vector is parallel to the external magnetic field in the LFCR. In this approximation,

the modes are transverse. This follows from the fact that in the LFCR frame this is

true and that since this is a local property expressible in covariant form, it must also

be true in an arbitrary frame. This can be explicitly verified by comparison with the

results of Section 4.5.5 where the general case is considered.

Under these conditions the dispersion tensor takes the form

Ωµ
ν = αδµ

ν − iγMµ
ν , (4.77)



44

where α, γ, and Mµν are defined by

α ≡ kµkµ − δω2 , γ ≡ δω
( e

m

)

, (4.78)

δ ≡ ω2
P

ω2
B − ω2

, Mµν = −Mνµ ≡ εµναβ u
αBβ .

Taking the determinant of Ωµ
ν yields

det Ωµ
ν = α4 − α2γ2BµBµ

= α2 (α− δωωB) (α + δωωB) = 0 . (4.79)

The two modes corresponding to α = 0 are the sonic mode and the unphysical mode

proportional to uµ which is eliminated by the condition that uµE
µ = 0. The other

two modes have dispersion relations

D (kµ, x
µ) = α± δωωB

= kµkµ +
ωω2

P

ω ± ωB
. (4.80)

As with equation (4.76), this dispersion relation also has a term that could be iden-

tified with the mass in equation (4.74). In contrast with equation (4.76), now that

“mass” depends upon the polarization eigenmode. As a result, different eigenmodes

will propagate differently. This is an expression of the dispersive nature of a magne-

tized plasma.

In addition to dispersion, a noticeable departure from its nonrelativistic analogue

is the presence of kµ in the definition of ω (equation (4.9)). This is not surprising

since it is the most general Lorentz covariant extension of the quasi-longitudinal

dispersion relation. Of interest is the fact that the dispersion relation is now cubic

in the magnitude of ~k, κ. Because two roots clearly exist in the low-density limit, a

third root must also exist. This results in a new branch in the dispersion relation.

This will be explored in more detail in Section 6.1.
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4.5.3 Quasi-Longitudinal Approximation for the Warm Elec-

tron Plasma

For the conductivity derived in Section 4.4.3, this is identical to the previous section,

where α and δ, are replaced by kµkµ + I1ω
2
P and −ω2

P/ω
2. Then,

D (kµ, x
µ) = α± ω2

P

ωB

ω

= kµkµ + I1ω
2
P ± ω2

P

ωB

ω

=

(

1 +
1

3

ω2
P

ω2
〈f0〉2

)

kµkµ + ω2
P ± ω2

P

ωB

ω
. (4.81)

For a thermal electron distribution, 〈f0〉2 = 3kT/m and hence

1

3

ω2
P

ω2
〈f0〉2 =

ω2
T

ω2
where ω2

T =
kT

m
ω2

P . (4.82)

Note that ωT is related to the Debye frequency, ωD, by ωT = ω2
P/ωD. Thus, including

the lowest order finite temperature corrections, the dispersion relation in the quasi-

longitudinal approximation is

D (kµ, x
µ) =

(

1 +
ω2

T

ω2

)

kµkµ + ω2
P ± ω2

P

ωB

ω
. (4.83)

4.5.4 General Magnetoactive Cold Pair Plasma

The conductivity for the pair plasma may be obtained by adding the conductivities

for the electrons and the positrons,

σpair

µν = σe−

µν + σe+

µν

= − ω2
P

4πiω (ω2
B − ω2)

(

−ω2gµν + ω2
B

BνBµ

BαBα

)

, (4.84)
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where now the plasma frequency is defined in terms of the sum of the number densities

of the electrons and positrons. The resulting dispersion tensor is

Ωµν = αgµν − kµkν + βBµBν , (4.85)

where α, γ, δ, andMµν are defined as in equation (4.78), and β ≡ δ(e/m)2. In addition

to the requirement that Ωµ
νE

ν = 0, Eµ must be orthogonal to uµ. As a result, it

is necessary to alter Ωµ
ν in such a way that it explicitly separates the eigenmodes

orthogonal to uµ from the unphysical mode. This can be trivially accomplished by

adding a term −ωkµuν to the dispersion tensor. Note that this does not change the

dispersion equation for the physical modes because Eµuµ = 0 by definition. Thus,

consider

Ωµν = αgµν − kµ (kν − ωuν) + βBµBν , (4.86)

instead of the dispersion tensor given in equation (4.85). For this dispersion tensor,

the unphysical mode is trivially found to be uµ, with dispersion relation D = α. As

in Section 4.5.2 the dispersion relations can be found by taking the determinant of

the dispersion tensor:

det Ωµ
ν = −(1 + δ)ω2α2

[

α + δω2
B − δ

1 + δ

(

eBµkµ

mω

)2
]

, (4.87)

where the definition of α was used. Therefore, the dispersion relations for the two

electromagnetic modes are

D1 (kµ, x
µ) = kµkµ − ω2

P

ω2
B − ω2

(4.88)

D2 (kµ, x
µ) = kµkµ + ω2

P − ω2
P

ω2
P + ω2

B − ω2

(

eBµkµ

mω

)2

.

It is straightforward to show that D1 and D2 correspond to the extraordinary and

ordinary modes, respectively, by considering the transverse limit (Bµkµ = 0).
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4.5.5 General Magnetoactive Cold Electron Plasma

For the general case, no approximations, except those used to derive equations (4.13)

and (4.30), are made. In this case, inserting the conductivity tensor obtained in

Section 4.3.2 into equation (4.14) gives

Ωµν = kαkαgµν − kµkν −
ω2

P

(ω2
B − ω2)

(

ω2gµν − ω2
B

BµBν

BαBα

+ iω
e

m
εµναβ u

α Bβ

)

. (4.89)

Collecting the coefficients of like tensors gives

Ωµ
ν = αδµ

ν − kµkν + βBµBν − iγMµ
ν , (4.90)

where α, β, γ, δ, and Mµν are defined as in Section 4.5.2 and Section 4.5.4. As in

the previous section, it is useful to add a term proportional to uνE
ν to the dispersion

equation. Hence consider

Ωµ
ν = αδµ

ν − kµ (kν − ωuν) + βBµBν − iγMµ
ν . (4.91)

Proceeding as in the previous sections, the scalar dispersion relations corresponding to

the different eigenmodes can be found by considering the determinant of the dispersion

tensor:

det Ωµ
ν = α

{

α3 +
[

βBµBµ −
(

kµkµ + ω2
)]

α2

−
[

δω2
B

(

kµkµ + ω2
)

− δ
( e

m
Bµkµ

)2

+ δ2ω2ω2
B

]

α

− δ2ω2

[

δω4
B −

( e

m
Bµkµ

)2
]}

. (4.92)
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Inserting the definition of α reduces the terms in the braces to a quadratic in kµkµ,

which may be solved to produce the desired dispersion relation:

D (kµ, x
µ) = kµkµ − δω2 − δ

2 (1 + δ)

{[

(

eBµkµ

mω

)2

− (1 + 2δ)ω2
B

]

±

√

(

eBµkµ

mω

)4

+ 2 (2ω2 − ω2
B − ω2

P )

(

eBµkµ

mω

)2

+ ω4
B

}

. (4.93)

This is a covariant extension of the Appleton–Hartree dispersion relation (see, e.g.,

Boyd & Sanderson, 1969). As in the previous two sections, this continues to bear

a resemblance to the dispersion relation for massive particles. Again the effective

“mass” depends upon position and the polarization eigenmode. Additionally, it now

depends upon the direction of propagation relative to the external magnetic field as

well.
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Chapter 5

Polarized Radiative Transfer in
Refractive Plasmas

Both emission and absorption are local processes. However, because the transfer

of radiation necessarily involves a comparison between the state of the radiation at

different points in space, global propagation effects need to be accounted for. These

take two general forms: correcting for the gravitational redshift and Doppler shifts;

and keeping track of the local coordinate system, i.e., ensuring that polarized emission

is being added appropriately in the presence of a rotation of the coordinate system

propagated along the ray. In addition, for a magnetoactive plasma, it is necessary to

determine how to perform the radiative transfer in the presence of refraction.

5.1 Length Scales and Regimes

The problem of performing radiative transfer in a magnetoactive plasma has been

treated in detail in the context of radio-wave propagation in the ionosphere (for a

detailed discussion see, e.g., Ginzburg, 1970; Budden, 1961). In these cases it was

found that there were two distinct limiting regimes (see, e.g., Appendix C). These

can be distinguished by comparing two fundamental scales of the affine parameter τ :

that over which the polarization eigenmodes (which are generally elliptical) change

appreciably, τS , and the Faraday rotation length, τF . Before τS can be defined it is

necessary to define a pair of basis four-vectors that define the axes of the polarization
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ellipse:

êµ
‖ =

(kαkα + ω2)Bµ − Bνkν (kµ − ωuµ)
√

kβkβ + ω2

√

(kσkσ + ω2)BγBγ − (Bγkγ)
2

(5.1)

êµ
⊥ =

εµναβuνkαBβ
√

(kσkσ + ω2)BγBγ − (Bγkγ)
2
, (5.2)

where εµναβ is the Levi-Civita pseudo-tensor. In terms of these, the ellipticity angle

χ can be defined by

tanχ ≡ i
eµ
‖EO µ

eν
⊥EO ν

= i
eµ
⊥EX µ

eν
‖EX ν

. (5.3)

In general, an additional angle, φ, is necessary to define the polarization, namely

the angle which defines the orientation of the ellipse. The basis four-vectors have

been chosen such that φ is identically zero. However, this choice introduces a new

geometric term into the equations which accounts for the necessary rotation of the

basis four-vectors, contributing a nonzero dφ/dτ (see §5.1.2 for more details). Then,

in general,

τS ≡
(

∣

∣

∣

∣

dφ

dτ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

dχ

dτ

∣

∣

∣

∣

2
)−1/2

, (5.4)

For the ordered fields employed here (see the appendices),

τS '
∣

∣

∣

∣

ωB

ω3

∂ω2
P

∂xµ

dxµ

dτ

∣

∣

∣

∣

−1

, (5.5)

where this approximation form is true for small cyclotron and plasma frequencies

and all but the most oblique angles of incidence. The Faraday rotation length is

defined to be the distance over which the phase difference between the two polarization

eigenmodes reaches 2π, i.e.,

τF ≡
∣

∣

∣

∣

∆kµ
dxµ

dτ

∣

∣

∣

∣

−1

, (5.6)

where ∆kµ is the difference between the wave vectors of the two modes. Strictly

speaking in addition to τF , τS should be compared to a term describing the rate of

change of the Faraday rotation length, however in the situations under consideration
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here this term is completely dominated by τF .

Together, these length scales define three regimes: the adiabatic regime (τF � τS),

the intermediate regime (2τF ∼ τS), and the strongly coupled regime (τF � τS). In all

regimes the polarization of the plasma eigenmodes is uniquely set by the dispersion

equation, equation (4.13).

In general, as θ → π/2, ∆k ' (ω2
PωB/ω

2c) cos θ+(ω2
Pω

2
B/ω

3c), where θ is the angle

between the wave-vector and the magnetic field. Hence to remain in the adiabatic

regime τS � (ω/ωB)2τF (θ = 0), which is typically not true in astrophysical sources.

As a result, as the magnetic field becomes perpendicular to the wave-vector, the

modes generally become strongly coupled. This is the reason why, when dealing with

a large number of field reversals (e.g., in a molecular cloud), the amount of Faraday

rotation and conversion is ∝ B · dx and not |B| · dx (which would follow in the

adiabatic regime) despite the fact that τs � τF (θ = 0) may be true throughout the

entire region.

5.1.1 Adiabatic Regime

In the adiabatic regime the two polarization modes propagate independently (see,

e.g., Ginzburg, 1970). As a result, to a good approximation, the net polarization is

simply given by the sum of the two polarizations. The intensities, IO and IX , of the

ordinary and the extraordinary modes, respectively, are not conserved along the ray

due to the gravitational redshift. Consequently, the photon occupation numbers of

the two modes, NO and NX , which are Lorentz scalars, and hence are conserved along

the rays, are used. Therefore, the equation of radiative transfer is given by

dNO,X

dτ
=
dl

dτ

(

jO,X − αO,XNO,X

)

, (5.7)

where

dl

dτ
=

√

gµν
dxµ

dτ

dxν

dτ
+

(

uµ
dxµ

dτ

)2

(5.8)



52

is the conversion from the line element in the LFCR frame to the affine parameter-

ization, and jO,X is the emissivity in the LFCR frame scaled appropriately for the

occupation number (as opposed to the intensity). In practice, the occupation num-

bers will be large. However, up to fundamental physical constants, it is permissible to

use a scaled version of the occupation numbers such that NO,X = ω−3IO,X in vacuum.

It is also this regime in which Faraday rotation and conversion occur. However,

because these propagation effects result directly from interference between the two

modes, and hence require the emission to be coherent among the two modes, when

they diverge sufficiently the modes must be added incoherently and thus Faraday

rotation and conversion effectively cease. The modes will have divereged sufficiently

when

|∆x⊥| &
λ2

∆λ
, (5.9)

where ∆λ is the emission bandwidth. For broad-band emission, this reduces to

|∆x⊥| & λ. Therefore in a highly refractive medium an additional constraint is

placed upon Faraday rotation. The depth at which equation (5.9) is first satisfied

can be estimated by considering an oblique ray entering a plane-parallel density and

magnetic field distribution (at angle ζ to the gradient). In this case, to lowest order

in ωP and ωB,
d2∆x⊥
dz2

' − sin ζ
∂D

∂z
' ωBω

2
P

ω3z
(5.10)

As a result,

|∆x⊥| '
ωBω

2
P z

2ω3
, hence zmax '

√

λ
2ω3

ωBω
2
P

. (5.11)

The resulting number of Faraday rotations, nF , is then given by

nF ≡
∫ zmax

0

∆k

2π
dz ' 1

2π sin ζ
, (5.12)

which is typically small for all but the smallest ζ. Because, as discussed in Chapter 4,

linear polarization is strongly suppressed by refraction, such a small Faraday rotation

in negligible. As a result, for the situations of interest here, in this regime the modes
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can be added together incoherently to yield the net polarization.

5.1.2 Strongly Coupled Regime

In the limit of vanishing plasma density it is clear that the polarization propagation

must approach that in vacuum regardless of the magnetic field geometry. In this limit

the two modes must be strongly coupled such that their sum evolves as in vacuum.

In particular, it is necessary to keep track of their relative phases. This can be most

easily accomplished by using the Stokes parameters to describe the radiation. In

this case also it is possible to account for the gravitational redshift by using the

photon occupation number instead of intensities, N , NQ, NU , NV . However, it is also

necessary to define the NQ, NU , and NV in a manner that is consistent along the

entire ray. In order to do this we may align the axes of NQ along the magnetic field,

i.e.,

NQ = N(êµ
‖ ) −N(êµ

⊥)

NU = N

(

1√
2
êµ
‖ −

1√
2
êµ
⊥

)

−N

(

1√
2
êµ
‖ +

1√
2
êµ
⊥

)

(5.13)

NV = N

(

1√
2
êµ
‖ +

i√
2
êµ
⊥

)

−N

(

1√
2
êµ
‖ −

i√
2
êµ
⊥

)

,

where N(eµ) is the occupation number of photons in the polarization defined by eµ.

Thus the problem of relating NQ, NU , and NV along the ray is reduced to propagating

êµ
‖ and êµ

⊥. A change in τ by dτ is associated with a rotation of the basis by an angle

dφ = ê⊥µ
dxν

dτ
∇ν ê

µ
‖dτ , (5.14)

where the use of the covariant derivative, ∇ν, accounts for the general relativistic

rotations of êµ
‖ and êµ

⊥. As a result, the transfer effect due to general relativity and
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the rotation of the magnetic field about the propagation path is

dNQ

dτ
= −2

dφ

dτ
NU

dNU

dτ
= 2

dφ

dτ
NQ , (5.15)

where the factor of 2 arises from the quadratic nature of N.

After a specific emission model is chosen the emissivities and the absorption co-

efficients are scaled as in Section 5.1.1. An example will be discussed in more detail

in Section 5.2.

5.1.3 Intermediate Regime

At some point it is necessary to transition from one limiting regime to the other. In

this intermediate regime the polarization freezes out. A great deal of effort has been

expended to understand the details of how this occurs (see, e.g., Budden, 1952). How-

ever, to a good approximation it is enough to set the polarization at the point when

τF = 2τS to the incoherent sum of the polarization eigenmodes (see the discussion in

Ginzburg, 1970):

N = NO +NX

NQ = − cos 2χ(NO −NX)

NU = 0 (5.16)

NV = sin 2χ(NO −NX)

It is straightforward to show that in terms of the generalized Stokes parameters NO

and NX are given by (this is true even when they are offset by a phase)

NO =
1

2
(N − cos 2χNQ + sin 2χNV )

NX =
1

2
(N + cos 2χNQ − sin 2χNV ) . (5.17)
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Note that, in general, polarization information will be lost in this conversion. This

is a reflection of the fact that the space spanned by the incoherent sum of the two

modes forms a subset of the space of unpolarized Stokes parameters. This is clear from

their respective dimensionalities; the former is three-dimensional (there are only three

degrees of freedom for the decomposition into the two polarization modes, namely

their amplitudes and relative phase), while the later is four-dimensional (I, Q, U ,

and V , subject only to the condition that I2 ≥ Q2 + U2 + V 2).

5.2 Low-Harmonic Synchrotron Radiation into Cold

Plasma Modes

As discussed in the previous section, emission and absorption are inherently local

processes. As a result it will be sufficient in this context to treat them in the LFCR

frame, and hence in flat space. In this frame it is enough to solve the problem in

three dimensions and then insert quantities in a covariant form.

