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Abstract

Every operating control system must deal with constraints. On the one hand, the
range and rate of change of the inpuf or manipulated variable is limited by the physical
nature of the actuator (saturation limits). On the other hand, process state variables
or outputs (pressures, temperatures, voltages) may not be allowed to exceed certain
bounds arising from equipment limitation, safety considerations, or environmental
regulations.

A rich theory exists for designing controllers — both linear (Hs/Hoo, LQG, LTR,
pole-placement) and nonlinear (nonlinear H, control, feedback linearization, sliding
mode control, gain scheduling). However, none of these popular and fashionable
controller design techniques account for the presence of input or output constraints.
Although occasionally these constraints may be neglected, in general, they lead to
design and operating problems unless they are accounted for properly.

In traditional control practice, overrides or mode selection schemes are used to
deal with output constraints: they switch between a “bank” of controllers, each of
which is designed to achieve a specific objective. In both cases (saturation limit and
mode selection), a control input nonlinearity is introduced into the operating system.

Despite its significance, the study of the constrained control problem has received
far less attention than the traditional unconstrained (linear and nonlinear) control
theory. With few exceptions, most of the controller design techniques for constrained
systems are by-and-large ad-hoc, with very little guarantees of stability, performance
and robustness to plant model uncertainty.

The objective of this thesis is to take a broad approach towards the constrained
control problem. One part of the thesis is devoted to the development of a system-
atic and unifying theory for studying the so-called Anti-Windup Bumpless Transfer
(AWBT) problem. The other part aims towards the development of a general novel
approach for the synthesis of a robust model predictive control (MPC) algorithm.
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Chapter 1 Introduction

In an aggressive global competitive environment, there is an ever increasing customer
expectation for consistent high quality products. At the same time, environmental
regulation agencies have been imposing stricter safety limits and tighter restrictions
on emission of pollutants. Moreover, safety considerations have also led to the design
of smaller storage capacities to diminish the risk of major chemical leakages. In
order to meet these numerous stringent limits on product specifications and effluent
concentrations, while at the same time maintaining a profitable enterprise through
reduced energy and raw material costs, industrial processes have been forced to evolve
over the last two decades into highly integrated and complex systems. As a result,
the associated control problems have in turn become more difficult and challenging.

Traditional control techniques based on single-loop decentralized controller designs
have been successful in resolving only a small sub-set of these problems. None of them
can address all the control issues involved in this complex situation, thus stemming
the need for more advanced and sophisticated control techniques. One particular
problem which is by and large neglected in this complex scenario is that of dealing
with constraints, both input or manipulated variable constraints (we will discuss these
in a moment) and the aforementioned output or state variable constraints. The focus
of this thesis is on addressing the general controller design problem in the presence

of constraints.

1.1 Motivation

All real world control systems must deal with constraints. Consider Figure 1.1 which
shows a typical control system. The process (e.g., a chemical reactor) is described by
an uncertain, generally nonlinear model, with output variable y (e.g., temperature,

pressure, concentration, etc.), manipulated variable u (e.g., flow rate), and is subject



actuator
limits

d *disturbance

reference ]
. uncertain
mput r ) output
controller (non)linear
process

measurement
noise n

Figure 1.1: The general constrained control problem.

to a disturbance d (e.g., fluctuation of feed-stock flow rate, composition, etc.) and a
measurement or sensor noise 7.

On the one hand, the range of the manipulated variable v is limited to lie in
a restricted range [Umin, Umax] (consider a scalar input u for simplicity) due to the
physical nature of the actuator (e.g., finite capacity of a valve, pump, compressor,
etc.). For the same reason, sometimes even the rate of change of u is limited.

On the other hand, the process output y may be required to lie between prespeci-
fied limits of the reference value r, these limits arising, as we discussed before, due to
stringent product specifications, safety limits, or environmental regulations. The goal
of the controller is to satisfy the specifications on the plant output ¥, in the presence

of

plant model uncertainty;

external disturbance d;
e measurement noise n; and

actuator limits or saturation constraints on u.

It is safe to say that a fairly rich theory exists for designing controllers — both linear

(e.g., PI/PID, LQG, LTR, Hs/Hoo, pole placement, etc.) and nonlinear (e.g., non-
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linear ., feedback linearization, sliding mode control, gain scheduling, etc.). It is
also safe to say that the effect of plant model uncertainty on controller performance
has been reasonably well-understood in the context of linear systems, and attempts
are being made to develop similar understanding for nonlinear systems. However,
none of these popular controller design techniques account for the presence of input
and output constraints. Although occassionally these constraints can be neglected,
in general, they lead to design and operating problems in the final controller imple-
mentation unless they are accounted for properly.

For example, it is well-known that strictly unstable systems cannot be globally
stabilized with constraints on the control signal [125]. A classic example of the detri-
mental effect of neglecting constraints comes from the nuclear industry, namely, the
Chernobyl unit 4 nuclear power plant disaster in 1986. One of the causes of this
mishap was attributed to the fact that the speed at which the control rods could be
moved in and out of the nuclear reactor core was limited. When the reaction started
accelerating, the controller tried to push the rods into the core as fast as it could to
slow down the reaction. But due to the limited speed of the control rod movement,
this controller action was not fast enough, and eventually led to an uncontrolled
runaway reaction [123].

Although such a dramatic example is harder to find in the chemical industry, there
are examples of chemical plants which handle hazardous materials and which need
to operate safely and within limits. The 1984 Bhopal tragedy in India caused by the
release of the highly toxic gas methyl isocyanate (MIC) from the Union Carbide Plant
in Bhopal attests to this statement.

An argument against studying the effect of actuator constraints on controller
design and performance is that one can always over-design the process so that physical
limitations do not limit our controller performance. While true in principle, it is far
from being practical to build in the extra capacity in the system, knowing very well
that it will likely be used infrequently. The costs for such over design are far from
being justified and typically, economically feasible processes do tend to operate at

constraint boundaries.
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This being the case, the constrained control problem achieves an even greater sig-
nificance. Not surprisingly, there has been quite some activity in this area in recent
years. For example, in a plenary lecture at the 1992 American Control Conference
in Chicago, Professor Elmer Gilbert from the Department of Aerospace Engineering,
University of Michigan, very clearly outlined the various issues involved in controlling
linear systems with “point-wise-in-time constraints” [56]. Similarly, in two recent
plenary addresses [96, 97], Professor David Mayne from the University of Califor-
nia, Davis/Imperial College, London elucidated numerous open issues in controlling
nonlinear systems with constraints, with particular emphasis on predictive control.
Additionally, the entire August 1995 issue of the International Journal of Robust and
Nonlinear Control was devoted exclusively to the problem of controlling linear sys-
tems with saturating actuators, and a fairly extensive bibliography [16] of existing
literature in this area was compiled by the guest editors of this issue. One more issue
of the International Journal of Robust and Nonlinear Controlis being planned on this

topic [124].

1.2 Background and Literature Review

The existing approaches to addressing the constrained control problem can be broadly

divided into two categories, based on the model used to describe the plant:
e those using linear plant models;

e those using nonlinear plant models.

1.2.1 Constrained Control of Linear Systems

The techniques using linear plant models can in turn be divided into two categories:
e Model Predictive Control (MPC);

e Anti-Windup Bumpless Transfer (AWBT) Control



5
It would be appropriate to include an additional category of techniques dealing with
nonlinear stabilization of constrained linear systems [122, 125, 127], but this area is

beyond the scope of this thesis and will not be explored further.

1.2.1.1 Model Predictive Control

Model Predictive Control (MPC), also known as Moving Horizon Control (MHC)
or Receding Horizon Control (RHC), (see [52] for an introduction and survey) is a
popular technique for the control of “slow” dynamical systems, such as those encoun-
tered in chemical process control. At each sampling time, MPC solves a trajectory
optimization problem (typically, a linear or quadratic program) to compute optimal
control inputs over a fixed future time “horizon”, using a plant model to predict future
plant outputs. Although more than one control move is generally calculated, only the
first one is implemented. At the next sampling time, the optimization problem is
reformulated with the horizon shifted forward by one time step and solved utilizing
the new measurement information obtained from the system.

The main advantage of MPC, as also the reason for its immense popularity in
the process industries, is its ability to explicitly handle constraints on both the ma-
nipulated (input) and the controlled (output) variables. However, due to the on-line
optimization involved, the application of MPC is restricted to “slow” processes which
allow the on-line computation to be completed between two sampling instances. From
a conceptual point of view, the implicit definition of the MPC control law through a
quadratic program, which explicitly incorporates input and output constraints, makes
the analysis of its.properties, such as stability and robustness, very difficult.

This motivated a flurry of research activity in the area of stability analysis of
MPC algorithms. It was only a few years ago that the first useful results on nominal
stability of MPC were published by Rawlings and Muske [114] using the idea of an
infinite prediction horizon in the MPC algorithm. Subsequently, and in parallel to
these developments, several other studies on nominal stability of MPC were carried
out [12, 128, 142] to further explore this topic. Although further refinements in this

area continue to appear in the literature (see [144]), by-and-large, the issue of nominal



6
stability of MPC appears to be a well-understood topic.

However, issues of robustness, and in particular, MPC design in the presence of
plant-model uncertainty have been addressed to a much lesser extent. Early work on
robustness analysis of MPC by Garcia and Morari [49, 50, 51] focused on the uncon-
strained implementation of MPC in the framework of internal model control (IMC).
Zafiriou [136] and Zafiriou and Marchal [137] used the contraction properties of MPC
to develop necessary/sufficient conditions for robust stability of constrained MPC.
Genceli and Nikolaou [53] analyzed robustness properties of [; norm MPC algorithms
for single-input single-output (SISO) finite impulse response (FIR) systems. More
recently, Polak and Yang [111, 112] introduced the idea of a “contraction constraint”
in their MPC algorithm to guarantee robust stability. This “contraction constraint”
idea and variations based on it have subsequently been exploited by numerous other
researchers [8, 37, 144] to further explore the robust stability properties of MPC.

Robust MPC synthesis, i.e., the explicit incorporation of realistic plant model un-
certainty information in the MPC problem formulation, has been the focus of research
in the MPC community in recent years. Relevant references in this area include the
“min-max” robust MPC algorithms of Campo and Morari [26], Allwright and Pa-
pavasiliou [2] and Zheng and Morari [145]. The work reported in these references
pertains to FIR plants. Robust MPC synthesis using “contraction constraint” ideas
has been reported in [144] and eventually applied to FIR plants. As we will see in
Chapter 8, we will develop a fairly general and novel robust MPC' algorithm which
1s not restricted to FIR plants but is applicable to a much larger class of uncertain

plants.

1.2.1.2 Anti-Windup Bumpless Transfer Control

In traditional control practice, overrides or mode selection schemes have been used
to deal with output constraints: They switch between a “bank” of linear controllers,
each of which is designed to achieve a specific objective. However, in resolving the
output constraint problem, we have introduced a switching or override nonlinearity

at the plant input, thereby creating a new problem to be addressed.
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The input nonlinearities, introduced both due to saturation limits, as discussed
in §1.1, and overrides or mode selection schemes as discussed above, in an otherwise
linear system, are handled by the so-called Anti-Windup Bumpless Transfer
(AWBT) techniques. The basic philosophy of AWBT control techniques is the fol-
lowing;:

Design first the linear controller ignoring control input nonlinearities. Then add anti-
windup compensation to minimize the adverse effects of any control input nonlinear-
ities on closed-loop performance.

Compared to MPC, AWBT compensation schemes of this type provide a simpler,
computationally cheaper alternative for modifying or “retro-fitting” existing uncon-
strained linear controllers to account for input nonlinearities (saturation and mode
switching). This has probably been the main motivation for a number of somewhat
ad-hoc and problem-specific anti-windup schemes that have been reported in the
literature.

Windup problems were originally encountered in an industrial context when using
PI/PID controllers for controlling linear systems with control input nonlinearities.
One of the earliest attempts to overcome windup in PID controllers was the work by
Fertik and Ross [46], which is now popularly known as anti-reset windup. However,
it was recognized later that integrator windup is only a special case of a more general
problem. As pointed out by Doyle et al. [43], any controller with slow or unstable
modes will experience windup problems when implemented on a system with actuator
constraints.

This motivated a more general intepretation of windup as any inconsistency be-
tween the controller output and the states of the controller when, for example, the con-
trol signal saturates. Based on this general interpretation, numerous other researchers
proposed anti-windup techniques, each tailored towards addressing a particular issue
involved in windup. Such techniques include the “conditioning technique” of Hanus
and co-workers [62, 63, 64], the observer-based approach of Astrém and co-workers
6, 7], which was further explored by Walgama and Sternby [132]. An alternative in-

terpretation of the conditioning technique of Hanus et al. was attempted by Campo
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and Morari [27]. Extensions of the conditioning technique can be found in [131]. A
more complex and involved technique for anti-windup compensation was proposed by
Kapasouris et al. [69, 70, 71].

While successful in addressing numerous specific windup related issues, the afore-
mentioned techniques rely on ad-hoc spurts of engineering ingenuity. What is clearly
missing is an attempt to formalize the general philosophy of AWBT and advance
a more systematic AWBT theory. As we will see in Chapter 4, we will present a
framework which allows us to achieve just this objective.

It is important to recognize that merely adding AWBT compensation of the type
discussed above does not automatically guarantee closed-loop stability of the result-
ing nonlinear system (remember that we have input nonlinearities even though the
remaining system may be linear). Numerous researchers attempted to develop criteria
for analyzing stability of various AWBT compensation techniques.

One of the first attempts in this direction was the application of the scalar Popov
and Circle criteria by Glattfelder et al. [57, 58, 59] to analyze stability properties of
anti-reset windup control systems. The multivariable Circle Criterion was used by
Kapasouris and Athans [69] to analyze the multivariable anti-reset windup scheme
which they proposed. Attempts to use the small gain theorem for the same purpose
were reported in [6, 27, 28, 43] and the use of describing function analysis was reported
in [6].

We see that several seemingly diverse techniques and seemingly unrelated theoret-
ical tools have been employed to address the issue of closed-loop stability of specific
AWBT compensated control systems. A sense of generality to grasp the larger picture
seems to be missing. We will show in Chapter 6 how we can develop general tools
for analyzing AWBT stability using concepts from absolute stability and multiplier
theory.

Despite these encouraging developments in unifying AWBT schemes (see Chap-
ter 4) and in generalizing AWBT analysis techniques (see Chapter 6), very few sys-
tematic AWBT design techniques have been reported at present, although several

heuristic methods or “tuning” rules are readily available.
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The simplest case of tuning the anti-reset windup controller for PI/PID controllers
can be found in Astrém and Hégglund [5]. The conditioning technique of Hanus et
al. [62, 63] is applicable to biproper linear controllers but suffers from the drawback
that it does not have any additional degrees of freedom to “tune” or improve AWBT
performance. Extension of the conditioning technique to multivariable systems with
a more detailed consideration of issues such as directionality compensation was car-
ried out by Campo and Morari [27], based on ideas of directionality compensation
originally proposed by Doyle et al. [43].

More systematic anti-windup synthesis techniques can be found in Park and Choi
[109], Tyan and Bernstein [129] and Kapoor et al. [73]. Again, most of these tech-
niques lack generality and some of them are far too complicated to be useful in prac-
tice. Moreover, none of them allow consideration of different performance criteria,
thereby lacking the ability to provide insight into the inevitable trade-offs involved in
AWBT designs. In Chapter 7, we will develop a framework which allows incorpora-
tion of numerous appropriately defined performance criteria in the AWBT synthesis

problem.

1.2.2 Constrained Control of Nonlinear Systems

Perhaps the only controller design techniques for nonlinear plants which can take into
account constraints fall under the general category of model predictive control. These

in turn can be broadly divided into:

e those using the nonlinear plant model as the prediction model in MPC. In gen-
eral, this approach results in an on-line nonlinear optimization problem which
can be computationally cumbersome. The highly complex and nonlinear nature
of the on-line optimization problem makes any analysis of the control system

very difficult.

e those using a local linearization of the nonlinear plant model as the prediction
model, and then applying linear MPC techniques [37, 38]. This approach results

in a quadratic program to be solved on-line.
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e those using feedback linearization to linearize the nonlinear system and then
applying MPC techniques to the feedback-linearized plant [40, 106]. The com-
putational issues of this technique, though partially addressed in [106], still
remain to be fully explored. Similarly, the stability properties have been ana-

lyzed only under idealized conditions.

It is worth mentioning that feedback linearization in conjunction with an anti-
windup scheme applicable to stable IMC controllers (see Chapter 3) has been applied
by Doyle III [44] and Kendi and Doyle III [74] to handle input saturation constraints
for nonlinear systems.

The discussion of the constrained control problem for nonlinear systems is beyond

the scope of this thesis and will not be continued further.

1.3 Thesis Overview

The thesis is organized as follows: In Chapter 2, we introduce the anti-windup bump-
less transfer (AWBT) problem and summarize several existing techniques to achieve
AWBT compensation. This chapter serves to illustrate the essential two-step design
approach of AWBT and motivates the need for a more general framework required
for this problem. Chapter 3 discusses an anti-windup scheme for controllers imple-
mented in the IMC framework. This anti-windup IMC implementation has already
found application in addressing the nonlinear constrained control problem and this
extension is also discussed in this chapter.

Chapter 4 is devoted to the development of a truly general AWBT framework.
This framework captures the essential feature of existing AWBT schemes, namely, the
two-step controller design paradigm. The generality of the framework introduced in
Chapter 4 allows us to unify all the existing AWBT schemes summarized in Chapter 2.
These special cases of the general framework are illustrated in this chapter.

In Chapter 5, we momentarily digress from the main theme and summarize essen-

tial technical machinery related to linear matrix inequalities (LMIs). The emphasis is
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only on those aspects of LMIs which are relevant to this thesis. After this brief digres-
sion, we return again to the main theme, in Chapter 6, where we address the problem
of analyzing the stability of AWBT schemes. Based on concepts derived from the
absolute stability problem, a general framework for systematically studying AWBT
stability is developed. The analysis framework allows consideration of any multivari-
able linear AWBT scheme subject to multivariable control input nonlinearities such
as saturation, relay, dead-zone, hysterisis, switching/override/logic-based nonlineari-
ties and combinations thereof. In particular, we show in this chapter that a number
of previously reported attempts to analyze stability of AWBT control schemes, us-
ing such well-known and seemingly diverse techniques such as the Popov, Circle and
Off-Axis Circle criteria, the optimally scaled small-gain theorem (generalized p upper
bounds) and describing functions can all be generalized within the framework of this
paper.

In Chapter 7, we address the AWBT synthesis problem. We first show that the
classical two-step AWBT synthesis problem can be reduced to a static output feedback
synthesis problem which is computationally difficult to solve. Next, we consider two
alternatives — dynamic AWBT compensation and one-step AWBT compensation — to
overcome the problem associated with the static output feedback synthesis problem.
We then define suitable AWBT objectives and outline promising approaches for its
solution based on recently developed techniques on multi-objective optimization.

Chapter 8 presents a novel and complete framework for robust MPC synthesis
based on LMIs. The technique discussed in this chapter allows incorporation of a
fairly broad and general class of plant uncertainty information in the MPC problem
formulation. Using standard LMI-based techniques, the problem of minimizing an

1

upper bound on the “worst-case” objective function, subject to constraints on the
plant input and plant output, is reduced to a convex LMI-based optimization. More-
over, it is shown that the feasible receding horizon state-feedback control law robustly
stabilizes the set of uncertain plants under consideration. Several extensions, such

as constant set-point tracking for LTI plants, disturbance rejection, robust trajectory

tracking, extension to the output feedback case with an appropriate observer design
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and extesion to handle plant delays are also discussed within this framework.

Chapter 9 presents a case study of applying an extension of standard MPC tech-
niques to linear parameter varying (LPV) systems. The example under consideration
is the problem of controlling the water level in the steam generator of a nuclear power
plant.

Finally, in Chapter 10, we present conclusions of the thesis, with a summary of
the contributions of the thesis and an outline of the numerous areas of research that

are motivated by the results of this thesis.

1.4 Notation

The notation used in the thesis is fairly standard. R is the set of real numbers. For
a matrix A, AT denotes its transpose, A* denotes its complex conjugate transpose,
A~ denotes its inverse (if it exists), A~ denotes the inverse of A* (if it exists). The
matrix inequality A > B (A > B) means that A and B are square Hermitian matrices
and A — B is positive (semi-)definite.

Ly is the Hilbert space of m-vector valued signals defined on (—oo,c0) , with

o0

scalar product (z|y) = [°° z(t)*y(t) dt and such that ||z, 2 (z|z) < ooV z € Ly,

—o0

Ly is the extended Hilbert space of m-vector valued signals u such that up € Lo,

where

u(t) ift<T
0 ift>T.

ur (t) =

The same symbol is used to denote a time-domain signal (or the impulse response of
an LTI system) and its Laplace transform. The distinction should be clear from the

context.



13

For u € R,
sat(uy) utT uy >yl
sat(u) = : , where sat(u;) = ¢ u; Ui < gy < ylnes
sat(uy) umn oy < ymin

denotes the usual input saturation function. For x € R",

|z(t)l = Z |z:(2)]

denotes the 1-norm.

A transfer function matrix in terms of state-space data is denoted

A|B
C|D

G(s)=C(sI—A)'B+ D=

For simplicity of notation, f o G(s)x refers to the operation of convolving the impulse
response of G(s) with z and then applying the operator f. Similar interpretation can
be given to G(s) o fx. With some abuse of notation, we will denote the adjoint of an

LTI operator G(s) by G(—s)T. Thus, with the usual rules of an adjoint operator

(@G (s)y) = (G(=9)"zly).

If G(s) is causal, stable, then its adjoint is considered to be anti-causal, stable.

Ho and Ho, are the Hardy spaces of matrix-valued functions with analytic con-
tinuations into the right half-plane, and which are respectively, square integrable and
bounded on the imaginary axis. The H, and H., norms are defined in the frequency

domain for a stable transfer matrix G(s) as

Gl 2 (—1— [ GG dw) - 1Gle £ 59D sG]

2T J_ o

where op,.x[G(jw)] refers to the maximum singular value of G(jw).
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Chapter 2 Anti-Windup Bumpless Transfer

Abstract

The Anti-Windup Bumpless Transfer (AWBT) problem is introduced in this chapter.
Numerous existing techniques for AWBT compensation are reviewed. The emphasis
is on tracing the origins of the problem and on highlighting the somewhat intuitive
and problem-specific nature of the solutions available for the problem. The essential
idea of a “two-step” design incorporated in AWBT compensation schemes is clearly
brought out through the review. Moreover, the chapter serves to motivate the need

for a more general and rigorous AWBT theory to be introduced in Chapter 4.

2.1 Introduction

All real world control systems must deal with constraints. For example, the control
system must avoid unsafe operating regimes. In process control, these constraints
typically appear in the form of pressure and temperature limits. In addition, physical
limitations impose constraints—pumps and compressors have finite throughput capac-
ity, surge tanks can only hold a certain volume, motors have a limited range of speed.
Of special interest and common occurrence are systems with control input constraints
in an otherwise linear system.

All physical systems are subject to actuator saturation. For example, a valve
controlling the flow rate of the coolant to a reactor can only operate between fully open
and fully closed. We will refer to such a constraint as an input limitation. In addition,
commonly encountered control schemes must satisfy multiple objectives and hence
need to operate in different control modes. Each mode has a linear controller designed
to satisfy the performance objective corresponding to that mode. If the operating
conditions demand a change of mode, an override or selection scheme chooses the

appropriate mode and executes a mode switch. The switch between operating modes
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is achieved by a selection of the plant input from among the outputs of a number of
parallel controllers, each corresponding to a particular mode. We will refer to such a
mode switch as a plant input substitution since the output of one controller is replaced
by that of another.

As a result of substitutions and limitations, the actual plant input will be different
from the output of the controller. When this happens, the controller output does not
drive the plant and as a result, the states of the controller are wrongly updated.
This effect is called controller windup. Since the linear controller is designed ignoring
actuator nonlinearities, the adverse effect of windup caused by the presence of such
nonlinearities is in the form of significant performance deterioration (as compared
to the expected linear performance), large overshoots in the output and sometimes
even instability [27]. Performance degradation is especially pronounced when the
controller is stable with very slow dynamics and gets even worse when the controller
is unstable. In addition to windup, when mode switches occur, the difference between
the outputs of different controllers results in a bump discontinuity in the plant input.
This in turn causes undesirable bumps in the controlled variables. What is required is
a smooth transition or bumpless transfer between the different operating modes. We
will refer to the problem of control system analysis and controller synthesis for the
general class of linear time invariant (LTT) systems subject to plant input limitations
and substitutions as the anti-windup bumpless transfer (AWBT) problem.

Windup problems were originally encountered when using PI/PID controllers for
controlling linear systems with control input nonlinearities. One of the earliest at-
tempts to overcome windup in PID controllers was the work of Fertik and Ross [46].
Their strategy has been variously referred to as anti-reset windup, back calculation
and tracking and integrator resetting. Experimental evaluation of several digital algo-
rithms for anti-reset windup has been reported in [76]. Extension of anti-reset windup
to a general class of controllers has been reported and is commonly referred to as high
gain conventional anti-windup (CAW).

It was recognized later that integrator windup is only a special case of a more gen-

eral problem. As pointed out by Doyle et al. [43], any controller with relatively slow
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or unstable modes will experience windup problems if there are actuator constraints.
Windup is then interpreted as an inconsistency between the controller output and
the states of the controller when, for example, the control signal saturates. The “con-
ditioning technique” as an anti-windup and bumpless transfer scheme was originally
formulated by Hanus et al. [62, 63], as an extension of the back calculation strategy of
[46] to a general class of controllers. Astrém et al. [7, 6] proposed that an observer be
introduced into the system to estimate the states of the controller and hence restore
consistency between the saturated control signal and the controller states. [132] have
very clearly exposed this inherent observer property in several anti-windup schemes.
Campo and Morari (1990) [27] have derived the Hanus conditioned controller as a spe-
cial case of the observer-based approach. A modified Internal Model Control (IMC)
implementation has recently been proposed by Zheng et al. (1994) [143] to improve
performance in the face of actuator saturation.

We can summarize the existing approaches to solving the problem of control of
LTI systems subject to control input nonlinearities as follows:

Design first the linear controller ignoring control input nonlinearities and then add
anti-windup bumpless transfer (AWBT) compensation to minimize the adverse effects
of any control input nonlinearities on closed loop performance.

In the following sections, several approaches to solving the AWBT problem based
on the aforementioned two-step paradigm are reviewed in their light of their rele-
vance to this thesis. Some of the schemes discussed here were originally proposed
only for taking into account actuator saturation, while some allow consideration of
more general actuator nonlinearities. We will use the symbol N for a general actu-
ator nonlinearity, and the saturation block (as shown in Figure 2.1) for a saturating

actuator, whichever is appropriate in the context.

2.2 Anti-Reset Windup

Anti-reset windup [27, 23] has also been referred to as back-calculation and tracking

[6, 46] and integrator resetting [132]. Windup was originally observed in PI and PID
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controllers designed for SISO control systems with a saturating actuator. Consider

Figure 2.1: PI control of plant G(s).

the output of a PI controller as shown in Figure 2.1:

1

K = k(1+— 2.1
() = K1+ ) 21)
ol &
= u (2.2)
1] k&
1 t
u = kie+ —/ e dt) (2.3)
T[ 0
o = sat(u) (2.4)
Umin ifu< Umin
= Uu if Umin S U S Umax (25)
Umax  if U > Unax
€ = T —Your (2.6)

If the error e is positive for a substantial time, the control signal géts saturated
at the high limit uy.y. If the error remains positive for some time subsequent to
saturation, the integrator continues to accumulate the error causing the control signal
to become “more” saturated. The control signal remains saturated at this point
because of the large value of the integral. It does not leave the saturation limit until
the error becomes negative and remains negative for a sufficiently long time to allow
the integral part to come down to a small value. The adverse effect of this integral

windup is in the form of large overshoots in the output y.,; and sometimes even
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instability.
To avoid windup, an extra feedback path is provided in the controller by measuring
the actuator output % and forming an error signal as the difference between the output
u of the controller and the actuator output @. This error signal is fed to the input of

the integrator through the gain % The controller equations thus modified are (refer

to Figure 2.2)

Yout

u = k[e+%/ﬂt e-—%(u—ﬁ)) dt} (2.7)
sat(u) (2.8)

[~
Il

e = T = Yout- (2.9)

When the actuator saturates, the feedback signal u — 4 attempts to drive the error
u — 1 to zero by recomputing the integral such that the controller output is exactly
at the saturation limit. This prevents the integrator from winding up.

Rewriting equation (2.7) in the Laplace domain

k 1
= |k —e— —(u—1u 2.1
u e+ 7'136 TTS(u @) (2.10)
kTr(l + T[S) 1

. 2.11
71(1 + 778) € TT8+1U ( )
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Several “incremental” forms of the anti-reset windup strategy have been outlined in
[132], where anti-reset windup is applied to the increment of the control signal rather
than the control signal itself. Unfortunately, guidelines for choosing the reset-windup
gain 7, rely solely on simulations for tuning the nonlinear closed-loop performance
with no sound theoretical basis.

For a PI controller, when integral action is generated as an automatic reset,
Astrém and Haggalund (1988) [5] suggest the implementation shown in Figure 2.3 to

achieve anti-reset windup compensation. When there is no saturation, it is easy to

Yout

Figure 2.3: Alternate anti-reset windup implementation.

verify that this implementation results in the standard PI controller given by equa-
tions (2.1), (2.2), (2.3). In the presence of saturation, the control signal (in Laplace
domain) is given by

1
= k . 2.12
U e+ 1+718u ( )

Comparing (2.12) with (2.11), we see that the two anti-reset windup implementations

are identical when 7. = 77.

2.3 Conditional Integration

The essential idea behind this approach is summarized as: Stop integration at satu-

ration! Inherently a strategy for dealing with integrator windup, it prescribes that
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when the control signal saturates, the integration should be stopped [132].

Astrom et al. [6] describe how the limits on the actuator can be translated into
limits on the output when using a PID controller for the error feedback case. These
limits on the output constitute the “proportional band” and are such that if the
instantaneous output value of the process is within these limits, then the actuator
does not saturate. Conditional integration then takes the form: Update the integral
only when the process output is in the proportional band.

One obvious disadvantage is that like the conventional anti-reset windup tech-
nique, this scheme is limited to integrator windup. Secondly, the control signal may
be held in saturation indefinitely because the integrator is “locked” without being
updated. This may cause severe overshoots in the process output.

The problem of a “locked integrator” can be resolved by stopping the integrator
update only when the update causes the control signal to become more saturated
and to allow the update when it causes the control signal to “De-saturate” [132].
Krikelis [91] has suggested the use of a pure integrator with a dead-zone nonlinearity
as a feedback around it to automate the process of conditional integration in an
“intelligent” way.

The basic idea of switching off the integrator can be understood from Figure 2.4.

The parameters § and H are tuned appropriately to achieve the appropriate “turning-

Figure 2.4: Realization of “conditional” integration.

oft” of the integrator in the controller. This idea of introducing an additional dead-
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zone nonlinearity into the feedback loop to achieve conditional integration has been

further explored in the multivariable context by Kapasouris and Athans [69].

2.4 Conventional Anti-Windup (CAW)

High gain conventional anti-windup (CAW) [43] adopts a philosophy similar to that of
anti-reset windup. Thus, in some sense CAW can be considered as a direct extension
of anti-reset windup to general controllers. The implementation is shown in Figure 2.5.
The AWBT compensation is provided by feeding the difference & — u through a high
gain matrix X to the controller input e. Typically, X = al, where o >> 1 is a scalar.

Given the original linear controller K (s) with state x

Yout
Figure 2.5: Conventional anti-windup.

Al|B
K(s) = (2.13)

C|D

the modified controller equations based on Figure 2.5 are

t = Az + B(e+ X(4—u)) (2.14)
u = Czx+D(e+ X(4—u)) (2.15)

=u = (I+DX)'Cx+(I+DX)"'De+ (I+DX)'DXa. (2.16)
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Substituting equation (2.16) into equation (2.14), we get

i = (A-BX(I+DX)'C)z+(B-BX({I+DX) 'D)e (2.17)
+(BX - BX(I+DX)'DX)a (2.18)
= (A-BX(I+DX)'C)z+B(I+XD)'e+BX(I +DX) 4. (2.19)

2.5 Hanus’ Conditioned Controller

The conditioning technique was originally formulated by Hanus et al. [62, 63] as an
extension of the back calculation method proposed by Fertik and Ross (1967) [46].
In this technique, windup is interpreted as a lack of consistency between the internal
states of the controller and input to the plant when there is a nonlinearity between
the controller output and the control input to the plant. Consistency is restored by
modifying the inputs to the controller such that if these modified inputs (the so-called
“realizable references”) had been applied to the controller, its output would not have
been different from the control input to the plant.

Consider a simple error feedback controller as shown in Figure 2.6, with the non-

linearity N being a saturating actuator.

d
r O—1—P
Yout
Figure 2.6: Error feedback controller with nonlinearity N.
T = Az + B(r — Your) (2.20)
u = Cz+ D(r— you) (2.21)

>
I

sat(u) (2.22)



23
where sat is defined in equation (2.5).
Following Hanus et al. (1987) [63], we can apply a realizable reference 7" to the

controller such that the output of the controller is &. Thus,

T = Az + B(r" — Your) (2.23)
@ = Cz+ D" — yYout)- (2.24)

Based on the assumption of “present realizability” (see [63]) of the control u, we get
u=Cz+ D — Yout) (2.25)

for the same state x which results from equation (2.23) after application of the real-

izable reference r". Subtracting equation (2.25) from equation (2.24), we get
t—u=D(" —r). (2.26)

Assuming D is non-singular (i.e., the linear controller K(s) is biproper with K (c0)

invertible) we get
=71+ D72 —u). (2.27)

Combining equations (2.22), (2.23), (2.25) and (2.27), we get

i = (A-BD'C)zr+BD™4 (2.28)
u = Cz+ D — Yout) (2.29)
@ = sat(u). (2.30)

This is the AWBT “conditioned controlled.”
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2.6 Generalized Conditioning Technique (GCT)

Several drawbacks of the conditioning scheme discussed in the previous section are
obvious and some not-so-obvious drawbacks were recently reported [64, 131]. Firstly,
the strategy fails for controllers having rank deficient D matrices [64]. Secondly, in
terms of design, the strategy is “inflexible” since it modifies the linear controller with-
out using any additional “tuning” parameters for optimizing nonlinear performance.
Thirdly, it suffers from the so-called “inherent short-sightedness” problem [131] be-
cause the technique can only handle one saturation level (either the upper limit or
the lower limit). Walgama et al. (1992) [131] have proposed two extensions to the
conditioning technique to resolve these deficiencies. The first approach [131, §4] is a
simple modification to the conditioned controller, where the input conditioning mech-
anism is improved by introducing “cautiousness” so that the change in the modified
set-point at controller desaturation is made smoother.

The realizable reference 7" in equation (2.27) is modified by introducing the user-

chosen parameter p as follows:
" = v+ (D+pl)7H (4 —u) where 0 < p < 0. (2.31)

Combining equations (2.22), (2.23), (2.25) and (2.31), we get, after some simplifica-

tion,

i = [A—B(D+pl) 'Clz + Bp(D + pI) ™ (r — your) + B(D + pI)1(2.32)

u = Cx+ D(r— Your)- (2.33)

This is the modified conditioned controller of Walgama et al. [131].

A second, more general modification is presented in [131, §5] where conditioning
is performed on a filtered set-point signal r; instead of the direct set-point r. We
describe this approach here.

Ay | By
Cy | Dy

Let F' = be a stable, biproper (D non-singular) filter with state x.
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Let the linear controller K be given by

T = Ax+ Bir + Balous (2.34)

u = Cz+ Dir+ Doyous (2.35)

ie, u = Kir+ Kyou- (2.36)
Al B By

where K = [Kl KQ] = . (237)
Ci{D, D,

Following Walgama et al. (1992) [131], we replace K;r by Frs in equation (2.36).

Here, 7y is the filtered reference. Thus,

u = Fri+ KoYou (2.38)
or in state space form
T = Az + Boyous (2.39)
j?f = Afﬂ?f—i-BfT‘f (2.40)
u = C£E+Cf$f+Dfo+D2yout. (241)

Conditioning is now applied to this filtered reference signal r; to give the realizable

filtered reference
e o= 75+ D;l(ﬁ —u). (2.42)

Applying this conditioned reference r} to the filter state equation (2.40) in exactly

the same manner as described in §2.5 for the Hanus conditioned controller, we get,

i = Az + BaYou (2.43)
iy = (A;— BgD;'Cp)zy — BeD;'Cx+ BD;'i — ByD; ' Dayour  (2.44)

u = Cx+4 Crxs+ Doyour + Dyry. (2.45)
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Eliminating 77 by using the relation Fr; = Kyr, ie., r; = F7'Kir, we get, after

some simplification

r
u = K Yout (246)
i
where
A 0 B B 0
K(s)=| —B;D;'C A — ByD;'Cy | -BfD;'D1 —ByD;'D; B;Dj’
c c; D D, 0 | (247

Walgama et al. (1992) [131] point out that the filter F' can be used to tune the
transient performance of the saturated system. However, as they point out, design
guidelines for F' which guarantee stability and acceptable transient performance are

not available.

2.7 Observer-Based Anti-Windup

As pointed out before, an interpretation of the windup problem is that the states of
the controller do not correspond to the control signal being fed to the plant. This
inaccuracy in the state vector of the controller is due to lack of correct estimates
of the controller states in the presence of actuator nonlinearities. To obtain correct
state estimates and to avoid windup, Astrém et al. [5, 6] suggest that an observer be
introduced into the controller.

Referring to Figure 2.6, let the linear controller K(s) be defined by the equations

&t = Az + Byn (2.48)
v = Cz+ Dypn. (2.49)

Let us assume that there is a nonlinearity N between the controller output and the



27

control input to the plant P(s) so that the input to the plant is given by
4= N(u). (2.50)

Following Astrém et al. [5, 6], the nonlinear observer for the controller K (s) (assuming

(C,A) detectable) is defined by

& = AZ+ Bym+ L(i— C& — Dyy,) (2.51)
u = C%+ Dy, (2.52)
i@ = N(u) (2.53)

where z is an estimate of the controller state and L is the observer gain. Instead
of having a separate controller and a separate observer, both are integrated into one
scheme to form the AWBT compensator. Thus, the observer comes into the controller
structure only in the presence of the actuator nonlinearity (N # I) and does not affect
the linear controller (N = I).

Walgama and Sternby [132] have exploited this inherent observer property in
several AWBT schemes to generalize them. Despite the significant generalization
offered by this approach, no theoretically rigorous guidelines were provided in the
original reference of Astrém et al. [5, 6] to enable design of L. Recently, Kapoor et
al. [73] carried out an investigation of the design of a stabilizing observer gain L.
Park and Choi [109] extended the basic idea of the observer structure in AWBT by

allowing L to have linear dynamics.

2.8 Internal Model Control (IMC)

The internal model control (IMC) structure [101, pages 44-45] was never intended to
be an anti-windup scheme. Nonetheless, as pointed out in [27, 43, 101, 131], it has
potential for application to the anti-windup problem, for the case where the system

is open loop stable. The AWBT application of IMC has been studied by Cohen et al.
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[35] and Debelle [39].

