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Abstract 

Nickel-Titanium (Nitinol) is a Shape Memory Alloy (SMA) that exhibits superelasticity 

(pseudoelasticity) and shape memory by a solid-solid state diffusion-less phase transformation. Phase 

transformation and the resulting strain localization in Nitinol has long been a topic of study, both for its 

inherent scientific interest and also because of the large number of practical applications of this bimetallic 

alloy. Although Nitinol devices are extensively used in the medical industry, there is a fundamental gap in 

the amount of high-quality quantitative experimental data detailing strain localization. The numerous 

applications of shape memory alloys provide the motivation to understand the deformation and failure 

mechanisms of these materials, particularly their fatigue and fracture behavior. By using an in-situ optical 

technique called Digital Image Correlation (DIC), quantitative measures of strain localization in Nitinol are 

presented for the first time in both deformation and failure modes. In addition, a finite element small-scale 

transformation analysis near a crack tip in Nitinol subjected to mode-I loading under plane stress 

conditions is performed for the first time. The experimental results and finite element analysis provide new 

and detailed insights concerning the structure of phase transformation and crack tip fields in Nitinol.  
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1. Introduction 

1.1 The Discovery of Nitinol 

In 1959, luck smiled on a man named William J. Buehler.  As a metallurgist at the 

Naval Ordnance Laboratory, he had been assigned a project to develop metallic materials for 

the nose cone of the U.S. Navy Polaris re-entry vehicle.  Buehler decided to focus on one of 

the sixty intermetallic alloys under consideration, a nearly equiatomic mixture of Nickel and 

Titanium (50 at.% Ni - 50 at.% Ti)., which had a higher impact resistance and ductility than 

the other metals.  This metal later became known as Nitinol, an acronym for Nickel-

Titanium Naval Ordnance Laboratory. Buehler’s personal recollection of his experience with 

this metal is recounted by Kauffman and Mayo in “The Story of Nitinol: The Serendipitous 

Discovery of the Memory Metal and Its Applications” [1]: 

I distinctly remember my very exciting discovery of the acoustic damping change 
with temperature change near room temperature. This unusual event unfolded when 
my… assistant… and I were melting a number of [Nitinol] bars in the arc-melting 
furnace. On the day in question (circa 1959), six arc-cast bars were made. While 
cooling on the transite-topped table, the first bars arc-cast into bar form had cooled 
to near room temperature, while the last bars to be cast were still too hot…. to be 
handled with bare hands. Between the cool (first bar) and the very warm (last bar) 
were four arc-cast bars possessing a broad spectrum of temperatures…. My “hands-
on” approach caused me to take the cooler bar(s) to the shop grinder to manually 
grind away any surface irregularities that might produce a subsequent scaly or 
bad…surface. In going from the table to the bench grinder, I purposely dropped the 
cool (near room temperature) bar on the concrete laboratory floor [a quick test to 
determine roughly the damping capacity of an alloy]. It produced a very dull “thud,” 
very much like what one would expect from a similar size and shape lead bar. My 
immediate concern was that the arc-casting process may have in some way produced 
a multitude of micro cracks within the bar -- thus producing the unexpected 
damping phenomena. With this possibly discouraging development in mind, I 
decided to drop the others on the concrete floor. To my amazement, the warmer 
bars rang with a bell-like quality.  

 
 

Because the bars had the same composition and processing history, Buehler correctly 

postulated that the acoustic damping change that occurred when varying the temperature of 

the bars had to be related to an atomic structural change. After further investigation, Buehler 
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also realized that Nitinol was, as he later recounted, “an overtly dimensionally mobile alloy 

capable of major atomic movement in a rather low temperature regime -- near room 

temperature” [1].  

 

1.2 Superelasticity and the Shape Memory Effect 

 What later became evident is that Nitinol is not only “mobile,” as Buehler suggested, but 

can actually exist in two different solid state phases, and is capable of major atomic 

movement between these phases. The first phase, called austenite, is the high-temperature, 

stable phase. In Nitinol, the austenite phase is cubic. The second phase, called martensite, is 

the low-temperature, low-symmetry phase. In Nitinol, the martensite phase is monoclinic. 

When Nitinol transforms between the two phases, from austenite to martensite or from 

martensite to austenite, it is a solid to solid, diffusion-less phase transformation. The 

transformation between these two phases can be induced by changes in either temperature 

or stress. On heating, the macroscopic transformation from the martensite to the austenite 

begins at the austenite start temperature (As) and ends at the austenite finish (Af) 

temperature. On cooling, the transformation from the austenite to the martensite begins at 

the martensite start temperature (Ms) and ends at the martensite finish (Mf) temperature.  

 The ability of Nitinol to transform between these solid states, austenite and martensite, 

enables two interesting and useful properties called superelasticity (pseudoelasticity) and shape 

memory. Superelasticity describes the ability of a material to elastically recover large strains. 

The typical strain that a material (for example, steel) can recover is on the order of 0.2%. 

Nitinol, which exhibits superelasticity, can elastically recover strains on the order of 6-8%. 

The stress-strain curve for Nitinol that is above the austenite finish (Af) temperature, and at 

a constant temperature, is shown in Figure 1.1. Because it is above the austenite finish 
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temperature, the Nitinol at point O is in austenite. From point O to point A, the austenite is 

elastically loaded. At point A, the macroscopic transformation from austenite to martensite 

begins, and proceeds until point B, at which time the Nitinol is considered macroscopically 

martensite. From point B to point C, the martensite is elastically loaded. If one were to 

continue to load the martensite after point C, plasticity and eventual failure would result. It is 

seen in Figure 1.1 that the majority of the recoverable strain is achieved in the flat plateau 

between points A and B, where the transformation between austenite and martensite is 

taking place. From points C to D, the martensite is elastically unloaded. From points D to E, 

the monoclinic martensite transforms back into cubic austenite. The reversion back to 

austenite occurs with no permanent strain because the austenite is unique, and no bonds are 

broken during the transformation. From points E to O, the austenite is elastically unloaded 

and the original position with no permanent strain is recovered.   

 

 
Figure 1.1: Stress-strain curve demonstrating the superelasticity of Nitinol, 
at a constant temperature above Af 
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Superelasticity is useful in a wide variety of practical applications, most notably in the 

biomedical industry, in the form of stents, vena-cava filters, braided catheters, surgical tools, 

etc. [2]. One example illustrating the superelastic property in biomedical applications is 

shown in Figure 1.2, which shows an Amplatzer septal-defect occlusion device made of 

Nitinol that has been placed to seal a hole in the heart wall. Because Nitinol is superelastic, 

each side of the occlusion device can be tightly compressed and wrapped around a catheter. 

Instead of opening the chest in order to install this occlusion device, the device is then 

inserted on the two catheters through a vein, generally in the leg, and moved through the 

body to the heart. The two sides of the patch can then be placed into position and used to 

seal the hole in the heart wall with a special torqueing catheter in a much less intrusive 

procedure than would be possible with traditional materials. This technique leads to 

significantly less mortality and a shorter hospital stay. 

 

 

Figure 1.2: Amplatzer septal-defect occlusion device made of Nitinol, post-
insertion 

 

Although there are several metals that exhibit superelastic effects, only Ni-Ti-based 

alloys appear to be chemically and biologically compatible with the human body [3]. In 

addition to being biocompatible, Nitinol is also MRI compatible, kink resistant, corrosion 
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resistant, and has the ability to maintain a constant stress. Because of these properties, and 

its high range of recoverable strain, Nitinol is by far the most commonly used shape memory 

alloy, particularly in biomedical and MEMs applications.  

The transition from austenite to martensite also enables what is known as the shape 

memory effect. If one takes a wire of Nitinol, deforms it, and then heats it past a set 

transformation temperature, it will return to its original shape – hence, the term “shape 

memory.” The stress-strain-temperature curve that occurs during this process is detailed in 

Figure 1.3. At first, the wire of Nitinol is twinned martensite at point F, which is below the 

Mf temperature.  To explain the terminology `twinned martensite,' recall that the austenite 

has higher symmetry (cubic) compared to the martensite (monoclinic).  Therefore there are 

twelve symmetry-related variants of martensite: crystals with identical structure but oriented 

differently with respect to the austenite.  These different variants can coexist in very 

characteristic mixtures, and these mixtures are called twinned martensite. 

From point F to G, the twinned martensite is then stressed (deformed) until it is 

detwinned martensite (single variant of martensite).  Further loading causes the detwinned 

martensite to load elastically from point G to point H. When the stress is released, the 

detwinned martensite unloads elastically from point H to point I.  In particular, the strain 

does not recover to point F.  The reason is that all variants of martensite, and consequently 

the twinned and detwinned martensite, have the same energy.  Therefore there is no 

energetic driving force to compel the detwinned martensite back to the twinned martensite. 

This strain, however, is then recovered by heating above Af as the material goes from point I 

to point O.  During heating, each variant of martensite transforms back to the unique 

austenite thereby recovering the strain. As the wire cools, from point O to point F, the 
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microstructure reverts back to twinned martensite and the process is back to its starting 

point.  

The shape memory effect has been used in aerospace applications, including Nitinol 

latches on the solar panels of the Hubble Space Telescope. These latches kept the solar 

panels down until it was safe to deploy them, at which point the latches were heated and 

returned to their original (unlatched) shape, releasing the panels [4].  
 

 

Figure 1.3: Stress-strain-temperature curve of Nitinol detailing the shape 
memory effect 
 

 

2.3 Motivation 

The unique properties of shape memory alloys make these materials, and in particular 

Nitinol, attractive for a variety of applications. Important amongst these are stents, 

guidewires, and other bio-medical applications, where relatively slender structures are 

subjected to rather complex deformation.  These motivate us to understand the deformation 

and failure mechanisms in these materials.  
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A broad overview of the heuristics of transformation has been described in Section 

2.2. However, the specific details of this transformation are still not fully understood. The 

transformation is not homogenous, a fundamentally important feature that is not apparent in 

the macroscopic stress-strain-temperature picture. Under laboratory conditions, there are 

regions of martensitic transformation that nucleate and grow inhomogeneously throughout 

the material. In addition, we rarely see single crystals -- in practice, what we have are 

polycrystalline shape memory alloys, where there are multiple grains. These grains are 

comprised of identical material, but they are oriented differently with respect to one another. 

Cold working, hot working, and annealing are commonly used techniques used to meet the 

thermo-mechanical property requirements of Nitinol that are specified by the consumer. 

These and other processes invariably create complicated textures, resulting in a much more 

complex transformation behavior than the broad overview presented in Section 2.2.  

Although the mechanism of transformation is reasonably well understood in single 

crystals (see, for example, [5, 6] and the references therein), it is incompletely understood in 

polycrystals. What is currently known is that during the stress-induced transformation from 

austenite to martensite, strains in Nitinol localize as phase transformation occurs -- that is, 

the material deforms in one region and not elsewhere. This phenomenon has been well 

established through several different experimental techniques (see, for example, [7 - 9] and 

the references therein).  In 2004, Brinson et al. [10] looked at stress-induced transformation 

behavior in polycrystalline Nitinol on both the macro- and microscopic scale, via in-situ 

microscopy. What she found was that “in contrast to the perception that transformation 

occurs only in the macroscopically visible transformation bands … the martensitic 

transformation occurs throughout the material at all strain levels.”  Even when a strained 

region was macroscopically austenite, there existed significant martensitic variants 
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throughout the grains when viewed microscopically. These and other experiments [6,11 - 14] 

point to a much more complex transformation mechanism in polycrystalline shape memory 

alloys than previously assumed, in part due to intergranular constraints. Intergranular 

constraints arise during transformation due to the fact that during transformation in a 

polycrystal, there are grains that are favorably oriented for transformation, and grains that 

have orientations unfavorable for transformation. When favorably oriented grains transform, 

they change the local stress state, and can cause other untransformed grains to self-arrest. 

The results of Brinson et al. [10] show that even at a macroscopically full transformation of 

the specimen (i.e., 10% global strain), the actual martensitic transformation of polycrystalline 

Nitinol arrests at around 60 - 70%.    

It has been observed that localized transformation occurs at all scales throughout the 

material, and that processes occurring on one scale can significantly influence the properties 

of another. What is currently missing from the experimental literature is a full-scale 

measurement of the localized strain during transformation. There have been recent 

experiments utilizing Transmission Electron Microscopy (TEM) to measure nanoscale strain 

fields around Ni4Ti3 precipitates [15] and to observe stress-induced martensitic 

transformation in Nitinol [13, 14]. This technique is an excellent method of obtaining high-

resolution images of martensitic formation on the nanoscale, but an obvious limitation of 

these measurements is the exceptionally small region to which they are confined. The 

combination of these precise nanoscale strain measurements with a macroscopic full-field 

picture of the deformation has the potential to greatly enhance our understanding of the 

mechanisms behind martensitic transformation.  This thesis provides, for the first time, a 

method for full-field quantitative strain mappings of localization as a means for tracking 

martensitic transformation. This information, combined with the spatially averaged 
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macroscopic stress-strain behavior, provides new and valuable information for 

understanding and modeling the behavior of deformation in Nitinol.   

This thesis also discusses phase transformation near the crack tip in fracture. Full-

field quantitative strain mappings of localization near the crack tip are obtained for the first 

time, and the KC value for plane strain fracture toughness is experimentally determined for 

thin sheets of Nitinol (≈ 150 μm). In the past, there have been numerous experiments on 

fracture fields in single-crystal shape memory alloys (see for example [16 - 19]). Many of 

these experiments were designed to give unconstrained microstructures, but most 

applications utilize polycrystalline materials, where there are significant intergranular 

constraints. This thesis addresses a clear need for experiments detailing the process of 

fracture in the presence of these microstructural constraints. The experiments detailed within 

this thesis are the first strain fields obtained for fracture in polycrystalline Nitinol.  

Previously, there was also a limited knowledge of the fracture toughness of Nitinol 

and no determined value for thin sheets.  The experiment described in Chapter 3 provides 

the first quantitative measurements of fracture toughness for polycrystalline thin sheets of 

Nitinol. The strain fields and fracture toughness measurements provide new information 

that expands our knowledge of how this martensitic transformation proceeds, and the 

effectiveness of the transformation in cracktip shielding and transformation toughening.   

