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Abstract

This study of the interaction of magnetic field and flow in the outer shells of giant

planets consists of three parts.

Part one: The atmospheres of Jupiter and Saturn exhibit strong and stable zonal

winds. Busse suggested that they might be the surface expression of deep flows on

cylinders. However, the deep flow hypothesis experiences difficulty when account is

taken of the electrical conductivity of molecular hydrogen as measured in shockwave

experiments. The deep zonal flow of an electrically conducting fluid would produce

a toroidal magnetic field, an associated poloidal electrical current, and Ohmic dissi-

pation. In steady state, the total Ohmic dissipation cannot exceed the planet’s net

luminosity. If we assume that the observed zonal flow penetrates along cylinders

until it is truncated to (near) zero at some spherical radius, the upper bound on

Ohmic dissipation constrains this radius to be no smaller than 0.95 Jupiter radius

and 0.87 Saturn radius. The truncation of the cylindrical flow in the convective enve-

lope requires an appropriate force to break the Taylor-Proudman constraint. We have

been unable to identify any plausible candidate. Thus we conclude that deep-seated

cylindrical flows do not exist.

Part two: A fluid shell with sufficient electrical conductivity and azimuthal veloc-

ity shear outside of the dynamo generation region can attenuate the non-axisymmetric

component of the magnetic field. However, the interaction of the axisymmetric com-

ponent of the magnetic field and the zonal flow is able to reduce the magnitude of zonal

flow. The dimensionless number characterizing this reduction is the Chandrasekhar

number. The smaller Saturnian field may allow a larger velocity shear and a greater

attenuation of the non-axisymmetric field, thereby providing a possible explanation

for the nearly axisymmetric field.

Part three: Combining the study for the attenuation effect produced by the semi-

conducting layer and the observation of the magnetic field by Galileo and Voyager,
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we find the possible outer boundary of the dynamo generation zone is at 0.86 Jupiter

radius. The magnetic fields generated in the outer shell are dictated by a length scale

comparable to the scale height of electrical conductivity, which is much smaller than

the radius of the planet.
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Chapter 1 Introduction

Jupiter, Saturn, Uranus and Neptune are giant planets in our solar system. They

are made of a fluid envelope and possibly a small dense central core. For Jupiter

and Saturn, the fluid envelope is composed of hydrogen (∼ 92% atomic) and helium

(∼ 8%), and a small amount of heavy elements. For Uranus and Neptune, the fluid

envelope may be divided into two layers: the gas layer, which is mainly composed

of hydrogen and helium; and the ice layer, which is primarily made of “ices” in-

cluding molecular species such as water, methane, and ammonia in the fluid state. In

contrast to the terrestrial planets, the viscosity can be neglected in the fluid envelope.

The interiors of giant planets are expected to evolve with time from a high entropy,

hot initial state to a low entropy, cold degenerate state. They have hot interiors and

emit more energy than they absorb from the Sun (Guillot, 2005). The heat source

is mainly gravitational-either in the form of primordial heat generated during the

collapse leading to planetary formation, or in the form of outgoing differentiation of

heavy material from light material. The heat from the interior can be transported

through diffusion, radiation and convection. Since the opacity is too high for effective

radiative transfer and the thermal diffusivity is too small for effective diffusion, ther-

mal convection was identified to be the main transport mechanism (Hubbard, 1968).

Furthermore, the presence of alkali metals ensures convective interiors (Burrows et al.,

2000; Guillot et al., 2004; Guillot, 2005).

1.1 Main observation data

Table 1.1 indicates the characteristics of the gravitational fields and orbits for giant

planets. The masses of the giant planets can be determined from their external grav-

ity fields. Observation of the motions of their natural satellites gives their masses
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with great accuracy: 317.834, 95.161, 14.538, 17.148 times the mass of the Earth

for Jupiter, Saturn, Uranus, and Neptune, respectively (Campbell & Synnott, 1985;

Campbell & Anderson, 1989; Anderson et al., 1987; Tyler et al., 1989). These four

giant planets comprise about 99.5% of the planetary mass in our solar system.

The radii of the giant planets corresponding to the 1 bar pressure level are obtained

by radio occultation experiments (Lindal et al., 1981, 1985; Lindal, 1992). Figure (1.1)

shows their relative sizes. All four giant planets are relatively fast rotators, with peri-

ods of approximately 10 hours for Jupiter and Saturn and approximately 17 hours for

Uranus and Neptune. For Jupiter, Uranus and Neptune, the rotation rate is taken

to be the magnetic field rotation rate, which is tied to the deep interior (Dessler,

1983; Davies et al., 1986; Warwick et al., 1986, 1989). However, Saturn’s observed

magnetic field is nearly axisymmetric, which prevents a rotation rate determination

by Pioneer 11. The flyby of Voyager I and II detected period Saturn’s kilometric

radio emission (SKR), which had led to a magnetically defined rotation period for

that planet (Desch & Kaiser, 1981). Since then the SKR period has varied by 1%

(Galopeau & Lecacheux, 2000) and is currently 10 hour 45 min 45 s (Gurnett et al.,

2005). It is unclear that SKR emission really represents Saturn’s rotation and the

reason for the period drift between 1980-1981 and 1994-2000 is unknown.

The mean density ρ̄ listed in table 1.1 provides an important constraint on internal

composition. The ρ̄ values for Jupiter and Saturn imply that hydrogen is the major

constituent, whereas Uranus and Neptune require more dense constituents.

Table 1.2 shows the energy balance as determined from Voyager IRIS data (Pearl

& Conrath, 1991). Jupiter, Saturn and Neptune are observed to emit significantly

more energy than they receive from the Sun (see Table 1.2). The case of Uranus

is less clear. Its intrinsic heat flux Fint is one to two orders of magnitude smaller

than that of the other giant planets. However, detailed modeling by a radiative-

convective equilibrium model to the thermal structure of Uranus’ atmosphere sug-
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Figure 1.1 The relative size of four giant planets: Jupiter, Saturn, Uranus, and Nep-
tune. Adapted from Ingersoll (1990).

Table 1.1. Characteristics of the gravity fields and orbits.

Parameter, symbol Jupiter Saturn Uranus Neptune

Mass, M(M⊕) 317.834 a 95.161 b 14.538 c 17.148 d

Equatorial radius, re
(
103 km

)
71.4 e 60.3 f 25.6 g 24.8 g

Equatorial gravity, g( m s−1) 22.9 9.1 8.8 11.1
Mean density, ρ̄( g cm−3) 1.3275 0.6880 1.2704 1.6377
Rotation frequency, Ω(10−4 s) 3.57297(41) h 3.83577(47) h 6.206(4) i 5.800(20) j

Orbital period, 2πΩ−1
o (year) 11.9 29.5 84.0 164.8

aCampbell & Synott, 1995

bCampbell & Anderson, 1989
cAnderson et al., 1987

dTyler et al., 1989
eLindal et al., 1981

fLindal et al., 1985
gLindal, 1992

hDavis et al., 1986
iWarwick et al., 1986
jWarwick et al., 1989
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Table 1.2. Energy balance as determined from Voyager IRIS data a.

Parameter, symbol Jupiter Saturn Uranus Neptune

Absorbed power [1023 erg s−1] 50.14(248) 11.14(50) 0.526(37) 0.204(19)
Emitted power [1023 erg s−1] 83.65(84) 19.77(32) 0.560(11) 0.534(29)
Intrinsic power [1023 erg s−1] 33.5(26) 8.63(60) 0.034(38) 0.330(35)
Intrinsic flux [ erg s−1 cm−2] 5440.(430) 2010.(140) 42.(47) 433.(36)
Effective temperature [ K] 124.4(3) 95.0(4) 59.1(3) 59.3(8)
1-bar temperature b[ K] 165.(5) 135.(5) 76.(2) 72.(2)

aPearl & Conrath, 1991

bLindal, 1992

gests that Fint ≥ 60 erg cm−2 s−1 (Marley & McKay, 1999). Following this result, all

four giant planets can be said to emit more energy than they receive from the Sun.

In the outer shells of giant planets, hydrogen (the dominant component) is su-

percritical, which indicates that there is no gas-liquid or gas-solid phase transition at

that region. These planets have bottomless atmospheres, which is fundamentally dif-

ferent from terrestrial planets. The circulation in the atmosphere is powered by solar

energy and internal energy left over from the formation of solar system. The observed

zonal winds are very strong and stable. They reache ∼ 100 m s−1 and ∼ 400 m s−1

in the equatorial region of Jupiter and Saturn respectively. Uranus’ zonal winds peak

in the mid-latitude reaching ∼ 200 m s−1. Neptune’s zonal flows peak in equatorial

region reaching ∼ 400 m s−1 (Ingersoll et al., 1995). The profiles of zonal (azimuthal)

velocity versus latitude for all four giant planets are shown in figure (1.2).

Prograde equatorial jets have been observed for Jupiter and Saturn’s equatorial re-

gion, whereas Uranus and Neptune have retrograde equatorial jets. At mid-latitudes,

Jupiter’s jets exhibit alternating prograde and retrograde bands, whereas Saturn’s

major jets are all prograde. Uranus and Neptune have smoother profiles than Jupiter

or Saturn, and Neptune’s winds are almost entirely retrograde (Ingersoll, 1990).
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For the deep winds, the Galileo probe descended at 7.4◦N on Jupiter and mea-

sured the speed from 0.4 to 22 bars. At the 0.4 bar level, the measured wind speed is

90 m s−1 (Atkinson et al., 1997, 1998). The velocity of winds increased with depth to

180 m s−1 and remained nearly constant until 22 bars. Although these measurements

indicate that winds increase below the cloud level, they are not deep enough to reveal

the vertical structure except for less than 1% of the planetary radius.

Giant planets have strong and complex magnetic fields. The observed dipole

component of the surface field for Jupiter is about 4.2 G; and it is about 0.2 G for

Saturn, Uranus and Neptune. The observed magnetic field is predominantly dipolar

for Jupiter and Saturn. The tilt of the dipole relative to the rotation axis is on the

order of 10◦ for Jupiter and near zero for Saturn. For Uranus and Neptune, the field

is about equally dipole and quadrupole and the tilt of the dipole is 40◦-60◦, which

demonstrates large variation on the surface (Connerney, 1993).

As in Earth, the observed magnetic field is generated in the high electrical con-

ducting region. In the interiors of giant planets, the pressure and temperature increase

with depth. Shockwave experiments have measured the electrical conductivity of hy-

drogen from 0.93 Mbar to 1.8 Mbar and an estimated temperature at 3000 Kelvin,

representative of conditions inside Jupiter and Saturn (Nellis et al., 1996). Since

hydrogen is expected to be in thermal equilibrium in this measurement, the results

are applicable to the planetary interior. This experiment suggests that hydrogen

undergoes a continuous transition from semi-conducting molecular state to metallic

state as the pressure increases. The electrical conductivity increases exponentially

to 2.0 × 105 S m−1 at 1.4Mbar where hydrogen becomes metallic. This conductiv-

ity of metallic hydrogen is one to two orders of magnitude lower than that of good

metals (such as copper) at room temperature, and is about the lowest possible value

for a metal. For Uranus and Neptune, measurements were made of electrical con-

ductivity and equation of state of the planetary “ices”: water, ammonia, methane



6

Figure 1.2 Zonal velocity versus latitude for all four giant planets. Velocity is mea-
sured relative to the planetary interiors, whose rotations are inferred from the periodic
radio emissions. The measurements involve tracking cloud image sequences. Adapted
from Ingersoll et al. (1995).
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and “synthetic Uranus” at shock pressures and temperatures up to 75 GPa and

5000 K. The electrical conductivity increases with depth and reaches a constant

value of 2 × 103 S m−1 above 40 GPa (Nellis et al., 1988).

For Jupiter, Uranus and Neptune, the magnitude of the wind speeds is deter-

mined relative to the planetary magnetic field, which is called System III (Dessler,

1983; Davies et al., 1986; Warwick et al., 1986, 1989). In the deep interior, the con-

ductivity of metallic hydrogen is high, which implies the magnetic diffusivity is low.

The magnetic field lines are fixed in the fluid and advected by the flow. The rel-

ative velocity between the magnetic field and the fluid is small, i.e., the magnetic

field is nearly in a solid rotating state in this region. Comparing the measurements

from Voyager and Galileo, the dipole tilt increases 0.3 deg and the magnitude of the

dipole moment increases up to 1.5% over the period from 1975 to 2000 (Russell et

al., 2001ab), inferring an upper bound for the relative velocity between the mag-

netic field and the flow in the deep interior to be about 0.1 cm s−1 (Guillot et al.,

2004). For Saturn, the magnitude of the wind speeds is determined relative to SKR

since Saturn’s observed magnetic field is nearly axisymmetric (Desch & Kaiser, 1981).

1.2 Fundamental questions

How deep do the zonal winds extend? What are the possible generation mechanisms

for the zonal winds? If the observed flow penetrates to the deep interior along the

Taylor-Proudman cylinders as suggested by Busse (1976, 1983, 1994), the azimuthal

flow will interact with the pre-existing poloidal magnetic field, produce toroidal mag-

netic field and the associated Ohmic dissipation. The total Ohmic dissipation cannot

be larger than the planetary net luminosity, which gives a constraint for the maximum

penetration depth of the zonal flow. The zonal wind has to be truncated before reach-

ing the maximum penetration depth to avoid producing excessive Ohmic dissipation.

By investigating the possible forces available to truncate the Taylor-Proudman col-
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umn, we give a constraint for the depth of the zonal wind, as well as the generation

mechanism.

On the other hand, the deeper and higher conductivity region would force the

magnetic field lines to be almost fixed in the fluid and advected with the flow. The

relative velocity between the fluid and the field is small. The magnetic field behaves

like elastic strings. A large velocity between the fluid and magnetic field is not allowed

since it produces large elastic stress acting on the fluid and reduces the velocity shear.

Also, the velocity outside of the dynamo generation region is able to attenuate the

temporal variation of the outgoing magnetic field, as well as the non-axisymmetric

magnetic field. So, the following competing effects exist: The magnetic field is able

to reduce the shear flow; and the shear flow is able to attenuate the temporal vari-

ation of the outgoing magnetic field and the non-axisymmetric magnetic field. Can

the magnetically limited shear flow significantly attenuate the temporal variation of

magnetic field and the non-axisymmetric magnetic field?

In this thesis, we explore the interaction of magnetic field and flow in the outer

shells of giant planets. This study is motivated by the following fundamental ques-

tions:

1. Does the observed zonal flow penetrate to the deep interior along Taylor cylin-

ders?

2. How does the interaction between the magnetic field and zonal flow change the

Taylor cylinders?

3. Does the zonal flow attenuate the non-axisymmetric magnetic field? How?

4. Does the zonal flow attenuate the temporal variation of the outgoing magnetic

field? How?

5. What are the characteristics of dynamo generation in a region with rapidly

varying electrical conductivity?



9

Chapter 2 Electrical conductivity

distribution in the interior of giant planets

2.1 Electrical conductivity distribution in the in-

terior of Jupiter and Saturn

The electrical conductivity in the interiors of Jupiter and Saturn is due mainly to

hydrogen. Near their surfaces it might be significantly enhanced relative to pure

hydrogen by heavier elements because they are more readily ionized. Helium is unim-

portant due to its high ionization energy.

Condensed molecular hydrogen is a wide band-gap insulator at room temperature

and pressure, with a band gap, Eg, of about 15 eV, corresponding to the ionization

energy of the hydrogen molecule. As the pressure increases, this gap is expected to

diminish and finally close to zero, resulting in an insulator-to-metal transition. In ex-

periments, this transition appears to be gradual. As the energy gap closes, hydrogen

molecules begin to dissociate to monatomic hydrogen and electrons start to be delo-

calized from H+
2 ions (Nellis et al., 1996; Weir et al., 1996). The insulator-to-metal

transition is expected to occur even though the hydrogen molecules have not been

fully pressure-dissociated. At much higher pressure and temperature, molecular dis-

sociation becomes complete and it is presumed that pure monatomic hydrogen forms

a metallic Coulomb plasma (Stevenson & Ashcroft, 1974; Hubbard et al., 1997), but

this is irrelevant to our analysis.

The conductivity of hydrogen has been measured in reverberating shockwave ex-

periments in the following pressure ranges: from 0.93− 1.8 Mbar (Weir et. al., 1996)
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and from 0.1 − 0.2 Mbar (Nellis et al., 1992).1 In these experiments, hydrogen is

in thermal equilibrium at pressures and temperatures similar to those in the inte-

riors of giant planets. From 0.93 to 1.8 Mbar, the measured electrical conductivity

of hydrogen increases four orders of magnitude. Above 1.4 Mbar up to 1.8 Mbar,

the conductivity is constant at 2 × 105 S m−1, similar to that of liquid Cs and Rb

at 2000 K and two orders of magnitude lower than that of a good metal (e.g., Cu)

at room temperature. The constant conductivity suggests that the energy gap has

been thermally smeared out (Weir et al., 1996). Temperatures of shock-compressed

liquid hydrogen have been measured optically in separate experiments (Nellis et al.,

1995; Holmes et al., 1995). At the highest obtained pressure of 0.83 Mbar, the mea-

sured temperature of 5200 K falls below that predicted for pure molecular hydrogen.

This is due to the dissociation of molecular hydrogen and enables us to estimate the

fractional dissociation as a function of pressure. At 1.4 Mbar and 3000 K, the dis-

sociation fraction is ∼ 5%. Thus metallization of hydrogen occurs in the diatomic

molecular phase and is caused by electrons delocalized from H+
2 ions (Nellis et al.,

1996; Ashcroft, 1968).

The electrical conductivity of a semiconductor can be expressed in the form:

σ = σ0(ρ) exp

(
− Eg(ρ)

2KBT

)
, (2.1)

where σ is electrical conductivity, Eg(ρ) is the energy of the density dependent mo-

bility gap, KB is Boltzmann constant, T is the temperature, and exp (−Eg/2KBT )

expresses the fractional occupancy of the current carrying states.

Between 0.2 Mbar and 1.8 Mbar, we adopt the electrical conductivity profile inter-

polated by Nellis et al. (1996) based on the experimental data. The relation between

the energy gap and volume density is taken to be Eg = 20.3 − 64.7ρ, where Eg is in

eV, ρ in mol cm−3, and σ0 ≈ 3.4 × 1010 exp(−44ρ) S m−1. It is worth noting that

1The uncertainty in electrical conductivity is typically 25% but ranges up to 50% (Weir et al.,
1996)
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Nellis et al. (1996) calculate the conductivity profile along an isentrope of hydrogen

starting from conditions deduced from observations of Jupiter’s atmosphere, namely

T = 165 K and p = 1 bar. This isentrope has the same entropy as one that has com-

monly been used to construct interior models of Jupiter (Guillot, 1999). However, it

has a lower T for p > 0.4 Mbar because the one used in these models neglects the

latent heat of hydrogen molecule dissociation (Nellis et al., 1995).2 For consistency,

we use the relation between conductivity and pressure obtained by Nellis et al. (1996).

For some p, the σ based on the commonly used isentrope (Guillot, 1999) is about one

order of magnitude different near the metallic conducting region and this difference

diminishes towards the surface.

Eg(ρ) has also been measured in shockwave experiments from 0.1 to 0.2 Mbar

(Nellis et al., 1992). We can interpolate between these measurements of Eg(ρ) and

its value at ambient pressure and temperature using σ0 = 0.5 × 108 S m−1 (which

gives the smooth connection of the conductivity measured in two pressure ranges) to

extend the conductivity of hydrogen to the surface pressure level.

Based on the p(r) from interior models of Jupiter and Saturn (Guillot, 1999) and

σ(p) from Nellis et al. (1996), we obtain the electrical conductivity of hydrogen as a

function of radius (see figure 2.1). A clear signature of a smooth transition from the

semi-conducting to metallic state (with σ = 2×105 S m−1) is observed at 0.84RJ and

0.63RS.

Figure (2.1) may underestimate the electrical conductivity at low pressure because

it neglects the contribution from impurities. The electrical conductivity is propor-

tional to the total number density of electrical charge carriers: σ ∝ ne, which includes

2Recent interior models of Jupiter and Saturn do account for this latent heat (Saumon & Guillot,
2004).
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Figure 2.1 Electrical conductivity inside giant planets: (a) Jupiter; (b) Saturn. The
solid line is the mean electrical conductivity of hydrogen and the dashed lines bound
the range of uncertainty in the measurements. Additional uncertainties at the upper
range of pressure arise from the difficulty of associating T and p as measured in the
experiment with that inside the planet. Metallization is responsible for the plateau
at 2 × 105 S m−1 which occurs near 0.84 RJ and 0.63 RS.
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a contribution from impurities x in addition to that from hydrogen:

ne = nH2 exp
(
− Eg

2KBT

)
+
∑
x

nx exp
(
− Ex

2KBT

)
, (2.2)

where nx and Ex express the number density of the electrons and the energy gap

due to an impurity. Alkali metals are sources of small band gap impurities. They

may also contribute to the radiative opacity thus insuring adiabaticity (Guillot et al.,

2004; Guillot, 2005). The mixing ratio of an alkali metal in the interior of a giant

planet is presumably similar to that determined from its cosmic abundance. With

these abundances, a band gap of a few electron volts would lead to a conductivity of

10−6 ∼ 10−4 S m−1 at T ∼ 1000 K, significantly above the value due to hydrogen.

In magnetohydrodynamics it is conventional to characterize the electrical conduc-

tivity σ in terms of the magnetic diffusivity λ = (μ0σ)−1, where μ0 is the magnetic

permeability. Figure (2.1) shows that the electrical conductivity of hydrogen de-

creases exponentially outward from the metallic conducting region. Therefore, the

magnetic diffusivity increases exponentially outward (see fig. 2.2) We will make use

of the scale height of magnetic diffusivity,

Hλ(r) =
λ(r)

dλ(r)/dr
. (2.3)

2.2 Electrical conductivity distribution in the in-

terior of Uranus and Neptune

Estimations based on mass, radius, rotational rate, and gravity field of the planets

indicate that Uranus and Neptune have similar internal structures (Stevenson, 1982).

The planetary gravitational moments require that the density profiles outside the
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Figure 2.2 Magnetic diffusivity λ in the interiors of Jupiter and Saturn. (a) Jupiter;
(b) Saturn. The magnetic diffusivity corresponding to the metallic state of hydrogen
is 4 m s−2.
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Figure 2.3 The interiors of Uranus and Neptune, adapted from Guillot (2005).

core region lie close to that of ices (a mixture initially composed of H2O, CH4 and

NH3, which rapidly becomes an ionic fluid of uncertain chemical composition in the

planetary interior), except in the outermost layers, which have a density closer to that

of hydrogen and helium (Marley et al., 1995; Podolak et al., 2000). As illustrated in

Figure (2.3), a three-layer model of Uranus and Neptune consists of a central rock

core (magnesium-silicate and iron material), an ice layer, and a hydrogen-helium gas

envelope (Podolak et al., 1991; Hubbard et al., 1995).