Because refractive effects become large only when ω ∼ ωB, ωP , for there to be

significant spectral and polarimetric effects it is necessary to have an emission mech-

anism which operates in this frequency regime as well. A plausible candidate is

low-harmonic synchrotron emission. It is assumed that a hot power-law distribution

of electrons is responsible for the emission while the cold plasma is responsible for

the remaining plasma effects. In Chapter 4 we did present the theory for the warm

plasma as well, however, as in the conventional magnetoionic theory, it is much more

cumbersome to utilize.

5.3 Razin Suppression

A well-known plasma effect upon synchrotron emission is the Razin suppression (see,

e.g., Rybicki & Lightman, 1979; Bekefi, 1966). This arises due to the increase in the

wave phase velocity above the speed of light, preventing electrons from maintaining
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phase with the emitted electromagnetic wave, resulting in an exponential suppression

of the emission below the Razin frequency,

ωR =
ω2

P

ωB
. (5.18)

However, as discussed in the Appendix, for the disk model we have employed here,

typically ωB > ωP and hence the Razin effects do not arise.

5.4 Projection onto Non-Orthogonal Modes

A significant problem with emission mechanisms in the ω ∼ ωB, ωP frequency regime

is that the modes are no longer orthogonal. It is true that for a lossless medium (such

as the cold plasma), equation (4.13), which defines the polarization, is self-adjoint.

However, because the kµ differ for the two modes, it is a slightly different equa-

tion for each mode, and hence the polarizations are eigenvectors of slightly different

hermitian differential operators. In the high-frequency limit this difference becomes

insignificant.

The energy in the electromagnetic portion of the wave (neglecting the plasma

portion) is given by

E =
E∗ · ε ·E

4π
=

1

4π
E∗ ·

(

1 +
4πi

ω
σ

)

· E (5.19)

For each mode (EO and EX), the dispersion equation gives

(

ω2 + 4πiωσ
)

·EO,X =
(

k2
O,X − kO,X ⊗ kO,X

)

· EO,X

= k2
O,X

(

1 − k̂ ⊗ k̂
)

·EO,X . (5.20)

Therefore, with E =
∑

i Ei,

E =
1

4πω2

∑

i,j

k2
jE

∗
i ·
(

1 − k̂ ⊗ k̂
)

·Ej . (5.21)
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However, for a lossless medium it is also true that

E = E† =
1

4πω2

∑

i,j

k2
i E

∗
i ·
(

1 − k̂ ⊗ k̂
)

·Ej , (5.22)

and therefore,
∑

i,j

(

k2
i − k2

j

)

E∗
i ·
(

1 − k̂ ⊗ k̂
)

· Ej = 0 . (5.23)

For a nondegenerate dispersion relation, e.g., that of a magnetoactive plasma, this

implies that the the components of the polarization transverse to the direction of

propagation are orthogonal for the two modes, i.e.,

F̂∗
i · F̂j = k2

i δij (5.24)

where

F̂O,X = kO,X

(

1 − k̂ ⊗ k̂
)

· ÊO,X

Ê∗
O,X ·

(

1 − k̂ ⊗ k̂
)

· ÊO,X

. (5.25)

As a result it is possible to define EO,X such that

EO,X =
F∗

O,X · FO,X

4π
and E =

∑

i

Ei , (5.26)

i.e., that the electromagnetic energy can be uniquely decomposed into the electro-

magnetic energy in the two modes.

Expressions for the FO,X can be obtained by solving for the eigenvectors of the

dispersion equation. For the cold magnetoactive plasma this gives

F̂O,X =
kO,X√

2

[
√

1 ± (1 + ε)−1/2 ê‖ ± i

√

1 ∓ (1 + ε)−1/2 ê⊥

]

, (5.27)

where, (not to be confused with the Levi-Civita pseudo-tensor)

ε =

(

sin2 θ

2 cos θ

ωωB

ω2
P − ω2

)−2

, (5.28)



58

θ is the angle between the magnetic field and the wave vector, and ê‖,⊥ are the flat

space analogues of the basis vectors in equation (5.2). θ may be defined covariantly

by

cos2 θ =
(Bµkµ)2

BνBν (kσkσ + ω2)
. (5.29)

This corresponds to the polarization found in the literature (cf. Budden, 1961).

5.5 Emissivities

Because the electromagnetic energy can be uniquely decomposed into contributions

from each polarization eigenmode, it is possible to calculate the emissivities and

absorption coefficients by the standard far-field method. For synchrotron radiation

this was originally done by Westfold, 1959. The calculation is somewhat involved but

straightforward and has been done in detail in the subsequent literature (see, e.g.,

Rybicki & Lightman, 1979). Consequently, only the result for the power emitted (per

unit frequency and solid angle) for a given polarization is quoted below:

〈PO,X
ω Ω 〉 =

e3B sin θ

8
√

3π2mk2
O,X

n2
r

∫

d3pf(p)

[

(

∣

∣

∣
F̂O,X · ê‖

∣

∣

∣

2

+
∣

∣

∣
F̂O,X · ê⊥

∣

∣

∣

2
)

F (x)

+

(

∣

∣

∣
F̂O,X · ê‖

∣

∣

∣

2

−
∣

∣

∣
F̂O,X · ê⊥

∣

∣

∣

2
)

G(x)

]

, (5.30)

where

x =
2mcω

3γ2eB sin θ
, (5.31)

f(p) is the distribution function of emitting electrons, nr is the ray-refractive index

(for a suitable definition see Bekefi, 1966), and F and G have their usual definitions,

F (x) = x

∫ ∞

x

K 5
3
(y)dy and G(x) = xK 2

3
(x) , (5.32)

where the K5/3 and K2/3 are the modified Bessel functions of 5/3 and 2/3 order,

respectively. The addition factor of n2
r arises from the difference in the photon phase
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space, d3k and the analogous integral over frequency, 4πdω.

For the adiabatic regime, the emissivities, jO,X ω, can now be defined:

jO,X =
1

4πn2
rω

3
〈PO,X

ω Ω 〉 . (5.33)

For a power-law distribution of emitting electrons, f(p)d3p = Cγ−sdγ, this gives

jO,X =

√
3e2C

24π2ω2c(1 + s)

(

3
ωB

ω
sin θ

)
s+1
2

Γ

(

s

4
+

19

12

)

× Γ

(

s

4
− 1

12

)[

1 ± 3s+ 3

3s+ 7
(1 + ε)−

1
2

]

. (5.34)

The Stokes emissivities and absorption coefficients for an emitting hot power law

(ignoring effects of order γ−1 as these explicitly involve the propagation through the

hot electrons) are given by

jN = jO + jX (5.35)

jQ =

√
3e2C

48π2ω2c

(

3
ωB

ω
sin θ

)
s+1
2

× Γ

(

s

4
+

7

12

)

Γ

(

s

4
− 1

12

)

(5.36)

jU = jV = 0 . (5.37)

Note that for low γ synchrotron can efectively produce circular polarization, namely

jV ∼ 3/γ. The production of circular polarization in this way in environments with

large Faraday depths will be considered in future publications.
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5.6 Absorption Coefficients

For the adiabatic regime, detailed balance for each mode requires that the absorption

coefficients are then given by

αO,X =

√
3πe2C

6ωmc

(

3
ωB

ω
sin θ

)
s+2
2

Γ

(

s

4
+

11

6

)

Γ

(

s

4
+

1

6

)[

1 ± 3s+ 6

3s+ 10
(1 + ε)−

1
2

]

.

(5.38)

In the strongly coupled regime, the Stokes absorption coefficient matrix is (see,

e.g., Jones & O’Dell, 1977b, and references therein),

















αN αQ 0 αV

αQ αN 0 0

0 0 αN 0

αV 0 0 αN

















, (5.39)

where the Faraday rotation and conversion due to the hot electrons have been ignored

as a result of the fact that they will be negligible in comparison to the Faraday rotation

and conversion due to the cold electrons. The individual α’s can be obtained in terms

of the αO,X using the fact that the energy in the electromagnetic oscillations can be

uniquely decomposed into contributions from each mode (equation (5.26)). Then,

dN

dλ
=
dNO

dλ
+
dNX

dλ

= jO + jX − αONO − αXNX

= (jO + jX) − 1

2
(αO + αX)N (5.40)

+
1

2
cos 2χ (αO − αX)Q− 1

2
sin 2χ (αO − αX)V .



61

Therefore, the absorption coefficients may be identified as

αN =
1

2
(αO + αX) (5.41)

αQ = −1

2
cos 2χ (αO − αX) (5.42)

αV =
1

2
sin 2χ (αO − αX) . (5.43)

5.7 Unpolarized Low-Harmonic Synchrotron Ra-

diation

To highlight the role of refraction in the generation of polarization, an unpolarized

emission mechanism is also used. To compare with the results of the polarized emis-

sion model discussed in the previous section, the artificial scenario in which the syn-

chrotron emission is split evenly into the two modes was chosen. In this case,

j
UP
O,X =

1

2
jN , (5.44)

and

j
UP

N = jN , (5.45)

with the other Stokes emissivities vanishing. Similarly, the absorption coefficients are

given by

αUP
O,X = αUP

N = αN , (5.46)

with the other absorption coefficients vanishing as well.

5.8 Constraints upon the Emitting Electron Frac-

tion

For refractive plasma effects to impact the spectral and polarimetric properties of an

accretion flow, it is necessary that it be optically thin. This places a severe constraint
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upon the fraction of hot electrons, f ≡ C/[ne(s−1)]. In terms of the plasma frequency

and f the absorptivity is approximately

αN ∼
√

3

24c
f
ω2

P

ω

(

3
ωB

ω
sin θ

)(s+2)/2

. (5.47)

With s ∼ 2, and ω ∼ ωP , ωB, the typical optical depth (not to be confused with the

affine parameter) is

τ ∼ 10−1f
R

λ
hence f ∼ 10

λ

R
, (5.48)

where R is the typical disk scale length (here on the order of 10M).
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Chapter 6

Generic Example Applications

In the previous chapters the general theory of a covariant magnetoionic theory was

presented for electron-ion (in the Appleton-Hartree limit) and pair plasmas. While

astrophysical plasmas will in general be warm, the cold electron plasma does provide

an instructive setting in which to highlight some of the similarities and differences

that a fully general relativistic magnetoionic theory has compared to general relativity

or plasma effects alone.

6.1 Bulk Plasma Flows

A number of novel effects will appear in special relativistic plasma flows. The co-

variant formulation of magnetoionic theory can have implications for the structure of

the dispersion relation. As briefly mentioned in Section 4.5.2, the equation for the

magnitude of the spatial part of the wave vector is now cubic. This is essentially due

to Doppler shifting. Thus these effects should appear in relativistic bulk plasma flows

as well as in regions of strong frame dragging (e.g., near the ergosphere of a Kerr

hole).

For a relativistic bulk flow (in the x direction)

ω =
kt − vkx cos θ√

1 − v2
, (6.1)

where θ is the angle between the wave vector and the motion and v is the velocity
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Figure 6.1: The dispersion diagram at a number of magnetic field strengths and
velocities for a relativistic bulk plasma flow. The frequency scale is set by ωP = 1.
The ordinary (extraordinary) eigenmode is shown by the thick (thin) line. Note that
the dispersion diagrams are asymmetric due to the plasma motion.

of the motion. Clearly the coupling between the previously mentioned third branch

depends upon both v and θ, being strongest when θ = 0. Shown in Figure 6.1 are

the quasi-longitudinal dispersion relations for a relativistic bulk flow for a number

of velocities and magnetic field strengths and θ = 0. The frequencies are measured

in units of the plasma frequency, making this otherwise scale invariant. Note that
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a whistler-like branch appears for the ordinary mode which is not present in the

nonrelativistic theory. Similar to the whistler branch of the extraordinary mode,

it is asymmetric due to the bulk motion. In the limit of vanishing plasma density

this branch does not transform into a vacuum branch, in much the same manner as

portions of the whistler. Therefore, in the context of a strongly sheared flow, this

mode cannot escape from the plasma, necessarily reflecting at the surfaces of the

plasma distribution. This may have implications for the pressure balance in thick

disks with large velocity shears and jets, even at frequencies where these are optically

thin.

In bulk plasma flows the new branch appears because the velocity mixes the spatial

and temporal components of kµ. In a Kerr spacetime, frame dragging is responsible

for mixing these components. In this case

ω =
√

−gtt

(

kt +
gφt

gtt
kφ

)

. (6.2)

This is similar to equation (6.1) with the role of the velocity being taken by gφt/gtt.

Hence, the overall effect is qualitatively the same; a new branch similar to the whistler

appears for the ordinary mode.

6.2 Relativistic Shearing Flows and Jets

Jets represent a natural environment in which relativistically shearing plasmas must

be considered. While it is currently unclear as to what type of plasma inhabits jets,

a pair plasma is clearly the least restrictive in terms of energy per particle, and

is the model adopted here for the purpose of concreteness. Because it is generally

necessary for the density to be low inside of the jet, refractive effects are unlikely to

have a significant impact. Nonetheless, it is possible to significantly modify the net

polarization associated with a non-flat emission mechanism.

Emission mechanisms can typically be parametrized in terms of the frequency in

the LFCR frame, ω, as discussed at length in Section 5.2. Therefore, the evolution
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of ω along the ray determines the departure from the vacuum emissivity. From its

definition,

dω

dτ
=
duµ

dτ
kµ + uµdkµ

dτ
(6.3)

= kµ
∂uµ

∂xν

∂D

∂kµ
− uµ ∂D

∂xµ
, (6.4)

where the ray equations were used. This can be simplified greatly if it is assumed

that D is a function only of k2 ≡ kαkα, ω, and xµ, as is the case for the pair plasma.

In this case
dω

dτ
= 2kµk

ν ∂u
µ

∂xν

∂D

∂k2
− uµ ∂D

∂xµ
. (6.5)

The first term arises from crossing shear layers (cf. section B.2 and recall that this

is Minkowski space). Therefore, the evolution in the difference between the local

frequencies of the two modes is given by

d∆ω

dτ
= 2

∂uµ

∂xν

(

k1 µk
ν
1

∂D1

∂k2
− k2 µk

ν
2

∂D2

∂k2

)

− uµ∂ (D1 −D2)

∂xµ

= 2
∂uµ

∂xν
(∆kµk

ν + kµ∆k
ν) − uµ

ω2

∂ω2
Pω

2
B

∂xµ
, (6.6)

where this last expression is appropriate for high frequencies in a pair plasma. This

must be supplemented with an equation for ∆kµ,

d∆kµ

dτ
= −∂∆D

∂xµ
. (6.7)

For concreteness and simplicity, we assume that in the lab frame the jet travels along

the z-axis, shears only in the x direction, the plasma density and/or magnetic field

gradients are along the z-axis, and the line of sight lies in the x-z plane. Then,

∆kµ = ∆kzδµz, and thus all of the shearing terms in equation (6.6) vanish. The

remaining terms then give

d∆ω

dτ
= −γβ

ω2

dω2
Pω

2
B

dz
= − 1

2kz

γβ

ω2

dω2
Pω

2
B

dτ
, (6.8)
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where the last equality is obtained via the ray equations. As a result, a rough ap-

proximation for ∆ω is

∆ω

ω
' −γ2β

ω2
Pω

2
B

ω4
' −γ2β

ω2
P

ω2

(ωB

ω

)2

, (6.9)

which may be large given γ despite the smallness of ωP and ωB.

For non-gray emissivities, this will result in a net polarization due to the difference

in emission into the two polarization eigenmodes. This will be characterized by a

rotation of the polarization angle by 90◦ at breaks in the spectrum in which the

spectral index changes sign (e.g., when the source goes from being optically thick to

optically thin).

Many of these effects will also be present in the context of an ion dominated jet

as well. However, in this case the resultant polarization would be expected to be

dominantly circular due to the polarization of the plasma eigenmodes. Furthermore,

since ∆D ' ω2
PωB/ω,

∆ω

ω
' −γ2β

ω2
P

ω2

ωB

ω
, (6.10)

hence the necessarily lower γ could be moderated by the factor of ω/ωB in comparison

to the result for the pair plasma.

6.3 Isotropic Plasmas and Particle Dynamics

In both special and general relativistic settings, the propagation of photons through

an isotropic (field free) plasma can be represented in a manner analogous to that of

particle dynamics in a potential (see, e.g., Thompson et al., 1994, for the nonrela-

tivistic case). Following the manipulations in Appendix A, it is straightforward to

show that for the dispersion relation given in Section 4.5.1, D = kµkµ + ω2
P , that

vν∇νv
µ = −∇µ2ω2

P , (6.11)
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where vµ ≡ dxµ/dτ , i.e., 2ω2
P acts as a potential in which the the photons propagate

(the factor of 2 is due to the particular affine parameter chosen, namely that associated

with the choice of the dispersion relation given above).

For plasmas in which magnetoionic effects are not significant to the photon propa-

gation (magnetoionic effects may still be important for emission and the propagation

of polarization) this allows a somewhat more simplified analysis. If enough sym-

metries are present, then the rays may be determined via direct integration. For

example, consider a stationary, spherically symmetric plasma distribution around

a Schwarzschild black hole. In this case equation (6.11) shows that vt and vφ are

conserved, associated with the time and azimuthal Killing vector fields, respectively.

Therefore, with the dispersion relation,

dt

dτ
= vt = gttvt = −

(

1 − 2M

r

)−1

vt

dφ

dτ
= vφ = gφφvφ =

vφ

r2

dr

dτ
= vr =

√

v2
t −

(

1 − 2M

r

)

(vφ

r2
+ 4ω2

p

)

, (6.12)

Which may be directly integrated to give the ray as a function of the affine parameter

τ in precisely the same fashion as is typically done to find the particle orbits of the

Schwarzschild metric.