Figure 2.7 shows the IMC structure with an actuator nonlinearity. If the controller
is implemented in the IMC configuration, actuator constraints do not cause any sta-
bility problems provided the constrained control signal is sent to both the plant and
the model. Under the assumption that there is no plant-model mismatch (G = é),
it is easy to show that the IMC structure remains effectively open loop and stability
is guaranteed by the stability of the plant G and the IMC controller Q. Stability of
G and () is in any case imposed by linear design and hence stability of the nonlinear

system is assured. Thus the IMC structure offers the opportunity of implementing

Figure 2.7: The IMC structure.

complex (possibly nonlinear) control algorithms without generating complex stability
issues, provided there is no plant-model mismatch.

For the sake of generality, we will discuss the two degree of freedom IMC im-
plementation shown in Figure 2.8. The IMC implementation of Figure 2.7 is just a
special case with Q1(s) = Q2(s). Stability of the linear system requires that Q(s),
Q2(s) and G(s) = G(s) be stable.

In the presence of saturation, the control signal is given by (see Figure 2.8)

uw = 1 — QolYout + QQG@- (2.54)
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_>y0ut

N3]

Figure 2.8: Two degree of freedom IMC structure.

Since Yous = d+ G4 and assuming no plant-model mismatch (G = G), (2.54) becomes

u = Q1T - di (255)

and thus, the system 1is effectively open-loop and with @; and @, stable, closed-
loop stability is guaranteed for a stable plant G(s), even in the presence of input
constraints.

Unfortunately, the cost to be paid for global stability of the IMC implementation
is in the form of somewhat “sluggish” performance. This is because the controller
output is independent of the plant output in both the linear and nonlinear regimes.
While this does not matter in the linear regime, its implication in the nonlinear regime
is that the controller is unaware of the effect of its actions on the output, resulting
in some sluggishness. This effect is most pronounced when the IMC controller has
fast dynamics which are “chopped oftf” by the saturation. Moreover, unless the IMC
controller is designed to optimize nonlinear performance, it will not give satisfactory
performance for the saturating system.

In Chapter 3, we will discuss an anti-windup structure for IMC for optimizing

performance in the face of saturation.
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2.9 The Extended Kalman Filter

The last scheme we consider here is an AWBT implementation applicable to observer-
based linear compensators. This implementation is developed to maintain valid state
estimates in the observer independent of any nonlinearities between the controller
output and the plant input.

Let the plant G(s) be described by the state-space equations

z = C’lx -+ D117' -+ Dlgd + D13u (257)
Y1 = Cgl' + D31’f' + D32d (258)

where r is the set-point to the plant, d is an external unmeasured disturbance, u is the
control input and y; is the measurement provided to the controller. In other words,

the plant G(s) has a state-space realization

A| B, By, Bj

Cy|Dn Dy D
Gls) = L P Mz Pis (2.59)
0 I 0 0

Cs | Dsi D3z 0

Implicit in this realization is the assumption that the command r is available to the
controller without noise and that the loop formed with the controller is well-posed.
Let K(s) be the standard observer/state-feedback controller with state #, whose

state-space equations can be described by

Z‘i' = Az + B17' + B3U -+ L(yl - Cgi‘ - D317”) (260)
w = —Fz, (2.61)
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l.e.,

A—BgF—LCg‘Bl—LDgl L

K(s) =
—F l 0 0

(2.62)

where L is the observer gain and F' is the state feedback gain. The state estimation

A . ) }
error e = 1 — I satisfies the relation

é = (A — LC3)e+ (By — LDsy)d. (2.63)

In the presence of nonlinearity N between the controller output and the plant input,

we have
4= N(u)#u=—Fz.

It is easy to verify that in this case, the state estimation error e satisfies

e = (A — LC3)€ + (B2 — LDgg)d + B3(’& - u) (264)

Thus, the observer in (2.62) will give poor estimates of the true plant state because
of the term 4 —wu driving the estimation error. This is because equation (2.62) assumes
that 4 = v = —F'%, which is not the case in the presence of the nonlinearity N. Hence,
this will result in controller windup.

To provide anti-windup compensation, the observer equations must be modified
so that the state estimator is based on the actual input % to the plant. Thus, the

modified observer/state-feedback compensator is given by

Z;? = Az + Bl'f' -+ B3ﬂ + L(yl - Cg.’i‘ - D317") (265)
uw = —F3 (2.67)

We refer to this AWBT scheme as an extended Kalman filter implementation since

@ is provided as an input to the observer either by direct measurement or by using a
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nonlinear model of the input nonlinearity N acting on u. In this case, the estimation
error e satisfies the relation (2.63), as in the linear case, restoring consistent state
estimates.

It is worth mentioning that the classical separation principle of the observer/state
feedback controller is lost with this implementation, in the presence of input nonlin-
earities. Thus, even though A — LC; and A — B3 F may have eigenvalues in the open
left half plane, the overall closed loop nonlinear system need not be asymptotically

stable, and examples can be constructed to demonstrate this.

2.10 Conclusions

In this chapter, we presented a fairly extensive and detailed review of existing tech-
niques for AWBT compensation. One particular AWBT technique, applicable to
controllers implemented in the IMC framework, will be discussed in the next chapter.
All these schemes adopt the two-step design paradigm discussed at the beginning of
the chapter, i.e., as a first step, a linear controller is designed ignoring the presence
of input nonlinearities, and then as a second step, some anti-windup compensation is
added to modify or “retro-fit” the linear controller design to alleviate the effects of
input nonlinearities.

As should be clear from the review, many of these schemes perform well for the
particular situation that they have been designed for. However, what is lacking is
an attempt to formalize these techniques and advance a general AWBT analysis and
synthesis theory. In Chapter 4, we will discuss a general framework which will allow

us to put the AWBT problem on a firm theoretical footing.
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Chapter 3 Anti-Windup Design for Internal
Model Control

Abstract

In this chapter, we consider linear control design for systems with input magni-
tude saturation, in the framework of Internal Model Control (IMC). An anti-windup
scheme which optimizes nonlinear performance, applicable to MIMO systems, is de-
veloped. Several examples, including an ill-conditioned plant, show that the scheme
provides graceful degradation of performance. The attractive features of this scheme

are its simplicity and effectiveness.

3.1 Introduction

T*&;mﬁgmﬁ[ .
G(s) _T

Figure 3.1: The IMC interconnection.

The Internal Model Control (IMC) [101] structure is a special case of the Youla
parameterization of all stabilizing controllers for a given process. For open-loop stable
processes, the IMC structure conveniently gives a nominally stable, essentially open-
loop implementation, which has several attractive properties as outlined in [52].

Figure 3.1 shows a standard IMC interconnection. G is the plant and G is a model

of the plant. ) is the so-called IMC controller [101]. The equivalence of the IMC
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interconnection shown in Figure 3.1 with the classic feedback control interconnection
can be found in [101].

Provided there is no plant-model mismatch (G = G’), global closed-loop stability
is equivalent to stability of G and . We had discussed this in §2.8. Thus the IMC
structure offers the opportunity of implementing complex (possibly nonlinear) control
algorithms without generating complex stability issues even in the presence of plant
input constraints, provided there is no plant-model mismatch.

However, in the presence of actuator constraints, nominal IMC performance can
suffer significantly. This is because due to the absence of any feedback in the nominal
case, the IMC controller is entirely unaware of the effect of its action. In particular, it
does not know if and when the manipulated variable u saturates. This effect is most
pronounced when the IMC controller has fast dynamics which are chopped off by the
saturation. Unless the IMC controller is designed to optimize nonlinear performance,
it will not give satisfactory performance for the saturating system. The focus of this
chapter is on identifying this nonlinear performance objective and optimizing it by

an appropriate modification of the IMC implementation.

3.2 Problem Formulation

Consider the IMC structure as shown in Figure 3.1. We will assume that the plant is
a linear time invariant and stable square system with n inputs and n outputs. G, G,
and () denote the plant, the model of the plant, and the IMC controller, respectively.

They are n by n transfer matrices. Define

(1) = (G *a)(t) +d(t) = /0 G(t — 7)a(r)dr + d(t). (3.1)

Thus ' corresponds to the output of the constrained system. Because of the satu-
ration constraints, y'(¢) necessarily differs from y(¢), the output of the unconstrained
system. In general, we would like to keep y' as close to y as possible. Mathematically,

we would like to solve the following optimization problem instantaneously at each
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d
-l

Figure 3.2: Modified IMC structure.

time ¢:

min |(f *y)(#) — (f * ¥ ) (D) = min |[(fGQ * €)(t) — (fG @) (t)]s (3.2)

where f is a filter such that fG is biproper. If G is strictly proper, then @ does not
affect y' instantaneously and the minimization is meaningless. Since our ultimate
goal is to minimize |y(t) — ¢'(¢)|;, f must be diagonal in order not to introduce any
change in the output direction.

The minimization is carried out continuously for ¢ > 0. It is important to real-
ize that this instantaneous minimization differs from the minimization over a hori-
zon. For the conventional IMC structure displayed in Figure 3.1, 4(t) = sat(u(t)) =
sat( fot Qe(T)dr) is completely determined for any given e(¢). Thus, in general, the
conventional IMC implementation does not solve optimization problem (3.2) which
optimizes the performance for the constrained system. In the next section, we will
show that a modified IMC structure actually solves the optimization problem (3.2)

instantaneously.

3.3 Anti-Windup Design for IMC

Figure 3.2 shows the modified IMC structure where Q = (I + Q) ™' Q;. Assume that
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@ is biproper.! We have

u(s) = Qre(s) — Qai(s) = Qre(s) — (Q:Q™" — Na(s). (3.3)

Here zero initial condition is assumed. This is without loss of generality since Q
is stable and nonzero initial conditions can be incorporated into e(t). In the time

domain,

ut) = a(t) = (Q1 +e)(t) — (QQ™" * )(t). (3.4)

The following lemma states how f should be chosen such that the modified IMC

structure shown in Figure 3.2 solves the optimization problem (3.2).

Lemma 3.1 Suppose that Q is biproper and that G = G. If fGls=co s a diagonal
nonsingular matriz with finite elements and (), = fGQ, then 4(t) resulting from the
modified IMC implementation (Figure 8.2) is the solution of optimization problem
(8.2). Furthermore, if ¢ = Df where D is a diagonal constant matriz, then the

closed-loop responses with f and g are identical.

Proof. Q1 = fGQ = u(t)—i(t) = (FGQxe)(t)— (FGx)(t) = (F+4)(t)— (F') (1) =
yr(t) — y3(t). We have

wi(t) — 4;(t) = yfi(t) - y}i(t)a =12, ,n. (3.5)

Since fGls=c is diagonal, 4y, j # 4, do not affect ¥}, instantaneously. Equations (3.5)
can be solved independently for each #;(t). Consider the first input, i.e., 7 = 1. When
no saturation occurs at ¢ = ¢y, 41(t1) = ui(t1) = sat(uy(t1)) and |yp, (1) — 94, (t1)| =0
is minimized. Suppose that saturation occurs at t = tg, i.e., uy(t2) > u"* or ui(ts) <
w™, we want to show that 4;(f2) = sat(uy(t2)) also minimizes |y, (t2) — Yy (t2)]-

Since i(t2) affects y} (¢2) linearly and 4;(ts),j = 2,3, ,n, do not affect ) (t2),
lys (ta) — %, (t2)| is a convex function of u(tz) only. If 4(t2) = uy(ts) for which

1@ is biproper if both @ and Q! are proper.
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s, (t2) — Y}, (t2)] = 0 is not feasible, i.e., ui(ts) > uP"*® or ui(t2) < uf™™, then the
optimal solution which minimizes [yy, (t2) — v}, (t2)| must occur at the boundary, i.e.,
Uy (t2) = sat(uy(t2)). Therefore, choosing @ () = sat(u;(¢)) minimizes |y, (t) — 45 ()]
for each ¢ > 0. Since |y, (t) — v}, (t)| is minimized for each 4, |yf(t) — y}(¢) is
minimized.

If g=Df, (3.5) becomes

wi(t) = 6(t) = Dalyn(t) —y5, (1)), i=1,2,---,n (3.6)

where D = diag{Dy1, -+, Dpn }-

Before saturation occurs, the system is unconstrained and 4(¢) = wu(t) does not
depend on D. Assume that the system saturates for input 1 at ¢ = ¢1, then 4,(¢;) =
u% or 4y (1) = ui¥™. As long as the right-hand side of (3.5) does not become zero
for 7 = 1, input 1 stays saturated and 4,(¢) is constant during this period. Input 1
becomes unsaturated only if the right-hand side of (3.5) becomes zero for ¢ = 1 which
is not a function of Dy;. Therefore, the system comes out of saturation at the same
time regardless of what Dy is. Similar arguments can be used when more than one

input saturates. Therefore, the closed-loop responses for f and g are identical. |

Remark 3.1 If fG|s=c is not diagonal, then y'; (t) may also be affected by 1,(t),j #
i, instantaneously. The convezity argument would not work since |y, (t) — y}. ()| is

also affected by 4,(t), j # 1.

Remark 3.2 f must be diagonal in order not to introduce any change in the output
direction. However, [ for which fG|s—w is diagonal may not be diagonal. To get
around this problem, we can design a diagonal f for G such that félszoo is diagonal.
G can be chosen arbitrarily close to G. Qo must be strictly proper to be implementable.

This can be achieved by choosing [ appropriately.

Remark 3.3 @ is usually minimum phase and always stable. If Q is minimum phase

and Q1 non-minimum phase, then (I + Qo)~" must be unstable. Therefore, Q; must
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be minimum phase and stable to guarantee internal stability of the closed-loop system.

f must be chosen such that fGQ is both minimum phase and stable.

Remark 3.4 For the modified IMC structure, the input is kept saturated for an op-
timal amount of time until |y;(t) — y;(t)| becomes zero. Thus, in general, the perfor-

mance is greatly improved when f is appropriately chosen.

Different controller factorizations can be obtained by choosing f differently. We
discuss two special cases here.

Case 1: f = G~!. The optimization problem (3.2) becomes mﬁin lu(t) — a(t)];. The
solution corresponds to the conventional IMC structure which “chops off” the control
input resulting in performance deterioration. However, stability of the closed-loop
system is guaranteed.

Case 2: f is such that ), is a constant matrix. The optimization becomes
mﬂin |Q1[e(t) — €' (t)]]1, where €' (¢) = (Q~! * @)(t). This factorization corresponds to
the Model State Feedback proposed by Coulibaly et al. (1992) for SISO systems.
The same factorization has also been proposed recently by Goodwin et al. (1993)
where @) is chosen to be Q(c0). Thus, these are special cases of the factorization we
present.

The performance in this case is greatly improved, but stability of the closed-loop
system is not guaranteed. If the dynamics of G@Q are slow, however, minimizing the
weighted controller input error (e(t) — €/(¢)) may not be a good way to optimize
the nonlinear performance. After the system comes out of the nonlinear region,
the controller takes no action to compensate for the effect of the error, e(t) — €'(¢),
introduced during the saturation.

In Case 1 f was chosen to guarantee stability while f was chosen to enhance
performance in Case 2. Therefore, f can generally be tuned to trade off performance
and stability of the constrained system. It should be pointed out that f in Case 2

was not an extreme choice.
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3.4 Classical Feedback Structure

Figure 3.3: Classical feedback structure.

Figure 3.4: Classical feedback structure with anti-windup.

For stable unconstrained systems, the IMC structure shown in Figure 3.1 and the
classical feedback structure shown in Figure 3.3 are equivalent. The results for the
modified IMC structure can be extended directly to the classical feedback structure
to obtain the anti-windup structure shown in Figure 3.4. The controllers K; and K,

are defined as follows:

Ky(s) = Qu—@iG. (3.8)
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Hanus et al. [63, 62] suggested the following

Ky(s) = KK '(s)—1 (3.10)

where K = Q(I — GQ)~'. This factorization corresponds to f = K;Q~'G~!. There-

fore, Hanus’ conditioning technique minimizes |Ki[e(t) — €'(¢)]];.

3.5 Extension to Nonlinear Systems

The anti-windup IMC implementation which we introduced in §3.3 has been extended
to nonlinear systems with appropriate modifications by Doyle IIT [44] and Kendi and
Doyle III [74]. We briefly discuss this extension here for completeness and to bring
out the relevance of the anti-windup IMC implementation proposed in this chapter.

Consider a control-affine nonlinear system described by the following state-space

equations:

T = flz)+g(x)u (3.11)

y = h(z). (3.12)

The relative degree r [68] for this system at the point z, is defined as the integer r

which satisfies:

LyLi'h(z) = 0, Vi<r (3.13)
Ly h(z) # 0, (3.14)

for all  in some neighborhood of z,. Here, Ly f refer to the usual Lie derivative

Z ?—f—gi as described in [68].
P ozx
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For this system, an input-output linearizing controller is given by [68]

u = ale) 4 (Ay— i -~ dy® D 4 0)(@)  (315)

—L%h(z) 1
where () W, () = W. (3.16)

Thus, for the unconstrained system, it is easy to verify that the mapping from the

new input variable v to the output y is linear:

1
. A7
)\0+)\18+"'+)\n_18n_1+8" (3 )

However, in the presence of constraints on u, the new input variable v has to be

appropriately constrained for this approach to be applicable. Referring to (3.15),

which can be expressed as

u= fi(z(t)) + fa(z(t))v (3.15')

with f; and fy appropriately defined, we see that the saturation constraint on u

Umin S U S Umax

translates to a constraint on z and v as follows, using (3.15) above:
tnine < F1(2(8)) + Fo(2(5)0 < timas. (3.18)

Assuming, without loss of generality, fo > 0 (see [44, 74] for a justification), we can

explicitly solve for equivalent bounds on v, which for the SISO case are the following:

v < Umax(2(t)) (3.19)

IA

Umin ((t))

umin"’fl (I(t))

where  vmin(2(t)) = =205
Umas (1(1)) = L hlal)
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As long as the constraints on v are satisfied, u remains within its constraints and the

input-output linearization remains valid. This scheme is illustrated in Figure 3.5.

Now, an IMC controller for the resulting input-output linearized system can be

designed, and then the anti-windup IMC implementation proposed in this chapter

can be applied to it. Note here that the only difference in this case is that the input

nonlinearity acting on the new input variable v is not a static saturation nonlinearity,

but in fact is a state-dependent nonlinearity, as we saw in (3.19).

3.6 Examples

In this section, several examples are given to demonstrate the effectiveness of the

proposed method.
Example 3.1 Consider the following plant:

2

Gls) = To0s 71"

The IMC controller designed for a step input is

100s + 1

Q) =350+

Case 1. Choosing f(s) = 2.5(20s + 1) gives 2

Ql —_ 25
Qs (s) :

Case 2. Choosing f(s) = 50(s + 1) gives

50(s + 1

Q6 = Jrit
99

@) = o071

2The constant 2.5 is such that Q2(s) is strictly proper.

100s + 1°

(3.20)

(3.21)
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The input is constrained between the saturation limits +1.

The responses to a unit step disturbance with the conventional IMC and the mod-
ified IMC implementations are shown in Figures 3.6 and 3.7 along with the uncon-
strained responses. The figures illustrate the sluggish performance of the conventional
IMC implementation in the presence of constraints, when the closed loop dynamics
are much faster than those of the open loop. For the conventional IMC implementa-
tion, the saturation effectively “chops off” the control input resulting in performance
deterioration.

The modified IMC implementation keeps the control signal saturated for an op-
timum length of time as discussed in §3.3 resulting in improved performance. f in
Case 1 corresponds to minimizing |e(t) — ¢(¢)| while f in Case 2 corresponds approx-
imately to minimizing |y(¢) —/(¢)|. The control input in Case 2 stays saturated until
y(t) =~ y'(t) while the control input in Case 1 stays saturated until e(t) = €'(¢). In
Case 1, the difference between y(¢) and y'(¢) resulting from the difference between

e(t) and €'(¢) during the saturation is not compensated as can be seen in Figure 3.6.

Example 3.2 This example is taken from Doyle et al. [43] where the conventional
anti-windup method did not result in a stable closed loop system. The plant is a

fourth order lag-lead butterworth:

82 + 2€1W18 + (.1)2 82 + 252&)18 + w2
G(s) =0.2 L L 3.22
(5) (52 + 2&1was + w%) (.92 + 2&wqs + w%) ( )
where w; = 0.2115, w, = 0.0473, £, = 0.3827 and & = 0.9239.
The IMC controller is
s+1
o I — 3.23
Q) = 57 100) (3:23)
) 5(165+1) .
Choosing f(s) = 1(6(s+1)) gives
5)
1 = 6
)
QQ(S) = -1

16Q(s)
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The input is constrained between the saturation limits +1. Figure 3.8 shows the
responses for a disturbance input with step of magnitude of 5 at time t = 0 and a
switch to —5 at t = 4. The performance improvement over the conventional IMC
implementation is significant. Furthermore, the off-axis criterion (Cho and Narendra
[31]) can be used to show that the closed-loop system is globally asymptotically stable

with the anti-windup IMC implementation.

Example 3.3 Consider the following plant:

10 4 =5

Gls) = ——
D= s 51| 5 4

(3.24)
Both inputs are constrained between the saturation limits +1. A set-point change of

[0.63 0.79]7 is applied. The IMC controller designed for a step input is

100s + 1 4 5

Q) = 10505 7 1) 3 4

(3.25)
Two values of f | one diagonal and one non-diagonal, are chosen to see how f (diagonal
or not diagonal) affects closed-loop performance.

Case 1.
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Case 2.

Qi(s) = [fG(s)Q(s)

Qa2(s) = [fl)G(s) — L.

The responses for both cases and the conventional IMC implementation are shown in
Figure 3.9. As we can see, choosing f to be a diagonal nonsingular matrix is crucial

to obtain good nonlinear performance.

3.7 Conclusions

We have proposed an anti-windup scheme which optimizes the error between the
constrained and the unconstrained outputs of the system. The method generalizes
the Model State Feedback scheme for SISO systems proposed in Coulibaly et al. [36]
and Hanus’ conditioning technique [63, 62]. In particular, the Model State Feedback
scheme corresponds to choosing f such that (); is constant; Hanus’ conditioning
technique corresponds to choosing f such that ¢ = K(00); the factorization proposed
by Goodwin et al. (1993) corresponds to choosing f such that Q; = Slirgo Q(s).
Furthermore, from our problem formulation, we can see what these methods
do and what the consequences are. As shown by Example 3, the performance for
Q1 = K(o0) for MIMO systems may suffer when K(o0o) is not diagonal. The exam-
ples illustrate that our scheme provides graceful degradation of performance. The
attractive features of our scheme are its simplicity and effectiveness. The filter f can

be tuned to trade off performance and stability of the constrained system.
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Figure 3.5: Anti-windup IMC applied to an input-output feedback linearized plant.
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Figure 3.9: Example 3 — Plant output responses.
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Chapter 4 A Unified Framework for the Study of

Anti-Windup Designs

Abstract

We present a unified framework for the study of linear time-invariant (LTI) systems
subject to control input nonlinearities using anti-windup bumpless transfer (AWBT)
schemes. The framework is based on the following two-step design paradigm: “Design
first the linear controller ignoring control input nonlinearities and then add AWBT
compensation to minimize the adverse effects of any control input nonlinearities on
closed loop performance.” The resulting AWBT compensation is applicable to multi-
variable controllers of arbitrary structure and order. All known LTI AWBT schemes
are shown to be special cases of this framework. This unification of existing AWBT

schemes under a general framework is the main result of this chapter.

4.1 Introduction

In Chapter 2 we reviewed a number of existing AWBT compensation techniques,
and in Chapter 3 we discussed a particular AWBT implementation applicable to
controllers implemented in the IMC framework. From both these chapters, we can
summarize the existing approaches to solving the problem of control of LTI systems
subject to control input nonlinearities as follows:
Design first the linear controller ignoring control input nonlinearities and then add
anti-windup bumpless transfer (AWBT) compensation to minimize the adverse effects
of any control input nonlinearities on closed loop performance.

While many of these schemes have been successful (at least in specific SISO situ-
ations), they are by and large intuition based and have little theoretical foundation.

Specifically:
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e no attempt has been made to formalize these techniques and advance a general

AWBT analysis and synthesis theory;

e with the exception of a few ([43, 58, 59]), no rigorous stability analyses have

been reported for anti-windup schemes in a general setting;
e the issue of robustness has been largely ignored (notable exceptions are [27, 28]);

e extension to the MIMO case has not been attempted in its entirety. As pointed
out by Doyle et al. (1987) [43], for MIMO controllers, the saturation may cause

a change in the direction of the plant input resulting in disastrous consequences;

e a major void in the existing AWBT literature is a clear exposition of the ob-
jectives (and associated engineering trade-offs) which lead to a graceful perfor-

mance degradation in any reasonably general setting.

The focus of this chapter is on setting up a general framework for studying anti-
windup and bumpless transfer designs. In keeping with the philosophy adopted by
most of the techniques summarized in the preceding chapters, we will seek linear
AWBT compensation for actuator nonlinearities. In particular, we will show that the
generality of the framework allows unification of existing AWBT schemes as special

cases of the AWBT controller parameterization introduced.

4.2 A General AWBT Framework

In the following sub-sections, the AWBT problem is formulated, the AWBT design
criteria are discussed, certain admissibility criteria for AWBT are introduced and
a parameterization of all admissible AWBT compensated controllers is presented.

Wherever necessary, the assumptions underlying the development are clearly stated.

4.2.1 Problem Formulation

The problem that is being considered throughout the thesis can be understood with

reference to Figure 4.1. In Figure 4.1, we have an idealized linear control problem
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Figure 4.1: Ideal linear design—error feedback case.

where the linear plant model G(s) is provided. An LTI controller K(s) is designed
to meet given performance specifications. These will typically be of the form, “Keep
the output tracking error e small despite changes in command r and disturbance d.”
Alternatively, these could be specified more formally in terms of the Hs or Ho, norm

of the transfer function relating r to e.

d
r j_.*@. .

Yout

Figure 4.2: Ideal linear design with nonlinearity N—error feedback case.

As discussed in Chapter 1, due to limitations and /or substitutions, a nonlinearity
N is introduced into the interconnection as shown in Figure 4.2. As a result, the
actual plant input 4 will in general not be equal to the controller output w. This
mismatch is the cause for controller windup, controller state initialization errors and
a significant transient which must decay after the system returns to the linear regime.
This is also the cause for degradation of performance and sometimes instability.

The AWBT problem involves the design of K (s) shown in Figure 4.3. The mea-
sured or estimated value of 4 provides information regarding the effect of the generic
nonlinearity N and is fed back to the AWBT compensated controller K (s). The

~

design criteria to be satisfied by K(s) are as follows:
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Yout

Figure 4.3: The AWBT problem—error feedback case.
1. The nonlinear closed loop system, Figure 4.3, must be stable.

2. When there are no limitations or substitutions, (N = I), the closed loop perfor-
mance of the system in Figure 4.3 should meet the specifications for the linear

design in Figure 4.1. We call this the linear performance recovery requirement.

3. The closed loop performance of the system in Figure 4.3 should degrade grace-
fully from the linear performance of Figure 4.1 when limitations and/or substi-

tutions occur (N # I).

In order not to restrict attention to the error feedback case alone, we will consider
the linear fractional transformation (LFT) shown in Figure 4.4(a) as the standard
interconnection for the idealized linear design. The exogenous input w includes all
signals which enter the system from its environment such as commands, disturbances
and sensor noise. The input u represents the control effort applied to the plant by
the controller K (s). The interconnection outputs z and vy, represent the controlled
output which the controller is designed to keep small (e.g., tracking error) and all mea-
surements available to the controller (including commands, measured disturbances,
measured plant inputs) respectively.

Any feed-forward /feedback interconnection of linear system elements can be brought
into this general interconnection form. As an example, we consider the error feedback

system of Figure 4.1. The exogenous inputs are the command r, and output distur-

r
bance d. Thus, we define w = . The controlled output is the tracking error,
d
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v=14) S e
K(s) "
K(s)

(a) without nonlinearity N (ideal case) (b) with nonlinearity N

Figure 4.4: Idealized linear design.

€ = T — Yout, 50 We define z = e. The information made available to the controller,
K(s), is the tracking error, so y,, = e. The output of K(s) is the plant input, u.
With these definitions, the interconnection P(s) is given by

I -1 —G(s)
P(s) = . (4.1)
I —I —-G(s)
With these definitions, the input-output behavior from the exogenous input to the
controlled output of the system in Figure 4.4(a) is equivalent to that in Figure 4.1.
P(s) and K (s) are assumed to be finite dimensional LTI systems whose state space

realizations are assumed to be available. The closed loop transfer function from w

to z in Figure 4.4(a) is denoted by T,,(s) , and is given by the linear fractional

transformation

Tzw(S) = P11 + Png(I — PQQK)_1P21 (42)
where

Pll P12
P21 P22
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is partitioned according to its inputs and outputs. We assume that performance
specifications are provided for the linear design and that the controller K(s) meets
these specifications in the absence of limitations and substitutions. For e.g., by in-
cluding suitable weights in the interconnection P(s), very general specification of the
frequency domain characteristics of the closed loop transfer function can be specified

and we assume that the linear controller is designed to meet them.

P(s)

j g3

Figure 4.5: The general AWBT problem.

The general AWBT problem is based on Figure 4.5. The interconnection P(s) is
obtained from P(s) by providing an additional output w,,. Thus,

P, Py
P(S) = | Py Py (4-4)
Py Psy
where
Uy, = P31w + P32'lAL. (45)

The new signal, u,,, is the measured or estimated value of the actual plant input
. We allow the general relation (4.5) to account for measurement noise entering
through w (i.e., Ps; # 0) and non-trivial measurement dynamics (P # I). The

situation where a perfect estimate of 4 is available corresponds to P3; = 0, P33 = 1.
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As in the error feedback example (Figure 4.3), the plant input estimate is made
available to the controller K (s) as a component of the measurement vector y. Also
included in Figure 4.5 is the input limitation /substitution mechanism, represented by
the nonlinear block N.

Given this framework, the general AWBT problem amounts to the following:
Given the linear controller K(s) which meets certain linear performance specifications,
synthesize K’(s) which renders the system in Figure 4.5 stable, meets our linear per-
formance specifications when N = I, and ezhibits graceful performance degradation

when N # 1.

4.2.2 Decomposition of K(s)

Figure 4.6: Decomposition of K (s).

Consider Figure 4.6 where we express K (s) as a feedback interconnection of an LTI
block K(s) and an AWBT operator A. This linear fractional feedback representation
is quite general since at this point we allow A to be any, perhaps nonlinear relation.
K(s) contains the linear design K (s).

~

The AWBT operator A uses information provided to it by K(s) in the form of
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the input v to generate an AWBT action denoted & which is fed back to K(s) In

order to maintain complete generality, we provide the AWBT operator, A, with full

~

information in K(s), including the state = of K(s) and the input I to K(s).
§

Partitioning the AWBT action as £ = 2 , we allow it to act on the state of
&2

K(s) via & and the output of K(s) via &. This gives rise to the following realization

of K(s)

AlB 0T 0
cC|D 0 0 [ T
1[0 000 Yo
. Al B
Ksy=|0|I 0 0 0| where K(s)= and v= |y
C\|\D
010 I 00 & | (4.6)
0/0 010 &
00 0 0 I_

Since the state and the input to l@(s) fully characterize its output, we say that A
is provided with full information (FI). Similarly, A can drive both the state and the
output of K(s) and hence acts with full control (FC). Note that for A = 0, i.c., no
corrective AWBT action, we have K (s) = { K(s) 0 ] which is as expected since, in
that case, we just have the original linear interconnection of Figure 4.4 but with the

nonlinearity N between the output of the controller and the input to the plant.

4.2.3 Parameterization of Admissible K (s)

We now impose two criteria for the admissibility of the AWBT operator A:
1. A:v — £ is causal, linear, and time invariant.

2.V t,ult) — um(t) = 0= £(t) = 0.
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The first condition ensures that the AWBT compensated controller K'(s) can be
realized as an LTI system. It turns out that most existing AWBT schemes satisfy
this condition. Hence this condition, though restrictive, seems reasonable.

The second condition enforces the notion that we do not want the AWBT block
A to affect the linear closed loop performance achieved by the idealized linear design
K(s) when there is no substitution or limitation. Strictly speaking, we would like
to have £(t) = 0 whenever u(t) — 4(t) = 0. In general, since @ is not available to
A but only an estimate u,, is available, we cannot enforce the strict linear perfor-
mance recovery requirement but instead choose to impose a more realistic but weaker
condition based on the measurement u,,.

These two criteria imply that any admissible A must be memoryless and hence a
constant matrix. The two criteria also imply that £(¢) must be linear in w,, (t) — u(z).

Thus,

N
_A2
N

- ¢ =D I 0 —I]v (4.8)
_A2

= Av. (4.9)

Incorporating the AWBT block, A, into K we obtain the standard setup of Figure 4.5
with

K(s)=[U(s) I-V(s)] (4.10)
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[ A-HC|-H,
where V(s) = (4.11)
H,C | H,
[ A—HC|B-HD
U(s) = (4.12)
H,C H,D
H = AM{I+A)! (4.13)
Hy, = (I+A)™h (4.14)

A necessary condition for well-posedness of the AWBT feedback loop in Figure 4.6 is
that I + As must be nonsingular. Thus, Hy must be invertible.
The blocks U(s) and V(s) which define the AWBT compensated controller K (s)

correspond to left coprime factors of K(s). It is easy to verify that
K(s) =V(s)"'U(s) (4.15)

for any H; and H, provided that H, is invertible.

If we assume that the realization of K (s) is such that (C, A) is observable, then
the eigenvalues of A — H;C may be arbitrarily assigned by the selection of H,. Thus
if the eigenvalues of A — H;C are chosen to be in the open left half plane, then U(s),
V(s) and K (s) are stable. Since we will be interested in globally stable systems, we
will restrict attention to the case where P(s), U(s), V(s) and K(s) are stable. This
is because global stability of the closed loop with the actuator nonlinearity cannot be
guaranteed if either K or P are unstable. For example, a mode switch from automatic
to manual control will leave the loop open. If K or P are unstable, they will exhibit
their unstable characteristics when the system is operating in open loop.

To demonstrate the implementation of the AWBT controller K (s), we consider

the special case Py; = 0, P33 = I which corresponds to u,, = 4. The input to K is
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. Since K(s) = [ U(s) I—V(s) |, we have

u=U(8)ym + (I — V(s))d.

(4.16)

This implementation is shown in Figure 4.7. Obviously, when N = I, we have &t = u

Figure 4.7: AWBT implementation with perfect measurement of 4.

and then, from (4.16), we have

= V{(s)u

= U

Thus, in this case, when N = I, the ideal linear design is recovered exactly.

In general, however, the AWBT implementation is not equivalent to the idealized

linear design, even when there are no limitations and substitutions, since P3; # 0 and

Psy #£ 1. To see this, we evaluate T, (s) for the system in Figure 4.4 with N = I.

Tow(s) = P+ Pp[l—-UPy—(I- V)P32]_1[UP21 + (I — V)P

(4.17)
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Thus, performance is clearly different from the idealized linear design for which 7, (s)

is given by (4.2)

Tzw(S) = PH + Png(I — PQQK)_1P21 (42’)
— P11 -+ Plg(v - UPQQ)“IUP21.

Of course, the two transfer functions are identical if P3; = 0 and Psy = I as can be

seen from (4.17) and (4.2).

4.3 Special Cases of the (General Framework

In the preceding section, a fairly general and abstract framework and AWBT com-
pensation scheme was developed. The AWBT compensated controller K (s) was de-
composed into an LTI block K(s) and an AWBT operator A. Based on certain
admissibility criteria for A, it was shown that the only allowable A are constant ma-
trices. This allowed us to parameterize all admissible AWBT compensated controllers
K (s) in terms of stable left coprime factors of the initial linear controller K (s). It
was shown that the free parameters in the design of K (s) are two constant matrices
H, and H,, with the restriction that H, be invertible.

We will now show that the AWBT schemes which we discussed in Chapters 2
and 3 are all special cases of the framework and compensation scheme developed in
the preceding section. This will enable us to unify all known (somewhat ad-hoc and

problem-specific) linear AWBT compensation schemes under a general framework.

4.3.1 Anti-Reset Windup

Referring back to §2.2, consider the PI controller as shown in Figure 2.1,

K(s) =k(1 + -Ti;) (2.1)
0l £
= | (2.2)

11k
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whose output is given by

1 t
u =k(e + —/ e dt) (2.3)
T Jo
U =sat(u)
Umin  if 4 < Upin

= U if Umin < U < Umax (25/)

Umax 1 U > Umax

€ =T — Yout-

In §2.2, we derived the controller equations modified to achieve anti-reset windup

compensation based on Figure 2.2 as follows:

w =k [e + %/ﬂt <e - - a)) dt] (2.7

@ =sat(u) (2.8")

€ =T — Yout- (2.9

Rewriting (2.7) in the Laplace domain,

kr.(1+ 778) 1
e .
1(1 + 78) s+ 1

It is easy to verify that in the general framework of Figure 4.5, this corresponds to

K(S) — [kTT(H—TIs) 1

T1(47s)  Trstl
I —I -G(s)

P(s) = | I —I -G(s)
0 0 1
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A realization of the anti-reset windup compensator K (s) is given by

T (4.18)

Comparing (4.18) with (4.10), (4.11), (4.12), we see that the anti-reset windup im-

plementation corresponds to the choices

H = = (4.19)
Hy =1 (4.20)

in the general framework of §4.2, Figure 4.5.
In §2.2, we also discussed an alternate anti-reset windup implementation (Fig-
ure 2.3). For this implementation, the control signal (in Laplace domain), modified

for anti-reset windup, was given by

u =ke + a. (2.12")

(4.21)

which is easily recognized as a special case of (4.18) for 7, = 77. Thus, these seemingly
different anti-reset windup schemes for PI controllers are identical for the well known
heuristic choice of 7, = 7;. We may also note that this implementation of anti-reset

windup is in the exact form shown in Figure 4.7.
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4.3.2 Conventional Anti-Windup (CAW)

The implementation of the high gain conventional anti-windup (CAW) scheme is
shown in Figure 2.5. The AWBT compensation is provided by feeding the difference
4 — u through a high gain matrix X to the controller input e. Typically, X = al,

where @ >> 1 is a scalar. Given the original linear controller K (s) with state x

A|B
C\|D

K(s) =

we derived the modified controller equations in §2.4 based on Figure 2.5 as follows:

t=(A-BX(I+DX)'C)zx+B(I+XD)'e+BX(I+DX) 4
(2.19')

w=(I+DX)"'Cz+ (I +DX)'De+ (I + DX) 'DXua. (2.16")

In the general framework of §4.2, Figure 4.5, this implementation corresponds to

7“- €
w = Y= , Z=¢€
d i
[ [ —I —G(s) |
P(s) = | I —I —G(s) (4.22)
0o 0 I

) | A—BX(I+DX)"'\C|B( + XD)™ BX(I+DX)"!
(I+DX)7'C  |(I+DX)"'D (I+DX)"'DX

(4.23)

Comparing the realization of K(s) with (4.10), (4.11), (4.12), we see that CAW

corresponds to

H, = BX(+DX)™! (4.24)
Hy, = (I+DX)™! (4.25)
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in the general framework of §4.2, Figure 4.5.

