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Abstract 

The central goal of this study is to develop a reliable self-consistent model to describe 

the constitutive behavior of polycrystalline ferroelectrics and to predict their lattice 

strain and texture evolution. Starting with the model developed by Huber et al. 

formulations and refinements were added to increase both the functionality and the 

accuracy of the model’s results. These refinements include methods for calculating 

lattice strain, tracking the number of domains contributing to diffraction patterns, 

locking the domain switching at a specified level, inputting initial grain orientation 

distribution, and a correction for a major flaw in the previous model: the phenomenon 

of reverse domain switching. 

 

To validate the model’s predictions, in-situ neutron diffraction experiments were 

conducted on polycrystalline BaTiO3 under uniaxial compression. It was found that 

the data analysis required a close inspection due to lattice strain anisotropy and 

leading to a systematic study of different analysis methods: the single peak method, 

the regular whole-pattern Rietveld method (with no strain anisotropy), and the 

improved Rietveld method which offers limited strain anisotropy analysis. The latter 

was judged to be the most appropriate for ferroelectrics and it was further improved 

by new formulations to permit lattice strain anisotropy analysis for tetragonal and 

hexagonal crystal structures. 
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The comparison of model predictions and diffraction data from BaTiO3 yielded the 

following observations: (i) domain switching starts at very low stresses (< 10 MPa) 

and proceeds gradually; (ii) domains with c-axes closer to the loading axis start 

switching earlier and experience more switching; (iii) lattice-plane-specific (hkl) 

strains, with the exception of (111), exhibit apparent hardening after switching starts. 

The level of agreement between the model and the experimental data was 

satisfactory, particularly considering the relative simplicity of the model. Keeping in 

mind the basic assumptions present in the model, it can be a useful analytical tool in 

the study of ferroelectric constitutive behavior when combined with diffraction 

experiments. 
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1. Introduction 

1.1 Ferroelectric Materials: Definition and Application 

Nowadays, many engineering problems necessitate the implementation of “smart”, 

i.e., adaptive or controlled, systems. Since these systems usually possess both sensing 

and actuation capabilities, a variety of physical phenomena are often coupled for their 

technical implementation. Thermal expansion, shape memory effect, 

magnetostriction, electrostriction, and piezoelectricity are some important examples 

of such coupling phenomena. It is now a matter of technical needs and costs that 

determine which coupling mechanism and which material will be the best choice. 

 
Piezoceramics are outstanding candidates for mass applications calling for short 

response times, high-precision positioning and considerable actuation forces in 

systems of possibly complex shape. In this thesis, the term piezoceramic denotes 

polycrystalline ferroelectric materials (in general, they are ferroelastic as well) used 

for the exploitation of piezoelectricity in engineering. Barium titatnate (BaTiO3) and 

lead zirconate titanate (PZT) are the most prominent materials in this class. While the 

former is the favored model material in fundamental material science investigations, 

the latter is preferred in technical applications due to its optimum electromechanical 

coupling properties [1].  

 

Ferroelectric ceramics are widely used in a diverse set of devices including sensors, 

actuators, transducers, and ultrasonic motors [2]. The technological importance of 
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ferroelectrics originates from their large electromechanical coupling and their ability 

to be easily manufactured into complex geometries via powder processing and other 

advanced fabrication techniques. The phenomena of ferroelectricity, ferroelasticity, 

and piezoelectricity are here presented with reference to the commonly found 

perovskite crystal structure [3]. What will become clear in this discussion is that the 

unusual electromechanical macroscopic properties found in these materials can only 

be understood through an appreciation of the physical mechanisms operating in a 

multiaxial fashion at a range of microstructure-dependent length scales. The 

interaction of anisotropic mechanisms at multiple length scales leads to complicated 

behavior dependent on the specific application of external forces and the 

microstructure of the specimen under investigation.  

 

A ferroelectric material is a piezoelectric material with the ability to switch its 

polarization direction under an applied electric or mechanical field. The microscopic 

structure of piezoelectric materials is crystalline in nature. In a crystalline material, 

the crystal lattice is a periodical repetition of a unit cell. A ceramic material is divided 

into grains with differing orientations of the crystal lattice. The unit cell consists of a 

buildup of positively and negatively charged ions typical of a specific material. 

According to this buildup, the centers of the positive and negative charges of the unit 

cell possess specific locations within the cell. 

 

The position of the centers of the charges relative to one another within the unit cell is 

essential to the electromechanical properties of the material. A material is considered 
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to be polarizable if the centers can be shifted with respect to one another by the 

application of an external load, leading to a load-induced dipole in the unit cell. In the 

case of electric loading, the load is the applied electric field.  

 

If the centers of positive and negative charge are at different positions from one 

another within the unit cell, even in the absence of any load, then the cell is 

considered to possess spontaneous polarization. In other words, the unit cell has a 

permanent dipole. In such a case, the material is called a polar material. 

Mathematically, any relative displacement of the centers of positive and negative 

charge in a unit cell is described by the polarization vector. The magnitude of this 

vector is proportional to the distance between the centers and the respective sum of 

the positive and negative ionic charges. Polarization is usually denoted by P.  

 

Figure 1-1 illustrates the perovskite structure for many ferroelectrics including 

BaTiO
3 

(BTO) and Pb(Zr
x
Ti

1-x
)O

3 
(PZT). Here, only the tetragonal structure is 

discussed, however orthorhombic, rhombohedral, and monoclinic crystal structures 

are also known to exist in these materials [3-7]. Above the Curie temperature T
c
, the 

material is paraelectric with a cubic, centro-symmetric structure. As it is cooled below 

T
c 
it undergoes a phase transformation from the cubic to tetragonal phase. Notice that 

the previously centered Ti ion has been displaced towards one face of the tetragonal 

cell. The direction of this ion displacement is also the direction of the spontaneous 

polarization of the material, P
s
, and is aligned with the c-axis of the tetragonal cell 

(formerly the [001] cubic direction). Below T
c 
the material is both piezoelectric and 
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ferroelectric, and the piezoelectric properties of the crystal are aligned with the 

spontaneous polarization direction. Rhombohedral phase ferroelectrics possess ion 

displacements and polarizations along the <111> cubic direction, and orthorhombic 

ones along the <110>.  

 

 

Figure �1-1: The perovskite crystal structure common to many ferroelectric ceramics. For 

BTO the white ions at the corners are Ba+2, the black ions on the faces are O-2, and the 

central ion is Ti+4. The top set of figures illustrates the phase change through the Curie 

temperature, the spontaneous polarization, and the linear response of the crystal. The bottom 

set of figures illustrates the spontaneous shape change of the crystal, and 180° and 90° 

switching due to applied electric field or stress. The magnitudes of the ion displacements 

have been exaggerated for clarity. (Courtesy of C. Landis [8]) 

 

The piezoelectric, dielectric, and elastic responses of the tetragonal material are 

illustrated on the first row of Figure 1-1. If a small electric field is applied in the 

direction of the spontaneous polarization, then the polarization will increase 

(dielectric effect) together with strain (piezoelectric effect). Alternatively, if a 

compressive stress is aligned with the spontaneous polarization direction, then the 
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strain will decrease (elastic effect) and the polarization will decrease (piezoelectric 

effect).  

 

The ferroelectric response of the material is illustrated on the second row of Figure 1-

1 where ferroelastic switching has been differentiated from ferroelectric switching 

[3]. Note that a change in spontaneous strain, i.e., the orientation of the c-axis, 

accompanies the polarization change during 90° switching but not during 180° 

switching. For the tetragonal structure shown in Figure 1-1 there are four possible 90° 

switches that can be driven by combinations of stress and electric field, and one 180° 

switch that can be driven only by electric field. The middle two schematics on the 

second row of Figure 1-1 illustrate 180° and 90° switching induced by applied 

electric field alone. The last schematic illustrates 90° switching due to the application 

of a compressive stress parallel to the polarization direction. Note that for this 

compressive stress a switch to any one of the four energetically equivalent 90° 

domain variants can be activated.  

 

A thorough understanding of the electromechanical mechanisms illustrated in Figure 

1-1, including linear piezoelectricity and non-linear switching, is necessary for the 

explanation of most of the macroscopic phenomena observed in ferroelectrics. 

However, the depiction of switching that is obtained from the consideration of a 

single lattice cell is deceptively simplified. As explained by Figures 1-2 and 1-3, in 

real single crystals (including single grains of a polycrystal), there exist multiple 

domain variants separated by domain walls formed by twin boundaries [3, 5, 6]. 
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Across a domain wall the spontaneous polarization is discontinuous. Switching of a 

domain is not a homogenous process as the single unit cell depiction would suggest, 

but rather proceeds as a result of domain wall motion which converts one domain 

variant to another [3, 5, 6, 9]. Even within a single crystal different concentrations of 

the six possible domain variants can coexist such that the irreversible (or remanent) 

polarization, and hence the piezoelectric properties, of the crystal can be oriented in 

any of these six directions through application of a large electric field to induce 

domain switching; this process is called “poling.” The ability of ferroelectric single 

crystals to be poled in certain directions is of significant technological importance, as 

it allows for the piezoelectric response to be oriented for use in applications. 

Successful poling of a single crystal depends on the relative concentrations of the 

initial domain variants, crystal purity (any impurities can impede domain wall 

motion), and the direction and strength of the applied electric field. 

.  

 

Figure �1-2: Plane view of a crystal aggregate with domains as subregions of equal 

spontaneous polarization after cooling below the Curie temperature 
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Figure �1-3: At the paraelectric-ferroelectric phase transition of a material with tetragonal 

unit cell, there are six different directions for the central titanium ion to be displaced, 

resulting in six different spontaneous polarization vectors. 

 

Let us now consider macroscopic phenomena that result from microscopic, i.e., 

domain-level, mechanisms averaged over volumes which are associated with the 

polycrystals used in most ferroelectric devices. When the material is cooled below the 

Curie temperature spontaneous polarization, spontaneous strain and piezoelectricity 

must exist at the individual domain level. However, when averaged over all possible 

orientations of the domains and grains within the polycrystal, the macroscopic 

polarization, strain, and piezoelectric effect of the ceramic are initially zero. In order 

to make the polycrystal piezoelectric, and therefore useful in actuator or sensor 

applications, a strong electric field must be applied. In the case of a polycrystal, the 
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initially homogenous orientation distribution of the ceramic implies that the specimen 

may be poled in an arbitrary direction.  

 

As the electric field is applied, domain walls move such that domains aligned with the 

field grow at the expense of domains opposing the field. However, the randomized 

grain and domain configuration established during preparation limits the possible 

orientations of any domain variant relative to the externally applied field. Thus, 

during poling, domains will attempt to switch their polarizations into orientations 

aligned with the macroscopic field, but the fixed grain structure may severely limit 

switching ability [2]. The poling process, then, occurs gradually and over a range of 

applied electric fields due to the variation in local electromechanical boundary 

conditions (intergranular constraints). In certain grain orientations, domains may 

switch temporarily to minimize the total energy during the application of an electric 

field. After the field is removed, some domain walls will move back towards their 

original positions, due to residual stresses and local electric fields in the material. 

However, this reverse switching is incomplete and there exists a net polarization, 

strain and piezoelectric effect aligned in the direction of the original applied electric 

field. The material is now “poled” and suitable for use as an actuator or sensor. 

 

Many of the most industrially successful ferroelectric compositions possess grains of 

multiple crystal structures, such as the rhombohedral-tetragonal phase combination 

found in the morphotropic region of the PZT phase diagram [5]. As such, 

ferroelectrics can exhibit a complicated behavior in response to both electrical and 
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mechanical loads which produce large internal stresses that eventually lead to failure. 

Efforts to model and predict the behavior of ferroelectrics have often been hindered 

by the lack of suitable constitutive relations that accurately describe the 

electromechanical response of these materials. While many measurements have been 

conducted on the macroscopic response of large single crystals or polycrystals, there 

is lack of multiaxial (and multiscale) data about the in-situ internal strain and texture 

response of these materials; this information is critical to the development of accurate 

models, and it can only be provided by diffraction techniques which directly measure 

internal lattice strains and crystallographic orientations. This thesis will present a 

comparison of a mechanics model with diffraction data. 

 

1.2 Piezoelectricity: Governing Equations 

In a ferroelectric, domain wall motion within each crystal leads to a change in the 

remanent strain and polarization. This non-linear switching closely resembles plastic 

deformation by slip in a metallic polycrystal: domain wall motion can be treated in an 

analogous manner as dislocation slip in elastic-plastic crystals. 