6.4 Bondi Accretion Flow

6.4.1 Photon Capture Cross Sections

In the vicinity of a black hole, polarization can arise even in the case of a gray,

intrinsically unpolarized emissivity. This occurs when one mode is preferentially

captured by the black hole due to dispersive plasma effects. Even without a method

for performing the radiative transfer, this can be estimated by considering the photon

capture cross section of Schwarzschild black hole. It is necessary to provide a plasma
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Figure 6.2: Photon capture cross sections in units of the vacuum capture cross section,
σγ = 27πM2, for the quasi-longitudinal approximation as a function of plasma density
(ωP/ωobs is the value of the plasma frequency at r = 3M) at a number of magnetic
field strengths. The solid, dotted, short dashed, long dashed, and dash-dotted lines
correspond to ωB/ωobs = 0, 0.7, 1.4, 2.1, and 2.8, respectively, at r = 3M . The inset
shows the circular polarization fraction, mc, in terms of the effective emission area,
A, for the same set of magnetic field strengths.

geometry—the plasma density, velocity, and magnetic field—as functions of position.

Here, the density is given by the self-similar Bondi solution, ωP ∝ r−3/4, the magnetic

field is chosen to be a fixed fraction of the equipartition value, ωB ∝ r−5/4, and
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the velocity is chosen such that the plasma has zero angular momentum, i.e., ut =

1/
√
−gtt and ur = uθ = uφ = 0. While this doesn’t correspond to a realistic accretion

flow, it does provide insight into the type of effects dispersive refraction can have.

In order to further simplify the problem the quasi-longitudinal approximation was

used. Typically this is a good approximation, only failing when the angle between kµ

and Bµ is within ∼ ωB/ω of π/2. This dispersive polarization mechanism produces

primarily circular polarization for the same reason.

Shown in Figure 6.2 are these cross sections for a number of different plasma

densities (through ωP ) and magnetic field strengths (through ωB). These are both

scaled by the observed frequency at infinity, and hence are not tied to any particu-

lar frequency scale. The capture cross section of the extraordinary mode decreases

more rapidly than that of the ordinary mode, with increasing density. The dispar-

ity between the two capture cross sections increases with increasing magnetic field

strength.

This can be a very efficient manner of creating polarization over the inner portions

of the accretion flow. However, far from the hole (outside the inner 5 − 10M) this

becomes a small effect. As a result, the fraction of polarization produced depends

upon the magnitude of the diluting emission from regions of the accretion flow distant

from the hole. Nonetheless, it is possible to parameterize the unknown emission in

terms of an effective emitting area (the details of which still depend upon the details

of the accretion flow). Shown in the inset of Figure 6.2 is the circular polarization

fraction scaled by the effective emission area in units of the vacuum photon capture

cross section.

6.4.2 Ray Trajectories

With general dispersion relation for cold magnetoactive plasmas, equation (4.93), and

the ray equations, equations (4.19), it is straightforward to explicitly construct rays.

The plasma geometry outlined in the previous section will be used here as well, with

the scales set by ωP (r = 3M) = ωobs and ωB(r = 3M) = 2ωobs, where ωobs is the



71

Figure 6.3: The paths of the ordinary and extraordinary polarization eigenmodes in
the vicinity of a Schwarzschild black hole are shown by the dashed and solid lines,
respectively, for a number of impact parameters. The dotted lines show the null
geodesics for comparison. The x axis lies along the ray paths at infinity, and the y
axis is orthogonal to both, the x axis and the slice of impact parameters considered.
The plasma density is ∝ r−3/2 and ωP (r = 3M) = ωobs. The magnetic field has a split
monopole geometry with its strength ∝ r−5/4 and ωB(r = 3M) = 2ωobs. The horizon
is shown by the filled region in the center.

frequency observed at infinity. In Figure 6.3 rays are propagated in the vicinity of a

Schwarzschild black hole. For comparison, in Figure 6.4 rays are propagated near a
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Figure 6.4: The paths of the ordinary and extraordinary polarization eigenmodes in
the vicinity of maximally rotating Kerr black hole are shown by the dashed and solid
lines, respectively, for a number of impact parameters. The dotted lines show null
geodesics for comparison. The plasma parameters are the same as those for Figure
6.3. In addition to the horizon, the ergosphere is shown by the partially shaded region.
The rays originate from 60◦ above the equatorial plane. The y axis is orthogonal to
the the rotation axis of the black hole.

maximally rotating Kerr black hole. The null geodesics are shown by the dotted lines

for reference. In both figures the extraordinary mode (solid lines) is refracted the

most, and the ordinary mode (dashed lines) is refracted away from the null geodesics.
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This is precisely what is expected on the basis of the capture cross sections presented

in Section 6.4.1. In addition to dispersive plasma effects, comparison with the null

geodesics demonstrates that general relativistic effects are also significant.

6.4.3 Polarization Maps

The impact that dispersive plasma effects can have upon the spectrum of an accreting

object can be illustrated by maps of the intensity. Here, in addition to the plasma

geometry employed in the previous two sections, an optically thick Shakura-Sunyaev

disk is introduced. The emission is solely from this disk and assumed to be thermal

with

T (r) ∝
(

1 −
√

Rmin/r
)3/10

(see, e.g., Frank et al., 1992). The overall constant is dependent upon a number of

disk parameters and hence is not of particular interest here. Nonetheless, it is chosen

such that kT (r = ∞) = νobs for convenience. The innermost radius of the disk, Rmin,

is chosen to be 3M . Doppler effects due to the rotation of the disk are ignored here.

Shown in Figure 6.5 are the intensity maps for when (a) plasma effects are ne-

glected, (b) plasma effects are included, (c) only the left-handed circular polarization

(ordinary mode) is considered, (d) only the right-handed circular polarization (ex-

traordinary mode) is considered. Because the overall flux from the disk is dependent

upon the details of the accretion flow, the intensities are normalized by the highest

intensity in panel (b). Comparing panels (a) and (b) demonstrates that including

dispersive plasma effects makes a significant difference. This difference originates

primarily from contribution by the extraordinary mode shown in panel (d).

As implied by Figure 6.2, the shadow the black hole casts upon the extraordinary

mode is less than that cast upon the ordinary mode, which is in turn less than that

upon the null geodesics. In addition to the differences in the overall intensities, there

is a substantial difference between the contributions from the two polarizations as

seen by comparing panels (c) and (d).
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(a) (b)

(c) (d)

Figure 6.5: Shown is the normalized intensity for an optically thick, Shakura-Sunyaev
disc around a Schwarzschild black hole when (a) plasma effects are neglected, (b)
plasma effects are included, (c) only the left-handed circular polarization (ordinary
mode) is included, (d) only the right-handed circular polarization (extraordinary
mode) is included. Note the different scales for total intensities ((a) and (b)) and
the polarized intensities ((c) and (d)). The disk is inclined 60◦ relative to the line
of sight. ξ is parallel to the equatorial plane. η is in the line of sight-azimuthal axis
plane. The overall scale is set by the choice of observation frequency and the param-
eters of the disk and hence are not relevant here. The plasma geometry is the same
as that for Figures 6.3 and 6.4.

6.5 Thick Disk

6.5.1 Disk Model

Before any quantitative results are presented it is necessary to select a physically

motivated plasma and magnetic field distribution. Here this takes the form of an
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azimuthally symmetric, thick, barotropic disk around a maximally rotating Kerr black

hole (a ' 0.98). The magnetic field is chosen to lie upon surfaces of constant angular

velocity, thus insuring that it does not shear. In order to maintain such a field it must

also be strong enough to suppress the magneto-rotational instability. Further details

may be found in the Appendix B

6.5.2 Ray Trajectories

Figure 6.6 shows vertical and horizontal slices of rays propagated back through the

disk from an observer elevated to 45◦ above the equatorial plane at a frequency ω∞ =

3ωP max/4. Note that since the maximum occurs at req = 2M , the relativistically

blue-shifted ω is approximately 1.8ωP max placing it comfortably above the plasma

resonance at all points (assuming Doppler effects do not dominate at this point.)

The refractive effects of the plasma are immediately evident with the extraordinary

mode being refracted more so. Gravitational lensing is also shown to be important

over a significant range of impact parameters. There will be an azimuthal asymmetry

in the ray paths due to both the black hole spin and the Doppler shift resulting from

the rotation of the disk. This can be clearly observed in panel (b) Figure 6.6.

In panel (a) of Figure 6.6 the transition between the two radiative transfer regimes

is also clearly demonstrated. Each time a ray passes from the strongly coupled to

the adiabatic regime it must be reprojected into the two polarization eigenmodes. If

the plasma properties (e.g., density, magnetic field strength or direction, etc.) are

not identical to when the polarization had previously frozen out (if at all), this de-

composition will necessarily be different. As a result, when propagating the rays

backwards, whenever one passes from the adiabatic to the strongly coupled regime, it

is necessary to follow both polarization eigenmodes in order to ensure the correctness

of the radiative transfer. The leads to a doubling of the rays at such points. When

integrating the radiative transfer equations forward along the ray, the net intensity

is then projected out using equation (5.17). This ray doubling is clearly present in

panel (a) of Figure 6.6, where the rays pass into the strongly coupled regime and back
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(a) (b)

Figure 6.6: Shown in panels (a) and (b) are vertical and horizontal cross sections of
rays propagating backwards from an observer located 45◦ above the equatorial plane.
The strongly coupled (adiabatic) regime is denoted by the solid (long-dashed) lines for
the ordinary (thin) and extraordinary (thick) polarization eigenmodes. For reference,
the null geodesics are drawn in the short dash. In addition, the black hole horizon
and the boundary of the ergosphere are also shown.

again as they traverse the evacuated funnel above and below the black hole.

Note that the trajectories of the rays depend upon ωP/ω∞ and ωB/ω∞ only (given

a specified disk and magnetic field structure, of course), where ω∞ is ω as measured

at infinity. Therefore, the paths shown in Figure 6.6 are valid for any density nor-

malization of the disk described in Appendix B as long as ω is adjusted accordingly.

6.5.3 Polarization Maps

In order to demonstrate the formalism described here, polarization maps were com-

puted for the disk model described in Appendix B orbiting a maximally rotating

black hole as seen by an observer at infinity elevated to 45◦ above the equatorial

plane. Each map shows Stokes I, Q, U , and V .

As with the ray trajectories, the particular form of the polarization maps only

depends upon a few unitless parameters. These necessarily include ωP max/ω and
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ωB max/ω as these define the ray trajectories. In addition, the relative brightness de-

pends upon the optical depth which is proportional to (ωP max/ω)2(ωB max/ω)Mfω/c.

As a result if the following dimensionless quantities remain unchanged, the polariza-

tion maps shown in the following sections will apply (up to a constant scale factor)

ωP max

ω∞
=

4

3
ωB max

ω∞
=

4

3

f
M

λ
= 2.30 × 103 . (6.13)

Despite the fact that the form of the polarization maps will remain unchanged if

the quantities in equation (6.13) remain constant, the normalization will change by a

multiplicative constant in the same way as the source function, namely proportional to

ω2
∞. However, an additional multiplicative factor arises from the solid angle subtended

by the source on the sky. As a result, Stokes I, Q, U , and V are all shown in units of

(

M

D

)2

me ω
2
P max , (6.14)

where D is the distance to the source. This amounts to plotting

kTB

mec2

(

ω∞

ωP max

)2

, (6.15)

where TB is the brightness temperature of the source.

6.5.3.1 Unpolarized Emission

For the purpose of highlighting the role of refractive plasma effects in the production

of significant quantities of circular polarization, Figure 6.7 shows Stokes I, Q, U , and

V at ω∞ = 3ωP max/4, calculated using the unpolarized emission model described

in Section 5.7. Immediately noticeable are the regions of considerable polarization

surrounding the black hole. In addition, the outlines of the evacuated funnel above

and below the hole are clearly visible.
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Differences in the refraction of the two polarization eigenmodes lead to two generic

effects: (i) the presence of two maxima in the intensity map, each associated with

the intensity maxima in a given polarization eigenmode; and (ii) a net excess of one

polarization, and in particular, circular polarization. The polarization changes rapidly

at the edges of the evacuated funnels because the refraction and mode decomposition

changes rapidly for modes that just enter the funnel and those that pass wide of it.

Note that all of the polarization is due entirely to refractive plasma effects in this

case. The integrated values for the Stokes parameters are I = 1.3, Q = −9.4 × 10−4,

U = 4.9 × 10−5, and V = 6.2 × 10−2, demonstrating that there does indeed exist a

significant net circular polarization.

Figure 6.7 may be compared with Figure 6.8 in which Stokes I, Q, U , and V are

shown at ω∞ = 3ωP max for the same unpolarized emission model. In the latter case

the refractive effects are significantly repressed. This demonstrates the particularly

limited nature of the frequency regime in which these types effects can be expected

to occur. In this case there still does exist a net circular polarization, now with

integrated values I = 1.0, Q = −4.8 × 10−6, U = 2.4 × 10−7, and V = 1.2 × 10−3.

6.5.3.2 Polarized Emission

In general, synchrotron emission will be polarized. As a result it is necessary to

produce polarization maps using the emission model described in sections 5.5 and 5.6.

In this case a net polarization will exist even in the absence of any refraction. In order

to compare the amount of polarization generated by refractive effects to that created

intrinsically, Figure 6.9 shows Stokes I, Q, U , and V calculated using the polarized

emission model and ignoring refraction (i.e., setting the rays to be null geodesics)

for ω∞ = 3ωP,max/4. Strictly speaking, this is a substantial overestimate of the

polarization. This is because, in the absence of refraction, in principle it is necessary

to include Faraday rotation and conversion in the transfer effects considered. As a

result of the high plasma density and magnetic field strengths, the Faraday rotation

and conversion depths for this system should be tremendous for non-refractive rays,

effectively depolarizing any emission.
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Figure 6.7: Stokes I, Q, U , and V per unit M 2 are shown in panels (a), (b), (c), and
(d), respectively, for the unpolarized emission mechanism described in Section 5.7 and
the disk model described in Appendix B orbiting a maximally rotating black hole from
a vantage point 45◦ above the equatorial plane at the frequency ω∞ = 3ωP,max/4. The
contour levels are at 0.2 (dashed) and 0.6 (solid) of the maximum values shown on
the associated colorbars. The integrated fluxes over the region shown are I = 1.3,
Q = −9.4 × 10−4, U = 4.9 × 10−5, and V = 6.2 × 10−2. All fluxes are in units of
(M/D)2meω

2
P max as discussed above equation (6.14).

In comparison to Figures 6.7 and 6.8, the general morphology of the polarization

maps are substantially different. In addition, the amount of linear polarization is

significantly larger, having an integrated value of over 60% compared to less than 0.1%

in Figure 6.7 and less than 10−3% in Figure 6.8. This calculation can be compared

to that done by Bromley et al., 2001. In both it was assumed that the rays were null

geodesics. In both Faraday rotation/conversion were neglected (in Bromley et al.,
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Figure 6.8: Same as Figure 6.7 except with ω∞ = 3ωP max. The integrated fluxes over
the region shown are I = 1.0, Q = −4.8× 10−6, U = 2.4× 10−7, and V = 1.2× 10−3.
All fluxes are in units of (M/D)2meω

2
P max as discussed above equation (6.14).

2001 because for their disk model it was assumed to be negligible.) However, in

Bromley et al., 2001 it was also assumed that the radiative transfer could always be

done in the adiabatic regime. As a result, the net polarization was determined entirely

by the emission mechanism. However, as discussed in Section 5.1 this is only possible

in the strongly coupled regime. In this case, the dichroic terms in equation (5.39)

provide the source of circular polarization, even in the absence of a circularly polarized

emission, resulting from the different absorption properties of the two polarization

eigenmodes. This is what leads to the presence of circular polarization in Figure 6.9

but not in Bromley et al., 2001. In this case, the integrated values of the Stokes

parameters are I = 1.1, Q = 6.0 × 10−1, U = −4.9 × 10−3, and V = 6.9 × 10−2. The



81

Figure 6.9: Same as Figure 6.7 except using the polarized emission mechanism (de-
scribed in Sections 5.5 and 5.6) and ignoring refractive plasma effects. The integrated
fluxes over the region shown are I = 1.1, Q = 6.0 × 10−1, U = −4.9 × 10−3, and
V = 6.9×10−2. All fluxes are in units of (M/D)2meω

2
P max as discussed above equation

(6.14).

vertical feature directly above the black hole in panels (b) and (c) is associated with

the rapid decrease in the magnetic field strength in the evacuated funnel above and

below the black hole and are due to the geometric transfer effect discussed in Section

5.1.2.

Finally, in Figure 6.10, both refractive effects and the polarized emission mech-

anism are included (again at ω∞ = 3ωP,max/4). Many of the qualitative features of

Figure 6.7 still persist. The integrated values of the Stokes parameters are I = 1.3,

Q = −2.2×10−3, U = 1.2×10−4, and V = 1.4×10−1. While the intrinsic polarization
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Figure 6.10: Same as Figure 6.9 except including refractive plasma effects. The
integrated fluxes over the region shown are I = 1.3, Q = −2.2×10−3, U = 1.2×10−4,
and V = 1.4 × 10−1. All fluxes are in units of (M/D)2meω

2
P max as discussed above

equation (6.14).

in the emission does make a quantitative difference, it is clear that in this case the

generic polarimetric properties are dominated by the refractive properties. This is

most clearly demonstrated by noting the strong suppression of linear polarization. In

Figure 6.10 the linear polarization fraction is less than 0.2% as compared with nearly

60% in Figure 6.9.