When considering practical applications, the localized deformation that occurs 

during phase transformation can affect the performance of Nitinol devices and accelerate 

failure. As a simple example of how strain localization can affect performance, consider a 

MEMS pump. If the pump is deforming to a greater extent on one side then the other, this 

will clearly affect the performance of the pump. Strain localization affects the fatigue 

performance and failure rate of Nitinol as well. A region in a Nitinol device that is 
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undergoing more strain (deformation) will fatigue and fail more quickly. Although Nitinol 

devices are extensively used in the medical industry, there is a fundamental gap in the 

amount of high-quality quantitative experimental data detailing localization. The numerous 

applications of shape-memory alloys provide the motivation to understand the deformation 

and failure mechanisms of these materials, particularly their fatigue and fracture behavior. 

This is of great importance and concern in the medical industry, where, for example, stent 

failure by either fatigue or fracture can cost a patient and hospital considerable time, 

expense, and hazard towards the patient’s health. 

 

1.4 Outline 

The structure of this thesis is as follows. Chapter 2 will discuss stress-induced 

martensitic phase transformation in thin sheets of Nitinol. Using Digital Image Correlation 

(DIC), an in-situ optical technique, full-field quantitative strain maps of localization are 

obtained for the first time in Nitinol. The use of DIC provides new information connecting 

previous observations on the micro- and macro-scale. It shows that the transformation from 

austenite to martensite initiates before the formation of localized bands, and that the strain 

inside the bands does not saturate when they nucleate. The effect of rolling texture on the 

macroscopic stress-strain behavior is observed, and it is shown that the resolved stress 

criterion or Clausius-Clapeyron relation does not hold for polycrystalline Nitinol. Finally, the 

effect of geometric defects on localization behavior is observed.   

In Chapter 3, an experimental investigation into the fracture properties of 150 μm 

thick edge-cracked specimens of austenitic Nitinol under uniaxial tension is presented. Using 

Digital Image Correlation (DIC), strain fields directly relating to phase boundary nucleation 

and propagation of fracture samples were observed for the first time. The shape and size of 
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the saturation and transformation zones as a function of loading near the crack tip were 

examined. The crack initiation fracture toughness KC, determined from the maximum load 

value, was determined to be .6.34.51 mMPa±  The extent and nature of the phase 

transformation obtained from DIC, combined with the relatively high value of KC, 

underscores the importance of crack tip shielding in the fracture of shape memory alloys. 

In Chapter 4, the importance of crack tip shielding in the fracture of shape memory 

alloys, shown in the fracture experiments of Chapter 3, is investigated in depth through finite 

element methods. A small-scale transformation analysis based on numerical finite element 

modeling is presented near a crack tip in Nitinol under plane stress conditions. Under far 

field mode-I loading, the deforming domain containing the crack can be divided into three 

distinct regions: a fully transformed zone around the crack tip, an annular transition zone, 

and an untransformed elastic region in the far field. The nature of the stress and strain fields 

in the various regions, and the relationship between Jtip and Japplied in light of the 

transformation process are discussed. Scaling relations are proposed for the radii of the 

saturation and transition regions as a function of the applied stress intensity factor, KI. The 

effect of material parameters on fracture behavior is discussed for various uniaxial behaviors 

of Nitinol. The structure of the crack tip field and the scaling relations introduced here 

provide a foundation for understanding the fracture mechanics of thin sheets of Nitinol and 

other shape-memory alloys. 

In Chapter 5, the findings of this doctoral work will be summarized. General 

conclusions from this work and the directions for future research in this field will be 

discussed. 
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2. Stress-Induced Martensitic Phase Transformation in Thin 
Sheets of Nitinol 

 
 
2.1 Introduction 
 

Of particular interest in the study of strain localization in Nitinol is its propensity to 

form localized bands of large strain. Leo et al. [20] and Shaw and Kyriakides [7] studied 

stress-induced transformation in polycrystalline Nitinol wires, and observed that the 

transformation proceeded through the nucleation and propagation of regions of large strain. 

Leo et al. [20] also observed that the nature of the hysteretic stress-strain curves depended 

heavily on the strain rate applied to the wire, and developed a theoretical model to explain 

this phenomenon. Unlike many of the models currently in the literature, their model does 

not make use of a kinetic relation or use parameter fitting.  Shaw and Kyriakides [7] 

performed a series of studies at different temperature and deformation ranges in order to 

probe the thermomechanical properties of Nitinol wire. The wire was tested in a range of 

approximately -20 to 100 degrees C, in which the fundamental material response of Nitinol 

varied widely. They observed, as did Leo et al., that the strain rate has a significant effect on 

the stress-strain response, as well as on the choice of ambient medium.  

  Subsequently, Shaw and Kyriakides [8] observed the formation of Lüders-like bands 

in flat strips of Nitinol during deformation. The Nitinol strips were processed to leave a thin 

(≈ 5 μm) black Ti02 layer on the material. This brittle Ti02 oxide layer tends to crack when 

subjected to significant strain changes, like that experienced during the transformation from 

austenite to martensite. The surface changes of the brittle Ti02 oxide coating on Nitinol were 

photographically recorded to qualitatively establish the deformation history; higher 

reflectivity, where the Ti02 layer had cracked, indicated the presence of martensite. In the 
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resulting photographs, the two phases were separated by a sharp (A → M) transformation 

front that could be accurately tracked. Simultaneously, temperature changes in the Nitinol 

strips were observed using an infrared thermal imaging camera. The photographic and 

infrared data were synchronized and presented with the corresponding stress histories to 

give a coherent picture of the evolution of stress-induced phase boundary propagation in 

superelastic Nitinol. Shaw and Kyriakides concluded that nucleation stress is greater than the 

stress required to subsequently continue the transformation, and that deformation during 

transformation is inhomogeneous and takes the form of two or more phases connected by a 

transition front. They also observed that the transition front was usually nearly straight and 

at an angle of about 60 degrees to the axis of loading, but it did occasionally form a criss-

crossing pattern. Later work by Shaw and Kyriakides [21] on Nitinol strips found that the 

martensite nucleates in sharp bands inclined at 55 degrees to the axis of loading, and that the 

martensite propagates by either a steady-state propagation of inclined transition fronts or by 

a criss-crossing pattern. The experimental results obtained in this chapter are consistent with 

these conclusions. 

Others have also used infrared imaging to track martensitic band formation in 

superelastic Nitinol. In 2004, Pieczyska et al. [13] performed displacement-controlled tension 

tests on Nitinol sheet specimens at a strain rate of 10-2 s-1, obtaining high-resolution infrared 

images. The infrared measurements were compared with the stress-displacement test history. 

Temperature distributions were inhomogenous during macroscopic transformation and 

clearly showed the appearance of martensitic bands, visible by the latent heat released during 

transformation.  

In addition to these techniques, changes in surface morphology have been 

successfully used to track macroscopic localization. In 2006, Feng and Sun [11] reported on 
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domain morphology evolution observed during the transformation to stress-induced 

martensite in commercially-available polycrystalline Nitinol micro-tubing under tension. The 

observation system included an imaging camera, high-speed motion camera, measuring 

microscope, surface profiler, and infrared camera. By synchronizing the load-deformation 

and this surface morphology observation technique, they were able to observe and record 

the nucleation, growth, and eventual vanishing of a single stress-induced deformation 

domain in the polycrystalline Nitinol tube.  

As can been seen by the overview given above, strain localization has been a topic of 

intense interest with a wide range of experimental investigations [8 - 11, 14, 21 - 24].  The 

interest in strain localization is both for its inherent scientific interest and also motivated by 

the use of shape memory alloys in medical devices.  Yet surprisingly, there are no full-field 

quantitative measurements of the strain and its evolution during deformation. In this 

chapter, we present full-field measurements of the strain during stress-induced martensitic 

transformation in thin sheets of Nitinol for the first time. These full-field strain mappings 

are presented with the corresponding stress histories for displacement controlled uniaxial 

tension tests of a range of specimen geometries.  

These measurements are obtained by Digital Image Correlation (DIC), an in-situ 

optical method that measures displacement on the surface of an object by tracking and 

correlating a random pattern on the sample surface [25].  Our measurements show that the 

progress of the transformation is much more complex than commonly assumed.  The 

transformation initiates before the nucleation of bands. It is not complete within the bands 

on nucleation, but proceeds with increasing load. The transformation is not complete even 

upon apparent saturation.  We examine the role of texture by extracting specimens with 
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different orientations with respect to the rolling direction.  We also examine the role of 

geometric defects on localization. 

 

2.2 Material and Experimental Details 

 Dogbone shaped tensile specimens as shown in Figure 2.1 were extracted by wire-EDM 

(Electrical Discharge Machining) from rolled sheets with a nominal thickness of 160 μm and 

a composition of 48 wt.% Titanium and 52 wt.% Nickel. The sheets were flat annealed with 

an Af  temperature of 11.3 degrees Celsius. The low Af temperature ensured that the 

specimens were fully austenitic when unloaded and that the stress-induced martensite 

occurred upon loading.   

 

 

Figure 2.1: The specifications of dog-bone test specimens. 

 

Tensile specimens with varying orientation with respect to the rolling direction (RD) 

were extracted from the same sheet.  To understand the texture of the rolled sheet, optical 

micrographs of the tensile specimens were obtained by heavily etching them in 1HF + 

4HN03 + 5H20 for 30 - 45 seconds.  This recipe was adapted from work performed by 

Shabalovskaya et al. [26]. The results are shown in Figure 2.2 for three specimens numbered 

1 - 3; oriented along the RD, perpendicular to RD, and 45 degrees to RD, respectively.  The 

micrographs show elongated etch pits in the rolling direction underscoring the texture.  
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Further, the three micrographs are very similar except for orientation, demonstrating the 

homogeneity of the rolled sheet.  Finally these, and more lightly etched specimens, 

demonstrate that the grain size in this rolled sheet is of the order of 100 nm.   

 

 

Figure 2.2: Optical micrograph of NiTi sheet at 60x at 3 different 
orientations; parallel to RD (1), perpendicular to RD (2), and 45 degrees to 
RD (3) 

 

The texture of the specimens was also probed using X-Ray Diffraction (XRD) 

techniques, as seen in Figure 2.3 and Figure 2.4. Figure 2.3 shows the XRD data of the 

Nitinol thin sheets used in these experiments, and the corresponding reference pattern 

indicating crystallographic orientations of possible intensity peaks. The sheets showed the 

presence of <211> but were dominated by <110> in XRD. This texture was further 

examined in the pole plots shown in Figure 2.4. In each pole plot, a specific crystallographic 

orientation was picked based on the results from Figure 2.3. The distribution of this picked 

crystallographic orientation, with respect to in-plane rotation (phi) and out-of-plane rotation 

(psi), was examined by measuring the intensity of the x-ray reflection from the relevant 

lattice planes, and the measured intensity (z), in-plane angle (theta), and out-of-plane angle 

(radius) were plotted in three-dimensional polar coordinates. The <110> pole plot is clearly 

anti-symmetric, with a strong phi (in-plane) and psi (out-of-plane) preference, whereas the 

<211> pole plot is symmetric, with no clearly defined preference. The pseudo-Gaussian 
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drop off in the intensity with respect to psi is expected, due to the fact that when the 

sample’s rotation out-of-plane increases, the reflected intensity of the x-rays decreases. 

 

 

Figure 2.3: X-ray diffraction data of Nitinol thin sheets and corresponding 
reference pattern for Nitinol 

 

The samples used for XRD in both Figures 2.3 and 2.4 were cut from the same sheet 

as those used in the following experiments. They were smooth sheet, ~ 150 μm thick, 

samples that were cut into circular shapes in order to minimize the effect of changing area 

on the intensity measurement as the sample was tilted to look at out-of-plane dependence of 

crystallographic orientation. Figure 2.4 illustrates the highly complicated texture of these 

rolled sheets.  
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Figure 2.4: Pole plots of crystallographic orientations <110> and <211>, 
observed to have high intensity in the x-ray diffraction data of Figure 2.3 

 

The specimens were tested in uniaxial tension under displacement control using a 

computer-controlled servo-hydraulic machine (MTS Model no. 358.10), as shown in Figure 

2.5. Figure 2.5 shows a schematic of the experimental setup (top) as well as a photograph of 

the setup (bottom). Knurled tension grips were used to minimize slippage and were carefully 

aligned to minimize out-of-plane loading and displacement. Grip slippage was also 

minimized by attaching emery paper to the grip sections of the sample in order to maximize 

friction in the connection between the grips and the sample. Specimens were tested with a 

fixed bottom grip and moving upper grip, both of which were supported by pivots to 

minimize bending and shear in the specimens.  The applied strain rate was 10-3 s-1. This is 

somewhat higher than the 10-4 s-1 recommended by various researchers for isothermal tests, 
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but was found to be adequate for our thin sheets and enabled the variety of observations 

that we conducted. 

 

 

 

Figure 2.5: A schematic (top) and photograph (bottom) of the experimental 
setup. The schematic is adapted from a picture by D. Garcia, Ecole Mines 
des Albi, France.  

 

The strain in the specimen was measured using Digital Image Correlation (DIC).  

This is an in-situ optical correlation method used to measure displacement on the surface of 
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an object by tracking a random pattern on the sample surface.  The random pattern could be 

inherent surface features or an artificially applied pattern, but must provide a sizeable 

number of correlation points at the magnification of imaging.   In this experiment, the 

pattern was applied pre-test by first coating the sample in white paint and then spraying a 

light mist of black paint in a fine speckle pattern.   Images were recorded using 1200x1600 

pixel CCD camera focused on the specimen surface and linked to a computer for data 

acquisition. Between one to three photographic lenses were used to focus the image 

depending on the area of interest; a 50 mm Nikon was used as the main lens, and two Sigma 

x2 and Sigma x1.4 lenses were also utilized for zooming purposes. Since the deformation 

was in-plane, a single CCD camera could be used to capture the deformation.  Images were 

taken after each displacement increment and post-processing was achieved with the software 

Vic-2D developed by Correlated Solutions [27] to extract the strain fields.  