 

Consider an anisotropic ferroelectric solid subjected to an electric field Ei and to a 

mechanical stress �ij. By assigning the notation superscript ‘L’ for the recoverable 

(assumed linear) part and the superscript ‘R’ for the remanent part (equivalent to the 

plastic part in crystalline plasticity), one can decompose the total strain �ij and the 

total electric displacement Di into linear and remanent parts: 
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L R
ij ij ijε ε ε= +          (1.1) 

and 

L R
i i iD D P= +         (1.2) 

The remanent strain, R
ijε , and polarization, R

iP , are obtained upon the removal of 

electrical and mechanical loading (�ij, Ei). Assuming that strains remain sufficiently 

small for the infinitesimal strain theory to apply, the total strain derived from the 

displacement field ui is given by: 

, ,

1
( )

2ij i j j iu uε ≡ +         (1.3) 

The linear response of the ferroelectric solid is then: 

( ) ( )D R R
ij ijkl kl kl kij k kc h D Pσ ε ε= − − −      (1.4) 

and 

( ) ( )R R
i ikl kl kl ik k kE h D Pεε ε β= − − + −      (1.5) 

where, D
ijklc  is the elastic stiffness tensor, hijk is the piezoelectric tensor, and ik

εβ  is the 

dielectric impermeability tensor. A number of alternative versions of the piezoelectric 

constitutive relations exist, each exactly equivalent to the ones mentioned above. For 

example, Equations (1.4) and (1.5) can be inverted to obtain: 

R E
ij ij ijkl kl kij kS d Eε ε σ− = +        (1.6) 

and 

R
i i ikl kl ik kD P d Eσσ κ− = +        (1.7) 

Alternatively,  ( , )R
ij i iD Pσ −  is related to ( , )R

ij ij iEε ε− by: 
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( )E R
ij ijkl kl kl kij kc e Eσ ε ε= − −        (1.8) 

and 

( )R R
i i ikl kl kl ik kD P e Eεε ε κ− = − +       (1.9) 

All these linear equations remain valid during the switching of a ferroelectric, which 

is a non-linear phenomenon, but are not sufficient to relate an increment in the 

loading ( , )ij iEσ ��  to a corresponding increment in configurational quantities ( , )ij iDε �� . 

A complete framework requires information on how the remanent increments  

( , )R R
ij iPε ��  evolve with increments in loading ( , )ij iEσ �� . This issue will be addressed in 

Chapter 3 when a self-consistent model is presented. 

 

Static mechanical equilibrium dictates that the stress �ij is in equilibrium with an 

imposed distribution of body force fi according to 

, 0ij j ifσ + =          (1.10) 

and the Gauss’ law likewise dictates that the divergence of the electric displacement 

equals the distribution of free charge density q 

, 0i iD q− = .        (1.11) 

Assuming quasi-static conditions, the electric field is derived from an electric 

potential � via: 

,i iE ≡ −Φ          (1.12) 

On the surface S of a piezoelectric body, with unit outward normal ni, the traction ti is 

in equilibrium with the stress �ij according to 
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j i ijt n σ=          (1.13) 

and the surface-free charge density Q is in equilibrium with the jump in electric 

displacement <Di> across S, such that 

( )o
i i i i iQ n D n D D= < >= − .      (1.14) 

Here, the symbol “<>” to denotes the jump in a quantity at the boundary and o
iD  is 

the electrical displacement exterior to the body [8]. 

 

1.3 Ferroelectrics: Constitutive Modeling 

1.3.1 Background 

A successful design for a component in many engineering applications often 

necessitates a complex interactive process that utilizes modeling and experimentation. 

This is especially crucial in predicting device/component performance and lifetime. 

To achieve this, it is essential that the model employs a realistic constitutive law that 

accurately describes material response to external loading.  

 

One of the commonly used models is the Finite Element Method (FEM). In order to 

have an informative and detailed FEM model, one often needs to know the spatial 

distribution of the grains being modeled. This information is not readily available 

most of the time. 

 

Another approach is the use of the Self-Consistent Model (SCM). In this model the 

spatial distribution of the grains need not be known. Each single grain is assumed to 
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interact with an imaginary media (matrix) with properties derived from the average 

properties of all other grains. The self-consistent method has been used successfully 

in crystal elastoplasticity. It has also been used to predict the macroscopic behavior of 

ferroelectrics. The present study will show how it can be used for the investigation of 

lattice strains and texture evolution in ferroelectrics and how the results compare with 

neutron diffraction experiments. 

 

The fundamentals of the self-consistent method are based on Eshelby’s inclusion 

method. In his papers published in 1957 and 1961, Eshelby [10, 11] solved the 

problem in closed form of an ellipsoidal inclusion in an infinite matrix with a misfit 

due to change in temperature. His approach can readily be expanded to solve the 

general problems of multiple inclusions, a finite matrix, and applied mechanical 

loading. Eshelby’s method and the aforementioned extensions are explained in 

Chapter 2. The Eshelby method has been further developed into a self-consistent 

method to solve polycrystalline plasticity problems. Studies have been conducted to 

simulate the development of lattice strain and texture during loading. These, too, will 

be briefly reviewed in Chapter 2.  

 

1.3.2 Self-Consistent Modeling of Ferroelectrics 

In their 1999 paper, Huber et al. developed an SCM to study macroscopic behavior of 

ferroelectrics [8]. Their model is based on the switching of differently oriented 

tetragonal domains within a grain under the application of mechanical loading or an 

electric field. The model provides good qualitative predictions for many of the 



 14 

macroscopic features of ferroelectric switching, but it lacks the capacity to compute 

lattice strains. The improvement of the model to obtain this capability is the subject of 

Chapter 4.  

 

The work of Hall et al., 2005-2007 [12-15], seems, at first glance, to be similar to the 

present study. They have also studied lattice strains in ferroelectrics via physical 

experimentation and a micromechanical model. However, there are two major 

differences. They have conducted X-ray experiments to calculate lattice strains in 

PZT, but the experiments were not in situ. Instead, they measured residual lattice 

strains after the application and removal of an electric field. Then they rotated the 

sample around an axis perpendicular to the polarization axis and diffraction vector. 

The purpose of the experiments discussed in this thesis is to study the evolution of 

lattice strains while the loading is being applied. The second key difference is in the 

modeling. Due to the different nature of their experiments, they have been able to use 

a simple model which helps them explain why the lattice strain can be fitted linearly 

with moderate success using the cosine square of the rotation angle as the 

independent variable. In comparison, the model presented here aims to predict the 

lattice strains given the single crystal properties of the ferroelectric and known 

domain switching criteria. 

 

1.4 Goal and Outline of Thesis 

The main goal of this thesis is to investigate the in-situ lattice strain and texture 

evolution in ferroelectrics, specifically BaTiO3, using self-consistent modeling and 
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neutron diffraction data. Along the way, it will be shown that improvements were 

needed in both the analysis of diffraction data and the self-consistent modeling.  

 

The introduction to ferroelectrics, previous studies, and equations governing 

ferroelectrics were explained in this chapter. Chapter 2 will discuss the self-consistent 

model and its basis, the Eshelby method, as they existed before the SCM was 

extended into ferroelectrics. Cases of mechanical versus thermal loading, and single 

versus multiple inclusions are also discussed. Next, the formulation of SCM as a 

means to simulate grain-to-grain interactions is presented. Chapter 3 will explain the 

SCM for ferroelectric domain switching and the improvements made to a previous 

model to be able to compare its predictions with diffraction data. 

 

Chapter 4 will elaborate on the experimental methods used and the experimental 

challenges faced. The single peak fitting and the multi-peak Rietveld method and 

their advantages and disadvantages will be discussed. Also, an improved version of 

the Rietveld method which should be used with anisotropic materials will be 

discussed. This method is currently implemented in the common Rietveld code GSAS 

(General Structure Analysis System)[16] for some crystal structures. Guidelines on 

how to implement it for other structures are also provided in this chapter.  

 

Chapter 5 will present the experimental results from different methods of analysis, 

including the in-situ lattice strain measurements of BaTiO3 and its in-situ texture 

evolution. Modeling results, using the model developed in Chapter 3, and the 
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comparison between the model and the experimental results will also be presented in 

Chapter 5. Finally, the conclusions will be summarized, and some suggestions for 

future work will be offered. 
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2. The Self-Consistent Model 

2.1 The Eshelby Tensor 

The fundamentals of the self-consistent model are based on Eshelby’s inclusion 

method. In his papers published in 1957 and 1961, Eshelby [10, 11] solved the 

problem of an ellipsoidal inclusion in an infinite matrix with a misfit due to change in 

temperature in closed form. His approach can readily be expanded to solve the 

general problems of multiple inclusions, a finite matrix, and applied mechanical 

loading. 

 

Assume an infinite media, referred to as ‘the Matrix.’ A part of the matrix is cut out, 

referred to as ‘the Inclusion,’ and undergoes a stress free transformation, or 

‘eigenstrain.’ This eigenstrain can be due to a mismatch in thermal expansion 

coefficients, or it can be a result of a martensitic phase transformation, etc. 

 

If the inclusion is to be put back in the matrix (Figures 2-1 and 2-2), due to the 

mismatch in size, stresses will obviously develop in both the matrix and the inclusion. 

Eshelby [10, 11] showed that if the inclusion has an ellipsoidal shape, the stress in the 

inclusion will be uniform. He also related the strain mismatch to the final strain 

through the Eshelby tensor, S; he then calculated the value of S, as shown in Table 2-

1 [17]. Needless to say, stress in the matrix is not homogenous but fades away with 

increasing distance from the inclusion. If the stiffness tensor of the matrix, CM, is 
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known, which in this case is the same as the stiffness tensor for the inclusion, the 

residual strain and stress can be readily calculated: 

�C = S �T             (2.1) 

�I = CM (�C- �T) = CM (S-U) �T.      (2.2) 

The subscript I denotes the inclusion and U in the equation is the identity matrix. 

Superscript C denotes a constrained value. �T is the eigenstrain, and S is the Eshelby 

tensor.   

 

++
Cut

M M I

 

Figure �2-1: An ellipsoidal inclusion, I, is cut out of the matrix, M. 

 

�T Put back in

�CI
I

 

Figure �2-2: The inclusion has undergone a stress-free transformation, eigenstrain �T, and has 

been placed back in the matrix. The matrix applies constraining traction forcing the inclusion 

to assume a final strain �C, which can be related to �T using the Eshelby tensor, S. 
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Table 2-1: Components of the Eshelby tensor. � is the Poisson’s ratio of the infinite matrix. 

 

2.2 Inhomogeneous Inclusion 

The above case, where the elastic stiffness of the matrix and the inclusion are the 

same, is highly unrealistic. If the inclusion has a different stiffness tensor, CI, the 

problem is not so easily solved since the equation, �C = S �T, no longer holds true. 

Eshelby solved the problem only for a matrix and an inclusion of the same material.  

 

To circumvent this problem, an imaginary counterpart (Figure 2-3b) to the real 

problem (Figure 2-3a) is constructed. The imaginary problem, the “ghost problem,” 

has an inclusion which has an elastic stiffness of CM. Hence, the Eshelby formula can 



 20 

be applied to it. It can be shown that one can choose a size for the ghost inclusion and 

assume an eigenstrain for it such that the final constrained strain and the traction on 

the ghost inclusion are equal to the constrained strain and traction on the inclusion in 

the real problem. The conclusion is that the matrix is practically dealing with the 

same inclusion in cases (a) and (b), so the results can be used interchangeably. 

 

�T* --> �C

M

(a) (b)

�T --> �C
MM

I

 

Figure �2-3: (a) The material properties of the inclusion are different from those of the matrix. 

The eigenstrain is real, due to a change in temperature, a phase transformation, etc. (b) The 

equivalent imaginary problem, constructed with an inclusion and a matrix that have the same 

material properties so that the Eshelby formula can be applied 

 

Figure 2-3 (a)  � �I = CI (�
C- �T*)       (2.3) 

Figure 2-3 (b)  � �I = CM (�C- �T)       (2.4) 

Figure 2-3 (b)  � �C = S �T        (2.5) 

� CI (�
C- �T*) = CM (�C- �T)  � CI (S �T - �T*) = CM (S �T - �T)   (2.6) 

      �T = [ (CI-CM) S + CM ]
-1 CI �

T*       (2.7) 

      �I = CM (S-I) �T = CM (S-I) [ (CI-CM) S + CM ]
-1 CI �

T*  (2.8) 

Here, �T* is the eigenstrain of the real inclusion which can be due to difference in the 

coefficient of thermal expansion between the matrix and the inclusion or due to phase 
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transformations, and �T is the eigenstrain in the ghost inclusion which is just an 

imaginary construct. 

 

Exactly the same concepts hold in the case of an applied external load (Figures 2-4a 

and 2-4b), only more care should be taken in writing the inclusion stress-elastic strain 

relationships. It is then possible to calculate the stress and constrained strain for such 

a case as well. 