6.5.4 Integrated Polarizations

Figure 6.11 shows the Stokes parameters as a function of frequency for when only

polarized emission is considered, only refractive plasma effects are considered, and
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when both are considered. There are two notable effects due to refraction: (i) the

significant suppression of the linear polarization, and (ii) the large amplification of

circular polarization. The linear polarization is decreased by at least two orders of

magnitude, and in particular, at least two orders of magnitude less than the final

circular polarization. On the other hand, the circular polarization is more than dou-

bled at its peak, and increases by many orders of magnitude at higher frequencies.

Nonetheless, by ω∞ = 10ωP max, both polarizations are less than one tenth of their

maxima. As a result, it is clear that this mechanism is restricted to approximately

one decade in frequency, centered about ωP max.

Figure 6.12 shows the circular polarization fraction as a function of frequency

for the same set of cases that were depicted in the previous figure. As can be seen

in Figure 6.11, the circular and linear polarization spectral index are approximately

equal, and both are softer than that of the total intensity. The result is a decreasing

circular polarization fraction with increasing frequency.
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Figure 6.11: The log of the integrated intensity, total linear polarization, and circular
polarization are shown as a function of the observation frequency at infinity for when
only polarized emission is considered (open triangles), only refractive plasma effects
are considered (open squares), and when both are considered (filled circles). As
in Figures 6.6-6.10, the disk model described in Appendix B orbiting a maximally
rotating black hole is viewed from a vantage point 45◦ above the equatorial plane.
All fluxes are in units of (M/D)2meω

2
P max as discussed above equation (6.14).
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Figure 6.12: Shown is the circular polarization fraction as a function of the observation
frequency at infinity for when only polarized emission is considered (open triangles),
only refractive plasma effects are considered (open squares), and when both are con-
sidered (filled circles). As in Figures 6.6-6.11, the disk model described in Appendix
B orbiting a maximally rotating black hole is viewed from a vantage point 45◦ above
the equatorial plane.
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Chapter 7

Application to Accreting Black
Hole Systems

7.1 Galactic Nuclei

7.1.1 Sgr A∗

The primary motivation for this project was to explain the observation of circular

polarization in the Galactic center. As has been demonstrated in the previous chapter,

refraction is capable of producing circular polarization at frequencies comparable with

ωP and ωB near the horizon. In Sgr A∗ the circular polarization has been observed

in the range ν ' 5–15 GHz. Therefore, if this polarization is produced by refraction,

this implies in general that νP is greater than 5 GHz.

More constraining is the magnitude of the circularly polarized flux. Because the

refractive mechanism discussed in the previous chapter only operates near the horizon,

the entirety of the circularly polarized flux must be produced in its vicinity (∼ 10−2

Jy). The resulting brightness temperature is then,

Tb = 2 × 1014
( r

M

)−2 ( ν

1 GHz

)−2

K , (7.1)

where D ' 8 kpc was used, and r is the radius of the emitting region. Therefore, for

an emitting region with a radius of 10M , this lies below the Compton limit. If the flux

is due to synchrotron emission from a power law electron distribution (presumably
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accelerated via shocks), this produces a brightness temperature on the order of

Tsynch ' mec
2

k

√

ω

ωB

= 6 × 109

√

ω

ωB

K . (7.2)

Therefore, for ω ' ωB, the condition that Tb = Tsynch corresponds to a constraint

upon the size of the emitting region of

r & 20M
( ν

1 GHz

)−1 (ωB

ω

)1/4

, (7.3)

which is not unreasonable (the inequality depends upon whether or not the region is

optically thick). Following the equipartition arguments discussed in Appendix B.2,

ωB can be expected to be on the order of ωP .

The above argument assumes that the polarization fraction is near unity. However,

this is in general not the case. For the specific disk model discussed in Appendix B,

the results of Section 6.5 may be appropriated given their generality. The maximum

typical circularly polarized flux determined in that section is on the order of

Vν ' 0.9

(

M

D

)2

meωP max ' 1.4 × 10−3
( νP max

1 GHz

)2

mJy , (7.4)

(note that this is Vν not Vω). If the maximum plasma frequency is on the order of

30 GHz, this produces a circularly polarized flux on the order of 0.5 mJy as observed.

Figure 6.11 is reproduced with units appropriate for the Galactic center in Figure

7.1. Note that the spectra for the total intensity and the linear polarization need

not correspond to those observed since in these cases the majority of the flux will

arise much further out. However, because in this model the circular polarization is

created in the vicinity of the black hole, the circular polarized spectrum should be

compared to observations. In this case, there are two notable issues. Firstly, the

polarized flux decreases by less than an order of magnitude from its maximum near

45 GHz to 200 GHz. Nonetheless, this will be mitigated by the increase in intensity

for further out in the accretion flow at these frequencies. In addition, because the

high degrees in circular polarization appear to be associated with a flaring state (as
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Figure 7.1: The log of the integrated intensity, total linear polarization, and circular
polarization are shown as a function of the observation frequency at infinity. The
bottom and left axis labels are for Sgr A∗with νP max = 30 GHz, while the top and
right axis labels are for M81 with νP max = 500 GHz. The disk model described in
Appendix B orbiting a maximally rotating black hole is viewed from a vantage point
45◦ above the equatorial plane. All fluxes are in mJy.

opposed to quiescent state with a significantly lower polarization), it is possible that

these predicted high degrees of circular polarization at high frequencies have simply

not yet been observed. This would also mitigate the need for such high densities,

implying that the high circular polarization states are associated with periods of in-
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creased accretion. Secondly, at no point in Figure 7.1 does the circularly polarized

flux increase. This is due to a combination of a decrease refractive effects and emis-

sivities at higher frequencies. However, the circular polarization can be expected to

decrease at lower frequencies as well (the beginning of the turn over is already appar-

ent) as the accretion flow becomes optically thick and thus masks effects occurring

near the horizon. Therefore, the fact that νP ' 30 GHz is marginally higher than

the frequencies at which circular polarization has been measured is not particularly

surprising. The ν � νP case was not addressed here due to concerns regarding the

way in which the cyclotron resonance was dealt with. However, in principle, this can

be extended to this regime as well.

If refraction is responsible for the observed circular polarization, this places strong

constraints upon the Galactic center environment. In order to assess the viability of

this mechanism, it is necessary to consider the limits placed by other observations.

The first of these is the sub-mm emission, which is presumed to arise from the inner-

most portions of the accretion flow. If the electrons can emit efficiently, the limiting

factor is their coupling to the ions. If this primarily occurs via Coulomb scattering,

the approximate volumetric heating rate of relativistic electrons is given by

Ėe ' mec
2me

mp

σT c lnΛn2
e , (7.5)

where σT is the Thomson cross section and Λ is the cutoff of the Coulomb integral

(typically lnΛ ∼ 10–20), (see, e.g., Stepney, 1983). The resulting flux is then given

by

Fν ' 2π

3

M3

D2

( r

M

)3 Ėe

ν
' 8 × 10−21

( ne

cm−3

)2 ( r

M

)3 ( ν

1012 Hz

)

Jy . (7.6)

Hence, in order to produce a typical sub-mm flux of 10 Jy, the electron number density

is approximately

ne & 3.5 × 1010
( r

M

)−3/2

cm−3 , (7.7)

where the inequality is due to the fact that the electrons do not necessarily radiate
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all of their energy. This corresponds to a maximum plasma frequency on the order

of νP ' 2 GHz. This is approximately an order of magnitude lower than what is

required by the refractive mechanism.

The second significant observation is that of bipolar X-ray lobes about the Galactic

center. The presence of two X-ray lobes (presumably powered by winds off of a disk)

which require an energy infusion rate of ∼ 1039 erg/s, imply an accretion rate of

approximately 1020 g/s (despite an available mass supply of ∼ 1022 g/s). Therefore,

with Ṁ ' 4πM2mpc neβ(r/M)2, this implies that

ne ' 6.4 × 108β−1

(

M

r

)2

cm−3 , (7.8)

or in terms of the plasma frequency,

νP ' 0.2
M

r
√
β

GHz . (7.9)

Therefore, for νP ' 2, this requires β ' 0.01(M/r)2. Using an α prescription for

the disk viscosity (although this is almost certainly not a good approximation in this

case),

β ' α
c2s
cvφ

' αΓ
kTi

mpc2
, (7.10)

where cs is the sound speed in the disk, vφ is its azimuthal velocity, Γ is the adiabatic

index, and Ti is the ion temperature. Therefore,

Ti '
mpc

2

αΓk
β ' 6 × 1010α−1

(

M

r

)2

K , (7.11)

and hence for α on the order of 0.3 this gives ion temperatures in the innermost

regions on the order of 1011 K, which are reasonable.

Despite the success in producing the circular polarization, and the conditional

success in reproducing its gross features, it has a number of additional implications.

The first is that the accretion disk must be significantly inclined. A possible X-ray jet,

itself aligned with magnetic filaments at 30 pc, may suggest that the disk is aligned
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with the Galactic plane. This is in contrast to the molecular torus locate at about 3 pc

which appears to be inclined by approximately 60◦ (although both conditions may be

satisfied by a disk inclined towards us). The second is that since the plasma frequency

implied by the sub-mm emission is an order of magnitude too low, if refraction is

producing the circular polarization, it cannot result from the steady-state accretion.

However, since the circular polarization appears to be associated with a flaring state,

it may be associated with episodes characterized by high accretion rates. Finally, the

higher frequency emission must arise via optically thin emission from a larger region

of the disk, with the resulting spectrum then due to the disk’s radial structure. This

may already be in conflict with recent measurements of the intrinsic source size at

7mm (Bower et al., 2004).

7.1.2 M81

M81 is similar to the Galactic center in many respects, including the presence of a

relatively flat, inverted spectrum at GHz frequencies, lack of significant linear polar-

ization, and the presence of circular polarization. As in Sgr A∗, the total circularly po-

larized flux in M81 is on the order of 1 mJy. However, M81 is approximately 450 times

further away than Sgr A∗ (3.6 Mpc) but only about 20 time larger (∼ 7 × 107M�),

significantly reducing its solid angle on the sky (Devereux et al., 2003). This is mit-

igated somewhat by the fact that since the normal is inclined at approximately 14◦

from the line of sight, it is nearly face on, and hence the fractional polarization will

increase, although this will alter the emission as well. In addition, the X-ray luminos-

ity, and hence the mass accretion rate, is approximately an order of magnitude higher,

relaxing somewhat the constraints upon plasma densities near the central black hole.

Following equation (7.4), for M81

Vν ' 3.4 × 10−6
( νP max

1 GHz

)2

mJy . (7.12)

Therefore, in order to provide mJy fluxes, νP max ∼ 500 GHz, which is quite high.

This may be decreased to 50 GHz, which is on the order of what is found for Sgr A∗,
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if the mass of M81 is increased by an order of magnitude. Due to the presence high

non-circular velocities in the central 10 pc of M81, the degeneracy between mass and

inclination is difficult to break, and hence the mass is currently poorly constrained.

Thus, though perhaps not likely, it is nonetheless possible that current mass estimates

of M81 are an order of magnitude low. The results from the previous sections are

also shown for units appropriate for M81 in Figure 7.1.

7.1.3 Blazars

As the application to M81 suggests, there will be a brightness temperature problem

for blazars. Consider, for example, the closest blazar showing circular polarization

at at least the 5σ level in the survey by Rayner et al. (2000), PMN 1522-2730. This

source is at least 7.7 × 102 Mpc away and shows a circularly polarized flux on the

order of 7 mJy. If the entirety of the circularly polarized emission is to originate

within 15M , this requires a brightness temperature on the order of 1016 K. This

should be compared with the maximum of approximately 1013 K set by releasing all

of the gravitational binding energy of the ions. Therefore, it is clear that the refractive

mechanism can not applied in the scheme discussed thus far to blazars. Hence, if the

refractive mechanism is responsible for generating the circular polarization in LLAGN,

these systems must be qualitatively different then blazars.

7.2 Application to X-ray Binaries

As discussed in Section 1.2, X-ray binaries can provide an analogous environment

to LLAGN. However, due to the change in mass scale, accretion rate, and radiative

efficiency, it is necessary to rescale the frequencies at which interesting effects may

occur. As shown in Section 1.2, the plasma frequency and cyclotron frequencies

should scale roughly as

ωP ∼ ωB ∝
√

ε

ηM
, (1.6)
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where ε is the luminosity in units of the Eddington rate and η is the radiative effi-

ciency. Therefore, for a 10M� XRB with a 0.01 Eddington luminosity and a radiative

efficiency on the order of 0.01, this implies that

ωP , ωB ∼ 4 × 104 GHz , (7.13)

which is in the near infrared. For an XRB as radiatively inefficient as the Galactic

center (η ∼ 10−5), this gives ωP , ωB ∼ 1× 107 GHz which is in the ultraviolet/soft X

rays.

Unfortunately, while XRB’s are typically located at similar distances as the Galac-

tic center, the horizon is five orders of magnitude smaller. Therefore, the integrated

flux from the innermost 15M , which decreases roughly as M−1/2 for self-absorbed syn-

chrotron sources, will be considerably smaller. Figure 6.11 is reproduced in Figure

7.2 with units appropriate for radiatively efficient and inefficient XRB’s. Nonetheless,

as demonstrated by the radiatively inefficient XRB, it is clearly possible to generate

an observable circularly polarized flux, frequently larger than that in the Galactic

center.

Figure 7.3 shows the regions in which the refractive mechanism may be observed as

a function of M and Ṁ . The Eddington limit for various values of ε/η and contours of

the frequencies at which refractive effects will become important are shown. Because

the local plasma density depends upon the infall velocity, the 10 GHz contour is also

shown for β = 10−3 and 10−6. For reference, regions that are accesible to SIRTF and

the VLBA are shown for these two infall velocities and for objects at 1 kpc and 8

kpc. While SIRTF does not have any polarization capabilities, it does provide insight

into what may be acheived using current technologies. The Eddington limit places

a restriction upon the detectability of polarization at high frequency from stellar

mass black holes. The position of the Galactic center and the XRBs with known

masses closer than 8 kpc in table 1.2 are also shown, assuming a radiative efficiency

of 10%. Depending upon the radial velocity of the accretion flow, it may be feasible

for experiments with present day sensitivities to measure a polarized signal from
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Figure 7.2: The log of the integrated intensity, total linear polarization, and circular
polarization are shown as a function of the observation frequency at infinity. The
bottom and left axis labels are for a radiatively efficient XRB with νP max = 4 ×
104 GHz, while the top and right axis labels are for a radiatively inefficient XRB with
νP max = 1 × 107 GHz. Both are at 3 kpc. The disk model described in Appendix B
orbiting a maximally rotating black hole is viewed from a vantage point 45◦ above
the equatorial plane. All fluxes are in mJy.

nearyby XRBs. As yet there have been no efforts to measure circular polarization in

the infrared. Hence, this provides a motivation for conducting such investigations.
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Figure 7.3: Limits upon the refractive mechanism in the M–Ṁ plane are shown. The
thick solid line shows the Eddington limit when ε/η = 1. For reference, ε/η = 102 and
10−2 are also shown by the thin solid lines. The thick long dashed lines show curves
of constant νP max (assuming that the infall velocity at 10M is c) and hence where
refractive effects may be expected to appear in the spectrum. In addition for 1010 Hz,
the curves of constant νP max are shown by the thin long dashed line for the cases when
the inflow velocity at 10M is 10−3c and 10−6c. Regions accessible to SIRTF and the
VLBA are denoted by the shaded regions for the two inflow velocities. The thick
dashed-dot border corresponds to an object at 1 kpc, while the thick short dashed
border corresponds to an object at 8 kpc. Lastly, the position of Sgr A∗ and the
XRBs closer than 8 kpc are shown for reference. For the XRBs it was assumed that
η ' 10%. The polarized emission is assumed to arise from the disk model described
in Appendix B orbiting a maximally rotating black hole is viewed from a vantage
point 45◦ above the equatorial plane.
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Part III

Radiative Transfer Through

Tangled Magnetic Fields
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Polarized radiative transfer through self-absorbed synchrotron sources has been

studied in detail (see, e.g., Jones & O’Dell, 1977b,a; Sazonov, 1969; Sazonov & Tsy-

tovich, 1968). However, these have focused upon homogeneous media or assumed

the quasi-longitudinal limit (the external magnetic field is nearly along the ray, or

equivalently, the electric field vector is nearly transverse to the ray). Efforts to under-

stand the radiative transfer have typically been focused on Faraday rotation (Enßlin

& Vogt, 2003; Ruszkowski & Begelman, 2002, etc.). As more circular polarization ob-

servations become available Faraday conversion has been discussed as well (see, e.g.,

Jones & O’Dell, 1977b,a; Beckert & Falcke, 2002; Macquart, 2002). Both of these

are directly due to the anisotropic nature of the dielectric tensor introduced by the

presence of the magnetic field.

Geometric phase (also called Berry phase or anholonomic phase) effects result from

variations in the basis vectors describing some system. In the context of anisotropic

media, these basis vectors are simply the polarization eigenmodes, which may vary

along the line of sight. An example that has received some recent attention is the

effect associated with the rotation of the polarization plane about the line of sight

(see, e.g., Enßlin, 2003). Previously, these had been discussed in terms of the electric

field vectors (see, e.g., Hodge, 1982; Budden & Smith, 1976). Kubo & Nagata, 1983

demonstrate how to derive the radiative transfer equation from a propagation equa-

tion for the electric field vector in the limit of weak inhomogeneity. However, neither

of these treatments are in a form that is readily applicable to astrophysical sources.

