Topics in Numerical Relativity: the periodic standing-wave
approximation, the stability of constraints in free evolution, and
the spin of dynamical black holes

Thesis by

Robert Owen

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007
(Defended May 17, 2007)



ii

© 2007
Robert Owen
All Rights Reserved



iii

Abstract

This thesis concerns numerical relativity, the attempt to study Einstein’s theory of gravitation using
numerical discretization. The goal of the field, the study of gravitational dynamics in cases where
symmetry reduction or perturbation theory are not possible, finally seems to be coming to fruition,
at least for the archetypal problem of the inspiral and coalescence of binary black hole systems.
This thesis presents three episodes that each bear some relationship to this story.

Chapters 2 and 3 present previously published work in collaboration with Richard Price and
others on the so-called periodic standing-wave (PSW) approximation for binary inspiral. The approx-
imation is to balance outgoing radiation with incoming radiation, stabilizing the orbit and making
the problem stationary in a rotating frame. Chapters 2 and 3 apply the method to the problem of
co-orbiting charges coupled to a nonlinear scalar field in three dimensions.

Chapters 4, 5, and 6 concern the stability of constraint fields in conventional numerical relativity
simulations. Chapter 4 (also previously published work, in collaboration with the Caltech numeri-
cal relativity group, along with Michael Holst and Lawrence Kidder) presents a method for imme-
diately correcting violations of constraints after they have arisen. Chapters 5 and 6 present methods
to “damp” away constraint violations dynamically in two specific contexts. Chapter 5 (previously
published work in collaboration with the Caltech numerical relativity group and Lawrence Kidder)
presents a first-order linearly degenerate symmetric hyperbolic representation of Einstein’s equa-
tions in generalized harmonic gauge. A representation is presented that stabilizes all constraints,
including those that appear when the system is written in first-order form. Chapter 6 presents
a generalization of the Kidder-Scheel-Teukolsky evolution systems that provides much-improved
stability. This is investigated with numerical simulations of a single black hole spacetime.

Finally, chapter 7 presents work in progress to implement code to calculate the spin of black
holes in numerical simulations. This requires a well-defined generalization of the concept of “rota-
tion generators” on topological two-spheres that may not have any true Killing vectors. I present a

new method for defining these fields, and results of a numerical code that computes them.
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Chapter 1

Introduction

It’s an exciting time to be a relativist. Once-esoteric concepts such as black holes and gravitational
lenses are now fully understood to exist in the “real” world. Theoretical and experimental cosmol-
ogy have entered the mainstream. Gravitational-wave astronomy is about to follow. And most
important for this thesis, the general solution of Einstein’s field equations finally seems to be ap-
proaching our grasp.

For many years, exact solutions of Einstein’s equations were only available in cases of extreme
symmetry or algebraic speciality [39]. Various perturbative approaches were developed, providing
an enormous amount of insight into the nature of gravitational dynamics, but the truly strong-
field dynamics have remained far from reach until very recently. The stunning complexity and
nonlinearity of the field equations puts the dynamics of strong gravitational fields on a pedestal
that can only be reached today with the help of careful computer simulations. This is the regime of
numerical relativity.

The field of numerical relativity has progressed in small steps—sometimes forward, sometimes
backward—over a very long period of time. It has come to require a simultaneous command of
state-of-the-art computational, numerical, and analytical methods, sometimes to the unfortunate
exclusion of physical insight. This gargantuan effort, however, is finally beginning to pay off,
with multiple methods now available for handling the archetypal problem of numerical relativity:
binary black holes [36, 13, 14, 15, 6, 7, 38, 12].

This thesis is evidence of this revolution of the field, in that the philosophy driving the work
can be divided somewhat cleanly into three phases: before (chapters 2 and 3), during (chapters 4, 5,

and 6), and after (chapter 7).
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1.1 The periodic standing-wave approximation for nonlinear scalar

fields

Chapters 2 and 3 relate to to a program spearheaded in recent years by Richard Price [37], called
the periodic standing-wave (PSW) approximation. The most ambitious of this project’s original goals
stemmed from what in retrospect looks like an extreme pessimism regarding the near-term prospects
for the conventional approach to numerical relativity: integrating evolution equations in time. One
major difficulty with that approach has to do with competing timescales. At the short end, there is
the ringing timescale of the individual holes, of order GM /c?. Atthe long end, there is the timescale
of the essential dynamics: the inspiral. This is several times greater than even the orbital period
\/r3/GM, for a binary separation of radius r. If an evolution code is to become numerically unsta-
ble, it will do so on the ringing timescale, for which the numerical time step is adapted, rendering
the much longer-term physical dynamics out of reach. Even if the code remains stable (and nowa-
days, most of them do), the mismatch of the evolution time step from the more interesting inspiral
timescale presents an ineffiency of the standard approach of integrating the evolution equations in
time.

The periodic standing-wave approximation ignores the shorter timescale. In fact it ignores all
timescales. The orbit is approximated as being exactly periodic, or in fact, exactly stationary in a co-
rotating frame of coordinates. Once this ansatz is imposed, the four-dimensional evolution problem
simplifies to a boundary-value problem on the three-dimensional manifold of Killing orbits!. Once
such a stationary solution is found, the slow, secular inspiral can be inferred adiabatically?. This
adiabatic assumption breaks down, of course, when the holes finally plunge toward one another,
but there is a significant period of time (multiple orbits [33, 22]) in which the inspiral remains slow
but the evolution is too nonlinear for a post-Newtonian expansion.

It now appears that this late inspiral stage can be handled very well by modern evolution codes,
so the PSW approximation is no longer necessary as a go-between from early post-Newtonian
calculations to late numerical plunge simulations. However, it could conceivably still be useful.
The basic inefficiency posed by the mismatch of timescales remains even in modern numerical
codes. Removing it will require the implementation of stable implicit time-stepping algorithms,

a substantial effort for such complicated codes. It is possible that once the machinery is finally

ITechnically, it is not expected that the full general relativity problem would be solved by the standard method for
stationary spacetimes: projection onto the manifold of Killing orbits [39]. That method is severely complicated in this case
by the existence of a light cylinder in the helical Killing congruence. An alternative method, involving the use of harmonic
gauge and the imposition of symmetry at each stage of an iterative algorithm, is being implemented [8]. This technical issue
will not arise in this thesis, which goes no further than the much simpler case of a nonlinear scalar field toy theory.

2Being slightly more precise for a moment: the inspiral can be inferred in a sequence of timeslices of “outgoing-wave” so-
lutions. A basic ingredient of the periodic standing-wave approximation is the method by which one transforms a standing-
wave solution to one with outgoing waves at infinity. Once this is done, one can calculate the gravitational-wave flux at
infinity to infer the rate of change of binding energy. From this, one can hope to infer the rate of change of the orbital
separation.
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in place to handle the late inspiral with PSW methods, their efficiency may be competitive with
implicit evolution.

Another possible payoff for PSW calculations is that they could provide ideal initial data for
conventional evolutions. Einstein’s theory defines not only the evolution of geometry, but also con-
straint equations that must be satisfied throughout each spatial slice. The initial data, from which an
evolution begins, must satisfy the constraint equations for the simulation to be physically mean-
ingful. York and collaborators (see, e.g., [35]) have set these constraint equations as an elliptic
system, amenable to standard numerical techniques; however, there are subtleties related to how
they should be solved for particular spatial configurations of physical interest. The equations in-
volve freely specifiable data, relating to a background conformal geometry on the initial spatial
slice. These free data can be chosen at will, and the elliptic equations will provide a solution for
any (reasonable) data. Choosing the correct free data for a given physical situation is not easy. In
particular, the naive (and standard) choice, a flat conformal geometry, has been shown to be in-
compatible with rotational [23] or rectilinear [41] motion of even single black holes. Spinning or
boosted configurations that come from flat conformal geometry are necessarily accompanied by
a substantial amount of “junk radiation,” unphysical gravitational waves present only to allow
the spacetime to be initially conformally flat. This junk radiation quickly radiates in the evolution
and contaminates the simulation that was intended. Correcting this problem of junk radiation will
require new choices of conformal data, better representing the tidal structure of the binary black
holes. Lovelace [31, 20] has begun a systematic study of modified initial conformal geometry, and
has found promising signs. Letting the conformal geometry simply be a superposition of two in-
dividual boosted black hole geometries, he has substantially reduced the junk radiation in binary
evolutions, particularly its high-frequency components. Results from PSW calculations, which al-
ready represent the exact spacetime geometry apart from the slow secular inspiral, could reduce
this junk radiation much further, if needed.

Chapters 2 and 3 present the results of most of my work with the periodic standing-wave col-
laboration. Both relate to a toy model used to lay down ideas and machinery before attacking the
full equations of general relativity. This toy model is of binary point charges coupled to a nonlinear

scalar field on Minkowski spacetime:

Oy + AF(y) = Source, (1.1)

where F' is some nonlinear function of the scalar field, \ is a freely specifiable constant, and the
source is two co-orbiting point charges, represented by delta functions with angular velocity (2

relative to the inertial coordinate system. This equation is then reduced by imposing the symmetry
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condition that the field should rotate rigidly with the source:

Op = —Q40. (1.2)

Using this equation, the time derivatives appearing in (1.1) are replaced with angular derivatives.
This leaves a purely spatial differential equation, but one of a curious sort: it is not purely elliptic
or hyperbolic. In an interior region, where the vector that generates the symmetry, 9; 4+ Q0y, is
timelike, the reduced equation is elliptic. Outside of this region the symmetry vector is spacelike
and the reduced equation is hyperbolic. This mixed character represents the first major compli-
cation of the method, since all well-known numerical methods for efficiently solving differential
equations assume global hyperbolicity or ellipticity. For this reason, we approached this helically-
reduced wave equation very cautiously, by direct finite-difference discretization. I wrote most of
this numerical code.

Iused standard second-order finite-difference stencils to reduce the partial differential equation
to a system of coupled nonlinear algebraic equations. The field was defined on a mesh of grid
points, and the differential equation was approximated at each grid point using differences of the
field values at the given grid point and its neighbors. If there are n grid points, this results in a
system of n coupled algebraic equations for the n unknown values of the field. These coupled
equations were then solved by a Newton-Raphson scheme, in which the equations are iteratively
linearized and solved, resulting in successively better approximations to the true solution. These
linearized systems were handled at each step using standard LAPACK [19] libraries for the direct
numerical solution of linear systems. Ben Bromley assisted greatly in the interfacing of my code
with the LAPACK routines.

As well as writing the code defining the discretized equations and the Newton-Raphson itera-
tion, I also wrote code to calculate the “exact” solution of the linear (A = 0) problem from a series
expansion involving spherical harmonics and Bessel functions. Later elements of the chapter, in-
volving the procedure for extracting an “outgoing” solution from a “standing-wave” solution, are
mostly due to the efforts of my co-authors. The text of chapter 2 was written by Richard Price for
publication as [2], of which I was listed as a co-author, and is reprinted verbatim.

Chapter 3 refines the methods of chapter 2 to provide significantly improved numerical results.
Rather than solving our equations in spherical coordinates, we worked in an adapted coordinate
system that is much better suited to the structure of a binary charge configuration. This adapted co-
ordinate system provided automatic refinement of the numerical grid near the two source charges,
while reducing to standard spherical coordinates far away. Unfortunately, we faced subtle com-
plications with the application of my finite-difference code in this adapted coordinate system, and

quickly moved on to a new numerical approach that was more robust and made better use of the
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adapted coordinates. We called this new approach, the “eigenspectral method.” It is a kind of
compromise between a spectral expansion (in our specially-adapted angular coordinates), and a
finite-difference method. The spectral decomposition was made not into conventional spherical
harmonics, but rather onto the eigenbasis of the discretization of the angular laplacian on our co-
ordinate grid. This spectral representation was then truncated to filter out physically irrelevant
short-distance features. Loosely speaking, this means the eigenspectral code is a finite-difference
code with automatic multipole filtering. This automatic filtering cured the numerical instabilities
present in my more conventional finite-difference code.

The implementation and use of the eigenspectral code was almost entirely carried out by Ben-
jamin Bromley and Richard Price. The most important elements of chapter 3 for this thesis are
therefore those that relate to comparison with my finite-difference code, particularly the confirma-
tion of certain results from chapter 2 in Table 3.49. I also carried out some analytical work relevant
for chapter 3, such as (in parallel with others, for cross-checking) calculating the coefficients nec-
essary to express the helically-reduced wave equation in our adapted coordinates. The text of
chapter 3 was written by Richard Price, and published as [10], of which I was a co-author. It is
reprinted verbatim as chapter 3.

Since the publication of the work presented in chapters 2 and 3, the helically-reduced scalar
wave problem has been investigated further by others. Yoshida et al. [42] compared our finite-
difference and eigenspectral codes with others recently developed at Milwaukee, systematically
investigating an expanded class of nonlinearities, better representing the nonlinear terms to be
expected in general relativity. Lau and Price [27] developed a multidomain pseudospectral code
for this problem, similar in many ways to the code used by the Caltech and Cornell numerical
relativity groups. Beetle, Bromley, and Price [9] investigated the helical symmetry reduction of
linearized gravity, and simple nonlinear generalizations, using the eigenspectral code. They have
also begun calculations in full general relativity, and hope to have results relevant to the wider

numerical relativity community very soon.

1.2 The stability of constraint fields in free evolution

As we noted in the previous section, Einstein gave us two types of equations: evolution equations,
that prescribe the change of the geometry from one time slice to the next, and constraint equations,
purely spatial differential equations that must be satisfied throughout each time slice. The standard

analogy is with Maxwell theory, for which the evolution equations are (in vacuum):

—

OE = —curlB, (1.3)

B = culE, (1.4)



and the constraint equations are:

divE = 0, (1.5)

divB = 0. (1.6)

If a constrained evolution system is to be sensible, the evolution must be compatible with the
constraints. That is to say, if a constraint-satisfying field configuration is integrated forward using
the evolution equations, the result must be constraint satisfying as well. It is trivial to show that

the Maxwell evolution equations are compatible with the constraints:

O (divE) = div(8,E) (1.7)
= —div(curlB) (1.8)
= 0, (1.9)

by the standard vector calculus identity. The same result obviously holds for the divergence of B.
This compatibility has led the numerical relativity community to the widespread adoption of
a technique called free evolution, in which the constraint equations are solved only to obtain initial
data, and then these data are integrated forward in time using only the evolution equations. In
principle this is a sensible strategy. After all, the evolution preserves the constraints in general
relativity as well. However, this compatibility is not quite as strong as in Maxwell theory.
Consider a theory with some number of constraints, c* = 0, for certain quantities indexed by
uppercase Latin letters. In the case of Maxwell theory, ¢! = divE, and ¢* = divB. The above
calculation demonstrated that in this case the evolution equations imply that the constraint fields
evolve as 0;c? = 0. That is, the constraints of Maxwell theory are preserved exactly. Notice,

however, that it would be just as sensible for a constrained evolution system to imply
et = MAgcB, (1.10)

for some matrix M on the vector space of constraints. In fact, the evolution of the constraints could
be something even more complicated, involving spatial derivatives of the c. The only thing that
matters for compatibility is that when the constraints are satisfied, c* = 0, the right side of this
constraint evolution system vanishes so that the constraints will continue to be satisfied.

When constraints evolve according to (1.10), the eigenvectors of the matrix M will grow (or
decay) exponentially, at a rate equal to their corresponding eigenvalue. When one of these eigen-
values is positive, the corresponding eigenvector is said to define a constraint-violating instability

of the evolution system. As long as this constraint is precisely satisfied in the initial data, it will
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continue to be satisfied upon (ideal) evolution, but if it is even slightly violated, or if the evolution
algorithm is not exactly precise, then the instability will be triggered. In the numerical context,
nothing is exact, so if constraint-violating instabilities are present in the evolution equations, they
will always be triggered. Constraint-violating instabilities arise in practice from this nasty collusion
between analytical and numerical issues. They are instabilities of the continuum evolution equa-
tions, but they are triggered by the presence of numerical approximations. Chapters 4, 5, and 6
present three different strategies for dealing with these instabilities. The first strategy is to “cor-
rect” constraint violations after they have arisen, the second and third employ carefully designed
evolution equations meant to remove constraint-violating instabilities before they even reach the

numerical code.

1.2.1 Optimal constraint projection for hyperbolic evolution systems

Chapter 4 is a paper originally published by members of the Caltech numerical relativity group,
including myself, along with Michael Holst (of U.C. San Diego) and Lawrence Kidder (of Cornell).
The subject of this paper is called optimal constraint projection. This technique can be thought of
as gently beating constraint violations into submission, ensuring that the hammer does no more
damage than it absolutely needs to do.

Consider the problem of a rigid pendulum swinging in a plane, under the influence of gravity.
Any freshman physics student could apply Newton’s laws to derive the pendulum’s equation of
motion, an ordinary differential equation for the unknown function 6(¢).

What if, instead, the student decided to work not in polar coordinates, but in cartesian coordi-
nates? The result would be a system of coupled ordinary differential equations for the coordinates
x(t) and y(t). These two functions cannot present more information than the single function 6(t),
so they must satisfy a constraint. Indeed, if the pendulum is rigid and has length R, they must
satisfy®

e(t) = [e()” + [y(O)* — B* = 0. (1.11)

The requirement that this constraint be satisfied at all times implies another constraint on phase
space:

¢(t) :=xd +yy = 0. (1.12)

If the student were to integrate the equations for z(¢) and y(t) numerically, then he or she might
eventually find that the constraints c(¢) and ¢(t) become nonzero. Assuming the student has had
a proper education up to that point, he or she would know that the Pythagorean theorem must

take priority over the numerical integrator, and would suspend the integration, fiddle with = and

3In this example, I am ignoring the effects of tidal gravity, and assuming the Pythagorean theorem holds in its classic
form.
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y until finding values that again lie on a circle of radius R, and a velocity tangent to this circle, and
then let the integration resume. In the language of chapter 4, the student would have carried out a
constraint projection.

If the student is particularly sensible, she will not just choose any point on the circle for the new
values of z and y. She will retain some level of faith in her evolution equations, and choose the
point on the circle that is closest to what her evolution equations have given her. She will project
normal to the circle. In the language of chapter 4, she will have carried out an optimal constraint
projection.

This cartoon description of constraint projection can be generalized considerably. Imagine an
evolution system for some number of fields u* on spacetime. Greek letters, here, index the various
fields being evolved, not spacetime coordinates. Just as the phase space coordinates z, y, &, and
7 of the previous example coordinatize the manifold R?, the fields u® live in a manifold as well:
the dynamical field bundle. This is the vector bundle whose base is the spatial domain, and whose
fibers are given by the vector space of evolved fields u® at the associated point.

Now imagine that this evolution system has some number of constraints ¢ that can be written
in terms of the u® and their derivatives. When the ¢ are written in this manner, the conditions
¢4 = 0 define a submanifold of the field bundle. This submanifold, called the constraint manifold, is
analogous to the submanifold of phase space where ¢(t) and ¢(t) vanish in the pendulum problem.
The analogue of finding the nearest point on the circle, the geometric concept of “projecting the u“
normal to the constraint manifold,” implies differential equations for the projected values of the
u®. Hopefully, these equations will be elliptic, and can be solved numerically.

In chapter 4, this abstract formalism is developed and applied to a specific model problem. This
requires a constrained evolution system that is both simple, and unstable. Simplicity is necessary
both to make the abstract concept as clear as possible for this “proof of concept” paper, and also
to ensure that the actual differential equations can be written as an elliptic system without too
formidable an effort of analytical massaging. Instability, of course, is necessary to demonstrate
that the projection method can stand up to a nontrivial test. Instability is necessary to simulate the
situation that arises in numerical relativity.

This combination of simplicity and instability is surprisingly rare. For example, the Maxwell
equations are quite simple, and their optimal constraint projection turns out to involve nothing
more complicated than Poisson equations. Unfortunately, as we’ve seen above, the constraint fields
are exactly conserved in the evolution, even when they are nonzero.

Another simple system that has a simple constraint projection procedure is derived from the

scalar wave equation, (¢ = 0. This equation has no constraints, but one appears if we write the



equation as a first-order system:

oy = m, (1.13)
or = 090:¢;, (1.14)
O = O, (1.15)
Ci = Oih—¢i=0. (1.16)

The quantities = and ¢; have been introduced to stand in for the temporal and spatial derivatives
of 1. The constraint C; is nonzero if ¢; is not properly representing the gradient of 1.

Unfortunately, the constraint evolution equation is again too stable:

8,501- = 8t811/) — atgf)l = 81&1/) - 8t¢1 = 81'7'( — aiﬂ' =0. (117)

My main contribution to the constraint projection project, an idea that will be relevant to chap-
ters 5 and 6 as well, was to note that we can add a term proportional to the constraint to the right

side of one of the evolution equations, equation (1.15), making it 9;¢; = 0;m + 7C;, i.e.,

O = O;m + yOh — vy, (1.18)

where 7 is a freely-specifiable parameter. This modification does not alter the physical, constraint-
satisfying solution space for which C; = 0, but it strongly affects the behavior of constraint-violating

modes. For the evolution of the constraint, one immediately finds,

8,561' = —’}/CZ‘. (119)

Thus, for negative values of -, the constraint will grow exponentially on a timescale —1/7.

This all seems a little too easy. Might there be some sort of technicality that makes the terms
proportional to v illegal? The only such technicality that could apply is the condition that the
system must remain hyperbolic. For the time being, I will postpone the formal definitions of the
various types of hyperbolicity that are relevant to this problem. These definitions will be given,
when necessary, in the later chapters. Suffice it to say, the hyperbolicity of a system of equations
is determined by the nature of certain linear operators (called “characteristic matrices”) that can be
read off from the principal part of the evolution system. The principal part of an evolution system
is obtained by ignoring all terms in the system except the highest-order derivatives. The principal

part of the scalar wave system is therefore given by:

oy =~ 0, (1.20)
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o 590,64, 1.21
J

Oy =~ Oym 4+ 0. (122)

The ~ parameter changes the principal part of the evolution system, so it could indeed ruin hyper-
bolicity. However, it appears in a very special way, such that the modification to the system turns

out not to be relevant. If we define the new field
T =T+ Y, (1.23)

then the principal part of the evolution system becomes:

oYy =~ 0, (1.24)
0T =~ §90;¢;, (1.25)

This is the same as the principal part of the unmodified evolution system, so the effect that the v
term has had on the principal part of the evolution system can be removed by a linear change of
variables. This linear change of variables has the geometric meaning of a change of basis on the
bundle of dynamical fields, but the abstract structure of the characteristic matrices that determines
hyperbolicity is basis-independent. My modification of the evolution equations, therefore, has no
effect on the hyperbolicity of the system.

After convincing myself that this system is both hyperbolic and unstable, I quickly wrote a
simple finite-difference evolution code to investigate the numerical situation. The result is shown
in Fig. 1.1, the first ever demonstration of optimal constraint projection for the unstable scalar wave
system. This simple finite-difference simulation was only meant to demonstrate the instability of
the system, and the effectiveness of the projections. Far more detailed numerical investigations of
constraint projection for this unstable scalar wave system are presented in chapter 4, but they are
almost entirely attributable to my co-authors. The text of chapter 4 was written by Lee Lindblom,

and published as [25] with myself as a co-author. It is reprinted verbatim as chapter 4.

1.2.2 A new generalized harmonic evolution system

While working as a postdoc with the Caltech numerical relativity group, Frans Pretorius developed
a very unconventional code for numerical relativity. Perhaps the most surprising of his design
choices was the way that he fixed the spacetime coordinate freedom of general relativity—a way
called the generalized harmonic method.

The most common approach to numerical relativity begins with some variant of what are now
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Figure 1.1: Constraint norm |c|| := ([ §7C;C;d3x) ’? for the unstable scalar wave system with
+ = —1 and projections at every 20 time units. The vertical scaling is linear, to emphasize the rapid

constraint growth. These results came from a simple finite-difference numerical code, so they are
second-order convergent in the grid spacing. Chapter 4 presents detailed numerical tests carried
out by my co-authors, using a far more accurate pseudospectral code.
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referred to as the ADM equations, originally due to Arnowitt, Deser, and Misner [3, 40]. I will leave
the detailed discussion of the ADM formalism for the next section and chapter 6, and merely say
that the essential difference between the ADM formalism and the generalized harmonic formalism
amounts to how one chooses to fix coordinates. In the ADM formalism, one fixes a function N,
called the “lapse,” which relates coordinate time to proper time for observers travelling normal to
the spatial slice, and a vector N, called the “shift,” which fixes the velocity of the spatial coordi-
nates, relative to the hypersurface-normal observers. In the generalized harmonic formalism, this
geometrically-inspired gauge fixing is abandoned. Instead, one specifies what the d’Alembertians
of the spacetime coordinates should be, in the evolved spacetime. In symbols, the generalized

harmonic gauge condition (coordinate fixing condition) is:
Ozt = H*, (1.27)

where the z# are the spacetime coordinates, treated as four scalar fields when acted upon by the
curved-space d’Alembertian operator [J, and the H/ are predetermined functions on spacetime. In
truly harmonic gauge, H* = 0. The generalization allows the H* to be nonzero, so that arbitrary
coordinates can be specified.

This may seem like a bizarre way to fix a coordinate system. Its motivation lies in the remarkable
way that it simplifies the principal part of Einstein’s equations. In generalized harmonic gauge, the
principal part is simply:

Y7 0p05 Yy = 0, (1.28)

where ¢, is the spacetime metric and ¢*" its inverse*. The Einstein equations therefore reduce (at
principal order) to independent wave equations for each component of the spacetime metric. As
long as the metric remains Lorentzian, this is a manifestly hyperbolic system! In chapter 6 we will
encounter some of the complexity of ensuring hyperbolicity in the ADM formalism, and will come
to appreciate just how special equation (1.28) truly is.

With his specially designed code, using these generalized-harmonic evolution equations (along
with a very important modification suggested by Carsten Gundlach, described in chapter 5), Pre-
torius was able to carry out the first ever simulation of multiple orbits, coalescence, and ringdown
of a binary black hole system [36]. There is no absolute dividing line, at which one might say that
the “modern age” of numerical relativity began, but Pretorius’s first presentation of these results is
as good a choice as any®.

The portion of the Caltech/Cornell numerical relativity group working with our backbone spec-

4In numerical relativity, it is common to reserve the letter g for the metric on three-dimensional spatial slices.

S5Later papers [13, 6], introducing the formalism of “moving punctures,” have been more influential, if only because the
moving puncture formalism provides similar stability, and is easier to implement in most of the existing numerical relativity
codes.
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tral code has long insisted on using hyperbolic evolution equations [26], so upon seeing Pretorius’s
results, we quickly began to investigate whether we could use a generalized harmonic formalism
ourselves. For an evolution system to be compatible with our numerical code, it must (for techni-
cal reasons) be put in a form that involves derivatives only up to first order with respect to space
and time. In the previous section we saw how the second-order wave equation can be written as a
first-order system, by promoting all first derivatives to independent fields. The same applies here;

introducing fields II,,, and ®;,,,, equation (1.28) becomes

Oty — N¥ORtpp =~ 0, (1.29)

010, — N*O 11, + Ng" 0 ®;,, =~ 0, (1.30)
0Py — N*0,®;,, + NOTL,, =~ 0, (1.31)
Cipw = 0y — @iy = 0, (1.32)

where II,,, is defined essentially as the time derivative of ¢,,; ®;,. is defined by the new con-
straint (1.32);and N, N?, and g,; are shorthand for particular components of ¢,,,,, defined compactly

in the expression:
ds® = Yudrtds” = —N?dt* + g;;(da’ + N'dt)(dx? + N7dt). (1.33)

This first-order representation of the generalized-harmonic Einstein system was presented by
Alviin [1]. In chapter 5 we generalize this system to cure two serious ills.

First, equation (5.22) implies a frightening evolution equation for N, whose principal part is®:
N — Nk, N? ~ 0. (1.34)

Equations of this form cause shocks to develop in hydrodynamical simulations. To cure this ill, we
substitute the constraint Cy,,,, to transform the 0yv,,, appearing in equation (5.22) into ®,,,. This
substitution, due to my collaborators, may appear very minor and unconvincing, but it turns out
to make the system linearly degenerate, a quality implying that shocks should not be expected to
develop from smooth initial data [30].

The second flaw in Alvi’s evolution system, (5.22) — (1.32), is that the newly introduced con-
straints, C;,,,, may become unstable in nontrivial simulations. We have already seen a cure for this
disease. My modification of the scalar wave equation presented in the previous section, that makes
that system unstable, can be applied with a coefficient of the opposite sign in order to stabilize the

system. In the same way, a term proportional to C;,, can be added to equation (5.24) to stabilize

6Although in the ADM formalism, the shift vector N7 is nondynamical and specified a prioti, in the generalized harmonic
formalism it is merely a component of the spacetime metric, evolved like any other.
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this constraint.

A complication arises, however, on the subject of hyperbolicity. The argument given in the
previous section, that hyperbolicity is preserved because the modifications to the principal part can
be removed by a linear change of variables, is spoiled in this case by the substitution made to ensure
linear degeneracy. For some time, we labored under the sad impression that linear degeneracy
would be incompatible with constraint stability, that we would have to choose one or the other.

I discovered a resolution for this conflict. In retrospect it should have been obvious. In this busi-
ness, the answer is always: substitute the constraint. The constraint has already been substituted
into Egs. (5.22) and (5.24). In chapter 5, we will see that a careful substitution of C;,, into (5.23)
allows us to recover hyperbolicity, while preserving linear degeneracy and constraint stability.

These issues, involving the stabilization of C;,,,, represent my main contribution to the work
presented in chapter 5. Lee Lindblom and Mark Scheel are most responsible for the herculean
calculation verifying the hyperbolicity of the resulting constraint evolution system, presented in
section 5.4.1. They used a computer algebra system to verify this hyperbolicity in general, and I
then repeated their calculation by hand, restricted to the special case of linearized perturbations of
flat spacetime. In this process I uncovered a few errors, not in the computer algebra results, but in
their transcription into the manuscript. The numerical results presented in chapter 5 are entirely
due to my co-authors. Lee Lindblom wrote the text of chapter 5, which was published as [29], and

is reprinted verbatim.

1.2.3 Constraint damping in the KST evolution systems

The first-order generalized harmonic evolution system presented in chapter 5 is a powerful tool for
numerical relativity, and indeed the Caltech and Cornell groups are using it for essentially all of our
binary black hole simulations. But it still has a few drawbacks, strong enough that it is reasonable
for us to keep an eye on what might be possible in the ADM formalism.

For example, there is the difficulty of fixing coordinate gauge in the generalized harmonic for-
malism. While in principle any coordinate system can be determined by fixing the functions H*,
in practice choosing coordinates that avoid such difficulties as physical and coordinate singulari-
ties is a difficult problem. Decades of research have been applied to the study of gauge conditions
(coordinate conditions) in the ADM formalism, but it is a difficult problem to translate any of this
knowledge over to the generalized harmonic context.

Second, there is the sheer size of the space of fields. In the first-order generalized harmonic
system, we evolve all components of ¥, I1,,,,, and ®;,,,,, a total of fifty fields! This large number of
fields implies significant memory and storage requirements, and more importantly, a considerable
number of processor cycles per time step.

The spectral code used by the Caltech and Cornell numerical relativity groups requires that
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the evolution equations be first-order in all derivatives, and symmetric hyperbolic’. The conven-
tional ADM evolution equations satisfy neither of these conditions, but in 2001, Kidder, Scheel, and
Teukolsky [26] generalized them to present a twelve-parameter family of first-order symmetric hy-
perbolic evolution systems, referred to as the “KST” systems. These involve only thirty dynamical
fields, just over half as many as are present in the generalized harmonic formalism. These are
the components of the metric g;; on the spatial slices, the extrinsic curvature K;; of these slices in
spacetime, and a three-index field Dy;; introduced to take the place of the spatial derivatives of
gij- Coordinates are fixed in the KST systems in (essentially) the familiar ADM language, in terms
of the lapse and shift. Lindblom and Scheel [28] have shown how to implement certain popular
gauge conditions in the KST formalism, and more recently, Paschalidis [34] has demonstrated that
the “1 + log” slicing condition, currently used by most other numerical relativity groups, can be
implemented in the KST system in a remarkably simple way. Mathews et al. [21] are currently in-
vestigating the implementation of 1 + log slicing in the generalized harmonic formalism, and have
found it to be quite a tricky endeavor.

In chapter 6, I sketch the structure of the KST evolution systems, and generalize them by in-
troducing a new modification intended to stabilize their constraints. This modification is directly
analogous to the modifications described above for the scalar wave and generalized harmonic sys-
tems, but its implementation is considerably more complicated. I demonstrate that these modifica-
tions do not alter the hyperbolicity of these evolution systems, nor the evolution systems implied
for their constraints. I also demonstrate that in a certain region of the space of freely-specifiable
parameters, these modifications are able to stabilize all constraint violating modes, even some that
we might not expect. I then demonstrate, with numerical simulations, that this “constraint damp-
ing” modification is quite effective for stabilizing simulations of single-black-hole spacetimes. The
research presented in chapter 6 is entirely my own, as is the text, which has been submitted for

publication in Physical Review D, and is available as an online preprint [32].

1.3 The spin of dynamical black holes

Now that numerical relativists are able to simulate interesting, dynamical spacetimes, including
what was once referred to as the holy grail of the field, binary black holes, it is time for us to
start extracting some physics. The first obvious target is spin: the spin angular momentum of the
individual black holes in a binary configuration, and the nonlinear coupling of these spins to one
another and to the orbital angular momentum of the binary system.

The problem that one immediately encounters in this situation is that to talk about the spin of

the individual black holes in a binary configuration, the spin must be mathematically defined in a

”The precise definition of symmetric hyperbolicity will be given in chapters 4 and 5.
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quasilocal manner. That is, there must be some prescription for computing the angular momentum
within a closed 2-surface, ignoring everything outside.

In 1993, Brown and York [11] presented such a quasilocal prescription for various “charges”
including angular momentum. A few years later, the same prescription appeared in the work of
Ashtekar and collaborators [4, 5] in their theory of “isolated and dynamical horizons.” This defi-
nition of quasilocal spin angular momentum has now become standard in the numerical relativity
community [15, 16, 17, 24, 18].

The quasilocal spin is defined as the integral over a two-surface (normally an apparent hori-
zon) of the azimuthal component of a certain vector field. The azimuthal vector field defining this
component is well-defined in the presence of rotation symmetry: it is merely taken to be one of
the rotation generators. In a binary black hole system, where the spacetime has no rotation sym-
metries, one must generalize the concept of rotation symmetry in order to keep the quasilocal spin
well defined. The question of how this should be done is still somewhat open.

In chapter 7, I discuss existing proposals for defining generalized rotation generators. Then I
present a new proposal that, while computationally somewhat demanding, provides what I argue
is an ideal solution to the problem. This involves the eigenvalue problem for a certain fourth-
order differential operator that is defined by the intrinsic geometry of the surface. The results of
this eigenvalue problem provide three independent vector fields of zero expansion and minimum
shear. I also present results from a code that carries out this eigenvalue problem numerically. The

research presented in chapter 7 is entirely my own, as is the text.
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Chapter 2

The periodic standing-wave
approximation: overview and
three-dimensional scalar models

Originally published as Phys.Rev. D70 (2004) 064001.

The periodic standing-wave method for binary inspiral computes the exact numeri-
cal solution for periodic binary motion with standing gravitational waves, and uses it
as an approximation to slow binary inspiral with outgoing waves. Important features
of this method presented here are: (i) the mathematical nature of the “mixed” partial
differential equations to be solved, (ii) the meaning of standing waves in the method,
(iii) computational difficulties, and (iv) the “effective linearity” that ultimately justifies
the approximation. The method is applied to three-dimensional nonlinear scalar model
problems, and the numerical results are used to demonstrate extraction of the outgoing

solution from the standing-wave solution, and the role of effective linearity.

2.1 Introduction

Background

The inspiral and merger of a binary pair of compact objects (holes or neutron stars) is one of the
most promising sources of signals detectable by gravitational wave observatories. For the ground-
based detectors LIGO [1], VIRGO [2], GEO600 [3], and TAMA [4], binary merger, especially of
intermediate-mass black holes [5] is an exciting possibility; for the space-based LISA detector [6, 7],
the detection of inspiral /merger of supermassive holes is highly probable, and is one of the primary
scientific targets.

The need for theoretical waveforms for the inspiral/merger has driven the effort to find a com-

putational solution for the details of the process, but the difficulty of the task has made this problem



22

also a measure of the usefulness of numerical computation in general relativity. The hope has been
that numerical codes evolving initial data can compute the orbital motion using Einstein’s equa-
tions and, in the case of neutron stars, using hydrodynamical equations. These evolution codes
would have, as an intrinsic feature, the loss of energy by the binary due to outgoing wave energy,
and the gradual inspiral due to this loss.

An important reason for the limited progress on this problem is the matter of timescales. Near
a black hole, the timescale on which the gravitational field can change is GM/c?, where M is the
mass of the hole; for a neutron star the timescale is several times longer. The time step in evolution
codes is governed by this short timescale. (More precisely, the spatial grid near the compact objects
must be smaller than GM /c?, and to satisfy the Courant condition, the time step must be no larger
than 1/c times this grid size.) By contrast, the timescale /r3/GM , for orbital motion at radius r, is
much larger than this, and the timescale for the interesting dynamics, the radiation-reaction driven
inspiral, is much greater yet. The consequence of this incompatibility of timescales is that a very
large number of time steps is needed in order to see the physics of interest. And computing a large
number of time steps is not yet possible. Instabilities [8, 9] operating at the short timescale prevent
the code from giving useful answers about the long timescale.

The origin of the difficulty suggests its cure: an approximation method that avoids the short
timescales. Here we describe such a method: a solution for periodic sources and fields. We assume
that the compact objects, and their fields, rotate with a constant angular velocity (to be denoted 2
below). This approximation will fail of course, in the very latest stages of inspiral merger, when the
orbit decays rapidly due to a secular instability or the dynamics of the final merger. But that last
stage is, by its very nature, rapid; its timescale is only several times that of the shortest timescale of
the problem. This last stage, then, can plausibly be handled by numerical evolution codes. Indeed,
evolution codes, especially with perturbation theory handling the final ringdown [10], are already
near to doing this. Our goal, then, is a method that can approximate the solution up to the time
that numerical evolution codes can take over the task that only they can handle. Our approach is
not entirely new; it is similar in underlying motivation to a method introduced by Detweiler and
collaborators [11, 12], but our approach is very different in its details and its implementation. It is
also very closely related to the approach being used by Friedman and his collaborators [13].

Periodic motion and outgoing waves are, of course, impossible in Einstein’s theory, both intu-
itively and mathematically'. For this reason, we will solve for standing waves (to be defined and
discussed below) in the gravitational field. Our periodic standing-wave (PSW) approach, then, will
be to find exact (numerical) periodic standing-wave solutions of the Einstein field equations and to

use these exact solutions as approximations to the physical problem of slow inspiral with outgoing

1 A periodic binary would have no secular change in its energy, but gravitational waves intuitively remove energy. This
argument can be made mathematically complete using the conservation law for H*?#¥, as defined in Misner et al. [14].
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waves.

The most basic ideas behind this periodic standing-wave solution have already been introduced
in a previous paper [15], but the implementation there was applied only to two-dimensional models
and was limited in other ways; in particular, that paper did not discuss the general meaning of
standing waves. An general overview of the PSW project has also been given [16]. Here we present
a more specific discussion, along with numerical results for three-dimensional models. This paper
is meant to serve as the introduction to the PSW, with subsequent papers presenting more detailed

information on particular methods, and progress on solving the physical problem.

Effective linearity and uses of the method

A key idea in our approach is the relationship of standing waves to outgoing waves. In a linear
field theory, a definition of standing waves is that they are half the sum of an outgoing solution
and ingoing solution. Here, as in [15], we shall call this sum LSIO for linear superposition of (half)
ingoing and (half) outgoing solutions. In a linear theory, such a superposition is itself a solution.
In our nonlinear field model theories, it will turn out that—despite strong nonlinearities—this con-
tinues to be very nearly true. This effective linearity, the approximate equality of the LSIO and a
true standing-wave solution, has already been demonstrated for simple two-dimensional models,
and results for three dimensional nonlinear models will be presented below. More importantly, the
basis for effective linearity appears to be robust. This basis lies in the fact that the strong nonlin-
earities in our model theories (and in the physical problem) are confined to the near-field regions
around the sources. In these nonlinear near-field regions the solution is insensitive to the distant
boundary conditions; it is substantially the same for ingoing boundary conditions as for outgoing.
In this near-field region then, the LSIO will be very nearly a solution despite strong nonlinearities,
since we are superposing nearly identical solutions. Outside this strong-field near zone the model
theories, and the physical theory, are nearly linear, so that again the LSIO is a solution. The LSIO
will therefore be a good approximation to a solution everywhere.

Below, we shall choose our definitions of standing-wave solution to be close to that of a LSIO,
and our approximation to a large extent is based on interpreting a standing-wave solution to be
approximately a LSIO. In the weak-field region this LSIO can be deconstructed into outgoing and
ingoing pieces and this deconstruction can be continued to the strong-field source region. (In the
source region, the outgoing piece is simply half the solution.) By doubling the outgoing piece thus
extracted from the standing-wave solution, we thereby arrive at an approximation to the outgoing
solution for a nonlinear problem. It is in this manner that we will extract an approximation of an
outgoing solution from a computed standing-wave solution.