There are certain sources of error in these experiments that need to be briefly 

discussed. There is grip slippage, although testing for stability of MTS applied force pre-test 

helped to minimize this error. There is grip alignment error, which was minimized by 

carefully aligning the grips and checking alignment with each experiment, and the self-

aligning nature of the grip.  There are also analysis errors due to any out-of-plane 

deformation of the specimen. There are numerous parameters in the Vic-2D Correlated 

Solutions program that can be adjusted, and these parameters have a significant effect on the 

success of the computation. Improper lighting, dust, marks on the camera lens, inadequate 

camera shutter speed, or inadequate aperture can produce a faulty or blurred speckle pattern 

and cause failure. With our specifications and settings, we estimate the strain accuracy to be 

approximately 0.1%. 
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2.3 Experimental Observations 

2.3.1 Uniaxial Tension Parallel to the Rolling Direction 

Figure 2.6 presents a detailed progression of the mesoscopic and macroscopic stress-

strain behavior of a dog-bone specimen cut parallel to the rolling direction (RD) and 

subjected to uniaxial tension under displacement control.  Snap-shots of the specimen were 

taken after each displacement increment, and the strain distributions were computed.  The 

overall strain of the specimen in the longitudinal direction is obtained from the average of 

the strain over the entire specimen.  The spatially averaged strain of the specimen in the 

longitudinal direction obtained from DIC was verified by extensometer and strain gages.  

This overall axial strain is plotted against the nominal stress applied by the MTS machine in 

Figure 2.6. The 2-pixel spatial resolution is approximately 0.05 mm. The pictures that 

accompany the macroscopic stress-strain curve show the evolution of normal component of 

strain in the longitudinal direction, εyy. The pictures are numbered 1-10 for comparison with 

the εxx and εxy strain components at the corresponding locations in Figure 2.7.  The 

unloading curve was recalibrated and adjusted downwards to compensate for the offset in 

the MTS loading frame.   

The specimen is fully austenitic at the beginning of the test, and behaves in a linear 

elastic manner with an approximate modulus of 45 GPa.   It begins to deviate from linearity 

with an apparent drop of modulus around a stress of 460 MPa and strain of 1%.   The 

accompanying image shows that the strain is almost but not completely uniform throughout 

the specimen.  As the loading continues, the level of strain continues to increase throughout 

the specimen, until we begin to see the appearance of a localized band of high strain close to 

the bottom grip at around 1.5% strain.  Further deformation occurs by the broadening of 

and nucleation of new bands with little apparent increase of stress.  The bands are all parallel 
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in this specimen and oriented at approximately 55 degrees from the loading axis.  The bands 

gradually coalesce and the stress begins to increase around a macroscopic strain of 4.25%.  A  

short transition follows and the behavior becomes linear beyond that, with a modulus of 

approximately 15 GPa. 

 

Figure 2.6: The macroscopic response of a dog-bone specimen cut parallel 
to the RD with corresponding DIC images for εyy. The macroscopic 
response is the spatially averaged strain value from each DIC image plotted 
against the MTS stress value. 

 

The unloading follows a similar pattern.  It begins with an almost linear unloading 

with a modulus of approximately 30 GPa.  There is a departure from linearity at about 4% 

strain, and the first localized band with small strain appears around 2.8% strain.  There 

follows subsequent decrease in strain proceeded by the growth of and nucleation of new 

bands with little apparent decrease of stress.  The bands eventually coalesce and this is 

followed by linear unloading.  There is a small amount of residual strain, as is expected for 
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any virgin specimen. For future use, we label the stress at which we see deviation from 

linearity on loading as the transformation onset stress (σT), and the residual strain that would 

be obtained if the unloading were purely linear as the transformation strain (εT).  

Figure 2.7 shows the εxx, εyy, and εxy strain components at points 1-10 labeled in 

Figure 2.6.  In Figure 2.8, the macroscopic stress-strain curve for the rotation of the sample, 

εxy, is shown. As in Figure 2.6, this curve is the spatially averaged strain value from each 

DIC image plotted against the MTS stress value when the image was taken. Because the 

spatially averaged values of εxy are on the order of the 0.01% - 0.1% strain, i.e. the 

resolution of the DIC technique, this graph shows significant scatter. However, it still 

displays the hysteretic curve characteristic of Nitinol, illustrating the robustness of this 

technique. 

 

 

 

Figure 2.7: The corresponding DIC images for the εxx, εyy, and εxy strain 
components for the points 1-10 labeled in Figure 2.6, which shows 
the macroscopic response of a dog-bone specimen cut parallel to the RD.  
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Figure 2.8: The macroscopic response of a dog-bone specimen cut parallel 
to the RD with corresponding DIC images for εxy. The macroscopic 
response is the spatially averaged strain value from each DIC image plotted 
against the MTS stress value. 

 

 

Figure 2.9: The loading curve from Figure 2.3, examining three specific 
points during the loading phase: prior to the appearance of any 
macroscopic localization (blue), halfway through the transformation when 
all the bands have nucleated and are nominally halfway through growing 
(green), and immediately after the coalescence of the bands with no 
remaining localization (red). 
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Figure 2.9 shows the same loading curve as Figure 2.6, with the examination of three 

specific points during the loading phase: prior to the appearance of any macroscopic 

localization (blue), halfway through the transformation when all the bands have nucleated 

and are nominally halfway through growing (green), and immediately after the coalescence of 

the bands with no remaining localization (red). The DIC image corresponding to each of 

these three points is shown. In Figure 2.10, the longitudinal strain (ε22) down the centerline 

of the sample is shown for the three points during the loading phase detailed in Figure 2.9. 

Note that the strain levels are quite high -- above 1.2% -- before there is any macroscopic 

localization.  Further note that the strain is not perfectly uniform but suffers from small 

fluctuations.  Once localization begins, the value of the strain inside the band does not jump 

directly to the maximum (saturation) level. Instead, it gradually increases even as the bands 

grow.  Finally, once the bands coalesce at the end of localization, the strain is almost, but not 

perfectly, uniform throughout the specimen. 

 

Figure 2.10: Strain down the centerline of a dog-bone specimen cut parallel 
to the RD during various localization stages 
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2.3.2 Uniaxial Tension in Various Orientations 

 Figures 2.11 and 2.12 detail the macroscopic stress-strain behavior under uniaxial tension 

of dog-bone specimens cut out of the same sheet, but at various orientations relative to the 

rolling direction.  As before, a photograph of the specimen is taken after each displacement 

increment, and this image is used to calculate the strain field.  The macroscopic strain is 

obtained by averaging.  

 

 

Figure 2.11: The uniaxial stress-strain response of various specimens with 
different orientations to the rolling direction 
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The qualitative behavior is very similar to that described above.  It begins linearly, with a 

deviation and associated small oscillations in strain from linearity at 1% strain; the 

appearance of localized bands of strain at approximately 1.5% strain, accompanied by a 

plateau in the stress-strain curve; growth of the bands and growth of the strain in the bands 

until coalescence, followed by a rising stress-strain curve; and a similar pattern on unloading.  

However, the transformation onset stress and transformation strain depend on orientation.  

The transformation strain decreases as we move away from the rolling direction, reaching a 

minimum at 67.5 degrees and then recovering a little.  The transformation onset stress is 

approximately the same for all orientations, except for specimens cut at 90 degrees from the 

rolling direction.  The observed localization patterns and the evolution of strain are similar. 

 

 

Figure 2.12: The variation of transformation initiation stress and 
transformation strain with orientation 
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2.3.3. Repeatability 

The same test was repeated in the same specimen multiple times, including taking the 

specimen off of the loading frame and then remounting.  The results, specifically the stress-

strain curve and localization patterns, were repeatable, except for the small residual strain in 

the first few cycles.  

The same test was repeated in specimens cut from various sheets obtained from the 

same manufacturer. The characteristics of the macroscopic stress strain curves were very 

similar, with a variation in transformation onset stress and transformation strains less than 

25% from sheet to sheet.  However, the localization in some specimens showed a crossing 

pattern as shown in Figure 2.13, with both sets of bands oriented at approximately 55 

degrees to the loading axis. This phenomenon was also reported in work by Shaw and 

Kyriakides [21]. 

 

 

Figure 2.13:  An example of the crossing bands found in some specimens 
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2.3.4 Strain Fields Around Surface Features 

To understand the origin of the strain localization and the sensitivity to defects, the 

tests above were also repeated in specimens with holes and side notches. 

 

2.3.4.1 Surface Feature: Hole 

 Dogbone specimens oriented along the rolling axis were prepared with a 1 mm hole 

centered bi-axially in the gage region.  Observations of strain were at low magnification with 

the entire specimen in the field of view, and repeated at high magnification close to the hole.  

Figure 2.14 shows the results of these tests in separate specimens for the low and high 

magnification so that both sets show the results for a virgin specimen.  The macroscopic 

stress-strain behavior is the similar to that observed earlier.  As expected, we see larger 

strains in the immediate vicinity of the hole, and two bands of localized strain in a crossing 

pattern nucleate from there.  Once again, the strains in these bands are less than the fully 

saturated values when these bands first form, and gradually increase with increasing loading.  

The bands also increase in size.  As the loading continues to increase, other bands oriented 

approximately 55 degrees to the loading axis form in the regular portions of the gage section. 

The high-resolution images provide further insight into the development of the 

strains. It is important, however, to note that DIC is unable to resolve the strains in a small 

annulus around the hole.  So it is possible and likely that there is increased strain at some 

points in this annulus.   Two small regions of increased strain adjacent to the hole become 

visible and develop into kidney-shaped lobes in Figure 2.14-a.  These lobes are reminiscent 

of plastic zones in an elastic-plastic body. As the loading is further increased, the lobes close 

to the hole grow and develop into crossing bands (Figure 2.14-b). Finally, we did not 

observe any significant residual stress in the vicinity of the hole on unloading. 
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Figure 2.14:  Strain localization in a non-homogenous stress field: Hole. 
Panels (a) and (b) show the development of kidney-shape lobes, which 
grow and develop into crossing bands as strain continues to increase. The 
pictures are shown at different resolutions in order to capture the 
development of the strain. The top picture shows a snapshot full-field 
progression of band localization.   

 

 



 31

 

 

 

 

 

Figure 2.15:  Strain localization in a non-homogenous stress field: Notch. 
Panels (a)-(b) show the development of lobes around the notch, which 
grow and develop into two symmetrically oriented bands as the strain 
increases. The pictures are shown at different resolutions in order to 
capture the development of the strain. The top picture shows a snapshot 
full-field progression of band localization.   
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2.3.4.2 Surface Feature: Notch 

Dogbone specimens oriented along the rolling axis were prepared with an elliptical 

notch along one edge but centered along the gage length.  The notch is 3 mm high and 

1 mm wide.  Low and high magnification observations were made as before, and the results 

are reported on two specimens so that both low and high resolution observations in Figure 

2.15 correspond to virgin specimens.  The macroscopic stress-strain behavior is the similar 

to those observed earlier.  As expected, we see larger strains in the immediate vicinity of the 

notch, and two symmetrically oriented bands of localized strain nucleate from there.  Once 

again, the strains in these bands are less than the fully saturated values when these bands first 

form, and they gradually increase with increasing loading.  The bands also increase in size.  

As the loading continues to increase, other bands oriented approximately 55 degrees to the 

loading axis form in the regular portions of the gage section. The high resolution images 

show a kidney-shaped region of increased strain develops and begins to grow (Figure 

2.15- a, b) eventually developing into the macroscopic bands. Finally, we did not observe any 

significant residual stress in the vicinity of the notch on unloading. 

 

2.4 Discussion 

The experimental observations presented in the previous section provide various 

insights into the mechanism of deformation and stress-induced transformation in rolled 

sheets of Nickel-Titanium (Nitinol).  

The specimens tested were in the austenite state at room temperature, and initially 

responded linearly on loading.  The departure from linearity began around 1% macroscopic 

strain, as shown in Figures 2.6 and 2.11. We interpret this as the beginning of the phase 
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transformation in the specimen from the austenitic to the martensitic state.  However, this 

departure from linearity was not accompanied by the formation of any localized band of 

deformation, but displayed almost uniform strain (Figure 2.6).  This leads us to conclude that 

the transformation begins homogeneously on a macroscopic scale throughout the specimen 

without any localization.  Niemczura and Ravi-Chandar [23] have reached the same 

conclusion based on dynamic loading of shape-memory strips. 

At the same time, Figure 2.6 clearly shows that the strain is not perfectly uniform 

throughout the specimen but shows some spatial variation.  This leads us to conclude that 

the transformation is microscopically heterogeneous.  These conclusions are also supported 

by the recent experimental observations of Brinson et al. [10].  They performed tensile tests 

of small specimens extracted from sheets while observing the specimen in-situ with an optical 

microscope.  They observed that the transformation initiates in small regions inside isolated 

grains.  They are also supported by the observations of Barney et al. [24] who examined a 

tensile specimen extracted from a flattened tube using micro-diffraction through 

synchrotron radiation.  Their technique allows a grain by grain map of the strain, and the 

results show that the transformation begins in isolated grains. 

The small oscillations in the strain field eventually lead to the formation of localized 

bands of large strain. These bands are oriented approximately 55 degrees to the loading axis. 

Note that the austenite to martensite transformation is effectively volume-preserving, and 

can be considered close to isotopic, i.e. it is bounded anisotropic. In comparison to the 

observed band orientation of 55 degrees, the classical Hill calculation gives 54.7 degrees. 

Importantly, the strain in the bands is not equal to the saturation value of the transformation 

strain and we conclude that the transformation does not proceed to saturation inside the 

bands.  Instead the transformation is only partially complete when the bands form and 
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continues with further loading.   These observations are consistent with those of Schmahl et 

al. [14] who also studied rolled sheets using synchrotron radiation.  They found that regions 

inside the deformation band contained significant portions of strained austenite. 

Furthermore, reorientation of the martensitic variants can also contribute to increasing 

strain.  