 

0 --> �C+ �A

M

(a) (b)

�T --> �C+ �A MM

I

�A�A �A

 

Figure �2-4: In the case of external loading, the total stress in the inclusion is the sum of the 

stress due to the mismatch of thermal coefficients or a phase transformation and the applied 

stress at infinity. Again, (a) depicts the real problem and (b) is the imaginary one. 

 

(a) �   �I + �A = CI (�
C + �A)       (2.9) 

(b) �   �I + �A = CM (�C + �A - �T)      (2.10) 

(b) �   �C = S �T         (2.11) 

  �T = -[ (CI-CM) S + CM ]
-1 (CI-CM) �A      (2.12) 

  �I + �A = -CM (S-I) [ (CI-CM) S + CM ]
-1 (CI-CM) �A + CM �A (2.13) 

In the above equations, �A = CM �A. Note that in this case �I is not the total inclusion 

stress, instead it is the mismatch stress.  
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2.3 Multiple Inclusions 

A single inclusion in an infinite matrix is not a very realistic situation, but instead 

multiple inclusions are usually present. One way to relate such a case to the 

calculations presented up to now is to assume that an inclusion does not have the 

whole matrix constraining it, but only a portion of the matrix around itself. As a result 

there would be less constraint and the inclusion will be more relaxed. One way to 

model this is to assume a background stress already present in the matrix denoted by 

< � >M. The equations would now be very similar to what was presented before, for 

both external stress and eigenstrain. In case of eigenstrain: 

�I + < � >M = CI (�
C + < � >M - �

T*)     (2.14) 

�I + < � >M = CM (�C + < � >M - �
T)     (2.15) 

�C = S �T          (2.16) 

where , < � >M = CM < � >M is the background stress, and < � >I 
 �I + < � >M is 

the inclusion stress.  

 

The value of the background stress should be such that the inclusion and matrix are in 

equilibrium. Thus: 

f < � >I + (1-f)< � >M = 0       (2.17) 

where, ‘f’ is the volume fraction of the inclusions. Solving for �T in these equations 

will give: 
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�T = {(CM – CI)[S – f (S–I)] – CM}-1 CI �
T*.    (2.18) 

 From which stress in ‘M’ and ‘I’ can be calculated: 

< � >M = -f CM (S–I) �T        (2.19) 

< � >I = (1-f) CM (S–I) �T.       (2.20) 

 

 In the case of external loading the only difference would be �T: 

�T = {(CM – CI)[S – f (S–I)] – CM}-1 (CM-CI) �
A    (2.21) 

and, of course, �A should be added to obtain the total stress. 

 

2.4 Polycrystals and the Self-Consistent Model 

Almost all structural materials are polycrystals made up of multiple grains. In order to 

design and optimize engineering components constructed out of these materials, it is 

necessary to know the internal stress/strain state in the polycrystal. 

 

Micromechanical polycrystal deformation models that are based on the deformation 

of the individual grains can be used to determine the overall stress state of a 

component, including the residual and intergranular stress. These models can predict 

the elastic and plastic deformation of grains and, consequently, the overall stresses in 

the polycrystal. Many polycrystal deformation models that use different assumptions 

have been proposed over the years. In the lower-bound models, e.g., Sachs 1928 [18], 

the grains are all subjected to the same stress, as opposed to the upper-bound models, 
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e.g., Taylor 1938 [19], where all the grains are subjected to the same strain. These 

models do not account for anisotropy; hence, they do not serve our purposes.  

 

A self-consistent model is one way of modeling grain-to-grain interactions. Similar to 

the Sachs and Hill methods, the topological aspects of the microstructure are 

neglected in this method; instead, each grain interacts with other grains through the 

matrix, also called the homogeneous equivalent medium (HEM). The material 

properties of this matrix are an average of the properties of the grains that make up 

the conglomerate.  

 

In the self-consistent model, the effects of elastic anisotropy can be considered. Most 

of the ferroelectric materials of interest are extremely anisotropic; thus, the self-

consistent model provides a far superior method of analysis to the Sachs and Taylor 

models. In the rest of this section, details regarding the formulation of a self-

consistent method for solving problems of elastoplastic polycrystalline deformations 

are presented. These will serve as a useful guidance and background for the SCM of 

ferroelectrics presented in Chapter 3. 

 

The self-consistent scheme includes the elastic-plastic interaction between grains that 

are regarded as ellipsoidal inclusions in an infinite homogenous matrix with the 

overall modulus of the polycrystal. The grains are modeled as single crystals with 

specific orientations represented by their Euler angles (�, �, and �) defined in Figure 

2-5. The three-dimensional orientation of any object in space can be related to the 
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orientation of an object lying along the x-axis in a Cartesian coordinate system x-y-z 

by using these angles that represent three consecutive rotations. The first rotation is � 

in the positive direction around the z-axis, the second is a rotation of � around the 

new x-axis, and the third is a rotation of � around the new z-axis. 

 

Figure �2-5: Euler angles �, �, and � can be used to define the orientation of any object in 

three-dimensional space by applying three consecutive rotations to an object lying along the 

x-axis in a Cartesian system of coordinates. (Illustration from MathWorld.com) 

 

The self-consistent model to be discussed here [20] is restricted to low strains, as the 

strain definition does not include second-order terms, and the model does not include 

localization, which can lead to instabilities such as necking. As a rule, a small strain 

model is valid as long as the tangent modulus is much larger than any of the stress 

components. 

 

The model is governed by the single crystal slip mechanisms, in which the controlling 

parameters are the critical resolved shear stress and the hardening law. The number, 

crystallographic planes and directions of slip systems depend on the crystal structure 

of the material under study. For example, in a face centered cubic (fcc) material the 

potential slip systems are {111} <110> which consist of 12 plane-direction single 

slips. The initial critical resolved shear stress, �0, is assumed to be the same for all slip 
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systems. The number of potential slip systems is effectively doubled, as the shear 

rates are assumed not to be negative. 

 

Plastic strain rate in the grain can be related to the rate of movement in the active slip 

systems: 

�=
i

i
kl

iP
kl µγε �� .        (2.22) 

The term �P is the plastic strain tensor in the grain, iγ�  is the movement of the ith slip 

system in the grain, and �i is the Schmid tensor related to the ith slip system. The 

elements of the Schmid tensor for the ith slip system, which is a slip on a plane with a 

normal vector ni in the direction of vector mi , are: 

)(
2
1 i

k
i
l

i
l

i
k

i
kl nmnm +=µ .       (2.23) 

Similarly, the resolved shear stress rate on each slip system, iτ� , can be written in 

terms of the state of stress in the grain, �, and the Schmid tensor:  

i
klkl

i µστ �� = .        (2.24) 

The active slip systems are chosen from the potential slip systems such that they 

minimize the dissipated energy corresponding to plastic deformation in the grain. 

 

The current critical resolved shear stress of the ith slip system is denoted �ic and its rate 

is assumed to be related to the shear rates by a hardening matrix hij  [20]: 

�=
j

jiji
c h γτ �� .         (2.25) 

The components of the hardening matrix are defined as: 
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))1(( ijij qqhh δγ −+=        (2.26) 

where 	ij is Kronecker’s delta. The factor q describes the degree of latent hardening; 

for example, q=0 indicates that only self-hardening occurs, so that slip in one system 

causes hardening only in the same system. A value of q=1 indicates Taylor 

hardening, where activity in any slip system causes equal hardening in every other 

system. The instantaneous hardening coefficient, h
, depends on the previous 

deformation history. In the present model, the relationship between the accumulated 

slip in the grain, 
acc, and the instantaneous hardening coefficient is described by an 

exponentially decreasing function: 

)}exp()1(1{ exp
acc

ratiofinal hhhh γγ −−+=      (2.27) 

where, hfinal, hratio, and hexp, together with �0, can be used as fitting parameters. In this 

formula, hfinal is the final hardening coefficient, hratio is the ratio between the initial 

and final hardening coefficient, and hexp is a parameter that describes the strength of 

the exponential term. 

 

The self-consistent method for elastoplasticity is an incremental method, so the 

elastic-plastic instantaneous stiffness tensor for the grain, Lc, must be calculated at 

each step. Stress and strain can be related to each other using the elastic stiffness, LE, 

or the elastic compliance, ME, tensors. 

P
CC

E
CC M εσε ��� +=  or )( P

CC
E
CC L εεσ ��� −=     (2.28) 

Combining these equations together, the instantaneous elastic-plastic stiffness tensor 

for the grain and the slip on each active system, fi, can be calculated: 
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Note that if all the potential slip systems are inactive then the instantaneous stiffness 

is equal to the elastic stiffness. 

 

Now the stress and strain rates in the inclusions can be related to the stress and strain 

rates at infinity (the stress and strain rates of the HEM) by the concentration tensor, 

AC, which can then be related to L*, Hill’s ‘constraint’ tensor. Hill’s constraint tensor 

in turn relates to the Eshelby tensor, S, and the overall stiffness tensor, L. 
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       (2.30) 

The polycrystal stress and strain rates are equal to the weighted stress and strain rate 

averages over all the grains. At a certain stage of deformation, the stress, and thereby 

the potentially active slip systems in the constituents of the polycrystal, is known. The 

polycrystal is prescribed an additional strain rate, and, using this model, it is possible 

to determine the stress and strain rates as well as the instantaneous moduli for all of 

the individual grains. This then allows the polycrystal stress rate and stiffness to be 

calculated as the weighted average over all grains. 
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In their 1998 study [21], Clausen et al. examined the lattice strain development of 

three fcc materials (copper, aluminum, and steel) under uniaxial tension. They used 

Hutchinson’s self-consistent model [22] for elastic-plastic materials, as described in 

detail in this chapter. The model is a 1-site rate-insensitive SCM. Since all the 

materials studied are fcc, the slip systems contributing to plasticity are {111} <110>. 

The critical resolved shear stress (CRSS) obeys the hardening rule outlined earlier in 

this chapter in which three hardening parameters and the initial CRSS (�0) are used as 

fitting parameters to fit the macroscopic strain data. 

 

Lattice strains were also calculated by the model are plotted versus applied stress. In 

the elastic regime, the lattice strains indicated more anisotropy in stainless steel than 

in copper, while the least elastic anisotropy was observed in aluminum. This is the 

expected result since the elastic anisotropy factor 2C44/(C11-C22) is highest in stainless 

steel and lowest in aluminum. 

 

The levels of anisotropy observed in the plastic regime were much larger than those 

in the elastic regime for all three materials. The 200 reflection showed the most 

unstable behavior, which also conforms to the ferroelectric data presented in Chapters 

4 and 5.  

 

Clausen et al. did not present much comparison with experimental data in their paper. 

The only figure comparing the model’s results with the experimental data was the on 

page 3097 (Figure 2-6 below). Experimental results and model predictions in the 
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elastic regime match very well. In the plastic regime, matching is good for some hkl 

and not particularly satisfactory for others. However, the model was judged capable 

of providing good qualitative predictions. Considering the complex nature of plastic-

deformation and the non-topological micromechanical nature of the model, this can 

be considered a successful result. 

 

Although Clausen et al. did not explore the phenomenon at that time, predictions of 

texture development can also be made using this model by plotting the number of 

active slip systems on each subset of grains. They focused instead on the number of 

grains that contain a specific number of active slip systems. Most of the activity 

occurs during the first stages of plastic deformation, after which the numbers remain 

more or less constant. 

 

Clausen’s group also compared different lattice strains versus applied stress curves, 

and concluded that reflection 331 is a suitable one for stress-strain characterization, 

since it exhibits the most nearly linear response.  

 

Later studies by the Los Alamos group [23, 24] proposed an improved Rietveld 

analysis to account for strain anisotropy. Details of this method are described in 

Chapter 4 of this thesis together with suggestions for further improvement.  
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Figure �2-6: Calculated (lines) and measured (symbols) stress-strain response parallel to the 

tensile axis for stainless steel. The experimental and modeling results have a good match in 

the elastic region. The results are less agreeable in the plastic regime. (Courtesy of B. 

Clausen) 
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3. Self-Consistent Modeling of 
Ferroelectrics 

3.1 The Huber Model 

The starting point of the modeling effort in this study is the model developed by 

Huber et al. [8] which uses domain wall motion as the basis of a 

microelectromechanical model. Domains are regions in which the spontaneous 

polarization and strain are homogenous and are separated from each other within a 

single crystal by mobile walls.  

 

The basic equations governing the physical behavior of ferroelectrics were presented 

in Chapter 1. This section presents the assumptions in the model and how it can 

predict macroscopic behavior of ferroelectrics. 

  

Grains (crystals) in this model interact via the self-consistent scheme, i.e., each grain 

only interacts with the homogenous matrix it is surrounded by. The matrix obtains its 

properties as a self-consistent average of properties of different grains. 

 

The grains, hence the domains, are assumed to be uniformly distributed in space by 

three Euler angles defined for each grain. The Euler angles describe the orientation 

between the coordinate system of the grain and the laboratory coordinate system. And 

since different domains are aligned along the coordinate system of the grain, Euler 
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angles also define their direction with respect to the global axes, or the laboratory 

coordinate system.  