To interpret the origin of the planetary magnetic field, measurements were made

of electrical conductivity and equation of state of the planetary “ices”: water, am-

monia, methane and “synthetic Uranus” at shock pressures and temperatures up to

75 Gpa and 5000 K (See fig. 2.4). The electrical conductivities of the planetary

“ices” all approach a constant value of 2000 S m−1 above 40 GPa. This upper limit

is only weakly sensitive to chemical species (Nellis et al., 1988). The high electrical

conductivity of shock water, the major ice constituent, is caused by molecular ioniza-
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tion. Above 20 GPa, water has been said to be totally ionized into OH−1 and H3O
+.

Using a classical conductivity model and a mean free path of a molecular dimension,

the degree of dissociation of water has been estimated to be between 10% and 100%

above 20 GPa and 1200 K (Nellis et al., 1988).

We calculate the electrical conductivity for the interior of Uranus and Neptune

with a three-layer model (Hubbard et al., 1991). In this model, both Uranus and

Neptune are assumed to have a central rocky core with chondritic bulk proportions of

iron, oxygen, magnesium, and silicon. The intermediate envelope is composed of “ice”,

which “ice” is defined as a mixture of the molecules H2O, CH4, and NH3 in solar

proportions, and almost certainly in liquid phase because of elevated temperatures.

The outer shell is mainly made of hydrogen and taken to have a pressure density

relation appropriate to solar composition (or to solar composition with a small density

enhancement) and at constant specific entropy with the entropy fixed to the value

near 1-bar pressure at a temperature of 70 K. The transition radius between the

intermediate “ice” layer and the outer gas envelope is taken to be ∼ 0.8 Uranus

radius and ∼ 0.84 Neptune radius, respectively. In the intermediate “ice” layer,

which ranges from ∼ 0.3Mbar at ∼ 3000 K to ∼ 6Mbar at ∼ 7000 K, we use the

conductivity profile for water ice to approximately express the planetary conductivity

profile. With p(r) in Hubbard’s model (Hubbard et al., 1991) and the conductivity

profile of water ice σ(p) (Mitchell and Nellis, 1982; Nellis et al., 1988), we obtain σ(r)

for the ice in Uranus and Neptune respectively. The outer “gas” envelope is mainly

composed of hydrogen with a small amount of heavy elements. We mainly consider

the influence of hydrogen and water ice to the total conductivity. In this case, the

number density of the electrical charge carriers ne can be written as

ne = nH2 exp

(
−(Eg)H2

2KBT

)
+ nH2O exp

(
−(Eg)H2O

2KBT

)
. (2.4)

Since the electrical conductivity is proportional to the number density of electrical

charge carriers: σ ∝ ne, σ(r) can be determined from p(r), σ(p) for hydrogen (Nellis
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Figure 2.4 Electrical conductivity versus shock pressure for planetary “ices”, adapted
from (Nellis et al., 1988).
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et al., 1996), and σ(p) for water ice (Mitchell and Nellis, 1982; Nellis et al., 1988).

The conductivity profile σ(r) largely depends on the mixing ratio of water ice in the

outer “gas” envelope. In figure (2.5), we demonstrate the conductivity profiles for a

different assumption of the water ice mixing ratio range from 0% to 10%. If “ice”

is present at 10% mixing ratio in the outer envelope, the electrical conductivity of

material in the outer envelope is significantly increased by many orders of magnitude.

On the other hand, the mixing of hydrogen in the intermediate “ice” layer can

significantly increase the electrical conductivity up to 100 times larger. In this thesis,

we are mainly interested in the conductivity profile in the outer envelope of the

planets. Therefore, we will not investigate the enhancement of electrical conductivity

by mixing of hydrogen in the intermediate “ice” layer.
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Figure 2.5 Conductivity profiles in the interior of Uranus and Neptune based on
different “ice” mixing ratio in the outer “gas” envelope. (a) Uranus; (b) Neptune.
The solid line corresponds to no “ice” in the outer “gas” envelope; the dash line
represents 0.1% “ice” mixing ratio in the outer envelope; the dash-dot line expresses
10% “ice” mixing ratio in the outer envelope.
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Chapter 3 Impossibility of deep-seated

zonal winds in Jupiter and Saturn

3.1 Abstract

The atmospheres of Jupiter and Saturn exhibit strong (∼ 100 m s−1) and stable (over

decadal time scales) zonal winds. Busse (1976, 1983, 1994) suggested that they might

be the surface expression of deep flows on cylinders. Wind velocities deduced from

the motion of the Galileo probe as it descended through Jupiter’s atmosphere offer

some support for Busse’s suggestion. However, the deep flow hypothesis experiences

difficulty when account is taken of the electrical conductivity of molecular hydrogen as

measured in shockwave experiments. The deep zonal flow of an electrically conducting

fluid would produce a toroidal magnetic field, an associated poloidal electrical current,

and Ohmic dissipation. In steady state, the total Ohmic dissipation cannot exceed the

planet’s net luminosity. If we assume that the observed zonal flow penetrates along

cylinders until it is truncated to (near) zero at some spherical radius, the upper bound

on Ohmic dissipation constrains this radius to be no smaller than 0.95 of Jupiter’s

radius and 0.86 of Saturn’s radius. At these radii, the electrical conductivity of

hydrogen is about 0.1 S m−1. The truncation of the cylindrical flow in the convective

envelope requires an appropriate force to break the Taylor-Proudman constraint. We

have been unable to identify any plausible candidate. The Lorentz force is much

too weak. Although we lack a convincing model for turbulent convection, order of

magnitude considerations suggest that both divergence of the Reynolds stress and the

buoyancy force are also inadequate. Thus we conclude that deep-seated cylindrical

flows do not exist. However, equatorial jets could maintain constant velocities on

cylinders through the planet provided their half-widths were no greater than ≈ 21◦

for Jupiter and 31◦ for Saturn.
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3.2 Introduction

Jupiter and Saturn are composed primarily of hydrogen and helium with small ad-

ditions of heavier elements. Their atmospheres exhibit strong, stable zonal winds

composed of multiple jets associated with azimuthal cloud bands (Ingersoll, 1990).

Zonal winds peak in the equatorial region reaching ∼ 100 m s−1 on Jupiter and

∼ 400 m s−1 on Saturn.1 The latitudes of Jupiter’s jets have not changed for at least

80 years (Smith & Hunt, 1976) and their velocities have been constant within 10%

over 25 years (Porco et al., 2003).

The depth of the zonal winds is unknown. Both deep and shallow flow models

have been proposed. Wind speeds measured by the Galileo probe at 7.4◦N on Jupiter

increased from 90 m s−1 at 0.4 bar to 180 m s−1 at ∼ 5 bar and then remain nearly

constant until 22 bar (Atkinson et al., 1997, 1998). It is important to bear in mind

that these measurements only sample the winds in the outer 1% of the planet’s radius.

Where the electrical conductivity is high, the magnetic field lines are frozen into the

fluid. Thus winds in these regions would cause changes in the external magnetic field.

By comparing Galileo and Pioneer/Voyager data, Russell et al.(2001a,b) find that

increases of 0.3 deg in the dipole tilt and 1.5% in the dipole moment may have taken

place between 1975 and 2000. The former could be accounted for by meridional flow

speeds on the order of 0.1 cm s−1 in the deep interior of Jupiter (Guillot et al., 2004).

Busse (Busse, 1976, 1983, 1994) advocates deep flows. Since Jupiter’s interior is

believed to be convective (Hubbard, 1968; Guillot et al., 2004), he asserts that the

Taylor-Proudman theorem (Taylor, 1923) applies throughout the molecular hydrogen

envelope. It follows that the zonal flows extend along cylinders centered on, and

parallel to, the rotation axis, which terminates at the outer boundary of the metallic

hydrogen core. Hydrogen is assumed to undergo a first order phase transition at

the core-envelope boundary at which it abruptly changes from electrically insulating

1Wind speeds on Jupiter are determined relative to System III coordinates which rotate with the
angular speed of the planet’s magnetic field (Dessler, 1983).
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to electrically conducting.2 In Busse’s model, the magnetic field is generated in the

metallic core and passes through the molecular envelope without interaction. But

data from shock wave experiments shows that hydrogen undergoes a continuous tran-

sition from a semi-conducting molecular state to a highly conducting metallic state

as the pressure increases. This contradicts the assumption of a first order phase tran-

sition at the core-envelope boundary.

Recently, a modified deep flow model for Jovian zonal flows has been proposed

based on simulations of convection in a thin shell with a lower boundary near 0.9RJ

(Aurnou & Heimpel, 2004; Heimpel et al., 2005). The physical meaning of the lower

boundary in the modified deep flow model is obscure. Hydrogen cannot undergo a

phase change at that radius (Guillot et al., 2004). So how might the Taylor-Proudman

constraint be violated in order to reduce the zonal flow to a near zero value below

that boundary? We demonstrate later that the Lorentz force is much too weak to

accomplish this.

In shallow flow models, the observed high-speed flow is confined to a thin, baro-

clinic layer near the cloud level; the interior flow is much slower. Even if the high

velocity flow is confined to a shallow layer, its forcing may occur at depth. For ex-

ample, if the flow were to arise from a process that conserved angular momentum

per unit volume, ρU would be approximately conserved, where ρ is the density and

U is the magnitude of the flow velocity. Since the density in the interior is several

orders of magnitudes larger than that near the surface, the flow velocity could then

be much greater near the surface. On the other hand, the observed zonal flow might

be generated by shallow forcing due to the turbulence injected at the cloud level by

moist convection, differential latitudinal solar heating, latent heat release from con-

densation of water, or other weather layer processes (Vasavada & Showman, 2005).

From the thermal wind equation, a latitudinal temperature gradient of about 5-10K

2In earlier models, this radius was estimated to be about 0.75RJ for Jupiter and 0.55RS for
Saturn (Zharkov & Trubitsyn, 1976; Stevenson & Salpeter, 1976).
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across a few pressure scale heights below the cloud level would cause substantial ver-

tical shear, which makes the flow velocity much greater near the surface than deeper

down (Ingersoll & Cuzzi, 1969; Ingersoll et al., 1984; Vasavada & Showman, 2005).

In this paper, we examine the consequences of assuming a deep azimuthal flow

consistent with the Taylor-Proudman theorem for an adiabatic interior. We calculate

the total Ohmic dissipation associated with the flow and compare it to the planet’s

net luminosity. This constrains the depth to which the flow can extend. We consider

two flow patterns, one in which the flow is truncated to zero at a spherical radius,

and the other in which the flow is constant along the entire cylinder but confined to

an equatorial jet.

3.3 Order of magnitude analysis

We use order of magnitude analysis to illustrate the relation between the total Ohmic

dissipation and the planetary net luminosity. This clarifies the regime in which Jupiter

and Saturn operate. Three characteristic velocities are: U , the magnitude of the ob-

served zonal flow; uc = (F/ρ)1/3, a characteristic convective velocity based on the

heat flux, F , and density, ρ; uB =
(
B2

p/μ0ρ
)1/2

, a characteristic Alfven velocity based

on the magnitude of the observed poloidal magnetic field, Bp. We note that the defi-

nition of the convective velocity does not take into account the influences of rotation

and magnetic field.

Consider a zonal flow of amplitude U that extends to a depth d∗ = R − r∗ and

weakens below. Define the magnetic Reynolds number Rm = UHλ/λ. The magnitude

of the electrical field associated with the penetrating zonal flow is ∼ UBp and the

resulting current density is ∼ σUBp. Thus we can estimate the magnitude of the

toroidal field Bφ to be

Bφ ∼ UHλ

λ
Bp ∼ RmBp . (3.1)



24

Since the magnitude of the flow below the penetration depth is several orders of

magnitude smaller than U and the magnetic diffusivity is an exponential function of

radius, the majority of the total Ohmic dissipation is generated within a spherical

shell with thickness Hλ around the penetration depth. Thus the Ohmic dissipation

per unit area is HλσU2B2
p ∼ RmUu2

Bρ. Its ratio to the planet’s heat flux

Γ ∼ RmUu2
Bρ

F
= Rm

(
U

uc

)(
uB

uc

)2

= Rm

UB2
p

μ0F
(3.2)

is determined by the magnetic Reynolds number, Rm, and the observable quantities

U , B, and F . The total Ohmic dissipation cannot exceed the planet’s net luminosity.

Thus the flow cannot penetrate below the radius at which Γ ≈ 1. At the level where

Rm ∼ 1, Γ is independent of λ, Hλ and ρ. Can the surface zonal flow penetrate to

this depth? For parameters appropriate to Jupiter and Saturn, the answer is no, as

shown in figure (3.1). At the level where the total Ohmic dissipation matches the

planet’s net luminosity, Rm ∼ 0.05 for Jupiter and Rm ∼ 0.5 for Saturn.

3.4 Detailed formulation

The current density is

J = σ (E + U ×B) , (3.3)

where E is the electrical field in the reference frame in which U is measured. As dis-

cussed earlier, we take the reference frame to be fixed in the approximately uniformly

rotating core of the planet.

We decompose the flow velocity U and the magnetic field B into the sum of

poloidal and toroidal (φ) components: U = UP + UT and B = BP + BT . Then

J = σ (E + UT × BP + UP ×BT + UP × BP ) , (3.4)
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Figure 3.1 Plots of U/uc versus (uB/uc)
2 for different values of Γ at the radius where

Rm = 1. The solid line corresponds to Γ = 1, and the upper and lower dash lines
correspond to value of Γ ≈ 20 and Γ ≈ 2 appropriate to Jupiter and Saturn. The
diamond and circle correspond to values of U and uB normalized by uc = (F/ρ)1/3,
where ρ is evaluated at the layer where Rm = 1. For Jupiter, U ∼ 100 m s−1,
F ∼ 5 W m−2 and Bp ∼ 10 G, so Γ ∼ 20. For Saturn, U ∼ 400 m s−1, F ∼ 2 W m−2

and Bp ∼ 1 G, so Γ ∼ 2.
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where σ (E + UT ×BP + UP ×BT ) and σ (UP ×BP ) are the poloidal and toroidal

components of J. Jupiter and Saturn are rotating rapidly so the large Coriolis force

inhibits motions along the radial and latitudinal directions. Based on the mixing

length estimation, the magnitude of the poloidal velocity field is about ∼ 1 cm s−1

(Guillot et al., 2004), four orders of magnitude smaller than the observed zonal flow

speeds ∼ 100 m s−1. Thus |UP × BP | 	 |UT ×BP |.

Inside the planet, the poloidal magnetic field interacts with the toroidal compo-

nent of the flow to produce a toroidal magnetic field with magnitude |BT | ∼ Rm |BP |.
Later we will discover that the magnetic Reynolds number is small (Rm < 10)

in the region of relevance to our investigation. So it is reasonable to assume that

|UP ×BT | 	 |UT ×BP |, which implies

J ≈ σ (E + UT ×BP ) . (3.5)

In steady state, the electrical field can be written as the gradient of the electrical

potential; E = −∇ϕ. Substituting this equation and the definition of magnetic

diffusivity into equation (3.5), we arrive at

J =
1

μ0λ
(−∇ϕ + UT × BP ) . (3.6)

The current density is divergence free,

∇ · J = 0 . (3.7)

Henceforth we asume that the magnetic field is axisymmetric. This approximation

is not bad for Jupiter and quite good for Saturn. Jupiter’s dipole tilt is about 10◦

and Saturn’s is less than 0.1◦ (Connerney, 1993). Since we are concerned with Ohmic

dissipation per unit volume P , which is proportional to the square of the magnitude of
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the poloidal magnetic field: P ∝ |J|2 ∝ |BP |2. Due to the orthogonality of spherical

harmonics, a 10% contribution to the field from a dipole tilt gives two orders of

magnitude less Ohmic dissipation. Substituting equation (3.6) into equation (3.7),

and expanding in spherical coordinates (r, θ, φ), we obtain

1

r

∂

∂r

[
r2

μ0λ

(
−∂ϕ

∂r
+ (UT × BP )r

)]

+
1

r sin(θ)

∂

∂θ

[
sin(θ)

μ0λ

(
−∂ϕ

∂θ
+ (UT × BP )θ

)]
= 0 . (3.8)

The magnetic diffusivity increases rapidly outward from the conducting core in the

semi-conducting envelope. Therefore, the dominant term in equation (3.8) involves

the radial derivative of the magnetic diffusivity. There are no other terms that can

balance the magnitude of this term. Therefore,

1

μ0λ2

dλ

dr

(
−∂ϕ

∂r
+ (UT ×BP )r

)
≈ 0. (3.9)

As can be seen from equation (3.6), this relation implies that the radial component

of the current density is much smaller that the θ component. Physically, this makes

sense. The current that flows radially from deep regions is forced to flow meridion-

ally in a thin layer, thereby having large amplitude. There is a close analogy to the

standard meteorological scaling that ignores vertical motions relative to horizontal

motions in a thin atmosphere. In other words, the rapid variation of magnetic diffu-

sivity along the radial direction forces the current density to be dominant along the

θ direction.

We can also obtain an expression for the electrical potential ϕ from equation (3.9)

∂ϕ

∂r
= (UT ×BP )r . (3.10)
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Integrating along the r-direction yields

ϕ = −
∫ R

r
(UT ×BP )r dr′ + Q(θ) , (3.11)

where R is the planetary radius and Q(θ) is an arbitrary function of θ. The electrical

field in the θ direction can be written as

Eθ = −∂ϕ

∂θ
=

1

r

[
∂

∂θ

∫ R

r
(UT ×BP )r dr′ − dQ(θ)

dθ

]
. (3.12)

In the above equation (3.12), the first term in the parentheses is a function of both

r and θ. However, the second term Q′(θ) is only a function of θ. These two terms

cannot cancel each other at all radii.

From equation (3.6), we acquire the current density along the θ direction

Jθ =
1

μ0λ
=

(
−∂ϕ

∂θ
+ (UT × BP )θ

)
. (3.13)

Substituting the expression for the electrical potential into this equation, we obtain

Jθ =
1

μ0λr

[
∂

∂θ

∫ R

r
(UT × BP )r dr′ + r (UT ×BP )θ −

dQ

dθ

]
. (3.14)

The Ohmic dissipation per unit volume, P , is equal to the square of the current

density divided by the electric conductivity. Since the current along the θ direction

is dominant,

P =
J2

σ
≈ 1

μ0λr

[
∂

∂θ

∫ R

r
(UT × BP )r dr′ + r (UT ×BP )θ −

dQ

dθ

]2

. (3.15)

We note that P is inversely proportional to the magnetic diffusivity, λ, which in-

creases exponentially outward from the metallic core with scale height Hλ(r).

The total Ohmic dissipation cannot exceed the planet’s net luminosity, Lnet. Ap-
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plying this constraint to a spherical shell of radius r and thickness Hλ(r) yields

∣∣∣∣∣ ∂

∂θ

∫ R

r
(UT × BP )r dr′ + r (UT × BP )θ −

dQ

dθ

∣∣∣∣∣ ≤
(

Lnetμ0λ

4πHλ

) 1
2

. (3.16)

Next we individually bound the magnitudes of dQ/dθ and the two terms that contain

UT × BP . Suppose these terms completely cancel at radius r∗. Across a layer of

thickness Hλ(r∗), dQ/dθ doesn’t change whereas the other terms undergo fractional

variations of order Hλ(r∗)/r∗. Therefore,

|Q′(θ)| ≤ r∗
Hλ(r∗)

(
Lnetμ0λ(r∗))

4πHλ(r∗)

)1/2

, (3.17)

and

∣∣∣∣∣ ∂

∂θ

∫ R

r∗
(UT ×BP )r dr′ + r∗ (UT × BP )θ

∣∣∣∣∣ ≤ r∗
Hλ(r∗)

(
Lnetμ0λ(r∗))

4πHλ(r∗)

)1/2

. (3.18)

Upper bounds on these individual terms are larger than that on their sum by a factor

of r/Hλ(r) (cf. equation [3.16]).

A tight upper bound can be placed on |Q′(θ)| by evaluating equation(3.17) near

the top of the metallic core where λ ∼ 4 m2 s−1 and Hλ ∼ 1000 km. We find

|Q′(θ)| ≤ 104 Tesla m2 s−1 for both Jupiter and Saturn. In a similar manner, we

apply equation (3.18) to bound the zonal velocity at the top of the core finding

|UT | ≤ 0.2 m s−1 for Jupiter and |UT | ≤ 0.5 m s−1 for Saturn.

Zonal wind speeds in the atmospheres of the giant planets reach ∼ 100 m s−1. Thus

we can ignore the Q′(θ) term in equations (3.12), (3.14) and (3.15) when considering

deep-seated winds that are constant on cylinders. Therefore,

Jθ(r, θ) =
1

μ0λ

[
1

r

∂

∂θ

∫ R

r
(UT × BP )r dr′ + (UT × BP )θ

]
. (3.19)

The first term is global; it orginates from the electrical field E. The second term is
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local. Estimated for the magnitudes of these terms read

1

μ0λ

[
1

r

∂

∂θ

∫ R

r
(UT × BP )r dr′

]
∼ 1

μ0λ

R − r

r
|(UT ×BP )r| , (3.20)

and
1

μ0λ
(UT ×BP )θ ∼

1

μ0λ
|(UT × BP )θ| , (3.21)

where |(UT ×BP )r|(R−r)/r 	 |UT ×BP |θ, the current density is determined by the

local term. Figure (3.2) displays current loops inside a sphere that are determined

by the local interaction of a simple zonal flow and an axial dipole magnetic field.

From the current density distribution, we calculate the toroidal magnetic field BT

produced by the interaction of zonal flow with the poloidal magnetic field. Since the

toroidal magnetic field external to the planet vanishes,

Bφ =
μ0

r

∫ R

r
Jθr

′dr′ . (3.22)

Substituting the equation (3.19) into equation (3.22), we obtain

Bφ =
1

r

∫ R

r

r′dr′

λ(r′)

[
1

r′
∂

∂θ

∫ R

r′
(UT × BP )r dr′′ + (UT × BP )θ

]
. (3.23)

After we get the magnitude of the induced toroidal field, we can compare its magni-

tude with that of the pre-existing poloidal magnetic field.