Here we derive the degree and frequency dependence of circular polarization that is

due to tangled magnetic fields. We present a qualitative discussion of the mechanism

in Section 8.1, discuss the source of the geometric terms (Section 8.2), the pure

transfer problem (Section 8.3), and the transfer problem when in situ emission is

considered (Section 8.4). We then discuss the frequency dependence and regime of

validity in Section 8.5 and apply this mechanism to the radio polarization observations

of the Galactic center in Section 9.1. While we focus upon the propagation through

a stationary medium, additional interesting effects due to dynamical considerations

are also possible. As a result, the formalism presented here may not apply near the
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inner edge of an accretion flow.
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Chapter 8

Polarized Radiative Transfer
Through Tangled Magnetic Fields

8.1 Qualitative Discussion of the Mechanism

The effects discussed in this part arise from alterations in the polarization eigenmodes

that occur due to changes in the physical conditions along the line of sight. While in

principle these may include variations in the magnetic field strength and plasma den-

sity, the dominant effect is the rotation of orientation the magnetic field. A possible

environment in which this might arise is an accretion disk in which differential rota-

tion has produced a net magnetic helicity (presumably due to the magneto-rotational

instability (MRI)), shown schematically for two possible mechanisms in Figure 8.1.

Rotation of the magnetic field orientation about the line of sight leads to a rotation

of the polarization ellipses of the plasma eigenmodes, and a subsequent transfer of

power from one mode to the other, as depicted in Figure 8.2. This effect explicitly

enters the radiative transfer equations in a manner analogous to Faraday rotation.

If the local emission process is synchrotron emission, the resulting Stoke’s Q can be

transformed into Stoke’s U via this process, and then into Stoke’s V via Faraday con-

version. Because the “extra” Faraday rotation does not depend upon the sign of the

magnetic field, it will not depolarize as a result of field reversals. Furthermore, since

the length scales over which this effect occurs must in general be large in comparison

to those associated with Faraday rotation (see Section 8.2), it is possible to depolarize
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Ω B

B
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Figure 8.1: A shearing disk is shown in cross section. The angular velocity (Ω),
magnetic field lines, and convection are shown for two possible sources of magnetic
helicity. On the left, magnetic field lines are sheared by differential rotation in the disk
by increasing degrees with increasing disk depth due to the vertical density gradient.
On the right, convection within the disk coupled with differential rotation generates
a helical field geometry.

the latter without significantly affecting the former.

The regions in which these processes may occur is limited to the those which obey
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Adiabatic AdiabaticStrongly
Coupled

Figure 8.2: The two polarization eigenmodes are shown for a field reversal along the
line of sight. The direction of the magnetic field relative to the line of sight is shown
at the bottom. In addition to rotating against the line of sight, the field is also taken
to be rotating about it in the sense of the top mode. Also demarked are the adiabatic
and strongly coupled regimes (see Section 8.2 for more details).

the adiabatic criterion (equations (8.1)). Since this condition depends explicitly upon

the angle between the magnetic field and the line of sight (θ), in tangled fields this

criterion may be expected to be violated when this angle is near π/2. Because the

geometric effects lead to a coupling between the plasma modes, their contributions

will be dominated by regions near the strongly coupled limit (θ ∼ π/2). Therefore,

the value of θ at which the condition fails can significantly modify the magnitude and

spectral properties of the resulting polarization. This is indeed found to be the case,

with the spectral properties changing character depending upon whether the domi-

nant effect leading to a violation of the adiabatic criterion is rotation of the field about

the line of sight, or the reversal of the field along the line of sight. Furthermore, at

high enough frequencies there will be no region in which the adiabatic condition holds,

and thus an upper frequency cutoff will exist in the circular polarisation spectrum.
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8.2 Source of Geometric Phase Effects in Magne-

tized Plasmas

Geometric phase effects encompass a large class of physical phenomena which depend

not only upon the current position in phase space of a given physical system, but

also the path traversed by the system (usually taken to be closed). Examples range

from the parallel-propagation of vectors on curved manifolds (in which the difference

between the initial and final orientation of the vector depends upon the path taken)

to the precession of electron magnetic moments in oscillating magnetic fields (as

originally discussed by Berry 1984). In each of these instances a recurrent feature is

the dependence of the eigenvectors of the physical system upon the position in the

phase space. In the context of magnetized plasmas, geometric phase effects will occur

when the polarizations of the plasma modes change.

As discussed in Appendix D, the polarization eigenmodes of a magnetized plasma

can be specified by two angles, the polarization angle φ and the ellipticity angle χ.

These are defined by the orientation of the polarization ellipse and the arctangent

of its semi-major axis divided by its semi-minor axis, respectively. As discussed in

detail in Ginzburg (1970), the two polarization eigenmodes must become strongly

coupled in the limit of vanishing density. This is clearly the case in vacuum where

the net polarization must be parallel propagated along the path of the ray regardless

of the characteristics of a trace magnetic field and plasma density which are enough

to formally specify the polarizations of the eigenmodes but have negligible impact

upon the propagation of the polarization. Consequently there are two distinct lim-

iting radiative transfer regimes, the adiabatic regime in which the modes propagate

nearly independently, and the strongly coupled regime in which the net polarization

propagates essentially as in vacuum (see, e.g., Appendix C). The two regimes are
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delineated by
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strongly coupled , (8.1)

where, in the high-frequency limit,

∆k ' ω

c
XY cos θ ≡ δkµ , (8.2)

in which X and Y are the square of the ratio of the plasma frequency to ω and the

ratio of the cyclotron frequency to ω, respectively, θ is the angle between the line

of sight and the magnetic field, δk ≡ ωXY/c, and µ ≡ cos θ. In the adiabatic limit

(i.e., the limit of constant χ and φ) the modes can be treated as independent. The

lowest-order corrections to this are derived in Appendix D for the general case of an

anisotropic medium, and then in particular for the case of a magnetized plasma in

Appendix E. Keeping lowest-order terms, the resulting radiative transfer equation

can be written

d
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
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

, (8.3)

where

b1 = −1

2
∆k cos 2χ

b3 =
1

2
∆k sin 2χ+

dφ

dz
. (8.4)

Since I is decoupled from the other Stokes parameters at this level, in what follows

we will restrict ourselves to Q, U , and V . Despite that the variation in ellipticity does
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not explicity appear in equation (8.3), it does enter in two ways. Firstly, it appears

in the evolution of χ in b1 and b3. Secondly, it appears in the determination of the

minimum µ at which the propagation may be treated in the adiabatic regime.

8.2.1 Perturbative Treatment of the Transfer Equation

The dependence of b1 and b3 upon χ may be treated perturbatively. This can be done

by defining ψ by

tan 2ψ ≡ b1/b3 and dτ ≡
√

b21 + b23dz . (8.5)

Note that to lowest order in dχ/dz and dφ/dz,

dψ

dτ
' dχ

dτ

cos 2ψ ' cos 2χ− sin 2χ cos 2χ
dφ

dτ

sin 2ψ ' sin 2χ+ cos2 2χ
dφ

dτ
. (8.6)

Equation (8.3) can be simplified by expanding in the eigenvectors of the transfer

matrix,
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0
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√
2
dψ
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ê0 . (8.7)

Then,

d

dτ
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. (8.8)
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where the additional term comes from the dependence of the eigenvectors upon po-

sition. The Stoke’s parameters may be expanded perturbatively in terms of an order

parameter ε which is comparable to dψ/dτ (but to be set to unity in the end),
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Then, inserting this into equation (8.8) and equating like orders gives
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... (8.10)

This process may be iterated to what ever order is desired. However, here we shall

be interested only to linear order.

8.2.2 Dependence of µmin upon Plasma Parameters

The adiabatic condition can be recast in terms of the reversal length scale

LR ≡ π

(
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∣
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1 +

[

Y

4

√

1 − µ2(1 + µ2)

(Y/2)2 + µ2
ξ

]2






−1/2

, (8.11)

where L0
R ≡ π |dφ/dz|−1, ξ ≡ |dθ/dz| / |dφ/dz| (which is typically of order unity), and

the Faraday rotation length scale

LF =
2π

∆k
= L0

Fµ
−1 , (8.12)
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where L0
F ≡ 2π/δk. Explicitly, the adiabatic (strongly coupled) regime corresponds

to LR � LF (LR � LF ). Roughly, when LF ' LR, the polarization will “freeze”

out. As µ→ 0, LF → ∞, and hence the modes will become strongly coupled at some

µmin. Note, however, that when keeping terms to quadratic order in Y in ∆k, near

µ = 0, ∆k ' δkY . Therefore, it is possible for the modes to remain in the adiabatic

regime even when µ = 0 as long as LR/L
0
F � Y −1.

Because the quantities LR and LF depend upon µ explicitly, it is more transparent

to restate the adiabatic condition in terms of L0
R and L0

F which depend upon the

plasma parameters alone. Because of its nontrivial dependence upon µ, LR is easiest

to expand in three distinct limiting regimes:

LR ' L0
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Thus the adiabatic condition in each of these regimes is
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For µ = 0, LF/LR = Y −1L0
F/L

0
R, thus in order to remain adiabatic through an

entire field reversal, L0
F/L

0
R � Y 2, which typically does not occur in practice. Hence,

the minimum µ for which the modes remain adiabatic is then given by

µmin =




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


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. (8.15)
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In all cases, µmin > Y , thus the Y/2 terms in the denominators of equations (E.4)

may be neglected.

The fact that the modes become strongly coupled for µ < µmin has two direct

consequences. Firstly, the modes will nearly always become strongly coupled when

propagating sufficiently orthogonal to the magnetic field, forcing the fast mode to

map onto the slow mode and vice-versa.1

Secondly, because the geometric phase terms presented here are precisely the

lowest-order coupling terms, the results in Appendix D are only applicable in the adi-

abatic regime. Therefore, it will be generally true that ∆k > dφ/dz. However, when

the Faraday depth is large, the resulting polarimetric properties can be dominated

by the geometric phase terms due to Faraday depolarization.

8.3 Transfer of an Incident Polarization

The transfer of an incident polarization provides a simple example that produces

many of the main effects due to the additional terms.

8.3.1 With dχ/dz = 0

While in general the ellipticity of the polarization eigenmodes will change, first con-

sider a scenario in which it does not. This provides insight into the source of the effect

while avoiding the complications of the detailed perturbative approach. In this case

the magnetic field geometry is helical (shown in Figure 8.3) where the pitch angle is

determined by the strength of the field and the ratio of dφ/dz to ∆k. The radiative

transfer equation is simply the zeroth-order equation in equation (8.10), and has the

1As a result, the Faraday rotation is proportional to B ·dx, as commonly quoted, and not |B ·dx|
as would occur otherwise. This can be explicity effected by replacing µ with |µ| in the definition of

∆k.
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Figure 8.3: Shown is the helical field (vectors) discussed in Section 8.3.1 along the
line of sight (dashed line) inclined at 60◦ to better demonstrated the geometry. Also
shown is the loci of the tips of the magnetic field vectors (sold line).

general solutions

S+
0 = C+

0 e
iτ

S0
0 = C0

0

S−
0 = C−

0 e
−iτ . (8.16)

In terms of the initial conditions

C0
0 = cQi + sVi

C±
0 =

1√
2

(sQi ∓ iUi − cVi) , (8.17)
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where c ≡ cos 2ψ and s ≡ sin 2ψ. The resulting final polarization is then

Qf = cS0
0 +

s√
2

(

S+
0 + S−

0

)

=
(

c2 + s2 cos τ
)

Qi + sUi sin τ + (1 − cos τ) scVi

Uf =
i√
2

(

S+
0 − S−

0

)

= −sQi sin τ + Ui cos τ + cVi sin τ

Vf = sS0 − c√
2

(

S+
0 + S−

0

)

= (1 − cos τ) scQi − cUi sin τ +
(

s2 + c2 cos τ
)

Vi . (8.18)

These may be averaged over variations in τ associated with differing path lengths

(denoted by angle brackets), resulting in

〈Qf〉 = c2Qi + scVi

〈Uf〉 = 0

〈Vf〉 = s2Vi + scQi . (8.19)

In order to select out geometric phase effects associated with a nonzero dφ/dz consider

the average (denoted by an over-bar) of this with the case in which the magnetic field

is reversed (define quantities associated with the former with a pre-superscript of +

and the latter with a pre-superscript of −). For the reversed field

sin 2 +χ = − sin 2 −χ and cos 2 +χ = cos 2 −χ , (8.20)

and hence,

1

2

(

−s2 ++s2
)

' sin2 χ

1

2

(

−c2 ++c2
)

' cos2 χ

1

2

(

−s−c++s+c
)

'
(

cos2 χ− sin2 χ
)

cosχ
dφ

dτ
, (8.21)
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where the lack of pre-superscripts on the χ in these expressions reflects the fact that

they may be evaluated for either case. Using the values in Appendix E for cos 2χ and

sin 2χ, and the fact that µmin � Y ,

1

2

(

−s2 ++s2
)

'1

1

2

(

−c2 ++c2
)

' Y 2

4µiµ
� 1

1
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(
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'− Y
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R

, (8.22)

where
dφ

dτ
=
dφ/dz

∆k/2
' |µ|−1L

0
F

L0
R

, (8.23)

was used. Therefore

〈Qf〉 '
Y 2

4µ2
Qi −

Y

2µ2
i

L0
F

L0
R

Vi

〈Uf〉 = 0

〈Vf〉 ' Vi −
Y

2µ2

L0
F

L0
R

Qi . (8.24)

Some distinct features are immediately clear from equation (8.24). Firstly, the aver-

age linear polarization is strongly Faraday depolarized. Secondly, the average circular

polarization is relatively unaffected, except for contributions from the initial Q. These

depend strongly upon the value of µ, being dominated by µmin. Given a flat distri-

bution of θ on the sphere, and assuming that Vi = 0 yields

〈Vf〉Ω ' − Y

2µmin

L0
F

L0
R

Qi . (8.25)

As a result, the spectral dependence of µmin enters directly into that of the circular

polarization. In particular, inserting equation (8.15) into the expression for 〈Vf〉Ω,
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gives

〈Vf〉Ω ' −Qi
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. (8.26)

Of particular interest is the fact that for Y 2 � L0
F/L

0
R � (Y ξ)1/2 the circular polar-

ization increases with frequency as ν2/3 (L0
F ∝ ν2 and Y ∝ ν−1). However, this occurs

when the dχ/dz term dominates the inequality in equation (8.1), and hence when it

is nonzero, violating the assumption that χ was constant. For most values of θ this

is not a serious oversight as for a constant dθ/dz, dχ/dz is only significant when µ is

small. But as seen in equation (8.25), this precisely the region which dominates the

effect. Hence, the perturbative approach may shed some light upon the mitigating

effects that a nonzero dχ/dz may have upon this polarization mechanism.

8.3.2 With dχ/dz 6= 0

In the previous section the zeroth-order terms in equation (8.10) were obtained. These

may then be substituted directly into the first-order equations to solve for the first-

order corrections to the constant χ case. Strictly speaking it is also necessary to

distinguish between si = sinψi, ci = cosψi and sf = sinψf , cf = cosψf where ψi and

ψf are the initial and final values of ψ. The first-order solutions are then

S+
1 = eiτ

∫

dτe−iτ
√

2
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dτ
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' eiτ
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0e
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√
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2
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. (8.27)
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Because µmin is generally greater than Y for physically reasonable scenarios,

dχ

dz
' − Y

4µ2

dθ

dz
(8.28)

and hence the integrals for S±
1 and S0

1 will be dominated by contributions from around

µmin, yielding a value dependent upon τ0, the optical depth at which µ = µmin. As a

direct result, after averaging over variations in path length, and hence over τ and τ0,

the contributions at the first-order level will vanish. This is only permissable if there

are a large number of Faraday rotations along the line of sight, i.e., if the source is

Faraday thick.

As a result, even when nonzero dχ/dz effects are accounted for, the result is

essentially that of the previous section:

Qf = cfS
0
0 +

sf√
2

(

S+
0 + S−

0

)

= (cfci + sfsi cos τ)Qi + sfUi sin τ + (cfsi − sfci cos τ)Vi

Uf =
i√
2

(

S+
0 − S−

0

)

= −siQi sin τ + Ui cos τ + ciVi sin τ

Vf = sfS
0 − cf√

2

(

S+
0 + S−

0

)

= (sfci − cfsi cos τ)Qi − cfUi sin τ + (sfsi + cfci cos τ)Vi . (8.29)

Again, these are averaged over variations in τ , resulting in

〈Qf〉 = cfciQi + cfsiVi

〈Uf〉 = 0

〈Vf〉 = sfsiVi + sfciQi . (8.30)

Again, the geometric effects can be selected out by averaging with the case where the
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magnetic field is reversed. Therefore

〈Qf〉 '
Y 2

4µiµf
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2µ2
i
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F
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R

Vi

〈Uf〉 = 0
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Y
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f
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F
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R

Qi , (8.31)

with all of the attendant consequences, with the distinct advantage that this now

does extend to the dχ/dz 6= 0 case.