As the bands coalesce and the stress begins to rise following the plateau, the 

transformation begins to saturate.  However, we notice that the martensitic modulus on 

loading is noticeably smaller than the martensitic modulus on unloading in this region.  This 

suggests that the transformation is not complete in this apparently saturated region and one 

still has residual pockets of austenite which continue to transform with increasing loading.  

The small modulus on loading is a reflection of this. This is consistent with the microscopic 

observations of Brinson et al. [10] and Schmahl et al. [14]. 

Our results also show that geometric defects like grips, notches and holes that cause 

stress enhancement promote localization.  However, localization can also occur in uniform 

regions of the gage section.  This leads us to conclude that localization in shape-memory 

alloys is not a purely geometric instability, but a competition between material and geometric 

instabilities. 

Putting all of these together leads to the following scenario:  As we begin to load the 

austenite, the transformation begins inside isolated grains that are oriented preferentially with 

respect to the applied stress.  These grains are distributed homogeneously on a larger scale, 

and therefore the transformation initiates homogeneously on the macroscopic scale (much 

larger than grain size) but heterogeneously on the microscopic scale (comparable to the grain 

size).  This gives rise to an inhomogeneous stress state on the microscopic scale.  A 

combination of these and geometric stress raisers initiate localization.  This is resisted by two 
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factors.  The first is intergranular constraint.  The second is the latent heat that is released, 

which raises the temperature and the stress required for further transformation and impedes 

progress of the transformation.  Thus, the transformation is not complete even in the bands 

but requires increasing stress to sustain.  Further, the heating can arrest the development of 

the bands [7, 20], which provides opportunity for other bands to nucleate and grow.  Finally, 

as the bands coalesce, the transformation is arrested by intergranular constraints and can 

only proceed by increasing the applied load. 

In short, the transformation initiates in well-oriented grains and is saturated by the 

constraints imposed by the poorly oriented grains.  The former is consistent with the 

observation that the Sachs model, which assumes that each grain deforms independently in 

response to the uniform applied stress with no regard to the constraint imposed by its 

neighbors, is a good predictor of the stress at initiation [28].  The latter is consistent with the 

observation that the Taylor model, which assumes that intergranular constraints are so 

strong that the mesoscale deformation is uniform, is a good predictor of the transformation 

strain [29, 30].  A synthesis of these two ideas is inherent in the heuristic network model of 

Novak and Sittner [27] and the mathematical analysis of Schlömerkemper and Bhattacharya 

[32]. 

The fact that the initiation and saturation are controlled by two different aspects has 

important consequences.  Schlömerkemper [31] has pointed out that the Sachs and Taylor 

models give rise to transformation surfaces that differ dramatically in their eccentricity.  This 

means that the transformation can initiate in one strain direction but saturate in another.  

This change of strain direction with increasing stress may provide a material mechanism for 

localization.  This implies that texture and crystallography are important factors in 
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determining the propensity of a material to localize.  A similar point has been argued by 

Sittner et al. [22]. 

Further, this means that one can not use the resolved stress criterion or Clausius-

Clapeyron relation to predict the onset of transformation.  Such a criterion is widely used to 

predict the onset of various deformation modes, and has been shown to be reasonably 

accurate for stress-induced transformation of single crystals by Miyazaki [5], Shield [6], and 

others.  In this criterion, it is assumed that the transformation begins when the component 

of applied stress in the direction of transformation strain reaches a critical value that depends 

on temperature and latent heat: 

)( CT TTL −=⋅εσ        (2.1) 

 

where σ is the macroscopic initiation stress, εT is the transformation strain, L is the latent 

heat, T the temperature, and TC the transformation temperature.   

In our case of uniaxial tension and constant temperature, Equation 2.1 becomes 

simply, 

CTT =εσ          (2.2) 

 

where σT  is the uniaxial transformation initiation stress, εT is the uniaxial transformation 

strain, and C is a constant independent of the orientation. We can easily verify from the data 

presented in Figure 2.12 that this equation does not hold.  To elaborate, it follows from 

Equation 2.2 that 
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The experimental data in Figure 2.11 and 2.12, however, shows that  
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in contradiction of the resolved stress criterion or Clausius-Clapeyron relation. 

We finally comment on the finger-shaped localization observed at low values of 

applied macroscopic strain in the notched specimen.  Since the notch is cut asymmetrically, 

the gage section in the vicinity of the notch is subjected to bending deformation.  In other 

words, the side with the notch has higher compliance and elongates more than the side 

without the notch.  Thus the extensional strain has to decrease as one passes from the side 

with the notch to the other, and the material accomplishes this using the strain fingers.  In 

this regard, these are the polycrystalline analogs of the tapered twins that have been observed 

in single crystals subjected to bending [32].  Further, they also show the propensity of the 

material to have localized deformation at this mesoscale. 
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3. An Experimental Investigation of Crack Initiation in Thin 
Sheets of Nitinol 
 

3.1 Introduction 

 Almost immediately following its development, there was significant research on the 

fatigue behavior of Nitinol, stemming mainly from its suitability for medical applications (for 

examples see [2, 33 - 38]. Interest in improving the design and performance of medical stents 

for implantation in the human body motivates many of these studies, for example the 

experiments of McKelvey and Ritchie [33, 34] on fatigue-crack propagation in Nitinol. They 

found that in general, “fatigue-crack growth resistance … increase[d] with decreasing 

temperature, such that fatigue thresholds were higher and crack-growth rates slower in 

martensite compared to stable austenite and superelastic austenite” [33]. They also found 

that stress-induced transformation of the superelastic austenite could be suppressed in plane 

strain conditions, but that this effect was not seen in thinner specimens.  Robertson and 

Ritchie [37] recently conducted an experiment to investigate fatigue-crack growth and 

fracture toughness behavior of a thin-walled (≈ 400 μm thick) superelastic Nitinol tube. 

Their tests found significantly a higher fatigue threshold and a lower measured toughness 

than previously reported values for bulk Nitinol material.  

Although the fatigue behavior of Nitinol has been a topic of strong interest, fracture, 

an equally important issue, has received scant attention. There have been recent 

developments in the modeling of fracture in shape memory alloys, but there has been little 

experimental work. Ni-Mn-Ga, a ferromagnetic shape memory alloy which is prone to 

fracture under thermal cycling, contrary to most SMAs, is one exception. Xiong et al. [16] 

studied the thermally induced fracture of single crystal Ni-Mn-Ga using in-situ optical 
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microscopy coupled with Scanning Electron Microscope (SEM) observation. They found 

that the coexistence of several martensitic variants lead to the formation of a crack network 

in the Ni-Mn-Ga crystal, and ultimately to fracture. They also found that the fracture surface 

related to a specific plane in the martensite, in this case the {1 1 2} twin planes. Shen et al. 

[39] used a different experimental approach, studying cracking in a Ni2-Mn-Ga alloy using 

differential interference contrast microscopy. They found that martensite formed first during 

loading, with the appearance of a plastic zone upon increasing the applied stress. However, 

these experiments were largely qualitative and performed on Ni-Mn-Ga alloys.  

Experimental studies have also been performed on the shape memory alloy CuAlNi. 

Loughran et al. [17] conducted an experimental investigation into the fracture of single 

crystals of the shape memory alloy CuAlNi using a high resolution CCD camera attached to 

a metallurgical microscope to optically observe fracture behavior. These experiments show 

that details of crack growth in single crystals depend strongly on both the type of 

microstructure that forms and how this microstructure interacts with the growing crack. 

Specifically, the observed fracture behavior was strongly dependent on the structural phase 

transformation the material undergoes. However, as Loughran et al. note, these experiments 

were designed to give unconstrained microstructures. In the case of polycrystalline shape 

memory alloys, which are much more commonly used, intergranular constraints will be 

present. There is a strong need to study the effect of these constraints on the process of 

fracture.  

 In addition to the studies of Loughran et al., there have been other studies on the 

fracture behavior of CuAlNi shape memory alloys. Vasko et al. [18] looked at the formation 

of martensite near the crack tip in single crystal CuAlNi loaded in tension. The 

experimentally observed martensitic microstructures near the crack tip were compared with 
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predictions from the combined stress field and Crystallographic Theory of Martensite 

(CTM). It was found that this method could accurately predict the orientation, number, and 

order of the austenite-martensite interfaces that initially form near a crack. Shek et al. [19] 

experimentally determined the fracture toughness of CuAlNi single crystals, and found that 

the parent phase has a higher value of fracture toughness than the martensite phase due to 

stress-induced transformation. Lu et al. [40] studied the CuAlNi alloy by using in-situ 

microscopy to investigate the mechanism of microcrack initiation. They found that various 

martensite phases appeared around the notch tip on loading, followed by microcracks that 

initiated along the martensite/parents interface.  Recent work by Crone et al. [41] discusses a 

combination of indentation techniques and crystallographic information obtained by 

Electron Backscatter Diffraction (EBSD) in order to compare observed surface features to 

predicted austenite-martensite interfaces, slip planes, and possible fracture planes of CuAlNi.  

There have been an increasing number of experimental studies utilizing indentation 

techniques, particularly on thin films on Nitinol (see, for example, [41] and the references 

therein).  

Although there have been a number of experimental investigations into the fracture 

properties of shape memory alloys, many of them concentrate on single crystals, and few of 

them concern the fracture properties of Nitinol.  Though some measurements can be found 

in a study of the effect of hydride and hydrogen-induced martensite on the fracture 

toughness of Nickel-Titanium [42, 43], no clear value has been established to date. The usual 

setups for fracture toughness measurements have generally included bulk material (thickness 

> 1 mm) with compact tension specimens or thin sheets (thickness < 10 microns) using 

indentation methods. Very few researchers have investigated the intermediate thickness 
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range of 100 microns, which is of practical importance in biomedical applications such as 

stents. 

In this chapter, full-field measurements of the strain during stress-induced 

martensitic phase transformations near the crack tip of an edge-cracked specimen of a 

nominally 150 micron polycrystalline Nitinol sheet under uniaxial tension are presented for 

the first time.  These measurements are obtained using Digital Image Correlation (DIC), an 

in-situ optical method that measures displacement on the surface of an object by tracking and 

correlating a random pattern on the sample surface [25].  The observations show the shape 

of the martensite and transformation regions as well as strain distribution inside those 

regions. The value of the fracture toughness KC for thin sheets is also determined for the 

first time. These measurements are the first full-field strain measurements detailing 

localization in Nitinol during fracture. Combined with the relatively high fracture toughness, 

they indicate a complex mechanism where phase transformation contributes to toughening 

around the crack tip. The results presented here, including the full-field evolution of strain 

fields, could provide important insights for developing appropriate fracture criteria as well as 

for phase transformation under multi-axial loading conditions. 

 

3.2 Material and Experimental Details 

Samples were cut from rolled sheets with a nominal thickness of 160 μm and 

composition of 52 wt.% Nickel and 48 wt.% Titanium. The sheets were flat annealed with 

an Af temperature of 11.3 degrees Celsius. The low Af  ensured that the specimens were fully 

austenitic when unloaded and that the stress-induced martensite occurred upon loading at 

room temperature. The nominal (engineering) stress-strain curve at room temperature for 

the Nitinol material deformed at 10-3 s-1 in uniaxial tension under investigation is shown in 
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Figure 3.1. This stress-strain curve was obtained with the techniques described in Chapter 2.  

The superelastic plateau stress is around 500 MPa. The strains at the onset (austenite to 

martensite) and completion (fully martensite) are approximately 0.015 and 0.05, respectively. 

  

 

Figure 3.1: Nominal (engineering) stress-strain curve for Nitinol deformed 
in uniaxial tension at room temperature under a strain rate of 10-3 s-1 

 

Rectangular samples of 13 mm x 30 mm with a nominally 6 mm long sharp edge 

crack were cut parallel to the rolling direction of the sheet. The specimen geometry of the 

edge cracked panel and the idealized conception of various regions undergoing phase 

transformation for Nitinol are shown in Figure 3.2. In Figure 3.2, x1-x2 are the cracktip 

coordinates and a and w are the crack length and width of the specimen, respectively. 
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Figure 3.2: Edge-cracked specimen geometry showing the coordinate 
system and dimensions. An idealized conception of various phase 
transforming zones near the cracktip is illustrated (1 - Martensite, 2 - Phase 
Transforming Zone, 3 - Austenite). This figure is not to scale. The actual 
transformation regions are much more closely confined to the crack tip. 

 

The edge cracked specimens were tested in uniaxial tension at room temperature 

under displacement control using a computer-controlled servo-hydraulic machine (MTS 

model #358.10). Knurled grips were used to minimize slippage and were carefully aligned to 

minimize out-of-plane loading and displacement. Grip slippage was also minimized by 

attaching emery paper to the grip sections of the sample in order to maximize friction in the 

connection between the grips and the sample. Specimens were tested with a fixed bottom 

grip and moving upper grip, both of which were supported by pivots to minimize bending 

and shear in the specimens. The specimens were deformed at a nominal strain rate of 10-3 s-1.  

This is somewhat higher than the 10-4 s-1 recommended by various researchers for isothermal 

tests, but was found to be adequate for our thin sheets and enabled the variety of 

observations that were recorded. 
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Strain in the specimen was measured using the optical technique of Digital Image 

Correlation (DIC). Details of this technique and a discussion of possible sources of error can 

be found in Section 2.2.  

 

3.3 Results and Discussion 

The main goals of this work were to apply DIC to study the fracture of pseudoelastic 

shape memory alloys, provide high quality quantitative visualization of the cracktip fields 

during phase transformation at the cracktip for the first time, and to determine the value of 

the fracture toughness KC for thin sheets of Nitinol. 

 

3.3.1 Stress Intensity Factor and Fracture Toughness 

The mode-I stress intensity factor for an edge-cracked panel under uniaxial tension 

is,  

effI afK πσ=          (3.1) 

where f is a dimensionless parameter or function dependent on specimen and crack 

geometry, σ is the global applied stress, and aeff  is the effective crack length.  Since the phase 

transformation zone is small and confined to the region close to the crack tip, we will 

approximate aeff=a. The function f for an edge crack in an infinite length sheet with 6.0≤
w
a  

[44] is, 
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where w is the width of the sample, which is 13 mm. Sharp edge cracks were cut into the 

sample before each test and the length, a was measured prior to testing. The applied stress σ 

was calculated by dividing the measured load by the cross-sectional area of the specimen. 

