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Abstract 

 The von Economo neurons are one of the few known specializations to hominoid 

cortical microcircuitry.   The recent emergence of this cell type, as well as its localization 

to subregions of the frontal cortex, suggest its involvement in sophisticated cognitive 

behaviors. Studies of this cell may thus provide insights into human uniqueness and 

origin and may additionally be relevant to the treatment and understanding of mental 

illness. 

 

The first section of this thesis investigates the anatomical details of these cells, 

including their structure and surface receptor expression.  Using a Golgi preparation of a 

human postmortem brain, I describe the dendritic architecture of this unique population 

of neurons.  We found that, in contrast to layer 5 pyramidal neurons, the von Economo 

neurons have sparse dendritic trees with symmetric apical and basal components.  This 

confirms that the von Economo cells in both ACC and FI share the architectural 

characteristics of a single population, and that this population is distinct from other layer 

5 neurons.  I additionally used immunohistochemistry to probe the receptor expression on 

these cells, and found that the von Economo neurons strongly express the dopamine D3 

and D5 receptors, as well as serotonin-1b and serotonin-2b receptors.  Together, these 

results provide the first detailed anatomical description of a neuron type unique to great 

apes and humans. 

 

 



 
vi 

In the second part of this thesis, I explore whether a behavioral stimulus, humor, 

activates the regions in which this cell occurs.  Humor is a hallmark of social discourse 

and usually depends on the convergence of fast, intuitive assessments with a slow “re-

interpretation” of the humor.  Because of these characteristics, we thought it likely that 

humor would activate FI and ACC in addition to other regions in the brain. I used event-

related fMRI to differentiate brain activity induced by the hedonic similarities and 

cognitive differences inherent in cartoons depicting two kinds of humor:  visual humor 

(sight gags) and language-based humor.  I found that the brain networks recruited during 

a humorous experience did indeed include FI and ACC, and that the profile of activation 

differs according to the type of humor being processed. 

 

Taken together, these projects significantly expand on our knowledge of these 

unusual cells, and provide a basis that allows us to hypothesize about their function.  In 

the conclusion of this paper, we propose that the role of the von Economo neurons is to 

facilitate fast decision making in the context of high uncertainty, such as during social 

interaction. 
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“Each has his own tree of ancestors, but at the top of all sits Probably Arboreal.” 
 
—Robert Louis Stevenson 
 
“The Astonishing Hypothesis is that ‘You,’ your joys and your sorrows, your memories and your 

ambitions, your sense of personal identity and free will, are in fact no more than the behavior of a vast 
assembly of nerve cells and their associated molecules.” 

 
— Sir Francis Crick, The Astonishing Hypothesis 
 

1 Introduction 

 

1.1 Hominoid brain evolution  

 

Humanity resides in the human brain, and, as with any other biological organ, the 

human brain is shaped by evolution.  Because the modern human brain only exists by 

virtue of the adaptations of our primitive ancestors, it shares features with living 

nonhuman primates.  By taking an evolutionary approach towards the study of the human 

nervous system, we may begin to see what general features we have in common with our 

closest relatives, as well as how humans are, neurologically speaking, special. 

Of the 181 known species of living primates, only five make up the family known 

as the hominoids:  the humans and great apes (Nusbaum et al., 2006).  Behaviorally, the 

great apes are diverse:  orangutans are arboreal while gorillas are terrestrial; bonobos are 

peaceful while chimpanzees are aggressive; gorillas are polygamous while humans are 

monogamous (or, at least, less promiscuous than bonobos and chimpanzees).  There is no 
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unifying characteristic that defines great apes in terms of social structure, diet, or sexual 

behavior.  As a family, the great apes appear to be more intelligent than the simians, 

though this has been notoriously difficult to demonstrate in a laboratory setting.  It has 

been fairly well established, however, that great apes use tools, have some form of self-

recognition, and transmit culture; and though these traits are by no means unique in the 

animal kingdom, they have been demonstrated more consistently in the hominoid family 

than in any other (Biro et al., 2003; Breuer et al., 2005; de Veer et al., 2003; Nusbaum et 

al., 2006; Sanz et al., 2004; van Schaik et al., 1999; van Schaik et al., 2003; Whiten et al., 

1999).  In addition, African apes and humans live in dynamic, highly complex social 

groups, a characteristic that is extremely difficult to quantify but likely to be an important 

factor in the evolution of general intelligence.  It appears that the brains of great apes and 

humans have evolved to be flexible and adaptive, capable of identifying optimal 

responses in the context of a multitude of different circumstances and environments.  

This cognitive feature seems the most prominent in humans, and is responsible for our 

colonization of every habitable niche, even at the expense of our fellow primate species 

(Caldecott and Miles, 2005).  

What biological structures underlie the flexible, intelligent behavior of the 

hominoids?  Previous speculations that humans are characterized by large frontal lobes 

have been replaced by empirical evidence that disproportionately large frontal lobes are, 

in fact, characteristic of the hominoids (Semendeferi and Damasio, 2000; Semendeferi et 

al., 1997; Semendeferi et al., 2002).  Recent exciting studies designed to identify elevated 

gene expression or mutation rate in humans have not only identified genes that are likely 

to have contributed to this frontal lobe expansion (Nusbaum et al., 2006), but also genes 
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associated with metabolism and synaptic plascticity (Caceres et al., 2003).  This line of 

evidence serves as a useful starting point, so that other experimental methods can be 

employed to explore the functional and anatomical repercussions of these genetic 

changes, one case of which is explored elsewhere in this thesis (see section 5.2). 

In addition to these known differences in gross brain anatomy and genetics are 

those internal characteristics of the brain that separate the human minds from the apes, 

and the hominoids from the simians.  Perhaps surprisingly, very few differences have 

been identified on the cellular or molecular scale. In general the microstructure of brains 

is surprisingly homogeneous across mammalian species.1 Cajal’s pioneering work in the 

1800s resulted in the neuronal doctrine, which states that the neuron is the basic 

anatomical unit in the brain, and that information flow in the brain is in the form of 

chemical and electrical messages that pass from neuron to neuron.  The circuits formed 

by populations of neurons throughout the brain are the biological substrates that underlie 

behaviors.  Thus, one might expect systematic differences in this circuitry from species to 

                                                 

 Figure 1. Location of the von Economo neurons in the human brain. (a) Lateral view of the brain with left 
anterior and fronto-insula (FI) demarcated in red.  (b) Medial view of the brain with left anterior and anterior 
cingulate cortex demarcated in red.  Illustrations from von Economo and Koskinas (1929) modified by Atiya 
Hakeem.

1 This is a disadvantage if one is looking for an obvious “neural correlate” of human brainpower, but an 
advantage if one wants to use species other than humans to study how the brain works and how to cure 
diseases in the brain. 
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species that correlates with differences in species-specific behavior.  In some cases 

these differences are documented, such as in the primary visual region (Preuss et al., 

1999; Sherwood et al., 2003), but these cases are the minority.  Indeed, in the frontal 

lobe—still relatively mysterious but known to be crucial in planning, decision making

behavioral inhibition and social interaction—our knowledge of species-specific 

differences is sparse.  

, 
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Figure 2.  Cresyl-violet stained anterior cingulate in a 53-year-old male human.  (a) Low-power 
photomicrograph montage.  (b) z-projection of six 1 um slices collapsed into one depth plane.  A single von 
Economo neuron, center, surrounded by several pyramidal neurons.  Photomicrograph taken from boxed area 
in (a). 

 

1.2  The von Economo neurons 

In 1999,  Nimchinski and colleagues reported a type of cell that they identified as 

unique to great apes and humans. At the time, they termed this population the “spindle 

cells,” but to avoid potential confusion with other uses of this name we now refer to them 

as “von Economo” (VE) cells.   

This name is chosen in honor of the neuroanatomist Constantin von Economo, 

who is the first author of the original 1925 book that contains the classical description of 

this distinctive class of neurons.  Upon inspection of his Golgi preparations of human 
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cortex, he noted that these large cells were located in layer 5 and restricted to two 

regions of the human brain:  the anterior cingulate cortex (ACC) and in posterior 

orbitofrontal cortex adjacent to the insula, a region that he termed “fronto-insular” cortex 

(FI, figure 1).  Both of these regions lack a granular layer 4; as in motor cortex, this 

agranularity may reflect a functional specialization.2

 
In a cresyl violet (Nissl)-stained sample of human or great ape cortex, these cells 

may be easily distinguished from the neurons around them due to their symmetric, 

bipolar soma shape and their large size (Figure 2), and it was on the basis of such stains 

that the phylogenetic uniqueness was determined.  The VENs of the anterior cingulate 

cortex are present in all four living species of great apes and the humans, which implies 

that they evolved within the last 15 million years (Figure 3).  The Von Economo cells in 

the fronto-insular cortex are present only in the great African apes, and not the orangutan 

(Allman et al., 2005).  This pushes the likely emergence of Von Economo cells in that 

region to 9 million years ago. 

                                                 
2 In general, layer 4 is a granular layer that receives input from the thalamus, and layer 5 contains large 
neurons that project to other cortical and subcortical regions.  It follows that sensory cortex has a very large 
layer 4, whereas motor cortex lacks layer 4 altogether. 

 



 
7 

 
 
Figure 3  Primate cladogram.  Species with VENs in both ACC and FI are in red.  The orangutan, the only 
living non-African great ape, has VENs in ACC but not FI.  Number in parenthesis indicates the number of 
specimens counted stereologically by N. Teatreault and J.Allman. Figure prepared by Atiya Hakeem. 

Relative to other neuronal populations, the VENs develop late in ontogeny as well 

as phylogeny.  They first appear at the 35th week of gestation and only about 15% of the 

full complement is present at birth (Allman et al., 2005).  The adult number is attained by 

4 years of age.  Whether the VENs emerge by differentiation or migration, there is the 

possibility that their emergence might be disrupted during postnatal development with 

dysfunctional consequences.  

 

In all of the great apes and post-natal human brains, the VENs are more numerous 

in the right FI and ACC than the left (Allman et al., 2005).  This hemispheric asymmetry 

appears to arise after birth, as the VEN are about 6% more numerous in the right 

hemisphere in the neonate but about 30% more numerous in the adult. This right 

hemisphere VEN predominance may be related to the right-hemispheric specialization for 
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the social emotions (Blonder et al., 1993). The fact that this 30% right preference is so 

tightly regulated and consistent across humans and apes (past the infant period) suggests 

that this ratio is important for normal functioning and that deviations from it could be 

dysfunctional. 

Little is known about the function of the von Economo cells, despite their unique 

phylogenetic lineage and their potential importance to human brain pathology.  The very 

features that make these neurons so interesting also make them difficult to study with 

conventional techniques.  Most experimental methods devised to explore single cell 

function and anatomy are invasive and ultimately require the sacrifice of the animal, 

which would obviously be inappropriate for the study of the VENs given that they are 

only present in great apes and humans.  However, VENs are a specialization of the 

circuitry that had been present in a common ancestor to the great apes, and is currently 

present in other modern anthropoids.  Thus, studies of FI and ACC in monkeys can, to 

some extent, inform our assumptions about the function of the VENs 

Monkey studies using anterograde and retrograde tracers indicate the ACC is 

connected to prefrontal, orbitofrontal, insular and anterior temporal cortices and to the 

amygdala, hypothalamus, various thalamic nuclei, and the periaqueductal gray (Öngür 

and Price, 2000; Rempel-Clower and Barbas, 1998; Barbas et al, 1999; Cavada et al, 

2000).3   It is more difficult to localize the region analogous (or homologous) to FI in 

monkeys, simply because of the absence of definitive cortical landmarks.4  Agranular 

                                                 
3 In fact, because these connections are characterized by afferents from multimodal sensory-integration-
regions and decision making- regions, and by efferents to motor areas, Francis Crick was moved to 
speculate that ACC is the site of “free will”! (1994)  
4 Anterior cingulate is always easy to recognize, since by definition – “cingulate” stems from “cingere,” 
meaning “girdle” in Latin – this region wraps around the corpus callosum, the single most recognizable 
cortical structure in the brain.  FI, on the other hand, is one of many protuberances in the lumpy cortical 
mantle, and the macaque brain is considerably less lumpy than the great ape or human brain. This rules out 
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regions of anterior insula that extend into orbitofrontal cortex do exist in macaques, 

however, and these are extensively connected with medial temporal and cingulate limbic 

structures. (Carmichael and Price, 1994; Carmichael and Price, 1995; Carmichael and 

Price, 1996).  Thus, the regions in monkeys that are presumably homologous to those 

containing the VENs in hominoids are coupled to each other anatomically. 