Based on the expression for the current density (equation (3.19)), the total Ohmic

dissipation reads

PT =
2π

μ0

∫ R

0

dr

λ(r)

∫ π

0
dθ sin(θ)

[
∂

∂θ

∫ R

r
(UT × BP )r dr′ + r (UT × BP )θ

]2

. (3.24)
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Figure 3.2 The current distribution inside the planets arising from the interaction of
a simple zonal flow and a purely axial dipole field. In this illustration, the zonal flow
goes to near zero just inside the dashed line. High current density corresponds to
closely spaced current flow lines, and the conductivity is lower near the dashed line so
that the Ohmic dissipation is predominantly near the dashed line despite the volume
filling nature of the current.
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3.5 Truncated zonal flows

3.5.1 Total Ohmic dissipation

In this section we assume that the atmospheric zonal flows observed on the giant

planets (Porco et al., 2003, 2005) are constant on cylinders outside a spherical radius

and vanish inside. Since these flows are not exactly N-S symmetric, we construct

N-S symmetric profiles by reflecting the northern hemisphere zonal flow about the

equator.3 The magnetic fields of Jupiter and Saturn have been measured by various

spacecrafts and fit by models dominated by a dipole plus smaller quadrupole and

octupole components (Connerney, 1993). We adopt the axisymmetric part of these

field models in our calculations. 4

The total Ohmic dissipation calculated from equation (3.24) for Jupiter and Sat-

urn is plotted against the cutoff radius in Figure (3.3). At the minimum cutoff radii of

0.95RJ and 0.87RS, the total Ohmic dissipation matches the planet’s net luminosity.

The magnetic diffusivity at the minimum cutoff radius is 2 × 106 m2 s−1 for Jupiter

and 1 × 106 m2 s−1 for Saturn. By comparison, at the outer metallic core radii of

0.84RJ and 0.63RS, the magnetic diffusivity is at about 4 m2 s−1. As discussed in

section 2.1, alkali metals or other impurities might raise the electrical conductivity in

the outer envelope of a giant planet. This would decrease the maximum penetration

depth.

The magnitudes of the induced toroidal magnetic field and the associated poloidal

current are each inversely proportional to λ and thus increase inward. In figure (3.4)

we display the toroidal magnetic field as a function of co-latitude at the maximum

penetration depth. It reaches a magnitude of about 0.2 G for Jupiter and about 1.2

G for Saturn. Figure (3.5) shows the associated poloidal current density as a function

3We have verified that using the reflected southern hemisphere zonal flow makes a negligible
difference to our results.

4In Appendix, we discuss the reasons for choosing these field models.
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(b) Saturn

Figure 3.3 We assume that the observed zonal flow penetrates to the interior along
cylinders until it is truncated at radius r. The blue curve depicts the total Ohmic dis-
sipation as a function of the fractional truncation radius. The dashed curves indicate
the range of uncertainty in the electrical conductivity of hydrogen at a given radius.
The horizontal green lines marks to planet’s net luminosity, which is 3.35×1017 W for
Jupiter and 0.86×1017 W for Saturn (Guillot et al., 2004). The maximum penetration
depth is determined by matching the total Ohmic dissipation to the net luminosity.
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Figure 3.4 The induced toroidal magnetic field as a function of co-latitude at the
maximum penetration depth: (a) Jupiter, (b) Saturn.

of co-latitude at the maximum penetration depth. It reaches a magnitude of about

3 × 10−3 A m−2 for Jupiter and about 0.015 A m−2 for Saturn.

3.5.2 Do deep-seated zonal flows exist?

Cylindrically penetrating zonal flows have to be truncated at some radius to avoid

overproducing Ohmic dissipation. Here we investigate the necessary conditions for

such a departure from the Taylor-Proudman state to take place.

The Navier-Stokes equation, which governs the motion of the fluid, reads

∂U

∂t
+ (U · ∇)U + 2Ωez ×U = −1

ρ
∇p−∇Φg +

1

ρμ0

(∇× B)×B +∇ · σvis , (3.25)
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Figure 3.5 The poloidal current density as a function of co-latitude at the maximum
penetration depth: (a) Jupiter, (b) Saturn.
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where Ω is the (assumed) uniform angular velocity of the planet’s metallic core, ρ is

the density, p is the pressure, Φg is the gravitational plus centrifugal potential, and

σvis is the viscous stress. Jupiter and Saturn are fast-rotating planets, so the Coriolis

acceleration is large. Suppose we can neglect the accelerations due to the Maxwell,

Reynolds, and viscous stresses. Then the Coriolis acceleration must be balanced by

a combination of the accelerations due to the pressure and potential gradients. Thus

2Ωez × U = −1

ρ
∇p −∇Φg . (3.26)

The net luminosity of the giant planets is believed to be transported outward by

convection ensuring that their interiors are nearly compositionally uniform isentropes.

For a compositionally uniform isentrope, the pressure is only a function of density:

p(ρ). Making this approximation and taking curl of equation (3.26), we obtain

∂Uφ

∂z
= 0 . (3.27)

Thus, the zonal velocity is constant on cylinders parallel to the rotation axis. This is

the Taylor-Proudman state. In previous sections, we have shown that the observed

zonal flow cannot penetrate to below the radius at which the total Ohmic dissipation

would match the planet’s net luminosity. Next we consider causes of possible depar-

tures from the Taylor-Proudman state. In this section it proves convenient to work

in cylindrical coordinates (� , φ , z).

The Lorentz force cannot truncate the cylindrical flow

The induced toroidal magnetic field interacts with the poloidal magnetic field to

produce the Lorentz force per unit mass

FLorentz =
J × B

ρ
=

(∇×B) × B

μ0ρ
. (3.28)
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From the Navier-Stokes equation (3.25) and the expression for the Lorentz force, we

find

2Ω
∂Uφ

∂z
=

∂

∂z

(
1

2μ0ρ�2

∂

∂�
(�Bφ)2

)
. (3.29)

Here the � component of the Lorentz force comes from the gradient of the sum of

the magnetic pressure plus the hoop stress from magnetic tension. We define by

R the ratio of the right to the left hand side of the above equation. Lifting the z

derivative from both sides, setting ∂/∂� ∼ 1/Hλ, and expressing Bφ in terms of Bp

using equation (3.1), we arrive at

R ∼ HλUφ

Ωλ2

B2
p

μ0ρ
. (3.30)

R is ∼ 10−4 for Jupiter and ∼ 10−5 for Saturn at the maximum penetration depth for

their zonal flows. Moreover, it decreases rapidly outward, Thus the magnetic stress

is incapable of truncating the zonal flow.

The Reynolds stress cannot truncate the cylindrical flow

In the order of magnitude analysis conducted in section 3, we introduce two character-

istic flow amplitudes that differ by about four orders of magnitude: U , the magnitude

of the observed zonal flow; and the much smaller uc = (F/ρ)1/3, a characteristic con-

vective velocity based on the heat flux F and density ρ. In a planet with no magnetic

field, it is possible for the Reynolds stress based on the small convective (fluctuat-

ing) velocity to excite a much larger stable zonal flow, since one could envisage that

both excitation and dissipation are small. The smallness of Reynolds stress would

then dictate the timescale for setting up or maintaining the zonal flow and not its

amplitude. However, we are asking a different question here: Given the absence of

any boundary layer at the appropriate place within the planet, can the variation in

the Reynolds stress gradient (or along an axis parallel to the rotation axis) provide

the change in the zonal flow from the observed large value in the atmosphere to the

required low value in the magnetically coupled deep interior? In order for this to



38

be possible, we must suppose that the amplitude of the Reynolds stress gradient in

the region where it is largest is of the same order of magnitude as the Coriolis force

associated with the zonal flow, i.e.,

u2

l
∼ ΩU. (3.31)

Here u is the fluctuating component of the velocity field associated with the length

scale l. Since turbulence is expected to be present and rotation-dominated convection

can have highly dissimilar scales for motion in different directions, we cannot make

a priori estimates of the scale l for which the Reynolds stress gradient is largest. We

can nonetheless set bounds that demonstrate the implausibility of the hypothesis that

equation (3.31) is satisfied.

Consider first the case where the motions are in the regime of rotation dominance

where it is plausible that small-scale motions could feed large-scale zonal flow. This

requires that u < Ωl. Accordingly, ΩU ∼ u2/l < Ω2l and l > U/Ω ∼ 106 m. Then

from equation (3.31) it follows that u is at least 102 m s−1, of the same order as U .

We know of no way to satisfy this constraint, consistent with the buoyancy produc-

tion (heat flow constraint). We recognize that this is a less rigorous argument than

the main thesis of this paper since there is a fundamental difference between true

dissipation (e.g., Ohmic dissipation) and the rate at which energy is transferred from

one scale of motion to another. Nonetheless, one can appreciate the extraordinary

difficulty of a fluctuating velocity of order U by comparing the heat flux F with ρU3,

the appropriate parameter of the same dimensions that one constructs from the ve-

locity proposed. In Jupiter and Saturn, ρU3/F ∼ 108 for the maximum penetration

depth based on the Ohmic dissipation constraint. The enormity of this ratio makes

the hypothesis u2/l ∼ ΩU implausible.

Consider now the case where the motions are not in the rotation-dominant regime.

In this case, we have u > Ωl and expect that ρu3/l ∼ F/H where H is the local den-
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sity scale height. Simultaneous solution with u2/l ∼ ΩU requires u ∼ F/(ρUΩH) ∼
10−7 m s−1 and l ∼ 10−12 m. This is obviously impossible because l is smaller than

molecular size. The underlying absurdity here is the enormous difference between the

scales of motions that come from heat flow considerations and the actual observed

zonal flow.

The buoyancy force might truncate the cylindrical flow

Taking the pressure to be a function of both density and entropy, p = p (ρ, s), the

pressure gradient can be written as

∇p =
∂p

∂ρ

∣∣∣∣∣
s

∇ρ +
∂p

∂s

∣∣∣∣∣
ρ

∇s . (3.32)

Substituting the expression for ∇p into equation (3.26), taking a curl and dividing

by 2Ω, we obtain
∂Uφ

∂z
=

1

2Ωρ2

∂p

∂s

∣∣∣∣∣
ρ

(∇ρ ×∇s) · eφ . (3.33)

From the thermodynamic identity

∂ρ

∂s

∣∣∣∣∣
p

∂s

∂p

∣∣∣∣∣
ρ

∂p

∂ρ

∣∣∣∣∣
s

= −1 , (3.34)

it follows that
∂p

∂s

∣∣∣∣∣
ρ

= −c2
s

∂ρ

∂s

∣∣∣∣∣
p

, (3.35)

where cs is the adiabatic sound speed. Given these relations, we can write the frac-

tional change in Uφ over a density scale height Hρ ≡ −(∂ ln ρ/∂r)−1 ≈ c2
s/g as

∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ = g

2ΩUφ

∣∣∣∣∣∂ ln ρ

∂s

∣∣∣∣∣
p

Hρ|∇s| sin δ . (3.36)

Here δ is the angle between ∇ρ and ∇s.

Convective interior
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Because buoyancy drives convection, it might be thought that δ is small. How-

ever, this may not be the case. The photospheric effective temperature on Jupiter

and Saturn is almost independent of latitude. This suggests that the convective heat

flux is substantially deflected poleward of radial.

Next we apply mixing lengths arguments to bound |∇s|. This is uncertain ter-

ritory. Our current understanding of turbulent convection is limited even for non-

rotating systems. Rotation and especially strong differential rotation add additional

complexity. We are guided by the analysis in Ingersoll & Pollard (1982). These

authors consider two limiting cases.

Case 1: uniform rotation

In this case the analysis proceeds in a conventional fashion. The convective flux,

F , and convective velocity, u, are expressed by

F ∼ ρuTΔs ∼ ρuT |∇s|L , (3.37)

and

u2 ∼ g
Δρ

ρ
L ∼ g

∣∣∣∣∣∂ ln ρ

∂s

∣∣∣∣∣
p

|∇s|L2 . (3.38)

Solving equations (3.37) and (3.38) for |∇s| and substituting the result into equation

(3.36) yields ∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ g

2ΩUφ

⎛⎝ F

ρTcs

∣∣∣∣∣∂ ln ρ

∂s

∣∣∣∣∣
p

H2
ρ

L2

⎞⎠2/3

sin δ . (3.39)

Using equation (3.35) together with the Maxwell relation (∂p/∂s)|ρ = ρ2(∂T/∂ρ)|s,5

we obtain ∣∣∣∣∣∂ ln ρ

∂s

∣∣∣∣∣
p

=
T

c2
s

∂ lnT

∂ ln ρ

∣∣∣∣∣
s

= −γT

c2
s

, (3.40)

5Derived from the differential internal energy dU = Tds + pdρ/ρ2.
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where γ is the dimensionless Gruneisen parameter. Thus

∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ g

2ΩUφ

(
γF

ρc3
s

H2
ρ

L2

)2/3

sin δ . (3.41)

The Coriolis acceleration enters by restricting L to be less than the maximum value6

L2 ≤ uR

Ω
. (3.42)

Ingersoll and Pollard (1982) argue that convection will maximize L. With this choice

we may solve equations (3.37) and (3.38), along with equation (3.42), to determine

L. Then substituting this value of L into equation (3.41), we arrive at

∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ g

2ΩUφ

(
γF

ρc3
s

Ω2H3
ρ

gR2

)2/5

sin δ . (3.43)

Numerical evaluation of the above expression is accomplished using data provided

by Guillot (1999). There is only a weak radial dependence and at the maximum

penetration depth ∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ 1.5 × 10−5 (3.44)

for Jupiter, and ∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ 4.0 × 10−6 (3.45)

for Saturn.

Case 2: differential rotation

This case is advocated by Ingersoll & Pollard (1982) for application to Jupiter

and Saturn. Strong differential rotation stretches convective eddies azimuthally and

curtails their radial extent. These details, although interesting, are irrelevant to our

needs. All we require is an estimate for the magnitude of the entropy gradient. This

6This limitation is due to the energy barrier that buoyancy must surmount to effect the inter-
change of vortex tubes of different lengths.
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turns out to satisfy the relation

g

∣∣∣∣∣∂ ln ρ

∂s

∣∣∣∣∣
p

|∇s| ∼
(

∂Uφ

∂�

)2

. (3.46)

Remarkably, |∇s| is independent of the convective flux. Plugging this value for |∇s|
into equation (3.36) yields

∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ Hρ

2ΩUφ

(
∂Uφ

∂�

)2

sin δ . (3.47)

At the maximum penetration depth, we have

∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ 0.6 sin δ (3.48)

for Jupiter, and ∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ 0.3 sin δ (3.49)

for Saturn. Buoyancy might produce a modest variation of Uφ in the convective

interior if sin δ is not small. However, it cannot truncate Uφ because (∂Uφ/∂z)� ∝ Uφ.

Radiative atmosphere

We start from equation (3.36). Typically, s changes on the same scale as ρ in a

radiative region, so we set Hρ|∇s| ∼ k/μ. Moreover, since the perfect gas equation

of state is a good approximation in the atmosphere, we have

∣∣∣∣∣∂ ln ρ

∂s

∣∣∣∣∣
p

= −(γ − 1)

γ

μ

k
, (3.50)

where γ is the ratio of the specific heat at constant pressure to that at constant

density. Thus ∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ g

2ΩUφ
sin δ . (3.51)

We find ∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ 600 sin δ (3.52)
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for Jupiter, and ∣∣∣∣∣Hρ

Uφ

∂Uφ

∂z

∣∣∣∣∣ ∼ 50 sin δ (3.53)

for Saturn. Thus is appears that the Taylor-Proudman columns might be truncated

in the radiative atmosphere.

3.5.3 Maximum width of an equatorial jet

A sufficiently narrow equatorial jet could maintain constant velocity on cylinders

throughout the planet. For example, consider the specific velocity profile

Uφ = U0 sin

(
π

2

(θ − θ0)

(π/2 − θ0)

) 1
10

if θ < π − θ0 (3.54)

and,

Uφ = 0 if θ < θ0 and θ > π − θ0; (3.55)

so the jet has equatorial velocity U0 and angular half-width π/2 − θ0. For Jupiter

and Saturn, U0 is approximately 140 m s−1 and 400 m s−1, respectively. Figure (3.6)

displays the calculated Ohmic dissipation rate as a function of the jet half-width. The

maximum half-width is about 21◦ for Jupiter and 31◦ for Saturn. There is an obvious

relation between these maximum half-widths and the radii of maximum penetration,

Rmp, calculated in §3.5.1, namely,

cos θ0 ≈ Rmp

R
. (3.56)
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Figure 3.6 Total Ohmic dissipation rate verses jet half-width. The horizontal lines
mark the planet’s net luminosity.
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3.6 Conclusion and discussion

The condition that the total Ohmic dissipation not exceed the planet’s net luminos-

ity sets a firm upper bound on the depth to which the zonal flows observed in the

atmospheres of Jupiter and Saturn could penetrate. However, it is implausible that

the flows extend to these depths because it seems impossible to break the Taylor-

Proudman constraint in the convective envelope. Most likely the zonal flows are

truncated in a stably stratified layer at shallow depth.

3.7 Appendix: choose the poloidal magnetic field

models

External to the planet, the magnetic field may be expressed as the gradient of a scalar

potential V (B = −∇V ) due to the absence of local current (∇×B = 0). The scalar

potential V can be expanded in spherical harmonics:

V = a
∞∑

n=1

[(
r

a

)n

Y e
n +

(
a

r

)n+1

Y i
n

]
, (3.57)

where a is the equatorial radius of the planets. The first series in increasing power

of r represents the contribution due to an external source and the second series in

inverse power of r is the contribution due to the internal planetary field, with

Y i
n =

n∑
m=0

(P m
n (cos(θ)) [gm

n cos(mφ) + hm
n sin(mφ)]) , (3.58)

where P m
n (cos(θ)) are Schmidt quasi-normalized associated Legender functions of de-

gree n and order m, and gm
n , hm

n are the internal Schmidt coefficients. Here we are

only interested in the observed magnetic field produced by the internal magnetic field

because the contribution to the field from the external current is negligible small in-

side the planet.
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The magnetic fields of Jupiter and Saturn have been measured by various space-

crafts (Connerney, 1993). These observations are confined to low magnetic latitudes

and large radial distance. The closest measurement for Jupiter’s magnetic field

reaches 1.6 RJ (by Pioneer 11), and is 1.3 RS for Saturn (by Pioneer 11). Due

to the low spatial resolution and poor spatial coverage of the measurements and the

difficulties of separating the signals from the internal magnetic field and the external

magnetic field, the standard approach is to limit the field model to the coefficients

of low degree and order spherical harmonics only (up to n = 3). In this approach,

the magnetic fields of the giant planets are dominated by a dipole field plus a small

amount of non-dipole field that is approximated by quadrupole and octupole compo-

nent field. This has two possible interpretations: either the higher harmonics are, in

fact, small (the usual assumption) or the higher harmonics (including perhaps those

beyond octupole) are not in fact small but tend to cancel each other in the (near

closest approach) locations where the measurements are made. In the latter case, the

downward continuation of the observed field models might be unreliable.

In general, the interaction of the toroidal zonal flow and the poloidal magnetic

field will produce the toroidal magnetic field and poloidal electrical current. As we

discussed in section (3.4), poloidal electrical current is mainly determined locally and

dominated by the component along the θ direction: (UT × BP )θ = |UT | |BP · er| (see

equation (3.19)), where er is the unit vector along the spherical radial direction.

Consider the following special field geometry: The large zonal flow is concentrated

in the low latitude region and the magnetic field lines are gathered in the polar region

like a sheaf of wheat. For this special field geometry, the spherical radial component

of the poloidal field (BP · er) is in fact near zero at the region with large zonal flow.

The electrical current will be mainly determined by the global term, i.e., by the in-

tegration of (UT ×BP )r = |UT | |BP · eθ| from the radius r to the planetary surface

(see equation (3.19)). Since this radius of the penetration of zonal flow is close to

the surface, the magnitude of the electrical current will be about one order of magni-
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tude smaller than that produced by a pure dipole field (with non-zero BP · er), and

the Ohmic dissipation will be two orders of magnitude smaller. So, the interesting

question is whether this special field geometry is consistent with the magnetic field

measurements external to the planet. Before we address this question, it is worth

noticing that it is necessary to have large electrical current along the azimuthal di-

rection to confine the magnetic field lines in the polar region. Since the electrical

conductivity of hydrogen decreases exponentially towards the surface from the metal-

lic hydrogen region, the magnetic field lines might only be confined in the metallic

hydrogen region (with high magnetic Reynolds number) and will spread out in the

semi-conducting molecular region. From the order of magnitude analysis in section

3.3 and the detailed calculation in later section, we find that the magnetic Reynolds

number is of order unity or less at the place where the total Ohmic dissipation is less

than the planet net luminosity. So, it is possible that the magnetic field lines spread

out already at that region.

In order to investigate whether this special field geometry is consistent with the

observation, we calculate the radial component of the magnetic field along the trajec-

tory of the spacecraft from the given low order spherical harmonics. We use O6 model

for Jupiter and Z3 model for Saturn (Connerney, 1993). Since the difference between

the observation and the low degree spherical harmonics model is within 200 nT (Con-

nerney et al., 1982; Smith et al., 1976), it is reasonable to treat the modeled magnetic

field as a representation of the observed field. Then we add in the constraints that

the radial field in the low latitude region is near zero at some particular spherical ra-

dius inside the planet. Based on these constraints and the observation closest to the

planet, we obtain the coefficients for higher order spherical harmonics and recalculate

the magnetic field for other points along the spacecraft’s trajectory.

For Jupiter, we obtain the trajectory of the Pioneer 11 spacecraft from the web-

site of the NSSDC (National Space Science Data Center). Consider the axisymmetric

field. We calculate the radial component of the magnetic field along the trajectory
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of the spacecraft by combining the spherical harmonics of n = 1 and n = 3 from

the O6 model and treat the modeled field as observation. At the equator, the main

contribution to the axisymmetric radial field comes from the axial quadrupole. How-

ever it is small. The dipole field becomes dominant even for quite small latitude

(10 degrees or more). For greatly reducing the Ohmic dissipation, we would have to

suppose that the octupole and higher odd harmonics cancel this dipole field (at least

partially and for modest latitudes, e.g., 20 to 40 degrees). Therefore, here we look at

the possibility of constructing an alternative model that involves quite large harmon-

ics coefficients for n = 1, 3, 5, 7. For Jupiter, the closest approach of Pioneer 11 is at

(r, θ) = (1.6RJ , 103.38◦). We add in the constraints that the spherical radial field goes

to near zero in the low latitude region (θ = 60◦ ∼ 120◦) inside the planet ∼ 0.95RJ .

Combine this constraint and the modeled magnetic field at the closest approach. We

can calculate g0
3, g0

5, and g0
7 (assuming g0

1 is well known). The coefficient for the

spherical harmonics from model is g0
1 = 4.24 and g0

3 = 0.07505. The calculation with

the added constraints gives g0
1 = 4.24, g0

3 = −3.2717, g0
5 = −6.5925, g0

7 = −2.5627. In

the field model with added constraints, the coefficients for the higher order spherical

harmonics are much larger than those in the O6 model. Based on those coefficients

for higher order spherical harmonics, we can recalculate the magnetic field along the

trajectory of the spacecraft and compare it with O6 model. Figure (3.7) shows the

comparison of the magnetic fields. From this figure, we can see that the differences be-

tween two magnetic field models are large (up to 0.5 G ∼ 50000 nT) at the place close

to the planets. Since the r.m.s. for fitting the coefficients of the spherical harmonics

model to the observation is generally less than 200 nT (Connerney, 1993; Smith et al.,

1976), we claim that this special field geometry is not consistent with the observation.