 

Currently the model considers a perovskite-type, tetragonal, single-phase material. 

The material has a cubic unit cell above the Curie temperature, but below that 

temperature (e.g., at room temperature) it has a tetragonal unit cell with the center of 

positive and negative ionic charges not coinciding, hence resulting in an electrical 

dipole in the unit cell. 

 

Each grain has six energetically equivalent variants (domains) in three perpendicular 

directions (I=1 to 6). Each of the six variants can transform (switch) to any other five 

variants. Consequently thirty transformation systems are present (�=1 to 30). 

 

The model also assumes that stress (�) and electric field (E) in each variant are 

constant (i.e., the same) within a given grain. Strain (�) and electric displacement (D) 

of the grain are taken to be the volume average of �L and DL over the variants, plus 

the remnant strain and polarization due to switching. 

 

Linear response (�L and DL) in each variant can be related to the action (� and E) on 

the variant (which is the same as the action on the grain) by the following equation: 
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To calculate the strain and electric displacement in the grain averaging over all the 

variants is needed: 
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Here � and D are the strain and electric displacement response of the grain, 

respectively. The terms in the matrix (SE, d, �
: compliance, piezoelectricity 

coefficient, and electric permittivity, respectively) are the grain’s electromechanical 

properties which are the volume averages of the corresponding domain properties 

(SE(I), d(I), �
(I)) as indicated by Equations (3.3–3.5). The first right-hand side term in 

Equation (3.2) is the linear response of the grain while the second right hand side 

term is the remnant part. The development of the remnant part is due to domain 

switching. cI is the volume fraction of each domain present in the grain. Since in the 

tetragonal structure there are six different domains in each grain, the initial values of 

cI are all assumed to be 1/6. 

 

Domain wall switching is a dissipative motion similar to dislocation plasticity. (Note 

that dislocation plasticity is neglected in this study.) Initially each domain in the 

crystal has an equal volume fraction (cI=1/6). This value changes as domains change 
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to one another, or switching occurs. A schematic of domain switching is illustrated in 

Figure 3-1. Here, the grain is assumed to have only two domains (variants), and the 

loading space has only one component: the shear stress. 

 

 
Figure �3-1:  The progressive nature of ferroelectric transformation within a crystal due to 

domain wall motion. This simplified example has only 2 domains, and the loading space is 

one-dimensional. (Courtesy of C. Landis) 

 

The challenge for ferroelectrics is to find the shape of the driving force function. If 

the loading were in the form of stress only, classical theories, such as von Mises 

could be used to combine different components of the stress tensor. But in 

ferroelectrics there exist not only six stress components, but also three components of 

the electric field vector. Domain walls move when the driving force on the 

corresponding transformation, G�, reaches a critical value, Gc
�. The driving force is 

defined as the work conjugate of the rate of transformation, f
α
� , which are kinematic 

variables: 
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[ ]�=
α

αα fGw D �� .                                          (3.6) 

The dissipative work rate can be calculated as follows, 
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αα µστ ijij=         (3.13) 

αα
ii sEE =         (3.14) 

Here, w
�

 is the total energy rate, and 
S

w
�

 is the elastic energy rate. �i and Ei are 

resolved shear stress and electric field on each transformation, respectively. si and ni 

are vectors specifying the orientation of different variants, and �ij is the Schmid 

vector. Ai� is a matrix defining what each transformation does, or in the course of 

transformation �, which variant transforms to which other one. 

Thus the equation defining the driving force on each transformation system would be: 

1 1
2 2ij ij i iG E P E Dα α α α α α ατ γ σ ε= + + + �� .     (3.15) 
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Defining the work hardening as, 

�=
β

βαβα fHGc
�� .        (3.16) 

The loading and unloading condition on each transformation system would be: 
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     (3.17) 

Huber et al. [8] used this model to predict the macroscopic behavior of ferroelectrics. 

The characteristic hysteresis loop and butterfly curves for ferroelectrics could be 

qualitatively predicted by the model, as can be seen in Figure 3-2. 
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Figure �3-2:  Self-consistent model estimates of the electrical displacement (top) and the 

strain (bottom) responses of a ferroelectric polycrystal to cyclic electric field loading [8] 

 

One of the goals of the present study is to validate the Huber model using diffraction 

data. This required some changes in the model so that it could be used for calculating 

lattice strain and texture evolution. A FORTRAN code provided by C. Landis and 

based on the formulation presented above was used as a starting point. The changes 

made in the present study are described in the next section while the comparison to 

experimental data is presented in Chapter 5. 
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3.2 The New Self-Consistent Model 

3.2.1 Grain Selection and Average Lattice (hkl) Strain 

The diffraction data include lattice plane spacings (d-spacings) yielding hkl-

dependent lattice strain evolution under loading. To study hkl-dependent properties of 

the material, the domains (or grains in general) which satisfy the Bragg’s law – the 

diffraction condition (i.e., those that will contribute to the diffraction pattern) should 

be selected and averaged over. This capability was incorporated into the new model. 

 

To select the domains contributing to a specific reflection, the hkl vector (i.e., the 

lattice plane normal) of the domain should lie within a certain solid angle cone of the 

scattering vector of a given detector. The reason is that a detector in a diffraction 

experiment usually collects the diffracted beam through a solid angle cone called the 

acceptance angle. The value of the acceptance angle changes from detector to 

detector. The majority of the diffraction data presented here was collected at the 

ENGIN X instrument of ISIS Neutron Scattering Facility, Rutherford-Appleton 

Laboratory, UK. Here, the acceptance angle is 5º, the value also used in the new 

model. Figure 3-3 shows the experimental setup at ENGIN X. The data presented in 

this study came from the left detector (2θ = –90°). The scattering vector, therefore, 

would be Q||. As a result, the 002 reflection, for instance, would come from domains 

with their unit cell c-axis parallel to the loading axis. 
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Figure �3-3:  Schematic of the experimental setup at ENGIN X.  The diffracted neutrons are 

collected by two 2θ = ±90º detectors with scattering vectors corresponding to the 

longitudinal and transverse directions of the specimen. 

 

Figure 3-4 shows the mechanism of selecting domains that contribute to a given 

reflection. The new model identifies domains that have their hkl plane normal within 

the acceptance angle of a detector. The number of domains identified this way is 

counted such that each unit of 1/6th of a grain volume is counted as a single domain. It 

then averages their strains to obtain the hkl strain along the sample direction given by 

that detector. It should be noted that this is different from averaging the strain in the 

domains present in a grain to obtain the average grain strain. 
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Figure �3-4:  The domain selection mechanism incorporated into the new model. The [002] 

direction in domain 1, the [200] direction in domain 2, the [103] direction in domain 5, and 

the [301] direction in domain 6 are perfectly aligned with the scattering vector. The [002] 

and [200] directions in domains 3 and 4 are not exactly aligned with the scattering vector, 

but they lie within a 5º cone of it; so they also contribute to the diffraction pattern. If these 

were the only grains in the material lattice strain [002] would be the average of the strains in 

domains 1 and 3, the strain along [200] would be the average of domains 2 and 4, the strain 

along [103] would be equal to the strain of domain number 5, and the strain along [301] 

would be equal to that of domain number 6. 

 

Calculating the above-mentioned averages is not trivial, bringing up another 

capability added to the new model. Sometimes all of the domains chosen for a 

specific hkl direction would switch out of that direction due to application of stress or 

electric field, thus calculating the average strain over those domains becomes 

impossible. To avoid this problem, a “domain-locking” mechanism was added to the 
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new model. This mechanism assures that even if the driving force on a specific 

transformation is more than the critical value resulting in all the domains to move out 

of a specific hkl direction, the transformation will not be activated. This way, there 

will always be domains that satisfy the diffraction condition and contribute to a 

reflection. While this “domain-locking” mechanism is somewhat artificial, it assures 

the presence of diffraction peaks throughout a loading experiment, a consistent fact in 

all diffraction data. The percentage of the domains which cannot be switched can be 

specified as a variable parameter in the program. The present study usually assumed 

10% of the initially present domains will be locked (unless it is stated otherwise). 

 

Another capability added to the new model is the ability to define texture. The 

original Huber model had the grains oriented along uniformly distributed directions. 

In the new model, one can define any texture at the beginning of the analysis. 

 

3.2.2 The Problem of Reverse Switching 

It was noticed that under certain conditions, i.e., low Gc
� values (Equation (3.17)), 

domains that switched earlier under mechanical loading would tend to switch back 

using the original Huber model. The following describes the origin of this problem 

and the solution offered in the new model. The applied force space has nine 

components: six stress components (
11, 
22, 
33, 
12, 
13, and 
23), and three electric 

field components (E1, E2, and E3). To find out the shape of the driving force function 

defined over these nine variables, the dissipated energy, and the work conjugate of 

the kinematic variable were calculated. Although it yields a way to combine the stress 
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with electric field, this approach causes a problem as explained below. The equation 

from which one can obtain the driving force for each transformation system is 

Equation (3.15).  

 

All the variables in Equation (3.15) are defined at the grain level (i.e., none of them 

are variables related to the HEM). Therefore, only one grain is considered here, and it 

does not matter what is happening in the rest of the material. The matrix-grain 

constraint effects should be already taken into account. For simplicity, let us assume  

0iE Eα = =  and 0ijσ =  except for i=j=1, so the grain is under mechanical loading 

parallel to axis 1. This simplifies Equation (3.15) into: 

~1
2

ijijG
α

α α ατ γ σ ε= + .       (3.18) 
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Figure �3-5:  Schematic of two domains in a grain.  Domain A is along direction 1, and 

domain B is along direction 2.  Transformation �  is defined as switching of A to B.  

Transformation ‘- � ’ would be switching of B to A. 
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Defining transformation “α ” so that it changes variant A to variant B as described in 

Figure 3-5, reduces Gα  further. Here, ijµ has the form of  

1
0 0
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1
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ijµ
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.         (3.20) 

Note that I
ijkl kl ijs σ σ  is zero except for 1111 11 11

Is σ σ .  IA α  is zero except for 

1B AA Aα α= − = . Hence one obtains: 

( )
1111 1111 2

11 112 2

A Bs s
G

α
α γ σ σ

−
= − − .      (3.21) 

For an isotropic material Gα will reduce to 11 / 2Gα αγ σ= − , which is a linear 

function of applied stress, while for an anisotropic material, Equation (3.21) is 

quadratic.  Based on the value of the critical driving force, Gc
� two different cases are 

possible, each described in Figures 3-6 and 3-7. 
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Figure �3-6:  Plot of Equation (3.21) - the driving force for transformation ‘�’ versus. applied 

stress, 
11. Whether 
11 increases in tensile or in compressive directions, the transformation 

‘�’  will not take place.  Instead the transformation ‘-�’  will occur, no matter what the sign of 


11 is. Referring to Figure 3-5, it is clear that the transformation ‘-�’  will be physically 

meaningless under this applied compressive stress. 
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Figure �3-7:  Same as in Figure 3-6, except the relative value of Gc

� is smaller. As 

compressive stress along direction 1 is increased transformation ‘�’  occurs as expected.  

Increasing compressive 
11 even further causes a transformation in the ‘-�’  direction, which 

is an unrealistic case. 

 

In the first case (Figure 3-6), regardless of the sign of the applied stress 11σ  only the 

transformation in direction “ α− ”  can occur.  In the second case (Figure 3-7), with a 

positive 11σ , transformation in the “ α− ”  direction will occur, which is intuitive. But 

when 11σ  assumes negative values, first the transformation in the “ α ”  direction 
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occurs, and later the transformation in the “ α− ”  direction is expected. The latter, of 

course, is unrealistic. Unfortunately, this latter case was observed as reverse 

switching in some of the runs of the Huber model (see Figures 3-8 and 3-9). Since the 

model employs an energy minimization method, the variants want to switch to the 

one with less energy, and since the relationship between the elastic energy and the 

stress is quadratic, positive and negative stresses have the same effect. 
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Figure �3-8:  BaTiO3 domain switching under applied uniaxial compressive stress predicted 

by the original Huber model.  The number of domains selected for each reflection (i.e., those 

that diffract into the longitudinal detector) is plotted versus applied stress.  As the load 

increases domains start to switch.  This figure shows that the first switching starts at  –30 

MPa, and domains in the [002] direction are switched to domains in [200].  Exactly the same 

number of domains which are switched out of a direction is switched into the twin direction. 

Reverse switching is observed at about –100 MPa. At this load level [200] domains start to 

switch back into [002] domains. This seems counterintuitive. 
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Figure �3-9:  Lattice (hkl dependent) and total polycrystalline (elastic and remnant) strains as 

a function of applied stress for the case explained in Figure 3-8. Nonlinear behavior is 

observed near –20 and, –100 MPa. It is more noticeable around –100 MPa where lots of 

switching occurs (both regular and reverse). 