1.3 Rationale of the approach.  
The spatially localized nature of the VENS, in conjunction with the known 

modularity of the brain, gives us another advantage in guessing their function. The recent 

explosion of functional magnetic resonance imaging (fMRI) studies has enabled us to 

identify those paradigms that activate the von Economo regions.  This approach is 

particularly useful in the case of FI, which seems to be more selective than ACC, the 

latter of which is active in almost every behavior that involves intense concentration or 

emotion.  In fMRI studies, FI and ACC are coactivated by two broad classes of stimuli:  

Those that involve decision making in the context of high uncertainty, and those that 

involve social stimuli.   

In order to link the VENs directly to behavior, we can use the fMRI literature in 

conjunction with pharmacological literature.  That is, once we know what sort of 

behaviors the circuits might be involved in, we can look for molecular agents that might 

mediate those behaviors.  Once we have some likely candidates, we probe for these 

receptors or molecules using specific antibodies, which subsequently allows us to 

determine whether these molecules act directly on the VENs. 

                                                                                                                                                 
a simple 1:1 mapping of cortical regions. Furthermore, the outstanding cytoarchitectonic feature of FI is 
that it contains von Economo cells, which are not present in monkeys.  This makes FI impossible to 
delineate cytoarchitectonically in the monkey brain! 
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The von Economo cell regions appear to be strongly activated during periods of 

high uncertainty.  In an fMRI study during which subjects were engaged in a simple 

gambling task, activation in both FI and ACC got increasingly stronger as the uncertainty 

in the task increased (Critchley et al., 2001).  In a similar vein, both regions were 

activated during a reversal task, in which a subject attempts to maximize reward during a 

task that changes contingencies when the subject’s behavior stabilizes (O'Doherty et al., 

2003a).  A series of incorrect answers will prompt the subject to switch strategies, at 

which point both ACC and FI show increased activity.  Recordings from individual 

dopaminergic neurons in the macaque monkey ventral tegmentum reveals a similar 

pattern of activation.  During trials with high uncertainty of reward, dopamine neurons 

exhibit a gradual increase of firing rate across the duration of the trial (Fiorillo et al., 

2003).  Dopamine is known to be involved in reward delivery and expectation, as well as 

contingency learning.  This leads us to probe for the various types of dopamine receptors, 

especially D3, the high-affinity dopamine receptor, which is known to have a limbic 

distribution and is implicated in mechanisms of drug addiction (Le Foll et al., 2005).  

Additionally, because of models that suggest that dopamine and serotonin act in 

opposition to one another during learning, we probed for several types of serotonin 

receptors (Daw et al., 2002).  Because the serotonin receptor class is so large – there are 

thirteen different types – and because antibodies were only available for a subset of these 

receptors, we were not able to perform an exhaustive survey of all serotonin receptors.  

However, in probing five of the receptor subtypes, we did identify several that labeled the 

VENs, with interesting implications. 
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Golgi is an old technique and was used by both Cajal and Golgi for the work 

that earned them the Nobel prize in 1906.  Although the technique is notoriously 

capricious, we found that the appropriate protocol, when combined with a consistent 

source of brain tissue, yielded beautiful results, which I describe and quantify in Chapter 

2.  This work allowed me to describe the dendritic architecture of the von Economo 

neurons, and to compare it with that of their layer 5 pyramidal counterparts. A 

computational study by Mainen and Sejnowski in 1996 showed that variations in the 

morphology of the cell can have a large effect on the firing profile of the neuron.  

Knowing the dendritic morphology of the VENs may thus allow future computational 

studies (in progress by Sejnowski’s group) to project the likely firing pattern of the VENs 

Finally, in chapter 3 I describe my own contribution to the fMRI literature, a 

study on the neurobiology of humor.  Because humor is essentially an error response 

coupled with emotional arousal, and because it is so frequently used in social 

circumstances, we hypothesized that humor would activate the von Economo regions.  

We did indeed find evidence supporting this hypothesis, and, in addition, report a novel 

result that contrasts cognitive differences and affective similarities during the perception 

of two different types of humor. 
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2  Anatomy of the von Economo Neurons 

2.1 Abstract 

 

The von Economo neurons are one of the few known specializations to hominoid 

cortical microcircuitry.  Here, using a Golgi preparation of a human postmortem brain, 

we describe the dendritic architecture of this unique population of neurons.  We found 

that, in contrast to layer 5 pyramidal neurons, the von Economo neurons have sparse 

dendritic tress that have symmetric apical and basal components.  We also used 

immunohistochemistry to probe the receptor expression on these cells, and found that the 

von Economo neurons strongly express the dopamine D3 and D5 receptors, as well as 

serotonin-1b and -2b receptors.  This receptor profile is consistent with a role in 

mediating decision making in uncertain contexts.   Together, these results provide the 

first detailed anatomical description of a neuron type unique to great apes and humans. 

2.2 Introduction 

Von Economo neurons (VENs) are large, bipolar neurons that are located in layer 

5 of anterior cingulate cortex and fronto-insula cortex (von Economo and Koskinas, 

1929).  Elsewhere we have referred to them as the “spindle” neurons, but because of 

potential confusion with other uses of this term, we now refer to them by the first author 

of the best classical description of these cells. Unlike most neuron types, the VENs are 

present in the African apes but are absent in the lesser apes, Old- and New-World 

monkeys, and prosimians (Nimchinsky et al., 1999). This suggests that they arose in the 
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hominoid clade within the last 15 million years. The volume of the soma is much larger 

in humans than in apes, and stereological counts suggest that these cells have proliferated 

in the human line of descent (Allman et al., 2005; Nimchinsky et al., 1995).   The recent 

emergence of this cell type, as well as its localization to subregions of the prefrontal 

cortex, suggests its involvement in sophisticated cognitive behaviors. This suggests that 

studies of this cell may provide insights into human uniqueness and origin. Furthermore, 

because the force of natural selection has had only a relatively short time to shape their 

functioning and integration with other cell populations, the VENs may be particularly 

vulnerable to dysfunction.  Our understanding of this cell type may thus be relevant to the 

treatment and understanding of mental illness. 

Despite these important characteristics, little is known about the dendritic 

morphology of the von Economo neurons or about their neurochemical makeup.  Cell 

morphology is crucial to our understanding of these cells, because neuronal shape is 

directly related to the computation.  For example, dendritic structure can establish 

intrinsic firing patterns (Mainen and Sejnowski, 1996), perform non-linear operations 

(Koch et al., 1982), or modulate action potential propogation (Vetter et al., 2001).  In the 

current study, we used a modified Golgi technique that enabled us to quantitatively 

describe the dendritic architecture of the von Economo cells from a young adult human 

male.  Comparisons of the extended dendritic trees allowed us to determine whether the 

populations of VENs were consistent across regions, and if and how the dendritic trees of 

VENs differed from those belonging to layer 5 pyramidal cells. 

Another way to gain insight into a cell’s function is by cataloguing its receptor 

expression.  Pharmacology studies link certain ligands to behaviors, and therefore the 
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presence of specific receptors on or in the VENs can indicate a role in those behaviors.  

In this paper we describe immunohistochemical results that show the presence of the 

dopamine D3 receptor, and the serotonin-1b and -2b receptors. 

 

2.3 Materials and methods 

2.3.1 Golgi 

Tissue specimens were obtained via Maryland Brain Bank from a human 23-year-

old male (PMI = 18 hours) who suffered sudden cardiac arrest.  Toxicology reports 

indicate that there were no drugs or alcohol present in the body at time of death.  The 

right hemisphere fronto-insula (FI) cortex and anterior cingulate cortex (ACC) were 

dissected, photographed, placed immediately in a potassium dichromate fixative solution 

(FD Neurotechnologies, Ellicott City, MD) and mailed overnight to the authors.  The 

specimens were kept in this fixative for 17 days, and then placed in FD 

Neurotechnologies Solution C for 9 days. 

Specimens were sectioned at 200 µm intervals on a freezing microtome, mounted 

on gelatinized slides, and allowed to dry for 2 to 4 days.  They were then Nissl-stained 

with cresyl violet, processed according to manufacturer’s directions (FD 

Neurotechnologies), and coverslipped in Permount (Fisher Scientific, Fair Lawn, NJ). 

Once dry, the specimens were observed using the 4x, 10x, and 40x-oil (N/A = 

1.00) objectives of a Recihert Polyvar light microscope equipped with a 10x ocular and a 

motorized stage.  The criteria for classifying a neuron as a VEN was an elongated, large 

soma in layer five of the FI or ACC, a prominent basal dendrite, and symmetrical 
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morphology along the horizontal and vertical axes of the cell (Nimchinsky et al. 1999).  

We further constrained the category to include only those neurons that had no additional 

dendrites or branching for a half-soma’s distance along the length of the proximal 

dendrites.  For every von Economo neuron traced, we also traced the nearest complete 

pyramidal cell that had two or more prominent basal dendrites.  Using Neurolucida 6.0 

(MicroBrightField Inc, Williston, VT) we created three-dimensional reconstructions of 

the spines, soma, and dendrites of VENs and pyramidal cells in FI and ACC, and used 

NeuroExplorer (MicroBrightField) for visualization and to perform Scholl analysis 

(Scholl, 1953).  Statistical comparisons were made with nonparametric tests (Kruskal-

Wallis and Wilcoxon rank sum tests) using Matlab 7.0 (Mathworks Inc, Natick, MA). 

2.3.2 Immunohistochemistry 

Neurologically normal human postmortem tissue was obtained from Maryland 

Brain Bank, UCLA Brain Bank, and Dr. Bob Jacobs, and stored in 10% formalin until 

sectioning.  Tissue specimens were ruled out if the known medical history of the donor 

included neuropharmacological compounds (i.e., oxycotin), if tissue lacked 

immunohistochemical reactivity, or if Nissl-stained tissue was evaluated as abnormal.  

The six specimens used in the experiment had a postmortem interval ranging from 8 to 22 

hours (mean 15, s.d. 4.3), and were from male donors ranging in age from 17 to 80 years 

(mean 45, s.d. 21.0). Tissue was sectioned perpendicular to the pial surface in 50 μm 

slices on a vibratome and stored in a 0.1 M phosphate buffer with 0.01% sodium azide 

(Sigma Chemical, St. Louis, MO).  The presence of von Economo neurons in tissue was 

determined by Nissl stain prior to immunohistochemistry.  The tissue was processed free-

floating with an antibody (see Table 1) in a stock solution of 1% normal goat or  
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Receptor 
type 

Manufacturer/Product 
number 

Antigen Host Working 
dilution or 
concentration 

Dopamine 
D1 

Chemicon AB1784 Nine aa peptide 
corresponding to the 
4th extracellular 
domain in rat (88% 
homology with 
human) 

Rabbit 5 µg/mL 

Dopamine 
D2 

Chemicon AB1558 Amino-terminal 
peptide sequence (aa 
24–34) near or at the 
ligand binding 
domain of rat D2R 
(91% homology with 
human) 

Rabbit 1:2500 

Dopamine 
D3 

Chemicon AB1785p  Human peptide. 19 aa 
peptide sequence 
from 3rd cytoplasmic 
region 

Rabbit 20 µg/mL 

Dopamine 
D3 

Santa Cruz  
D3DR (H-50)   

Human peptide. aa 1–
50 amino terminal 
extracellular region 

Rabbit 15–25 µg/mL 

Dopamine 
D4 

Chemicon AB1789p Human peptide. 25 aa 
sequence within the 
4th cytoplasmic 
domain 

Goat 10 µg/mL 

Dopamine 
D5 

Chemicon AB1790 Human peptide. 20 aa 
sequence within the 
4th cytoplasmic 
domain 

Goat 10 µg/mL 

Serotonin 
2b 

BD Biosciences 
556334  

Human peptide.aa 1–
58 

Mouse 10–15 µg/mL 

Serotonin 
2b 

Santa Cruz SR-2B  Human peptide. aa 
387–481 

Rabbit 10 µg/mL 

Serotonin 
1b 

Chemicon  AB5651 Human peptide. aa 
15–28 

Rabbit 4 µg/mL 

Serotonin 
1b 

Chemicon AB5410  Rat peptide. Sequence 
100% conserved in 
human, 
corresponding to aa 
277-291 

Guinea 
pig 

1:1000 

Table 1  Antibodies and concentrations used for immunohistochemistry experiments  aa = amino acids 
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rabbit serum (Sigma) and 0.2% Triton X-100 (Sigma).  The primary antibody was 

detected by a species-specific biotinylated secondary antibody (Chemicon, Temecula, 

CA, 1:200) and then a commercial horseradish peroxidase complex (Vector Laboratories 

Elite ABC Kit, Burlingame, CA).  Labeling was revealed using 3,3’-diaminobenzidine 

(DAB, Vector Laboratories) as a chromagen according to manufacturer’s instructions.  