4.3.3 Hanus’ Conditioned Controller

Consider a simple error feedback controller as shown in Figure 4.2, with the nonlin-

earity IV being a saturating actuator. For a given linear controller

Al B
K(S) = ’
C|D
we derived, in §2.5, the equations for the AWBT controller, modified using Hanus’

conditioning technique. These equations are given by:

i =(A- BD™'C)x+ BD™ i (2.28")
u=Cx + D(r — Yout) (2.29")
4 =sat(u). (2.30")

This is the AWBT “conditioned controlled.” In the general framework of §4.2, Fig-

ure 4.5, we have

T T = Yout
w = J 2 =T =~ Yout, Yy = R
d U
A state space realization of the AWBT controller based on the conditioned controller

from equations (2.28), (2.29) is given by

: A-BDC|0 BD™
K= c |p o

(4.26)

Comparing (4.26) with (4.10), (4.11), (4.12), we see that the Hanus conditioned con-

troller corresponds to

H, = BD! (4.27)

Hy = I (4.28)
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in the general framework of §4.2, Figure 4.5.

4.3.4 Generalized Conditioning Technique (GCT)

In §2.6, we summarized several drawbacks of the conditioning scheme discussed in
the previous section. We also discussed two extensions to the conditioning technique
to resolve these deficiencies.

The first approach [131, section 4] results in the following modified conditioned
controller, similar in spirit to the Hanus’ conditioned controller discussed in the pre-

vious section:

i=[A— B(D+ pl)"'Clz + Bp(D + pI) " (r — Yous) + B(D + pI)~ta
(2.32)

u=Cz+ D(r — Yout)- (2.33")

This is the modified conditioned controller of Walgama et al. [131] and corresponds

to

i A—B(D +pI)"'C | Bo(D + pI)"' B(D + pI)*

K(s) = (4.29)
C D 0

H = B(D+pl)™ (4.30)

H, =1 (4.31)

in the general framework of §4.2, Figure 4.5.

A second more general modification is presented in [131, section 5] where condi-
tioning is performed on a filtered set-point signal 7; instead of the direct set-point 7.
We have already described this approach in §2.6.

The conditioned control action and the AWBT controller corresponding to this
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modification are given respectively by

r
uw=K | you (2.46")
i
where
A 0 By By 0
K(s)=| —BgD;'C Ay —B;D;'Cy | —=B;D;'D; -B;D;'Dy ByD;'
C of: [ Dy D, 0 |(@47)
Writing K (s) as
A 0 |B B
A| B, B,
K(s) = =10 4]0 0 (4.32)
C|Dy D,
C C;| Dy D,

and comparing equation (2.47) with equations (4.10), (4.11), (4.12), we see that GCT

corresponds to

0
H = (4.33)
B;D7!

Hy = 1 (4.34)

in the general framework of §4.2, Figure 4.5. Note that we have introduced stable,
uncontrollable modes of F' in the realization of K.

It should be pointed out here that GCT is a special case of our framework only
when we augment the linear controller with the dynamics of the filter F. This means
that the AWBT scheme represented by GCT is determined not only by the choices of
H; and H,, but also by the dynamics of the filter F' which must be introduced into

the linear controller.
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4.3.5 Observer-Based Anti-Windup

In §2.7, we discussed that an interpretation of the windup problem is that the states
of the controller do not correspond to the control signal being fed to the plant. To
obtain correct state estimates and to avoid windup, Astrém et al. [5, 6] suggest that
an observer be introduced into the controller.

For a linear controller K (s) defined by the equations

T =Az + Byy, (2.48")

u =Cz + Dy, (2.49")

we derived, in §2.7, the observer-based anti-windup modification of Astrom et al.

[5, 6] as follows:

& =Az + By,, + L(t — Cx — Dy,,) (2.51")
o =N(u)

In the general framework of §4.2, Figure 4.5, a realization for the AWBT compensator

described by (2.51), (2.52) is given by

) A-LC|B-LD L
K== D0

(4.35)

Comparing (4.35) with (4.10), (4.11), (4.12), we see that the observer-based AWBT

scheme corresponds to

Hi=L Hy=I (4.36)

in the general framework of §4.2, Figure 4.5.
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4.3.6 Internal Model Control (IMC)

Figure 2.7 shows the IMC structure with an actuator nonlinearity. In §2.8, we showed
that if the controller is implemented in the IMC configuration, actuator constraints
do not cause any stability problems provided the constrained control signal is sent to
both the plant and the model. We also showed, under the assumption that there is no
plant-model mismatch (G = G), that the IMC structure remains effectively open loop
and stability is guaranteed by the stability of the plant (G) and the IMC controller
Q).

For the sake of generality, we will discuss the two degree of freedom IMC imple-
mentation shown in Figure 2.8. In our general framework, the idealized linear design

of §4.2, Figure 4.4, corresponding to the two degree of freedom IMC implementation

is given by
r T
w = > 2 =T — Yout, Ym =
d yout
I -1 —-G(s)
P(s) = I 0 0 (4.37)
0 I G(s)
K(s) = (I- QQé)_1Q1 —(I - szé)"lQQ . (4.38)

In the presence of saturation, the control signal is given by (see Figure 2.8)

u = Qir — QaYour + QG (4.39)

Thus, the two degree of freedom IMC implementation, considered as an AWBT com-

pensation in our general framework of §4.2, Figure 4.5, corresponds to

r
w = ? Z=T—= yout) y = yout

U



(4.40)

>
L
S ~ O
@
—_
¥a)
~—

[ Qi —Q2 QG ] : (4.41)

We use the following state space realizations for G(s), @1(s) and Q,(s).

jl , é(s):

For simplicity, we assume Dg = 0, although the case Dg # 0 can also be considered

A1 B1
Ql(s> = 3
Ci | Dy

Ay
Cy

B,
D,

Ac | Bg
Cq | Dg

Qa(s) =

} (4.42)

but the algebra is messy. We obtain the following realizations for K(s) and K (s)

from (4.38), (4.41):

A0 0 B, 0
0 A ByCo 0  —B,
BoCy BoCh Ag+ BoDsCe | BeD: —BaDs
G DsCo D, -D,
A4 0 o |B o o]

0 Ay ByCo| 0 =B, 0

0 0 As |0 0 Beg

G G DyCg|Di —Dy 0

(4.43)

(4.44)

Comparing (4.43), (4.44) with (4.10), (4.11), (4.12), we see that the two-degree of

freedom IMC implementation of K (s) corresponds to

(4.45)

(4.46)
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in the general framework of §4.2, Figure 4.5.

4.3.7 Anti-Windup Design for IMC

In Chapter 3, we described a modified IMC structure for optimizing performance in

the face of saturation. In this strategy, the IMC controller Q(s) is factorized as

Q(s) = [I + Qa(s)] 7' Qu(s) (4.47)

and implemented as shown in Figure 3.2. Possible choices of Q;(s) and Qy(s) were also
discussed in Chapter 3.2, based on a filter parameter f(s). A similar factorization for
Q(s) has also been reported by Goodwin et al. (1993) [60] but with an interpretation
which is different from that reported in Chapter 3. We will only consider @;(s) and
()2(s) as stable transfer functions without going into details of their specific choices.

Let us introduce state space realizations for Q1 (s), Q(s) and G(s) = G(s) as

follows:

A | B

Qi(s) = (4.48)
_Cl Dl |

Ouls) = |22 (4.49)
_02 DQ-

G(s) = 4| Bo | (4.50)
_CG DG

In order to simplify the algebra, we assume that Q2(s) and G(s) are strictly proper,
i.e., Do = 0, Dg = 0. The more general case where Q2(s) and G(s) are not strictly
proper can also be worked out, but the algebra is messy and as such does not give any
additional insight into the results. Then, in terms of these realizations, the realizations

of Q(s) and the linear controller K (s) corresponding to the IMC controller Q(s) are
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Qs) = [[+Qu(s)] ' Qu(s)

A 0 B
— | B,C, Ay — B,Cy | ByDy
o o | Db
K(s) = [I—Q(s)G(s)]7'Q(s)
[ A, 0 B,Cg By
.| BiCi 4 -B,C:  BuDiCo | BuDy
| BeCi  —BeC» Ag+ BeDiCq | BeD,
o, —C, DiCo D

Referring to Figure 3.2, the control signal u is given by

u =

Q[ = (You — GU)] — Qaih
Ql(r - yout) + (Qlé - QQ)&

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)
(4.56)

In the general framework of §4.2, Figure 4.5, this modified IMC implementation

corresponds to

0 O

[ 1 1 —~G(s)
I —I -G(s)
I

Q) Q)G ~ Qals) |-

(4.57)

(4.58)

Comparing (4.58) with (4.10), (4.11), (4.12) we see that this implementation of IMC
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A, 0 B Cq| B
Qu(s) = 0 A, 0 0
0 0 Ag 0
i Ci, —-Cy D Cq| Dy
I —Qi(s)G(5) + Qafs)
(A4, 0 BCs| 0 ]
0 A 0 —Bs
0 0 Aqg | —Bg
Ci, -Cy DiCq| I

(4.59)

(4.60)

(4.61)

Note that we have introduced stable uncontrollable modes of G(s) in the realization

of U(s). The corresponding values of H, and H, are given by

4.3.8 The Extended Kalman Filter

(4.62)

(4.63)

The last scheme from Chapter 2 we consider here is an AWBT implementation appli-

cable to observer-based compensators. This implementation is developed to maintain

valid state estimates in the observer independent of any nonlinearities between the

controller output and the plant input.

Consider the idealized linear design of Figure 4.4 with w =
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The plant P(s) (Figure 4.4) with the state z is described by the state-space equations

t =Az + Byr + Bad + Bsu (2.56")
z :CliE + D117” —+ Dlgd + D13u (257’)
y1 =Cs2 + D317 + Dsad, (2.58')

ie.,

A Bl BQ Bg

Ci|\Dyy, Dy D
P(s) = L) #n Fiz bs (2.59')
0| 1 0 0

Cs| D3y D3y 0

Let K(s) be the standard observer/state-feedback controller with state 2, whose

state-space equations can be described by

.% =AzZ + BlT' -+ Bgu + L(yl - 0332' - Dgl’l") (260’)

w=—Fz, (2.61')

le.,

A—BF——LC‘B——LD L
K(s) = 3 3 | b1 31
—F ‘ 0 0

(2.62')

where L is the observer gain and F' is the state feedback gain.
As discussed in §2.9, to provide anti-windup compensation, the observer equations

must be modified so that the state estimator is based on the actual input @ to the
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plant. Thus, the modified observer/state-feedback compensator is given by

& =A% + Bir + Byt + Ly, — Cs& — Dayr) (2.65")
:(A — LC3)§7 + (Bl - LD31)7' + Bg’lAL + Lyl (266’)
u=-—F3. (2.67")

In the general framework of §4.2, Figure 4.5, this AWBT compensated controller

corresponds to

r Ym

Q.
>

4| B, B, B |
Cl Dll DIQ D13
Ps)y = | o| T 0o o (4.64)
Cs| D3y Dy 0
ol o o I
) [ A-1C0,|B, - LDy L B
K(s) = 3' ' 2 ’ (4.65)
_F } 0 0 0
H, = I. (4.67)

4.4 Conclusions

In this chapter, we developed a general theoretical framework for studying AWBT
control systems. The generality of the framework allowed us to consider any con-
trol system structure, including feed-forward, feedback, multiple degree of freedom,
cascade and general non-square controller designs.

The theoretical development was based on the following two-step design paradigm

“Design the linear controller ignoring control input nonlinearities and then add AWBT
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compensation to minimize the adverse effects of any control input nonlinearities on
closed loop performance.”
This is characteristic of most AWBT schemes reported in the literature. A param-
eterization of all admissible AWBT compensated controllers was presented in terms
of two constant matrices H; and H,. This parameterization allowed us to unify all
known LTI anti-windup and/or bumpless transfer schemes under a general framework.

Table 4.1 summarizes the AWB'T schemes which can be generalized.

| Parameters | H | H, |
Anti-reset windup — 1
Hanus conditioned controller | BD™! I
Observer-based anti-windup L I
Conventional anti-windup aB(I + aD)™! (I +aD)™!
Internal Model Control (IMC) | [0 BT ]" I
Anti-windup IMC [0 BT Bl ]T I
Extended Kalman filter B, I
Generalized Conditioning-I B(D + pI)~! I
Generalized Conditioning-II [ 0 D;TBT ]T I

Table 4.1: Special cases of the general framework.

We would like to comment that attempts to unify AWBT schemes have been re-
ported in the past. Notable is the successful attempt by Walgama and Sternby (1990)
[132] to identify the inherent observer property in a class of anti-windup compensators
and to unify several schemes based on this observer property. Thus, unification of
these schemes is in terms of a single parameter, the observer gain. However, no such
observer property can be identified in the conventional anti-windup (CAW) scheme
discussed in §2.4 when the original linear controller K(s) is not strictly proper. The
parameterization we present is in terms of two constant matrices, H; and H,. This
additional degree of freedom allows us to overcome the shortcoming in the observer-
based unification. Thus, as shown in §4.3.2, CAW is a special case of our scheme.

Needless to say, the aim behind our development was primarily to develop a truly

general theoretical framework for AWBT controller designs. The resulting AWBT
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compensation scheme that we have presented and its interpretation are completely
different from those reported in the literature. Specifically, the axioms and assump-
tions leading to our development are novel insofar as the AWBT literature is con-
cerned. Moreover, our framework now allows us to compare and contrast various
existing AWBT schemes. Thus, for example, the two seemingly different anti-reset
windup strategies discussed in §2.2 and §4.3.1 can now be seen to be identical if
T, = TJ.

In summary, our parameterization of admissible AWBT compensators in terms of
H, and H, allowed us to unify all known LTI AWBT schemes. Thus, rather than
employing the older ad-hoc and problem-specific methodologies for AWBT compen-
sation, we can now embark on the development of systematic procedures for choosing
H; and H, for the synthesis of the AWBT compensator K (s). For this purpose,
quantitative design criteria for AWBT must be defined. An intrinsic part of this step
is the complete analysis of systems subject to control input nonlinearities. Detailed

study of the AWBT analysis theory will be the focus of Chapter 6.



77

Chapter 5 Linear Matrix Inequalities

Abstract

In this chapter, we give a very brief overview of the basic technical machinery related
to linear matrix inequalities (LMIs) and some optimization problems based on LMIs.
In particular, we summarize a number of technical terms and results which will be
used in the rest of the thesis. The emphasis is on only those aspects of LMI-based
optimization which are relevant to this thesis. A detailed discussion of the vast
literature on LMIs and problems that can be solved using LMIs is far beyond the
scope of this thesis and can be found in the monograph by Boyd et al. [21].

5.1 Introduction

Definition 5.1 A linear matriz inequality is a matriz inequality of the form

!
F(z) = Fp+» iF>0 (5.1)
i=1
where z = [z x5 ... xl]T € R is the variable, F; = FI' € ®™" are given matrices.
The symbol > 0 means that F(z) is positive definite, i.e., ul F(x)u > 0 for all non-

zero u € R,

F(z) is said to be affine in the decision variables (z1,Zs, ..., ;). Strictly speaking,
the inequality in (5.1) should therefore be referred to as an Affine Matriz Inequality
(AMI). But the term LMI, originally coined by J. C. Willems, seems to be accepted
terminology.

The LMI (5.1) is a convex constraint on z, i.e., the set {z | F(z) > 0} is convex.

Multiple LMIs F)(z) > 0,..., F®(z) > 0 can be expressed as the single LMI

diag(FWM(z) > 0,..., FP(z)) > 0.
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Therefore we will make no distinction between a set of LMIs and a single LMI. When
the matrices F; are diagonal, the LMI F(x) > 0 is just a set of linear inequalities, thus
generalizing the scalar inequalities encountered in linear or quadratic programming
problems.

Matrix inequalities which are written as affine combinations of matrix variables
X1, Xo,..., Xk are also referred to as LMIs since these can be expressed in the form
(5.1) in terms of the components of X, X5,..., Xg.

For example, consider the standard Lyapunov inequality
ATP+PA<O (5.2)

where A € %" is given and P = P7 is the variable. For the sake of simplicity of

exposition, consider the case where A € R2*2, In this case, P = PT is of the form

P Ty T2
o T3
In this case, defining
10 01 00
Pl = ’ P2 - ’ P3 -
00 10 01

we can express (5.2) in the form

F(.I') = Flz; + Foxg + Fs2z3 >0

where F; = —ATP; — P,A, i = 1,2,3. However, in general, we will not write out
the LMI explicitly in the form F(z) > 0, but instead make clear the fact that the
variables are the matrices. In addition to making the notation more compact, this

also leads to more efficient computing (see the discussion in [21]).
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5.2 Standard LMI Problems

In this section, we list some common LMI-based problems.

5.2.1 LMI Feasibility Problems

Given an LMI F(z) > 0, the LMI feasibility problem is to find Z,s such that
F(xgeas) > 0, or determine that no such z exists. For example, finding a P = P* > 0
such that the Lyapunov inequality (5.2) is satisfied for a given A is a simple LMI
feasibility problem.

5.2.2 Eigenvalue Problems

An eigenvalue problem (EVP) is an optimization of the following form:

min A
zA (5.3)
subject to the LMI constraint A(z,A) > 0.

Here, A(z, \) is affine in (2, A). This problem is also sometimes referred to as a “linear
objective minimization subject to LMI constraints.” It can be expressed equivalently

in the following form:

minimize cx
(5.4)
subject to F(x) > 0.

Here, F' is a symmetric matrix that depends affinely on the optimization variable z,
and c is a real vector of appropriate size. This is a convex non-smooth optimization

problem. We will see examples of this problem in Chapter 8.
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5.2.3 Generalized Eigenvalue Problems

A generalized eigenvalue problem (GEVP) is an optimization of the following form:

min A
z,A

subject to the constraint

A(z,A) > 0.

Here, A(z, )) is affine in z for fixed A\ and affine in ) for fixed = and satisfies the
monotonicity condition A > p = A(x,\) > A(z, ). This is a quasi-convex optimiza-
tion problem since the objective is convex and the constraint is quasi-convex in the
optimization variables (z, A).

We refer the reader to Boyd et al. [21] for more details on these and other LMI-

based optimization problems.

5.3 Some Standard Results

We will use the following result extensively throughout the thesis.

Lemma 5.1 (Schur Complements) Let Q(z) = Q(z)T, R(z) = R(z)¥, and S(z)
depend affinely on x. Then the LMI

Q@ s@ ] _, 55
S()" R(x)
18 equivalent to the matriz inequality
R(z) >0, Q(z) — S(z)R(z) ' S(z)” > 0 (5.6)

or equivalently,

Q(z) >0, R(z) — S(z)TQ(z)"*S(x) > 0. (5.7)
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Proof. Follows trivially by applying the congruence transformation

I —S(z)R(z)™!
0 1

to (5.5) to give (5.6), and by applying the congruence transformation

I 0
=S(@)TQz)™" I

to (5.5) to give (5.7). [
Lemma 5.1 can be used to transform nonlinear convex inequalities to LMI form. For

example, it is easy to verify that the well-known Ricatti inequality
A"P+PA+PBR'B'P+Q <0

which is guadratic in the variable P can be expressed as the following equivalent linear

matrix inequality in P by using Lemma 5.1.

~ATP_PA—(Q PB
BTP R

> 0.

In Chapter 8, we will encounter the constraint that some quadratic function be neg-
ative whenever some other quadratic functions are negative. Such conditional con-
straints can be combined into a single, possibly conservative though often useful,

condition by using the S-procedure which we discuss next.

Lemma 5.2 (S-procedure) /21/
(A) Let Ty, T, . .., T,, € R be symmetric matrices. Consider the following condition
on Ty, T, ..., T)p:

'Toz > (>) 0 forall 0# z € RY such that 2" T,z >0, i=1,2,...,p. (5.8)
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Condition (5.8) holds if 37 >0, 75> 0,...,7, > 0 such that

T — in’fi >(>) 0.
i=1
(B) Let Fy, Fy, ..., F, be quadratic functions of z € RY given by
Fi(z) = 2Z"Tiz+2ufz +v;, where, T, = Tr, i=0,1,...,p.
Consider the following condition on Fy, Fy, ..., F,:
Fo(z) > (=) 0 forall z€ R? such that Fi(z) >0, i=1,2,...,p. (5.9)

Condition (5.9) holds if 37 >0, 7 >0,...,7, > 0 such that for all z € RY

p
Fo(z) = Y miFi(z) > (>) 0.
i=1
Proof. Follows trivially from the definitions of positive definite (semi-definite) ma-

trices. [

5.4 Significance of LMI Problems

The observation about LMI-based optimization that is most relevant to this thesis is

that
LMI problems are tractable.

LMI problems can be solved in polynomial time, which means that they have low
computational complexity. From a practical standpoint, there are effective and pow-
erful algorithms for the solution of these problems, that is, algorithms that rapidly
compute the global optimum, with non-heuristic stopping criteria. Thus, on exit, the
algorithms can prove that the global optimum has been obtained to within some pre-

specified accuracy [1, 20, 105, 130]. Numerical experience shows that these algorithms
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solve LMI problems with extreme efficiency.

Thus, reducing a problem to an LMI-based optimization problem can be consid-
ered to be equivalent to “solving” that problem, even though a so-called “analytic
solution” to the problem may not exist. Standard software is now available, including
a MATLAB toolbox [48], for solving such LMI-based optimization problems.

A number of standard problems in systems and control can be recast as convex

optimization problems involving LMIs. These include:
e multi-criterion LQG/LTR;
e matrix scaling problems such as minimization of the scaled condition number;

e synthesis of multiplier for analysis of systems with unknown constant parame-

ters (“real p');
e problems in robust identification;
e interpolation problems involving scaling;
e standard Hy/H.. output feedback controller synthesis problems;
e multi-objective output feedback controller synthesis problems.

This list is by no means complete and only serves to illustrate a few of the large
number of control problems that can be recast as LMI problems. Many of these
problems are summarized in [21]. However, many new results and reformulations of
old results in the LMI framework continue to appear in the literature at the present

time.
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Chapter 6 Multiplier Theory for Stability

Analysis of Anti-Windup Control Systems

Abstract

We apply the passivity theorem with appropriate choice of multipliers to develop suf-
ficient conditions for stability of the general anti-windup bumpless transfer (AWBT)
framework presented in Chapter 4. For appropriate choices of the multipliers, we
show that these tests can be performed using convex optimization over linear matrix
inequalities (LMIs). We show that a number of previously reported results on stabil-
ity of AWBT control systems, derived from such well-known and seemingly diverse
techniques as the Popov, Circle and Off-Axis Circle criteria, the optimally scaled
small-gain theorem (generalized p upper bound) and describing functions, are all
special cases of the general conditions developed in this chapter. The sufficient con-
ditions are complemented by necessary conditions for internal stability of the AWBT
compensated system. Using an example, we show how these tests can be used to

analyze the stability properties of a typical anti-windup control scheme.

6.1 Introduction

In Chapter 4, we presented a general AWBT framework based on the standard two-
step design paradigm of AWBT. The framework established a firm theoretical basis
for AWBT control. Moreover, the resulting AWBT scheme was shown to unify all
known LTI AWBT schemes in terms of two matrix parameters, Hy, H,. This signif-
icantly clarified the basic underlying concept of AWBT and simplified the problem
of comparing and contrasting various previously reported heuristically based AWBT
methodologies.

As mentioned in §1.2.1.2, it should be clear that merely providing AWBT com-
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pensation of the type discussed in the preceding chapters does not automatically
guarantee closed-loop stability of the system in the presence of input constraints. A
necessary step in the further development of a complete AWBT theory is, therefore,
the development of tools for analyzing stability of AWBT control systems with or
without plant model uncertainty. Below, we summarize the existing literature in this

area:

e One of the first attempts to address this problem was by Glattfelder et al.
[57, 58, 59]. They analyzed the stability of single input single output (SISO)

anti-reset windup PI controllers using the Popov and Circle criteria.

e Kapasouris and Athans (1985) [69] applied a multivariable version of the Circle
Criterion to analyze stability of their multivariable nonlinear anti-reset windup

scheme.

e Zheng et al. (1994) [143] used the Off-Axis Circle Criterion to establish stability

of their anti-windup scheme for internal model control (IMC).

e Astrom and Rundqwist (1989) [6] suggested the use of describing function the-
ory in conjunction with the Circle Criterion to analyze stability of the observer-

based anti-windup scheme.

e Doyle et al. (1987) [43] analyzed the stability of their modified anti-windup
(MAW) scheme by using extensions of p-analysis for LTI systems with struc-
tured uncertainty to nonlinear systems [42]. A similar analysis was presented

by Campo et al. [27, 28].

One conclusion which is apparent from the preceding review is that several seem-
ingly diverse techniques have been applied to develop stability conditions for several
specific AWBT schemes. Very little work has been done on AWBT stability analysis
in a reasonably general setting.

In this chapter, we will develop general tools, based on application of the passivity

theorem and multiplier theory, for analyzing the stability properties of the AWBT
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framework presented in Chapter 4. In particular, we will show how this general
setting allows us to interpret the previously reported AWBT stability results in a

single unified setting.

6.2 Background

In this section, we summarize necessary technical machinery such as the absolute
stability problem, passivity theorem, multiplier theory and linear matrix inequalities
(LMIs), which will be used in the later sections. The approach that we will adopt in
§6.3 for AWBT stability analysis is based on concepts derived from absolute stability
theory (see [41, §VI],[75]). Specifically, we will apply the passivity theorem [31, 117,
138, 139] with appropriate choice of multipliers [10, 11, 141] to develop sufficient
conditions for AWBT stability.

6.2.1 Stability and Passivity

We begin by giving formal definitions of stability and passivity.

Definition 6.1 (Stability) A causal operator h : Lo, — Lo is Lo stable if x €
Lo = hx € Ly. Furthermore, if 4 v > 0 and 0 such that

[hzlls < Allzll + 8, Vo e Ly

then h is said to be finite-gain Lo stable.

Note that stability requires the output hx to belong to the non-extended space Lo
for all z € L£5. A feedback interconnection of the form shown in Figure 6.1 is £,
stable if all closed-loop maps from all external inputs to all internal variables are Lo
stable. Finite-gain £, stability of the interconnection can be defined similarly. Next

we define the concept of passivity.
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Definition 6.2 (Passivity) [{1] An operator h : Lo, — Ly is said to be strictly
passive if 3 6 > 0 and some (3 such that

(@r|(hx)r) = dllerlz+8, VT ER, ¥z Ly (6.1)

If 6 > 0, then h is said to be passive.

The motivation for this definition of passivity comes from network theory where circuit
elements which absorb energy are called passive elements. For example, the energy
absorbed by a resistance R > 0 with a Voltage v across it and a current ¢ through it
is given by (vr|ir) = fo =R fo t)dt and hence a resistance is a strictly
passive element.

If i is a causal, stable and LTT operator with transfer function H(s), then it is
(strictly) passive, i.e., it satisfies (6.1) if and only if there exists 6 > (>)0 such that
[41, §VI]

H(jw)+ H*(jw) > 201, YweR. (6.2)

A matrix transfer function H(s), whether stable or unstable but having no poles on
the jw axis, and satisfying (6.2) is said to be generalized (strictly) positive real [4].
The following lemma gives an equivalent condition for checking (6.2) in terms of the

state-space matrices of H(s).

Lemma 6.1 (Positive Real Lemma) /4] A matriz transfer function H(s) having
no poles on the jw awis, with a controllable state-space realization (A, B,C, D), sat-

isfies (6.2) iff there exists a symmetric matriz Q = QT such that

QAT + AQ B —-QCT
-~ CQ 261 - (D+ D%

IA
o

(6.3)
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or equivalently, iff there exists a symmetric matriz Q = Q7 such that

ATQ+QA  QB-CT
BTQ-C 25— (D+ D7)

(A
o

(6.4)

Remark 6.1 If H(s) is stable, then the matriz Q = Q7 in (6.3), (6.4) can be taken

to be positive definite without loss of generality.

Note that (6.3), (6.4) are matrix inequalities that are affine in @ and § and are
therefore Linear Matrix Inequalities (LMIs) in ¢ and 6. As we discussed in Chapter 5,
the significance of reducing a problem to the feasibility of an LMI is that the problem
can be considered as effectively. solved. This is because, due to convexity of LMI-
based problems, a feasible solution (if it exists) can be computed efficiently and with

low computational complexity (polynomial-time) using very effective algorithms [48].

6.2.2 The Passivity Theorem

The connection between passivity and stability of the closed-loop shown in Figure 6.1
was originally addressed by Sandberg [117] and later by Zames [138, 139]. The basic
question that needs to be answered in this context is the following: Is a network
consisting of passive elements necessarily stable? We state below a general version of

the passivity theorem which answers this question.

+ €1
U1 —— O h

Y2 n

Figure 6.1: General interconnection for the passivity theorem.



89
Theorem 6.1 (Passivity Theorem) Consider the feedback system shown in Fig-
ure 6.1, where the operators h : Loe — Lo and f : Lo —> Lo are any (possi-
bly nonlinear) causal operators. Assume that for any ui,us € Lo, there exist solu-

tions e1, €2, y1,Y2 € Lo. Suppose there exist constants 71, 061,04, oy, B1, B2 such that

V&L, VIeR wehave

[(hz)rlla < ezl + o (6.5)
(zr|(hz)r) = aillarllz + B (6.6)
(@rl(f2)r) = &ll(f2)rll3 + Ba (6.7)

If 6 4+ 09 > 0, then uy,us € Lo = e1,€9,Y1,Y2 € Lo. Furthermore, if oy, 51, B2 are

zero, then the map from (uy, ug) to (€1, eq,y1,Yy2) is finite-gain Ly stable.

Proof. See [41, 141]. [
Note that if the operator h is Ly stable, then the finite gain condition (6.5) is auto-
matically satisfied. Also, if / is strictly passive and f is passive, then conditions (6.6)
and (6.7) are satisfied with d, = 0, §; > 0.

For the AWBT stability analysis problem, as we will see in §6.3, h is a fixed,
stable, LTI system with transfer function H(s) and f belongs to a class of sector
bounded nonlinearities with a specified diagonal structure. We will be interested in
developing stability conditions for the entire class of f. Such a problem is referred
to as the absolute stability problem. Application of the passivity theorem will lead
to sufficient conditions for stability which can be potentially conservative. This is
because Theorem 6.1 assumes f to be any arbitrary operator satisfying (6.7), whereas,
in reality, f has some additional structural properties. In this case, we can apply
multiplier theory [10, 11, 141] to get less conservative conditions for stability by using

this additional information about f.
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Figure 6.2: The passivity theorem with multipliers.

6.2.3 Multiplier Theory

The basic idea behind multiplier theory is that by multiplying the operators h and
f by appropriately chosen multipliers, the product can be modified to satisfy the
conditions of Theorem 6.1. Consider Figure 6.2 which is obtained from Figure 6.1
by pre- and post-multiplying H(s) by W_(—s)~T and W_(s) respectively, and corre-
spondingly, pre- and post-multiplying f by W, (s)~! and W_(—s)T , and the inputs
uy and uy by W_(—s)T and W, (s). If we assume that W, (s), W_(—s) are stable,
proper and minimum phase with proper inverses, then the stability of the systems in
Figures 6.1 and 6.2 are equivalent. Applying Theorem 6.1 then gives the following

result.

Corollary 6.1 Consider the feedback system shown in Figure 6.2. Assume that for
any uy, e € Lo, all the signals in the system are well-defined and belong to Ls.. Then,

the system 1s Lo stable if
1. AW, (s), W_(—s) which are stable and proper with stable and proper inverses;
2. Wi (s)H(s)W_(—s)7T is Ly stable; and
3. 3 constants By, B2, 01,09 such thatV x € Ly, VT € R, we have
(erl(he)r) > &illzrll3 + 6 (6.8)

(zr|(fo)r) = &ll(f2)rl3+ Ba (6.9)
o1+d > 0 (6.10)

\%
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where h, f are the operators W (s)H (s)W_(—s)"T and W_(—s)T o f o W, (s)™t

“on
o]

respectively (symbol denotes composition,).

Remark 6.2 In most problems of interest, as also in the AWBT analysis problem of
§6.3, Corollary 6.1 is applied with 6, = 0. This will be assumed to be the case in the
rest of the chapter. In that case, using (6.2), we can conclude that conditions (6.8)

and (6.10) above are equivalent to the existence of & > 0 such that

W (ju)H(Jw)W_(jw) ™ + W_(jw) " Hjw) W, (jw)* > 261, YweR

— W(w)H(jw)+ H(jw) W (jw)* >8I, YweR, for some § > 0(6.11)

In (6.11), W(s) = W_(s)W,(s) is commonly referred to as the stability multiplier.
Since W_(—s) is stable, W(s) = W_(s)W,(s) is in general unstable or, equivalently,
non-causal. Note that if we are given the state-space representation of W(s)H (s),
then we can use Lemma 6.1 to check condition (6.11) in terms of the state-space
matrices of W(s)H(s).

Thus, we see that stability analysis using multipliers involves finding a multiplier
W (s) such that it can be factorized into W_(s)W, (s), with W_(s), W, (s) satisfying
conditions 1 and 2 of Corollary 6.1 and (6.9), and W (s), H(s) satisfying (6.11).

The significance of the multiplier approach to stability analysis discussed in this
section is that a host of well-known, seemingly different stability analysis tests can be
shown to be special cases of Corollary 6.1 for particular choices of the multiplier W (s)
(see [10, 11, 116]). These special cases include the Circle Criterion, the Off-Axis Circle
Criterion and the Popov Criterion in the SISO case [116], and upper bounds on u
[108] for multivariable systems with structured, (mixed) real/complex and parametric
uncertainties [10, 11]. Moreover, given the multiplier W (s) establishing stability of
the closed-loop, the corresponding quadratic Lyapunov function establishing stability
for the closed-loop can be explicitly constructed [9].

With these preliminaries, we now consider the AWBT stability analysis problem.



92

6.3 Stability Analysis of AWBT Control Systems

Consider the AWBT compensated system of Figure 4.5, where P(s) and K(s), par-

titioned according to their inputs and outputs, are given respectively by (4.4) and

(4.10), (4.11), (4.12) as follows:

Pll P12
]5(3) = Py Py (4-41)
P31 P32
K(s)=[U(s) I-V(s)] (4.10")
where
[ A-mc|-m
V(s) = (4.11)
HQC H2
[ A_m.c|B-HD
Uls) = (4.12")
H,C H,D

with H, invertible. For simplicity, we will assume that P3; = 0 in (4.4). This means

that the measurement u,, of the plant input @ which is provided to K (s) is given by

Uy, = P327,AL.

(4.5)

We will assume that Pys(00) = 0 to ensure well-posedness of the linear interconnection

in Figure 4.4 (a). It is easy to verify that Figure 4.5 can be rearranged in the form
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shown in Figure 6.3 with

(V(s) = ) Psa(s) = U(s)Pra(s) U(s)Par(s)
i —Pi5(s) Pyi(s)
Mi1(s) Mio(s)
i My (s)  May(s)

M(s) =
(6.12)

N is the generic input nonlinearity which represents either component-wise actu-

4
~1
M(s)
w ——— 2

Figure 6.3: Interconnection for AWBT stability analysis.

ator saturation, relay, dead-zone, hysteresis, etc. (input limitation) or an override,
mode selection scheme/switching logic (input substitution). We will assume that the
Mi1(s) — N loop is well-posed. This can be ensured, for instance, by assuming that
Mi1(00) + My (o0)T > 0.

Exact stability analysis, i.e., development of non-conservative conditions which
are both sufficient and necessary for stability of the system in Figure 6.3, for a given
nonlinearity N (for example, saturation) is, in general, a difficult problem. On the
other hand, as we will see in §6.3.1, firstly, the nonlinearity N can be assumed to
be memoryless, i.e., its output at any time depends only on its input at the present
time. Secondly, bounds on its input-output map (for example, sector bounds) can be
easily derived. Based on these two facts, we can cover IV by a class of sector bounded
memoryless nonlinearities having the same structure as N. We can then apply results
from absolute stability theory [41, 75] to develop sufficient conditions which guarantee

stability for the entire class of N rather than N itself. This has probably been the
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most common approach for analyzing AWBT stability (see for example [27, 28, 57,
58, 59, 69]), the reason being that it greatly simplifies the nonlinear analysis.

The unavoidable price paid for this simplification is conservatism since the result-
ing conditions ensure stability not only for N but also for all nonlinear maps with
the given structure and sector bounds. In §6.3.2, we will see how we can reduce this
conservatism by applying concepts from multiplier theory to incorporate additional

properties of V.

6.3.1 Sector Bounds on the Nonlinearity N

In this section, we derive sector bounds for common input limitation and substitution

nonlinearities. We begin by defining a sector condition on a nonlinearity.

Definition 6.3 Let f : R" x ® — R™ with f(0,t) = 0V ¢t > 0 be a memoryless
(possibly time-varying) diagonal nonlinearity f = diag{fi,..., f.}. We say that f €
sector [Kl, KQ], with K1 = diag(Ku, ey Kln); KQ = dia,g(Kgl, cey Kgn), Kg—Kl >0
if

Kyuz? < zifi(zi, t) < Kyz?, forallz; e R, t>0,i=1,2,...,n. (6.13)

Consider the interconnection in Figure 6.1, where h is assumed to be a fixed LTI
system with transfer function H(s) and f is a diagonal nonlinearity lying in the
sector K7, K], with K, K5 as in Definition 6.3. Suppose we apply a negative feed-
forward of K; and a positive feedback of (K, — K;)™! to the nonlinearity f, and
correspondingly, we apply a negative feedback of K; and a positive feed-forward of
(K>,—K;)™! to H(s) as shown in Figure 6.4. This is a well-known loop transformation
(see [41, §VL.9]) from Figure 6.1 to the equivalent interconnection in Figure 6.4. The
resulting nonlinear subsystem f is a diagonal operator f = diag{f;, ..., fn} where f;

lies in the sector [0, 00] (see [41, §VI.9] for details) and satisfies the sector condition



uy — Kius —

- — (K — K1)l
+(K2 — KI)_lKQUQ

Figure 6.4: A loop transformation.

i.e., the graph of fz(xl, t) vs. x; lies in the first and third quadrants. We may note
that, by definition, f is passive and Remark 6.2 from §6.2.3 applies in this case. The

linear subsystem is given by

H(s) = (Ky — K1) (I + KoH(s))(I + K1 H(s)) ™. (6.15)

The reason for introducing this loop transformation is that, as shown in [140], apply-
ing the passivity theorem with multipliers to the transformed system in Figure 6.4
gives potentially less conservative stability conditions than those resulting from its
application to the original system in Figure 6.1. We will use this loop transformation

in the AWBT stability analysis problem.

6.3.1.1 Limitations

The most common example of an input limitation is actuator saturation (see Fig-
ure 6.5). Multivariable actuator saturation can be described by a memoryless, time-

invariant, diagonal operator N = diag{Ny,..., N, }, where the N;’s are defined as
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follows:

Ui min if Uy < Ui min

(6.16)
= U if Ui min < Ui < Ujmag
Ui max if U; > Ui max-
sector [kq, 1]
sector [0, 1]
N;(u;
i) g ;'/saturation Ni(us) saturation

Ui max

U maz f—

Figure 6.5: Sector bounds on the saturation nonlinearity N.