 

One way to fix the problem would be to use the approach employed in Equation 

(3.15), but simplify it by ignoring the last two terms (i.e., considering them high-order 

terms with negligible influence). This yields the following equation for the driving 

force: 

G E Pα α α α ατ γ= +         (3.22) 

where all the terms are defined as before. This way, the driving force is a function of 

all nine components of loading, and furthermore, both terms are linear with respect to 

stress and electric field, thus making reverse switching impossible. Using Equation 

(3.22) for driving force and implementing it in the new model the results shown in 

Figure 3-10 are obtained. Here, the x-axis is the applied stress while the y-axis is the 

number of domains contributing to a specific hkl reflection. In early stages of 
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increasing the load (around –10 MPa), the switching in the (200) / (002) doublet 

starts. As load increases the number of domains in the (002) curve keeps decreasing 

and exactly the same number of domains is added to the (200) curve. This is an 

indication of (002) domains switching to (200) domains due to the applied stress. The 

(113) / (311) doublet starts switching at a higher stress, but shows the same behavior, 

i.e., the increase in (311) is exactly equal to the decrease in (113). And (202) / (220) 

doublet is the last one to start switching. This again confirms the experimental results, 

and the conclusion that the closer the axis of a doublet to the loading axis, the earlier 

the switching will start (to be explained again later). More interpretation of the results 

in this figure will be presented in Chapter 5. 
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Figure �3-10:  BaTiO3 domain switching under applied uniaxial compressive stress predicted 

by the new model.  The number of domains selected for each reflection (i.e., those that 

diffract into the longitudinal detector) is plotted versus applied stress.  As the load increases, 

domains begin to switch starting with the (002) / (200) pair.  Unlike the original model, 

however, the new model does not predict reverse switching. 
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4. Neutron Diffraction Experiments  

4.1 Introduction 

Neutron diffraction is an ideal probe of bulk crystallographic structure, but so far in 

the realm of ferroelectrics, studies have mostly concentrated on probing the 

temperature-composition-structure relationship to obtain a clear understanding of the 

nature of the various phase transitions [25].  Recently, some studies have begun to use 

neutrons for monitoring texture development in ferroelectrics using specimens 

manipulated ex situ [12-15, 26]. Rogan et al. [25] have reported on the first in-situ 

bulk crystallographic study of the ferroelastic behavior of a multiphase, 

polycrystalline PZT under compressive loading. The present thesis, however, 

investigates the behavior of single phase tetragonal BaTiO3.  This material was 

largely chosen as a model system (its single crystal stiffness tensor is known in 

contrast to that of PZT), but it also exhibits useful piezoelectric properties. 

 

In the present study, the diffraction data are analyzed using a number of techniques. 

Single-peak fitting is the most accurate method for calculating lattice strains and it 

involves a minimum number of assumptions in the analysis. Sometimes, though, the 

use of single-peak method is not possible. This happens when, e.g., one peak of a 

tetragonal doublet attains very low intensities due to extensive domain switching. In 

this case, the multi-peak Rietveld refinement is more advantageous since it combines 

the contributions of several diffraction peaks to determine various crystallographic 
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parameters such as lattice constants, etc. However, it will be shown below that the 

Rietveld method should be used with great caution when high strain anisotropy is 

involved as is the case with ferroelectrics. An improved Rietveld method is presented 

and utilized here to capture the anisotropic behavior of BaTiO3. Guidelines on how to 

implement it on materials with other crystal structures are also presented.  

 

4.2 Experimental Setup and Sample Properties 

The experiments were conducted at the ENGIN X beamline of ISIS [27, 28] Neutron 

Scattering Facility, Rutherford-Appleton laboratory, UK. This beamline is optimized 

for the measurement of strain, and thus stress, deep within a crystalline material by 

employing lattice planes as 'strain gauges'. The experimental setup was shown earlier 

in Figure 3-3. Figure 4-1 highlights the sampling volume in Figure 3-3 and the lattice 

planes interrogated by the incident neutron beam and the corresponding detectors. 
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Figure �4-1:  A closer schematic of the sampling volume in Figure 3-3.  Lattice planes and 

their d-spacings sampled by the longitudinal and transverse detectors are highlighted. 
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Cylindrical bars of polycrystalline BaTiO3 were placed under uniaxial compression 

up to –300 MPa. Samples were oriented at a Bragg angle of θ = 45º to the incident 

beam (Figure 3-3) allowing the 2θ = ±90º detectors to measure the longitudinal and 

transverse sample response. In this thesis, all results and references are related to the 

longitudinal direction unless stated otherwise. In this case the scattering vector and 

the loading axis will always be parallel, so they will sometimes be referred to 

interchangeably.   Hot-pressed BaTiO3 was obtained from Alpha Ceramics Inc., (5121 

Winnetka Avenue North, Minneapolis, MN 55428, USA). The BaTiO3 of grade EC-

31 was obtained in bulk form in the unpoled state and diced using a diamond 

wafering saw to produce specimen of 6 x 6 x 14 mm. The samples were separated 

from the loading fixture using 7 x 7 x 4 mm stainless steel spacers.  

 

Lattice (d-) spacings are related to the neutron wavelength, �, and hence the time-of–

flight (TOF), through the Bragg’ s law: 

2 sinn dλ θ=            (4.1) 

Since the spallation (or TOF) neutron diffraction employed here generates a 

polychromatic beam, this equation means that multiple d-spacings are measured 

simultaneously while the Bragg angle (θ) is kept constant. Therefore, the diffraction 

data consisted of multi-peak patterns from sample directions either parallel or 

perpendicular to the loading axis. Figure 4-2 gives an example of neutron data from 

BaTiO3 plotted as intensity vs. TOF or d-spacing. The latter was calculated using the 

GSAS analysis software [16]. Additional details on data analysis of TOF neutron 

diffraction data can be found elsewhere [29]. 
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Figure �4-2:  Diffraction spectra from a time-of-flight neutron diffraction experiment at 

ENGIN X using an unloaded BaTiO3 polycrystal. The x-axis is either in terms of time-of-flight 

(a) or d-spacing (b), while the y-axis is the intensity of the diffracted neutrons in terms of 

counts per microsecond. 
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Once the diffraction data are reduced and normalized to correct for appropriate 

instrument artifacts, the next challenge is the calculation of lattice strain. Different 

approaches can be used to achieve this goal and are presented in the next section 

together with their advantages and disadvantages. 

 

4.3 Calculating Lattice Strains: the Single-Peak Method 

In all methods of calculating lattice strains the same basic equation is used [29-31]: 

0

0

hkl

hklhkl
hkl d

dd −=ε .        (4.2) 

The difference comes in the way lattice spacings, dhkl are calculated. One approach is 

to use the single-peak fitting method. This is the most natural way of calculating the 

lattice strains since it involves minimal assumptions, but sometimes the intensity of 

certain peaks become so low that they are not distinguishable from the noise, making 

single-peak fitting difficult, erroneous, or impossible. In the single-peak method, the 

position of a specific peak is approximately decided at the beginning, and then a peak 

profile is fitted to that peak, and only that peak, to find its exact location, width, and 

other properties. This procedure is completely independent of any other peak 

observed in the spectrum. In practice when peaks appear as doublets, the two of them 

can be fitted simultaneously, but still the fitting is independent of all other peaks in 

the spectrum, and hence still considered single-peak fitting. For example, in Figure 4-

3 the (002) and (200) peaks have been fit simultaneously. There are no assumptions 

about the lattice parameters of the sample or on the behavior of other peaks. Different 
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instruments have different peak profiles to be fitted, and these profiles have different 

numbers of fitting parameters. The most common parameters are peak position, peak 

intensity, and peak width. Peak position is used in calculating lattice strains, and peak 

intensity is used in texture analysis. The peak profile function used in this thesis is 

profile type number 3 in the RAWPLOT module of GSAS, which is an exponential 

pseudovoigt convolution (Von Dreele, 1990, unpublished) [16]. The results of this 

analysis are presented and discussed in Chapter 5. 
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Figure �4-3:  Single-peak fitting to reflections (200) and (002) of BaTiO3. ( a) Raw data and 

the fitted peak with peak position and intensity refined. (b) Peak width is added to the fitted 

parameters and a better fit is achieved (Rp = 3.5% , �2 = 1.2, where Rp is the minimum 

achievable pattern residual, and �2 is the chi-square goodness-of-fit). 
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4.4 Calculating Lattice Strains: the Rietveld Method 

The Rietveld method uses a least-squares approach to refine a theoretical 

crystallographic model until it matches the measured diffraction pattern. The 

introduction of this technique was a significant step forward in the diffraction analysis 

of powder samples as, unlike other techniques at that time, it was able to deal reliably 

with strongly overlapping reflections. The method was first reported [32] for the 

diffraction of monochromatic neutrons. The technique is equally applicable to 

alternative diffraction techniques such as x-rays or spallation (TOF) neutrons. 

  

In the Rietveld method, least-squares refinements are carried out until the best fit is 

obtained between the entire observed powder diffraction pattern and the entire 

calculated pattern based on simultaneously refined models for crystal structure(s), 

instrumental factors, and other specimen characteristics such as lattice parameters. 

Some advantages of a full-pattern analysis (as compared to single-peak analysis) 

include [29]: 

1. All reflections in the pattern are included without considering overlap.  

2. The background is better defined, since a continuous function is fitted to the 

whole pattern. 

3. The effects of preferred orientation and extinction are reduced since all 

reflection types are considered. Appropriate parameters can be refined as part 

of the analysis. 

4. Crystal structure and peak-profile parameters can be refined as part of the 

same analysis, so the physical and chemical details of the phases are adjusted. 
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5. The calibration constants are computed rather than collected by laborious 

experimentation. 

6. Quantitative measures of anisotropy can be extracted from the analysis. (This 

point is very important to the present study and will be discussed in detail later 

in this chapter.) 

 

In the least-squares refinement, the residual Sy is minimized: 

� −=
i

ciiiy yywS 2)(
                 (4.3) 

where, wi = 1/yi, yi : observed intensity at the ith step, yc : calculated intensity at the ith 

step. 

 

A powder diffraction pattern of a crystalline material may be considered as a 

combination of individual reflection profiles with a peak height, a peak position, and 

an integrated area which is proportional to the Bragg intensity Ihkl, where hkl stands 

for Miller indices. Typically, several Bragg reflections may contribute to the observed 

intensity at an arbitrary point in the pattern. The calculated intensities are determined 

from the absolute value of structure factor |FK|2 which is the sum of contributions of 

neighbor Bragg reflections and the background. 

 

So the calculated intensity, yci becomes: 

� +−=
K

biKKiKKci yAPFLsy )22(|| 2 θθφ
      (4.4) 

where, s is the scale factor, 
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LK: composed of Lorentz, polarization and multiplicity factors, 

φ: the reflection profile function, 

PK: the preferred orientation function, 

A: an absorption factor, 

Ybi: the background intensity at the ith step. 

 

The effective absorption factor, A, while it depends on the instrument geometry, is 

usually considered to be constant for most x-ray diffractometers. The least-squares 

minimization procedure leads to a set of normal equations involving derivatives of all 

of the calculated intensities, yci; with respect to each adjustable parameter and the 

inversion of the normal matrix Mjk gives the solution 
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where xj, xk are the same set of adjustable parameters. The first term (yi – yci) can be 

neglected. If m is the number of refined parameters, an m × m matrix is created and 

inverted with an iterative procedure with the shifts, ∆xk since the residual function is 

nonlinear: 

� ∂
∂

=∆ −

k

y
jkk x

S
Mx 1

        (4.6) 

Then calculated shifts are applied to the initial parameters to produce an improved 

model and the whole procedure is repeated. Since the adjustable parameters and 

intensities are related to each other in a nonlinear way, the starting model must be 
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close to the correct model or the nonlinear least squares will not converge to a global 

minimum. Rather, the procedure will either diverge or lead to a false minimum.  

 

The Rietveld refinement process adjusts the refined parameters until the residual is 

minimized to obtain the best fit between the entire calculated and observed patterns. 

For this reason several “ R values”  or residuals have been developed for the Rietveld 

method. The most common of these are the minimum achievable pattern residual, Rp, 

and the weighted pattern residual, Rwp defined as: 
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where, yi(obs) and yi(calc) are the observed and calculated intensity at the ith step, 

respectively, and wi = 1/yi. 

 

In this thesis, Rietveld analysis was conducted using the GSAS software [16]. 