Specimens were mounted on gelatinized slides and dried overnight at room temperature.  

In some cases, some slides were subject to a intensification process through the 

application of a 2% osmium tetroxide solution for 1 minute, followed by rinsing in 

buffer, water, and graded alcohols.  Once dehydrated, all specimens were cleared in 

Histo-clear (National Diagnostics, Atlanta, GA) or xylene and coverslipped with 

Permount (Fisher Scientific, Fair Lawn, NJ).  Negative controls consisted of performing 

the same experiment in parallel, omitting the primary antibody.  Specificity of 

localization for the Chemicon dopamine D3 receptor antibody (AB1785p) was confirmed 

by control experiments in which the primary antibody was preadsorbed with a dopamine 

receptor peptide (Chemicon AG229), which abolished staining (data not shown).  Results 

for the D3, serotonin 1b, and serotonin 2b receptors were obtained for at least five of the 

six specimens, for both hemispheres, and from both FI and ACC, and were replicated 

using two different antibodies for each receptor (Table 1), thus ruling out false positive 

results.    

For some experiments, an Alexa Fluor conjugated secondary antibody (Molecular 

Probes, Eugene Oregon) was used instead of the biotinylated antibody, in which case the 

ABC/DAB steps were omitted and the section was mounted, left to dry, and coverslipped 
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with Vectashield (Vector labs).  Slides were visualized with a Zeiss LSM 510 META 

NLO equipped with a Coherent Chameleon laser. 
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Figure 4. a. Low power photomicrograph of two pyramidal cells in Golgi-stained anterior cingulate cortex, 
demonstrating the quality of the stain. b  High power photomicrograph of pyramidal cell, corresponding to boxed 
area in (a). Z-projection of 25 slices (taken every 1 µm) projected onto a single plane.  c,d Neurolucida tracings of a 
pyramidal (left) and von Economo (right) neuron from FI (c) and ACC (d).  Notice the vertical symmetry and 
relative sparseness of the VEN dendritic tree.  Neurons are oriented so the pial surface is at the top. 
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Figure 5  Scholl intersections for FI (top) and ACC (bottom) for pyramidal cells (red triangles, basal tree; orange 
triangles, apical tree) and von Economo cells (navy diamonds, basal tree; light blue diamonds, apical tree).  Note 
the spike in intersection number that occurs in the pyramidal basal tree that occurs at a radius of 50-100 µm from 
the soma, and the symmetric intersection number in apical and basal dendritic tress of the VENs in both regions.  
Error bars represent S.E.M. 

2.4 Results 
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2.4.1 Golgi 

Photomicrographs of the specimen sample demonstrate the overall quality of the 

stain (Figure 4a). Cortical layers were distinguishable on the basis of the Golgi stain. 

Neurolucida models were created for 17 pyramidal cells and 15 von Economo neurons in 

ACC, and for 21 pyramidal cells and 20 von Economo neurons in FI.  VENs were noted 

to be symmetric, with their apical and basal dendrites having similar profiles in terms of 

“branchiness” and length (Figure 4b).  In contrast, pyramidal cells had highly branched 

basal tufts in comparison to their relatively sparse apical trunks (Figure 4c).  

We used Scholl analysis to measure dendritic length and the number of branch 

points (“intersection number”) as a function of distance from the soma.  Similar to 

previous findings in macaque temporal lobe (Elston and Rosa, 2000), we found that the 

peak dendritic complexity of layer V pyramidal cells occurred in the basal tree 50-75 µm 

from the soma.  This spike in dendritic complexity was not present in apical tree of the 

pyramidal neurons, nor in the apical and basal trees of the VENs (Figure 5).   

Between regions (ACC and FI), there were no significant differences in mean 

total branch length or intersection number for either the pyramidal or von Economo 

populations (p>0.25).  Therefore, data from both regions were pooled into a single von 

Economo group and a single pyramidal group for statistical analyses.  When summed 

overall Scholl radii, neither the total length nor intersection number of the apical and 

basal dendritic trees of the Von Economo cells differed significantly from one another.  

In contrast, the basal dendritic trees of the pyramidal neurons contained significantly 

greater total dendritic length and more Scholl intersections than the apical dendrites of 

the pyramidal neurons as well as the apical and basal trees of the VENs (Figure 6, 
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p<0.001).  The maximum Scholl radii for the von Economo and pyramidal neurons 

were not significantly different for either the apical (VEN = 287.14±15.72; pyramidal = 

330.52± 17.65) or basal (VEN = 233.43± 14.52, pyramidal = 212.63±10.39) trees 

(p<0.001, figure 6). Pyramidal cells had a mean total dendritic length 2.5 -fold higher 

than that of VENs (pyramidal = 2044.3 ±157.1 µm, VENs = 815.8 µm ±66.75).  

Spines were distinguishable at 400x magnification.  Because the mean total 

number of spines did not vary by region, data were pooled across ACC and FI.  Kruskal-

Wallis non parametric ANOVA tests indicated a significant difference in total spine 

counts between cell and tree types (p<0.001).  Post-hoc rank sum tests indicated that the 

mean sum of spines on the basal pyramidal trees were greater than that of the pyramidal 

 

 

Figure 6  Comparisons of dendritic structure for apical and basal trees of VENs and layer 5 pyramidal cells for (a), 
total number of Scholl intersections, (b), total dendritic length; (c), spine counts; and (d), maximum scholl radii.  Note 
that, despite significant differences between VENs and pyramidal cells for the first intersections, length, and spine 
count, there are no significant differences in maximum Scholl radii, suggesting that the observed differences are not 
due to variations in the degree of Golgi staining.  Error bars denote S.E.M. 
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apical, VEN apical, or VEN basal trees (p<0.005). The sum of spines on the pyramidal 

apical tree was greater than that of the VEN apical or basal trees (p<0.001). The VEN 

apical and VEN basal trees had the same mean total numbers of spines (p=0.98). We 

counted the number of dendritic spines per 10 um along the extent of all dendrites on a 

tree and found that the number of spines on the basal tree of the pyramidal neuron was 

maximal from 70 to110 µm from the soma, while the maximum number of spines on the 

apical pyramidal tree occurred at 160 to180 µm distance from the soma.  Both the apical 

and basal trees of the VENs reached the maximum number of spines around 190 to 240 

µm from the soma. 
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Table 2  Percentage of VENs and pyramidal cells labeled with D3 receptor antibody in four human brain 
specimens 

age gender cause of 
death 

PMI hemisphere % of D3 labeled pyramids 
(number labled/total) 

% of D3 labeled spindles 
(number labled/total) 

47 M Heart attack 15 R 46% 
(243/522) 

78% 
(47/60) 

80 M Unknown 15 R 35% 
(98/278) 

75% 
(16/22) 

54 M Coronary 
artery 

disease 

12 L 56% 
(60/107) 

85% 
(12/14) 

54 M Coronary 
artery 

disease 

12 R 56% 
(85/139) 

93% 
(14/15) 

 
 

 

2.4.2 Immunohistochemistry 

2.4.2.1 Dopamine  

Dopamine receptors were localized in human brain by immunocytochemistry.  

The distribution of the D3 receptor in the anterior cingulate cortex and fronto-insula 

cortex was similar.  Labeling was strongest in the deeper layers and was present on the 

somas and apical dendrites of Von Economo neurons and large pyramidal cells.  The 

apical dendritic shafts of some cells were labeled for 200 μm or greater, long enough to 

reach the higher layers of cortex (Figure 7a).  This profile of labeling was the same for 

two different antibodies against the D3 receptor, thus ruling out false positives (Table 1). 

Fluorescent double labeling of the ACC from four hemispheres (three individuals) 

revealed that a greater proportion of VENs (82.8% ± 8.0) than pyramidal neurons (48.3% 

± 10.0) were labeled with the D3 antibody (p < 0.001, Table 2, figure 7b).  

Immunocytochemistry with an antibody recognizing the dopamine D5 receptor revealed a 
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pattern of labeling similar to the D3 (Figure 7), whereas antibodies to the D1, D2, and 

D4 receptors did not label von Economo neurons in a recognizable fashion. 
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Figure 7  (a.)  The percentage of cells labeled with the antibody against the dopamine D3 receptor is 
significantly lower for layer 5 pyramidal cells compared to von Economo neurons (p<0.001).  (b)  D5 
receptor and (c) D3 receptor antibody labeling was evident on the somas and apical dendrites of the von 
Economo neurons. 
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2.4.2.2 5-HT1b 

 

Immunohistochemistry was performed 

using two different antibodies recognizing 

different portions of the serotonin 1b receptor 

(table 1). In the human anterior cingulate cortex, 

this antibody labeled a network of axons as well 

as the somas and proximal dendrites of von 

Economo cells and large pyramidal cells in layer 

5 (figure 8).  Layers  2 and 3 contained labeled 

pyramidal somas but few fibers, while layer 6 

was nearly confluent with labeled fibers but 

lacked labeled neurons. 

Figure 8  Unlike the D3, D5, and 5-HT 2b 
receptor antibodies, the 5-HT1b antibody 
labels the soma but not the apical dendrite of 
the von Economo neurons 

2.4.2.3  5-HT2 receptors 

Von Economo cells and other layer 5 pyramidal cells were noted to expess the 

serotonin 2b receptor, as recognized by two different antibodies.  Expression of this 

receptor was strongly layer 5 specific in human ACC and FI (figure 9a). Expression was 

strongest on the proximal apical trunk and the soma (figure 9b).  von Economo cells were 

also labeled by an antibody to the 5-HT2a receptor, as were other pyramidal cells in all 

layers of cortex (data not shown), similar to previous reports. (Jakab and Goldman-Rakic, 

1998)   
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Figure 9  Serotonin 2b antibodies show layer 5 specificity in FI (a) and label the somas and apical trunks of 
pyramidal and von Economo neurons (b). (a) and (b) are from the same specimen. (c)  Two 5-HT2b labeled von 
Economo neurons from ACC, counterstained with cresyl violet 
 

2.5 Discussion 

We used Golgi stains and immunohistochemistry on human brain tissue to 

characterize the von Economo cells.  In doing so, we demonstrated that the von Economo 

neurons in anterior cingulate and fronto-insula cortex appear to be a single population of 

cells.  Furthermore, we show that the dendritic geometry of the von Economo cells is 

distinct from that of layer 5 pyramidal cells, and that the VENs express several subtypes 

of dopamine and serotonin receptors. 
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2.5.1 Dendritic morphology 

The dendritic architecture of neurons reflects the way in which they integrate 

information (Vetter et al., 2001). Both spines (Nusbaum et al., 2006; Sabatini et al., 2001) 

and branches (Polsky et al., 2004) can operate as computational compartments, and, 

compared to their layer 5 pyramidal counterparts, VENs have fewer of both.  Studies of 

rat sensorimotor layer 5 pyramidal cells reveal a relationship between depolarization and 

output frequency that is linear near the soma and proximal dendrites but non-linear in 

higher order dendritic branches (Oakley et al., 2001).  This suggests that VENs are 

computationally simple compared to pyramidal neurons. 

