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Abstract

We use the scale of neutrino mass and naturalness considerations to obtain model-independent

expectations for the magnitude of possible contributions to muon decay Michel parameters

from new physics above the electroweak symmetry-breaking scale. Focusing on Dirac neu-

trinos, we obtain a complete basis of effective dimension four and dimension six operators

that are invariant under the gauge symmetry of the Standard Model and that contribute

to both muon decay and neutrino mass. We show that—in the absence of fine tuning—the

most stringent neutrino mass naturalness bounds on chirality-changing vector operators rel-

evant to muon decay arise from one-loop operator mixing. The bounds we obtain on their

contributions to the Michel parameters are two orders of magnitude stronger than bounds

previously obtained in the literature. In addition, we analyze the implications of one-loop

matching considerations and find that the expectations for the size of various scalar and

tensor contributions to the Michel parameters are considerably smaller than those derived

from previous estimates of two-loop operator mixing. We also show, however, that there

exist gauge-invariant operators that generate scalar and tensor contributions to muon de-

cay but whose flavor structure allows them to evade neutrino mass naturalness bounds. We

discuss the implications of our analysis for the interpretation of muon decay experiments.

We then repeat the analysis with Majorana neutrinos. Since the lowest dimension mass

operator in this case is a five-dimensional operator, we start with a new basis of effective

dimension five and dimension seven operators that contribute to muon decay and neutrino

mass through radiative corrections. In contrast to similar studies of magnetic moments and

masses using Dirac and Majorana neutrinos, which found substantially weaker bounds for

Majorana magnetic moments, we find that the limits on muon decay Michel parameters

from Majorana neutrinos are similar in magnitude to the limits from Dirac neutrinos. We

also find, similar to the Dirac case, that there are operators in our basis whose coefficients

are not bound by neutrino mass.
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Finally, we calculate one-loop renormalization factors of twist-two operators in massless

QCD with domain-wall fermions. The Shamir type domain-wall fermion, with an infinitely

large extra dimension to describe the massless fermion, is used.
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Chapter 1

Introduction

This thesis is a collection of three phenomenological projects I have worked on as a grad-

uate student. Two of the three fall under the somewhat small but interesting umbrella of

“neutrino-matter interactions”; these two projects are the focus of this dissertation and I

have attempted to reflect this focus with the title. The third project is in a very different

area — namely, the lattice — and is an excerpt from a longer paper I worked on before

moving to electroweak physics.

Since it would be neither interesting nor insightful to construct this thesis as simply

a collection of papers, I have endeavored to make it more than the sum of its parts by

adding material to provide background and context. The brief review of muon decay theory

and experiment in the next chapter is an example. Muon decay, a purely leptonic process,

is important because it provides a direct test of the spin structure of the charged weak

current and as a result is one of the best methods available to test the structure of physics

beyond the Standard Model (SM). With this in mind, the chapter is intended to make

the results of the two subsequent chapters, on the theoretical connection between Dirac

and Majorana neutrinos and muon decay, more illuminating by contrasting them with

experimental findings and describing how these findings are obtained.

With the discovery of neutrino oscillations, neutrino mass has become the focus of much

theoretical and experimental work since it provides a unique window onto beyond the SM

physics. Much of this work has focused on crucial areas such as finding the number of

neutrino species, the values of the mass eigenstates and mixing angles, whether or not

neutrinos violate charge and parity (CP), are neutrinos “Dirac” or “Majorana” particles,

and if neutrinos have (measurable) effects on other particle physics processes. It is the

last question that this thesis explores. As I will show, neutrino mass can be related to
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muon decay in a model-independent way: our phenomenological analysis will not make any

assumptions about the dynamical origin of neutrino mass. At the same time, I will assume

a very generous limit for the neutrino mass — based on experimental and cosmological data

— that still gives interesting results. Since the number of candidates for physics beyond the

SM is large, model-independent studies of neutrino-matter interactions and neutrino mass

are a valuable tool in the search for new physics.

Chapter 3 discusses how Dirac neutrino mass limits can be used to put interesting

constraints on muon decay parameters. The first step is constructing the operator basis,

which means looking for chirality-changing operators that contribute to both processes.

This is, in fact, a specific example of a general connection between neutrino mass and

certain neutrino-matter interactions: under minimal assumptions, we will see that these

chirality-changing interactions generate contributions to neutrino mass through loop effects.

After constructing the basis we will proceed with the operator analysis, calculating matching

contributions from higher-dimensional operators to lower-dimensional operators, and mixing

between operators. In the end, we will see that neutrino mass does put strong constraints

on some contributions to muon decay parameters.

The work described in Chapter 4 is similar in outline and scope and is intended to

complement the material in Chapter 3. I will first discuss the reasons why a separate

analysis for Majorana neutrinos is necessary. The rest of the chapter will then closely

follow the previous chapter: we will construct the operator basis using five-dimensional and

seven-dimensional operators and perform the operator analysis with matching and mixing

calculations. As it turns out, the limits on muon decay parameters from Majorana neutrinos

will not be much different than those obtained from Dirac neutrinos, and we will explore

some of the implications of this result.

The two appendices address the very different area of the lattice, which is the only way

at present to study quantum chromodynamics (QCD) in a non-perturbative way. I will be

looking at a specific type of fermion implemented on the lattice, called the “domain-wall

fermion,” giving a pedagogical introduction to how it is constructed and using it to calculate

the matching coefficients for various twist-two operators. I first introduce the domain-wall

action and then move into a review of lattice perturbation theory, with a few illustrative

examples. The remainder is devoted to presenting results for specific operators, including

quark self-energies and bilinears and twist-two operators. The last results, on twist-two
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operators, are new and have not appeared in the literature.

1.1 Notation and Conventions

We work throughout in units in which h̄ = c = 1.

We use the Weyl or chiral basis for the Dirac matrices

γµ =


 0 σµ

σ̄µ 0


 , γ5 =


 −1 0

0 1


 ,

where σµ = (1, ~σ), σ̄µ = (1,−~σ), and the σis are the Pauli matrices

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 .

In Chapter 4 we will need a new way of writing fermion mass terms using the charge-

conjugation matrix C. In the chiral representation of the Dirac matrices,

C =


 −ε 0

0 ε


 ,

where ε is the antisymmetric matrix. So for a Dirac spinor ψ, the conjugate spinor is [1]

ψc ≡ Cγ0ψ∗

and

ψc = ψTC .

The Majorana mass is then written

L = −1

2
m
(
ψT

LCψL + h.c.
)
. (1.1)

All other conventions are the standard ones in the literature.
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Chapter 2

Muon Decay

2.1 Purpose

The study of neutrino-matter interactions has the potential to set bounds on beyond-the-

Standard Model parameters that may soon be accessible by experiment. For muon decay,

these bounds are on some of the so-called Michel parameters that contain information about

contributions to muon decay from unknown physics. In the Standard Model, there are well-

known predictions for what these parameters should be. In order to analyze the effect of

neutrino masses on the Michel parameters (MPs), we will need to cover some background

material.

I will first review what should be the familiar process of muon decay by looking at the

muon decay spectrum and its use. I will then examine the Michel parameters — essentially

a way of parameterizing contributions to muon decay from beyond the Standard Model

— by explaining how they are constructed. Lastly, I will roughly sketch how muon decay

experiments work and give some recent results for a particular experiment.

2.2 Muon Decay and the Michel Parameters

Muon decay (µ− → e−ν̄eνµ) is an ideal laboratory for testing electroweak interactions in

the Standard Model because it provides a direct test of the spin structure of the charged

weak current. Since this process only involves leptons, there is no need to consider more

complicated and unknown strong interaction contributions. This means that we have a clean

way to probe the electroweak V − A structure, and a careful analysis of the muon decay

spectral shape parameters can illuminate potential physics beyond the Standard Model.
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Muon decay is typically described with the following effective interaction:

Lµ−decay = −4Gµ√
2

∑

γ, α, β

gγ
αβ ēαΓγνeν̄µΓγµβ , (2.1)

where γ = S, V, T indicate scalar, vector, and tensor interactions, and α, β = R,L indi-

cate the chiralities of the charged leptons. The chiralities of the neutrinos are determined

by the values of γ, α, and β. The coupling constants g parameterize the strength of the

corresponding phenomenological interactions. In the SM, we can easily see that gV
LL = 1,

while all other gs are expected to be zero. In many extensions of the SM, however, some of

the other coupling constants besides gV
LL = 1 can be nonzero. In the left-right symmetric

model, for instance, gV
RR, gV

LR, and gV
RL are no longer zero, although the details of that will

not be discussed here.

The Michel parameters, of which there are many, describe the energy of the decay

electron or positron, its angular distribution of the electrons if the muons are polarized, and

its spin polarization. In extensions of the SM, any new interactions of the muon would affect

these observables, so they are highly sensitive to deviations caused by physics beyond the

SM. The Michel parameters themselves are bilinear combinations of the coupling constants

g. For example, one of the parameters, called ρ, can be written as [2]

ρ =
3

4
− 3

4
[|gV

LR|2 + |gV
RL|2 + 2|gT

LR|2 + 2|gT
RL|2 +Re(gS

RLg
T∗
RL + gS

LRg
T∗
LR)] . (2.2)

The four most commonly used parameters, ρ, η, ξ, and δ, describe the momentum depen-

dence of the isotropic part (ρ) of the electron energy spectrum plus an additional small

term proportional to another parameter (η), while the asymmetry is proportional to a third

parameter (ξ) multiplied by the muon polarization Pµ, and a fourth parameter (δ) describes

the momentum dependence. In the Standard Model, these parameters are expected to be

ρ = 3/4, η = 0, ξ = 1, and δ = 3/4.

We will now examine the muon decay spectrum in some detail to see where the Michel

parameters fit in. For the four-fermion interaction, the differential decay rate at tree-level

for a polarized muon, after doing the neutrino phase space integrals and before integrating
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over the electron phase space (and where the final state spin is not detected), is [3]

d2Γµ→eνµν̄e

dxdcosθ
=
G2

Fm
5
µ

192π3
x2

[
FIS(x)︷ ︸︸ ︷

6(1 − x) + 4ρ

(
4x

3
− 1

)
± Pµcosθ

FAS(x)︷ ︸︸ ︷
2ξ

(
1− x+ 2δ

(
4x

3
− 1

))]
.

(2.3)

Here we have assumed that the e± and neutrino masses are zero, θ is the angle between the

longitudinal muon polarization Pµ and the e± momentum, the plus/minus sign corresponds

to µ± decay, and x is a reduced electron energy (notice that µ/2 is the maximum e± energy

in the me → 0 limit. The isotropic (FIS(x)) and anisotropic (FAS(x)) parts of the e± energy

spectrum are labeled.

All of the previously mentioned Michel parameters, aside from η, are visible in Eq. (2.3).

The parameter η occurs when the e± mass in the rate formula is not neglected, and so does

not enter into this simplified formula. There are also less-commonly used MPs that arise

from taking e± polarization into account, such as ξ ′, ξ′′, η′′, α, and β, but they do not enter

into this analysis. In the SM with massless neutrinos, the muon polarization magnitude

Pµ is one; in actual experiments, only the product Pµξ is measured. When comparing

experimental values for the Michel parameters with the rate formula, corrections due to

radiative effects should first be subtracted from the data.

2.3 Experimental Details and Results

In order to elucidate the practical considerations behind measuring muon decay parameters,

we will briefly look at the experiment at TRIUMF responsible for some of the most recent

spectral shape parameter measurements, TWIST (TRIUMF Weak Interaction Symmetry

Test). The goal of TWIST is to measure the entire differential spectrum of positrons from

the decay of polarized muons. It recently improved on the accepted Particle Data Group

values of two Michel parameters by factors of 2.5 (for ρ [7]) and 2.9 (for δ [8]). In the past,

each of the Michel parameters was determined in dedicated experiments, so TWIST is the

first muon decay experiment to measure more than one MP with the same apparatus [4].

The experiment requires an high-intensity beam of spin-polarized muons from π+ decay.

The charged pions are produced by the collisions of energetic protons in a proton beam with

the nuclei of a heavy metal target. Ideally, the pions, with mass mπ± = 139.5669 MeV,

then simply decay at the surface of a production target to produce a muon and a muon
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neutrino. Not suprisingly, however, these charged pions and muon decay products behave

differently in the target depending on whether they are positively or negatively charged.

Negative pions that stop in the target behave like heavy e−, rapidly cascading down to

tightly bound orbitals where they are almost always captured by the nucleus instead of

decaying to negative muons. In contrast, the positive pions that come to rest in the target

take up positions between atoms and are usually too far from any nuclei to be captured.

For these reasons, TWIST uses a polarized µ+ beam.

The µ+ resulting from π+ decay are completely spin polarized and decay anisotropically

via the weak interaction to a positron (and neutrinos) whose momentum is correlated with

the muon angular momentum at the instant of decay. The pions that happen to come to

rest just within the surface of the pion production target decay to low momentum (up to

29.6 MeV) “surface” muons that only need to travel a short distance out of the target and

into the beamline vacuum. Unfortunately, the surface muon beam is not monoenergetic —

the muons come from pions decaying at various depths in the pion production target, and

those travelling from deeper in lose more of their energy — and the muon spectrum rises

with momentum and drops sharply at the “surface muon edge.” It is desirable to use those

muons with lower energy so that they can be stopped in the thinnest targets possible. As

a result, the muon beam must be fine-tuned into a narrow momentum range, typically just

below the surface muon edge, in order to obtain the greatest beam density.

After being tuned or “degraded,” the beam enters a 2 Tesla superconducting solenoid

and is stopped in a thin target at the center of a symmetric array of 56 low-mass, high-

precision planar drift chambers, which are used to track the paths and energies of the

particles (see [5] for a more complete description of muon beamlines). The drift chambers

were constructed to minimize the effects of multiple scattering and energy loss of both the

incoming µ+ and the outgoing e+ from the target. The final errors are primarily limited by

systematic effects, since the statistical precision in this experiment is very high. See Fig. 2.3

for a schematic cutaway diagram of the TWIST spectrometer.

By accumulating 109 muon decays, TWIST’s goal is to achieve precisions that are 3−10
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Figure 2.1: A conceptual drawing of the TWIST spectrometer. The superconducting solenoid
is inside the steel yoke (the yoke itself is required to produce the highly uniform 2 Tesla
field for the drift chamber). The drift chambers and proportional chambers (measuring the
energies of the particles) are symmetrically placed from the central target. Picture taken
from [6].
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times better than previous experiments; this means

∆ρ < 1× 10−4

∆δ < 3× 10−4

∆(Pµξ) < 2× 10−4 .

The most recent results from TWIST are for the Michel parameters ρ, δ, and Pµξ [7, 8, 9]:

ρ = 0.75080 ± 0.00032(stat.) ± 0.000097(syst.) ± 0.00023

δ = 0.74964 ± 0.00066(stat.) ± 0.00112(syst.)

Pµξ = 1.0003 ± 0.0006(stat.) ± 0.0038(syst.) .

Deviations from the SM value of ρ = 3/4 imply mixing of left- and right-handed muon

and electron couplings so that the muon decay Lagrangian would include scalar, vector, or

tensor couplings between left-handed muons and right-handed electrons, or vice versa. (Such

deviations can occur, for example, in left-right symmetric models.) The last uncertainty in

ρ represents the dependence of ρ on the MP η, and is the change in ρ when η changes within

its uncertainty. In the SM, δ is also 3/4; it is in the anisotropic part of the Michel decay

spectrum and parameterizes the momentum dependence of the outgoing electron. Finally,

Pµξ = 1 in the SM. The parameter ξ expresses the level of parity violation in µ-decay. All

of these quantities agree with previous measurements and the SM values.

With the context for muon decay now set by this chapter, we may now examine the

particular details of the connection between neutrino mass and muon decay.



10

Chapter 3

Dirac Neutrinos and µ-decay

3.1 Introduction

Precision studies of muon decay continue to play an important role in testing the Standard

Model (SM) and searching for physics beyond it. In the gauge sector of the SM, the Fermi

constant Gµ that characterizes the strength of the low-energy, four-lepton µ-decay operator

is determined from the µ lifetime and gives one of the three most precisely known inputs

into the theory. Analyses of the spectral shape, angular distribution, and polarization

of the decay electrons (or positrons) probe for contributions from operators that deviate

from the (V − A) ⊗ (V − A) structure of the SM decay operator. In the absence of time-

reversal (T) violating interactions, there exist seven independent parameters — the so-called

Michel parameters [10, 11] — that characterize the final state charged leptons: two (ρ, η)

that describe the spatially isotropic component of the lepton spectrum; two (ξ, δ) that

characterize the spatially anisotropic distribution; and three additional quantities (ξ ′, ξ′′,

η′′) that are needed to describe the lepton’s transverse and longitudinal polarization1. Two

additional parameters (α′/A, β′/A) characterize a T-odd correlation between the final state

lepton spin and momenta with the muon polarization: Ŝe · k̂e × Ŝµ.

Recently, new experimental efforts have been devoted to more precise determinations

of these parameters. The TWIST Collaboration has measured ρ and δ at TRIUMF [7, 8],

improving the uncertainty over previously reported values by factors of ∼ 2.5 and ∼ 3, re-

spectively. An experiment to measure the transverse positron polarization has been carried

out at the Paul Scherrer Institute (PSI), leading to similar improvements in sensitivity over

the results of earlier measurements [12]. A new determination of Pµξ with a similar de-

1The parameters η and η′′ are alternately written in terms of the independent parameters α/A and β/A.
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gree of improved precision is expected from the TWIST Collaboration, and one anticipates

additional reductions in the uncertainties in ρ and δ [13].

At present, there exists no evidence for deviations from SM predictions for the Michel

parameters (MPs). It is interesting, nevertheless, to ask what constraints these new mea-

surements can provide on possible contributions from physics beyond the SM. It has been

conventional to characterize these contributions in terms of a set of ten four-fermion oper-

ators

Lµ−decay = −4Gµ√
2

∑

γ, ε, µ

gγ
εµ ēεΓ

γνν̄Γγµµ (3.1)

where the sum runs over Dirac matrices Γγ = 1 (S), γα (V), and σαβ/
√

2 (T), and the sub-

scripts µ and ε denote the chirality (R, L) of the muon and final state lepton, respectively2.

In the SM, one has gV
LL = 1 and all other gγ

εµ = 0. A recent, global analysis by Gagliardi,

Tribble, and Williams [15] give the present experimental bounds on the gγ
εµ that include the

impact of the latest TRIUMF and PSI measurements.

Theoretically, the gγ
εµ can be generated in different scenarios for physics beyond the SM.

The most commonly cited illustration is the minimal left-right symmetric model that gives

rise to non-zero gV
RR, gV

RL, and gV
LR. From a model-independent standpoint, the authors

of [16] recently observed that the operators in Eq. (3.1) having different chiralities for the

muon and final state charged lepton will also contribute to the neutrino mass matrix mAB
ν

through radiative corrections. Consequently, one expects that the present upper bounds on

mν should imply bounds on the magnitudes of the gγ
εµ. The authors of [16] argued that the

most stringent limits arise from two-loop contributions, because the one-loop contributions

are suppressed by three powers of the tiny, charged lepton Yukawa couplings. The two-loop

constraints are nonetheless stronger than the present bounds given in [15] and could become

even more so with the advent of future terrestrial and cosmological probes of the neutrino

mass scale.

In this chapter, we present the results of a follow-up analysis of mν constraints on

the µ-decay parameters, motivated by the observations of [16] and the new experimental

developments in the field. Our study follows the approach of [17, 18, 19], used recently

in deriving model-independent naturalness bounds on neutrino magnetic moments implied

by the scale of mν . We concentrate on the case of Dirac neutrinos, deferring a detailed

2The normalization of the tensor terms corresponds to the convention adopted in [14]. We do not specify
the neutrino flavors in Eq. (3.1) since the µ-decay experiments do not observe the final state neutrinos.
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consideration of Majorana neutrinos to the following chapter. Although there exists a

long-standing theoretical prejudice favoring the see-saw mechanism with light Majorana

neutrinos as an explanation of the small scale of mν , we see several reasons for studying the

Dirac and Majorana cases separately:

(i) From the standpoint of string phenomenology, obtaining models with neutrino self-

couplings and a type I see-saw mechanism appears to be quite difficult. Recently,

the authors of [20] performed a systematic study of 175 viable ways of embedding

the Standard Model gauge group in the E8 × E8 heterotic string with Z3 orbifold

compactification and found that only two of the twenty classes of such inequivalent

models admitted neutrino self-couplings. The natural scale of mν in these two classes

lies many orders of magnitude below the scale implied by neutrino oscillation data.

Interactions leading to Dirac masses occur more abundantly in such constructions. On

the other hand, a subsequent study of a specific Z3 × Z3 orbifold string construction

[21] indicated the plausibility of obtaining a type II see-saw mechanism, wherein left-

handed lepton-number-violating neutrino self-couplings arise from interactions with

scalar SU(2)L triplet fields. Either way, however, the appearance of Majorana mass

terms is not at all a generic feature of string constructions, leaving the Dirac case as

a logical possibility.

(ii) Experimentally, there exists no conclusive evidence for or against the presence of light

Majorana neutrinos. New searches for neutrinoless double β-decay (0νββ) could pro-

vide conclusive proof that the light neutrinos are Majorana, provided the neutrino

mass spectrum has the “inverted” rather than “normal” hierarchy (for recent reviews,

see, e.g., [22, 23]). If, on the other hand, future long-baseline oscillation experiments

establish the existence of the inverted hierarchy and/or ordinary β-decay measure-

ments indicate a mass consistent with the inverted hierarchy, a null result from the

0νββ searches would imply that neutrinos are Dirac particles3. Either way, the invest-

ment of substantial experimental resources in these difficult measurements indicates

that determining the charge conjugation properties of the neutrino is both a central

question for neutrino physics as well as one that is not settled. Until it is, considering

the implications of Dirac neutrinos remains a valid enterprise.

3We thank S. J. Freedman for useful discussions on this point.
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(iii) The phenomenological analyses of Dirac and Majorana masses for other neutrino

properties and interactions are quite distinct. As illustrated by the recent analyses of

neutrino magnetic moments in [17, 18, 19], the characteristics of the operator basis

and renormalization can be sufficiently different and complex for the two cases that

separate studies of each are warranted. Moreover, the parameterization of the µ-decay

Michel spectrum in the presence of Majorana neutrinos may require modification from

the standard form, as indicated by the recent work of [24]. Rather than lose the

reader in the details of differences in both the Michel parameterization and operator

renormalization for Dirac and Majorana neutrinos, we prefer to concentrate on the

Dirac case in the present study and consider the Majorana case in a separate chapter.

Having this focus in mind, we work with an effective theory that is valid below a scale

Λ lying above the weak scale v ≈ 246 GeV and that contains SU(2)L×U(1)Y -invariant

operators built from Standard Model fields plus right-handed (RH) Dirac neutrinos. We

consider all relevant operators up to dimension n = 6 that could be generated by physics

above the scale Λ. For simplicity, we restrict our attention to two generations of lepton

doublets and RH neutrinos. Extending the analysis to include a third generation increases

the number of relevant operators but does not change the substantive conclusions. While

the spirit of our work is similar to that of [16], the specifics of our analysis and conclusions

differ in several respects:

i) The effective theory that we adopt allows us to compute contributions to mν from

scales lying between the weak scale v and the scale of new physics Λ. In contrast, the

authors of [16] used a Fierz transformed version of Lµ−decay in Eq. (3.1), which is not

invariant under the SM gauge group and, therefore, should be used to analyze only

contributions below the weak scale.

ii) We show that for the two-flavor case the operators in Lµ−decay proportional to gS,T
LR

and gS,T
RL arise from twelve independent dimension n = 6 gauge-invariant four-fermion

operators, while those containing gV
LR and gV

RL are generated by four independent

n = 6 operators that contain two fermions and two Higgs scalars.

iii) While the operators that contribute to µ-decay have dimension n = 6 or higher, the

lowest dimension neutrino mass operator occurs at n = 4. The authors of [16] used
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dimensional regularization (DR) to estimate the mixing between the n = 6 µ-decay

and neutrino mass operators4 but did not consider matching with the n = 4 operator

at the scale Λ that cannot be determined with DR. We derive order-of-magnitude

expectations for the n = 6 operator coefficients implied by this matching, which

depends only linearly on the lepton Yukawa couplings and which gives the dominant

constraints for Λ� v.

iv) For Λ not too different from v, constraints associated with mixing among the n = 6

operators can, in principle, be comparable to expectations arising from contributions

to the n = 4 mass operator. We carry out a complete, one-loop analysis of this

mixing and show that only the neutrino magnetic moment and two-fermion/two-

Higgs operators mix with the n = 6 neutrino mass operator to linear order in the

lepton Yukawa couplings. We derive the resulting bounds on the gV
LR,RL that follow

from this mixing and find that they are comparable to expectations based on one-loop

matching with the n = 4 mass operator for Λ >∼ v.

v) From the mixing with the n = 6 mass operator, we find that the bounds on the

|gV
LR,RL| are two or more orders of magnitude stronger than those obtained in [16] and

at least three orders of magnitude below the experimental limits given in [15].

vi) The neutrino mass implications for the couplings gS,T
LR,RL are more subtle. Of the twelve

independent four-fermion operators that contribute to these couplings, only eight are

directly constrained by the scale of neutrino mass and naturalness considerations.