For Saturn, we model the radial component of the magnetic field along the Voy-

ager 2 trajectory (Connerney, 1993) by combining the spherical harmonics of n = 1

and n = 3 from Z3 model and treating the modeled field as observation. For Sat-

urn, the closest approach of Voyager 2 is at: (r, θ) = (2.7RS, 75◦). We then add in

the constraints that the spherical radial field goes to near zero in the low latitude
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Figure 3.7 This figure shows the comparison of the magnetic fields: the radial compo-
nent of the magnetic field versus the distance between the spacecraft and the planets.
The solid line is the magnetic field obtained from O6 model; the dash line is the
calculated magnetic field with added constraints; and the dot indicates the closest
approach of the spacecraft. From this figure, we can see that the differences between
two magnetic field models are large (up to 0.5 G ∼ 50000 nT) close to the planets.
Far away from the planets, the differences are small and cannot be detected.
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region (θ = 60◦ ∼ 120◦) inside the planet ∼ 0.87RS. Combine this constraint and

the modeled magnetic field at the closest approach, we can calculate g0
3, g0

5, and g0
7.

From the Z3 model, the coefficients for the spherical harmonics are g0
1 = 0.215353

and g0
3 = 0.02743. The calculation with the added constraints gives g0

1 = 0.215353,

g0
3 = 0.0131, g0

5 = −0.0740, g0
7 = −0.0280. In the field model with added constraints,

the coefficients for the higher order spherical harmonics are much larger than the Z3

model. Based on those coefficients, we can recalculate the magnetic field for the sec-

ond point (r, θ) = (3.0RS, 62◦) along the trajectory and compare it with the modeled

magnetic field. For this point, the modeled magnetic field is 0.0106 G, and the calcu-

lated field based on the added constraint is 0.0108 G. So, the difference is about 20

nT, which is a little bit larger than the r.m.s of the least square fitting of the observed

magnetic field (∼ 3 nT) (Connerney et al., 1982). Because the small amplitude of

Saturn’s magnetic field, and the large radial distance of the observation, it is hard to

tell whether the observed field is consistent with the special field geometry. In order

to test this assumption, we need to have spacecraft measurements close to the planet

and in the high latitude region.

Our conclusion is that non-dipole terms cannot enormously influence our calcu-

lation. This conclusion rests on two facts: first, the electrical conductivity is quite

low and the magnetic Reynolds number is of order unity or less where the Ohmic

dissipation becomes important (as explained in our order of magnitude analysis in

section 3.3) thereby guaranteeing that magnetic fields generated in this region can

not affect the field greatly. Second, the observed external fields are inconsistent with

small radial field at the near-surface radius of relevance. Therefore, it is enough to

use the downward continuation of the dipolar magnetic field.
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Chapter 4 Ohmic dissipation constraint

on the vertical flow structure for Uranus

and Neptune

4.1 Introduction

For Uranus and Neptune, we assume the observed flow penetrating to the deep interior

along the Taylor-Proudman cylinders and calculated the associated Ohmic dissipa-

tion. The differences from the calculations for Jupiter and Saturn lie in the following

aspects: (1) The electrical conductivity distribution in the interior of Uranus and Nep-

tune exhibits large uncertainties; therefore different conclusions can be drawn from

the different conductivity profiles. (2) The magnetic fields observed on the surfaces of

Uranus and Neptune contain significant amounts of the quadrupole component, thus

it is necessary to conduct the calculation for the non-axisymmetric magnetic field,

which is different from the axisymmetric calculation in the previous chapter. Based

on those considerations, we estimate the amount of Ohmic dissipation produced by

the penetrating zonal winds on Uranus and Neptune in this chapter.

The interior model for Uranus and Neptune estimated from mass, radius, rota-

tional rate, and gravity field of the planets consists of three layers: the outer “gas” en-

velope which is mainly composed of hydrogen and helium; the intermediate “ice” layer

made of a mixture of the molecules H2O, CH4, and NH3; and a central rocky core

with chondritic bulk proportions of iron, oxygen, magnesium, and silicon (Podolak

et al., 1991; Hubbard et al., 1991, 1995). In chapter 2, the electrical conductiv-

ity profiles are calculated based on the interior model and the relationship between

the conductivity and pressure for hydrogen and water ice (Nellis et al., 1996, 1999;
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Mitchell and Nellis, 1982; Nellis et al., 1988). The electrical conductivity profile in

the outer “gas” layer is largely determined by the mixing ratio of water ice.

In this Chapter, we find the maximum penetration depth of the zonal winds per-

mitted by the Ohmic dissipation constraint is influenced by the water ice mixing ratio

and is close to the transition radius from the outer “gas” envelope to the intermediate

“ice” layer.

4.2 Order of magnitude analysis.

Similar with the previous section, we define three characteristic velocities: U , the

magnitude of the observed zonal flow; uc = (F/ρ)1/3, a characteristic convective ve-

locity based on the heat flux, F , and density, ρ; and uB =
(
B2

p/μ0ρ
)1/2

, a characteris-

tic Alfven velocity based on the magnitude of the observed poloidal magnetic field, Bp.

Consider a zonal flow of amplitude U that extends to a depth d∗ = R − r∗ and

weakens below. We assume that the magnetic Reynolds number is small at d∗. The

magnitude of the electrical field associated with the penetrating zonal flow is ∼ UBp

and the resulting current density is ∼ σUBp. The Ohmic dissipation per unit area

produced by this current is lσU2B2
p ∼

(
Ul
λ

)
Uu2

Bρ ∼ RmUu2
Bρ, where l is the scale

height of the magnetic diffusivity. We can then estimate the ratio (Γ) of Ohmic

dissipation per unit area to the planetary heat flux at d∗:

Γ =
RmUu2

Bρ

F
= Rm

(
U

uc

)(
uB

uc

)2

= Rm

UB2
p

μ0F
. (4.1)

Notice that this ratio is determined by the magnetic Reynolds number Rm and the

observable quantities U , B, and F . Since the magnitude of the flow below the penetra-

tion depth is several orders of magnitude smaller than U and the magnetic diffusivity

is an exponential function of radius, the majority of the total Ohmic dissipation is

generated within the spherical shell with thickness l around the penetration depth.
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Taking the surface integral of equation (4.1) over the spherical shell yields the ratio

of total Ohmic dissipation to planetary net luminosity, which is the same as Γ. Since

the total Ohmic dissipation cannot be larger than the planetary net luminosity, the

flow cannot penetrate to the depth at which Γ > 1. At the place where Rm ∼ 1, the

ratio of Ohmic dissipation to heat flow simplifies to
UB2

p

μ0F
, which is independent of λ,

l and ρ. Can the surface zonal flow penetrate to this depth? The answer is shown

in figure (4.1). From Voyager IRIS data, the intrinsic flux of the giant planets has

been estimated (Pearl and Conrath, 1991). For Jupiter, F ∼ 5.44 W m−2; for Saturn,

F ∼ 2.01 W m−2; for Uranus, F ∼ 0.042 W m−2; for Neptune, F ∼ 0.43 W m−2. The

case of Uranus is less clear. Its intrinsic heat flux F is significantly smaller than that

of the other giant planets. Detailed modeling of its atmosphere, however, indicates

that F ≥ 0.06 W m2 (Marley & McKay, 1999; Guillot, 2005). In this calculation, we

use F ∼ 0.06 W m−2 for Uranus.

From figure (4.1), we can see that for Jupiter, Saturn and Uranus, Γ is larger

than unity. Therefore, the observed zonal flow cannot penetrate to the depth with

Rm ∼ 1. However, for Neptune, Γ ∼ 0.2, the observed zonal flow on Neptune can

penetrate to the depth with Rm ∼ 1 but cannot penetrate to the depth with Rm ∼ 10.

The magnetic Reynolds number at the level where the total Ohmic dissipation

matches the planet’s net luminosity is

R∗
m = Γ

μ0F

UB2
p

=
μ0F

UB2
p

. (4.2)

For Uranus R∗
m ∼ 0.5, for Neptune Rm∗ ∼ 8.5. In steady state, the toroidal magnetic

field produced by the interaction of the penetrating zonal flow and the poloidal mag-

netic field has magnitude: BT ∼ BpR
∗
m ∼ 0.1 G for Uranus and BT ∼ BpR

∗
m ∼ 0.8 G

for Neptune.

Next we compare the Lorentz force produced by the magnetic field with the Cori-
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Figure 4.1 This figure plots
(

U
uc

)
versus

(
uB

uc

)2
for different values of Γ at the radius

where Rm = 1. The solid line corresponds to Γ = 1. From top to bottom, the
dash lines correspond to value of Γ ≈ 20, Γ ≈ 2, Γ ≈ 2.3 and Γ ≈ 0.2 appropriate
to Jupiter, Saturn, Uranus and Neptune, respectively. The diamond, star, circle

and cross correspond to values of U and uB normalized by uc =
(

F
ρ

) 1
3 where ρ is

evaluated at the layer where Rm = 1. For Uranus, U ∼ 200 m s−1, F ∼ 0.06 W m−2

and Bp ∼ 0.2 G, so Γ ∼ 2.3. For Neptune, U ∼ 400 m s−1, F ∼ 0.45 W m−2 and
Bp ∼ 0.1 G, so Γ ∼ 0.2.
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olis force. The Lorentz force is

FLorentz =
(∇× B) × B

μ0ρ
∼ BT Bp

lμ0ρ
∼ R∗

mB2
p

lμ0ρ
, (4.3)

whereas the Coriolis force is

FCoriolis = 2Ωez × U ∼ 2ΩU. (4.4)

Here ez is the unit vector along the rotation axis and Ω is the rotation frequency of

planet. Their ratio is

Λ =
|FLorentz|
|FCoriolis| . (4.5)

For values similar to those where Γ ∼ 1: ρ ∼ 0.01 g cm−3, Ω ∼ 2 × 10−4s−1 and

l ∼ 1000 km, Λ is about 10−7 for both Uranus and Neptune. Therefore, the Lorentz

force cannot cause the flow to depart from the cylindrical Taylor-Proudman state.

4.3 Detailed formulation

The electric current density J can be expressed as

J = σ (E + U ×B) (4.6)

where σ is the electrical conductivity; U is the velocity of the flow; B is the magnetic

field; and E is the electrical field, which is defined by the force on a charge at rest in

the reference frame. For Uranus and Neptune, the reference frame is the deep-seated

magnetic field generated by the planetary dynamo.

Both the flow velocity U and the magnetic field can be decomposed into the

sum of poloidal and toroidal components: U = UP + UT , B = BP + BT . For the

velocity field U, its poloidal component UP is in the radial and latitudinal direction:

UP = (Ur, Uθ, 0); and its toroidal component UT is in the azimuthal direction: UT =
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(0, 0, Uφ). For the magnetic field B, its poloidal component BP is in the radial

and latitudinal direction: BP = (Br, Bθ, Bφ); and its toroidal component BT is in

latitudinal and azimuthal direction: BT = (0, Bθ, Bφ). Based on this decomposition,

the density of the electrical current J can be rewritten as

J = σ (E + UT × BP + UP × BT + UP × BP + (UT × BT )r) , (4.7)

where (UT × BT ) has only the component along the r direction. Both Uranus and

Neptune are fast-rotating planets. The large Coriolis force acting on the fluid particle

inhibits the motion along the radial and latitudinal direction. Based on the mixing

length estimation, the magnitude of the poloidal velocity field is about 1 cm s−1

(Guillot et al., 2004), which is four orders of magnitude less than the observed zonal

flow ∼ 100 m s−1 on the surfaces of planets. It implies |UP ×BP | 	 |UT × BP |.

Since the toroidal component of the magnetic field is confined in the region of finite

electric current, only the poloidal component of the magnetic field can be observed

external to the planets. For the observed magnetic field of Uranus and Neptune,

the quadrupole component is as strong as the dipole component (∼ 0.2 G). Inside

the planet, the poloidal magnetic field interacts with the toroidal components of the

flow and produces a toroidal magnetic field with the magnitude |BT | ∼ Rm |BP |.
From later calculations, we will find that the magnetic Reynolds number is small

(Rm 	 1) in the region of relevance to our calculation. So, it is reasonable to assume

|UP ×BT | 	 |UT ×BP |. The current density can be rewritten as

J = σ (E + UT × BP + (UT ×BT )r) . (4.8)

In the steady state, the electrical field can be written as the gradient of the

electrical potential: E = −∇ϕ. Substituting this equation and the definition of
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magnetic diffusivity into equation (4.8), we arrive at

J =
1

μ0λ
(−∇ϕ + UT ×BP + (UT × BT )r) . (4.9)

The current density J is divergence free,

∇ · J = 0. (4.10)

Putting the expression of the current density (equation (4.9)) into equation (4.10),

and conducting expansion in spherical coordinates (r, θ, φ), we then have

1

r

∂

∂r

(
r2

μ0λ

(
−∂ϕ

∂r
+ (UT ×BP + UT × BT )r

))

+
1

r sin(θ)

∂

∂θ

(
sin(θ)

μ0λ

(
−∂ϕ

∂θ
+ (UT ×BP )θ

))

+
1

r sin(θ)

∂

∂φ

(
1

μ0λ

(
−∂ϕ

∂φ

))
= 0. (4.11)

The magnetic diffusivity increases very rapidly outward from the metallic region

to the semi-conducting region. From chapter 2, we know that the scale height for

the magnetic diffusivity is about several hundred kilometers in the outer region of

the planets, which is much smaller than the typical length scale of the variation of

the zonal flow in the meridional direction (L ∼ 10000 km). Therefore, the dominant

term in equation (4.11) is the one involving the derivative of the magnetic diffusivity

respect to the radius: ∂λ(r)
∂r

. There are no other terms in equation (4.11) that can

balance the magnitude of this term. Therefore, the divergence-free current density

requires that the term involving the derivative of the magnetic diffusivity respect to

the radius to be approximately zero:

1

μ0λ2

dλ

dr

(
−∂ϕ

∂r
+ (UT ×BP + UT × BT )r

)
≈ 0. (4.12)
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The current density J along the radial direction can be written as

Jr =
1

μ0λ

(
−∂ϕ

∂r
+ (UT × BP + UT × BT )r

)
. (4.13)

Comparing equation (4.12) with equation (4.13), we find that the rapid variation of

the magnetic diffusivity along the radial direction and the divergence free current

density demand that the current along the radial direction to be almost zero and

much less than the current along the meridional direction and azimuthal direction.

Physically, this makes sense: The current that flows radially from deep regions is

forced to flow meridionally and azimuthally in a thin layer, thereby having large am-

plitude. This is exactly analogous to the standard meteorological scaling that allows

one to ignore vertical motions relative to horizontal motions in a thin atmosphere. In

other words, the rapid variation of the magnetic diffusivity along the radial direction

causes the current density along the r direction to be much smaller than that along

the θ and φ direction.

We can also obtain an expression for the electrical potential ϕ from equation

(4.12):
∂ϕ

∂r
= (UT × BP + UT × BT )r . (4.14)

Integrating along the r-direction, we obtain

ϕ = −
∫ R

r
(UT ×BP + UT × BP )r dr′ + Q(θ, φ), (4.15)

where R is the planetary radius and Q(θ, φ) is an arbitrary function of θ and φ. The

electrical field in the θ direction can be written as

Eθ = −∂ϕ

∂θ
=

1

r

[
∂

∂θ

∫ R

r
(UT × BP + UT × BT )r dr′ − ∂Q(θ)

∂θ

]
. (4.16)

In the above equation (4.16), the first term in the parentheses is a function of both

r, θ and φ. However, the second term in the parentheses ∂Q(θ,φ)
∂θ

is only a function of
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θ and φ. These two terms cannot cancel each other at all radii.

From equation (4.9), we acquire the current density along the θ direction as

Jθ =
1

μ0λ
=

(
−∂ϕ

∂θ
+ (UT ×BP )θ

)
. (4.17)

Substituting the expression for the electrical potential into this equation, we obtain

Jθ =
1

μ0λr

[
∂

∂θ

∫ R

r
(UT ×BP + UT × BT )r dr′ + r (UT × BP )θ −

∂Q

∂θ

]
. (4.18)

Similarly, the electric current density along the φ direction can be written as

Jφ =
1

μ0λr

[
∂

∂φ

∫ R

r
(UT × BP + UT ×BT )r dr′ − ∂Q

∂φ

]
. (4.19)

The Ohmic dissipation per unit volume is equal to the square of the current den-

sity divided by the electric conductivity. Since the current along θ direction and φ

direction is dominant, the Ohmic dissipation per unit volume is

P =
J2

σ

≈ 1

μ0λr

[
∂

∂θ

∫ R

r
(UT × BP + UT × BT )r dr′ + r (UT ×BP )θ −

∂Q

∂θ

]2

+
1

μ0λr

[
∂

∂φ

∫ R

r
(UT ×BP + UT × BT )r dr′ − ∂Q

∂φ

]2

. (4.20)

The magnitude of
∣∣∣ ∂
∂θ

∫R
r (UT × BP + UT × BT )r dr′ + r (UT ×BP )θ − ∂Q

∂θ

∣∣∣ and∣∣∣ ∂
∂φ

∫ R
r (UT × BP + UT ×BT )r dr′ − ∂Q

∂φ

∣∣∣ can be bound in the following way: From

equation (4.20), we can see that the Ohmic dissipation per unit volume is inversely

proportional to the magnetic diffusivity. In the interior of the giant planet, the

magnetic diffusivity of the material increases exponentially outward from the metallic

conducting region with the scale height Hλ(r). The Ohmic dissipation in the spherical
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shell around r with thickness Hλ(r) is approximately

Pshell ∼ 4πr2HλJ
2

σ

∼ 4πr2Hλ

σ

(
∂

∂θ

∫ R

r
(UT × BP + UT ×BT )r dr′ + r (UT ×BP )θ −

∂Q

∂θ

)2

+
4πr2Hλ

σ

(
∂

∂φ

∫ R

r
(UT ×BP + UT × BT )r dr′ − ∂Q

∂φ

)2

. (4.21)

Since the total Ohmic dissipation cannot be larger than the planetary net luminosity

Lnet, we have

Pshell ∼ 4πHλ

μ0λ

(
∂

∂θ

∫ R

r
(UT × BP + UT ×BT )r dr′ + r (UT ×BP )θ −

∂Q

∂θ

)2

+
4πHλ

μ0λ

(
∂

∂φ

∫ R

r
(UT ×BP + UT × BT )r dr′ − ∂Q

∂φ

)2

≤ Lnet. (4.22)

Then we acquire the following upper bound:

4πHλ

μ0λ

(
∂

∂θ

∫ R

r
(UT × BP + UT × BT )r dr′ + r (UT ×BP )θ −

∂Q

∂θ

)2

≤ Lnet, (4.23)

and
4πHλ

μ0λ

(
∂

∂φ

∫ R

r
(UT × BP + UT ×BT )r dr′ − ∂Q

∂φ

)2

≤ Lnet. (4.24)

We consider the equation (4.23) first. It can be rewritten as

∣∣∣∣∣ ∂

∂θ

∫ R

r
(UT ×BP + UT × BT )r dr′ + r (UT × BP )θ −

∂Q

∂θ

∣∣∣∣∣ ≤
(

Lnetμ0λ

4πHλ

) 1
2

. (4.25)

Define
∣∣∣ ∂
∂θ

∫R
r (UT × BP + UT × BT )r dr′ + r (UT ×BP )θ| as term 1,

∣∣∣∂Q(θ,φ)
∂θ

∣∣∣ as term

2 and
∣∣∣ ∂
∂θ

∫R
r (UT × BP + UT × BT )r dr′ + r (UT × BP )θ − ∂Q(θ,φ)

∂θ

∣∣∣ as term 3. Both

term 1 and term 2 can also be bound individually. Suppose term 1 and term 2

completely cancel each other at the radius r∗. They will not cancel each other at

the nearby radius r = r∗ + Hλ(r∗). Across this layer with thickness Hλ(r∗), term 2
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doesn’t change whereas the variation of term 1 is of order

Δ

∣∣∣∣∣ ∂

∂θ

∫ R

r
(UT ×BP + UT × BT )r dr′ + r (UT × BP )θ

∣∣∣∣∣
∼
∣∣∣∣∣ ∂

∂θ

∫ R

r∗
(UT × BP + UT × BT )r dr′ + r∗ (UT ×BP )θ

∣∣∣∣∣ Hλ(r∗)
r∗

. (4.26)

Therefore, we have

∣∣∣∣∣ ∂

∂θ

∫ R

r∗
(UT ×BP + UT × BT )r dr′ + r∗ (UT × BP )θ

∣∣∣∣∣ ≤ r∗
Hλ(r∗)

(
Lnetμ0λ(r∗))

4πHλ(r∗)

)1/2

.

(4.27)

Since term 1 and term 2 completely cancel each other at r∗, we have

∣∣∣∣∣∂Q

∂θ

∣∣∣∣∣ ≤ r∗
Hλ(r∗)

(
Lnetμ0λ(r∗))

4πHλ(r∗)

)1/2

. (4.28)

Combining equations (4.27), (4.28) and (4.25), we find that the bound for term 1 and

term 2 is of order r
Hλ(r)

larger than the bound for term 3.

Similarly, for equation (4.24), we have

∣∣∣∣∣ ∂

∂φ

∫ R

r∗
(UT ×BP + UT × BT )r dr′

∣∣∣∣∣ ≤ r∗
Hλ(r∗)

(
Lnetμ0λ(r∗))

4πHλ(r∗)

)1/2

(4.29)

and ∣∣∣∣∣∂Q

∂φ

∣∣∣∣∣ ≤ r∗
Hλ(r∗)

(
Lnetμ0λ(r∗))

4πHλ(r∗)

)1/2

. (4.30)

In Uranus and Neptune, a tight bound for
∣∣∣∂Q

∂θ

∣∣∣ and
∣∣∣∂Q

∂φ

∣∣∣ can be acquired at the layer

near the top of the metallic water ice region, where: σ ∼ 2×103 S m−1, λ ∼ 400 m2 s−1

and Hλ ∼ 1000 km. For Uranus, we have

∣∣∣∣∣∂Q

∂θ

∣∣∣∣∣ ≤
(

(0.6 × 2.6 × 107)
2 × 4π × 10−7 × 0.034 × 1016 × 400

4π × (106)3

)1/2

∼ 103 Tesla m2 s−1,

(4.31)
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and ∣∣∣∣∣∂Q

∂φ

∣∣∣∣∣ ≤ 103 Tesla m2 s−1. (4.32)

For Neptune, we have
∣∣∣∂Q

∂θ

∣∣∣ ≤ 5 × 103 Tesla m s−1 and
∣∣∣∂Q

∂φ

∣∣∣ ≤ 5 × 103 Tesla m s−1.