VENs additionally have only a fraction of the total dendritic length of the average 

pyramidal cell.  The complexity and size of dendritic trees vary with species and brain 

region.  For example, pyramidal dendrites vary according to where they lie in the visual 

processing stream, with temporal and frontal areas containing neurons of greater 

complexity than the primary visual area (Elston et al., 2005; Jacobs et al., 2001; Travis et 

al., 2005).  Additionally, Elston found that pyramidal neurons in human prefrontal cortex 

were more branched and spinous than those in marmoset or macaque monkeys, and that 

neurons in the cingulate cortex of baboons were similarly more complex than those in 

vervets and macaques.  These results suggest that greater “computational power” comes 

in the form of more complex and spinous dendrites in the frontal corticies of species that 

we associate with larger behavioral repertoires.  Following this logic, one might 

hypothesize that a phylogenetically recent neuron type such as the von Economo neuron, 

found only in great ape and human frontal cortex, would have more extensive dendritic 

arborizations than the surrounding, presumably more primitive, pyramidal cells.  
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However, we found that von Economo neurons have fewer spines, fewer intersections, 

and overall, less dendritic length than their layer 5 pyramidal counterparts, which 

suggests that the von Economo cells receive, and therefore integrate, fewer inputs than 

pyramidal neurons.  However, it is also possible that the mode of afferent input is 

different in VENs, which could also account for these differences in structure. Evidence 

suggests that a substantial amount of communication to the VENs is extrasynaptic (for 

more discussion, see below). Extrasynaptic transmission renders dendritic and spinious 

compartmentation superfluous, and could account for the sparse dendritic architecture of 

the VENs. 

Although we show that the dendritic tree of the average VEN is sparser than that 

of the average pyramidal cell, previous research shows that the cell bodies of VENs in 

ACC are, on average, 4.6 times larger than that of layer 5 pyramidal cells in this area 

(Allman et al, 2002).  The VENs’ large size suggests that they bear large, rapidly 

conducting axons, which is a characteristic feature of big neurons in layer 5 elsewhere in 

the cortex (Allman et al, 2002; Sherwood et al, 2003). The VENs contain an abundance 

of non-phosphorylated neurofilaments, which is characteristic of neurons bearing large 

axons (Hof et al, 1996; Nimchinsky et al, 1995, 1996). Lipophilic dye injected into the 

anterior part of the cingulum bundle backfills VENs in ACC, thus indicating that they 

project axons into the white matter (Nimchinsky et al, 1995). Thus the function of the 

VENs may be to provide a rapid relay to other parts of the brain of a simple signal 

derived from information processed within FI and ACC. However, it is not known where 

the VENs ultimately project. Studies in monkeys indicate that ACC is connected to 

prefrontal, orbitofrontal, insular and anterior temporal cortices and to the amygdala, 
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hypothalamus, various thalamic nuclei, and the periaqueductal gray (Öngür and Price, 

2000; Rempel-Clower and Barbas, 1998; Barbas et al, 1999; Cavada et al, 2000). 

 

2.5.2 Immunohistochemistry 

While the morphology and connectivity have a large bearing on a neuron’s 

computational properties, neuromodulators such as dopamine and serotonin are crucial as 

well.  In fact, the pattern of input a neuron receives is crucial to the morphology of the 

dendritic tree.  Input patterns guide outgrowth and pruning during development and serve 

to maintain a stable structure later (Cline, 2001; Wedzony et al., 2005; Wong and Ghosh, 

2002).  Thus, morphology and receptor expression are synergistic systems that endow a 

neuron with its particular functional role.  Pharmacological and electrophysiological 

studies provide links between the various receptors and animal behavior. Using 

immunohistochemistry, we were able to probe some of the receptor types that are 

strongly expressed in the von Economo cells, which in turn provides evidence with 

respect to the likely function of this population. 

2.5.2.1 Dopamine D3 receptor 

Our results indicate that the von Economo neurons, as well as a subpopulation of 

layer 5 pyramidal neurons, express the D3 dopamine receptor on their somas and apical 

shafts.  We found a similar pattern of labeling for the dopamine D5 receptor.  In contrast, 

antibodies against the dopamine receptors D2, D4, and D1 labeled the von Economo 

neurons weakly or not at all.  
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The dopaminergic system projects from the midbrain to the basal ganglia and 

the frontal cortex, and is the fundamental component of the reward systems that motivate 

action and signal error and uncertainty.  In mammals, there exist two classes of dopamine 

receptors. The D1 type activates adenylyl cyclase and includes the D1 and D5 receptors, 

while the D2 type inhibits adenylyl cyclase and includes D2, D3, and D4 and (Missale et 

al., 1998). Although some studies show that the two classes of dopamine receptors can 

act synergistically (Hopf et al., 2003), most indicate that they are opposed on the 

molecular (Aizman et al., 2000; Chase et al., 2004) and behavioral (Chase et al., 2004) 

levels.  For example, D1-class and D2-class agonists can inhibit or facilitate, respectively, 

pair bonding behavior in voles (Aragona et al., 2006). The von Economo neurons appear 

to express a receptor from each class (the D5 receptor is D1-like, and the D3 receptor is 

D2-like), which suggests a dose-dependent effect of dopamine on the cell’s output. 

The pattern of labeling we observed for both the D3 and D5 receptor is consistent 

with extrasynaptic transmission of dopamine. Extrasynaptic dopamine action at D3 

receptors, originally hypothesized because of the receptor’s high affinity (Levesque et al., 

1992; Sokoloff et al., 1990) and the disparity between dopaminergic innervation and 

dopamine receptor expression (Levesque et al., 1992), has been further substantiated by 

studies confirming that dopamine escapes the synaptic cleft during transmission (Garris 

et al., 1994; Venton et al., 2003), and that behavior can endogenously elicit changes in 

extrasynaptic dopamine (Wightman and Robinson, 2002). Our results are similar to the 

perisomatic immunolabeling of the D5 receptor reported by Paspalas and Goldman-Rakic 

(2004), who used electron microscopy to demonstrate that the receptors were localized to 

microdomains specialized for dopamine volume transmission. 
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The D3 receptor’s high (25 nm) affinity for dopamine (Sokoloff et al., 1990) 

may endow it with a special role in monitoring the expectation of reward under 

uncertainty (Sokoloff and Schwartz, 2002). When reward is uncertain, the dopamine 

neurons in the ventral tegmental area exhibit a steady ramp-like increase in activity 

associated with excited expectancy culminating in the receipt or non-receipt of the reward 

(Fiorillo et al, 2003). Receptors of varying affinity, such as the D3 and D5 receptors on 

the von Economo neurons, may serve to encode different aspects (i.e., uncertainty, error, 

and expected value) of the reward signal.  This is also consistent with fMRI activations in 

ACC and FI during decision making under uncertainty (Critchley et al, 2001), as well as 

with recent pharmacological, genetic, and behavioral studies that implicate the D3 

receptor in motivation when response requirements are high and in self-administration of 

rewarding drug stimuli in response to environmental cues (Le Foll et al., 2005). These 

paradigms – high response requirements, and learning based on contextual cues – 

increase the level of complexity in the task, and, consequently, the uncertainty that 

reward will be obtained.  Interestingly, in humans, performance on an intuitive 

probabilistic learning task varies depending on a polymorphism in the D3 receptor, a 

result consistent with the rodent studies (Keri et al., 2005).  

2.5.2.2 Serotonin 1b and 2b receptors 

As a neurotransmitter in the CNS, serotonin is involved in a plethora of cognitive 

processes, including mood, anxiety, pain, and aggression.  The breadth of these various 

processes may parallel the breadth of experience that occurs in the periphery, where it 

mediates smooth muscle growth, blood vessel constriction, and platelet aggregation, 

among other things (Fozard and Saxena, 1991).  Indeed, it has been estimated that 90% of 
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the body’s serotonin is manufactured not in the CNS, but in the chromaffin cells of the 

gastrointestinal system (Bueno, 2005).  Behaviorally, serotonin is known to be involved 

in aversive responses, which has led to development of models in which serotonin 

mediates the punishment component to learning in a manner complimentary to the 

encoding of reward by dopamine (Daw et al, 2002).  This model supports the hypothesis 

that the VENs participate in a circuit involved in adaptive decision making, because they, 

as well as a subpopulation of the surrounding neurons, strongly express at least two types 

of serotonin receptor. 

The VENs express the 5HT1b serotonin receptor on their somas and proximal 

dendrites.  Although we did not explore whether this type of receptor was coexpressed 

with dopamine D3 receptors on the same cell, it seems likely that this is the case, given 

its widespread presence in layer 5 neurons and that activation of this receptor is known to 

inhibit dopamine release in striatal synapses (Sarhan et al., 1999; Sarhan et al., 2000).  

This particular receptor subtype appears to mediate behavioral inhibition.  Application of 

a 5HT1b antagonist or knocking out the receptor increases aggressive behavior 

(Bouwknecht et al., 2001) and sex drive (Rodriguez-Manzo et al., 2002) in rodents, while 

applying an agonist to the receptor has inhibits both types of behavior (de Almeida et al., 

2001; Fernandez-Guasti and Rodriguez-Manzo, 1992). 

Less is known about the 5HT2b receptor, the other serotonin receptor that we 

found to be strongly expressed in VENs.  This may be because this receptor is relatively 

rare in the central nervous system (Baumgarten and Göthert, 1997), although it is 

strongly expressed in the human stomach and intestines.  The gastrointestinal serotonin 

2b receptor promotes contractions of the smooth muscles responsible for peristalsis, a 
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role which appears to be restricted to humans (Borman et al., 2002).   Serotonin may 

serve as an antagonistic signal to dopamine, with serotonin signaling punishment and 

dopamine signaling reward (Daw et al, 2002). The activation of the serotonin 2b receptor 

on Von Economo neurons might be related to the capacity of the activity in the stomach 

and intestines to signal impending danger or punishment (literally “gut feelings”) and 

thus might be an opponent to the dopamine D3 signal of reward expectation. The 

outcome of these opponent processes could be an evaluation by VENs of the relative 

likelihood of punishment versus reward and contribute to “gut level” or intuitive decision 

making in a given behavioral context. ACC and FI are known to have an important role 

in interoception or the conscious awareness of visceral activity (Craig, 2004). Indeed, 

evidence shows that an insult to the periphery, such as a challenge to the immune system, 

can result in a change in serotonin level in the frontal cortex (Gardier et al., 1994).  

Conversely, the duration of social interaction, which requires rapid, context-dependent 

behavioral adaptation, is altered via manipulations of the 5HT2b receptor in rats (Duxon 

et al., 1997). In his theory of “somatic states,” Damasio (1995) proposed that this 

monitoring of sensations arising from the gut is crucial to adaptive decision making. The 

presence of a serotonergic receptor type on the von Economo cells that is otherwise rare 

in the brain but strongly expressed in the intestinal tract suggests an interesting extension 

of the concept that these areas are monitoring activity in the gut.  Perhaps the expression 

of the serotonin 2b receptor on the von Economo cells represents a transposition of this 

monitoring function from the gut into the brain, which would enable the organism to 

react much more rapidly to potentially threatening circumstances than if that individual 

depended solely on sensations arising from the gut.  In other words, the strong serotonin 
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2b expression in the von Economo cells could be a model of the gut reaction in the 

brain that could enhance rapid decision making. 

This immunohistochemical profile dovetails nicely with the fMRI literature, 

which, due to the highly localized distribution of the VENs, also provides information 

regarding the types of behaviors that involve the VEN regions.  For example, ACC and 

FI are active when subjects make decisions under a high degree of uncertainty (Critchley 

et al, 2001). These areas are involved in the subjective experience of pain (Singer et al, 

2004a), which is powerfully magnified by uncertainty. These areas are also active when 

subjects experience guilt, embarrassment and engage in deception (Shin et al, 2000; 

Berthoz et al, 2002; Spence et al, 2001). ACC and FI are also active in humor (Allman et 

al., 2005), trust, empathy, and the discrimination of the mental states of others (Singer et 

al, 2004a; Singer et al, 2004b, Baron-Cohen et al, 1999). All of these social emotions are 

influenced by the degree of uncertainty involved.  