Based on one-loop matching, we expect that their contributions to the gS,T
LR,RL are

generally ∼ 104 times smaller than the present experimental bounds, and ∼ 103 times

smaller than obtained in the analysis of [16]. We show, however, that the flavor

structure of the remaining four operators allows them to evade constraints implied by

either one-loop matching or two-loop mixing. While from a theoretical perspective

one might not expect their contributions to be substantially larger than those from

the constrained operators, experimental efforts to determine the gS,T
LR,RL remain a

worthwhile endeavor.

A summary of our results is given in Table 3.1. In the remainder of the chapter we give

4Since the computation of [16] did not employ gauge invariant operators, we consider the results to give
at best reasonable estimates of constraints implied by two-loop mixing.
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Table 3.1: Constraints on µ-decay couplings gγ
εµ. The first eight rows give naturalness

expectations in units of (v/Λ)2 × (mν/1 eV) on contributions from n = 6 muon decay
operators (defined in Section 3.2 below) based on one-loop matching with the n = 4 neutrino
mass operators. For Λ ∼ v, the bounds on gV

LR,RL obtained from one-loop mixing are similar
to those listed. The ninth row gives upper bounds derived from a recent global analysis
of [15], while the last row gives estimated bounds from [16] derived from two-loop mixing
of n = 6 muon decay and mass operators. A “-” indicates that the operator does not
contribute to the given gγ

εµ, while “None” indicates that the operator gives a contribution
unconstrained by neutrino mass. The subscript D runs over the two generations of RH
Dirac neutrinos.

Source |gS
LR| |gT

LR| |gS
RL| |gT

RL| |gV
LR| |gV

RL|

O(6)
F, 122D 4× 10−7 2× 10−7 - - - -

O(6)
F, 212D 4× 10−7 - - - - -

O(6)
F, 112D None None - - - -

O(6)
F, 211D - - 8× 10−5 4× 10−5 - -

O(6)
F, 121D - - 8× 10−5 - - -

O(6)
F, 221D - - None None - -

O(6)

Ṽ , 2D
- - - - 8× 10−7 -

O(6)

Ṽ , 1D
- - - - - 2× 10−4

Global [15] 0.088 0.025 0.417 0.104 0.036 0.104
Two-loop [16] 10−4 10−4 10−2 10−2 10−4 10−2

the details of our analysis. In Section 3.2, we write down the complete set of independent

operators through n = 6 that contribute to mAB
ν and/or µ-decay. Section 3.3 gives our

analysis of operator mixing and matching considerations, while in Section 3.4 we discuss

the resulting constraints on the gγ
LR,RL that follow from this analysis and the present upper

bounds on the neutrino mass scale. We summarize in Section 3.55.

The material presented in this chapter was published in [37].

3.2 Operator Basis

To set notation, we follow [17] and consider the effective Lagrangian

Leff =
∑

n,j

Cn
j (µ)

Λn−4
O(n)

j (µ) + h.c. (3.2)

5This work was done in collaboration with Jennifer Kile, Michael Ramsey-Musolf, and Peng Wang.
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where µ is the renormalization scale, n ≥ 4 is the operator dimension, and j is an index

running over all independent operators of a given dimension. The lowest dimension neutrino

mass operator is

O(4)
M,AD = L̄Aφ̃νD

R (3.3)

where LA is the left-handed (LH) lepton doublet for generation A, νD
R is a RH neutrino

for generation D, and φ̃ = iτ2φ
∗ with φ being the Higgs doublet field. After spontaneous

symmetry breaking, one has

φ→


 0

v/
√

2


 (3.4)

so that

C4
M,ADO

(4)
M,AD → −mAD

ν ν̄A
L ν

D
R

mAD
ν = −C4

M,AD v/
√

2 . (3.5)

The other n = 4 operators are those of the SM and we do not write them down explicitly

here.

For the case of Dirac neutrinos that we consider here, there exist no gauge-invariant

n = 5 operators. In considering those with dimension six, it is useful to group them

according to the number of fermion, Higgs, and gauge boson fields that enter:

Four-fermion:

L̄γµLL̄γµL

¯̀
Rγ

µ`R ¯̀
Rγµ`R

¯̀
Rγ

µ`Rν̄RγµνR

ν̄Rγ
µνRν̄RγµνR

L̄`R ¯̀
RL

L̄νRν̄RL

εijL̄i`RL̄jνR

Here `R is the right-handed charged lepton field. Several of the operators appearing in this

list can contribute to µ-decay, but only the last one can also contribute to mAD
ν through
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radiative corrections. Including flavor indices, we refer to this operator as

O(6)
F,ABCD = εijL̄A

i `
C
RL̄

B
j ν

D
R (3.6)

where the indices i, j refer to the weak isospin components of the LH doublet fields and

ε12 = −ε21 = 1.

Fermion-Higgs:

i(L̄AγµLB)(φ+Dµφ)

i(L̄AγµτaLB)(φ+τaDµφ)

i(¯̀ARγ
µ`BR)(φ+Dµφ) (3.7)

i(ν̄A
Rγ

µνB
R )(φ+Dµφ)

i(¯̀ARγ
µνB

R )(φ+Dµφ̃)

Neither of the first two operators in the list (3.7) can contribute significantly to mAD
ν since

they contain no RH neutrino fields. Any loop graph through which they radiatively induce

mAD
ν would have to contain operators that contain both LH and RH fields, such as O (4)

M,AB

or other n = 6 operators. In either case, the resulting constraints on the operator coeffi-

cients will be weak. For similar reasons, the third and fourth operators cannot contribute

substantially because they contain an even number of neutrino fields having the same chi-

rality and since the neutrino mass operator contains one LH and one RH neutrino field.

Only the last operator

O(6)

Ṽ , AD
≡ i(¯̀ARγµνD

R )(φ+Dµφ̃) (3.8)

can contribute signficantly to mν since it contains a single RH neutrino. It also contributes

to the µ-decay amplitude after SSB via the graph of Fig. 3.1a since the covariant derivative

Dµ contains charged W -boson fields. We also write down the n = 6 neutrino mass operators

O(6)
M, AD = (L̄Aφ̃νD

R )(φ+φ) (3.9)

as well as the charged lepton mass operator (L̄φ`R)(φ+φ) that we do not use in the present

analysis.
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Fermion-Higgs-Gauge:

L̄τaγµDνLW a
µν

L̄γµDνLBµν

¯̀
Rγ

µDν`RBµν

ν̄Rγ
µDννRBµν (3.10)

g2(L̄σ
µντaφ)`RW

a
µν

g1(L̄σ
µνφ)`RBµν

g2(L̄σ
µντaφ̃)νRW

a
µν

g1(L̄σ
µν φ̃)νRBµν

As for the fermion-Higgs operators, the operators in (3.10) that contain an even number

of νR fields will not contribute significantly to mAB
ν , so only the last two in the list are

relevant:

O(6)
B, AD = g1(L̄

Aσµν φ̃)νD
RBµν (3.11)

O(6)
W, AD = g2(L̄

Aσµντaφ̃)νD
RW

a
µν (3.12)

In addition to these operators, there exist additional n = 6 operators that contain two

derivatives. However, as discussed in [17], they can either be related to O (6)
B, AD and O(6)

W,AD

through the equations of motion or contain derivatives acting on the νR fields so that they

do not contribute to the neutrino mass operator. Consequently, we need not consider them

here. We also observe that the operator O(6)
W,AD will also contribute to the µ-decay amplitude

via graphs as in Fig. 3.1b. We have computed its contributions to the Michel parameters

and find that they are suppressed by ∼ (mµ/Λ)2 <∼ 1.7 × 10−7 relative to the effects of the

other n = 6 operators. This suppression arises from the presence of the derivative acting on

the gauge field and the absence of an interference between the corresponding amplitude and

that of the SM. Finally, we note that the operators whose chiral structure suppresses their

contributions to the neutrino mass operator (as discussed above) may, in general, contribute

to muon decay via the terms in Eq. (3.1) having ε = µ. We do not consider these terms in

this study.
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W

φ

νD
R

lR

φ

W

φ

νD
R

L

(a) (b)

O
Ṽ OW

Figure 3.1: Contributions from the operators (a) O(6)

Ṽ , AD
and (b) O(6)

W, AD (denoted by the

shaded box) to the amplitude for µ-decay. Solid, dashed, and wavy lines denote fermions,
Higgs scalars, and gauge bosons, respectively. After SSB, the neutral Higgs field is replaced
by its vev, yielding a four-fermion µ-decay amplitude.

3.3 Operator Renormalization: Mixing and Matching Con-

siderations

In analyzing the renormalization of operators that contribute to both µ-decay and mAD
ν it

is useful to consider separately two cases: (i) one-loop matching conditions at the scale Λ

involving the n = 6 operators that enter µ-decay and the n = 4 mass operator, O (4)
M, AD,

and (ii) mixing among the relevant n = 6 operators. In general, contributions to mAD
ν

involving the second case will be smaller than those implied by matching with O (4)
M, AD by

∼ (v/Λ)2, since O(6)
M, AD contains an additional factor of (φ†φ)/Λ2. We first consider this

case and employ dimensional analysis to derive neutrino mass naturalness expectations for

the n = 6 operator coefficients. For v not too different from Λ, the impact of the n = 6

mixing can also be important, and in this case we can employ a full renormalization group

(RG) analysis to derive robust naturalness bounds.

3.3.1 Matching with O(4)
M, AD

The analysis of [16] employed dimensional regularization (DR) to regularize the one- and

two-loop graphs through which four-fermion operators containing a single νR field contribute

to the n = 6 mass operator. Mixing with lower-dimension operators does not arise in DR

since the relevant graphs are quadratically divergent and must be proportional to the square

of a mass scale. For µ > v, all fields are massless, and µ itself appears only logarithmically.

Since the mass operator exists for zero external momentum, all quadratically-divergent
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graphs vanish in this case.

The n = 4 mass operator will nevertheless receive contributions at the scale Λ associated

with loop graphs containing the n = 6 operators. Simple power counting shows that these

contributions go as ∼ Λ2/(4π)2 times a product n = 6 operator coefficient C6/Λ2 and the

gauge couplings ∼ g2 appearing in the loop. Thus, matching of the effective theory with

the full theory (unspecified) at the scale Λ implies the presence of a contribution to C 4
M of

order ∼ αC6/4π. As emphasized in [25], the precise numerical coefficient that enters this

matching contribution cannot be computed without knowing the theory above the scale Λ.

One may, however, estimate the size of these contributions either using a gauge-invariant

regulator, such as the generalized Pauli-Villars regulator of [26], or using naive dimensional

analysis. Since we are interested in order-of-magnitude expectations, use of the latter is

sufficient. We emphasize that these expectations can only be relaxed in specific models

that suppress the matching conditions.

LνR L

φ

OB,W

(a)

LlRνR

φ φ

OṼ

(b)

νR L

φ

LlR

OF

(c)

Figure 3.2: One-loop graphs for the matching contributions of the n = 6 operators (denoted

by the shaded box) to the n = 4 mass operator O(4)
M, AD. Solid, dashed, and wavy lines

denote fermions, Higgs scalars, and gauge bosons, respectively. Panels (a, b, c) illustrate

contributions from O(6)
B,W , O(6)

Ṽ
, and O(6)

F , respectively, to O(4)
M, AD.
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The relevant one-loop graphs are shown in Fig. 3.2. For the matching of the four-fermion

operators O(6)
F,ABCD onto O(4)

M, AD, two topologies are possible, associated with either the

fields (L̄A, νD
R ) or (L̄B , νD

R ) living on the external lines. For the matching of O(6)
F,ABCD as

well as of O(6)

Ṽ , AB
into O(4)

M, AD, one insertion of the Yukawa interaction f ∗
AC l̄

C
RL

A is needed

to convert the internal, RH lepton into a LH one. In contrast, no Yukawa insertion is

required for the matching of O(6)
B, AD and O(6)

W, AD onto O(4)
M,AD.

To simplify the analysis of matching involving the O(6)
F,ABCD we note that one may

always redefine the fields LA and `DR so that the charged lepton Yukawa matrix fAD is

diagonal. Specifically, we take

LA → LA ′ = SABL
B (3.13)

`CR → `C ′ = TCD`
D

with SAB and TCD chosen so that

L̄ f̃ ` = L̄′ f̃diag `
′ (3.14)

where L, L′ denote vectors in flavor space, f̃ denotes the Yukawa matrix in the original basis,

and f̃diag = S̃† f̃ T̃ . We note that the field redefinition (3.13) differs from the conventional

flavor rotation used for quarks, since we have performed identical rotations on both isospin

components of the left-handed doublet. Consequently, gauge interactions in the new basis

entail no transitions between generations. We also note that Eq. (3.13) also implies a

redefinition of the operator coefficients C4
M,AD, C6

F,ABCD, etc. For example, one has

C4,6
M,A′D = C4,6

M,AD SM,A′A (3.15)

C6 ′
F,A′B′C′D = C6

F,ABCD SA′A SB′B T
∗
C′C

where a sum over repeated indices is implied. Diagonalization of the neutrino mass matrix

requires additional, independent rotations of the νD
L,R fields after inclusion of radiative

contributions to the coefficients C4,6
M,AD generated by physics above the weak scale. Since

we are concerned only with contributions generated above the scale of SSB, we will not

perform the latter diagonalization and carry out computations using the L ′, `′R basis6.

6For notational simplicity, we henceforth omit the prime superscripts.
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In this case, the only four fermion operators O(6)
F, ABCD that can contribute substantially

to mAD
ν are those having either A = C or B = C. Thus, we obtain the following estimates

of the contributions from the n = 6 operators to the coefficient of the n = 4 mass operator:

O(6)
B, AD → C4

M,AD(Λ) ∼ α

4π cos2 θW
C6

B, AD(Λ)

O(6)
W, AD → C4

M,AD(Λ) ∼ 3α

4π sin2 θW
C6

W,AD(Λ)

O(6)

Ṽ , AD
→ C4

M,AD(Λ) ∼ fAA

16π2
C6

Ṽ , AD
(Λ) (3.16)

O(6)
F,ABAD → C4

M,BD(Λ) ∼ fAA

8π2
C6

F,ABAD(Λ)

O(6)
F, ABBD → C4

M,AD(Λ) ∼ fBB

16π2
C6

F,ABBD(Λ)

where θW is the weak mixing angle and where we have made the dependence on the matching

scale Λ explicit7.

The relative factor of 3 cot2 θW for the mixing of O(6)
W,AD compared to the mixing of

O(6)
B, AD arises from the ratio of gauge couplings (g/g ′)2 and the presence of a ~τ ·~τ appearing

in Fig. 3.2a. The factor of two that enters the mixing of O(6)
F,ABAD compared to that of

O(6)
F,ABBD arises from the trace associated with the closed chiral fermion loop that does not

arise for O(6)
F,ABBD.

We observe that there exist two four-fermion operators that contribute to µ-decay that

do not contribute to C4
M, AD in the basis giving a diagonal fAB : O(6)

F, AABD with either

A = 1, B = 2 or A = 2, B = 1. It is similarly straightforward to see that these operators do

not mix with C6
M, AD, since in the basis of charged lepton mass eigenstates, there exist no

Yukawa interactions that couple lepton doublet and charged lepton singlet fields of different

generations. As we discuss in Section 3.4, the operators O(6)
F,AABD with either A = 1, B = 2

or A = 2, B = 1 contribute to gS,T
LR and gS,T

RL , respectively. Consequently, the magnitudes of

these couplings are not directly bounded by mν and naturalness considerations, as indicated

in Table 3.1.

These conclusions differ from those in [16], which did not take into account operators that

contribute to µ-decay but do not mix with the neutrino mass operators. The corresponding

bounds on gS,T
LR and gS,T

RL obtained in that work are, thus, not general and would apply

7In relating the coefficients C(Λ) to those at the weak scale as needed for the analysis of both µ-decay
and mν , we will neglect corrections to the relations in Eq. (3.16) generated by running, as they are higher
order in the gauge couplings and numerically insignificant for our purposes.
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only in scenarios for which C6
F, 112D and C6

F, 221D vanish. From a theoretical standpoint, one

might expect the magnitudes of C6
F, 112D and C6

F, 221D to be comparable to those of the other

four-fermion operator coefficients in models that are consistent with the scale of neutrino

mass. Nevertheless, we cannot a priori rule out order of magnitude or more differences

between operator coefficients.

3.3.2 Mixing among n = 6 operators

Because O(6)
M, AD contains one power of (φ†φ)/Λ2 compared to O(4)

M,AD, the constraints ob-

tained from mixing with the former will generally be weaker than the one-loop n = 4

matching contributions by ∼ (v/Λ)2 . However, for Λ not too different from the weak scale,

the n = 6 mixing can be of comparable importance to the n = 4 matching. Here, we study

the mixing among n = 6 operators by computing all one-loop graphs that contribute using

DR and performing a renormalization group (RG) analysis. Doing so provides the exact

result for contributions to the one-loop mixing from scales between Λ and v, summed to all

orders in fAA ln(v/Λ) and α ln(v/Λ).

In carrying out this analysis, it is necessary to identify a basis of operators that close

under renormalization. We find that the minimal set consists of seven operators that con-

tribute to µ-decay and mAD
ν :

O(6)
B, AD, O

(6)
W, AD, O

(6)
M, AD, O

(6)

Ṽ , AD
, O(6)

F, AABD, O
(6)
F,ABBD, O

(6)
F,BABD . (3.17)

For simplicity, we have included a single RH neutrino field νD
R in all seven operators. While

one could, in principle, allow for different νR generation indices, the essential physics can

be extracted from an analysis of this minimal basis.

The classes of graphs relevant to mixing among these operators are illustrated in Fig. 3.3,

where we show representative contributions to operator self-renormalization and mixing

among the various operators. The latter include mixing of all operators into O (6)
M, AD (a–

c); mixing of O(6)
M, AD, O(6)

B, AD, and O(6)
W,AD into O(6)

Ṽ , AD
(d, e); and mixing between the

four-fermion operators and the magnetic moment operators (f, g). Representative self-

renormalization graphs are given in Fig. 3.3(h–j). As noted in [16], the mixing of the the

four-fermion operators into O(6)
M,AD contains three powers of the lepton Yukawa couplings

and is highly suppressed. In contrast, all other mixing contains at most one Yukawa inser-
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tion.

Working to first order in the fAA we find a total of 59 graphs that must be computed,

not including wavefunction renormalization graphs that are not shown. Twenty-two of

these graphs were computed by the authors of [17] in their analysis of the mixing between

O(6)
M, AD and the magnetic moment operators. Here, we compute the remaining 37. As in

[17], we work with the background field gauge [27] in d = 4− 2ε spacetime dimensions. We

renormalize the operators using minimal subtraction, wherein counterterms simply remove

the divergent 1/ε terms from the one-loop amplitudes. The resulting renormalized operators

O(6)
jR are expressed in terms of the unrenormalized operators O(6)

j as

O(6)
jR =

∑

k

Z−1
jk Z

nL/2
L Z

nφ/2
φ O(6)

k =
∑

k

Z−1
jk O

(6)
k0 , (3.18)

where

O(6)
j0 = Z

nL/2
L Z

nφ/2
φ O(6)

j (3.19)

are the µ-independent bare operators. Z
1/2
L and Z

1/2
φ are the wavefunction renormalization

constants for the fields LA and φ, respectively; nL and nφ are the number of LH lepton and

Higgs fields appearing in a given operator; and Z−1
jk Z

nL/2
L Z

nφ/2
φ are the counterterms that

remove the 1/ε divergences.

Since the bare operators O(6)
j0 do not depend on the renormalization scale, whereas the

Z−1
jk and the O(6)

jR do, the operator coefficients C6
j must carry a compensating µ-dependence

to ensure that Leff is independent of scale. This requirement leads to the RG equation for

the operator coefficients:

µ
d

dµ
C6

j +
∑

k

C6
k γkj = 0 (3.20)

where

γkj =
∑

`

(
µ
d

dµ
Z−1

k`

)
Z`j . (3.21)
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is the anomalous dimension matrix. We obtain8

γjk =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−
3(α1−3α2)

16π

3α1

8π
−6α1(α1 + α2) −

9α1f∗

AA

8π
−

9α1fAA

4π
−

9α1fBB

2π

9α1fBB

4π

9α2

8π

3(α1−3α2)
16π

6α2(α1 + 3α2)
27α2f∗

AA

8π
−

9α2fAA

4π
−

9α2fBB

2π

9α2fBB

4π

0 0 9(α1+3α2)
16π

− 3λ

2π2 0 0 0 0

0 0 9α2fAA

8π
−

3fAAλ

8π2

3α1

4π
0 0 0

−
3f∗

AA

128π2 −
f∗

AA

128π2 0 0 3(3α1−α2)
8π

0 0

−
3f∗

BB

128π2 −
f∗

BB

128π2 0 0 0 3(α1+α2)
8π

3(α1−α2)
4π

0 0 0 0 0 3(α1−α2)
4π

3(α1+α2)
8π

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(3.22)

where the αi = g2
i /(4π) and λ is the Higgs self coupling defined by the potential V (φ) =

λ[(φ†φ)− v2/2]2.

Using this result for γij and the one-loop β functions for α1, α2, and the lepton Yukawa

couplings, we solve the RG equations to determine the operator coefficients C 6
k(µ) as a

function of their values at the scale Λ. As in [17] we find that the the running of the gauge

and Yukawa couplings has a negligible impact on the evolution of the C 6
k(µ). It is instructive

to consider the results obtained by retaining only the leading logarithms ln(µ/Λ) and terms

8The term in γ33 proportional to λ differs from that of [17], which contains an error. However, this change
does not affect the bounds on the neutrino magnetic moments obtained in that work.
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Figure 3.3: One-loop graphs for the mixing among n = 6 operators. Notation is as in pre-
vious figures. Various types of mixing (a–g) and self-renormalization (h–j) are as discussed
in the text.
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φ
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LνR LνR νR L

+...