From equation (4.23), we can also estimate the upper bound for the zonal veloc-

ity near the top of the metallic water ice region. If we assume the magnitude of

the poloidal magnetic field BP is in the same order as the toroidal magnetic field

BT , the magnitude of
∣∣∣ ∂
∂θ

∫R
r (UT × BP + UT × BT )r dr′ + r (UT ×BP )θ

∣∣∣ is approxi-

mately |rUTBP |. Therefore, we have

|UT | ≤ 1

|BP |Hλ

(
Lnetμ0λ

4πHλ

)1/2

. (4.33)

If we assume that the magnitude of the poloidal magnetic field is in the same order

as the downward continuation of the observed dipole field, we obtain |UT | ≤ 5 m s−1

for Uranus and |UT | ≤ 20 m s−1 for Neptune. If the magnitude of the zonal flow

velocity is larger than the upper bound, excessive Ohmic dissipation will be produced.

At the outer region of the giant planets, the magnitude of the velocity is about

200 m s−1. The magnitude of
∣∣∣ ∂
∂θ

∫R
r (UT ×BP + UT × BT )r dr′ + r (UT × BP )θ

∣∣∣ is

approximately |rUTBP | ∼ 105 Tesla m2 s−1, which is much larger than the upper

bound for
∣∣∣∂Q

∂θ

∣∣∣ and
∣∣∣∂Q

∂φ

∣∣∣. Thus, for calculating the Ohmic dissipation produced by

the deep-seated large cylindrical zonal winds (∼ 200 m s−1), we can ignore the term

related with ∂Q
∂θ

and ∂Q
∂φ

in equation (4.18), (4.19) and (4.20).

Therefore, the current density along the θ direction can be rewritten as

Jθ(r, θ, φ) =
1

μ0λ

[
1

r

∂

∂θ

∫ R

r
(UT × BP + UT ×BT )r dr′ + (UT ×BP )θ

]
, (4.34)

and the current density along the φ direction can be rewritten as

Jφ(r, θ, φ) =
1

μ0λ

[
1

r

∂

∂φ

∫ R

r
(UT ×BP + UT × BT )r dr′

]
, (4.35)
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In the equation (4.34), the first term comes from the electrical field E. It is a global

term since it depends on the integration of the radial component of UT ×BP from r

to R. The second term is a local term, since it is determined by the local value of the

meridional component of UT × BP . If we assume that the poloidal magnetic field is

in the same order as the poloidal magnetic field, the global term can be estimated as

1

μ0λ

[
1

r

∂

∂θ

∫ R

r
(UT × BP + UT ×BT )r dr′

]
∼ 1

μ0λ

R − r

r
|(UT × BP )r| . (4.36)

The local term can be expressed approximately:

1

μ0λ
(UT × BP )θ ∼

1

μ0λ
|(UT × BP )θ| . (4.37)

For the spherical shell close to the surface, we have: R − r 	 r. Thus, the local

term is much larger than the global term and the current density along the θ direction

is dominated by the local values of (UT × BP )θ.

Based on the expression for the current density (equation (4.34)), we can calculate

the Ohmic dissipation per unit volume produced by the current:

P =
J2

σ
=

1

μ0λ

[
1

r

∂

∂θ

∫ R

r
(UT ×BP + UT × BT )r dr′ + (UT × BP )θ

]2

+
1

μ0λ

[
1

r

∂

∂φ

∫ R

r
(UT × BP )r dr′

]2

. (4.38)

Taking the volume integral of equation (4.38) in the whole sphere, we obtain the total

Ohmic dissipation produced by the deep-seated zonal flow:

Ptotal =
2π

μ0

∫ R

0

dr′

λ(r′)

∫ 2π

0
dφ
∫ π

0
dθ sin(θ)

[
∂

∂θ

∫ R

r′
(UT × BP + UT ×BT )r dr′′ + r (UT × BP )θ

]2

+
2π

μ0

∫ R

0

dr′

λ(r′)

∫ 2π

0
dφ
∫ π

0
dθ sin(θ)

[
∂

∂θ

∫ R

r′
(UT × BP + UT ×BT )r dr′′

]2

. (4.39)

The total Ohmic dissipation cannot be larger than the intrinsic energy radiated per

second by the planet, which will give us an upper bound for the penetration depth of
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the observed zonal flow.

4.4 Ohmic dissipation calculation

On Uranus and Neptune, the deep penetrating zonal flow interacts with the pre-

existing poloidal magnetic field, produces toroidal magnetic field and modifies the

pre-existing poloidal magnetic field. The dimensionless number characterizing the

interaction is the magnetic Reynolds number: Rm = Ul
λ

, where U is the characteristic

velocity; l is the length scale and can be taken as the scale height of the magnetic

diffusivity; and λ is the magnetic diffusivity. If the magnetic Reynolds number is

small, Rm << 1, the induced toroidal magnetic field and the modification for the pre-

existing poloidal magnetic field would be much smaller than the pre-existing poloidal

field. In this section, we first assume that the magnetic Reynolds number is small.

Then |UT | 	 |UP | and we can use downward continuation of the observed magnetic

field as the poloidal field. Under this assumption, the current density along the θ and

φ directions can be written as

Jθ(r, θ, φ) =
1

μ0λ

[
1

r

∂

∂θ

∫ R

r
(UT × BP )r dr′ + (UT × BP )θ

]
, (4.40)

and

Jφ(r, θ, φ) =
1

μ0λ

[
1

r

∂

∂φ

∫ R

r
(UT × BP )r dr′

]
. (4.41)

And the total Ohmic dissipation can be rewritten as

Ptotal =
2π

μ0

∫ R

0

dr′

λ(r′)

∫ 2π

0
dφ
∫ π

0
dθ sin(θ)

[
∂

∂θ

∫ R

r′
(UT × BP )r dr′′ + r (UT × BP )θ

]2

+
2π

μ0

∫ R

0

dr′

λ(r′)

∫ 2π

0
dφ
∫ π

0
dθ sin(θ)

[
∂

∂θ

∫ R

r′
(UT × BP )r dr′′

]2

. (4.42)

We assume that the observed zonal flows on the surface of the giant planets pen-
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etrating to the deep interior along cylinders and vanishes below the hypothesized

spherical cut-off radius. Figure (4.2) shows the relation between the total Ohmic dis-

sipation and the hypothesized spherical cut-off radius for Uranus and Neptune based

on different water-ice mixing ratio in the gas envelope. The planetary net luminosity

is 0.034 × 1017 W for Uranus and 0.33 × 1017 W for Neptune (Guillot, 2005). For

total Ohmic dissipation being less than the planetary net luminosity, the maximum

penetration depth for Uranus surface wind is about 0.8RU if the water ice is confined

in the intermediate ice layer, and it shifts outwards as the mixing ratio of water ice

in the gas layer increases. If the mixing ratio of water ice reaches 10%, the maximum

penetration depth is about 0.87RU . For Neptune, the maximum penetration depth of

the zonal flow goes from 0.84RN to 0.85RN as the mixing ratio of water ice increases

in the gas layer. The magnetic diffusivity at the maximum penetration depth is about

109 m2 s. Take U ∼ 100 m s−1 and L ∼ 106 m, the corresponding magnetic Reynolds

number is about Rm ∼ 0.1. Thus, it is justified to use small Reynolds number as-

sumption in this calculation.

From the three-layer model presented by Hubbard et al. (1991), the transition

radius from the ice layer to the gas layer is about 0.8RU for Uranus and 0.84RN

for Neptune. Therefore, if the maximum penetration depth of the zonal flow is the

same as the transition radius, the penetrated zonal flow can be truncated naturally

at the large density variation ice-gas transition radius and total Ohmic dissipation is

less than the planetary net luminosity. However, if the maximum penetration depth

of the zonal flow above the transition radius, the penetrated zonal flow needed to

be truncated by some forces to avoid producing excessive Ohmic dissipation. From

order of magnitude analysis in the previous sections (4.2), we know that the Lorentz

force is not large enough to truncate to the flow at the maximum penetration depth.

Therefore, some other forces need to be large enough to truncate the flow; otherwise,

the presumed penetrating zonal flow does not exist.
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(a) Uranus
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(b) Neptune

Figure 4.2 Here we assume that the observed zonal flow penetrates to the deep inte-
rior along the cylinders. The flow has to be truncated at a certain radius to prevent
production of excessive Ohmic dissipation. This figure shows the total Ohmic dissi-
pation versus the scaled truncation radius: (a) Uranus; (b) Neptune. The solid blue
curves show calculated total Ohmic dissipation if water-ice is confined in the “ice”
layer; the dash-line show total Ohmic dissipation if the mixing ratio of water ice in
the “gas” layer is 0.1%; the dot-line show total Ohmic dissipation if the mixing ratio
of water ice in the “gas” layer is 10%. The green horizontal line shows the planetary
total luminosity, which is 0.034 × 1017 W for Uranus and 0.33 × 1017 W for Neptune
(Guillot, 2005). The maximum penetration depth of the zonal flow is reached when
the total Ohmic dissipation produced by the flow matches the planet’s net luminosity.
For Uranus, the maximum penetration depth increases from 0.80RU to 0.87RU as the
mixing ratio of water ice increases; For Neptune, the maximum penetration depth
increases from 0.84RN to 0.85RN as the mixing ratio of water ice increases.
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Chapter 5 Interaction of magnetic field

and shear flow

5.1 Abstract

Giant planets in our solar system have both strong external magnetic fields and large

near surface zonal flows. In this paper, we consider some simple zonal flows and

investigate their modification by the magnetic field in both a Cartesian geometry and

a spherical geometry. We find that the magnetic field tends to reduce the magnitude of

velocity and velocity shear. The dimensionless number characterizing this interaction

is the Chandrasekhar number. In a spherical geometry a deep-seated zonal flow can

arise even though the driving force for the flow is confined in the surface layer. The

penetrating zonal flow has much smaller amplitude than the observed zonal flow and

is reduced by the magnetic field in the deep interior.

5.2 Introduction

Giant planets in our solar system show strong azimuthal flow on the surface. These

winds might be powered by the solar energy or internal heat left over from the plan-

etary formation or both. The flows contain both large-scale and small-scale motions.

The typical horizontal length scale for large-scale motions is about ∼ 5000 km; and

it is about ∼ 100 km or even smaller for small-scale motions. Small surface features

usually last for only a few hours or days, but large features often last for decades

or centuries (Ingersoll, 1990). A complete understanding of the formation mecha-

nism of the zonal flow needs to consider the heat transport and fluid motion in a

wide range of length scales and timescales in three dimensions, which is a tremen-

dous task. Therefore the form and the magnitude of the driving force for the zonal
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flow are still largely unknown despite extensive studies (Vasavada & Showman, 2005).

Giant planets also have strong external magnetic fields: about 4.2 G in the equa-

torial region of Jupiter; and 0.2 G in the equatorial region of Saturn, Uranus and

Neptune. These strong magnetic fields are assumed to be generated in the high elec-

trical conducting interior. For Jupiter and Saturn, shockwave experiments indicate

that hydrogen experiences a continuous transition from an insulator to a conductivity

of 2 × 105 S m−1 (Nellis et al., 1996); For Uranus and Neptune, the high electrical

conductivity material is the water ice, whose conductivity increases exponentially

with pressure and temperature until reaching 103 S m−1(Nellis et al., 1988). The

interaction between the fluid and the magnetic field is important in the fluid envelope

and changes the outgoing magnetic field as well as the fluid structure.

The outstanding questions are: what is the response of the fluid to different driving

forces? How does magnetic field interact with zonal flow? In a spherical geometry, if

we drive the flow in the surface layer, will the flow be able to penetrate to the deep

interior? If so, will the flow take the form of Taylor-Proudman cylinders? In this

chapter, we consider several simple driving mechanisms for the zonal flow and study

the flow structure in both a Cartesian geometry and a spherical geometry. After

that, we conduct dynamical consistent calculations to investigate the interaction of

magnetic field and zonal flow in those systems.

5.3 Interaction of magnetic field with shear flow

in a Cartesian geometry

In this section, we investigate the interaction of magnetic field and shear flow in the

following Cartesian geometry: a fluid with certain electrical conductivity distribution

is confined between two parallel plates; the x-direction is parallel to the plates and the

z-direction is perpendicular to the plates. The flow is driven along the x-direction,



69

B

u(z)x

z

B

Figure 5.1 (a) The Cartesian geometry; (b) The magnetic field lines after considering
interaction between magnetic field and shear flow.

and a uniform magnetic field is imposed uniformly along the z-direction (see figure

(5.1a)).

5.3.1 Driving the flow by boundary stress: constant mag-

netic diffusivity

Consider the simplest case, where the fluid has constant parameters and is driven by

a boundary stress σ at the top plate. In this case, the interaction of the horizontal

flow and the imposed vertical magnetic field induces a magnetic field in the horizontal

direction (Figure (5.1b)). In steady state, the governing equations are the Navier-

Stokes equation including the Lorentz force and the magnetic induction equation

0 =
∂

∂z

[
ν
∂U

∂z
+

B0B

μ0ρ

]
, (5.1)

and

0 = B0
∂U

∂z
+ λ

∂2B

∂z2
. (5.2)
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Here U is the velocity along the x-direction; B0 is the imposed uniform magnetic field

along the z-direction; B is the induced magnetic field along the x-direction; ν is the

kinematic viscosity; λ is the magnetic diffusivity; μ0 is the magnetic permeability.

Scale equations (5.1) and (5.2) in the following way: [B] ∼ B0; [U ] ∼ U0; and [z] ∼ L

where L is the domain size along the z-direction. The scaled equations are

∂

∂z

[
∂U

∂z
+ ΛlorentzB

]
= 0; (5.3)

and

Rm
∂U

∂z
+

∂2B

∂z2
= 0. (5.4)

The dimensionless numbers are defined as

Λlorentz =
B2

0L

νU0μ0ρ
, (5.5)

and,

Rm =
U0L

λ
, (5.6)

where Λlorentz is the ratio of the Maxwell stress to the viscous stress; and Rm repre-

sents the ratio of the magnetic field generation to diffusion.

A non-slip boundary condition is used at bottom and a shear stress σ is applied

at the top. Without considering the imposed magnetic field B0, the steady state

solution requires that σL/νU0ρ = 1 and the nondimensional velocity is the uniform

shear flow

U = z. (5.7)

If the applied magnetic field along the z-direction is not zero (B0 �= 0), the steady state

solution for the Navier-Stokes equation with the above velocity boundary conditions

satisfies
∂U

∂z
+

Q

Rm
B − 1 = 0, (5.8)
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Combining with the steady state magnetic induction equation, we obtain

∂2B

∂z2
− QB + Rm = 0, (5.9)

where

Q = RmΛlorentz =
B2

0L
2

νλμ0ρ
(5.10)

is the Chandrasekhar number. Since the horizontal induced magnetic field is only

confined in the finite electrical conducting region, and the area outside of the parallel

plates is assumed to be insulating, B goes to zero at both top and bottom boundaries.

The solutions of equation (5.8) and (5.9) are

B(z) =
Rm

Q

(
1 − cosh

√
Q(z − 1/2)

cosh
√

Q/2

)
, (5.11)

and

U(z) =

[
sinh

√
Q(z − 1/2) + sinh

√
Q/2

]
√

Q cosh
√

Q/2
. (5.12)

The flow is thus entirely determined by Q, and does not depend separately on Rm

and Λlorentz. The field structure is also determined entirely by Q, and the peak value

of Rm/Q is obtained (for Q � 1).

Figure (5.2) shows the solution for various Q. The magnitude of the velocity is

reduced as Q increases. Define velocity amplitude reduction �r as the ratio of the

velocity at the top boundary (z = 1) with imposed magnetic field to that without

magnetic field. For Q � 1, �r ∝ Q−1/2. In the middle of the domain, the velocity

shear reduction is proportional to exp(−√
Q). Since the magnitude of the induced

horizontal magnetic field goes to zero at both the top and bottom boundary, the ve-

locity shear at both boundaries is the same with or without imposed vertical magnetic

field (See equation (5.8)). Thus, the thickness of the boundary layer is ∼ 1/
√

Q. The

magnitude of the induced horizontal magnetic field reaches maximum in the middle

of two plates. If Q � 1, the maximum value of Rm/Q corresponds to balancing the
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Figure 5.2 The interaction of the magnetic field and the shear flow for constant
magnetic diffusivity. (a) Velocity versus height; (b) Induced horizontal magnetic field
versus height. The induced magnetic field B is scaled to Rm/Q. For Q � 1, the
velocity amplitude reduction is proportional to Q−1/2 and the maximum value of
Rm/Q corresponds to balancing the viscous and Maxwell stress, i.e., B0B/μ0 ∼ σ in
dimensional units. The velocity shear is everywhere exponentially small except in the
thin boundary layer of thickness ∼ 1/

√
Q.

viscous and Maxwell stress, i.e., B0B/μ0 ∼ σ in dimensional units.

5.3.2 Driving the flow by boundary stress: variable magnetic

diffusivity

In the interiors of the giant planets, the magnetic diffusivity of material increases

exponentially from the high electrical conducting region towards the surface:

λ = λ0 exp(zβ), (5.13)
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where λ0 is the magnetic diffusivity at the metallic hydrogen region and 1/β is the

scale height of the magnetic diffusivity. In this case, the magnetic induction equation

can be rewritten as
∂2B

∂z2
+ β

∂B

∂z
+ Rm

∂U

∂z
= 0, (5.14)

where the dimensionless number Rm is defined as: Rm = U0L/λ0 exp(βz). Combining

with the Navier-Stokes equation (5.8), we have:

∂2B

∂z2
+ β

∂B

∂z
− QB + Rm = 0, (5.15)

where Q is the local Chandrasekhar number defined as:

Qlocal =
B2

0L
2

μ0ρνλ0 exp(βz)
. (5.16)

The solutions for different scale heights are shown in figure (5.3). The reduction of

velocity is proportional to Q
−1/2
local .

5.3.3 Driving the flow with variable body forces: constant

magnetic diffusivity

We consider driving the flow by the following body force:

F = 12U0ν
(
z − L

2

)
1

L3
ex, (5.17)

which has zero mean along the z-direction. Reynolds stress, thermal wind, etc., have

the same property. The non-dimensionalized governing equations are

∂2U

∂z2
+

Q

Rm

∂B

∂z
+ 12

(
z − 1

2

)
= 0, (5.18)

and,
∂2B

∂z2
+ Rm

∂U

∂z
= 0, (5.19)
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Figure 5.3 Interaction of the magnetic field and the shear flow for various mag-
netic diffusivities with different scale heights: λ = exp(βz), where β is taken to
be: 0.0, 2.0, 5.0, 10.0. Here, Q = 103 and the induced magnetic field is scaled to
Q/Rm. (a) Velocity versus height; (b) Induced toroidal magnetic field versus height.
Reduction of the velocity is concentrated in the region with large Q.
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where the dimensional number Rm and Q is defined in equation (5.6) and (5.10)

respectively. Without imposing the magnetic field, the solution for the Navier-Stokes

equation in steady state is:

U(z) = −2z3 + 3z2. (5.20)

It has the following properties: U = 0 at z = 0; U = U0 at z = 1 and stress free

(dU/dz = 0) at both boundaries. In this case, a viscous boundary layer does not

exist. It is quite different from driving the flow by boundary stress, because there is

no obligation to have thin layers with high velocity shear.

If a uniform magnetic field is imposed along the z-direction, the magnetic field

reduce the magnitude of the velocity. As in the previous calculation, we assume the

induced magnetic field along the x-direction goes to zero at both top and bottom

boundaries. The solutions for equation (5.18) and (5.19) are:

U(z) =
C cosh(

√
Q(1 − z))√

Q cosh Q
− 12 sinh

√
Qz√

Q3 cosh Q
+

12

Q
z − C

Q
, (5.21)

and,

B(z) =
Q

Rm

[
12 cosh

√
Qz − 12

Q cosh
√

Q
+

sinh(
√

Q(1 − z)) − sinh
√

Q

cosh
√

Q
C − 6z2 + (2C + 6)z

]
,

(5.22)

where the constant C is defined as:

C =
12
(
cosh

√
Q − 1

)
Q
(
2 cosh

√
Q − sinh

√
Q
) . (5.23)

Similar as driving the fluid by boundary stress, both the velocity and the structure

of the magnetic field are entirely determined by Q. For Q � 1, we have: C ≈ 12/Q

and U(z = 1) ≈ 12/Q. The velocity amplitude reduction is:

�r ∝ 1

Q
. (5.24)
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Figure 5.4 Interaction of magnetic field and shear flow if we drive the flow with
vertically varying body force(See equation (5.17)) for different Q. (a) Velocity; (b)
Induced magnetic field. B is scaled to Rm/Q. The velocity shear is everywhere
reduced by 1/Q relative to the zero field case.

The velocity shear in the middle of the domain is,

dU

dz
∝ 1

Q
. (5.25)

The peak value of the induced magnetic field is obtained in the middle of the domain

with the value: Q/Rm.

The interactions of the magnetic field and the shear flow for different magnetic dif-

fusivities are shown in figure (5.4). Driving the flow by a body force is fundamentally

different from driving the flow by a boundary stress. In the case of boundary stress

forcing, the velocity shear is everywhere exponentially small except in thin boundary
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Figure 5.5 Flow velocity versus Chandrasekhar number for different driving forces.
Interaction of flow and magnetic field is characterized by Q. If the flow is driven by
boundary stress, the reduction of the velocity is proportional to Q−1/2. If the flow
is driven by body force, the reduction of the velocity is proportional to Q−1. The
fundamental difference between these two cases is the role of boundary layers.

layers of thickness ∼ 1√
Q

, where it must reach the zero field values. In the case of

a body force, the velocity shear is actually larger except near the boundaries and is

everywhere reduced by 1/Q relative to the zero field case. The velocity difference be-

tween the two boundaries is much smaller in the body force case (assuming Q >> 1)

because the region where the induced field is small is not a region where the velocity

shear is forced to be large.

Figure (5.5) indicates that the reduction of the velocity becomes significant when
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Q > 10. For the interior of Jupiter and Saturn, the magnetic diffusivity increases

exponentially outward the metallic hydrogen region, where other parameters only

change slowly in the radial direction. The magnitude of viscosity in the interior is

quite uncertain. For Jupiter and Saturn, the eddy viscosity estimation based on the

mixing length theory gives: ν ∼ 103 m s−2. However, if the observed zonal flow

penetrates to the deep interior along cylinders, the eddy viscosity has to be smaller

than ∼ 0.25 m2 s−1 for avoiding producing excessive dissipation due to the relative

motions of the cylinders (Ingersoll & Pollard, 1982).