8.4 In Situ Synchrotron Emission

While the previous section provides some insight into how the general mechanism

works, it is also possible for the plasma itself to emit. The natural mechanism is

synchrotron emission, which will be strongly polarized in Q. For simplicity we have

assumed that the emission and absorption are isotropic. In this case, in terms of the

eigenbasis, the transfer equation is now given by

d
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

, (8.32)

where η = αdz/dτ is the appropriately normalized absorption coefficient, ζ is properly

normalized emissivity ζ = jdz/dτ , and εQ is the degree of polarization of the intrinsic

emission. Also, as dψ/dz is going to be small (but nonzero), approximate the ψ terms

in the emission as being equal to the final value and constant. For the same reason as

before the explicit first-order contributions from dχ/dz vanish. Again, the solutions
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are straightforward.
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sfεQζ√
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, (8.33)

and hence

Qf =
c2fεQζ
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)
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(

1 − e−ητ
)

− sfcfξ

1 + η2

(

e−ητ sin τ − ηe−ητ cos τ + η
)

(8.34)

After averaging over variations in τ ,

〈Qf 〉 =
c2fεQζ

η

(

1 − e−ητ
)

+
s2

fξη

1 + η2

〈Uf 〉 = − sfεQζ

1 + η2

〈Vf〉 =
sfcfεQζ

η

(

1 − e−ητ
)

− sfcfεQζη

1 + η2
. (8.35)
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Again, we average over reversed fields to get the geometric terms and express the

result in terms of the plasma parameters

〈Qf〉 '
[

Y 2

4µ2
f

1

η

(

1 − e−ητ
)

+
η

1 + η2

]

εQζ

〈Uf〉 ' − Y 2

4|µf |3
L0

F

L0
R

εQζ

1 + η2

〈Vf〉 ' − Y

2µ2
f

L0
F

L0
R

εQζ

[

1

η

(

1 − e−ητ
)

+
η

1 + η2

]

. (8.36)

The intensity in this case is given by

If =
ζ

η

(

1 − e−ητ
)

. (8.37)

As a result the polarization fraction is given by

mc =
〈Vf〉
If

' − Y

2µ2
f

L0
F

L0
R

εQ

[

1 +
η2

1 + η2

(

1 − e−ητ
)−1
]

. (8.38)

The quantity η is roughly the amount of absorption in one Faraday length. As

such, this quantity may be expected to be very small. Since τ must be large for the

averaging over τ to apply, even for η ' 1, this produces a correction on the order of

1/2, and hence may be neglected. Consequently, regardless of ητ (i.e. in both the

optically thin and thick regimes)

mc ' − Y

2µ2
f

L0
F

L0
R

εQ , (8.39)
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which is precisely what would have been expected on the basis of equation (8.24).

After averaging over magnetic field directions, this yields

mc ' − Y

2µmin

L0
F

L0
R

εQ

' −εQ
2



















Y if

(

Y ξ

4

)1/2

� L0
F

L0
R

4

ξ

(

Y ξ

4

L0
F

L0
R

)2/3

if
Y 2

2ξ
� L0

F

L0
R

�
(

Y ξ

4

)1/2
, (8.40)

with all of the properties discussed after equation (8.26).

8.5 Frequency Dependence

In order to compare this circular polarization to observations it is useful to express

equation (8.40) in terms of frequency. At a high enough frequency the adiabatic

condition will fail at all points along the ray. This first occurs when L0
R = L0

F and

hence at

νu ≡ νP

(

νB
L0

R

c

)1/2

= νP

(

L0
R

λB

)1/2

, (8.41)

where νP and νB are the plasma and cyclotron frequencies and λB is the cyclotron

radius. In terms of νu, the transition frequency is given by

νt ≡ νB

(

ξ

4

)1/5(
νu

νB

)4/5

. (8.42)

While the lower limit in the second inequality in equation (8.40) occurs when the

modes remain adiabatic even through field reversals, usually a more stringent limit is

reached when only one Faraday rotation occurs in the last optical depth, and hence

the line of sight averages are no longer justified. Specifically, for a power-law electron

distribution with index 2,

τ ' Y
z

L0
F

, (8.43)
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and hence this occurs when

νl ' νB . (8.44)

Note that at this point, the source depth is given by

z ' L0
F ' νBc

ν2
P

'
(

νB

νu

)2

L0
R � L0

R (8.45)

In terms of these limits, the circular polarization fraction is given by,

mc ' −εQ
2

νB

νt























0 if νu � ν

(ν/νt)
−1 if νt � ν < νu

(ν/νt)
2/3 if νl � ν � νt

. (8.46)

While this mechanism does not in general require a tangled magnetic field to

operate, the examples discussed in the next section such a field is present. This field

is assumed to be created in an accretion disk via the MRI. The condition for the MRI

to occur can be roughly given by PG/PB . 1. In terms of the plasma and cyclotron

frequencies

PG

PB

= 2

(

νP

νB

)2
kTi

mec2

= 4ξ−1/2 λB

L0
R

(

νt

νB

)5/2
kTi

mec2
, (8.47)

where Ti is the ion temperature. That this ratio must be greater than unity places

the following constraint upon the ion temperature:

kTi > mec
2ξ1/2 L

0
R

4λB

(

νt

νB

)−5/2

. (8.48)
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Chapter 9

Applications

As an example application consider the polarimetric properties of a shearing magne-

tized disk. Despite the existence of a weak, and possibly structured seed field, the

MRI will quickly create a highly tangled environment. Nonetheless, the preferential

shearing (with disk radius and disk height) of the magnetic field associated with the

disk will lead to a nonvanishing 〈dφ/dz〉 and 〈dχ/dz〉, the sign and magnitude of

which will be determined by the gradient of the disk angular velocity. As a result,

the sign of the polarization may be stable over long timescales.

9.1 Radio Emission in Sgr A∗

The polarized emission from the Galactic center seen at 1.4, 4.8, 8.4, and 15 GHz

(Bower et al., 2002) may be explained by considering the above scenario. This po-

larization has been found to have an increasing circular polarization fraction and

variability with increasing frequency. Despite this, it has been found to have negligi-

ble circular polarization at 112 GHz (Bower et al., 2001).

These observations place immediate limits upon νt and νB. The transition fre-

quency can not be any smaller than 15 GHz, while the cyclotron frequency can not

be any larger than 1 GHz. Here, we assume that νt = 20 GHz and νB = 0.5 GHz.

These provide a maximum (average) circular polarization fraction on the order of 1%



119

νB 0.5 GHz
νt 20 GHz
Ti 1012 K
νu 70 GHz
νP 2.7 × 10−2 GHz
L0

R 4.1 × 108 cm
M 5 × 1011 cm

mcmax 0.8%
B 180 G
ne 9 × 106 cm−3

A 3 × 104M2

Table 9.1: Listed are a number of quantities of interest in the Galactic center. The
first three quantities, the cyclotron frequency νB, the transition frequency νt, and the
ion temperature Ti were chosen a priori. Those in the second group, the upper cutoff
frequency νu, the plasma frequency νP , and the typical reversal length scale L0

R, are
derived directly from the first group. The mass of the central black hole M is given
for comparison. The third group are properties of the emitting region, including the
strength of the random field B, electron number density ne, and the approximate
area of the emission region at GHz frequencies A in units of M 2.

as observed. The associated condition placed upon the temperature by the MRI is

Ti & 1.5 × 105ξ1/2L
0
R

λB

K . (9.1)

Since the ion temperature can easily reach 1012 K, this puts L0
R ' 4.1× 108 cm. Since

this should be identified with the shortest reversal length scale (i.e., the highest dφ/dz)

this is consistent with the other length scale in the problem, namely the mass of the

black hole (5×1011 cm). The associated plasma and upper cutoff frequencies are then

approximately 2.7 × 10−2 GHz and 70 GHz, respectively. The pertinent frequencies

and plasma characteristics are listed in Table 9.1.

Since νu ' 70 GHz, no circular polarization would be expected at 112 GHz.

Furthermore, at this frequency the polarization properties intrinsic to the emission

should dominate, which in the case of synchrotron emission can be highly linearly

polarized and is in fact what is observed. Also note that the magnetic field strength

is that of the stochastic field, not the net field, which in this case has been assumed
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Figure 9.1: The circular polarization spectrum predicted by equation (8.46) (solid
line) is compared to the average observed values from Sgr A∗ (filled triangles) (taken
from Bower et al., 2002). The degree of variability is denoted by the errorbars (not
to be confused with intrinsic uncertainty of the measurement). The parameters used
are described in the text. Also shown by the dashed lines are the spectra when
the magnetic field strength and plasma density are varied by ±25% to provide some
measure of the strong connection between the variability of the environment and the
polarization.

to vanish (though this is not necessary). Shown in Figure 9.1 is the resulting circular

polarization spectrum compared to data points from Bower et al., 2002.



121

νB 3.0 × 102 GHz
νt 9.2 × 102 GHz
Ti 1012 K
νu 1.7 × 103 GHz
νP 16 GHz
L0

R 1.2 × 103 cm
M 1.5 × 106 cm

mc max 11%
B 105 G
ne 3 × 1012 cm−3

A —

Table 9.2: Same as Table 9.1 for a 10M� black hole.

9.2 X-ray Binaries

X-ray binaries present a stellar mass analogue to the situation described in the previ-

ous section for the Galactic center. As described in Section 1.2, due to the differences

in the scales between the two systems, the frequencies at which the polarization prop-

erties manifest themselves will differ. Based upon the scaling arguments discussed in

that section,

νP ∝ νB ∝M−1/2 . (9.2)

Further, let the length scale over which field reversals occur scale as M . Then, from

their definitions, the cyclotron, transition, and upper cutoff frequencies scale as

νB ∝M−1/2 (9.3)

νt ∝M−3/10 (9.4)

νu ∝M−1/4 . (9.5)

Note that since the maximum polarization fraction is proportional to νB/νt, it will

scale as M−1/5, and thus can be significantly higher for stellar mass systems. Table

9.2 lists the resulting quantities of interest for a black hole with a mass of 10M� that

is analogous to Sgr A∗. The values shown in the table result in a strong circular

polarization in the far infrared. However, this can be shifted to the near infrared
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by assuming a higher radiative efficiency, which for stellar mass systems is almost

certainly true. In any case, the high degree of circular polarization should be easily

observable.
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Part IV

Conclusions
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A fully covariant generalization of magnetoionic theory has been developed. This

has been done for cold and warm plasma, although due to its considerable complica-

tion the latter was not taken beyond the stage of determining the covariant extension

of the conductivity tensor. The ability to perform radiative transfer in a covariant

fashion has also been developed. This includes accounting for the anisotropic nature

of magnetized plasmas, refraction, relativistic effects such as gravitational red-shifts

and Doppler shifts, and the transport of the polarization vector along the ray.

The inclusion of relativistic effects has a number of unique consequences. They

qualitatively change the topology of the dispersion relations, adding a new branch. In

strongly sheared bulk flows (e.g., jets), they can substantially augment transfer and

emission effects leading to the production of a net polarization. In the context of an

accreting black hole, when the observation frequency is on the order of the plasma and

cyclotron frequencies near the horizon, refraction can produce significant degrees of

polarization, regardless of the intrinsic polarization of the emission mechanism. This

occurs when one of the plasma eigenmodes is preferentially captured by the black

hole, leading to a net excess of the other. The character of the resulting polarization

will depend upon the nature of the plasma. In an ion plasma, the created polarization

will typically be circular as a result of the plasma eigenmodes being nearly circular

at the limiting polarization surface. In a pair plasma, the resulting polarization will

in general be linear.

The refractive mechanism was demonstrated in detail by considering a geometri-

cally thick, strongly magnetized accretion disk. Polarization fractions on the order of

10% were attained for emission originating near the horizon. This will be subsequently

diluted by emission further out in the accretion flow, and hence the final polarization

fraction depends upon the processes there. Nonetheless, it was possible to apply this

mechanism to the Galactic center with marginal success. It was necessary to assume

an extremely low radial velocity, however this is consistent with the requirement in

the disk model that the magnetic field be strong enough to suppress the MRI. Un-

less the mass of M81 is larger by an order of magnitude than current estimates, this

mechanism does not appear feasible in that system. Brightness temperature limits
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rule out this mechanism completely in blazars. As a result, it requires the existence

of another mechanism for producing the circular polarization in blazars, as well as an

explanation for why it is not operating in the Galactic center.

XRBs in the quiescent or low/hard states may provide stellar mass analogues to

the Galactic center. As a result, the refractive effects discussed in the context of Sgr

A∗ may also be present in these as well. Due to the difference in mass scales, circular

polarization resulting from the refractive mechanism would be expected to lie in the

infrared, although for radiatively inefficient XRBs, this may reach as high as the ul-

traviolet. However, due to their much smaller size, effects occurring near the horizon

will be extremely difficult to see. Nonetheless, current technologies exist, which if

fitted with polarization capabilities, could in principle begin to study interesting por-

tions of the M–Ṁ parameter space. This is a clear motivation for the development

of such capabilities.

Lastly, because refractive plasma effects will be confined to approximately the

decade in frequency surrounding the plasma frequency, they should be easily distin-

guishable from effects due to accretion models. As a result, they provide a unique

tool with which to probe the plasma density and/or magnetic field strength near the

horizon.

The second aspect of this work considered the transfer of radiation through strongly

inhomogeneous environments. In this case, all effects are local and occur as a result

of changes in the plasma parameters, and in particular the direction of the magnetic

field. It was found that if the plasma is Faraday thick (i.e., there are a large number of

Faraday rotations along the line of sight), it was possible for geometric effects to dom-

inate. Given a net magnetic helicity, even in the absence of a net magnetic field, it is

possible to generate a net circular polarization. This situation may result in the case

of a differentially rotating accretion disk, in which the axial vector which determines

the handedness of the circular polarization is the angular momentum of the disk as

opposed to a structured magnetic field. The degree and spectral character of this

circular polarization is sensitively dependent upon when/if the plasma eigenmodes

become strongly coupled. This condition is dependent upon two distinct measures of
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the change of polarization of the plasma eigenmodes, the rate of rotation of the polar-

ization ellipse about the line of sight, and the rate of change of its shape. Depending

upon which of these dominate the condition, the frequency of the dependence of the

resulting circular polarization changes. For frequencies such that the change in shape

dominates the condition the polarization fraction increases with frequency as ν2/3.

In both cases, the high degree of Faraday rotation would be expected to depolarize

any linear polarization. However, for sufficiently high or low frequencies there is no

region in which the plasma eigenmodes are not strongly coupled, thus exhibiting the

intrinsic polarization of the emission.

This mechanism was applied with success to the Galactic center, reproducing

the general shape of the circularly polarized spectrum and its variability, for reason-

able parameters. Because this mechanism is local, it can be applied to extragalactic

sources with out suffering from the brightness temperature constraints inherent in the

refractive mechanism. Therefore, it remains a viable explanation of the circular po-

larization in M81 and blazars. Because the circular polarization is constrained to be

on the order of 0.3νB/νt, it naturally predicts small polarizations at GHz frequencies,

on the order of a few percent, as observed.

This has also been applied to XRBs. Again, this will produce a polarization

signal in the infrared. However, because the cyclotron, transition, and upper cutoff

frequencies scale differently, the predicted polarization in this case will be on the order

of 10%. Therefore, this should be considered a strong motivation for the development

of infrared polarimetry.

Detections of circular polarization arising from this mechanism provide a probe

of the underlying degree of randomness of the magnetic field. In particular, since mc

depends upon the ratio of the number of field rotations to the number of Faraday

rotations along the line of sight, measurements of the latter (e.g., by higher frequency

observations) imply a value for the former. In this way, information regarding the

MRI, field geometry, and accretion disk physics may be obtained.

Future investigations of refractive plasma effects in black hole accretion flows will

require more realistic thick disk models. These may be obtained from the many
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pseudo-Newtonian, and more recently, relativistic MHD disk simulations available in

the computational literature (see, e.g., Gammie et al., 2003; Hawley et al., 2001).

Two additional applications discussed in Part I, but not covered in detail thus far,

are those to jets and neutron star atmospheres. Jets provide an obvious environment

in which a highly magnetized plasma is present. Although the precise composition

and structure of the jet plasma is not yet known, a number of plasma effects are

already apparent, including Faraday rotation. In this environment, as suggested in

Section 6.2, even at high frequencies dispersion may be able to produce polarization.

Neutron star atmospheres have been shown to have considerable consequences for

the emergent X-ray polarization, which therefore may be diagnostic of the conditions

there (Lai & Ho, 2003a). Due to the highly anisotropic nature of the opacity in this

environment, even a small change in direction can have substantial effects upon the

resultant polarization. Since in both applications, refractive and dispersive plasma

effects can have a significant impact, future work should consider these as well.

The discussion of polarized radiative transfer through tangled magnetic fields has

focused on a constant strength field which, while random along the line of sight,

rotates about it at a nearly constant rate. This is, of course, not the expected case in

many environments of interest. Monte Carlo simulations can provide a method with

which to investigate the geometric effects in realistic environments. Ultimately, it will

be necessary to develop a treatment in which the resultant polarization is obtained

in terms of the statistics of the magnetic field. In this fashion, circular polarization

measurements will be able to provide quantitative information regarding the magnetic

field geometry.