As of yet, we do not know the mechanisms responsible for the differentiation of 

the complex social emotions that activate FI and ACC, but we do know that the VENs are 

a recently evolved population that probably serves to relay output of the processing 

within FI and ACC to other brain structures. Their large size suggests that the VENs may 

relay a fast intuitive assessment of complex social situations to allow the rapid 

adjustment of behavior in quickly changing social situations. They can thus be seen as an 

adaptation supporting the increased complexity of hominoid and especially human social 

networks. This is reflected in evidence that the capacity for empathy is better developed 

in chimpanzees than in monkeys (Preston and DeWaal, 2002). We hypothesize that the 

VENs and associated circuitry enable us to reduce complex social and cultural 
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dimensions of decision making into a single dimension that facilitates the rapid 

execution of decisions. Other animals are not encumbered by such elaborate social and 

cultural contingencies to their decision making and thus do not require such a system for 

rapid intuitive choice. We are not suggesting that animals lacking VENs lack intuition, 

but rather that the VENs are a specialization that facilitates rapid intuitive decisions in 

complex, often social situations. 
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3 Brain Activation During Sight Gags and Language-

Dependent Humor 

 

3.1 Abstract 

Humor is a hallmark of human discourse.  People use it to relieve stress and to 

facilitate social bonding, as well as for pure enjoyment in the absence of any apparent 

adaptive value.  Although recent studies have revealed that humor acts as an intrinsic 

reward, which explains why people actively seek to experience and create humor, few 

have addressed the cognitive aspects of humor.  We used event-related fMRI to 

differentiate brain activity induced by the hedonic similarities and cognitive differences 

inherent in two kinds of humor:  visual humor (sight gags) and language-based humor.  

Our findings indicate that the brain networks recruited during a humorous experience 

differ according to the type of humor being processed, with high-level visual areas 

activated during visual humor and classic language areas activated during language-

dependent humor. Our results additionally highlight a common network activated by both 

types of humor that includes the amygdalar and midbrain regions, which presumably 

reflect the euphoric component of humor. Furthermore, we found that humor activates 

anterior cingulate cortex and fronto-insular cortex, two regions in the brain that are 

known to have phylogenetically recent neuronal circuitry. These results suggest that 

humor may have co-evolved with another cognitive specialization of the great apes and 

humans:  the ability to navigate through a shifting and complex social space.  
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3.2 Introduction 

The phenomenon of humor is universal among humans (Buss, 1988; Caron, 2002; 

Miller, 2000) and regarded by some as uniquely human (Bergson et al., 2003; Caron, 

2002).  Humor may have evolved to function as a coping mechanism.  Freud (1960) 

posited that laughter served to discharge the accumulation of internal tension, an 

interpretation consistent with empirical observations of humor-induced stress reduction 

(Berk et al., 1989).  In clinical contexts, “laughter therapy” is used to increase pain 

tolerance (Weisenberg et al., 1995) and immune function (Bennett et al., 2003; 

McClelland and Cheriff, 1997).   

Humor also has a strongly social aspect, and in fact, measurements of 

extroversion in human subjects have been found to correlate with humor-elicited activity 

in reward regions as measured by functional magnetic resonance imaging (Mobbs et al., 

2005).  People are more likely to laugh when part of a crowd than in isolation (Devereux 

and Ginsburg, 2001; Fridlund, 1991; Smoski and Bachorowski, 2003), and a “sense of 

humor” in an individual may help raise that individual’s social status (Salovey et al., 

2000), increase that individual’s social support network (Salovey et al., 2000), facilitate 

pair bonding in romantic relationships (Bippus, 2000; Ziv and Gadish, 1989), and attract 

compatible mates  (Bressler and Balshine, 2005; Bressler et al., in press; Buss, 1988; 

Cann et al., 1997; Miller, 2000; Murstein, 1985). The role of humor in some of these 

social interactions has been proposed to differ according to gender (Bressler and 

Balshine, 2005; Bressler et al., in press; Nusbaum et al., 2006; Smoski and Bachorowski, 
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2003; Ziv and Gadish, 1989), and, intriguingly, a recent fMRI study suggests 

differences in brain activity in men and women during the perception of humor (Azim et 

al., 2005). 

Presumably, the draw towards those who make us laugh is derived from the 

subjective pleasure that is inherent in a humorous experience.  Recent imaging papers 

shed light on this aspect of humor by revealing that humor activates the ventral 

tegmentum and the ventral striatum (Mobbs et al., 2003), as well as regions associated 

with emotion, such as the amygdala and insular cortex (Moran et al., 2004).  Thus, like 

the taste of fruit juice (Berns et al., 2001), the sight of an attractive face (Aharon et al., 

2001; O'Doherty et al., 2003a), or the scent of vanilla (Gottfried et al., 2002), humor 

activates components of the system involved in reward processing.   However, because 

humor differs from primary rewards in its cognitive complexity and abstract nature, we 

may also expect activity in “higher-order” reward regions that mediate association 

formation and learning.  Such regions are thought to be located in frontal cortex, such as 

the site of ventromedial activation observed by Goel and Dolan (2001), as well as frontal 

pole, where damage results in a disturbance in the affective response to humorous 

cartoons and jokes despite retention of the ability to discriminate humorous from non-

humorous stimuli (Shammi and Stuss, 1999).   

The rewarding aspect of humor is only part of the humor phenomenon, however. 

In order to appreciate a joke, you must first “get” the joke.   What exactly is this cognitive 

mechanism that precedes the mirthful aspect of humor?  Some researchers posit that 

humor requires an element of incongruity or cognitive conflict (Coulson and Williams, 

2005; Suls, 1972).  Indeed, an ERP study by Coulson and Williams (2005) indicates that, 
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compared to non-joke stimuli, jokes presented to the left hemisphere elicit larger 

amplitude N400s, a hallmark of cognitive conflict. Although the slow time resolution of 

fMRI somewhat hampers the disentanglement of the cognitive from the rewarding 

aspects of humor, Moran, et al.’s (2004) study used popular television sitcoms as 

humorous stimuli to gain some insight into this question.  They used the onset of a laugh-

track as a marker between humor comprehension and appreciation epochs. By observing 

activation two seconds prior to the onset of laughter, the authors found that brain activity 

during humor comprehension is distinct from that of humor appreciation, and is 

characterized by left lateralized activation in the left posterior temporal gyrus and left 

inferior frontal gyrus.   

The affective dimension of humor appears to generalize across modalities; past 

studies have used both static and dynamic visual imagery (comics and film clips) to elicit 

humor, as well as auditory delivery of jokes.  Some models (Suls, 1972) predict that the 

re-establishment of coherence – that is, the process of discarding prior assumptions and 

reinterpreting the joke in a new context -- is crucial to the comprehension of humor.  If 

this is correct, then one should observe increased activation during the re-interpretation 

that is associated with the modality in which the humor is conceived.  Goel and Dolan 

(2001) broached this question by observing activation associated with different types of 

auditory humor:  semantic jokes and puns.  They did indeed find differentiation between 

the two types of jokes.  However, the anatomical sites of semantic and phonological 

processing are not always easily differentiated, which leaves this result open to 

interpretation. 
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In the present study, we used cartoons from “The Far Side” and “The New 

Yorker” to study brain activation specific to the type of humor portrayed.  In cartoons 

containing language-independent “sight-gag” humor, the humorous element is often a 

visually improbable predicament, social scene, or action that violates a viewer’s initial 

expectations or assumptions.  In cartoons containing language-based humor, the humor 

may be derived from incongruity between the picture and its descriptive caption, or from 

a verbal deviation from social norms.  Although both types of funny cartoons contain 

similar levels of complexity, make similar demands on the low-level visual system, and 

elicit similar feelings of mirth, the cognitive aspect of “getting the joke” differs 

depending on the sort of incongruity (sight vs. semantic) that needs to be reconciled.  

This in turn should lead to distinctly different activation patterns associated with the 

different types of humor.  Inversely, both types of humor should produce the same 

affective result.  Thus, as in previous studies, we expect both language-based and sight-

gag humor to increase activity in regions associated with reward and emotion, 

particularly the substantia nigra, nucleus accumbens, amygdala, and insular cortex. 

The speculation that humor may be a uniquely human cognitive trait (Bergson et 

al., 2003; Caron, 2002) prompted our third hypothesis:  Humor will activate both anterior 

cingulate cortex (ACC) and fronto-insula cortex (FI), the two regions in which an 

evolutionarily recent neuron type, the Von Economo cells (previously termed “spindle 

neurons”), are present (Allman et al., 2002; Allman et al., 2005).  A review of the 

functional imaging literature reveals that the Von Economo cell regions, particularly FI, 

are active while reversal learning (O'Doherty et al., 2001), decision making under 

uncertain conditions (Critchley et al., 2001), and observing bizarre images of 
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animal/object chimeras (Michelon et al., 2003).  Like humor, these paradigms involve 

incongruity detection and reappraisal, and provided the impetus to formally test the 

hypothesis that humor activates the Von Economo regions ACC and FI.   

 

3.3 Materials and methods 

3.3.1 Subjects 

Twenty right-handed healthy volunteers (median age 26 years, range 20-61 years, 

eight female) gave written consent to participate in this study.  Four subjects were 

discarded from analysis for having three or fewer ratings of “very funny” across all trials.  

All subjects were fluent English speakers and had normal or corrected-to-normal vision.  

None had a history of psychiatric illness, and they took no regular medication.  The study 

was approved by the Caltech Internal Review Board. 

 

3.3.2 Stimuli 

Stimuli consisted of 100 line drawing cartoons from “The Far Side” by Gary 

Larson (47 cartoons), or the New Yorker Magazine (various authors, 53 cartoons).  50 of 

these drawings had been altered slightly so that the humorous element was removed – 

these were intended to serve as controls for those cartoons found to be humorous.  In a 

preliminary study, we gathered funniness ratings on a scale of 1-10 for each drawing, 

both with and without captions.  From this pilot study, we selected 25 “language-

dependent” cartoons, which had mean ratings that were more than one standard deviation 
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away from their original mean rating in absence of a caption.  25 cartoons that were still 

within one standard deviation from their mean rating after the caption was removed were 

categorized as “sight-gag” stimuli, meaning that the humorous element was in the 

drawing itself, not the caption.  Control groups of non-humorous cartoons were selected 

for each category, language-dependent and sight gag, so that the average number of 

words in the baseline (unfunny) group was not significantly different from the average 

number of words in the funny group.  Thus, although each subject rated each cartoon 

separately, there were 50 canonically funny stimuli, as determined by the pilot study, and 

50 canonically non-funny control stimuli.  Of the 50 canonically funny stimuli, half were 

language-dependent and half were “sight-gag.” 

 

3.3.3 Task 

The experiment consisted of an event-related design.  Cartoons were presented in 

random order to subjects, with an interstimulus interval of 300, 600, or 900 ms.  We used 

this short ISI in order to avoid disrupting the “flow” of the humorous stimuli, which we 

feared might generate a feeling of impatience or anticipation in the subject.  Studies 

suggest that, as long as the ISI is not fixed, using short ISIs can maintain sufficient 

statistical power in fMRI studies (Elston et al., 1999; Seymour et al., 2004).  Subjects 

were told to observe each cartoon and rate how funny they found it to be, any time after 

the “rating” cue appeared, four seconds after the stimulus onset. Ratings were done via 

button box, with one being “very funny,” four being “not funny at all,” and two and three 

indicating that it was somewhere in between (note that, due to the limitations of the 

button box, this rating scale is different from the 1-10 scale used in the pilot study). 
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3.3.4 Imaging procedure 

The functional imaging was conducted by using a 3 Tesla Siemens Trio MRI 

scanner to acquire gradient echo T2* weighted echo-planar images (EPI) with blood 

oxygenation level (BOLD) contrast (TR = 2 s, TE=30 ms, flip angle = 90 degrees).  Each 

functional volume consisted of 32 axial slices of 3.2 mm thickness and 3 mm in-plane 

resolution.   Axial slices were acquired 20 degrees above the AC-PC line for each subject 

to minimize distortion and dropout in the orbitofrontal cortex area.  A T-1 weighted 

structural image was also acquired for each subject using an MP Rage sequence 

(Siemens). 

 

3.3.5 Imaging analysis 

The images were analysed using SPM2 (Wellcome Department of Imaging 

Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm/).  In order to correct for 

subject motion, the images were realigned to the first volume.  Slice timing correction 

was applied and images were spatially normalized to a standard MNI template.  Spatial 

smoothing was applied using a Gaussian kernel with a full width at half maximum 

(FWHM) of 8 mm.  Following pre-processing, statistical analysis was carried out using a 

general linear model, in which each interval (stimulus onset to response time) was 

convolved with a canonical hemodynamic response function.  Analysis of the subjects’ 

behavior indicated that reaction times for an intermediate score (three on the scale of one 

to four) were significantly longer (p<0.05), possibly because of the cognitive effort 
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required to assign a score in this intermediate range.  For this reason, only those 

cartoons which were rated with a one (least funny) or a four (most funny) by the subject 

were contrasted when exploring the main effect of humor, although all four scores were 

included as regressors.  We additionally undertook a parametric analysis, in which linear 

increases in BOLD activation were correlated with the subjective rating of each image. 