This is an appropriate place to point out, though not for the last time, the importance of model

problems. In Einstein’s theory there is no obvious meaning to the periodic outgoing solution, so
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one cannot make statements about it, let alone carry out numerical studies. Statements and com-
putations are possible for nonlinear model problems, so that tests of effective linearity with such
models are crucial.

The outgoing solutions extracted from our exact periodic solutions can serve two purposes.
First, we can use a quasi-stationary sequence of outgoing approximations as a model for the slow
physical inspiral. In this approach the mass of the system, measured in a weak wave zone far from
the orbiting sources, decreases due to the loss of energy in outgoing radiation. When we find the
system energy as a function of orbit radius, and we compute the outgoing radiation, we can infer
the rate at which the orbital radius decreases. The difficulty, as with any such quasi-stationary
sequence, is how to know that we are comparing the “same” system at different radii. In the case
of neutron stars the answer is clear; baryon number is an unchanging tag that identifies neutron
stars to be the same. For black holes, the equivalent tag would be some local mass. The concept of
an isolated horizon [17] might give us that local mass.

The second use for our extracted outgoing solutions is to provide initial data for evolution
codes. A spacelike slice of our extracted outgoing field will be an excellent approximation to the
physical initial data, and should be very nearly a solution to the initial value equations. With little
change our extracted outgoing initial data, can be made into exact (numerical) initial data through
the use of York’s decomposition [18, 19].

These two purposes of our solution are not distinct. The natural end point for a quasi-stationary
sequence of PSW solutions is the “last orbit,” the final stage of motion at almost constant radius.
This stage may end due to a secular instability, like that of a particle in a black hole spacetime,
or due to the imminence of the merger, the formation of the final black hole. In either case, this
end point must be handled by a numerical evolution code, and in either case, the quasi-stationary

sequence will provide ideal initial data for the continuation of the problem by numerical evolution.

The nature of the mathematical problem

In the standard approach to computing binary inspiral, initial data are evolved forward in time.
In our approach, with periodic symmetry imposed, there is no evolution in the usual sense, and
there is not the usual concept of initial data. Rather we must satisfy boundary conditions at large
radius: outgoing, ingoing, or standing-wave boundary conditions in model problems, and only
standing-wave conditions in general relativity. The boundary value problems that we must solve
differ in two important ways from common boundary value problems. First, our partial differential
equations (PDEs) are of mixed type. They are of elliptical character in some regions and hyperbolic
character in others; this will be particularly clear in the model problem to be presented below. We
will argue that the mixed character causes no fundamental difficulty, and will demonstrate this

with the model problems. The mixed character, however, does complicate the use of some of the
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most efficient numerical means of solving boundary value problems. Second, we must define what
we mean by “standing-wave boundary conditions.” Unlike outgoing and ingoing conditions, there
is no simple local condition corresponding to what we will mean by standing waves in a nonlinear
problem. We will present two fundamentally different candidates for the standing-wave condition,
and here will present results of computations with one those of those two choices. (The alternative
choice of standing-wave condition is best implemented with a special numerical method, and will
be presented elsewhere [20].)

Stepping back from such details, one may be led to ask more fundamental questions about
the whole approach. Such questions arise especially because the PSW spacetime we compute has
some awkward features. Since the exact PSW solution contains an infinite amount of gravitational
wave radiation, it cannot be expected to be meet the asymptotic flatness conditions of the theorems
about the fall-off of fields. But the spacetime is asymptotically flat in that the spacetime curvature
decreases with increasing distance from the binary source. Another sign that the PSW spacetime
has rough edges is that it must not have regular null infinities; Gibbons and Stewart [21] have
shown that spacetimes with well-behaved Scri+ and Scri— cannot be periodic.

It is useful, before diving into details, to clarify what the relationship is between the slightly
singular spacetime we will be computing, and the physical problem that really interests us. To
make this connection we can think of the binary system going through several orbits at almost
constant radius. A weak wave zone exists at some distance from the orbit during this epoch of
the motion. The stippled region in Fig. 2.1 shows the relevant region as part of the larger physical
spacetime. In this limited region the source motion and the fields are almost periodic, and it is in
this region only that we hope to approximate the physical fields by the outgoing fields extracted
from the computed PSW solution. The imperfect asymptotic structure of the PSW spacetime is
therefore irrelevant to its physical usefulness.

In the remainder of this paper we will first present, in Sec. 2.2, the mathematical details of a
nonlinear model with which we clarify many aspects of the PSW approximation. We then discuss,
in Sec. 2.3, the numerical methods needed to find PSW solutions, especially those aspects of the
numerical methods that are idiosyncratic to the special features (mixed character, standing-wave
boundary conditions, nonlinearities) of our problem. In this section also, results are presented of
the numerical methods. The results are discussed, and put into the context of the next steps in this

project [20], in Sec. 2.4.



26

[ time

=—

wave zone
\
\\
several
orbits
region of PSW
approximation

Figure 2.1: The PSW solution is meant to be an approximation to the physical spacetime only in a
limited region.

2.2 Periodic solutions, standing waves, and model problems

Mixed PDEs and well-posedness

As stated above, we seek a solution to Einstein’s equations in which the sources and the fields rotate
rigidly. The mathematical statement of this rigid rotation is that there is a helical Killing vector, a
Killing vector that is timelike close to the sources and spacelike far from the sources. (For more on

helical Killing symmetry see [22].) For fields in flat spacetime our Killing vector ¢ takes the form
€= 0 + Q0 @.1)
in spherical or cylindrical spatial coordinates, and
£=0,+Q(z0, — yd,) 2.2)

in Cartesian spatial coordinates. The parameter 2, which must be a constant, can be thought of
as the rotation rate of the source and fields with respect to an inertial reference frame. For the flat
spacetime case, the null surface £-£€=0isa cylinder of radius 1/ coaxial with the rotation axis.
(Here and below we use units in which G = ¢ = 1.) This cylinder separates the inner region of
timelike £ from the outer region of spacelike £, as shown in Fig. 2.2. Since this surface, in a sense,

represents the points at which the rigidly rotating fields are moving at ¢, we call this surface the
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“light cylinder,” in analogy with pulsar electrodynamics.

. radiative boundary
R — conditions

_—— T (in, out, standing)
/

elliptic
hyperbolic
S~ N —
strong field

Figure 2.2: The “light cylinder” separating the elliptic and hyperbolic regions of the problem inter-
sects the large spherical surface on which numerical boundary conditions are imposed.

One immediate advantage of the helical symmetry is that it reduces the number of independent
variables, thereby greatly reducing the computational difficulty of a problem. In our simple flat
spacetime models this reduction is most easily understood by the fact that helically symmetric
scalars cannot depend in an arbitrary way on the spherical Minkowski coordinates ¢, r, 6, ¢ but can
depend only on ¢t and ¢ in the combination ¢ = ¢ — Qt. Thus, in the ¢,r, 6, ¢ system the Killing
vector is £ = d;. These ideas are clarified with a simple flat spacetime model theory for a scalar
field ¥

V.59 +AF =S . (2.3)

The term F(¥,z%) is included to allow for nonlinearity; the constant A adjusts the strength of
the nonlinearity. In order for a helically symmetric solution V¥ to exist, the explicit coordinate de-
pendence of F' must be compatible with the symmetry. That is, /' can have explicit coordinate
dependence only on r, §, and ¢. The most natural choice for a model would be one in which there
is no coordinate dependence, one in which the background spacetime is featureless. We include
the possibility of spatial dependence for convenience below. Changing the spatial dependence will
help to clarify the accuracy of the PSW approximation when nonlinearities are important.

In the application of the PSW method to holes, an inner boundary condition will be used at

a small, approximately spherical surface. For simplicity here, however, we use an explicit source



28

term,

o(r —a)

6(0 —m/2) [6(¢) + (0 —m)], (24)

representing two points, each of unit scalar charge, in equatorial circular orbits, with radius a and
angular velocity 2. This source term S obeys the symmetry property that is necessary if a periodic
solution is to exist: its Lie derivative vanishes along the Killing orbit {7

If we are interested only in helically symmetric solutions, then the field equation (2.3) reduces

to

10 ([ ,00 1 0 v 1 32

The mixed character of this PDE shows clearly in the coefficient of 92®. The light cylinder is at
rsinf = 1/Q where this coefficient changes sign. Inside the light cylinder (rsinf < 1/Q) the
equation is elliptical; outside it is hyperbolic. For outgoing solutions of this equation we impose an
outer boundary condition 9, ¥ = —0,¥, or equivalently 0,¥ = Q0, V¥, on a spherical surface with
a radius large compared to 1/€. As illustrated in Fig. 2.2, this spherical surface is well outside the
light cylinder in the equatorial plane, so our boundary conditions are imposed on a surface that
passes through both the elliptic and hyperbolic regions of the problem.

Problems with boundary conditions on closed surfaces are common in the case of elliptical
PDEs. We argue here that our boundary value problem with mixed PDEs may be unusual, but is
well posed [23]. Again, a simple model problem will help to clarify issues. We set the nonlinearity
parameter )\ to zero in Eq. (2.5) so that we can solve the resulting linear equation as an infinite
series. If we choose a Dirichlet condition

U = 0 (2.6)
at a finite radius rmayx, then the solution to this linear problem can be written in terms of spherical

Bessel functions j,, ng as

mQTmax) f(mQT<) [0 (M) je (MO max) — 1o (M max) je (MQr )]

¢ m=even

(2.7)
Here r.(r-) indicates the smaller (greater) of the quantities r, a. Vanishing of the j,(mQrmax) de-
nominator means that the the “cavity” » < .« has a resonant mode at frequency €2. In the case
that 7max has one of the resonant values, the solution to the boundary value problem is not unique.
Such values of r are of zero measure, but are dense in the set of all r choices. This means that the
cavity is always arbitrarily close to a resonance, if sufficiently high angular modes are computed. A

consequence of this is that a numerical computation does not converge. (Computed solutions de-
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pend on the computational grid size, and become larger with increasing angular resolution.) The
difficulty is not just one of computational practice. The boundary value problem is fundamentally
ill posed as a representation of fields in an infinite space. There is no meaningful . — oo limit
of Eq. (2.7).

Problems with mixed elliptic and hyperbolic regions are of some interest in aerodynamics [24],
but there are few general results on well-posedness. In those results that do exist, the nature of the
boundary conditions plays a pivotal role. We have found that this applies to our periodic solutions
also. If we replace the Dirichlet conditions of Eq. (2.7) with the Sommerfeld condition

(0,7 — Q0,T) =0, 2.8)

T=Tmax

then the problem is found to be well posed. This is particularly clear for the linear problem, where

the closed form solution takes the form
v = \Ijout + \chxtra . (29)
Here ¥, is the usual “outgoing at infinity” solution

Vouw =D D —2mQY},(/2,0)Yem (6, @) je(mro )by (mQrs) (2.10)

¢ m=even

and
Vextra = Z Z _2lmQYZ;n(7T/2a O)}/fm (97 90) Yem jg(mQT< ).N (mQT>) (211)
¢ m=even
with
WV (2) +idh" (z)/dz
e = — [ dr , (2.12)
]6(2) T djf (Z)/dz 2=mQrm;

Since the spherical Hankel function has the asymptotic form h@l) (z) = (=) De=[1/2 + O(1/22)],
it follows that |y¢,| is of order 1/ryax. Thus, ¥ — Wy, as rmax — 00, suggesting that the linear
problem is well posed [25].

Numerical results confirm this suggestion. With the boundary condition in Eq. (2.8), we have
encountered no fundamental difficulty computing convergent solutions to both the linear and non-
linear versions of Eq. (2.5), and have confirmed that solutions do not depend on the particular

(large) value chosen for rpax.

Standing waves: iterative method

The solutions we will be computing in Einstein’s theory, of course, are standing-wave solutions, but

there are no actual “standing-wave boundary conditions” analogous to the Sommerfeld condition
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in Eq. (2.8) for outgoing waves. It is useful, therefore, to explore the meaning of standing-wave
solutions with our model nonlinear theories. As pointed out in Sec. 2.1, our paradigm for standing
waves is the LSIO of a linear theory, the linear superposition of half ingoing and half outgoing
solutions. We shall extend this definition of standing wave to nonlinear theories in two ways.
The first is an extension of the Green function method of [15], and is called there the TSGF (time
symmetric Green function) method. For the problem in Eq. (2.3) this method starts by writing the
field equation in the form

LIV)() = oo [¥]. (2.13)

Here the operator £[V] depends on ¥ but—once ¥ is fixed—can be considered to be linearly oper-
ating on ¥. Similarly o.q¢ depends on ¥, but—once ¥ is fixed—is to be considered a fixed inhomo-
geneous term in the equation, an effective source term. There is no unique way of putting the field
equation into the form of Eq. (2.13) for a nonlinear model problem, or for general relativity. The
quasi-linearity of general relativity, and of our nonlinear models, means that at least the principal
part of L is always unambiguous. There are also some obvious guidelines to follow. In particular,
L and o.¢ should become V-independent in the weak field limit.

To iterate for an outgoing solution, for example, one would find an approximate outgoing solu-
tion ¥2,;, and then would solve

LIVE (Vo) = oo [ Vo], (2.14)

out

for outgoing boundary conditions. The result would be the improved approximation ¥#! to the

out

outgoing waves. To find standing waves, this method is modified as follows. An approximation

v 4 is found to the standing-wave solution. The equation
LWl (U7 = oo [Pinal (2.15)

is then solved with the outgoing boundary conditions of Eq. (2.8) to give U7} and is next solved

stout
with ingoing boundary conditions Q2 — — in Eq. (2.8)] to give ¥"!!. The new approximation for

stin *

the standing-wave solution is taken to be

Uit =3 Wioae + 3 Vi - (2.16)

stnd T stout stin

We take the n — oo limit of ¥”"} in Eq. (2.16) to be our computed standing-wave solution.
We shall call the iterative method just described “direct iteration.” This sort of direct iteration
is useful in solving for the root of an equation = = f(x) only if f is slowly varying. In iteration for

V¥ the equivalent condition applies to L1 0 o, where £ is the Green function, the inverse of £
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for the boundary conditions (ingoing or outgoing) of interest. For direct iteration to converge the
dependence of £L7! o 5.z on ¥ must be weak and this is the case only for nonlinearities of moderate
strength. For strong nonlinearities another technique must be used.

In Newton-Raphson iteration, one uses the iteration ¥” to make linear approximations for £

and o.g. Equation (2.13) then takes the form

oL[v]
v

LIU(0) + (T — 07 [ i

] (T") = oo [T"] + (T — ") x P"cﬁ] . (217)
y=yn Y=yn

This equation is linear in ¥, and its solution is taken to be the next iteration ¥"!. By choosing
appropriate boundary conditions we can use this scheme to iterate an outgoing or ingoing solution.
For our standing-wave solution, we follow the same general scheme as with direct iteration. Using
the n'" standing-wave approximation as ¥" in Eq. (2.17) we solve using both in- and outgoing
boundary conditions. As in Eq. (2.16), the n + 1*" standing-wave approximation is taken to be half

the sum of the ingoing and outgoing solutions found this way.

Standing waves: minimization method

To explain our second, independent way of defining and computing standing-wave solutions, it is
best to start with the standing-wave solution in the linear model problem. This is simply half the
sum of the “outgoing at infinity” solution in Eq. (2.10), and the equivalent ingoing solution. The
result is

Uena = 3 Y 2mQY}, (1/2,0)Yem (0, ) je(mQr < )ng(mQrs) . (2.18)

¢ m=even
In this solution each multipole has an equal amplitude for ingoing and outgoing amplitude waves,
and one might suspect that this property suffices to define standing waves for a nonlinear model.
This is not, in fact the case, since we could add a multiple of the homogeneous solution j,(m€r)je(mSla)
to the £, m mode without changing the balance between ingoing and outgoing. This degree of free-
dom is equivalent to the degree of freedom inherent in the phase between the outgoing and ingoing
waves. This extra degree of freedom exists also (though not so transparently) in a nonlinear prob-
lem.

To resolve this degree of freedom we can use a generalization of a property that is unique, in the
linear case, to the correct standing-wave solution Eq. (2.18): In each multipole, the solution is re-
quired to have the minimum wave amplitude of any solution with balanced ingoing and outgoing
waves [26].

This method, while very interesting in principle, is difficult in practice to implement in a finite
difference boundary value approach. One could imagine using a guess for the value of a multipole

coefficient at some outer boundary, and then searching for the value that gives the minimum for
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the amplitudes of the waves in that multipole. In a nonlinear problem, the values of each multipole
will influence other multipoles, so the search for minimum waves will, in principle, be a search in
a many dimensional space.

The real difficulty of this numerical approach is that it uses multipoles as part of the boundary
condition. That means that multipole coefficients must be extracted. Even in spherical coordinates,
the extraction of the multipole coefficients involves a weighted sum over all angular grid points.
Most important, this sum would not be performed as a postprocessing step on a computed solu-
tion, but rather would have to be written as a set of equations that would form part of the a priori
problem to be solved. The set of equations to be solved would then have, in addition to great
complexity, a boundary-related subset connecting distant grid points. The matrix representation
of these equations would not have banded structure. In addition to these technical difficulties, the
use of spherical coordinates is very ill suited to the structure of our source objects, so coordinate
patches for the sources would be required.

For these reasons, we have not attempted to use the minimization criterion in a finite difference
code. We have, however, implemented this criterion with a spectral approach based on a specially
adapted coordinate system. Results from this approach are extremely encouraging, but the ap-
proach poses new computational challenges, so we are continuing to explore two distinct paths:
finite difference methods and the iterative definition of standing waves, and a spectral/adapted
coordinate technique for the minimization criterion. Since the adapted coordinate system neces-
sary for the second approach requires a separate development, and is not fundamental to the PSW
approximation, we confine the present discussion to the first approach, finite difference boundary

value problems, with the iterative criterion for standing waves.

2.3 Numerical implementation and results

Extraction of an outgoing approximation

Model problems allow us to test a key idea of the PSW approach, that a good approximation of the

outgoing solution can be extracted from the computed standing-wave solution

\Ijstndcomp = Z Z Qpm (T)}/lm (97 QO) . (219)
eveng m:O,iQ,i4..
The coefficients oy, (r) are computed from ¥comp, by projection with Y, . From the reality of
Wstndeomp, the coefficients will obey «of,, = oy, and from the standing-wave symmetry (cos me
only, no sin my terms) they will also obey o, = g y,-

This form of the computed standing-wave solution is compared with a general homogeneous
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linear (A = 0) standing-wave (equal magnitude in- and outgoing waves) solution of Eq. (2.5), with

the symmetry of two equal and opposite sources:

Vynatin = 3 S Yin0.9) [5 ConhVmOr) + § G hP mon)] (2.20)
even é m:O,i2,i4..
where C;_,, = C},,, from the reality of W, qiin. A fitting, in the weak-field zone, of this form of the
standing-wave multipole to the computed function c,, (1) gives the value of Cyy,.
By viewing the linear solution as half-ingoing and half-outgoing we define the extracted outgo-

ing solution to be

Texour = ST Yem(0.9) ComhY (mQr) . (2.21)
even[ m:O,iQ,i4..

Since this extracted solution was fitted to the computed solution assuming only that linearity ap-
plied, it will be a good approximation except in the strong-field region. In the problems of interest,
the strong fields should be confined to a region near the sources. In those regions, small compared
to a wavelength, the field will essentially be that of a static source, and will be insensitive to the
distant radiative boundary conditions. As pointed out in Sec. 2.1, the solutions in this region will
be essentially the same for the ingoing, outgoing, and standing-wave problem. In this inner region
then, we take our extracted outgoing solution simply to be the computed standing-wave solution,

so that

Yo C mh(l) weak field outer region
\I/cxout - Z ¢ ¢ ¢ g . (222)

Ystndcomp strong field inner region

The boundary between a strong field inner region and weak field outer region would ideally
be a closed surface surrounding each of the source regions. This is easily implemented with the
adapted coordinates to be introduced in a subsequent paper. Here, for simplicity, we take the
boundary to be a spherical surface around the origin. In order for the extracted solution to be
smooth at this boundary, we use a blending of the inner and outer solution in a transition region

extending between radii 71, and ryign and, in this region, we take

\I]exout = 5(7") Z Yvﬁmcfmhgl) + [1 - 5(7”)} \Pstndcomp . (223)
Here
r—n 2 r—n 3
B(r) =3 {A] —9 {%} : (2.24)
Thigh — Tlow Thigh — Tlow

so that ((r) goes from 0 at r = rio, to unity at 7 = 743, and has a vanishing r-derivative at both
ends.
In the case of our typical choice 2 = 0.3, the value of ri, is chosen to be r = 1.3 a—the value

at which the static and standing-wave solutions of the linear problem differ by 10%. This value
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should decrease with increasing (2, but it must be larger than the orbital radius = a, so we choose
it to be
Tow = a[1 4+ 0.3(0.3/82)]. (2.25)

In order to have a moderately thin transition region we somewhat arbitrarily take

Thigh = a[l + 06(03/9)] . (226)

For the numerical results reported below, the extraction details of Egs. (2.19)—(2.26) are used, and

extraction is carried out using the ¢ = 0, 2, 4 multipoles.

Choice of model

To verify and demonstrate several innovative features (well-posed mixed boundary value problem,
standing waves, effective linearity) of the PSW approximation, we use the nonlinear scalar model
of Eq. (2.5), with the ¢ function sources given by Eq. (2.4). We make the simplifying assumption
that the nonlinear function F in Eq. (2.5) depends only on ¥, not on its derivatives. From this an
obvious simplification follows for the iteration method of Egs. (2.13)—(2.16). We replace Eq. (2.13)
by

L(T) = oeg[¥]. (2.27)

with £ taken to be

L

10 (5,0 1 o (. 0 1 .| 02

—— (= )+ ———= — Y 0 £ Ry 2.2
r2 Or (r 87’) +r251n989 (Sm939) + [7*2511129 ¢ } 0p? (2.28)
The effective source term includes both the true point source and the nonlinear term

o) = 2250 — 7/2) [5(0) + 8l — )] - AF. 2.29)

Our choice of the nonlinearity function F is

\115

F=— . 2.
Wi+ vt (2:30)

(We will comment below on the difference between this choice and that made in previous work,
including previous versions of this paper.) Here ¥ is a second nonlinearity parameter (A being the
first). We shall choose ¥ to be less than unity; in the numerical results to be presented, ¥ is taken
to be 0.15.

To understand the effect of this nonlinearity, let R denote the distance from one of the point

sources. Very near a source point, at very small R, where the field is strong, F' has the limit F* — ¥,
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so that the solution of Egs. (2.27)—(2.30) approximately has the Yukawa form

e—V—XR
U R near source pt. (2.31)

At some distance from the source—call it R);,—the field ¥ becomes smaller than ¥, and F' can be
approximated as U°. Since W itself is less than ¥y, and hence less than unity, this U° nonlinearity is
small enough to be considered a perturbative correction.

If the transition at Ry, takes place well inside the near zone of the problem, then the effect of the
nonlinearity can be understood as follows: Near a source point the solution has the form of a unit
strength Yukawa potential. At distance R, the effect of the AF" term is turned off and the solution
becomes a simple Coulomb potential. The source strength for this Coulomb field, though, will be
less than unity. Due to the exp (—v/—AR) Yukawa factor, the source strength decreases in the region
from R = 0 to R = R, and the effect of the nonlinearity is to reduce the effective source strength
by a factor of order exp (—v/—=ARyy). Since this transition takes place well within the near zone,
it should be this reduced source strength that is responsible for generating radiation. The effect of
the nonlinearity on radiation, then, will be the same reduction factor exp (—vV=ARyn), and we can
easily estimate the size of this nonlinear effect. One estimate can be found by solving

e~ V=X Riin

for Ry, and using this value of Ry, in the expression exp (—v—ARiin) for the reduction factor.

Another estimate follows by solving the spherically symmetric static nonlinear problem for a unit

10 [ ,00 v

strength source

(Here the right hand side is the unit ¢ function at the origin.) For this solution the ratio is found
of the large-r monopole moment to the small-r monopole moment, and this ratio is taken as the
reduction factor. Since these methods for the reduction factor ignore the nonlinear interaction be-
tween the two source points, and since they assume that all the wave generation occurs far outside
Ry, they can only be considered an approximation for the nonlinear reduction effect on the wave
amplitude. We shall see, however, that these estimates are accurate enough to be taken as a good
heuristic explanation of the role of the nonlinearity.

In previous work, a form of the nonlinearity was used that was different from that in Eq. (2.30).
To give that previous form we first defined the distance R, (R-) from the source point on the z

axis at z = a (z = —a) to be given by

R% = (rsinfcos ¢ F a)? + 2 sin®0 cos?p + 12 cos®d . (2.34)



We then introduced the distance variable

y=+ER.R_ . (2.35)

At either of the source points x — 0, and far from the sources y — r. In terms of yx, the form of the

nonlinearity previously used [27] is

Forev = (%)” elnx/a) - f; . (2.36)
The x-dependent prefactor (y/na)"e™X/®) was included so that we could force the nonlinearity
to be concentrated near xy = na. By choosing n to be 5 or 10 we could, in this way, have strong
nonlinearity in the wave zone, and we could numerically demonstrate the failure of effective non-
linearity. The x-dependent prefactor, however, makes it difficult to find a numerical solution that
is physically meaningful.

The prefactor is a difficulty because the solution near the source can have either the Yukawa
form exp (—v/—AR), or the “anti-Yukawa” form exp (++/—AR). If there is any of the latter included
in the solution, then the field gets larger at larger distance from the sources, so the strong nonlin-
earity is never suppressed, the \F' term continues to approximate A\¥, and the sum of the Yukawa
and anti-Yukawa forms continues to be a valid solution. But if the anti-Yukawa part is present, the
solution cannot meet the fall-off conditions at an outer boundary at large r. Without the prefactor,
then, the outer boundary conditions act to suppress the anti-Yukawa part of a solution. With the
prefactor present, however, the nonlinearity can be turned off by the fall off of exp (—x/a), even if
the solution contains an anti-Yukawa part close to the sources. The prefactor, in effect, shields the
inner region from the influence of the outer boundary conditions. When the prefactor is included
in the nonlinearity, the solution in the inner region will be a somewhat unpredictable mixture of
Yukawa and anti-Yukawa parts that is sensitive to grid spacing.

The choice made for the ¥ dependence in Eq. (2.30), rather than that in Eq. (2.36), is motivated
by the fact that F' ~ U3 falls off rather slowly in the weak wave zone. Changing the form of F' to
U5 /(14 U1) cures this slow fall off, but imposes a very sharp cutoff near the sources, one that is too
sharp for our relatively coarse computational grid. By taking F proportional to ¥° /(W3 + ¥4), with
a fairly small value of ¥, the falloff of F' is smoothed out and moved to a larger distances from the

source.

Numerical methods

Since L is independent of ¥ we can (as in [15]) compute once and for all the inverses of L, i.e.,

the Green functions corresponding to specific boundary conditions. In this way, we can compute
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L, and £;.', the Green functions for outgoing and for ingoing boundary conditions. The direct

n 7

iterative method of Egs. (2.14)—(2.15), then amounts to

Uit = Lok (oer[W0,]) Ut = £ (oer[W]) (2.37)
bl = Lok + Lot} e[V 4] - (2.38)

Since £ has no ¥ dependence, the basic Newton-Raphson iteration simplifies to

8Ucﬁ" o n n 8Ucﬁ"
{,c_ [ ad ]H}\p — e[V~ W [ ad L_W | (2.39)

This Newton-Raphson approach can be applied to find outgoing, ingoing, and standing-wave so-
lutions analogous to Egs. (2.37) and (2.38).

Each iteration of Egs. (2.37), (2.38), or (2.39) is equivalent to the solution of a large set of linear
equations. Such systems are most typically encountered for elliptic boundary value problems, and
are typically solved most efficiently with relaxation methods, or related methods (e.g., multigrid)
based on the geometry of the problem. Such methods start with an approximate set of values for
each of the unknowns at every point of the numerical grid. At each point the solution is then
recalculated on the basis of the values at nearby grid points. This method sweeps through all the
points of the grid and is iterated until an error criterion is met. Such a method must be compatible
with the domain of dependence for the points of the grid. For an elliptic PDE, for example, the
values of unknowns are updated at a central point of a set of grid points. For a hyperbolic PDE,
on the other hand, the field computation, or updating, must be done only at a point in the “future”
of those grid points being used. For a mixed boundary value problem a relaxation method has
special difficulties, especially at the interface between elliptic and hyperbolic regions. Nevertheless,
relaxation methods have been successfully applied to mixed PDEs in transonic aerodynamics, first
by Murman and Cole [28]. The slow convergence of this method at the interface (the “sonic surface”
in transonic aerodynamics) can be improved with special techniques that may need to be specific
to the problem [29].

We are presently investigating relaxation and other numerical methods (e.g., decomposing the
grid into regions and applying different techniques, preconditioners, etc.) for large grids and many
variables. For our three-dimensional scalar problem illustrated here, however, we have been able
to use a more-or-less straightforward method of inverting the matrix for the finite difference equa-
tions.

In one approach to finding an iterative solution, we use matrix inversion at each step of the
direct iteration of Egs. (2.37), (2.38), and we take advantage of the fact that £~! is rotationally

symmetric (i.e., it is translationally symmetric with respect to ¢), and we work with the Fourier
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components U7 (r,0)e"™¢ of the iterative solution. At each step of iteration we project out the
Fourier components of the effective source. Due to the nonlinearity in the effective source, the
Fourier modes of U7, (r,0)e"™? mix in this step, but £L~! is rotationally symmetric so the Fourier
modes do not mix in the step of solving for ¥"*!1. This method takes advantage of the efficiency
of a fast Fourier transform (FFT) and reduces the RAM needed to little more than that for a two-
dimensional r, § grid. This method, therefore, allows a rather fine grid in  and 6.

We have used this efficient FFT method extensively, but direct iteration has the drawback al-
ready cited following Eq. (2.16): it is limited in the strength of the nonlinearity it can handle. Direct
iteration will not converge for very strong nonlinearity. The iterative Newton-Raphson method
of Eq. (2.39), on the other hand, does almost always converge once one has a solution sufficiently
close to the correct solution. The operator on the left in Eq. (2.39), however, contains the previous
iteration ", which is not symmetric in ¢, so that the FFT method cannot be used with Newton-
Raphson iteration. This has meant that a relatively coarse grid, or large RAM, had to be used. We
have not yet implemented a parallelizable method for solving the iteration steps, and have been
restricting most runs to 8 GB.

It is worth mentioning an interesting hybrid method that we have explored. The problem in

Egs. (2.27)—(2.30), outside the point sources, can be written as

(L+N)T =\T] ﬁ . (2.40)
The nonlinearity on the right is never large; it is small both for ¥ > W, near the sources, and for
U < ¥, far from the sources. The weakness of the formal nonlinearity suggests that a solution may
converge with direct iteration even for large nonlinear effects. The operator (£ + A), furthermore,
is rotationally symmetric, so the FFT method can be used. The method, however, turns out to have
a serious flaw. Where ¥ is small, the left-hand side of Eq. (2.40) is dominated by AW, which is very
nearly equal to the right-hand side. In the analogy we gave, following Eq. (2.16), to the iterative
solution for a root of z = f(x), this is equivalent to f having a derivative very close to unity at the
root. It would appear that this difficulty could be avoided by iterating Eq. (2.40) near the source,
where the nonlinearity is strong, and iterating the standard form of the problem in the weak field
region. Numerical experiments with this approach have been inconclusive. Since we do not intend
to use a single-patch spherical coordinate sysem in the future, we have not examined this hybrid
method exhaustively.
In practice we have used the following eclectic approach to find solutions: (i) For linear mod-
els, for which no iteration is required, we have taken advantage of the RAM-reduction of the FFT
method. (ii) For strongly nonlinear models we have used Newton-Raphson iteration on a three-

dimensional (non-FFT) grid, and have used continuation (i.e., “ramping up”) both in A and in .
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Despite RAM limitations, we have been able to confirm that the solutions are second-order con-
vergent. (iii) For —\ less than around 2, it has been been possible to find solutions with the direct-
iteration, FFT method. These solutions have been compared with the corresponding solutions from
the non-FFT, Newton-Raphson method, and have been found to agree within the numerical uncer-
tainty in the solutions.

In applying the iteration methods, and looking for convergence, we have used two error mea-
sures. One, €ty = U™ — U1 is the difference at a grid point between the computed value at a
grid point, and the value computed at the previous iteration. The second error measure, €1, is the
value of (L(¥") — oes[P™]) at a grid point. In our FFT computations the criterion for convergence
was to have the rms value of ¢jir (averaged over the entire grid) fall below 1 x 1075, The value
of €so1n Was also monitored in the FFT computations and was found not to be larger than 1 x 1076
at any grid point, and to have an rms value typically around 1 x 10~7. A much more stringent re-
quirement for convergence was used in the Newton-Raphson computations: the rms value of ey

had to fall below 5 x 1071 for the solution to be acceptable.

Numerical results

We first illustrate the fundamental concept of the PSW method with various solutions of Eq. (2.5),
with the nonlinearity given in Eq. (2.30). Figure 2.3 shows solutions in the equatorial (f = 7/2)
plane; the amplitude of the field ¥ is plotted as a function of corotating Cartesian coordinates
x = rcosp, and y = 7sin . The source points are on the z axis at + = +a, and the outer boundary
is at 7 = 30a. For all four plots, a2 = 0.3, A = —1, and ¥y = 0.15. The results plotted are those
from direct iteration with the FFT method, for a computational grid using 361 radial divisions, 16
divisions in 6, and 32 Fourier modes. For all models, the computed results are dominated by the
monopole, so for clarity in the figures the ¢-average of the solution has been subtracted at every
radius. It is worth noting that this procedure not only removes the monopole (the ¢ = 0 part of the
solution), but also removes the m = 0 part of the quadrupole, etc.

The plot in part (a) of Fig. 2.3 shows the outgoing solution (solution for outgoing boundary
conditions); the plot in part (b) shows the corresponding ingoing solution. The plot in part (c)
is the computed standing-wave solution for the same problem parameters. (Note: this nonlinear
standing-wave solution is not half the superposition of the outgoing and ingoing solutions. Rather,
it is the nonlinear field equation solved with the standing-wave definition discussed in Sec. 2.2.)
Part (d) shows the key idea of the PSW approximation, the outgoing solution extracted from the
standing-wave solution, by the extraction method described in Egs. (2.19)—(2.26). When the PSW
method is used in general relativity, it will be possible only to compute the standing-wave solution;
the extracted outgoing solution will represent the approximation to the physical, outgoing solution.

Table 2.1 gives quantitative results for strongly nonlinear outgoing waves. In that table, values
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) standing waves d) extracted ontgoing waves

Figure 2.3: The V field for two rotating point sources in the equatorial plane. The fields shown
are nonlinear solutions of Egs. (2.4), (2.5), and (2.30), with aQ? = 0.3 and A = —1. For clarity, the
p-average is removed at each radius. Parts (a) and (b) of the figure show, respectively, the nonlinear
outgoing and ingoing solutions. Part (c) is the standing-wave solution, and part (d) is the outgoing
solution extracted from it. The vertical scale gives field strength (arbitrary units) and the horizontal
coordinates are co-rotating Cartesian coordinates in units of a, the distance of a source from the
rotation axis.

are given for the reduction factor due to the nonlinearity. As explained following Eq. (2.31), this is
the factor by which the nonlinearity decreases the amplitude of the waves. (For the same a2 and
source strength, the amplitude of outgoing waves for the linear problem A = 0 is compared to the
amplitude for a problem with A # 0.) The fact that the reduction factors are significantly different
from 100% shows that we are able to compute models in which nonlinear effects are strong. In
the table the computed reduction is compared with estimates from heuristic models of Egs. (2.31)—
(2.33) in which ¥ is taken to have a Yukawa form very near the source, and a Coulomb form further
out, but well within the near zone. The agreement of the computations with the estimates is strong
evidence that the heuristic model captures much of the nature of the nonlinear effect.

Table 2.2 gives information on the numerical errors of the most computationally intensive so-
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Table 2.1: The reduction factor for outgoing waves due to the nonlinearity. For all cases, ¥ = 0.15.
The second column refers to Eq. (2.32). This equation is solved for Rji,. Estimate 1 uses this value
of Ry, in exp (—v/—ARyi,). Estimate 2 is the reduction factor found from a numerical solution of
Eq. (2.33). The last column gives the results from Newton-Raphson computation with a2 = 0.3,
with the outer boundary at » = 30a, and with a r, 8, ¢ grid of 120 x 20 x 32.

A | Estimate 1 | Estimate 2 | Computation
-1 69% 87% 78%
-2 62% 73% 68%
-5 53% 65% 55%
-10 46% 54% 47%
-25 37% 41% 35%

Table 2.2: Convergence of finite difference computations. Nonlinear outgoing solutions are com-
puted with five different grid resolutions for A = —10, ¥y = 0.15, af2 = 0.3, and outer boundary at
r = 30a. An L2 norm is computed for the difference between the solution for grid £ and grid &k + 1.
This is reported as the “Error” for grid .

Ny X Ny X Ny Error
90x10x16 2.71E-5
120x14x22 | 1.60E-5
150x16x26 | 8.68E-6
180x20x32 | 5.22E-6
210x24x38

G QWON P

lution type: that for strongly nonlinear waves computed via Newton-Raphson iteration. A single
physical model (A = —10, ¥y = 0.15, af2 = 0.3, outer boundary at r = 30a) is computed on five
different grids. As a measure of the truncation error for grid k, the L2 difference (the square root
of the average square difference) is found between the results for grid k and for grid k£ + 1. This is
listed in Table 2.2 as the error in grid k. These results, especially for the finest three grids, suggest
quadratic convergence of the numerical process.

The crux of the PSW method is that a good approximation to a nonlinear outgoing solution can
be extracted from a standing wave nonlinear solution. Examples of this are given in the next two
figures, the central numerical results in this paper.

Figure 2.4 shows results for computations of linear (A = 0) and nonlinear (A = —2 and -10) mod-
els for ¥ along the § = 7/2, ¢ = 0 lines. All models used rotation rate a2 = 0.3 and nonlinearity
parameter ¥, = 0.15 and the 180 x 20 x 32 grid with an outer boundary at r = 30a. The nonlinear
models were solved through Newton-Raphson iteration with continuation in A. The figure shows,
as continuous lines, the computed solutions for outgoing waves with A = 0, -2, —10. Included
in the figure also are the A = —2, —10 results for the approximate outgoing waves extracted from
the nonlinear standing wave solutions by the method of Eq. (3.60). The difference between these

outgoing approximations and the true outgoing waves is so small that the approximation results
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Figure 2.4: Extracted outgoing nonlinear waves vs. true outgoing nonlinear waves. For A =
0,—2,-10, ¥¢ = 0.15, a2 = 0.3, with a 180 x 20 x 32 grid. The field ¥ is shown as a function
of r along a radial line through the source point, i.e., along the § = 7/2, ¢ = 0 line. Continuous
curves show computational results for outgoing waves. Discrete points, for the nonlinear models,
show the approximate outgoing waves extracted from standing wave solutions.

are given as discrete data points to aid in visualization.

Figure 2.5 shows the small-radius portions of the same models as those in Fig. 2.4. (The A = 0
curve is nearly indistinguishable from that for A = —2, and is omitted from the figure.) The radial
6 = m/2, ¢ = 0 line along which the results are presented, goes through the source point atr = a, so
Fig. 2.5 shows the computed solution in the neighborhood of the source. The Yukawa-like effect of
the nonlinearity near the source is evident in more rapid fall-off of the A = —10 model away from
the source point.

The results in Figs. 2.5 and 2.4 are graphical evidence for the accuracy of the PSW method; the
outgoing waveforms extracted from the nonlinear standing wave solution are excellent approxi-
mations to the true outgoing waves both near the sources and in the wave zone. The agreement in
the intermediate zone (not shown in the figures) is equally impressive. A quantitative measure of
the agreement is the “L2” difference of the outgoing wave and the extracted outgoing approxima-
tion. This measure is the square root of the average (over all grid points) of the squared difference
between the true and the extracted outgoing solutions. For A = —10 this L2 difference is 8.7 x 1076
and is of the same order as the error in Table 2.2 for the 180 x 20 x 32 grid being used. Since

the numerical uncertainties are of the same order as the difference between the true and the ex-
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Figure 2.5: The same models as in Fig. 2.4, but in the region of the sources. As in Fig. 2.4 continuous
curves show the computations of the true nonlinear outgoing waves, and discrete points show the
outgoing wave approximation extracted from the nonlinear standing wave solution.

tracted outgoing waves we cannot claim to have computed any meaningful inaccuracy in the PSW
approximation.

This is unfortunate. In presenting numerical results it would be useful to demonstrate that the
PSW approximation is, after all, an approximation by showing a model in which the extracted out-
going solution is significantly different from the true outgoing solution. Our inability to do this
is related to limitations on numerical solutions. Our arguments for effective linearity show that
the PSW approximation should fail only if the region of significant nonlinearity overlaps the wave
zone. For this reason we used the x-dependent prefactor of Eq. (2.36) in an earlier version of the
present paper to allow us to force the nonlinearity to be concentrated in the wave zone. Although
that technique did allow us to induce significant errors in the PSW approximation, we have ex-
plained, following Eq. (2.36), why the solutions for the models with the prefactor have undesirable
features. If no unnatural y-dependence is explicitly injected in the source, the way in which ef-
fective nonlinearity can be made to fail is for a{2 to approach unity, i.e., for the source points to
move very relativistically (a case in which the PSW would be expected to fail for binary inspiral).
Unfortunately, we have not been able to find convergent solutions for large a{2. Presumably this
is due to the fact that large af) means fields with sharp gradients, too sharp to be handled by our

necessarily coarse grids.
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2.4 Conclusions

We have given here the foundations of the PSW method based on the extraction of an outgoing
solution from a computed standing-wave solution. We have also given the details of the extraction
calculation.