Figure 3.4: Two-loop graphs for the mixing of the n = 6 operators. Only representive graphs

for the mixing of the four-fermion operators O(6)
F,ABCD into O(6)

M,AD are shown.

at most first order in the Yukawa couplings. We find

C6
M,AD(µ) = C6

M,AD(Λ)
[
1− γ33 ln

µ

Λ

]

−
[
γ−C

6
−(Λ) + γ+C

6
+(Λ) + γ43C

6
Ṽ , AD

(Λ)
]
ln
µ

Λ

C6
+(µ) = C6

+(Λ)
[
1− γ̃ ln

µ

Λ

]

+
[(
f∗AA/32π

2
)
C6

F, AAAD(Λ) +
(
f∗BB/32π

2
)
C6

F, ABBD(Λ)
]
ln
µ

Λ

C̃6(µ) = C̃6(Λ)
[
1 + γ̃ ln

µ

Λ

]

+[
(
3fAA/128π

2
)
(α1 − α2)C

6
F, AAAD(Λ)

+
(
3fBB/128π

2
)
(α1 − α2)C

6
F, ABBD(Λ)] ln

µ

Λ

C6
Ṽ , AD

(µ) = C6
Ṽ , AD

(Λ)
[
1− γ44 ln

µ

Λ

]
+ (9fAA/8π)C̃6(Λ) ln

µ

Λ
(3.23)

C6
F, AAAD(µ) = C6

F, AAAD(Λ)

[
1 +

3(α2 − 3α1)

8π
ln
µ

Λ

]

+(9fAA/4π)
[
C6

B, AD(Λ)α1 +C6
W,AD(Λ)α2

]
ln
µ

Λ

C6
F, ABBD(µ) = C6

F, ABBD(Λ)

[
1− 3(α1 + α2)

8π
ln
µ

Λ

]

−3(α1 − α2)

4π
C6

F, BABD(Λ) ln
µ

Λ

+(9fBB/2π)
[
C6

B, AD(Λ)α1 + C6
W,AD(Λ)α2

]
ln
µ

Λ

C6
F, BABD(µ) = C6

F, BABD(Λ)

[
1− 3(α1 + α2)

8π
ln
µ

Λ

]

−3(α1 − α2)

4π
C6

F, ABBD(Λ) ln
µ

Λ

−(9fBB/4π)
[
C6

B, AD(Λ)α1 + C6
W,AD(Λ)α2

]
ln
µ

Λ
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where

C6
±(µ) ≡ C6

B, AD(µ)± C6
W,AD(µ)

C̃6(µ) ≡ α1C
6
B, AD(µ)− 3α2C

6
W,AD(µ) (3.24)

γ± ≡ (γ13 ± γ23) /2

γ̃ ≡ 3(α1 + 3α2)/16π

We note that the combination of coefficients C6
+(v) enters the neutrino magnetic mo-

ment. Its RG evolution was obtained in [17] to zeroth order in the Yukawa couplings; here

we obtain the corrections that are linear in fAA and fBB. The corresponding contributions

to the neutrino mass matrix δmAD
ν and magnetic moment matrix µAD

ν are then given by

δmAD
ν = −

(
v3

2
√

2Λ2

)
C6

M,AD(v) (3.25)

µAD
ν

µB
= −4

√
2
(mev

Λ2

)
Re
{
C6

+(v)
}
. (3.26)

From Eqs. (3.23), (3.25), and (3.26) we observe that to linear order in the lepton Yukawa

couplings, C6
M,AD(µ) receives contributions from the two magnetic moment operators and

O(6)

Ṽ
but not from the four fermion operators. This result is consistent with the result ob-

tained by the authors of [16], who computed one-loop graphs containing the four-fermion op-

erators of Eq. (3.1) using massive charged leptons and found that contributions to mν ∝ m3
` .

In the effective theory used here, the latter result corresponds to a one-loop computation

with three insertions of the Yukawa interaction. However, mixing with O (6)

Ṽ
was not con-

sidered in [16], and our result that this operator mixes with O(6)
M,AD to linear order in the

Yukawa couplings represents an important difference with the former analysis.

We agree with the observation of [16] that the four fermion operators can mix with

O(6)
M, AD to linear order in the fAA via two-loop graphs, such as those indicated in Fig. 3.4.

These graphs were estimated in [16] by considering loops with massive W ± and Z0 bosons

that correspond in our framework to the diagrams of Fig. 3.4a. We observe, however, that

the two-loop constraints will be weaker than those obtained by one-loop matching with

O(4)
M, AD by ∼ (α/4π)(v/Λ)2 (modulo logarithmic and model-dependent corrections), so we

do not consider this two-loop mixing in detail here. Moreover, because we work at a scale

µ > v for which the use of massless fields is appropriate, and because we adopt a basis in
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which the Yukawa matrix and gauge interactions are flavor diagonal (but mAD
ν is not), the

operators O(6)
F, 112D and O(6)

F, 221D will not mix with O(6)
M, AD even at two-loop order.

3.4 Neutrino Mass Constraints

To arrive at neutrino mass naturalness expectations for the gγ
εµ coefficients, it is useful to

tabulate their relationships with the dimension six operator coefficients. In some cases, one

must perform a Fierz transformation in order to obtain the operator structures in Eq. (3.1).

Letting

gγ
εµ = κ

( v
Λ

)2
C6

k(v) (3.27)

we give in Table 3.2 the κs corresponding to the various dimension six operators.

Using the entries in Table 3.2 and the estimates in Eq. (3.16), we illustrate how the

bounds in Table 3.1 were obtained. For the operator O(6)
F, 122D, for example, we have from

Eqs. (3.5) and (3.16)9

|C6
F, 122D| <∼ 16π2

(
δm1D

ν

mµ

)
(3.28)

leading to

|gS
LR| <∼ 4π2

(
δm1D

ν

mµ

)( v
Λ

)2
|gT

LR| <∼ 2π2

(
δm1D

ν

mµ

)( v
Λ

)2
(3.29)

where δmAD
ν denotes the radiative contribution to mAD

ν . Choosing Λ = v and δm1D
ν = 1eV

(corresponding to the scale of upper bounds derived from 3H β-decay studies [28, 29]) leads

to the bounds in the first row of Table 3.1. Similar arguments yield the other entries in the

table. Note that the bounds become smaller as Λ is increased from v.

The constraints on the gV
LR,RL that arise from mixing among the n = 6 operators follow

straightforwardly from Eqs. (3.23) and (3.25) and Table 3.2. We obtain

gV
LR =

(
δm2D

ν

mµ

)(
8π sin2 θW

9

)(
α− λ sin2 θW

3π

)−1(
ln

Λ

v

)−1

. (3.30)

A similar expression holds for gV
RL but with mµ → me and δm2D

ν → δm1D
ν . Note that in

arriving at Eq. (3.30) we have ignored the running of the C 6
Ṽ , AD

(µ) between Λ and v, since

the impact on the gV
LR,RL is higher order in the gauge and Yukawa couplings. To derive

numerical bounds on the gV
LR,RL from Eq. (3.30) we use the running couplings in the MS

9In what follows, we suppress the scale dependence of the C(µ) and, as indicated earlier, neglect the
effects of running in translating the one-loop matching bounds into constraints at the weak scale.
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scheme α = α̂(MZ) ≈ 1/127.9, sin2 θ̂W (MZ) ≈ 0.2312 and the tree-level relation between

the Higgs quartic coupling λ, the Higgs mass mH , and v: 2λ = (mH/v)
2. We quote two

results, corresponding to the direct search lower bound on mH
>∼ 114 GeV and the one-sided

95 % C.L. upper bound from analysis of precision electroweak measurements, mH
<∼ 186

GeV [30]. We obtain

∣∣gV
LR

∣∣ =

(
δm2D

ν

1 eV

)(
ln

Λ

v

)−1





1.2× 10−6, mH = 114GeV

7.5× 10−6, mH = 186GeV

(3.31)

∣∣gV
RL

∣∣ =

(
δm1D

ν

1 eV

)(
ln

Λ

v

)−1





2.5× 10−4, mH = 114GeV

1.5× 10−3, mH = 186GeV .

For Λ ∼ 1 TeV, the logarithms are O(1) so that for δmν ∼ 1 eV, the bounds on the gV
LR,RL

derived from n = 6 mixing are comparable in magnitude to those estimated from one-loop

matching with the n = 4 mass operators.

Although the four fermion operators do not mix with O(6)
M, AD at linear order in the

Yukawa couplings, they do contribute to the magnetic moment operators O (6)
B, AD and

O(6)
W,AD at this order. From Eqs. (3.23) and (3.26) we have

δµAD
ν

µB
=

√
2

8π2

(me

v

)( v
Λ

)2
Re
[
f∗AAC

6
F,AAAD + f∗BBC

6
F,ABBD

]
ln

Λ

v
, (3.32)

where δµAD
ν denotes the contribution to the magnetic moment matrix and µB is a Bohr

magneton. While O(6)
F,AAAD does not contribute to µ-decay, the operator O(6)

F,ABBD does,

and its presence in Eq. (3.32) implies constraints on its coefficient from current bounds on

neutrino magnetic moments. The most stringent constraints arise for A = 1, B = 2 for

which we find

|C6
F, 122D|

( v
Λ

)2
<∼ 5× 1010

(
ln

Λ

v

)−1(µ1D
ν

µB

)
. (3.33)

Current experimental bounds on |µexp
ν /µB| range from ∼ 10−10 from observations of solar

and reactor neutrinos [31, 32, 33, 34] to ∼ 3 × 10−12 from the non-observation of plasmon

decay into ν̄ν in astrophysical objects [35]. Assuming that the logarithm in Eq. (3.33) is

of order unity, these limits translate into bounds on gS
LR and gT

LR ranging from ∼ 1 →
0.03 and ∼ 0.3 → 0.01, respectively. The solar and reactor neutrino limits on |µexp

ν /µB |
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Table 3.2: Coefficients κ that relate gγ
εµ to the dimension six operator coefficients C6

k via
Eq. (3.27).

Coefficient gS
LR gT

LR gS
RL gT

RL gV
LR gV

RL

C6
F, 122D 1/4 1/8 - - - -

C6
F, 212D 1/2 - - - - -

C6
F, 112D 3/4 1/8 - - - -

C6
F, 211D - - 1/4 1/8 - -

C6
F, 121D - - 1/2 - - -

C6
F, 221D - - 3/4 1/8 - -

C6
Ṽ , 2D

- - - - −1/2 -

C6
Ṽ , 1D

- - - - - −1/2

imply bounds on the gS,T
LR that are weaker than those obtained from the global analysis

of µ-decay measurements, while those associated with the astrophysical magnetic moment

limits are comparable to the global values. Nevertheless, the bounds derived from neutrino

magnetic moments are several orders of magnitude weaker than those derived from the scale

of neutrino mass.

The naturalness expectations for the C6
k associated with the scale of mν have implica-

tions for the interpretation of µ-decay experiments. Because the coefficients C 6
F, 112D and

C6
F, 221D that contribute to gS,T

LR,RL are not directly constrained by mν , none of the eleven

Michel parameters is directly constrained by neutrino mass alone. Instead, it is more rel-

evant to compare the results of global analyses from which limits on the gγ
εµ are obtained

with the mν naturalness bounds, since the latter imply tiny values for the couplings gV
LR,RL.

Should future experiments yield a value for either of these couplings that is considerably

larger than our expectations in Table 3.1, the new physics above Λ would have to exhibit

either fine-tuning or a symmetry in order to evade unacceptably large contributions to mν .

In addition, should future global analyses find evidence for non-zero gS,T
LR,RL with magni-

tudes considerably larger than given by the mν naturalness expectations listed in Table

3.1, then one would have evidence for a non-trivial flavor structure in the new physics that

allows considerably larger effects from the operators O(6)
F, 112D and O(6)

F, 221D than from the

other four fermion operators.

Finally, we note that one may use a combination of neutrino mass and direct studies of
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the Michel spectrum to derive bounds on a subset of the Michel parameters that are more

stringent than one obtains from µ-decay experiments alone. To illustrate, we consider the

parameters δ and α, for which one has

3

4
− ρ =

3

4

∣∣gV
LR

∣∣2 +
3

2

∣∣gT
LR

∣∣2 +
3

4
Re
(
gS
LRg

T ∗
LR

)
+ (L↔ R) (3.34)

α = 8Re
{
gV
RL

(
gS ∗
LR + 6gT ∗

LR

)
+ (L↔ R)

}
. (3.35)

From Table 3.1, we observe that the magnitudes of the gV
LR,RL contributions to ρ and α

are expected to be several orders of magnitude below the current experimental sensitivities,

based on neutrino mass naturalness considerations. In contrast, the contributions to gS,T
LR,RL

that arise from O(6)
F, 112D and O(6)

F, 221D are only directly constrained by µ-decay experiments

and not neutrino mass. Thus, we may use the current experimental results for ρ to bound the

operator coefficients C6
F, 112D and C6

F, 221D and subsequently employ the results — together

with the mν bounds on the gV
LR,RL — to derive expectations for the magnitude of α. For

simplicity, we consider only the contributions from C 6
F, 112D to ρ, and using the current

experimental uncertainty in this parameter, we find

∣∣C6
F, 112D

∣∣
( v

Λ

)2
<∼ 0.1 . (3.36)

In the parameter α, this coefficient interferes with C 6
Ṽ , 1D

:

α = −6
( v

Λ

)4
Re
(
C6

Ṽ , 1D
C6 ∗

F, 112D + · · ·
)
, (3.37)

where the “+ · · · ” indicates contributions from the other coefficients that we will assume

to be zero for purposes of this discussion. From Eq. (3.36) and the mν limits on C6
Ṽ , 1D

we

obtain

|α| <∼ 2× 10−4
( v

Λ

)2
(
m1D

ν

1 eV

)
. (3.38)

For Λ = v, this expectation for |α| is more than two orders of magnitude below the present

experimental sensitivity and will fall rapidly as Λ increases from v. A similar line of rea-

soning can be used to obtain expectations for the parameter α′ in terms of mν and the

CP-violating phases that may enter the effective operator coefficients.
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3.5 Conclusions

The existence of the small, non-zero masses of neutrinos have provided our first direct ev-

idence for physics beyond the minimal Standard Model, and the incorporation of mν into

SM extensions is a key element of beyond the SM model building. At the same time,

the existence of non-vanishing neutrino mass — together with its scale — have important

consequences for the properties of neutrinos and their interactions that can be delineated

in a model-independent manner [17, 18, 16, 36]. In this chapter, we have analyzed those

implications for the decay of muons, using the effective field theory approach of [17] and

concentrating on the case of Dirac neutrinos. We have derived model-independent natu-

ralness expectations for the contributions to the Michel parameters from various n = 6

operators that also contribute to the neutrino mass matrix via radiative corrections.

Our work has been motivated by the ideas in [16], but our conclusions differ in impor-

tant respects. In particular, we find — after properly taking into account SU(2)L×U(1)Y

gauge invariance and mixing between n = 6 µ-decay and neutrino mass operators — that

the dominant constraints on the contributions from gV
RL,LR to the Michel parameters oc-

cur at one-loop order, rather than through two-loop effects as in [16]. Consequently, the

naturalness bounds we derive on these contributions are two orders of magnitude stronger

than those of [16]. Based on one-loop matching considerations that cannot be analyzed

in the context of dimensional regularization, we also obtain expectations for contributions

from various four-fermion operators to effective scalar and tensor interactions that are sub-

stantially smaller than the two-loop mixing constraints appearing in that earlier work. We

emphasize that these expectations can only be relaxed in the presence of fine-tuning or

model-dependent suppression of the matching conditions at the scale Λ.

In addition, we carefully study the flavor structure of the operators that can contribute

to µ-decay and find that there exist four-fermion µ-decay operators that do not contribute to

the neutrino mass matrix through radiative corrections. Since these operators contribute to

the effective scalar and tensor couplings gS,T
LR,RL of Eq. (3.1), no model-independent neutrino

mass naturalness bounds exist for these couplings, contrary to the conclusions of [16]. In

contrast, all operators that generate the gV
LR,RL terms contribute to mAD

ν , so these effective

couplings do have neutrino-mass naturalness bounds. From a model-building perspective it

might seem reasonable to expect the coefficients of the unconstrained four-fermion operator
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coefficients to have the same magnitude as those that are constrained by mν , but it is

important for precise muon decay experiments to test this expectation.

While we have focused on the implications of Dirac mass terms, a similar analysis for

the Majorana neutrinos is clearly called for. Indeed, in the case of neutrino magnetic

moments, the requirement of flavor non-diagonality for Majorana magnetic moments can

lead to substantially weaker naturalness bounds than for Dirac moments [17, 18, 19]. While

we do not anticipate similar differences between the Majorana and Dirac case for operators

that contribute to µ-decay, a detailed comparison will appear in the next chapter.
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Chapter 4

Majorana Neutrinos and µ-decay

4.1 Introduction

The existence of small nonzero neutrino masses has provided our first direct evidence of

physics beyond the Standard Model. Since direct experimental study of the neutrino mass

and of neutrino-matter interactions is difficult, and the number of candidates for physics be-

yond the SM is large, model-independent studies of neutrino-matter interactions combined

with the study of neutrino mass are valuable tools in the search for new physics.

The study of Majorana neutrinos and muon decay has the potential to set bounds on

beyond the SM parameters that may soon be accessible by experiment. These bounds are

on some of the Michel parameters [10, 11] that contain information about contributions to

muon decay from unknown physics. In the SM, there are well-known predictions for what

these parameters should be. A previous study [37] looked at the limits that a Dirac neutrino

mass could put on the muon decay Michel parameters. Here we do the same for Majorana

neutrinos, and we closely follow the approach of that paper. However, in order to analyze

the effect of Majorana neutrino masses on the Michel parameters, we will need to cover

some background material.

We will first examine the motivations behind the development of Majorana neutrinos,

both how they emerge from higher-dimensional operators and why they are, from a theoret-

ical perspective, appealing. In Section 4.2, we write down the complete set of independent

operators through n = 7 that contribute to mAE
ν and µ-decay. Section 4.3 gives our analysis

of operator mixing and matching considerations, while in Section 4.4 we discuss the result-

ing constraints on the gγ
LR,RL that follow from this analysis and the present upper bounds

on the neutrino mass scale. We summarize in Section 4.5.
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4.1.1 Majorana neutrinos

Contributions to muon decay are typically parameterized as

Lµ−decay = −4Gµ√
2

∑

γ, α, β

gγ
αβ ēαΓγνeν̄µΓγµβ , (4.1)

where we sum over Dirac matrices Γγ = 1 (S), γα (V), and σαβ/
√

2 (T) and the subscripts

α and β indicate the chirality (R,L) of the muon and final state lepton, respectively1. In

the SM, gV
LL = 1 and all other gγ

αβ = 0. A recent, global analysis by Gagliardi, Tribble,

and Williams [15] give the present experimental bounds on the gγ
αβ that include the results

of the latest TRIUMF and PSI measurements. When referring to Eq. (4.1) with Majorana

neutrinos, note that νR → νL
c.

We use the effective Lagrangian

Leff =
∑

n,j

Cn
j (µ)

Λn−4
O(n)

j (µ) + h.c. , (4.2)

where µ is the renormalization scale, n ≥ 4 is the operator dimension, and j is an index

running over all independent operators of a given dimension. There are several ways of

modifying the SM to allow nonzero neutrino masses. One of the “easiest” ways is to give

up on renormalizability of the Lagrangian [41]: by regarding the standard model as a low-

energy effective field theory, we find that there is only one gauge-invariant dimension five

operator allowed by SM gauge invariance and particle content:

L5 =
C(5)

Λ
(LcεH)(HT εL) + h.c. , (4.3)

where Lc = LTC (C is the charge conjugation operator). This operator clearly violates

lepton number, by two units. When the Higgs field acquires a vacuum expectation value,

〈φ〉 =

(
0

v/
√

2

)
(4.4)

we acquire a Majorana mass for the neutrino,

LM = −C
(5)

Λ

v2

2
νL

cνL + h.c. (4.5)

1The normalization of the tensor terms corresponds to the convention adopted in [14]
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As an aside, the neutrino has obtained a Majorana mass only because L5 violated lepton

number, which here is a low-energy accidental symmetry and is in general violated by

higher-dimensional operators. Since, in this formulation, neutrino masses are naturally of

order v2/Λ, if Λ � v, this is an attractive explanation of why neutrinos are much lighter

than the other fermions [40].

The Majorana mass, written in terms of Dirac spinors, is given by (see Sec. 1.1):

L = −1

2
m(LcL+ h.c.) . (4.6)

By comparing this with the n = 5 mass operator, Eq. (4.3),

C5, AE
M

Λ
(LcA

εH)(HT εLE)↔ −1

2
mAE

ν (νL
c

A

ν
E

L ) , (4.7)

we see that after spontaneous symmetry breaking,

C5, AE
M

Λ
O(5)

M, AE =
C5, AE

M

Λ
(−H2

0 νL
c

A

ν
E

L ) ,

an upper bound on the neutrino mass contribution is obtained:

mAE
ν

<∼
v2

Λ
C5, AE

M . (4.8)

It is important to realize that the n = 5 neutrino mass operator, Eq. (4.3), is symmetric

with respect to the lepton flavors. This means that, if we label the flavors as A and E, the

SU(2) indices beginning with i, j, . . . and the Dirac indices beginning with a, b, . . . :

O(5)
M,AE = LA

i,aεijCabHjHkεklL
E
l,b ,

then by moving LE past LA (putting in a −1 for interchanging the fermion fields), we get

O(5)
M, EA = −LE

l,bεlkCabHkHjεjiL
A
i,a ,

which is just

O(5)
M, EA = −(LT E

CT εH)(HT εL
A

) .
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Since Lc = −LTCT , we get the original 5D mass operator back,

O(5)
M, EA = (LcE

εH)(HT εL
E

) = O(5)
M, AE .

We will use O(5)
M, AE and O(5)

M,EA interchangeably to refer to the same operator.

4.2 Operator Basis

In order to begin the analysis we will first examine our operator basis by writing down some

of the operators up to dimension seven that contain Majorana neutrinos and contribute to

the n = 5 and n = 7 Majorana neutrino mass operators. Here we will make use of the list

of operators outlined in [38]. We will then take a careful look at the flavor structure of our

operators, and in the process discover that some of the operators that superficially appear

relevant to our analysis actually give contributions to µ-decay that are unconstrained by

neutrino mass.

4.2.1 n = 7 operators contributing to neutrino mass

As before, the lowest dimension Majorana neutrino mass operator, which is a 5D operator,

is

O(5)
M, AE = (LcA

εH)(HT εL
E

) . (4.9)

For Majorana neutrinos there are no gauge-invariant n = 6 operators. Here, we group

the operators with dimension seven according to the number of fermion, Higgs, and gauge

boson fields they contain. The 7D mass operator is:

O(7)
M, AE = (LcA

εH)(HT εL
E

)(H†H) , (4.10)

There are three independent operators with two derivatives. Only the last one can

contribute to muon decay after SSB:

O(7)
D(a), AE = (LcA

εL
E

)(HT←−DµεD
µH) ,

O(7)
D(b), AE = (LcεDµH)(HT←−DµεL) , (4.11)

O(7)
D(c), AE = (LcεH)(HT←−DµεD

µL) .
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Due to the presence of the derivative acting on the external fermion field, this contribution

is suppressed and will not be considered here.

There is one independent operator with one derivative; it contributes to gV
RL and gV

LR:

O(7)

Ṽ , AE
= i `R

cA
γµ(HT εLE)(HT ε

−→
DµH) . (4.12)

There are two independent four-fermion scalar operators. Each one corresponds to a

different Lorentz contraction. These operators contribute to gS
RL, gS

LR, gT
RL, and gT

LR:

O(7)
F (a), ABDE = εijεkl(LcA

i Lk
B

)(LcD
j `R

cE

)Hl ,

O(7)
F (b), ABDE = εijεkl(LcA

i L
B

j )(LcD
k `R

cE

)Hl , (4.13)

where `R
c = C `R

T
. These are the only independent SU(2) contractions. For example, the

contraction:

OF = εijεkl(Lc
i`R

c)(Lc
jLk)Hl ,

can, by renaming i↔ j, be shown to be simply −OF (a).

We also note that any four-fermion tensor operators, for example:

O(7)

F̃ (a), ABDE
= εijεkl(LcA

i σ
αβ Lk

B)(LcD
j σαβ `R

cE

)Hl ,

are merely linear combinations of the scalar operators and are not independent2. This can

be seen by starting with the operator

εijεkl(LcA
i `R

cE

)(LcD
j Lk

B)Hl ,

and Fierz-transforming to obtain the ordering of the original operator, O (7)

F̃ (a), ABDE
:

εijεkl

[
1

2
(LcA

i Lk
B)(LcD

j `R
cE

) +
1

8
(LcA

i σ
αβ Lk

B)(LcD
j σαβ `R

cE

)

]
Hl ,

2The tensor operators referred to in [38], εijεkl(L
T
i

A
σαβLk

B)(LT
j

D
σαβ`R

cE

)Hl and

εijεkl(L
T
i

A
σαβLj

B)(LT
k

D
σαβ`R

cE

)Hl, are not Lorentz invariant.
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which means that the tensor operator can be re-expressed as:

1

8
εijεkl(LcA

i σ
αβ Lk

B)(LcD
j σαβ `R

cE

) = εijεkl[(LcA
i `R

cE

)(LcD
j Lk

B)

− 1

2
(LcA

i Lk
B)(LcD

j `R
cE

)]Hl ,

or
1

8
O(7)

F̃ (a), ABDE
= −O(7)

F (a), DBAE −
1

2
O(7)

F (a), ABDE .

Finally, there is one independent W charged gauge boson operator that can contribute

to muon decay, and a B operator that does not:

O(7)
W, AE = (LcA

εH)σµν(HT ετaL
E

)W a
µν ,

O(7)
B, AE = (LcA

εH)σµν(HT εL
E

)Bµν .

The operator O(7)
B, AE is lepton flavor antisymmetric. The operator O(7)

W,AE, which is the

most general n = 7 operator involving W a
µν , is neither flavor symmetric nor antisymmetric.