To look at modality-specific activation, we compared activation during the 

language-dependent funny cartoons and the visually funny cartoons (25 each), as 

determined in the pilot study, versus two matched unfunny cartoon control conditions (25 

each).  Control cartoons were selected for each group so that the average number of 

words in the cartoon did not differ significantly between funny and nonfunny control 

conditions.  Head movements as determined by the motion correction preprocessing step 

were used as regressors of no interest. We performed a two way ANOVA, which allowed 

us to parse the main effects of cartoon humor (funny vs. not funny), the main effects of 

cartoon type (visual vs. verbal), and the interaction between the two factors.  To identify 

directionality of the response [i.e., (language modulated humor) > (visually modulated 

humor) and vice versa], we subsequently performed t-tests.  We additionally calculated 

the difference in betas [(βlanguage humor – βlanguage  controls) – (βvisual humor – 

βvisual controls)], and vice versa, for each subject at the peak voxel for each of these 

contrasts in order to generate the population means.  To determine the betas at these 

voxels, the peak voxel from each of the two second level t-tests was used as the center of 

a sphere with a radius of 10 mm.  For each individual, we then found the peak voxel 

within this sphere and recorded the betas for all four regressors to determine population 

means. 
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Regions of activity were determined using a human brain atlas (Duvernoy, 

1991). The SPM-based toolbox MarsBaR (Brett et al., 2002) was used to perform ROI 

analyses.  We used canonical, MNI-atlas based regions of interest (ROIs) for corrections 

of the caudate, putamen, globus pallidus.  Small volume correction for nucleus 

accumbens was accomplished by centering a sphere of 6.4 mm radius (based on reports 

that the mean volume of the structure is 1.1 cc in a group of normal human controls 

(Deshmukh et al., 2005)) at the coordinates (6, 2, -4) and (-6, 2, -4) as reported by 

Mobbs, et al. (2003).  A ROI for ACC was delineated in order to approximate 

Brodmann’s area 24.  We drew a line connecting the genu and splenium on an average 

image created from the 16 normalized anatomical images.  The extension of a 

perpendicular at the midpoint of this line across the cingulate cortex marked the posterior 

boundary of our anterior cingulate ROI.  In the case of FI small volume correction, 

unnormalized anatomical scans for each individual were imported into MRIcro.  The 

experimenter with extensive experience in locating region FI in human brain histology 

preparations (JMA) demarcated region FI on each anatomical scan.  Normalizing and 

then averaging these images provided a region of interest used for small volume 

correction in MarsBaR.   

 

3.4 Results 

3.4.1 Behavior 

Four subjects were discarded from analysis for having three or fewer ratings of 

“very funny” across all trials.  Across the remaining 16 subjects, 19% of cartoons were 
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scored as “very funny” and 40% scored as “not funny at all.”  Of those cartoons rated 

“very funny,” about half were Far Side (mean 46.3%, s.d 10.9). There was no significant 

difference in ratings between Far Side and New Yorker cartoons (Far Side mean rating = 

1.82, 0.28 s.d., New Yorker mean rating = 1.80, s.d. 0.21), nor was there a significant 

difference in the number of language and the number of visual cartoons selected as funny 

(p = 0.90; Figure 10a).   Mean ratings for the canonically humorous cartoons (as 

determined in the pilot study) were significantly higher than the mean ratings for control 

cartoons (p<0.01, Figure 10b).  Mean ratings for language-dependent and visual cartoons 

were not significantly different. Reaction times (mean 7.04 s, 2.95 s.d.) for cartoons rated 

“very funny” and “not funny at all” were not significantly different, though reaction times 

for an intermediate score of 3 on a 1-4 scale were significantly higher.  
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Figure 6  (a) Mean distribution of trial types across rating (1-4, with 4 being the most funny) and category 
(language based, red; visual, blue) for all 16 subjects. (b) Mean score (1-4, with 4 being the most funny) for each 
cartoon, computed across the 16 fMRI subjects.  Cartoons 1-25 (red block) were canonically funny language 
cartoons, as determined in the pilot study, and cartoons 26-50 (blue block) were canonically funny visual cartoons.  
Cartoons 51-75 (pink block) were control language cartoons, while cartoons 76-100 (light blue block) were control 
visual cartoons.  Note the relatively low mean scores of the control cartoons relative to funny cartoons.

3.4.2 Functional imaging 

As predicted, comparison of the humor versus control states revealed activation in 

both of the Von Economo cell regions:  bilateral fronto-insula (right, p<0.03; left, p<0.01; 
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Figure 7  (a)  Coronal view of anterior cingulate (ACC) and fronto-insula (FI) cortex ROIs (yellow) overlaid 
on an average of the subjects’ anatomical images.  (b)  Coronal slice showing regions with significant 
(p<0.001, uncorrected) increases in activity with increasing ratings of funniness.  (c)  Relative percent 
change in ACC across all subjects.  Error bars represent S.E.M.  (d)  Relative percent change in FI across all 
subjects.  Error bars represent S.E.M.

corrected for corrected for multiple comparisons across a small volume of interest) and 

left anterior cingulate cortex (p<0.03 corrected for multiple comparisons across a small 

volume of interest) (Figures 11 and 12). Additional activation was similar to that reported 

earlier, namely an extended network involving the limbic system and reward areas:  

bilateral putamen, bilateral nucleus accumbens, and left insula all survived small volume 

correction (p<0.05).   
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Figure 12  Timecourse of activation for (a) frontoinsula and (b) anterior cingulate cortex.  Responses to 
those images rated as “most funny” are shown in red, and those rated “least funny” are shown in blue.  Bars 
denote S.E.M. 
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The parametric analysis, which we undertook to explore which areas of activity 

covaried with the funniness ratings, yielded results similar to those of the funny vs.  

unfunny contrast described above. Regions of covariance included bilateral superior 

temporal sulcus, substantia nigra, and caudate; left putamen; left superior frontal gyrus, 

including dorsolateral prefrontal cortex; and left hippocampus and entorhinal cortex 

(p<0.0005; Table 3).   Bilateral anterior cingulate cortex, fronto-insula, and insula proper 

all suvived small volume correction for the parametric model (p<0.03), as did caudate, 

putamen, nucleus accumbens, and amygdala (figure 13).  Using a two-way t-test, we 

found sex differences in the parametric response similar to those found by Azim and 

others (2005), with women having greater activity in the middle frontal gyrus, inferior 

temporal lobe, posterior cingulate, and fusiform gyrus, among other places (p<0.005 

uncorrected; figure 14). There were no regions with significantly greater activity in men 

compared to women. 
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Brain region L/R coordinates (x  y  z) of peak voxel Z-score 
superior temporal sulcus L, R -48 -60  20 5.56 
middle temporal gyrus R  56  12 -22 5.45 
substantia nigra R, L   6  -6 -12 5.36 
superior parietal gyrus L  -2 -56  46 5.09 
hippocampus L -60 -14 -22 4.78 
entorhinal area L -30 -4 -30 4.7 
superior temporal gyrus L, R -58  14  -8 4.68 
superior frontal gyrus, perigenual 
anterior cingulate gyrus* 

L  -6  56  36 4.64 

head of caudate L, R  -6  -2  12 4.62 
putamen L -18   6  -4 4.51 
dorsal anterior cingulate gyrus* R   2  10  32 4.45 
temporal pole,  anterior insula** L -42 28 -24 3.91 
 
Table 3  Brain regions that display increasing activation with increasing scores of “funniness.” 
(p<0.001). *includes anterior cingulate gyrus.  **includes fronto-insula. 

 
 

 
Figure 8  Coronal views of group contrast map for activity that correlates linearly with cartoon rating 
(increased activity with higher rating of funniness). 
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A two-way ANOVA revealed the differences in activity due to the main effects 

of humor, the main effects of humor type, and the interaction between these two factors 

(Figure 15). Interaction effects between the language-dependent and sight-gag humor 

categories revealed the functional dissociation between the two different types of humor 

(Figures 16 and 17, Table 4).  Activity that was elicited by language-based humor 

compared to visual humor included the middle temporal gyrus, the inferior frontal gyrus, 

and the inferior temporal gyrus, regions functionally defined as Wenicke’s area, Broca’s 

area, and the basal temporal language area, respectively (Table 4a) (Benson, 1993; 

Friederici, 2002; Just et al., 1996).  Application of a liberal probability threshold (p<0.05, 

uncorrected for multiple comparisons), suggested a more extended region of activity in 

the middle temporal gyrus that extended up the length of the temporal lobe (Figure 18).   
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Figure 9  Statistical parametric analysis in which women had greater activity than men, 
overlaid on the average of the female structural scans (p<0.005, uncorrected).  Similar to 
results reported by Azim and others (2005), regions included bilateral middle frontal gyrus 
and primary visual cortex, left medial orbitofrontal cortex (gyrus rectus and medial orbital 
gyrus), superior frontal gyrus, and inferior temporal cortex, and right posterior cingulate 
(ordered from most to least significant; not an exhaustive list).  Right, but not left, nucleus 
accumbens was more active in women than men after ROI analysis as described in methods 
(p<0.05, corrected over small volume of interest).  This differs from previously described 
results, which found the nucleus accumbens to be the site of greatest activation difference 
between sexes (Azim et al., 2005) 
 

 

 



 
56 

 
Figure 10  Surface projections of color-coded statistical parametric maps (SPMs) the results of a two-way 
ANOVA (p<0.005, uncorrected) overlaid onto canonical single-subject anatomic rendering.  Green 
indicates the main effect of humor (humorous cartoon vs. control), blue indicates the main effect of 
cartoon type (language vs. visual), and red indications regions for which there is an interaction between 
these two effects.  Violet indicates the regions that show variations in activity according to cartoon type 
(language vs. visual) as well as to the interaction.  Trials were parsed into categories (funny or not funny, 
visual or language; 25 trials of each type) in a canonical fashion for all subjects.
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Figure 11  Surface projections of color coded statistical parametric maps (SPMs) showing the 
results of second-level t-tests (p<0.005, uncorrected) overlaid onto canonical single subject 
anatomic rendering.  Blue indicates those regions where [(visual humor – visual control) > 
(language-based humor > language-based control)];  red indicates the opposite. 
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Figure 17  (a) Replication of surface projection from Figure 17, with peak voxel modulated by 
visual humor > language humor indicated by the cyan arrowhead.  (b)  Mean differences in betas 
across all subjects for the voxel indicated in a.  Red bar, differences in betas for funny trials 
minus the betas for control trials for language-based cartoons; blue bar, differences in betas for 
funny trials minus betas for control trials for sight-gag cartoons.  (c)  Replication of surface 
projection from Figure 4, with peak voxel modulated by language humor > visual humor 
indicated by the yellow arrowhead.  (d)  Mean differences in betas across all subjects for the 
voxel indicated in c.  Red bar, differences in betas for funny trials minus the betas for control 
trials for language-based cartoons; blue bar, differences in betas for funny trials minus betas for 
control trials for sight-gag cartoons.  Note differences in y-axis scale between (b) and (d).  Error 
bars represent S.E.M. in both graphs.