Several tests with different a/w ratios were performed until failure. The maximum 

load was recorded and was used to compute the fracture toughness using Equation 3.1. The 

corresponding values for the fracture toughness KC are shown in Figure 3.3. The results are 

independent of the ratio a/w, which is as expected. The average value of 4.51=cK  

MPa m  and the standard KC deviation is 3.6 MPa m . 

The relatively high value of the fracture toughness in this case is attributed to the 

effect of phase transformation on crack tip shielding. This is supported by a small-scale 

transformation (SST) analysis of a crack in Nitinol under plane stress conditions, details of 

which are found in Chapter 4. Studies on the fatigue-crack propagation behavior of Nitinol 

conducted by McKelvey and Ritchie [33] also conclude that stress-induced martensitic phase 

transformation occurs in the vicinity of the crack tip for very thin superelastic austenite 

samples. However, in plane strain samples, McKelvey and Ritchie found that superelastic 

phase transformation ahead of the crack tip is suppressed, leading to a low fatigue threshold 

and high crack-growth rate in Nitinol compared to other biomedical metallic alloys. The 

difference in fatigue and crack growth behavior observed in samples in plane stress versus 

plane strain is a topic necessitating further study, especially when considering the numerous 

biomedical applications of Nitinol devices with widely varying dimensions and states of 

stress. 
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Figure 3.3: Fracture toughness (KC) values obtained for thin (≈ 150 μm 
thickness) sheet of Nitinol at room temperature, using an edge cracked 
specimen, for various values of (a/w) 

 

3.3.2 Fracture Surface 

Edge-cracked fracture samples with varying orientation with respect to the rolling 

direction (RD) were extracted from the same sheet and subjected to a quasi-static uniaxial 

tension test until failure. SEM images of the resulting fracture surfaces are shown in Fig. 3.4 

for three specimens, oriented along the RD, 45 degrees to the RD, and perpendicular to RD, 

respectively.  

 

Figure 3.4: Scanning electron micrographs of fracture surfaces in the 
vicinity of the crack tip for a crack oriented (a) along the rolling direction 
(RD), (b) 45 degrees from the RD, and (c) perpendicular to the RD 
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The fracture surfaces observed using scanning electron microscopy (SEM) are 

consistent with previous experimental observations made in Chapter 2, where uniaxial tensile 

specimens aligned along the RD accommodated a significantly higher transformation strain 

than other textures. In Figure 3.4, all images show the void growth and coalescence 

characteristic of ductile fracture. However, the void growth in the fracture surface of the 

specimen with the crack oriented along the RD shows a reduced symmetry, indicating a 

higher amount of shear at failure which may be due to the elongated austenite grains in the 

RD. The micromechanics of fracture and its dependence on texture need further 

investigation. 

 

3.3.3 Strain Fields 

Two aspects of the strain field in the vicinity of the cracktip will be highlighted in the 

following section: the elastic field outside the phase transformation zone, and the field close 

to the crack tip where phase transformation (from austenite to martensite) and saturation 

(martensite) occurs. The strain field, ε22, is the strain along the direction normal to the crack 

tip. The samples used were edge-cracked specimens with nominally a/w = 0.48 and a 

nominal thickness of 150 μm, where a and w are the length of the crack and width of the 

specimen respectively. The strain fields around the cracktip are characterized using the DIC 

technique described in Section 3.2.3. 

 

3.3.3.1 Elastic field 

First, the elastic field far from the crack tip is considered. Figures 3.5a - c present a 

detailed progression of the fracture behavior for the edge-cracked specimen subjected to 
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uniaxial tension under displacement control for applied KI = 25, 33, and 44 MPa m , 

respectively. Snap-shots of the specimen were taken after each displacement increment, and 

the strain distributions (ε22) were computed using DIC. The field of view of each image is 

600 x 500 pixels (9 x 7.5 mm).  

In Figure 3.5a, the strain field shows two inclined lobes, pointing in a direction of 

approximately 60 degrees from the x1 axis (crack line). The area of phase transformation and 

saturation near the crack tip is visible as a small lobe extending parallel to the crack tip. 

Phase transformation will be discussed in greater detail with higher resolution in the next 

section, but one should be aware that it is still present and visible at this scale.  In Figures 

3.5b and 3.5c, the two elastic lobes grow significantly but maintain the same shape and 

orientation as the load increases. 

Figure 3.6 shows strain as a function of distance from the cracktip for various levels 

of the stress intensity factor. Far from the crack tip, the strain is relatively constant. As one 

approaches about 1.5 mm from the crack tip, one begins to see the 
r

1  dependence 

predicted by linear elastic fracture mechanics, until approximately 3.01 ≤x  mm, where 

phase transformation begins. The actual value of strain when phase transformation and 

saturation begin is of course dependent on KI. This dependency is discussed in the following 

section. 
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Figure 3.5: Full field normal (ε22) strain fields obtained using DIC in the 
vicinity of the crack tip for various values of applied KI (in MPa m ), (a) 
25, (b) 33, and (c) 44. The field of view is 9 mm (width) by 7 mm (height). 
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Figure 3.6: Normal (ε22) strain distribution along a line ahead of the cracktip 
at various values of applied KI shown in the legend. 

 

3.3.3.2 Phase Transformation Field 

Figures 3.7a - d present a detailed progression of the phase transformation in the edge-

cracked specimen subjected to uniaxial tension under displacement control, but at higher 

resolution than in Figures 3.5a - c shown in the study of the much larger elastic field. Here 

the strain fields are shown in a 110 x 150 pixel (1.6 x 2.2 mm) field of view centered on the 

cracktip, which allows us to investigate the area of high stress and phase transformation 

immediately around the crack tip. Snap-shots of the specimen were taken at this higher 

magnification after each displacement increment, and the strain distributions were computed 

using DIC. 
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Figures 3.7a - d show the crack tip strain field for applied KI = 28, 38, 47, and 51 

MPa m , respectively. Assuming that the phase transformation from austenite to martensite 

occurs for strains approximately between 1.5% and 4.5% from the stress-strain curve shown 

in Figure 3.1, it is straightforward to visually track the transformation zones. Following this 

convention for transformation strain and looking along the line θ=0 and ≥1x 0 in 

Figure 3.7a, there is saturation from the crack tip at 1x =85 pixels until 1x =105 pixels, when 

we are sufficiently far enough away from the crack tip for the strain to decrease to 4.5%. The 

spatial resolution of the measurements is 67 pixels per mm. Thus, the size of the saturation 

zone is 0.3 mm. From 1x =105 pixels, the phase transition zone extends to the right until the 

strain decreases to 1.5% at 1x =120 pixels, which corresponds to an additional distance of 

0.2 mm past the saturation zone along the line ahead of the crack tip. The material is 

untransformed austenite for distance, r >0.5 mm. At this applied level of loading KI, the 

shape of the transformation zone can be viewed as a lobe that is an extension of the 

previously existing crack. 

As we increase KI to 38 MPa m  in Figure 3.7b, the shape of the transformation zone 

grows longer. It still grows primarily in the 1x  direction, although there is a hint of the 

formation of lobes at 60 degrees to the 1x  axis. Following the same methodology as for 

KI=28 MPa m , here the saturation zone (ε22>4.5%) extends to 1x =0.37 mm ( 1x =110 

pixels) and the transformation zone extends an additional 0.23 mm past the saturation zone 

along the line ahead of the crack tip. The material is untransformed austenite at 1x >0.60 

mm.   

As KI continues to increase in Figures 3.7c - d, the transformation zone extending 

horizontally ahead of the cracktip continues to slowly increase in length. In addition, there is 
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now the formation of two distinct lobes pointing 60 degrees from the 1x  axis at the end of 

the horizontal transformation zone. Figure 3.7c, for KI=47 MPa m , shows the two lobes 

emanating from the end of this high-strain region that extends parallel to the crack. In Figure 

3.7d, for KI=51 MPa m , it is observed that both the region parallel to the crack and the 

two lobes continue to grow. 

The variation of the strain field ahead of the crack tip along the 1x  axis is shown on 

Figure 3.8. In comparison to Figure 3.6, which details the nominally elastic region defined by 

]5,0[∈r mm and ]05.0,0[22 ∈ε  mm, Figure 3.8 details the phase transformation region 

defined by  ]1,0[∈r  mm and ]4.0,0[22 ∈ε  mm. Note that the curves in Figure 3.8 have 

been smoothed in the post-processing algorithm, due to the large strains and small region 

under investigation. The nature of the strain field in the vicinity of the crack tip can be 

characterized as follows: 

 

 For  1x  > 0.5 mm, the region is elastic and the strain field can be adequately 

described by 
r

1 . 

 The phase transformation region is approximately 0.2< 1x <0.5 mm. The variation of 

the strain in this region is approximately linear. 

 

 The strain versus distance curve changes its curvature and becomes convex for the 

0.2 mm closest to the crack tip. This change in curvature and convexity could be 

evidence of the elastic behavior of the martensite in the fully transformed region 

near the crack tip. 
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Figure 3.7: Full field normal (ε22) strain fields obtained using DIC in the 
close vicinity of the crack tip for various values of applied KI (in 
MPa m ), (a) 28, (b) 38, (c) 47, and (d) 51. The field of view is 2 mm 
(width) by 1.6 mm (height). The field of view is a zoom of the region near 
the crack tip visualized in Figure 3.5. 
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Figure 3.8: Normal (ε22) strain distribution as a function of distance along a 
line ahead of the crack tip at various levels of KI shown in the legend. 

 

The radius of the phase transforming (A → M) zone, rTRA, and of the saturation zone 

(M), rSAT, are plotted as functions of loading parameter 2
0

2

2πσ
IK

 in Figure 3.9. The loading 

parameter KI is in units of MPa m , and σ0, the stress at which transformation begins, is 

taken to be 500 MPa. The zone sizes in meters are defined as the intersection of constant 

strain contours corresponding to 1.5% (A → M) and 4.5% (M) with the line ahead of the 

crack tip. The zone sizes increase linearly with the chosen loading parameter, which is 

consistent with the results of the small scale transformation (SST) analysis detailed in 

Chapter 4. However, note that there is a slight change in the slope of the radius of 
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transformation from 0.238 between KI =(28, 38) MPa m  to 0.160 between KI =(47, 51) 

MPa m . This is attributed to the formation of lobes at KI =47 MPa m , as seen in Figure 

3.7c. Since the radius of the transformation zone is taken to be the intersection of the 4.5% 

constant strain contour with the line ahead of the crack tip, this measurement only takes into 

account the main lobe extending parallel to the crack tip, not the new lobes angled to the 

crack tip. When the new lobes appear, there is a perceived decrease in the rate of expansion 

of the phase transformation zone extending directly parallel to the crack tip.  

 

 

Figure 3.9: Radius of the saturation zone (rSAT) and phase transformation zone (rTRA) as a 

function of 2
0

2

2πσ
IK

. KI is in MPa m , σ0 denotes the stress at which phase transformation 

begins, and is taken to be 500 MPa (see Figure 3.1). The radii of the saturation and 
transformation zones are in meters. 
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Using this convention, the saturation and phase transforming zone sizes can be 

expressed as a function of the loading parameter, 

 

2
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2

2
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It is noted that 
CTRAr at crack initiation (KI=KC) is ≈ 0.7 mm, which is much smaller than the 

crack length (
CTRAr

a ≈ 9) and the specimen width (
CTRAr

w ≈ 20). This validates the specimen 

design as well as the measured value of KC under small-scale transformation conditions. 

 

3.4 Summary 

This chapter details the experimental investigation of martensitic transformation around 

the crack tip in thin sheets of Nitinol. Many applications of Nitinol require its use in the 

form of thin sheets. One of the important failure criterions for the analysis and design of 

such devices is the fracture toughness, of which there are currently no recorded values for 

thin sheets on the order of 100 microns thickness. Using edge-cracked specimens, an average 

fracture toughness (KC) value of 51.4 ± 3.6 MPa m  for fine-grained polycrystalline Nitinol 

sheets (Af = 11.4 ˚C) at room temperature was measured. 

The use of DIC in these fracture experiments enabled a non-contact optical method of 

obtaining information about the crack tip fields in these thin sheets under displacement-
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controlled uniaxial tension. The shape of the transformation zone can be described in the 

form of three lobes, one along the 1x  axis that grows larger with the load, and two lobes 

pointing at 60 degrees from the 1x  axis that appear at larger values of KI. Using the strain 

fields obtained from DIC, and assuming that phase transformation occurs from 1.5% to 

4.5% strain, the approximate lengths of the saturation and transformation zones for various 

values of KI were determined. The use of DIC enabled the first full-field quantitative 

mapping of the strain fields in the vicinity of the crack tip of edge-cracked specimens of 

Nitinol. The images, combined with the relatively high value of fracture toughness for thin 

sheets of Nitinol, indicate a complex mechanism where phase transformation contributes to 

toughening around the crack tip. The criteria for phase transformation and saturation near 

the crack tip need further investigation. The results presented here, including the full-field 

evolution of strain fields, could provide important insights for developing appropriate 

fracture criteria as well as for phase transformation under multi-axial loading conditions. 
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4 Small-Scale Transformation Analysis of Nitinol Near a Crack 
Tip Under Plane Stress Conditions 
 
 
4.1 Introduction 

The fracture properties of shape memory alloys are relatively poorly understood both 

from an analytical and an experimental point of view.  This is due to the lack of constitutive 

models for this class of materials that are amenable to computational implementation, as well 

as the limited availability of these materials in bulk form for laboratory measurements.   