Rietveld refinement, as opposed to single-peak fitting, relies upon the physics of the 

problem, and a complete intensity of the diffracted neutron intensity versus time-of-

flight or d-spacing is calculated based on refining some or all of the following 

material data: convergence criteria, number of phases, lattice symmetry for each 

phase, lattice parameters for each phase, atoms in unit cells, atom positions in unit 

cells, atom occupancies, thermal motion parameters, background function type, 

background function coefficients, diffractometer constants, absorption/reflectivity 

correction, phase fractions, histogram scaling factors, peak profile type and 



 

 

60 

coefficients, relevant constraints, and preferential orientations. The parameters found 

to have the most pronounced influence in this study are: number of phases, lattice 

symmetry for each phase, lattice parameters for each phase, atoms in unit cells, atom 

positions in unit cells, atom occupancies, and preferential orientations. Table 4-1 lists 

some of the initial values used as a starting point for the refinements of BaTiO3 data 

[25].  

 

Space Group: P 4 m m 

Laue Class: 4 / mmm 

Lattice Parameters: 

 

 

 
a = b = 3.98 Å    c = 4.02 Å 

� = � = � = 90° 

Fractal (Atomic) 

Coordinates: 

 

 

 

 

Ba:     0     0     0 

 Ti:   0.5  0.5  0.5 

O1:     0.5  0.5   0 

 O2:     0.5   0   0.5 

Table �4-1: Initial values used as a starting point for Rietveld refinements in BaTiO3 

experiments. 

 
Figure 4-4 shows the same material studied in Section 4.3, but this time the data are 

fitted with Rietveld refinement. Figure 4-3b zooms in on doublets (200)/(002). The fit 
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appears as good as the single peak fit in Section 4.3, but this will cease when load 

increases and the intensity ratio starts to change dramatically (see Chapter 5). 

200
002

111

222

311

113
220

202

 

200

002

 

Figure �4-4: (a) A full-pattern Rietveld fit to the diffraction data from a BaTiO3 

polycrystalline sample.(b) The (002) / (200) doublet shows a fit as good as that of the single-

peak fitting method. This would not be the case when loading increases. 
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Preferred orientation (or texture) is one of the common problems affecting material 

properties and diffraction data analysis. It can be simply defined as greater volume 

fraction of certain crystal orientations. In this work, the March-Dollase formulation in 

GSAS was used.  For rod-shaped crystals, the total intensity diffracted by an atomic 

plane can be written as the following proportionality: 

2( )hkl hkl hklI P Fα�         (4.9) 

where Phkl(α) is proportional to the density of poles of this plane. For a cylindrically 

symmetric specimen produced by a volume-conserving compression or extension 

along the cylindrical axis, the pole figure profile is given by this equation: 

2 2 2 3/ 21
( ) [ cos sin ]hklP r

r
α α α −= +       (4.10) 

where α is the angle between hkl plane normal and the preferred orientation vector, 

and r is the refinable March coefficient. It characterizes the strength of the preferred 

orientation and is often related to the amount of sample deformation. The texture 

results and their interpretation will be presented in Chapter 5. 

 

The following section describes an alternative Rietveld analysis that properly 

considers elastic strain anisotropy. It will be shown that its results are more 

appropriate than either single-peak fitting or “ traditional”  Rietveld analysis. 
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4.5 Calculating Lattice Strains: the Improved Rietveld Method 

4.5.1 Cubic Symmetry 

Consider a polycrystal composed of grains of cubic symmetry randomly oriented in 

different directions.  Also assume that the polycrystal has isotropic stiffness.  

Stiffness of a single grain, however, is not isotropic (for most materials) and depends 

on the crystallographic direction under consideration, i.e., it is anisotropic.  The 

diffraction elastic constants (i.e., the slopes of applied stress versus lattice strain 

curves for different hkls) are, by the same reasoning, anisotropic because a diffraction 

experiment is looking at a subset of similarly oriented grains. 

For a cubic material, the lattice spacings are given by (a is the lattice constant): 

222 lkh

a
dhkl

++
= .        (4.11) 

From this, one can calculate the hkl-specific lattice strain in the cubic polycrystal (or 

for any other crystal structure, for that matter) using the following equation and a 

reference value d0
hkl: 

0

0

hkl

hklhkl
hkl d

dd −=ε .        (4.12) 

Combining Equations (4.11) and (4.12) yields: 

0

0

a

aa
hkl

−
=ε .         (4.13) 

Notice that Equation (4.13) is not a function of h, k, or l, thus the lattice strain 

calculated using the regular Rietveld method will be independent of h, k, or l,  which 
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is quite unrealistic.  Figure 4-5 is a simplistic model of this problem.  The three 

different grains depicted in the picture have different stiffness so they will undergo 

different lattice strains, hence �hkl should be a function of h, k, and l.  Equation (4.12) 

needs to be modified in a way to include this hkl-dependent anisotropy. The rest of 

this chapter introduces the improved Rietveld method to solve this problem. This 

method is already implemented in GSAS [16] for cubic structures [23, 24]. Additional 

recommendations are provided on how to expand it to other crystal structures.  

 

111
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s

111
100
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s  

Figure �4-5: Different grains have different plane-specific elastic moduli, hence will exhibit 

different lattice strains. 

 

In a cubic material, the crystallographic-direction-dependent Young modulus is given 

by: 

�11 11 12 44

1
2( / 2) hkl

hkl Isotropic Anisotropic

S S S S A
E

= − − −
�����	����


              (4.14) 

where, 
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2 2 2 2 2 2
2 2 2 2 2 2

1 2 2 3 3 1 2 2 2 2( )
( )hkl

h k h l k l
A l l l l l l

h k l
+ += + + =
+ +

�     (4.15) 

li are the direction cosines for a given hkl unit vector, and Sij are components of the 

single crystal elastic compliance tensor.  Assume that all the grains have the same 

stress state (the Reuss assumption).  In that case, from the simple Hooke’ s law, � = 


/E, one can conclude that strains should be proportional to 1/E; hence, the following 

equation can be a good replacement for Equation (4.12): 

�

0

0
hkl hkl

hkl hkl
hkl anisotropic

isotropic

d d
A

d
ε γ−= +

��	�


�              (4.16) 

The parameter 
 in Equation (4.16) would be a measure of strain anisotropy.  When 

0γ =  Equations (4.16) and (4.12) will be the same, hence lattice strains will be hkl-

independent again (the isotropic case).  The larger 
 is, the bigger the discrepancy 

between values of lattice strains for different hkl’ s.  Therefore, the refinement of γ 

together with the lattice constant allows the inclusion of elastic strain anisotropy in 

Rietveld analysis; this has already been implemented in GSAS. 

 

What if the constant stress (Reuss) assumption for different grains is not a valid 

assumption?  Notice that the linear dependence of lattice strain with respect to Ahkl in 

Equation (4.16) follows from the linear dependence of 1/E on Ahkl in Equation (4.14).  

One way to relax the constant stress assumption is to consider lattice strain as a 

function of a series of powers of Ahkl leading to Equation (4.17) below.  During 

refinement, a subset of the coefficients (γi) can be used in the fit (too many might 
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cause instability or convergence problems).  Unfortunately, while mathematically 

feasible, this approach lacks firm physical or mechanical justification and is not 

recommended. 

...)()(...)()( 2
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2
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−
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hkl AAAAA

d
dd γγγγγε

 (4.17) 

 

4.5.2 Hexagonal Symmetry 

In this case, the problem would be a bit more complicated.  The lattice spacing as a 

function of lattice constants a and c is given by: 
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d hkl

+++
= ��      (4.18) 

For this crystallographic symmetry, the lattice-plane-specific Young’ s modulus is a 

complicated function of l3 where l3 is the cosine of the angle (φ) between the unit 

lattice vector and the hexagonal c axis (see Figure 4-7): 

2 2 4 2 2
3 11 3 33 3 3 13 44

1
(1 ) (1 )(2 )

hkl

l S l S l l S S
E

= − + + − + �    (4.19) 
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Figure �4-6: Schematic definition of angles φ and ρ in hexagonal (left) and tetragonal (right) 

unit cells. 



 

 

67 

 
In Equation (4.19), Sij are again components of the single crystal elastic compliance 

tensor.  Daymond et al. [23] employed an approximation to simplify Equation (4.19), 

noting that since 1/Ehkl is a function of l3 (or cosφ), the anisotropic strain term should 

also be a function of cosφ: 

coshkl isotropicε ε γ φ= + .       (4.20) 

Here again the extra parameter refined in GSAS is the γ.  A better representation of 

elastic strain anisotropy can be achieved by using higher-order terms of cosφ which 

will lead to more parameters to fit, as shown in Equation (4.21).  Separate analyses 

(not shown) have confirmed that this approach does indeed improve the fit to the Ehkl 

versus φ  plot. 

2 3
1 2 3cos cos coshkl isotropicε ε γ φ γ φ γ φ= + + +      (4.21) 

Unfortunately, Equation (4.21) lacks physical or mechanical justification and is 

nothing but a fitting curve.  A more sensible approach might be the use of Equation 

(4.19) and rearrange it to obtain (again with the Reuss assumption):  

)1()1( 2
3

2
33

4
32

22
31 llllisotropichkl −−−−−= γγγεε .  (4.22) 

Refining the γi parameters in this equation together with the lattice constants can be 

expected to yield lattice strains that correctly approximate elastic constant anisotropy 

in hexagonal crystals.  This hypothesis was checked for several hexagonal materials 

and results for Be and Mg are shown in Figure 4-7. The results are also compared 

with those from the currently used approach designated by Equation (4.20).  It is 

interesting to note that while the current approach works well for Be, it yields a poor 
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fit for Mg.  The new approach represented by Equation (4.22), however, successfully 

estimates the elastic anisotropy of both materials. 
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Figure �4-7: Crystallographic-direction-specific Young’ s modulus (Ehkl) of beryllium (left) and 

magnesium (right) compared to approximations by Equations (4.20) and (4.22).  The γi 

parameters in these equations were refined to obtain the best fit to the Ehkl curve. 

 
 
4.5.3 Tetragonal Symmetry 

The case of tetragonal symmetry is yet the hardest of all because the elastic 

anisotropy is dependent on all direction cosines li.  Here, the lattice spacing as a 

function of lattice constants a and c is given by: 
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       (4.23) 

The hkl-dependent Young’ s modulus for the 4/mmm crystal symmetry class (e.g., 

BaTiO3) is: 

4 4 4 2 2 2 2
1 2 11 3 33 1 2 12 66 3 3 13 44

1
( ) (2 ) (1 )(2 )

hkl

l l S l S l l S S l l S S
E

= + + + + + − +
  (4.24) 

where Sij are again components of the single crystal elastic compliance tensor for 

tetragonal symmetry (4/mmm).  Therefore, the lattice strains �hkl in the tetragonal case 
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need to be a function of both φ, the angle between the unit hkl vector and the c axis, 

and �, the angle between the component of the unit vector in the base plane and the a 

axis (Figure 4-7).  Note the following relationships between the directions cosines li 

and these angles:   

1 2 3sin .sin ; sin .cos ; cosl l lφ ρ φ ρ φ= = = .    (4.25) 

Figure 4-8 illustrates the dependence of Ehkl on angles φ and � for BaTiO3.  Following 

the same approach described for the hexagonal case, one can rearrange Equation 

(4.24) to obtain a good approximation of hkl-dependent lattice strains in the 

tetragonal symmetry (specifically, for the 4mm, -42m, 422, and 4/mmm classes 

appropriate for this equation1): 

4 2 2 2 2 4 4
1 3 2 3 3 3 1 2 4 1 2(1 ) ( )hkl isotropic l l l l l l lε ε γ γ γ γ= + + − + + + .   (4.26) 

One can therefore estimate hkl-dependent lattice strains by refining the γi parameters 

in this equation.  The result for BaTiO3 is shown in Figure 4-8.  Here, refining only 

the first three parameters (γ1, γ2, and γ3) was enough to yield a good approximation of 

elastic anisotropy.  Even a two-parameter refinement (not shown) was reasonably 

close; hence, the user may have some flexibility regarding the number of parameters 

to refine. 

 

                                                 
1  The tetragonal classes 4, -4, and 4/m have 7 independent elastic constants leading to this 
version of Equation (4.24) where the S16 term is non-zero: 

4 4 4 2 2 2 2 2 2
1 2 11 3 33 1 2 12 66 3 3 13 44 1 2 1 2 16

1
( ) (2 ) (1 )(2 ) 2 ( )

hkl

l l S l S l l S S l l S S l l l l S
E

= + + + + + − + + −
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Figure �4-8: Lattice-plane-specific Young’ s modulus (Ehkl) of BaTiO3 (left) and its fit using 

Equation (4.26) with three refined γ (right) 

 
It is recommended, therefore, that Equation (4.26) be adapted in GSAS to estimate 

elastic strain anisotropy during the Rietveld refinement of some tetragonal materials.  