It is easy to verify that

[

for all u; € R

and hence N € sector|0, I] as shown in Figure 6.5(a). We note that both the identity
operator N = I and the zero operator N = 0 are included in the sector. However, if
the controller output u; can be bounded in magnitude, then the zero operator need
not be included and we can take K7 # 0 in (6.13). This will give a tighter sector
bound for N; as shown in Figure 6.5(b).

Other input nonlinearities such as dead-zones, relays, relays with dead-zones and
hysteresis can also be covered by sectors in a similar manner. Note that except
for hysteresis, all these nonlinearities are time-invariant, whereas the sector bounds

include nonlinearities which are allowed to be arbitrarily time-varying.
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6.3.1.2 Substitutions

Substitution mechanisms arise from the use of overrides or logic schemes which select
the plant input 4 from among the outputs of a “bank” of controllers, each designed
to achieve a different closed-loop characteristic. Commonly employed logic blocks
are “min” selectors and “max” selectors which respectively select the minimum and

maximum input as their output. Combinations of min-max selectors shown in Fig-

-———;é-l_——> el

Z.
= €
e —P—-—o. =
%L +
Umin (7

Figure 6.6: a) A combination of “min-max” selectors; b) its equivalent representation
using a dead-zone nonlinearity.

ure 6.6(a) are often used to enforce upper and lower bounds on some variable, for
example, u in Figure 6.6(a). It is easy to verify (see [57, 58]) that this min-max
selector can be equivalently represented by using a dead-zone nonlinearity as shown
in Figure 6.6(b). As discussed in §6.3.1.1, this dead-zone can then be covered by the
sector [0, 1].

Min and max selectors are only special cases of a “generic” selector which selects
one of its inputs as its output. If we assume that the mechanism which determines
which input is selected is completely unspecified or arbitrary, then the generic selector
can be approximated by an arbitrarily time-varying memoryless switching nonlinear-

ity N. For example, if the selector has two inputs u;, us and chooses one of them as
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its output 4, then this selector can be approximated as follows:

[l
|

N(ul, Ua, ZL,)

(6.17)
= up +n(t)(ug — u)

where n(t) € sector[0, 1] is an arbitrarily time-varying memoryless parameter. n(t) =
0 and 1 give respectively the outputs u; and wus. Selectors with more than two
inputs can be modeled by decomposing them into a series of two-input selectors.
The resulting multiple nonlinearities can then be arranged in a diagonal form. Sector
bounds for combinations of selectors and other nonlinearities can be worked out using

the same basic principles.

6.3.2 Sufficient Conditions for AWBT Stability

As discussed at the beginning of §6.3, we will derive sufficient conditions which en-
sure stability of the system in Figure 6.3 for all N with a given structure and sector
bounds. A problem of this type was originally formulated by Lur’e [94] and is known
as the absolute stability problem. The basic idea is to derive conditions on the linear
subsystem M such that the closed loop system in Figure 6.3 is stable for all nonlin-
earities /V belonging to a certain class. Theorem 6.1 from §6.2.2 and Corollary 6.1
from §6.2.3 form the basis of the stability results that follow.

We begin with the most general case by allowing the nonlinearity N to be arbitrar-
ily time-varying. We then successively impose more restrictions on the nonlinearity
N. Correspondingly, we modify the choice of the multiplier W(s) in Corollary 6.1
to get less conservative stability conditions. In all cases, we show how the multiplier
W (s) establishing stability can be explicitly constructed from the feasible solution of

a set of convex conditions involving LMIs.
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6.3.2.1 Memoryless Time-Varying Nonlinearities
We begin by defining the set Ny of all allowable structured nonlinearities V.

Nry = {N:R™ xR o R=|[N(0,8) =0V ¢ >0,

(6.18)
N = diag{N, N,,..., N, }, N; € sector[0, 1]} .

The nonlinearities in N7y are memoryless and are allowed to be arbitrarily time-
varying. Here we consider only the sector [0, I]. Conditions for other sector bounds
can be derived similarly. Ny typically includes input nonlinearities such as those
represented by (6.17) which model generic selectors with no pre-specified switching

logic. Applying Corollary 6.1 to Figure 6.3 gives us the following result.

Theorem 6.2 (Multi-loop Circle Criterion) The AWBT system in Figure 6.3 is
Ly stable for all N € Npy if

1. A— H,C has all eigenvalues in the open left-half complex plane;
2. P in equation (4.4) is asymptotically stable; and

3. AW = diag(Wy, Wy, ..., W,,) € R™*™ with W > 0 and 6, > 0 such that

WMH(jW) + Mfl(]UJ)W + 2W Z 51], YVweR. (619)

Furthermore, if Myi(s) = , then (6.19) above can be equivalently

checked via the existence of a symmetric matriz Q = QT > 0, §; > 0 such that

the following LMI in Q, W, &, is satisfied

ATQ + QA QB -CTW
BTQ-wC 61—-2W —WD— DTW

IA
o

(6.20)

Proof. By assumption, the loop Mji(s) — N is well-posed. For L, stability, it is
enough to show that M (s) is £, stable and that the My, (s)— N loop is asymptotically
stable. Condition 1 of the Theorem and (4.10), (4.11), (4.12) imply that K(s) is
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asymptotically stable. Together with condition 2 above and (6.12), this implies that
M(s) (and hence My (s)) is asymptotically stable.

Next, consider the loop M;i(s) — N, where, N € sector[0, I]. Applying the loop
transformation of Figure 6.4, we transform the diagonal nonlinearity N to a diagonal
nonlinearity N with N; € sector[0, oo], and correspondingly, we transform M (s) to
My, (s) = Myi(s) + I. Since N; € sector[0, 00], N is passive. Corollary 6.1 can now
be applied to the My, (s) — N loop with H(s) = My, (s), f = N.

Since N is an arbitrarily time-varying, memoryless nonlinearity, an appropriate
multiplier for this case is W(s) = W > 0 where W = diag(W;,W,,...,W,,,) €
R with Wi(s) =W, W_(s) = I (see [10, 11]). This multiplier clearly satisfies
(6.9) with do = 0 (see Remark 6.2) and conditions 1 and 2 of Corollary 6.1. (6.8) and
(6.10) can be checked via (6.11) as follows:

W My (jw) + M (jw)W > 6,1, VweR

which establishes (6.19).

Further, if My;(s) = , then WMy (s) =

then establishes (6.20). [ ]
We may note that the stability multiplier W(s) = W is directly computed once the
LMI (6.20) is solved.

6.3.2.2 Memoryless Time-Invariant (Static) Nonlinearities

In the previous section, the set Ny included arbitrarily time-varying memoryless
nonlinearities. A large class of input nonlinearities such as saturation, relay, dead-
zone, relay with dead-zone, etc., are memoryless and time-invariant, i.e., static. Al-
most all previously reported AWBT stability analysis results [27, 28, 43, 57, 58, 59, 69]
model these static nonlinearities as time-varying to simplify the analysis problem. The
resulting stability conditions, as also those obtained from Theorem 6.2, are potentially

extremely conservative in such cases. This conservatism can be reduced by appro-

.Lemma 6.1
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priately modifying the choices of W, (s) and W_(s) such that the time-invariance
property of N is taken into account.

Let us define the class of memoryless time-invariant nonlinearities as follows:

NT] = {IV DR — %nuiN(O) = 0,

(6.21)
N = diag{Ni, N, ..., N, }, N; € sector[0,1]} .

Using a variety of techniques, Popov (1961) [113], Zames (1966) [139] and Brockett
and Willems (1965) [22] have shown that the appropriate multiplier for this case, with
a scalar nonlinearity (n, = 1), is W(s) = 1+ Ws, W > 0, with W,(s) = 1 + Ws,
W_(s) = 1. As we will see, with a multivariable diagonal nonlinearity N belonging

to the set Ay, the appropriate multiplier is the following:

W(s)=X+sW with Wo(s)=(X+sW), W_(s)=1 (6.22)

where W = diag(Wy, W, ..., Wy, ) € Rmxm X = diag(Xy, Xo, ..., Xp,) € Rrurnu,
W >0, X > 0. Note that although (X + sW) is not proper, it can be obtained as

the limit
1
X+ sW = lim ——(X + sW)
where —5 (X + sW) is the appropriate proper multiplier satisfying the conditions of

e
Corollary 6.1. We will need the following lemma to prove AWBT stability with static

input nonlinearities.

Lemma 6.2 Let f = diag{fi, fa,..., fn} be a memoryless, time-invariant, diagonal
nonlinearity f : R* — R", with f; € sector[0,00]. Let W(s) = X + sW, X =
diag(X1, Xa, ..., X,) € RV, W = diag(Wy, Wa,...,W,) € R™™ with W > 0,
X > 0. Then foW(s)™! is passive.

Proof. The proof is a multivariable extension of the proof of Lemma 2 in [139]. Since

fi € sector[0, 00], f is passive, i.e., it satisfies

<1}Tl(f.1')T> 2 O, Ve %n’ T Z 0.
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We need to show that f o W (s)™! is passive, i.e., that it satisfies

Now,

The last two inequalities follow from the fact that f is diagonal, i.e., f = diag{fi, ..

(zp|(foW(s)'z)r) >0, Ve R, T > 0.

(@r|(foW(s) ' 2)r) = ((VTV(S)y)TI(fy)T> (substituting y = W(s)~'z)
= (Xy() + Wy()" f(y(2)) dt
)

— /0 y(O)T X f(y( )dt+/0 g(t)" W f(y(t)) dt

z/ F@®)TW dy > 0.

- fn}

with f; € sector[0, 00] and W > 0, X > 0 are diagonal matrices. |

The following theorem, a multivariable extension of the classical scalar Popov crite-

rion, states conditions for AWBT stability with static input nonlinearities.

Theorem 6.3 (Multivariable Popov Criterion) The AWBT system in Figure 4.5

18 EQ

1.

2.

3.

stable for all N € Ny if

A — H\C has all eigenvalues in the open left-half complex plane;

P in equation (4.4) is asymptotically stable; and

3 X = diag(X1, Xo, ..., Xn,) € R W = diag(Wy, W, ..., W, ) € Rnuxnu

with W >0, X >0 and §; > 0 such that if My, (s) =

(X + jwW) (M1 (jw) — D) + (M7, (jw) — DT)(X — jwW)
+XD+DTX 42X > 61, VwceR
(6.23)

Furthermore, (6.23) above can be equivalently checked via the existence of a sym-

metric matriz Q = QT > 0, §; > 0 such that the following LMI in Q, W, X, &,
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15 satisfied

ATQ + QA QB -CTX — ATCTw

5 5 o o o < 0. (6.24)
BTQ-XC-WCA 6, I-WCB-BTCTW — XD - DTX —2X

Proof. As in the proof of Theorem 6.2, we see that M (s) is stable and the My;(s)— N
loop is well-posed. Also, as in the proof of Theorem 6.2, the Mi;(s) — N loop
can be transformed to the Mll(s) — N loop with ]\qu(s) = My (s) + 1, N =
diag{Ny,..., N, }, N; € sector|[0,c0] with N passive. Corollary 6.1 can now be
applied to the Mj;(s) — N loop with H(s) = My (s), f = N, W(s) = X + sW,
Wi(s) = X 4 sW, W_(s) = I, where W = diag(W,,Ws,...,W,,) € R
X = diag(X1, Xo, ..., Xn,) € R™*™ W >0, X > 0.

By Lemma 6.2, N o W (s)~! is passive and hence (6.9) is satisfied with d, = 0 (see
Remark 6.2). (6.8) and (6.10) can be checked via (6.11) as follows:

(X + jwW) My, (jw) + MF,(jw)(X — jwW) > 6,1, VweR
& (X + jwW) (M (jw) — D) + (M7, (jw) = DT)(X — jwW)
+XD+DTX +2X >8I, VweR

which establishes (6.23). Note that the above inequality can be rigorously derived
using the multiplier W (s) = == (X + sW) and taking the limit as n — co. Further-

more, it can be verified that

i | B
XC+WCA|WCB

(X + sW)(My1(s) — l~)) =

(6.24) then follows from Lemma 6.1 and this completes the proof. [
As in Theorem 6.2, we may note that the multiplier W(s) = X + sW establishing
stability is explicitly determined once we compute a feasible solution to the LMI

(6.24).
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6.3.2.3 Monotonic Slope-Restricted Static Nonlinearities

Several input nonlinearities, in addition to being memoryless and time-invariant, are
also (odd) monotonic and/or slope-restricted. Examples include saturation, dead-
zone, relay and relay with dead-zone. To the best of our knowledge, there has been
no attempt to incorporate these additional properties of the input nonlinearities to get
improved AWBT stability conditions. As we will see, it is possible to exploit these
properties, by appropriately choosing the multiplier W (s), to get less conservative

stability conditions.
Definition 6.4 Let f : R* — R™ with f(0) = 0 be a static diagonal nonlinearity
[ =diag{fi, f2,..., fn}. [ is said to be monotone non-decreasing if

(21 — o) (filz1i) — fi(fEQi)) > 0, Vazuru€e€R, i=1,2,...,n, (6.25)
and [ s said to be odd monotone non-decreasing if, in addition,

fl=z) = —f(z), VzeR™ (6.26)

Definition 6.5 Let f : R* — R™ with f(0) = 0 be a static diagonal nonlinearity
[ = diag{fr, fa, ..., fn}. [ is said to be incrementally inside (or slope-restricted in)
sector| Ky, K|, with K| = diag(Ki1, ..., K,), Ko = diag(Kay, ..., Kop), Ko — K; > 0
if

fiw1i) — fi(z)

T, — Ty

Ky, <

S K?i; v Z14, To; € §R7 T4 # 1‘21'77; - 17 27 sy e (627)

It is easy to verify that the saturation nonlinearity N; of Figure 6.5(a) satisfies (6.25)
and (6.27) with Ky; = 0, Ky = 1. Furthermore, if Ui min = —Uimaez, then N; also
satisfies (6.26).

Absolute stability of the feedback interconnection in Figure 6.1, where h is a causal
LTI system with transfer function H(s) and f is an (odd) monotonic, slope-restricted,

static scalar nonlinearity, was originally studied by Zames and Falb (1968) [141]. The
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basic idea of the stability proof was to characterize the appropriate multiplier to be
used in Corollary 6.1. The following theorem, a multivariable extension of the result
from Zames and Falb (1968) [141], states conditions for AWBT stability with static

slope-restricted (odd) monotone nonlinearities.

Theorem 6.4 Let w;(t), i =,1,2,...,n, be the impulse response of a scalar LTI

(possibly non-causal) operator on t € (—oo,00) with

/ |wz(t)| dt < Xz‘, X; > 0, 2=1,2,...,n,. (628)

oo

Then the AWBT system in Figure 4.5 1s Ly stable for all N € Nt with N being odd

monotone non-decreasing and incrementally inside sector [0, I] if

1. A— H,C has all eigenvalues in the open left-half complex plane;
2. P in equation (4.4) is asymptotically stable; and

3. 3 w;(t), with Fourier transform W;(jw), and X; >0, i=1,2,...,n, satisfying
(6.28) such that for some 61 > 0

(X = W(jw))(Mu(jw) + 1) + (M7, (jw) + 1)(X = W*(jw)) = &1, ¥V w € R,(6.29)
where,
W(jw) = diag(Wi(jw),...,W,, (jw)), X = diag(Xy,...,X,,) > 0. (6.30)

If N is not odd, then in the stability conditions stated above, we require, in addition,

w; to satisfy
w;(t) >0, Vt € (—o0,00). (6.31)

Proof. The proof involves application of Corollary 6.1 with the multiplier X — W (s)
and is given in § 6.7 as Appendix A. It requires several intermediate results which are

extensions of the scalar results from [141] to the multivariable case. [
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The AWBT stability conditions in Theorem 6.4 are not very useful since they are
not constructive, i.e., it is not clear how to search for the infinite dimensional, non-
causal operators w;(t),7 = 1,...,n,, satisfying (6.28), (6.29), (6.30) and (6.31). One
alternative is to decompose w;(t) into causal and anti-causal components and then
approximate each component by a finite dimensional LTT system. Such an approach
and a complete solution involving LMIs has been presented in [30]. For completeness,
we briefly discuss this approach here. Details can be found in [30].

Let us express w;(t) in terms of its causal and anti-causal components as w;(t) =
wi () + w; (t), where
Wi () = wi(t) ift>0, wr (t) = w(t) ift <0,
0 if t < 0; 0 if t > 0.
We can now obtain finite series expansions of w; (t) and w; (t) with basis functions
ef(t) = e/, t > 0, (zero for t < 0) and e (t) = e'#,t < 0, (zero for ¢t > 0)

J
respectively. This leads to an m'™ order approximation of w;(t) as follows:

:ZCLH] ) + bije (1))

j=0

This is equivalent to using Ty and (5—11)1‘ , 7 > 1, as basis functions for approximating

+1

the causal and anti-causal components of W;(s) respectively. Condition (6.31), i.e.,
w;(t) > 0,t € (—o0,00) can be shown to be equivalent to (see [30])
> oo aig(—1)7s% S bis™

Cstms =0 M S D1 m

>0, Vs=jw, we RN,(6.32)

and the condition (6.28) can be expressed as

D (ai;+ (=1Ybiy)! < X (6.33)
7=0
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By Lemma 6.1, condition (6.32) reduces to checking that the state-space matrices of

(—s+1)m(s+1)m cl@ | p@ (—s+1Dm(s+1)m c® ' DY

satisfy (6.4). Here, C](-a), D](-a) are affine in q; ; and C](»b), DJ(»b) are affine in b, ; (see [30]).
Application of (6.4) leads to two matrix inequalities which are affine in C’]@, Dj(-a) and
C’](-b), D§b), respectively, and hence are LMIs in a; ;, b; ;. Condition (6.33) is an obvious
LMI in a; j, b; ;, X;.

For absolute stability, Theorem 6.4 requires that W (jw), My;(jw) should satisfy

(6.29), which is equivalent, by Lemma 6.1, to checking that the state-space matrices

of (X — W (s))(Myi(s)+1I) = satisfy (6.4). Here, C is affine in a,;, b; ;

and D is affine in X; (see [30]). Hence the matrix inequality resulting from (6.4) is
affine in a; ;, b; ;, Xi.

If we do not require w;(t) > 0,t € (—00, 00), which is the case when the nonlin-
earity NV is odd, then the above procedure is a bit more involved and we refer the
reader to [30] for details.

Thus, an intractable problem of finding an infinite dimensional multiplier satisfy-
ing the conditions in Theorem 6.4 is approximated by a tractable problem of finding
a finite dimensional multiplier via the feasibility of a set of convex LMI conditions. It
is worth mentioning that this finite dimensional solution approximates the solution
to the original problem to an arbitrary accuracy, as the order m of the approximation

of w;(t) tends to infinity.

6.3.3 Necessary Conditions for AWBT Stability

Since we are concerned with stability conditions for all N € sector|0, I], we immedi-

ately get the following necessary condition.



108
Theorem 6.5 The AWBT system in Figure 4.5 is Ly stable for all N € Npy (or

. . I 0
Nrr) only if the AWBT controller K(s) stabilizes P(s) for all constant
0 N
gain matrices N = diag{]\[l, Ny, ..., Ny, } € RwXne such that 0 <N<L<LIT.
A| B B
A Ci | Dy Dy, ~ .
Furthermore, if P(s) = | R (actually, Dyy = 0 since Py(c0) = 0,
Cy | Doy Dy
Cs | D3; Dsy

see §6.3), then the above statement is eq[w'valent to the requirement that for every
constant gain matric N = diag{ Ny, Na,..., N, } € R™*™ such that 0 < N < I,
there exists a symmetric matriz Q = QT > 0 such that the following LMI is satisfied:

ATQ+QA<0
A+ ByNT Y (H,DCy + (I — Hy)C3)  ByNT 'H,C
where .A = (B — HlD)ég + H16~’3+ A— H10+ ,(6 34)
Hy Dy NT-N(HyDCy + (I — Hy)Cy) HyDsyNT'H,C |
with T = I — (I — Hy) D3, N.
|1 .
Proof. Follows trivially by forming the closed-loop A matrix of P and K

0 N
and using Lyapunov’s theorem. Note that the inverse of T = I — (I — Hy)D3, N is

well-defined for all 0 < N < I since, by assumption (see §6.3), the loop formed by N

is well-posed. [ |

Remark 6.3 For a SISO nonlinearity (n, = 1), a similar condition was claimed to be
sufficient for stability and is the well-known Aizermann’s conjecture. That conjecture

has since been proved false [47].

By considering the cases N = 0 and N = I, we get the following corollary from

Theorem 6.5.

Corollary 6.2 The AWBT system in Figure 4.5 is Ly stable for all N € Npy (or
Nrr) only if
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1. P(s) and K(s) are stable; and

2. K(s) stabilizes P(s).

6.4 Generalization of Existing AWBT Analyses

In this section, we review a number of previous attempts to analyze AWBT stability,
which used seemingly diverse theoretical techniques in the analysis. We show that
our analysis presented in the previous section in effect generalizes these previously
reported results and allows us to interpret and understand them in a single unified

setting.

6.4.1 The Analysis of Glattfelder et al.

Glattfelder et al. [57, 58, 59] analyzed stability properties of anti-reset windup PI
controllers. The essential idea in their work is to rearrange the system as in Figure 6.3.
The graphical stability condition they use is the following SISO graphical Popov
criterion:

Find a constant scalar ¢ > 0 such that the Nyquist plot of (1 + sq)Mi;(s) lies to the

right of the line s = —1. This is equivalent to checking that
Re(1 + jwq) My (jw) > =1, Vw € R, for some ¢ > 0. (6.35)

This is essentially condition (6.23) in Theorem 6.3, with X = 1, W = ¢ > 0. The
case ¢ = 0 has also been considered by Glattfelder et al. [57, 58, 59]. In this case,
the stability test they use is that the Nyquist plot of Mj;(s) should lie to the right
of the line s = —1 (SISO graphical Circle criterion). As can be easily verified, this

corresponds to checking that
Re{(MH(jw)} >—1, YweR, (636)

which is condition (6.19) of Theorem 6.2 with W = 1.
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Note that these graphical results are restricted to the SISO case. The conditions
we derive in Theorems 6.2 and 6.3 are generalizations of these SISO graphical con-
ditions to the MIMO case. Moreover, our conditions do not require any graphical

checking, rather they require checking the feasibility of convex LMI conditions.

6.4.2 The Analysis of Doyle et al.

Doyle et al. [43] used extensions of conventional linear y analysis to analyze stability
of their modified anti-windup (MAW) scheme. Their basic idea for analysis was
further explored by Campo et al. [27, 28] in greater detail and so we will only confine
ourselves to the work of Campo et al. [27, 28] in the next section since the essential

idea is the same for both these analyses.

6.4.3 The Analysis of Campo et al.

Campo et al. [27, 28] used the scaled-small gain theorem to develop anti-windup
stability conditions. For this purpose, the AWBT control system is rearranged as in
Figure 6.3. The nonlinearity N is expressed in terms of its conic sector bounds as

follows:
N=C+NoR, (6.37)

where C' = —;—I is the cone center and R = %I is the cone radius, and Nisa nonlinearity
in Cone(0,I). Absorbing C and R in the linear block M of Figure 6.3, My;(s)
is transformed to —M1(s)(2I + Mi1(s))™'. Applying the small gain theorem with
appropriate constant real diagonal scalings T' > 0, the stability condition derived in

Campo et al. [27, 28] is the following:

T My (8)(21 + My () 7' T H|eo < 1. (6.38)
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This condition was then shown to be equivalent to the following (see [27])
T(My(jw)+ DT +T7H My (jw)*+ 1T >0, VYwe R (6.39)
The last condition is equivalent to
T2 M, (jw) + (M (jw)*T? + 2T* > 0, Yw e R. (6.40)

Defining W = T?, we see that the above condition is equivalent to (6.19) in Theo-
rem 6.2. It should be mentioned that to simplify the computation of stability con-
dition (6.39) above, Campo et al. [27, 28] conservatively used complex matrices T,
although the appropriate choice of the matrices 7' which commute with the nonlin-

earity NN is the set of constant, diagonal, real matrices.

6.4.4 The Analysis of Kapasouris and Athans

Kapasouris and Athans [69] analyzed stability of their nonlinear anti-windup scheme
using the MIMO Circle Criterion. Again, as before, this involves redrawing the AWBT
system by isolating the linear part and the nonlinear part, which in their case consisted
of the actuator nonlinearity and an additional static nonlinearity arising from the
anti-windup compensation. These nonlinearities are in turn expressed in terms of
their conic sector bounds, similar to equation (6.37). The stability condition is then
derived by applying the small gain theorem to give the following condition (see [69]
for details):

Uma,x[ﬁ Mll(]w)(l +Q Mll(jw))_ll S 17 7vw c %7 (641)

where My (s) is as in Figure 6.3, after isolating the nonlinear part of the system, C', R
are, respectively, the cone center and the cone radius for the nonlinear part of the

interconnection. For simplicity of exposition, we will take both of these to be %I It
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can now be easily checked that (6.41) is equivalent to

1 w11 ol . 1 =
(I + =My (jw)*) =My (jw) = My (jw) (I + =My (jw)) 7 < I, ,Vw e R, (6.42)
2 2 2 2

which on simplification gives:
Mll(jUJ) -+ Mll(jUJ)* + 21 > 0, Yw e R. (643)

Clearly, the above condition is the same as (6.19) of Theorem 6.2, with W = I. Note
that the stability condition (6.41) derived by Kapasouris and Athans [69] does not

take into account the diagonal structure of the nonlinearities since it chooses W = I.

6.4.5 The Analysis of Astrom and Rundqwist

Astrém and Rundqwist [6] suggested the use of describing functions in conjunction
with the Circle Criterion to establish stability of anti-windup control systems. Re-
drawing the anti-windup control system as in Figure 6.3, we see that describing func-
tion theory predicts the existence of a limit cycle for the case of a scalar nonlinearity
if the Nyquist plot of Mj;(s) crosses the interval (—oo, —1) on the real axis. Based
on this observation, Astrém and Rundqwist [6] suggest that a condition which will

guarantee that this does not happen is that
Re(My(jw))+1>0, YweR. (6.44)

Clearly, the above condition is equivalent to
My (jw) + M1 (jw)* +2 >0, VYweR, (6.45)

which is exactly condition (6.19) of Theorem 6.2 with W = 1.
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6.4.6 The Analysis of Zheng et al.

A modification of the internal model control (IMC) structure to account for input
constraints was presented by Zheng et al. [143]. This anti-windup implementation of
IMC was analyzed for its stability properties, through an example, using the Off-Axis
Circle Criterion. In the framework of Figure 6.3, the stability condition (scalar case)

in this case is the following:

Rele?® (M1, (jw) +1)] >0, VYwe R, (6.46)
& (M (jw) +1) + e (My(jw)* +1) >0, VYweR, (6.47)
for some 0 € (-7, §). Note that e’ can be obtained as a limiting case of the elements

of the class of SISO RC and RL multipliers [139], as the number of terms in the RC/RL
multipliers tends to infinity. We may also note that the RC and RL multipliers
introduced in [139] are special cases of the multipliers characterized in Theorem 6.4
by equation (6.28). In this sense, condition (6.47) can be obtained from condition
(6.29) of Theorem 6.4 by using these RC/RL multipliers and letting the number of

terms in these multipliers tend to infinity.

6.5 Example

disturbance
input constraint

setpoint

Figure 6.7: Standard feedback interconnection for the example.

The plant we consider here is a fourth order lead-lag butterworth filter taken from
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Doyle et al. (1987) [43]:

P(s) = 0.2 (32 - 2§1w18+w12> (s2+2§2w15 +w%)

s 4 2€1wys + w? 52 + 2&owos + w?
where w; = 0.2115, ws = 0.0473, &, = 0.3827 and & = 0.9239. The control input u to
the plant is constrained to lie in the range [—0.5,0.5], i.e., (see Figure 6.7)

—0.5 ifu< -0.5
@ = sat(u) = w if —0.5<u<05

0.5 ifu> 0.5

In the absence of any input constraints, a PI controller which stabilizes the plant is
given by

1
K(s) = k(1 4+ —), with £ = 100, 7; = 10.
Tr$s

The feedback interconnection in Figure 6.7 can be redrawn in the standard form
of Figure 4.5 with N in Figure 4.5 corresponding to the saturation nonlinearity in
Figure 6.7.

We would like to analyze the stability properties of typical anti-windup schemes
applied to this problem. Several anti-windup schemes and the anti-windup controller
K (s) corresponding to Figure 4.5 are listed below (see Chapter 2 for a description of
these techniques). The corresponding values of the matrix parameters H; and H; in

the general AWBT framework of §4.2, as summarized in Table 4.1, are also listed.

e Classical anti-reset windup:

N _1_ L TT — T L 1
K(S) — Tr TITr( I) Tr , Hl =, H2 _ 1’
1 ‘ k 0 Tr

where 7, is the so-called reset time constant.
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e Hanus’ conditioned controller:

e (Generalized conditioned controller:

__k kp k Ek
IA((S) _ rr(k+p) | Ti(k+p) Ti(k+p) , H, = Hy,=1
1 ‘ k 0 1(k + p)
where p is a tuning parameter.
e Observer-based anti-windup:

) L|E-Lk L

K(S): H 7H1:L7 H2:17
1] k0

where L is the observer gain.

AWBT design for these seemingly different techniques can be considered as the single
problem of choosing an appropriate H; (or equivalently, L in the observer-based
anti-windup scheme) since a given value of H; corresponds to unique values of the
AWBT parameters 7., p and L in these techniques. Note that the Hanus’ conditioned
controller has no free AWBT parameters to “tune” or optimize nonlinear performance.

Table 6.1 shows the results of applying the stability tests from Theorems 6.2, 6.3,
6.4 (using a finite series expansion of the multiplier), and the Off-Axis Circle Criterion,
for various values of the single free anti-windup parameter H;. The corresponding
multipliers X —W (s) establishing stability for the four cases above, using Theorem 6.4
and the finite dimensional approximation of the multiplier, as discussed in §6.3.2.3,

are given respectively by
L] H1 = 1:

2.0237 0.7659  0.1534 6.072 x 10_4_5.9974 x 107* 5.04 x 1074

1.4118— — —
s+1+(s+1)2 (s +1)3 s—1 (s —1)? (s —1)3
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H; 1 10 100 10000
Theorem 2 inconclusive | inconclusive | inconclusive | inconclusive
(Circle Criterion)

Theorem 3 inconclusive | inconclusive | inconclusive | inconclusive

(Popov Criterion)

Off-Axis Circle Criterion | inconclusive | inconclusive | inconclusive | inconclusive
Theorem 4 stable stable stable stable

Table 6.1: Application of various AWBT stability conditions.

e H; =10:
183.442 1048.8 0.5927 0.6012
12346 - s+1  (s+12 s—1 + (s —1)%
o H, = 100:
1.2138 18.47 0.0116 0.0127
19.7278 = s+1 (s+12 s—1 * (s —1)2
e H, = 10000:
246,50 — 18.65 326.97 _ 0.2407 0.2415

s+1  (s+12 s—1  (s—12%

A simple Nyquist plot like the one shown in Figure 6.8(a) can be used to verify
that in each case, these multipliers satisfy the frequency domain condition (6.23) of
Theorem 6.4. The Nyquist plot of My;(s) + 1 is shown in Figure 6.8(b). Comparing
the two Nyquist plots, we see that by multiplying M;;(s) + 1 with the multiplier
X — W (s), we effectively move the Nyquist plot to the right of the imaginary axis, as

required by the stability condition in Theorem 6.4.

6.6 Conclusions

In this chapter, we presented a general approach for analyzing the stability properties
of AWBT control systems. The approach involved application of the passivity the-
orem with suitable choice of multipliers to develop sufficient conditions for stability.

This AWBT stability analysis framework allowed us to consider any multivariable
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Figure 6.8: Nyquist plot of (a) (X — W (s))(Mi1(s) + 1); (b) My1(s) +1 for H; = 1.

linear AWBT control system subject to multivariable control input nonlinearities. In
the same setting, we could deal with several classes of input nonlinearities encoun-
tered in operating control systems, such as saturation, relay, dead-zone, hysteresis,
switching/override/logic-based nonlinearities and combinations thereof.

The basic premise was to cover the input nonlinearity by a class of sector bounded

memoryless structured nonlinearities and then apply concepts from absolute stability
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theory to develop sufficient conditions guaranteeing stability for all nonlinearities in
the specified class. Indeed, this has been the predominant approach to analyzing
stability properties of AWBT control system reported in the literature [27, 28, 43,
57, 58, 59, 69]. These previous attempts to analyze AWBT stability properties were
based on application of seemingly diverse results and theorems to the AWBT problem.
Our approach generalizes these previous attempts to analyze AWBT stability. This

generalization comes from two sources:

e The AWBT framework from Chapter 4, which is central to the AWBT stability
problem under consideration, unifies all known LTI AWBT schemes reported in

the literature.

e The multiplier approach to stability analysis used in this chapter has been shown
to be a generalization of several seemingly diverse stability analysis techniques
[10, 11, 116]. Similarly, the connection between the multiplier approach and

conventional Lyapunov stability analysis is also well-established [9].

Thus, Theorems 6.2 and 6.3 generalize the results from [6, 27, 28, 43, 69] and [57, 58,
59] respectively, which were derived using small-gain arguments, y upper bounds, a
version of the multi-loop Circle Criterion, describing functions and the SISO Popov
Criterion. Theorem 6.4, in its general form, has never been used for analyzing AWBT
stability. One particular case which it generalizes is the Off-Axis Circle Criterion
which was used in [143] for analyzing stability of the anti-windup IMC scheme.
Moreover, our sufficient conditions for AWBT stability, derived under various
restrictions on the input nonlinearity, can be checked easily via the feasibility of
equivalent convex LMI conditions. In particular, the multiplier establishing stability
can be explicitly constructed from the feasible solution to the LMIs. The necessary
conditions, derived in §6.3.3, give insight into the extent of conservatism involved
in the sufficient AWBT stability conditions. Extensions to account for structured
plant uncertainty can be worked out in a straightforward manner by augmenting
the nonlinear block N with structured, norm-bounded uncertainty blocks and using

“mixed” multipliers.
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The ultimate goal in studying AWBT control schemes is to develop systematic
AWRBT synthesis techniques for designing the AWBT matrix parameters H; and H,.
In Chapter 7, we will use the analysis results presented in this chapter as a starting

point to study the AWBT synthesis problem.

6.7 Appendix A: Proof of Theorem 6.4

We will need several subsidiary lemmas before we can prove Theorem 6.4. Most of
these lemmas are straightforward extensions of the scalar results from [141] to the
multivariable case. Hence, we will only outline the proofs without going into details.

We begin with a factorization lemma.

Lemma 6.3 Let wi(t), i =,1,2,...,n, be the impulse response of a scalar LTI (pos-
stbly non-causal) operator on t € (—o0,00) satisfying (6.28) for some X; > 0. Let

Wi(s) be its Laplace transform

Wi(s) = / etui(l) db, i = 1,2,y (6.48)

oo

Let W(s) = diag(Wy(s), Wa(s),...,Wy,(s)) and X = diag(X1,Xs,...,X,,) > 0.
Then, there exist matriz transfer functions W, (s) and W_(—s) which are stable and

proper with stable and proper inverses such that
X —Wi(s) =W_(s)W,(s). (6.49)

Proof. From [141, Lemma 3], it follows that since [*_|w;(t)| dt < X;, there exist
scalar transfer functions W;_(—s), W;,(s) which are stable and proper with stable

and proper inverses such that
XZ-—VVZ(S) :WZ‘_(S)VVZ‘.{_(S), 1= 1,2,...,nu.

Choosing W_(s) = diag(W1_(s),..., Wpr,—(5)), Wi(s) = diag(Wyr(s),..., Wp,+(5))

then establishes the lemma. [ |
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Lemma 6.4 Let w;(t), Wi(s), W(s), X;, X be as in Lemma 6.5. Let X — W (s) be
factorized as W_(s)W,(s) as in Lemma 6.3. Let N = diag{Ny, ..., N,,} be a static,

monotone non-decreasing, passive nonlinearity. If either N; is odd or w;(t) > 0, t €

R, then W_(—s)T o No W, (s)7! is passive.

Proof. From [141, Proposition 1], since [ _|w;(¢)| dt < X; and either N; is odd or
w;(t) > 0, t € R, we conclude that (X; — W;(—s)) o N; is passive, i.e.,

v

(e |[(Xs — Wi(=3s)) o Nyzi]r) OVz; eR, T>0

= (ZEZ'THVVi_F(—S)VViﬁ(—S) 9 N1$Z]T> > O,V T; € §R, T Z 0

= <[Wl (s)xi]T|[Wi_(—s) e] NZZEZ]T> Z O,V x; € §R, T Z 0

& (Yir|[Wi—(=s)oN;oWiy (s) 'yilr) > 0,V y; € R, T > 0 (substituting y = Wiy (s)x;).

Hence W;_(—s)T o N;oW;(s)~" is passive. Since W_(—s)ToNoW,(s)" is a diagonal
operator with all its diagonal entries passive, hence it is passive. |
Lemma 6.5 Let N = diag{Ny,...,N,, } be a diagonal nonlinearity satisfying the
conditions in Definitions 6.4 and 6.5. Suppose we apply the loop transformation of
Figure 6.4 to N to get a diagonal nonlinearity N = diag{Ny,...,N,,} with N; €

sector]0,00]. Then, if N is odd and monotone non-decreasing, so is N.

Proof. Since N = diag{Ny,..., N, }, if N is odd, monotone non-decreasing, then

so are NV;, i = 1,2,...,n,. From [141, §7], we conclude that if N; is odd, monotone
non-decreasing, then so is N;. The lemma then follows since N = diag{Ny,..., Ny, }.
|

Proof of Theorem 6.4. As in the proofs of Theorems 6.2 and 6.3, we can show
that M (s) is stable and the Mj;(s) — N loop is well-posed. Also, we can transform
the M, (s) — N loop to the My (s) — N loop where My (s) = My,(s) + I and N =
diag{Ny,. .. N}, N; € sector]0, o], with N passive. From Lemma 6.5, we conclude
that if N is odd, monotone non-decreasing and incrementally inside sector|[0, I], then

N is odd and monotone non-decreasing.
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We can now apply Corollary 6.1 to the My (s) — N loop with H(s) = M, (s) and
f = N. The appropriate multiplier is X —W (s), where W (s) = diag(Wy(s), . .., Wa,(s)),
with the impulse responses w;(t) of the scalar transfer functions W;(s) satisfying
(6.28). From Lemma 6.3, we conclude that X —W (s) can be factorized into W_ (s) W, (s)
which satisfy conditions 1 and 2 of Corollary 6.1. By Lemma 6.4, (6.9) of Corollary 6.1
holds with 6, = 0. (6.8) and (6.10) can be checked via (6.11) (see Remark 6.2) as

follows:
(X = W(jw))(Mu(jw) +I) + (M, (jw) + DX = W*(jw)) =2 &, Vw e R

which establishes (6.29) and the proof is complete. [
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Chapter 7 Multivariable Anti-Windup Controller

Synthesis using Multi-Objective Optimization

Abstract

We consider the problem of multivariable anti-windup bumpless transfer (AWBT)
controller synthesis based on the general AWBT framework presented in Chapter 4.
Numerous existing AWBT synthesis techniques are reviewed. Next, we give a com-
pletely general formulation of the AWBT controller synthesis problem and propose
several possible solutions to obtain an appropriate AWBT controller. We use recent
results on multi-objective controller synthesis to show how these numerous approaches

can give a solution in terms of linear matrix inequalities (LMIs).