For Jupiter and Saturn, we use radial profiles of density and magnetic diffusivity,

and take L to be the scale height of the magnetic diffusivity: L ∼ 103 km; B0 to be the

magnitude of the observed dipole magnetic field, which is 4.2 G for Jupiter and 0.2 G

for Saturn. The Chandrasekhar number Q as a function of r for different choices of

eddy viscosity is shown in figure (5.6). The reduction of the flow is significant below

0.97RJ for Jupiter and 0.89RS for Saturn if ν ∼ 0.25 m s−2. If ν ∼ 103 m s−2, the

reduction of the velocity becomes significant below 0.96RJ and 0.85RS.

5.4 Interaction of the magnetic field with the zonal

flow in a spherical geometry

In this section, we investigate the interaction of the magnetic field with the zonal

flow in a spherical geometry. We consider driving of the flow by some simple forces

in the surface layer. An example would be winds driven by latitudinal temperature

gradients. Can a flow that is driven by the force concentrated in the surface layer

penetrate to the deep interior? If the flow can penetrate to the deep interior, will

this flow interact with the deep-seated planetary magnetic field? How does this in-

teraction change the structure of the flow and the outgoing magnetic field? In order

to answer these questions, we assume that the planetary magnetic field is generated

in the high electrical conducting region, and there is a low conducting spherical shell
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Figure 5.6 The Chandrasekhar number as a function of radius for Jupiter and Saturn.
(a) Jupiter; (b) Saturn. If the viscosity is taken to be 0.25 m2 s−1, Q is larger than 10
below 0.92RJ for Jupiter and below 0.72RS for Saturn. However, if ν ∼ 103 m s−2,
the reduction of the velocity becomes significant below 0.96RJ and 0.85RS.
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outside of the dynamo generation region. For Jupiter, the high electrical conductivity

region lies below 0.84RJ where the hydrogen transitions from the semi-conducting to

metallic state. In Saturn, the corresponding radius is 0.63RS. We then consider the

modification of the flow structure in the low conducting spherical shell by outgoing

magnetic field and modification of outgoing magnetic field by the flow.

Consider a spherical shell with thickness 0.7R ∼ 1.0R where R is the radius of

the planets. Define two coordinate systems: spherical coordinate (er, eθ, eφ) and

cylindrical coordinate (es, ez, eφ), where er is the unit vector along radial direction;

eθ is along meridional direction; es is along cylindrical radial direction; ez is along the

rotation axis of the planets and eφ is along azimuthal direction. Under the Boussinesq

approximation, the Navier-Stokes equation can be written as

∂U

∂t
+ (U · ∇)U + 2Ω(ez × U)

= −∇P

ρ
+

1

μ0ρ
(∇×B) × B + ν∇2U +

F

ρ
, (5.26)

where Ω is the rotation frequency of the planet; U is the velocity field; B is the

magnetic field; P is the pressure; ρ is the density; μ0 is the magnetic permeability;

ν is the kinematic viscosity; and F is the driving force. For simplicity, we apply the

driving force in the surface layer along the radial direction:

F = F0 sin(θ)er, if r > R0, (5.27)

and

F = 0. if r ≤ R0, (5.28)

where R0 is an adjustable parameter that defines the “surface layer”. For rapidly

rotating planets, the zonal flow (flow along the azimuthal direction) can be generated

even the force is only applied along the radial direction because of the influence of the

Coriolis force. The driving force is stronger in the equatorial region and weaker near

the polar region, which is consistent with the latitudinal distribution of solar heating.
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For variable electrical conductivity distribution, the magnetic induction equation

can be written as
∂B

∂t
= ∇× (U × B) −∇× (λ∇×B) . (5.29)

Scale the equations (5.26) and (5.29) as: [t] ∼ 1
Ω
; [∇] ∼ 1

L
; [U ] ∼ ΩR; [B] ∼ B0; [λ] ∼

λ0; [P ] ∼ ρ(ΩL)2. Here, L is the thickness of the spherical shell; B0 is the observed

poloidal magnetic field; λ0 is the magnetic diffusivity at the high electrical conducting

region. The scaled Navier-Stokes equation and magnetic induction equation are

∂U

∂t
+ (U · ∇)U + 2(ez × U) = −∇P + Λ (∇×B) × B + Eν∇2U + ΓF, (5.30)

and
∂B

∂t
= ∇× (U × B) − Eλ∇× (λ∇×B) . (5.31)

Here the dimensionless number Λ evaluates the ratio of Lorentz force to Coriolis force:

Λ =
B2

0

μ0ρ (ΩL)2 ; (5.32)

Γ is the ratio of driving force to Coriolis force:

Γ =
F0

ΩU0ρ
. (5.33)

Eν evaluates the magnitude of viscous diffusion to Coriolis force and Eλ is the ratio

of magnetic diffusion to Coriolis force:

Eν =
ν

ΩL2
; (5.34)

and

Eλ =
λ0

ΩL2
. (5.35)

For Jupiter, we take: B0 ∼ 10−3 Tesla; ρ ∼ 1 kg m−3; Ω ∼ 2×10−4 s−1; L ∼ 2×107 m;

λ0 ∼ 4 m2 s−1, which corresponds to a conductivity of 2×105 S m−1. Thus, Λ ≈ 10−5,
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Eλ ≈ 10−5, and Eν ≈ (10−10 ∼ 10−7), which depends on the choice of the viscosity.

In the interior of Jupiter and Saturn, it ranges from 0.25 m2 s−1 (Ingersoll & Pol-

lard, 1982) to 103 m2 s−1 (from mixing length estimation). However, in the actual

numerical simulations, both Eλ and Eν have to be many orders of magnitude larger

than that in the interior of the planets to stabilize the numerical scheme (Glatzmaier

& Roberts, 1995). Thus, other dimensionless parameters need to be correspondingly

larger to approach the correct regime for the planets.

For an incompressible fluid, we have ∇ · U = 0; Thus, the velocity field can be

decomposed into its toroidal and poloidal components:

U = ∇× (er) + ∇×∇× (fr) , (5.36)

where e and f can be expanded in spherical harmonics:

e =
∑

l

l∑
m=0

e(r)P m
l (cos(θ)) exp(imφ); (5.37)

and

f =
∑

l

l∑
m=0

f(r)P m
l (cos(θ)) exp(imφ). (5.38)

Take the curl of the scaled Navier-Stokes equation (5.30). The er component of the

equation can be written as

+
∑

l

m=1∑
m=0

[
∂

∂t

(
l(l + 1)

r2
e(r)P m

l (cos(θ)) exp(imφ)

)]

+
∑

l

m=1∑
m=0

[
ν

(
− l(l + 1)

r2
Lle(r)P

m
l (cos(θ)) exp(imφ)

)]
= er · [∇× (−(U · ∇)U − 2(ez ×U) + Λ(∇× B) ×B + ΓF)] , (5.39)

and

+
∑

l

m=l∑
m=0

[
− ∂

∂t

(
l(l + 1)

r2
Llf(r)P m

l (cos(θ)) exp(imφ)

)]
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+
∑

l

m=l∑
m=0

[
−ν

l(l + 1)

r2
LlLlf(r)P m

l (cos(θ)) exp(imφ)

]
= er · [∇×∇× (−(U · ∇)U − 2(ez × U) + Λ(∇×B) × B + ΓF)] , (5.40)

where Ll is defined as

Ll =
d2

dr2
− l(l + 1)

r2
. (5.41)

Stress-free boundary conditions for the velocity field are used on both the top and

bottom boundaries. They require:

Ur = 0,
∂

∂r

(
Uθ

r

)
= 0,

∂

∂r

(
Uφ

r

)
= 0 at r = ri, ro, (5.42)

where ri is the radius for the inner boundary and ro is the radius for the outer bound-

ary. In the high electrical conducting dynamo generation region, the magnetic field

lines are fixed in the flow and the relative velocity between the flow and magnetic

field are small. This would suggest that there is no shear at the base; however the

simulation does not explicitly deal with the difficult question of how to match to the

core dynamos. Accordingly, this is an assumption, not a rigorously justified choice.

Similarly, for the magnetic field, ∇ · B = 0. Therefore, the magnetic field B can

be decomposed into its toroidal and poloidal components:

B = ∇× (gr) + ∇×∇× (hr) , (5.43)

where g and h can be expanded in spherical harmonics:

g =
∑

l

m=l∑
m=0

g(r)P m
l (cos(θ)) exp(imφ), (5.44)

and

h =
∑

l

m=l∑
m=0

h(r)P m
l (cos(θ)) exp(imφ). (5.45)

Since the magnetic diffusivity is only a function of radius λ = λ(r) in the interior of
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the giant planets, we take curls of the magnetic induction equation and obtain

∑
l

m=l∑
m=0

[
l(l + 1)

r2
P m

l (cos(θ)) exp(imφ)

[
∂h(r)

∂t
− λ(r)Llh(r)

]]
= er · [∇× (U ×B)] , (5.46)

and

∑
l

m=1∑
m=0

[
l(l + 1)

r2
P m

l (cos(θ)) exp(imφ)

[
∂g(r)

∂t
− λ(r)Llg(r) − λ′(r)g′(r)

]]
= er · [∇×∇× (U × B)] . (5.47)

Since electrical conducting material is confined inside the planet, we choose the outer

boundary condition to be insulating. The magnetic field generated in the high elec-

trical conductivity region contains both a poloidal component and a toroidal compo-

nent. Since the toroidal magnetic field cannot be observed on the planetary surface,

we choose the magnetic field at the inner boundary of the spherical shell to be poloidal

field only.

Equations (5.39), (5.40), (5.46) and (5.47) can be solved simultaneously by the

spectral element method, where spherical harmonics expansion is used in θ and φ

direction and Chebyshev polynomials are used in r-direction. The basic numerical

program has been developed by Hollerbach (2000) for constant density and magnetic

diffusivity. Here we improved the numerical program to allow for variable magnetic

diffusivity.

First, we consider the structure of the flow without the magnetic field and assume

that the flow is axisymmetric. The driving force is along the radial direction and

confined in the surface layer(See equation (5.27) and (5.28)). Due to the influence

of the Coriolis force, the large flow along the zonal direction in the surface layer is

produced. Even though the force is zero outside of the surface layer, a small amount

of the momentum can still be transported downward from the surface layer.
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The time evolution of the azimuthal flow at two random separated internal points

for different Ekman numbers Eν is shown in figure (5.7). The spherical coordinates

(r, θ) for those two points are (0.85R, 71◦) and (0.90R, 127◦). The system under-

goes rapid oscillations initially before settling down to the steady state. The Ekman

number Eν = ν
ΩL2 is the ratio of the rotational timescale to viscous timescale. For

Eν = 10−3, the viscous timescale is 103 times of the rotation timescale. From fig-

ure (5.7a), we see that the system reaches the steady state at 500 rotation timescale

(∝ 1
2Eν

). Similarly, for Eν = 10−4, the viscous timescale is 104 times of the rota-

tion timescale and the system reaches the steady state at 5000 rotation timescale.

The timescale for reaching the steady state is proportional to inverse Ekman number

(T ∝ 1
Eν

).

The axisymmetric velocity field (U) can be decomposed into its zonal component

and meridional component

U = veφ + ∇× (Ψeφ), (5.48)

where v and Ψ are two scalar functions. Also,

∇× (Ψeφ) =

(
1

r sin θ

∂

∂θ
(sin θΨ) ,−1

r

∂

∂r
(rΨ) , 0

)
, (5.49)

and

∇ (Ψr sin θ) =

(
sin θ

∂

∂r
(rΨ) ,

∂

∂θ
(sin θΨ) , 0

)
. (5.50)

Combining equation (5.49) and (5.50) yields

∇× (Ψeφ) · ∇ (Ψr sin θ) = 0, (5.51)

which implies that (Ψr sin θ) is perpendicular to the meridional flow ∇× (Ψeφ) and

Ψr sin θ is the stream function for the meridional circulation.
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Figure 5.7 The time evolution of the azimuthal velocity for different Ekman numbers
Eν at two different separated points in the interior of the fluid domain far away
from boundary. The spherical coordinate (r, θ) for point one is (0.85R, 71◦); and the
spherical coordinate for point two is (0.90R, 127◦). (a) At point one Eν = 10−3; (b) At
point two Eν = 10−3; (c) At point one Eν = 10−4; (d) At point two Eν = 10−4. The
Ekman number Eν = ν

ΩL2 is the ratio of the rotational timescale to viscous timescale.
For Eν = 10−3, the viscous timescale is 103 times of the rotation timescale. From
figure (5.7a), we see that the system reaches the steady state at 500 rotation timescale.
Similarly, for Eν = 10−4, the viscous timescale is 104 times of the rotation timescale
and the system reaches the steady state at 5000 rotation timescale. The timescale for
reaching the steady state is proportional to inverse Ekman number (T ∝ 1

Eν
).
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For Ekman number Eν = 10−3, the velocity field and the meridional stream func-

tion in steady state are shown in figure (5.8). Large meridional and azimuthal flows

are concentrated in the surface layer (r > Ro), where the force is applied. Here Ro is

taken to be 0.95R. However, in the region outside of the surface layer (r < Ro) the

magnitude of the flow is not zero despite the zero driving force. Small amount of the

azimuthal flow can still penetrate from the surface layer to the deep interior along

cylinders, consistent with the Taylor-Proudman theorem. In general, the velocity

along the zonal direction is about one to two orders of magnitude larger than that

along the meridional direction. For smaller Eν , the ratio of the zonal velocity to the

meridional velocity is larger.

Figure (5.9) shows the magnitude of the zonal flow velocity along the rotation axis

for different cylindrical radii s. The magnitude of the penetrating flow is about 10%

of the observed zonal flow.

For the same driving force, the amount of the penetrating zonal flow depends

on the Ekman number Eν . For smaller Eν , the magnitude of the zonal flow in the

surface layer is larger and the magnitude of the penetrating flow is also larger. The

ratio of the surface flow to the penetrating flow for different Ekman number Eν is

shown in figure (5.10). This figure shows that the ratio of the internal to external

flows is roughly independent of Eν provided Eν is sufficiently small.

Consider the influence of the magnetic field. In the interior of the gas giant

planets, the magnetic diffusivity increases exponentially from the metallic hydrogen

region: λ = λ0 exp(βz), where λ0 is the magnetic diffusivity in the metallic hydrogen

region and 1
β

is the scale height. From chapter 2, we know λ0 = 4 m s−1 and the

scale height of the magnetic diffusivity near the metallic region is about 1000 km.

Comparing with the length scale L ∼ 2.0 × 104 km, we have: 1
β
∼ 20. First, assume

that the deep-seated magnetic field is a dipolar field. Take Γ ∼ 1.0, Eν ∼ 10−3 and
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Figure 5.8 The general solution of the velocity in steady state for Eν = 10−3. (a) The
scaled zonal flow velocity Uφ; (b) the meridional stream function. Here the driving
force is confined in the layer r > Ro, where Ro is taken to be 0.95R. And, Γ = 1.0.
The magnitude of the flow is not zero outside of the surface layer despite the zero
driving force in this region.
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Figure 5.9 The magnitude of the azimuthal flow along the rotation axis for different
cylindrical radius: s = 0.7R and s = 0.8R. Here Eν = 10−3 and Γ = 1.0.
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different Eν . It is roughly independent of Eν provided Eν is sufficiently small. Here
Γ is taken to be 1.0.
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Eλ ∼ 10−3. Here Eλ ∼ 10−3 is corresponding to λ0 ∼ 107 S m, which is about seven

orders of magnitude larger than the actual magnetic diffusivity near the metallic core

region. We choose the unrealistically large Eλ for stabilizing the numerical scheme

and increasing the time step for reaching the steady state solution faster. However,

in order to simulate the interaction of the magnetic field and the flow, we have also

chosen Λ ∼ 0.1, which is several orders of magnitude higher than the actual value in

the planetary interior (See equation (5.32)). The dynamically consistent solution for

the velocity field and the magnetic field in steady state are shown in figure (5.11).

The interaction between the magnetic field and zonal flow reduces the magnitude of

the velocity shear and induces toroidal magnetic field at the high electrical conducting

region. The reduction is larger near the equator and smaller in the polar region.

From figure (5.11), we see that the magnitude of the induced toroidal magnetic

field is about one order of magnitude smaller than that of the pre-existing poloidal

magnetic field. Since the magnitude of velocity shear is reduced due to the interac-

tion with the magnetic field, the magnitude of the induced toroidal magnetic field is

limited. The reduction of the zonal velocity shear by the magnetic field is illustrated

more clearly in figure (5.12). With the magnetic field, the magnitude of the velocity

shear is reduced to near zero at the high electrical conducting region.

The magnitude of the velocity in the giant planets is determined relative to the

deep-seated planetary magnetic field. Since the velocity shear is reduced to near zero

near the metallic hydrogen region, we can choose the velocity near the metallic hydro-

gen region to be zero velocity and determine the velocity in other regions relatively.

Figure (5.13) shows the relative velocity distribution in the equatorial plane with and

without the magnetic field. Both the magnitude of the velocity and the velocity shear

are reduced significantly by the magnetic field in the high electrical conducting region.

Figure (5.14) shows the relative velocity distribution in the equatorial plane for

different Λ, which is defined as Λ =
B2

0

μ0ρ(ΩL)2
and is an evaluation for the Lorentz
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Figure 5.11 The solution with the deep-seated dipolar magnetic field and the variable
magnetic diffusivity distribution: λ = exp(βz). Here the dimensionless numbers are
taken to be: Γ ∼ 1.0, Λ ∼ 1.0, Eν ∼ 10−3 and Eλ ∼ 10−3. (a) Ur; (b) Uθ; (c) Uφ; (d)
meridional stream function of velocity; (e) Br; (f) Bθ; (g) Bφ; (h) meridional stream
function of magnetic field. The interaction between the magnetic field and zonal flow
reduces the magnitude of the velocity shear and induces toroidal magnetic field at
the high electrical conducting region.
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Figure 5.12 The magnitude of the zonal flow along the cylinders for different
cylindrical radius. (a) Without the magnetic field. (b) with the magnetic field,
λ = λ0 exp 20(r − ri), Λ = 0.2 and Eλ = 10−3. In both cases, we take Eν = 10−3 and
Γ = 1.0. For the case with magnetic field, the curves for different cylindrical radius
s nearly coincide at small z. This demonstrates the reduction of velocity shear by
the magnetic field in the region with high electrical conductivity. The zonal flow at
depth in this case should be identified with the rotation of the core.
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Figure 5.13 Relative velocity distribution in the equatorial plane. For the case with
the magnetic field, λ = λ0 exp 20(r − ri), Λ = 0.2, Γ = 1.0, Eν = 10−3 and Eλ = 10−3.
For the case without magnetic field Γ = 1.0, Eν = 10−3.
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Figure 5.14 The relative velocity distribution in the equatorial plane for different Λ.
Here, λ = λ0 exp 20(r − ri), Γ = 1.0, Eν = 10−3 and Eλ = 10−3. For large Λ, the
Lorentz force is strong and the velocity shear reduction is more.

force. For large Λ, the Lorentz force is strong and the velocity shear reduction is

more significant.

The analysis in Cartesian geometry indicates that the velocity reduction is pro-

portional to the inverse of Chandrasekhar number Q. The local Q can be defined

as

Q =
B2

0L
2

μ0λρν
= Λ

1

Ek

1

Eν exp(β(r − ri))
. (5.52)

Figure (5.15) shows the relative velocity distribution in the equatorial plane as a

function of Q−1 for different Λ. The velocity distribution is roughly proportional to

the inverse of the Chandrasekhar number providing Q is large enough.
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Figure 5.15 The relative velocity distribution in the equatorial plane as a function
of Chandrasekhar number for different Λ. Here: λ = λ0 exp 20(r − ri), Γ = 1.0,
Eν = 10−3 and Eλ = 10−3. For large enough Q, the velocity distribution is roughly
proportional to the inverse of Chandrasekhar number.

5.5 Conclusion

In this chapter, we investigated the interaction of the magnetic field and shear flow in

both a Cartesian geometry and a spherical geometry. The interaction of the magnetic

field and shear flow will reduce both the magnitude of the velocity and the velocity

shear. The dimensionless number that characterizes this interaction is the Chan-

drasekhar number. In a spherical geometry, we drive the flow in the surface layer.
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However, a small amount of zonal flow still penetrates to the interior along cylinders

and is reduced below by interaction with the magnetic field.
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Chapter 6 Attenuation of

non-asymmetric magnetic field in the

outer shell of giant planets

6.1 Abstract

Planetary dynamos can generate magnetic fields with a variety of temporal and spatial

variations. A fluid shell with sufficient electrical conductivity and azimuthal velocity

shear outside of the dynamo generation region can attenuate the non-axisymmetric

component of the magnetic field. However, the interaction of the axisymmetric com-

ponent of the magnetic field and the zonal flow is able to reduce the magnitude of

zonal flow. In this chapter, we investigate the attenuation of the non-axisymmetric

magnetic field by magnetically limited zonal flow and find that the substantially dif-

ferent magnitudes of the axisymmetric magnetic fields on Jupiter and Saturn may

produce different zonal flow shear. The smaller Saturnian field may allow a larger

velocity shear and a greater attenuation of the non-axisymmetric field, thereby pro-

viding a possible explanation for the nearly axisymmetric field.

6.2 Introduction

Dynamo simulations suggest that the internal field has a wide range of temporal

and spatial variations. A fluid layer with sufficient electrical conductivity and ve-

locity shear outside of the dynamo generation region is able to attenuate the non-

axisymmetric component of magnetic field (Stevenson, 1982). The amount of atten-

uation depends primarily on the magnetic Reynolds number within the layer.
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As discussed in the last chapter, the interaction of the shear flow with the ax-

isymmetric magnetic field reduces the magnitude of velocity shear. The reduction is

characterized by Chandrasekhar number, which is defined as: Q = B2
0L

2/μ0λρν. Here

B0 is the magnitude of the observed axisymmetric magnetic field; L is the thickness

of the fluid shell; μ0 is the magnetic permeability; λ is the magnetic diffusivity and

ν is the viscosity. The velocity shear reduction is larger for smaller Chandrasekhar

number. This suggests a competition between two effects, both arising from the mag-

netic field. It is not clear that the magnetic limited zonal flow can still attenuate the

non-axisymmetric magnetic field.

Jupiter and Saturn have similar internal structures (Guillot, 2005) and similar

electrical conductivity distribution (see chapter 2). It is remarkable that Jupiter’s

observed dipole tilt is 100 times larger than that of Saturn. The spacecrafts’ obser-

vations indicate that the magnitude of the axisymmetric dipolar field on the surface

of Jupiter is about 4.2 G in the equatorial region and it is about 0.2 G in the equato-

rial region of Saturn. The internal difference in the magnitudes of the axisymmetric

magnetic fields is large but imperfectly known. A factor of ∼ 10 difference in the

axisymmetric field results in a factor of ∼ 100 difference in Chandrasekhar number

and this can produce remarkably different zonal velocity shear reduction.