The results provided for convergent nonlinear models are “proof” by example that there is no
fundamental mathematical problem of well-posedness of the mixed PDE problem, with radiative
boundary conditions on a sphere that is in both the elliptic and hyperbolic regions of the problem.
We have, furthermore, presented limited numerical evidence for the validity of the PSW method,
i.e., that the extracted outgoing solution is a good approximation to the true nonlinear outgoing
solution. This evidence helps make the case for the application of the method to the general rela-
tivistic problem, in which only the standing-wave solution will be computable, and the extracted
solution will be taken as the approximation to the physical problem.

The numerical studies have also taught a lesson about the limitations of the relatively straight-
forward numerical method used here, matrix inversion of the finite difference equations in spheri-
cal coordinates. We have found that this method is limited by the coarse grid that can be used for
the finite-differencing. We could, in principle, use a software engineering approach to increase the
range of nonlinearity and rotation rate that can be handled. But the methods used here, spherical
coordinates and delta function sources, are meant only to provide a relatively simple context for
establishing the foundations for more advanced approaches.

In a paper now in preparation [20], we will present an important step forward in dealing with
PSW problems, a coordinate system that conforms to the geometry near the sources and far from
the source asymptotically goes to spherical polar coordinates, the coordinates best suited to the
description of the waves. One advantage of this method is that it allows us very simply to put in
details of the sources as inner boundary conditions rather than point sources. In addition, the new
coordinates turn out to be very well suited to a spectral method that has shown remarkable com-
putational efficiency, but that poses new computational problems. Computations using an adapted
coordinate system have already been carried out for the three-dimensional nonlinear scalar prob-
lem with both the finite difference and spectral formulation, and for linearized general relativity
using the finite difference formulation. Since the details of adapted coordinates, especially with
the unusual spectral method, are not directly related to the foundations of the PSW method, those
details are appropriate to a separate paper.

A very different approach to better numerics is to use relaxation methods, already mentioned in
Sec. 2.3. In view of the large number of uncertainties about their application, we have started on a
basic study of relaxation methods in mixed PDE systems in PSW-type problems, but will continue

to explore a number of different numerical approaches to the PSW problem.
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Chapter 3

The periodic standing-wave
approximation: nonlinear scalar
fields, adapted coordinates, and the
eigenspectral method

Originally published as Phys.Rev. D71 (2005) 104017.

The periodic standing-wave (PSW) method for the binary inspiral of black holes and
neutron stars computes exact numerical solutions for periodic standing wave space-
times and then extracts approximate solutions of the physical problem, with outgoing
waves. The method requires solution of a boundary value problem with a mixed (hy-
perbolic and elliptic) character. We present here a new numerical method for such prob-
lems, based on three innovations: (i) a coordinate system adapted to the geometry of
the problem, (ii) an expansion in multipole moments of these coordinates and a filtering
out of higher moments, and (iii) the replacement of the continuum multipole moments
with their analogs for a discrete grid. We illustrate the efficiency and accuracy of this
method with nonlinear scalar model problems. Finally, we take advantage of the abil-
ity of this method to handle highly nonlinear models to demonstrate that the outgoing
approximations extracted from the standing wave solutions are highly accurate even in

the presence of strong nonlinearities.

3.1 Introduction

3.1.1 Background

The detection and interpretation of gravitational wave signals from inspiralling black holes or neu-

tron stars requires a solution of Einstein’s equations for the late stages of the inspiral [1, 2, 3]. Much
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effort is going into the development of computer codes that will evolve solutions forward in time.
For recent progress see [4, 5, 6]. Such codes will eventually provide the needed answers about the
strong field interaction and merger of the binary objects, but many technical challenges of such a
computation slow the development of the needed codes. This has led us to propose, as a near-term
alternative, the periodic standing-wave (PSW) approach. Elements of this approximation have
been introduced elsewhere [7, 8, 9], but are most thoroughly presented in a recent paper [10] that
we will hereafter refer to as “Paper I.” In the PSW approach, a numerical solution is sought to Ein-
stein’s equations, not for a spacetime geometry evolved from initial data, but rather for sources and
fields that rotate rigidly (i.e., with a helical Killing vector) and that are coupled to standing waves.

Paper I gives the details of how to extract from this solution an approximation to the problem of
interest: a slowly inspiralling pair of objects coupled to outgoing waves. Paper I also describes the
nature of the mathematical problem that must be solved numerically: a boundary-value problem
with “standing wave boundary conditions” on a large sphere surrounding the sources. The differ-
ential equations of this boundary value problem are mixed, elliptical in one region (inside a “light
cylinder”) and hyperbolic in another (outside).

The method of solution in Paper I was straightforward. The differential equations and boundary
conditions were implemented with a finite difference method (FDM) in a single patch of standard
co-rotating spherical coordinates. The equations were solved with Newton-Raphson iteration of a
sequence of linear approximations, and a straightforward inversion of each linear approximation.
The relative simplicity of this approach was useful to demonstrate the basic well-posedness and
solubility of the problem and to illustrate the important issues of the PSW method, especially the
“effective linearity” that explains the accuracy of the PSW approximation for the physical solution.
The method, however, has severe shortcomings. Multipole moments, and hence spherical coor-
dinates are necessary in the wave zone for the imposition of outer boundary conditions and for
the extraction of outgoing solutions from standing-wave solutions. Spherical, and other standard
coordinates are, however, not well suited to resolving the relatively small sources of the binary.
This is especially true if the sources are to be represented by boundary conditions on the outer
surface of a source, rather than by explicit source terms. The usual technique for handling such
problems is coordinate patches and interpolation. This would be particularly inconvenient for the
PSW computations since standard iterative approaches are inapplicable to mixed equations.

In this paper we report on an alternative approach, one that has the disadvantage of adding
some analytic complexity to the problem, and some worrisome features. But it is a method that
gives both remarkably efficient results for model problems, and a potentially useful new approach
to the coupling of moving sources to their radiation field. This new method is based on a coordi-
nate system that is adapted to the local structure of the sources and to the large-scale structure of

the distant waves. Though the PSW computations have been the proximate motivation for intro-
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ducing an adapted coordinate system, the success with this system suggests that its utility may be
more broadly applicable. Such coordinates, in fact, have already been exploited, even in numerical
relativity. “Cadez coordinates” [11, 12], a carefully adapted coordinate system of this type, was
used in much of the work on head-on collisions of black holes, and has more recently found to
be useful [13, 14] for initial data and apparent horizon finding. Like the Cade? coordinates, our
coordinate systems will reduce to source-centered spherical polar coordinates in the vicinity of the
sources, and to rotation-centered spherical polar coordinates far from the sources.

The core of the usefulness of the adapted coordinates is that the field near the sources is well
described by a few multipoles in these coordinates, primarily the monopole of the sources, and
that the field far from the sources is well described only by a few multipoles in these coordinates.
A spectral method (that is, a multipole decomposition), therefore, requires only a small number of
multipoles. We will demonstrate, in fact, that for mildly relativistic sources (source velocity = 30%
c), excellent results are found when we keep only monopole and quadrupole terms.

There is, of course, a price to be paid for this. For one thing, there is additional analytic com-
plexity in the set of equations. Another difficulty is the unavoidable coordinate singularity that is
a feature of coordinates adapted to the two different limiting regions. Still, the potential usefulness
of the method, and the success reported here have led to us treating this approach as the main focus

of our computations in the PSW work.

3.1.2 Nonlinear model problem

The innovative features of this method present enough new uncertainties that it is important to
study this method in the context of the simplest problem possible. We use, therefore, the same
model problem as in Paper I, a simple scalar field theory with an adjustable nonlinearity. We will
find it quite useful to set the nonlinearity to zero for comparison with the known solution of the
linear problem, since many features of our method are unusual even for a linear problem.

For the description of our model problem, we start with Euclidean space coordinatized by the
usual spherical coordinates r, 6, ¢, and we consider sources concentrated near the points r = q,
6 = 7/2,in the equatorial plane, and moving symmetrically according to ¢ = Qt and ¢ = Qt + 7.

As in Paper I, we seek a solution of the flat-spacetime scalar field equation
U.0.59°° + A\F = VU — 92U + \F = Source, (3.1)

where F' depends nonlinearly on ¥. The explicit form of F' will be the same as that in Paper L. This
will allow comparisons with the results of the very different numerical technique in Paper I, and, as
in Paper I, allows a very useful comparison of the near-source nonlinear solution with an analytic

limit.
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We are looking for solutions to Eq. (3.1) with the same helical symmetry as that of the source
motions, that is, solutions for which the Lie derivative £V is zero for the Killing vector £ = 0, +
0. It is useful to introduce the auxiliary coordinate ¢ = ¢ — Qt. In terms of spacetime coordinates
t,r, 0, ¢ the Killing vector is simply J; and the symmetry condition becomes the requirement that
the scalar field ¥ is a function only of the variables r, # and ¢. (We are assuming, of course, that
the form of the nonlinear term is compatible with the helical symmetry.) It is useful to consider the
symmetry to be equivalent to the rule

o — —Q0, 3.2)

for scalar functions. In terms of the r, 6, ¢ variables, Eq. (3.1) for ¥(r, 6, ) takes the explicit form

r2gin? 6

1 9 [ ,00 1 0 (. 0v 1 )\ 9%0 B
7’_2 E (’f' E) +m% (smH%) +< - Q ) 8—()02+)\F(\1/,7",9,g0) —SOUI‘CQ, (33)

that was used in Paper 1.

3.1.3 Outline and summary

The remainder of this paper has the following organization, and makes the following points. In
Sec. 3.2 we introduce the concept of adapted coordinates, co-moving coordinates that conform to
the source geometry near the source and that become spherical co-moving coordinates far from the
source. A particular system of adapted coordinates, two center bispherical coordinates (TCBC), is
introduced in this section. Though these coordinates are not optimal for computational accuracy,
they have the advantage of analytic simplicity and are the only adapted coordinates explicitly used
in the computations of this paper. Though the TCBC system is relatively simple it is still sufficiently
complex that that many details of the use of this method are relegated to Appendix 3.8.

In Sec. 3.2 we also discuss the use of these adapted coordinates in a FDM calculation, and ex-
plain the computational difficulties we encountered in trying to find stable solutions with this ap-
proach. These difficulties led us to use a spectral type method with the adapted coordintes. In
Sec. 3.3 we present the fundamental ideas of expanding the solution in spherical harmonics of the
angular adapted coordinates. In this section we also explain why we are not, strictly speaking,
using a spectral method since we do the angular differencing by FDM, not by relationships of the
spherical harmonics. (For background on spectral methods, and an important recent use of spec-
tral methods in numerical relativity, see [15].) Furthermore, we keep many fewer multipoles than
would in principle be justified by the number of points in our angular grid. This “multipole fil-
tering” is one of the most interesting and innovative aspects of our method. Because the adapted
coordinates in some sense handle much of the computation analytically only a few multipoles need

be kept. In most of the results, in fact, only monopole and quadrupole moments are kept.
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To illustrate a more standard spectral method, we present in Appendix 3.9 a standard spectral
approach to the linear PSW problem in two spatial dimensions described in TCBC coordinates.
The appendix also uses severe multipole filtering and serves to demonstrate in a very different,
and generally simpler, numerical context the fundamental correctness of multipole filtering.

For the problem in three spatial dimensions, we have found that a special technique must be
used for multipole expansion and multipole filtering. A straightforward approach would use the
continuum multipoles evaluated on the angular grid. We explain in Sec. 3.3 why this method in-
volves unacceptably large numerical errors, and why we introduce a second innovative numerical
technique, one that we call the “eigenspectral method.” In place of the continuum spherical har-
monics evaluated on the angular grid, we use eigenvectors of the angular FDM Laplacian. These
eigenvectors approach the grid-evaluated continuum spherical harmonics as the grid becomes finer
but, as we explain in this section, the small differences are very important in the multipole expan-
sion/filtering method. Some of the details of the eigenspectral method are put into Appendix 3.10,
in particular the way the FDM angular Laplacian can be treated as a self-adjoint operator.

Section 3.4 starts by presenting the details of the model scalar field problems to which we ap-
ply the eigenspectral method: the choice of the nonlinearity, and the justification for this choice; the
manner in which we choose data on an inner boundary taken to be the outer surface of a source; the
outer radiative boundary conditions; the Newton-Raphson procedure for finding solutions to non-
linear problems; and the method by which we extract approximate nonlinear outgoing solutions
from computed nonlinear standing wave solutions.

This is followed, in Sec. 3.5, by a presentation of numerical results that demonstrate conver-
gence of the method. These results show that the numerical methods are quite accurate despite the
inclusion of only a very minimal number of multipoles. In addition, the power of the numerical
method allows us to compute models with much stronger nonlinearity than could be handled with
the straightforward FDM of Paper 1. For these highly nonlinear models we confirm the “effective
linearity” that was demonstrated in Paper I with less dramatic models: the outgoing solution ex-
tracted from a standing wave solution is an excellent approximation to the true outgoing solution,
even for very strong nonlinearity. Conclusions are briefly summarized in Sec. 3.6.

Throughout this paper we follow the notation of Paper I [10]. (A few changes from the notation
and choices of Paper I are made to correct minor errors of Paper I: (i) The point source delta func-
tion is now divided by a Lorentz v factor, as explained following Eq. (3.47). (ii) The nonlinearity
parameter A was used with inconsistent dimensionality in Paper 1. Here X is consistently treated
as a dimensionless parameter, requiring the insertion of a factor 1/a? in the model nonlinearity of

Eq. (3.48).
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3.2 Adapted coordinates

3.2.1 General adapted coordinates

For the definition of the adapted coordinates it is useful to introduce several Cartesian coordinate
systems. We shall use the notation z,y, z to denote inertial Cartesian systems related to r,6, ¢
in the usual way (e.g., z is the rotation axis, one of the source points moves as x = acos (£2¢),

y = asin (Qt), and so forth). We now introduce a co-moving Cartesian system z, 3, z by
Z=rcosf Z =rsinfcos (¢ — Ot) y=rsinfsin (¢ — Q). (3.4)

In this system, as in the inertial z, y, z system, the z axis is the azimuthal axis. We next define the

~ =

ZY
y X
S
Xz

Figure 3.1: Two sets of co-moving Cartesian coordinates

comoving system

X=§ Y=2 Z-=7, (3.5)

in which the azimuthal Z axis is not the rotation axis, but rather is the line through the source
points, as shown in Fig. 3.1.

Our goal now is to introduce new comoving coordinates X(X,Y,2), 0(X,Y,Z), ®(X,Y,Z)
that are better suited to a description of the physical problem, and that allow for more efficient
computation. We will assume that the coordinate transformation is invertible, except at a finite
number of discrete points, so that we may write X , }7, Z,or Z,y, z as functions of y, ©, ®.

In terms of the comoving Cartesian coordinates, the helical symmetry rule in Eq. (3.2) takes the

o _9 O
o —-0(zL_7%)-_a(z22L_3x2 ). 36
! (3y yax) ( X az) (3.6)

form

Our nonlinear scalar field equation of Eq. (3.1) can then be written, for helical symmetry, as

2
— Xi) ¥ + AF = Source . (3.7)
07z

LY+ = — —
0X

2 2 2 ~
aw+a~\11+a~\11_92(zi
0xX2 Y2 972
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This field equation can be expressed completely in terms of adapted coordinates in the form

0*v *v v 0*v *w 0w
LU+ AF = Ay, o2 + Aoo == 762 + Aso = 792 +24v0 54 900 +24y0 5~ D\ 0D +2460 5ams 900
ov ov ov
+B, a + Be pTe) + Bs 7% + AF' = Sources . (3.8)

It is straightforward to show that the A;; and B; coefficients here are given by

Aw = 6X ) 6)( - QQAXX 3.9)
Aco = VO VO - Q%Age (3.10)
Agp = VO VO — 0 Agq (3.11)
Ao = Vx-VO-0246 (3.12)
A = Vx-Vo-Q%*4A 4 (3.13)
Aos = VO -V —Q%Age (3.14)
B, = V’x—-Q’B, (3.15)
Be = V?0-0°Bg (3.16)
By = V?®-Q0°Bs. (3.17)

Here the gradients, Laplacians and dot products are to be taken treating the X,Y,Z as Cartesian

coordinates, so that, for example,

3)( 3@ 8x 00 99 | 9x ax 8@

Vy: VO = . (3.18)
OX 90X 9y oY 9297

The form of the A;; and B; terms in Egs. (3.9)~(3.17) are given, for general adapted coordinates, in
Egs. (3.82)-(3.92).

3.2.2 A specific adapted coordinate system: TCBC

— 2a—. z

Figure 3.2: Geometric basis for the TCBC adapted coordinates

Before discussing general features of an adapted coordinate system, it will be useful to give

a specific example. For that example, we choose a coordinate system x, ©, ¢ that is particularly
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simple in form, though (as we shall discuss below) not the choice that is numerically most efficient.
The chosen coordinates are most easily understood by starting with the distances r and r» from the
source points, and with the angles ¢;, > shown in Fig. 3.2. The formal definitions of the adapted

coordinates are

- 2 - - 2 _ 1/4
X = Jrr= { {(Z - a) + X2+ YQ] [(Z - a) + X2+ Y2]} (3.19)
1 1 27V X2+ Y2
0 = 5(914—92):5‘56&1 1(22—a2—)z?—}~/2> (3.20)
& = tan! ()”(/?) . (3.21)

This choice is sometimes called “two-center bipolar coordinates” [16], hereafter TCBC, and is equiv-

alent to the zero-order coordinates used by Cadez [11, 12].

Figure 3.3: Adapted coordinates in the z, i plane, and three-dimensional coordinate surfaces

An attractive feature of this particular choice of adapted coordinates is that the above relation-

ships can be inverted in simple closed form to give

- 17

7z = \/5 a2 + x2 cos 20 + /(a* + 2a2x2 cos 20 + x4) } (3.22)
X = \/% a2 — X2 0820 4 +/(a* 4 2a2x2 cos 20 + x*4) } cosP . (3.23)
Yy = \/% a2 — X2 0820 + /(a* + 2a2x2 cos 20 + x?) } sin® . (3.24)

The meaning of the x, © coordinates in the 7, y plane (the Z, X plane) is shown on the left in Fig. 3.3;
a picture of three-dimensional x, ©, and ® surfaces is shown on the right.
The geometrical definition inherent in Fig. 3.2 suggests that the adapted coordinate surfaces

have the correct limit far from the sources. This is confirmed by the limiting forms Egs. (3.22)-
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(3.24) for x >> a. Aside from fractional corrections of order a?/x? the relations are
Z—>xcos@ )~(—>xsin@cos<1> l~/—>xsin®sin®. (3.25)

Near the source point at 7 = +a, the limiting forms, aside from fractional corrections of order
x?%/a?, are

> X2 v _ X > X
Z — ta+ o5 cos (20) X — % sin (20) cos ® Y — % sin (20) sin @ . (3.26)
a a a

These limits, and Fig. 3.2, show that near the source point at Z = a the expression x2/2a plays the
role of radial distance, and 26 plays the role of polar coordinate. (Near the source point at Z = —a,
the expression x?/2a again plays the role of radius, but the polar angle is 7 — 26.) Notice that both
for the near and the far limit, the polar angle is defined with respect to the line through the sources,
the Z axis, not with respect to the rotational Z axis.

It is clear that our new system has a coordinate singularity at the origin. Indeed, there must
be a coordinate singularity in any such adapted coordinate system. The switch from the small-y
coordinate surfaces, disjoint 2-spheres around the sources, to the large-x single 2-sphere cannot
avoid a singularity.

The remaining specification needed is the outer boundary conditions on some large approxi-
mately spherical surface x = Xmax. For the monopole moment of the field this condition is simply
that the field dies off as 1/x. For the radiative part of the field we use the usual Sommerfeld out-
going outer boundary condition d;¢) = —0,, approximated as 0;¢) = —0,1. The fractional error
introduced by this substitution is of order a?/x?. The Sommerfeld condition itself is accurate only
up to order (wavelength/r). Since the wavelength is larger than a, our substitution » — y in the
outer boundary condition introduces negligibly small errors. To apply the helical symmetry we use
the replacement rule in Eq. (3.6) and the outgoing boundary condition becomes

N} BT PN ) )
8X_Q<Za)~( Xaz)_§2<l“ e 8x)’ (3.27)

where the I's are given explicitly in Appendix 3.8. At large x the outgoing condition can be written

L Y
96 smno Sln‘l’a—@) (1+0(a®/x?)) - (3.28)

The correction on the right is higher-order at the outer boundary x = Xmax and can be ignored.
The ingoing boundary condition follows by changing the sign of the right hand side of Eq. (3.27)
or (3.28).

The problem of Egs. (3.8) and (3.28) is a well-posed boundary-value problem analagous to that
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in Paper I [10]. As in Paper I, this problem can be numerically implemented using the finite dif-
ference method (FDM) of discretizing derivatives. The difference between such a computation and
that of Paper I is, in principle, only in the coordinate dependence of the coefficients (A4,,, Aeo, - - )

that appear in the differential equation and (I'®, - - -) in the outer boundary condition.

3.2.3 Requirements for adapted coordinates

For the scalar problem, there are obvious advantages of the coordinate system pictured in Fig. 3.3.
First, the surfaces of constant y approximate the surfaces of constant ¥ near the sources, where
field gradients are largest, and where numerical difficulties are therefore expected. Since the vari-
ation with respect to © and @ is small on these surfaces, finite differencing of © and ® derivatives
should have small truncation error. The steep gradients in x, furthermore, can be dealt with in
principle by a reparameterization of x to pack more grid zones near the source points. An addi-
tional, independent advantage to the way the coordinates are adapted to the source region is that
these coordinates are well suited for the specification of inner boundary conditions on a constant x
surface. Because of these advantages we shall reserve the term “adapted” to a coordinate system
for which constant x surfaces near the source approximate spheres concentric with the source.

A second feature of the TCBC coordinates that we shall also require in general, is that in the
region far from the sources, x,0,® asymptotically approach spherical coordinates, the coordinates
best suited for describing the radiation field. If the approach to spherical coordinates is second-
order in a/r, then the outgoing boundary conditions will be that in Eq. (3.28).

There are practical considerations that also apply to the choice of adapted coordinates. The co-
efficients of the rotational terms in the equation (i.e., those involving A;; and B; in Egs. (3.9)-(3.17))
require computing second derivatives of the transformation from Cartesian to adapted coordinates.
If those relationships are only known numerically, these second derivatives will tend to be noisy.
For that reason, a desirable and perhaps necessary feature of the adapted coordinates is that closed
form expressions exist for x(z,y,%), and ©(z,y,z). (The expression for ®, the azimuthal angle
about the line through the source points, is trivial.) It is possible in principle, of course, to have the
adapted coordinates defined without respect to the Cartesians. In the scalar model problem, the
coordinates could be defined by giving the form of the flat spacetime metric in these coordinates.
The nature of the helical Killing symmetry, analogous to Eq. (3.6) would still have to be specified
of course. The choice of adapted coordinates becomes a much richer subject in the case of the
gauge-fixed general relativity problem that is the ultimate goal of the work; see [17].

The TCBC coordinates satisfy all the practical requirements of an adapted coordinate system. In
particular, the functions x (%, y, z), and O(Z, 7, z), as well as their inverses, are all explicitly known in
terms of elementary functions. Though the TCBC coordinates are therefore convenient, in addition

to being well suited to the problem in Eq. (3.1), they are not optimal. The perfect coordinates would
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be those for which the constant x surfaces agree exactly with the constant ¥ surfaces. This of course
is impossible in practice (and, in addition, would not be compatible with the requirement that the
coordinates go asymptotically to spherical coordinates). We should therefore modify the criterion
for the “perfect coordinates” to that of having ¥ constant on constant y surfaces for no rotation
(€ = 0). The TCBC coordinate system, in fact, does satisfy that requirement for the version of the
problem of Eq. (3.1) in two spatial dimensions with no nonlinearity, as detailed in Appendix 3.9.
Due to this “near perfection” of the TCBC coordinates for the linear two-dimensional problem we
found that we were able to achieve very good accuracy for that case with moderate rates of rotation.

These considerations suggest that we could achieve an improvement over the TCBC coordi-
nates, by choosing x to be proportional to solutions of the nonrotating case of Eq. (3.1) in three
spatial dimensions. Since the nonlinear case would result in a solution that is known only numeri-
cally, we can follow the pattern of the two-dimensional case and choose x simply to be proportional
to the solution of the linear nonrotating three-dimensional problem. The © coordinate that is or-
thogonal to this xy would have to be found numerically, and would therefore be troublesome. But
there is no need for © and y to be orthogonal. We could, therefore, use the TCBC definition of © in
Eq. (3.20). An improved set of adapted coordinates, then, would seem to be

1 /1 1 1
X= = <—+—) 0= (6 +6), (3.29)
1 T2 2

where r;, 0; are the distances and angles shown Fig. 3.2.

In this paper, we shall report only numerical results from the simplest adapted coordinate sys-
tem to implement, the TCBC coordinates. There are two reasons for this. The first is the obvious
advantages of working with the simplicity of the TCBC case, and the advantage of having simple
explicit expressions for all coefficients in Eq. (3.8). The second reason that we do not use the appar-
ently superior adapted coordinate in Eq. (3.29), is that we do not expect there to be an equivalent
for the general relativity problem. In that case there will be several different unknown fields to
solve for, and there is no reason to think that the optimal coordinate system for one of the fields

will be the same for the others.

3.3 Spectral methods with adapted coordinates

The wave equation in Eq. (3.8), along with the boundary conditions Eq. (3.28), can in principle be
solved by imposing a x, ©, ® grid and by using FDM. In practice, numerical problems hinder a
straightforward finite difference computation. Evidence for this is shown in Fig. 3.4, in which the
error (the difference between the computed solution and the analytic solution) for the linear out-

going problem is plotted for different locations of the outer boundary xma.x. As Fig. 3.4 shows, the
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quality of our solutions was highly sensitive to small changes in grid parameters, such as the loca-
tion of the outer boundary. We attribute these difficulties to the orientation of the finite difference
grid at large distance from the source. Loosely speaking, the spherical polar grid is “aligned” with
the solutions, and errors are distributed evenly on the grid. Adapted coordinates become spherical
polar at large distances, but the polar axis is aligned with the sources, not with the rotation axis.
The result may be a nonuniform distribution of errors, which effectively excites spurious modes

analogous to modes excited inside a resonant cavity.
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Figure 3.4: Error in the computed outgoing linear solution as a function of the location of the outer
boundary. Results are shown both for straightforward FDM in adapted coordinates and for the
eigenspectral method, explained in the text, with only monopole and quadrupole terms kept.

An attractive alternative to FDM is to expand ¥ in a complete set of functions of the angular
coordinates © and ®. Since one of our goals is to describe the radiation in the weak wave zone,
and since © and ® approach co-moving spherical coordinates in the weak wave zone, the natural
set of basis functions is the spherical harmonics Y, (0, ®). In terms of these we would look for a

solution of Eq. (3.8) in the form
U= " > am()Ym(©,®). (3.30)

(The odd /s are omitted due to the symmetry of the problem.)
The possibility of such a spectral method has been introduced in Paper I as a potentially power-
ful way of dealing with radiation from moving sources. The reason for this is that near the source

points the field is nearly spherically symmetric, and hence can be described with very few mul-
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tipoles. Far from the source, the contribution from multipoles of order /¢ scale as (af2)*, so the
radiation field is dominated by the monopole and quadrupole, and again can be described with
very few multipoles. It is, therefore, plausible that with very few multipoles—perhaps only the
monopole and quadrupole—the fields everywere can be described with reasonable accuracy.

In the multipole method, the expansion in Eq. (3.30) is substituted in Eq. (3.8) to give

dzafm a }/lm 82}/Zm 82}/5771 8}/lm 8}/lm
U=S" L 4 Vil tam(x) |A +A 246 Be B
£ 2 "y Ao Yem]+aem(X) { 00 gz TAre e T leegaag T Pe g TP g
dagm OYm OYim
Zf( [ZAX@ o+ 22" + By Yo | (3.31)

The next step is to project out ordinary differential equations. This is most naturally done by
multiplying by some weight function W (x, ©) and by Y;,,,/, and by integrating over all © and ®.

The result is our multipole equations

dafm (X)

dPagm,
Zow om—— 5 Z ( ) + Bermem@em(X) + Yerm em Fa Sem (3.32)
where Sy, is the multipole of the source term, and where
27 ™
Cpmitm = / i / 40 W (X, 0) Y (8, ®) Ay Vi (O, ©)
0

27 ™
Bormrem = / dcb/ 40 W(x,0) Y;,.,(0,®) x
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The problem with this straightforward approach to multipole decomposition is that the angular
integrals needed for the projection are very computationally intensive, and the solutions of the dif-
ferential equations in  are very sensitive to the values of the as, s, and ~s, that are computed by
these projection integrals. These shortcomings do not apply to the 2-dimensional version of the he-
lically symmetric wave equation. In that case the projection integrals involve only a single integra-
tion variable, and it proves to be fairly easy to compute accurate angular integrals. We present the
straightforward 2-dimensional multipole expansion in Appendix 3.9. This is meant to illustrate the
multipole expansion in a particularly simple context, but more importantly it demonstrates a cru-
cial point, that we can get excellent accuracy by keeping only two multipoles. This 2-dimensional
computation also illustrates the alternative definiton of standing waves, that of minimum wave
amplitude, as sketched in Paper L

It turns out that for the 3-dimensional problem, even with only a small number of multipoles,
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there are two classes of severe computational difficulties. First, the projection integrals in Eq. (3.33)
are very computationally intensive, especially due to the singularity at © = 7/2 for x/a < 1, a
singularity that must be canceled in the projection integrals by the choice of the weight function
W (x, ©). In trials with the linear problem, and in comparisons with the known exact answer, we
have found that accuracy of the computed field is poor unless the integrals are done very precisely.
A second, quite distinct, difficulty is related to the projection at the outer boundary. An outgoing
boundary condition is applied to as,, for £ > 0. The radiative moments, however, are much smaller
than the monopole moment aq. Projection of a a,, moment with ¢ > 0 will be contaminated by
the much larger monopole moment ago, due to small numerical inaccuracies in the projection. We
have found this to be a problem even in the simplest (static linear) models.

We have used an alternative approach to multipole decomposition and multipole filtering, an
approach that gives excellent results for the nonlinear scalar models and promises to be similarly
useful in gravitational models. Underlying this approach is the concept that the angular nature of
the multipole components of the radiation field is determined by FDM operations, in particular by
the FDM implementation of the Laplacian. The properties of the spherical harmonics that make
them useful in the continuum description of radiation is taken over, in FDM computations, by the
eigenvectors of the FDM Laplacian.

To implement this idea we start by viewing the grid values of the scalar field ¥ on a constant-x

surface as a vector ¥ whose components are most conveniently expressed with a double index
Wi = (0, )). (3:34)

Here ©; and ®; are the values on the ©, ¢ grid with spacings A© and A®. It follows that ¥ is a
vector in a space of dimension N = ng X ng.
In the ©, ® continuum, the angular part of the Laplacian at x/a > 1 is the operator

_1 o
(5in@)2 992

) B
2 — - 1 -
Vans = 518 56 {Sm@ a@] +

(3.35)

In a FDM this is replaced by an operator in the N-dimensional space of angular grid values. Our
eigenspectral method is based on finding the eigenvectors of this N-dimensional operator.

The i, j component of the eigenvector will have the form Yigk) which should be a good approxi-
mation to some Y;,,(0;, ®;), i.e., to some continuum spherical harmonic evaluated at grid points.
(In practice we work only with real eigenvectors that are approximations to normalized real and
imaginary parts of the grid-evaluated spherical harmonics.) In Fig. 3.5 continuum spherical har-
monics are compared to the eigenvectors found for a grid with ne x ne=16 x 32 on an angular
domain 0 < © < 7/2,0 < ® < 7. As might be expected, the agreement between eigenvector

and continuum function is quite good when the scale for change of the continuum function is long
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compared to the spacing betwen grid points.

The eigenvalues found for the discrete and continuum angular Laplacians are in good agree-
ment for small eigenvalues. For the discrete problem we define an effective multipole index ¢ in
the obvious way, by setting —{(¢ + 1) equal to the eigenvalue for each eigenvector. A comparison
is given in Fig. 3.6 of the integer continuum values of ¢ and those found for a 16 x 32 grid on the
region 0 < © < 7/2,0 < & < . (Unlike the spherical harmonics, the eigenvectors are not degener-
ate, so there is a small range of £ values of the eigenspectral method corresponding to each / of the
continuum problem.) For the discrete operator the eigenvectors) For our problem the other angu-
lar regions are related by symmetry. These symmetries also eliminate the odd values of ¢ omitted
from Fig. 3.6. The figure shows that for small ¢ there is good agreement between the discrete and

continuum eigenvalues. Because of this we can refer to monopole, quadrupole, hexadecapole, ...

eigenvectors without ambiguity.

amplitude
amplitude

Y N T R

f(radians) f(radians)

Figure 3.5: The eigenvectors for a 16 x 32 grid compared to the corresponding continuum eigen-
functions, the spherical harmonics. The continuous curves show the spherical harmonics; the data
points are the components of the eigenvectors.

In the mathematics of the grid space, two vectors F;; and G; are taken to have an inner product

ne nae
F-G=Y > F;Gijsin(0;)A0 AD. (3.36)

i=1 j=1
With some care, detailed in Appendix 3.10, we can construct the FDM angular Laplacian to be self-
adjoint with respect to the inner product in Eq. (3.36). This guarantees that the eigenvectors can

be chosen to be orthogonal. We complete the analogy to the spherical harmonics by choosing the
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eigenvectors to be normalized, so that we have

ne ne

SN YV sin(0,)A0 Ad = b (3.37)

=1 j=1

(This normalization has been used for the eigenvectors shown in Fig. 3.5.) With these definitions

we can now write a multipole expansion as

U(x,0:,9;) =Y aP (v, (3.38)
k
with
ne ne
a®(x) =3 W(x, 0,0V sin(0,) A0AD. (3.39)
=1 j=1

discrete

{

continuum

Figure 3.6: The ¢ values of the discrete angular Laplacian on a 16 x 32 grid compared with the integer
¢ values of the continuum angular Laplacian. The eigenvectors of the discrete angular Laplacian
are not degenerate, so a cluster of several ¢ values of the eigenspectral method corresponds to a
single ¢ value of the continuum problem.

The multipole filtering that was the motivation for the introduction of the spectral decomposi-
tion is implemented simply by limiting the terms included in the sum in Eq. (3.38). Rather than
include all eigenvectors, only those with ¢ < /.. are included. Since the discrete /s are never
larger than the continuum /s, a choice ¢,,.x = 5 means that the monopole, quadrupole, and oc-

tupole terms, with ¢ ~ 0,2, 4 are included. The effect of the eigenspectral method and multipole
filtering are the suppression of the large FDM boundary-related errors, as illustrated in Fig. 3.4.
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In this method the k£ summation in Eq. (3.38) stops at some maximum value governed by /,,.x,
and the equations to be solved are the following modifications of Egs. (3.32):

a®

d? da™®
> O"“'kdiX?(X) + Broa™ (x) + i X
k

= S . (3.40)

In place of Eq. (3.33) the coefficients in this sum are now evaluated from

apr = Y®) o4 y® (3.41)
) 2y (k) 2y (k) 2y (F) oy (k) oy (k)
b = Y®) Ao — +24¢ 5 B 3.42
Bk { 00 5gz T Ave g +2des oo + Be—5— + Bo— (3.42)
, oY (k) oY (k)
")/k/k = Y(k ) . |:2AX@W + 2AX<I>W + BX}/gm:| 3 (343)

where it is understood that the angular derivatives are computed by finite differencing. In the

effective source term,
S = - P (3 ahy®) (3.44)

only the nonlinearity appears. There is no “true” source term since we solve only outside the source
and introduce the properties of the source through boundary conditions.

Our method is clearly spectral in flavor, but it is worth pointing out explicitly that this method
is not a spectral method according to the meaning usually given to that term in numerical analysis.
If it were a spectral, or pseudospectral (collocation) method, then angular derivatives in the field
equations and boundary conditions would be taken using properties of the spectral functions. (If
the decomposition were done into continuum spherical harmonics, for example, a spectral method
would evaluate 0¥ /00 by using relations among the spherical harmonics.) In our method, angu-
lar derivatives are taken by finite differencing, not by relations among the eigenvectors and their
angular derivatives. We could, in principle, convert our method to one that meets the “spectral
method” (actually pseudospectral) definition. We could use finite differencing to compute, once
and for all, relations among the eigenvectors and their derivatives. These relations could then be
used to replace any derivative by a linear combination of eigenvectors. We have, however, not
explored this approach.

Some comment must be made about a subtle but fundamental point in our spectral method.
For a given x < a, the angular specification © = /2 refers to a single point on the Z axis; the
value of ® is irrelevant. On the other hand, the function Yy, (7/2, ®), for even £ and m # 0 is, in
general, not a single value. There are, then, terms in Eq. (3.30) that in principle are multivalued at
X < a,0 = 1/2. We can, of course, delete the value © = 7/2 from our grid. (And we, in fact, delete
this value for several reasons, such as the requirement that the FDM Laplacian be self-adjoint; see

Appendix 3.10.) We still have the problem that the variation of these awkward terms diverges as
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A© — 0 and the grid converges to the continuum. In principle, for any A© the summation in
Eq. (3.30) at any grid point will approach (in the mean) the correct answer if we include enough
multipoles.

In practice, we include very few multipoles. We must therefore ask whether the summation
will give a highly inaccurate answer in the region of the x < a grid near © = 7/2. We avoid
this problem by choosing source structures that are symmetric about the Z axis. This means that
at some inner boundary xmin, we set the nonaxisymmetric a®) to zero. The radial equations, the
FDM eigenspectral versions of Eq. (3.32), do mix the a*), so the nonaxisymmetric a(¥) will be
generated. But the mixing of the multipoles is small until  is on the order of a. As a consequence,
the nonaxisymmetric a(*) can play their needed role in the wave region without generating large
errors in the near-source region.

This behavior of the coefficients is illustrated in Fig. 3.7 for an outgoing linear wave. The solid
curve shows, as a function of y, the eigenspectral coefficient a*) corresponding to the ¢ = 2 mode
that is symmetric about the source axis 7, that is, the mode corresponding to Y20(©, ®); the dashed
curve shows the eigenspectral mode corresponding to the real part of Y2, (O, ®). In both cases, the
value of the coefficient is divided by the value of the monopole coefficient to give a better idea of
the relative importance of the mode in determining the overall angular behavior. The Y5((©, ®)
mode, which does not involve multivalued behavior on the Z axis has a nonnegligible coefficient
at small x. By contrast the Y22(0, ®), which is multivalued, has a very small coefficient, one that
is two orders of magnitude smaller than the monopole, up to x ~ 1. For larger x this mode gets

“turned on,” as it must, since it is part of the radiation.

3.4 Models and methods

Nonlinear scalar models

The model problem of Paper I, in the original co-moving spherical coordinate system is
L(Y) = e [¥], (3.45)
with £ taken to be
L= %2% (ﬁ%) +W1mo% (sin@%) + [m—m} 8‘9—;, (3.46)
and with the effective source terms

oen[¥] = point source — AF. (3.47)
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Figure 3.7: The x dependence of the eigenspectral mode coefficients. The solid curve shows the

coefficient of the mode Y3 that is symmetric about the 7 axis; the dashed curve shows the real part
of Y5,. In both cases the plot shows the coefficients divided by the monopole coefficient.

In Paper I an explicit delta function term was used in o.g to represent the point source. Here
we compute only outside the source and include source effects by the inner boundary conditions
described below.

Our choice of the nonlinearity function F is

5

F= % ﬁ , (3.48)

in which ¥, is an adjustable parameter that we set to 0.15 or 0.01 in the numerical results to be

reported. As detailed in Paper I, this choice of F' allows us to make useful estimates of the action of
the nonlinearity. We briefly review this feature here.

We define R to mean distance from a source point, and we identify Ry, as the characteristic

distance separating the |¥| > |¥;| near-source nonlinear region, and the |¥| <« |¥,| distant region

in which nonlinear effects are negligible. In the nonlinear region near a source of strength Q)/a the

solution approximately has the Yukawa form

Q e—\/jR/a

PO AR ) 4
w IRja near source pt (3.49)

We can estimate Ry, by taking it to be the value of R at which the expression in Eq. (3.49) is equal
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to Uy:
Q e~ V—X Rin/a

Py =V,. (3.50)
If Ry, is significantly less than a, which it is for most of the models we consider, then we can ap-
proximate V¥ as having the Yukawa form in Eq. (3.49) out to Rjin. For R > Ry, the linear Coulombic
form should apply. We can therefore view exp (—v/—\ Riin/a) as a factor by which the strength of
the source is reduced. Since the waves are generated at distances from the source much greater than
Ry, the wave amplitude as well as the monopole moment of the source should be reduced by this
factor. We saw in Paper I that these estimates were in reasonably good agreement with the results
of computation, good enough to give confidence of the fundamental correctness of the picture on

which the estimate is based. We therefore use this picture in the present paper in interpreting some

of the computational results.