In contrast, the reverse comparison [(visually funny cartoons – visual controls) > 

(language based funny cartoons – language controls)], activated broad swaths of bilateral 

higher-order visual cortex, including the horizontal posterior segment of the superior 

temporal sulcus, the middle occipital gyrus, and the precuneus (Table 4b, Figures 16, and 

17).   
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Figure 18  Surface rendering of brain regions for which language humor is greater than visual humor 
(p<0.05, uncorrected).
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Table 4 a 
 
Brain region L/R coordinates (x y z) of peak voxel Z-score 
inferior temporal gyrus L -42  10 -42  3.75 
middle temporal gyrus L -52   4 -32  3.31 
inferior temporal sulcus L -50  -4 -30  3.18 
superior occipital gyrus R   4  -98  20  3.53 
superior occipital gyrus R  12  -98  28  3.10 
cuneus L, R  14  -98   8  3.00 
transverse occipital sulcus L -14  -94  -2  2.78 
fourth occipital gyrus L -14  -86 -14  3.27 
inferior frontal gyrus, pars 
triangularis 

L -58  32   6  3.18 

superior temporal sulcus L, R -64  -26   0  3.10 
inferior occipital gyrus L, R -24  -92 -22  3.07 
subiculum L -14  -16 -20  3.03 
parahippocampal gyrus L -10  -14 -28  2.86 
short insular gyrus L -32  2  8  2.82 
 
Table 4 b.   
Brain region L/R coordinates (x y z) of peak voxel Z-score 
precuneus R   6  -62  48  5.03 
superior temporal sulcus, 
horizontal posterior segment 

L, R -38  -76  20  4.94 

middle frontal gyrus L, R -36  26  44  4.70 
inferior temporal gyrus R  60 -48 -10  4.60 
inferior frontal gyrus L, R -30  62   0  4.60 
anterior orbital gyrus L -28  52 -16  3.38 
superior temporal gyrus R  48  20 -18  4.41 
fronto-insula R  38  18 -14  2.72 
superior frontal sulcus R  26  18  62  3.42 
middle occipital gyrus L -38 -90  -4  3.87 
anterior orbital gyrus R  26  38 -20  3.70 
middle frontal gyrus R  42  24  38  3.50 
inferior occipital gyrus R  38 -86 -14  3.43 
fourth occipital gyrus R  32 -94 -14  3.39 
thalamus L  -8 -12  16  3.39 
fusiform gyrus L, R -26 -40  -8  3.38 
posterior cingulate gyrus R   6 -48  24  3.21 
lateral occipital sulcus R  38 -90   2  3.20 
lateral orbital gyrus L -46  46 -18  3.11 
 
Table 4   Atlas coordinates (in MNI space) and z-scores of peak activation during the cartoon task for the 
interaction between the “sight gag” and “language-dependent” categories.  Table 2(a) lists regions for 
which [language-dependent humor (funny – unfunny) > sight-gag humor (funny – unfunny)], i.e., regions 
of activation for which language-based humor is significantly greater than sight-gag humor. Table 2(b) lists 
regions for which  [Sight-gag humor (funny – unfunny) > language-dependent humor (funny – unfunny)], 
i.e., regions more strongly activated by sight-gag humor than by language-based humor (all comparisons 
p<0.005, uncorrected, cluster>10 voxels).   
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Brain region L/R coordinates (x y z) of peak voxel Z-score 
midbrain L -10 -24 -12  4.61 
amygdala L/R -28  -4 -30  4.13 
hippocampus L -22 -24 -12  3.93 
fusiform gyrus L -48 -56 -20  3.78 
superior temporal sulcus  L/R  66 -40  10  3.54 
middle temporal gyrus L -60 -54   2  3.39 
hypothalamus R   8  -4  -8  3.31 
subiculum R  14 -28  -6  3.19 
nucleus accumbens L -12   4   6  2.88 
inferior temporal gyrus R  32  -6 -40  2.87 
entorhinal area R  28   0 -34  2.85 
inferior frontal gyrus L -60  12   2  2.83 
 
Table 5  Atlas coordinates (in MNI space) and z-scores of peak activation from a conjunction analysis of 
both visual humor and language based humor [(language funny – language unfunny) and (visual funny – 
visual unfunny)]. 
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Figure 19  Coronal view of activity elicited in both language-dependent (funny – control) and visual 
(funny – control) humor (p<0.005, uncorrected, for both). 

 

 Analysis of the conjunction of the two humor types [(language humor – language 

controls) ∩ (visual humor – visual controls), all thresholded at p<0.005, cluster size > 20] 

revealed activity in several hedonic regions, including the midbrain and amygdala (Table 

5, Figure 19). 

 

3.5 Discussion 

The results reported here demonstrate the disparate mechanisms underlying the 

euphoric and cognitive aspects of humor.  Specifically, we show that language-dependent 

cartoons elicit activity in classical language areas in the left temporal lobe, while sight-

gag cartoons elicit activity in higher-order visual areas.  We additionally demonstrate that 
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both types of humor result in increased activity in reward and emotion related areas, 

including the nucleus accumbens and the amygdala. 

The two stage model of humor consists of an initial recognition of incongruity 

(surprise), and the subsequent reinterpretation of the incongruent situation into a coherent 

whole (framework shifting) (Suls, 1972).   This suggests that the details relevant to the 

humor require additional processing, possibly engaging feedback loops between lower 

level sensory areas and regions in frontal cortex associated with attention and executive 

function.  Consistent with this model, our data show that cognitive processing during the 

experience of humor is domain specific, with increased activation in the modules most 

relevant to the element from which the humor is derived.   

Sight-gag humor is dependent on visual incongruities between several elements in 

the cartoon. Functionally, our results show that the processing of sight-gag humor shows 

increased activation in higher-order visual regions bilaterally when compared to 

language-dependent humor, consisting of a large expanse of extrastriate regions beyond 

V2 (Tootell et al., 1996).  Interestingly, areas V1 and V2 are not more active during the 

funny cartoons than they are during the non-funny cartoons, suggesting that the activation 

elicited by visual humor is a result of top-down modulation, rather than an increase in 

sensory stimulation per se.  The strongest sites of activation were the precuneus and 

dorsolateral prefrontal cortex (BA 9/46), anatomically known as middle frontal gyrus.  

These two regions are associated with visual imagery (Ishai et al., 2000), contextual 

associations (Linden et al., 2003; Lundstrom et al., 2005; Rorie and Newsome, 2005),  

and conscious awareness of visual stimuli (Kjaer et al., 2001).  Evidence also exists that 

the precuneus is active during paradigms that require varied perspective-taking (Jackson 
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et al., In press; Ruby and Decety, 2001) or the recruitment of theory of mind (Gallagher 

et al., 2000), cognitive mechanisms that are similar to the re-interpretation step that 

precedes “getting” a joke.   

Interaction between frontal regions and stimulus-specific regions in the temporal 

lobe are thought to underlie recognition for faces (Haxby et al., 1994; Kanwisher et al., 

1997) and objects (Riesenhuber and Poggio, 2002). Our results are consistent with this, as 

frontal regions and higher visual areas act reciprocally to place the cartoons’ visual 

elements into a sensible context.  This requires various inferences about spatial and 

conceptual relationships between objects, based on information-sparse line drawings.  

This cognitive effort results in the relative activation of both the parietal “where” stream 

as well as the temporal “what” stream of visual processing, both of which act in concert 

with frontal regions that integrate this processing and hold relevant information in 

working memory (Ungerleider and Haxby, 1994).   

Activation that is present during language-dependent humor as opposed to sight-

gag humor is located in left-lateralized temporal and frontal corticies.  Left-hemispheric 

damage has long been associated with language deficits in regions associated with 

language processing, and the regions activated by language-dependent humor correspond 

strongly to classical language areas, including Broca’s area, anatomically described at 

inferior frontal gyrus; Wernicke’s area, including middle temporal gyrus and superior 

temporal sulcus; and the basal temporal language areas located in inferior temporal gyrus 

(Benson, 1993; Friederici, 2002; Just et al., 1996).  Surprisingly, language-dependent 

humor also elicited activation increases in the region of the occipital lobe corresponding 

to the primary visual areas.  This could arise either from increased visual input during 
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language humor, for example from a relatively large search pattern that includes both 

the caption and the picture, or from a relative suppression in primary visual activity 

during visual humor. 

Although it is clear that a dissociation exists between the mechanisms that 

underlie different forms of humor, our results also emphasize the common features that 

characterize various types of humor.  Our study replicates the results of past studies 

(Mobbs et al., 2003) that found heightened activity in a network of subcortical regions, 

including the nucleus accumbens and substantia nigra, thought to underlie the hedonic 

aspect of humor.  For most regions, this was true not only for an investigation of the main 

effect of humor, but also for a parametric analysis (observing correlations of activity in 

these regions with varying levels of reported amusement) and for a conjunction analysis 

between the two different types of humor (visual and language-based).  This further 

strengthens the evidence that humor acts similarly to primary rewards via the mesolimbic 

dopaminergic system.  We also observed amygdala activity in both the parametric and 

main effects analyses, which corroborates past results (Mobbs et al., 2003; Moran et al., 

2004).  Recent evidence supports a role for amygdala in the processing of rewards as well 

as aversive events (for review, see Baxter and Murray, 2002), and animal lesion studies 

show that an intact amygdala is necessary to link an object to a current (as opposed to 

consistent) reward value.  Amygdala activity may thus relate to the “re-interpretation” 

step in the Suls model and the associated update of the cartoon’s value.  Another 

interpretation of the amygdalar activity relates to the observation that patients with 

bilateral amygdala lesions fail to show normal changes in skin-conductive response 

(SCR) in a gambling task (Bechara et al., 1999).  Changes in somatic markers such as 
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SCR may be concomitant with, or a crucial feature of, humor, a phenomenon that could 

explain the observed activity in both the amygdala and the hypothalamus 

Regions of the brain highlighted in the conjunction analysis of language-based 

and sight-gag humor may reflect cognitive demands common to processing both types of 

humorous cartoons in addition to the hedonic component of humor.  For example, our 

conjunction analysis revealed activity in the superior temporal sulcus and middle 

temporal lobe, regions associated with face-perception (Desimone, 1991) and with the 

processing of social informational cues such as the assessment of gaze and head direction 

(O'Doherty et al., 2003b).  Inferior temporal gyrus is known to be associated with the 

semantic retrieval processes that occur when viewing line drawings (Mazard et al., 2005), 

and the hippocampus is also postulated to have a role in semantic processing under 

conditions of lexico-semantic ambiguity (Hoenig and Scheef, 2005).  In all of these cases, 

it is likely that we are seeing heightened processing of relevant stimuli in the funny 

cartoons in comparison with the non-humorous control cartoons, analogous to the 

increased activity we report in domain-specific areas during the processing of language-

dependent or sight-gag cartoons.   

We also report in this study that humorous cartoons activate the two regions in the 

human brain known to have Von Economo cells (von Economo and Koskinas, 1929), a 

specialization in neuronal morphology that has evolved in the last 15 million years 

(Allman et al., 2002; Allman et al., 2005; Nimchinsky et al., 1999).  Furthermore, we 

show that the BOLD response in these two regions, anterior cingulate cortex (ACC) and 

fronto-insula cortex (FI), is correlated with the subjective rating of funniness (see Figure 

13).  Humor involves both uncertainty (during the initial appraisal of the humorous 
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situation) and sociality (via laughter or other social signals), both of which have been 

shown to elicit activity in ACC and FI (Bartels and Zeki, 2004; Critchley et al., 2001; 

O'Doherty et al., 2003a; Shin et al., 2000; Singer et al., 2004a; Singer et al., 2004b).  We 

propose that the ability to appreciate humor is related to the ability to make rapid, 

intuitive assessments, a skill that would be particularly adaptive during the complex 

social interactions typical of the hominoids, and that the von Economo cells are a 

phylogenetic specialization in the circuitry that underlies such fast and intuitive decisions.  

It is the convergence of this fast intuition with a slower, deliberative assessment that 

creates the cognitive mismatch upon which humor is based.  A listener “gets” a joke the 

moment that the initial intuitive interpretation is updated, thus providing the input 

required to “re-calibrate” ACC and FI.  We propose that a similar mechanism enables 

fluent social interaction.  This is consistent with a recent study using a placebo paradigm, 

which suggests that the ACC and orbitofrontal cortex modulate expectation in a top-down 

manner (Petrovic et al., 2005).  Another interpretation involves the regions’ roles in 

mediating the autonomic changes that are likely to be induced by humor (Critchley, 2002; 

Critchley et al., 2001). Again, this is consistent with the activity we observed in the 

amygdala and hypothalamus, both of which have descending projections to autonomic 

output nuclei.  Critchley suggests that these two regions play a primary role in mediating 

autonomic changes. These various explanations are not mutually exclusive, since the 

changes in expectation that occur during humor are likely to be associated with 

fluctuations in anticipatory arousal states.  This could be the physiological correlate of the 

“release of tension” humor mechanism proposed by Freud (Freud, 1960). 
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4 Summary and Reflections 

4.1 Summary of results 

In the above body of work, I describe the anatomy of the von Economo neurons.  