In this chapter, we study the attenuation of the non-axisymmetric magnetic field

by magnetically limited zonal flow in both a Cartesian geometry and a spherical ge-

ometry. We treat the difference in the magnitude of the axisymmetric magnetic field

on Jupiter and Saturn as given and investigate whether the different zonal velocity

reduction produced by these magnetic field is able to produce large difference in at-

tenuating the non-axisymmetric component of the magnetic field.
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6.3 Attenuation of the non-axisymmetric magnetic

field by the flow in a Cartesian geometry

We first investigate the attenuation of the non-axisymmetric magnetic field by flow in

the Cartesian geometry (shown in figure (5.1) in chapter 5). The fluid with magnetic

diffusivity λ is confined in two parallel plates. Let x be the direction parallel to the

plate and z be the direction perpendicular to the plate. The fluid is driven along

the x-direction. Instead of imposing a uniform magnetic field vertically, we apply a

periodically x-dependent magnetic field along the z-direction: (b ∝ b0 exp(ikx)ez),

where k is the horizontal wavenumber. The flow in horizontal direction can attenuate

the x-dependent magnetic field, which is similar to attenuating the outgoing non-

axisymmetric magnetic field by zonal flow in the interior of giant planets. In this

section, we first calculate the attenuation effect produced by the specified shear flow

for both constant magnetic diffusivity and variable magnetic diffusivity, and illustrate

the attenuation mechanism. We then apply a uniform magnetic field along the z-

direction, which is able to reduce the velocity shear and conduct perturbation analysis

to calculate the attenuation effect produced by the magnetically limited flow.

6.3.1 Attenuation produced by the specified shear flow: con-

stant magnetic diffusivity

In steady state, the magnetic induction equation for constant magnetic diffusivity is

∇× (u× b) + λ∇2b = 0. (6.1)

Apply a periodically x-dependent magnetic field along the z direction: (b ∝ b0 exp(ikx)ez)

and specify uniform shear flow along the x direction: ux = z. Scale the equation (6.1)

in the following way: [u] ∼ u0, [b] ∼ b0 and [∇] ∼ 1
L
, where L is the size of the domain.

The scaled equation is

Rm∇× (u× b) + ∇2b = 0. (6.2)
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Here Rm is the magnetic Reynolds number: Rm = u0L/λ. In component form, the

magnetic induction equation can be written as

[
−k2bz +

d2bz

dz2

]
− ikRmzbz = 0; (6.3)

Using ∇ · b = 0, we obtain: bx =
(

i
k

)
∂bz

∂z
. The boundary condition at the bottom is

bz(z = 0) = 1, (6.4)

which corresponds to imposing a periodic magnetic field with unit magnitude along

the z-direction. Since it is insulating above the top boundary, we have

b = ∇ϕ, (6.5)

where ϕ satisfies

∇2ϕ = 0. (6.6)

The solution for the Laplace equation is

ϕ = A1 exp(−kz) exp(ikx) + A2 exp(kz) exp(ikx). (6.7)

Here A1 and A2 are two constants. Since the magnetic field goes to zero at infinity,

we have A2 = 0 and

ϕ = A1 exp(−kz) exp(ikx). (6.8)

At the top boundary (z = 1), the magnetic field satisfies

bx =
∂ϕ

∂x
= ikA1 exp(−kz) exp(ikx), (6.9)

and

bz =
∂ϕ

∂z
= −kA1 exp(−kz) exp(ikx). (6.10)
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Combining equations (6.9) and (6.10) and ∇ · b = 0, we obtain the top boundary

condition for bz:

bz +
1

k

∂bz

∂z
= 0, at z = 1. (6.11)

The equation (6.3) with the above boundary conditions can be solved analytically by

Airy functions:

bz = v1Ai(y) + v2Bi(y), (6.12)

where y is defined as: y = − (ikRm)1/3 (z − ik
Rm

); v1 and v2 are two constants de-

termined by the boundary conditions. Figure (6.1) shows the attenuation of the

x-dependent magnetic field by the specified uniform shear flow u = z for different

magnetic Reynolds numbers. The magnitude of the x-dependent magnetic field is

attenuated more for larger Rm (i.e., smaller magnetic diffusivity).

Without considering the attenuation produced by the shear flow, the magnetic

field in vacuum decays as ∼ exp(−kz), which is the geometric attenuation. Define

the physical attenuation factor Fa as the attenuation produced by the shear flow only:

Fa =
bz(z = 1) exp(k)

bz(z = 0)
. (6.13)

It is clear from equation (6.3) that the asymptotic (kRm � 1, k ≤ 1) solution

has a real part of the form bz ∝ exp
(
− 2

3
√

2

√
kRmz3/2

)
, except for a slowly varying

amplitude term. Evaluated at z = 1, this gives

Fa ≈ exp
(
−0.47

√
kRm

)
. (6.14)

Define Ψ as the stream function for the magnetic field:

bx = − ∂

∂z
Ψ, (6.15)

and

bz =
∂

∂x
Ψ. (6.16)
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Figure 6.1 The magnitude of the x-dependent magnetic field bz as a function of height
z for different Rm. Here, the x-dependent vertical magnetic field (bz = exp(ikx)) is
imposed at the bottom boundary and the horizontal wavenumber k is taken to be:
k = 1. The attenuation effect is strong for large Rm.
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Thus, bz = ikΨ and Ψ = bz/ik. We can draw the contours of Ψ as the representa-

tion of the magnetic field lines. Figure (6.2) shows the contour plot of the magnetic

field lines without and with flow. Without flow, the periodically x-dependent mag-

netic field imposed at the bottom boundary diffuses through the electrical conducting

medium. With flow, the magnetic field lines are dragged by the flow and move to-

gether with the fluid. The magnetic field lines travel a large distance in the horizontal

direction before reaching the top boundary. Thus, the x-dependent magnetic field dif-

fuses more and is attenuated.

The typical solution for the attenuation effect is characterized by the Airy function

(equation (6.12)). The Airy function is related with the Bessel function of order 1/3.

To see why the fraction 1/3 shows up in the problem, considering the following: Since

the velocity shear is constant, the distance that the fluid advects the magnetic field

lines during time t at coordinate z is δ ∼ tz du
dz

. But in time t, the field diffuses a

distance dz ∼ (tλ)1/2(see figure (6.3)). Set dz ∼ z, and eliminate t from the above

two relations to obtain

kδ ∼ k
du

dz

z3

λ
. (6.17)

If kδ > 1, bx reverses signs between z = 0 and z, which implies that the magnetic field

lines coming out from the bottom boundary go back to the bottom boundary without

reaching the top. Therefore the number of magnetic field lines observed on the top

surface is less than that coming from the bottom and the x-dependent magnetic field

is reduced.

Also, dz can be written as

dz3 =
π

k

λ

du/dz
. (6.18)

If dz is smaller than the domain size, the field line will reverse its direction before

reaching the top boundary and the x-dependent field is attenuated.
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Figure 6.2 Magnetic field lines. (a) Without the flow; (b) with the flow for k = 1 and
Rm = 103. With the flow, the magnetic field lines are dragged by the flow and move
together with the fluid in the high electric conducting region.
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Figure 6.3 Demonstrate the mechanism of attenuating the x-dependent magnetic field
by the shear flow.

6.3.2 Attenuation produced by the specified shear flow: vari-

able magnetic diffusivity

In the steady state, the magnetic induction equation for variable magnetic diffusivity

can be written as

∇× (u× b) −∇× (λ(∇× b)) = 0. (6.19)

In the interior of the planet, the magnitude of the magnetic diffusivity increases expo-

nentially outward from the high electrical conducting region. Consider the following

magnetic diffusivity distribution: λ = λ0 exp(βz), where 1/β is the scale height. For

periodic magnetic field: b = b0(exp(ikx))ez imposed at the bottom boundary and

specified the uniform shear flow along the x direction: u = z, the scaled magnetic

induction equation can be written as

exp(βz)

[
−k2bz +

d2bz

dz2

]
− iRmkzbz = 0, (6.20)

where Rm is defined as Rm = uL/λ0. The boundary conditions for the magnetic

field are the same as in the previous section. For Rm = 103, we can calculate bz as a

function of z for different β. The results are shown in figure (6.4). The attenuation

effect is concentrated at the place with small magnetic diffusivity.

Figure (6.5) shows the contours of the magnetic field lines. The magnetic field
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Figure 6.4 The attenuation of the x-dependent field by the specified shear flow with
variable magnetic diffusivity: λ = λ0 exp(βz). Here k = 1, Rm = 103 and β is:
β = 0.0; β = 5.0; β = 20.0. The attenuation effect is concentrated in the region with
low magnetic diffusivity.
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Field lines: k = 1, R
m

 = 104, β = 10

x

z

 

 

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 6.5 Magnetic field line advected by the fluid for variable magnetic diffusivity:
λ = exp(βz). Here Rm = 104, k = 1 and β = 10. The magnetic field lines will only
be advected by the flow in the region with low magnetic diffusivity.

lines are advected by the flow in the low magnetic diffusivity region. In the high

magnetic diffusivity region, the magnetic field lines are not influenced by the flow.

6.3.3 Perturbation analysis: constant magnetic diffusivity

The observed dipole tilt is small for both Jupiter and Saturn. It is about 10◦ for

Jupiter and less than 0.1◦ for Saturn (Connerney, 1993). It is reasonable to treat

the non-axisymmetric magnetic field as a perturbation to the axisymmetric magnetic

field. If the flow is driven along the x-direction, and the uniform magnetic field is

imposed along the z-direction, the magnetic field is able to reduce the magnitude

of velocity. In equilibrium, both the magnetic field and the flow are uniform in the

x-direction. We then perturb the system with a periodic x-dependent magnetic fields
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along the z-direction: b ∝ exp(ikx)ez and investigate whether the x-dependent mag-

netic field can be attenuated by the magnetically limited flow.

The perturbed magnetic induction equation is

λ∇2b + ∇× (U × b) = 0, (6.21)

where U is the axisymmetric velocity field in equilibrium. It is determined by equation

(5.8) and (5.9) if the flow is driven by boundary stress; and is determined by equation

(5.18) and (5.19) if the flow is driven by body force. The equation (6.21) can be

written in component form:

λ

(
∂2

∂x2
+

∂2

∂z2

)
bx +

∂

∂z
(bzUx) = 0 (6.22)

and

λ

(
∂2

∂x2
+

∂2

∂z2

)
bz − ∂

∂x
(bzUx) = 0. (6.23)

The perturbed magnetic field is divergence free: ∇ · b = 0, which implies that bx =

i
k

∂bz

∂z
. Substituting this expression into equation (6.22) and (6.23) yields

(
−k2 +

∂2

∂z2

)
bz − ikRm (bzUx) = 0, (6.24)

where Rm is defined as Rm = UL
λ

and Ux is axisymmetric velocity field along the

x-direction. According to the analysis in chapter 5, the magnitude of velocity is

reduced by the magnetic field. The dimensionless number characterize this reduction

is Q if the magnetic diffusivity is small enough. If the flow is driven by boundary

stress, the magnitude of the flow reduction is proportional to the inverse square root

of the Chandrasekhar number: �r ∝ Q−1/2. In this case, the effect is confined to thin

boundary layers and the velocity is nearly constant in the bulk of the flow. If the flow
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is driven by the following body force:

F = 12u0ν
(
z − L

2

)
1

L3
ex, (6.25)

the magnitude of the flow reduction is proportional to the inverse of the Chan-

drasekhar number: �r ∝ Q−1. In this case, the effect is distributed throughout

the layer as a reduction in velocity shear. It is accordingly closer in form to the flow

we assumed earlier in this chapter. The effective magnetic Reynolds number is

R∗
m =

UL

λ
=

U0�rL

λ
, (6.26)

where U0 is the magnitude of the velocity at the top boundary without the magnetic

field. The Chandrasekhar number is defined as Q =
B2

0L2

μ0λρν
. If the flow is driven by

boundary stress, the effective magnetic Reynolds number is

R∗
m =

(
μ0ρν

λ

) 1
2 U0

B0

. (6.27)

If the flow is driven by body force (6.25), the effective magnetic Reynolds number is

R∗
m =

μ0ρνU0

B2
0L

. (6.28)

It is interesting to see that the magnetic Reynolds number does not depend on the

magnitude of the magnetic diffusivity λ in this case. For the above two driving situa-

tions, equation (6.24) can be solved. The results are shown in figure (6.6) for different

Q.

In the outer shell of giant planets, hydrogen (the dominant constituent) is su-

percritical, which implies that there is no gas-liquid or gas-solid phase transition in

this region. Besides the outer boundary at the planetary surface, there is no other

boundary. Driving the fluid by body force in the form (6.25) does not produce vis-

cous boundary layers and is therefore more applicable to the planetary interior. We
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Figure 6.6 The relation between the physical attenuation factor and height for differ-
ent magnetic diffusivities: (a) drive the flow by boundary stress; (b) drive the flow
by variable body forces (see equation (6.25)). We take k = 1 and Rm = 104.
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focus on this case in the following investigations. Based on equation (6.28), we can

estimate the magnitude of the effective magnetic Reynolds number R2
m for Juptier

and Saturn. For Jupiter, we take: ρ ∼ 103 kg m−3; μ ∼ 103 m2 s−1; U0 ∼ 0.01 m s−1;

B0 ∼ 4.2 × 10−4 Tesla; and L ∼ 106 m. Thus, R∗
m ∼ 10−1. For Saturn, we take

ρ ∼ 103 kg m−3; μ ∼ 103 m2 s−1; U0 ∼ 0.2 m s−1; B0 ∼ 0.2 × 10−4 Tesla; and

L ∼ 106 m. Thus, R∗
m ∼ 30. For Jupiter and Saturn, the difference in the effective

magnetic Reynolds number is about two orders of magnitude. It seems that Saturn’s

non-axisymmetric magnetic field can be attenuated more.

6.3.4 Perturbation analysis: variable magnetic diffusivity

For variable magnetic diffusivity, the magnetic induction equation can be written as

−∇× (λ(∇× b)) + ∇× (U × b) = 0. (6.29)

Take λ = λ0 exp(βz), the above equation can be rewritten in component form:

exp(βz)

(
−k2 +

∂2

∂z2

)
bz − ikRm (bzUx) = 0. (6.30)

For different driving forces, the velocity shear reduction by the magnetic field is dif-

ferent. In this case, the attenuation effect depends on the local magnetic Reynolds

number: Rm = UL/λ exp(βz). However, for driving the flow by body force (see

equation (6.25)), the magnetic Reynolds number does not depend on λ provided λ is

small enough.

6.4 The thin shell approximation and the bound-

ary conditions

In this section, we specify the zonal flow velocity in a spherical shell, and calculate the

attenuation effect to the non-asymmetric magnetic field produced by this spherical
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shell. The governing equation is the magnetic induction equation:

∂B

∂t
= −∇× (λ∇×B) + ∇× (U × B), (6.31)

where the magnetic diffusivity is a function of the radius r only. If we choose the

length scale to be the planetary radius: [L] ∼ R; velocity scale to be the magnitude

of the small scale velocity in the deep interior: [U ] ∼ U0 ∼ 0.01 m s−1; the magnetic

diffusivity scale to be the magnetic diffusivity at the metallic hydrogen region [λ] ∼
λ0 ∼ 4m2 s−1; the magnetic field scale to be the poloidal magnetic field observed on

the surface of the planet: [B] ∼ B0 ∼ 10 G; the time scale to be the diffusion time

scale: [T ] ∼ R2

λ
; we can non-dimensionalize the magnetic induction equation:

∂B

∂t
= −∇× (λ∇× B) + Rm∇× (U × B), (6.32)

where Rm is the magnetic Reynolds number, and is defined as

Rm =
U0R

λ0
. (6.33)

In spherical coordinates (r, θ, φ), assume that the non-axisymmetric magnetic field is

in the following form:

B = (Br(r, θ),Bθ(r, θ),Bφ(r, θ)) exp(imφ). (6.34)

Here φ is the azimuthal wave number. Thus, the magnetic induction equation (6.32)

can be written in the following component form: The er component of the magnetic

induction equation is

+
1

r sin(θ)

[
λ

r

∂

∂θ

(
sin(θ)

(
∂

∂r
(rBθ) − ∂

∂θ
Br

))
− imλ

r sin(θ)

(
imBr − sin(θ)

∂

∂r
(rBφ)

)]

+
imRm

r sin(θ)
(BrUφ) = 0. (6.35)
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Since the magnetic diffusivity changes rapidly with radius, the significant attenu-

ation happens in a thin shell. Use the thin shell approximation

r = a + ξ, (6.36)

where a is the inner boundary of the spherical shell. Under the thin shell approxima-

tion, r → a and dr → dξ, and the er component of the magnetic induction equation

can be rewritten as

λ

a

∂

∂θ

(
sin(θ)

(
∂

∂ξ
(aBθ) − ∂

∂θ
Br

))
− imλ

a sin(θ)

(
imBr − sin(θ)

∂

∂ξ
(aBφ)

)
= −imRm(BrUφ). (6.37)

The divergence-free magnetic field implies that

∇ · B =
∂

∂ξ
(Br) +

1

a sin(θ)

∂

∂θ
(sin(θ)Bθ) +

im

a sin(θ)
Bφ = 0. (6.38)

Combining the equation (6.37) and (6.38), we then obtain

∂2

∂ξ2
Br = − 1

a2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ
Br

)
+

m2

a2 sin2(θ)
Br +

im

aλ sin(θ)
RmBrUφ. (6.39)

In this equation, the terms − 1
a2 sin(θ)

∂
∂θ

(
sin(θ) ∂

∂θ
Br

)
and m2

a2 sin2(θ)
Br express the second

derivative of the magnetic field respect to θ and φ. Since the magnetic diffusivity

changes rapidly along the r-direction, the variation of the magnetic field along the

r-direction will be much more than the variation along the θ and the φ direction.

So, we can ignore those two second derivative terms and simplify the above equation

(6.39) as
∂2

∂ξ2
Br =

im

aλ sin(θ)
RmBrUφ. (6.40)
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If we choose L to be the dimension of the thin shell (L << a), we have

z =
ξ

L
. (6.41)

The equation (6.40) can be rewritten as

∂2

∂z2
Br =

imL2

aλ sin(θ)
RmBrUφ. (6.42)

Now we consider the boundary conditions for the above equation. At the outer

boundary z = 1, the electrical current in the radial direction is zero

J = μ0 (∇× B)r = 0. (6.43)

Under the thin shell approximation, we have

(∇×B)r =
1

a sin(θ)

[
∂

∂θ
(sin(θ)Bφ)imBθ

]
. (6.44)

Since the magnetic field is divergence free, we then have

∂

∂ξ
Br +

1

a sin(θ)

∂

∂θ
(sin(θ)Bθ) +

im

a sin(θ)
Bφ = 0; (6.45)

Therefore, the magnetic field along the φ direction can be expressed as

Bφ =
a sin(θ)

im

∂Br

∂ξ
+

1

im

∂

∂θ
(sin(θ)Bθ). (6.46)

Substitute this expression into the equation (6.44), we then arrive

m2Bθ +
∂

∂θ

(
sin(θ)

∂

∂θ
(sin(θ)Bθ)

)
+

∂

∂θ

(
sin2(θ)

∂

∂z
Br

)
= 0 (6.47)

Since the magnetic diffusivity varies rapidly in the r-direction, the largest term in the

above equation (6.47) is the term involving ∂
∂z

Br and there is no other term that can
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balance this term. Thus we have:

∂Br

∂z
= 0. (6.48)

Consider the inner boundary condition (at z = 0). The observed magnetic field is

the curl free potential field, which r component can be written as:

Br =
∞∑

n=1

n∑
m=0

[
(n + 1)

(
a

r

)n+2

(gm
n cos(mφ) + hm

n sin(mφ))P m
n (cos(θ))

]
, (6.49)

where P m
n (cos(θ)) are Schmidt quasi-normalized associated Legender functions of de-

gree n and order m, and gm
n , hm

n are the internal Schmidt coefficients. For Jupiter,

the tilted dipole corresponds to n = 1 and m = 1. From the O6 model (Cornner-

ney, 1993), the internal Schmidt coefficients are determined as: g1
1 = −0.65929 and

h1
1 = 0.24116. Thus the magnitude of observed Br for n = 1 and m = 1 ranges from

−1.4 G to 1.4 G depending on φ and θ. For Saturn, the dipole tilt is 0.1◦ or less.

Based on the Z3 model, both g1
1 and h1

1 are zero. Here we impose a tilted dipole field

(n = 1 and m = 1) in the bottom boundary of the shell:

Br = B11a
−3(−2)P 1

1 (cos(θ)) exp(iφ), (6.50)

where B11 is a constant. For Jupiter, it is chosen to produce the observed dipole tilt.

For Saturn, we assume that its dipole tilt is the same as that of Jupiter without the

attenuation by the flow. Thus, B11 is chosen to produce dipole tilt about 10◦ on the

surface. Figure (6.7) shows scaled non-axisymmetric magnetic field on both Jupiter

and Saturn, where the non-axisymmetric magnetic field is scaled by the maximum

value along the θ direction.

According to the analysis in the previous section, the magnitude of the zonal

flow is reduced by the axisymmetric magnetic field and the reduction depends on
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the inverse of Chandrasekhar number (Q−1 ∼ μ0λ(r)ρν
B2

0H2
λ

) for driving flow with a body

force. Here B0 is the radial component of the axisymmetric magnetic field; ρ is the

density; ν is the viscosity; and Hλ is the scale height of the magnetic diffusivity. Thus,

U ∝ Q−1Uφ0, where Uφ0 is the velocity without being reduced by the magnetic field.

For simplicity, we assume Uφ0 = U0 sin(θ) for both Jupiter and Saturn. Therefore,

the equation (6.42) can be rewritten as:

∂2

∂z2
Br =

imL2

aλ sin(θ)
RmQ−1BrUφ0. (6.51)

Similarly as in previous section, we can define an effective magnetic Reynolds number:

R∗
m = RmQ−1 =

U0R

λ0

μ0ρνλ0

B2
0H

2
λ0

=
U0Rμ0ρν

B2
0H

2
λ

. (6.52)

Consider the attenuation produced in a spherical shell just outside of the metallic hy-

drogen region by the small scale velocity. Here is a possible application of this result.

From the mixing length theory, the magnitude of viscosity is ν ∼ U0Lmix, where Lmix

is the mixing length with the magnitude about ∼ 100 km. Taking ρ ∼ 103 kg m−3,

B0 = 4.2 × 10−4 Tesla for Jupiter and B0 = 0.2 × 10−4 for Saturn, we calculated the

external magnetic field corresponding to a tilted dipole for different velocities U0 (see

figure (6.7)). For a flow with U0 = 10−3 m s−1, the attenuation effect for Jupiter’s

titled dipole is negligible. However, the attenuation effect produced by the same flow

makes Saturn’s titled dipole 102 times smaller than that without the attenuation.

The attenuation effect is stronger for larger U0. Our Ohmic dissipation calculation

in chapter 3 indicates that the amount of velocity has to be less than 0.2 m s−1 for

Jupiter and 0.5 m s−1 for Saturn, which are much larger that the velocities we used

here.