Boundary conditions
In Paper I the source was taken to be two unit point charges moving at radius a

—10(r—a)

5(0 —m/2) [6(p) + (0 —m)] - (3.51)

Here 1 is the Lorentz factor 1/v/1 — a2Q2 . This factor is necessary if the source is to correspond
to points of unit strength as measured in a frame co-moving with the source points. (This factor
was inadvertently omitted from the source in Paper 1. In that paper only the case a2 = 0.3 was
studied, so we may consider the point sources in Paper I not to have been unit scalar charges, but
source points with charges v = 1.048.) In the present paper we specify inner boundary conditions
on some surface Xxmin rather than an explicit source term as in Paper I. Our standard choice for the
inner boundary conditions will be those that correspond to the point sources of Eq. (3.51). For this
choice of source and for y,i, < @ and < (—/\)*1/ 4q, we can use an approximation for a single
source point.

In notation appropriate to the 3D case we have
R? =724+ X - pt)2 +v? (3.52)
Now we use the transformations of Eq. (3.22)-(3.24) to get

Yt B 2 X4
R? = T 4 (72 - 1) (X — ﬂt) +0x% = T [1 + (72 - 1) sin? 20 cos? <I>] (3.53)
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For a unit strength source at position 1, the field near position 1, due to source 1, should be

11 12 1
_2 .
R dm x \/1+ (v2 — 1) sin? 20 cos? @

Y= (3.54)

The outer boundary condition in our computation is based on the the Sommerfeld condition in
Eq. (3.28); the ingoing condition is identical except for a change of sign. These radiative boundary
conditions should be applied only to the radiative part of the wave. This is done by applying
the conditions to the sum on the right side of Eq. (3.38) with the monopole mode omitted. The
multipole components of this outer boundary condition are then projected out. The monopole

moment, of course, is nonradiative. Since it falls off at large distances as 1/, the outer boundary

Ja©®  a®
( ZX +"7> —0. (3.55)

condition is taken to be

Xmax

Extraction of an outgoing approximation

In Paper I, we explained how to extract a good approximation of the outgoing solution from the
computed standing-wave solution. That explanation started with the solution of the linearized

problem

btndcomp Z Z Qym (T)vam (97 QO) . (356)

even { m=0,£2,+4..

We keep that notation here, but understand that (i) the role of the continuum spherical harmonics

is played by appropriate linear combinations of the eigenvectors, that (ii) the role of the coeffi-

cients gy, is played by appropriate linear combinations of the coefficients a(*) (), and that (iii) the
summations only extend up to £, ax.

As in Paper I, this form of the computed standing-wave solution is compared with a general

homogeneous linear (A = 0) standing-wave (equal magnitude in- and outgoing waves) solution of,

with the symmetry of two equal and opposite sources,

Vinain = > Yeu(0,9) |} Conh (mQr) + 1 C;mhf)(mm)} . (3.57)
even/,m

A fitting, in the weak-field zone, of this form of the standing-wave multipole to the computed
function ay,, (r) gives the value of Cy,.
By viewing the linear solution as half-ingoing and half-outgoing we define the extracted outgo-

ing solution to be

Vexout = ST Yem(0.9) ComhY (mQr) | (3.58)

even ¢ m=0,£2,%4..

Since this extracted solution was fitted to the computed solution assuming only that linearity ap-
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plied, it will be a good approximation except in the strong-field region. In the problems of interest,
the strong-fields should be confined to a region near the sources. In those regions, small compared
to a wavelength, the field will essentially be that of a static source, and will be insensitive to the
distant radiative boundary conditions. As explained in Paper I, the solutions in this region will be
essentially the same for the ingoing, outgoing, and standing-wave problem. In this inner region
then, we take our extracted outgoing solution simply to be the computed standing-wave solution,

so that

(1) . )
Yo Comh weak field outer region
2 Yo Cemhy 8 (3.59)

Yexout =
Ystndeomp strong field inner region

The transition between a strong field inner region and weak field outer region can be consid-
ered to occur in some range of x. The maximum Y in this range must be small compared to the
wavelength 1/, and the minimum y must correspond to a distance from the source larger than
our estimate of Ry,. [See Eq. (3.50).] For distances R from the source that are of order a or less,
X ~ V2aR so the the minimum Y in the transition region should be larger than y ~ /2a R, -

In order for the extracted solution to be smooth at this boundary, we construct our extracted
solution by using a blending of the strong-field inner solution and the weak-field outer solution

over a range from Xiow t0 Xnign. In this range we take

\Ijexout = ﬂ(X) Z Yvﬁmcfmhgl) + [1 - ﬁ(X)] \Pstndcomp . (360)
Here
. 2 _ 3
Blx) =3 [7X Xlow } —2 {*X Xow } : (3.61)
Xhigh — Xlow Xhigh — Xlow

so that 8(x) goes from 0 at x = X1ow to unity at x = Xnignh and has a vanishing y-derivative at both
ends. In principle we should choose x = Xnizh to depend on the location of the wave zone, and
hence on 2, and in principle we should choose x = xiow to depend on the nature of the nonlinearity,
and hence on A and ¥,. In practice we have found it to be adequate to choose xnigh = 2a and

Xhigh = 3a for all models.

Nonlinear iteration

The computational problem of finding a solution ¥ consists of finding a set of coefficients a*) (y)
that satisfy the field equation Egs. (3.40) along with the inner and outer boundary conditions. The
operations on the left-hand side of Eqs. (3.40) are linear on the a(*) (), as are the boundary condi-

tions, so the problem of finding the a¥) () can be written as

Z ﬁk/ka(k) = fk/({a(”)}) s (362)
k
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where Ly, is a linear differential operator on the a*)(y), and where F/ ({a(”)}, containing the
nonlinearity in the model, is nonlinear in the a®) ().

For different boundary conditions (outgoing or ingoing) the linear operator £, has different
forms, but in either form we can invert to get the outgoing or ingoing Green functions £;,;*"" and

L, In principle we can then find solutions by direct iteration
k —1,0u k —1,in
51-1-)1 out — Z Lk’k ' ( { Slplut )) §z+)1 in Z Lk’k ( an 1n}))

0 gma = 203 { Lo+ Lo (B ({alna)) - (3.63)
k

In Paper I it was pointed out that this kind of direct iteration converges only for weak nonlin-

earity. More generally we use Newton-Raphson iteration and solve

al . (3.64)

OF
Zk: [ﬁk'k G

OF
agbp>‘| fﬁrl = Fur ({a P)}) Z 3(1(12) s

This Newton-Raphson approach can be applied to find outgoing, ingoing and standing-wave so-

lutions analogous to those in Egs. (3.63). It has been applied with an error measure

maxx 77 i

kmax Tx
€= J 2 . > (a0 - ag’“jl(xz))g . (3.65)

Iteration was halted when this error measure fell below ~ 1076, Note that for strongly nonlinear
models, convergence sometimes required that the iteration described in Eq. (3.64), had to be some-
what modified. The last term on the right in Eq. (3.64), had to be weighted by a factor less than

unity, at least until the iteration got close to the true solution.

3.5 Numerical results

If numerical results are to be trusted they must converge, or at least be stable, as computational
parameters (grid size, etc.) change, and there must be evidence that the result is the correct answer
to the physical problem. A complication in demonstrating this is that at the same time we are mak-
ing two different classes of approximations: (i) we use values on a grid in place of the continuum
mathematics, (ii) we are keeping only low-order multipoles. In addition, to represent point sources
we use approximations for inner boundary data that are exact only only for ymin — 0. Our outer
boundary conditions in Eq. (3.55) also add an error, in principle one of order (a/xmax)?, but we
have found that this error is negligible compared to that of our other approximations. (Moving the

boundary outward has no discernible effect on results.) Here we present results of varying the grid
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Figure 3.8: Comparison of exact and eigenspectral linear outgoing solutions. The solid curve shows
the exact solution, in the wave region, computed from an infinite series. The other curves show the
result of computation with a grid with n, X ng x ne=12001 x 16 x 32and Xmin/a = 0.2, Xmax/a = 75.
Results are shown with ¢;,,.x = 3 (monopole and quadrupole modes kept) and /,,.x = 5 (monopole,
quadrupole, and hexadecapole). The results are shown at © = 0 as a function of r, the distance from
the center of the configuration.

resolution, the number of multipoles kept, and the inner surface xin on which inner Dirichlet data
is set.

Error is most easily measured for solutions to the linear problem since there exists an exact series
solution for comparison. Figure 3.8 shows a comparison of this series solution with computed
solutions for two different source speeds af2. The qualitative features of these plots agree with
what should be expected: the eigenspectral/multipole filtering technique is more accurate at lower
source speed, and is more accurate when more multipoles are allowed to pass through the “filter.”
(Of course, there will be a point of diminishing returns. If we let too many modes through then
we are no longer filtering, and we experience the difficulties that plagued the FDM method for
adapted coordinates.)

An obvious unwelcome feature of the results with /,,.x = 5 is the phase error in the hexade-
capole mode. This error is especially noticeable in the af) = 0.5 plot where it causes an artifact
fine structure at the positive peak of the waves. We are investigating the source of this phase error
which we suspect is a result of truncation error in angular differencing and/or in the computation
of the eigenvectors. We have anecdotal evidence that the phase error decreases as the angular grid
is refined.

The reliability of the eigenspectral method for a wider variety of linear models is presented in
Table 3.1. In this table, the measure of error is the value of Q.g, the monopole moment computed
near the outer boundary for the “charge,” i.e., the monopole moment of the two sources each with

scalar charge ()/a = 1. Though the monopole moment would seem to be less interesting than
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Table 3.1: Convergence for rotating linear models. All models have a{2 = 0.3, A = 0, and use
outgoing boundary conditions at xmax = 50a. The computed monopole to source strength index,
vQer/ @, is unity in the exact solution. The “two region” computation retains all multipoles for
x < 3a.

Ny ne ne Xmin/a Emax WQeH/Q two l'egion
1001 8 | 16 0.2 3 1.0116 -
2001 | 16 | 32 0.2 3 1.0246 -
4001 | 16 | 32 0.2 3 1.0275 -
8001 | 16 | 32 0.2 3 1.0282 -
16001 | 32 | 64 0.2 3 1.0284 -
8001 | 16 | 32 0.2 3 1.0282 -
8001 | 16 | 32 0.2 5 1.0036 1.0035
8001 | 16 | 32 0.2 7 0.9968 0.9966
8001 | 16 | 32 0.2 9 0.9934 0.9928
16001 | 16 | 32 0.2 5 1.0037 -
16001 | 16 | 32 0.1 5 1.0036 -
16001 | 16 | 32 0.05 5 1.0032 -
16001 | 16 | 32 | 0.025 5 1.0007 -

features of the radiation, we have found in essentially all computations that the largest error is
in the monopole. For example, the majority of the error in the computed amplitude of radiation
could be understood to be due to the error in the monopole. The error in the ratio of radiation
amplitude to monopole was several times smaller than the raw errors in either quantity by itself.
For simplicity we use this one measurement to characterize convergence and correctness.

To show that the computed solution is accurate it is convenient to consider first the linear out-
going problem for two unit point charges, since the solution for this case is known to be Qcg = 1/7,
where ~, the Lorentz factor, is 1/v/1 — a?Q2 . (The complete solution for V¥ in this case is given as
Eqg. (10) of Paper I, though the series solution must be multiplied by 1/ since we are now consid-
ering unit charges.)

Table 3.1 presents results for linear (A = 0), rotating (a2 = 0.3) models, for scalar source points
with unit charge. For all models the inner boundary conditions were those of the small-y point
approximation given in Eq. (3.54) at some Xin. The number of multipoles kept is specified by the
parameter {y,,x. Choosing /1.« = 3 means that modes corresponding to monopole and quadrupole
were kept; /.« = 5 means that in addition the hexadecapole was kept; and so forth. The accuracy
criterion used is the quantity vQ.g/Q, the value of which is unity in the exact solution.

The results in the table are divided into three sections. In the first section the number of grid
points n,, ne, and ne, was varied, while the values of xmin and fn,.x are kept fixed. The results
show 3% accuracy, and demonstrate that, for the parameters of this computation there is no advan-
tage to grid size larger than 8001 x 16 x 32. Note that simple considerations of truncation error do

not apply, since the angular grid is not used in a straightforward finite differencing, but rather to
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Table 3.2: Convergence for rotating nonlinear models. All models have af) = 0.3, A = —25, ¥y =
0.15, and all use outgoing boundary conditions at xmax = 50a. The “two region” method retains all
multipoles for x < 3a.

Ny ne | Mo | Xmin/@ | fmax | Qerr/@ | two region
1001 8 | 16 0.2 0.3440 -
2001 | 16 | 32 0.2 0.3450 -
4001 | 16 | 32 0.2 0.3452 -
8001 | 16 | 32 0.2 0.3452 -
16001 | 32 | 64 0.2 0.3452 -
8001 | 16 | 32 0.2 0.3452 -

0.3431 0.3424
0.3421 0.3415
0.3417 0.3410

8001 | 16 | 32 0.2
8001 | 16 | 32 0.2
8001 | 16 | 32 0.2

Q1 O1 OG1 U1 \O J U1 WWWWWwWwwWw

16001 | 16 | 32 0.2 0.3230 -
16001 | 16 | 32 0.1 0.3213 -
16001 | 16 | 32 0.05 0.3198 -
16001 | 16 | 32 | 0.025 0.3192 -

establish the angular eigenvectors.

In the second section the results show that increasing /,,.«, for an adequately large grid, im-
proves accuracy, and results come within a fraction of a percent of the correct answer. Note that
using all the eigenvectors is equivalent to no multipole filtering. In that case we would be simply
doing finite differencing in the multipole basis, and we would be plagued by the problems de-
scribed at the start of Sec. 3.3. Accuracy must, therefore, drop off when /..« is increased past some
optimal value. The results in the table suggest that the optimal value for this model and this grid
size may be /.« =~ 5. Larger values of /;,,x are more difficult computationally, and appear to give
no improvement in accuracy.

In the third section of the table the value of xmin is decreased and, for a fairly large grid and for
Lmax = 5, the results show that the errors in the inner Dirichlet data were the dominant source of
error. More important, the results show that very high accuracy can be achieved with the eigen-
spectral method using a small number of multipoles.

In the last column of Table 3.1 several results are given of a “two region” method of computa-
tion. The motivation for this method is that severe multipole truncation is really necessary only in
the wave zone. Closer to the source more multipoles can be kept and more precise computation can
be carried out. For the results in the last column, all multipoles up to /.,.x were kept for grid points
with x < 3a; for x > 3a only the monopole and quadrupole eigenmodes were used. The results
show no increase in error compared with standard method, but the error in any case is dominated
by the inner boundary data, not by truncation.

For nonlinear models, with A = —25 and ¥ = 0.15, Table 3.2 gives results roughly equivalent to

the linear-model results in Table 3.1. Now there is no a priori correct answer known, so we look only
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for convergence of the value of the monopole moment Q.. (Due to the effects of the nonlinearity,
this value can be reduced well below unity.) The computational results in the table show few differ-
ences from those in Table 3.1. Again, the answer is shown to be stable for moderate grid size, and
there is no evidence of a strong dependence on /,,,,«. The two-region computations converged more
quickly than those with a uniform multipole cutoff, and give results in good agreement with those
of the uniform cutoff standard approach. This two-region technique, therefore, can be considered
a computational tool that may prove useful in more difficult problems.

Though there is no a priori known general solution for the nonlinear problem, we do know one
useful limit of the solution. As argued in Sec. 3.4, and in Paper I, ¥ should have an approximately
Yukawa form for a range of small x. Evidence of this in the results is presented in Fig. 3.9, which
gives computed nonlinear outgoing solutions near the sources. The computations start with the
boundary conditions of Eq. (3.54). The variable R in the figure is Z — a along a line through the
sources, that is, the radial distance from a source. A straight line in the log-log plots of the figure
indicate that ¥ is falling off approximately as 1/47R; the downward deviation from a straight line
is a manifestation of the nonlinearity. According to the analysis following Eq. (3.49), the radius Ry,
at which nonlinear effects become significant, decreases with increasing |A| and with decreasing
W. Results for our standard choice ¥y = 0.15 are shown on the left. The nonlinear effects become
important for R/a=Rjin/a on the order a few tenths. In this case ¥ is comparable to ¥y when
nonlinear effects become important, and the Yukawa form is not distinguishable from a 1/R fall
off. For more convincing evidence of the working of the nonlinearity we change ¥, to 0.01. The
results, shown on the right in Fig. 3.9 for A\ = —25 shows the excellent agreement of of the computed

solution to the Yukawa form in the range R/a=0.1 to around 0.4.
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Figure 3.9: Near-source fields for nonlinear models
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Table 3.3: The radiation reduction factor due to the nonlinearity. For all cases, ¥ = 0.15, and af) =
0.3 . The second column refers to Eq. (3.50). The third column gives the reduction factors presented
in Paper L. The last column gives the results of the eigenspectral computation with xmin = 0.3a,
with outgoing boundary conditions at xmax = 50a, fmax = 3, and a grid with n, = 8001, ne = 16,
ne — 32.

A | Estimate | PaperI | Eigenspec
-1 69% 78% 77.0%
-2 62% 68% 68.1%
-5 53% 55% 55.7%
-10 46% 47% 46.4%
-25 37% 35% 35.5%
-50 25.6% - 28.5%
-100 | 19.5% - 22.7%

Paper I used Eq. (3.50) as the basis of an estimate of the nonlinear solution. That estimate
was applied to the radiation “reduction factor,” the factor by which the radiation amplitude is
reduced for a nonlinear model as compared with a model with the same parameters, but with
A = 0. This provides us with a convenient comparison of the nonlinear results in Paper I and
with the present eigenspectral method. In Table 3.3 we give those Paper I results again, along
with eigenspectral computations of the same models. We present additional models, since the
standard coordinate/finite differencing method of Paper I was limited in the size of A for which
Newton-Raphson runs converged; with the eigenspectral method we can give results for much
larger values of —\. The last column in Table 3.3 gives the computed reduction factor computed
with the eigenspectral method keeping only the monopole and quadrupole terms. (Note: In Paper
I the factor 1/v=1/1.048 was mistakenly omitted from the delta function source. Here we choose to
treat that as a source of strength 1.048, rather than unity. Our eigenspectral computations therefore
used this enhanced source. The estimates of Ry, were also slightly in error in Paper I since they
assumed a unit source strength. They have been recomputed and are slightly different from the
estimates presented in Paper 1.)

The agreement of the computed results with the simple estimate is gratifying, as it was in Paper
. More important, the comparison of the second and third columns of Table 3.3 shows that the
eigenspectral method with only two multipoles gives 1% agreement of the computed radiation
with the very different and much more computationally intensive finite difference method.

We have argued that the details of the higher moments of the source are not important in deter-
mining the radiation. Some numerical justification for this is given in Fig. 3.10, which shows com-
puted results for nonlinear models with the standard parameters. The solid curve uses the point
source initial data of Eq. (3.54) as inner Dirichlet data at xmin = 0.2a. For these inner boundary

conditions the multipole moments at xmin = 0.2a are ap = —13.90, azp = 0.11045. The coefficient



76

0.001

0.0005

monopole

-

point source —

—0.0005

R0x quads

0001 L

Figure 3.10: For outgoing nonlinear waves, the sensitivity of the radiation to details of source mul-
tipole structure

corresponding to the real part of Y2, is 0.1920; the coefficient corresponding to the imaginary part is
zero. We first compute the outgoing linear solution for these inner Dirichlet data. Next we, some-
what arbitrarily, set all the quadrupole components to -2.209, which is 20 times the original value
of ajg, and calculate the outgoing linear radiation. The results in Fig. 3.10 show that the effect on
the radiation is of order 10%. Some interpretation is needed to connect this result to multipoles of
sources, especially because the effect on the radiation of a physically plausible source quadrupole
depends on the size of the source.

If we had a source with a surface at x = 0.2a the computed result tells us that a rather large
deformation, with |as/ag| ~ 0.16 will have a 10% effect on the radiation as compared with a source
with a negligible quadrupole. With a simple argument, we can apply this 10% effect to sources of
other size. Mathematically the conditions at xmin = 0.2a can be ascribed to a source with a surface
at Yswt # 0.2a. Quadrupole moments fall off as 1/R?, where R is the distance (small compared
to a) from the source point, and monopole moments fall off as 1/R. The quadrupole to monopole
ratio, therefore, falls off as 1/R?, or 1/x*. Since the 10% effect corresponds to |asx/ag| ~ 0.16 at
Xswt = 0.2a, it also applies, to 0.16 x (1/2)* ~ 0.01 at Ysut = 0.4a, and to 0.16 x (2)* ~ 2.6 at
Xsurf = 0.1a. This means that the radiation generated is reasonably sensitive to a mild quadrupole
deformation of a source that is comparable to the size of the binary system, but for small sources

unphysically large deformations are required to have any effect on the radiation. (See also the
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related discussion of the two-dimensional case in Appendix 3.9.)

Figure 3.11 shows the central result of our method, the accuracy of the outgoing approximation,
for a model with Q = 0.3 and A = —25, one of the models presented in Paper I [10]. A measure
of the strength of the nonlinearity is the fact that the nonlinearity reduces the amplitude of the
waves to 35% of those for A = 0 in the same model (i.e., the same () and inner boundary data and
outgoing boundary conditions). The figure shows that the extracted solution is in remarkably good
agreement with the computed nonlinear solution in the three regions of the extraction protocol
described in Sec. 3.4: (i) the wave region in which the solution is treated as a half-outgoing and
half-ingoing superposition, (ii) the inner region in which the outgoing solution is taken to be well
approximated by the standing wave solution since the radiative boundary conditions are irrelevant
close to the source, and (iii) the blending region described in Egs. (3.60)—(3.61).

The excellent agreement between the computed outgoing solution and the extracted approxi-
mation should not be confused with agreement with the exact solution. As we have seen in the
comparisons of exact and computed linear solutions, e.g.in Fig. 3.8, the multipole filtering does
entail an inaccuracy of a percent or so. Figure 3.11, then, is not a demonstration of the accuracy of
the eigenspectral method, but rather a powerful statement about effective linearity, the accuracy of

the process of extracting an outgoing approximation from a standing wave solution.
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Figure 3.11: Comparison of a computed outgoing nonlinear solution (continuous curve), and an
approximation to the outgoing solution extracted from the standing wave solution (data type
points). Results are shown for a typical nonlinear scalar model, with parameters {2 = 0.3, A = —25,
Uy = 0.15, Xmin/a = 0.05, xmax/a = 200, for a grid with n, x ng x ne=12001 x 16 x 32. Results
are shown along the Z axis. The solution is plotted as a function of Z, the distance from the origin
along the axis through the source. The extracted points in the wave zone are a result of treating the
waves as linear. The small-distance plot shows the blending region and the inner region in which
the standing wave solution is used as an approximation for the outgoing solution.

In Table 3.4, we present a broad overview of the validity of effective linearity for a range of
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Table 3.4: The reduction factors for nonlinear outgoing waves (the decrease in amplitude due to
nonlinear effects). For a{2 = 0.3 models, the factors are compared for the directly computed outgo-
ing solutions and for outgoing solutions extracted from nonlinear standing waves solutions. The
A = 0 results indicate linear models in which the reduction factor is unity by definition. The value
1.0064 found for the extracted solution gives an indication of the numerical accuracy of the extrac-
tion procedure. All results were computed with £ax = 3, Xmin = 0.2a, and Xmax = 50a on a grid
with n, x ng x ne = 8001 x 16 x 32. The reduction factor was computed by taking the ratio of the
quadrupole components. Also listed are the estimated values of Ry;,, the distance from the sources
beyond which the nonlinear effects are suppressed, and estimates of the reduction factors based on
the estimates of Rji,. [See Eq. (3.50).] For consistency with Table 3.3 the source strength has been
taken to be 1.048.

Uy =0.15 Uy =0.01

A Rin/a || estimate | true | extract | Rj,/a || estimate true extract
- - 1 1.0064 - - 1 1.0064
-1 0.355 0.7012 0.7695 | 0.7740 | 1.574 0.2072 0.1745 0.1728
-2 0.321 0.6348 | 0.6813 | 0.6852 | 1.266 0.1668 0.1323 | 0.1315
-5 0.274 0.5417 | 0.5565 | 0.5597 | 0.936 0.1233 | 0.09121 | 0.09109
-10 0.238 0.4707 | 0.4643 | 0.4669 | 0.737 0.09711 | 0.06764 | 0.06771
-25 | 0.193 0.3811 | 0.3548 | 0.3569 | 0.532 0.0700 | 0.04453 | 0.04466
-50 0.162 0.3191 0.2849 | 0.2865 | 0.412 0.05427 | 0.03231 | 0.03244
-100 | 0.133 0.2635 | 0.2265 | 0.2278 | 0.317 0.0418 | 0.02368 | 0.02380

nonlinear strengths in a2 = 0.3 models. As in Table 3.3, we give the nonlinear “reduction factor,”
the reduction in wave amplitude due to nonlinear effects. Here we present a comparison of those
factors for computed outgoing solutions and for the approximate outgoing solution extracted from
the standing wave solution. It is clear that, judged by the criterion of reduction factor (and limited
to af) = 0.3 models), effective linearity is highly accurate, within a percent or so, for models with
extremely strong nonlinear effects. In the ¥y = 0.01, A = —100 model, the nonlinearity reduces the
wave amplitude by a factor of 40, but effective linearity appears to be accurate to better than 1%. It
should be noted that the agreement of the computed outgoing solution and the extracted outgoing
solution is excellent even for models (e.g., V¢ = 0.01 and small \) for which the strong nonlinear
effects are not confined to a small region around the source points. This is evidence that effective
linearity does not require such confinement; it only requires that the nonlinearity falls off before

outer boundary effects are important, i.e., in the induction and wave zones.

3.6 Conclusions

The fundamental concepts of the PSW method were introduced in Paper L. In the current paper we
concentrate on efficient numerical methods for solving the mixed PDEs of the PSW method. The
innovative method we present here is a mixture of adapted coordinates, multipole filtering, and

the use of eigenvectors in place of continuum multipoles. This method seems to meet the needs
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of the problem remarkably well. The method requires relatively little machine memory, and runs
very quickly on workstations. The power of the method has allowed us to run nonlinear scalar
field models with larger velocity and much larger nonlinearity than was possible with the method
of Paper L.

We have shown that the method is convergent and reliable in a number of senses: (i) For a linear
problem, the computed solution converges to the known analytic solution as the computational
grid becomes finer and the number of retained multipoles increases. (ii) For a nonlinear model
the Newton-Raphson iteration stably and reliably gives a solution to outgoing or standing-wave
problems. We have confirmed that our solutions agree, to the expected accuracy, with the results
presented in Paper L

In addition to the role they play in the efficient computation, the adapted coordinates are very
well suited to the specifications of inner boundary conditions, rather than to the specification of
actual source terms. We have confirmed that there is low sensitivity to the details of the inner
boundary conditions. The solution in the wave zone has a sensitivity to these conditions that is
compatible with physical intuition; there is no excess sensitivity that is an artifact of the numerical
method.

Two major points are worth emphasizing. First, we have confirmed that excellent results can
be obtained for moderate source velocities with computations that keep only the monopole and
the quadrupole moments of the adapted coordinates. This allows an enormous decrease in the
computational intensity of a solution. The cost is only a moderate increase in analytic complexity.
A second and even more important point concerns “effective linearity,” the approximate validity
of superposing half-ingoing and half-outgoing nonlinear solutions. We have been able to verify
effective linearity for a wider range of nonlinear models than in Paper I, including models with

extremely strong nonlinearity.
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3.8 Appendix: Coefficients for adapted coordinates

The inner products ﬁx . ﬁ@, ﬁx . 6@, and VO - ﬁ(I), vanish since the adapted coordinates are

orthogonal (with respect to a Cartesian metric on X,Y,Z). The other inner products and Laplacians
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are evaluated with the explicit transformations in Egs. (3.19)—(3.24), from which we find

2
2
VQX = a +3Q
X
vo - V@+a+x’cos(20) (Q-a?)
V@Q —a% — x%cos(20) x*
Ve = 0
Vot = 3
VO-Ve = %
X
5.9 — 2Q+a2+xzcos(2@)

x4sin?(209)

where () is the function

Q = a* +2a2x2cos(20) + x4 .

In general, the A and B terms are computed from the following:

b= (3 () ()
b (32 o1 (2) () ()
b = (302 -ons () (2
e = ()8 (3) (%) ()2
e - () () () (B
a2 (53) (5 )+ (32) (32) 2| (52) (5%)
By = 22 (3;;) + X2 <%> —2XZ <£ng> 'S (%) —Zz
b - (32 (52 e ) 2 ()
By = Z? (ij;) + X? (%) -2X7 (%) -X (2—;{;) -z

(3.66)

(3.67)

(3.68)

(3.69)
(3.70)

(3.71)

(3.72)

(3.73)
(3.74)
(3.75)
_)63.7@

3.77)

—>(_3.78)
(3.79)
(3.80)

(3.81)

In the case of the TCBC coordinates defined in Egs. (3.19) — (3.24), the explicit forms of the

coefficients are
a*sin?(20) cos? ®

X2

AXX -

(3.82)
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_ cos? @ [x? + a? cos(20)] 2

Aoe = = (3.83)
_ . +a? + x? cos(20)
App = sin?@ & :
oo = St Q — a? — x?cos(20) (3.84)
- a? [x? + a? cos(20)] sin(20) cos? ®
Ao = [ = ] (3.85)
- a? [Q + a® + x? cos(20)] sin ® cos @
G 5 ] (3.86)
P sin(®) cos(®) [a® + x? cos(20) + Q] [x? + a? cos(2O)] (3.87)
or x*sin(20) '
B a? [cos? (@) {3a% cos?(20) — Q — 2a” + x? cos(20) } + Q + a® + x? cos(20)] (3.89)
X = .

X3

_ 30Q + a? + x2 cos 20) sin(P) cos(P
By — 3¢ X 2) (2) cos(®) (3.89)
Q — a? — x? cos 20

B _ V@ + a? + x2 cos(20)
? T Q@ —a? = x?cos(20)

(ccos® @ + d) (3.90)
where
c=a’x*cos(20)+2a*x? +4a% cos(20)+4a’x? (cos(20))* —4a*Q cos(20) —2a2Qx> —x°® (3.91)

d=x"(a®cos(20) + x?) . (3.92)
The coefficients needed in the Sommerfeld boundary condition Eq. (3.27) are

X2 + a2 cos 20

% = S——g—— cos®=cos® (1+0(a*/x’)) (3.93)
) Q+a?+ x?cos (20) | . -
= o= Peos (o) Sn® = —cotOsin® (1+0(a®/x*) (3.94)

= % VIQ + a + x2 cos (20)] [Q — a — x2cos (20)] = 2522@ (1+ 0(a2/x?)) .(3.95)
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3.9 Appendix: The standard spectral method for the 2+1 dimen-

sional linear scalar field

Here we consider the 2+1 dimensional version of our helical problem, one equivalent to the 3+1
problem with line sources that are infinitely long in the Z (equivalently Y ) direction. We choose to
set A = 0, i.e., to make the problem linear, since that will turn out to allow a very efficient method
of multipole projection. The 2+1 dimensional version of Egs. (3.3) and (3.51) is

2 r—a
Lo (r ‘Z—‘I’) n (iQ - 92) o = = ) + ot~ ] (3.96)

Here ¢ = ¢ — Qt where ¢ is the usual polar angle tan™!(y/7) in the 7, § plane.

The 2+1 dimensional forms of the adapted coordinates of Sec. 3.2 are

X = Jrm= { [(g_ a)® + g’z] [(:n a)? + ﬂ }1/4 (3.97)
o = %(91+92) _ %tanfl <%> . (3.98)

With these coordinates the 2+1 dimensional version of Eq. (3.1) takes a form like that of Eq. (3.8).
As in the 3-dimensional case we use only the homogeneous form of Eq. (3.96), since the effect of
the source will be introduced through inner boundary conditions.

In working with the sourceless linear 2+1 dimensional problem, it turns out to be convenient to

divide the original wave equation by Q/x?, where

Q= va* +2a2x2cos(20) + x4 . (3.99)
The result is
0% R R ov ov
=2Q 1 (V2-Q292) v =4 B 2 D—+F — 1
LY =x*Q7" (V2 —-Q%02) ¥ o +B o5zt C 9100 + I +E o5 (3.100)

where

1 _ 02 a*sin?(20)

A = 3.101
0 ( )
2 2)2
B o= L|i-@ (0% os(26) +x7) ] (3.102)
X Q
o - _o? a?sin(20) (a? cos(20) + x?) (3.103)
Qx
D o i L a? (—a*+3a? cosQ(é@) +2x2cos(20)) (3.104)
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2a” (2a® cos(20) + x?) sin(20)

E = +Q?
QX?

, (3.105)

By dividing through by @ we have put the wave equation in a form in which the coefficients are
O-independent in the 2 — 0 limit. With the standard method, used below, for projecting out
multipole components of the wave equation, this property of the coefficients means that the mixing
of the multipoles can be directly ascribed to the rotation.

We now expand the standing wave solution ¥(, ©) as
N
U(x,0) = Z an(x) cosn®, (3.106)

n=0,2,4

and our equation becomes

2
Z A Tan() _ n*B a,(x) + D dan(x) cosn®
n=0,2,4... dX2 dx

- [QnC da;—(x) + nEan(x)] sinn® . (3.107)
X

Projecting with fo% sinmO - - - dO, gives zero by symmetry; projecting with fo% cosmO - - - dO, gives

2
Z Qmn “an(x) + Bin@n(X) + Ymn (mn—(X) =0 m=0,2,4.... (3.108)
dx? dx
n=0,2,4
where
4 /2
Qmn = —/ cosm® cosnO [A(x, ©)] dO (3.109)
T Jo
4 /2
Bmn = —n? —/ cosm® cosn® [B(x, 0)] dO
T Jo
4 /2
—n—/ cosmOsinn® [E(x, O)] dO© (3.110)
T Jo
4 /2
Ymn = ;/ cosm® cosn® [D(x, )] dO
0
4 /2
—2n—/ cosmO sinnO [C(x, ©)] dO . (3.111)
T Jo

When the explicit expressions for A-F, in Egs. (3.101)—(3.105), are used in Egs. (3.109)—(3.111),

the results are

/2 s 2 )
Amn = €mn — 22 a* é/ cosm®O cosn® L@) dO© (3.112)
™ Jo Q
2 2 /2 2 20) + 2 2
Bmn = —n—zemnﬁ-éQ—Q n2/ cosmO cosn® (a cos(20) + x ) doe
X T X 0 Q
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/2 242 (2a”cos(20) + x?) sin(20
—n/ cosmOsinn® — (207 c0s(20) + x*) sin(26) (3.113)
0 Q
202 /2 2 3 2 2(9 e 242 5(20
%nn:lemn éaQ —/ cosm@cosnG)( 0" +3 a7 cos”(20) + 2 cos )) doe
X T X 0 Q
/2 20 20
+2n/ cosmO sinn@sm( ) (a c0s(26) + x° ) de (3.114)
0 Q
where
2ifm=n=0
Oif m#n
The integrals needed in Egs. (3.112)—(3.114) are all of the form
™/2 cos (2PO) sin (2J0)
I:/ de 3.116
; Q0. ) G410

where P and J are integers. With trigonometric identities, and with the substitution z = sin©,

such integrals can all be expressed in terms of integrals of the form

N

dx , 3.117
0 V1— k2221 — z2 ( )
where
2ax
k= —"——. 11
a? + x2 (3.118)

For the integrals in Eq. (3.116) only even values of N are needed for K. All such integrals can be

evaluated in terms of the complete elliptic integrals [18],

1 k22
= — _ dz / vi f da . (3.119)
0o V1—k2z2/1—=x V1—22

To use the elliptic integrals to evaluate the K (k), for even N, we start with the relationship (for

M > 0)

0= /Ol(d/dm) [szH\/l—k?x?\/l—xz} dx

dx . (3.120)

P a™[(2M 4 1) — (2M + 2)(1 + k%)2? + (2M + 3)k%?]
_/0 V1= k2221 — 22

This gives us the recursion relation

(2M + 1)anr(k) — (2M + 2)(1 + k*)Kanr2 (k) + (2M + 3)k*Kaprra(k) = 0. (3.121)
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We know that
Ko(k) = K(k) ,
and we can easily show that
1
Kalh) = — [K(k) - E(k)] |

so all values of Kap/ (k) follow from the recursion relation.

Very efficient computation follows from the results above. At a given value of x, only two
integral evaluations must be done, those for K (k) and E(k). All values of Ksp/(k) then follow
from the recursion relation, and hence all values of ®nn, Bmn, Ymn, can be found at negligible
computational expense.

Here we use this method only to illustrate important general issues. To make this illustration as
clear as possible, we take the simplest nontrivial case of the multipole expansion: we keep only the

n = 0and n = 2 terms [19], so that

U(x, 0) = ap(x) + az(x) cos 20 . (3.122)

The equations in Eq. (3.108), then describe the interaction of the monopole ay(x) and quadrupole
as(x) terms. For x/a < 1 and x/a > 1 the terms that mix the multipoles die off; it is only in
the transaction region, x/a ~ 1 that there is strong mixing of the multipoles, a mixing that for our
problem is quadratic in the source velocity af). The process of the generation of radiation can be
viewed as the growth of a; from the small-y near-source region to the large-x radiation region.

In principle, the linear standing wave problem could be solved by including a term a, sin(20),
leading to an additional second-order differential equation. At some inner boundary xmin < a
the values could be specified for all multipoles, and at some outer boundary xmin > «, a fall off
condition could be specified for ag. Ingoing or outgoing conditions could be used to relate a; and
as.

It is easier, and more instructive, to use another approach to finding the standing-wave solution,
the minimum amplitude method presented in Paper I. For the linear problem it is straightforward
to show [8] that of all solutions that (i) have the form of Eq. (3.106), and (ii) correctly couple to
the source, the solution with the minimum wave amplitude in each multipole is the standing-
wave solution, i.e., the solution that is half-ingoing and half-outgoing. In principle, the minimum-
amplitude criterion can be used as a definition of standing waves in a nonlinear problem. Here we
are dealing with a linear problem, so we are simply exploiting a known property of the solutions.

In this minimum-amplitude method we specify ao, dao/dx, as and das/dx at xmin, then shoot
outward. The choice of ag, and dao/dy, at xmin are those for unit point charges. The value of ao

at xmin sets the scale of the linear solution. The value of da/dx can be approximated as 1/7Xmin.
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In principle this starting value can be adjusted so that at large x the results for aq satisfy the fall-
off condition dag/dx = ag/xlog x. In practice, the overall result (after the minimization described
below) is very insensitive to the choice of dag/dx at Xmin.

The choices for ay and dag/dx at xmin are determined by the form of ¥ very close to one of the
unit point charges. Some care is necessary in taking this limit. In the z, y frame co-moving with one
of the unit point charges the value of ¥ due only to that charge is log [(z? + y?)/a?]/47. We must
now transform this result to the “lab” frame of our calculation in which we use coordinates 7, 7, t.
The Lorentz transformation is

=7 Yy="y. (3.123)

(The last relation follows since y is in a coordinate frame that comoves with the point source, but
which is related to the lab frame by a simple translation by vt.) Since V is a Lorentz invariant we

have ¥ = log (r?/a?) /4m where r? = 7 4+ v%y?, expressed in adopted coordinates, is

4 2 4 2
X—2 [1 - %X— cos (2@)} +(v*-1) %sin2 (2@)X— [1 - X—2 cos 2@} ) (3.124)
a

2_1
4 a a? a?

T =
and V is therefore

Y= ﬁ (10g [4’%] +log [1+ (v* — 1) sin? (2@)}) + O(x/a)?

1

- (log [4"—;} +2log [FYTHD + O(cos (40)) + O(x/a)?. (3.125)

The last relationship is meant to emphasize that in the xy — 0 limit ¥ has no cos (20) component.
This comes from the fact that the Lorentzian pancaking of the source field has the nature of a
local quadrupole deformation, while the cos (20) term represents a local dipole. (As defined in
Eq. (3.98), © ~ 0/2 or (6 + m)/2 near the source points, so the cos (20) dependence near the source
point corresponds to the dipole field of the source.)

The contribution, near x = 0, due to the distant point can be approximated with » = 2a so that
at x = xmin the appropriate starting conditions for unit point charges are

1 4 1 d 1 d
ag = — | log X—4 + 2log r+l +log 4 %o _ ~ azs =0 492 _y. (3.126)
47 4a 2 X 7YX dx

While day/dx at x — 0 vanishes in principle, in the numerical computation, das/dx plays a more
delicate role. It is chosen to minimize the wave amplitude at large . It is actually the values of
as and das/dy, at xmin that determine the radiation field at large x, and determine whether there
is any a, radiation except the radiation coupled to the source. To minimize that radiation (and

suppress radiation that is not coupled to the source) we fix as and vary das/dy. (We could just as
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well fix das/dx and vary as.) Minimization is taken to mean the minimum value of the amplitude

defined by
Amp = { (x/a)?(]a2 + L (e 422 2 . (3.127)
20402 \dy ' 2¢

For the expected large distance form of the waves 7~1/2 cos (2Qr + §), the quantity inside the angle

brackets is expected to be nearly y-independent; this is confirmed by the numerical results. The
angle brackets denote an average over a wavelength, resulting in a quantity that is x independent
to high accuracy at large x. In our minimization procedure we vary das/dx at Xmin t0 minimize
Amp. The meaningfulness of this minimization procedure, of course, depends on its insensitivity
to the details of how as and das/dy are chosen at X min. This is discussed below.
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Figure 3.12: Comparison of the analytic waves and the computed waves for a{2 = 0.5, xmin = 0.05a
and Xmax = 70a, and a2 = 0 at xmin = 0. The monopole is subtracted in the figure on the right to
allow for a comparison of computed and analytic wave amplitudes. .