7.1 Introduction

In Chapter 4, we presented a general AWBT framework based on the classical two-
step design concept of AWBT. This framework was shown to capture the essential
structure inherent in existing AWBT control schemes. Not surprisingly, the resulting
framework was shown to unify numerous existing LTI AWBT schemes in terms of
two matrix parameters Hy and Ho.

In Chapter 6, we addressed the problem of analyzing stability of anti-windup
control schemes by applying the passivity theorem and multiplier theory to develop
sufficient stability conditions. Moreover, we showed that these results generalized
several previously reported attempts to analyze stability of anti-windup schemes,
which were based on seemingly diverse techniques such as the Popov, Circle and
Off-Axis Circle criteria [57, 69, 143], the optimally scaled small-gain theorem (with
constant scalings) [6, 27, 43] and describing functions [6]. Also, the AWBT stability

conditions developed in Chapter 6 were shown to be less conservative than those
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reported in the literature.
Despite these developments in the area of AWBT analysis, AWBT synthesis, i.e.,
the design of suitable AWBT compensated controllers, remains an active area of
research mainly because of the lack of a general satisfactory solution to the synthesis

problem. Below, we summarize the existing literature on AWBT controller synthesis:

e Astrém and Higglund (1988) [5, page 10] presented heuristic guidelines for
choosing the reset time-constant 7, in anti-reset windup PI/PID controllers. A
detailed study of the choice of the tuning parameters in the anti-reset windup
technique was carried out by Glattfelder et al. [57, 58, 59], using the Circle and

Popov Criteria for guaranteeing closed-loop stability.

e Hanus et al. (1987) [63] proposed the “conditioning” anti-windup technique
and the concept of realizable references to design the “conditioned controller”
applicable to linear controllers which are biproper. A similar technique was
presented by Campo and Morari (1990) [27] based on a different interpretation of
windup. Extension of the conditioning anti-windup technique to handle strictly

proper linear controllers has been reported in [131].

e An interpretation of windup under control input nonlinearities is that the states
of the controller do not correspond to the control signal being injected into the
plant. To correct for this controller state error, Astrém et al. [6, 7] suggested the
use of an observer. However, they did not provide any guidelines for choosing
the observer gain other than the a posteriori check of closed-loop stability using
describing functions and hyperstability theory. An investigation of the design

of this observer gain was recently carried out by Kapoor et al. (1995) [72].

e In the context of multivariable controllers with integral action, Kapasouris and
Athans (1985) [69] used a static nonlinearity to “turn-off” the integrators during

saturation, thereby preventing reset-windup.

e Kapasouris et al. [70, 71] presented a technique based on the use of an Error

Governor (EG) to scale down the input to the controller so as to prevent actuator
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saturation, thereby preventing controller windup.

e Dynamic anti-windup compensation schemes which employ a dynamic feedback
component in the anti-windup compensation as opposed to a static feedback
compensation have been reported by Park and Choi [109] and Teel and Kapoor
[126].

Other reported anti-windup schemes include the anti-windup modification for Internal
Model Control which we discussed in Chapter 3, the fixed structure one-step anti-
windup controller synthesis which minimizes an LQG-type cost presented by Tyan and
Bernstein (1995) [129], and a more general factorization approach with minimization
of an appropriately defined H, norm anti-windup objective presented by Miyamoto
and Vinnicombe [99].

From the preceding review, we see that there are several useful schemes for AWBT
compensation which work for many systems. However, many of these techniques
(e.g., [5, 6, 7, 63, 131]) do not provide any guarantees of closed-loop stability and
performance. Some (e.g., [70, 71]) are computationally far too complicated to be
useful in practice. Moreover, none of them is general enough to allow consideration of
different performance criteria, thereby providing insight into the various engineering
trade-offs involved in AWBT designs.

In this chapter, we present several possible approaches to synthesizing the AWBT
controller in the framework of Chapter 4. We will first show that the AWBT synthesis
problem in the framework of Chapter 4 can be reduced to a multi-objective static
output feedback synthesis problem. This problem is known to be hard to tackle
computationally.

One possible alternative which we will discuss deviates somewhat from the clas-
sical two-step design paradigm of AWBT. Instead, it involves design of the AWBT
controller in a single step. As we will show, the corresponding linear controller, which
refers to the controller to be implemented in the absence of control input nonlineari-
ties, can then be recovered from the AWBT controller. In this way, in a single step,

we not only design the AWBT controller but also recover the ideal (in the absence
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of input nonlinearities) linear controller. A second possible alternative involves us-
ing a dynamic anti-windup compensation, and this also deviates somewhat from the
classical “static” compensation paradigm of AWBT.
Before we discuss the AWBT synthesis problem, we briefly review some recent
results on multi-objective output feedback controller synthesis which will be used in

the sequel.

7.2 Multi-Objective Output Feedback Controller
Synthesis

In this section, we summarize the essential technical machinery related to output
feedback controller synthesis subject to the requirement that the closed-loop system
satisfies a number of objectives simultaneously. Much of the literature in this area
pertains to the so-called “mixed Ho/Ho,” problem [77, 118], though significant gen-
eralizations, incorporating numerous other objectives, have been reported recently
[55, 119, 120]. Some of the results quoted here have appeared in the literature very
recently and a lucid presentation of this material can be found in [119, 120].

Consider the finite dimensional LTI plant G(s) in Figure 7.1, described by

Al By By, B
a o c,| Dy Dy E o
1 11 12 1
29 = G(s) We | = wy | - (7.1)
CQ D21 D22 E2
Yy U U
C|Dy Dy, 0

Here, as usual, u is the control input, y is the measured output available to the
controller, and the channels w; — z; can be used to specify different performance

objectives. The controller is a finite dimensional LTT system

Y. (7.2)
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Figure 7.1: Multi-objective controller synthesis.

The closed-loop system is given by

z w T11(s) Tia(s w
1 _ Fl(G(s),C’(s)) N 11(s)  Tha(s) 1
Z9 Wao Tzl(S) TQQ(S) Wo
Al Bl B,
w
= Ci | D1 Dy
Ws
Co | Do Dy

A+BD,C BC.| Bi+BD,Dy By;+BD.D,
B.C A B.D, B.D, wn

i+ ED.C EC.|Dnw+EDD, D+ E DD Wo

i Cy+ EsD.C EyC. | Dy + EsD.Dy Doy + E9D Dy

(7.3)

where F;(G(s),C(s)) is the usual lower LFT of G(s) and C(s). For the controller
C(s) to be stabilizing, A should have all its eigenvalues in the open left half-plane.
For the purpose of illustration, we consider the classical problem of minimizing,
with a stabilizing controller C(s), the Hs norm of the closed-loop transfer function
T11 : wi — 21, while at the same time ensuring that the H, norm of the closed-loop
transfer function Ty : w9 — 2o is bounded by a prespecified limit. This is the so-
called two channel, mixed H;/Ho, problem. Before addressing this problem, we state

two well-known results which relate H, and H, norm bounds to equivalent linear
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matrix inequalities (LMIs).

Lemma 7.1 (Bounded Real Lemma) A is stable and [[To(s)||3., = ||Co(s] —
A) 1By + Dog|lp., < v iff there exists a real symmetric matriz X > 0 such that the
following linear matriz inequality (LMI) in X holds:

ATX + XA X B, C;‘F
BQTX —~I D%; < 0. (7.4)
Co Doy —v1

Proof. See [21, page 91]. [ |

Lemma 7.2 A is stable and ||T11(5) ||y, = [|C1(sI =AY Bi + Dyl < @ iff D13 =0
and there exist real symmetric matrices Y, Z such that the following LMIs in Y and

Z hold:

ATy + YA VB cr
YHIA B o0 1Y 9 o0, tacez) <o (75)
BTy —1I G Z
Proof. See [21, Page 141]. |

The mixed Hy/Ho problem can now be formulated as the minimization of o such
that there exists a controller C'(s) and the matrices X, ), Z satisfying (7.4) and (7.5).
As discussed in [119], this is a computationally expensive problem. The alternative

is to solve a modified problem by constraining X and ) to be equal, i.e.,

X =Y. (7.6)

In this case, the minimization of « subject to (7.6) amounts to minimizing an upper
bound on the original mixed Hy/H o, objective. A complete solution to this problem
has been presented in [119, 120]. Before stating the main result from [119, 120], we
state the following result which is the basis for the solution presented in [119, 120].

Lemma 7.3 (Controller parameter transformation) [119]. Suppose the con-

troller C(s) has the same order as the plant G(s). Let the positive definite matriz X
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in (7.4) and its inverse X~ be partitioned according to A as follows:

X U Y vV
L A .
uT X vl Yy

Define the transformed controller parameters as follows:

K=XBN+UB, L=NCY+C.VT,

(7.8)
M=X(A-BNC)Y +KCY +XBL+UAVY, N=D,.
I 0
Then, with T = , the following hold:
Y V
X 1| XA+KC M
TXT" = ,  TXATT =
I'Y A+ BNC AY + BL
XB;+ KD;
TXB, = U GT = G ENC GY +BL]|. (19)
B;+ BND;

Proof. Using the partitions of X and X~ from (7.7) and the fact that XX ~=! = I,
we conclude that XY +UVT = I, UTV + XY =1, XV+UY =0, UTY + XVT = 0.
The result then follows by direct substitution. [

The following theorem states necessary and sufficient conditions for the existence
of the solution to the modified mixed H3/Hs problem. The theorem also gives

explicit formulae for computing a controller C(s) achieving this optimum.

Theorem 7.1 (Scherer (1996) [119]) Assuming that the controller C(s) has the
same order as the plant G(s), the optimal value a. of the objective function in the
modified mized Ho/Hoo control problem is given by the minimization of a subject to

the feasibility of the following LMIs in the matrices K, L, M, N and the symmetric
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matrices X,Y, Z:

ATX + XA+ KC+ (KC)T * %
MT + A+ BNC AY +Y AT+ BL+ (BL)T x | <0,(7.10)
(XBy + KDy)* (B, + BNDy)T -1
X * *
I Y x | >0, (7.11)

Cy+E,NC CiY+EL Z

ATX + XA+ KC + (KC)T R . .
MT + A+ BNC AY +YAT + BL+ (BL)T & *
< 0,(7.12)
(XBy + KDy)T (By + BNDy)T —1 *
i Co+ EaNC CY + By L Dog + E5sN Dy —-’)/I_
trace(Z) < a. (7.13)

Moreover, if such a solution exists, then one can always determine nonsingular U
and V with UVT = I — XY . Then, a stabilizing controller satisfying the Hy and Hoo

norm bounds is given by the following state-space matrices:

U-Y(M — X(A— BNC)Y — KCY — XBL)VT,
(7.14)
-

A
B, YK — XBN), C.=(L-NCY)V-T, D,=N.

Proof. We will only sketch the essence of the proof. A detailed treatment can be
found in [119]. Let 7 be defined as in Lemma 7.3. Applying a congruence trans-
formation diag(7,I) to the first two inequalities in (7.5), and using (7.8) and (7.9)
from Lemma 7.3, we get (7.10) and (7.11) above. Similarly, applying the congruence
transformation diag(7, I, ) to (7.4) and again using (7.8) and (7.9) from Lemma 7.3,
we get (7.12) above. This establishes necessity.

For sufficiency, note that given X, Y, K, L, M, N establishing the three LMIs (7.10),
(7.11), (7.12), we can always find non-singular U and V such that UVT =T — XY.



130
This follows from (7.11) since I — XY is nonsingular. Defining X = U~ (X -y 1)U~ T
ensures that X defined by (7.7) is positive definite and X! is as defined in (7.7).
U,V being nonsingular, the controller transformation (7.8) can be inverted to get the
controller matrices A., B, C,, D, as in (7.14). Furthermore, since 7 is square nonsin-
gular, the congruence transformations diag(7,7) and diag(7,I,I) described in the
previous paragraph can be inverted to get (7.5) from (7.10), (7.11) and (7.4) from
(7.12) respectively. |

Remark 7.1 The proof is simple and relies on the following key idea [119]: Given
matric inequalities which contain the terms X, X A, XB;, C; and their transposes,
we only need to find appropriate congruence transformations involving T as defined
in Lemma 7.8 so as to get matriz inequalities in TXTY, TXATT, TXB;, C;TT and
their transposes. Lemma 7.3 then implies that the resulting matriz inequalities are

indeed linear matriz inequalities in K, L, M, N, X, Y as we saw in Theorem 7.1.

Note that the mixed Hy/He problem is only a particular problem we have chosen
here for the purpose of illustration. Exploiting the basic idea from Remark 7.1,
numerous other performance objectives can be incorporated in the same framework
by defining more input and output channels w; and z; in Figure 7.1. For example,
minimization of the H, norm (as opposed to the H, norm discussed above) of a
certain channel subject to an H,, norm constraint on another channel can also be
formulated in the same setting as that of Theorem 7.1. Similarly, constraints such as
location of the closed-loop poles, positive realness of certain input to output channels,
etc., can also be imposed within this framework. We refer the reader to [119, 120]
for an excellent discussion of all the implications and extensions of the basic result
stated in Theorem 7.1.

It must be stressed that Theorem 7.1 gives only a suboptimal solution to the mixed
H2/H oo problem due to the restriction (7.6) which requires that the H; and Ho norm
specifications be expressed in terms of a single closed-loop Lyapunov function. As
discussed in [119, 120], restrictions such as (7.6) are automatically imposed whenever

an additional performance objective (e.g., positive realness of a certain input-output
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channel) is incorporated in the problem. This is the inevitable price to be paid for
obtaining a convex solution to the problem.
With these preliminaries, we now consider the AWBT controller synthesis prob-

lem.

7.3 General AWBT Controller Synthesis

Consider Figure 4.5 which represents the AWBT control problem. We may recall that
given the linear controller K (s) as in (4.6) which was designed ignoring control input
nonlinearities (see Figure 4.4), any admissible AWBT controller K (s) in Figure 4.5
is parameterized by (4.10), (4.11), (4.12) in terms of the matrix parameters H; and
H,, with H, square invertible.

The classical AWBT controller synthesis problem is to design H,, H, given the
linear controller K (s), i.e., given (A, B,C, D). With the exception of [129, 109], this
has been the predominant approach to AWBT compensation [5, 6, 7, 27, 43, 63, 72,
143]. We will show next that this problem can be reduced to the synthesis of a

structured static output feedback gain matrix.

7.3.1 AWBT Synthesis via Static Output Feedback

Let us assume that P(s) is partitioned as in (4.4) as follows:

P, P
P(s) = Py Py (4-4I)

where we have assumed for simplicity that Ps;(s) = 0 which implies that the mea-

surement u, of the plant input @ which is provided to K (s) is given by

Um = ng?l. (45,)
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—1 U
—- j
w —®  P(s) z
— ‘
u ks
K(s)
]
7 &
Hy

Figure 7.2: AWBT controller synthesis via static output feedback.

Then, with a realization of K (s) given by

K(s)=[U(s) I-V(s)] (4.10")
where
[ A_HC|-H
Vis) = 1 . (4.11")
] H,C H,
[ A-H,C|B-HD
U(s) = : (4.12")
H,C H,D

the AWBT interconnection in Figure 4.5 can be redrawn in the form shown in Fig-
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ure 7.2. Tt can be verified that P(s) and K(s) in Figure 7.2 are given by

0 0 I
Pu(s) Puls) 0 A/B 0 —-I 0
~ —Lf92l S 114S ~
P(s) = , K()=|o|0o I o I
*PQQ(S) Pgl(S) 0
c|D -I 0 0 (7.15)
—P32(S) 0 0

It should be clear from Figure 7.2 that classical AWBT controller synthesis amounts

H
to designing the static output feedback gain matrix Y| with H, square invertible,
H,

so as to satisfy certain AWBT performance objectives.

From a computational point of view, solving the general static output feedback
synthesis problem even for achieving a single objective such as closed-loop stability
in the presence of the nonlinearity N is a non-convex problem. Typically, the AWBT
controller K (s) is required to satisfy more than one objective to give a meaningful
closed-loop design. Such a multi-objective static output feedback synthesis problem
is far more difficult to handle computationally (see [28] for a discussion on this point).
Partial solutions to this problem can be found in Hanus et al. (1987) [63], Campo
and Morari (1990) [27] (H, = BD™', H, =1I) and in Astrém et al. [6, 7], Kapoor et
al. (1995) [72] (Hy = L, Hy = 1).

. 1 .
For example, the matrix can be considered as the “controller” C(s) =
H,

in the multi-objective synthesis framework of §7.2. However, since

H,
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Lemma 7.3 are the following:

K =XBN+UB, L=NCY,

(7.8
M =X(A—-BNC)Y + KCY + XBL+UA\VY, N =D.,.

Note that because we have lost one degree of freedom through the choice C, = 0, we

need to enforce the equality constraint

L = NCY. (7.16)

A. | B,
This immediately makes the synthesis of C(s) = a non-convex problem.
0| D,

Assuming H, = I, Marcopoli and Phillips (1996) [95] have solved this problem

using an iterative technique involving LMIs to obtain the matrix H;.

7.3.2 AWBT Synthesis via Dynamic Output Feedback

One alternative to addressing the problem mentioned in the previous section is to
allow H; and Hs to be linear dynamical systems instead of static gain matrices. In this

case, the results from §7.2 can be directly applied to synthesize the dynamical system
Hi(s)

H2 (S)
synthesis framework of Figure 7.1. An approach based on this idea of dynamic AWBT

which can be considered as the “controller” C(s) in the multi-objective

compensation has been reported by Park and Choi (1995) [109]. More recently, this
approach has been exploited by Teel and Kapoor [126] in an attempt to come up with

a more rigorous anti-windup controller design.

7.3.3 Direct One-Step AWBT Controller Synthesis

As a second alternative, suppose we consider the problem of directly synthesizing the



Figure 7.3: One-step direct AWBT controller synthesis for K (s).

AWRBT controller

K(S) - Af( I Bl,f( BQ,K
Ck ' Dy g Dyi

(7.17)

This is contrary to the classical AWBT paradigm of first designing a linear controller
ignoring input nonlinearities and then adding AWBT compensation to account for
these nonlinearities. But it does simplify the AWBT controller synthesis. Now, we
can design the state-space matrices of a stabilizing (in the presence of the input
nonlinearity) AWBT controller K (s) satisfying a set of suitably defined objectives in
the multi-objective synthesis framework of Figure 7.1.

Once the state-space matrices of K (s) are computed, we can then back-calculate
A, B, C, D, Hy, H, from the following equations which are easily derived by com-
paring equations (4.10), (4.11), (4.12) with (7.17) above:

Hi =B, Hy=1I-D,;,
C= HQ_ICK, D= HQ_IDLR, (7.18)
B - Bl,k + HlD, A = Af( + ch

Then (A, B,C, D) is a realization of the linear unconstrained controller K (s), and

H, and H, provide the anti-windup compensation via the AWBT controller (4.10).
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Note that the additional constraint of Hy being invertible can be incorporated in the
synthesis problem by requiring that I — D, j be invertible.

A similar one-step AWBT synthesis approach has been explored by Tyan and
Bernstein (1995) [129] for the case of H, = I and has also been suggested by Campo
and Morari (1990) [27]. Although such a one-step approach lacks the simplicity of
traditional two-step anti-windup designs, it seems to have some appeal for situations
where the impact of input nonlinearities on closed-loop performance is particularly
severe.

The analysis of Campo and Morari (1990) [27] showed that the requirements of
stability and good performance in the presence of input nonlinearities impose certain
restrictions on the initial unconstrained (i.e., N = I) linear controller design. For ex-
ample, an overly aggressive or poor initial linear unconstrained controller design might
necessarily lead to a poor nonlinear performance in the presence of input nonlineari-
ties, no matter what anti-windup technique is used to correct for input nonlinearities.
This is analogous to the situation in linear robust control where the requirements of
robust stability and robust performance in the presence of uncertainty impose restric-
tions on nominal performance. Thus, it seems reasonable to couple the initial linear
controller design with the AWBT compensation to achieve the appropriate trade-offs.

Although this is indeed a one-step synthesis approach, we still retain the inherent
structure underlying the AWBT controller, namely that given by (4.10), (4.11), (4.12).
For this one-step approach to be justifiable and meaningful in the anti-windup context,
it is important to be able to incorporate, in the controller design, desirable linear
unconstrained (i.e., N = I) performance criteria as well as nonlinear stability /good
performance requirements in the presence of input nonlinearities. We will see in the
subsequent discussion how such multiple objectives can be specified in this one-step

AWBT problem formulation using the results summarized in §7.2.
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7.4 Objectives for AWBT Controller Synthesis

We will first define objectives that need to be satisfied by the AWBT controller
such as nonlinear stability [85, 86], linear performance recovery, and good nonlinear
performance. We will then show how we can design the state-space matrices of a
stabilizing (in the presence of the input nonlinearity) AWBT controller K (s) satisfying
these requirements, using the results from §7.2. The important feature of the problem
formulation is that several AWBT objectives can be incorporated in the design of the
AWBT controller K. In particular, a desired linear performance, which corresponds

to N = I can be enforced on the AWBT controller design.

7.4.1 Stability

Our primary concern is to maintain closed-loop stability of the AWBT system (Fig-
ure 4.5) in the face of the input nonlinearity N. It is well-known that the presence
of the nonlinearity NV can destabilize an otherwise stable linear system. In the case
of a saturation nonlinearity, a typical instability mechanism could be that the plant
input remains “stuck” at the constraint value or limit cycles across the linear regime
between the upper and lower constraint values. In the case of mode-switching non-
linearities, instability can result in the form of an indefinite switching between the
various operating modes. It is precisely these stability problems which have motivated
the various attempts to analyze the AWBT systems for their stability properties.

A detailed discussion of the various issues related to stability of AWBT systems
has been addressed in Chapter 6. Here, we will only state the main results which will

be used to quantify the nonlinear stability requirement.

Theorem 7.2 Suppose the diagonal nonlinearity N lies in the sector [0, 1], i.e.,

77

Vi=1,...,n,, VYV ué€&R"™

Let Miy(s) denote the transfer function relating —i to u in Figure 7.2. Then, the
closed-loop in Figure 4.5 is stable for all N lying in the sector [0, ] if
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1. A — H,C has all eigenvalues in the open left-half complex plane;

2. P in equation (4.4) is asymptotically stable; and

3. there exists an appropriate “stability multiplier” W (s) such that

W (jw) (M (jw) + 1) + (M}, (jw) + DW*(jw) > 61, 6§ >0, VwcR.
(7.19)

where the choice of the multiplier W (s) depends on the properties of the nonlinearity
N, as discussed in Chapter 6.

The following theorem from Chapter 6 states a necessary condition for AWBT sta-

bility.
Theorem 7.3 ([85, 86]) The AWBT system in Figure 4.5 is Lo stable for all N €

A . I 0
sector[0, I] only if the AWBT controller K(s) stabilizes P(s) for all con-
0 N

stant gain matrices N = diag{ N1, No, ..., N, } € R™ such that

0<NLL

7.4.2 Recovery of Linear Performance

An obvious requirement of any AWBT design is that it leaves the original linear
performance specifications intact in the event that N = I. This is the essence of the
whole AWBT two-step design philosophy which requires that the AWBT controller
K (s) should provide compensation only when N % I and that it should recover the
original linear performance when N = 1.

Suppose now that u,, = 4, i.e., the exact value of the plant input @ is available
to the AWBT controller K(s). This corresponds to the case P (s) = I, i.e. no
measurement dynamics. Then it is easy to verify that with N = I, the closed-loop
transfer functions from w to z are identical in Figure 4.1 and Figure 4.5 and the

original linear performance is recovered identically.
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However, the assumption that u,, = 4, or equivalently, P3s(s) = I is unrealistic.
We therefore need to take special care in ensuring that the linear performance specifi-
cation is indeed recovered with the AWBT controller when N = I. This can be made
precise as follows. Suppose the original linear controller design (Figure 4.1) achieves

the following linear performance objective in terms of the closed-loop map T,

HTzw“’Hg or Heo S «. (720)

Let T, nr, represent the closed-loop transfer function relating w and z in Figure 7.2
when N = I. Then, the AWBT design of Figure 7.2 is said to recover the original

linear performance if

| Tow,wellots or 3o < (7.21)

This definition of linear performance recovery directly extends to the cases with the
dynamic AWBT synthesis and the one-step direct AWBT synthesis approaches dis-
cussed in §7.3.2 and §7.3.3.

7.4.3 Optimization of AWBT Performance

The issue of an appropriate choice of the objective function to quantify “good” AWBT
performance has been an area of interest in numerous recent references [29, 95, 99,
109, 126]. We saw one possible choice in Chapter 3, where we used the 1—norm of
the instantaneous difference between the outputs of the constrained (VN # I) and
the unconstrained (N = I) systems as an anti-windup objective function. Similar
objectives using the Lo norms of this difference vector have been proposed in [29, 109].

We will define AWBT performance in terms of the minimization of the induced
Lo gain between the exogenous input w and the output z. Denoting the mapping
from w to z by T,,, we require that the induced L; gain between w and z be less
than 1 for all nonlinearities N lying in the sector [0, I]. This is equivalent to checking

that the interconnection shown in Figure 7.4 is stable for all unstructured A, which



]
I

w z

Bp I“ 1A, < 1

Figure 7.4: Interconnection for AWBT performance analysis.

N |<_ N is passive

A, is passive

Figure 7.5: Interconnection for AWBT performance analysis in the passivity frame-
work.

are norm bounded by 1. Applying the loop transformation discussed in Chapter 6,
we can transform the interconnection in Figure 7.4 to that in Figure 7.5. Then,
performance requirement is equivalent to checking the stability of the interconnection

in Figure 7.5. We state the performance requirement in the following theorem.

Theorem 7.4 The induced Ly gain between w and z is less than 1 for all input

nonlinearities N lying in the sector [0, 1] if



141

1. A— HiC has all eigenvalues in the open left-half complex plane;

2. P in equation (4.4) is asymptotically stable; and

3. there exists an appropriate “stability multiplier” W (s) such that

W(jw) 0 My (jw) Mis(jw)

_ 1s generalized strictly positive real.
0 I le(j(.U) Mgg(jw)

(7.22)

The choice of the multiplier W (jw) depends on the properties of the nonlinearity N,

as discussed in Chapter 6.

7.5 AWBT Controller Synthesis

The three performance requirements described in the previous section need to be
incorporated in the multi-objective controller synthesis framework of §7.2 to design
the AWBT controller K(s). From a conceptual point of view, this is most feasible
for the case where H;, H, are allowed to be dynamical systems or in the one-step
AWBT synthesis approach of §7.3.3. There is, however, an iteration involved due the
multiplier W (s). In this case, one would iterate between the search for the multiplier
W (s) which establishes the condition in Theorem 7.4 and the search for the AWBT

compensation.

7.6 Conclusions

In this chapter, we addressed the AWBT controller synthesis problem. We showed
that the classical two-step AWBT synthesis problem leads to a static output feed-
back synthesis problem which is computationally difficult to solve. Two alternatives
involving use of dynamic AWBT compensation and a one-step AWBT design were
outlined. Background material on multi-objective output feedback controller synthe-

sis was presented. Objectives for obtaining “good” AWBT controllers were defined.
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A promising outline for the design of the AWBT controller K was presented.
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Chapter 8 Robust Constrained Model Predictive

Control using Linear Matrix Inequalities

Abstract

The primary disadvantage of current design techniques for model predictive con-
trol (MPC) is their inability to deal explicitly with plant model uncertainty. In this
chapter, we present a new approach for robust MPC synthesis which allows explicit
incorporation of the description of plant uncertainty in the problem formulation. The
uncertainty is expressed both in the time and frequency domains. The goal is to de-
sign, at each time step, a state-feedback control law which minimizes a “worst-case”
infinite horizon objective function, subject to constraints on the control input and
plant output. Using standard techniques, the problem of minimizing an upper bound
on the “worst-case” objective function, subject to input and output constraints, is
reduced to a convex optimization involving linear matrix inequalities (LMIs). It is
shown that the feasible receding horizon state-feedback control design robustly sta-
bilizes the set of uncertain plants. Several extensions, such as consideration of the
output feedback case, application to systems with time-delays, problems involving
constant set-point tracking, trajectory tracking and disturbance rejection, which fol-
low naturally from our formulation, are discussed. The controller design is illustrated

with two examples.

8.1 Introduction

Model Predictive Control (MPC), also known as Moving Horizon Control (MHC)
or Receding Horizon Control (RHC), is a popular technique for the control of slow
dynamical systems, such as those encountered in chemical process control in the

petrochemical, pulp and paper industries, and in gas pipeline control. At every time
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instant, MPC requires the on-line solution of an optimization problem to compute
optimal control inputs over a fixed number of future time instants, known as the
“time horizon.” Although more than one control move is generally calculated, only
the first one is implemented. At the next sampling time, the optimization problem
is reformulated and solved with new measurements obtained from the system. The
on-line optimization can be typically reduced to either a linear program or a quadratic
program.

Using MPC, it is possible to handle inequality constraints on the manipulated and
controlled variables in a systematic manner during the design and implementation of
the controller. Moreover, several process models as well as many performance criteria
of significance to the process industries can be handled using MPC. A fairly complete
discussion of several design techniques based on MPC and their relative merits and
demerits can be found in the review article by Garcia et al. (1989) [52].

Perhaps the principal shortcoming of existing MPC-based control techniques is
their inability to ezplicitly incorporate plant model uncertainty. Thus, nearly all
known formulations of MPC minimize, on-line, a nominal objective function, using a
single linear time-invariant (LTT) model to predict the future plant behavior. Feed-
back, in the form of plant measurement at the next sampling time, is expected to
account for plant model uncertainty. Needless to say, such control systems which
provide “optimal” performance for a particular model may perform very poorly when
implemented on a physical system which is not exactly described by the model (for
example, see [145]).

Similarly, the extensive amount of literature on stability analysis of MPC algo-
rithms [33, 34, 49, 102, 114, 128,137, 136, 142] is by and large restricted to the nominal
case, with no plant-model mismatch; the issue of the behavior of MPC algorithms in
the face of uncertainty, i.e., “robustness,” has been addressed to a much lesser extent.

Broadly, the existing literature on robustness in MPC can be summarized as follows:

o Analysis of robustness properties of MPC. Garcia and Morari [49, 50, 51] have
analyzed the robustness of unconstrained MPC in the framework of internal

model control (IMC) and have developed tuning guidelines for the IMC filter
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to guarantee robust stability. Zafiriou (1990) [136] and Zafiriou and Marchal
(1991) [137] have used the contraction properties of MPC to develop neces-
sary/sufficient conditions for robust stability of MPC with input and output
constraints. Given upper and lower bounds on the impulse response coefficients
of a single-input-single-output (SISO) plant with Finite Impulse Responses
(FIR), Genceli and Nikolaou (1993) [53] have presented robustness analysis of
constrained él—ﬁorm MPC algorithms. Polak and Yang (1993) [111, 112] have
analyzed robust stability of their MHC algorithm for continuous-time linear sys-
tems with variable sampling times by using a “contraction” constraint on the
state. This “contraction” constraint idea has been further explored in [37, 144].
A review of stability analysis using the so-called “end-point constraints” can be

found in [8].

MPC with explicit uncertainty description. The basic philosophy of MPC-based
design algorithms which explicitly account for plant uncertainty [2, 26, 145] is
the following:

Modify the on-line constrained minimization problem to a min-maz
problem, i.e., minimization of the worst-case value of the objective

function, where the worst-case is taken over the set of uncertain plants.

Based on this concept, Campo and Morari (1987) [26], Allwright and Papavasil-
iou (1992) [2] and Zheng and Morari (1993) [145] have presented robust MPC
schemes for SISO FIR plants, given uncertainty bounds on the impulse response
coefficients. For certain choices of the objective function, the on-line problem

is shown to be reducible to a linear program.

One of the problems with this linear programming approach is that to sim-
plify the on-line computational complexity, one must choose simplistic, albeit
unrealistic model uncertainty descriptions, for example, fewer FIR coefficients.

Secondly, this approach cannot be extended to unstable systems.

Robust MPC algorithms using “contraction constraints” and “end-point con-
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straints” can be found in [37, 111, 112, 144] and [8] respectively.

From the preceding review, we see that there has been progress in the analysis of
robustness properties of MPC. But robust synthesis, i.e., the explicit incorporation of
realistic plant uncertainty description in the problem formulation, has been addressed
only in a restrictive framework for FIR models. There is a need for computationally
inexpensive techniques for robust MPC synthesis which are suitable for on-line im-
plementation and which allow incorporation of a broad class of model uncertainty
descriptions.

In this chapter, we present one such MPC-based technique for the control of
plants with uncertain models. This technique is motivated by recent developments
in the theory and application (to control) of optimization involving Linear Matrix
Inequalities (LMIs) [21]. There are two reasons why LMI optimization is relevant
to MPC. Firstly, as we discussed in Chapter 5, LMI-based optimization problems
can be solved in polynomial-time, often in times comparable to that required for the
evaluation of an analytical solution for a similar problem. Thus, LMI optimization
can be implemented on-line. Secondly, it is possible to recast much of existing robust
control theory in the framework of LMIs.

The implication is that we can devise an MPC scheme where at each time instant,
an LMI optimization problem (as opposed to a conventional linear or quadratic pro-
gram) is solved, which incorporates input and output constraints and a description

of the plant uncertainty and guarantees certain robustness properties.

8.2 Background

In this section, we discuss background material such as models of systems with un-
certainties, which will be considered in the sequel. We also give a brief overview
of MPC. Fairly good tutorials on MPC can be found in numerous recent references
[37, 100, 114, 144]. The essential technical machinery which we will use from the area

of LMIs has already been summarized in Chapter 5.
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8.2.1 Models for Uncertain Systems

We present two paradigms for robust control which arise from two different modeling
and identification procedures. The first is a “multi-model” paradigm, and the second
is the more popular “linear system with a feedback uncertainty” robust control model.

Underlying both these paradigms is a linear time-varying (LTV) system

z(k+1) = A(k)z(k) + B(k)u(k),
y(k) = Cx(k), (8.1)
[A(k) B(k)] €

where u(k) € R™ is the control input, z(k) € R" is the state of the plant and

y(k) € R™ is the plant output, and  is some prespecified set.

(a) Polytopic or multi-model paradigm

For polytopic systems, the set €2 is the polytope
Q= CO{[Al Bl],[AQ BQ],...,[AL BL]}, (82)

where Co refers to the convex hull. In other words, if [A B] € Q, then for some

nonnegative A, Ag,... , Ay summing to one, we have
L
[A Bl = \l4; By. (83)
i=1

L =1 corresponds to the nominal LTI system.

Polytopic system models can be developed as follows. Suppose that for the (possi-
bly nonlinear) system under consideration, we have input/output data sets at different
operating points, or at different times. From each data set, we develop a number of
linear models (for simplicity, we assume that the various linear models involve the
same state vector). Then, it is reasonable to assume that any analysis and design

methods for the polytopic system (8.1), (8.2) with vertices given by the linear models
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Figure 8.1: (a) Graphical representation of polytopic uncertainty; (b) Structured
uncertainty.

will apply to the real system.
of

Alternatively, suppose the Jacobian [% a—u} of a nonlinear discrete time-varying
system z(k + 1) = f(z(k), u(k), k) is known to lie in the polytope €. Then it can be
shown that every trajectory (x,u) of the original nonlinear system is also a trajectory
of (8.1) for some LTV system in € [93]. Thus, the original nonlinear system can be
approximated (possibly conservatively) by a polytopic uncertain LTV system.

Similarly, it can be shown that bounds on impulse response coefficients of SISO

FIR plants, as discussed in [2, 26, 145], can be translated to a polytopic uncertainty
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description on the state-space matrices. Thus, this polytopic uncertainty description

is suitable for several problems of engineering significance.

(b) Structured feedback uncertainty

A second, more common paradigm for robust control consists of an LTI system with

uncertainties or perturbations appearing in the feedback loop (see Figure 8.1(b)):

z(k+1) = Azx(k)+ Bu(k)+ Byp(k),
y(k) = C:L'(k), (8.4)
q(k) = Cou(k) + Dauu(k),
p(k) = (Aq)(k).
The operator A is block diagonal:
_ A -
A,
A= (8.5)

with A; : R™ — R™. A can represent either a memoryless time-varying matrix
with [|A;(k)|]2 = 6(Ai(k)) <1, 1=1,2,...,7, k > 0; or a convolution operator
(for e.g., a stable LTI dynamical system) with the operator norm induced by the

truncated /y-norm less than 1, i.e.,

N AOH Zqz G(), i=1,...,r, Vk>0. (8.6)

Each A; is assumed to be either a repeated scalar block or a full block [108] and
models a number of factors, such as nonlinearities, dynamics or parameters, that are
unknown, unmodeled or neglected. A number of control systems with uncertainties
can be recast in this framework [108]. For ease of reference, we will refer to such sys-

tems as systems with structured uncertainty. Note that in this case, the uncertainty
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set € is defined by (8.4) and (8.5).
When A; is a stable LTI dynamical system, the quadratic sum constraint (8.6) is

equivalent to the following frequency domain specification on the z-transform Az(z)

1A, = sup a(A;(e?)) < 1.
0€[0,27)
Thus, the structured uncertainty description is allowed to contain both LTI and LTV
blocks, with frequency domain and time-domain constraints respectively. We will,
however, only consider the LTV case since the results we obtain are identical for the
general mixed uncertainty case, with one exception, as pointed out in §8.3.2.2. The
details can be found in [21, Sec. 8.2] and will be omitted here for brevity. For the
LTV case, it is easy to show through routine algebraic manipulations that system

(8.4) corresponds to system (8.1) with
Q = {[ A+ B,AC, B+ B,AD,, | :A satisfies (8.5) with &(A;) < 1} (8.7)

A =0, p(lk) =0, k>0, corresponds to the nominal LTT system.

The issue of whether to model a system as a polytopic system or a system with
structured uncertainty depends on a number of factors, such as the underlying phys-
ical model of the system, available model identification and validation techniques,
etc. For example, nonlinear systems can be modeled either as polytopic systems or
as systems with structured perturbations. We will not concern ourselves with such
issues here; instead we will assume that one of the two models discussed thus far is

available.

8.2.2 Model Predictive Control

MPC is an open-loop control design procedure. Its general structure is shown in
Figure 8.2. At sampling time &, represented by the origin of the axes in Figure 8.3,
a plant measurement §(k) of the output y is obtained, as shown in Figure 8.2. An

estimator uses this measurement and knowledge of the plant input u(k) at the current
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Figure 8.2: Basic feedback structure of MPC.
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Figure 8.3: Basic philosophy of MPC.

sampling time k to obtain an estimate Z(k) of the plant state z. This state estimate
z(k) and a model of the plant can be used to predict the future states and outputs
z(k +ilk),y(k +1]k), i = 1,...,p of the system over a future time-horizon called

the output or prediction horizon p (see Figure 8.3), when the manipulated input
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u(k +4lk),7 = 0,1,...,m — 1 is changed over some future time-horizon called the
input or control horizon m.