We will choose to express it in terms of operators with definite flavor symmetry, O (7)±
W, AE:

O(7)±
W,AE =

1

2

(
O(7)

W,AE ±O
(7)
W, EA

)
. (4.14)

However, like the two-derivative operators, the contribution of the W operator is suppressed

(by a factor of m4
µ/Λ

4) by the derivative acting on the gauge field and, again, will not be

considered in this analysis.

4.2.2 Flavor structure

In order to examine the neutrino mass constraints on the gγ
αβ coefficients, we must determine

how the operators under consideration are related to these coefficients. For most, a Fierz

transformation [39] must be done to move the fields into the order in Eq. (4.1). By defining

gγ
αβ = −κ

( v
Λ

)3
C7

k , (4.15)

we can find the κs of the various dimension seven operators. These results are summarized

in Table 4.1; we explain how to obtain these numbers in the following.
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For the six possible flavor combinations for the two scalar operators O (7)
F (a), ABDE and

O(7)
F (b), ABDE , two are not constrained by neutrino mass. By writing out the SU(2) indices

we can examine the flavor structure more closely:

O(7)
F (a), ABDE = εijεkl(LcA

i Lk
B)(LcD

j `R
cE

)Hl

= H0(νc
L

A
νL

B`L
cD
`R

cE − `LcA
νL

Bνc
L

D
`R

cE

)

+ H+(`L
cA
`L

Bνc
L

D
`R

cE − νc
L

A
`L

B`L
cD
`R

cE

) , (4.16)

O(7)
F (b), ABDE = εijεkl(LcA

i L
B
j )(LcD

k `R
cE

)Hl

= H0(νc
L

A
`L

Bνc
L

D
`R

cE − `LcA
νL

Bνc
L

D
`R

cE

)

+ H+(`L
cA
νL

B`L
cD
`R

cE − νc
L

A
`L

B`L
cD
`R

cE

) . (4.17)

For example, we can obtain the gγ
αβ coefficients for the flavor combination Oeµµe

F (a) by first

Fierz transforming and then exchanging fields. The different parts of the expanded operator

(using only the neutral Higgs part) contain information about muon decay or neutrino mass:

Oeµµe
F (a) ⇒ H0(νc

L
e
νL

µ`L
cµ
`R

ce

︸ ︷︷ ︸
µ decay

− `Lce
νL

µνc
L

µ
`R

ce

︸ ︷︷ ︸
ν mass

) . (4.18)

After Fierz transforming the muon decay part, we have:

Oeµµe
F (a) ⇒

H0

4
(2 νc

L
e
`R

ce

`L
cµ
νL

µ +
1

2
νc

L
e
σαβ `R

ce

`L
cµ
σαβ νL

µ) . (4.19)

Next, we exchange the fields in the first position with the fields in the second position,

and similarly with the fields in the third and fourth positions, taking care to keep track of

minus signs from fermion anticommutation and the transposition of the charge conjugation

operator. Using the relations

wL
c
(1)

wR
c(2) = wR

(2)
wL

(1)
, (4.20)

wL
c
(1)

wL
(2)

= wL
c
(2)

wL
(1)
, (4.21)

wL
c
(1)

σαβ wR
c(2) = −wR

(2)
σαβ wL

(1)
, (4.22)

wL
c
(1)

σαβ wL
(2)

= −wL
c
(2)

σαβ wL
(1)
, (4.23)
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Table 4.1: Coefficients κ that relate gγ
αβ to the dimension seven four-fermion scalar and

vector operator coefficients C7
k via Eq. (4.15). A “-” indicates that the associated operator

does not contribute to that g in muon decay.

κ gS
LR gT

LR gS
RL gT

RL gV
LR gV

RL

C7 eµµe
F (a) - - −1

4
√

2
−1
8
√

2
- -

C7µeeµ
F (a)

−1
4
√

2
−1
8
√

2
- - - -

C7 eµeµ
F (a) - −1

8
√

2
- - - -

C7µeµe
F (a) - - - −1

8
√

2
- -

C7µµee
F (a)

- - 1
2
√

2
- - -

C7 eeµµ
F (a)

1
2
√

2
- - - - -

C7 eµµe
F (b) - - −1

4
√

2
1

8
√

2
- -

C7µeeµ
F (b)

−1
4
√

2
1

8
√

2
- - - -

C7 eµeµ
F (b)

1
4
√

2
−1
8
√

2
- - - -

C7µeµe
F (b) - - 1

4
√

2
−1
8
√

2
- -

C7µµee
F (b) - - - 0 - -

C7 eeµµ
F (b) - 0 - - - -

C7 ee
Ṽ

- - - - - −1
2
√

2

C7µµ

Ṽ
- - - - −1

2
√

2
-

the operator becomes:

Oeµµe
F (a) ⇒

H0

4
(2 `R

e

νL
e

νL
c

µ

`L
µ

︸ ︷︷ ︸
gS

RL

+
1

2
`R

e

σαβνL
e

νL
c

µ

σαβ `L
µ

︸ ︷︷ ︸
gT

RL

) . (4.24)

Comparing these coefficients with the coefficient of Eq. (4.1), we find that gS
RL = −1

4
√

2

(
v
Λ

)3
C7

κ

and gT
RL = −1

8
√

2

(
v
Λ

)3
C7

κ. A summary of these results can be found in Table 4.1.

Finally, the values for gRL
V and gLR

V are found by calculating the diagram in Fig. 4.1

with the Standard Model vertex L
µ
i/DLµ and the new physics vertex with the operator

O(7)

Ṽ , AE
= i `R

cA
γµ(HT εLE)(HT ε

−→
DµH), where A,E = e, e (gV

RL) or A,E = µ, µ (gV
LR). We

find that the coefficients for both cases are given by − 1
2
√

2
(Table 4.1). The difference from
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the Dirac case, where the coefficient is 1/2, arises from the additional Higgs field in O (7)

Ṽ , AE
.

H

L

H

H

L

`R
c

L

W

Figure 4.1: Contributions of the operators O(7)

Ṽ , AE
and O(7)

Ṽ , EA
(denoted by the solid box)

to muon decay. Solid, dashed, and wavy lines denote fermions, Higgs scalars, and gauge
bosons, respectively. After SSB, the neutral Higgs field is replaced by its vev, yielding a
four-fermion µ-decay amplitude.

4.3 Operator Renormalization: Matching and Mixing

In order to determine the effect of neutrino mass on muon decay, we must consider both

the contributions from matching the n = 7 operators discussed in Section 4.2 to the n = 5

mass operator, and also from mixing among the relevant n = 7 operators. We expect the

results from the latter case to be approximately (v/Λ)2 larger than those from 7D → 5D

matching, since the 7D mass operator has an additional factor of (H †H)/Λ2. The matching

case is considered first.

4.3.1 7D → 5D matching

Here we analyze the matching of the n = 7 operators to the n = 5 mass operator with naive

dimensional analysis. Dimensional regularization (DR) is inapplicable here because in that

scheme operators of a given dimension do not mix with operators of lower dimension.

To simplify the analysis of matching involving the O(7)
F, ABDE we note that one may

always redefine the fields LA and `ER so that the charged lepton Yukawa matrix fAE is

diagonal. Specifically, we take
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LA → LA ′ = SABL
B (4.25)

`ER → `E ′ = TED`
D

with SAB and TED chosen so that

L̄ f̃ ` = L̄′ f̃diag `
′ (4.26)

where L, L′ denote vectors in flavor space, f̃ denotes the Yukawa matrix in the original basis,

and f̃diag = S̃† f̃ T̃ . We note that the field redefinition (4.25) differs from the conventional

flavor rotation used for quarks, since we have performed identical rotations on both isospin

components of the left-handed doublet. Consequently, gauge interactions in the new basis

entail no transitions between generations. We carry out computations using the L ′, `′R

basis3.

To calculate the contribution of the scalar four-fermion operators in Eq. (4.13) to the

five-dimensional mass operator, we have one diagram to consider, Fig. 4.2(a). From Sec-

tion 4.2.2, we know that there are two charged fermions in the part of the operators asso-

ciated with the neutral Higgs field, so there are two ways to contract the charged leptons

belonging to the four-fermion operators and the Yukawa vertex. In general, each contrac-

tion gives a different result for the matching contribution. These results are summarized in

the next section.

For the one-derivative operator in Eq. (4.12), there is one diagram to consider (Fig. 4.2(b)).

The evaluation of this graph using dimensional analysis is straightforward.

As noted previously, the only scalar n = 7 four-fermion operators that can contribute

to the n = 5 neutrino mass operator are those with either A = E or A = B. For the scalar

four-fermion operators, the contribution from the 7D operators to the 5D mass operator

3For notational simplicity, we henceforth omit the prime superscripts.
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`
c

`
c

LL

L

L`R`cL

(b)

H

H

H

HH

(a)

Figure 4.2: One-loop graphs for the matching of the n = 7 operators (denoted by the box)

into the n = 5 mass operator O(5)
M,AE. Solid, dashed, and wavy lines denote fermions, Higgs

scalars, and gauge bosons, respectively. Panels (a, b) illustrate mixing of O (7)
F and O(7)

4 ,

respectively, into O(5)
M, AE.

from dimensional analysis are:

O7,ABBA
F (a) → C5,BB

M ∼ fAA

16π2
C7,ABBA

F (a) ,

O7,AABB
F (a) → C5,AA

M ∼ fBB

4π2
C7,AABB

F (a) ,

O7,ABBA
F (b) → C5,BB

M ∼ fAA

16π2
C7,ABBA

F (b) ,

O7,ABAB
F (b) → C5,AA

M ∼ fBB

16π2
C7,ABAB

F (b) . (4.27)

Certain flavor combinations (O7 ABAB
F (a) and O7 AABB

F (b) ) are missing because, although they

contribute to µ-decay, they are unconstrained by neutrino mass and do not contribute to

C5
M .

When we calculate the contribution of the 7D one-derivative operator, O (7)

Ṽ , AE
or O(7)

Ṽ , EA
,

to the 5D mass operator, we find:

O7,AE
4 → C5,EA

M ∼ f∗AA

16π2
C7,AE

4 ,

O7,EA
4 → C5,AE

M ∼ f∗EE

16π2
C7,EA

4 . (4.28)

In performing these calculations, the well-known relation C−1γµ = −γµ
TC−1 was useful.
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4.3.2 Mixing among the 7D operators

In order to study the mixing of the n = 7 operators, we use a partial renormalization group

(RG) analysis to derive the neutrino mass naturalness bounds.

A

L L

H

H

H

H

L L

A

H

H

H

H

O
Ṽ
→ OM

L

H

L

H

A

H

H

H

L L

A
H

H H

H

L L

HH

H

Figure 4.3: One-loop graphs for the mixing of the n = 7 operator O(7)

Ṽ
(denoted by the box)

into the n = 7 mass operator O(7)
M,AE. Solid, dashed, and wavy lines denote fermions, Higgs

scalars, and gauge bosons, respectively.

Because O(7)
M, AE contains one power of (H†H)/Λ2 compared to O(5)

M,AE , the constraints

obtained from mixing with the former will generally be weaker by ∼ (v/Λ)2. However, we

will see that for Λ ∼ 1 TeV, the n = 7 mixing can be of comparable importance to the

n = 5 case.

We will be calculating the contributions from the n = 7 operator O(7)

Ṽ ,AE
to the 7D mass
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operator using DR and performing a renormalization group (RG) analysis. The contribu-

tions of the other n = 7 operators will be ignored because their contributions to neutrino

mass are suppressed (in the case of the four-fermion operators, by three powers of the

Yukawa coupling) or because their contributions to muon decay are suppressed (in the case

of the two-derivative operators and the magnetic moment operators).

To first order in Yukawa couplings, there are five graphs to be calculated (see Fig. 4.3).

The background field gauge is used with d = 4 − 2ε; the operators are renormalized with

minimal subtraction, and the renormalized operators are then expressed in terms of the

unrenormalized operators:

O(7)
jR =

∑

k

Z−1
jk Z

nL/2
L Z

nH/2
H Z

nR/2
`R
O(7)

k =
∑

k

Z−1
jk O

(7)
k0 , (4.29)

where

O(7)
j0 = Z

nL/2
L Z

nH/2
H Z

nR/2
`R
O(7)

j (4.30)

are the µ-independent bare operators. Z
1/2
L and Z

1/2
H are the wavefunction renormalization

constants for the fields LA and H, respectively, nL and nH are the number of LH lepton and

Higgs fields appearing in a given operator, and Z−1
jk Z

nL/2
L Z

nH/2
H Z

nR/2
`R

are the counterterms

that remove the 1/ε divergences.

Since the bare operators O(7)
j0 do not depend on the renormalization scale, whereas the

Z−1
jk and the O(7)

jR do, the operator coefficients C7
j must carry a compensating µ-dependence

to ensure that Leff is independent of scale. This requirement leads to the RG equation for

the operator coefficients:

µ
d

dµ
C7

j +
∑

k

C7
k γkj = 0 (4.31)

where

γkj =
∑

`

(
µ
d

dµ
Z−1

k`

)
Z`j . (4.32)

is the anomalous dimension matrix. However, since we are only calculating one element of

the matrix — corresponding to the mixing of O(7)

Ṽ , AE
into O(7)

M, AE — we easily find

γ43 =
9α2f

∗
A

8π
− 3f∗Aλ

8π2
, (4.33)
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where the “4” labels O(7)

Ṽ , AE
and “3” labels O(7)

M, AE, in the notation of [37], and where the

αi = g2
i /(4π) and λ is the Higgs self-coupling defined by the potential V (φ) = λ[(φ†φ) −

v2/2]2.

Using this result for γ43 and the one-loop β functions for α2 and the lepton Yukawa

couplings, we solve the RG equation to determine the operator coefficient C 7
M (µ) as a

function of its values at the scale Λ. As in [17] and [37] we find that the the running of the

gauge and Yukawa couplings has a negligible impact on the evolution of C 7
M (µ). We obtain

C7
M,AE(µ) = −γ43C

7
Ṽ , AE

(Λ) ln
µ

Λ
+

3α2

4π

m2
A −m2

E

υ2
C

(7)−
W,AE(Λ) + . . . , (4.34)

where we have included the antisymmetric magnetic moment operator contribution. There

is also a contribution from the mass operator self-renormalization; while this has not, to our

knowledge, been previously calculated, we do not need its value in this analysis because we

are assuming that C7
M,AE(Λ) = 0, so that δmν is generated entirely by radiative corrections

involving insertions of C7
Ṽ , AE

. Combining Eq. (4.34) with the contribution to the neutrino

mass matrix δmAE
ν given by

δmAE
ν

<∼ −
(
v4

2Λ3

)
C7

M,AE(v) , (4.35)

we will find the neutrino mass constraints in the next section.

4.4 Neutrino Mass Constraints

Using Eq. (4.8) and Eqs. (4.27) and (4.28), we can calculate the bounds shown in Table 4.2.

We will demonstrate this with an example. For the operator Oeµµe
F (a) , we have from Eq. (4.8)

and Eq. (4.27):

mνL

<∼
v2

Λ

f

16π2
C7 eµµe

F (a) ,

giving a bound on the C coefficient of the four-fermion operator:

|C7 eµµe
F (a) | <∼

16π2

√
2

(
δmν

m

)(
Λ

v

)
. (4.36)
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By referring to the entries in Table 4.1 we see that

|gS
RL| <∼ 2π2

(
δmν

me

)(
v2

Λ2

)
|gT

RL| <∼ π2

(
δmν

me

)(
v2

Λ2

)
(4.37)

where δmν are the radiative corrections to mν . If we choose Λ/v ≈ 1 and δmν ≈ 1eV ,

which we take from tritium β-decay measurements [28], [29], we find the bounds in the first

row of Table 4.2. The other bounds are found in a similar manner. It is interesting to note

that, due to the factor of v2/Λ2, as the size of Λ increases, the bounds become smaller.

The constraints on the gV
LR,RL that follow from the mixing of the n = 7 operator O(7)

M, AE

into the mass operator O(7)
M, AE follow straightforwardly from Eqs. (4.34) and (4.35), and

Table 4.1. We find

gV
LR

<∼
1

2

(
δmµµ

ν

mµ

)(
8π sin2 θW

9

)(
α− λ sin2 θW

3π

)−1 (
ln
v

Λ

)−1
. (4.38)

A similar expression holds for gV
RL but with mµ → me and δmµµ

ν → δmee
ν . Compared to

the Dirac case, Eq. 4.38 has an additional factor of 1/2; this comes from a combination of

the additional Higgs field in the n = 7 mass operator, the factor of 1/2 in the Lagrangian

for the Majorana neutrino mass, and the value of κ = 1
2
√

2
in Table 4.1 (instead of κ = 1/2

in the Dirac case). To derive numerical bounds on the gV
LR,RL from Eq. (3.30) we use

the running couplings in the MS scheme α = α̂(MZ) ≈ 1/127.9, sin2 θ̂W (MZ) ≈ 0.2312

and the tree-level relation between the Higgs quartic coupling λ, the Higgs mass mH , and

v: 2λ = (mH/v)
2. We quote two results, corresponding to the direct search lower bound

on mH
>∼ 114 GeV and the one-sided 95 % C.L. upper bound from analysis of precision

electroweak measurements, mH
<∼ 186 GeV [30]. We obtain

∣∣gV
LR

∣∣ <∼

(
δmµµ

ν

1 eV

)(
ln

Λ

v

)−1





5.9× 10−7, mH = 114GeV

3.8× 10−6, mH = 186GeV

(4.39)

∣∣gV
RL

∣∣ <∼

(
δmee

ν

1 eV

)(
ln

Λ

v

)−1





1.2× 10−4, mH = 114GeV

8.0× 10−4, mH = 186GeV .

For Λ ∼ 1 TeV, the logarithms are O(1) so that for δmν ∼ 1 eV, the bounds on the gV
LR,RL

derived from n = 7 mixing are comparable in magnitude to those estimated from mixing



50

Table 4.2: Constraints on µ-decay couplings gγ
αβ from the scalar four-fermion operator and

the vector operator. The first fourteen rows give naturalness bounds in units of (v/Λ)2 ×
(mν/1 eV) on contributions from n = 7 muon decay operators (defined in Section 4.2) based
on one-loop matching with the n = 5 neutrino mass operators. The third to last row gives
upper bounds derived from a recent global analysis of [15], the second to last row gives upper
bounds from a recent analysis using Dirac neutrinos [37], and the last row gives estimated
bounds from [16] derived from two-loop mixing of n = 6 muon decay and neutrino mass
operators. A “-” indicates that the operator does not contribute to the given gγ

αβ , while
“None” indicates that the operator gives a contribution unconstrained by neutrino mass.

Source |gS
LR| |gT

LR| |gS
RL| |gT

RL| |gV
LR| |gV

RL|

O7 eµµe
F (a) - - 4× 10−5 2× 10−5 - -

O7 µeeµ
F (a) 2× 10−7 8× 10−8 - - - -

O7 eµeµ
F (a)

- None - - - -

O7 µeµe
F (a) - - - None - -

O7 µµee
F (a) - - 2× 10−5 - - -

O7 eeµµ
F (a) 1× 10−7 - - - - -

O7 eµµe
F (b) - - 4× 10−5 2× 10−5 - -

O7 µeeµ
F (b) 2× 10−7 8× 10−8 - - - -

O7 eµeµ
F (b) 2× 10−7 8× 10−8 - - - -

O7 µeµe
F (b) - - 4× 10−5 2× 10−5 - -

O7 µµee
F (b) - - - None - -

O7 eeµµ
F (b) - None - - - -

O7 µµ

Ṽ
- - - - 4× 10−7 -

O7 ee
Ṽ

- - - - - 8× 10−5

Global [15] 0.088 0.025 0.417 0.104 0.036 0.104
Dirac [37] 4× 10−7 2× 10−7 8× 10−5 4× 10−5 8× 10−7 2× 10−4

Two-loop [16] 10−4 10−4 10−2 10−2 10−4 10−2
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with the n = 5 mass operators (see Table 4.2). Due to the difference in numerical factors

between Eq. (4.38) and its equivalent in [37], the bounds from operator mixing obtained

here are slightly smaller than the bounds from the Dirac case.

4.5 Conclusions

We have used experimental limits on the Majorana neutrino mass to put constraints on the

muon decay Michel parameters. Specifically, we have derived model-independent natural-

ness contributions to the Michel parameters from various dimension seven operators that

also contribute to neutrino mass through radiative corrections. The resulting constraints

are much smaller than current experimental limits and are approximately the same as the

constraints obtained from Dirac neutrinos. They are also a few orders of magnitude better

than those obtained in a previous two-loop study [16] using Dirac neutrinos. It is interesting

to note that as neutrino mass bounds become tighter with future experiments, our limits

on the g coupling constants in muon decay become tighter as well. At the same time, as

the TWIST experiment improves its sensitivity to the Michel parameters it will be looking

for deviations from our predictions.

After taking the flavor structure of operators contributing to muon decay and neutrino

mass into account, we have found that, similar to the Dirac case, there are some four-fermion

operators that do not contribute to neutrino mass through radiative corrections. While all

of the operators that contribute to the vector coupling constants gV have neutrino mass

naturalness bounds, those contributing to the scalar and tensor coupling constants gS,T

do not. It is reasonable to expect the coefficients of the unconstrained operators to be

of the same order of magnitude as the constrained coefficients, but without more precise

measurements from muon decay experiments we cannot say for certain.
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Appendix A

Perturbative Renormalization for

Domain-Wall Fermions

A.1 Introduction

Understanding the non-perturbative dynamics that govern the internal structure and inter-

actions of hadrons is a central goal of nuclear physics. Experimentally, substantial efforts

are underway using electron scattering and relativistic heavy ion collisions to probe the in-

teractions of quarks and gluons at distance scales and temperatures where non-perturbative

dynamics are expected to dominate. Theoretically, a variety of approaches are being pur-

sued to derive insight into these dynamics. Hadronic models have been remarkably success-

ful in accounting for a variety of non-perturbative phenomena while providing important

guidance as to the essential elements that drive them. Similarly, effective field theories

such as chiral perturbation theory or heavy quark effective theory that incorporate approx-

imate symmetries of Quantum Chromodynamics (QCD) have proven to be powerful tools

in systematically correlating a limited number of existing measurements in order to make

predictions for as yet unmeasured observables. Each of these approaches, however, requires

parameterizing one’s ignorance of various aspects of non-perturbative QCD in terms of a

set of input parameters that must be taken from experiment. Ideally, one would like to

derive these parameters from first principles in QCD. To date, the only viable method for

doing so is to put QCD on the lattice.

The implementation of lattice QCD itself entails numerically approximating the full

theory in a way that reproduces it in the continuum limit. However, at finite lattice spacing

a, various symmetries of continuum QCD — such as Lorentz invariance — are broken. In
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order to obtain results that realistically describe the continuum limit, one must understand

the effect of these symmetry breakdowns in a systematic way. One of the most important

of these is the approximate SU(3)L×SU(3)R chiral symmetry of the QCD Lagrangian as-

sociated with the three lightest quarks. It is well known that the widely used Wilson and

Kogut-Suskind (KS) lattice actions do not fully reflect this chiral symmetry. The Wilson

action breaks the degeneracy of physical quarks and the unphysical doublers by including

a chiral symmetry-breaking mass parameter. Consequently, a certain degree of fine-tuning

of lattice parameters is needed to compensate for this effect when computing quantities,

such as the pion decay constant or nucleon polarizabilities, that are chirally sensitive. The

KS action introduces no such mass parameter, but the corresponding spectrum does not

contain the full set of Goldstone bosons implied by spontaneously broken SU(3)L×SU(3)R

symmetry.

In the past decade or so, the development of lattice actions for quarks satisfying the

Ginsparg-Wilson relation has allowed one to implement chiral symmetry on the lattice

while removing the problematic doublers and maintaining locality and gauge invariance.

For computations aimed at understanding the properties of light quark systems, the state

of the art clearly lies in the use of Ginsparg-Wilson quarks. Here, we focus on one variety,

namely, domain-wall (DW) quarks introduced by Kaplan [44] and subsequently formulated

by Shamir [45]. The DW action places physical quarks and their gauge interactions on

the four-dimensional boundaries of a five-dimensional space, where the size of the fifth

dimension is N . In the N →∞ limit, the chiral symmetry is exact, while for finite N , the

effects of chiral symmetry-breaking are exponentially suppressed roughly as exp{−N}.