For the source speed a2 = 0.5, results, for © = 0, of our computation are shown in Fig. 3.12,

and are compared with the analytic solution for two point sources each of unit strength

In(r/a) forr>a Z T (mQr 2 )Ny, (mSrs.) cos (mO) |

1
0 forr <a m=2,4,6...
(3.128)

(where -, r. indicate, respectively, the greater and lesser of r,a). For our more typical choice
af) = 0.3, the difference of the computed and analytic solution are too small to show up well in a
plot. The plot on the left shows the comparison for the whole range of the computation. Dividing
the analytic solution by 1.039 brings it into nearly perfect alignment with the computed solution;
we therefore characterize the overall error in the computed solution as 3.9%. Overall errors for
several values of a2 are listed in Table 3.5.

The plot on the right in Fig. 3.12 focuses on the oscillations in the far zone by removing effective

monopole terms. For the analytic result this is done by subtracting the asymptotic monopole solu-
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Table 3.5: The errors (differences from analytic solution) of the monopole+quadrupole approxima-
tion for different values of the source speed af2. The overall error is the difference of the compu-
tational and analytic solution at xmax = 70a; the wave error is the difference of the computational
and analytic peak-to-peak amplitudes.

af) | Overall Error | Wave Error
0.1 0.08% 0.14%
0.3 1.0% 0.1%
0.5 3.9% 1.2%
0.7 13% 3%

tion /1 — a2Q? log (x?/2a?)/n. For the computed solution this is done by plotting only ax (). The
comparison shows two effects. First, there is a 1.2% difference in peak-to-peak amplitude. Errors of
this type are tabulated for different values of af2 in Table 3.5. A second and more interesting effect,
apparent in the waves of Fig. 3.12, is the difference in shapes. Since the computed wave contains
only the quadrupole component it has a nearly perfect sinusoidal form. The analytic solution, on
the other hand, shows a rapid rise and a slow fall off due to the contribution of the hexadecapole
and higher modes. For small af2 the amplitude of a cos (m©) component depends on af2 approx-

imately according to (aQ)™~°5, so the contributions from m = 4,6, 8. .. decrease quickly with (.

We now want to use the accuracy of the linear 2+1 dimensional model to make an important
point about the role played by the source structure in generating radiation. To do this in our
monopole+quadrupole computational models we depart from considering “point” sources and
we vary the choice of a2(xmin). In each case the specification of das/dx at (Xmin) is fine-tuned to
get a minimum wave amplitude at xma.x. For this investigation to have physical relevance we need
to ask what a “reasonable” value is for as(Xmin)-

If xsurt specified the (approximately spherical) location of the outer surface of the source, then
we can write

ag (Xsurf) = Rao (Xsurf) P (3129)

where « indicates the relative quadrupole strength of the source. We expect « to be small for realistic
sources and of order unity only for highly distorted sources.

In our computational models we take xmin/a to be very small, typically 0.05. It is useful, how-
ever, to consider the computed results applying to larger sources, sources with x.u.t significantly
larger than xmin. To do this we can use the fact that outside, but very close to a source, ag varies as

log x and as falls off as 1/x?. From this we conclude that for small

2
min 1 sur
GQ(X ) =k Xs2uri 0g Xsurf ) (3.130)
a0 (Xmin) Xinin 108 Xmin
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We can now fix k = =+1, its maximum reasonable value, and we can choose a value of Ysu:t,
the value at which the quadrupole and monopole have equal strength. These choices determine
a2(Xmin)/@0(Xmin ), and therefore the computational model.

Results are presented in Table 3.6. For the choices xsurf/a = 0.1, 0.2 and 0.3, and for x =1 and
-1, the amplitude of the quadrupole waves is computed for xmin/a = 0.05 and xmax/a = 70. For
each choice of a2(xmin), the starting value of das/dx is fine tuned for minimum wave amplitude.
Since a2 (x) should have the form const./x?, the value of da>/dx should be very nearly equal to
—2as/x. The values for das/dx in table 3.6 are very close to this prediction. The table presents the
“relative amplitude,” the ratio of the radiation amplitude to the radiation amplitude for the case
a2(Xmin) = 0. It is clear from the results that the structure of the source has little influence on the
radiation unless the source is large and has an extreme nonspherical deformation.

In the case of gravitational sources, an even stronger statement can be made. As already
pointed out, the “quadrupole” mode a2 (x) cos(20) near the source point is actually a local dipole
as(x) cos(61). This dipole moment can be viewed as a displacement of the center of scalar charge,
and hence a change in the radius at which the source points move. The change in the radiation
amplitude can be ascribed to this change in radius. This explanation of the change can be made
quantitative. We let r represent the distance from source point 1 at which inner boundary data is
being specified and we let § be the radial distance by which the center of scalar charge is being

moved outward. The solution for the scalar field is
1 2 2 1 2
U= yp log (r* — 2ré cosy + 6°) ~ o [logr® — 2(6/r) cos 61 ] . (3.131)
vy T

From this we infer that

as = —i . (3.132)
2mr

This means that the radius of orbital motion is changed from « according to
a—a+0d=a-—27ras. (3.133)

From Eq. (3.128) we see that for quadrupole radiation (that is, m = 2) the amplitude of the waves

scales o a?. It follows that the amplitude of the waves should depend on as according to
amplitude < 1 — 47ras/a . (3.134)

For the computations presented in Table 3.6, a; is evaluated at xmin = 0.05a, 50 r ~ 0.05%a. The nu-
merical results following from this simple explanation of the shift of the center of charge, presented

as the last column in Table 3.6, are convincingly accurate.



90

Table 3.6: The effect on the wave amplitude of the conditions on as and das/dx at xmin = 0.3a. The
role of the a, term can be understood as an effective shift of the center of scalar charge. See text for
details.

K | Xsurf | @2(Xmin) | daz/dx at Xmin | Rel. Amp. | 1 —47nras/a
1| 01 | -2.92007 116.999652 1.045 1.046
-1] 01 2.92007 -117.011864 0.955 0.954
1| 02 | -8.16416 327.127955 1.125 1.128
-1 02 8.16416 -327.140167 0.875 0.872
1| 03 | -13.7416 550.612310 1.211 1.216
1| 03 13.7416 -550.6245521 0.789 0.784

This explanation for the role of the m = 2 mode is of considerable significance for gravita-
tional problems. The equivalence principle implies that there is no local dipole for the gravitational
sources. Thus the starting value of a2 which, at large distances gives the quadrupole radiation, is
not a parameter of the structure of the source; if we know the location of the effective center of the

source, the structure is fixed.

3.10 Appendix: Details of the eigenspectral method

In this appendix we explain how the continuum angular Laplacian of Eq. (3.35) is implemented as
a linear operator in the N = ng x ne dimensional space. That linear operator must represent the

angular Laplacian evaluated at a grid point ©,, ®;. That is, the linear operator L, ;; must satisfy
[sinOVZ,, U] , &> Labi Vi, (3.135)
i

where the approximation is due to FDM truncation error. It will be convenient below to write the
linear operator as a sum L = L") + L(? with LM containing © derivatives and L(?) containing ®
derivatives.

By exploiting the symmetries of the PSW configuration we can limit the range of angular coor-
dinates to one quarter of the complete 2-sphere. The indices @, i range from 1 to ne , representing,
respectively © = AG/2 to © = 7/2 — AO/2. The indices b, j range from 1 to ng, representing,
respectively ® = A®/2to & = 7 — AP /2. Our goal here will be to show that with this choice of the

grid, the linear operator can be chosen to have the symmetry
Lav,ij = Lijab - (3.136)

The elements of L, ;; have a different form for the boundaries at © = A©/2, 7/2 — A®/2 and
at® = A®/2, 7 — A®/2, and in the interior of the angular grid. We consider each case separately.
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Case I: Interior points, 1 <a <ng,1 <b < ne

The first contribution is

On; . . . .
Lz(zlb),ij = (A8)2 [sm ®a—1/25a*1,i — (sm ®a+1/2 —+ sin @a—1/2) 0iq + sin @a+1/25a+1,i] (3.137)

and the second is

2 1 5ai
&= (A8 an6, Q-1 ~ 200+ 0 y) (3-138)

Here §; . is the Kronecker delta, and sin ©,+, /, is defined to mean sin (6, + A©/2). It can be seen
that both contributions to L, ;; are symmetric with respect to the interchange of the pair ab with
the pair ¢j, and hence Eq. (3.136) is satisfied.

Case II: Boundaryata = 1,1 < b < ng

The © derivative part of the operator formally takes the form

Oj - . . .
L) = (Ag)Q [sin 08 — (sin 0 + sin A®) ;1 + sin AOF, ;] . (3.139)

In the sum in Eq. (3.135) the do ; term respresents ¥(© = —AO/2, ®), which is not a value available
1)

on the angular grid. This term however, is multiplied by sin0 = 0 and can be ignored, so L, ;.
(2)

ab,ij

satisfies the symmetry condition in Eq. (3.136). The form of L also applies without change to

a = 1, and hence Eq. (3.136) is satisfied for the index rangea = 1,1 < b < ng.

[‘D
THAD/2 R S it bt St deiel
T-AD2 -+
| D |
| Al Al
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I I I I I I I
X~ Y N U U B A
-NO/2 +AO/2 w2-A02 "~ TU2+AO/2

Figure 3.13: An angular grid with ng = 5 and ne = 6. Grid points, points at which a value for ¥
is computed, are connected by solid lines. The dashed lines extend the grid to “phantom” points
needed for the computation. For the FDM implementation of the Laplacian at point A the value of
¥ at point A’ is needed. By the symmetry of the physical problem, this value can be replaced by
the value at point B, which is on the grid. Similarly the value at B’, when needed, can be replaced
by that at point A; the value at C’ can be replaced by that at C; the value at D’ can be replaced by
that at D; and so forth.
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Case III: Boundary ata = neg, 1 < b < ne

In this case the © derivative part of the operator formally takes the form

Obi . . . .
Lil(_zb,ij _ (Ag)Q [sm (/2 — AO)ony—1, — (sm (r/2 — A®) + sin (7T/2)) One,i +sin (7r/2)5n9+11i} .
(3.140)

The 6,,+1,; represents ¥ (0,1, Py) = V(O = 7/2 + AO/2, ®). This value is not directly available

on the grid, but we can get an equivalent value that is on the grid by using the symmetry
U(0,0)=V(r—-0,1— ). (3.141)

This is equivalent to the statement that ¥ is invariant with respect to inversion through the origin
and reflection in the orbital plane (or equivalently Z — —Z, X — —X,Y — ZinFig.3.3.) Asshown
in Fig. 3.13, we can, therefore, replace ¥ (0 = 7/2+A0/2, ®) with ¥(0 = 7/2—AO /2, 1—®), or can
replace ¥ (0,41, Pp) with ¥(0,,,, ®;,) where b = Ny — b. Equivalently, we can rewrite Eq (3.140)

as
LD O e AGV. in (7/2 — AO) + sin (7/2)) dne.i |+ % (7/2)0n,,i
nebiij = TGE [sm (w/2 — YOne—1,i — (81n(7r/ - sin (7 n@ﬂz} TGE sin (7 noi -
(3.142)
The term that has been introduced is
1) _ 1
L . (3.143)

nebneb (A®)2

. 7 1) _ 7
Since b = b, we have Ln®b7n95 = Lngz},n@b

which satisfies the symmetry in Eq. (3.136). All other
terms in Lfll(; ».i; Temain the same as in Case I, and hence Eq. (3.136) is satisfied for the index range

a=ng,1 <b<neg.

Case IV: Boundariesat 1 < a < ng,b=1and b = ng

2)

For these boundary points Case I considerations apply to L((l? ;;- For b =1, however, Lgbﬂij takes
the form
2 1 5(11'
Ly, = REP e, (007~ 2005 +02)) . (3.144)
The 6, ; refers to an angular location (& = —A®/2) that is not on the grid. Here we can use the

symmetry U (O, —9)=0 (0, ®), and hence ¥ (0, —A®/2)=0(0, A®/2), to replace do ; with J; ;. The
resulting L, ;; satisfies the symmetry of Eq. (3.136).
For b = ng, the considerations are very similar. The ¥(©, —®)=¥(0, ®) symmetry is used to

replace 8, 11,; BY Ong j-
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Case V: Boundariesata = ng,b=1and b = ng

Here the forms of LY. .- and LV

nel,ij nens,iJ
(2) (2)
Lygrgand Lc, i

are taken from Case III with b = 1,n¢, and the forms of
are taken from Case IV with ¢ = neg. From the considerations of Case III and
Case IV it follows that the results here also satisfy Eq. (3.136).

To clarify the results derived above, we list here all nonzero elements of sz? ;; and Lﬁ) it

1 _ Sin®Ogyy1p+5in0O,_q1)n
Loy, =— A6y alla,b (3.145)
(1) _ _ SO 1 3146
Lab,(aq)b = La-1)b,ab = W orl<a (3.146)
W _ _ Sin®uq1)2 f < (3.147)
ab,(a+1)b — “(a+1)b,ab — (A@)Q ora < ne .
1 _ 1 s
Lot = Inobnos = (agyz  Whereb=ne —b (3.148)
@ _ 2
Lyww=——T—+—5 alll<b 3.149
ab,ab sin @a(A®)2 a <0< ng ( )
B C R
Lal,al Lanq,,anq, sin @a(AG))z (3-150)
(2) _ 72 -~ 1
Labaw+1) = Lapr1),a = sn©,(A0)2 allb < ne (3.151)
@ o _ge 1
Lab,a(b_l) = La(b_lmb ETRIC)E alll <b. (3.152)

This completes the proof that for the full range of its indices L, ;; satisfies Eq. (3.136). With this
result in hand we can go on to the computation that is central to our eigenspectral method: finding
the eigenvectors of

ab

ZLab,ij Yigk) = —A® gine,v¥® (3.153)
ij

where the k index indicates that the solution is the kth eigensolution. Aside from the sin ©, factor
on the right, this is a standard eigenproblem for a symmetric real matrix, and we conclude that the
eigenvalues are real and the eigenvectors form a complete basis. It is easy to show that the factors
of sin ©, do not change these conclusions.

The finite difference problem in Eq. (3.153), along with Eq. (3.135), can be seen to be the finite

difference equivalent of the continuum eigenproblem
VY (0,0) = —AY (0, ). (3.154)

With the usual boundary conditions, the solutions of Eq. (3.154) can be taken to be the spherical har-
monics, and A to have values /(¢ + 1) where /¢ is an integer. The solutions of Eq. (3.153) should then
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be approximately proportional to the real and imaginary parts of Y;,,(0;, ®;), the approximation
becoming perfect as the grid goes to the continuum limit.

We next define the inner product in the grid vector space by the expression in Eq. (3.36). It
is simple to show, following the usual pattern with eigenproblems, that with respect to this inner
product, two nondegenerate eigenvectors Yig-k). and Yig-k/) are orthogonal as a consequence of the
symmetry in Eq. (3.136). Since we find the grid multipoles to have no degeneracies it follows
that the solutions to Eq. (3.153) constitute a complete, orthogonal basis, and can be normalized
to satisfy Eq. (3.37). It should be clear that this is the finite difference equivalent of well-known
continuum relations. In the continuum limit, Eq. (3.36) is the inner product on the two sphere. The
orthogonality of our grid multipoles is therefore just the finite difference form of the orthogonality

of spherical harmonics.
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Chapter 4

Optimal constraint projection for
hyperbolic evolution systems

Originally published as Phys.Rev. D70 (2004) 084017.

Techniques are developed for projecting the solutions of symmetric hyperbolic evolu-
tion systems onto the constraint submanifold (the constraint-satisfying subset of the
dynamical field space). These optimal projections map a field configuration to the
“nearest” configuration in the constraint submanifold, where distances between con-
figurations are measured with the natural metric on the space of dynamical fields. The
construction and use of these projections is illustrated for a new representation of the
scalar field equation that exhibits both bulk and boundary generated constraint vio-
lations. Numerical simulations on a black-hole background show that bulk constraint
violations cannot be controlled by constraint-preserving boundary conditions alone, but
are effectively controlled by constraint projection. Simulations also show that constraint
violations entering through boundaries cannot be controlled by constraint projection
alone, but are controlled by constraint-preserving boundary conditions. Numerical so-
lutions to the pathological scalar field system are shown to converge to solutions of
a standard representation of the scalar field equation when constraint projection and

constraint-preserving boundary conditions are used together.

41 Introduction

The exponential growth of constraint violations in the evolutions of black-hole spacetimes is proba-
bly the most critical problem facing the numerical relativity community today. The evolution equa-
tions of any self-consistent evolution system with constraints (including Einstein’s) ensure that if
the constraints are satisfied identically on an initial spacelike surface, they will remain satisfied

within the domain of dependence of that surface. This does not mean that small initial violations



98

of the constraints will remain small, or that constraint violations will not flow into the computa-
tional domain through timelike boundaries. On the contrary, experience has shown that constraint
violations seeded by roundoff or truncation level errors in the initial data tend to grow exponen-
tially in the numerical evolutions of black-hole spacetimes (see, e.g., [25, 31, 36]). At present these
constraint-violating instabilities are the limiting factor preventing these numerical simulations from
running for the desired length of time. Finding ways to control the growth of these constraints is
therefore our most urgent priority.

Recent work has demonstrated numerically that constraint violations that flow into the com-
putational domain through timelike boundaries can be controlled effectively by the use of spe-
cial constraint-preserving boundary conditions [23, 40, 10, 41, 32]. A number of groups have
constructed such boundary conditions for various representations of the Einstein evolution sys-
tem [39, 16, 10, 40, 11, 41, 17, 18, 12, 19, 4]. However, constraint violations in many evolution sys-
tems (including Einstein’s) are driven by bulk terms in addition to boundary terms in the constraint
evolution equations. In this paper we demonstrate that such bulk generated constraint violations
cannot be controlled effectively through the use of boundary conditions alone. Alternative methods
of controlling the growth of constraints are still required in such systems.

The most widely used method of controlling the growth of constraints in the Einstein evolution
system is called fully constrained evolution. In this method, which is often applied to spherical
or axisymmetric problems, symmetry considerations are used to separate the dynamical fields into
those that are determined by solving evolution equations and those that are determined by enforc-
ing the constraints at each time step [38, 2, 13, 3, 1, 14, 15]. In 3D problems without symmetry there
is no obvious way to perform such a separation in a general coordinate system; however, fully con-
strained 3D methods based on spherical coordinates have yielded promising results [8]. Various
groups have studied a closely related method, constraint projection, which can be used for general
3D evolutions in any coordinate system. The idea is to use the evolution system to advance all of
the dynamical fields in time, and then at each time step (or whenever the constraints become too
large) to force the solution back onto the constraint submanifold by solving the constraint equa-
tions (for the conformal factor and the longitudinal part of the extrinsic curvature in the case of the
Einstein system). The first preliminary results obtained with this constraint projection technique
have been moderately successful [5, 8, 37]. Constraint projection has not gained widespread use in
3D simulations, however, due in part to the traditionally high cost of solving the elliptic constraint
equations. Difficult questions also remain unanswered about the proper boundary conditions to
impose on the constraint equations, for example at black hole excision boundaries. Moreover, little
attention has been given to the question of whether these projections correctly map a field config-
uration onto (or near) the correct point of the constraint submanifold, i.e., the point through which

the exact evolution of the system would pass at that time. In particular, it is not clear whether the
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overall time evolution scheme—including the projections—remains consistent, stable, and conver-
gent.

The need to enforce constraints is a common feature of many problems in mathematical physics
besides numerical relativity, and for many problems successful techniques have been developed
to ensure that numerical solutions satisfy the needed constraints. Under mild assumptions on the
constraints, the subset of the field space satisfying the constraint equations defines a formal differ-
entiable manifold (a classical result due to Ljusternik [45]), and the evolution of a dynamical system
of ordinary (ODE) or partial differential equations (PDE) subject to constraints may be viewed as
evolution on this submanifold. Constraint control methods for such systems are generally based
on ideas from variational mechanics, where the Lagrangian (whose stationary points describe the
physical states of the system) is augmented with a sum of terms consisting of products of Lagrange
multipliers and the constraints [27, 6, 33]. A necessary condition for a configuration point to be a
solution of both the field equations and the constraint equations is that the augmented Lagrangian
be stationary with respect to variations in both the fundamental fields and the Lagrange multipli-
ers [45]. The additional terms in the augmented Lagrangian involving Lagrange multipliers can be
viewed as forcing the dynamics to remain on the constraint submanifold.

These augmented Lagrangian techniques are the basis of well-studied numerical methods for
controlling constraint violations in ODE systems. Many ODE systems are subject to algebraic con-
straints which must be preserved as the solution evolves. For such systems there exist numeri-
cal integration techniques that enforce these algebraic constraints exactly, and that also conserve
various important properties of the ODE solution (e.g., time-reversibility and symplectic struc-
ture). These numerical techniques are derived by adding to the ODEs terms chosen to make a
suitable augmented Lagrangian for the system stationary [20, 29, 30, 28, 22]. The resulting nu-
merical schemes, referred to as “step-and-project” methods, can be thought of as standard time
integration steps followed by projections. First a preliminary step is taken forward in time using a
standard numerical scheme, after which the solution will generally not satisfy the constraint equa-
tions. Then the solution from the preliminary step is corrected using a formal (optimal, or nearest
point) projection back onto the constraint submanifold. This projection step typically involves solv-
ing algebraic equations. Unlike the simple constraint projection methods used so far in numerical
relativity, “step-and-project” numerical methods for constrained systems are well studied and well
understood. It has been shown that they retain the consistency and stability properties of the orig-
inal one-step method on which they are based, and they generally have the same convergence
properties [22]. These techniques are immediately applicable to constrained PDE systems that are
discretized in space to produce constrained ODE systems (as we do, see Sec. 4.4); and numerical
methods based on augmented Lagrangians for PDE systems have also been developed [44, 9].

In this paper we apply these augmented variational techniques to obtain equations that project
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solutions of constrained hyperbolic evolution systems onto the constraint submanifold of the ap-
propriate dynamical field space. We construct projections that are optimal, in the sense that they
map a given field configuration to the “nearest” point on the constraint submanifold. We use the
natural metric, the symmetrizer, that exists in any symmetric hyperbolic evolution system to de-
fine distances on the space of fields. Hence this optimal projection is the one that minimizes this
symmetrizer distance (typically called the energy) between a given field configuration and its pro-
jection. The general formalism for constructing such optimal projections for constrained hyperbolic
evolution systems is described in Sec. 4.2.

We illustrate these optimal constraint projection ideas in Sec. 4.3 by deriving the optimal pro-
jection for a new symmetric-hyperbolic representation of the scalar field equation on a fixed back-
ground spacetime. This scalar field system has the interesting property that it suffers from con-
straint violations driven both by bulk terms as well as boundary flux terms in the equations. (And
so this system serves as a good model of the pathologies present in the Einstein system.) The opti-
mal projection for this scalar field system is determined by solving a certain elliptic PDE. In Sec. 4.4
we test these optimal projection techniques by studying numerical solutions to this scalar field
system on a fixed black-hole background spacetime. In particular we demonstrate that constraint-
preserving boundary conditions are necessary, but not sufficient, to control the growth of con-
straints in this pathological scalar field system. We demonstrate that constraint projection succeeds
in producing convergent constraint-satisfying solutions, but only if constraint-preserving bound-
ary conditions are used as well. These tests also illustrate that the projections are best performed
at fixed time intervals (AT ~ 2M for this problem) rather than after each time step. And we show
that the computational cost of solving the constraint projection equations for this system (using our
spectral elliptic solver [34]) is a very small fraction (below 1% for the resolution needed to achieve
roundoff level accuracy) of the total computational cost of evolving this system. The symmetrizer
metric for this model scalar field system (like many hyperbolic evolution systems) is not unique; so
the projections defined in terms of the symmetrizer are not unique. Nevertheless, we demonstrate
for the model scalar field system that numerical evolutions based on these different projections
all converge to the same solution. The rate of this convergence is not the same for all projections,

however, and we find an “optimal” projection for this system that maximizes this convergence rate.

4.2 Optimal constraint projection

Our objective is to construct a projection operator that maps a given field configuration to the
nearest constraint-satisfying configuration (the nearest point on the constraint submanifold). That

is, we wish to map an initial point 4* in the field configuration space to a new point u® that satisfies
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a set of constraint equations:
Au®) = 0. 4.1)

(We use Greek indices to label individual components of the dynamical fields, and upper case Latin
indices to label the individual components of the constraints.) To find the optimal projection we
also need to have a distance measure between field points. We define the needed measure in terms
of a symmetric positive-definite metric, S.3, on the dynamical field space. The distance between

field points is then defined as
|| 6ul* = /Sag(uo‘ —a®)(u® —af)d3z. (4.2)

Building on the augmented variational techniques commonly used to construct step-and-project
constraint control schemes in other areas of numerical analysis [20, 30, 22], we are now prepared
to construct the optimal projection map. We introduce a Lagrangian density £ that consists of the
distance between the given field configuration @ and its projection v, plus the products of the

constraints with Lagrange multipliers. Thus we introduce the Lagrangian density,
L = Sap(u® —a®)(u? — @)+ Aac?. (4.3)

The stationarity of the Lagrangian (the volume integral of this Lagrangian density) with respect to
variations of the Lagrange multipliers A4 enforces the constraints, while stationarity with respect
to variations of the fields u® are necessary conditions for the projection to minimize the distance to
the constraint submanifold.

The optimal projection procedure outlined above could be carried out using any definition of
the distance between field points, e.g., using any positive definite metric S, on the space of fields.
For a particular problem this distance measure should be chosen to be the natural measure associ-
ated with that problem. Our primary interest here is the construction of projections for constrained
hyperbolic evolution systems. So we will focus our attention on fields v that satisfy a first-order

evolution equation of the form
Opu® + A* 5o uf = F°. (4.4)

We use lower case Latin indices to label spatial coordinates x*, 0, = 0/0t to denote time derivatives,
and 9y = 9/9z" to denote spatial derivatives. Such systems are called symmetric hyperbolic if they

have a positive definite metric S.3 on the space of fields (typically called the symmetrizer) that
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symmetrizes the characteristic matrices:
SayA¥ g = Al 5 = A}, (4.5)

The well-posedness of the initial value problem for linear symmetric-hyperbolic evolution systems
is demonstrated by establishing bounds on the square-integral norm of the dynamical fields de-
fined with this symmetrizer metric [42, 21]. This metric defines the meaningful measure on the
dynamical field space for symmetric-hyperbolic systems, so this is the appropriate measure to use
for constructing optimal constraint projections for these systems. Most hyperbolic evolution sys-
tems of interest in mathematical physics (including many representations of the Einstein system)
are symmetric hyperbolic, and so we limit our consideration here to systems of this type.

In Sec. 4.3 we use the procedure outlined above to construct explicitly the optimal projection
for the relatively simple case of the scalar wave equation on a curved background spacetime. But
before we focus on that special case, we take a few (rather more abstract) steps in the construction
of this projection for the general case. To do this we assume that the constraints ¢ are linear in the

derivatives of the dynamical fields:
A = K% 50pu” + LA, (4.6)

where K4* 5 and L# may depend on u® but not its derivatives. The constraints have this general
form in many evolution systems of interest (e.g., the Einstein system, the Maxwell system, the in-
compressible fluid system). In this case we can explicitly compute the variations of the Lagrangian
density defined in Eq. (4.3):
Beou = ou{28ap(u” - 0%) = B AAKH,)
A (0a K 900" + 0a L) |
+0 (AaKA* 45u”), 4.7)

BL A4 = choAa. (4.8)

Here we use the notation 9, = 0/0u® to denote derivatives with respect to the fields. We have also
assumed that the symmetrizer S,3 may depend on u® but not u“. We wish to find the stationary
points of this Lagrangian with respect to arbitrary variations in the fields ©v“ and the Lagrange
multipliers A\ 4. Stationarity with respect to the variations of these quantities (that vanish on the

boundaries) implies that

0 = u*—1u"— %Saﬁak(/\AKkAg)
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+21248P (95 K% pu” + 05 L7, (4.9)

0 = c*=K"%300u° + L4 (4.10)
at each interior point, and stationarity with respect to boundary variations implies that
0= nk/\AKAkﬁ (4.11)

at each boundary point, where n;, is the outward directed unit normal to the surface. We use
the notation S®” to denote the inverse of S,3. The general idea is to use Eqgs. (4.9) and (4.10),
with appropriate boundary conditions (such as those provided by Eq. [4.11]), to determine the
field configuration u” and the Lagrange multipliers A4 for any given field point @®. If u® and A4
satisfying these equations can be found, then we are guaranteed that the field u“ is the constraint-
satisfying solution nearest the point u* as desired. We do not know whether these equations always
admit solutions in the general case. So in Sec. 4.3 we study in detail this optimal projection for the
simple case of the scalar field equations on a fixed background spacetime. We show that solutions
to the optimal projection equations always exist and are relatively easy to compute numerically in
this simple case. And in Sec. 4.4 we show that this optimal projection is very effective in controlling

the growth of constraints for the scalar field system.

4.3 Scalar fields in curved spacetime

In this section we examine in some detail the scalar wave system on a fixed background spacetime.
In Sec. 4.3.1 we review the standard treatment of this system, and then modify it so that it exhibits
bulk generated constraint violations in addition to the boundary generated violations present in
the standard system. This new, more pathological, symmetric-hyperbolic scalar field system now
serves as a good model of the constraint violating problems inherent in the Einstein system. We
construct constraint-preserving boundary conditions for this system in Sec. 4.3.2, and the optimal

projection map for this system in Sec. 4.3.3 following the procedure outlined in Sec. 4.2.

43.1 Modified scalar wave system

The standard scalar field equation on a fixed background spacetime is
VAV p = 0, (4.12)

where ¢ represents the scalar field and V, the covariant derivative associated with the background

spacetime metric. We represent the background spacetime metric in terms of the usual 3 + 1 split-
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ting:
ds® = —N2dt? + gi;(de’ + N'dt)(da’ + N7dt), (4.13)

where the lapse N and the spatial metric g;; are assumed to be positive definite, while the shift
N is arbitrary. The equation for the scalar field v, Eq. (4.12), can be re-expressed as a first-order

evolution system in the standard way (see, e.g., [35]):

o — N*Opp = —NII, (4.14)
OIT — N*O,IT + Ng*o9,®; = NJ'®; + NKTI, (4.15)
0P, — N*Op®;, + NO,IT = —TIO;N + ®;0;N7. (4.16)

The field ®; represents the spatial gradient 0;1), and 1I represents the time derivative of ¢ (and is
defined precisely by Eq. [4.14]). The auxiliary quantities K (the trace of the extrinsic curvature) and
J* depend only on the background spacetime geometry, and are defined by

Ji = —NTlg739;(Ng2g¥), (4.17)

K = —N'473[8,9% —9;(g* N)]. (4.18)

Solutions to the first-order system, Egs. (4.14)—(4.16), are also solutions to Eq. (4.12) only if the

constraints are satisfied: 0 = ¢ = {C;,C;;}, where

Ci = ow— @, (4.19)

Although the second constraint, C;; = 0, follows from the first, C; = 0, the converse is not true.
Hence we include both constraints in the analysis here. Note that both constraints are necessary to
construct a first-order hyperbolic evolution system for the constraint quantities (discussed below,
Egs. (4.29) and (4.30)). Note also that the analogues of both constraints play essential roles in first-
order hyperbolic formulations of Einstein’s equations.

We now generalize the evolution system, Egs. (4.14)—(4.16), somewhat by adding multiples of
the constraint C; to Egs. (4.14) and (4.16):

dp — Nk = —NII + v, N*¢y, (4.21)
0®; — NFOp®; + No,lI = —TIO;N + ®,;0;N’
+72NC;, (4.22)

where 1 and ~; are arbitrary constants. The constraint-satisfying solutions to these equations are
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the same as those of the original system; but as we shall see, the constraint violating properties of
the new system are significantly different from those of the original. Substituting the definition of

C; in Egs. (4.21) and (4.22) gives us new evolution equations for ¢ and ®;:

o ~(1+m)N* ) = =NIL - 11 N* Py, (4.23)

The first-order system that represents the scalar wave equation, Egs. (4.15), (4.23), and (4.24),

has the standard first-order form,
du + Ak g’ = Fe (4.25)

where u® = {4, II, ®;}. Systems of this type are called symmetric hyperbolic if there exists a sym-
metric positive-definite tensor S, 3 on the space of fields that symmetrizes the characteristic matri-
ces Akag:

SayA¥Tg = A5 = Al (4.26)

The most general symmetrizer for our new scalar wave system is (up to an overall factor),

ds? = Sagduo‘duﬁ,

= A’dyp? — 2yodyp d1T + d1I? + gY d®;dD;, (4.27)

where A is an arbitrary non-vanishing function. This S,3 symmetrizes the characteristic matrices
Ak 5 s0long as v172 = 0. Thus we must take at least one of these parameters to be zero for our new

system to be symmetric hyperbolic. This symmetrizer is positive definite whenever
A? > 2. (4.28)

In this case S,g provides a dynamically meaningful measure of the distance between field config-
urations, which we use to define our optimal constraint projection operator in Sec. 4.3.3.

The evolution of the constraints follows from the principal evolution system, Egs. (4.15), (4.23),
and (4.24):

0Ci — (L+m)LzCi =2ymN'Cj; — 72 NC;, (4.29)
0:Cij — L5Cij = —72NCij — 72C;0;) N, (4.30)
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where L ; represents the Lie derivative along the shift vector N*. If the constraints are satisfied at
some initial time, then these equations guarantee (at least at the analytical level) that the constraints
remain satisfied in the domain of dependence of the initial data. These equations also show that
any constraint violations in this system will be advected along a congruence of timelike curves.
Constraint violations can therefore flow into the computational domain if these curves intersect
the boundaries. And like the Einstein evolution system, these equations also contain bulk terms
that amplify any existing constraint violations. When v; = 0 we see that Eq. (4.29) implies that the
constraint C; has the simple time dependence C;(7) = C;(0)e 727, where T measures proper time as
seen by a hypersurface orthogonal observer. Whenever v, < 0 this constraint grows exponentially,
and in this case the modified scalar wave system serves as a good model of the constraint viola-
tions in the Einstein system. (Constraint violations of all wavelengths grow exponentially in this
system, and so it may be even more pathological than the Einstein system where constraint violat-
ing instabilities are typically dominated by long wavelength modes [31, 36].) Conversely, if y2 > 0
then this modified scalar wave system exponentially suppresses any residual constraint violations
that may be present in the initial data. This latter property suggests that analogous terms could be

introduced to control some of the bulk constraint-violating terms in the Einstein system.

4.3.2 Constraint preserving boundary conditions

Boundary conditions for hyperbolic evolution systems are defined in terms of the characteristic
fields of these systems, so we must construct these fields for our modified scalar wave system.
The characteristic fields are defined with respect to a spatial direction at each point, represented
here by a unit normal co-vector field n;. For the purposes of imposing boundary conditions, the
appropriate ny, is the outward-pointing normal to the boundary. Given a direction field n; we

define the left eigenvectors e, of the characteristic matrix ny A** 5 by
edankAk ag = v(&)edﬁ, (431)

where v(4) denotes the eigenvalue (also called the characteristic speed). The index & labels the
various eigenvectors and eigenvalues, and there is no summation over & in Eq. (4.31). Since we
are interested in hyperbolic evolution systems, the space of eigenvectors has the same dimension
as the space of dynamical fields, and the matrix e® 5 is invertible. The projections of the dynamical

fields u® onto these left eigenvectors are called the characteristic fields u®:

u® = e%gu’. (4.32)
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At each boundary point, boundary conditions must be imposed on any characteristic field having
negative characteristic speed, vs) < 0, at that point [24, 43]. We refer to fields with v(4) < 0 as
the incoming characteristic fields at that point. Conversely, those characteristic fields having non-
negative characteristic speeds (the outgoing fields) must not have boundary conditions imposed
on them there.

The characteristic fields for the symmetric hyperbolic representations (y1v2 = 0) of the scalar

wave system are the quantities u® = {Z!, 72, U+ }:

7zl =, (4.33)
Z2 = Pkoy, (4.34)
U = I+nfd, — o, (4.35)

k

where P¥; = §k; —nFn;, n* = gkin;, and n*n;, = 1. The fundamental fields u® can be reconstructed

from the characteristic fields u® by inverting Eq. (4.32):

v o= Z' (4.36)
= UM +U7) +72Y, (4.37)
o, = LU -U"n + 277 (4.38)

The characteristic field Z! propagates with speed —vy1n,N*/N, the field Z? with speed 0, and
the fields U'* with speeds +1 relative to the hypersurface orthogonal observers. The coordinate
characteristic speeds of these fields are —(1 + v1)n, N*, —n;N*, and —n, N* 4 N respectively.
Ateach boundary point, boundary conditions are required on each characteristic field whose co-
ordinate characteristic speed is negative at that point. The field U'~, in particular, requires a bound-
ary condition on all timelike boundaries. For the standard representation of the scalar field system,
Egs. (4.14)~(4.16), the boundary condition U'~ = II — n*®; = 0 is used to ensure (approximately)
that no scalar waves enter the computational domain. We wish to enforce this condition on our gen-
eralized scalar field system, Egs. (4.15), (4.23), and (4.24), in such a way that the physical (constraint
satisfying) solutions are the same for all values of the parameters v; and 7». Since U'~ depends on
72, Eq. (4.35), the proper boundary condition must also depend on vo: U™ + y21p = IT — n*®, = 0.
Thus the appropriate boundary condition to impose on U'~ is U'™ = —v9¢. The freezing form of

this boundary condition (as used in our code) is,
QU™ = —70,9). (4.39)

For boundary conditions on the fields Z! and Z? (when necessary), we explore two choices:



108

One is the freezing boundary condition 0,2 ¢ = 9,72 = 0. In Sec. 4.4 we show that this boundary
condition allows constraint violations to enter the computational domain through the boundaries.
Therefore, we also explore conditions that prevent this influx of constraint violations: When the

fields Z' and/or Z? require boundary conditions, we set

&Z' = NFd, — NII, (4.40)

o Z? P*,0,00. (4.41)

Equation (4.40) is based on Eq. (4.14) combined with Eq. (4.19), while Eq. (4.41) is derived from the
time-derivative of Eq. (4.19). We note that with the choice 7v; = —1, the field Z I never requires
a boundary condition. We also note that the term 0,1 that appears on right side of Egs. (4.39)
and (4.41) must be evaluated using the appropriate expression for 9,9 = 9,Z' on this bound-
ary: Eq. (4.40) when Z! requires a boundary condition, or Eq. (4.23) when no boundary condition
is required. In Sec. 4.4 we compare numerically the results of using these constraint-preserving
boundary conditions with the use of the freezing boundary conditions 9, Z' = 9,Z? = 0 on these

fields.

4.3.3 Optimal constraint projection

The idea is to use the full evolution system, Egs. (4.15), (4.23), and (4.24), to evolve initial data for-
ward in time an amount AT and then (when the constraint violations become too large) to project
this solution back onto the constraint submanifold in some optimal way. Let u® = {¢,II, ®;} de-
note the solution obtained directly from this free evolution step. This solution @“ may not satisfy
the constraints because roundoff or truncation level constraint violations have been amplified, or
constraint violations have flowed through the boundaries. Thus we wish to project @* in an op-
timal way back onto the constraint submanifold. Following the procedure outlined in Sec. 4.2 we

construct a Lagrangian density,

=

L =y
= g} [N =) —292(6 — )~ TD)

H(II—-10)° + g7 (2; — &) (@ — @)

[Sap(u® — a®)(u® — @°) + )\ACA]

FN (D) — @) + A7 6[1-@]-]} , (4.42)
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using the symmetrizer S,s of the hyperbolic evolution system, Eq. (4.27), and the Lagrange multi-
pliers A4 = {\*, A"/ }. The stationary points of the Lagrangian,

L= /ﬁd%, (4.43)

with respect to variations in ©* and A4 define the optimally projected field configuration u®. We
have included the multiplicative factor g2 = (det g;;)* in Eq. (4.42) to ensure that L is coordinate
invariant.

The scalar field constraint Lagrangian density, Eq. (4.42), has the following variations:

Ly =292 [A2(Y — ¥) — 72 (T - )] 69

~0i(g* X))o + Di(gE N ow), (4.44)

BESTT = 2g% [T — T — 7 (¢ — )] 4TI, (4.45)
SL5®; = [2g% 97 (®; — B;) — PN — Dy(g? A1) 59,

+0;(92 XY 50;), (4.46)

SLSN = g2 (9i) — B;)ON, (4.47)

BEONT = g2 9,0\ (4.48)

We require that the Lagrangian L from Eq. (4.43) be stationary with respect to all variations in the
dynamical fields 0u® = {9, 611, 6®; } (including those that do not vanish on the boundaries) as well
as all variations in the Lagrange multipliers 6A4 = {0\, 6\ }. From Egs. (4.44)-(4.46), it follows
that

Y= YA -10) + 1A 72029 (gE N, (4.49)
= T+ — ), (4.50)
O, = B+ igyN + 1977 gi0k(g2 ), (4.51)

and Eqs. (4.47) and (4.48) imply that the projected solution satisfies the constraints. We now solve
Eq. (4.51) for \!, substitute it into Eq. (4.49), and use Egs. (4.47) and (4.50), to obtain the following

equation for 1,
ViV — (A2 =93)p = V' — (A% =290, (4.52)

where V; represents the spatial covariant derivative that is compatible with g;;. In deriving this
equation we have also used the fact that the term 0,0y (g%)\’”') vanishes identically because A9 is

antisymmetric. Equation (4.52) is just the covariant inhomogeneous Helmholtz equation. We note
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that the parameters must satisfy the condition A2 —~2 > 0 for the evolution system to be symmetric
hyperbolic. Solving Eq. (4.52) determines the optimal projection ¢; the optimal II is determined
from Eq. (4.50),

=10+ (¢ — ¥); (4.53)

and the optimal ®; is obtained by enforcing the constraint,
D; = Db, (4.54)

We note that the Lagrange multiplier A"/ does not play any essential role in this analysis: we could
just as well have set A/ = 0 and still obtained the same projection. This makes sense, because the
constraint C;; is really a consequence of the constraint C; in this case.