I have shown that the VENs in fronto-insula and anterior cingulate cortex form a single 

population when characterized on the basis of their dendritic architecture, and that, using 

this same criteria, this population is distinct from pyramidal neurons.  In particular, I have 

shown that a typical VEN has a sparse dendritic tree, with less than half the total 

dendritic length of a typical pyramidal neuron. 

I have additionally shown that the VENs express a rich array of surface receptors, 

many of which implicate these cells in the mediation of social decision making (see 

below).  For example, I found that most VENs strongly express the D3 receptor, whereas 

only about half of the layer 5 pyramidal cells do, and that this expression is dense on the 

soma and on the apical dendrites.  Other notable discoveries include the VEN expression 

of the 5HT-1b receptor, and the 5HT2b receptor, the latter of which is the first described 

occurrence of this receptor on cells in the human brain. 

These results lend themselves to a hypothesis supporting the role of the VENs in 

fast decision making during uncertain circumstances, particularly in social contexts.  We 

probed this hypothesis functionally by doing an fMRI study of humor, which activated 

both FI and ACC. 
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4.2 The social cognition hypothesis 

In light of the above evidence, we hypothesize that the recently evolved von 

Economo neurons are a functional specialization of a circuit involved in making 

appropriate responses during quickly changing, ambiguous circumstances (Allman et al., 

2005). Links between the von Economo cells and interoception – including, literally, “gut 

feelings” – could provide the basis for their role in fast decision making in the absence of 

explicit reasoning.   In apes and humans, complex social interactions between 

conspecifics provide a forum in which this cognitive capacity would prove to be 

particularly useful.  This is because participants must rapidly synthesize an enormous 

number of relevant but often ephemeral informational cues in order to act appropriately.  

We thus propose that von Economo cells mediate the rapid assessments and behavioral 

modifications required for the successful navigation of social interactions.    

4.3 Future directions 

As with any body of research, more work needs to be done.  The receptor 

immunohistochemistry done in this paper is by no means exhaustive, and new antibodies 

are developed every year, increasing opportunities for exploration.  Double labeling of 

various receptors will indicate if they are co-expressed; for example, V1a vasopressin 

(see Appendix) and D3 colocalization would further implicate these cells in mediating the 

rewarding aspects of social bonding.  We can also further explore the role of the GTF2i 

protein that is absent in William’s syndrome patients and upregulated in humans 

compared to other primates (see Appendix).   

 



 
71 

There are also additional, basic questions about the VENs that could be 

addressed in the future.  For example, are the VENs inhibitory or excitatory?  Certainly 

all of the available evidence suggests that they are excitatory – for example, they are 

projection neurons, and have a receptor profile similar to other layer 5 pyramidal neurons 

– but with the successful application of an antibody that recognizes GAD or EEAC, this 

question may be definitively answered.  Another basic question that I was unable to 

explain during my tenure as a graduate student was the origin of the axon in these cells.  

In many Nissl-stained VENs, the axon appears to sprout from the side of the soma.  

However, confirming this will require either electron micrographs or the colocalization of 

axon-specific markers with somatic marker.  Given the confluence of axons in the grey 

matter, this is not a straightforward task, and may require the application of an antibody 

specific to the axon hillock itself.  Finally, I am extremely interested to see the results of 

the computational models of the von Economo Golgi stains.  Will the VENs have a 

distinctive physiological “fingerprint” as a result of their unusual dendritic morphology?  

And if not, what else might have driven the evolution of a new cell shape so late in 

phylogeny? 

There are additional ways to test the social cognition hypothesis (with respect to 

VENs) in addition to immunohistochemical and Golgi methods.   Stereological counts of 

the VENs will be illuminating, particularly performed on brains of donors who had 

pathological disorders involving social dysfunction:  autism, William’s syndrome, 

acallosal agenesis, and fronto-temporal dementia.  New and imaginative fMRI studies 

will bolster (or debunk) the hypothesis regarding FI and ACC coactivation during social 
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interactions.  Finally, lesion studies will permit us to assess whether damage to FI 

results in a selective deficit in social intelligence. 
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5 Appendix A –  V1a Receptor and GTF-2ii in the 

VENs 

Functional imaging paradigms associated with social behavior reliably activate 

both VE cell regions.  For example, both ACC and FI are active during the act of lying 

(telling untruths), and they are both active when a subject receives an unfair offer while 

playing the Ultimatum game(Sanfey et al., 2003; Spence et al., 2004).  Studies by Bartels 

and Zeki show both regions are active when subjects view the face of their love partner or 

child (Bartels and Zeki, 2000; Bartels and Zeki, 2004).  Singer and colleagues showed in 

2004 that both VE cell regions are active when a person feels empathy for pain, that is, 

when they know that their loved one, outside of the scanner, is being delivered an electric 

shock (Singer et al., 2004b).  Interestingly, the extent of activation an individual shows 

under these conditions is directly correlated to that individual’s score on a trait 

measurement for empathy.  Finally, in a separate study, Singer and colleagues 

demonstrated that left FI is specifically active when subjects view faces of individuals 

who are reported to behave in a trustworthy fashion (Singer et al., 2004a). 
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5.1 Vasopressin V1a 

Fortunately, there is an excellent 

molecular model that allows us to 

specifically implicate the von Economo 

neurons in these various social behaviors.  A 

body of work by Insel and Young indicates 

that the oxytocin and vasopressin V1a 

receptors mediate social bonding (Insel et al., 

1998; Lim et al., 2004; Young et al., 2001).  

Insel and colleagues also suggest that these 

molecules may interact with dopamine to 

impart the rewarding aspects of social 

bonding (Insel et al., 1998).  I tested adult 

human ACC and FI tissue for reactivity to 

antibodies raised against the vasopressin 

V1a, V1b, V2  receptors and oxytocin 

receptor.  My results show that the antibodies 

specific for the V1a receptor label a 

subpopulation of VE cells, as well as 

pyramidal neurons in layers 2/3 and 5 of ACC and FI (Figure 20).  V1b receptors, while 

apparent on a subpopulation of large pyramidal cells in layer 5 of ACC, did not label the 

VENs.  However, the pattern of labeling was interesting in that the apical dendrites 

 
 
Figure 12  VEN from ACC labeled with a V1a 
receptor antibody. 
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labeled with the V1b receptor antibody formed columns that spanned layer 5 to layer 1.  

The vasopressin V2 and oxytocin receptor antibodies did not reveal any specific labeling.  

 

5.2 GTF-2iRD1 

One of the most remarkable immunocytochemical findings for the VENs is their 

strong dendritic staining with the antibody to a gene product for the gene GTF2iRD1 (see 

Figure 21). This finding is the result of collaboration between the Korenberg and Allman 

labs. GTF2iRD1 together with GTF2i are duplicated genes which are part of the set of 

genes that are deleted in William’s syndrome (Pérez Jurado et al, 1998). The loss of this 

duplicated pair is associated with poor visuospatial abilities and possibly hypersocial 

behavior in this syndrome (Hirota et al, 2003; Korenberg, personal communication). 

GTF21RD1’s duplicate GTF2i is among the 25 most upregulated genes in an 

array of 7645 genes tested in a comparison between humans and chimpanzees (Preuss et 

al 2004). GTF2i expression is 2.5 to 4.2 times greater in humans than in chimpanzees. 

The gene products for GTF2i and GTF2iRD1 function both as transcription factors in the 

cell nucleus and signal transducers in the cytoplasm (Roy, 2001).  

In the VENs, the gene products extend far out into the dendrites where they may 

mediate interactions between the dendritic periphery and gene transcription in the nucleus 

(Figures 21 and 22).  This cytoplasmic labeling is constrained to layer 5 in humans and 

does not occur at all in monkeys.  In monkey tissue, the antibody for this gene product 

labels cell nuclei only, without layer specificity (Figure 21).  
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Figure 13.  Labeling for the protein product of GTF2i-RD1, a gene that is deleted in 
William’s syndrome.  (A)  Low power photomicrograph of human FI (16 year old male).  
Note extensive cytoplasmic labeling in layer 5.  (B) High power image of a labeled von 
Economo neuron from the same specimen as in (A).  (C)  Low power photomicrogaph of 
macaque frontal cortex labeled with the same antibody as in (A) and (B).  Note non specific 
nuclear labeling.  Scale bar applies to both (A) and (C).  (D).  High power photomicrograph 
of neurons from (C).  Scale bar applies to both (D) and  (B).   
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Figure 14  VENS and a pyramidal cell in ACC labeled with an antibody against the protein product of  
GTF2iRD1.  Scale bar applies to both images. 
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6 Appendix B – Table of Immunohistological Results 

Immunohistochemistry on human tissue is subject to inconsistencies that arise 

from variations in postmortem interval, fixation length, and postfixation storage time, not 

to mention all of the vagaries inherent in the art.  For this reason, the following table 

should be taken with a grain of salt.  For example, purely negative results, labeled “no 

labeling,” may not necessarily indicate that absence of that particular molecule, but 

merely that the antibody did not recognize it.  Non-specific results – labeling of 

everything, including extracellular space – are also denoted by “no labeling.”  Negative 

results are reportable only when a cell population that excludes the von Economo neurons 

is distinctly labeled by a particular antibody – for example, those for calbinden, 

calretinen, and parvalbumin.  In some cases, the labeling profile does not lend itself to 

identification of the labeled elements by virtue of morphology.  For example, the 

serotonin transporter antibody labels elements throughout the grey matter, but it is 

impossible to say whether the VENs are included in this labeling without a cytoplasmic 

or nissl counterstain. Use of fluorescent chromophores would be the best approach in 

these cases, for I tried in several instances to do double labeling with 

immunoprecipitation chromagens (i.e., DAB, TMB, and others), without satisfactory 

results.   
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antigen 
VENs 
labeled? comments 

5HT-1b R yes 

Labels pyramids only in layer 2/3, neurons and fibers in layer 5, and fibers 
only in layer 6.  Also labels pyramids in human BA 47, 6, 32, 9, and 10 and 
macaque frontal cortex. 

5HT-2a R faint 
Non specific;  labels all pyramids and VENs, similar to macaque results 
described by Goldman-Rakic. 

5HT-2b R yes 
Layer 5 specific in ACC and FI.  In macaque, labels frontal cortex with 
region specific profile.  

5HT-2c R no No labeling 
5HT-3 R no No labeling 
β-3 adrenergic R yes Pyramids and VENs in layer 5 ACC; FI not tested 
Calbindin no Layer 2/3 pyramids, glial cells in ACC 
Calretinin no Small round bipolar cells in layer 2/3 
Caspase-3 no Pyramids, a few VENs 

DAT yes 
Soma and apical of VENs, somas of layer 3 and 5 pyrs, punctate labeling 
throughout extracell space and white matter 

GABAb R yes 
Deep layer labeling of pyramids and VENs.  Most prominent on basal part 
of soma. 

GAD – Labeled nucleoli only (?) 

GAT-1 – 
Labeled "cartridges" as reported previously, but was unable to determine 
whether they are apposed to VENs 

GluR1 yes Pyramids and VENs in layer 5 ACC; FI not tested 
GluR2 yes Pyramids and VENs in layer 5 ACC; FI not tested 
HR1 R no No labeling 
Kappa opioid R no No labeling 
Map-2 yes All neurons 
Mu opoid R no No labeling 
NMDAr1 yes Pyramids and VENs in layer 5 ACC; FI not tested 
Non-
phosphoylated 
neurofilament yes Large pyramids in all layers and VENs 
OxytocinR no No labeling 
Phosphorylated 
neurofilament – Every axon 
Parvalbumin no Multipolar non-spiny interneurons 
Prolactin R no No labeling 
Serotonin 
transporter – small punctate clusters in deep layers, many agains blood vessels 
Tau – All fibers 

Trk-b yes 
Somas and apical dendrites of VENs and layer 5 pyramids in ACC; FI not 
tested 

Tryptophan 
hydroxylase no No labeling 
Vasopressin R 
V1a yes Somatic, all pyramids and VENs 
Vasopressin R 
V1b no Long apical dendrite labeling from Layer 5 pyramids up to Layer 1 

Table 6  Table of immunohistochemical results.  R = receptor. 
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