A number of quantities have been computed using DW quarks, and it has been demon-

strated that the chiral behavior of various observables is reproduced in the continuum limit

(see, e.g. [46]). More generally, the observables one would like to study with DW quarks

and compare with experiment involve matrix elements of renormalized operators. The sim-

plest example are matrix elements of twist-two operators that give the lowest moments of

structure functions obtained in deep inelastic scattering. These matrix elements depend

on the renormalization scale µ in such a way as to compensate for the µ-dependence of

the corresponding Wilson coefficients, with the precise definition of each dependent on the

choice of renormalization scheme. In most instances, dimensional regularization (DR) with

modified minimal subtraction (MS) scheme is used in continuum QCD. Since the lattice



54

regulator differs by construction from DR, the corresponding renormalization scheme is not

the same as (MS). Consequently, a direct comparison between lattice results and experi-

mental values for matrix elements of renormalized operators is not meaningful. In general,

one has

〈h′|Ôj |h〉MS =
∑

k

Z̄jk(µa)〈h′|Ôk|h〉lat (A.1)

where, at one-loop order, the matching coefficients Z̄jk(µa) contain a logarithmic depen-

dence on µa plus a (µ, a)-independent term that reflects the difference between (MS) and

lattice renormalization, viz

Z̄jk(µa) = δjk +
g2

16π2
CF [(γjk + γ2δjk) ln(µa) +Rjk] (A.2)

where γjk is the anomalous dimension matrix, γ2 arises from wavefunction renormalization,

and the Rjk contain the scheme-dependent differences1. The goal of the present study is to

compute the the Z̄jk for DW fermions for a variety of twist-two operators.

Ideally, one would compute the Z̄jk using non-perturbative methods, but doing so is

neither feasible nor desirable in all cases. It is well known, for example, that the break-

ing of Lorentz invariance by the lattice regulator implies additional operator mixing not

present in the continuum. Accounting for this mixing when approaching the continuum

limit can be prohibitively expensive when done non-perturbatively (for a more extensive

discussion, see, e.g. [51]). Similarly, weak interaction operators, such as those governing

the non-leptonic decays of K- and B-mesons, undergo mixing even in the continuum limit.

Thus, in both cases, having in hand analytic, perturbative computations for the Z̄jk can

be advantageous. For this reason, we present here O(αs) perturbative computations of the

Zjk for DW fermions.

As a practical matter, perturbative lattice renormalization can also provide for more pre-

cise determinations of the Z̄jk than can be obtained at present with non-perturbative meth-

ods. The extent to which perturbative, one-loop computations provide a reliable method

for obtaining precise values for the Z̄jk depends on knowing that the truncation error as-

sociated with higher-order contributions is sufficiently small. So long as the Rjk are O(1),

the size of this truncation error is governed by the coupling gs(a). It has been known for

1In summing over k in Eq. (A.1) we have allowed for operator mixing that arises both in the continuum
limit as well as mixing generated by the breaking of Lorentz invariance on the lattice.
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some time, however, that one-loop computations using standard link variables can yield

|Rjk| >> 1, thereby undermining the convergence properties that undergird the use of per-

turbation theory. This situation is remedied to some degree by employing “smeared” or

“fat” links. The primary motivation for the use of smeared links has been to reduce the

impact of short distance fluctuations and exceptional configurations in the computation

of various matrix elements. As a by-product, however, carrying out perturbative renor-

malization with smeared links is equivalent to introducing momentum-space form factors

into one-loop computations that suppress large contributions to the Rjk. Smeared links

have been used in a variety of Wilson and KS perturbative computations, leading to Rjk

of O(1). To our knowledge, no computations for DW have been carried out using smeared

links. While the paper from which this appendix is excerpted employs smeared links, all of

the results presented here will be in terms of unsmeared links.

The primary results of our work are numerical values for the Z̄jk for matrix elements of

operators listed in Table A.1. To provide as many cross checks as possible, we also compare

our results in various limits with those obtained by Aoki et al. for the quark self energy

and bilinears using DW quarks and standard (unsmeared) link variables and [51] for Wilson

fermions without smearing. In all cases, we find agreement with existing results. In the case

of DW quarks, in the original paper we find that smearing generally reduces the magnitude

of the Rjk by factors of three or four and, in some cases, substantially more, but that will

not be discussed here.

As in the work of [47] and [48], we also find that the magnitude of the wavefunction

renormalization constant, Zq, for physical quarks that live only on the boundaries of the

fifth dimension is quite sizeable. As we discuss below, the origin of the large contributions

to Zq is a renormalization of the physical quark field that is distinct from the wavefunction

renormalization of the individual DW quark fields living anywhere in the fifth dimension.

We isolate this effect by writing Zq = Z2Zw, where Z2 is the wavefunction renormalization

constant for the individual DW quarks and Zw is the additional renormalization of the

physical quark fields. We argue that Zw is essentially a non-perturbative quantity, and

we identify a method for obtaining it from ratios of non-perturbative matrix elements.

In contrast, Z2 and the individual operator renormalization constants Zjk appear to be

perturbative. Since the matching coefficients Z̄jk depend on products of the Z−1
jk and

Zq, since the latter contain the non-perturbative Zw contribution, and since the Rjk are



56

observable H(4) mixing ~P lattice operator

〈x〉(a)
q 6+

3 no 1 q̄γ{1
↔
D4}q

〈x〉(b)q 3+
1 no 0 q̄γ4

↔
D4q − 1

3(q̄γ1

↔
D1q + q̄γ2

↔
D2q + q̄γ3

↔
D3q)

〈x2〉q 8−
1 yes 1 q̄γ{1

↔
D1

↔
D4}q − 1

2 q̄(γ{2
↔
D2

↔
D4} + γ{3

↔
D3

↔
D4})q

〈x3〉q 2+
1 no∗ 1 q̄γ{1

↔
D1

↔
D4

↔
D4}q + q̄γ{2

↔
D2

↔
D3

↔
D3}q − ( 3 ↔ 4 )

〈1〉∆q 4+
4 no 0 q̄γ5γ3q

〈x〉(a)
∆q 6−

3 no 1 q̄γ5γ{1
↔
D3}q

〈x〉(b)∆q 6−
3 no 0 q̄γ5γ{3

↔
D4}q

〈x2〉∆q 4+
2 no 1 q̄γ5γ{1

↔
D3

↔
D4}q

〈1〉δq 6+
1 no 0 q̄γ5σ34q

〈x〉δq 8−
1 no 1 q̄γ5σ3{4

↔
D1}q

d1 6+
1 no∗∗ 0 q̄γ5γ[3

↔
D4]q

d2 8−
1 no∗∗ 1 q̄γ5γ[1

↔
D{3]

↔
D4}q

Table A.1: Operators used to measure moments of quark distributions. Different lattice
operators corresponding to the same continuum operator are denoted by superscripts a and
b. Subscripts of irreducible representations of H(4) distinguish different representations of
the same dimensionality and superscripts denote charge conjugation C. In the operator
mixing column, no∗ indicates a case in which mixing generically could exist but vanishes
perturbatively for Wilson or overlap fermions, and no∗∗ indicates perturbative mixing with
lower dimension operators for Wilson fermions but no mixing for overlap fermions. The
entry in column ~P denotes the number of spatial components of the nucleon momentum,
~P , that must be chosen non-zero. Operators requiring one non-zero component have been
written for ~P in the 1-direction and ~S in the 3-direction.

meaningful only in the context of one-loop perturbation theory, we quote results for the Z̄jk

rather than for the Rjk.

A secondary aim of this chapter is to provide a brief, pedagogical introduction to pertur-

bative renormalization with DW quarks for readers who may be unfamiliar with the subject.

An extensive review of perturbative renormalization that focuses largely on Wilson fermions

and unsmeared links can be found in [51], and the present work should be read in tandem

with that paper. Here, we discuss in some detail elements of perturbative renormalization

that are unique to DW quarks, and include a few detailed examples for illustration. We

also provide rather general expressions that may be used by others in constructing codes to

carry out perturbative renormalization.

Our presentation of these points is organized as follows: In Section A.2, we review the

DW action and discuss the structure of the various tree-level quark propagators needed for
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the one-loop computations. In Section A.3, we give an extensive discussion of perturbative

renormalization, including the issues involving Zq mentioned above, the treatment of in-

frared singularities, and detailed computations of quark self-energies and bilinear operators

q̄Γq. This section contains most of the formalism needed to understand the subsequent dis-

cussion of twist-two operators. Because the notation and definitions employed in the lattice

community differ in some cases from the standard field theory notation, we also provide a

translation guide for converting from one to the other. Section A.4 contains the computa-

tion of the Z̄jk for the twist-two operators listed in Table A.1, and in Section A.5 we give

a summary. Additional formal, pedagogical, and computational details are contained in a

following appendix2.

A.2 Domain-Wall Action and Propagators

Domain-wall fermions live in five spacetime dimensions and possess gauge interactions in

the four-dimensional subspace that corresponds to ordinary spacetime. The fifth dimension

is taken to be of finite size, with physical quark fields corresponding to linear combinations

of the fields that live on the boundaries of the fifth dimension. For pedagogical purposes,

however, it is useful to first consider the fifth dimension to be of infinite size. One may

decompose the 5D Lagrangian into the usual 4D Wilson Lagrangian, L4, plus a component

that couples fields in the fifth dimension, L5 [45]. One has, then3,

L4 = − 1

2a

∑

x,s,µ

[
ψ̄s(x)(r − γµ)Uµ(x)ψs(x+ aµ̂) + ψ̄s(x+ aµ̂)(r + γµ)U †

µ(x)ψs(x)
]

+
∑

x,s

ψ̄s(x)

(
M +

rd

a

)
ψs(x) , (A.3)

where x and s denote the usual spacetime co-ordinates and those for the fifth dimension,

respectively, and µ indicates any one of the directions in the ordinary d = 4 spacetime

dimensions, and the gauge link is defined

Uµ(x) = eiag0Aµ(x+aµ̂/2) . (A.4)

2The work in Appendices A and B was done in collaboration with Bojan Bistrović.
3When comparing formulas, one has to take into account that different authors use different sign-

conventions for the r term
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The other notation in Eq. (A.3) corresponds to that of the standard Wilson Lagrangian: M

is the 5D mass parameter, and the terms containing r break the degeneracy of doublers in

the M → 0 limit. Although one may allow r to take on any value in the range −1 ≤ r < 0,

we will take r = −1 in order to avoid the presence of additional time doublers that disappear

in the continuum limit. Note that the link fields Uµ(x) are independent of s.

The Lagrangian L5 couples fermions at different values of s without involving the gauge

degrees of freedom:

L5 =
−1

2a5

∑

x,s

[
ψ̄s(x)(r5 − γ5)ψs+1(x) + ψ̄s(x)(r5 + γ5)ψs−1(x)

]
+
∑

x,s

ψ̄s(x)
r5
a5
ψs(x) , (A.5)

where we have allowed for the spacing a5, and the discretized second derivative (proportional

to r5/a5) in the fifth dimension to differ from the corresponding quantities in the other

four dimensions. Note that since L5 involves no gauge couplings, one may think of the

coordinates s as labeling an internal degree of freedom, or “flavor,” for the fermion fields.

The total Lagrangian L = L4 + L5 then corresponds to an infinite tower of ordinary 4D

Wilson Lagrangians for fermions labeled by s with “nearest flavor” couplings given by L5.

For the purpose of carrying out renormalization, it is most convenient to work in mo-

mentum space. The DW action is

SDW = ad
∑

x

LDW =

π/a∫

−π/a

ddp

(2π)d

∑

s,s′

ψ̄s(p)D
0
s,s′(p)ψs′(p) , (A.6)

with

D0
s,s′(p) =

[
ip̄ · γ − a

2
p̂2 +

(
r5
a5

+M

)]
δs,s′ −

r5 − γ5

2a5
δs+1,s′ −

r5 + γ5

2a5
δs−1,s′ . (A.7)

Throughout the chapter we will use the notation

p̂µ ≡
2

a
sin

apµ

2
, p̄µ ≡

1

a
sin apµ , p̃µ ≡ cos

apµ

2
, (A.8)

so that

p̂2 ≡
∑

µ

(
sin apµ/2

a/2

)2

p̄2 ≡
∑

µ

(
sin apµ

a

)2

, p̃2 ≡
∑

µ

(
cos

apµ

2

)2
. (A.9)
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Since we will not take a continuum limit in the fifth dimension, we are not concerned with

the implications of the choice of r5 for the approach to the continuum theory. In this case, it

is convenient to choose r5 = −1 in order to obtain chirality projection operators in D0
s,s′(p):

D0
s,s′(p) = [ip̄ · γ −W (p)] δs,s′ +

1

a5

(
P+δs+1,s′ + P−δs−1,s′

)
(A.10)

W (p) =

(
1

a5
−M

)
+
a

2
p̂2 . (A.11)

The propagator for the semi-infinite and finite dimensions will be determined by restricting

the range of s, s′ in D0
s,s′(p).

The DW propagator is obtained by inverting the Dirac operator D0
s,s′(p). A detailed

discussion of the procedure for doing so is given in Appendix B . In practice, we work with

a fifth dimension of finite extent (s = 1, . . . , N) and quarks having non-zero mass, m. As

discussed below, physical quarks are defined as linear combinations of the quarks living at

s = 1 and s = N , we add a mass term only on the boundaries of the Dirac operator. The

resulting form is

D̂s,s′(m) = θ(s− 1)θ(s′− 1)θ(N − s)θ(N − s′)D0
s,s′ +mP−δs,1δs′,N +mP+δs,Nδs′,1 . (A.12)

The propagator for the 5D quarks is just the inverse of D̂ and is given by (see Appendix B)

Ŝss′(p) = −ip̄ · γ
(
Ĝ+

ss′P+ + Ĝ−
ss′P−

)
+ S+

ss′P+ + S−
ss′P− , (A.13)

where

S+
ss′ =

∑

t

(
−Wδs,t +

1

a5
δs,t+1 +mδs,1δt,N

)
Ĝ+

ts′ (A.14)

S−
ss′ =

∑

t

(
−Wδs,t +

1

a5
δs,t−1 +mδs,Nδt,1

)
Ĝ−

ts′ . (A.15)

with

Ĝ±
s,s′ = A0e−α|s−s′| + Â±e

−α(s+s′−2) + Â∓e
−α(2N−s−s′) + Âm

(
e−α(N−s+s′) + e−α(N+s−s′)

)
,

(A.16)

where formulas for coefficients A0, Â±, and Âm are given in Appendix B.
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A.2.1 Physical quarks

The computation of hadronic matrix elements on the lattice requires the construction of

sources that contain quark interpolating fields. From the standpoint of chiral symmetry,

one uses interpolating fields whose mq → 0 properties are chosen to reflect most closely

those of the physical quarks of QCD. One advantage of DW quarks is that in the N →∞
limit, mass renormalization is mulitiplicative. Indeed, as shown in [47], the existence of a

massless mode χ0

χ =
√

1−w2
0

(
P+w

s−1
0 ψs(x) + P−w

N−s
0 ψs(x)

)
(A.17)

is stable under one-loop renormalization. In principle, one would like to construct hadronic

sources and operators from the χ0 fields, but due to the non-local structure of that field it

is more practical to build interpolating fields from linear combinations of the fields on the

boundaries, ψ1 and ψN . Denoting the interpolating, or “physical,” quark field as q(x) one

has

q(x) = P+ψ1(x) + P−ψN (x) , q̄(x) = ψ̄1(x)P− + ψ̄N (x)P+ . (A.18)

As discussed below, it is necessary to know the DW propagators involving the physical

quark fields as well as those arising from one physical and one of the ψs(x) fields. To that

end, we define the following propagators:

Sqs(x, y) =
〈
q(x)ψ̄s(y)

〉
(A.19)

Ssq(x, y) = 〈ψs(x)q̄(y)〉 (A.20)

Sqq(x, y) = 〈q(x)q̄(y)〉 . (A.21)

Using our previous expressions for Ŝst(k) we obtain the following explicit expressions for

these propagators:

Ŝqs(k) = −ik̄ · γ [g+(s, k)P+ + g−(s, k)P−] + σ+(s, k)P+ + σ−(s, k)P− (A.22)

Ŝsq(k) = [g+(s, k)P+ + g−(s, k)P−]
(
−ik̄ · γ

)
+ σ+(s, k)P+ + σ−(s, k)P− (A.23)

Ŝqq(k) =
ik̄ · γ −m(1− |b| a5e

−α)

fN (m)
(A.24)



61

where

g+(s, k) = −
[
e−α(N−s) +ma5e

−αe−α(s−1)

fN (m)

]
(A.25)

g−(s, k) = −
[
e−α(s−1) +ma5e

−αe−α(N−s)

fN (m)

]
(A.26)

σ+ = m
(
1−Wa5e

−α
)
g+ − a5e

−αe−α(s−1) (A.27)

σ+ = m
(
1−Wa5e

−α
)
g− − a5e

−αe−α(N−s) (A.28)

fN(m) =
1

a2
5

(1− |b| a5e
α)−m2

(
1− |b| a5e

−α
)
. (A.29)

A.3 Renormalization

Deriving the matching coefficients Z̄jk(µ, a) requires that one carefully delineate the con-

tributions from both quark field renormalization and proper vertices involving operator

insertions. In doing so, it is useful begin with the standard reduction formulae for operator

matrix elements. Since we work at momentum scales p ∼ 1/a that are well above the con-

finement scale, we may consider matrix elements between initial and final states containing

free quarks of well-defined momenta. To illustrate, consider matrix elements of the quark

bilinear, given at tree-level by

Ôj(x) = q̄(x)Γjq(x) . (A.30)

After renormalization, one replaces the fields q(x) by the bare fields q0(x):

q0(x) =

√
Z̃q q(x) (A.31)

where Z̃q is the regulator-dependent wavefunction renormalization constant defined in a

particular renormalization scheme. Any additional ultraviolet divergences in the opera-

tor matrix elements that are not removed by the wavefunction renormalization (A.31) are

eliminated by operator renormalization:

ÔRj(x) =
∑

k

Z̃−1
jk Ô0k(x) =

∑

k

Z̃−1
jk Z̃

Nq/2
q Ôj(x) , (A.32)

where ÔRj(x) is the renormalized bilinear, Ô0k(x) = q̄0(x)Γjq0(x) is the bare operator, and

Nq = 2 is the number of quark fields appearing in Oj(x).
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The finite matrix elements of ÔRj(x) are then given by the reduction formula in terms

of amputated, one-particle irreducible matrix elements:

〈k| ÔR
j (x) |p〉 = disc +

(
−i√
Zq

)2 ∫
d4y

∫
d4z ei(k·z−p·y)ū(k)

−→
D z

×〈0| T
[
q(z)ÔR

j (x)q̄(y)eiSint

]
|0〉←−D

†
yu(k) (A.33)

where the “disc” denotes contributions from disconnected diagrams, and where we have

gone to the interaction representation, with Sint =
∫

d4x Lint. The operators
−→
D z are

just the Dirac operators (either continuum or lattice) and Zq is the finite wavefunction

renormalization constant for the quark field q(x). In the MS scheme, the Zq gives the residue

of the pole of the renormalized quark propagator. In the case of lattice regularization, Zq

may differ from unity even at tree-level. From Eq. (A.17) we observe that for the physical

quark fields defined in Eq. (A.18), one has

(Zq)lat, tree = 1− w2
0 . (A.34)

It is useful to express Eq. (A.30) in terms of the propagators Ŝts, Ŝqs, etc., and the proper

vertices Λj
ts that contain insertions of the unrenormalized operators Ôj(x). Transforming

to momentum space leads to

∫
d4x eiq·x 〈k| ÔRj(x) |p〉 = (2π)4δ(p− q − k)

(
1√
Zq

)2∑

k

Z−1
jk (A.35)

×
[
Ŝqq(k)

−1
]tree

Ŝqs(k) Λj
st(k, p)Ŝtq(p)

[
Ŝqq(p)

−1
]tree, †

,

where we have replaced
−→
D z and

←−
D

†
y in momentum space by [Ŝqq(k)

−1]tree and [Ŝqq(p)
−1]tree, †,

respectively. At tree-level, Λj
st(k, p) → Λj

qq(k, p) since Ôj(x) contains only physical quark

fields, and Z−1
jk → δjk. Similarly, Zq = 1 (MS) or 1 − w2

0 (DW quarks) and the inverse

propagators simply amputate the renormalized, external propagators Ŝqq(k) and Ŝqq(x, y)

that arise from contractions of the q̄(z) and q(y) with the fields appearing in Ôj(x).

At one-loop order, several effects must be taken into account. First, one must account for

renormalization of the propagators Ŝqs and Ŝtq arising from external leg corrections. Since

Ôj(x) contains only the physical quark fields q(x), one need consider only the external



63

leg corrections to Ŝqq to this order. Second, one must include operator renormalization

generated by vertex corrections. The latter give rise to non-vanishing Λk
st, Λk

sq, and Λk
qs

since the internal lines can contain any one of the propagators Ŝqt, Ŝsq, or Ŝqq. In this case,

one may use the tree-level external propagators Ŝqs appearing in Eq. (A.35). Finally, the

one-loop expression for the residue Zq in Eq. (A.35) must be used.

Once this renormalization has been carried out, Eq. (A.32) can be used to convert matrix

elements computed on the lattice to the matrix elements of renormalized operators in the

continuum in the MS scheme. To do so, we observe that the matrix element of ÔRj between

quark states, 〈q| ÔRj |q〉 in any scheme is given by

〈q| ÔRj |q〉 =
∑

k

Z−1
jk Z

Nq/2
q 〈q| Ôk |q〉tree , (A.36)

where the Zjk and Zq without the tilde denote the finite parts of the one-loop matrix

elements after the divergences have been removed by renormalization. Moreover, the tree-

level matrix elements (in the continuum limit) are identical for all schemes. Thus, we have

in the continuum limit

〈q| ÔRj |q〉MS =
∑

`

(
Z−1

j`

)
MS

(
Z

Nq/2
q

)
MS
〈q| Ô` |q〉tree (A.37)

=
∑

`

(
Z−1

j`

)
MS

(
Z

Nq/2
q

)
MS

∑

`

(Z`k)lat

(
Z

−Nq/2
q

)
lat
〈q| ÔRk |q〉lat ,

so that the matching coefficients Z̄jk of Eq. (A.1) are given by

Z̄jk =
∑

`

(
Z−1

j`

)
MS

(Z`k)lat

(
Z

Nq/2
q

)
MS

(
Z

−Nq/2
q

)
lat
. (A.38)

The interpretation of Eq. (A.38) is clear. To obtain the renormalized matrix elements

in MS from those computed on the lattice, one must divide out the finite artifacts of lat-

tice regularization that contribute to wavefunction renormalization [the (Z
−Nq/2
q )lat factor]

and operator renormalization [the (Z`k)lat factor]. For operators and operator mixing in-

volving different numbers of quark and/or gluon fields, Eq. (A.38) can be generalized in a

straightforward way. Note that for the physical quarks of Eq. (A.18), the tree-level matching

coefficients Zjk = δjk(1− w2
0)

−Nq/2.

The notation used in the foregoing discussion is the standard employed in most textbook
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treatments of renormalization. Indeed, the anomalous dimension matrix γjk is given in terms

of the logarithmic derivatives of the Z−1
jk :

γjk =
∑

`

(
µ
d

dµ
Z−1

j`

)
Z`k . (A.39)

The operator renormalization constants used in the lattice literature, however, are defined

with a slightly different notation. In [47] and [48], for example, the matching constant Z̄Γ

for quark bilinears q̄Γq is given by

Z̄Γ = (1− w2
0)

−1Z−1
w Zγ(µa) , (A.40)

where the (1−w2
0)

−1Z−1
w arises from the (Z

−Nq/2
q )lat factor in Eq. (A.38) with Nq = 2, and

where ZΓ(µa) contains the Z−1
2 from 5D DW quark wavefunction renormalization and the

(Z−1
Γ )MS(ZΓ)lat(Zq)MS factors4.