Recent numerical studies on shape memory alloys have been performed by Yi and Gao [45, 

46]. In 2000, they investigated the fracture toughening mechanism of shape memory alloys 

due to martensitic transformation in plane strain under mode I loading [45]. The analytic 

results show that martensitic transformation reduces the crack tip stress intensity factor and 

increases fracture toughness.  By performing a fracture toughening analysis of shape memory 

alloys with a macrocrack under mixed mode loading [46], they saw non-symmetric 

transformation boundaries for both static and steadily advancing cracks, and showed that 

under mixed-mode loading the martensitic transformation again reduced crack tip energy 

release rate and increased toughness. Interestingly, in experimental fatigue studies on plane 

strain samples, McKelvey and Ritchie [33, 34] found that superelastic phase transformation 

ahead of the crack tip is suppressed, leading to a low fatigue threshold in Nitinol compared 

to other biomedical metallic alloys. 

Birman [47] conducted an analytical and numerical study on the mode-I isothermal 

fracture of shape-memory alloy plates in plane stress. The study was based on a two-

dimensional version of the Tanaka constitutive model for shape memory alloys [48]. Birman 

found that the effect of phase transformation on the stress-intensity factor is relatively small, 

and suggests that the magnitude of the stress intensity factor can be based on the properties 
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of the austenite. However, he notes that “the principal problem in estimating the anticipated 

failure of a SMA component is related to the evaluation of the fracture toughness. This 

parameter will also be affected by the stress-induced transformation in front of the crack and 

an extensive experimental investigation is needed to generate reliable estimates.”  A 

challenging topic that still needs future investigation numerically and experimentally is how a 

complex texture, like that found in polycrystalline Nitinol, influences the martensitic 

transformation around the crack tip and the fracture toughness of the sample.  

 In another approach towards understanding the effect of martensitic transformation 

on fracture properties, Dang and Grujicic [49] performed molecular dynamics simulations to 

investigate the region surrounding a crack tip in a gamma-TiAl phase impinging at a right 

angle onto the interface between a gamma-TiAl phase and a metastable Ti-15V (at.%) phase. 

The crack tip behavior for this two-phase gamma beta material was compared with the crack 

tip behavior in the corresponding single-phase materials (pure gamma and pure beta 

crystals). It was found that under the same amount of applied stress, the crack tip blunted 

and the crack stopped propagating in the two-phase gamma beta material and the single-

phase beta material. However, in the singe-phase gamma material, the crack extended by 

brittle cleavage. They found that the blunting process that took place in the two-phase 

gamma beta and the single-phase beta material was controlled by the martensitic 

transformation that took place in the beta-phase ahead of the crack tip. These experiments 

are one example showing that the implications of martensitic transformation on the 

toughness of materials are not solely limited to Nitinol.   

More recently, 3-D constitutive models with appropriate computational algorithms 

have been proposed for shape memory alloys, such as the Auricchio-Taylor-Lubliner model 

[50, 51], which has been implemented in the commercial computational finite element 
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software such as the ABAQUS [52].  Wang et al. [53] investigated the formation of 

martensite in front of cracks in superelastic Nitinol using the ABAQUS implementation for 

superelastic Nitinol.  The material parameters required in the model were obtained in this 

case from data from pull-pull tests on pseudoelastic Nitinol wires. They examined the stress-

induced martensitic transformation zone near the crack tip of a compact tension (CT) 

specimen with and without pre-cracks. They found that the size of the martensitic and 

transformation zones increases with crack length, and that cracks propagate into the stress-

induced martensite. Wang et al. also noted the similarities between the formation of stress-

induced martensite in front of a crack tip and the formation of a plastic zone in front of a 

crack tip in a material undergoing plastic deformation. This assertion is supported by the 

experimental investigations detailed in Chapter 3, in which the transformation zones 

obtained through DIC bear noticeable resemblance to the plastic zones that appear in more 

traditional materials during fracture.  

The focus of this chapter is to provide a basic foundation for understanding the 

fracture mechanics of Nitinol under plane stress conditions by modeling the two-

dimensional small-scale transformation behavior. For this purpose, the Auricchio-Taylor-

Lubliner constitutive model [50, 51] implemented in the finite element code ABAQUS [52] 

is used. Realistic material properties of thin sheets of Nitinol are estimated from the 

displacement-controlled uniaxial tension data obtained in Chapter 2. Nomenclature that will 

be used throughout this chapter can be found in Table 4.1.  

This chapter is outlined as follows. The constitutive model used to investigate small-

scale yielding of Nickel-Titanium alloy (Nitinol) is discussed briefly in Section 2. Section 3 is 

devoted to a detailed case study of small-scale transformation with specific material 

parameters. Section 4 then expands upon Section 3 to parametrically study the effect of 
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material parameters on the fracture properties and transformation zones near the crack tip. 

In Section 5, conclusions for the finite element study are presented. 

 

Table 4.1: Chapter 4 Nomenclature 

AE  Young’s modulus (austenite) 

ME  Young’s modulus (martensite) 

IK  Stress intensity factor (applied) 

0T  Reference temperature 

LT
⎟
⎠
⎞

⎜
⎝
⎛
δ
δσ  Rate of stress increase with change in temperature 

during loading 

Lε   Transformation strain  
L

Vε    Volumetric transformation strain 

ptε  Strain at which phase transformation occurs 

satε  Strain at which saturation occurs 
S
Lσ  Stress at the start of transformation during loading 
E
Lσ  Stress at the end of transformation during loading 
S
Uσ  Stress at the start of transformation during unloading
E

Uσ  Stress at the end of transformation during unloading 

Aυ  Poisson’s ratio (austenite) 

Mυ  Poisson’s ratio (martensite) 
α  Pressure sensitivity parameter 

 

 

4.2 Constitutive Model 

The uniaxial stress-strain curve for Nitinol deformed at a temperature well above its 

austenitic finish (Af) temperature is shown schematically in Figure 4.1.  Prior to deformation, 

the material is entirely austenitic (A).  Upon loading, the material behaves in a linearly elastic 

manner, until it reaches the stress at which the material begins to transform to the 
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low-temperature phase, martensite (S). Upon further loading the austenite is further 

transformed to martensite resulting in complete transformation at a stress level, σL
E.  Upon 

further loading, the material once again deforms in a linearly elastic manner, with a moduli 

corresponding to that of the stress-induced martensite.  Upon unloading, the material 

unloads and the reverse transformation from martensite to austenite starts at a stress level, 

σU
S, and reverts to austenite at a stress level, σU

E.  

 

 

Figure 4.1. Schematic of a typical stress-strain curve for Nitinol.  Schematic 
and nomenclature for material properties adapted from ABAQUS [52].  

 

An important consideration when modeling the behavior of Nitinol is its superelastic 

property. The transition between austenite and martensite covers a large amount of strain at 

a nominally constant stress, as seen in Figure 4.1 between points σL
S and σL

E upon loading 

and σU
S and σU

E upon unloading. As seen in Figure 4.1, Nitinol exhibits large hysteretic 

behavior in stress-strain response. In this chapter, the material begins as austenite prior to 

deformation and is stress-induced to transform to martensite at the crack tip under 

displacement control at a constant temperature.  Only displacement-controlled loading is 
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considered and no unloading is allowed in any part of the material domain.  This allows one 

to use the concept of the J-integral [54] in determining the energy release rate by idealizing 

the material to be a nonlinear deformation solid. 

 

4.2.1 Auricchio-Taylor-Lubliner Model 

The time discretized three-dimensional thermomechanical constitutive model 

resulting from Aurrichio-Taylor-Lubliner’s work [50, 51] has been implemented using an 

ABAQUS UMAT [52]. Instead of basing the constitutive model for shape memory alloys on 

the phase-transition micromechanics, they approached modeling from a thermo-mechanical 

continuum viewpoint based on internal-variable formalism. UMATs are subroutines in 

ABAQUS that specify user-defined constitutive models for mechanical behavior of solids.  

First, the material is assumed to be isotropic; therefore, there is no distinction 

between the different single-variant species pertinent to single crystals [55, 56]. There are 

only two phases under consideration, the austenite (A) and the martensite (S). Three phase 

transformations are considered in the model: the conversion of austenite into martensite, the 

conversion of martensite into austenite, and the reorientation of martensite. Assuming small 

deformations, the model is based on an additive strain decomposition, in which the total 

strain is taken as the sum of the elastic strain and the transformation strain. The 

transformation strain is of the order of 6%, but the elastic strain is much smaller and is 

limited to a maximum of 2% [52]. 

The free-energy functional is taken to be quadratic in the elastic strain. Since some 

transformations display tension-compression asymmetry, a Drucker-Prager-type loading 

function is introduced to model this effect in all three transformations. For example, in the 

phase transformation from A→S,  
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TCptTF ASAS −+= ατ 3),(       (4.1) 

where t is the deviatoric part of the stress tensor, p is the pressure, ASC (stress temperature 

coefficient) and α  (pressure sensitivity) are material parameters, and •  indicates the 

Euclidean norm. Conditions for the transition are based on material parameters such as the 

relevant transformation stresses and temperatures (T).  The initial and final transformation 

functions are: 
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In Equations 4.2 and 4.3, AS
sσ , AS

fσ , AS
sT , and AS

fT are material parameters. For the 

conversion from austenite into single variant martensite [50],  

0,0,0 fff
AS

s
AS

f
AS

s FFF
•

        (4.4) 

Backward Euler-integration is used to integrate the time-continuous evolutionary 

equations in order to get the time-discrete evolutionary equations. Strain is the only control 

variable in the time-discrete models, since from the point of view of the integration scheme, 

the time-discrete problem is considered to be strain driven. A return-mapping algorithm is 

used as the integration scheme for the time-discrete model, and a tangent matrix consistent 

with the time-discrete model is calculated. Note that the constitutive model does not include 
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the irreversible energy release associated with transformation. For a more detailed discussion 

of the constitutive model behind the ABAQUS UMAT, refer to [50, 51]. 

 

2.2 Small Scale Transformation (SST) Analysis 

A static, perfectly sharp crack in two-dimensional (2D) space undergoing small-scale 

transformation under symmetric (mode-I) loading under plane stress conditions is 

considered.  For computational efficiency, the finite element model is constructed as a half-

circle with normalized radius, R=1, where it is subjected to displacement boundary 

conditions corresponding to mode-I loading.  The purpose of this analysis is to elucidate the 

mechanics of transformation at a crack tip in Nitinol and to develop scaling laws for the 

transforming region and other relevant features.  The analysis is performed in the same spirit 

as the small scale yielding analyses in elastic-plastic fracture problems. The term small scale 

transformation (SST) is used to denote problems where the transforming and fully 

transformed region near the crack tip are fully engulfed by the elastically deforming region, 

and the asymptotic structure of the solution at the crack tip and the transforming region can 

be studied in terms of the far field elastic loading.  The size of the phase transforming zone 

is very much smaller than the domain of computation. 

Since only mode-I loading (symmetric) is considered, only the upper half of the 

circular domain is discretized using 4 node quadrilateral plane stress elements (CPS4 in 

ABAQUS). The aspect ratio )( 1
1

ii
i rrr −Δ

+
+ θ of each element is held constant throughout 

the mesh.  This design avoids excessive mesh distortion and efficiently clusters the elements 

at the crack tip (Figure 4.2). The radii along the θ = 0 line were determined iteratively, given 

an initial starting radii for the mesh of r1 =1x10-5 and r2 = 1.2x10-5. A typical mesh used in the 
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simulations consists of 1281 nodes and 1216 four node quadrilateral plane stress elements.  

The mesh consisted of 64 and 20 radial and angular sectors, respectively. Due to 

convergence issues caused by quarter-point and/or eight-noded elements near the crack tip, 

all the elements in the domain were 4 node quadrilateral elements. The simulation used large 

displacement theory, and automatic stabilization with a dissipated energy fraction =2.00x10-4.  

Automatic time control was used with a total time period of 1.00, a minimum time 

increment of 1.00x10-5, and a maximum time increment of 1.00. The convergence tolerance 

parameters used in the equilibrium iterations can be found in Table 4.2.   

 

Table 4.2: Convergence tolerance parameters used in equilibrium iterations 

Criterion for residual force for a nonlinear problem 5.000x10-3 
Criterion for displacement correction in a nonlinear problem 1.000x10-2 

Initial value of time average force 1.000x10-2 
Alternate criterion for residual force for a nonlinear problem 2.000x10-2 

Criterion for zero force relative to time average force 1.000x10-5 
Criterion for residual force when there is zero flux 1.000x10-5 

Criterion for displacement correction when there is zero flux 1.000x10-3 
Criterion for residual force for a linear increment 1.000x10-8 

Criterion for zero force relative to time average maximum force 1.000x10-5 
Criterion for zero displacement relative to characteristic length 1.000x10-8 

 

Plane stress K-field displacement [57] was prescribed as a boundary condition at the 

outer boundary, R. Assuming that the crack tip is perfectly sharp and that the crack faces 

remain free of tractions, the asymptotic displacement components for a mode-I crack are, 
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where EA is austenite Young's modulus, KI is the mode-I stress intensity factor, νA is the 

austenite Poisson's ratio, and κ=(3- ν )/(1+ ν) for plane stress.    

Displacements were applied on the boundary according to Equation 4.5 for values of 

KI∈ [0, 0.001]. This ensured that 
S
L

R
rsat

σ
was on the order of 0.01 and the small-scale 

transformation condition was satisfied, where rsat is the radius of the fully transformed zone. 

For all materials considered in this paper, 

 

LT
⎟
⎠
⎞

⎜
⎝
⎛
δ
δσ = 5.71 MPa/K [2] 

νA = νM = 0.33 

EA = 75 GPa 

EM = 28 GPa 

α = 0 

T0 = 22 °C, 

εV
L  = εL 

 

All parameters were normalized with R and EA. The notation convention for 

material parameters that will be used throughout the paper is adopted from ABAQUS [52] 

and is shown in Fig. 4.1.   

 

4.3 Results 

The room temperature uniaxial true-stress true-strain curve of material I is first 

considered, in which the (dimensionalized) material values are εL = 0.04, σL
S = 400 MPa,    
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σL
E = 410 MPa, σU

S = 310 MPa, and σU
E = 300 MPa.  These properties approximately 

correspond to the values for the as received Nitinol alloy with an Af of 11.4 oC investigated 

in Chapter 2.   