One should always keep in mind, however, the two main assumptions in this 

approach:  (i) it only applies to the elastic case; and (ii) it employs the constant stress 

(Reuss) approximation. 

 

In the next chapter, the experimental results using the methods described in this 

chapter will be presented. Also in Chapter 5, the results of the model described in 

Chapter 3 will be presented and compared to experimental results.   
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5. Conclusions and Future Work 

5.1 Experimental Conclusions: Texture Evolution 

The experimental setup and different methods of analysis to extract lattice strain from 

neutron diffraction experiments were described in Chapter 4. There it was also 

explained why the regular Rietveld method is insufficient for analyzing data from a 

mechanically anisotropic material. In this section, only results using the improved 

Rietveld method and the single-peak fitting are shown.  

 

Figure 5-1a exhibits the (200) / (002) diffraction peaks of BaTiO3 without the 

application of external loading. In Figure 5-1b, a uniaxial compressive stress of –100 

MPa is applied to the sample. Both figures also show the Rietveld fit. It is obvious 

from these figures that Rietveld is not the best method for texture analysis. 
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Figure �5-1:  (002)/(200) peaks of BaTiO3: (a) is the unloaded sample, and (b) is under –100 

MPa compressive stress. The dots are raw data while the green lines are the Rietveld fits. The 

Rietveld method fails to capture the texture evolution as loading has increased. 
 

However, this does not mean that a Rietveld analysis can not provide any information 

on the texture evolution of the sample. The March-Dollase (M-D) coefficient 

(Chapter 4) still yields a measure of texture evolution; it just is not as informative and 

as precise as peak intensity calculations accompanying single-peak fits. Some 
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examples of the M-D coefficient calculated from experimental results are presented in 

Figure 5-2. Several properties for BaTiO3 can be inferred from this figure. First, it is 

evident that switching starts at coercive stresses even below –5 MPa. Secondly, the 

switching process is slow and gradual and lasts up to the fracture stress of the 

ceramic. 
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Figure �5-2:  At zero loading the March-Dollase (M-D) coefficient value is 1.0, which 

indicates a random grain distribution. As loading increases, the M-D value increases, 

indicating domain switching. The change starts at very small loads. 
 

The same two conclusions can be derived from studying the texture with single-peak 

fitting analysis (which is a better means of texture quantification). Figure 5-3a shows 

the (200)/(002) doublet from BaTiO3 under no load. Using the single-peak fitting 

method, two type 3 peak profiles (in GSAS) were fitted to the data. In Figure 5-3b the 

sample is under –100 MPa compressive stress. The fit is still very good. This should 

be compared to Figure 5-1, showing the superiority of the single-peak method to 

Rietveld in texture analysis.  
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Figure �5-3:  (002)/(200) doublet and single-peak fits to the data using two type 3 peak 

profiles in GSAS. Both samples are BaTiO3:  (a) is a stress- free sample, and (b) is under a 

compressive stress of –100 MPa. Comparison to Figure 5-1 shows the superiority of the 

single-peak method in texture analysis. 

 

Another informative way to demonstrate texture data is using the Peak Intensity Ratio 

diagrams. Peak doublets such as (200) / (002), (311) / (113), or (220) / (202) can be 
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chosen for this purpose. In these diagrams, the y-axis is applied stress (which is the 

independent variable), while the x-axis is the ratio of the areas of the integrated peak 

intensities in the doublet. Let us consider the (200) / (002) peak doublet, for example. 

The (002) peak corresponds to domains which have their c-axis, the long axis in the 

tetragonal unit cell, aligned with (or within the acceptance angle of) the scattering 

vector, where the scattering vector and the loading direction are parallel in the 

experimental setup. As the loading increases these (002) domains tend to switch to 

the perpendicular (200) domains, so the intensity of the (002) peaks will decrease and 

the intensity of the (200) peaks will increase. As a result, the (002)�(200) Peak 

Intensity Ratio (PIR) will be an increasing function of applied compressive stress, 

whereas the reverse (200)�(002) PIR will be a decreasing function of applied stress.  

 

A similar explanation applies to other doublets, too. The only difference is that 

domains having a c-axis closer to the loading direction will switch to the 

perpendicular domains with their c-axis farther away from the loading axis. Figure 5-

4 displays the PIR diagrams with respects to some chosen reflections. The parameter 

� in each figure is the angle between the loading axis and the c-axis of the doublet 

(see Figure 5.5). 

 

Notice that the same two conclusions obtained using the March-Dollase coefficient in 

Rietveld can also be reached here: Domain switching starts at stresses below –5 MPa, 

and it continues as long as the sample is being loaded. But here a third conclusion can 

be made which was impossible in the Rietveld method.  The amount of switching 
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decreases as � increases, i.e., there is more switching in the doublets having their c-

axis more closely aligned with the loading axis. This has to do with the fact that the 

smaller is �, the larger the resolved stress on the transformation. 
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Figure �5-4:  Peak Intensity Ratio diagrams for peak doublets (left to right) (200) / (002), 

(311) / (113), and (220) / (202). The independent axis is the y-axis which is the applied 

compressive stress in MPa. 
 

To quantify the effect of α on the extent of domain switching, consider the following. 

For uniaxial compression along axis 1, σ11 = σ and all other stress components are 

zero. Employing Equation (3.13), the resolved shear stress can be calculated as: 

11 11 1 1

1
, , ( )

2ij i j j iwhere n s n s and n sατ µ σ µ µ= = + =   (5.1) 

Using the geometry depicted in Figure xxx, the unit vectors n and s are obtained as: 

( ) ( )

11

( 45), ( 45),0 ( 45), ( 45),0

1 1
(2 90); (2 )

2 2

n Cos Sin and s Sin Cos

Sin thus Cosα

α α α α

µ α τ α σ

= + + = − + +
− −= + =

� �

 (5.2) 
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This means the maximum value of the resolved shear stress will be at α = 0 and will 

decrease as α increases, matching the observations exactly. 

Figure �5-5: Definition of angle α between the loading axis (no. 1) and the c-axis of the red 

domain as it transforms into the blue domain. The unit vectors n and s are defined as the 

inside and outside bisectors, respectively, between the domains’  c-axes. 

 

It is appropriate here to compare the observations presented so far to relevant 

previous work in literature. Rogan et al. [25] and Li et al. [33] did not observe 

significant domain switching in single-phase tetragonal PZT. They attributed this in 

the latter study to lack of sufficient degrees of freedom in tetragonal polycrystals 

(analogous to the need for five independent slip systems in crystal plasticity to satisfy 

the compatibility condition). It is therefore somewhat surprising that the tetragonal 

BaTiO3 studied here could undergo significant domain switching. One possible 

explanation can be found in a recent quantum mechanics model of BaTiO3 by Zhang 

et al. [34] In their study of the various phases of BaTiO3, Zhang et al. developed a 

new model of the polarization in this material where they suggest the displacement of 
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the Ti ion is actually along the <111> directions. They combine this with a 

ferroelectric (FE)-antiferroelectric (AFE) coupling along different crystal directions, 

e.g., the tetragonal phase is obtained by combining an FE-AFE coupling along [100] 

and [010] to yield a net polarization along [001] as is traditionally known. The 

implication of this model is that it may be possible to induce significant domain 

switching in tetragonal BaTiO3 by forcing polarization changes (or domain switching) 

along different combinations of the FE-AFE structure. This model needs to be 

confirmed experimentally. However, if it were correct, the diffraction data would be 

expected to show these structural changes. So far, the neutron diffraction data did not 

yield any evidence to support the Zhang et al. model. It is possible that the expected 

changes in the diffraction peak profiles are too subtle to be captured by neutrons. 

Therefore, one of the future studies will attempt to collect high resolution synchrotron 

x-ray data to observe structural evolution in BaTiO3 under loading. 

 

One relevant issue that was investigated with neutrons concerns the proposed 

transformation of tetragonal BaTiO3 into orthorhombic under applied stress. Burscu 

[35] suggested the existence this transformation in single crystal BaTiO3, but did not 

provide direct proof. In the present study, the orthorhombic phase was attempted in 

the Rietveld analyses of polycrystalline samples. Figure 5.6 illustrates the results of 

these analyses. It is clear that the addition of the orthorhombic phase significantly 

worsened the Rietveld fits by increasing the residuals even at high stress, where the 

likelihood of the orthorhombic phase is supposed to be higher. It can be concluded, 

therefore, that within the resolution of neutron diffraction (~3 vol.%), there is no 
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evidence of a stress-induced tetragonal-to-orthorhombic phase transformation in the 

BaTiO3 samples investigated in the present study. 

(a) Tetragonal only 
Stress = −5 MPa; 

χ2 = 1.60; Rwp = 13%; Rp = 8.4% 

 

(b) Tetragonal (90%), orthorhombic (10%)  
Stress = −5 MPa; 

χ2 = 2.43; Rwp = 16%; Rp = 13% 
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(c) Tetragonal only 
Stress = −220 MPa; 

χ2 = 3.95; Rwp = 20%; Rp = 16% 

 

 

(d) Tetragonal (90%), orthorhombic (10%) 
Stress = −220 MPa; 

χ2 = 11.8; Rwp = 34%; Rp = 28% 

 
Figure �5-6:  Rietveld analyses of polycrystalline a BaTiO3 sample with different crystal 

structures. (a) Tetragonal under -5 MPa stress, (b) tetragonal and orthorhombic under -5 

MPa stress, (c) tetragonal under -220 MPa stress, and (d) tetragonal and orthorhombic 

under -220 MPa stress. 
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5.2 Experimental Conclusions: Lattice Strains 

Chapter 4 presented the pros and cons of three different methods of calculating lattice 

strains from neutron diffraction data. These were single-peak fitting, regular Rietveld 

method, and improved Rietveld method. Some results from these methods are 

compared in Figure 5-7. It is clear that the prediction of the regular Rietveld method 

appears quite unrealistic since it follows the elastic curve closely. Based on evidence 

presented earlier, domain switching starts at low stresses in this material; hence the 

elastic portion should be very short. The single peak data is reasonable until a stress 

value of about – 100 MPa. Afterwards, it starts exhibiting large scatter. The reason is 

explained in Figure 5-8. 
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Figure �5-7:  (002) Lattice strain using different diffraction data analysis methods (see text for 

details). The ‘elastic’  curve is the prediction of the self-consistent model assuming elastic 

deformation only. 
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Figure 5-8 shows that the (002) peaks becomes smaller as the value of the applied 

stress increases. The reason is that the domains having their c-axis aligned with the 

loading axis are the ones contributing to the (002) peak, and these domains switch to 

the perpendicular (200) domains as the loading increases. Figure 5-8-c clearly shows 

that the (002) is almost indistinguishable from the background, so any attempt to fit a 

peak to it would result in large fitting errors. 

 

The improved Rietveld method, on the other hand, offers a compromise between the 

two other fitting techniques. It does include some strain anisotropy to solve that 

problem in regular Rietveld and deals with drastic peak intensity changes by taking 

contributions from all reflections to avoid that problem in single-peak fitting. 

 

The improved Rietveld method also provides a more quantitative measure of strain 

anisotropy, whereas the single-peak method does not, at least directly. How the 

parameter 
 in the improved Rietveld method is a measure of strain anisotropy was 

discussed in detail in Chapter 4. Figure 5-9 displays the evolution of 
 during loading. 

The anisotropy in the material increases as loading increases. This is due to the 

effects of domain switching and is analogous to crystal plasticity where lattice strain 

anisotropy increases as the material starts to yield. 
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Figure �5-8:  The evolution of (002) / (200) peak doublets under loading analyzed with the 

single-peak fitting method. As loading increases (0 MPa, 50 MPa, and 150 MPa), the (002) 

peak vanishes, making a single peak fit impossible or extremely erroneous. 
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Figure �5-9:  Rietveld anisotropy parameter (γ  in Equation (4.16)), a measure of the degree 

of anisotropy. Anisotropy increases as the sample is loaded. 
 