The extraction of the one-loop (Zq)lat factors in lattice perturbation theory involves

special considerations that we discuss before treating specific examples. First, we note from

Eq. (A.35) that we require the products

[
Ŝqq(k)

−1
]tree

Ŝqs(k)
tree and Ŝtq(p)

tree
[
Ŝqq(p)

−1
]tree, †

(A.41)

that occur in tandem with the one-loop vertex corrections and

[
Ŝqq(k)

−1
]tree

Ŝqq(k) and Ŝqq(p)
[
Ŝqq(p)

−1
]tree, †

(A.42)

associated with the external leg corrections to the physical quark propagators. For future

reference, it is useful to work out explicit expressions for the former:

S̄OUT
s (p) =

[
Ŝqq(p)

−1
]tree

Ŝqs(p)
tree

= −ip̄ · γ(ḡ+P+ + ḡ−P−) + σ̄+P+ + σ̄−P− (A.43)

S̄IN
s (p) = Ŝqq(p)

[
Ŝqq(p)

−1
]tree, †

= (ḡ−P+ + ḡ+P−)(−ip̄ · γ) + σ̄−P+ + σ̄+P− (A.44)

4The quark bilinears introduce no operator mixing, so the sum over operator labels does not appear.
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with

ḡ+(p) =
a5e

−αfN (m)

p̄2 +m2
(
1− |b(p)| a5e−α(p)

)2 e−α(s−1) (A.45)

ḡ−(p) =
a5e

−αfN (m)

p̄2 +m2
(
1− |b(p)| a5e−α(p)

)2 e
−α(N−s) (A.46)

σ̄+(p) = m(1−Wa5e
−α)ḡ+ +ma5e

−αe−α(s−1) + e−α(N−s) (A.47)

σ̄−(p) = m(1−Wa5e
−α)ḡ− +ma5e

−αe−α(N−s) + e−α(s−1) . (A.48)

In practice we will need p→ 0 expansions of formulas for ḡ± and σ̄±

ḡ+(0) = Aws−1
0 , ḡ−(0) = AwN−s

0 , σ̄+(0) = wN−s
0 , σ̄−(0) = ws−1

0 , (A.49)

with A = a5w0

1−w2
0
.

The products
[
Ŝqq(k)

−1
]tree

Ŝqq(k) and Ŝqq(p)
[
Ŝqq(p)

−1
]tree, †

are each equal to the

residue5 Zq. As we discuss in detail below, Zq receives two contributions that may be seen

by considering the one-loop renormalized Ŝqq:

Ŝqq(p) = Ŝqq(p)
tree +

∑

s,t

Ŝqs(p)
tree Σst(p) Ŝtq(p)

tree , (A.50)

where Σst(p) defines the one-loop self energy matrix:

Σst(p) = iAstp · γ +Bst . (A.51)

In the continuum limit, we have

Ŝqq(p)→
1− w2

0

ip · γ(1 +A) +m(1− w2
0)(1 +B)

, (A.52)

where A and B indicate the finite, one-loop contributions, m is the quark mass parameter

appearing in the lattice action, and Zq = (1−w2
0)(1+A)−1. The second term in Eq. (A.50)

contributes to A in two ways: (a) via the Ast component of Σst(p) that corresponds to

wavefunction renormalization of the 5D quarks and (b) through the Bst component in

combination with the ip · γ appearing in Ŝtree
qs and Ŝtree

tq in the second term of Eq. (A.50).

5In the following discussion, we drop the “lat” subscript for simplicity, except where it is needed to
distinguish the lattice and MS cases.
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Denoting the contribution of type (a) as Z2 and that of type (b) as Zw we have

Zq = Z2Zw

(
1− w2

0

)
. (A.53)

Physically, the effect of Zw corresponds to a change in the normalization of the physical

quark fields defined in Eq. (A.18) that is distinct from the renormalization of the ψ1 and

ψN components. As we discuss below, the magnitude of the one-loop contribution to Z2−1

is roughly O(αs/4π), as one would expect, whereas the magnitude of Zw−1 is considerably

larger. The presence of anomalously large one-loop contributions is obviously troubling

from the standpoint of the perturbative expansion. In order to remedy this difficulty, we

identify below a method to obtain Zw non-perturbatively by taking appropriate ratios of

axial current matrix elements. We also discuss an ansatz for resumming the large one-loop

contributions to Zw that produces good agreement with the non-perturbative value.

Before proceeding with the detailed discussion of one-loop computations, we modify our

earlier definition of the physical quark fields q(x) to absorb the 1− w2
0 factor appearing in

Zq. In what follows, we take

q(x) =
1√

1− w2
0

[P+ψ1(x) + P−ψN (x)] , q̄(x) =
1√

1− w2
0

[
ψ̄1(x)P− + ψ̄N (x)P+

]
.

(A.54)

The corresponding mass parameter in the action becomes

m̃ = (1− w2
0)m. (A.55)

Note that with the definition in Eq. (A.54) one has Zq = 1 at tree level.

A.3.1 Wavefunction renormalization

It is instructive to discuss in detail the computation of the wavefunction renormalization

constant Zq in order to highlight several features of the DW renormalization program: (a)

the general procedure for computing one-loop amplitudes; (b) the treatment of bona fide

infrared singularities as well as numerical divergences that arise in computing IR-finite

graphs in the vicinity of zero loop momentum; and (c) the non-perturbative extraction

of Zw. In doing so, it is also instructive to identify three classes of contributions: those

that contribute to Z2, those giving Zw, and those that renormalize the mass parameter m̃.
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Letting

Σq(p) =
[
Ŝqq(p)

−1
]tree

Ŝqq(p)
[
Ŝqq(p)

−1
]tree, †

− (ip · γ + m̃) , (A.56)

we may write Σq(p) as

Σq(p) =
g2
0CF

16π2

[
ip · γ

(
Σ̃2 −AΣ̃w

)
+ m̃Σ̃m

]
, (A.57)

where CF is the quadratic Casimir for SU(3); Σ̃2, Σ̃w, and Σ̃m give the one-loop contribu-

tions to Z2, Zw, and m̃ renormalization, respectively; and

A =
a5w0

1−w2
0

. (A.58)

Because of the chiral symmetry of the DW action, the mass parameter m̃ is multiplicatively

renormalized. Thus, it is convenient to introduce the mass renormalization constant Zm

defined by

m̃+ δm̃ ≡ ZwZ
−1
m m̃ , (A.59)

where δm̃ indicates the momentum-independent part of Σq(p).

The diagrams that contribute to Σq(p) are shown in Figs. A.1 and A.2. We discuss the

computation of each in turn.

A.3.1.1 Sunset diagram

The amplitude Σs,t (see Eq. (A.50)) for the sunset diagram is given by

Σst(a, p) =

π/a∫

−π/a

ddk

(2π)d

∑

λ,ρ

Gλρ(p− k)Vρ(k, p)[SF (k)]stVλ(p, k) . (A.60)
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After rescaling the loop momentum kµ → kµ/a, we have

Σst(a, p) =

π∫

−π

ddk

(2π)d

∑

λ,ρ

Gλρ(ap− k)Vρ(k, ap)SF (k)Vλ(ap, k)

= g2
0CF

π∫

−π

ddk

(2π)d

1

a4

∑

µ

[
a2gρσ

( ̂ap− k)2

][
r

2

(
̂ap+ k

)
ρ

+ iγρ

(
˜ap+ k

)
ρ

]

×a
[
(−iγ · k̄(G+P+ +G−P−) + S+P+ + S−P−

]

×
[r
2

(
̂ap+ k

)
σ

+ iγσ

(
˜ap+ k

)
σ

]
(A.61)

≡ g2
0CF

π∫

−π

ddk

(2π)d
Ist(ap, k)

where we have suppressed 5D indices on G± and S± for simplicity. After performing the

γ-matrix algebra we separate the integrand into terms having odd or even numbers of γ

matrices

Σst(ap) = g2
0CF

π/a∫

−π/a

ddk

(2π)d

([
I+
odd

]
st
P+ +

[
I−odd

]
st
P− +

[
I+
even

]
st
P+ +

[
I−even

]
st
P−
)

(A.62)

where I± are given by

[I±odd]st =
1

a

gρσ

( ̂ap− k)2 + λ2

{
−ik̄ · γ

(
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ[G±]st + gρσ( ˜ap+ k)2ρ[G∓]st

)

+2i( ˜ap+ k)ρ( ˜ap+ k)σγρk̄σ[G∓]st

+
r

2
( ̂ap+ k)ρ( ˜ap+ k)σiγσ [(S± + S∓)]st

}
(A.63)

[I±even]st =
1

a

gρσ

( ̂ap− k)2 + λ2

{
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ[S±]st − gρσ( ˜ap+ k)2ρ[S∓]st

+
r

2
( ̂ap+ k)ρ( ˜ap+ k)σ(k̄ · γ γσ[G∓]st + γσ k̄ · γ[G±]st)

}
. (A.64)

The contribution to Σq(a, p) generated by Σst(a, p) is obtained by multiplying by S̄OUT
s

and S̄IN
t on the left and right, respectively (see Eqs. (A.50) and (A.56)). The corresponding
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p−k

q(p) q(−p)ψ (k)t
ψ (−k)s ψ (p)ψ (−p)t s

Figure A.1: Sunset diagram for physical quarks. Solid and curly lines represent fermions
and gluons, respectively.

integrand Iq(a, p) appearing in Σq(a, p) is, thus,

Iq = S̄OUT
s IstS̄

IN
t

= (1− w2
0)
[
−ip · γA

(
wN−s

0 P− + ws−1
0 P+

)
+
(
ws−1

0 P− +wN−s
0 P+

)]
s
Ist

×
[(
wN−t

0 P+ + wt−1
0 P−

)
(−ip · γA) +

(
wt−1

0 P+ + wN−t
0 P−

)]
t
. (A.65)

Now we use

IoddP± = P∓Iodd , IevenP± = P±Ieven (A.66)

to get

Iodd
q (ap, k) = (−ip · γA)Ī−odd(ap, k)(−ip · γA) + Ī+

odd(ap, k)

+(−ip · γA)Ĩ−odd(ap, k) + Ĩ+
odd(ap, k)(−ip · γA) (A.67)

Ieven
q (ap, k) = (−ip · γA)Ĩ+

even(ap, k)(−ip · γA) + Ĩ−even(ap, k)

+(−ip · γA)Ī+
even(ap, k) + Ī−even(ap, k)(−ip · γA) , (A.68)

where

Ī± ≡ (1−w2
0)
∑

ws−1
0 I±wt−1

0 ≡ (1−w2
0)
∑

wN−s
0 I∓wN−t

0 , (A.69)

Ĩ± ≡ (1−w2
0)
∑

ws−1
0 I±wN−t

0 ≡ (1− w2
0)
∑

wN−s
0 I∓wt−1

0 . (A.70)
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To evaluate the renormalization of the self energy, we only need to keep terms to O(p):

Iq(ap, k) = Ī+
odd(0, k) + pµ

∂Ī+
odd(ap, k)

∂pµ

∣∣∣∣
pµ=0

− iA
[
p · γĨ−odd(0, k) + Ĩ+

odd(0, k)p · γ
]

+Ĩ−even(0, k) + pµ
∂Ĩ−even(0, k)

∂pµ

∣∣∣∣∣
pµ=0

−iA
[
p · γĪ+

even(0, k) + Ī−even(0, k)p · γ
]

(A.71)

+O(p2) .

The terms p · γĨ−odd(0, k) + Ĩ+
odd(0, k)p · γ, Ī+

odd(0, k) and pµ
∂Ĩ−even(0,k)

∂pµ
vanish after integration

since they are also odd in kµ, so we are left with

Iq(ap, k) = Ĩ−even(0, k)−iA
[
p · γĪ+

even(0, k) + Ī−even(0, k)p · γ
]
+pµ

∂Ī+
odd(ap, k)

∂pµ

∣∣∣∣
p→0

. (A.72)

A.3.1.2 Numerical evaluation of the sunset diagram

Obtaining an analytic expression for the expansion of Iq in powers of the external momentum

p is a formidable task. Moreover, when we consider below the twist-two operators with n

derivatives, we will require all terms through O(pn) in the one-loop amplitudes. Arriving

at analytic expressions in the latter case — though possible in principle — is practically

inefficient for obtaining numerical results. An alternate approach, which we follow here,

involves evaluating the momentum integral numerically using the full expression for Iq and

projecting out the required spacetime structures using the properties of γ matrices. To this

end, we let

Σq(a, p) = g2
0CF

π/a∫

−π/a

ddk

(2π)d
Iq(a, p, k) (A.73)

and note that J(q) is a 4× 4 matrix that can be decomposed in terms of Dirac matrices:

Σq(a, p) =
g2
0CF

16π2
Jq(a, p) =

g2
0CF

16π2

[
JS(p) + JP (p)γ5 + Jµ

V (p)γµ + Jµ
A(p)γµγ5 + Jµν

T (p)σµν

]

(A.74)

where

JS(p) = 1
4TrD [Jq(p)] JP (p) = 1

4TrD [Jq(p)γ5]

Jµ
V (p) = 1

4TrD [Jq(p)γµ] Jµ
A(p) = 1

4TrD [Jq(p)γ5γµ]

Jµν
T (p) = 1

8TrD [Jq(p)σµν ]

(A.75)
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and we have suppressed the a-dependence for simplicity. Parity symmetry implies that

JP = 0 = Jµ
A, while Jµν

T vanishes for p→ 0. The Jµ
V term must be proportional to pµ:

Jµ
V (p) = ipµ [J2(p) +AJW (p)] (A.76)

where J2(p) and JW (p) denote the components that will contribute to Z2 and Zw, respec-

tively. The physical amplitude can be written to O(p)

Jq(p) = JS(p = 0) + ip · γ [J2(p = 0) +AJW (p = 0)] . (A.77)

The scalar coefficient is given by

JS(p) = 16π2

π∫

−π

ddk

(2π)d

1

4
TrD

[
Ĩ−even(ap, k)

]
(A.78)

=

π∫

−π

ddk

(2π)d

gρσ(ap− k)
( ̂ap− k)2 + λ2

[
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σS̃−

−gρσ( ˜ap+ k)2ρS̃+ + r( ̂ap+ k)ρ( ˜ap+ k)σk̄σσ̃V

]
. (A.79)

The J2(p) term in Jµ
V arises from Ī+

odd, while the JW (p) component is generated by the

p · γĪ+
even + Ī−evenp · γ term. Thus, we have

J2(p) = 16π2

π∫

−π

ddk

(2π)d

1

4
TrD

[
ip · γ
p2

Ī+
odd(ap, k)

]

AJW (p) = 16π2

π∫

−π

ddk

(2π)d

1

4
TrD

[
ip · γ
p2

(
−iA

(
p · γĪ+

even(ap, k) + Ī−even(ap, k)p · γ
))]

= 16π2A
π∫

−π

ddk

(2π)d

1

4
TrD

[
Ī+
even(ap, k) + Ī−even(ap, k)

]
. (A.80)



72

Evaluating these expressions, we obtain

J2(p) =

π∫

−π

ddk

(2π)d

gρσ(ap− k)
( ̂ap− k)2 + λ2

{
1

p2

(
p · k̄

[
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σḠ+ + gρσ( ˜ap+ k)2ρḠ−

]

−2( ˜ap+ k)ρ( ˜ap+ k)σpρk̄σḠ− − r( ̂ap+ k)ρ( ˜ap+ k)σpσσ̄S

)}
(A.81)

AJW (p) =

π∫

−π

ddk

(2π)d

gρσ(ap− k)
( ̂ap− k)2 + λ2

{
2A
([

r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ − gρσ( ˜ap+ k)2ρ

]
σ̄S

+r( ̂ap+ k)ρ( ˜ap+ k)σk̄σ σ̄V

)}
. (A.82)

In terms of parameters Σ̃ we then have

Σ̃2 = J2(p→ 0) (A.83)

m̃ Σ̃m = JS(p→ 0) (A.84)

Σ̃w = JW (p→ 0) . (A.85)

In addition to circumventing the need to obtain analytic expressions for the expansion of

Iq in powers of p, the foregoing approach also facilitates the implementation of different IR

regulators as may be most convenient for numerical integration.

A.3.1.3 IR singularities

Performing the loop integrals for the various Σ̃ requires care when treating the region in

the vicinity of zero loop momentum. Similar issues arise in computing amplitudes for the

twist-two and three operators, so we discuss them in detail for the self-energy graphs here.

For terms that are IR singular in the limit of m̃, pµ → 0, we regulate the IR divergences by

keeping pµ nonzero or by introducing a fictitious gluon mass λ. When m̃ = 0 these integrals

contain a ln pa singularity that we isolate numerically as discussed below. Keeping λ or pµ

nonzero also helps with the numerical integration.

In the case of IR-finite integrals, the use of naive integration can also lead to numerical

divergences (or floating exceptions). When performed analytically, such integrals contain an

explicit k2 in the integration measure that cancels the 1/k2 appearing in the massless fermion

propagator. Numerical integration, however, is performed using 4D Cartesion coordinates.

The k2 cancellation is not manifest and numerical divergences generally appear. To avoid
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the latter, we keep both pµ and m̃ finite and observe the behvior of the result as a function

of these parameters.

Once we know how to evaluate Jq(p) for arbitrary p, there are several ways to extract

the finite piece in the p→ 0 limit. For example, the general amplitude can be expanded in

power series and rewritten in terms of x = ln p2a2 as

J(p) = α+ γ ln p2a2 +
∞∑

n=1

cn(p2a2)n , (A.86)

where γ is the anomalous dimension of the operator of interest. If we can keep p small

enough to be able to neglect all cn(p2a2)n terms, we can fit the J(p) curve to a straight line

and read off coefficient α. Another (and usually faster) method is to identify an integral

K ′(p) that can be evaluated analytically and that has the same logarithmic singularity as

the integral of interest. Writing

K ′(p) =

π∫

−π

ddk

(2π)d
K ′(k, p) = α′ + γ log p2a2 +O(p2a2) , (A.87)

we can subtract out the finite part to get just the logarithmic term:

K(p) =

π∫

−π

ddk

(2π)d

[
K ′(k, p) − α′] =

π∫

−π

ddk

(2π)d
K(k, p) = γ ln p2a2 +O(a2p2) . (A.88)

We can then add and subtract K(p) from the integral of interest and end up with an

expression which is IR finite and that one can easily evaluate numerically for small p:

[J(p)−K(p)] +K(p) = log p2a2 +

π∫

−π

ddk

(2π)d
[J(k, p) −K(k, p)] . (A.89)

For quantities (such as the self-energy) whose renormalization entails no mixing, this second

procedure is usually the most efficient. For twist-two operators with several derivatives,

however, the presence of mixing introduces complications that we discuss in more detail

below.
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A.3.1.4 Tadpole diagram

k

q(p)
pp

q(−p)s (p)(−p) ψψt

Figure A.2: Tadpole diagram for physical quarks. Solid and curly lines represent fermions
and gluons, respectively.

Evaluation of the tadpole contribution is considerably more straightforward than for the

sunset diagram, since we have no internal fermion lines. For the 5D self-energy, we have

Σst(p) =
1

2
δst

π/a∫

−π/a

ddk

(2π)d

∑

ρ

Gλρ(k)V
aa
ρρ (p, p) =

π/a∫

−π/a

ddk

(2π)d
Ist(p, k)

=
δst
2

π∫

−π

ddk

(2π)d

∑

ρ

(
−ag2

0CF

)
(r cos apρ − iγρ sin apρ) a

2 gρρ(k)

k̂2 + λ2

= −δstg
2
0CF

2

∑

ρ

(
r
1

a
− iγρpρ

) π∫

−π

ddk

(2π)d

gρρ(k)

k̂2 + λ2
. (A.90)

The integral is the same for each ρ, so we get

Ist = −δstg
2
0CF

2

(
r
d

a
− iγ · p

)
gρρ(k)

k̂2 + λ2
(no summation over ρ) . (A.91)
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Since there are no fermion propagators here, the 5D sums are straightforward to evaluate:

Ī ∼
N∑

s,t=1

ws−1
0 δstw

t−1
0 =

N−1∑

s=0

(w2
0)

s =
1− w2N

0

1− w2
0

→ 1

1− w2
0

(A.92)

Ĩ ∼
N∑

s,t=1

ws−1
0 δstw

N−t
0 =

N−1∑

s=0

wN−1
0 = NwN−1

0 → 0 . (A.93)

so the physical amplitude equals

Iq(p) = S̄OUT
s IstS̄

IN
t (A.94)

= (−ip · γA)Ī−odd(−ip · γA) + Ī+
odd + (−ip · γA)Ī+

even + Ī−even(−ip · γA)(A.95)

= (1− p2A2)Īodd − ip · γAĪeven (A.96)

= ip · γ g
2
0CF

2

(
1 + 2rAd

a

)
gρρ(k)

k̂2 + λ2
, (A.97)

which yields, after integration,

Σ̃2 = 8π2 T , Σw = −4r

a
(16π2 T ) , (A.98)

where T is given by

T (λ2) =
1

4

π∫

−π

ddk

(2π)d

∑

ρ

gρρ

k̂2 + λ2
. (A.99)

Since T does not depend on external momentum and has no singularities, it is straightfor-

ward to evaluate.
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A.3.1.5 Renormalization constants: Z2, Zw, and Zm

Combining Eqs. (A.50), (A.56), and (A.57) we have

Ŝq(p) =
1

ip · γ + m̃

(
1 + Σq

1

ip · γ + m̃

)
=

1

ip · γ + m̃− Σq
+O(g4

0)

=
1

ip · γ
[
1− g2

0CF

16π2 (Σ̃2 −AΣ̃w)
]

+ m̃
(
1− g2

0CF

16π2 Σ̃m

) +O(g4
0)

=

[
1 +

g2
0CF

16π2 (Σ̃2 −AΣ̃w)
]

ip · γ + m̃
(
1− g2

0CF

16π2 Σ2

) [
1 +

g2
0CF

16π2 (Σ̃2 −AΣ̃w)
] +O(g4

0) (A.100)

=
ZwZ2

ip · γ + m̃ZwZ
−1
m

=
Zq

ip · γ + m̃ZwZ
−1
m

,

which allows us to read of the renormalization constants to order g2:

Zw = 1− 2w0

1− w2
0

g2CF

16π2
Σ̃w , (A.101)

Z2 = 1 +
g2CF

16π2
Σ̃2 , (A.102)

Z−1
m = 1− g2CF

16π2
(Σ̃m − Σ̃2) . (A.103)

Numerical values for the various Σ̃i are shown in Table A.2 and hint at rather poor

convergence properties of the perturbative expansion for Zw. In practice, we can sum the

higher-order contributions by considering the ratio of matrix elements of two correlators.

In particular, there exists an exactly conserved 5D axial current on the lattice,

Aµ(x) =
1

2

∑

s

sign

(
s− N − 1

2

)[
ψ̄s(x+ µ̂)(1 + γµ)U †

µ(x)ψs(x)

−ψ̄s(x)(1 − γµ)Uµ(x)ψs(x+ µ̂)
]
, (A.104)

that is non-local and that has the same continuum limit as the local axial current on the

lattice

Aµ(x) = q̄(x)γµγ5q(x) . (A.105)

Since Aµ is conserved on the lattice, it receives no renormalization. In contrast, Aµ is
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renormalized by Z−1
A Zq. Thus, the ratio

RA =
〈Aµ(x)〉
〈Aµ(x)〉 = ZAZ

−1
q . (A.106)

To the extent that the perturbative, one-loop computations of ZA and Z2 give good approx-

imations to the non-perturbative values for these quantities, the ratio RA in Eq. (A.106)

that is computed non-perturbatively yields a non-perturbative value for Z−1
w :

Z−1
w = (Z2)pert

(
Z−1

A

)
pert

RA , (A.107)

where the “pert” subscript indicates the value computed perturbatively. In practice, it

turns out to be more tractable to consider the ratio of correlators

RAP =
〈Aµ(x) q̄(y)γ5q(y)〉
〈Aµ(x) q̄(y)γ5q(y)〉

. (A.108)

To the extent that x and y are sufficiently well separated in Euclidean spacetime, thereby

avoiding additional short-distance singularities requiring operator product renormalization,

one hasRAP = ZAZ
−1
q (the renormalization factors associated with the pseudoscalar current

would cancel from RAP in this case). In what follows, we will use RAP to extract Z−1
w .