 

4.3.1 The Transformation Zone 

In a typical simulation, as KI increases, there is the relatively quick initiation and 

progression of a phase transformation region extending outwards from the crack tip. As one 

continues to increase KI, the phase transformation region at the point of highest stress, near 

the crack tip, becomes fully transformed martensite. An example is shown for a high value 

of KI=0.001 in Figure 4.2.  Taking a snapshot at a high value of KI and moving outwards 

from the crack tip, a saturation region (fully martensite) is seen immediately around the crack 

tip, followed by a transition region (partially transformed), and finally ending up in the 

untransformed (fully austenite) or elastic region. 

 

 

Figure 4.2. Typical shapes of saturation and phase transforming regions 
near the crack tip (KI=0.001)               
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4.3.2 The Stress Field 

Figures 4.3 - 4.5a, b and c display the angular variation of the stress components, σ11, 

σ22, and σ12 as functions of θ for varying KI in (a) the saturation (martensite) region near the 

crack tip, (b) the phase transition region, and (c) the untransformed material far from the 

crack tip (austenite), respectively. Under the multi-dimensional condition, the criterion for 

determining saturation is based on effective stress. All the stress components have been 

normalized by rKI π2  with appropriate KI and r, the radius of the circular arc which lies 

entirely within the corresponding region.  In the austenite region, the computed stresses are 

nearly identical to the theoretical elastic solution for austenite, for all three stress 

components. Note that in the saturated (martensite) region, the extrapolation of the stress 

components at nodes where the gradients are steep causes the σ22 component to overshoot 0 

as θ approaches 180 degrees.  

 

 

Figure 4.3. Angular variation of the normalized stress component σ11 versus 
θ for normalized KI=0.0005, 0.00075, and 0.001 in the (a) saturated 
(martensite), (b) partially transformed (mixed phase), and (c) untransformed 
(austenite) regions. The theoretical (elastic) solution is compared only in the 
austenitic region.  

 

 



 70

 

Figure 4.4. Angular variation of the normalized stress component σ22 versus 
θ for normalized KI=0.0005, 0.00075, and 0.001 in the (a) saturated 
(martensite), (b) partially transformed (mixed phase), and (c) untransformed 
(austenite) regions. The theoretical (elastic) solution is compared only in the 
austenitic region. 

 
 

 

Figure 4.5. Angular variation of the normalized stress component σ12 versus 
θ for normalized KI=0.0005, 0.00075, and 0.001 in the (a) saturated 
(martensite), (b) partially transformed (mixed phase), and (c) untransformed 
(austenite) regions. The theoretical (elastic) solution is compared only in the 
austenitic region. 

 

The finite element elastic solution for σ22(KI,r) along  θ = 0 for Nitinol undergoing 

small scale transformation is shown in Figure 4.6 plotted in the logarithmic scale, with the 

stress normalized with π2/IK . Once again the solution is independent of the applied stress 

intensity factor in the fully transformed martensite near the crack tip and in the 
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untransformed austenite region far from the crack tip.  In Figure 4.6, the slope of σ22(KI,r) as 

r→1 asymptotically converges to a slope of -½, since it is in the elastic regime of the 

untransformed austenite.  The rate of this asymptotic convergence slows as the value of KI is 

increased. As r→0 and one approaches the saturated region near the crack tip, it is expected 

to be in fully transformed martensite for all values of KI. As r→0, σ22(KI,r) plotted as a 

function of r in the logarithmic scale has a slope that is approximately -0.55 for KI = 0.0005, 

-0.66 for KI = 0.00075, and -0.70 for KI = 0.001.  The reasons for the deviation of the crack 

tip singularity from -½ are not entirely clear at present and need further analysis.  

 

 
Figure 4.6. Normalized stress component σ22 for material I as a function of 
distance ahead of the crack tip, along θ=0, for varying levels of normalized 
KI 
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An interesting feature of the solution in Figure 4.6 is the relatively constant value of 

σ22 ahead of the crack tip in the mixed phase region undergoing phase transformation.  The 

normalized stress in this region is clearly dependent on the applied loading in a nonlinear 

manner. Along the line in front of the crack tip (θ = 0), increasing KI decreases the plateau 

value of σ22(KI,r) because the saturation zone and phase transition zone are both increasing in 

size. The expansion of these zones is seen in Figure 4.6, where the plateau value of σ22(KI, r) 

shifts to higher values of r as KI increases. The stress plateau in Figure 4.6 also shifts down as 

KI increases because the stress is being more evenly distributed throughout these larger 

transforming zones. 

The crack opening displacement u2 normalized by KI is plotted in Figure 4.7 as a 

function of distance on a logarithmic scale along the crack face (θ = π) for various values of 

KI. For reference, the elastic solution is plotted as a solid line.  As expected, the numerical 

solution agrees with the elastic solution in the far field (r →  1) austenitic region with the 

slope of ½.  However in the near tip region, the slope is greater than ½, though the behavior 

of the martensite in this region is once again linear.  This result is in agreement with the 

observations regarding the stress component σ22 ahead of the crack tip in the fully 

transformed region (Figure 4.6). 
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Figure 4.7. Normalized crack opening displacement u2 as a function of 
distance on a logarithmic scale along the crack face (θ=π) for various values 
of KI=0.0005, 0.00075, and 0.001 

 

4.3.3 The Size of the Transformation Region 

Figure 4.8 displays the relationship between the radii of the saturation (rsat) and phase 

transforming (rtra) zones measured along θ =0 versus a normalized length scale, 

( )22 )(2 S
LIK σπ , where σL

S is the stress at which the transformation begins. These results can 

be collected into the following scaling laws for the size of the saturation and transformation 

zones with the far field applied KI:  
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Note that these relations may not hold for very small KI when the radii become comparable 

to the numerical discretization. 

These scaling laws apply to the radius of the saturated martensite and phase 

transforming zones in front of the crack tip along θ =0. In reality, both zones have oblong 

shapes. The saturated zone is oriented along the x2 direction while the phase transforming 

zone is oriented along the x1 direction, as seen in Figure 4.2. The orientation of the 

saturation and phase transition zones are important, particularly when viewed in context of 

the effect they have on the fracture toughening and crack tip shielding in Nitinol. Fracture 

toughening of materials occurs with the introduction of energy-absorbing or dissipating 

effects into the medium. By allowing phase transformation and thus dissipating energy at the 

crack tip, the crack tip is shielded.  

 
Figure 4.8. The radii of the saturation and the transition zones ahead of the 

crack tip (θ=0) as a function of normalized length scale ( )( )22 2 S
LIK σπ  
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4.3.4 J-Integral  

The J-integral, developed by Rice [54], is a well-known expression for the 

characterization of the driving force on a crack in a solid. The J-integral for a two-

dimensional crack in the x1-x2 plane with the crack front parallel to the x2 axis is the line 

integral, 

)(
1

2 ds
x
uTdxWJ i

i ∂
∂

−∫=
Γ

       (4.8) 

where W is the strain energy density per unit volume, Γ is the path of the integral which 

encloses or contains the crack tip, and T is the outward traction vector on ds. The J-integral 

is a path-independent line integral in a homogeneous and non-dissipative medium that 

represents the energy release rate per unit virtual crack advance. In the case of a linearly 

elastic solid under plane stress, the J-integral can be directly related to the applied (global) KI  

[53, 55], 

E
KJ I

2
=          (4.9) 

ABAQUS computes the J-integral around the crack tip as a post-processing 

activity, based on domain integrals. The stresses, strains, and internal energies are used in 

the calculation of the J-integral. The constitutive law is not directly considered. For the 

computation of the stresses, strains, and internal energies, there is an evolution of strains 

imposed, and the constitutive law then determines what the stresses are. The material 

routine also returns the elastic strain energy and the inelastic strain energy, the sum of 

which is the internal energy.  
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Figure 4.9. Jtip versus Japplied (KI2/EA) for various materials (I, II, III) of the 
material parameters. Note that Jtip is normalized with EA and R. 

 

The curve marked as Material I in Figure 4.9 shows the variation in the J-integral 

calculated directly around the crack tip versus the globally applied J. The globally applied J is 

taken to be (KI
2 / EA) under plane stress (Equation 4.9), where EA has been non-

dimensionalized to 1.  Note that the value of the J-integral at the crack tip can be 

significantly smaller than the applied J.  This reflects the fact that the material is no longer 

homogeneous following transformation. It has been verified that Jtip (respectively Japplied) is 

path independent as long as the path is chosen to lie within the fully transformed region 

(respectively untransformed region). The reduced value of Jtip compared to Japplied reflects the 

shielding provided by the transformation. This is one contribution to toughening. A second 
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contribution arises in steady crack propagation due to dissipation (hysteresis) which has not 

been considered here.  

 

4.4 Sensitivity to Material Parameters 

Two additional materials representing the range of material behavior of Nitinol in 

addition to material I (Figure 4.1) are considered to explore the effects of material 

parameters describing their constitutive behavior, which are shown in Figure 4.10 in the 

form of uniaxial stress-strain curves. For material II, the parameters are the same as in 

material I except that the entire hysteresis loop is shifted upwards by 100 MPa. This would 

correspond to a case where the material in material I is deformed at a higher temperature 

(T ~ 40 oC). For material III, parameters are the same as in material I except that the 

transformation strain εL is halved from 0.04 to 0.02.  

 

 
 

Figure 4.10. Typical stress-strain curves of Nitinol (materials I, II, and III) 
used to study the effect of material parameters on small scale 
transformation analysis 

 

The dependence of σ22(KI,r) plotted versus the angle θ on material parameters can be 

seen in Figures 4.11a - c. The martensite, transition, and austenitic regions were determined 

by tracing the circular arc around the farthest element from the crack with the appropriate 
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strain. This approximates the regions as semi-circles. It was seen in Figure 4.4 that for a 

constant set of material parameters, in any given region, the normalized σ22(KI,r) is 

independent of KI. As seen in Figure 4.11, changing the material parameters affects σ22 only 

in the martensitic region, where the stresses in the martensite region vary with εL. This is due 

to the dependence of the strain value at which saturation is complete on εL. 

 

 
 
Figure 4.11. Angular variation of the normalized stress component σ22 
versus θ for normalized KI=0.001 in the (a) fully transformed (martensite), 
(b) partially transformed (mixed phase), and (c) untransformed (austenite) 
regions, for various materials (I, II, III) of the material parameters. The 
theoretical (elastic) solution is compared only in the austenitic region. 

 

One can directly relate the strain at which saturation and phase transition is complete 

to the material parameters (Equation 4.10) as follows,  
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Figure 4.12a shows σ22(KI, r) plotted versus the radial distance r in a logarithmic scale 

along θ=0 for materials I and II. As expected, the translation to higher loading stresses 

causes an increase in σ22(KI, r) along the crack tip. The general character of the curves with 
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respect to variation in KI remains the same regardless of material parameters. In Figure 4.12b, 

halving εL decreases the size of the region of constant stress and shifts it farther from the 

crack tip. 

 

Figure 4.12. Normalized stress component σ22 as a function of distance 
ahead of the crack tip, along θ=0, for normalized KI = [0.0005, 0.00075, 
0.001] for various materials (I, II, III) of the material parameters 

 

It can be seen from Figures 4.13a and b that the dependence of the radii of the 

saturated (rsat) and phase transforming transition (rtra) zones on KI are highly sensitive to the 

material parameters, and have a linear dependence with 2

2

)(2 S
L

IK
σπ

. This is in contrast to 

plasticity, where the dependence of the size of the plastic zone would be fairly insensitive to 

the transformation stress. However, the dependence of the martensitic zone on σL
S is not 

surprising, considering the behavior of the region is strongly dependent on EM and νM. From 

the data shown in Figs. 4.13a and b, the saturation and transforming zone radii can be 
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related to the applied far field stress intensity factor, KI, for materials II and III in Equations 

4.11 and 4.12 respectively, 
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Figure 4.13. The radii of the saturation and transition zones ahead of the 
crack tip (θ=0) as a function of normalized KI for various materials (I, II, 
III) of the material parameters. 

 

The radial development of the saturation zone along θ=0 shown in Fig. 4.13a is 

examined first. For material II, the normalizing factor σL
S(where σL

S is the macroscopic 

plateau stress) is higher, and martensitic saturation occurs at a higher σL
E than in material I. 
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Because of these two factors, the equation for the rsat-KI relationship has a higher slope, as 

seen in Equation 4.11 when compared to Equation 4.6. The slope for the rsat-KI relationship 

in material III is even higher (Equation 4.12) because of the large effect that transformation 

strain has on the strain at which martensitic saturation is reached (Equation 4.10). Because of 

this, saturation zone begins to enlarge at lower KI and higher amounts of transformation are 

achieved. These differences also influence the behavior of materials II and III in Figure 

4.13b. For material II, the high σL
S result in a lower slope in the rtra-KI  relationship than for 

material I (Equation 4.7). In material III, the low εL makes saturation preferential, so that 

when KI  increases the saturation zone size increases, while the transition zone stays relatively 

small. 

Figure 4.9 shows the variation in the J-integral calculated directly around the crack 

tip versus the globally applied J, as a function of material parameters. Since material II has a 

higher plateau stress than material I and hence the resulting Jtip vs. Japplied graph is stretched. It 

takes more globally applied KI to initiate the phase transformation, corresponding to a 

delayed and slightly higher first local maximum Jtip, and a delayed approach to eventually 

asymptote to 1 at higher values of Japplied. In material III, there is a lower transformation strain 

εL. There is no deviation of material III from material I at low values of Japplied, because the 

decreased εL does not affect the austenitic regime or the onset of phase transformation. The 

effect becomes apparent as we increase KI  and the phase transition zone begins to saturate 

earlier than it would in material I. The earlier saturation shields the crack tip and leads to a 

lower Jtip. 
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4.5 Conclusions 

A small-scale transformation analysis for a crack in a shape memory alloy Nitinol 

subjected to mode-I loading under plane stress conditions was performed for the first time. 