128

Bibliography

Aitken D. K., Greaves J., Chrysostomou A., Jenness T., Holland W., Hough J. H.,

Pierce-Price D., Richer J., 2000, ApJL, 534, L173

Arons J., Barnard J. J., 1986, ApJ, 302, 120

Baganoff F., , 2004, private communication

Baganoff F. K., Bautz M. W., Brandt W. N., Chartas G., Feigelson E. D., Garmire

G. P., Maeda Y., Morris M., Ricker G. R., Townsley L. K., Walter F., 2001, Nature,

413, 45

Bao G., Hadrava P., Wiita P. J., Xiong Y., 1997, ApJ, 487, 142

Bao G., Wiita P. J., Hadrava P., 1998, ApJ, 504, 58

Barnard J. J., Arons J., 1986, ApJ, 302, 138

Barr P., Mushotzky R. F., 1986, Nature, 320, 421

Barr P., Pollard G., Sanford P. W., Ives J. C., Ward M., Hine R. G., Longair M. S.,

Penston M. V., Boksenberg A., Lloyd C., 1980, MNRAS, 193, 549

Beckert T., Falcke H., 2002, A&A, 388, 1106

Bekefi G., 1966, Radiation Processes in Plasma Physics. Wiley, New York

Berry M. V., 1984, Proc. Roy. Soc., A392, 45

Blandford R. D., 1985, Theoretical models of active galactic nuclei. Active galactic

nuclei. Manchester University Press, Manchester, pp 281–299



129

Blandford R. D., Begelman M. C., 1999, MNRAS, 303, L1

Blandford R. D., Begelman M. C., 2004, MNRAS, 349, 68

Bower G. C., 2003, Ap&SS, 288, 69

Bower G. C., Falcke H., Backer D. C., 1999, ApJL, 523, L29

Bower G. C., Falcke H., Herrnstein R. M., Zhao J., Goss W. M., Backer D. C., 2004,

astro-ph/0404001

Bower G. C., Falcke H., Mellon R. R., 2002, ApJL, 578, L103

Bower G. C., Falcke H., Sault R. J., Backer D. C., 2002, ApJ, 571, 843

Bower G. C., Wright M. C. H., Falcke H., Backer D. C., 2001, ApJL, 555, L103

Boyd T. J. M., Sanderson J. J., 1969, Plasma Dynamics. Thomas Nelson and Sons

LTD, London

Bromley B. C., Melia F., Liu S., 2001, ApJL, 555, L83

Brown G. E., Bethe H. A., 1994, ApJ, 423, 659

Budden K. G., 1952, Proc. Roy. Soc., 215, 215

Budden K. G., 1961, Radio Waves in the Ionosphere. Cambridge University Press,

Cambridge

Budden K. G., Smith M. S., 1976, Royal Society of London Proceedings Series A,

350, 27

Chandrasekhar S., 1960, Radiative transfer. Dover, New York

Chandrasekhar S., 1992, The mathematical theory of black holes. Oxford University

Press, New York

Connors P. A., Stark R. F., 1977, Nature, 269, 128



130

Connors P. A., Stark R. F., Piran T., 1980, ApJ, 235, 224

Dendy R. O., 1990, Plasma Dynamics. Oxford University Press, Oxford

Denn G. R., Mutel R. L., Marscher A. P., 2000, ApJS, 129, 61

Devereux N., Ford H., Tsvetanov Z., Jacoby G., 2003, AJ, 125, 1226

Dovciak M., Bianchi S., Guainazzi M., Karas V., Matt G., 2004, astro-ph/0401607

Eckart A., Baganoff F. K., Morris M., Bautz M. W., Brandt W. N., Garmire G. P.,

Genzel R., Ott T., Ricker G. R., Straubmeier C., Viehmann T., Schödel R., 2004,
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Appendix A

Geodesic Motion in the Dispersion
Formalism

Given the dispersion relation in equation (4.74),

D(kµ, x
µ) = kµkµ +m2 ,

and the ray equations (4.19),

dxµ

dτ
=

(

∂D

∂kµ

)

xµ

and
dkµ

dτ
= −

(

∂D

∂xµ

)

kµ

,

it is possible to derive the geodesic equation. The partial derivatives on the right side

of the ray equations are
(

∂D

∂kµ

)

xµ

= 2kµ , (A.1)

and

(

∂D

∂xµ

)

kµ

=

(

∂kαkβg
αβ

∂xµ

)

kµ

= kαkβ
∂gαβ

∂xµ

= −kαkβgαβ,µ . (A.2)
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Combining the ray equations gives

d2xµ

dτ 2
= 2

dkµ

dτ
= 2

dkνg
µν

dτ

= 2kν
dxα

dτ

∂gµν

∂xα
+ 2gµν dkµ

dτ

= −4kβkαgµνgβν,α + 2gµνkαkβgαβ,µ

= −4kαkβ 1

2
gµν (gαν,β + gβν,α − gαβ,ν)

= −dx
α

dτ

dxβ

dτ
Γµ

αβ , (A.3)

where the definition of the Christoffel symbols were used, Γµ
αβ ≡ 1

2
gµν (gαν,β + gβν,α − gαβ,ν).

Collecting terms on the left produces the well-known geodesic equation:

d2xµ

dτ 2
+
dxα

dτ

dxβ

dτ
Γµ

αβ = 0 ,

or

vν∇νv
µ = 0 where vµ ≡ dxµ

dτ
.
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Appendix B

A Thick Disk Model

In general, the innermost portions of the accretion flow will take the form of a thick

disk. The equation for hydrostatic equilibrium in the limit that Ω � vr is given by

∂µP

ρ + Γ
Γ−1

P
= −∂µ lnE +

Ω∂µL

1 − ΩL
, (B.1)

where here Γ is the adiabatic index, E = −ut, Ω = uφ/ut, and L = −uφ/ut (Blandford

& Begelman, 2004, and references therein). Note that, given the metric, any two of

the quantities E, Ω, or L, may be derived from the third. Explicitly, Ω and L are

related by

Ω =
gφφL+ gtφ

gtt + gtφL
, (B.2)

and the condition that uµuµ = utut + uφuφ = −1 gives E in terms of Ω and L to be

E =
[

−
(

gtt + gtφL
)

(1 − ΩL)
]−1/2

. (B.3)

In principle this should be combined with a torque balance equation which ex-

plicitly includes the mechanism for angular momentum transport through the disk.

However, given a relationship between any two of the quantities E, Ω, and L this

is specified automatically. Thus the problem can be significantly simplified if such a

relationship can be obtained, presumably from the current MHD disk simulations.
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B.1 Barotropic Disks

For a barotropic disk the left side of equation (B.1) can be explicitly integrated to

define a function H:

H =

∫

dP

ρ(P ) + Γ
Γ−1

P
, (B.4)

which may be explicitly integrated for gases with constant Γ to yield

H = ln

(

1 +
Γ

Γ − 1

P

ρ

)

. (B.5)

Therefore, reorganizing equation (B.1) gives

∂µ (H + lnE) =
Ω∂µL

1 − ΩL
, (B.6)

which in turn implies that Ω is a function of L alone. Specifying this function allows

the definition of another function Ξ:

Ξ =

∫

Ω(L)dL

1 − Ω(L)L
. (B.7)

Using their definitions, it is possible to solve Ω = Ω(L) for L(xµ) and hence Ξ(xµ).

Then H and Ξ are related by

H = H0 + lnE − Ξ , (B.8)

which may then be inverted to yield ρ(H0 − lnE + Ξ). Inverting H for ρ then yields

ρ(xµ). The quantity H0 sets the density scale and may itself be set by choosing ρ at

some point:

H0 = H(ρ0) − (lnE − Ξ)(xµ
0 ) . (B.9)

B.1.1 Keplerian Disk

As a simple, but artificial, example of the procedure, a Keplerian disk is briefly

considered in the limit of weak gravitating Schwarzschild black hole (i.e., r � M).
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Note that this cannot be done in flat space because in equation (B.1) the gravitational

terms are present in the curvature only. For a Keplerian flow, Ω =
√

M/(r sin θ)3 '
M2L−3. In that case using the definition of Ξ gives

Ξ = M2

∫

dL

L3 −M2L

=

∫

d`

`3 − `
= ln

√
1 − `−2 , (B.10)

where ` = L/M . lnE is given by

lnE = − ln
√

−gtt(1 − ΩL) = ln

√

1 − 2M

r
− ln

√
1 − `−2 , (B.11)

and hence,

H = H0 − lnE + Ξ

= H0 − ln

√

1 − 2M

r
+ ln

(

1 − `−2
)

' H0 +
M

r
− M

r sin θ
, (B.12)

where ` =
√

r sin θ/M and the weakly gravitating condition were used. As expected,

along the equatorial plane H, and therefore ρ, is constant. For points outside of the

equatorial plane pressure gradients are required to maintain hydrostatic balance.

B.1.2 Pressure Supported Disk

Accretion disks will in general have radial as well as vertical pressure gradients. In-

ward pressure gradients can support a stable disk between the innermost stable orbit

and the photon orbits, thus decreasing the radius of the inner edge of the disk. Around

a Schwarzschild black hole this can bring the inner edge of the disk down to 3M . In

a maximally rotating Kerr spacetime this can allow the disk to extend down nearly

to the horizon.

Far from the hole, accreting matter will create outward pressure gradients. An
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angular momentum profile appropriate for a Kerr hole which goes from being super

to sub-Keplerian is

L(req) =















(

√

gtφ 2
,r − gtt

,rg
φφ

,r − gtφ
,r

)

gφφ −1
,r

∣

∣

∣

∣

r=req

if req < rinner

c1M
3/2r−1

eq + c2M
1/2 + l0

√

Mreq otherwise

Ω(req) =
gφφL + gtφ

gtt + gtφL

∣

∣

∣

∣

r=req

, (B.13)

where both L and Ω are parametrized in terms of the equatorial radius, req. The

condition that L reduces to the angular momentum profile of a Keplerian disk for

radii less than the inner radius ensures that no pathological disk structures are created

within the photon orbit. The constants c1 and c2 are defined by the requirement that

at the inner edge of the disk, rinner, and at the density maximum, rmax, the angular

momentum must equal that of the Keplerian disk. In contrast, l0 is chosen to fix the

large r behavior of the disk. The values chosen here were rinner = 1.3M , rmax = 2M ,

and l0 = 0.1. The value of H0 was set so that H(req = 100M) = 0, thus making the

disk extend to req = 100M .

In addition to defining Ω and L it is necessary to define P (ρ). Because the gas

in this portion of the accretion flow is expected to be inefficiently couple the ions

and electrons, the pressure will be ion dominated and Γ = 5/3 was chosen. The

proportionality constant in the polytropic equation of state, κ, is set by enforcing the

ideal gas law for a given temperature (T0) at a given density (ρ0). Thus,

P (ρ) = ρ0
kT0

mp

(

ρ

ρ0

)5/3

. (B.14)

Note that ρ0 and T0 provide a density and temperature scale. A disk solution obtained

for a given ρ0 and T0 may be used to generate a disk solution for a different set of scales

simply by multiplying the density everywhere by the appropriate constant factor.
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Figure B.1: Shown are the contours of the density and azimuthal velocity as measured
by the zero angular momentum observer, and the magnetic field lines. Starting at
the density maximum (req = 2M and z = 0), the density is contoured at levels 10−0.5

to 10−4.5 times the maximum density in multiples of 10−1. From left to right, the
velocity is contoured at levels 2−0.5c to 2−5c in multiples of 2−0.5. In order to provide
a distinction between the velocity contours and the magnetic field lines, the velocity
contours are terminated at the disks surface.

B.2 Non-Sheared Magnetic Field Geometries

The disk model discussed thus far is purely hydrodynamic. Typically, magnetic fields

will also be present. In general, it is necessary to perform a full MHD calculation
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in order to self-consistently determine both the plasma and magnetic field structure.

However, an approximate steady-state magnetic field can be constructed by requiring

that the field lines are not sheared.

To investigate the shearing between two nearby, space-like separated points in the

plasma, xµ
1 and xµ

2 , consider the invariant interval between them:

∆s2 = ∆xµ∆xµ where ∆xµ = xµ
2 − xµ

1 . (B.15)

The condition that this doesn’t change in the LFCR frame is equivalent to

d∆s2

ds
= 0 . (B.16)

Expanding in terms of the definition of ∆s gives

d

ds
gµν∆x

µ∆xν = gµν,σ
dxσ

ds
∆xµ∆xν + 2gµν∆x

µd∆x
ν

ds
= 0 . (B.17)

Note that by definition,

dxµ

ds
= uµ and

d∆xµ

ds
= uµ

2 − uµ
1 = uµ

,σ∆xσ . (B.18)

Hence,

d∆s2

ds
=
(

gµν,σu
σ + 2gµσu

σ
,ν

)

∆xµ∆xν

= (gµν,σu
σ + 2uµ,ν − 2gµσ,νu

σ)∆xµ∆xν

= 2
(

uµ,ν − Γσ
µνuσ

)

∆xµ∆xν

= 2 (∇µuν)∆xµ∆xν = 0 . (B.19)

The final equality is easy to understand from a geometrical viewpoint; for there to be

no shearing, there can be no change in the plasma four-velocity along the direction

∆xµ.

That a stationary, axially symmetric magnetic field must lie upon the non-shearing
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surfaces can be seen directly by considering the covariant form of Maxwell’s equations.

In particular ∇ν
∗F µν = 0, where ∗F µν is the dual of the electromagnetic field tensor,

which in the absence of an electric field in the frame of the plasma takes the form

∗F µν = Bµuν − Bνuµ. Therefore,

Bµ∇ν
∗F µν = BµBµ∇νu

ν + Bµu
ν∇νBµ

− Bµu
µ∇νBν − BµBν∇νu

µ

= −BµBν∇νuµ = 0 , (B.20)

where the first three terms vanish due to axial symmetry and the requirement that

Bµuµ = 0. This is precisely the non-shearing condition obtained in equation (B.19).

For plasma flows that are directed along Killing vectors of the spacetime, ξµ
i , i.e.,

uµ = uttµ +
∑

i

uiξµ
i , (B.21)

where tµ is the time-like Killing vector, it is possible to simplify the no-shear condition

considerably.

∆xµ∆xν∇µu
ν = ∆xµ∆xν

(

ut∇µt
ν +

∑

i

ui∇µξ
ν
i

)

+ ∆xµ∆xν

(

tν∂µu
t +
∑

i

ξν
i ∂µu

i

)

= ∆xt∆x
µ∂µu

t +
∑

i

∆xi∆x
µ∂µu

i = 0 , (B.22)

where terms in the first parentheses vanish due to Killing’s equation. The additional

constraint that ∆xµu
µ = 0 gives

∆xt = −
∑

i

Ωi∆xi , (B.23)

where Ωi ≡ ui/ut is a generalization of the definition of the Ω defined at the beginning
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of this Appendix. Inserting this into equation (B.22) and simplifying yields

∑

i

∆xi∆x
µ∂µΩi = 0 , (B.24)

i.e., the no shear hypersurfaces are those upon which all of the Ωi are constant.

For the plasma flows considered in Section B.1 the plasma velocity is in the form

of equation (B.21) where the space-like Killing vector is that associated with the axial

symmetry, φµ. Thus with Ωφ = Ω, the no-shear condition for this class of plasma

flows is

∆xµ∂µΩ = 0 . (B.25)

Note that while we have been considering only axially symmetric plasma flows, this

no shear condition is more generally valid, extending to the case where Ω is a function

of t and φ as well as r and θ. However, in this case it is not the perfect-MHD limit

of Maxwell’s equations.

For a cylindrically symmetric disk, the no-shear condition may be used to explicitly

construct the non-shearing poloidal magnetic fields by setting

Br = BΩ,θ and Bθ = −BΩ,r . (B.26)

Once the magnitude of Bµ is determined at some point along each non-shearing sur-

faces (e.g., in the equatorial plane), it may be set everywhere by ∇µBµ−Bµuν∇νuµ =

0, which comes directly from Maxwell’s equations in covariant form and Bµuµ = 0.

Inserting the form in equation (B.26) into the first term gives

∇µBµ =
1√
g
∂ν
√
gBν

=
1√
g

(∂r
√
gBΩ,θ − ∂θ

√
gBΩ,r)

=
1√
g

(Ω,θ∂r
√
gB − Ω,r∂θ

√
gB)

= Bν∂ν ln
√
gB . (B.27)
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The second term can be simplified using equation (B.21),

Bµuν∇νuµ = Bµuν∇ν

(

uttµ + uφφµ

)

= Bµuν
(

tµ∂νu
t + φµ∂νu

φ − ut∇µtν − uφ∇µφν

)

= Btu
ν∂νu

t + Bφu
ν∂νu

φ + Bµuν
(

tν∂µu
tφν∂µu

φ
)

+ Bµuν∇µuν

= Bµ
(

ut∂µu
t + uφ∂µu

tΩ
)

= Bµ (ut + Ωuφ) ∂µu
t + uφu

tBµ∂µΩ

= −Bµ∂µ lnut , (B.28)

where the stationarity and axially symmetry have been used in the third step and

the no-shear condition was used in the final step. Therefore, the magnitude B can be

determined by

∇µBµ − Bµuν∇νuµ = Bµ∂µ ln
√
gB − Bµ∂µ ln ut

= Bµ∂µ ln

√
gB
ut

= 0 , (B.29)

and hence √
gB
ut

= constant (B.30)

along the non-shearing surfaces. If B is given along a curve which passes through all

of the non-shearing surfaces (e.g., in the equatorial plane), Bµ is defined everywhere

through equations (B.26) and (B.30).

B.2.1 Non-Shearing Magnetic Fields in a Cylindrical Flow

An example application of this formalism is a cylindrical flow in flat space. In this

case, Ω is a function of the cylindrical radius $ ≡ r sin θ. The Keplerian disk is a

specific example with Ω = $−3/2. The direction of the magnetic field is determined

by

Ω,r =
dΩ

d$
sin θ and Ω,θ =

dΩ

d$
r cos θ . (B.31)



146

The magnitude, B is given by

r2 sin θ
√

1 − r2 sin2 θΩ2
B = f(Ω) , (B.32)

and thus

B =
1

r
b($) , (B.33)

where the particular form of b($) depends upon the particular form of f(Ω). There-

fore,

Br = b($) cos θ and Bθ = −b($)
1

r
sin θ , (B.34)

which is precisely the form of a cylindrically symmetric vertical magnetic field.