Leaving aside the possibility of scatter at high stresses, a comparison of various 

lattice strains obtained from single-peak analysis is appropriate (Figure 5-10).  
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Figure �5-10:  Longitudinal lattice strains from neutron diffraction versus applied uniaxial 

compression of BaTiO3. The strain data were obtained from single-peak fitting. Linear 

trendlines were fitted to each data set to guide the eye. Note the extreme scatter in the (002) 

data due to diminished peak intensity at high applied stresses. 
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Figure 5-11 is the macroscopic strain of the same sample obtained from an 

extensometer. A comparison of the macroscopic strain values to the lattice strains 

shows that the effect of strain due to switching (permanent strain) is at least an order 

of magnitude larger than the lattice strains (elastic strain). For instance, the 

macroscopic strain at –150 MPa is about –0.012 whereas the largest lattice strain 

(along <111>) under the same applied stress is around –0.001. As confirmed by 

results from the texture development section, it can again be seen here that 

nonlinearity (a direct result of domain switching) starts at very small stresses. 
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Figure �5-11:  Sample BaTiO3 macrostrain (elastic plus permanent) along the loading 

direction measured by an extensometer versus applied compressive stress 

 

The results of Figure 5-10 are appreciated best when compared to those of Figure 5-

12 which shows the lattice strains of domains with different hkl reflections if no 

domain switching would have occurred, and the system would have behaved 

elastically in the whole course of loading up to – 400 MPa. Consider, for instance, the 

lattice strains at the final loading (–400 MPa) for different hkl reflections in both the 

experimental results (Figure 5-10) and the imaginary elastic material (Figure 5-12). 
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Figure �5-12:  Longitudinal lattice strains predicted by an elastic calculation of the SCM 

versus applied uniaxial compression of BaTiO3. The calculations employed the elastic 

constants listed in Table 5-1 and considered no domain switching. Note the relative slopes of 

the hkl-dependent lattice strains in comparison to the data on Figure 5-10. 

. 

For the (111) reflection the strain values are the same in both figures, almost equal to 

–0.0025. All other reflections exhibit smaller strain in Figure 5-10 compared to those 

in Figure 5-12. Among all these reflections, the domains contributing to reflection 

(111) are the only domains that do not undergo domain switching. This suggests that 

all doublets which undergo domain switching exhibit ‘apparent hardening.’  It should 

be noted that apparent hardening has nothing to do with material hardening. This 

naming convention was chosen simply because the slope of the strain-stress curve has 

increased. The stress, however, is the total applied stress, which is not necessarily 

equal to the stress present in specific domains. Actually, the stress in each domain is 

linearly related to the lattice strain of those domains, so in some sense these figures 
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show the evolution of domain stress as a function of applied stress. In other words, 

because of the linear relationship between the grain stress (domain stress) and lattice 

strain (elastic domain strain), when the lattice strain in a specific hkl increases, one 

can conclude that the stress in the grains containing those domains has also increased. 

The apparent hardening of all reflections which experience domain switching is 

interesting and may not seem intuitive at first. For that reason, a better interpretation 

can be reached using the self-consistent model. 

 

5.3 Modeling Conclusions 

The model details were explained in Chapter 3. The material data employed in 

calculations is listed in Table 5-1 [35]. The other parameters which need to be input 

in the model include the critical driving force for each transformation system � (Gc
�, 

Equation (3.17)), change in strain due to switching, or spontaneous strain (
�, 

Equation (3.22)), change in polarization due to switching, or spontaneous polarization 

(P�, Equation (3.22)), and the degree of hardening for each transformation system 

after switching starts (H��, Equation (3.16)). The critical driving force was used in the 

model as a fitting parameter trying to match the starting point of transformations in 

comparison to the experimental data. The rest of the above-mentioned variables were 

used to match the lattice strains with those of the experimental results. 

 

One kind of information the model yields is the number of grains (domains) 

contributing to each reflection. This helps in locating the starting point of switching in 

each set of twin domains. The results are illustrated in Figure 5-13.  The x-axis is the  
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 BaTiO3 Units 

SE
1111 

SE
3333 

SE
1122 

SE
1133 

SE
1212 

SE
1313 

d311 

d333 

d131 

�
�

11 

�
�

33 

7.4 

13.1 

-1.4 

-4.4 

1.9 

4.1 

-33.4 

90 

282 

4400 

129 

10-12 m2N-1 

10-12 m2N-1 

10-12 m2N-1 

10-12 m2N-1 

10-12 m2N-1 

10-12 m2N-1 

10-12 CN-1 

10-12 CN-1 

10-12 CN-1 

�o 

�o 

Table �5-1:  Input data for the self-consistent program to model the BaTiO3 experiment. SE are 

the components of the elastic compliance tensor, d is the piezoelectric tensor, and �� is the 

permittivity of the material. 
 

applied stress while the y-axis is the number of domains contributing to a specific hkl 

reflection. At an early stage (around –10 MPa), the switching in the (200) / (002) 

doublet starts. As load increases, the number of domains in the (002) curve keeps 

decreasing and exactly the same number of domains is added to the (200) curve. This 

is an indication of (002) domains switching to (200) domains due to the applied 

stress. The (113) / (311) doublet starts switching at a higher stress, but shows the 

same behavior, i.e., the increase in (311) is exactly equal to the decrease in (113). 

And the (202) / (220) doublet is the last one to start switching. This again confirms 
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the experimental results, and the conclusion that the closer the c-axis of a doublet to 

the loading axis, the earlier the switching will start. 
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Figure �5-13: BaTiO3 domain switching under applied uniaxial compressive stress predicted 

by the model.  The number of domains selected for each reflection (i.e., those that diffract 

into the longitudinal detector) is plotted versus applied stress.  As the load increases domains 

start to switch beginning with the (002) / (200) pair.  It can be seen that the closer the doublet 

axes are to the loading direction, the earlier the transformation starts. Unlike the original 

model, however, the new model does not predict reverse switching. 

 

As far as lattice strains predicted by the model are concerned, Figure 5-14 illustrates 

strain evolution for reflections (200), (002), (311), and (113).  Notice that the material 

behaves elastically at first. When the transformation in (200)/(002) starts lattice 

strains in both (200) and (002) show apparent hardening. The case in (311) / (113) is 

exactly the same. This phenomenon is worth looking at from two angles. First, this 
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prediction of the model is in agreement with the experimental results (Chapter 4), in 

the sense that they both show apparent hardening. The experimental showed that only 

the (111) reflection stays elastic, which is again in agreement with modeling results, 

while all the rest of the reflections demonstrate apparent hardening (Figure 5-15). 

 

A possible explanation for the apparent hardening phenomenon can be offered as 

follows. Considering, for instance, the (200) and (002) domains, one should realize 

that they both reside in the same grain. When domain switching starts those grains 

can not take additional stress because stress was assumed to be constant throughout 

the grain. Thus the stress will increase neither in (002) domains nor in (200) domains. 

Consequently, the elastic strain (lattice strain) will not increase in these domains, 

because lattice strain is linearly related to stress in the grain. But it should be noted 

that what is plotted is actually the lattice strain versus the applied stress, not stress in 

the grain. Since applied stress is the independent variable here it will increase no 

matter what is happening in the material/model leading to apparent hardening. 
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Figure �5-14: Lattice strain evolution under applied stress predicted by the SCM for (a) the 

(200) / (002) doublet, and (b) the (311) / (113) doublet 
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Figure 5-15 reveals that the model is reasonable in capturing the nonlinearity arising 

from domain switching. (200) and (002) both show apparent hardening, i.e., their 

apparent stiffness (slope of applied stress versus lattice strain) increases. While this is 

a result of assuming uniform stress within the grain (as explained above), other 

assumptions could be used to get the same effect. Therefore, the apparent hardening 

does not necessarily prove that constant stress within a grain is a good assumption. In 

reality, the stress field inside a grain is nothing similar to uniform. It can also be 

observed that (111) maintains its linearity since no switching is involved in that 

direction. Furthermore, it can be seen again that switching, hence nonlinearity, starts 

at very low applied stress of approximately –5 MPa. 

 

Additional work is needed to improve the match between the model and experimental 

data. However, one should be aware of an important issue regarding the use of self-

consistent models in tetragonal ferroelectrics. There is an ongoing controversy in the 

field [ref. K. Bhattacharya, personal communication, 2007] on this topic which 

essentially comes down to the lack of sufficient degrees of freedom in tetragonal 

crystals to accommodate deformation (as was pointed by Li et al. [33]). Since the 

SCM does not include direct grain-to-grain interactions (but only via with the 

equivalent medium), this effect may be lost in the current model. For this reason, 

modifications in the current SCM will be needed to resolve this issue. Another 

important question to answer is, since significant domain switching was indeed 

observed in tetragonal BaTiO3, how is deformation accommodated and whether any 

internal damage is generated in the process: good problems for future work.  
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Figure �5-15: (111), (200), and (002) lattice strains obtained from the new model are 

compared with diffraction data. (111) does not demonstrate nonlinearity, the other two 

crystal directions exhibit apparent hardening during switching in both experimental and 

modeling results. 
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5.4 Summary and Conclusions 

The most important contribution of this thesis is the adaptation, further development 

and validation of a self-consistent model for polycrystalline ferroelectrics against 

neutron diffraction data. Along the way, it was also discovered that the analysis of 

diffraction data from highly anisotropic materials such as ferroelectrics demands 

utmost care; thus various analysis methods were investigated to reveal their 

advantages and disadvantages. The details can be summarized as follows: 

 

• While the single-peak fitting method is the most natural analytical scheme, 

sometimes it is not a practical choice because the reduction in intensity of some 

reflections due to domain switching makes it difficult to find the peak position. 

Likewise, the regular Rietveld method cannot be considered useful because it 

does not allow for strain anisotropy. The improved Rietveld method proposed 

here confers two distinct advantages: it can still be applied even when the 

intensity of one peak becomes too low, and the anisotropy parameter(s) offers a 

measure of the degree of anisotropy. Hence, this method unquestionably emerges 

as the preferred system of analysis in cases where single-peak fitting yields scatter 

in data due to intensity fluctuations. 

 

• Some suggestions for the further refinement of the improved Rietveld method 

were offered that would allow for its application to a wider assortment of crystal 

lattice structures, thereby greatly enhancing its strength and applicability. 

Specifically, a scheme was outlined to improve the accuracy of the hexagonal 
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formulation, and a strategy was developed for its application to tetragonal 

systems. Future work should expand upon these schemes, seeking simultaneously 

to broaden the horizon of materials that can be explored within the model and to 

further improve the level of accuracy achieved, especially by extending it into the 

inelastic deformation regime. 

 

• Within the self-consistent model for ferroelectrics developed earlier by Huber et 

al. [8] a number of advances were made including an innovation that corrects for 

the reverse switching problem, a method that calculates lattice strain by selecting 

appropriate grains and averaging their contributions to specific reflections, a 

capacity to track the number of domains contributing to a selected reflection, an 

ability to input texture (initial grain orientation distribution), and a mechanism 

that enables the locking of domain switching. 

 

• The comparison of model predictions and diffraction data from BaTiO3 yielded 

the following observations: (i) domain switching starts at very low stresses (< 10 

MPa) and proceeds gradually; (ii) domains with c-axes closer to the loading axis 

start switching earlier and experience more switching; (iii) lattice-plane-specific 

(hkl) strains, with the exception of (111), exhibit apparent hardening after 

switching starts. The level of agreement between the model and the experimental 

data was satisfactory, particularly considering the relative simplicity of the model. 
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In conclusion, this body of work yielded a useful set of tools to predict the 

constitutive behavior of polycrystalline ferroelectrics by integrating, for the first time, 

a self-consistent model to neutron diffraction stress/strain analysis. While these tools 

involve crucial assumptions, and should be employed only when appropriate, they 

can be nevertheless useful in the future studies of ferroelectrics as they opened a new 

venue of research in this field. 

 

5.5 Future Work 

The present study naturally led to many interesting future work which can be briefly 

outlined as follows: 

 

o Further development of the self-consistent model for other crystal structures such 

as rhombohedral, orthorhombic and even monoclinic. This can also help answer 

the question about the degree of freedom in domain switching to satisfy the 

compatibility condition since these structures offer a higher number of domain 

variants compared to the tetragonal structure. 

 

o Adaptation of other load sharing schemes (e.g., the recent model by J. Roedel 

based on laminate composite theory of domain variants: “ Effective intrinsic linear 

properties of laminar piezoelectric composites and simple ferroelectric domain 

structures”  Mech. Mater. 39 (2007) 302-325) to introduce a more robust 

mechanism for inter-domain and inter-grain interactions. 
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o Extension of the improved Rietveld method into the inelastic regime. This can 

only be accomplished by a combination of mechanics modeling (e.g., SCM) and 

appropriate modifications of the profile functions in Rietveld. If successful, this 

effort will have a major impact in the field of diffraction stress/strain analysis. 

 

o Collection of high resolution applied stress data. Since it was difficult to apply 

small incremental steps in uniaxial compression, and since BaTiO3 started 

switching at very low stresses, an alternative loading geometry is necessary. Four-

point bending was suggested by the author as a good alternative since it creates 

small stress/strain gradients across sample height, offers both tension and 

compression on the same sample and is stable. Preliminary experiments were 

already conducted and the results are quite promising. This geometry is also very 

suitable for coupled electromechanical loading. Note also that an increased data 

density in the elastic regime will allow the calculation of single crystal elastic 

constants (using the SCM for instance) for ferroelectrics: potentially a major 

impact in the PZT field where these constants are still unknown. 

 

o Collection of high resolution synchrotron x-ray data. This is especially crucial for 

studying structural evolution in BaTiO3 under loading and validating the model 

by Zhang et al. [34].
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