The material parameters for a typical Nitinol alloy that undergoes stress-induced phase 

transformation (material I) was first considered and it was demonstrated that there is no 

variation with KI  in normalized σij(KI,r) versus the angle θ, provided that the material 

parameters are held constant. However, for a set of constant material parameters, there is a 

variation in the stress σ22(KI,r) versus r in front of the crack tip (θ =0) with KI. As KI increases, 

the radius at which phase transition occurs increases, but the stress σ22(KI,r) at which 

transition occurs decreases. Regardless of KI, the length of the transition region in front of 

the crack tip stays approximately the same. A linear relationship between the radii of the 

saturation and transition zones with respect to KI
2 or Japplied was found. A case study was then 

conducted to consider the sensitivity of these results to varying material parameters. It was 

discovered that σij(KI,r) versus angle θ depends on material parameters only in the saturation 

region, and that σ22(KI,r) in front of the crack tip depends heavily on material parameters. The 

general character of the variation of σ22(KI,r) versus KI does not change with material 

parameters. The relationship between Jtip and  Japplied was also explored, and the impact of 

these discoveries on the understanding of fracture toughening and crack shielding in Nitinol 

under plane stress conditions was discussed. 

The present analysis has provided new and detailed insights concerning the structure 

of the crack tip fields and phase transformation under mode-I loading and plane stress 

conditions in shape memory alloys.  This analysis should be further extended to plane strain 

and 3D under mixed mode loading conditions to provide a general framework of fracture 

mechanics in shape memory alloys such as Nitinol.  The analysis also needs to be extended 
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to large-scale transformation and crack growth in such phase transforming alloys, which are 

also of practical interest in applications for design and evaluation.  These aforementioned 

issues are subjects of ongoing investigations.  
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5 Summary 
 

In this thesis, Digital Image Correlation was used to experimentally obtain, for the first 

time, full-field quantitative strain maps of localization in Nickel-Titanium (Nitinol). These 

strain mappings were used to track phase transformation propagation in thin sheets of 

Nitinol. The results painted a much more complex mechanism behind transformation then 

previously assumed, and gave numerous insights into the deformation and failure 

mechanisms of Nitinol. DIC can be easily extended to other shape memory alloys as a 

method of characterization. In addition to the experimental results, a finite element study 

was performed on the fracture of Nitinol. This study was one of the first of its type. It 

underscored the importance of cracktip shielding in martensitic transformation, and also 

raised a number of important questions that are reserved for future study.  

In Chapter 2, we use Digital Image Correlation to study the quantitative full-field strain 

maps of thin sheets of Nitinol subjected to quasi-static uniaxial tension.  We observe strain 

localization consistent with the work of other researchers, and for the first time have been 

able to probe its development in terms of strain.  This has revealed a much more complex 

mechanism than assumed in the literature.  We find that the transformation initiates in a 

macroscopically homogeneous but microscopically heterogeneous manner.  The 

transformation proceeds through the nucleation and growth of localized bands of high 

strain.  However, the strain within the bands at formation is significantly smaller than the 

value at saturation, and gradually increases as the band grows.  The transformation is not 

complete even on apparent saturation of the stress-strain curve.  The stress-strain behavior 

shows a dependence on orientation with respect to the rolling axis consistent with its 

texture.  We find that the commonly used resolved stress criterion or Clausius-Clapeyron 

relation does not hold.  We have probed the role of geometric defects and shown that 
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localization in shape-memory alloys is not purely a geometric instability, but a competition 

between material and geometric instabilities. 

In Chapter 3, we experimentally investigated martensitic transformation around the 

crack tip in thin sheets of Nitinol. Many applications of Nitinol require its use in the form of 

thin sheets. One of the important failure criterions for the analysis and design of such 

devices is the fracture toughness, of which there are currently no recorded values for thin 

sheets on the order of 100 microns thickness. Using edge-cracked specimens, an average 

fracture toughness (KC) value of 51.4 ± 3.6 MPa m  for fine-grained polycrystalline Nitinol 

sheets (Af = 11.4 ˚C) at room temperature was measured. 

The use of DIC in these fracture experiments enabled a non-contact optical method of 

obtaining information about the crack tip fields in these thin sheets under displacement-

controlled uniaxial tension. The shape of the transformation zone can be described in the 

form of three lobes, one along the 1x  axis that grows larger with the load, and two lobes 

pointing at 60 degrees from the 1x  axis that appear at larger values of KI. Using the strain 

fields obtained from DIC, and assuming that phase transformation occurs from 1.5% to 

4.5% strain, the approximate lengths of the saturation and transformation zones for various 

values of KI were determined. The use of DIC enabled the first full-field quantitative 

mapping of the strain fields in the vicinity of the crack tip of edge-cracked specimens of 

Nitinol. The images, combined with the relatively high value of fracture toughness for thin 

sheets of Nitinol, indicate a complex mechanism where phase transformation contributes to 

toughening around the crack tip. The criteria for phase transformation and saturation near 

the crack tip need further investigation. The results presented here, including the full-field 

evolution of strain fields, could provide important insights for developing appropriate 

fracture criteria, as well as for phase transformation under multi-axial loading conditions. 
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In Chapter 4, a small-scale transformation analysis for a crack in a shape-memory 

alloy Nitinol subjected to mode-I loading under plane stress conditions was performed for 

the first time. The material parameters for a typical Nitinol alloy that undergoes 

stress-induced phase transformation (material I) was first considered and it was 

demonstrated that there is no variation with KI   in normalized σij(KI,r) versus the angle (θ<π) 

provided that the material parameters are held constant. However, for a set of constant 

material parameters, there is a variation in the stress σ22(KI,r) versus r in front of the crack tip 

(θ =0) with KI. As KI increases, the radius at which phase transition occurs increases, but the 

stress σ22(KI,r) at which transition occurs decreases. Regardless of KI, the length of the 

transition region in front of the crack tip stays approximately the same. A linear relationship 

between the radii of the saturation and transition zones with respect to KI
2 or Japplied was 

found. A case study was then conducted to consider the sensitivity of these results to varying 

material parameters. It was discovered that σij(KI,r) versus angle θ depends on material 

parameters only in the saturation region, and that σ22(KI,r) in front of the crack tip depends 

heavily on material parameters. The general character of the variation of σ22(KI,r) versus KI 

does not change with material parameters. The relationship between Jtip and  Japplied was also 

explored, and the impact of these discoveries on the understanding of fracture toughening 

and crack shielding in Nitinol under plane stress conditions was discussed. 

There are several topics of interest when considering directions for ongoing and future 

research. Experiments directly following the line of thought of those described in this thesis 

would be to (a) repeat these experiments in compression, shear, and torsion, and (b) to study 

of the effect of grain size on the tensile response of thin sheets. Also of immediate interest is 

to explore the effect of sample aspect ratio, temperature, and strain rate on phase 

transformation. Initial studies on the effect of sample aspect ratio on band formation have 
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been performed. Quasi-static uniaxial tension tests on dogbone-shaped specimens of Nitinol 

that are significantly larger and thicker (≈ 1 mm) show the same pattern of formation and 

propagation as that which appears in the thin sheet samples, and appear to show the same 

(scaled) band spacing. However, in future work, it would be interesting to see the effects of 

plane strain conditions on stress-induced martensitic phase propagation in Nitinol. 

The effect of temperature can be viewed through a combination of Digital Image 

Correlation and thermal imaging. There have been recent experiments using high-sensitivity 

infrared imaging to view phase boundary propagation in Nitinol through tracking the release 

of latent heat [9], but these are largely qualitative measurements. Combining these 

measurements with the deformation mappings captured by Digital Image Correlation would 

provide a means of comparing energy of transformation from spatially averaged 

macroscopic plots with energy attributed to the release of latent heat, captured by thermal 

imaging. Another interesting experiment would be to coat the samples in silicon before 

testing, thereby preventing the release of latent heat. Additionally, there has been recent 

interest in the development of Digital Image Correlation at high temperatures. The main 

challenge for testing at temperatures greater than nominally 100˚F is to find stable, traceable 

surface features that do not change with extended periods at high temperature. Traditional 

painting materials tend to shrink first, and then break down and release noxious fumes as 

temperatures increase. An option is to use high-temperature paints like those used in 

fireplaces, but the thickness and consistency of these paints makes coating samples with 

suitably small trackers difficult.  

Interest in Digital Image Correlation is steadily increasing in experimental mechanics as a 

non-intrusive, highly scalable way of looking at surface deformation. One of the current 

challenges is to apply DIC to investigate strain rate sensitivity, particularly the dynamic 
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response of materials. There are several experimental challenges in this field, including image 

acquisition, lighting techniques, and the integration of cameras into the testing setup. 

However, once these issues are resolved, Digital Image Correlation is a promising way to get 

both meso- and macro-scale measurements of deformation. Unlike strain gages, which are a 

traditional method of measuring strain in techniques like Hopkinson bar testing, DIC is non-

contact. Using DIC also gives both a meso-scale and macro-scale full-field picture of the 

strain, versus the local strain values determined by strain gages. Digital Image Correlation is a 

promising technique in experimental mechanics because it is so scalable in terms of space 

and time, and also because it is capable of giving full-field quantitative information. 

Although this thesis has been concerned primarily with macroscopic tests, an example of 

possible future small-scale work is to use photolithography to transfer a random gold 

masking on to a sample of Nitinol or other active material for SEM testing. 

 Currently, we are utilizing a combination of transmission x-ray and digital image 

correlation to obtain simultaneous macro-, meso-, and micro-scale observations of the 

deformation, transformation, and plasticity mechanisms of Nitinol. A joint research project 

at the Stanford Synchrotron Radiation Laboratory (SSRL), a division of the Stanford Linear 

Accelerator Center (SLAC) operated by Stanford University for the Department of Energy, 

has been undertaken in collaboration with industry leaders Nitinol Devices and Components 

(NDC) towards this end. The Stanford Synchrotron Radiation Laboratory is a facility where 

electrons circulate in a storage ring at nearly the speed of light, producing extremely bright, 

high-energy x-rays that can be used for transmission microscopy on relatively thick sheet 

samples. 

  Figure 5.1 shows the setup for these simultaneous experiments. The sample is placed in 

a custom micrometer rig, which is attached to a load cell and placed inside the hutch 
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between the beam emitter and beam stop. The sample is loaded by displacement control to a 

predetermined amount, and pictures are taken throughout this loading process for on-the-

spot digital image correlation, in order to get a pseudo real-time idea of the mesoscopic 

transformation. 

 

 

Figure 5.1: Simultaneous digital image correlation and transmission x-ray 
setup at the Stanford Synchrotron Radiation Laboratory (SSRL) 

 

When the displacement reaches a pre-determined level, images are no longer taken. With 

the displacement held constant, the micrometer rig is rotated 90 degrees to the right, and x-

ray diffraction data is taken. Because there is stress relaxation during the x-ray collection 

process, the load is continually recorded. When the x-ray data collection is completed, the 

sample is rotated 90 degrees to the left, and a new reference image is taken. The sample is 

then loaded under displacement control to another pre-determined stop point while 
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simultaneously collecting images for DIC, and this process is repeated until the sample 

breaks.  

Because images for DIC are taken during loading, and transmission x-ray is taken during 

subsequent pauses in the loading, there is stress relaxation in the resulting macroscopic 

stress-strain curve that one needs to be aware of. The macroscopic stress strain curve is 

obtained through a similar process to that described in the experimental observations of 

strain localization in dogbone specimens of Nitinol sheet (Chapter 2). The strain values at 

each pixel are extracted from each DIC image and spatially averaged to get one average 

strain value, which is then plotted against the engineering stress value calculated from the 

load cell readout at the time the DIC image was taken. This process can be done in 

approximately five minutes, providing a useful feedback detailing local strain inside the gage 

section to help determine the next loading step.  

 The current experiments combining digital image correlation and transmission x-ray 

are not limited to Nitinol. In order to get a better fundamental understanding of 

deformation and plasticity mechanisms in nanocrystalline materials, iron (BCC), titanium 

(HCP), and aluminum (FCC) are also being investigated. Preliminary results indicate that the 

local averaged strain values from DIC plotted against stress obtained from the load cell can 

yield values for the Young’s modulus of these materials that is consistently within 0.5% of 

the actual known value. This is another indication of the viability of this process. Digital 

image correlation is a perfect partner to transmission x-ray, since one of the main issues 

when looking at strain localization inside of these samples is knowing where to look, given 

the small spot size that transmission x-ray is capable of and the high demand for time on the 

synchrotron.  
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 From the experiments performed in Chapter 2, it is clear that the transformation 

mechanism for polycrystalline SMAs is much more complex than previously assumed. There 

is much work that needs to be done in building a theoretical model to explain the onset and 

saturation of localization in these polycrystals. Understanding the phenomenology behind 

these transformations is instrumental in understanding the strain localization observed in 

experiments, and in developing finite element methods that accurately predict this 

localization.   

 The finite element analysis discussed in Chapter 4 is one of the first fracture analyses 

of Nitinol, and provides new and detailed insights concerning the structure of the crack tip 

fields and phase transformation under mode-I loading and plane stress conditions in shape 

memory alloys.  However, it should be further extended to plane strain and 3-D under mixed 

mode loading conditions in order to provide a general framework of fracture mechanics in 

shape memory alloys such as Nitinol.  The analysis also needs to be extended to large scale 

transformation and crack growth in such phase transforming alloys, which are also of 

practical interest in applications for design and evaluation.  These aforementioned issues are 

subjects of ongoing investigations.  

 Nickel-Titanium is a specific example of the fact that virtually every material is made 

up of different structures at different length scales. Understanding the link between these 

scales, or how the behavior at one scale affects the properties of another, is an important 

issue. This is especially relevant as we enter a generation where greater demands are being 

put on material functionality, particularly in biomedical and small-scale applications. 

Establishing a relationship between the microscopic behavior of a material and its 

macroscopic properties facilitates the development of these types of new materials and the 

prediction of their behavior in practical applications. Digital Image Correlation (DIC), due to 
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its highly scalable and non-intrusive nature, is a promising experimental means of exploring 

deformation. Combining Digital Image Correlation with other methods of characterization, 

like electron microscopy, will paint a much more complete picture of the multi-scale 

interactions in the future.   
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