It is also interesting to consider the physical origin of the non-perturbative nature of

Zw. At tree-level, Zw just gives the overlap between the physical quark interpolating field

q(x) defined in Eq. (A.18) and the massless mode χ0 of Eq. (A.17):

(
Z1/2

w

)
tree

= 〈q|χ〉tree =
√

1− w2
0 . (A.109)

After renormalization, one might expect the bare massless mode χ0 to have the same form

as in Eq. (A.17) but with the ψs → ψ0s =
√
Z2ψs and w0 being replaced by a suitably

chosen parameter w (corresponding to a renormalized parameter M in the DW action). In

this case, one would have

Z1/2
w Z2 = 〈q0|χ0〉 = Z2

√
1− w2 . (A.110)
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Letting w = w0 + ∆w we would then have

Zw = (1− w2
0)− 2w0∆w + (∆w)2 = (Zw)tree

[
1− 2w0∆w

1− w2
0

+
(∆w)2

1−w2
0

]
. (A.111)

Now observe that the overall 1 − w2
0 in Eq. (A.111) has been absorbed into a redefinition

of the interpolating field q and that the second term in Eq. (A.111) has the same form as

the second term in Eq. (A.101) with

∆w =
g2CF

16π2
Σ̃w . (A.112)

Thus, we might expect the O(g4) contribution to Zw to have the opposite sign from the

O(g2) term and magnitude roughly g4C2
F (4π)−4(Σ̃w)2. While this line of reasoning is some-

what heuristic, it is nonetheless suggestive that the large non-perturbative effects associated

with Zw arise from a finite renormalization of the physical zero mode that goes beyond the

renormalization of the individual DW fields.

While at first, the separation of the piece in the expression for the self energy propor-

tional to ip · γ may seem a bit arbitrary, the origin of two pieces is quite different. Let’s

take another look at the expression for the 5D self energy (A.62):

Σst =

π/a∫

−π/a

ddk

(2π)d

([
I±odd

]
st
P± +

[
I±even

]
st
P± .

)
(A.113)

Terms I±odd contain one γ matrix and they give us the renormalization of the 5D wave

function Z2. I±even terms have either no γ matrices or two γ matrices, so they yield the

renormalization of the 5D mass parameter M , plus the term proportional to σµν matrix

which vanishes in the pµ → 0 limit. Since the dynamics on on the lattice is governed by the

behavior of the zero mode

χ0(x) =
√

1− w2
0

(
P+w

s−1
0 ψs(x) + P−w

N−s
0 ψs(x)

)

=
√

1− w2
0 [(P+ψ1(x) + P−ψN (x)) + . . .] , (A.114)
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by chosing our “physical” field to be

q0(x) =
1√

1− w2
0

[(P+ψ1(x) + P−ψN (x))] , (A.115)

it has an overlap of one with the zero mode

〈q0|χ0〉 = 1 . (A.116)

In other words, we have created exactly one unit of the light 5D mode χ0, plus some amount

of heavy 5D modes

q0(x) = χ0(x) +
∑

i>0

ciχi(x) , (A.117)

where χi(x) are the remaining heavy 5D modes on the lattice and ci are some coefficients

which we do not need to know. Symbolically, we can write the 5D quark propagator as a

sum of terms coming from the light and heavy modes:

Sst(x) = |χ0〉 〈χ0|+
∑

i>0

|χi〉 〈χi| . (A.118)

As the system evolves in time, all the heavy contributions die out and we are left only with

the physics of the light chiral mode

Sst(x)|t→∞ = |χ0〉 〈χ0| . (A.119)

So by calculating the renormalized propagator, we are really getting the renormalization of

the zero mode χ0:

χ0(x) =
√

1−w2
0

(
P+w

s−1
0 ψs(x) + P−w

N−s
0 ψs(x)

)
. (A.120)

Renormalization of this zero mode has two effects: 5D fields get renormalized by a factor

Z2, but the 5D mass parameter also gets (additively) renormalized to w = w0 +∆w, so the
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new zero mode looks like

χ(x) =
√

1− w2
(
P+Z

1/2
2 ψ1(x) + P−Z

1/2
2 ψN (x)

)

=

√
1− w2

1− w2
0

Z
1/2
2 χ0(x) . (A.121)

As we can see, the renormalization of q(x) has two pieces:

Zq = Z2ZW , (A.122)

where the first piece Z2 describes the renormalization of the 5D wave function, and the

second piece ZW describes the renormalization of the (1 − w2
0)

1/2 factor. The factor (1 −
w2

0)
1/2 comes from our requirement that the overlap of the tree-level light lattice mode χ0

and the physical wave function q0(x) equals one; our renormalization condition ensures that

the overlap stays one after the renormalization, so we think of the factor ZW describing the

effect of the shift of the light 5D lattice mode. To order g2
0 we have

1− w2

1− w2
0

=
1−

(
w0 +

g2
0CF

16π2 Σ3

)2

1− w2
0

= 1− 2w0

1− w2
0

g2
0CF

16π2
Σ3 +O(g4

0) = ZW +O(g4
0) . (A.123)

Note that the one-loop result for ∆w gives us order g4
0 corrections for ZW and therefore for

Zq as well.

operator Wilson DW M=1.6 DW M=1.7 M=1.8 M=1.9

ΣMS
2 −ΣLATT

2 -16.644 -15.784 -15.896 -16.057 -16.29

Σ̃W 0. 49.694 49.92 50.246 50.718
Zw(g2

0) 1. 1.787 2.157 2.886 5.057
Zw(g4

0) 1. 1.512 1.809 2.386 4.092
Zq 1.141 1.713 2.051 2.709 4.655

Table A.2: Results for Wilson and DW fermions, with no smearing.

A.3.2 Vertex renormalization

We now build upon the methodology established for the self-energy renormalization to

calculate the bilinear operators relevant to deep inelastic scattering. In this chapter we

concentrate on local quark currents which have no derivative operators.



81

To evaluate the Feynman rule for the operator OΓ = q̄(x)Γq(x), we need to evaluate the

Fourier transform of the a4
∑

x q̄(x)Γq(x)

a4
∑

x

q̄(x)Γq(x) =

π/a∫

−π/a

ddk

(2π)d
q̄(k)Γq(k) , (A.124)

which says that the Feynman rule for the operator OΓ is simply the Γ matrix.

ψ (k)t

ψ (p)s

q(k)

q(−p)q(p)

ψ (−p)t

ψ (−k)s

q    qΓ

q(−k)

p

k k

kp−k

Figure A.3: Vertex diagram for quark bilinear operators (denoted by the box). Solid and
curly lines represent fermions and gluons, respectively.

The 5D amplitude for the vertex diagram is given by

Jst(p) =

π/a∫

−π/a

ddk

(2π)d
Vρ(p, k)S

IN
s (k)O(k)SOUT

t (k)Vλ(k, p)Gρλ(p− k) (A.125)

=

π/a∫

−π/a

ddk

(2π)d
Ist(p, k) (A.126)

where O(k) is the Feynman rule for the vertex operator q̄(k)Γq(k) in which Γ is one of

Dirac matrices 1, γ5, γµ, γµγ5, or σµν . Dirac algebra for this diagram is the same as for

twist-two operators q̄γµDνDα . . . q, since each covariant derivative adds only a factor of

four-momentum k̄µ. After rescaling the loop momentum kµ → kµ/a, the amplitude is given
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by

Ist(ap, k) =

[
δabgρσ

( ̂ap− k)2 + µ2

] [
−g0T a

cd

(
r
a

2
( ̂ap+ k)ρ + iγρ( ˜ap+ k)ρ

)]

[
(g−P+ + g+P−)(−ik̄ · γ) + (σ−P+ + σ+P−)

]
[Γ]

[
(−ik̄ · γ)(g+P+ + g−P−) + (σ+P+ + σ−P−)

]
[
−g0T b

dc

(
r
a

2
( ̂ap+ k)σ + iγρ( ˜ap+ k)σ

)]
. (A.127)

A.3.2.1 Scalar and pseudoscalar currents

After performing the γ algebra and separating parts with even and odd numbers of γ

matrices, we get

Ieven
± =

gρσ

( ̂ap− k)2 + µ2

{
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ

(
[∓]k̄2g∓g± + σ∓σ±

)

+gρσ( ˜ap+ k)2ρ(k̄
2g±g∓[∓]σ±σ∓) +

r

2
( ̂ap+ k)ρ( ˜ap+ k)σ

×
(
γσ k̄ · γ(g±σ±[±]σ±g±) + k̄ · γ γσ([±]g∓σ∓ + σ∓g∓)

)}
[γ5] (A.128)

and

Iodd
± =

gρσ

( ̂ap− k)2 + µ2

{
−ik̄ · γ r

2

4
( ̂ap+ k)ρ( ̂ap+ k)σ (g±σ±[±]σ±g±)

−iγµk̄ν

[
gµνgρσ( ˜ap+ k)2ρ − 2gρµgσν( ˜ap+ k)ρ( ˜ap+ k)σ

]

×([±]g∓σ∓ + σ∓g∓) +
r

2
( ̂ap+ k)ρ( ˜ap+ k)σiγσ

[
−k̄2([±]g∓g± + g±g∓) + (σ∓σ±[±]σ±σ∓)

]}
[γ5] . (A.129)
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The physical amplitude is then obtained after summing in the 5th dimension

Iq(ap, k) = S̄OUT
s Ist(ap, k)S̄

IN
t

=
[
−ip · γA

(
wN−s

0 P− + ws−1
0 P+

)
+
(
ws−1

0 P− + wN−s
0 P+

)]
s
[I+

stP+ + I−stP−][γ5]

×
[(
wN−t

0 P+ + wt−1
0 P−

)
(−ip · γA) +

(
wt−1

0 P+ + wN−t
0 P−

)]
t

= Iodd
phys + Ieven

phys (A.130)

Iodd
phys = (−ip · γA)Ī−odd[γ5](−ip · γA) + Ī+

odd[γ5]

+(−ip · γA)Ĩ−odd[γ5] + Ĩ+
odd[γ5](−ip · γA) (A.131)

Ieven
phys = (−ip · γA)Ĩ+

even[γ5](−ip · γA) + Ĩ−even[γ5]

+(−ip · γA)Ī+
even[γ5] + Ī−even[γ5](−ip · γA) , (A.132)

where as before

Ī± ≡ (1− w2
0)
∑

ws−1
0 I±wt−1

0 ≡ (1− w2
0)
∑

wN−s
0 I∓wN−t

0 , (A.133)

Ĩ± ≡ (1− w2
0)
∑

ws−1
0 I±wN−t

0 ≡ (1− w2
0)
∑

wN−s
0 I∓wt−1

0 , (A.134)

and we have used the fact

IoddP± = P∓Iodd , IevenP± = P±Ieven . (A.135)
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Performing the 5D sums, we get

Īeven
± =

gρσ

( ̂ap− k)2 + µ2

[
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ [∓]gρσ( ˜ap+ k)2ρ

]

×
(
[∓]k̄2g̃∓g̃± + σ̃∓σ̃±

)
[γ5] (A.136)

Ĩeven
± =

gρσ

( ̂ap− k)2 + µ2

{
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ

(
σ̃2
∓[∓]k̄2g̃2

∓
)

+gρσ( ˜ap+ k)2ρ(k̄
2g̃2

±[∓]σ̃2
±)

+r( ̂ap+ k)ρ( ˜ap+ k)σk̄σ (g̃±σ̃∓[±]σ̃±g̃∓)
}

[γ5] (A.137)

Īodd
± =

gρσ

( ̂ap− k)2 + µ2

{
−ik̄ · γ r

2

4
( ̂ap+ k)ρ( ̂ap+ k)σ (g̃±σ̃±[±]σ̃±g̃±)

−iγµk̄ν

[
gµνgρσ( ˜ap+ k)2ρ − 2gρµgσν( ˜ap+ k)ρ( ˜ap+ k)σ

]

([±]g̃∓σ̃∓ + σ̃∓g̃∓) + iγσ
r

2
( ̂ap+ k)ρ( ˜ap+ k)σ

[
−k̄2([±]g̃∓g̃± + g̃±g̃∓) + (σ̃∓σ̃±[±]σ̃±σ̃∓)

]}
[γ5] (A.138)

Ĩodd
± =

gρσ

( ̂ap− k)2 + µ2

{
−ik̄ · γ r

2

4
( ̂ap+ k)ρ( ̂ap+ k)σ (g̃±σ̃∓[±]σ̃±g̃∓)

−iγµk̄ν

[
gµνgρσ( ˜ap+ k)2ρ − 2gρµgσν( ˜ap+ k)ρ( ˜ap+ k)σ

]

([±]g̃∓σ̃± + σ̃∓g̃±) + iγσ
r

2
( ̂ap+ k)ρ( ˜ap+ k)σ

[
−k̄2([±]g̃∓g̃∓ + g̃±g̃±) + (σ̃∓σ̃∓[±]σ̃±σ̃±)

]}
[γ5] . (A.139)

To get the physical amplitude, we evaluate this at p = 0 so we are left with

Iq = Ī+
odd + Ĩ−even . (A.140)

It is easy to see that Ī+
odd vanishes for p→ 0 since it is an odd function of kµ, so the physical

amplitude is given by

IS,P (ap, k) = Ĩ−even =
gρσ

k̂2 + µ2

{
r2

4
k̂ρk̂σ

(
σ̃2

+[∓]k̄2g̃2
+

)
+ gρσk̃

2
ρ(k̄

2g̃2
−[∓]σ̃2

−)

+rk̂ρk̃σ k̄σ (g̃−σ̃+[±]σ̃−g̃+)
}

[γ5] . (A.141)

For DW fermions g̃+, σ̃− → 0, we get

IS,P =
1

k̂2 + µ2

{
r2

4
k̂2σ̃2

+ + k̃2k̄2g̃2
− + rk̄2g̃−σ̃+

}
[γ5] , (A.142)
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which agrees with Eqs. (4.5) and (4.6) in [48].

A.3.2.2 Vector and axial vector currents

After doing the algebra, we get the result (which we again split into parts with odd and

even number of γ-matrices)

Iodd
st =

gρσ

( ̂ap− k)2 + µ2

{
γα

(
gρσgνα( ˜ap+ k)2ρ − 2gρνgσα( ˜ap+ k)ρ( ˜ap+ k)σ

)

[
(k̄2gµν − 2k̄µk̄ν)g∓g∓ ± gµνσ∓σ∓

]

+γν
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ

[
±(k̄2gµν − 2k̄µk̄ν)g±g± ± gµνσ±σ±

]

+
r

2
( ̂ap+ k)ρ( ˜ap+ k)σ

[
±γσγµk̄ · γσ∓g± + γσk̄ · γγµg∓σ±

+γµk̄ · γγσσ±g∓ ± k̄ · γγµγσg±σ∓
]}

[γ5] (A.143)

and

Ieven
st =

gρσ

( ̂ap− k)2 + µ2

{
igρσ( ˜ap+ k)2ρ

[
γµk̄ · γσ±g∓ ± k̄ · γγµg±σ∓

]

−2i( ˜ap+ k)ρ( ˜ap+ k)σγρ(γµk̄σ − k̄ · γgρσ)(σ±g∓ ∓ g±σ∓)

−ir
2

4
( ̂ap+ k)ρ( ˜ap+ k)σ

[
±γµk̄ · γσ∓g± ± k̄ · γγµg∓σ±

]

+i
r

2
( ̂ap+ k)ρ( ˜ap+ k)σ

[
(±γσγνg±g± + γνγσg∓g∓)(k̄2gµν − 2k̄µk̄ν)

+γσγµσ±σ± ± γµγσσ∓σ∓]} (A.144)

where we have omitted indices s and t on functions g± and σ± with the understanding that

the first always carries index s and the second t. For the amplitude for physical quarks we
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get

Īodd
± =

gρσ

( ̂ap− k)2 + µ2

{
γα

(
gρσgνα( ˜ap+ k)2ρ − 2gρνgσα( ˜ap+ k)ρ( ˜ap+ k)σ

)

[
(k̄2gµν − 2k̄µk̄ν)g̃∓g̃∓ ± gµν σ̃∓σ̃∓

]

+γν
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ

[
±(k̄2gµν − 2k̄µk̄ν)g̃±g̃± + gµν σ̃±σ̃±

]

+r( ̂ap+ k)ρ( ˜ap+ k)σ

[
γσk̄µ(±σ̃∓g̃± + g̃∓σ̃±)

+(k̄ · γgσµ − γµk̄σ)(±σ̃∓g̃± − g̃∓σ̃±)
]}

[γ5] (A.145)

Ĩodd
± =

gρσ

( ̂ap− k)2 + µ2

{
γα

(
gρσgνα( ˜ap+ k)2ρ − 2gρνgσα( ˜ap+ k)ρ( ˜ap+ k)σ

)

[
(k̄2gµν − 2k̄µk̄ν)g̃∓g̃± ± gµν σ̃∓σ̃±

]

+γν
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ

[
±(k̄2gµν − 2k̄µk̄ν)g̃±g̃∓ + gµν σ̃±σ̃∓

]

+
r

2
( ̂ap+ k)ρ( ˜ap+ k)σ

[
γσσ̃∓g̃∓(k̄ · γγµ ± γµk̄ · γ)

+σ̃±g̃±(k̄ · γγµ ± γµk̄ · γ)γσ

]}
[γ5] (A.146)

Īeven
± =

gρσ

( ̂ap− k)2 + µ2

{
igρσ( ˜ap+ k)2ρ

[
γµk̄ · γσ̃±g̃∓ ± k̄ · γγµg̃±σ̃∓

]

−2i( ˜ap+ k)ρ( ˜ap+ k)σγρ(γµk̄σ − k̄ · γgσµ)(σ̃±g̃∓ ± g̃±σ̃∓)

−ir
2

4
( ̂ap+ k)ρ( ̂ap+ k)σ(±γµk̄ · γσ̃∓g̃± + k̄ · γγµg̃∓σ̃±)

+i
r

2
( ̂ap+ k)ρ( ˜ap+ k)σ

[
(±γσγν g̃±g̃± + γνγσ g̃∓g̃∓)(k̄2gµν − 2k̄µk̄ν)

+γσγµσ̃±σ̃± ± γµγσσ̃∓σ̃∓]} [γ5] (A.147)

Ĩeven
± =

gρσ

( ̂ap− k)2 + µ2

{
igρσ( ˜ap+ k)2ρ(γµk̄ · γ ± k̄ · γγµ)g̃±σ̃±

−2i( ˜ap+ k)ρ( ˜ap+ k)σγρ(γµk̄σ − k̄ · γgσµ)(σ̃±g̃± ± g̃±σ̃±)

−ir
2

4
( ̂ap+ k)ρ( ̂ap+ k)σ(k̄ · γγµ ± γµk̄ · γ)σ̃∓g̃∓

+i
r

2
( ̂ap+ k)ρ( ˜ap+ k)σ(γνγσ ± γσγν)

[
g̃±g̃∓(k̄2gµν − 2k̄µk̄ν)

±gµν σ̃±σ̃∓]} [γ5] . (A.148)

To get the final expression for the amplitude for quark currents ḡγµ[γ5]q, we evaluate the

amplitude at zero external momentum to get

Iq = Ī+
odd + Ĩ−even . (A.149)



87

Again, it’s easy to see that Ĩ−even vanishes after integration for p → 0 since it’s an odd

function of kµ After projecting out the component proportional to γµ we get

IV,A(ap, k) =
1

d
TrD

{
Īodd
+ [γ5]γµ

}

=
gρσ

( ̂ap− k)2 + µ2

{
gµα

(
gρσgνα( ˜ap+ k)2ρ − 2gρνgσα( ˜ap+ k)ρ( ˜ap+ k)σ

)

[
(k̄2gµν − 2k̄µk̄ν)g̃

2
− ± gµν σ̃

2
−
]

+gµν
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ

[
±(k̄2gµν − 2k̄µk̄ν)g̃2

+ + gµν σ̃
2
+

]

+r( ̂ap+ k)ρ( ˜ap+ k)σ

[
gσµk̄µ(±σ̃−g̃+ + g̃−σ̃+)

+(k̄µgσµ − gµµk̄σ)(±σ̃−g̃+ − g̃−σ̃+)
]}

[γ5]

=
1

( ̂ap− k)2 + µ2

{
gρσgρσ

˜(ap+ k)
2

ρ

[
(k̄2 − 2k̄2

µ)g̃2
− ± σ̃2

−
]

−2gµµ
˜(ap+ k)

2

µ

[
k̄2g̃2

− ± σ̃2
−
]
+ 4gρµ

˜(ap+ k)ρ
˜(ap+ k)µk̄ρk̄µg̃

2
−

+
r2

4
gρσ

̂(ap+ k)ρ
̂(ap+ k)σ

[
σ̃2

+ ± (k̄2 − 2k̄2
µ)g̃2

+

]

+r ̂(ap+ k)ρ

(
gρµ

˜(ap+ k)µk̄µ(±2g+σ−)

+gρσ
˜(ap+ k)σk̄σ(g−σ+ ∓ g+σ−)

)}
[γ5] . (A.150)

Simplifying further, we get

IDW,NOS
V,A =

γµ

k̂2 + µ2

{
4

d

∑

ρ

k̃2
ρk̄

2
ρ g̃

2
− +

r2

4
k̂2σ̃2

+ + rk̄2g̃−σ̃+

}
[γ5] , (A.151)

which agrees with Eqs. (4.5) and (4.6) in [48].

A.3.2.3 Tensor current

Procedure for the tensor current is exactly the same as before (except for the γ algebra),

so the amplitude is again given by Iq = Ī+
odd + Ĩ−even, with the term Ī+

odd vanishing after the

integration over kµ since it’s an odd function. That leaves us with the physical amplitude
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given by Ĩeven
−

IT
µν =

gρσ

( ̂ap− k)2 + µ2

{
r2

4
( ̂ap+ k)ρ( ̂ap+ k)σ

(
σµν σ̃

2
+[∓][k̄2σµν − 2k̄µσkν + 2k̄νσkµ]g̃2

+

)

+
[
gρσ( ˜ap+ k)2ρσµν + 2( ˜ap+ k)ρ( ˜ap+ k)σ(gρνσσµ − gρµσσν)

]
(k̄2g̃2

−[∓]σ̃2
−)

+2
(
gρσ( ˜ap+ k)2ρ(k̄νσkµ − k̄µσkν) + 2( ˜ap+ k)ρ( ˜ap+ k)σ

×[σσk(k̄νgρµ − k̄µgρν)− k̄ρ(k̄νσσµ − k̄µσσν)]
]
g̃2
−

+r( ̂ap+ k)ρ( ˜ap+ k)σ

[
(g̃−σ̃+[±]g+σ−)(k̄σσµν + gσνσkµ − gσµσkν)

+(g̃−σ̃+[∓]g+σ−)(k̄µσσν − k̄νσσµ)
]}

[γ5] , (A.152)

where we have used the notation

σkµ ≡
∑

α

k̄ασαµ . (A.153)

To extract the σαβ component, we multiply by σαβ and take a trace; the result is then

obtained by using the fact that

1

d
TrD[σµνσαβ] = gµαgνβ − gµβgνα . (A.154)

The final formula is then obtained by replacing σxy → gxαgyβ−gxβgyα for all x, y in formula

(A.152) and will be omitted here. To simplify, we again take the p → 0 limit and use the

fact that due to parity ∫
k̄µk̄νf(k2) =

∫
k̄2gµνf(k2) (A.155)

and that for domain-wall fermions, g̃+, σ̃− → 0 to get the result

IT =
σµν

k̂2 + µ2

{
r2

4
k̂2σ̃2

+ +
[
4(k̄2

µk̃
2
µ + k̄2

ν k̃
2
ν) + 4(k̄2

µk̃
2
ν + k̄2

ν k̃
2
µ)
]
g̃2
− + rk̄2g̃−σ̃+

}
. (A.156)

Since µ 6= ν, all integrals with k̄2
µk̃

2
ν are the same, so we can use the identity

k̄2k̃2 =
∑

αβ

k̄2
αk̃

2
β =

∑

α

k̄2
αk̃

2
α +

∑

α6=β

k̄2
αk̃

2
β (A.157)
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to simplify the coefficient of g̃2
− to get

IT =
σµν

k̂2 + µ2

{
r2

4
k̂2σ̃2

+ + rk̄2g̃−σ̃+ +
g̃2
−
3

[
4
∑

ρ

k̄2
ρk̃

2
ρ − k̄2k̃2

]}
. (A.158)

which agrees with Eqs. (4.5) and (4.6) in [48].

A.4 Twist-Two Operators

Here we build upon previous two chapters for current and self energy renormalization to cal-

culate renormalization coefficients for twist-two operators with one derivative. Specifically,

we will be looking at the operator q̄(x)γ{µDν}q(x). The renormalization of twist-two op-

erators relevant to the analysis of deep ineleastic scattering introduces many new elements

that are not present for the renormalization of quark self-energies and bilinear operators,

such as new Feynman rules associated with the derivatives in the operators and additional

graphs. For example, while the vertex diagram with this operator insertion is very similar

to the vertex diagram for local currents, a new feature that appears here are the “sails”

diagrams.