The task of the MPC optimizer is to compute a sequence of m control moves
u(k+ilk),i=0,1,...,m—1 such that the predicted output follows a specified target
or set-point in a desirable manner (see Figure 8.3). The optimizer can take into
account inequality constraints on the inputs and outputs arising from the particular
process. The MPC optimizer computes this desirable sequence of control inputs by
minimizing an objective function J,(k), appropriately defined over the output horizon

p as follows:

min Jp(k), (8.8)

w(k+i|k),i=0,1,....,m—1

subject to constraints on the control input u(k+i|k),i = 0,1,...,m—1 and possibly
also on the state z(k + ¢|k),s = 0,1,...,p and the output y(k +4k),: = 1,2,...,p.

Here
z(k +ilk), y(k +ilk) : state and output respectively, at time k + ¢, predicted

based on the measurements at time k; z(k|k) and y(k|k)
refer respectively to the state and output measured at
time k.
u(k +ilk) : control move at time k+¢, computed by the optimization
problem (8.8) at time k; u(k|k) is the control move to be
implemented at time k.
p : output or prediction horizon

m . input or control horizon.
It is assumed that the control action is not changed after time £ +m — 1, i.e.,

u(k +ilk) = u(k +m — 1]k), i > m. Alternatively, for state regulation problems,
u(k +ilk) = 0,7 > m. Although more than one optimal control input is computed,
only the first computed control move u(k|k) is implemented. At the next sampling
time k+1, new measurements §(k+1) are obtained from the plant and a new estimate
Z(k + 1) of the plant state z(k + 1) is obtained from the estimator. Now, predictions
of the plant state and output z(k +1+ 1k +1),y(k+1+4k), s =1,...,p can be
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computed over a shifted prediction horizon £ + 1+ 1 to k + 1 + p, and the above
optimization is solved again using these predictions to recompute m optimal control
moves u(k +1+ik+1),i=0,1,...,m— 1.

Thus, both the control horizon m and the prediction horizon p move or recede
ahead by one step as time moves ahead by one step. This is the reason why MPC
is also sometimes referred to as Receding Horizon Control (RHC) or Moving Horizon
Control (MHC). The purpose of taking new measurements at each time step is to
compensate for unmeasured disturbances and model inaccuracy both of which cause
the system output to be different from the one predicted by the model. We assume
that exact measurement of the state of the system is available at each sampling time

k,i.e.,
z(k|k) = z(k). (8.9)

Several choices of the objective function J,(k) in the optimization (8.8) have been
reported [52, 53, 102, 137] and have been compared in [25]. In this chapter, we

consider the following quadratic objective:

zp: (k + i|k)T Quz(k + ilk) + u(k + i|k)" Ru(k + i|k))

= (8.10)
where J; > 0 and R > 0 are symmetric weighting matrices. In particular, we
will consider the case p = co which is referred to as the infinite horizon MPC (IH-
MPC). Finite horizon control laws have been known to have poor nominal stability
properties [18, 114]. Nominal stability of finite horizon MPC requires imposition of
a terminal state constraint (z(k + i|k) = 0,7 = m) and/or use of the contraction
mapping principle [136, 137] to tune @, R, m and p for stability. But the terminal
state constraint is somewhat artificial since only the first control move is implemented.
Thus, in the closed loop, the states actually approach zero only asymptotically. Also,
the computation of the contraction condition [136, 137] at all possible combinations

of active constraints at the optimum of the on-line optimization can be extremely
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time consuming, and as such, this issue remains unaddressed.

On the other hand, infinite horizon control laws have been shown to guarantee
nominal stability [102, 114]. We therefore believe that rather than using the above
methods to “tune” the parameters for stability, it is preferable to adopt the infinite
horizon approach to guarantee at least nominal stability.

In this chapter, we consider Euclidean norm bounds and component-wise peak

bounds on the input u(k + i|k), given respectively as

u(k +ilk)|ls < Umax, K, @ >0, (8.11)

and

i (k + k)| < Wimae Ky 020, j=1,2,... ng (8.12)

Similarly, for the output, we consider the Euclidean norm constraint and component-

wise peak bounds on y(k + i|k), given respectively as

ly(k +ilk)l2 < Ymax, 5 >0, 021, (8.13)

and

ly;(k + k)] < Yjmaxy £>0,i>1,5=1,2,...,m,. (8.14)

Note that the output constraints have been imposed strictly over the future horizon
(i.e., 7 > 1) and not at the current time (i.e, s = 0). This is because the current output
cannot be influenced by the current or future control action and hence imposing any
constraints on y at the current time is meaningless. Note also that (8.13) and (8.14)
specify “worst-case” output constraints. In other words, (8.13) and (8.14) must be

satisfied for any time-varying plant in €) used as a model for predicting the output.

Remark 8.1 Constraints on the input are typically hard constraints, since they rep-

resent limitations on process equipment (such as valve saturation) and as such cannot
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be relaxed or softened. Constraints on the output, on the other hand, are often per-
formance goals; it is usually only required to make ymax and y; max as small as possible,

subject to the input constraints.

8.3 Model Predictive Control using Linear Matrix
Inequalities

In this section, we discuss the problem formulation for robust MPC. In particular,
we modify the minimization of the nominal objective function, discussed in §8.2.2,
to a minimization of the worst-case objective function. Following the motivation
in §8.2.2, we consider the IH-MPC problem. We begin with the robust IH-MPC
problem without input and output constraints and reduce it to a linear objective
minimization problem subject to LMI constraints. We then incorporate input and
output constraints. Finally, we show that the feasible receding horizon state-feedback

control law robustly stabilizes the set of uncertain plants Q.

8.3.1 Robust Unconstrained IH-MPC

The system is described by (8.1) with the associated uncertainty set 2 (either (8.2) or
(8.7)). Analogous to the familiar approach from linear robust control, we replace the
minimization, at each sampling time k, of the nominal performance objective (given

in (8.8)), by the minimization of a robust performance objective as follows:

min max Joo(k),
u(k+ilk),i=0,1,..,m  [A(k+i) B(k+i)]e€f, i>0
where Jo (k) = Y (x(k + ilk)"Qux(k +ilk) + u(k + i|k)" Ru(k +i[k)) . (3.15)
1=0

This is a “min-max” problem. The maximization is over the set £ and corresponds
to choosing that time-varying plant [A(k + i) B(k +14)] € €, i > 0 which, if used as
a “model” for predictions, would lead to the largest or “worst-case” value of J (k)

among all plants in €2. This worst-case value is minimized over present and future
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control moves u(k + ilk),i =0,1,...,m.
This min-max problem, though convex for finite mn, is not computationally tractable,
and as such has not been addressed in the MPC literature. We address prob-
lem (8.15) by first deriving an upper bound on the robust performance objective.

We then minimize this upper bound with a constant state feedback control law

u(k + ilk) = Fz(k +1|k), i > 0.

Derivation of the upper bound

Consider a quadratic function V(z) = 27 Pz, P > 0 of the state z(k|k) = z(k)
(see (8.9)) of the system (8.1) with V(0) = 0. At sampling time k, suppose V
satisfies the following inequality for all z(k +ilk), u(k +i|k), ¢ > 0 satisfying (8.1),
and for any [A(k+:) B(k+1i)]€Q, i>0:

V(z(k+i+1]k)) = V(z(k + i|k))
< = (wlk +ilk)TQuz(k + ilk) + u(k + ilk)T Ru(k + ik)) . (8.16)

For the robust performance objective function to be finite, we must have z(colk) = 0

and hence, V(z(oo|k)) = 0. Summing (8.16) from i = 0 to i = oo, we get
=V (z(k[k)) < —Joo (k).
Thus,

[A(k+4) ér(lk%)]en, i>0 Toolk) < V(z(K[K)- (8.17)
This gives an upper bound on the robust performance objective. Thus, the goal
of our robust MPC algorithm has been redefined to synthesize, at each time step
k, a constant state-feedback control law u(k + i|k) = Fz(k + i|k) to minimize this
upper bound V(z(klk)). As is standard in MPC, only the first computed input
u(k|k) = Fx(k|k) is implemented. At the next sampling time, the state z(k + 1) is
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measured and the optimization is repeated to recompute F. The following theorem
gives us conditions for the existence of the appropriate P > 0 satisfying (8.16) and

the corresponding state feedback matrix F'.

Theorem 8.1 Let x(k) = xz(k|k) be the state of the uncertain system (8.1) measured
at sampling time k. Assume that there are no constraints on the control input and

plant output.

(A) Suppose the uncertainty set Q is defined by a polytope as in (8.2). Then, the
state feedback matriz F in the control law u(k + i|k) = Fz(k + i|k),7 > 0 which
minimizes the upper bound V(z(k|k)) on the robust performance objective function at

sampling time k is given by
F=YQ!, (8.18)

where Q@ > 0 and Y are obtained from the solution (if it exists) to the following linear

objective minimization problem (this problem is of the same form as problem (5.4)):

i 8.19
min -y (8.19)
subject to
1 z(k|k)T
(KE) >0 (8.20)
z(klk) @
and
0 QAT +YTBY QQ; YTR:
A:QQ+ B;Y 0 0
JQ 1 g Q > 07 J= 17 27 7L
2 0 I 0
QllQ i (8.21)
R3Y 0 0 I

The corresponding value of P > 0 in (8.16) is given by P = yQ~!.
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(B) Suppose the uncertainty set 2 is defined by a structured norm-bounded perturba-
tion A as in (8.7). In this case, F and P > 0 are given by

F=YQ'! P=+Q (8.22)

where Q > 0, v and Y are obtained from the solution (if it exists) to the following

linear objective minimization problem with variables v, @Q, Y and A:

Jmin oy (8.23)
subject to
1 z(klk)*
>0, (8.24)
z(klk)  Q
and
_ . -
Q YTR: QQF QCT+YTDL QAT +Y”BT
R3Y ~I 0 0 0
1
QiR 0 ~I 0 0 >0
C,Q+D,Y 0 0 A 0 (8.25)
AQ + BY 0 0 0 Q- BpABpT
where
Mln,
>\21n2
A= _ > 0. (8.26)
Melp,
Proof. The proof is given in §8.7 in the form of Appendix A. [ |

Remark 8.2 Part (A) of Theorem 1 can be derived from the results in [17] for

quadratic stabilization of uncertain polytopic continuous-time systems and their ex-
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tension to the discrete-time case [54]. Part (B) can be derived using the same basic

techniques in conjunction with the S-procedure (see [134] and the references therein).

Remark 8.3 Strictly speaking, the variables in the above optimization should be
denoted by Q, Fx, Yk, etc., to emphasize that they are computed at time k. For
notational convenience, we omit the subscript here and in the next section. We will,
however, briefly utilize this notation in the robust stability proof (Theorem 8.3).
Closed loop stability of the receding horizon state-feedback control law given in The-

orem 8.1 will be established in §8.3.2.

Remark 8.4 For the nominal case, (L = 1 or A(k) = 0,p(k) =0, k > 0), we recover
the standard discrete-time Linear Quadratic Regulator (LQR) solution (Kwakernaak
and Sivan (1972) [92]). This is stated in the following corollary.

Corollary 8.1 (Discrete-time LQR) Suppose there is no model uncertainty (L =
1 and A(k) = 0,p(k) = 0, k > 0, respectively for the polytopic and structured un-
certainties) and no input and output constraints. Then, the optimal receding horizon
state-feedback control law resulting from the solution in Theorem 8.1 at each time k
is identical to the static state-feedback control law u(k) = Frorx(k) obtained from the

standard discrete-time linear quadratic requlator (LQR) problem, i.e.,
Frgr = —(R+B"PrgrB) 'B"PrgrA (8.27)

where Pror > 0 ts the unique positive definite solution of the following steady state

Ricatti equation:

AT ProrA — Pror — AT PrLorB(BT ProrB + R) 'BT ProrA+ Q1 =0
(8.28)

Moreover, the optimum value of the discrete-time LQR objective

z(0)T Prorz(0) = mmz ()7 Qi) + u())T Ru(i)] (8.29)
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is the same as the optimum value of the objective V(z(0)) obtained from Theorem 8.1

at sampling time k = 0.

Proof. The nominal case corresponds to L = 1 and A(k) =0, p(k) =0, £k > 0
respectively for the polytopic and structured uncertainties. The state space matrices
[A B] in equation (8.1) are constant. In this case, both equations (8.58) and (8.60)

reduce to
(A+ BFY'TP(A+ BF) - P+ FTRF+Q, <0. (8.30)

It can be verified that Prgr > 0 and Fygp obtained from equations (8.27) and (8.28)
satisfy equation (8.30) as an equality. Hence, Pror > 0 and Frgg are feasible solu-
tions for the linear objective minimization problem in Theorem 8.1. Next, consider
any other feasible P > 0, F' satisfying (8.30). Since @; > 0, R > 0, we know from
Lyapunov’s theorem that (A + BF') is a stable matrix with eigenvalues in the unit

disk. Using equations (8.27), (8.28) and after some simplification, we get
(A+ BF)'(P — Por)(A+ BF) — (P — Por) < -W'W <0

where, W = (R + BT PLorB) * BT ProrA + (R+ BT PLorB)TF. Since (A + BF) is
stable, from Lyapunov’s theorem, this implies that P — Prggp > 0. Thus, at any time
k,

z(k|k)T Prorz(klk) < x(k|k)T Pz(k|k).

Hence, at any time k, among all P and F' which are feasible for the linear objective
minimization problem in Theorem 8.1, Prgr and Frggr are optimal since Prgg gives
the smallest value of the upper bound V(z(k|k) = z(k|k)T Pz(k|k)T which is the
objective to be minimized in Theorem 8.1. Equation (8.29) then follows and this

completes the proof. [ |
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Remark 8.5 The previous remark establishes that for the nominal case, the feedback
matrix F' computed from Theorem 8.1 is constant, independent of the state of the
system. However, in the presence of uncertainty, even without constraints on the
control input or plant output, F' can show strong dependence on the state of the
system. In such cases, using a receding horizon approach and recomputing F' at each
sampling time shows significant improvement in performance as opposed to using a
static state feedback control law. This is one of the key ideas in this chapter and is
illustrated with the following simple example.

Consider the polytopic system (8.1), © being defined by (8.2) with

L 0.9347 0.5194 A= 0.0591 0.2641 B- —1.4462
0.3835 0.8310 1.7971 0.8717 —0.7012
Figure 8.4 (a) shows the initial state response of a time-varying system in the set €2,
using the receding horizon control law of Theorem 8.1 () = 1, R = 1). Also included
is the static state-feedback control law from Theorem 8.1, where the feedback matrix
F'is not recomputed at each time k. The response with the receding horizon controller
is about five times faster. Figure 8.4 (b) shows the norm of F' as a function of time
for the two schemes and thus explains the significantly better performance of the

receding horizon scheme.

Remark 8.6 Traditionally, feedback in the form of plant measurement at each sam-
pling time k is interpreted as accounting for model uncertainty and unmeasured dis-
turbances (see §8.2.2). In our robust MPC setting, this feedback can now be reinter-
preted as potentially reducing the conservatism in our worst-case MPC synthesis by

recomputing F' using new plant measurements.

Remark 8.7 The speed of the closed-loop response can be influenced by specifying

a minimum decay rate on the state z (||z(k)]] < c¢p*||z(0)||, 0 < p < 1) as follows:

z(k+i+ 1k Prk+i+1k) < p*a(k+ilk) Px(k+ilk), i>0 (8.31)
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Figure 8.4: (a) Unconstrained closed-loop responses and (b) norm of the feedback
matrix F; solid: using receding horizon state-feedback; dash: using robust static
state-feedback.

for any [A(k + 1) B(k + )] € Q, ¢ > 0. This implies that

otk + i+ 1[E)| < [g%} " plle(k +ilR)], i >0

Following the steps in the proof of Theorem 8.1, it can be shown that requirement

(8.31) reduces to the following LMIs for the two uncertainty descriptions:

Polytopic uncertainty

P*Q (4,Q + BY)T
A;Q + B)Y Q

0, i=1,...,L (8.32)
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Structured uncertainty

PPQ (CoQ + DguY)T (AQ + BY)”
C,Q+D,Y A 0 > 0 (8.33)
AQ + BY 0 Q- BpABpT

where A > 0 is of the form (8.26).

Thus, an additional tuning parameter p € (0, 1) is introduced in the MPC algo-
rithm to influence the speed of the closed-loop response. Note that with p = 1, the
above two LMIs are trivially satisfied if (8.21) and (8.25) are satisfied.

8.3.2 Robust Constrained TH-MPC

In the previous section, we formulated the robust MPC problem without input and
output constraints, and derived an upper bound on the robust performance objective.
In this section, we show how input and output constraints can be incorporated as
LMI constraints in the robust MPC problem. As a first step, we need to establish

the following lemma which will also be required to prove robust stability.
Lemma 8.1 (Invariant ellipsoid) Consider the system (8.1) with the associated
uncertainty set ).

(A) Let Q be a polytope described by (8.2). At sampling time k, suppose there erist
Q >0, v and Y = FQ such that (8.21) holds. Also suppose that u(k + ilk) =
Fa(k +ilk), i > 0.

Then if

z(k|k)TQ  x(k|k) < 1 (or equivalently, x(k|k)' Pz(k|k) < v with P =~Q™1),
then

ok +ilk)TQ  x(k +ilk) <1, i>1, 8.34
Akrs) BB g TR TR Qe (k4 dlk) > (8.34)
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or equivalently,

kE+ilk)TPa(k +ilk) <~, i >1. 835
[A(k+j)53ﬁ)§>}ea,jzox( ilk)" Px(k +ilk) <7, 1> (8.35)

Thus, € = {z]27Q 'z < 1} = {z]2"Pz < v} is an invariant ellipsoid for the pre-

dicted states of the uncertain system.

(B) Let Q be described by (8.7) in terms of a structured A block as in (8.5). At
sampling time k, suppose there exist Q > 0, v, Y = FQ and A > 0 such that (8.25)
and (8.26) hold. If u(k +i|k) = Fx(k +1ilk), i > 0, then the result in (A) holds as

well for this case.

Remark 8.8 The maximization in (8.34) and (8.35) is over the set § of time-varying
models that can be used for prediction of the future states of the system. This
maximization leads to the “worst-case” value of z(k+i|k)T Q 'z (k+ilk) (equivalently,

z(k + i|k)T Px(k + i|k)) at every instant of time k 44, i > 1.

; z(k|k) € €
i>1 ‘~ = zk+ilk)ef Vi>1

Figure 8.5: Graphical representation of the state-invariant ellipsoid £ in two dimen-
sions.

Proof. The proof is given in §8.8 in the form of Appendix B. [ |

8.3.2.1 Input Constraints

Physical limitations inherent in process equipment invariably impose hard constraints

on the manipulated variable u(k). In this section, we show how limits on the control
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signal can be incorporated into our robust MPC algorithm as sufficient LMI con-
straints. The basic idea of the discussion that follows can be found in Boyd et al.
(1994) [21] in the context of continuous time systems. We present it here to clarify its
application in our (discrete-time) robust MPC setting and also for completeness of ex-
position. We will assume for the rest of this section that the postulates of Lemma 8.1
are satisfied so that £ is an invariant ellipsoid for the predicted states of the uncertain
system.

At sampling time &, consider the Euclidean norm constraint (8.11):
Ju(k +ilk)]l2 < Umax, @ > 0. (8.11)

The constraint is imposed on the present and the entire horizon of future manipu-
lated variables, although only the first control move u(k|k) = w(k) is implemented.

Following [21], we have

max [lu(k +ilk)ll; = max|[YQ  z(k +ilk)|;
< —1 2
max [YQ™ |3

= Amax(Q72YTY Q7).

Using Lemma 5.1 from Chapter 5, we see that ||u(k + i|k)||3 < u2,., i > 0 if

max?’

w2 I Y
> 0. (8.36)
YT Q
This is an LMI in Y and @.

Similarly, let us consider peak bounds on each component of u(k+:|k) at sampling

time £ (8.12):

lu;(k+1k)] < Ujmax, 20, j=1,2,...,n,. (8.12")



166

Now,

r?zaox luj(k +i|k)]* = nlflg)xl (YQ 'z(k + Z]k))] 2

< —1) 2

< max|(YQ7'z), |

< | (YQ“%) |I3 (using the Cauchy Schwarz inequality)
j

(Ye™v")

I

33’
Thus, the existence of a symmetric matrix X such that

X Y

v g >0, with X,; <u i=1,2,...,n,, (8.37)

§,max’
guarantees that |u;(k + ¢k)| < Ujmax, ¢ >0, j=1,2,...,n, These are LMIs in
X, Y and @. Note that (8.37) is a slight generalization of the result derived in [21].

Remark 8.9 Inequalities (8.36) and (8.37) represent sufficient LMI constraints which
guarantee that the specified constraints on the manipulated variables are satisfied.
In practice, these constraints have been found to be not too conservative, at least in

the nominal case.

8.3.2.2 Output Constraints

Performance specifications impose constraints on the process output y(k). Asin §8.3.2.1,
we derive sufficient LMI constraints for both the uncertainty descriptions which guar-
antee that the output constraints are satisfied.

At sampling time k, consider the Euclidean norm constraint (8.13):

s k+ilk < Ymax, ¢ 2> L 8.13'
[A(k+5) Bk+5)]€Q, 530 [l Bl <y (8.13)

As discussed in §8.2.2, this is a worst-case constraint over the set €2 and is imposed

strictly over the future prediction horizon (i > 1).
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Polytopic uncertainty

In this case, € is given by (8.2). As shown in §8.9 in Appendix C, if

Q A;Q+ B Y)TcT _
( J J ) > 0, j=1,2,..., L, (8.38)
C(A4;Q + B;Y) y2. At
then
max ly(k +ilk)]l2 < Ymax, 4> 1.

[A(k+j) B(k+3)]€Q, j>0

Condition (8.38) represents a set of LMIs in Y and @ > 0.

Structured uncertainty

In this case, 2 is described by (8.4), (8.5) in terms of a structured A block. As shown
in §8.9 in Appendix C, if

2@ (C,Q+DnY)T  (AQ+ BY)TCT

C,Q+ DY 71 0 > 0 (8.39)
C(AQ + BY) 0 [-CB,T-'BIC"
with _ -
t1]n1
to 1,
T = 2ina >0,
tTIn,«
then
max ly(k+ilk)|l2 < Ymax, ¢>1.

[A(k+7) Blk+5)]€R, j20
Condition (8.39) is an LMIin ¥,@Q > 0 and 77! > 0.
In a similar manner, component-wise peak bounds on the output (see (8.14))
can be translated to sufficient LMI constraints. The development is identical to the

preceding development for the Euclidean norm constraint if we replace C' by C; and
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TbyT,l=12...,n, in (8.38), (8.39), where

yi(k) Gy
vy = | " ccay = | @ o
|, (8) | | G, |
T} is in general different for each [ =1,2,...,n,.

Note that for the case with mixed A blocks, we can satisfy the output constraint
over the current and future horizon max ly(k+%k)|l2 < Ymax and not over the (strict)
Z_

future horizon (¢ > 1) as in (8.13). The corresponding LMI is derived as follows:

max [|Cz(k +ilk)ll; < max]|Czl;

= Amax(Q7CTCQ?)

Thus, CQCT < y2.. I = |ly(k +ilk)||2 < Ymax, ¢ > 0. For component-wise peak

bounds on the output, we replace C by C;, I =1,...,n,.

8.3.2.3 Robust Stability

We are now ready to state the main theorem for robust MPC synthesis with input

and output constraints and establish robust stability of the closed-loop.

Theorem 8.2 Let z(k) = z(k|k) be the state of the uncertain system (8.1) measured

at sampling time k.

(A) Suppose the uncertainty set Q is defined by a polytope as in (8.2). Then, the
state feedback matriz F in the control law u(k + i|lk) = Fz(k +ilk),7 > 0, which
minimaizes the upper bound V (x(k|k)) on the robust performance objective function at
sampling time k and satisfies a set of specified input and output constraints is given
by

F=YQ™,
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where (@ > 0 and Y are obtained from the solution (if it exists) to the following linear

objective minimization problem:
min{y | v, @, Y and variables in the LMIs for input and output constraints} ,

subject to (8.20), (8.21), either (8.36) or (8.37), depending on the input constraint to
be imposed, and (8.38) with either C and T, or C; and T}, | = 1,2,...,n,, depending
on the output constraint to be imposed. The corresponding P > 0 satisfying (8.16) is
given by P = vQ~ L.

(B) Suppose the uncertainty set S is defined by (8.7) in terms a structured pertur-
bation A as in (8.5). In this case, F' and P are given by

F=YQ™"', P=yQ7,

where Q > 0, v and Y are obtained from the solution (if it exists) to the following

linear objective minimization problem:
min{vy | v,Q,Y,A and variables in the LMIs for input and output constraints}

subject to (8.24), (8.25), (8.26), either (8.36) or (8.37) depending on the input con-
straint to be imposed, and (8.89) with either C and T, or C; and T}, 1 =1,2,...,ny,

depending on the output constraint to be imposed.

Proof. From Lemma 8.1, we know that (8.21) and (8.24), (8.25) imply respectively
for the polytopic and structured uncertainties, that £ is an invariant ellipsoid for
the predicted states of the uncertain system (8.1). Hence, the arguments in §8.3.2.1
and §8.3.2.2 used to translate input and output constraints to sufficient LMI con-
straints hold true. The rest of the proof is similar to that of Theorem 8.1. [ |

In order to prove robust stability of the closed loop, we need to establish the

following lemma.
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Lemma 8.2 (Feasibility) Any feasible solution of the optimization in Theorem 8.2
at time k 1is also feasible for all times t > k. Thus, if the optimization problem in

Theorem 8.2 is feasible at time k, then it is feasible for all times t > k.

Proof. Let us assume that the optimization problem in Theorem 8.2 is feasible at
sampling time k. The only LMI in the problem which depends explicitly on the
measured state z(k|k) = x(k) of the system is the following:

1 z(k|k)T
z(klk)  Q

Thus, to prove the lemma, we need only prove that this LMI is feasible for all future
measured states z(k +ilk + 1) = z(k +1i),7 > 1.

Now, feasibility of the problem at time % implies satisfaction of (8.21) and (8.24),
(8.25), which, using Lemma 8.1, in turn imply respectively for the two uncertainty
descriptions that (8.34) is satisfied. Thus, for any [A(k+i) B(k+1i)] € Q,i > 0

(where Q is the corresponding uncertainty set), we must have
z(k+ik)"Q 'x(k +ilk) <1, i>1.

Since the state measured at k + 1, that is, z(k + 1|k + 1) = z(k + 1), equals
(A(k) + B(k)F) z(k|k) for some [A(k) B(k)] € £, it must also satisfy this inequality,

ie.,
sk +1k+1D)TQ 'k + 1]k +1) < 1,
or
1 k+1k+1)T
ol | ) > 0 (using Lemma 5.1 from Chapter 5).
z(k+ 1|k + 1) Q

Thus, the feasible solution of the optimization problem at time k is also feasible at
time k£ + 1. Hence, the optimization is feasible at time k£ + 1. This argument can be

continued for time k + 2,k + 3,... to complete the proof. |
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Theorem 8.3 (Robust stability) The feasible receding horizon state feedback con-
trol law obtained from Theorem 8.2 robustly asymptotically stabilizes the closed loop

system.

Proof. In what follows, we will refer to the uncertainty set as {2 since the proof is
identical for the two uncertainty descriptions.

To prove asymptotic stability, we will establish that V (z(k|k)) = z(k|k)T Pyx(k|k),
where P, > 0 is obtained from the optimal solution at time k, is a strictly decreasing
Lyapunov function for the closed-loop.

First, let us assume that the optimization in Theorem 8.2 is feasible at time
k = 0. Lemma 8.2 then ensures feasibility of the problem at all times & > 0. The
optimization being convex, therefore, has a unique minimum and a corresponding
optimal solution (v, @,Y) at each time k& > 0.

Next, we note from Lemma 8.2 that v, @ > 0, Y (or equivalently, v, FF = Y Q™ !,
P =~Q"! > 0) obtained from the optimal solution at time k are feasible (of course,
not necessarily optimal) at time £ + 1. Denoting the values of P obtained from the
optimal solutions at time k and k + 1 respectively by P, and Py, (see Remark 8.3),

we must have
vk +1k+ D) "Pez(k+ 1k +1) < z(k+ 1)k +1)TPa(k + 1)k + 1).(8.40)

This is because Py, is optimal whereas Py is only feasible at time &k + 1.
And lastly, we know from Lemma 8.1 that if u(k +i|k) = Fra(k +i|k), ¢ > 0 (F}
is obtained from the optimal solution at time k), then for any [A(k) B(k)] € Q, we

must have
z(k + k)T Pox(k + 1|k) < z(k|k)T Poz(k|k), (z(k|k) # 0) (8.41)

(see (8.64) with ¢ = 0).
Since the measured state z(k + 1|k +1) = z(k + 1) equals (A(k) + B(k)F}) z(k|k)
for some [A(k) B(k)] € ©, it must also satisfy inequality (8.41). Combining this with



172

inequality (8.40) we conclude that
z(k + 1|k + 1) Poz(k + 1)k + 1) < z(k|k)" Pex(k|k), (z(k|k) # 0).

Thus, z(k|k)" Pz (k|k) is a strictly decreasing Lyapunov function for the closed-loop,
which is bounded below by a positive definite function of z(k|k) (see (8.17)). We

therefore conclude that z(k) — 0 as k — cc. n

Remark 8.10 The proof of Theorem 8.1 (the unconstrained case) is identical to the
preceding proof if we recognize that Theorem 8.1 is only a special case of Theorem 8.2

without the LMIs corresponding to input and output constraints.

8.4 Extensions

The presentation up to this point was restricted to the infinite horizon regulator with
state feedback and a zero target. In this section, we extend the preceding development

to several standard problems encountered in practice.

8.4.1 Reference Trajectory Tracking

In optimal tracking problems, the system output is required to track a reference
trajectory y,.(k) = C,z,(k) where the reference states z, are computed from the
following equation

z(k+1) = Az, (k), z.(0) = z0.

The choice of J (k) for the robust trajectory tracking objective in the optimization

(8.15) is the following

o0

SOESY ((Ca:(k +ilk) — Coan(k + )T Qu (Ck +ilk) — Cray (k + 1))

+u(k +ilk)" Ru(k +1ilk)), Q1 >0, R>0.
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As discussed in [92], the plant dynamics can be augmented by the reference trajectory
dynamics to reduce the robust reference trajectory tracking problem (with input and
output constraints) to the standard form as in §8.3. Due to space limitations, we will

omit these details.

8.4.2 Constant Set-Point Tracking

For uncertain linear time-invariant systems, the desired equilibrium state may be a
constant point xs, u, (called the set-point) in state-space, different from the origin.
Consider (8.1) which we will now assume to represent an uncertain LTI system, i.e.,
[A B] € Q are constant unknown matrices. Suppose that the system output y is
required to track the target vector y, by moving the system to the set-point xy, ug
where

xs = Az + Bug, y = Cus.

We assume that =, u,, y; are feasible, i.e., they satisfy the imposed constraints. The
choice of J (k) for the robust set-point tracking objective in the optimization (8.15)

is the following:

Tulk) = <(Cx(k +ilk) = Cz)" Q1 (Cxlk +ilk) — Cay)

+(u(k +1ilk) — us)TR(u(k +ilk) —us)), Q1 >0, R>0. (8.42)

As discussed in [92], we can define a shifted state Z(k) = z(k) — z;, a shifted input
(k) = u(k) — us and a shifted output (k) = y(k) — v to reduce the problem to the
standard form as in §8.3. Component-wise peak bounds on the control signal u can

be translated to constraints on @ as follows:
U] < Ujmax] == |0+ Us il S Ujmax S —Ujmax — Usj < Uj < Ujmax — Us,j

Constraints on the transient deviation of y(k) from the steady state value y;, i.e., §(k)

can be incorporated in a similar manner.
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8.4.3 Disturbance Rejection

In all practical applications, some disturbance invariably enters the system and hence
it is meaningful to study its effect on the closed-loop response. Let an unknown

disturbance e(k), having the property klim e(k) = 0, enter the system (8.1) as follows:
—00

z(k+1) = A(k)z(k) + B(k)u(k) + e(k)
y(k) = Cuz(k) (8.43)
[A(k) B(k)] € Q.
A simple example of such a disturbance is any energy bounded signal (Z e()fe(i) <
i=0
co). Assuming that the state of the system z(k) is measurable, we would like to solve

the optimization problem (8.15). We will assume that the predicted states of the

system satisfy the following equation

z(k+i+1k) = Alk+9)z(k+ik)+ B(k+ t)u(k +i|k)

A(k+14) Bk+14)] € Q.

Ak +3) Blk+i) sa
As in §8.3, we can derive an upper bound on the robust performance objective (8.15).
The problem of minimizing this upper bound with a state-feedback control law u(k -+
ilk) = Fz(k + ilk), ¢ > 0, at the same time satisfying constraints on the control
input and plant output, can then be reduced to a linear objective minimization as in
Theorem 8.2. The following theorem establishes stability of the closed-loop for the
system (8.43) with this receding horizon control law, in the presence of the disturbance

e(k).

Theorem 8.4 Let z(k) = z(k|k) be the state of the system (8.43) measured at sam-
pling time k and let the predicted states of the system satisfy (8.44). Then, assuming
feasibility at each sampling time k > 0, the receding horizon state feedback control law
obtained from Theorem 2 robustly asymptotically stabilizes the system (8.43) in the

presence of any asymptotically vanishing disturbance e(k).
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Proof. It is easy to show that for sufficiently large time & > 0, V(z(k|k)) =
z(k|k)T Px(k|k), where P > 0 is obtained from the optimal solution at time k, is
a strictly decreasing Lyapunov function for the closed-loop. Due to lack of space, we

will skip these details. [ |

8.4.4 Systems with Delays

Consider the following uncertain discrete-time linear time-varying system with delay

elements, described by the following equations:

s(k+1) = Ao(k)z(k) + Z Ai(k)z(k — 1) + B(k)u(k — 1),

y(k) = Cz(k)

with  [Ao(k) Av(k).. An(k) B(k)] €. (8.45)

We will assume, without loss of generality, that the delays in the system satisfy
0<7<m << Ty At sampling time k > 7, we would like to design a state-
feedback control law u(k+i—7l|k) = Fx(k+i—7|k),7 > 0, to minimize the following

modified infinite horizon robust performance objective

max Joo(k), (8.46)
[A(k+i) B(k+i)]€Q, i>0
where
Joo(k) = > (w(k+ilk)"Quz(k +ilk) + ulk + i — 7|k)" Ru(k + i — 7|k)),
=0

subject to input and output constraints. Defining an augmented state
wk) = [2(&)" 2(k =17 ..ok — )T ..ok —m)T ... xlk —71)7]"

which is assumed to be measurable at each time k¥ > 7, we can derive an upper bound

on the robust performance objective (8.46) as in §8.3. The problem of minimizing this
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upper bound with the state-feedback control law u(k +i—7|k) = Fx(k+i—7|k), k >
7,4 2 0, subject to constraints on the control input and plant output, can then be
reduced to a linear objective minimization as in Theorem 8.2. These details can be
worked out in a straightforward manner and will be omitted here.
Note, however, that the appropriate choice of the function V(w(k)), satisfying an
inequality of the form (8.16), is the following:

T1

Vwk)) = z(k)T Pk +Z —zTPx(k—z')fZ ok — )T P x(k - 5)
o Z (k) P, z(k) = w(k)" Pw(k)

where P is appropriately defined in terms of Py, P;, Py, ..., P, . The motivation for
this modified choice of V' comes from [45] where such a V' is defined for continuous time
systems with delays, and is referred to as a Modified Lyapunov-Krasovskii (MLK)

functional.

8.4.5 The Output Feedback Case

Throughout the development in this chapter, we made the assumption (8.9) that the

state of the system is measurable at each sampling time %, i.e.,

w(k|k) = a (k). (8.9

Relaxing this assumption to obtain a stabilizing output feedback MPC controller even
in the nominal case is not straightforward. This is because, due to the input and/or
output constraints, the closed-loop system may be nonlinear and therefore we cannot
apply the classical Separation Principle to prove stability of the closed-loop system.
A discussion of the nominal output feedback case can be found in [146].

Here, for the uncertain case, we will only consider the case where the system is
linear parameter varying, with the system parameters measurable at each sampling

time. Thus, for the polytopic system (8.2), (8.3), we will assume that the co-ordinates
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Ai(k), @ = 1,..., L, which define the state-space matrices [A(k) B(k)] as functions
of the polytope vertices [A; B;], are measurable at each sampling time k. And for
the system with structured feedback “uncertainty” described by (8.7), we will assume
that A;(k), i =1,...,r are measurable at each sampling time k.
The estimated system state Z and estimated system output 4 are obtained from

the following standard observer equations:

#(klk) = A(k—1a(k— 1k —1)+ B(k — Du(k — 1)
+L(y(k) — 9(k[k — 1)) (8.47)
t(k+i+1k) = A(k+i)z(k+ik)+ Bk +du(k+1), i>0 (8.48)
gk +ilk) = Ci(k+ilk), :>0 (8.49)

where L is the observer gain. Note that (8.48) is the prediction equation which does
not contain any correction term for the observation error. Combining the system

equation (8.1) with the observer equations (8.47), (8.48), (8.49), we get

e(k+1) = (I—LO)A(k)e(k)

(8.50)
where e(k) = z(k)— Z(k|k)
which in turn implies that (8.47) can be rewritten as
&(klk) = &(klk—1)+ LCA(k)e(k —1). (8.51)

The “worst-case” objective function to be minimized is now based on the observer

state Z:

min max Joo(k),
u(k-+ilk);i=0,1,..sm  [A(k+i) B(k+)]€Q, >0
where Joo (k) = Y (&(k + i|k)TQi2(k + ilk) + u(k + i|k)" Ru(k +i]k)) . (8.52)
=0

We seek to minimize this objective function by synthesizing the control law u(k +
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ilk) = FZ(k +ilk), ¢ > 0. Since the prediction equations for the estimator state
are essentially the same as the prediction equations with state-feedback, except that
the system is now replaced by the estimator state, we can design this state-feedback
matrix F' using the same result as in Theorem 8.1. Constraints on the future computed
inputs u(k + 4|k) and the future predicted outputs §(k +i|k) can all be incorporated
in the same manner as in the state-feedback case.

The observer gain L is designed to robustly stabilize the dynamics of the estima-
tion error e, given by (8.50). For the case of polytopic uncertainty, such an observer

gain is given by
L = Py (8.53)
where Y and P = PT > 0 are the solutions of the following LMIs

P PA; +YCA,

j=1,2,... L (8.54)
ATP 4 ATCT A, P

For the case of structured uncertainty, the corresponding observer gain is given by
L=PY (8.55)

where Y and P = PT > 0 are the solutions of the following LMIs

P - CTAC, 0 ATP — ATCTYT
0 A BL(P - CTYT) | >0 (8.56)
PA-YCA (P-YC)B, P
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with

/\IIn1

oI,
A= _ > 0. (8.57)

Arly,

We now have the following theorem which establishes stability of the closed loop with
this output feedback robust MPC controller.