B.2.2 Stability to the Magneto-Rotational Instability

A sufficiently strong non-shearing magnetic field configuration will remain stable to

the magneto-rotational instability (MRI). The criterion for instability to the MRI is

(k · vA)2 < −rdΩ
2

dr
, (B.35)

where k is the wave vector of the unstable mode and vA is the Alfvén velocity (Hawley

& Balbus, 1995). For a nearly vertical magnetic field geometry, stability will be

maintained if modes with wavelength less than twice the disk height (h) are not

unstable. With

vA =
B√
4πρ

=
ωB

ωP

√

me

mp
c , (B.36)

a Keplerian disk will be stable if

4π

h

ωB

ωP

√

me

mp
c >

√
3

(

M

r

)3/2
c

M
. (B.37)
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A conservative criterion may be obtained by approximating h ' h0r for some constant

of proportionality h0, hence

ωB

ωP

& 6h0

√

M

r
' 0.3 , (B.38)

for h0 ' 0.1 and r ' 7 which are typical for the disk pictured in Figure B.1.

Comparison to equipartion fields can provide some insight into how unrestrictive

the stability criterion really is. Given β = Pgas/Pmag and the ideal gas law it is

straight forward to show that

ωB

ωP

=

√

2kT

βmec2
'
√

3β−1T10 , (B.39)

where T is the ion temperature. Because the ion temperature in a thick disk will

typically be on the order of or exceed 1012 K, the equipartition ωB (β = 1) will be at

least an order of magnitude larger than ωP . As a result the field needed to stabilize

the disk against the MRI is an order of magnitude less than equipartition strength,

and hence is not physically unreasonable.

B.2.3 Magnetic Field Model

Considering the restriction placed upon the magnetic field strength discussed in the

previous sections, B was set such that in the equatorial plane

ωB = ωP + η (r + 10M)−5/4 , (B.40)

where the second term provides a canonical scaling at large radii. Here η was chosen

to be 0.01.
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Appendix C

Radiative Transfer Regimes

In general, Maxwell’s equations give

(

∇2 −∇∇ + ω2ε
)

· E = 0 , (C.1)

for an electric field E, and a dielectric tensor ε. For plane waves propagating along

the z-axis in a plane parallel medium, this reduces to

d2F

dz2
+ ω2ε · F = 0 , (C.2)

where F is the Jone’s vector (i.e., a two-dimensional vector constructed from the

transverse components of E). For an anisotropic dielectric tensor, there will exist two

nondegenerate transverse modes defined such that

ω2εFi = k2
i Fi . (C.3)

In the case of a plasma, these are in general elliptically polarized, i.e.,

F1 = Q





sinχ

i cosχ



 and F2 = Q





cosχ

−i sinχ



 , (C.4)
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where the orientation of the polarization ellipses is determined by

Q =





cosφ sinφ

− sin φ cosφ



 . (C.5)

Then, F = F1F1 + F2F2, may be inserted into equation (C.2) to give

F ′′
1 + 2is2ϕF

′
1 +

(

k2
1 − ϕ2 − ψ2 + is2ϕ

′ + 2ic2ϕψ
)

F1

= 2 (ψ − ic2ϕ)F ′
2 + (ψ′ − ic2ϕ

′ + 2is2ϕψ)F2

F ′′
2 − 2is2ϕF

′
2 +

(

k2
2 − ϕ2 − ψ2 − is2ϕ

′ − 2ic2ϕψ
)

F2

= −2 (ψ + ic2ϕ)F ′
1 − (ψ′ + ic2ϕ

′ − 2is2ϕψ)F1 , (C.6)

where a prime denotes differentiation with respect to z, c2 and s2 are cos 2χ and

sin 2χ, respectively, and

ϕ =
dφ

dz
and ψ =

dχ

dz
. (C.7)

When ϕ = 0, these reproduce Försterling’s coupled equations (cf. Budden, 1961;

Ginzburg, 1970).

Thus far, no approximations have been made regarding the wave length or scale

lengths of the plasma. From the form of equations (C.6), it is clear that if φ and ψ

vanish, the two modes will propagate completely independently. In the limit that ϕ

and ψ are small in comparison to k1,2, we may look for solutions of the form

Fi =
fi√
ki

ei
R

kidz , (C.8)

and hence

f ′
1 + is2ϕf1 = (ψ − ic2ϕ) f2 e−i

R

∆kdz

f ′
2 − is2ϕf2 = − (ψ + ic2ϕ) f1 ei

R

∆kdz , (C.9)

where terms on the order of ψ2, ϕ2, ψ′, ϕ′, ψϕ, and f ′′
i were ignored as they are small
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by assumption relative to those that remain. Further expand the fi as

f1 = u1e
−i

R

(∆k/2)dz and f2 = u2e
i

R

(∆k/2)dz . (C.10)

Then,

u′1 − i

(

∆k

2
− s2ϕ

)

u1 = (ψ − ic2ϕ) u2

u′2 + i

(

∆k

2
− s2ϕ

)

u2 = − (ψ + ic2ϕ)u1 , (C.11)

which may be combined to give

u′′1 +

[

(

∆k

2

)2

+ ψ2 + ϕ2 − s2ϕ∆k − i
∆k′

2

]

u1 = 0

u′′2 +

[

(

∆k

2

)2

+ ψ2 + ϕ2 − s2ϕ∆k + i
∆k′

2

]

u2 = 0 . (C.12)

If the ψ and ϕ terms are dominated by the ∆k terms, then

u1,2 ' const × e±i
R

(∆k/2)dz , (C.13)

and thus the fi are constant. Therefore, in this limit the modes propagate indepen-

dently (the so-called adiabatic regime). In the opposing limit, when ψ and ϕ dominate

∆k, then equations (C.12) are indistinguishable from the isotropic case (i.e., ∆k = 0),

and therefore the polarization propagates unaltered (the so-called strongly coupled

regime). This can be directly proved by solving for u1,2 in this limit and expressing

the answer in terms of F.

In general, for the scenarios considered here ∆k′ � (∆k)2, and thus this term

may be safely ignored. Since the ϕ∆k term will only be relevant when

(

∆k

2

)

∼ ψ2 + ϕ2 , (C.14)

this term may also be neglected in determining the limiting regimes. Therefore, the
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two distinct polarization transfer regimes are denoted by

√

∣

∣

∣

∣

dχ

dz

∣

∣

∣

∣

2

+

∣

∣

∣

∣

dφ

dz

∣

∣

∣

∣

2

�
∣

∣

∣

∣

∆k

2

∣

∣

∣

∣

adiabatic

√

∣

∣

∣

∣

dχ

dz

∣

∣

∣

∣

2

+

∣

∣

∣

∣

dφ

dz

∣

∣

∣

∣

2

�
∣

∣

∣

∣
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strongly coupled , (C.15)

where the definitions of ψ and ϕ have been used.
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Appendix D

Polarized Radiative Transfer
Equation

D.1 Relation between Evolution of the Stokes Pa-

rameters and the Electric Field Vector

In the WKB limit, the propagation equation for the components of the electric field

vector transverse to the wave-vector (F) can be written in the form

dF

dz
= T · F , (D.1)

where T is a two-dimensional matrix. This may be expanded in terms of the basis of

Pauli matrices and the identity:

σ0 =





1 0

0 1



 , σ1 =





1 0

0 −1





σ2 =





0 1

1 0



 , σ3 =





0 −i
i 0



 , (D.2)

to give

dF

dz
=

3
∑

j=0

(aj + ibj)σj · F . (D.3)
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It is well-known that in terms of the basis σj the Stokes parameters are given by

Sj = F† · σj · F , (D.4)

where S = (I, Q, U, V ). As a direct result,

dSj

dz
=
dF†

dz
· σj · F + F† · σj ·

dF

dz

= F† · {T, σj} · F

= F† ·
3
∑

k=0

(ak {σk, σj} + ibk [σj, σk]) · F . (D.5)

Therefore, in terms of the aj and bj, the radiative transfer equation is given by

d

dz

















S0

S1

S2

S3

















= 2

















a0 a1 a2 a3

a1 a0 b3 −b2
a2 −b3 a0 b1

a3 b2 −b1 a0

































S0

S1

S2

S3

















, (D.6)

as shown in Kubo & Nagata, 1983 (note that there is no contribution due to the phase

b0). Hence the primary difficulty is writing the propagation equation for the electric

field in the form of equation (D.1).

D.2 Linearized Evolution Equation for the Electric

Field Vector in a Weakly Refractive, Anisotropic

Medium

In general equation (D.1) can be obtained by making a WKB expansion of Maxwell’s

equations. Here we present a derivation applicable to environments with disorganized,

stationary magnetic fields in the non-refractive limit. Explicitly, Maxwell’s equations
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give the following for the electric field vector (E)

(

∇2 −∇∇ + ω2ε
)

· E = 0 , (D.7)

assuming that all modes have the same exp(iωt) dependence. The WKB expansion

assumes that E can be written as a quickly varying phase (Φj), a slowly varying

amplitude (Aj), and a slowly varying basis vector (Êj),

E =
∑

j

eiΦjAjÊj , (D.8)

where the summation is over all the possible polarization modes. To zeroth order in

the WKB expansion

ω2 (1 + ε) · Ê =
∑

j

(

k2
j − kjkj

)

· Êj , (D.9)

where kj = ∇Φj. To first order in the WKB expansion we find

∑

j

i (2kj · ∇ − kj∇−∇kj) · AjÊj =

−
∑

j

[

i (∇ · kj) + 2
(

k2
j − kjkj

)]

· AjÊj , (D.10)

where the zeroth-order result was used.

If the rays are weakly refracted then

(

1 − k̂jk̂j

)

kj · ∇ ' kj · ∇
(

1 − k̂jk̂j

)

. (D.11)

This is a direct consequence of the fact that in this case the rays will follow geodesics.
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Additionally,

(

1 − k̂jk̂j

)

· kj∇ = 0
(

1 − k̂jk̂j

)

· ∇kj ' 0

∇ · kj ' 0 , (D.12)

where the first is identically true and the others follows from the weakly refractive

condition. As a result,

∑

j

kjk̂ · ∇ · AjF̂j =
∑

j

ik2
jAjF̂j , (D.13)

where F̂j are the properly normalized, transverse components of the polarization

eigenmodes (the normalization is absorbed into the Aj.) Note that inherent in the

WKB expansion it is assumed that the polarization eigenmodes propagate indepen-

dently. The conditions for this to be true are outlined in Section 8.2. In the case of

a lossless, anisotropic dielectric tensor it can be shown that the F̂j are unique and

have differing wave-numbers. It can also be shown that they are necessarily orthog-

onal, despite the fact that if the dielectric tensor is spatially dispersive the different

polarization modes are eigenmodes of different tensors (see, e.g., Section 5.4). As a

result, the projection operator for the jth polarization mode is defined by

Pj = F̂jF̂
†
j . (D.14)

Therefore, with

F =
∑

j

AjF̂j , (D.15)

the individual contributions from each polarization mode can be obtained by

AjF̂j = Pj · F . (D.16)
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This may be inserted into equation (D.13) to yield

(

∑

j

kjPj

)

k̂ · ∇F =

{

∑

j

[

ik2
jPj − kj

(

k̂ · ∇Pj

)]

}

· F . (D.17)

The inverse of
(

∑

j kjPj

)

exists and is trivially given by
(

∑

j k
−1
j Pj

)

. Therefore, in

the form of equation (D.1),

dF

dz
=

[

∑

j

(

ikjPj −
∑

l

kl

kj

Pj ·
dPl

dz

)]

· F , (D.18)

where z is chosen such that k̂ · ∇ = d/dz. The two polarization eigenmodes are

directly coupled via the dPl/dz in equation (D.18). As will be discussed in Chapter

8.2, the modes will necessarily be strongly coupled when the typical length scale over

which the polarization changes is short in comparison the the Faraday rotation length.

In the opposing limit (the adiabatic limit), the modes will propagate independently.

The dPl/dz term in equation (D.18) is the lowest-order coupling correction to the

adiabatic limit. While in general this term will be small in comparison to kjPj, as

shown in the following sections, there are scenarios in which it can dominate the

polarimetric properties of an astrophysical system.

In general the polarization can be described by a polarization angle (φ) and the

degree of ellipticity. It is commonly useful to define the Stokes parameters with

respect to a basis rotated such that φ = 0 (e.g., one basis vector is rotated such that

it is aligned with the magnetic field at all points along the line of sight). This can be

included in equation (D.18) by setting F = Q ·F′ where F′ is the polarization in the

rotated basis and

Q ≡





cosφ sinφ

− sin φ cos φ



 . (D.19)

This transformation enforces a symmetry that causes a2 vanish identically. Therefore,

dF′

dz
=

[

∑

j

(

ikjP
′
j −

∑

l

kl

kj
P′

j ·
dP′

l

dz

)

− Q−1dQ

dz

]

· F′ , (D.20)
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where the primes denote quantities calculated in the rotated basis. For the Q given,

Q−1dQ/dz = i(dφ/dz)σ3, giving the well-known geometric analogue to Faraday ro-

tation.

The ellipticity can be parametrized in terms of an angle (χ) giving

F′
1 =





sinχ

i cosχ



 and F′
2 =





cosχ

−i sinχ



 . (D.21)

The subsequent projection operators are then given by

P′
1,2 =

1

2
(1 ± M) , (D.22)

where

M ≡





− cos 2χ −i sin 2χ

i sin 2χ cos 2χ





= − cos 2χσ1 + sin 2χσ3 . (D.23)

In addition it is necessary to calculate dPj/dz as these are what lead to the geometric

phase effects in equation (D.18) (in addition to those introduced via dQ/dz). Hence,

dP′
1,2

dz
= ±1

2

dM

dz

= ± (sin 2χσ1 + cos 2χσ3)
dχ

dz
, (D.24)
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As a result,

∑

j

(

ikjP
′
j −

∑

l

kl

kj
P′

j ·
dP′

l

dz

)

=
i

2
(k1 + k2) +

i

2
(k1 − k2)M − (k1 − k2)

2

4k1k2
M · dM

dz
+
k2

1 − k2
2

4k1k2

dM

dz

=
i

2
(k1 + k2)σ0 +

[

k2
1 − k2

2

2k1k2
sin 2χ

dχ

dz
− i

2
(k1 − k2) cos 2χ

]

σ1

− i
(k1 − k2)

2

2k1k2

dχ

dz
σ2 +

[

k2
1 − k2

2

2k1k2
cos 2χ

dχ

dz
+
i

2
(k1 − k2) sin 2χ

]

σ3 . (D.25)

Therefore, the nonzero aj and bj are

a1 =
k2

1 − k2
2

2k1k2
sin 2χ

dχ

dz

a3 =
k2

1 − k2
2

2k1k2
cos 2χ

dχ

dz

b0 =
1

2
(k1 + k2)

b1 = −1

2
(k1 − k2) cos 2χ

b2 = −(k1 − k2)
2

2k1k2

dχ

dz

b3 =
1

2
(k1 − k2) sin 2χ+

dφ

dz
. (D.26)

Faraday conversion and rotation are due to b1 and b3, respectively. Note that, it is

also possible to convert Stokes Q directly to Stokes V as a result of b2. In addition,

there are two dichroic terms, a1 and a3 which couple Stokes I to Stokes Q and V .
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Note that for ∆k ≡ k1 − k2 � k ≡ (k1 + k2)/2,

a1 =
∆k

k
sin 2χ

dχ

dz

a3 =
∆k

k
cos 2χ

dχ

dz

b0 = k

b1 = −1

2
∆k cos 2χ

b2 = −1

2

(

∆k

k

)2
dχ

dz

b3 =
1

2
∆k sin 2χ+

dφ

dz
, (D.27)

thus with equation (8.1), in the adiabatic regime, a1 and a3 are at least a factor of

∆k/k smaller than b1 and b3, while b2 is at least a factor of ∆k/k smaller than this. As

a result, to the level of approximations made in the determination of equations (D.27),

these terms may be neglected. However, geometric terms persist in the additional

term in b3 and in the adiabatic condition.
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Appendix E

Components of the Transfer
Matrix for a Magnetized Plasma

In astrophysical environments, the typical source of anisotropy in the polarization

eigenmodes is a magnetized plasma. In the high-frequency limit,

∆k ≡ k1 − k2 '
ω

c
XY cos θ ≡ δkµ , (E.1)

where X and Y are the square of the ratio of the plasma frequency to ω and the ratio

of the cyclotron frequency to ω, respectively, θ is the angle between the line of sight

and the magnetic field, δk ≡ ωXY/c, and µ ≡ cos θ. The ellipticity angle is given by

(see, e.g., Ginzburg, 1970; Budden, 1961)

cotχ = x+
√

1 + x2 where x ≡ Y sin2 θ

2 (1 −X) cos θ
. (E.2)

As a direct result, cot 2χ = x and therefore,

sin 2χ =
sgn x√
1 + x2

' µ
√

(Y/2)2 + µ2

cos 2χ =
|x|√

1 + x2
' Y

2

1 − µ2

√

(Y/2)2 + µ2

dχ

dz
= −1

2

(

1 + x2
)−1 dx

dz
' −Y

4

√

1 − µ2
1 + µ2

(Y/2)2 + µ2

dθ

dz
, (E.3)
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where the sgn x is necessary to choose the correct root, and the expressions for µ

assume that Y � 1. Therefore,

b1 = −1

2
∆k

|x|√
1 + x2

' −1

2
∆k

Y

2

1 − µ2

√

(Y/2)2 + µ2

b3 =
1

2
∆k

(

sgn x√
1 + x2

+
2

∆k

dφ

dz

)

' 1

2
∆k

(

µ
√

(Y/2)2 + µ2
+

2

∆k

dφ

dz

)

. (E.4)