The evolution equations for II and ®;, Eqgs. (4.15) and (4.16), decouple from the larger scalar
field evolution system, Eqgs. (4.15), (4.23), and (4.24), when v, = 0. It is sometimes of interest to
consider the properties of this smaller system, Egs. (4.15) and (4.16), subject to the single constraint,
Eq. (4.20). The optimal constraint projection for this reduced system consists of Egs. (4.50) and (4.51)
(with \' = v, = 0), together with the single constraint equation 0;;®;) = 0. This constraint equation
implies that ®; = 0;9 for some scalar function 7. Inserting this expression for ®; in Eq. (4.51),

multiplying by ¢ g%/, and taking the divergence, we obtain the following equation for ¢,
ViV = Vo, (4.55)

In deriving this equation we have used the fact that the term 0,0y (g% A\k?) vanishes identically be-
cause A\ is antisymmetric. The optimal projection in this reduced system then sets II = II and
®; = 9,1, where 1 is the solution to Eq. (4.55). We note that Eq. (4.55) is just the A? — 43 = 0 limit
of the original projection Eq. (4.52).

Unfortunately the optimal constraint projection for the scalar field system is not unique, because
the parameter A in the symmetrizer metric is not unique. We have seen that taking the limit A? —
73 is equivalent to ignoring the evolution of the scalar field v in constructing the optimal projection.
Alternatively, the limit A — oo corresponds to the simple projection ¢ = Y, I =11, and ®; = 0;1).
In this limit, no elliptic equation has to be solved, and the evolution of the field ®; is effectively
ignored when constructing the projection. We expect that the optimal choice of A will be one for
which 1/A corresponds to some characteristic length or timescale associated with the particular
problem. We explore in Sec. 4.4.3 the properties of these projection operators for a range of A, and
show that an optimal value does exist. When 2 # 0 the optimal choice seems to be A? = 273,
where 1/|7] is the timescale on which the constraints are amplified.

Finally, we must consider the boundary conditions for the projection equations that determine
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1, i.e. Eq. (4.52) or (4.55). In general, boundary conditions for the projection equations must satisfy
two criteria: First, they must be consistent with boundary conditions imposed on the evolution
equations, and second, the projection equations plus boundary conditions must not modify solu-
tions that already satisfy the constraints. Typically, we enforce approximate outgoing wave bound-
ary conditions on the evolution equations. For the case of the scalar wave equation, the approxi-
mate outgoing wave boundary condition, Eq. (4.39), sets U~ = —v,1) or equivalently n*®; = ITon
the boundaries (where nk is the outward directed unit normal). Since ®; = 9;¢ in these projected
solutions, the appropriate boundary condition to impose on v in Eq. (4.52) or (4.55) in this case
would be

n* O =T = T + 72 (¢ — ). (4.56)

Alternatively we can derive boundary conditions for ) from the requirement that the boundary

variations of the Lagrangian vanish. The divergence terms in Eqs. (4.44) and (4.46) imply that
0 = np A = np Ak (4.57)

on the boundaries for the scalar field system. A short calculation (using the fact that n;, is propor-
tional to a gradient, and BT antisymmetric) shows that n;0y (g% /\ki) = 0, so we see from Eq. (4.51)

that the natural boundary condition is
n* o) = n* oy (4.58)

If the approximate outgoing wave boundary condition, n*®;, = II, was used in the free evolution
step, then the natural boundary condition Eq. (4.58) differs from Eq. (4.56) by the term 2 (1) — v)).
For the constraint projections described in Section 4.4, we impose the Robin boundary condition
Eq. (4.56) on the solutions of Eq. (4.52) at the boundaries where U'~ requires a boundary condition
in the evolution step, and Eq. (4.58) on the solutions at all other boundaries (e.g., inside an event
horizon). We note that the discrepancy between the natural and the physical outgoing boundary
condition could be eliminated by adding an appropriate boundary term to the constraint projection

Lagrangian.

4.4 Numerical results

We have studied the effectiveness of the optimal constraint projection methods developed in Secs. 4.2

and 4.3 for the case of a scalar field propagating on a fixed black-hole spacetime. For these simula-
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tions we use the Kerr-Schild form of the Schwarzschild metric as our background geometry:
2 9 2M 2 2 2 102
ds® = —dt* + —(dt + dr)” + dr® + r°dQ”. (4.59)
T

We express all lengths and times associated with these simulations in units of the mass, M, of this
black hole. Our computational domain consists of a spherical shell extending from 7y, = 1.9 M
(just inside the black-hole event horizon) to rmax = 11.9 M. For initial data we use a constraint

satisfying Gaussian shaped pulse with dipolar angular structure,

Y = 0, (4.60)
= Yio(0, p)e T/, (4.61)
d; = 0, (4.62)

with 7o = 5M and w = 1M. The value of II is about 2 x 10~2! at the outer boundary of our
computational domain, below the level of double precision roundoff error.

For the remainder of this section we describe briefly the numerical methods used to solve this
problem. Then in Sec. 4.4.1 we describe three numerical simulations designed to explore the effects
of boundary conditions on the evolution of the constraints in these solutions. In Sec. 4.4.2 we de-
scribe two additional numerical simulations that illustrate the effectiveness of constraint projection
in controlling the growth of constraints. And finally in Sec. 4.4.3 we explore ways to optimize the
use of the constraint projection method and measure its computational cost.

All numerical computations presented here are performed using a pseudospectral collocation
method. Our numerical methods are essentially the same as those we have applied to evolution
problems with the Einstein system [26, 25, 31, 36], with scalar fields [35], and with the Maxwell

system [32]. Given a system of partial differential equations
O’ (x,t) = Fu(x,t), du(x,t)], (4.63)

where u® is a collection of dynamical fields, the solution u“(x, t) is expressed as a time-dependent

linear combination of N spatial basis functions ¢y, (x):

G (xt) = 3 g (H)on(x). (4.64)

We expand each scalar function (3 and II) and the Cartesian components of each vector (¢, ¢,

and @) in terms of the basis functions T, (p)Y;n (8, ¢), where Y;,,, are spherical harmonics and 77, (p)
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are Chebyshev polynomials with
2r — max — 'min
p=""" [min. (4.65)

Tmax — Tmin

We use spherical harmonics with ¢ < ¢,,,.x = 5 and a varying number of Chebyshev polynomials
with degrees N, < 81. Spatial derivatives are evaluated analytically using the known derivatives

of the basis functions: .
diuly(x,t) = )0; i (x (4.66)

k=0

)_.

Associated with the basis functions is a set of N, collocation points x;. Given spectral coefficients
af (t), the function values at the collocation points u*(x;, t) are computed by Eq. (4.64). Conversely,

the spectral coefficients are obtained by the inverse transform

Ne—1

)= wiuf (i, t)or(xs), (4.67)
i=0

where w; are weights specific to the choice of basis functions and collocation points; thus it is

straightforward to transform between the spectral coefficients ) (t) and the function values at the

collocation points u%;(x;,t). The partial differential equation, Eq. (4.63), is now rewritten using

Egs. (4.64)—(4.67) as a set of ordinary differential equations for the function values at the collocation

points,

Opuy (Xi7 t) =g [UN(xjv t)], (4.68)

where G depends on u%;(x;,t) for all j. This system of ordinary differential equations, Eq. (4.68),
is integrated in time using a fourth-order Runge-Kutta algorithm. Boundary conditions are incor-
porated into the right side of Eq. (4.68) using the technique of Bjerhus [7]. The time step is typically
chosen to be about one fifth the distance between the closest collocation points, which ensures that
the Courant condition is well satisfied. This small time step is needed to reduce the time discretiza-
tion error to the same order of magnitude as the spatial discretization error at radial resolution
N, =61.

Elliptic partial differential equations, Eq. (4.52) or (4.55), are solved using similar pseudospec-
tral collocation methods. As detailed in [34], we consider a mixed real/spectral expansion of the

desired solution (x):

Imax

pn; 9, d) Z Z 1/}lmn lm ) (469)
=0 m=—1
where p,, (forn =0, ..., N, — 1) are the collocation points of the Chebyshev expansion in (rescaled)

radius p. Given a set of coefficients @lmn, we can evaluate the residual of the elliptic equation and
the residual of the boundary conditions using expressions like Eq. (4.66); the requirement that each

Yim component (for I < [;,x) of this residual vanishes at the radial collocation points results in a
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system of algebraic equations for the coefficients ¢/;,y,,,. For the problem considered here these alge-
braic equations are linear, and with suitable preconditioning are solved using standard numerical
methods like GMRES. The elliptic solver is described in detail in [34].

We use no filtering on the radial basis functions, but apply a rather complicated filtering rule for
the angular functions. When evaluating the right side of Eq. (4.68), we set to zero the coefficients of
the terms with ¢ = /,,,,« in the expansions of the scalars, 9,4 and 9,11. The vector 0, ®; is filtered by
transforming its components to a vector spherical harmonic basis, setting to zero the coefficients of
the terms with ¢ = /..« in this basis, and then transforming back to Cartesian components. The
result ¢ of each elliptic solve and the projected II (cf. Eq. (4.53)) are filtered similarly. The projected
®; is computed via Eq. (4.54) from the filtered ). We find no angular instability, such as the one
reported in [32], when we use this filtering method. And we find no significant change in our

results for this problem by increasing the value of /..« beyond the value /;,ax = 5.

4.4.1 Testing boundary conditions

In this section we describe the results of three numerical simulations that explore the effects of
boundary conditions on the evolution of the constraints in the scalar field system. First we evolve
the initial data in Eqs. (4.60)—(4.62) using the standard representation of the scalar field system
(71 = 72 = 0), and using the standard freezing boundary conditions on the incoming fields. We
use no constraint projection in this initial simulation. At the inner boundary of the computational
domain, r = ruin = 1.9 M, all of the fields are outgoing and so no boundary condition is needed
there on any of the fields. At the outer boundary, r = ryax = 11.9 M, the fields Z*', Z? and U'~ are
all incoming since the shift points out of the computational domain there: ny N* = 2M/r. So we
impose the freezing boundary conditions 0 = 9, Z' = 9,22 = 0,U'~ on these fields. The results of
this first numerical simulation are depicted in Figs. 4.1 and 4.2.

Figure 4.1 illustrates the evolution of the constraints, which we measure using the quantity
1@l

lC@)? = / (C:C' + CyC) g dPa, (4.70)

divided by a suitable normalization. The constraints in this system are combinations of the deriva-
tives of the dynamical fields. So we normalize the curves in this figure by the quantity ||Vu(t)|],

which is the natural coordinate-invariant L? measure of the derivatives of the dynamical fields:
[[Vu(t)||? = /gijviu“vjuﬁsaﬁ g7 da. (4.71)

The ratio of these quantities, ||C(¢)||/||Vu(t)||, is therefore a meaningful dimensionless measure
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Figure 4.1: Constraint violations for evolutions with v; = 72 = 0, freezing boundary conditions,
and no constraint projections. Plotted are radial resolutions NV, = 21, 31, ..., 61; all curves lie on
top of each other.
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Figure 4.2: Convergence plot for the evolution presented in Fig. 4.1. Plotted are differences from
the solution with radial resolution NN, = 81.
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of the magnitude of constraint violations. When the value of this ratio becomes of order unity,
the dynamical fields do not satisfy the constraints at all. As we can see in Fig. 4.1, the constraint-
satisfying initial data quickly evolve to a state in which this constraint measure is of order unity.
A large increase in constraint violation occurs as the outgoing scalar wave pulse passes through
the outer boundary of the computational domain. After this time the numerical solution to the
first-order scalar wave system no longer represents a solution to the original scalar field equation.
In Fig. 4.2 we demonstrate that these numerical solutions are nevertheless numerically conver-

gent. We measure the convergence of these solutions by depicting the quantity

6012 = [ Sus (u, — ) (5, — u) o a%. @72)

divided by a suitable normalization. This quantity measures the difference between the solution
uf;, obtained with radial resolution NV,, compared to a reference solution uf. In Fig. 4.2 we use
the numerical solution computed with the largest number of radial basis functions (/V, = 81 in
this case) as the reference solution. In order to make these difference measures meaningful, we

normalize them by dividing by an analogous measure of the solution itself:

llu()]]? = / Saguly uy g% d3x. (4.73)

Figure 4.2 shows that our computational methods are numerically convergent, even if the solutions
are constraint violating and are therefore unphysical. The rate of convergence of these solutions
changes at about ¢ = 100 because a short wavelength reflected pulse enters the computational do-
main at about this time. The convergence of these solutions shows that these constraint violations
are a feature of the evolution system and the boundary conditions, rather than being artifacts of a
poor numerical technique.

Next we evolve the same initial data, Eqgs. (4.60)—(4.62), using the same standard scalar wave
evolution equations (y; = 2 = 0), but this time we use constraint-preserving boundary conditions
on the fields Z! and Z?, Egs. (4.40) and (4.41). We use no constraint projection in these evolutions.
Figure 4.3 shows that the constraints are in fact satisfied by these solutions to truncation level
errors. The solid curves in Fig. 4.3 show the ratio ||C(¢)||/||Vu(t)|| while the dashed curves show
1C(®)]]/I|Vu(0)]]. The only difference is that the denominator used for the dashed curves is time
independent. The solid curves show that the relative constraint error is approximately constant
in time until about ¢ = 40, at which time a truncation error level constraint-violating pulse from
the outer boundary has advected inward across the grid and fallen into the black hole. After ¢ =
40 the relative constraint error decreases with time. The highest-resolution solid curves behave
differently: they increase exponentially with time. However, this growth occurs only because the

normalization factor in the denominator (which measures the size of the derivatives of the fields)
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Figure 4.3: Constraint violations for evolutions with v; = v = 0, constraint-preserving bound-
ary conditions, and no constraint projection. Solid curves are normalized by the quantity ||Vu(¢)||
while the dashed curves are normalized by ||[Vu(0)||. Decay of the normalization factor ||Vu(t)||
rather than growth of the constraints causes the growth in the highest-resolution solid curves,
which have constant round-off-level constraint violations.
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Figure 4.4: Convergence of evolutions shown in Fig. 4.3. Plotted are differences from the evolution
with N = 81, which is henceforth the reference solution u . Solid curves are normalized by ||u(t)||
while the dashed curves are normalized by ||« (0)||. Decay of the normalization factor ||u(t)|| causes
the growth in the highest-resolution solid curves, for which ||du(t)|| is constant at roundoff level.
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goes to zero as the scalar wave pulse leaves the computational domain. The highest resolution
dashed curves show that the absolute constraint error for these resolutions is constant at round-off
level.

Figure 4.4 illustrates the numerical convergence of these evolutions. Plotted are the ratios of the
differences ||0u(t)|| to a measure of the size of the fields. The solid curves in Fig. 4.4 show the ratio
[|6u(?)||/||w(t)|| while the dashed curves show ||du(t)||/||u(0)||. Again, the only difference is that
the denominator used for the dashed curves is time independent. Figures 4.3 and 4.4 show that
these scalar field evolutions are stable, constraint preserving and numerically convergent. These
solutions therefore represent what we expect to be the correct physical solution to this problem.
Were this our only objective, this paper would end here. However our primary interest here is
to study the use of projection methods to control the growth of constraints. So we will use the
solution found here as a reference to which our later evolutions using constraint projection can be
compared.

Our last simulation to study the effects of boundary conditions on the growth of the constraints
uses a non-standard scalar field evolution system with v; = 0 and 2 = —1/M. In other respects,
however, this simulation is identical to the one depicted in Figs. 4.3 and 4.4: It uses the same ini-
tial data, Eqs. (4.60)—(4.62), the same constraint-preserving boundary conditions, and no constraint
projection. Because we use Eq. (4.39) as a boundary condition on U'~, the constraint-preserving
solutions of the equations are the same as those obtained with v; = 72 = 0. However, using an
evolution system with v = —1/M introduces unstable bulk terms into the constraint evolution
equations, Egs. (4.29) and (4.30), so the constraint-violating solutions of the equations will be differ-
ent. Consequently this system is much more pathological than the standard scalar field system, and
provides a much more difficult challenge for the constraint control methods studied here. Fig. 4.5
shows the evolution of the constraints in this system. Truncation level constraint violations in the
initial data grow exponentially with an e-folding time of approximately 1.1 M in these evolutions.
The ratio ||C(t)||/||Vu(t)|| approaches a constant of order unity at late times once the constraint-
violating portion of the solution dominates and the denominator begins to grow exponentially as
well. The small inset graph in Fig. 4.5 illustrates that the divergence of these solutions from the
reference solution of Fig. 4.4 grows at the same rate for all spatial resolutions. This suggests that
the growth is caused by a constraint-violating solution to the evolution equations rather than a
numerical instability.

These evolutions with v, = —1/M demonstrate that constraint preserving boundary conditions
alone are insufficient to control the growth of constraints in this system. Since the Einstein evolution
system is also believed to contain bulk generated constraint violations [31], this example suggests
that constraint preserving boundary conditions alone will not be sufficient to control the growth of

the constraints in the Einstein system.
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Figure 4.5: Constraint violations for evolutions with v, = —1/M, constraint preserving boundary

conditions, and without constraint projection. The inset shows differences ||0u(t)||/||u(t)|| from
the reference solution of Fig. 4.4. The curves level off at late times because both numerator and
denominator grow exponentially at the same rates.

4.4.2 Testing constraint projection

In this section we discuss two numerical evolutions that explore the use of the constraint projec-
tion methods developed in Secs. 4.2 and 4.3.3. The first evolution uses the standard scalar wave
evolution system with v; = 72 = 0, and freezing boundary conditions. We have already seen in
Figs. 4.1 and 4.2 that such evolutions exhibit significant constraint violations once the scalar wave
pulse passes through the outer boundary of the computational domain. In this numerical experi-
ment we freely evolve the scalar field to the time ¢t = 20/, and then perform a single constraint
projection on the solution using Eqgs. (4.52)—(4.54) with A = 2/M. We then evolve the system freely
again to t = 40M. Figure 4.6 shows how the constraints respond to a single constraint projection.
We use a very fine timescale in Fig. 4.6, showing in detail the times around ¢ = 20M when the
constraint projection is performed. Individual points in Fig. 4.6 show the amount of constraint vi-
olation after each individual time step. The value of the constraints drops sharply at the time step
where the constraint projection is performed, and as we expect, the value of the constraints after
this projection step is smaller for higher resolutions. So the constraint projection step is success-
ful in significantly reducing the size of the constraints. But something rather unexpected happens
next: the constraints increase by orders of magnitude on the very next free evolution time step after
the constraint projection. The small inset in Fig. 4.6 shows the same data plotted on a linear rather
than a logarithmic scale. This shows that the constraints grow linearly in time after the constraint

projection step on a very short timescale.
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Figure 4.6: Constraint violations for evolutions with v; = v, = 0, freezing boundary conditions,
and a single constraint projection at ¢t = 20M (with A = 2/M). Points show ||C(?)||/||Vu(t)|| after
each time step. The inset plots the same data on a linear scale.

Figure 4.7 provides some information about the reason for this strange behavior by showing
the convergence of these numerical solutions. For times before the constraint projection step at
t = 20M, the solutions show good numerical convergence as the number of radial collocation
points is increased. But there is a sharp breakdown of numerical convergence (or at least a sharp
drop in the rate of numerical convergence) after the constraint projection step.

Figure 4.8 provides some deeper insight into the reason for this lack of convergence. Plotted in
Fig. 4.8 are a sequence of curves showing the radial dependences of the dipole part of the scalar
field (¢)10 and the monopole part of the constraints (C;C)qo at a sequence of times including the

constraint projection step. The spherical harmonic components of a function () are defined by

(@ = [ Vi (6.0)Q0r,6.5)sin 0 db. (4.74)

The dashed lines at the bottom of Fig. 4.8 show the radial profiles at ¢ = 20 M immediately before
the constraint projection, while the lowest solid lines show these profiles at the same time ¢ = 20 M
just after the projection. We see that the constraints essentially vanish after the constraint projec-
tion step. The next profile at ¢t = 21 M shows that the scalar field develops some non-smooth radial
structure immediately after the projection step, which subsequently propagates into the computa-
tional domain. This non-smoothness in v causes a sharp spike in the constraints, seen clearly in
Fig. 4.8. Spectral methods do not converge well for non-smooth functions, so the emergence of this

structure in 1) explains the breakdown in the numerical convergence and thence the breakdown in
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Figure 4.7: Convergence of evolutions shown in Fig. 4.6. Plotted are differences from the evolution
with N, = 81.

our constraint projection method. The emergence of the non-smoothness in 1) seems to be caused
by the constraint projection step in the following way: The projection produces a 1) that is non-
vanishing at the boundary, and the freezing boundary condition then forces ¢y = Z* (and Z?) to
develop kinks (see [32]) which propagate into the computational domain during the free evolution
steps following the projection.

Figures 4.6—4.8 demonstrate that constraint projection is not successful in removing large con-
straint violations when used in conjunction with freezing boundary conditions. One might hope
that this failure could be corrected by projecting out the constraints before they are allowed to
grow too large. Figure 4.9 shows the convergence of solutions in which a constraint projection is
performed after each evolution time step, for a variety of different time steps At. Like the evolu-
tions shown in Figures 4.6—4.8, these evolutions use the standard scalar field system (y; = 72 = 0),
freezing boundary conditions, and constraint projection with A = 2/M. The three curves in Fig. 4.9
measure the convergence of the solution (relative to the highest resolution reference solution de-
picted in Fig. 4.4) at three different times in this evolution, to = 10.24 M, 20.48 M, and 30.72 M.
All of these evolutions use the same spatial resolution, N, = 51. These graphs show that the con-
vergence towards the reference solution is only first order in the time step At. This convergence is
significantly worse than that expected for the fourth-order Runge-Kutta time step integrator that
we use. In contrast the free evolutions with constraint-preserving boundary conditions shown
in Fig. 4.4 achieve ||du(to)||/||u(to)]| < 107'° with a time step similar to the largest At shown in
Fig. 4.9. We conclude that constraint projection produces only first order in time convergent nu-

merical solutions when used in conjunction with standard freezing boundary conditions, and is
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Figure 4.8: Radial profiles of (1)1 and (C;C%) for the evolution of Fig. 4.6. The solid lines repre-
sent times ¢t/M = 20,...,25. The dashed line represents the state just before the constraint projec-
tion at t/M = 20. The arrows indicate the location of the non-smoothness in .

therefore an ineffective substitute for constraint-preserving boundary conditions.

Finally we apply constraint projection to the pathological scalar wave evolution system (y; = 0
and v = —1/M), which we failed to control with constraint preserving boundary conditions alone.
We project every AT = 2M using A = v/2/M, and we continue to use constraint preserving bound-
ary conditions. Except for constraint projection, this is the same as the evolution shown in Fig. 4.5.
Figure 4.10 shows that the constraints are reduced to truncation error levels in these evolutions. The
small inset graph shows these same curves with a finer time resolution, so the saw-tooth shaped
evolution of the constraints can be seen more clearly. We note that constraint projection does not
occur at every evolution time step in these simulations, but rather at fixed times separated by
AT = 2M. The evolutions with the finest spatial resolution take more than one thousand time
steps between projections. Figure 4.11 shows the convergence between these evolutions and the
highest resolution reference solution depicted in Fig. 4.4. This figure demonstrates that the con-
straint projection method combined with constraint preserving boundary conditions succeeds in
producing the same numerical solution as our reference solution—even for this pathological scalar

field system.

4.4.3 Optimizing constraint projection

In this section we explore ways to optimize the use of the constraint projection methods developed

in Secs. 4.2 and 4.3.3. In particular we investigate how important the choice of the parameter A is
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Figure 4.9: Differences between evolutions with time step At and the reference solution ur (of
Fig. 4.4) at fixed evolution times ¢y. Evolutions use v; = 2 = 0, freezing boundary conditions, and
constraint projection with A = 2/M after each time step, AT = At.
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Figure 4.10: Constraint violations ||C(t)||/||Vu(t)|| for evolutions with v; = 0 and v» = —1/M,
constraint preserving boundary conditions, and constraint projection with A = v/2/M every AT =
2M. Inset shows the same data with finer time resolution.
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Figure 4.11: Differences from the reference solution ur (of Fig. 4.4) for the evolutions shown in
Fig. 4.10.

to the effectiveness of the projection, and we determine its optimal value. We also vary the time
between projection steps, AT, and determine the optimal rate at which to perform these projections.
Finally we measure the computational cost of performing a scalar field evolution with constraint
projection, compared to the cost of doing a free evolution.

Figure 4.12 shows convergence plots for evolutions of the pathological scalar field system with
v = 0 and 2 = —1/M, constraint-preserving boundary conditions, and constraint projection ev-
ery AT = 2M. All evolutions use the same radial resolution, N, = 41. Each of the solid curves
in Fig. 4.12 represents an evolution using a different choice of the parameter A. We see that the
evolutions using projections with A = v/2/M are somewhat closer to the reference solution than
the others, but the size of the differences are not very sensitive to the value of A. The only projected
solution having significantly worse accuracy than the others is the one with A = oo, which corre-
sponds to the simple projection with ¢ = ¢, I = Il and ®; = 9;¢. For all choices of A, including
A = o0, these evolutions are exponentially convergent with increasing N,..

We have some understanding of why there is an optimal choice for the parameter A: It is possi-
ble to analyze the projection process completely and analytically for scalar field evolutions with a
flat background metric on a computational domain with three-torus (1'®) topology. By performing
a Fourier transform of the fields in this case it is easy to show that the fields break up into modes
that propagate with the usual dispersion relation w? = k - k, plus others that grow exponentially
in time with dispersion relation w = i,. The projection step becomes a simple algebraic transfor-
mation on the Fourier components of the field in this case. So it is straightforward to show that the

projection step completely removes the modes that grow exponentially with time only when the
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Figure 4.12: Differences ||0u(t)||/||u(t)|| from the reference solution upr of Fig. 4.4 are plotted for
different choices of A. Evolutions with v = 0 and 72 = —1/M, constraint-preserving boundary
conditions, constraint projection every AT = 2M.

parameters satisfy A = 2+3. For evolutions on computational domains with different topologies,
and different background metrics, it is not possible to determine the optimal choice of A using such
a simple argument. However it is not surprising that the optimal choice is not too different from
A% =242,

Next we consider the effect of varying the times between constraint projections. Figure 4.13
shows the convergence measure ||du(to)||/||u(to)|| for evolutions of the pathological scalar field
system with v; = 0 and 72 = —1/M, constraint preserving boundary conditions, and constraint
projections with various values of A and AT. These evolutions are all carried out with the same
radial resolution N, = 41, and are compared with the reference solution of Fig. 4.4 at the time
to = 100M. Each curve in Fig. 4.13 represents a set of evolutions with the same value of A but
varying AT. The smallest AT for each curve corresponds to projecting at each evolution time step.
We see that all of these curves show a minimum difference with the reference solution, and this
minimum occurs at about AT ~ 1M in all of these curves. This coincides with the e-folding time of
the bulk constraint violations, —1/72; hence we expect that constraint projection should generally
be applied on a time-scale comparable to that of the constraint growth. Figure 4.13 also reveals that
projections performed with A% = 2+3 are the optimal ones over a fairly broad range of projection
times AT. The evolutions with simple constraint projection (A = oo) crash for very small values of
AT, as well as for AT = 10M.

Finally, we have made some measurements to evaluate the computational cost of doing scalar

field evolutions with constraint projection, compared to the cost of free evolution. Figure 4.14
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and constraint projection every AT. Differences from the reference solution up (of Fig. 4.4) at
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Figure 4.14: Solid curve (left axis) shows the ratio of time spent in elliptic solves to time spent in
the hyperbolic evolution code. Dashed curve (right axis) shows the ratio of time required for one
elliptic solve to the time for one evolution time step.
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contains two curves that measure the computational cost of doing optimal projection with AT =
2M. The solid curve shows the ratio of the time the code spends doing the constraint projection
step (i.e., doing the elliptic solve) T¢;; with the time the code spends doing evolution steps Tiyp.
This ratio decreases from about 0.1 using a very coarse spatial resolution to about 0.003 using a
very fine spatial resolution. The ratio T.;1/7hy, decreases when the spatial resolution is increased
because the code must take many more free evolution time steps in the time AT between projection
steps in this case. The dashed curve in Fig. 4.14 measures the ratio of the time needed to perform
one constraint projection, .11, with the time needed to take one free evolution step, t1,y,. We see that
this ratio is fairly independent of resolution using our spectral elliptic solver, and ranges from about
3.5 at low spatial resolution to about 5 at high resolution. These tests show that the computational
cost of performing constraint projection is only a small fraction of the total computational cost of
performing these scalar field evolutions. We conclude that computational cost should not be used

as an argument against the use of constraint projection methods.

4.5 Discussion

We have developed general methods in Sec. 4.2 for constructing optimal projection operators that
map the dynamical fields of hyperbolic evolution systems onto the constraint submanifold asso-
ciated with these systems. These methods are worked out explicitly in Sec. 4.3 for the case of a
new evolution system that describes the propagation of a scalar field on a fixed background space-
time. The constraint projection map for this system requires the solution of one elliptic partial
differential equation each time a projection is performed. The new scalar field system introduced
in Sec. 4.3 has the interesting property that it suffers from constraint violations that flow into the
domain through timelike boundaries and also from violations generated by bulk terms in the equa-
tions. So this system exhibits both types of constraint violating pathologies that can occur in the
Einstein evolution system. To test our constraint projection methods, we perform a number of nu-
merical evolutions of this scalar field system propagating on a black-hole spacetime. We show that
constraint-preserving boundary conditions alone are not capable of controlling the growth of con-
straints in this scalar field system. Constraint projection is also shown to be ineffective when used
in conjunction with traditional boundary conditions that do not prevent the influx of constraint vio-
lations through the boundary. However we show that the combination of constraint projection and
constraint-preserving boundary conditions is a very effective method for controlling the growth
of the constraints. We measure the computational cost of performing these constraint projections
and show that at the highest numerical resolutions, the projections account for only a fraction of
a percent of the total computational cost of the evolution. Thus high computational cost can no

longer be cited as a reason to avoid constraint projection techniques.
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Chapter 5

A first-order generalized harmonic
evolution system

Originally published as Class.Quant.Grav. 23 (2006) S447-5462.

A new representation of the Einstein evolution equations is presented that is first order,
linearly degenerate, and symmetric hyperbolic. This new system uses the generalized
harmonic method to specify the coordinates, and exponentially suppresses all small
short-wavelength constraint violations. Physical and constraint-preserving boundary
conditions are derived for this system, and numerical tests that demonstrate the effec-
tiveness of the constraint suppression properties and the constraint-preserving bound-

ary conditions are presented.

5.1 Introduction

Harmonic and generalized harmonic (GH) coordinates have played important roles in general rela-
tivity theory from the very beginning. Einstein used harmonic (then called isothermal) coordinates
in his analysis of candidate theories of gravitation (as recorded in his Zurich notebook of 1912) be-
fore general relativity even existed [24], DeDonder used them to analyze the characteristic structure
of general relativity in 1921 [8, 9], and Fock used them to analyze gravitational waves in 1955 [11].
Harmonic coordinates played an important role in the proofs of the well-posedness of the Cauchy
problem for the Einstein equations by Choquet-Bruhat in 1952 [12, 4] and by Fischer and Marsden
in 1972 [10]. Harmonic coordinates have also been used to obtain numerical solutions of Einstein’s
equations by Garfinkle [15] and by Winicour and collaborators [30, 31, 2]. The idea of specify-
ing arbitrary coordinate systems using a generalization of harmonic coordinates was introduced by
Friedrich in 1985 [13]. And quite recently the GH approach to specifying coordinates played an im-
portant, perhaps seminal, role in the state-of-the-art numerical simulations of the final inspiral and

merger of binary black-hole systems by Pretorius [22, 21] using a form of the equations suggested
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by Gundlach et al. [16].

We think there are two important properties that have made harmonic or GH coordinates such
an important tool throughout the history of general relativity theory. The first property is well
known: this method of specifying the coordinates transforms the principal parts of the Einstein
equations into a manifestly hyperbolic form, in which each component of the metric is acted on
by the standard second-order wave operator. The second property is not as widely appreciated:
this method of specifying coordinates fundamentally transforms the constraints of the theory. This
new form of the constraints makes it possible to modify the evolution equations in a way that pre-
vents small constraint violations from growing during numerical evolutions—without changing
the physical solutions of the system and without changing the fundamental hyperbolic structure of
the equations. The purpose of this paper is to explore and understand these important properties
and to extend the GH evolution system in a way that makes it even more useful for numerical com-
putations. In Sec. 5.2 we review the modified form of the GH evolution system of Gundlach et al.
and Pretorius. We convert and extend this system in Sec. 5.3 into a symmetric-hyperbolic first-order
evolution system that has constraint suppression properties comparable to those of the second-
order system. We derive and analyze the well-posedness of constraint-preserving and physical
boundary conditions for this new first-order system in Sec. 5.4, and in Sec. 5.5 we present numer-
ical tests that demonstrate the effectiveness of its constraint suppression properties and the new

constraint-preserving boundary conditions.

5.2 Generalized harmonic evolution system

Harmonic (sometimes called wave) coordinates are functions x* that satisfy the covariant scalar
wave equation. These coordinates are very useful because they significantly simplify the second-
derivative terms in the Ricci curvature tensor. To see this explicitly, consider a spacetime with

metric tensor q:
ds? = Yapdztda®. (5.1)

(We use Latin indices from the first part of the alphabet a, b, c, ... to denote 4-dimensional spacetime

quantities.) A coordinate z” is called harmonic if it satisfies the scalar wave equation,

0= VVea? = T, (5.2)
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where V. denotes the covariant derivative compatible with ¢,;, and I', = T e is the trace of

the standard Christoffel symbol Iy

Fabc - %(8“/}(16 + atﬂ/Jab - aawbc)- (53)

The right side of Eq. (5.2) is just the expression for this covariant wave operator acting on z° in
terms of partial derivatives and Christoffel symbols.

The Ricci curvature tensor can be written as

Rab = _%deacadwab + v(arb) + ¢de€f (aewcaafwdb - I‘acel—‘bdf)a
(5.4)

in any coordinate system, where V,I', = 0,I'y, — T .3 Tg. In harmonic coordinates, I', = 0, so
the only second-derivative term remaining in the Ricci tensor is 1°/9,.04t)qs. Therefore in harmonic

coordinates the vacuum Einstein equations, R,; = 0, form a manifestly hyperbolic system [12],

1Z)Cdacadwab = 2 ¢Cd1/}ef (861/}&18)‘1/)(117 - Facerbdf) . (55)

Friedrich [13] (and independently Garfinkle [15]) realized that the manifestly hyperbolic form
of the Einstein system, Eq. (5.5), can also be achieved for arbitrary coordinates, if the choice of
coordinates is fixed in a certain (but non-standard) way. This alternate method of specifying the
choice of coordinates, which we call the generalized harmonic (GH) method, is implemented by

assuming that the coordinates satisfy the inhomogeneous wave equation,
Ha(I, Z/J) = wabvcvcxb = —Tq, (5.6)

where H,(x,1) is an arbitrary but fixed algebraic function of the coordinates z* and the metric 9
(but not its derivatives). In these GH coordinates H, = —I',, so the vacuum Einstein equations are

again manifestly hyperbolic:
V49:00hay = =2V (oHp) + 29T (0etbeaOftbab — Dacelbar)- (5.7)

The term containing H,, on the right side of Eq. (5.7) is a pre-specified algebraic function (of * and
1ap) that operates as a source term, rather than one of the principal terms containing second deriva-
tives of v,p. The principal (i.e., second-derivative) parts of this GH evolution system, Eq. (5.7), are
therefore identical to those of the harmonic evolution system, Eq. (5.5).

To understand the GH method of specifying coordinates more clearly, it is helpful to compare
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it to the more traditional way of specifying coordinates with the lapse and the shift. To do this we
introduce a foliation of the spacetime by spacelike hypersurfaces, and adopt a coordinate system,
{t, x*}, with the t = constant surfaces being the leaves of this foliation. The traditional lapse N, shift

N*, and 3-dimensional spatial metric g;; associated with this coordinate system are then defined

by
d52 = ’(/}adeadCCb = —detQ —+ gij (dCCZ —+ Nldt) (dl‘J + det) (58)

(We use Latin indices 1, j, k, ... to denote 3-dimensional spatial quantities; while Latin indices from
the first part of the alphabet a, b, c, ... will continue to denote 4-dimensional quantities.) Expressing
the GH coordinate condition, Eq. (5.6), in this 3+1 language implies evolution equations for the

lapse and shift:

N — NFO,N = —N(H,—N'H;+NK), (5.9)
ON' = N*O N’ = Ng" {N(Hj +9" ) — @N} (5.10)

where K is the trace of the extrinsic curvature. Specifying the GH gauge function H,(z, ) therefore
determines the time derivatives of the lapse NV and shift N*, and hence the evolution of the gauge
degrees of freedom of the system. Some gauge conditions (e.g., N = 1, N* = 0) may not be simple
conditions on H,, just as some gauge conditions (e.g., H, = 0) are not simple conditions on N and
N*. In this paper we restrict attention to the cases where H,(z,) is a specified algebraic function.
Any chosen coordinates can clearly be described (ex post facto) by an H, of this form. But H, may
also be specified in more general ways, e.g., by giving evolution equations for H, [22]. We expect
(but have not proven) that any coordinates can be obtained by specifying a priori suitable (possibly

complicated) conditions on H,.

5.2.1 Constraint evolution

Our experience in solving the Einstein equations numerically is that small constraint violations
typically grow into large constraint violations that quickly make the solutions unphysical. We
think it is essential therefore to understand the constraints and how violations of those constraints
evolve with time. To this end it is helpful to consider the following representation of the GH system,

Eq. (5.7):

0= R — V(acb), (5.11)
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where R, is the Ricci tensor defined in Eq. (5.4), and C,, is defined as
Ca = Ha + Fa- (512)

From this perspective the condition C, = 0 serves as the constraint that ensures the coordinates sat-
isfy the GH coordinate condition, Eq. (5.6). It is straightforward to verify that Eq. (5.11) is equivalent
to the GH evolution equations, Eq. (5.7). This form of the GH system, Eq. (5.11), is also formally
equivalent to the Z4 system [3] (in the sense that there is a one-to-one correspondence between
solutions of the two systems), where the constraint C, plays the role of the Z4 vector field [16]. The
systems differ however in the way the fields are evolved: in the Z4 system the field C, is evolved
as a separate dynamical field, while in the GH representation C,, is treated as a constraint which is
not evolved separately.

The evolution equation for the constraints is easily deduced from the GH evolution system,
Eq. (5.11): take the divergence of the trace-reversed Eq. (5.11), use the contracted Bianchi identity
V®Ra— 1 VR = 0, and exchange the order of covariant derivatives with the Ricci identity, yielding

0=V’V,Cy + Ry CP. (5.13)

Finally the Ricci tensor can be eliminated using Eq. (5.11) to produce the following equation for the

evolution of the constraints [14]:
0= V'VyCo + C'V(,Cy). (5.14)

This equation guarantees that the constraints C, will remain zero within the domain of dependence
of an initial surface on which C, = 9;C, = 0. Thus the GH evolution system is self-consistent.

The standard Hamiltonian and momentum constraints of general relativity are encoded in the
constraints of the GH system in an interesting way. Let ¢t* denote the unit timelike normal to the
t = constant surfaces of the foliation used in Eq. (5.8). The standard Hamiltonian and momentum
constraints are combined here into the single 4-dimensional momentum constraint M,, which is

given by the contraction of ¢* with the Einstein curvature tensor:
Mg = (Ray — $0abR) 2. (5.15)
Using Eq. (5.11) for a spacetime that satisfies the GH evolution system, we see that
tPVyCo = 2 My + (¢t — t°9°0) ViCe, (5.16)

where ga, = Yap +taly is the intrinsic metric to the ¢ = constant hypersurfaces. Specifying the initial
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data needed to determine the evolution of the constraints, {C,, 9,C,}, via Eq. (5.14) is equivalent

therefore to specifying the more usual representation of the constraints, {C,, M}, on that surface.

5.2.2 Constraint damping

The impressive numerical simulations of binary black-hole spacetimes performed recently by Pre-
torius [22, 21] are based on a modified form of the GH evolution system suggested by Gundlach et
al. [16]. This modified system has the remarkable property that it causes constraint violations to be

damped out as the system evolves. The modified system is given by
0= Rup — v(acb) + Y% [t(ac b) — %wab tccc}a (517)

where t* (as before) is the future directed timelike unit normal to the ¢ = constant surfaces, and g
is a constant that determines the timescale on which the constraints are damped. This system can

also be written more explicitly as

1Z)Cdacadwab = _QV(aHb) + 2 dedﬁf (881/)ca8f1/}db - Facerbdf)

+ Y [25C(atb) — Yabp tc] (Hc + FC). (518)

This system is manifestly hyperbolic since the additional constraint damping terms (i.e., those pro-
portional to vp) do not modify the principal parts of the standard GH evolution system. It is also
clear that the constraint-satisfying solutions of this system are identical to those of the standard
Einstein system.