Theorem 8.5 Assume that the estimator state update equation is given by (8.47)
and the estimator state prediction equations are given (8.48) and (8.49). Suppose
the control law is given by u(k + ilk) = Fi(k + ilk), where F is obtained as in
Theorem 8.1, with the system state xz(k|k) replaced by the updated estimator state
z(k|k) at each sampling time k. Moreover, assume that the observer gain L in the
state estimator update equation (8.47) is given by either (8.53), (8.54) or (8.55),
(8.56), (8.57) depending on the plant uncertainty model. Then, assuming feasibility
of the LMI-based optimization which computes F' at each sampling time k > 0, the

closed-loop system is robustly asymptotically stable.

Proof. The proof follows along the same lines as the proof of Theorem 8.4 for the

case of rejection of an asymptotically decaying disturbance. |

8.5 Numerical Examples

In this section, we present two examples which illustrate the implementation of the
proposed robust MPC algorithm. The examples also serve to highlight some of the
theoretical results in the chapter. For both these examples, the software LMI Control
Toolbox [48]' in the MATLAB environment was used to compute the solution of the

linear objective minimization problem.

'We would like to thank Pascal Gahinet for providing an initial version of the LMI-Lab software.
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No attempt was made to optimize the computation time. Also, it should be noted
that the times required for computation of the closed-loop responses, as indicated at
the end of each example, only reflect the state-of-the-art of LMI solvers. While these
solvers are significantly faster than classical convex optimization algorithms, research
in LMI optimization is still very active and substantial speed-ups can be expected in

the future.

8.5.1 Example 1

The first example is a classical angular positioning system adapted from [92]. The
system (see Figure 8.6) consists of a rotating antenna at the origin of the plane, driven
by an electric motor. The control problem is to use the input voltage to the motor
(u volts) to rotate the antenna so that it always points in the direction of a moving
object in the plane.

We assume that the angular positions of the antenna and the moving object (8 and
g, radians respectively) and the angular velocity of the antenna (0 rad/sec) are mea-

surable. The motion of the antenna can be described by the following discrete-time

Antenna

Figure 8.6: Angular positioning system.

equations obtained from their continuous-time counterparts by discretization, using
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a sampling time of 0.1 sec and Euler’s first-order approximation for the derivative

| ek+) | |1 0.1 . 0 ,
D = Bk+1) | |0 1-0.1ak) ) 01w |
2 A(k)z(k) + Bu(k)
y(k) = [1 0]a(k) £ Ca(k)

k = 0.787 rad/(volts sec?), 0.1 sec™! < a(k) < 10 sec™!.

The parameter «(k) is proportional to the coefficient of viscous friction in the rotating
parts of the antenna and is assumed to be arbitrarily time-varying in the indicated
range of variation. Since 0.1 < a(k) < 10, we conclude that A(k) € Q@ = Co{A;, A},

where

1 01 1 01
A = , and Ap=
0 0.99 0 0

Thus, the uncertainty set {2 is a polytope, as in (8.2). Alternatively, if we define

— 5. 1 01 0
5(k):M,A: , B, = , Cy=[0 4.95], Dy, =0
4.95 0 0.495 0.1

then 6(k) is time-varying and norm-bounded with |§(k)| < 1, £ > 0. The uncertainty
can then be described as in (8.4) with

Q= {[A+ B,5C,] : 6] < 1}.

Given an initially disturbed state z(k), the robust IH-MPC optimization to be solved

at each time k is the following:

i wolk) = k+i|k)? k+ ilk)?
u(k+i|k):g;1(rlz+i|k), iZOA(k+IiI)lgf}2{, i>0 <J (k) ZZZO: (y( +olk)” + Ru(k +ilk) )> ’
R =0.00002

subject to |u(k +4|k)| <2 volts, i > 0.

No existing MPC synthesis technique can address this robust synthesis problem. If
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Figure 8.7: Unconstrained closed-loop responses for nominal plant (a(k) = 9 sec™);
(a) using nominal MPC with «(k) = 1 sec™; (b) using robust LMI-based MPC.

the problem is formulated without ezplicitly taking into account plant uncertainty, the

output response could be unstable. Figure 8.7(a) shows the closed-loop response of
0.05

0
The control law is generated by minimizing a nominal unconstrained infinite horizon

the system corresponding to a(k) = 9 sec™, given an initial state of z(0) =

objective function using a nominal model corresponding to a(k) = apem = 1 sec™.
The response is unstable.

Note that the optimization is feasible at each time k£ > 0 and hence the controller
cannot diagnose the unstable response via infeasibility, even though the horizon is
infinite (see [114]). This is not surprising and shows that the prevalent notion
feedback in the form of plant measurements at each time step k is expected to com-
pensate for unmeasured disturbances and model uncertainty
1s only an ad-hoc fix in MPC for model uncertainty without any guarantees of robust
stability.

Figure 8.7(b) shows the response using the control law derived from Theorem 8.1.
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Notice that the response is stable and the performance is very good. Figure 8.8(a)
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Figure 8.8: Closed-loop responses for the time-varying system with input constraint;
solid: using robust receding horizon state-feedback; dash: using robust static state-
feedback.

shows the closed-loop response of the system when «(k) is randomly time-varying
between 0.1 and 10 sec™*. The corresponding control signal is given in Figure 8.8(b).
A control constraint of |u(k)| < 2 volts is imposed. The control law is synthesized
according to Theorem 8.2.

We see that the control signal stays close to the constraint boundary up to time
k ~ 3 sec, thus shedding light on Remark 8.9. Also included in Figure 8.8 are
the response and control signal using a static state-feedback control law, where the
feedback matrix F' computed from Theorem 8.2 at time k = 0 is kept constant for
all times k£ > 0, i.e., it is not recomputed at each time k. The response is about four
times slower than the response with the receding horizon state-feedback control law.

This sluggishness can be understood if we consider Figure 8.9 which shows the
norm of F' as a function of time for the receding horizon controller and for the static
state-feedback controller. To meet the constraint |u(k)| = |Fz(k)| < 2 volts for small

k, F must be “small” since x(k) is large for small k. But as z(k) approaches 0, F
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can be made larger while still meeting the input constraint. This “optimal” use of
the control constraint is possible only if F' is recomputed at each time %, as in the
receding horizon controller. The static state-feedback controller does not recompute
F' at each time £ > 0 and hence shows a sluggish (though stable) response.

For the computations, the solution at time & was used as an initial guess for solving
the optimization at time k£ + 1. The total times required to compute the closed-loop
responses in Figure 8.7 (b) (40 samples) and Figure 8.8 (100 samples) were about 27
and 77 seconds respectively (or equivalently, 0.68 and 0.77 seconds per sample), on a
SUN SPARCstation 20, using MATLAB code. The actual CPU times were about 18
and 52 seconds (i.e., 0.45 and 0.52 seconds per sample) respectively. In both cases,
nearly 95% of the time was required to solve the LMI optimization at each sampling

time.

45 T T T T T T T

40r

35

30F

Norm of F

time (sec)

Figure 8.9: Norm of the feedback matrix F' as a function of time; solid: using robust
receding horizon state-feedback; dash: using robust static state-feedback.

8.5.2 Example 2

The second example is adapted from Problem 4 of the benchmark problems described



Figure 8.10: Coupled spring-mass system.

in [133]. The system consists of a two-mass-spring system shown in Figure 8.10.
Using Euler’s first-order approximation for the derivative and a sampling time of 0.1
sec, the following discrete-time state-space equations are obtained by discretizing the

continuous-time equations of the system (see [133])

z1(k +1) 1 0 01 01| z(k) 0
zo(k+1 0 1 0 0.1 zo(k 0
) | - 01K 01K A Tl w u(k)
z3(k + 1) - s 1 0 x3(k) o
| za(k+1) | SuE o 1| [za(k) | | O]
y(k) = za(k).

Here, z; and z, are the positions of body 1 and 2, and z3 and z4 are their velocities
respectively. m; and my are the masses of the two bodies and K is the spring constant.
For the nominal system, m; = my = K = 1 with appropriate units. The control force
u acts on m;.

The performance specifications are defined in Problem 4 of [133] as follows:
Design a feedback/feed-forward controller for a unit-step output command tracking

problem for the output y with the following properties:
1. A control input constraint of |u| < 1 must be satisfied.
2. Settling time and overshoot are to be minimized.

3. Performance and stability robustness with respect to mi, my, K are to be

maximized.
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We will assume for this problem that exact measurement of the state of the system,
that is, [x1 22 23 1:4]T is available. We will also assume that the masses m; and mo

are constant equal to 1, and that K is an uncertain constant in the range Ky, <

K < Kiax. The uncertainty in K is modeled as in (8.4) by defining

i 1 0 01 0] 0]
§ = Kooum g 0 1 0 0.1 B - 0 |
aev —01Kpom 01Kpm 1 0 —0.1
0.1Kmom —0.1Kpom 0 1 01|

C’q = [Kdev — Kgey 0 0]7 un =0

Where Knom — Kmax‘Qf‘Kmin’ Kdev J— Kmax;Kmin.
For unit-step output tracking of y, we must have at steady state z;, = x5 = 1,
T3s = T4 = 0, us = 0. Asin §8.4.2, we can shift the origin to the steady state. The

problem we would like to solve at each sampling time & is the following:

min max Joo (k)
ulk-+ilk)=Fa(k-+ilk), i>0 A(k+i)€Q, i>0

subject to |u(k+1|k)| <1, i > 0. Here, J (k) is given by (8.42) with Q, =1, R=1.
Figure 8.11 shows the output and control signal as functions of time, as the spring
constant K (assumed to be constant but unknown) is varied between K;, = 0.5 and
Kiax = 10. The control law is synthesized using Theorem 8.2. An input constraint of
|u| <1isimposed. The output tracks the set-point to within 10% in about 25 sec for
all values of K. Also, the worst-case overshoot (corresponding to K = Ky, = 0.5)
is about 0.2. It was found that asymptotic tracking is achievable in a range as large
as 0.01 < K < 100. The response in that case was, as expected, much more sluggish
than that in Figure 8.11.

The total time required to compute the closed-loop response in Figure 8.11 (500
samples) for each fixed value of the spring constant K was about 438 seconds (about
0.87 seconds per sample) on a SUN SPARCstation 20, using MATLAB code. The
CPU time was about 330 seconds (about 0.66 seconds per sample). Of these times,
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Figure 8.11: Position of body 2 and the control signal as functions of time for varying
values of the spring constant.

nearly 94% was required to solve the LMI optimization at each sampling time.

8.6 Conclusions

Model Predictive Control (MPC) has gained wide acceptance as a control technique
in the process industries. From a theoretical standpoint, the stability properties of
nominal MPC have been studied in great detail in the past 7-8 years. Similarly, the
analysis of robustness properties of MPC has also received significant attention in the
MPC literature. However, robust synthesis for MPC has been addressed only in a
restrictive sense for uncertain FIR models.

In this chapter, we have described a new and complete theory for robust MPC
synthesis for two classes of very general and commonly encountered uncertainty de-
scriptions. The on-line optimization involves solution of an LMI-based linear objec-
tive minimization. The resulting time-varying state-feedback control law minimizes,

at each time-step, an upper bound on the robust performance objective, subject to
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input and output constraints. Several extensions such as constant set-point tracking,
reference trajectory tracking, disturbance rejection, application to systems with time
delays and the output feedback case with an appropriate observer design complete the
theoretical development. Two examples serve to illustrate application of the control

technique.

8.7 Appendix A: Proof of Theorem 1

Minimization of V (z(k|k)) = z(k|k)T Pz (k|k), P > 0 is equivalent to

min 0%
¥,.P

subject to  z(k|k)T Pz(k|k) < 7.

Defining @ = vP~! > 0 and using Lemma 5.1 from Chapter 5, this is equivalent to

gl !
. 1L a(klk)”
subject to > 0,
z(klk) @

which establishes (8.19), (8.20), (8.23) and (8.24). It remains to prove (8.18), (8.21),
(8.22), (8.25) and (8.26). We will prove these by considering (A) and (B) separately.

(A) The quadratic function V' is required to satisfy (8.16). Substituting u(k +i|k) =
Fz(k +1ilk), i > 0 and the state space (8.1), inequality (8.16) becomes:

z(k +ilk)T ((A(k + 1) + Bk +4)F)TP(A(k + i) + B(k +4)F) — P

+FTRF + Q1) z(k +ilk) < 0.
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This is satisfied for all « > 0 if

(A(k +14) + B(k+4)F)"P(A(k +14) + B(k +4)F) — P

+FTRF + @, <0. (8.58)

Substituting P = vQ~',Q > 0, Y = FQ, pre- and post-multiplying by @ (which
leaves the inequality unaffected), and using Lemma 5.1 from Chapter 5, we see that

this is equivalent to

Q QA(k+i)T +YTB(k+i)" QQF YTR} |
Alh+0)Q -+ Bk + )Y Q L )
QiQ 0 w0
i R:Y 0 0 Al |

Inequality (8.59) is affine in [A(k + i) B(k +1)]. Hence, it is satisfied for all

[A(]{J +’L) B(k +Z)] € Q = CO{[Al Bl], [AQ Bg], ey [AL BL}}

if and only if there exist @ > 0, Y = F'(Q and ~ such that

Q  QAT+YTBT QQ? Y'R}
A;Q+ B;Y 0 0
]Ql ’ Q 207 1:1727' 7L
QRIQ 0 o2i 0
RzY 0 0 NI

The feedback matrix is then given by F = Y@Q!. This establishes (8.18) and (8.21).

(B) Let Q be described by (8.4) in terms of a structured uncertainty block A as in
(8.5). As in (A), we substitute u(k +i|k) = Fz(k +i|k), ¢ > 0 and the state space
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equations (8.4) in (8.16) to get

| (A+BF)TP(A+BF)- P (A+ BF)TPB,
z(k + i|k)
+FTRF + @,
p(k +ilk) } T .
BI'P(A+ BF) BIPB,
x(k +ilk) <0 (8.60)
p(k + ilk)

with

pi(k +i|k)Tp;j(k +ilk) < z(k + k)T (Cyy + Dgu j F)T

(8.61)
X(Cqj+ Dy jF)z(k +ilk),7=1,2,... 7

Using the S procedure described in Lemma 5.2 of Chapter 5, it is easy to see
that (8.60) and (8.61) are satisfied if 3 A}, A}, ..., AL > 0 such that

(A+BF)"P(A+BF) - P+ F'RF (A+BF)'PB,

+Q1 4 (Cq + Dgu F)TA'(Cy + Dy F) <0,
BTP(A+ BF) BIPB, - N’ (8.62)
NI,
A1,
where A’ = . > 0. (8.63)
NI,

Substituting P = yQ~!' with Q > 0, using Lemma 5.1 from Chapter 5 and after

some straightforward manipulations, we see that this is equivalent to the existence of
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Q>0,Y=FQ, A'>0such that

Q YTRE QQF QCT+YTDT, QAT +YTBT |
R3Y NI 0 0 0
Q% Q@ 0 v 0 0 > 0.
C,Q+DuY 0 0 YA 0
| AQ+BY 0 0 0 Q — ByyA BT |

Defining A = yA~! > 0 and \; = ’y)\;_l >0, 1=1,2,...,r then gives (8.22), (8.25)
and (8.26) and the proof is complete. |

8.8 Appendix B: Proof of Lemma 1

(A) From the proof of Theorem 8.1, Part (A), we know that

(8.21) <= (8.59) <= (8.58) => (8.16).

Thus,
z(k +i+ k)" Pz(k +i+ 1|k) — 2(k +i|k)T Pz (k + i|k)
< —z(k+i|k)TQuz(k + ilk) — u(k + i|k)T Ru(k + i|k)
< 0 since @7 > 0.
Therefore,

w(k+i+ k)T Pz(k+ i+ 1|k) < z(k + k)T Px(k +i|k),

(8.64)
i>0, (z(k+ilk)#0).

Thus, if z(k|k)T Pz(k|k) < =, then x(k + 1|/k)T Pz(k + 1|k) < . This argument
can be continued for x(k + 2|k), z(k + 3]k),... and this completes the proof. [

(B) From the proof of Theorem 8.1, Part (B), we know that:

(8.25), (8.26) <= (8.62), (8.63) = (8.60), (8.61) <= (8.16).
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Arguments identical to case (A) then establish the result. [

8.9 Appendix C: Output Constraints as LMIs

As in §8.3.2.1, we will assume that the postulates of Lemma 8.1 are satisfied so that

& is an invariant ellipsoid for the predicted states of the uncertain system (8.1).

Polytopic uncertainty

For any plant [A(k+ j) B(k+7)] €Q, j >0, we have

max lly(k + k)]s = max |C (A(k +14) + B(k +4)F) z(k +i]k)||2
< max |C(A(k +4) + B(k+14)F) 2ll2, i > 0

= 5 [C(A(k+¢)+3(k+i)p)cg%] ,i>0.
Thus, [|ly(k +i[k)|l2 < Ymax, ¢ > 1 for any [A(k +j) B(k+j)] €, j>0if

5 [C Ak +1) + Bl +)F) Q] < fmas, i 20,

or QF(A(k +1) + B(k+i)F)"CTC(A(k + i) + B(k + ) F)Q? < 42,1, i >0,

which, in turn, is equivalent to

Q (A(k +49)Q + B(k+)Y)TCT
C(A(k+1)Q+ B(k+1)Y) vl I

>0,i>0

(multiplying on the left and right by Q? and using Lemma 5.1 from Chapter 5).
Since the last inequality is affine in [A(k +¢) B(k + ¢)], it is satisfied for all

[A(k +1) B(k+1i)] € Q= Co{[A, Bi],[As Ba],...,[AL Br]}
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if and only if

Q (A,Q + BjY)TCT
(j(/4j62'+7E%}/) ygmxl

This establishes (8.38).

Structured uncertainty

For any admissible A(k + 1), ¢ > 0, we have

r?;alxlly(k+i|k)||2 = I?Q)XHC(A—f-BF)x(k—I-i[k)+C’Bpp(k+z'|k)||2

IN

max |C(A+ BF)z + CByp(k +ilk)|l2, i >0

= max ||C(A+ BF)Q?z + CB,p(k +ilk)||, i > 0.

2Tz<1

We want ||C(A + BF)Q2z + CByup(k + ilk)|l2 < ymax, i > 0 for all p(k + i|k), 2

satisfying

pi(k+ilk) p;(k +ilk) < 27Q3(Cy; + DguiF) (Cpj + DgujF)Q%z, j=1,2,....7

and 27z < 1. This is satisfied if 3 #;,%s,...,t,,t,41 > 0 such that for all z, p(k + i|k)

Qz(A+ BF)TCTC(A + BF)Q:

[ ‘ r +Q3(Cy + DpuF)IT(Cy + DuF)Q? Q3 (A+ BF)TCTCB,
( )

k-+i|k _¢T+II

z
x < Yoax — tr1, 120,
p(k +i|k)

1
BICTC(A+ BF)Qz BICTCB,-T
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where

trlnr

> 0.

Without loss of generality, we can choose t,.1 = y2... Then, the last inequality is

satisfied for all z, p(k + i|k) if

Q} (A + BF)TCTC(A + BF)Q} Q}(A+ BF)'CTCB, |
+Q2(Cq + DuF)'T(Cy + D F)Q? =y
BI'CTC(A+ BF)Q? BJCTCB,-T |
2.0 (C,Q+DuY)  (AQ+BY)TCT |
or equivalently, | C,Q + D, Y T1 0
C(AQ + BY) 0 [-CB,T'BICT |

(using Lemma 5.1 from Chapter 5 and after some simplification). This establishes (8.39).



195

Chapter 9 Level Control in the Steam Generator
of a Nuclear Power Plant — Case Study

Abstract

Poor control of the steam generator water level in the secondary circuit of a nuclear
power plant can lead to frequent reactor shutdowns. Such shutdowns are caused
by violation of safety limits on the water level and are common at low operating
power where the plant exhibits strong non-minimum phase characteristics and flow
measurements are unreliable. There is, therefore, a need to systematically investigate
the problem of controlling the water level in the steam generator in order to prevent
costly reactor shutdowns. This chapter presents a general framework for addressing

all aspects of this problem using model predictive control techniques.

9.1 Introduction

Nuclear fission reaction provides about 76% of the energy required for electrical power
generation in France!. Economic feasibility of a nuclear power plant requires smooth
and uninterrupted plant operation in the face of varying electrical power demand.
Unplanned shutdowns or reactor trips initiated due to conservative safety considera-
tions, which in turn are necessitated by poor control, are particularly expensive and
must be minimized.

Several studies [65, 98, 110] investigating the causes of reactor trips have shown
that the feed-water system in the nuclear reactor is a major contributor to plant
unavailability. Up to 13% of all reactor trips in France in 1983 [110] were attributed

to steam generator control problems.

Electricité de France (EDF) home page http://www.edf.fr
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9.1.1 Factors Leading to Poor Control

The difficulties in designing an effective level control system for the steam generator

(SG) arise from a number of factors:

e Non-minimum-phase (NMP) characteristics of the plant. The plant exhibits
strong inverse response behavior, particularly at low operating power due to
the so-called “swell and shrink” effects. This NMP characteristic limits the

achievable controller bandwidth.

e Nonlinear plant characteristics. The plant dynamics are highly nonlinear. This
is reflected by the fact that the linearized plant model shows significant variation

with operating power.

e Sensor measurements. At low powers, the flow measurement sensors are known

to be unreliable and this precludes effective use of feed-forward control.

e Constraints. The feed-water system can only deliver a limited throughput of
water to the SG. This imposes a hard limitation on the available control action,
and thus on the available controller bandwidth. Moreover, input constraints can
lead to the classical controller windup problem [81] which causes degradation of
system performance and sometimes even instability if not accounted for in the

controller design.

9.1.2 Previous Work

Various approaches that address one or more of the above issues in the design of the

level controller have been reported in the literature.

e Irving et al. [67] presented a linear parameter varying model to describe the SG
dynamics over the entire operating power range and proposed a model reference

adaptive PID level controller.

The Irving model and modifications based on it have probably been the most

widely accepted SG models for use in controller design.
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e The Irving model [67] was used by Choi et al. (1989) [32] to design a PlI-like
locally stabilizing controller. The same model was used by Kim et al. (1993)

[78] to design a local model-based PI controller to offset the inverse response of

the SG.

e A more general LQG/LTR-based controller design, using local linearization of a
nonlinear validated model of the SG was presented by Menon and Parlos (1992)
[98]. The local linear controllers were then “gain-scheduled” to cover the entire

operating range.

e Na (1995) [103], Na and No (1992) [104] addressed the issue of unreliable flow
measurements at low power by designing an adaptive observer to simultaneously
estimate the flow errors and the parameters of the steam generator model at
low power. These estimates were then used to estimate the unmeasurable water

level and design a control action by minimizing a quadratic cost.

o A robust #; level controller design was studied by Ambos et al. (1996) [3] and
a robust H, level controller was proposed by Bendotti et al. (1997) [14].

Level control systems based on fuzzy logic have been reported in numerous references.
These are beyond the scope of this study and will, therefore, not be considered here.

From the preceding review, we see a preponderance of Pl-like controllers in func-
tional SGs. Some attempts have been made to design general controllers, e.g., Ha/Hoo
and LQG/LTR, which are not restricted to PI/PID structures. However, with the
exception of [98], all the level controller designs summarized above only handle the
problem around a local operating point, with no clear understanding of how to address
the global level control problem over the entire operating power range. Issues such
as hard constraints on the control inputs (feed-water flow-rate), (soft) constraints on
outputs (limits on water level), stability and robustness to unmodeled dynamics and
parametric uncertainty are only handled indirectly and in an ad-hoc fashion after the

controller has been designed.
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A detailed evaluation of all these issues at the design stage of the controller can
lead to a greater confidence in the controller design, resulting in a relaxation of the

safety margins and as a consequence, a reduction in the frequency of reactor trips.

9.1.3 Model Predictive Control

With the advent of the current generation of high-speed computers, it is now conceiv-
able that more advanced control strategies, not limited to PI/PID, can be applied in
a realistic setting. Model Predictive Control (MPC), also known as Moving Horizon
Control (MHC) or Receding Horizon Control (RHC), is one such controller design
technique which has gained wide acceptance in process control applications in the
petrochemical, pulp and paper industries, and in gas pipeline control (see [52]). As
we saw in Chapter 8, MPC is probably the only methodology currently available
which can explicitly handle constraints on the manipulated and output variables sys-
tematically during the design and implementation of the controller. Several process
models as well as many performance criteria of significance to the process industries
can be handled using MPC.

In this chapter, we apply MPC techniques to develop a general framework for

systematically addressing the various issues in the SG level control problem.

9.2 Plant Description

The nuclear reactor under consideration is a pressurized water reactor (PWR) (see
Figure 9.1). PWRs are currently in use in most French nuclear power plants.

The PWR, can be divided into two sub-systems:

e The steam supply system composed of the nuclear reactor, the reactor coolant
system and the steam generator (SG). The thermal energy released by the fission
reaction in the nuclear reactor is transferred by the reactor coolant, which is
pressurized water, from the reactor vessel to the steam generator in a closed

loop. This loop is referred to as the primary loop or primary circuit.
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Figure 9.1: Layout of a pressurized water reactor (PWR).

e The power conversion system composed of the steam turbine, the electric gen-
erator and the condenser. This is a closed circuit and is also commonly referred

to as the secondary loop or secondary circuit.

The primary circuit reactor coolant exchanges heat with the water in the SG.
Thus, the water fed to the steam generator is vaporized, then released within the
turbine where it expands and produces mechanical work. This mechanical work is
transformed into electrical power by the electric generator. The steam leaving the
turbines is condensed to liquid state in the condensers and fed back to the SG.

A changing electrical power demand causes a change in the steam demanded by
the turbine, thereby requiring a change in the feed-water flow-rate to the SG and also

a change in the thermal energy produced in the nuclear reactor. The rate of nuclear
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reaction is regulated by the two control rod systems as shown in Figure 9.1. The rods
capture neutrons, slowing down the nuclear reaction; withdrawing them increases the
reaction, lowering them into the reactor slows down the reaction.

Our goal in this chapter is to study the use of the feed-water flow-rate as a manip-
ulated variable to maintain the SG water level within allovvablé limits, in the face of
the changing steam demand resulting from a change in the electrical power demand.
We will assume that the primary side temperature is appropriately maintained at
its reference value by the primary circuit control rod system. The identification and

controller design issues for the primary circuit can be found elsewhere [13, 15, 19].

9.2.1 The U-Tube Steam Generator (UTSG)

The steam generator is the principal interface for exchange of heat between the pri-
mary circuit and the secondary circuit. It is a tubular evaporator of the natural
circulation type (see Figure 9.2). We will briefly describe its operation. A detailed
discussion of its operation can be found, for example, in [66].

The heat exchange region of the steam generator consists of a number of equivalent
inverted vertical U-tubes, hence the name UTSG. The reactor coolant enters the
UTSG at the bottom. It moves within the U-tubes upwards and then downwards,
transferring heat through the tube wall to the secondary fluid before exiting at the
bottom of the UTSG.

The secondary fluid, the feed-water, enters the UTSG through a torical distribu-
tor, located in the upper downcomer. It flows down to the lower downcomer through
the space between the tube bundle wrapper and the SG shell. It enters the secondary
side of the tube bundle in its lower part. As the secondary fluid heats up due to
heat exchanged with the primary fluid, it flows upwards. It reaches saturation tem-
perature, starts boiling and turns into a two-phase fluid. The two-phase mixture
successively moves up through the separator/riser section, where steam is separated
from water, and then through the dryers, which ensure that the exiting steam is es-

sentially dry (steam quality of at least 99.75% by mass). The separated saturated
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Figure 9.2: Schematic of a steam generator.

water 18 recirculated back to the downcomer.

9.2.2 Sensors and Actuators in the UTSG

Due to the complex two-phase nature of the steam-water interface in the tube bundle
of the UTSG, the water level in the downcomer is not a well-defined quantity. Two
types of water level measurements are provided, as shown in Figure 9.2, each reflecting
a different level concept. The narrow range level IV is based on the pressure difference
measured between two points close to the water level and gives the mixture level.
The wide range level Ny, is based on the pressure difference measured between the

two extremities of the steam generator (steam dome and bottom of the downcomer)
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and gives the “collapsed liquid level” which reflects the mass of water in the steam
generator.

The steam and feed-water flow-rates are also available as measurements. However,
at low powers (< 15 — 20%) and during startup, the flow sensors are known to be
unreliable.

The actuator used to command the feed-water flow-rate consists of a main valve
and a bypass valve. Such a setting is used to increase the precision of the actuator at

low flow-rates. The bypass valve has about é—th the capacity of the main valve.

9.2.3 Water Level “Swell and Shrink” Effects
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Figure 9.3: Responses of the water level at different operating powers (indicated by
%) to (a) a step in feed-water flow-rate; (b) a step in steam flow-rate.

The ultimate change in the water level in the steam generator is governed by the
balance between the flow-rates of exiting steam and the incoming feed-water. How-
ever, the transient behavior of the water level in the steam generator is dominated by

the thermodynamic properties of the two-phase mixture present in the tube bundle
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region and exhibits an inverse response behavior caused by the so-called “swell and
shrink” phenomena.

When the steam flow-rate is increased, the steam pressure in the steam dome
decreases, and the two-phase fluid in the tube bundle expands, causing the water
level to rise initially (swell) instead of falling as should be expected from the mass
balance. A decrease in steam flow-rate leads to an opposite effect of collapse of the
steam bubbles in the two-phase fluid caused by an increase in the pressure in the
steam dome. The water in the downcomer then flows to occupy this space, thereby
leading to an initial counterintuitive lowering of the water level (shrink).

Similarly, when the feed-water flow-rate is increased, the cold feed-water which
enters the bottom of the tube bundle region causes the steam bubbles to collapse. This
causes a decrease in the volume occupied by the two-phase mixture. The water in the
downcomer fills this empty region causing a drop in the water level (shrinking). When
the feed-water flow-rate is decreased, the opposite phenomenon of swelling occurs.

Figure 9.3 shows responses of the water level to steps in feed-water and steam flow-
rates at different operating powers. For generating the responses, we have used the
power dependent linear parameter varying model identified by Irving et al. (1980)
[67]. The inverse response behavior of the water level is immediately apparent in
both the responses. It is more severe at low power and is observed only in the narrow
range level Ny, and not in the wide range level Ny; (not shown here) since N,; directly
reflects the mass of water in the steam generator, as we discussed in §9.2.2.

The changing steam generator dynamics and the inverse response behavior signif-

icantly complicate the design of an effective water level control system.

9.3 Steam Generator Modeling

The controller design and the resulting controller performance on the actual plant are
both strongly dependent on the accuracy of the mathematical model used to describe
the plant. However, a highly accurate model is generally also highly complex and

nonlinear, and therefore, rarely suitable for use in controller design. Development
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of detailed models for the UTSG using basic principles can be found, for example
in [66, 135]. Such theoretical models use fundamental conservation equations for
mass, energy, momentum and volume and basic thermodynamic principles. These
models are typically used prior to plant licensing for simulating realistic accident
conditions [66], for operator training [135] and to validate controller performance
prior to implementation on the real plant [98].

For the purpose of controller design, the model should be simple and at the same
time relatively accurate in describing the principal dynamics of the UTSG. Linearized
models have the advantage that they can be used to design controllers by applying
any of a number of well-established controller design techniques.

We will discuss two models which are relevant to this chapter.

9.3.1 The Model of Irving et al. (1980)

A linear model which has been widely used in steam generator modeling for control
purposes is the parameter-dependent transfer function model identified by Irving et
al. (1980) [67] from experimental measurements of the steam generator responses to
steps in the feed-water and steam flow-rates.

Let y; and y, be the narrow and wide range water levels Ny, and N, respectively,
from §9.2.2. Let u and d be the feed-water and steam flow-rates. Then, the transfer

functions relating the inputs u and d to the water levels y; and y, are given by [67]

n(s) = (ﬁ‘ o

S 1+ ms

) (uto) — dts)

4 G38
7t 4 Am2 T2 4 277 s + 2

<G1 (e Gms) (u(s) — d(s))

s(1+ 1ys)
GgS

+
T2+ Ar2T2 4 277 s 4 82

u(s) (9.1)

u(s) (9.2)

ua(s) = Zuls) - d(s)). (9.3)

S

Each term in equation (9.1) has a physical interpretation as explained below:
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° %, where G, > 0, is the mass capacity effect of the steam generator. It essen-
tially integrates the flow difference u(s) — d(s) to calculate the change in water

level.

Go

¢ - 1+798?

where Gy, 7 > 0, is the thermal negative effect caused by the “swell

and shrink” effects as explained in §9.2.3.

G3s
T A2 T 2427 s g2

where Gg,7,T > 0 is the mechanical oscillation effect
caused by the direct addition of feed-water to the steam generator. This quan-
tity appears only in response to a feed-water flow-rate change. It decays rapidly

after a small multiple of the damping time constant 7.

An equivalent state-space representation of (9.1) and (9.3) is the following:

0 0 0 0 G, —G, |
0 —L 0 0 el G
i) = ™ z(t) + > | u@) + > | d()
0 0 —2 1 Gs 0
0 0 —(H+%) o0 0 0
- Grra) 0 - - - 4 (9.4)
¢ 1110
y(t) = i) _ z(t
(1) 1000

From (9.2), we see that if Gy — G175 > 0, then the transfer function from » and d to
y is non-minimum phase. From the responses shown in Figure 9.3, we see that the
dynamics of the UTSG change with operating power. This is reflected in the above
model by allowing the parameters G, G, G3, 71, 72, T to be dependent on operating
power. This parameter dependence has been characterized in [67], where the values
of these parameters at different operating powers have been identified. These values

are summarized in Table 9.1.

9.3.2 The Model Provided by Electricité de France

The model which will be used in this study for the purpose of controller design is

a simple 4" order model. This model is currently being used for control studies in
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Power (%) 5 15 30 90 100
G, 0.058 | 0.058 | 0.058 | 0.058 | 0.058
Go 9.63 | 446 | 1.83 | 1.05 | 0.47
Gs 0.181 { 0.226 | 0.31 | 0.215 | 0.105
T 41.9 | 26.3 | 43.4 | 34.8 | 28.6
Ty 48.4 | 21.5 | 4.5 3.6 3.4
T 119.6 | 60.5 | 17.7 | 14.2 | 11.7

Table 9.1: Steam generator model parameter variation (Irving et al. (1980)).

the Research and Development Division of Electricité de France (EDF). The model
is built together out of transfer function equations which are derived from simple
dynamical considerations. We briefly describe the steps which are used to arrive at
the model description.

The narrow range level N, is assumed to be governed by the flow balance of the
incoming water and the outgoing steam-water mass across the tube bundle region
of the steam generator. This balance for the narrow range water level Ny, can be

described by the following transfer function:

1
Nge = m(Qef ~ Qav) (9.5)

where @)y is the flow-rate of the incoming water in the tube bundle and Qgy is the
equivalent steam-water mixture flow-rate exiting the tube bundle region.
The incoming water flow-rate ). in the tube bundle region is related to the fresh

feed-water flow-rate by two simple first order lags as follows:

1

Qes (14 75)(1 + Ths)

Qe (9.6)

1

773 accounts for

where the lag Tlfs accounts for the feed-water valve dynamics and

the water mass transportation dynamics. In this equation, it is also possible to include
a higher order term to account for water mass oscillations which can be induced by the
large water flow-rates involved. However, this term is ignored in the model currently

in use at EDF. A non-minimum phase term can also be added to account for the
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feed-water system inverse response behavior. This too has been ignored in the model
of EDF. In §9.6.3, we will see the effect of adding a non-minimum phase term to the
feed-water system dynamics.

The exiting steam-water mass QQ¢y from the tube bundle region is related to the
turbine steam demand ), by a simple first order lag 1+_1T;§ In addition, a non-
minimum phase term 1 — FyT;s is also incorporated to account for the two-phase
swell and shrink effects. Thus,

1-FTys

Qov = 1—+7—,g“; v (9.7)

Combining (9.5), (9.6), (9.7), we get the following equation relating the narrow range

water level N, to the feed-water flow-rate . and the steam demand @Q,:

1 Q.(s) 1—F,Tys
Nyels) = T.s ((1 +75)(1+Tps) 1 +T,s Q(S)) ’ (9:8)

The wide range water level Ny, being representative of the overall water mass in the

steam generator, is given simply by the integral equation

(Qe - Qv) (99)

Denoting the water levels by y; = Ny and y2 = N, and the steam and feed-water
flow-rates by d = @, and u = @), we can rewrite (9.8), (9.9) in the following equivalent

state-space form:

0 0 0 7 0 — 7
0 —Tl 0 —7}— 0 0
B(t) = o T e+ w) + | L, A0 (9.10)
0 0 7 0 0 Tn"
0 0 0 —% 1 0
y(t) = =1 z(t). (9.11)
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The parameters T,,, F,, T}, 7 are functions of the operating power and have been
identified by EDF from experimental data. These parameter values are summarized
in Table 9.2. Note that T; = 10 sec and T;,; = 140 sec are constants and do not

vary with operating power. Figure 9.4 shows water level responses of the EDF model

Power 6 (%) | 3.2 141952423050 |100
1y 36| 56| 63| 44140 |40 | 40
F, 13 18| 10 4 4| 4 4
T, 170 | 56 | 30 10 8] 5 3
T 10| 10| 10| 30|30 |30| 30

Table 9.2: Variation of the steam generator model parameters over the power range.

to steps in the feed-water and steam flow-rates at different operating powers. As
expected, the response to a step in the feed-water flow-rate does not show an inverse
response since this was never model-led, although the response to a step in steam

flow-rate exhibits non-minimum phase characteristics.

9.4 Steam Generator Level Control

Underlying the basic objective of water level control in the steam generator, there are

three different issues which have individual motivation.

Control of the water level in the downcomer If the water level in the down-
comer reaches too high a level, the steam separator and dryer do not function
properly and excessive moisture is carried in the exiting steam, increasing ero-
sion of the turbine blades. Furthermore, high moisture content in the exiting
steam also reduces turbine efficiency. Too low a level leads to insufficient cooling
of the primary fluid. Beside the direct link with the downcomer water mass, the
water level is strongly related to the water/steam mixture in the tube bundle.
Hence it will be referred to as the mixture level. It is well represented by the

mean of the narrow range level measurement N, (see Figure 9.2).
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Figure 9.4: Responses of the water level at different operating powers to (a) a step
in feed-water flow-rate; (b) a step in steam flow-rate.

Control of the water mass in the steam generator The water mass of the steam
generator is relevant for the coolability of the primary circuit. When the steam
demand is increased due to an increase in the demand of power, the feed-water
has to be increased to maintain the water mass at the correct set-point. The
water level corresponding to this water mass set-point is referred to as the col-
lapsed water level and is represented by the mean of the wide range water level

measurement N, (see Figure 9.2).

Prevention of instabilities of the water columns The last issue is related to
the dynamical behavior of the water level. Because of the large mass of water
and the large flows involved in the steam generator operation, it is important to
have a smooth operation and in particular to avoid fast transients and persistent
oscillations. Such oscillations are detrimental to the steam generator operation

since they may lead to cracking and denting of the steam generator tubes.
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9.4.1 Water Level Set-Points and Alarm Limits

The three objectives mentioned above are achieved by specifying appropriate set-
points for the narrow and wide range water levels. These set-points are functions
of the operating power and are shown in Figure 9.5. Figure 9.5(a) also shows the
high level and low level alarm limits for N,.. Violation of these pre-specified upper
and lower limits on the allowable deviations of the water level Ngye from these set-
points results in an alarm and, subsequently, an automatic reactor trip. An excellent
discussion on the setting up of alarm limits and initiation and execution of reactor
trips can be found in Schneider and Boyd (1985) [121], based on their experience
at the Point Lepreu plant of the New Brunswick Electric Power Commission, using

steam generators developed by Babcock & Wilcox Canada.