However, before we evaluate the twist-two amplitudes, we need to evaluate the Feynman

rules for twist-two operators. The derivative operator Dν on the lattice contains all powers

of the gluon field Aµ, so we expand it in powers of g0. For one-loop corrections we need

only terms up to order g2
0

Oµν = O(0)
µν + g0O(1)

µν + g2
0O(2)

µν . (A.159)

We then perform the Fourier transform to momentum space (the details of the expansion

can be found in [51]). The result for the Feynman rules is then given by

O(0)
µν (p, k) = iγµk̄ν (A.160)

O(1)
µν (p, k) = T aiγµ cos

(ap+ k)ν

2
(A.161)

O(2)
µν (p, k) = −a

2

2
{T a, T b}p̄ν → −

a2

2
CFγµp̄ν , (A.162)
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where in the last step we have performed the summation over the group index

Tr
∑

a

δab{T a, T b} =
N2

c − 1

2Nc
= CF . (A.163)

The zeroth-order O(0)
µν contributes to the vertex diagram, the first-order contributes to the

sails diagrams, and the second order contributes to the tadpole diagram.

kk pppk

p−k k k

Figure A.4: Momentum conventions for the twist-two operator q̄(x)ΓDν q̄ (denoted by the
box). Solid and curly lines represent fermions and gluons, respectively.

The next step is to consider the Lorentz-index structure of the amplitude. The general

structure of a particular one-loop diagram for a twist-two operator is [49]

Jµν(p) = 〈q(p) |γµDν | q(p)〉 = c1γµpν+c2γνpµ+c3gµνγµpµ+c4gµνp·γ+c5
pµpν

p2
p·γ . (A.164)

For operators in the 6+
3 representation, µ 6= ν, so only terms c1 and c2 contribute

〈q(p) |γ1D4| q(p)〉 = (c1 + c2)
γ1p4 + γ4p1

2
. (A.165)

On the other hand, for the 3+
1 representation, c3 will contribute as well

〈
q(p)

∣∣∣∣
[
γ4D4 −

1

3
(γ1D1 + γ2D2 + γ3D3)

]∣∣∣∣ q(p)
〉

= (c1 + c2 + c3)

[
γ4p4 −

1

3
(γ1p1 + γ2p2 + γ3p3)

]
. (A.166)

We can see that the term proportional to p·γgµν does not contribute, so we want to eliminate

it. To extract coefficients ci in the case µ 6= ν, we multiply the amplitude with γα and take
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a trace to get

1

d
Tr [Jµνγα] = c1gµαpν + c2gναpµ + c3gµνgµαpµ + c4gµνpα . (A.167)

For the 6+
3 representation, we choose α = µ, ν and add them up

1

p4

1

d
Tr [J14γ1] = c1 (A.168)

1

p1

1

d
Tr [J14γ4] = c2 . (A.169)

Alternatively, we can take the symmetrized combination Jµν + Jνµ to get6

1

p4

1

d
Tr [(J14 + J41)γ1] = c1 + c2 (A.170)

For the 3+
1 representation, we first choose µ = ν = α to get

1

d
Tr [Jµµγµ] = (c1 + c2 + c3 + c4)pµ . (A.171)

To eliminate the c4 term, note that if we choose µ = ν 6= α (for definiteness, let’s pick µ = 4

and α = 3), we get

1

d
Tr [J44γ3] = c1g43p4 + c2g43p4 + c3g44g43p4 + c4g44p3 = c4p3 (A.172)

so dividing by pα will give us the c4 coefficient

1

pα

1

d
Tr [Jµµγα] = c4 . (A.173)

So, for the 3+
1 representation the final result is

c1 + c2 + c3 =
1

pµ

1

d
Tr [Jµµ(γµ − γα)] , (A.174)

where we have chosen µ 6= α and the vector p such that the components pµ and pα are

6Here we choose the momentum pµ to have only the p4 component nonzero, so the term pµpν/p2 p ·γ does
not contribute. If our 4-momentum had both components p1 and p4 nonzero, we would have to subtract
−2Tr [J14γα] with α 6= 1, 4 to cancel the extra contribution.
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numerically equal. For the example above it would be

pµ =

{
0, 0,

√
p2

2
,

√
p2

2

}
. (A.175)

For the operator q̄γµγ5Dνq we multiply by γ5γα instead of γα. With all this done, we can

now consider individual diagrams.

A.4.1 Vertex diagram

ψ (k)t

ψ (p)s

q(k)

q(−p)q(p)

ψ (−p)t

ψ (−k)s

q(−k)

p

k k

kp−k

q      k  qΓµ ν

Figure A.5: Vertex diagram for twist-two operators (denoted by the box). Solid and curly
lines represent fermions and gluons, respectively.

The only difference between amplitude expressions for the vertex diagram for current

and twist-two operators is the different Feynman rule for the operator O:

O = q̄(x)Γq(x) =⇒ Γ

O = q̄(x)ΓDνq(x) =⇒ Γ ik̄ν .
(A.176)

This means that the integrand Iµν(ap, k) for the amplitude Jµν(ap) for the twist-two oper-

ator Oµν = q̄(x)γµDνq(x) can be written in terms of an integrand Iµ(ap, k) for amplitude

for the current Oµν = q̄(x)γµq(x) given in Eq. (A.148) as

Jµν(ap) =

π∫

−π

ddk

(2π)d
Iµν(ap, k) =

π∫

−π

ddk

(2π)d
Iµ(ap, k) ik̄ν . (A.177)

All that remains to be done is symmetrization in indices and projecting out the desired part

as discussed in the previous subsection. As before, the physical amplitude is the sum of odd
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and even terms in Eq. A.130, but now, since we are expanding to first order in pµ, we have

to keep terms with p · γ as well. Terms Ĩ±odd and Ī±even are evaluated to 0th order in p; Ĩ±odd

vanishes since it’s odd in kµ. The term Ĩ−even(p→ 0) is even in kµ which means ∂Ĩ−even/∂pµ

will be odd and won’t contribute. Ī+
odd(p→ 0) is odd so it vanishes as well. Hence, we are

left with

Iq(p) = pα
∂Ī+

odd

∂pα
[γ5] + (−ip · γA)Ī+

even[γ5] + Ī−even[γ5](−ip · γA) . (A.178)

Since we are evaluating Ī±even at zero momentum, after symmetrizing in µ and ν, it must be

proportional to

Ī±even ∼ gµν×const. =⇒ (−ip·γA)Ī+
even[γ5]+ Ī

−
even[γ5](−ip·γA) ∼ p·γgµν (A.179)

so it does not contribute in either representation we are interested in. We are now left with

Iq(p) = pα
∂Ī+

odd

∂pα
[γ5] . (A.180)

Instead of expanding the amplitude, to get the finite piece we can use the numerical method

discussed in the self energy section.

A.4.2 Sails diagrams

q(p)

ψ (p)s

ψ
s (k)

q     (ap+k)  qΓµ ν

sail 2

q(p)

p−k

q(p)

ψ
s (p)

ψ (k)s

q     (ap+k)  qΓµ ν

sail 1

q(p)

p−k

Figure A.6: Sails diagram for twist-two operators (denoted by the box). Solid and curly lines
represent fermions and gluons, respectively.
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Since the amplitudes for the two sails diagrams are related, we will evaluate them

together. They are given by

I(1)
s = Gνρ(p− k)Vρ(p, k)S

IN
s Oµν (A.181)

I(2)
s = Gνρ(p− k)OµνS

OUT
s Vρ(k, p) . (A.182)

Physical amplitudes are then obtained by adding the 5D-to-physical propagator and am-

putating the external leg

I1 = S̄OUT
s I(1)

s = S̄OUT
s Vρ(p, k)S

IN
s OµνGνρ(p− k) (A.183)

I2 = I(2)
s S̄IN

s = OµνS
OUT
s Vρ(k, p)Gνρ(p− k)S̄IN

s . (A.184)

As in the case of vertex diagram, part of S̄OUT
s and S̄IN

s proportional to p · γ will give us a

contribution proportional to p · γ gµν so we can neglect it from the start. Contracting with

S̄IN,OUT , adding them up, and simplifying the γ algebra, we get

Iµν =
g2
0CF gνρ( ˜ap+ k)ν

( ̂ap− k)2 + µ2

{
−2γµ

r

2
( ̂ap+ k)ρσ̃+

−2
(
k̄µγρ( ˜ap+ k)ρ − k̄ · γgρµ ( ˜ap+ k)µ + γµk̄ρ( ˜ap+ k)ρ

)
g̃−

+
r

2
i( ̂ap+ k)ρ[k̄ · γ, γµ]±g̃+ + i( ˜ap+ k)ρ[γρ, γµ]±σ̃−

}
[γ5] , (A.185)

where [. . . , . . .]± is the commutator/anticommutator of γ matrices. For p → 0, the first

two lines are odd while the third one is even, so to order p1 the third line vanishes due to

parity7. That gives us the final result

Iµν =
g2
0CF gνρ( ˜ap+ k)ν

( ̂ap− k)2 + µ2

{
γµ(−r)( ̂ap+ k)ρσ̃+

−2
(
k̄µγρ( ˜ap+ k)ρ − k̄ · γ gρµ( ˜ap+ k)µ + γµk̄ρ( ˜ap+ k)ρ

)
g̃−
}
. (A.186)

7To zeroth-order in pµ it gives a finite contribution proportional to either gµν or σµν . The σµν contribution
is killed by symmetrization, while gµν does not contribute to either representation we are considering.
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The amplitude for the 6+
3 representation is then

Iq =
1

d
TrD

[
(Īµν + Īνµ)γµ

] 1

pν

=
1

pν

g2
0CF

( ̂ap− k)2 + µ2

{∑

ρ

gνρ( ˜ap+ k)ν

[
−r( ̂ap+ k)ρσ̃+ − 2g̃−k̄ρ( ˜ap+ k)ρ

]

−2g̃−( ˜ap+ k)µ

[
gµµ( ˜ap+ k)µk̄ν − gµν( ˜ap+ k)ν k̄µ

]}
. (A.187)

After simplifying, this becomes

Iq =
1

pν

g2
0CF

( ̂ap− k)2 + µ2

{
−r(ap+ k)ν σ̃+

−2
(
k̄ν( ˜ap+ k)2µ + k̄ν( ˜ap+ k)2ν

)
g̃−
}
. (A.188)

and after expansion in pµ to first order this yields

Iq = g2
0CF

{
1

k̂2 + µ2

[
−2r cos kν σ̃+ + k̄2

ν g̃−
]

− 1

(k̂2 + µ2)2

[
rk̄2

ν σ̃+ + 4g̃−k̄
2
ν

(
k̃2

ν + k̃2
µ

)]}
. (A.189)

For Wilson fermions, this agrees with Capitani’s formula (15.102) In the 3+
1 representation

we have µ = ν. Using formulas from the previous section, we get

Iq =
1

pµ

1

d
Tr [Iµµ(γµ − γα)] , (A.190)

where µ 6= α and the four-vector p has components pµ and pα numerically equal. This

yields

Iq =
1

pµ

g2
0CF

( ̂ap− k)2 + µ2

{
gµρ( ˜ap+ k)µ

[
−r( ̂ap+ k)ρσ̃+ − 2g̃−k̄ρ( ˜ap+ k)ρ

]

−2g̃−( ˜ap+ k)µ

[
gµµk̄α( ˜ap+ k)µ − gµαk̄µ( ˜ap+ k)α

]}
. (A.191)

This becomes

Iq =
1

pµ

g2
0CF

( ̂ap− k)2 + µ2

{
−r(ap+ k)µσ̃+ − 2g̃−( ˜ap+ k)2µ

[
k̄µ + k̄α

]}
, (A.192)
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which after expansion in pµ yields

Iq = g2
0CF

{
1

k̂2 + µ2

[
cos kµσ̃+ + k̄2

µg̃−
]

− 1

(k̂2 + µ2)2

[
rk̄2

µσ̃+ + 4g̃−k̃
2
µ

(
k̄2

µ + k̄2
α

)]
}
. (A.193)

This is numerically the same as expression (A.189) since indices µ and α can be exchanged

in term with k̃2
µk̄

2
α. Another way to see this is to observe that the amplitude Iµν has no

parts proportional to gµνγµpµ, which causes the difference between the two representations:

Iµν =
g2
0CF

( ̂ap− k)2 + µ2

{r
2
(ap+ k)ν σ̃+

−2
(
k̄µγν( ˜ap+ k)2ν − k̄ · γ ( ˜ap+ k)µ( ˜ap+ k)ν + γµk̄ν( ˜ap+ k)2ρ

)
g̃−
}
.

(A.194)

which, after expansion in pµ to first order, yields

Iµν =
g2
0CFγµpν

k̂2 + µ2

{
cos kν σ̃+ + k̄2

ν g̃−
}

− g2
0CF

(k̂2 + µ2)2

{
γµpνrk̄

2
ν σ̃+ + 4g̃−

(
γµpν k̄

2
ν k̃

2
ν + γνpµk̄

2
µk̃

2
ν

)}
. (A.195)

After symmetrization in µ and ν we get expressions (A.189) and (A.193).

A.4.3 Tadpole diagram

The amplitude for the tadpole diagram is given by

Jq(p) =

π/a∫

−π/a

ddk

(2π)d
Gνν(k)Oaa

µν(p, p) . (A.196)

The operator vertex expanded to second order in g0

O(2)
µν = −a

2

2
{T a, T b}p̄ν → −

a2

2
CFγµp̄ν (A.197)
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q(p)

q     D  qΓ ν

k

q(−p)

pp

Figure A.7: Tadpole diagram for twist-two operators (denoted by the box). Solid and curly
lines represent fermions and gluons, respectively.

is independent of the loop momentum so (after rescaling the loop momentum) we are left

with the amplitude

Jq(p) = −1

2
g2
0CF iγµpνT = −g

2
0CF

16π2
iγµpν(8π

2T ) = iγµpν
g2
0CF

16π2
ΣOPtad (A.198)

where T is the tadpole integral

T = lim
µ2→0

T (µ2) = lim
µ2→0

1

d

π∫

−π

ddk

(2π)d

∑

ρ

gρρ

k̂2 + µ2
(A.199)

and

ΣOPtad = −8π2T (A.200)

has already been encountered in the self-energy renormalization. Note that the tadpole

contribution does not depend on the γ structure of the operator.

A.5 Conclusions

In this appendix we calculated renormalization factors for twist-two operators in domain-

wall QCD at one-loop in perturbation theory, with no smearing. The main results of our

work are numerical values for the Z̄jk for matrix elements of operators (listed in Table A.3).
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Operator H(4) Wilson DW M=1.6 DW M=1.7 M=1.8 M=1.9 MS

q̄q 1−1 6.101 16.401 17.313 18.425 19.875 6
q̄γ5q 1+

1 15.743 16.401 17.313 18.425 19.875 6
q̄γµq 4−4 8.765 6.422 6.436 6.452 6.471 1
q̄γµγ5q 4+

4 3.944 6.422 6.436 6.452 6.471 1
q̄σµνq 6−1 4.166 2.428 2.142 1.793 1.334 0
q̄γ{µDν}q 6+

3 -15.016 -14.868 -14.771 -14.653 -14.499 -31/9

q̄γ{µDν}q 3+
1 -13.734 -13.92 -13.758 -13.568 -13.334 -31/9

Table A.3: Final results for Wilson and DW fermions, with no smearing.

To provide as many cross checks as possible, we have compared our results in various limits

with those obtained in [47], [48], and [51], and find perfect agreement. The introductory

nature of this appendix, and the following Appendix B, can also serve to establish the basics

of perturbative renormalization with DW quarks.
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Appendix B

Domain-Wall Propagators

It is simplest to begin with a fifth dimension of infinite extent, and subsequently consider

the corrections associated with the boundaries for the semi-infinite and finite cases. It is

easiest to first compute the inverse of Ω0
s,s′(p) ≡ [D0(D0)†]s,s′ . Then, one has

[(D0)−1]s,s′ = [(D0)†G0]s,s′ G0
s,s′(p) ≡ [Ω0(p)−1]s,s′ . (B.1)

Explicitly, one has

Ω0
s,s′ =

(
1

a2
5

+W 2(p) + p̄2

)
δs,s′ −

W (p)

a5

(
δs,s′+1 + δs,s′−1

)
. (B.2)

We now define α(p) via

coshα(p) =

1
a2
5

+W 2(p) + p̄2

2|W (p)|/a5
. (B.3)

It is then straightforward to show that

G0
s,s′ = A0 e

−α|s−s′| , (B.4)

A−1
0 ≡ 2

W (p)

a5
sinhα . (B.5)

The resulting propagator is given by

[(D0)−1]s,s′ = S+
s,s′P+ + S−

s,s′P− (B.6)

S±
s,s′ =

(
1

2W sinhα

)[
e−α|s−s′∓1| − a5(ip̄ · γ +W )e−α|s−s′|

]
. (B.7)

We now proceed to compute the propagator for the semi-infinite fifth dimension, for
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which the Dirac operator is given by

Ds,s′(p) = θ(s− 1)θ(s′ − 1)D0
s,s′(p) . (B.8)

Again, we first find the inverse of Ωs,s′ = [DD†]s,s′. In carrying out the matrix multiplication

to obtain an explicit expression for Ωs,s′ , one must take care to restrict the sum over

intermediate values of s to the positive integers. Doing so leads to

Ωs,s′ = Ω0
s,s′ −

1

a2
5

P− δs,1δs′,1 (B.9)

≡ Ω+
s,s′P+ + Ω−

s,s′P− (B.10)

Ω+
s,s′ = Ω0

s,s′ (B.11)

Ω−
s,s′ = Ω0

s,s′ −
1

a2
5

δs,1δs′,1 . (B.12)

The inverse, G, of Ω has a similar decomposition:

Gs,s′ = G+
s,s′P+ +G−

s,s′P− with G±
s,tΩ

±
t,s′ = δs,s′ . (B.13)

For large values of s, s′, one expects boundary effects to be suppressed and G± ≈ G0. Thus,

a reasonable ansatz is

G±
s,s′ = G0

s,s′ +A±e
−α(s+s′−2) . (B.14)

Expressions for the A± are obtained by requiring [Ω±G±]s,s′ = δs,s′ . Notice that for all

s > 1, Ω±
s,tG

0
t,s′ = δs,s′ and Ω±

s,te
−αt = 0. We must therefore pay special attention to the

behavior of [Ω±G±]s,s′ at the boundary s = 1. After considerable algebra one obtains

[Ω−G−]s,s′ = δs,s′ =
∑

t≥1

Ω−
s,tG

0
t,s′ +

∑

t≥1

Ω−
s,tA−e

−α(t+s′−2)

= δs,s′ +
Wa5 − eα

2Wa5 sinhα
e−αs′δ1,s′ +A−e

−α(s′−2)

(
W

a5
− e−α

a2
5

)
δ1,s′ (B.15)

[Ω+G+]s,s′ = δs,s′ =
∑

t≥1

Ω+
s,tG

0
t,s′ +

∑

t≥1

Ω+
s,tA+e

−α(t+s′−2)

= δs,s′ +
1

2 sinhα
e−αs′δ1,s′ +A+e

−α(s′−2)

(
W

a5

)
δ1,s′ . (B.16)
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From these equations we get the constraints

A−(Wa5e
α − 1)eα = −A0(Wa5 − eα) (B.17)

A+
W

a5
e2α = −A0

W

a5
,

with solutions

A− = −A0
1−Wa5e

−α

1−Wa5eα
, A+ = −A0e

−2α . (B.18)

The resulting expression for the propagator is

[D−1]s,s′ = S+
s,s′P+ + S−

s,s′P− (B.19)

S+
s,s′ = − (ip̄ · γ +W )

(
G0

s,s′ +A+e
−α|s+s′|

)
(B.20)

+
1

a5

(
G0

s−1,s′ +A+e
−α|s+s′−1|

) (
1− δ1,s′

)
(B.21)

S−
s,s′ = − (ip̄ · γ +W )

(
G0

s,s′ +A−e
−α|s+s′|

)
(B.22)

+
1

a5

(
G0

s+1,s′ +A−e
−α|s+s′+1|

)
. (B.23)

The derivation of the propagator for the finite fifth dimension case proceeds along similar

lines. Starting with

D̂s,s′(p) = θ(s− 1)θ(s′ − 1)θ(N − s)θ(N − s′)D0
s,s′(p) , (B.24)

where s, s′ are now restricted to the range 1 ≤ s, s′ ≤ N , leads to Ω̂s,s′ = Ω̂+
s,s′P+ + Ω̂−

s,s′P−

with

Ω̂+
s,s′ = Ω0

s,s′ −
1

a2
5

δs,Nδs′,N (B.25)

Ω̂−
s,s′ = Ω0

s,s′ −
1

a2
5

δs,1δs′,1 . (B.26)

From these expressions, one notes that

Ω̂±
s,s′ = Ω̂∓

N−(s−1),N−(s′−1) . (B.27)

It is then straightforward to show that if Ω̂−
s,tĜ

−
t,s′ = δs,s′ , one has Ω̂+

s,tĜ
−
N−(t−1),N−(s′−1) =

δs,s′ , or Ĝ+
s,s′ = Ĝ−

N−(s−1),N−(s′−1). Hence, it suffices to determine Ĝ−
s,s′ or Ĝ+

s,s′ .
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We again make the reasonable ansatz

Ĝ±
s,s′ = G0

s,s′ + Â±e
−α(s+s′−2) + Â∓e

−α(2N−s−s′) (B.28)

and solve for the Â± by considering Ω̂−
s,tĜ

−
t,s′ = δs,s′ at s = 1 and s = N . Doing so leads to

A− = A0
Wa5e

−α − 1

fN
(B.29)

A+ = A0
Wa5e

α − 1

fN
e−2α (B.30)

fN = 1−Wa5e
α − e−2αN

(
1−Wa5e

−α
)
. (B.31)

Note that in the N →∞ limit, one recovers the expressions in Eqs. (B.18) and (B.14).

In practical calculations, one always works with quarks having non-zero mass, m. Since

the physical quarks are defined as linear combinations of the quarks living at s = 1 and

s = N , we add mass terms on the boundaries to the Dirac operator in Eq. (B.24):

D̂s,s′(m) = θ(s− 1)θ(s′ − 1)θ(N − s)θ(N − s′)D0
s,s′ +mP−δs,1δs′,N +mP+δs,Nδs′,1 (B.32)

which leads to

Ω̂+
s,s′ = Ω0

s,s′ −mW (p)[δs,1δs′,N + δs,Nδs′,1]−
(

1

a2
5

−m2

)
δs,Nδs′,N (B.33)

Ω̂−
s,s′ = Ω0

s,s′ −mW (p)[δs,1δs′,N + δs,Nδs′,1]−
(

1

a2
5

−m2

)
δs,1δs′,1 . (B.34)

The symmetry condition Ω̂±
s,s′ = Ω̂∓

N−(s−1),N−(s′−1)
is unchanged by the presence of the

terms proportional to m, so it again suffices to determine either Ĝ−
s,s′ or Ĝ+

s,s′ . We take

Ĝ±
s,s′ = G0

s,s′+Â±e
−α(s+s′−2)+Â∓e

−α(2N−s−s′)+Âm

(
e−α(N−s+s′) + e−α(N+s−s′)

)
, (B.35)
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and solve for Â± and Âm, as before. Doing so yields

Â− = A0

(
1− a2

5m
2
)
(Wa5e

−α − 1)

fN
(B.36)

Â+ = A0

(
1− a2

5m
2
)
(Wa5e

α − 1)

fN
e−2α (B.37)

Âm = A0
1

fN

[
e−αN

{
a2

5m
2 (Wa5e

α − 1)−
(
Wa5e

−α − 1
)}

−2mWa2
5 sinhα

]
(B.38)

fN (m) =
[
1−Wa5e

α − a2
5m

2
(
1−Wa5e

−α
)]

(B.39)

−e−2αN
[
1−Wa5e

−α − a2
5m

2 (1−Wa5e
α)
]
+ 4mWa2

5e
−αN sinhα .

Letting

Λ+
s,t = − (ip̄ · γ +W ) δs,t +

1

a5
δs,t+1 +mδs,1δt,N (B.40)

Λ−
s,t = − (ip̄ · γ +W ) δs,t +

1

a5
δs,t−1 +mδs,Nδt,1 (B.41)

we have [D̂−1]s,s′ = Ŝ+
s,s′P+ + Ŝ−

s,s′P− with Ŝ±
s,s′ =

[
Λ±Ĝ±

]
s,s′

.
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