In order to understand how this modification affects the constraints, we must analyze the as-
sociated constraint evolution system. This can be done by following the same steps that lead to

Eg. (5.13), but in this case we obtain
0=V"VyCo+ Rap C* — 270V [ t(,C o], (5.19)
or using Eq. (5.17),
0 = VVCi—27%V’[tCa)l + COV (aCh) — 70 taC Co. (5.20)

This constraint evolution system has the same principal part as the unmodified system, Eq. (5.14).
Therefore the same arguments about the self-consistency of the system and the preservation of
the constraints within the domain of dependence apply. Similarly the relationship between the C,
constraint and the standard 4-dimensional momentum constraint is not changed in any essential

way: setting C, = 0;C, = 0 on a t =constant surface is still equivalent to setting C, = M, = 0 there.
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Consider the properties of the constraint evolution system for states that are very close to the
constraint-satisfying submanifold C, = 9,C, = 0. We can ignore the terms in Eq. (5.20) that are

quadratic in C, in this case, so the constraint evolution system reduces to
0 = V'ViCo—27%V[t1Ca)- (5.21)

Gundlach et al. [16] have shown that all the “short wavelength” solutions to this constraint evolu-
tion system are damped at either the rate e 70! or e~70*/2. This explains how the addition of the
terms proportional to v in the modified GH system, Eq. (5.17), tend to damp out small constraint
violations. This also explains (in part) why the numerical evolutions of this system by Pretorius
were so successful. A complete understanding of how the long wavelength constraints are damped

(or not) in generic spacetimes would also be quite interesting, but this is not yet fully understood.

5.3 New first-order generalized harmonic evolution system

In this section we present a new first-order representation of the modified GH evolution system,
which will (we think) be a useful counterpart to the second-order system described in Sec. 5.2.2
above. There is an extensive mathematical literature on first-order evolution systems that clarifies
numerous issues of great importance in numerical relativity, e.g., how to formulate well-posed
boundary conditions [23, 27, 28], which systems form shocks [20], etc. We have also been more
successful implementing first-order systems in our spectral evolution code.

The principal part of each component of the modified GH system, °?0.0q1bqp, is the same as
the principal part of the covariant scalar-field system. So a first-order representation of the GH
system can be constructed simply by adopting the methods used for scalar fields [26, 18]. Using
this method and the usual 3+1 coordinates, Eq. (5.8), a first-order representation of the GH system

can be written down, and indeed was written down (in essentially this form) by Alvi [1]:

atwab - Nkakd}ab st 07 (522)

Olap — N*OpIlap + Ng¥ O0p®iar =~ 0, (5.23)

D ®iap — N¥0p®iup + NOiIly, ~ 0, (5.24)

where @, = 0,1 and Iy, = —t°0.1)qp are new fields introduced to represent the first deriva-

tives of 1),5. The notation =~ indicates that only the principal parts of the equations (i.e., the parts
containing derivatives of the fields) are displayed.
In the discussion that follows, it will be helpful to discuss first-order evolution systems like this

using a more compact and more abstract notation. Thus, we let u® = {45, Iap, Piap } denote the



140

collection of dynamical fields; and the evolution system for these fields can be written as
Opu® + AP 50puf = F*, (5.25)

where A*“ 5 and F® may depend on u® but not its derivatives. We use Greek indices throughout
this paper to label the collection of dynamical fields. The principal part of this system is written
abstractly as 0,u® + A* 30, u” ~ 0, so Egs. (5.22)~(5.24) determine the matrix A*®5 but not F* for
this system. First-order evolution systems of this form are called symmetric hyperbolic if there exists
a symmetric positive definite matrix S,s (the symmetrizer) on the space of fields that satisfies the
condition S, A*#5 = Al ; = A} . The mathematical literature on symmetric hyperbolic systems
is extensive, and includes, for example, strong existence and uniqueness theorems [10, 23, 27, 28].
Alvi’s representation of the GH system [1] is symmetric hyperbolic, as was a similar representation
of the Einstein system (for the case of harmonic coordinates) given earlier by Fischer and Mars-
den [10].

Alvi’s first-order representation of the GH system has two serious problems: First, the use of

the field ®,,; introduces a new constraint,
Ciab = Oithap — Pian, (5.26)

which can (and does) tend to grow exponentially during numerical evolutions. Second, this sys-
tem does not satisfy the mathematical condition (linear degeneracy) that prevents the formation
of shocks from smooth initial data [20]. The principal part of the ¢;; component of Eq. (5.22), for
example, can be written as 9;N* — N*9,N? ~ 0; and these terms have the same form as those
responsible for shock formation in the standard hydrodynamic equations.

We had previously developed ways to modify systems of this type to eliminate either of these
problems [18]. However, these methods produce systems that are not symmetric hyperbolic when
both problems are corrected simultaneously. Here we present new modifications that solve both
problems without destroying symmetric hyperbolicity. We do this by adding appropriate multiples
of the constraint C;,;, to each of the equations: 71 NCiap to Eq. (5.22), 73 NCiap to Eq. (5.23), and
Y2 NCiap to Eq. (5.24). These terms modify the principal parts of the equations:

Obap — (1 + 1) N Othy =~ 0, (5.27)
Oy — N*OpTap + Ng* 04 ®iap — 3N Otbay =~ 0, (5.28)
O ®iap — Nk ®iap + NOap — ¥ NOtha, =~ O. (5.29)

Choosing 73 = 7172 makes this new system symmetric hyperbolic for any values of the parameters

71 and 2. The symmetrizer metric (which defines the energy norm) for this new system can be
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written as
Sapdu®du’ = mPm( A2decdippa + dllgedlpg
~292dt0cdMlpg + 9 dPiacdPjua), (5.30)
where m® is any positive definite metric (e.g., m®® = g% + t%t* or even m® = §%) and A is a

constant with dimension length~!. This symmetrizer is positive definite so long as A% > ~3.

The eigenvectors of the characteristic matrix, niAke s (where ny, is the outward directed unit
normal to the boundary of the computational domain), play an important role in setting boundary
conditions for first-order evolution systems. Let e®3 denote the left eigenvectors with eigenvalues

v(a), defined by
ed#nkAk“g = ’U(&)edg. (531)

We use indices with hats (e.g., &) to label the characteristic eigenvectors and eigenvalues, and & is
not summed over in Eq. (5.31). The eigenvalues v(4) are also called the characteristic speeds. The
characteristic matrices of symmetric hyperbolic systems have complete sets of eigenvectors, so the
matrix e%j is invertible in this case. The characteristic fields, u®, are defined as the projections of
the dynamical fields onto the characteristic eigenvectors: u® = e%u”. Boundary conditions must
be imposed on each incoming characteristic field, i.e., each u® with negative characteristic speed,
V&) < 0[23,27,28]. The characteristic fields for the new GH evolution system, Egs. (5.27)—(5.29),

are given by

uy = ta, (5.32)
’U’(l;bi = g £ niq)iab - '72wab7 (533)
wly = PFdg, (5.34)

where P;* = 6,5 — n;n*. The characteristic fields ugb have coordinate characteristic speed —(1 +

71)niN*, the fields u}lff have speed —n; N* + N, and the fields u2 , have speed —n; N*.

iab
The complete equations for our new first-order representation of the GH evolution system (in-

cluding all the non-principal parts) are

Obay — (L4+71)N*0tpapy = =Ny — 11 N @jgp, (5.35)
Oy, — NFOI + NgFop®iap — 1172 N Optban
= 2NY“(g7®ica®jap — Meallyy — ¥/ Tacelpar)

—2NV (o Hyy — Nt Teqllap — NtTeig” @ ap
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+N0[26°(aty) — Yat®] (He +Te) = 172N @iap, (5.36)
O ®iav — NFOR®Piap + NOillap — Nv20;ta
= ANt Dieallay + Ng Py je®pap — N72Pia. (5.37)

The terms on the right sides of Egs. (5.35)—(5.37) are algebraic functions of the dynamical fields.
The connection terms I'.,; appearing on the right side of Eq. (5.36) are computed using Egs. (5.3),

where it is understood that the partial derivatives are to determined from the dynamical fields by

atd’ab = _NHab + Niq)iaba (538)

Oibap = Piap. (5.39)

Choosing the parameter v, > 0 in this new system causes the constraint C;,; to be exponentially
suppressed [18], because the modified Eq. (5.37) implies an evolution equation for C;4;, having the
form, 0;Ciqp — N*04,Ciap ~ —v2NCiqp. Choosing y1 = —1 makes the system Egs. (5.35)—(5.37) linearly
degenerate, which implies that shocks do not form from smooth initial data [20]. And choosing the

parameter v > 0 causes the constraint C, to be exponentially suppressed, as discussed in Sec. 5.2.2.

5.4 Boundary conditions

The modifications of the GH evolution system discussed in Secs. 5.2.2 and 5.3 are designed to damp
out small constraint violations that may arise from inexact initial data, numerical errors, etc. These
modifications will do nothing, however, to prevent the influx of constraint violations through the
boundaries of the computational domain. Constraint-preserving boundary conditions are needed
to prevent this [29, 5, 6, 19, 25]. Such boundary conditions can be formulated once the propaga-
tion equations for the constraints are understood. So we derive a first-order system of evolution
equations for the constraints in Sec. 5.4.1, use them to derive constraint-preserving boundary con-
ditions in Sec. 5.4.2, present boundary conditions for the physical gravitational-wave degrees of
freedom of the system in Sec. 5.4.3, and finally analyze the well-posedness of the combined set of

new boundary conditions in Sec. 5.4.4.

5.4.1 First-order constraint evolution system

The primary constraint of the GH system is the gauge constraint, C,, which we re-write here in

terms of the first-order dynamical fields:

Ca - Ha + gijq)ija + thba - %g;wbcq)ibc - %tawbcnbc- (540)



143

This expression differs from Eq. (5.12) only by multiples of the constraint C;4;. In the following we
use this definition, Eq. (5.40), rather than Eq. (5.12), because it simplifies the form of the constraint
evolution system. The evolution equation for C,, Eq. (5.14), is second order. Thus, we must define
new constraint fields that represent the first derivatives of C, in order to reduce the constraint

evolution system to first-order form. Thus we define new constraint fields 7, and C;, that satisfy

Fo =~ t°9.,=N"10:Cq— N0,Ca), (5.41)
Cia ~ &»Ca, (542)

up to terms proportional to the constraints C, and C;4,. The following definitions of 7, and C;, ac-

complish this in a way that keeps the form of the constraint evolution system as simple as possible:

Fo = 1000 — g7 0iTlj0 — g7t°0;® b0 + 310107 gY 0;® jpe
+tog 0 H; + gL ®;jp g7 Prcat)®te — 167 P54 g7F Ppeqrp©it®
—git0; Hyy + g7 ®cq®pa bt — 149" g™ D e Py a1
— 2009 ®ieq® b PP + 14, T gt — g% H T,
—t" 9" Ty Tj0 — 3 i Picat " Toeth™ + 3taTTeallyets 4"

+ 0L ®icallpet t"1h — g1 Pt Tjet® — 197 @0t “t 105,
—gTH;®jp0t® + g ®ica Hyh*t? + 7o (gidcida - %927/1“1@@)

+%tancddeHbtb - tagijq)ichdde + %taginiq)jcddea (543)

Cia = g‘jkajq)ika - %gngdajq)icd + tbainba - %tadeaiHcd
+0iHo + 3959 jea®ic s vV + 1977 P jca®ine Ut ta
_gjkgmnq)jmaq)ikn + %(I)icdﬂbeta (¢Cb1/1de + %1/)betctd)

—®jcallpat® (¥4 + 3°%) + 190 (tath™ — 205t%) Cica. (5.44)

The remaining constraints needed to complete the GH constraint evolution system are C;,; defined

in Eq. (5.26), and the closely related C; 4, defined by

Cijab = 20iPjjap = 20;;Cjap- (5.45)

The complete collection of constraints for the GH evolution system is therefore the set ¢ =
{CasFasCiasCiab, Cijap } defined in Egs. (5.40), (5.43), (5.44), (5.26), and (5.45). (We use upper case

Latin indices to label the constraints.) The constraints ¢ depend on the dynamical fields u® =
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{ab, Map, Piap } and their spatial derivatives J,u®. Thus the evolution of the constraint fields cA
is completely determined by the evolution of the dynamical fields through Egs. (5.35)-(5.37). We
have evaluated these constraint evolution equations and have verified that they can be written in

the abstract form
Orc + AR g(u)Oc? = FAp(u,0u) P, (5.46)

where A" and F“ z may depend on the dynamical fields u® and their spatial derivatives dju®.
Thus the constraint evolution system closes: the time derivatives of the constraints vanish initially
when the constraints themselves vanish at an initial time. The principal part of the first-order con-
straint evolution system turns out to be remarkably simple (given the complexity of the expressions

for the constraints themselves):

9,Ca ~ 0, (5.47)
NFou =~ NOF,+ Ng70,Cja, (5.48)
0Cia ~ N10,Cio + NOFa, (5.49)
0Ciap =~ (1 +~71)N*0hCiap, (5.50)
Cijab ~ N Cijap- (5.51)

This constraint evolution system is symmetric hyperbolic with symmetrizer

Sapdctdc® = m® {d]—"ad]-'b—i-gij (dCiadCjp, + g™ M dCikacdCiiva)

+A2(dCadCy + g dCiacdCina) | (5.52)

where A? is a positive constant and m® is an arbitrary positive definite metric. The constraint

energy for this system is defined as
Ee = / SapctcB /gda. (5.53)

Since the constraint evolution system is hyperbolic, it follows (at the continuum level) that the
constraints will remain satisfied within the domain of dependence of the initial data, if they are
satisfied initially.

We have analyzed the solutions to this constraint evolution system for the case of small con-
straint violations of solutions near flat space. We find that all of the short-wavelength constraint
violations are damped at the rate e ~70t, e=70*/2, or e ~72%. So choosing 7o > 0 and 2 > 0 is sufficient

to guarantee that all of these constraints are suppressed. This new first-order GH system therefore
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has the same constraint suppression properties as the second-order system of Gundlach et al. [16]
and Pretorius [21].
The constraint evolution system, Eq. (5.46), is symmetric hyperbolic and it will be useful to

determine the characteristic constraint fields. Thus, we evaluate the matrix of left eigenvectors of

A

the constraint evolution system e”p and their corresponding eigenvalues v 4, (or characteristic

speeds). The characteristic constraint fields are defined (in analogy with the principal evolution

A=

system) as the projections of the constraint fields onto these eigenvectors: c ¢ B The result-

ing characteristic fields for this constraint evolution system are

AE = FFnfCha, (5.54)
do— ¢, (5.55)
¢, = Pl (5.56)
Gy = Ciab (5.57)
by = Cijab. (5.58)

The characteristic constraint fields ¢2* have coordinate characteristic speeds —n; N + N, the fields

3
iab

¢l have speed 0, the fields c?a and cfjab have speed —n; N, and the fields ¢
1)y NL.

have speed —(1 +

5.4.2 Constraint-preserving boundary conditions

Boundary conditions must be imposed on all the incoming characteristic fields u, i.e., all those
with v(4) < 0 on a particular boundary. Thus, boundary conditions will typically be needed for
the characteristic field u};;, and (depending on the value of the parameter v; and the orientation
of the shift N* at the boundary) may also be needed for ugb and/or ufab. Some of these boundary
conditions must be set by physical considerations, i.e., by specifying what physical gravitational
waves enter the computational domain. Some of the boundary conditions can be used, however, to
prevent the influx of constraint violations. This can be done by specifying the incoming u® at the
boundary in a way that ensures the incoming characteristic constraint fields ¢ also vanish there.
The incoming constraint fields for this system include 0, and perhaps ¢3 , and /or ¢}, , depending
on 71 and N* at the boundary. We find that these incoming ¢ are related to the incoming u® by

the following expressions:

O~ ﬁ[kw@a _ %kawd} diuly, (5.59)
nich,, ~diul, (5.60)

1 Chap X AL . (5.61)
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Here the notation d u® denotes the characteristic projection of the normal derivatives of u® (i.e.,
diu® = e®gn*ouP), and ~ implies that algebraic terms and terms involving tangential derivatives
of the fields (i.e., P*;0,u®) have not been displayed. The inward directed null vector k¢ used here
is defined as k¢ = (t¢ — n°)/v/2. The idea is to set the left sides of Egs. (5.59)—(5.61) to zero to
get Neumann-like boundary conditions for the indicated components of d | u®. By imposing these
conditions on d; u®, we ensure that these incoming components of ¢ vanish.

We have found that a convenient way to impose boundary conditions of this type is to set the

incoming projections of the time derivatives of u<, dyu® = e ﬁﬁtuﬁ, in the following way:
diu® = Dyu® + v (diu® — diu®| ). (5.62)

In this expression the terms D;u® represent the projections of the right sides of the evolution system,
Egs. (5.35)—(5.37); so the equations at non-boundary points would simply be d;u® = D,u®. The

termd, u is the value to which d | u® is to be fixed on the boundary. This form of the boundary

|5e
condition replaces all of the d, u® that appears in D,u® with d,u®|, . Applying this method to
the constraint-preserving boundary conditions in Egs. (5.59)—(5.61), we obtain the following rather

simple conditions

dtugb = Dtugb —(1+ 'yl)anjnkciab, (5.63)
deuly = [3PuP — 20, Py kD + Llpkk?] Douly

FV2(N + 1 N) 1o Py — Papl® — 3lalyk®] ), (5.64)

dtu%ab = Dtuzab — leninkc;ijab. (5.65)

The quantity P,, in these expressions is the projection tensor, Py, = tap + tats — nane, and the

outgoing null vector [ is defined by 1 = (% + n®)/v/2.

5.4.3 Physical boundary conditions

The constraint-preserving boundary conditions presented in Egs. (5.63)—(5.65) restrict only four
degrees of freedom of ui;. Two of the remaining degrees of freedom represent the physical gravi-
tational waves, and the final four represent gauge freedom. We choose to characterize and control
this gravitational wave freedom in terms of the incoming parts of the Weyl curvature. The propa-

gating components of the Weyl tensor can be written as

w;tb = (Pachd -1 achd) (te F ne) (tf F ’rLf)Ccedf. (5.66)
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We showed in [19] that these components of the Weyl tensor are the incoming and outgoing (re-
spectively) characteristic fields of the curvature evolution system that follows from the Bianchi
identities. The w, are proportional to the Newman-Penrose curvature spinor components ¥4 (out-
going) and ¥, (ingoing), respectively. We also note that the spatial components of wf; are equal to
the components of the Weyl tensor characteristic fields 2U1-8ji defined in our paper on constraint-
preserving boundary conditions for the KST system [19]. The expression for the Weyl tensor in
terms of our first-order variables is unique only up to terms proportional to constraints; it is possi-
ble to choose these constraint terms so that the wfjt- depend on the normal derivatives of v in the

following way:
wi[b ~ (PaCPbd -3 achd) (dLuzj + ’}/leugd). (567)

Thus a physical boundary condition can be placed on the relevant components of uig using the

method of Eq. (5.62) by setting

duly = (PP —3 Py P x

[Deuly — (N +nyN9)(wy — encly)]. (5.68)

We can also inject incoming physical gravitational waves with a predetermined waveform hy (%, )

through the boundary of the computational domain by setting
duly = (PR — 3Py P healt, ). (5.69)

The case /4, = 0 corresponds to an isolated system with no incoming gravitational waves.

More generally we can combine the constraint-preserving, physical no-incoming radiation, and
the injected gravitational wave boundary conditions by setting d; uig equal to the sum of the right
sides of Egs. (5.64), (5.68), and (5.69), and setting the time derivatives of the other incoming fields
according to Eqs. (5.63) and (5.65). Note that this set of combined boundary conditions holds the
pure gauge components of uig constant in time; other boundary conditions on the gauge degrees of

freedom are of course possible but are not considered here.

5.4.4 Well-posedness

The well-posedness of the initial-boundary value problem can be analyzed using the Fourier-
Laplace technique [17]. We have applied this method to the GH system with the combined set
of boundary conditions presented here: we treat the case of high-frequency perturbations of flat

spacetime in a slicing with flat spatial metric, unit lapse, and a constant shift that is tangent to the
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Figure 5.1: Evolution of constraint violations for Schwarzschild initial data. Left figure shows
evolutions using various values of the constraint damping parameters -y and v, using numerical
resolution {N,, L.} = {13, 7}. Right figure shows the long timescale evolution of the same data
for three different numerical resolutions.

boundary. Applying the Fourier-Laplace technique to this case yields a necessary (but not suffi-
cient) condition for well-posedness, the so-called determinant condition [17]; failure to satisfy this
condition would mean the system admits exponentially growing solutions with arbitrarily large

growth rates. We have verified that this determinant condition is satisfied for the GH system using

the combined set of boundary conditions presented here.

5.5 Numerical results

In this section we describe several numerical tests of the new first-order GH evolution system.
First we test the effectiveness of the two constraint damping terms included in Egs. (5.35)—(5.37)
by evolving Schwarzschild initial data (in Kerr-Schild coordinates). These tests are performed on
a computational domain consisting of a spherical shell that extends from r,;,, = 1.8 M (just inside
the event horizon) to r,,, = 11.8 M, where M is the mass of the black hole. In these evolutions we
“freeze” the values of the incoming characteristic fields to their initial values by setting d,u® = 0
on the boundaries for all incoming fields (i.e., all u® with v5) < 0). We performed these numerical
evolutions using spectral methods as described for example in [19] for a range of numerical res-
olutions specified by the parameters IV, (the highest radial spectral basis function) and L., (the
highest spherical-harmonic basis function). Fig. 5.1 illustrates the results of these tests for several
values of the constraint damping parameters o and 2. These tests show that without constraint
damping the extended GH evolution system is extremely unstable, but with constraint damping

the evolutions of the Schwarzschild spacetime are completely stable up to t = 10,000 M (and for-
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Figure 5.2: Evolution of constraint violations for Kerr initial data with spin parameter @ =
(0.1,0.2,0.3) for several numerical resolutions.

ever, we presume). These tests also illustrate that both the v, and the v, constraint damping terms
are essential for stable evolutions.

Constraint violations in Fig. 5.1 (and in the rest of this paper) are measured with the constraint
energy &, defined in Eq. (5.53). Since £ is not dimensionless, its magnitude has no absolute mean-
ing. We construct an appropriate scale with which to compare £, by evaluating the L? norm of the

spatial gradients of the dynamical fields,

|ou|]* = fgijm“bmc‘i( A20;3ac0;ba + 0illac; Ty

—i—gklaﬁbkacaj@lbd) \/§d3£€ (570)

The dimensionless constraint norm ||C|| shown in these figures is defined as

Ve

cll = s
1l = Tl

(5.71)

which is a meaningful measure of the relative size of constraint violations in a particular solution.
In the figures shown here we evaluate ||C|| with m?® = §?° and the dimensional constant A = 1/M.

Our second numerical test evolves the somewhat more challenging initial data for a Kerr black
hole (in Kerr-Schild coordinates) on a computational domain consisting of a spherical shell that
extends from 7, = 1.8 M (just inside the event horizon) to 7., = 21.8 M. We use two subdo-
mains, each having numerical resolution {N,, L.,..}, to cover this region. The spin of the Kerr
spacetime used here is @ = (0.1,0.2,0.3)M, where the magnitude of this vector determines the
Kerr spin parameter a = |@| ~ 0.374 M, and the direction determines the orientation of the Kerr

rotation axis relative to the quasi-Cartesian coordinate system used in our code. For this test we
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Figure 5.3: Evolution of Schwarzschild initial data perturbed by a gravitational wave pulse with
amplitude 1073, Left figure depicts constraint violations at various numerical resolutions, and
the right figure shows ¥, averaged over the outer boundary of the computational domain at a
single numerical resolution. Solid curves use freezing boundary conditions and dashed curves use
constraint-preserving and physical boundary conditions.

use the combined set of physical and constraint-preserving boundary conditions discussed at the
end of Sec. 5.4.3. Figure 5.2 shows that numerical evolutions of this Kerr spacetime are stable and
numerically convergent to ¢ = 10,000M (and forever, we presume) using a range of numerical
resolutions.

Our third numerical test is designed to demonstrate the effectiveness of our new constraint-
preserving boundary conditions. This test consists of evolving a black-hole spacetime perturbed
by an incoming gravitational wave pulse. We start with Schwarzschild initial data, and perturb
it via the incoming gravitational wave boundary condition described in Eq. (5.69) with h,;, =
F) (22" + 49 — 2292Y) where &%, §, and 2° are the components of the coordinate basis vec-
tors, 0, = 0., etc. For these evolutions we use an incoming gravitational wave pulse whose time
profile is f(t) = Ae~(=t)*/v" with A = 1073, ¢, = 60 M, and w = 10 M. This test is performed
on the same computational domain described above for the second numerical test. Figure 5.3 il-
lustrates the results of these tests using two types of boundary conditions: frozen-incoming-field
(ie., dgu® = 0 for V@) < 0) boundary conditions (solid curves) and the new combined set of
constraint-preserving and physical boundary conditions discussed at the end of Sec. 5.4.3 (dashed
curves). The graph on the left in Fig. 5.3 shows that constraint violations converge toward zero as
the numerical resolution is increased when the new boundary conditions are used, but not when
frozen-incoming-field boundary conditions are used.

The graph on the right in Fig. 5.3 shows the outgoing physical gravitational wave flux (mea-

sured on the outer boundary of the computational domain) computed using frozen-incoming-fields
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(sold curve) and the new constraint-preserving and physical (dashed curve) boundary conditions.
These evolutions were computed with numerical resolution { N, Linax} = {21,19}. We measure the
outgoing gravitational wave flux with the quantity (R¥,), which is the Weyl curvature component

VU, averaged over the outer boundary of our computational domain:
4T(RT,)? = /|\I/4|2d2V. (5.72)

Here 47 R? is the proper surface area of the boundary, and d?V represents the proper area ele-
ment on this boundary. Since U, falls off like 1/R, this quantity should be independent of R
(asymptotically). The dashed curve on the right in Fig. 5.3 clearly shows quasi-normal oscilla-
tions with frequency wM = 0.376 — 0.089¢ (determined by a numerical fit to these data). This
is in good agreement with the frequency of the most slowly damped quasi-normal mode of the
black hole: wM = 0.37367 — 0.08896¢ [7]. It is interesting to note that the solid curve—using
frozen-incoming-fields boundary conditions—gives qualitatively incorrect results for the physical
gravitational waveform, even though the level of constraint violations is fairly small numerically
in this case. This is not surprising because the magnitude of constraint violations in this case is

comparable to the size of the injected gravitational wave pulse.
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Chapter 6

Constraint damping in the KST
evolution systems

Submitted to Phys. Rev. D.

A new constraint-suppressing formulation of the Einstein evolution equations is pre-
sented, generalizing the five-parameter first-order system due to Kidder, Scheel, and
Teukolsky (KST). The auxiliary fields, introduced to make the KST system first-order,
are given modified evolution equations designed to drive constraint violations toward
zero. The algebraic structure of the new system is investigated, showing that the mod-
ifications preserve the hyperbolicity of the fundamental and constraint evolution equa-
tions. The evolution of the constraints for pertubations of flat spacetime is completely
analyzed, and all finite-wavelength constraint modes are shown to decay exponentially
when certain adjustable parameters satisfy appropriate inequalities. Numerical simu-
lations of a single Schwarzschild black hole are presented, demonstrating the effective-

ness of the new constraint-damping modifications.

6.1 Introduction

Numerical relativity has recently undergone a revolution. Multiple research groups, using a vari-
ety of mathematical and computational formalisms, have produced consistent pictures of the late
inspiral and coalescence of binary black hole systems [28, 13, 14, 15, 7, 8, 32, 11], a goal that until
recently seemed remote. The community is opening a theoretical window on issues fundamental
to gravitational wave astrophysics, but much work still remains to be done.

State of the art simulations have provided gravitational waveforms due to the last several orbits,
coalescence and ringdown. This is an extraordinary achievement, but numerical relativity may
need to handle well over a dozen orbits accurately before a seamless transition can be made from

post-Newtonian analysis. When simulating so many orbits, the efficiency of the code becomes
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nearly as important as its stability.

Numerical simulations can become unstable for a variety of reasons, some purely numerical
(such as a poor choice of algorithm), some purely mathematical (such as ill-posedness of the con-
tinuum mathematical problem), and some a combination of the two. The subject of this paper is an
instability of this last type: the exponential growth of the constraint fields under free evolution —
an instability of the continuum evolution equations, seeded by numerical errors.

A variety of methods exist to deal with such instabilities. One very well-established method is
known as constrained evolution [34, 2, 17, 3, 1, 18, 19, 30], in which some subset of the dynamical
fields are integrated in time using the evolution equations, and others are obtained by solving
the constraints after each time step. This separation of the fields into an “evolved” family and a
“constrained” family is normally guided by some sort of symmetry. A related method, known as
constraint projection [5, 22], places all fields on an equal footing, freely integrating everything using
the evolution equations, then periodically “projecting” the fields down to the constraint-satisfying
subset of the solution space. It appears that this method can be quite robust in practice, but it can
also be technically demanding, requiring the repeated solution of nonlinear elliptic equations.

A preferable approach for dealing with these instabilities, whenever possible, is to remove them
from the evolution system at the continuum level, before they reach the numerical code. This type
of effort is often referred to as “constraint damping.” It is possible to change the evolution equations
without changing the physics they represent. For instance, coordinates can be chosen freely on the
simulated spacetime, and indeed, careful choices of gauge have been shown to have a strong effect
on the stability of simulations, particularly in the BSSN system [4, 37, 21, 36]. Another, perhaps
more drastic, method to stabilize constraints involves extending the family of evolved fields. It is
possible, with some care, to introduce fields whose evolution will naturally lead to the presence
of friction terms in the implied constraint evolution system. Systems of this form have come to
be referred to as “)\ systems” in the relativity literature, after the pioneering work of Brodbeck et
al. [10, 33].

The constraint damping of [10] utilizes the freedom to substitute constraint equations into the
evolution equations. In the physical situation where the constraints are all satisfied, the equations
are unchanged. However in the numerical situation where the constraint satisfaction is at best ap-
proximate, these substitutions can have a profound effect on the structure of the evolution system
and the stability of its constraints. In [23], Kidder, Scheel and Teukolsky added terms, proportional
to the constraints, to a first-order representation of the Arnowitt-Deser-Misner (ADM) equations [6]
(in a form advocated by York [38]). With these modifications, they were able to change the principal
part of the evolution system. When the free parameters satisfy certain inequalities, the evolution
system becomes strongly, or symmetric, hyperbolic [23, 25, 26, 24]. The purpose of this paper is

to generalize the KST systems even further, to add more terms proportional to constraints into the
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evolution equations, but now with the goal of damping the constraints while preserving hyperbol-
icity. It will be shown that this goal can largely be achieved, stabilizing all the constraints of the
KST systems, without the need to introduce extra fields as in the “)\ system” approach.

The possibility of constraint damping along these lines is now widely seen as a major advan-
tage of the generalized harmonic formalism. Pretorius [29, 28], building on Gundlach et al. [20],
introduced such a modification in his generalized harmonic evolution code, leading to the first-
ever simulation of a full orbit and merger of binary black holes. In [27] (chapter 5 of this thesis),
this system was converted into an explicitly first-order, linearly degenerate, symmetric-hyperbolic
form. An extensive body of mathematical literature exists on systems of this form, and they are also
very well suited to highly accurate multidomain pseudospectral collocation methods. While this
first-order generalized harmonic system is perfectly acceptable for numerical relativity, and indeed
is now used for nearly all simulations currently being done by the Caltech and Cornell numerical
relativity groups, there would be considerable value in implementing a KST system of comparable
stability. For one thing, the KST system involves just over half as many fields as the first-order
generalized harmonic system, so it could provide a considerable improvement in code runtime.
The KST systems are also closer to the evolution systems used historically in numerical relativity.
Gauge is specified again in terms of (densitized) lapse and shift. So a large body of research on
gauge conditions can be more easily implemented.

As the standard KST systems already have adjustable parameters, it is an interesting question
whether any of them can have constraint-damping properties. Even without calculations, it is clear
that the answer must be “no.” With the generalized-harmonic system presented in [27], two param-
eters are available, o and 7>, which tune the stability of small constraint-violating perturbations
of flat spacetime. The inverses of these parameters (up to factors of order unity) define timescales
on which short-wavelength constraint modes will decay exponentially. All of the free parameters
of the standard KST systems are dimensionless, so they cannot fix any preferred timescale for the
damping of perturbations of flat spacetime. Of course in the full nonlinear phase space, the dimen-
sions necessary for such a timescale can be provided by nontrivial features of a particular solution,
for instance the mass of a black hole. Indeed, in [31], it was demonstrated that careful fine-tuning of
the parameters can considerably extend the lifetime of a black hole simulation. This effect cannot
really be considered constraint damping, though, as the optimum choice of parameters depends
strongly on the details of the initial data, and in fact it must fail for small features in asymptotic
regions, where the above flat-space arguments begin to apply.

In the present paper, the KST systems will be generalized even further, introducing one new
free parameter with dimensions of inverse-time, that can be considered a mechanism for constraint
damping. This generalization is directly analogous to methods used in the past [22, 27] (chapters

4 and 5 of this thesis) for controlling the stability of the constraints that appear when an evolution
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system that is second-order in spatial derivatives is reduced to first-order form by the introduction
of auxiliary fields. Such a constraint exists in the KST systems, and while our methods are only
designed to control this particular constraint, the intricate coupling of the constraints, in their evo-
lution, extends the constraint damping effect to all (finite wavelength) constraint modes, including
the Hamiltonian and momentum constraints.

The format of this paper is as follows. In Sec. 6.2 the intuitive mechanism behind the new
constraint damping terms is sketched out in the context of a simple toy model. In Sec. 6.3, anal-
ogous modifications are applied to the five-parameter KST evolution systems, and conditions on
these modifications are noted to keep the resulting system hyperbolic. In Sec. 6.4, the hyperbolic-
ity of the constraint evolution is investigated. In Sec. 6.5 the effectiveness of these modifications
on constraint-violating perturbations of flat spacetime is seen in detail. In Sec. 6.6, the available
parameter freedom is summarized, and in Sec. 6.7, results are presented of a few simple numerical

simulations using this new evolution system.

6.2 Illustration of a simple model system

Before jumping into the full equations of general relativity, it would be instructive to outline the

constraint damping idea in the context of the simplest hyperbolic system, the scalar wave equation:
n*" 0,0, = 0, (6.1)

for a real scalar field v, where 7,,, is the Minkowski metric in Cartesian coordinates. This equation
involves only one field, and no constraints, but it is second-order in both space and time. The
second-order derivatives are removed by promoting the first derivatives of ) to independent fields.
The first time derivative (up to a conventional minus sign) will be denoted with the symbol 7. The

wave equation now becomes the system:

b = —m, (6.2)
O = —690,0;0, (6.3)

where Latin indices refer to the spatial coordinates of the chosen inertial frame. The one-form ¢;,

defined by a new constraint C;, can be used to remove second spatial derivatives from the system:

oy = -—m, (6.4)
atﬂ' = —(Sij 61-@-, (65)
Ci = &w — ¢i =0. (66)
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Before this can be useful for free evolution, an equation is needed for evolving ¢;. This equation
is commonly derived by equating the spatial coordinate derivatives of both sides of Eq. (6.4),

commuting partial derivatives on the left, and substituting the constraint to find:
Orpi = —O;m. (6.7)

This equation closes the evolution system, and leaves us with a nice first-order symmetric-hyperbolic
representation of the scalar wave equation. However the newly defined constraint field is only
marginally stable. As is easily verified by direct substitution of the constraint definition and the

evolution equations, the constraint is now conserved:
0:C; = 0. (6.8)

This shows that exact constraint satisfaction should be preserved within the domain of dependence
of the initial data, but also that any violations that may arise will be preserved as well.

Because the constraint is linear in undifferentiated ¢;, anything added to the right side of Eq.
(6.7) will transfer directly to the evolution equation implied for the constraint. For instance, if the

equation is changed to:

Oy = —0im+C (6.9)
= =0+ (0 — ¢3), (6.10)

for some constant v, then the constraint-satisfying solution space is unchanged, but the evolution
of the constraint becomes

0,Ci = —1C;. 6.11)

Thus, with this method, the constraint can be damped (assuming hyperbolicity is preserved) expo-
nentially on an arbitrary fixed timescale v . As we will see when we discuss the KST system, the
constraint damping effect can extend even farther than the constraint that appears in the reduction.
Even those constraints that exist before the reduction to first-order form can be damped.

The question of whether this modification preserves the clear symmetric hyperbolicity of the
standard reduction is important, and a very simple argument shows that hyperbolicity is not af-
fected. If a linear change of variables is made (in other words, a change of basis on the vector
bundle of dynamical fields), defining 7 := 7w — v, then all modifications of the principal part of the

fundamental evolution system disappear:

oy =~ 0, (6.12)
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1

o7 —5" 0,05, (6.13)

Odi =~ —0OF 6.14)

(the symbol “~” means that all nonprincipal—in this case, algebraic—terms have been omitted).
This transformed system is exactly the same as the unmodified system at principal order, and is
clearly symmetric-hyperbolic. The existence of a positive-definite symmetrizing inner product is
independent of the basis of dynamical fields. Indeed, the obvious symmetrizer for the transformed

system,

dS?* = Ady? +d7* + §Ydpide;, (6.15)
= Ady? + (dr —ydyp)? + 67 didepy, (6.16)

when expressed in terms of 7, is positive-definite (for positive A) and symmetrizes the untrans-
formed system. Therefore, this constraint-damped form of the scalar wave system is symmetric-

hyperbolic for any fixed choice of the damping timescale.

6.3 The modified KST evolution system

The Kidder-Scheel-Teukolsky [23] evolution equations are a five-parameter! generalization of the
standard first-order representation of the classic ADM [6] equations, in the form advocated by

York [38]:

0i9ij — Ljgi; = —2NKj; (6.17)
6tKij — LN‘KU = NRij + N(KK” - 2KZkKk7)

The dynamical fields are {g;;, K;;}, the metric intrinsic to the slice of constant ¢, and the extrinsic
curvature of its embedding in spacetime. The gauge fields { N, N'}, lapse and shift, determine the
evolution of the coordinates.

The Ricci tensor R;; written above is that of the spatial metric g;;, so it implicitly involves second
spatial derivatives of g;;. The evolution system can be reduced to first-order form by promoting
the partial derivatives of the spatial metric functions to an independent (nontensorial) three-index
field:

Dyij = %(%gij- (6.19)

1A twelve-parameter system also exists, employing redefinitions of the fundamental dynamical fields and associated
constraint substitutions. Here we will ignore this extra freedom.
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As long as Dy;;, under its own evolution, properly represents 0;9;;/2, it can be substituted for any
derivatives of g;;. This renders the ADM system first-order.
This evolution system, like that for the scalar field, describes physics only when certain con-

straint fields vanish:

1 .
C = 5(R—Kij.rw+K2), (6.20)
C; = V(K — Kgij), (6.21)
Crij = Okgij — 2Dkij. (6.22)

The Hamiltonian and momentum constraints, C and C;, must vanish (in vacuum) throughout each
spatial slice, according to the four Einstein equations not represented in Eq. (6.18). The three-index
constraint Cy;; vanishes when Dy,;; properly represents dygi;/2, in analogy with the constraint of
the scalar field system.

The new field, Dy;;, is to be considered independent in free evolution. An evolution equation
must be defined for this field, one that is consistent with the satisfaction of the three-index con-

straint above. The equation analogous to Eq. (6.7) is

. 1 .
0oDri; = Eak (Qogij), (6.23)
= —O0k(NKij), (6.24)

where the shorthand 9, refers to the derivative, 9; — £ - along the normal to the spatial slice?.
The evolution system has now been written in first-order form, and we can begin to ask about
its hyperbolicity. Kidder, Scheel, and Teukolsky [23] have shown that the above system can be
rendered strongly hyperbolic with a few simple modifications. The first of these is commonly
referred to as densitization of the lapse. Rather than fixing N directly, we fix a related field @) defined
by
N = g7 exp(Q), (6.25)

where g is the determinant of g;; and ~ is a constant nonzero parameter. The occurences of 0y,gi;
that then arise arise from the V,;V; N term in Eq. (6.18) are replaced by 2Dy;;. The second modi-
fication required for hyperbolicity is the addition of terms to the evolution equations for K;; and

Dy;; that are proportional to the constraints:

éoKij = ...+ ’}/1Ngijc + 'ygNg“bCa(ij)b, (6.26)
R 1 1
0oDrij = ...+ §V3Ngk(icj) + §V4Ngijck, (6.27)

2Note that do, involving a Lie derivative, commutes with the partial derivative 0. It is this commutation that defines
the action of the Lie derivative on the nontensorial field Dy;;.
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where the ellipses refer to the right sides of Eqs. (6.18) and (6.24). The four-index object Cyy;; :=
20y, Dy);; used here can be thought of as another constraint, but it vanishes automatically whenever
the three-index constraint vanishes. The parameters {~o, ..., 74} do not affect the physical solution
space of the equations in any way, but they directly affect the principal part of the evolution system.
In Ref. [23], Kidder, Scheel and Teukolsky determined sufficient conditions for these parameters
that render the evolution system strongly hyperbolic. In Ref. [26] and an appendix of Ref. [24],
these arguments were extended, and it was also made clear on what subset of the parameter space
the equations satisfied the stronger condition of symmetric hyperbolicity.