Nge% Ny%
Turbine trip A
High level alarm 87
44 Set-point 78

Low level alarm

71

33 [ I Reactor trip

1
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I
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Figure 9.5: Normalized set-points for (a) N, with high and low level alarm limits;
(b) Nyt

9.4.2 General Control Strategy

The general control strategy consists in achieving all the three objectives by main-
taining the narrow range and wide range water levels within limits of their set-points.
This can be accomplished by concentrating the control effort on the single controlled
variable: the narrow range water level N,. In fact, since there is only one manip-

ulated variable — the feed-water flow-rate — only one of the two water levels can be
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independently controlled with zero steady-state offset. The narrow range water level
Ngye, being a more critical variable, is chosen to be the controlled variable. Nonethe-
less, with this strategy, as we will see, good control of N, is also achieved.
Either of the model equations (9.1) or (9.8), which relate the feed-water and
steam flow-rates u and d to the narrow range water level y; = Ny, can be rewritten

as follows:
yi(s) = P(s,0)u(s) + Pa(s, 0)d(s) (9.12)

with P and P, appropriately defined. Here, 0 represents the operating power, which
determines the values of the various parameters in the transfer functions P(s) and
Py(s), as described in §9.3.1 and §9.3.2. The corresponding state-space models (9.4)
or (9.10), (9.11) can be rewritten as follows:

B(t) = A(0)z(t) + B(O)u(t) + Ba(6)d(t)

(9.13)
n(t) = Cz(t).

Thus we see that the change in the steam demanded from the UTSG can be
considered as a disturbance d to the plant. The control problem is to reject the
effect of this disturbance on the UTSG narrow range water level N, by using the

feed-water flow-rate v as the manipulated variable (see Figure 9.6). We immediately

Changing steam
domond T d ——{ Pa(s,0)
Narrow range

Feed-water water level

flow-rate % —pum| P(s,0) -y

Figure 9.6: Disturbance rejection for a linear parameter varying system.

see that this is a disturbance rejection problem for a linear parameter varying (LPV)

system since P and Py, are dependent on the operating power 6.
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Since the feed-water system can only deliver a finite flow-rate, the manipulated

variable u is constrained. With normalized variables, this is equivalent to
0% < u(t) < 100%. (9.14)

The lower limit of 0% arises from the fact that we cannot withdraw water from the
steam generator and thus the feed-water flow-rate cannot be negative. As we will
see, model predictive control (MPC) provides an ideal framework for systematically

accounting for input constraints.

9.5 UTSG Level Control using MPC

A number of factors make MPC particularly suitable for the UTSG level control

problem:

e Hard actuator constraints. We saw in §9.4.2 that the manipulated variable, the
feed-water flow-rate, is constrained. At present, MPC is the only control tech-
nique which can handle such hard inequality actuator constraints in a systematic

manner during the design and implementation of the controller.

o Soft level constraints. The water level alarm limits discussed in §9.4.1 are gen-
erally referred to as soft constraints on the output variable N, since they can
be relaxed somewhat depending on how much of a safety margin is required.
Again, as with the actuator constraints, such soft constraints can conceptually
be incorporated directly in the MPC formulation as inequality constraints on
Nye (see §8.2.2). Quite often though, incorporation of output constraints leads
to infeasibility of the on-line optimization. For this reason, we did not consider

them directly in the simulation study in §9.6.

o Feed-forward control. MPC allows incorporation of feed-forward control action

through the use of measured disturbances in the control law computation.
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Moreover, MPC is probably the only control technique which can incorporate all the
above features.
In §8.2.2, we reviewed the basic structure of MPC and its implementation. For

an LTT system described in discrete-time by

z(k+1) = Az(k)+ Bu(k) + Bad(k) + ny (k)

(9.15)
y(k) = Cux(k)+ny(k)

with z(k) € R" denoting the state of the system at sampling time k, u(k) € R™
the control input, y(k) € R™ the controlled output, d(k) € R™ an external mea-
sured disturbance, ni(k) € R™ is the state excitation noise and ny(k) € R™ is the

measurement noise, the model used for prediction of the future outputs is given by

z(klk — 1) = Az(k — 1|k — 1) + Bu(k — 1|k — 1)
y(klk — 1) = Ca(k|k — 1).

(9.16)

This equation assumes that d(k) is an unmeasured disturbance, hence it does not
appear in the prediction equations. The case where a measured disturbance is used
for feed-forward control can also be considered. Prediction for more than one step
ahead is obtained by applying the above equations recursively.

Correspondingly, the state estimator, which is used to update the plant state and

correct for measurement noise, is given by
t(k) = x(klk) = z(k|k — 1) + K(§(k) — y(k|k — 1)) (9.17)

where K is the optimal Kalman filter gain determined from the solution of a discrete-

time Riccati equation [92] as follows:

K =QCT(CQCT +V)™, where, @ > 0 solves

9.18
Q — AQAT + AQCT(CQCT + V)~1CQAT — W =0. (918
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Here, W is the covariance matrix of the state excitation white noise nq, and V > 0 is
the covariance matrix of the output measurement white noise n, affecting the output
y. It is assumed that n; and ny are uncorrelated.
The typical optimization problem which is solved by the MPC optimizer is the
one defined in Chapter 8 (see also notation defined in Chapter 8):

min I, (k), (8.8)

u(k+i|k),i=0,1,..,m—1

subject to constraints on the control input u(k +4|k),i = 0,1,...,m —1 and possibly
also on the state x(k +1lk),i = 0,1,...,p and the output y(k+i|k),i =1,2,....p. A

typical objective function which is considered is the following (compare with (8.10))

Jp(k) = Z(r — y(k + k) Ty (r — y(k +14lk)) + }i u(k +ilk) Tyu(k + i|k)
+Z_:Au(k+i|k)TFAuAu(k+i|k). (9'19)

where
r = set-point for y,

Au(k +1lk) = u(k +ilk) — u(k + 1 — 1]k),

Iy, Iy, Tay > 0 are weighting matrices.
In general, the weights Iy, I'y, ', and the set-point 7 can all be allowed to vary over

the prediction horizon p.

We immediately see that in this formulation, MPC is limited to linear time-
invariant processes or nonlinear processes in a restricted operating region where they
can be approximated reasonably by a linear time-invariant model. In applications
such as the UTSG level control problem, the range of operation goes beyond the
limits of the neighborhood where such a linear approximation is reasonable. This
is especially true for the UTSG problem since, as we saw in §9.2.3, the open-loop
dynamics of the process change significantly with the operating power. Therefore,
for the global UTSG level control problem over the entire range of operating powers,

such an approach using a single linear time-invariant model for MPC design would
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almost certainly jeopardize performance.

The aforementioned problem is common to all linear model-based controllers such
as Ha/He control, for example. For linear controllers, a common solution to this
problem is to design local linear controllers at different points in the operating regime
and then apply gain scheduling techniques [61, 107, 115] to schedule these controllers
to obtain a globally applicable controller.

For MPC, a natural solution to the global control problem would be to identify
the operating point at each sampling time and use the plant model corresponding
to this operating point as the prediction model or the internal model in the MPC
computation. We will explore this extension of MPC and its application to the UTSG

level control problem.

9.5.1 The Concept of a Varying Model in MPC

Power level

0

Operating
Point
Identification

-y
L noise

Figure 9.7: Model varying MPC for UTSG level control.

&2

In MPC, a model is used to predict future outputs of the plant, and a sequence of
present and future control moves is computed such that the predicted future outputs
show a desirable response. It should be intuitively clear, therefore, that the accuracy

of the future predictions is critical for obtaining the truly optimal control sequence
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at each sampling time.
For the UTSG level control problem, the plant can be described reasonably well
by a model which is structurally the same over the entire operating range, i.e., linear
with the same number of states, but the model parameters depend on the operating

power. As we saw in §9.4.2, it can be represented as follows:

(t) = A(0)x(t) + B(0)u(t) + Bq(0)d(t)

9.13'
y(t) = Cx(t) (91

which after discretization with an appropriate sampling time and after adding ficti-

tious state and measurement noise terms, can be represented as follows:

s(k+1) = A0)x(k) + BO)ulk) + Ba(0)d(t) + ni (k)

(9.20)
y(k) = Cz(k) + no(k).

Assuming that we do not have a priori knowledge of how the power is going to vary
in the future, the best prediction model that we can use at each sampling time is the
model corresponding to the operating point at that sampling time. The operating
point at each sampling time can in turn be identified by using the steam flow measure-
ment or, for low powers where steam flow measurements are unreliable, directly from
a knowledge of the demanded electric power. Generally, in the absence of steam flow
measurements, the temperature difference between the incoming and exiting streams
of the primary fluid is used to determine the steam generator operating point [98].
Application of this model-varying MPC to the UTSG level control problem then

involves the following steps (see Figure 9.7):

Step 1 At sampling time k, identify the operating power level (k) at the current

time k using the measured value of the steam demand d(k).

Step 2 Choose the appropriate model A(8(k)), B(8(k)), Ba(6(k)) (or equivalently,
the discretized model A(6(k)), B(0(k)), B4(6(k))) for the plant corresponding

to this operating power level.
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Step 3 Obtain new plant measurements (k) and estimate the state z(k) = z(k|k)
of the plant using the MPC estimator with the model chosen in Step 2.

Step 4 Solve the MPC optimization problem using the state estimate (k) and the
fized model from Step 2 as the prediction model.

Step 5 Implement the first computed control move u(k|k).
Step 6 k£ =k + 1. Go to Step 1.

In Step 2, it is implicitly assumed that the functional dependence of the model
A(6), B(6) on 6§ is known in the form of a continuous function. In other words, it
is assumed that the model parameters (G, G, 71,72, T) for the Irving model (9.4)
or (Ty, Ty, F,, ) for the EDF model (9.10), (9.11) can be expressed as a continuous
function of the operating power 6. There are several reasons why this may not be a

reasonable assumption:

e A continuous functional dependence of the model parameters on the operating
power is rarely available in practice. Typically, as we saw in §9.3.1 and §9.3.2,
the values of the operating parameters at discrete power levels are known from

experimental data.

o The steam flow-rate measurement d is susceptible to measurement noise, and
as a result, the operating power 8 identified from the steam flow measurement
is also subject to this noise. This would mean that in Step 2 of the algorithm
described above, if we assume a continuous dependence of the model parameters
on 0, there would be unnecessary switching of the prediction model in the MPC
computation. This is highly undesirable since it can lead to “chattering” of the

control signal.

The alternative is to sub-divide the operating power range into sub-ranges and use
a single model within each sub-range as the prediction model in MPC. This would
result in a “family” of linear models, and the switch in Step 2 of the algorithm above

will occur depending on which sub-range the system is currently operating. This
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eliminates unnecessary model switching and also ensures that the discrete model
“family” can be realistically obtained from identification experiments at a discrete
set of operating points. An additional advantage is that within each sub-range, the
designed parameters of MPC can be tuned so as to get the best possible performance
within that sub-range, independent of the MPC parameters chosen in the other sub-

ranges.

9.5.2 Sub-Division of the Operating Power Range

The operating range sub-division is the basis of our model varying MPC concept. A
number of different approaches can be used to arrive at a suitable sub-division of the
operating power range. The simplest approach might involve a sub-division of the
power range 0 — 100% into equal sub-ranges, each of which covers, for example, 5%
of the operating power, starting from 0%.

While this may be a simple technique, it may not reflect the non-uniform variation
in the dynamics of the plant with operating power. For example, in the EDF model
which we discussed in §9.3.2, the parameters T}, T, F,, T (see Table 9.2) have been
observed to show very little variation in the power range 50 — 100%, whereas they
show significant variation in the low power range 3 — 24%. Clearly, in this case, the
sub-ranges have to be much more closely spaced in the low power range than in the
high power range.

What should be equal for the sub-ranges is not the power range they cover, but
the model error they admit, assuming that a single model is used to represent all
plants within the sub-range. We present one approach to arriving at a reasonable
solution to this problem which ensures that an appropriately defined model error is
equal for these sub-ranges. Alternative approaches addressing this problem can be

found, for example, in [98].
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9.5.2.1 Definition of Model Error

We define the model error for a sub-range of power [61,65], 6; < 65 in terms of the

model transfer functions P(s, 6;) and P(s, 6) as follows:

P(s,0y) — P(s,0;)
P(s,6;)

A
€[91,02) =

(9.21)

W
This definition of the model error is motivated by standard definitions for model
uncertainty bounds which can be found, for example, in [101, 147]. Note that more
general definitions for the model error, using frequency dependent weights, can also
be considered but we restrict ourselves to this simple choice. Also, the choice of the
nominal model for a given sub-range [0;, 5], 6; < 0, is subjective, and one could, for
example, choose the mid-point of the range [f;, f2] as the nominal point and the model
P(s, 8) corresponding to the mid-point as the nominal model. For this study, we chose
the lower point #; and the corresponding model P(s,6;) as the nominal model for
the range [0y, 62]. We found that the final performance was not very sensitive to this
choice.

In the sub-division procedure to be discussed next, we will show how we can divide
the operating power range into sub-ranges of power such that the model error defined

by (9.21) achieves the same pre-specified value in each of these sub-ranges.

9.5.2.2 Sub-Division Procedure

We will focus on the EDF model of §9.3.2 in this section. The same treatment is
applicable to the Irving model of §9.3.1. The data from EDF is provided in the form
of read-out charts relating the parameter values T}, T),, Ty, 7 to the operating power
§. This data was reproduced in Table 9.2. The intermediate values are obtained by
linear interpolation.

To begin with, the model parameters at 33 different power levels were interpolated
based on the provided data. The power levels chosen were the following (all in %):
3.2,3.5,3.9,4.1,4.3, 4.6, 5, 5.8, 6.6, 7.4, 9.5, 10, 11.5, 12, 13, 13.5, 14.5, 15, 15.5, 16,
16.5, 17.25, 17.5, 18, 19, 20, 22, 23, 24.2, 26.5, 30 and 50 — 100. Though the number



220

30~
25+
204
"~
=,
S 154
N\ “
1% l B
10+ \\\ I' "0
AL )5S
S5SEEH DS, ' X
R SIS K >
> §:::§:§:§:z:(:.;fll,zo,,, [
SIRISSERNIRIGELSS /7 "‘0
.0“:.000.0",.:::.:0.’,l 00 200
04 2502505 “:::§§§§§§:§:§:::3:2:3:3::.'0

Figure 9.8: Model error ep, g, as a function of 6, and 6,.

of points chosen is arbitrary, their distribution over the operating power range is not
arbitrary.

Due to significant variation of the model parameters in the low power range,
almost all the chosen points are distributed in the power range 3.2 — 26.5%. Due to
almost no parameter variation in the power range 50 — 100%, just one point suffices
here. The linear models at the 33 chosen operating points constitute what we call
the original model family.

From this family, @;(—32 (all possible combinations from 33 models, taken two at a
time) subranges can be generated. Next, we compute the model error €lg, 0], 01 < 03
for these #3X%2 subranges using the definition (9.21). Figure 9.8 shows this error as a

function of the upper and lower power limits #; and 6, of a given sub-range [, 6].

We would like to choose contiguous sub-ranges covering the entire operating power
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range such that the error in each of these sub-ranges is equal. This set of sub-ranges
is obtained by simply plotting the contours of equal error. Such contour plots for

errors ranging from 0.2 to 5 are shown in Figure 9.9.

01

02

Figure 9.9: Contour plot for ef, g,; in the range 0.2 to 5. The dotted line denotes the
chosen sub-division.

The appropriate sub-division for a given allowable error within each sub-range is
now straightforward: for a given upper power limit of a sub-range, simply read-off
the lower limit of that sub-range from the contour plot corresponding to the given
allowable error. Thus, for an error level of 0.2, starting from a power of 30%, the
next lower power level 0, such that ejp, 30) = 0.2 is 26.5%. We continue this process
to arrive at the sub-division shown in Table 9.3. Note that since we have only used
discrete points to generate the contour plots shown in Figure 9.9, the actual errors
€[o,,0.] as given in Table 9.3 are somewhat different from 0.2. Note also that the
difference is significant at the lowest power range ([¢;,602] = [3.2,3.5]) because the

contour plots are very closely spaced in this region, as can be seen from Figure 9.9.
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From the contour plots shown in Figure 9.9, it should be clear that the larger
the allowable model error in each sub-range, the less is the number of sub-ranges
required to cover the entire operating range. On the other hand, as the model error

specification goes to zero, we get a continuous model family.

01 | 02 | e, 00
30.0 | 50.0 | 0.5999
26.5 | 30.0 | 0.0570
24.2 | 26.5 | 0.3008
23.0 | 24.2 | 0.4000
20.0 | 23.0 | 0.1688
17.5 | 20.0 | 0.1910
16.0 | 17.5 | 0.1650
14.5 | 16.0 | 0.1612
13.0 | 14.5 | 0.1897
11.5 | 13.0 | 0.1681
9.5 | 11.5 1 0.1725
7.4 | 9.5 | 0.1810
5.8 | 7.4 | 0.1022
46 | 5.8 | 0.1671
3.9 | 4.6 | 0.0920
3.5 | 3.9 | 0.2000
3.2 | 3.5 | 1.2616

Table 9.3: Operating range subdivision ensuring a model error of about 0.2.

9.5.3 Prediction and Estimation with a Varying Model

When the system is operating in the power range [0;, 6], it is described by (9.20)

z(k+1) = A)z(k) + B(O)u(k) + Ba(6)d(k) + ny (k)

(9.20')
y(k) = Cz(k) + na(k).

Here, A(f), B(#), By4(8) is an appropriate discrete-time model for some 8 € [0}, 6],
chosen based on the model family and the power sub-division procedure described in

§9.5.2.2.

We will be assuming that we do not have a priori knowledge of how the power
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1s going to vary in the future. In this case, the model corresponding to the current
operating point §(k) is the best model we can use to predict the future behavior of
the plant. It should therefore be clear that the prediction equation at time k, with
operating power 6, is the following (compare with (9.16)):

z(klk — 1) = A0)z(k — 1|k — 1) + B(®)u(k — 1|k — 1)

(9.22)
y(klk — 1) = Ca(k|k — 1).

Again, as in (9.16), a measured disturbance such as d(k) for the steam generator, can
be used for feed-forward control. Also, prediction for more than one step ahead is
obtained by applying the above equations recursively.

Thus, in contrast to the LTT prediction model described by (9.16), although this
prediction model remains the same over the prediction horizon p, it changes at each
sampling time depending on the prevalent operating power at that sampling time.

Correspondingly, the estimator in MPC must also be modified to take into account
this parameter varying linear model of the UTSG. The correction to the plant state,

based on the measurement §(k) = y(k|k), is the following:
2(k) = w(k|k) = z(k|k — 1) + K (k) (§(k) — y(k|k — 1)). (9-23)

As shown in [92, §6.5], the time-varying filter gain K (k) is obtained from the following
equation (compare with (9.17) and (9.18)):

K(k) = Q(k)CT(CQE)YCT +V (k- 1))71, (9.24)
where Q(k) > 0, k > 0 is obtained from the following recursion:
QU+1)=AM{)QE) I — KH)C)TA®W)T + W (5) (9.25)

with initial conditions Q(0) = Qo > 0, K(0) = QoCT[C(0)QuCT + V(0)]~*. Note

that here we have allowed the covariance matrices V(i) > 0 and W (i) of the state
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excitation noise n; and the measurement noise n, (both assumed to be uncorrelated
white noises) to be varying with time.

(o has the interpretation of being the variance of the error in the initial state
estimate x(0) — £(0), assuming that the initial state £(0) of the filter is set equal to
the expectation value of z(0). Generally, this stochastic interpretation of the filter is
not directly applied. Instead, (Jy is considered as a design parameter to be tuned to
get good estimation characteristics.

Although this development assumes the same sampling times for the estimator and
the controller, it is also possible to make the estimator run faster than the controller.
For example, since it is more likely that measurements can be obtained at a higher
sampling rate than the rate at which the control move can be implemented, it is
conceivable that the filter update can be carried out at a faster sampling rate than
the control law computation. This would mean that the A(6), B(6) matrices in the
filter update equations (9.23), (9.24), (9.25) would be different from those used in the
prediction equation (9.22) since they would be obtained from the continuous-time

matrices A(6), B(6) using different discretization times.

9.5.4 Effect of Model Switching on the Estimator

It is of fundamental importance that the state estimator functions properly during
model switching. In this section, we will discuss the implications of model switching
for the estimator by considering a simple system.

Figure 9.10 is a schematic one-dimensional representation of the true state tra-
jectory (k) of the system, with the two trajectories z;(k), z;7(k) corresponding to
linear approximations of the system around the steady states zo; and zq;;. For this
configuration, the relation between the true state and the linearized states can be
expressed through the following relations:

(k) = x1(k)+zor + er(k)

(9.26)
= xr7(k) + zorr + €11(k)
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where €7(k) and e7;(k) represent respectively the model errors at time k associated

with the linearizations around zo; and z¢;;.

zrr(t): state trajectory in system II

LEI[(k —_ 1) —+ Torr

'
|
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I
[

zrr(k) + xorr
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Figure 9.10: Model switching at the state level.

Now, let us assume that a model switch from the linear model around z,; to that
around zgr; takes place between the sampling times £k — 1 and k. This switch is
motivated because at time k& the model error ¢;(k), introduced by the linearization
around zg7, would be larger than the model error €77 (k) introduced by the linearization
around xgz;.

The key question that needs to be addressed here is how to initialize the new
prediction model and the new estimator corresponding to the linear model at zq;;.
Clearly, in order to use model I7 to predict the state trajectory, we first need to

transform the system state from the z; co-ordinates around the steady state zy; to
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the x;; co-ordinates around the steady state zy;;. This transformation can be derived

from (9.26) as follows:
ZL‘[[(k) B :L'[(k) + Zor — Zorr + 6[(1{5) - Ejj(k). (927)

Note that in (9.27), only z¢; and zq;; are known and can be used as correction terms.

The LPV MPC estimator works with the state differences Az;(k—1) and Az (k—
1). In this case, if at time step &, we want to use model I7 to compute Azy;(k), we
first need to transform Az;(k —1) to Az (k — 1). Since Az;(k — 1) is defined as
wr(k — 1) — z1(k — 2), to obtain Azy(k), both z;(k — 1) and z;(k — 2) have to
be transformed to the co-ordinate system around the steady state zo;;. Again, this

transformation can be derived from (9.26) and (9.27) as follows:

Azp(k—1) = xp(k—1)+zor — zorr +er(k — 1) — er7(k — 1)
—[zr(k = 2) + zor — zorr + €1(k — 2) — €71 (k — 2)]
= 2i(k—1)—zr(k—2)+e(k—1) —e(k —2)
—err(k — 1) = egs(k — 2)] (9.28)
= Az;(k—1)+ Aes(k — 1) — Aegr(k — 1).

In this case, we see that no correction can be made as Ae;(k — 1) and Aerp(k — 1)

cannot be evaluated. Instead, we choose to use the approximation
Ail?[](k — 1) ~ A:E[(]C — 1) (929)

This approximate initialization of the state-estimator and the prediction model is the
best we can do and is justified if Ae;(k — 1) — Aerr(k — 1) is small. This is the case
when the two linearizations are close to being parallel, the value of the steady state
being the main factor distinguishing the two linearizations. This can be achieved, for
example, when the model error specification used for the operating range subdivision
is small enough.

However, when Ae;(k—1)—Aejr(k—1) is not small, the error introduced by (9.29)



227

can be considered as an estimation error which is to be corrected by an appropriate

design of the estimator gain.

9.6 Simulations

The simulations are organized around two different power transients:
e a ramp-down in power from 30% to 5%; and
e a stair-up in power from 5% to 40% in steps of 5% power.

The model family used in these simulations is based on data supplied by EDF (see
§9.3.2). It consists of 17 models for 17 sub-ranges as listed in Table 9.3. This choice
of the model family ensures a model error of 0.2 in each sub-range, as we discussed

in §9.5.2. The following issues will be illustrated in this section:

1. overall performance of the LPV MPC controller compared to the conventional

MPC controller with a fixed internal model;
2. sensitivity to the choice of tuning parameters;
3. robustness against structural model change;

4. sensitivity to operating range subdivision and choice of model error specifica-

tion;
5. sensitivity to measurement noise;
6. influence of estimator design;

7. comparison with existing gain-scheduled controllers at EDF.

9.6.1 Overall Performance

Figure 9.11 shows the system response to a ramp-down in power from 30% to 5%. All

variables have been normalized and expressed as percent of their maximum values.
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Figure 9.11: Responses to power ramp-down from 30% to 5% with a conservative
choice of tuning parameters (I'y = 1, I', = 0, Ta, = 0.1, p = 50, m = 2); solid -
LPV MPC; dashed — LTI MPC; dotted — desired N, set-point (upper plot), steam
demand (lower plot).

A sampling time of 1 sec was used. The controller parameters were: ry=1,7rI=
0, I'aw = 0.1, p =50, m = 2. The estimator was designed using steady state versions
of (9.24), (9.25) with V'(¢) = 0.5I, W = 0.0001 to obtain the model varying filter gain
K. The improvement of model varying MPC over conventional linear MPC which
uses a fixed internal model corresponding to the power level 5% is significant.

Similar improvement in controller performance is achieved when the power is
increased in steps from 5% to 40%, as shown in Figure 9.12 for the water level response
and in Figure 9.13 for the corresponding control action. Note that, as mentioned in
§9.4.1, the set-point for Ny is a function of the operating power, as denoted by the
dotted curve in all the Ny, plots.

9.6.2 Sensitivity to Choice of Tuning Parameters
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Figure 9.12: Water level response to step-wise power increase from 5% to 40% with a
conservative choice of tuning parameters (I'y =1, I'y, =0, T'a, = 0.1, p =50, m =
2); solid - LPV MPC; dashed — LTT MPC; dotted — desired set-point Ny,.

The simulation results in the last section were achieved with a conservative tuning
scheme, detuned to allow the conventional fixed internal model MPC to work prop-
erly over the ranges of the simulated power transients. If the length of the control
horizon is now changed to a more aggressive setting from m = 2 to m = 10 and at
the same time the weight on Au, I'a,, is increased from 0.1 to 0.5 to contain this
aggressive control action, then, for the same simulations as in the previous section,
the conventional MPC controller is not only less effective than the LPV MPC con-
troller, but its control action reaches the limit of instability. This can be observed in
Figures 9.14, 9.15 and 9.16. Note that the estimator design is the same as in §9.6.1.

This is an important result as it also indicates that the LPV MPC controller is
not very sensitive to the choice of tuning parameters, which can be interpreted as a

robustness to changes in tuning parameters.

9.6.3 Robustness to Structural Model Change

To check if the LPV MPC controller is robust to structural model changes, the con-
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Figure 9.13: Feed-water response to step-wise power increase from 5% to 40% with a
conservative choice of tuning parameters (I'y =1, ', =0, Ta, = 0.1, p =50, m =
2); top - LPV MPC; bottom — LTI MPC; dotted — steam demand Q,,.

troller was implemented on a slightly different steam generator model. The feed-water
dynamics were augmented with a non-minimum phase term, which gave an inverse
response behavior to the feed-water system. This is an important check because as
mentioned in §9.3.2, the inverse response behavior was neglected in the feed-water
system dynamics.

The augmented system dynamics are given by the following equations: (compare

with the model equations (9.10) and (9.11) which were used to derive the controller)

1 QLS — S
nis) = — ( M7 u(s)_l__ﬂd@)) (9.30)

Tos \ (14 75)(1 + Tps) 1+Tys
() = 7 (u(s) - d(s). 99)

The parameters 5y, 8; have been provided by EDF as functions of the operating power
and are listed in Table 9.4.
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Figure 9.14: Responses to power ramp-down from 30% to 5% with a more aggressive
choice of tuning parameters (I'y = 1, I', = 0, T'a, = 0.5, p = 50, m = 10); solid -
LPV MPC; dashed ~ LTT MPC; dotted — desired Ny, set-point (upper plot), steam
demand (lower plot).

Power (%) 5 7 9 11 13 18 25 30 50 100
Bo -0.0030 | -0.0036 | -0.0042 | -0.0050 | -0.0063 | -0.0113 | -0.0198 | -0.0256 | -0.0403 | -0.0412
51 0.0253 0.0240 0.0236 0.0240 0.0251 0.0292 0.0345 0.0368 0.0369 0.0370

Table 9.4: Parameter values for the augmented feed-water dynamics.

Figure 9.17 shows the power ramp-down simulation for this augmented plant. We
can see that the performance is not strongly affected by the presence of the feed-water
inverse response; only a slight oscillation is visible in the control action and water
level response.

Next we investigate how the controller performance is influenced by various factors
such as the model error specification for the original model family, measurement noise

and choice of the MPC filter parameters.

9.6.4 Sensitivity to Model Error Specification
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Figure 9.15: Water level response to step-wise power increase from 5% to 40% with
a more aggressive choice of tuning parameters (I'y =1, I'y, = 0, I'a,, = 0.5, p =
50, m = 10); solid - LPV MPC; dashed — LTI MPC; dotted — desired set-point Ng..

Figure 9.18 shows the water level response obtained with the parameter varying MPC
scheme for different choices of the model families used to describe the steam generator.
These model families differ in the value of the error specification used to generate
these families from the EDF model data, as discussed in §9.5.2. Figure 9.19 shows
the corresponding feed-water flow-rates. The circles in Figure 9.19 denote the points
where the prediction model in the MPC algorithm switches to a new model based on
the change in the operating point.

It is intuitively to be expected that when the model error specification is high, the
overall control performance will be poor. This is seen from the greater undershoot
of the water level response in Figure 9.18. From Figure 9.19, we also observe that
there are greater discontinuities in the control action with increasing model error
specification, as can be seen at the points at which the prediction and estimation

model switches.
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Figure 9.16: Feed-water response to step-wise power increase from 5% to 40% with
a more aggressive choice of tuning parameters (I'y = 1, I', = 0, T'a, = 05, p =
50, m = 10); top — LPV MPC; bottom — LTT MPC; dashed — steam demand Q,.

9.6.5 Sensitivity to Measurement Noise

Figures 9.20 and 9.21 show the effect of measurement noise (white noise) affecting,
respectively, the steam flow and the narrow range level measurements. The estimator
design is kept constant for all these simulations. We clearly see a stronger sensitivity
to level measurement noise (Figure 9.21). The effect is much less pronounced for
steam measurement noise, leading to a slightly higher overshoot and longer settling

time (Figure 9.20). Note that the estimator is the same as the one in §9.6.1.

9.6.6 Sensitivity to Estimator Design

However, the degradation of performance due to level measurement noise can be
significantly reduced by appropriately choosing the variance of the applied noise as

a design parameter in the estimator design (Step 3 in the LPV MPC algorithm
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Figure 9.17: Power ramp-down simulation on plant extended with an inverse response
behavior in the feed-water system; dotted — set-point for IV in the top plot and steam
demand @, in the lower plot.

described in §9.5.1). The result of this change of the estimator is shown in Figure 9.22.
Note that in this case, we have designed the estimator as in §9.6.1 but with the

appropriate choices of V and W to reflect our knowledge of the noise characteristics.

9.6.7 Comparison with Controllers from EDF

Figure 9.23 shows the power ramp down simulation for the gain scheduled PID con-
troller from EDF. For comparison, the responses using the LPV MPC controller are
also given. The performance improvement using the LPV MPC controller (dashed
curve) is significant. It is interesting to note the difference between the control actions
for the two control schemes, in particular at the critical points corresponding to the
beginning and end of the steam demand ramp-change. It is also interesting to note
the full exploitation of the available control bandwith by the LPV MPC controller

which can be seen between the simulation times of 300 sec and 400 sec. The gain
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Figure 9.18: Water level responses for different model error specifications e, g,;
dotted — set-point for Ny,.
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Figure 9.19: Feed-water responses for different model error specification ey, 4,) in the
power range sub-division procedure. For all plots, x-axis is time (sec), y-axis is Ny,
(normalized %), circles are points where there is a model switch; dotted curve is steam
demand @Q,.

scheduled PID controller from EDF was clearly tuned in a conservative manner as

the trajectories of the manipulated variable show.
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Figure 9.20: Sensitivity to steam flow measurement noise, for noise intensities 0.001,
0.01, 0.1, 0.5. The dotted curve is the Ny, set-point.
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Figure 9.21: Sensitivity to NN, level measurement noise, for noise intensities 0.001,
0.01, 0.1, 0.5. The dotted curve is the N, set-point.

9.7 Conclusions

In this chapter, we presented a general framework for systematically studying the

UTSG level control problem over its entire operating power range using MPC tech-
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Figure 9.22: Sensitivity to /N, measurement noise, for noise intensities 0.001, 0.01,
0.1, 0.5, with optimal estimator. The dotted curve is the N, set-point.

niques. The framework allows consideration of a discrete family of linear models
which is derived from a LPV model of the plant using a model error criterion. The
LPV model can be obtained from practical identification experiments. The basic
control strategy involves updating the linear model in the MPC formulation. Issues
such as constraints on the manipulated and controlled variables, use of feed-forward
control, tracking of varying water level set-points and state estimation in the presence

of noisy measurements can all be handled in this setting.
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Chapter 10 Conclusions

10.1 Summary of Contributions

This thesis focused on the problem of controlling systems with constraints. Two
approaches to addressing the constrained control problem for linear systems were

studied.

Anti-Windup Bumpless Transfer (AWBT)

This approach involved the development of a truly general unifying framework for the
analysis and synthesis of AWBT control systems. The generality of the framework
allowed consideration of any control system structure, including feed-forward, feed-
back and cascade, which are subject to control input nonlinearities. The theoretical
development was based on the classical two-step AWBT paradigm of first designing
the linear controller ignoring the input nonlinearities and then adding AWBT com-
pensation to minimize the adverse effects of control input nonlinearities. In this sense,
the essential structure inherent in AWBT schemes was captured in the framework.
Not surprisingly, the framework was shown to unify numerous existing LTI AWBT
schemes in terms of a co-prime factorization of the original linear controller. One par-
ticular scheme which was considered in detail was a novel anti-windup implementation
of Internal Model Control (IMC).

The problem of AWBT analysis was carried out in the framework of the passivity
theorem with appropriate choices of multipliers. The basic premise of this analysis
was to cover the input nonlinearity by a class of sector bounded memoryless struc-
tured nonlinearities and then apply concepts from absolute stability theory to develop
sufficient conditions guaranteeing stability for all nonlinearities in the specified class.
This has been the predominant approach to analyzing stability properties of AWBT

control systems reported in the literature. Once again, the resulting sufficient con-
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ditions for stability were shown to generalize several previously reported attempts
to analyze stability of AWBT control systems. These previously reported conditions
were based on seemingly diverse techniques such as the Popov, Circle and Off-Axis
Circle criteria, the optimally scaled small-gain theorem (generalized p upper bounds)
and describing functions. The general conditions developed in the AWBT analy-
sis were shown to be less conservative than the existing conditions available in the
literature.

An outline of the AWBT synthesis problem based on recent results on multi-
objective controller synthesis was presented. Several promising lines of research, using
a one-step AWBT compensation and dynamic AWBT compensation, were discussed

to arrive at a suitable AWBT controller design.

Robust Model Predictive Control

The second approach to addressing the constrained control problem for linear sys-
tems involved model predictive control (MPC) techniques. A novel and complete
framework for robust MPC synthesis was developed using techniques from the theory
LMIs. The problem formulation allowed incorporation of two classes of very gen-
eral and commonly encountered uncertainty descriptions. The on-line optimization
involved the solution of an LMI-based linear objective minimization. The result-
ing time-varying state-feedback control law minimizes, at each time-step, an upper
bound on the robust performance objective, subject to input and output constraints.
The feasible receding horizon control algorithm was shown to robustly asymptoti-
cally stabilize the set of uncertain plants under consideration. A number of standard
extensions to this state-feedback formulation such as constant set-point tracking, ref-
erence trajectory tracking, disturbance rejection, application to systems with time
delays and the output feedback case with an appropriate observer design completed
the theoretical development. We believe this was one of the first attempts to develop
a truly general framework for robust MPC in the state-space formulation for a fairly

broad class of realistic model uncertainty descriptions.
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Model Varying Predictive Control

A case study involving application of model predictive control with a varying internal
model was carried out for the steam generator level control problem in a nuclear power
plant. The control technique involved an extension of standard MPC techniques to
linear parameter varying systems. The improvement in the performance of the level

control system was demonstrated by extensive simulation studies.

10.2 Suggestions for Future Work

A number of issues remain open, particularly in the area of AWBT controller synthe-

sis. We will briefly discuss these issues.

Dynamic AWBT controller design Although promising lines for obtaining
the AWBT controller using dynamic output feedback were outlined in Chap-
ter 7, many of the details need to be worked out. In particular, the issue of
obtaining good “recovery of linear performance,” especially after the system
comes out of saturation, needs to be addressed carefully. This is not a serious
issue in the classical static AWBT compensation techniques, but with dynamics

involved in the AWBT compensation, more care is required.

One-step AWBT controller design As with the dynamic AWBT controller
design, the details of the controller synthesis in this one-step setting need to be
worked out. Additionally, here, we suffer from the disadvantage that the final
AWBT controller is of the same order as the plant to be controlled. In this sense,
the controller order may be unnecessarily increased in this one-step synthesis.
Note that this was not an issue in the classical “two-step” paradigm of AWBT
compensation, where the original linear controller could be any low order system
such as a PI controller, and the AWBT compensation would only “retrofit” this
original controller. Techniques to allow design of fixed order AWBT controllers

need to be explored. These might involve generalizations of the multi-objective
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controller synthesis results presented in Chapter 7 to controllers of arbitrary

prespecified orders as reported in Scherer (1995) [118].

Comparative studies Studies to compare the advantages and disadvantages of
the numerous possibilities available to synthesize the AWBT controller (classical
static two-step, dynamic and one-step) need to be done to evaluate which is the
most feasible alternative. The final test would clearly be the ease in implement-
ing the controller (controller order) and the achieved closed-loop performance

in the presence of input constraints.

Comparison with MPC An important test of the AWBT schemes would be
to compare their performance with that of MPC which ezplicitly incorporates
both input and output constraints. In particular, guidelines to decide when to
use MPC based on the severity of constraints, and when to apply the compu-

tationally cheaper alternative of AWBT compensation need to be developed.

Case studies The previous comparisons need to be supplemented with case

studies on realistic plant conditions.

Beyond these issues, there needs to be greater focus on constrained control of
nonlinear systems, an area which is just beginning to receive attention. We saw in
Chapter 3 how the linear anti-windup IMC scheme could be extended to a class of
input-output linearizable plants. Similarly, we saw in Chapter 8 that the robust MPC
algorithm which we developed could also be applied to a class of nonlinear systems
whose Jacobians lie in a polytope. Such extensions of ideas from linear control to the
nonlinear case should be explored in their entirety before addressing the truly general

nonlinear constrained control problem.
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