The focus of this paper is a further modification of Eq. (6.27) along the same lines as that de-
scribed in Sec. 6.2. Here the goal is to modify the evolution of the three-index constraint, which in

the ordinary KST system is implied to evolve as
30Cri; = —13Ngr(iCjy — 74N gi;Cr. (6.28)

Note that the need for damping here is more dire than in the scalar field case. Hyperbolicity re-
quires 3 and ~4 to be nonzero, so any violation of the momentum constraint will feed directly into
the three-index constraint. This is countered as in the previous section by including terms propor-
tional to the three-index constraint in the evolution equation for Dy;;. As we will see in a moment,
multiples of the traces, denoted C}, := ¢“/Cy; and C7 := ¢*'Cy;;, must be added in separately, so the

resulting evolution equation is:

. 1 1
80D]ﬂ'j = ...+ 573Ngk(icj) + 5’74Ngijck

1 1
+§N"y5ckij + ngﬁc,igij

1 1
+§N”Y7C(2igj)k + §N’Ysc(ligj)k

1
+§N796139ij' (6.29)

The term proportional to 75 is analogous to the term proportional to v in Eq. (6.9). The terms
proportional to 7, 77, 78, and 9 are necessitated by the hyperbolicity conditions, which we now
consider.

The principal part of this system is:

dogi; ~ 0, (6.30)

DoKij =~ N[Qab5f5§l -1+ 72)9“5@ 9

—(1 = 72)g"0%0% + (1 + 270)g°*65;0)

—719°49"gij +19°°9°*9i;]00 Dped, (6.31)
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A csach 1 ca b
doDkij =~ —N[6;670; — 3739 Ir(i07)

1 ca 1 a C
— =749 91507, + 5739 91 (i65,

2 2
1 ab c
+§749 Gi03]0c K ap

1 Cc sa 1 Cc _a
+N[§'756k5i 5? + 576%9 bgij

1 ca 1 a C
+5779° 0095k + 5789 6,950k

2 2
1
+§799m5zgij]acgab- (6.32)
Hyperbolicity is well established for the standard KST system, v5 = v = ... = 79 = 0, so as in

Sec. 6.2, it is best to seek a linear change of variables to reduce the constraint-damped system to the

standard system. Continuing the analogy with the scalar field, define

_ 1
Kij = Kij = 5759i5- (6.33)

Then the equation for d K;; has the same principal part as that for 9y K;;. The equation for dp Dy

becomes

A 1
DoDyij ~ —N[Op0767 — 5759 9r (a0

1 ca 1 a C
— =749 gi; 6 + 5739 *g1i05)

2
1 ab c 7%
579 9ij0%)0cKap
1 1 c ab
+N[§(76 - 574%)%9 Gij
1 1 ca
+§(”Y7 + 57375)9 80,95k
1 1 ab cc
+§(”Ys - 57375)9 b5(igj)k
1 1 ca
+§(79 + 57475)9 67.9ij)0cGab- (6.34)

If, for arbitrary ~s, the further parameters are fixed as

1

Y6 = 577 (6.35)
Yoo o= - %7375 (6.36)
T8 = %7375 (6.37)
Yo = - l74757 (6.38)

2
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then the principal system, in the transformed variables, loses any reference to s, ..., Yo.

dogiy ~ 0, (6.39)

(90Ki»

12

Ng™3¢5] — (14 72)g"*8,05)
—(1 = 72)g"0%0% + (1 + 270)g°*67;6)
—19"%9" 955 + 119*°9°9i10a Doca; (6.40)

A~ 1 ca
OoDiij =~ —NIBS!8; — 5739 9u5))

1 1
— =749 9150}, + —’Ysgabgk(i5§)

2 2
1 _
+§”Y49abgij 03] 0c Kab. (6.41)

This is the principal part of the standard KST system. So for any value of the parameter 75, with
Y6, -+, Yo fixed by Eqgs. (6.35) — (6.38)°%, the hyperbolicity of our modified system is the same as that
of the corresponding standard KST system.

6.4 Hyperbolicity of the constraint evolution

Let us now turn our attention to the evolution of the constraint fields in our modified KST evolution
system. Given the definitions of the constraints in terms of the fundamental dynamical fields,
an evolution system for the constraints follows from our fundamental evolution equations. It is
important, for the construction of constraint-preserving boundary conditions, that this system also

be symmetric-hyperbolic [24, 35, 12]. The principal part of this evolution system can be expressed

as,
dC —%(2 — 73 + 274)Ng" 0;C;
‘%(78 — 276 — 5)Ng"9,C}
+%(77 — 299+ 75)Ng” 9,C3, (6.42)
dC; =~ —(1+27)NaC
+%N9kl9ab [(1 = 42)0kCiabi + (1 + 72)OkCaith
—(1 4 270)9kCriab (6.43)
doCrij =~ 0, (6.44)
0oCabij = —%N%gi[aab]cj - %N%gj[aab]ci

SThis requirement can be weakened somewhat. There is one further degree of freedom, shared between 6 and ~s, which
will still preserve hyperbolicity. However when this degree of freedom is utilized, the simple argument used here must be
replaced either by a somewhat more subtle argument, or a significantly more laborious one. We have not yet found a use
for this further degree of freedom, so here we restrict attention to the simpler case.
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—N749:501Ca) — N769i50pCo
1 1
- §N77gi[a6b]cj2' - §N’77gj[aab]cl'2

1 1
—§N78gi[a5b]c} - §N’789j[aab]cil

—N’Vggij 6[1,(33], (645)

where the four-index object Cy;; := 20);,Dy);; is considered an independent constraint, so that the
constraint evolution system is first-order.

The inclusion of the terms proportional to vs, ..., v9 in Egs. (6.42) — (6.45) has seriously com-
plicated this system. Let us consider, however, the case considered above, where 5 is arbitrary,
and the other parameters are fixed by Eqgs. (6.35) — (6.38). In this case, a number of remarkable

simplifications occur and the above system can be written as

. 1 o
0oC =~ -3 (2 — 3+ 2’}/4)]\79” (%Cj, (6.46)
éoéi

R

—(1 + 271)N8iC
1
+§N9klgab [(1 = 42)OkCiabi + (1 + 72)OkCaits
—(1 4 270)0kCiias ) » (6.47)

AoChij 0, (6.48)

12

12

A 1 _ 1 _
00Cabij _§N'73gi[aab]cj - §N'73gj[aab]ci

—N749i;0,Cal, (6.49)

defining the new combination Cj, := Cr, + 375C — 375C7.

This constraint evolution system has the same principal part as the standard KST constraint
system. Thus, when the parameters are chosen by Egs. (6.35) — (6.38), the hyperbolicity of the
fundamental and constraint evolution systems are independent of the parameter 75, so our modi-

fications do not alter the hyperbolicity of these systems.

6.5 Stability of constraint fields under free evolution

Analyzing the stability of the constraint evolution system in generic simulations is essentially no
different than the full numerical relativity problem itself. In order to get some handle, at the an-
alytical level, on the effect of our modifications, we consider constraint-violating perturbations
of Minkowski spacetime. Obviously these estimates will not be completely relevant in simula-
tions of interest, but at least in the limit of short-wavelength perturbations, the dependence on the

spacetime background should be minimal. In this sense, stability of short-wavelength constraint-
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violating perturbations of Minkowski spacetime is a necessary condition for constraint damping
in general. And while our Minkowski-spacetime analysis of long-wavelength modes may not be
directly relevant for evolutions of curved spacetime, unstable long-wavelength modes should at
least be disconcerting, as a signal that instabilities are likely in general simulations.

This analysis involves the full (not just principal) constraint evolution system, linearized about
the limit that ¢;; = d;;, Kij = Drij =0, N =1, N © = (. In this context, the full constraint evolution

system becomes:

DC = 12—+ 2WDC + LDC)
—%%61-65], (6.50)
HC; = —(1+27)0cC
+%5M5ab [(1 = 72)O01aCripi + (1 + 72) Ok OpiCapin
—(1 + 270)9k0;:Cljas) (6.51)
0iCrij = —5Ckij
—¥30k(:Cj) — 74945 Ck

1 1
——73755k(ic}) - 5747551‘3‘611

2
1 1
+§'73'756k(icj2') + 5747551*3*013- (6.52)

Notice that we are no longer considering Cy;;; an independent constraint field. In actual evolutions,
where the fundamental fields are evolved, not the constraints, the three- and four-index constraints
satisfy the identity

Criij = OChyij- (6.53)

Violations of this identity will not appear in evolutions.

Now the above system is simplified by resolving all constraint fields into Fourier modes. This
has the formal effect of replacing all spatial derivatives 0; with —ik;, an imaginary unit times a
propagation vector k;. The result is a system of coupled ODEs for the various constraint modes
Ak, t):

et = M P, (6.54)

Each eigenvector of M#(k;) evolves as exp(st) for some s(k;). The real part of s is the rate of
exponential growth (or damping, if negative) for the corresponding mode. Due to the rotational
invariance of the problem, these eigenvalues should depend only on the magnitude of k;, so the
propagation vector is decomposed as k; = kn; where n; is a unit vector.

This eigenvalue problem naturally reduces into subspaces according to various possible spin

weights about the propagation direction n;. There is a five-dimensional space of longitudinal
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modes: {C,C,,C},C2,Crnn}, where C,, := niC;, etc. There is also a five-dimensional space of
transverse vector modes: {Cj, C}, C?, Crnn, Cnni}, Where capital Latin indices now refer to a two-
dimensional vector basis orthogonal to n’. The remaining constraint fields, with higher spin weight,
are represented among the various projections of the totally tracefree part of C;;;. A glance at Eq.
(6.52) shows that all of these high spin-weight fields propagate trivially with s = —v5 independent
of wavelength. They are therefore damped exponentially on the timescale ;' for positive 5. The

longitudinal and transverse constraint modes require more careful consideration.

6.5.1 Transverse vector constraint modes

The growth rates of the transverse vector modes are related to the eigenvalues of a five-by-five ma-
trix. Three of these eigenvalues simply equal —vs5. The remaining two are solutions of a quadratic

equation, and depend on wavelength as:
1 1
s(k) = —5'}/5F £/ Z'@FQ — v3k2, (6.55)
where we define the convenient shorthand

[i=o(2 =93+ 274), (6.56)

N =

and v, is one of the characteristic speeds of the KST system (relative to hypersurface-normal ob-
servers),

1 1
u§ = §73(1 — 372 —4dvy) — 174(1 + 670)- (6.57)

Notice that one mode is undamped in the long-wavelength (¥ — 0) limit, where one root in Eq.
(6.55) becomes zero. This is not surprising: other constraint-damped representations of the Einstein
system have the same property [10, 20, 27]. In practice, long wavelength constraint modes should
be killed off by proper constraint-preserving boundary conditions.

In the short wavelength (k — oo) limit, the dispersion relation becomes
1 )
s(k) — —5751" =+ ivgk. (6.58)

These represent propagating modes of the constraint system, damped at short wavelength on the
timescale ( %75F)*1. Notice the significance of the constant I'. Most of the modes require ~5 > 0 for
damping, so the damping of the modes referred to in Eq. (6.58) requires I' > 0 as well. Thus, the
damping condition places a new condition on the standard KST parameters {~o, ..., 74}, beyond the

conditions they must satisfy for the system to be hyperbolic.
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6.5.2 Longitudinal constraint modes

The longitudinal modes again involve the eigenvalues of a five-by-five matrix. In this case two of

the eigenvalues are simply —vs. The rest are the roots of the cubic polynomial
5% + y5Ts? + k*v3s + k%ys0(1 + 27y1) = 0, (6.59)

where v3 is another characteristic speed, given by

1 1
vg = 5(1 +271)(2 — v3 + 274) — 5")/2")/3. (6.60)

Rather than giving complicated analytic expressions for the roots of this polynomial, we simply
consider asymptotic limits in k. First, in the long-wavelength (k = 0) limit, two roots vanish and
the third is —v5I'. This is very similar to the long-wavelength behavior of the vector modes.

In the short-wavelength limit, the polynomial becomes singular. The terms proportional to
k* dominate the polynomial, leaving a linear equation. The root of this linear equation, s =
—Vg 2751"(1 + 271), is the regular root of the polynomial in this limit. The two remaining roots disap-
pear from the above polynomial in the limit ¥ — co. These singular roots correspond to traveling
modes, with imaginary part linear in % in this limit. They can be found by substituting for s a
power series in k, s = s1k + so + s_1k~! + ... in the above polynomial and solving the resulting

polynomial order-by-order in £ for the coefficients s;. The result is

1 142
s(k) = —5751" (1 - +2’h) +ivzk + O(k™1). (6.61)
U3
So the damping of the traveling longitudinal modes requires that v3 > (1+2v;) when the transverse

modes are damped as well.
In summary, the damping of short-wavelength constraint-violating modes requires that the

rates

ro = s (6.62)
ry = %751" (6.63)
re = vy yD(1+271) (6.64)
rs = gv5?sl(e3 — 1 2) (6.65)

be positive, where I' is defined by Eq. (6.56) and v3 by Eq. (6.60).
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6.6 Choosing parameters

Before proceeding with numerical tests, values must be fixed for the free parameters. The param-
eters associated with the constraint damping terms are reasonably well set. The overall damping
timescale is set by 1/7s5, and this can be chosen to be any positive number. The other new parame-
ters are determined by Egs. (6.35) — (6.38). The original KST parameters should be chosen in accord
with hyperbolicity conditions for the fundamental and constraint evolution systems, as well as the
conditions that the damping rates of Egs. (6.62) — (6.65) be positive.

The hyperbolicity conditions are quite complicated when considered in full generality. To make
the situation more tractable, here we restrict attention to the subset of parameter space in which
all characteristic speeds are equal to zero or unity, relative to hypersurface-normal observers. The
hyperbolicity conditions in this subset of the parameter space are spelled out in Appendix B of [24],
following work in [26]. The parameters 7o, v3, and -, are fixed in terms of v; and 7, by the the

conditions on the characteristic speeds:

1
6 = 3 (6.66)

-8

= 6.67

7 42 + (54 372) (1 + 271) 6.67)
1= — (14+271)(5+372)

dya + (54 372) (1 +2y1)

Y4 (6.68)

The fundamental evolution system is then symmetric-hyperbolic so long as the following inequal-

ities are satisfied:

—2<12<0 (6.69)

Ay + (14 271)(5 + 372) # 0. (6.70)

Constraint damping requires that the rates r; of Egs. (6.62) — (6.65) be positive. This in turn
requires that I > 0 and that
0<1+2y <vj. (6.71)

For the numerical simulations presented in the next section, 71 = —1/4. The parameter I' :=

(1/2)(2 — 73 + 2v4) can be expressed in terms of vy, using the above expressions for 3 and ~4:

5+ 37, 10+ 67,

r— - , 6.72
dya + (5+372)(1+271) 5+ 11y (6.72)

where the last equality is restricted to the case 71 = —1/4. In the allowable region for v, I" can be

set equal to any value greater than 2. Here we choose I' = 5/2.
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The various parameters, and the associated growth rates, come out to:

1

’70 = a0 (6.73)
2

71 = —%, (674)

Y2 = —%, (6.75)

vy = _% 6.76)
52

n o= -, (6.77)

ro = s, (6.78)
5

o= g (6.79)
5

r2 = 1’757 (6.80)
5

rso= P (6.81)

These parameters satisfy all the necessary conditions for constraint damping in perturbations of
flat spacetime, as well as those for symmetric-hyperbolic propagation of the fundamental evolution
fields. Unfortunately, these parameters do not satisfy all of the necessary conditions for symmetric-
hyperbolic constraint propagation. In [24] it was shown that when the adjustable characteristic
speeds are all set to unity, the symmetric hyperbolicity conditions on the fundamental and con-
straint evolution systems collude to require that 1 + 2v; < 0, a direct conflict with our damping
conditions. Unfortunately, this conflict does not appear to be an artefact of our condition that all
adjustable characteristic speeds are equal to one. Monte Carlo searches over the entire available pa-
rameter space have not provided us with any examples of systems with constraint damping along
with symmetric-hyperbolic propagation of the fundamental and constraint fields.

In principle, this conflict is very serious. At timelike boundaries of the simulation domain, con-
ditions must be imposed on fields entering the computational grid. These boundary conditions
should be compatible with the constraint equations. In [24], such boundary conditions were pre-
sented. These conditions control the growth of a certain norm of the constraint fields. In the case
of the parameters used here, this norm is not positive-definite, so control of the norm does not
necessarily imply control of the constraint fields themselves.

In practice, the damage done by this conflict can only be assessed with numerical simulations.
While the constraint evolution is not symmetric-hyperbolic, it is strongly hyperbolic, so the bound-
ary conditions of [24] can still be applied, even if they may not have all of the desired effects. In
fact, the numerical results of the following section demonstrate that constraint-preserving bound-
ary conditions are quite effective in these simulations. Perhaps this can be explained heuristically

by the fact that the “timelike” degree of freedom in the constraint evolution (the one whose viola-
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tions could compensate, in the indefinite norm, for violations of the other constraints) is very well
controlled by the constraint damping.

It should also be noted that without the constraint damping terms, the particular parameter set
used here leads to very unstable evolutions. In the following section, we will not make comparisons
with the undamped case, 75 = 0, as those cases immediately become unstable. This could be due,
in part, to the lack of symmetric-hyperbolic constraint evolution. At any rate, when the constraint

damping terms are included, the evolutions become remarkably stable.

6.7 Numerical tests

The following numerical tests were carried out using the Spectral Einstein Code developed over
the last few years by the numerical relativity groups at Cornell and Caltech. The code uses mul-
tidomain pseudospectral collocation methods to resolve the fields in space with exponential accu-
racy. Integration in time is implemented by the method of lines, using in this case a fourth-order
Runge-Kutta scheme. More details on this code and its remarkable accuracy can be found in [9]
and references therein.

The spectral representation of the computed fields is done in accordance with the topology of
the spatial domain. The present simulations are of a single Schwarzschild black hole, in Kerr-
Schild [16] coordinates. The spatial domain is made up of a family of concentric thick spherical
shells. The fields are therefore resolved into spherical harmonics in the angular directions, mul-
tiplied by Chebyshev polynomials in the radial direction. The innermost boundary is inside the
black hole horizon, so no boundary condition is needed there. At the outermost boundary, the
constraint-preserving boundary conditions presented in [24] are used. As in [24], tensor spherical
harmonic components of the four highest ! values are discarded after each time step. No filtering
appears to be necessary in the radial direction.

Figures 6.1 and 6.2 demonstrate the stability and exponential convergence of these simulations.

Figure 6.1 is a plot of the error norm:
[[0ul)? == / (69"8g:; + 6 KYSK;j + §D*16Dy5) dV, (6.82)

measuring the difference between the computed solution and the reference Kerr-Schild geometry.

Figure 6.2 shows a positive-definite norm of the constraint fields:
2 2, Lo L okij L oktig
||C|| = C*+ §C C; + 1—8C Ckij + EC Cklij dv. (683)

We normalize these quantities, dividing by norms that involve similar terms, but that should not
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be expected to vanish. The error norm is divided by the overall solution norm:
[[ul[* == / (97gi + KV Kij + D* Dyij) dV, (6.84)
and the constraint norm is divided by a similar norm of the first derivatives of the computed fields:

oul? = / (6" G 01.9130- 90
+gkcgiagjbak Kij aC*Kvu,b

+9"9" g g7° 01 Dyi;04 Deav)dV. (6.85)

All indices are raised and lowered with the computed metric g;;.

The inner (excision) boundary is at 1.9 M, and the outer boundary is at 41.9 M. This domain is
divided into eight subdomains, each of coordinate thickness 5 M. This is the same domain used
in [24]. Note that the convergence stops at the highest resolution presented here, overtaken by ex-
ponential growth that is not yet apparent in the constraint fields shown in Fig. 6.2. In [24], a “gauge
instability” was mentioned, associated with one particular boundary condition. Presumably, this is
the same instability apparent in Fig. 6.1, in which case it could be expected that convergence would
improve as the location of the outer boundary is moved farther into the asymptotic regime.

As a test of this hypothesis, the highest-resolution run in Fig. 6.1 was repeated on larger do-
mains, keeping resolution fixed but adding extra subdomains to place the outer boundary at coor-
dinate radii 61.9 M, 81.9 M, 101.9 M. Figure 6.3 demonstrates the improvement in the overall error
norm. Least-squares fitting of the data in that plot show that the late-term growth in this error oc-
curs exponentially on a timescale proportional to the square of the coordinate position of the outer
boundary. Figure 6.4 shows the growth of constraint energy in these simulations. Until an expo-
nential instability sets in, apparently triggered by the overall loss of accuracy of the simulation, the
constraint fields grow roughly as the square root of coordinate time. On the largest domain, this
slow growth persists beyond 15,000 M, when exponential growth takes over at a rate that would
allow the simulation to persist until nearly 50,000 M.

It is of some interest to verify the effectiveness of the constraint-preserving boundary condi-
tions used in these simulations. As noted in the previous section, since the characteristic matrices
of the constraint evolution system are symmetric only with respect to a Lorentzian norm, there is no
reason to expect these conditions to control the influx of constraint violations. In Fig. 6.5, the simu-
lation with R,,q, = 41.9 and N,. = 17 (in each subdomain) is repeated using conventional boundary
conditions. These boundary conditions freeze the incoming characteristic fields of the fundamental
evolution system to their initial values. These “freezing” boundary conditions control a positive-

definite norm of the fundamental evolution fields, so the initial boundary value problem is known
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Figure 6.1: Norm of the error ||du||/||u||, relative to the reference solution, on a fixed domain
extending from minimum coordinate radius 1.9 M/ to maximum 41.9 M. The domain is broken
into eight shells each of thickness 5 M/ and radial resolution IV, chosen on four different runs as
N, = 8,11, 14, 17. The constraint damping terms presented in all of these simulations have v5 = 0.6.
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Figure 6.2: Constraint norm ||C||/||0u|| for the same runs plotted in Fig. 6.1
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Figure 6.3: Error norm ||du/||/||u|| for runs in the constraint-damped system with outer boundary at
r =419 M,61.9 M,81.9 M,101.9 M. The long-term growth of the error norm occurs exponentially
on a timescale proportional to the square of the coordinate position of the outer boundary.
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Figure 6.4: Constraint norm ||C||/||0u|| of the same runs as those in Fig. 6.3. The constraints grow as
t1/2 until eventually driven exponentially by the overall loss of accuracy demonstrated in Fig. 6.3.
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Figure 6.5: Constraint norm ||C||/||0u|| of a black hole simulation with R,,,, = 41.9, N, = 17 (in
each of eight subdomains), and two different boundary conditions.

to be well-posed by standard theorems. However, the figure clearly demonstrates the superiority
of the constraint-preserving boundary conditions in this context, not only for constraint satisfac-
tion, but for overall stability. Perhaps the effectiveness of the constraint preserving conditions is
not robust, perhaps it will fail when the conditions are applied in more dynamical spacetimes. This
possibility is an important avenue for further investigation — if this stability is found not to be
robust, then either the spatial domain will need to be compactified to remove timelike boundaries,
or further modification of the KST system will be needed to combine the constraint damping effects

outlined here with truly symmetric hyperbolic constraint propagation.

6.8 Discussion

A generalization of the five-parameter KST systems was introduced, for use in numerical relativity.
The added parameter 5 supplies a timescale on which exponential damping can occur (or growth,
if parameters are not chosen carefully). The hyperbolicity of the fundamental and constraint evo-
lution systems is not changed by this modification, but the effect that the constraint damping has
on perturbations of flat spacetime is partly dependent on the same parameters that determine hy-

perbolicity. Parameters can be chosen such that all constraint modes are stable in perturbations of
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flat spacetime, but not when the constraint fields are required to evolve in a symmetric-hyperbolic
manner. Nevertheless, single black hole simulations using constraint-preserving boundary condi-
tions are convergent, and what instabilities exist appear to be dominated by constraint-satisfying

modes, associated with a gauge instability in the outer boundary condition.
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Chapter 7

The spin of dynamical black holes

7.1 Introduction

The previous chapters of this thesis have described efforts for stabilizing numerical relativity sim-
ulations, i.e. for removing some of the deep numerical and mathematical instabilities that have
prevented the codes from becoming robust tools for the study of generic astrophysical processes.
In recent years, the field finally seems to have made this transformation. This claim is evidenced by
the sheer number of research groups that are finally able, using various computational and math-
ematical techniques, to carry out accurate simulations of binary black hole coalescence, free of any
approximations except numerical discretization [18, 8, 9, 10, 4, 5, 19, 7]. The time has come for us
to use numerical relativity to investigate the physics of binary black holes.

One interesting target for physical investigation is the interaction between the spin angular
momenta of the black holes and the orbital angular momentum of the overall binary system. Sev-
eral groups have recently investigated equal mass spinning black-hole binaries, with the goal of
understanding spin-orbit coupling, and the recoil that can be caused by asymmetric gravitational
wave emission [10, 11, 12, 15, 16]. These exciting results deserve independent confirmation and
extension, and the Caltech/Cornell pseudospectral code should be able to do so with astonishing
accuracy. This chapter is meant to report work in progress intended to make it feasible for us to do
so.

The first problem that arises when considering spin in numerical relativity is the very question
of what is meant by the term. Concepts such as energy and momentum are notoriously delicate in
general relativity, with widely understood rigorous definitions available only by integrals at spatial
or null infinity [17, 21, 20]. To discuss the spin of individual black holes in a binary configuration,
rather than that of the spacetime as a whole, a quasilocal construction is needed.

The literature on quasilocal charges in general relativity is vast and somewhat contentious, so
I will refrain from the futile attempt to summarize it here. In numerical relativity, two approaches

to computing spin have recently found widespread use. If the black holes are reasonably well



181

isolated from one another, such that tidal deformations can be ignored, then the ratio of equatorial
to polar circumferences provides a rough estimate of the spin of a black hole horizon [1]. In late
inspiral, when tidal deformations can no longer be neglected, and in cases where the equatorial and
polar circumferences are not clearly defined, one must move on to something more precise. The
prescription employed in essentially all of the recent literature was first given (to my knowledge) by
Brown and York [6], and later reappeared in the formalism of apparent and dynamical horizons [2,
3]. This is:

J= 7{ Kijo'n/dA, (7.1)

where the integral is carried out on an apparent horizon, K;; is the extrinsic curvature of the spatial
slice in spacetime, n’ is the outward-pointing unit normal of the horizon in the spatial slice, and ¢°
is a vector field that is tangent to the horizon and generates rotations. This charge is conserved (in
vacuum) if ¢* is a Killing vector field.

The question of precisely what vector field should be used for 7 is centrally important to any
use of (7.1). Obviously if rotational Killing vectors exist, these are the preferred choices. Perfectly
round two-spheres carry a three-dimensional vector space of rotational Killing fields, from which
one might hope to recover something like the familiar three-dimensional spin “vector” in the en-
compassing space. Dynamical horizons, however, are almost never perfectly spherical. Even the
equilibrium Kerr black hole does not have horizon slices with metric-sphere geometry when the
spin is nonzero. In a binary configuration the situation is even worse, for example each hole will
raise a tidal bulge on its partner. A well-defined prescription is needed, to find three “generalized
rotation generators,” vector fields tangent to any given topological two-sphere, that reduce to the

Killing vector fields when they exist.

7.2 Approximate Killing vectors

In [13], Dreyer et al. introduce a method for defining approximate Killing vector fields based upon

the Killing transport equations:

Vapp = Las, (7.2)

Valpe = RPapcenp, (7.3)

where uppercase Latin indices are tangent to the two-sphere, V is the metric-compatible covariant
derivative on the two-sphere, and RP 4 ¢ is its Riemann curvature tensor. It is straightforward to
show that if ¢ is a Killing vector field, then it must satisfy this system of equations. Therefore if the
value of a Killing vector field (and its first derivatives) is known at any one point, it can be found

at any other point by a path integral of this system of equations. However, if ¢ is not truly a Killing
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vector field, then the result of this integral will be path dependent. The method of Dreyer et al. is
(roughly speaking) to choose initial data for this line integral that minimize the change in a vector
as it is transported around a closed path, call this an “approximate Killing vector,” and integrate
along a network of paths covering the rest of the numerical grid. This method is remarkably clever,
simple to implement in a numerical code, and it will indeed find a true Killing vector when one
exists. However I find myself troubled by the question of how strongly the result will depend on
the choice of paths, and by the nonsmoothness that will necessarily arise when the paths close.
I'am investigating a more direct and geometrically inspired definition of an approximate Killing

vector. Killing’s equation,

Vaynp) =0, (7.4)

can be decomposed into two different pieces:

oap = 0, (7.5)
e = o, (7.6)

where 045 = V(app) — (1/2)gasV¢c is called the “shear” of ¢ and © := V¢ is called the
“expansion.” An approximate Killing vector might then be defined as a vector field that minimizes
the integral:

j’{ (aoapa?? + 36?) dA, (7.7)

where o and 3 are parameters to allow us to fix the relative importance of expansion and shear. Our
task is easier if we let one of these parameters be much greater than the other. That is, if there is a
space of shear-free vector fields, we could minimize expansion within that space, or alternatively
we could minimize the shear within the space of expansion-free vector fields.

The first of these strategies, looking for vector fields with zero shear and minimum expansion,
is mathematically enticing. This is because the condition o 45 = 0 is conformally invariant, and in
two dimensions all smooth manifolds are conformally flat. Thus the problem of finding shear-free
vector fields on a topological two-sphere can be reduced to finding them on a flat plane (and then
imposing appropriate regularity conditions at infinity to make these fields smooth when the plane
is curled back into a spherical topology).

On the other hand, Ashtekar and Krishnan [3], have shown that when spin is computed on a
dynamical horizon using (7.1), the result is gauge invariant! if and only if 7 is expansion-free. For

this reason, I now focus on fields with zero expansion, and minimum shear.

1“Gauge,” in this case, refers to the freedom of slicing the spacetime. A dynamical horizon assumes a fixed slicing of the
horizon worldtube, but it is independent of how this slicing extends off the worldtube.
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Consider the one-form y 4 satisfying:

ot = e*Byp, (7.8)

where €4 is the antisymmetric Levi-Civita tensor on the two-surface. The zero-expansion condi-

tion is equivalent to the condition that:
Viaxp) = 0. (7.9)
This condition is immediately satisfied by letting
XA =Vaz, (7.10)
for some smooth function z on the two-sphere. There are as many expansion-free vector fields,
p* = e*PVpz, (7.11)

as there are smooth functions 2 on the two-sphere.

Our task is now to find vector fields of the form (7.11) for which the integral of o408 is
minimum. A straightforward calculation involving repeated integration-by-parts shows that this

integral can be written in the form:
?f oapoBdA = j’{ zHzdA, (7.12)
where H is a self-adjoint fourth-order differential operator:
Hz:= A%z 4+ RAz + (VAR)(Vaz), (7.13)
A is the Laplacian on the (not-necessarily round) two-sphere, and R is the Ricci scalar curvature of

the two-sphere.

7.3 Normalization

We can now go about the variational problem of finding the function z that minimizes the in-
tegral (7.12), but we must be careful that the process does not simply land on the uninteresting
minimum z = 0. To avoid this, we use a Lagrange multiplier ) to restrict the minimization to cases
for which z satisfies some normalization condition.

Consider the case when the two-surface is a round unit sphere. The three “true” rotation Killing
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vectors are generated from functions z equal to the three real I = 1 spherical harmonics. These

spherical harmonics are normalized such that

f{ 22dA = 1. (7.14)

If we accept this normalization condition for z in more general situations, then the integral that we

I:= szsz + A (7{ 22dA — 1) : (7.15)

Minimizing with respect to the constant A yields the normalization condition. Minimizing with

want to minimize is:

respect to the function z yields an eigenvalue problem:
Hz = )z, (7.16)
or, recalling the definition of H,
A%z + RAz + (VAR)(Vaz) = Az (7.17)

It must be noted that the condition ¢ 2°dA = 1 is just one of many normalization conditions
that one could choose to impose. It might be more sensible to place the normalization directly
on 3, asking that ¢ ¢ 4p"'dA take the same value that it does on the unit sphere. This alternate

normalization condition turns out to result in a generalized eigenvalue problem:
A%z + RAz + (VAR)(Vaz) = AAz. (7.18)

One issue to consider when choosing the normalization condition is the orthogonality of the
resulting vector fields. Consider two vector fields ¢, and ¢ that result from functions z; and

z2, which are taken to satisfy (7.18) for respective eigenvalues A\; and 2. Due to the fact that

eACeBP gpp = g4, it follows that:
G1-Fo=Vz Vo (7.19)
It then follows that:
M 7{ Gr-PodA = N\ 7{ Vz1 - VzodA (7.20)
= -\ j{zzAzldA (7.21)
S j{ 2o HoydA (7.22)
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= —)\g%zlAZQdA (724)
= +X j’{ V21 - VzadA (7.25)
— 7( 1 - GrdA, (7.26)

where we have integrated by parts on two occasions and employed the self-adjointness of H. We've

just shown that

(A1 — Aa) 7{ B1 - FadA = 0. (7.27)

Thus, vector fields resulting from (7.18) with different eigenvalues are (on average) orthogonal. If

this ritual is repeated for the simpler problem, (7.17), the result is the less geometrically significant

An even more ambitious normalization condition would be to ask that the vector field ¢ equal
the coordinate basis vector d,; in some spherical coordinate system on the sphere. This is tan-
tamount to requiring that the operator 30, differentiate functions with respect to a parameter
whose value changes by exactly 27 around each of the closed orbits of ¢. This amounts to a one-
parameter family of conditions restricting the shear minimization, as opposed to the individual
overall normalization conditions leading to (7.17) and (7.18). So this generalized spherical coordi-

nate system would likely come at the expense of some shear.

7.4 Choosing the approximate Killing vectors

Now that we have laid down a few mathematical structures, let us take a moment to describe how

they can be employed to define the three generalized rotation generators of a deformed sphere. For

simplicity, let us focus on the normalization condition, § 2>dA = 1, resulting in Eq. (7.17).
Consider the case when our surface is geometrically a unit two-sphere, for which the scalar

curvature is constant, R = 2. Eq. (7.17) reduces to:
A%z +2Az = Mz (7.29)

The eigenfunctions for this equation are simply the spherical harmonics Y},,,, and the eigenvalues
are:

A=+ 1D)]* =211 +1). (7.30)

the eigenvalue A vanishes for | = 0 or [ = 1. The [ = 0 eigenfunction is a constant, so the resulting

vector field ¢ vanishes. This continues to be the case for deformed spheres, on which z = const.
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continues to be an eigenfunction with vanishing eigenvalue. The remaining A = 0 eigenfunctions
on the unit sphere, [ = 1 spherical harmonics, provide (taking real and imaginary parts) vectors ¢
equal to the three standard rotation generators on the unit two-sphere. The motivation for choos-
ing eigenfunctions with the smallest value of A goes beyond this analogy with the case of the unit
sphere. If we multiply both sides of (7.16) by z, integrate over the sphere, and apply the normaliza-

tion condition, then (recalling (7.12)) the significance of the Lagrange multiplier becomes clear:
A= ?f 2HzdA = j’{ oapcBdA. (7.31)

The value of ) is equal to the integrated, squared shear of the vector field. Choosing fields with
minimum A\ amounts to choosing the minimum-shear vector fields that we have sought.

In summary, to find the three generalized rotation generators, we first find the three eigenfunc-
tions z satisfying (7.17) that are nonconstant and have eigenvalues ) that are nearest to zero. The
generalized rotation generators are then defined by (7.11). The same prescription can be applied

with Eq. (7.18) if one prefers its normalization condition.

7.5 Numerical results

The eigenvalue problems (7.17) or (7.18) that are used to define the generalized rotation genera-
tors would be extremely difficult to solve analytically for any surface of nonconstant curvature.
Luckily this thesis is concerned with numerical relativity, so we should allow ourselves the help of
a numerical code. I have written a simple code that solves a discretized version of (7.17) to find
the generalized rotation generators of an arbitrary topological two-sphere. This discretization is
carried out using the finite-difference method, where the field z is defined on a fixed coordinate
grid. At each grid point, derivatives are approximated using differences of the values of z at the
given grid point and its neighbors. This reduces the function-space eigenvalue problem (7.17) to a
conventional vector-space eigenvalue problem, where the eigenvector is an array whose elements
are the values of z on the grid points?. This matrix eigenvalue problem is then solved using stan-
dard LAPACK [14] routines. As a warmup for the fourth-order problem (7.17), I wrote code for a
simpler second-order problem. This code could be useful in its own right for analyzing numerical

relativity simulations, so I discuss it now.

2Far more accurate results can probably be obtained using a pseudospectral discretization, as in the code used for nu-
merical results in chapters 4 — 6. I am in the process of implementing routines for approximate rotation generators in this
larger code, and I plan to use pseudospectral discretization for this.
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7.5.1 Generalized spherical harmonics

The simple eigenvalue problem

Ay = Ay, (7.32)

where again A is the Laplacian on the deformed sphere and A is some constant eigenvalue, defines
the geometrically natural generalization of spherical harmonics for deformed spheres. The gener-
alized spherical harmonics, y, could be of some use in studying the dynamics of coalescing black
holes. For example, the tidal bulge raised on each hole by the pull of its partner can be studied with
multipoles of the scalar curvature of each horizon surface, where the multipoles are projected out
using the harmonics y as basis functions. Aside from the possible scientific uses for this eigenvalue
problem, there is also the simple fact that Eq. (7.32) provides an ideal warm-up problem for (7.17)
or (7.18).

I have written second-order accurate finite-difference routines to solve the discretized version
of (7.32). The second-order convergence of this code is demonstrated in figures 7.1 and 7.2, where

the surface is an ellipsoid defined by the following embedding in flat space:
X2 42Y? +32%=1. (7.33)

Figure 7.1 demonstrates the convergence of the lowest few eigenvalues A. Figure 7.2 demonstrates

the convergence of the associated spherical harmonics yx.

7.5.2 Generalized rotation generators

Now we turn our attention back to the problem of generalized rotation generators. The geometrically-
preferred normalization condition, placed directly on the vector field rather than on the function z,
leads to (7.18), a generalized eigenvalue problem. LAPACK includes routines for such generalized
eigenvalue problems, but for the time being I have opted for the simpler problem (7.17), that can
readily be implemented in the same code used for spherical harmonics.

Figure 7.3 demonstrates the convergence of the lowest three eigenvalues A on the same ellipsoid
used above. More resolution has been necessary to fully resolve this problem, grids as fine as 70 x
70, possibly due to the fact that the equation involves fourth-order derivatives. The convergence of

the function z is demonstrated in Fig. 7.4.

7.6  Work in progress

Now that I have implemented code to solve the eigenvalue problems for generalized spherical

harmonics and rotation generators, I am working on making it a part of our group’s main numerical
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Figure 7.1: Difference between the computed eigenvalue for an n x n grid and a 2n x 2n grid for
the problem of generalized “I = 1” spherical harmonics. Data points are at n = 5, 10, 15, 20, 25. The
scaling is logarithmic on both axes, and the apparent 1/n? dependence confirms the second-order
convergence of the code.

relativity code. Along the way, I am implementing spectral discretizations of the operators.

I'have also written sections of the numerical relativity code to compute the integral (7.1) for any
given vector field . I have tested this so far using coordinate rotation vectors, and have found it
to accurately compute the spin of analytic Kerr black holes. I have also applied this code to recent
binary black hole results generated by Harald Pfeiffer, and have found results that appear to be
consistent with those reported in [11], that horizon viscosity is not strong enough to pull certain
initially-nonspinning binary configurations into corotation. This work is still preliminary, though,
so I will not report it in any more detail.

I also intend to collaborate with Geoffrey Lovelace on two projects in the near future. Using
rapidly-spinning black hole metrics for conformal data, he hopes to compute binary black hole
initial data of higher spin than has yet been accomplished in the field. We are also interested in
studying the tidal structure of binary black holes in the late stages of coalescence, for instance
the question of how strongly the presence of each black hole deforms the apparent horizon of its

partner, and the phase lag of these tidal bulges caused by the rotation of the system.
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Figure 7.2: Ly norm ||6y|[2 := [§(yon — yn)?dA] "2 of the difference between the computed har-
monic y on an n x n grid and a 2n x 2n grid for the problem of generalized “I = 1” spherical
harmonics. Data points are n = 5, 10, 15, 20, 25. The scaling is logarithmic on both axes. Conver-
gence appears to be slightly slower than 1/n?; this may be due to interpolation errors, or perhaps
errors from the coordinate singularities at the poles.

0.1 | T

0.01
10 100

Figure 7.3: Difference between the computed eigenvalue ) for an n x n grid and a 2n x 2n grid for
the problem of generalized rotation generators. The scaling is logarithmic on both axes, and the
error converges as 1/n”. The plot includes values for n = 15, 20, 25, 30, 35.
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Figure 7.4: L, norm of the difference between the computed generating function z for generalized
rotation generators on an n x n grid and a 2n x 2n grid for n = 15,20, 25, 30, 35. Convergence
again appears to be slightly shallower than 1/n?. The wildly varying red curve relates to a solution
for which the eigenvalue is small (apparently converging to approximately A ~ .095), and there
appears to be an issue with the near degeneracy of this eigenvalue with the A = 0 eigenvalue cor-
responding to z = const. The variations of the red curve, therefore, may be due to ill conditioning
of the eigenvector calculation.
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