The axisymmetric magnetic field along the r direction B0 is also a function of

θ. Based on the observation external to the planet, B0 can be treated as mainly

dipole with small amount of quadrupole and octupole component. Figure (6.8) shows
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Figure 6.7 The attenuation for the tilted dipole produced by fluid motion in the deep
interior. (a) Jupiter; (b) Saturn. Here we assume that Jupiter and Saturn have similar
dipole tilt without being attenuated by the flow. The solid line shows the scaled
non-axisymmetric magnetic field without being attenuated by the flow, where the
magnetic field is scaled by the maximum value of tilted dipole along the meridional
direction. The circle corresponds to the external field after being attenuated by
the flow with U0 = 10−3 m s−1 and the hexagon represents U0 = 2 × 10−3 m s−1,
where U0 is the magnitude of the flow without being reduced by the magnetic field.
The flow has negligible effect in reducing Jupiter’s outgoing tilted dipole. However,
U0 = 10−3 m s−1 makes Saturn’s titled dipole 102 times smaller than that without
the attenuation; and U0 = 2 × 10−3 m s−1 makes it 104 times smaller.
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Figure 6.8 Comparison between using constant B0 and B0(θ) as a function of θ. (a)
U0 = 0.02 cm s−1, (b) U0 = 0.05 cm s−1. The solid line corresponds to the scaled non-
axisymmetric magnetic field without attenuated by the flow. The circle corresponds
to external magnetic field with constant B0 and the hexagon represents to external
magnetic field with B0 as a function of θ. B0(θ) is taken to be the observed value.

comparison between using constant B0 and B0(θ) as a function of θ. It is shown

that non-axisymmetric magnetic field is attenuated more near the equatorial region

if B0(θ) is used in the definition of Q. It is due to the small magnitude of the dipole

field near the equatorial region.

The axisymmetric magnetic field provide no ready explanation for observation

of periodic magnetospheric phenomena near the polar region, such as the rotation

modulation of Saturn kilometric radio emission (Desch & Kaiser, 1981; Kaiser &

Desch, 1982), optical spoke activity in Saturn’s B ring (Porco & Danielson, 1982), and

aurora ultraviolet intensity (Sandel et al., 1982). Since the spacecraft measurements
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are confined to the low latitude 40◦N to 40◦S (Connerney, 1993), the magnetic field

in the equatorial region might be more axisymmetric than that in the polar region,

which is consistent with our theory of attenuating non-axisymmetric magnetic field

by magnetically limited flow.

6.5 Conclusion and discussion.

In this chapter, we investigate the attenuation of the non-axisymmetric magnetic field

by magnetically limited zonal flow. The smaller Saturnian field may allow a larger

velocity shear and a greater attenuation of the non-axisymmetric field, thereby pro-

viding a possible explanation for the nearly axisymmetric field. However, the analysis

is based on the velocity reduction calculated from a Cartesian geometry without con-

sidering the effect of rotation. More detailed analysis including the Coriolis force is

needed.
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Chapter 7 Attenuation of temporal

variations of magnetic field in the outer

region of Jupiter.

7.1 Abstract

The magnetic core, defined as the region of substantial electrical currents and field

generation, is clearly confined in the actual core for the terrestrial planets. However,

for gas giant planets the definition of the magnetic core is not at all obvious. Shock-

wave experiments have measured the electrical conductivity of hydrogen at shock

pressures in the range of 0.93 Mbar to 1.8 Mbar and an estimated temperature at

about 3000 K, representative of the conditions inside Jupiter (Nellis et al., 1996).

These measurements have shown that hydrogen undergoes a continuous transition

from a semi-conducting molecular to metallic fluid, which means that giant planets

do not have a clearly defined core-mantle boundary. In addition, possible strong,

deeply penetrating zonal winds may interact with the magnetic field even at low elec-

trical conductivity, at a place quite far out in the molecular envelope. We study the

attenuation of the time-dependent magnetic field by the semi-conducting envelope

through the well-known electromagnetic screening effect, and conduct a preliminary

estimation of the influence of the flow to the magnetic field in the semi-conducting

molecular hydrogen envelope. Combining the study for the attenuation effect pro-

duced by the semi-conducting layer and the observation of the magnetic field by

Galileo and Voyager, we find the possible outer boundary of the dynamo generation

zone is at 0.86 Jupiter radius. If the zonal flows observed on the surface penetrate

to the deep interior along cylinders, dynamo generation of a magnetic field can occur

at radii where the electrical conductivity is many orders of magnitude below that of
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metallic hydrogen if the modest conversion of toroidal to poloidal field (for example

that predicted by an α-effect with amplitude suggested by convective motions) exists.

The fields generated in this region (and the magnetic Reynolds number that charac-

terizes their generation) are dictated by a length scale comparable to the scale height

of the electrical conductivity, which is much smaller than the radius of the planet.

7.2 Introduction.

Jupiter’s magnetic field shows some remarkable similarities to Earth’s magnetic field.

Both planets have a dominant dipole field with the dipole tiles about 10◦. When the

magnetic field is downward continued to the radius at which metallic conduction is

likely, the field strength at degree l = 2 has a similar ratio to the dipole field for the

two planets (∼ 0.2), and there is likewise a similar ratio at l = 3(∼ 0.1). Furthermore,

the data from the Galileo spacecraft (in combination with the Voyager’s data) shows

that Jupiter’s dipole varies at a rate that is comparable or smaller than variation of

Earth’s magnetic field (Russell et al., 2001).

However, considering the different internal structure between Jupiter and Earth,

the similarity between the magnetic fields in these two planets is surprising. The ter-

restrial planet Earth is composed of an iron core and a silicate mantle. The iron core

is made of high electric conductivity and low viscosity fluid, and the silicate mantle

is made of low electric conductivity and high viscosity fluid. Although there maybe

a thin immobile layer of intermediate conductivity (Lay et al., 1998), we can view

Earth as having a step function conductivity profile. The interaction between the

magnetic field and the fluid motion is only important in the iron core. The outgoing

magnetic field generated in the core is attenuated by the silicate mantle through the

magnetic diffusion effect.

By contrast, the gas giant planet Jupiter is composed primarily of hydrogen (92%

atomic) and helium (8% atomic), and the internal structure may not exhibit a step
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function in material properties. Shockwave experiments have measured the electri-

cal conductivity of hydrogen at shockwave pressure in the range of 0.93 Mbar to

1.8 Mbar and an estimated temperature at 3000 Kelvin, representative of condition

inside Jupiter (Nellis et al., 1996). These experiments suggest that hydrogen under-

goes a continuous transition from a semi-conducting molecular to metallic state, which

implies that the conductivity profile in the interior of Jupiter is a smooth (though

rapidly declining) function of radius. Second, the low conductivity region is a fluid

whereas it is a solid in terrestrial planets. The low conductivity fluid can modify the

magnetic field lines of the outgoing magnetic field, and the interaction between the

fluid and field can change the fluid velocity as well.

As a consequence of these two striking differences, the definition of the ”magnetic

core” of a giant planet such as Jupiter (here defined to be the region of substantial

electrical current and field generation region) is not at all obvious. In this chapter, we

will examine what is meant by the magnetic core of the giant planet. We approach

this problem by considering the attenuation produced by the finite conducting outer

regions on the time varying internally generated fields, and by a preliminary assess-

ment of the consequence of fluid motions on the field in these outer regions.

Irrespective of the zonal flow, the poloidal magnetic field generated in the dynamo

region will diffuse through the semi-conducting molecular hydrogen layer and be at-

tenuated by the well-known electromagnetic screening effect. In a region of uniform

conductivity and thickness L, the diffusion timescale is τdiff = L2

π2λ
(Moffatt, 1978).

Here λ is the magnetic diffusivity: λ = 1
μ0σ

, μ0 is the magnetic permeability and σ is

the electrical conductivity. In the region of rapidly varying conductivity, this estima-

tion of timescale is still roughly applicable but with L interpreted as the conductivity

scale height. If the conductivity at the outermost region of the dynamo generation

region is high, the diffusion timescale will be longer, and vice versa. In general, dy-

namos generate magnetic fields that exhibit a wide range of frequencies (Roberts &

Soward, 1992; Busse, 2000). However, components of the magnetic field varying on
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a timescale shorter than the diffusion timescale will be attenuated. Therefore, from

the observed secular variation of the magnetic field, we could get the conductivity

that corresponds to the outermost boundary of the dynamo generation region. Com-

paring the magnetic field measurements from Galileo and Voyager, the magnitude

of the dipole moment on Jupiter increased about 1.5% over the period from 1975

to 2000 (Russell et al., 2001), which suggests that there is significant power for field

variations at the time scale of ∼ 1000 years. If we take L = 1000 km, the estimated

conductivity is about 105 S m−1, which corresponds to the outermost boundary of

the dynamo generation to be 0.85RJ .

On the other hand, if the observed zonal flow in the Jovian atmosphere is the

surface expression of the zonal flow on the cylindrical surface, or part of the zonal

flow observed on the surface of the planet penetrates to the interior with other ver-

tical structure, the dynamo might be able to be generated at a place far out in the

envelope compared with the metallic hydrogen region.

In this chapter, we will try to give a more quantitative explanation for the mag-

netic core of the giant planets. In section 7.3, the internal conductivity distribution

of Jupiter is estimated based on the shock wave experimental data. In section 7.4, we

calculated the expected frequency dependent attenuation by semi-conducting molec-

ular hydrogen in Jupiter. In section 7.5, given different assumptions about the size of

the dynamo generation region, the expected temporal variation of the magnetic field

is calculated. We combine our model with the observed secular variation to constrain

the size of the dynamo generation region and the lowest dynamo generation conduc-

tivity. In section 7.6, we estimate the influence of the fluid motion to the field by the

α-effect and ω-effect. In section 7.7, we examine whether the shell dynamo could be

generated in the outer layer and get the corresponding critical dynamo number. We

also study the influence of the large conductivity gradient to the dynamo generation.

From this, we assess the possibility that dynamo action extends much farther out

than previously supposed.
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7.3 Comparing the electrical conductivity profiles

of Jupiter and Earth

We can compare the conductivity profile of Jupiter with that of Earth. For Jupiter,

the electrical conductivity profile has been obtained in Chapter 2. The electrical

conductivity of Earth’s core is about 106 S m−1 (Keeler & Mitchell, 1969), whereas

the electrical conductivity at the lower part of Earth’s mantle is very uncertain, with

estimations from 1 S m−1 to 300 S m−1 (Coe et al., 1995; Shankland et al, 1993;

Wood & Nell, 1991). Although there may be a thin immobile layer of intermediate

conductivity (Lay et al., 1998; Manga & Jeanloz, 1996), we can view Earth as having

a step function conductivity profile. The conductivity comparison between Jovian

semi-conducting envelope and the lower part of Earth’s mantle is shown in Figure 1.

In this comparison, we take the conductivity of the lower mantle on the Earth to be

100 S m−1 for convenience. For Jupiter the radius ratio used here is the radius of

the semi-conducting envelope over the radius of molecular-metallic transition region

(r = 0.84RJ). For the Earth, the radius ratio is the radius of the lower part of the

mantle over the radius of the core. Figure 7.1 shows that the electrical conductivity

for most of Earth’s mantle is about 1000 times lower than that for the semi-conducting

molecular hydrogen envelope on Jupiter. Therefore, if the secular variation of Jovian

magnetic field is in the same order as the secular variation of the Earth, the Jovian

dynamo generation zone must extend to larger radius than the transition zone from

the semi-conducting molecular hydrogen to metallic hydrogen. This is quantified

more precisely in section 7.4.

7.4 Electromagnetic screening by the semi-conducting

molecular hydrogen envelope

When a magnetic field is generated in the dynamo, it typically contains temporal

variations at all frequencies (Roberts & Soward, 1992; Busse, 2000). After the gen-
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Figure 7.1 Comparison between the conductivity profile of Jupiter to that of the
earth. The dash line expresses the conductivity profile of Earth, and the solid line is
the conductivity profile of Jupiter.
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erated magnetic field diffuses through the semi-conducting hydrogen layer outside of

the dynamo generation region, high frequency temporal variations are attenuated by

the electromagnetic screening effect. A layer of magnetic diffusivity λ and thickness

d will produce significant field attenuation for ω � 1
τ
, where ω is the frequency of the

magnetic field and τ is the screening timescale: τ = d2

π2λ
. For variable magnetic diffu-

sivity λ = λ(r), the effective thickness is the scale height of the magnetic diffusivity

d = Hλ(r). For large d and σ, ω is smaller. It means that attenuation is strong for

higher frequency. Here, we assume that the dynamo is generated in high conductivity

region, and there is also a semi-conducting region outside of the high conductivity

region.

In this section, we will study the attenuation effect produced by Jupiter’s semi-

conducting hydrogen layer in a spherical geometry. As usual, we take the limit in

which the variation frequencies are much less than c
RJ

(c is the velocity of the light,

and RJ is the radius of Jupiter), so that the electric displacement current can be

ignored. From pre-Maxwell’s equation, the electrical field E and the magnetic field

B must satisfy the following equations

∇×
[

1

σμ0

∇× E

]
+

∂E

∂t
= 0, (7.1)

and

∇×
[

1

σμ0
∇× B

]
+

∂B

∂t
= 0, (7.2)

where μ0 is the magnetic permeability and σ is the electric conductivity. We define

a vector potential A, so that B = μ0∇× A, and E = −μ0
∂A
∂t

. The vector potential

satisfies the following equation:

∇× [∇× A] + μ0σ
∂A

∂t
= 0. (7.3)

Due to the differences of the electrical conductivity, Jupiter could be divided into

three regions: r < Rd, the dynamo generation region; Rd < r < RJ , the attenuation
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region; r > RJ , the region external to the planet. The electrical conductivity is high in

the dynamo generation region, and there is no electrical current external to the planet.

We apply equation (7.3) in the semi-conducting hydrogen layer Rd < r < RJ .

In this region, the magnetic permeability μ0 is that of free space and the electrical

conductivity is a function of radius: σ = σ(r). Under these conditions, the standard

solution leading to the poloidal magnetic field (assuming ∇·A = 0) has the following

form:

A = ∇× (erΨ) , (7.4)

and

∇2Ψ = μ0σ(r)
∂Ψ

∂t
. (7.5)

The toroidal field is confined in the region of finite electric current and therefore can-

not be observed external to the planet. It is of little interest in studying the secular

variation of the magnetic field, though it does produce a potential detectable poloidal

electrical field.

For a periodic magnetic field proportional to exp(−iωt), where ω is the frequency

of the magnetic field variation, Ψ satisfies the following equation:

∇2Ψ(r, θ, φ) = −iμ0σ(r)ωΨ(r, θ, φ). (7.6)

The standard solution for this equation is

Ψn(r, θ, φ) = Rn(r)Sn(θ, φ), (7.7)

where Sn(θ, φ) is the nth order spherical harmonics, and Rn satisfies the following

equation:
1

Rn(r)

d

dr

(
r2dRn(r)

dr

)
− iμ0σ(r)ωr2 = n(n + 1). (7.8)
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The magnetic field can be expressed by the vector potential in the following way:

B = μ0∇× A = μ0∇× (erΨ). (7.9)

In the semi-conducting region, we have

Br = −μ0n(n + 1)r−1Rn(r)Sn(θ, φ), (7.10)

Bθ = −μ0r
−1

[
d(rRn(r))

dr

]
∂Sn(θ, φ)

∂θ
, (7.11)

and

Bφ = −μ0r
−1

[
d(rRn(r))

dr

]
∂Sn(θ, φ)

sin(φ)∂φ
. (7.12)

Outside of Jupiter (r > RJ), there is no electrical current (∇ × B = 0). Thus, the

magnetic field can be written as

Br = −μ0n(n + 1)r−2−nBnSn(θ, φ), (7.13)

Bθ = −μ0r
−2−nBn

∂Sn(θ, φ)

∂θ
, (7.14)

and

Bφ = −μ0r
−2−nBn

∂Sn(θ, φ)

sin(φ)∂φ
, (7.15)

where Bn is a constant.

At the outer boundary of the dynamo generation zone (r = Rd), we assume that

the magnetic field generated by the dynamo is in the following form:

Br = Sn(θ, φ). (7.16)

Since the theory is linear and separable with respect to n, we can assume unit am-

plitude for Br at r = Rd without loss of generality for each n. By matching the

boundary condition in the three different regions: r ≤ Rg, Rd < r < RJ and r ≥ RJ ,
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we solve equation (7.8) numerically with the 4th order Runge-Kutta method, we get

the ratio of the magnetic field along the radial direction at the planetary surface to

that at the boundary of the dynamo generation region: Λ. If Jupiter had a perfect

insulator external to the dynamo, this ratio would be:

Λ =
Br|r=RJ

Br|r=Rd

=
(

RJ

Rd

)−n−2

(7.17)

This is called geometric attenuation, and is due to the different radii of the planetary

surface and the field generation region. The geometric attenuation is a natural prop-

erty of the electromagnetic field in a vacuum or perfect insulator. The magnitude of

the magnetic field is smaller as the distance from the field generation region is larger.

We can remove the geometric attenuation from Λ and get the physical attenuation

factor F for the semi-conducting molecular hydrogen layer:

F (ω) =
Br|r=RJ

Br|r=Rd

(
RJ

Rd

)n+2

. (7.18)

If we take the outer boundary of the dynamo generation region to be the transition

place to the metallic hydrogen region, r = 0.84RJ , for periodic magnetic field with

period p ∼ 5 × 104 years, there is only 5% attenuation in the amplitude, but 50%

retardation in phase (see figure 7.2). The electromagnetic screening effect produced

by the semi-conducting hydrogen envelope has stronger influence in phase than in

amplitude. Figure 7.2 also shows that the absolute value of the attenuation factor is

approximately 1 for the low frequency magnetic field and becomes much less than 1 as

the frequency of the magnetic field increases, which means that the semi-conducting

molecular layer has almost no effect for the low frequency magnetic field variation

and strongly attenuates the high frequency magnetic field variation.

Since the electrical conductivity of hydrogen decreases exponentially from the

metallic conducting region with scale height ∼ 1000 km, the outer boundary of the

semi-conducting hydrogen layer only has negligible effect on the attenuation produced
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Figure 7.2 The attenuation effect produced by the semi-conducting layer. The outer
boundary of the dynamo generation region is taken to be 0.84RJ , which corresponds
to the electrical conductivity 2×105 S m−1. (a) The absolute value of the attenuation
factor; (b) the phase shift of the attenuation factor.
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by the layer, as long as the thickness of the semi-conducting layer is larger than sev-

eral scale heights of the electrical conductivity.

Furthermore, the attenuation effect produced by the semi-conducting layer is dif-

ferent for different assumptions for the radius of the dynamo generation zonal Rd.

The shallower the dynamo generation zone, the smaller the attenuation effect.

7.5 Secular variation and the deduction of the dy-

namo generation size on Jupiter

Comparing the magnetic field measurement from the Galileo spacecraft with that

from Voyager, the magnitude of the dipole moment of Jupiter has increased about

1.5% over the period from 1975 to 2000 (Russell et al., 2001), which is similar to the

temporal changes of Earth’s magnetic field. If we let the percentage of the magnetic

field variation in 25 years be V , then we have

V = 25 × 3 × 107 ×

√√√√√〈
(

∂Bext

∂t

)2〉
〈B2

ext〉
, (7.19)

where Bext is the magnetic field external to the surface. In terms of the frequency ω

for the magnetic field, we have:

〈
(

∂Bext

∂t

)2〉
〈B2

ext〉
=

1
2π

∫ +∞
−∞ ω2F ∗(ω)F (ω)B̃∗

d(ω)B̃d(ω)dω
1
2π

∫+∞
−∞ F ∗(ω)F (ω)B̃∗

d(ω)B̃d(ω)dω
, (7.20)

where B̃d(ω) is the Fourier spectrum of the magnetic field at the outer boundary of

dynamo generation region (For Earth, it is the core-mantle boundary), B̃∗
d(ω) is the

conjugate of B̃d(ω), and F (ω) is the physical attenuation factor. The power-spectrum

of the magnetic field at the boundary of dynamo generation region is

Sd(ω) = B̃∗
d(ω)B̃d(ω). (7.21)
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Power-spectral analysis of the intensity of Earth’s magnetic field inferred from ocean

sedimental core and archaeo-magnetic data from timescale of 100 yr to 10 Myr shows

that the power spectrum on Earth’s surface is proportional to 1/ω (Pelletier, 1999).

Since the conductivity of Earth’s mantle is low, the significant physical attenuation

for the internally generated signal is for the scale of 4 to 40 years (Currie, 1968). For

the signal with a timescale larger than 100 years, the attenuation effect by the mantle

layer is negligible. Therefore, the power-spectrum at the core-mantle boundary for

Earth can be inferred to be proportional to 1/ω. Assuming Jupiter’s dynamo is similar

to the geo-dynamo, the power-spectrum at the boundary of the dynamo generation

region will likewise be proportional to 1/ω:

Sd(ω) = B̃∗
d(ω)B̃d(ω) ∝ 1

ω
. (7.22)

Therefore, we can take numerical integration for different size of the dynamo genera-

tion zone. The results are shown in figure 7.3. From this figure, we find that in order

to match the observed secular variation, the size of the dynamo generation region is

about 0.86RJ . The conductivity at this radius is about 2 × 104 S m−1, which is 10

times smaller than the measured conductivity of the metallic hydrogen.

7.6 Attenuation of the magnetic field in the pres-

ence of the dynamo effect

In the semi-conducting layer, the turbulent flow of the electrically conducting fluid

and the shear of the zonal wind will interact with the outgoing magnetic field from

the dynamo generation zone. The correct description of this problem is the coupled

Navier-Stokes equation with the magnetic induction equation. The complete solution

of this problem is beyond the scope of this chapter. Here, we specify the flow and

analyze the influence of the flow to the magnetic field. We consider this by making use

of a very simple model in which the turbulent flow of the electrical conducting fluid
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Figure 7.3 The calculated magnetic field versus the different dynamo size.
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generates the poloidal field from the toroidal field by means of the α-effect (Moffatt,

1978), and the vertical shear of the zonal winds produce the toroidal magnetic field

from the poloidal field through the ω-effect. In this section, we assume that there

is a source of dynamo generation in the deep interiors of the giant planets and ana-

lyze the changes of the magnetic field produced by the semi-conducting layer outside

of the dynamo generation region in the presence of α and ω effects. The electrical

conductivity drops exponentially outwards from the dynamo generation region in this

semi-conducting layer with scale height about 1/b ∼ 1000 km, which is much less than

the radius of the Jupiter: bRJ � 1. Therefore, we can use the thin shell assumption.

Under this assumption, Cartesian coordinates are adequate.

Let z be along the vertical direction, x be along the north-south (latitudinal)

direction, and y be along the east-west (zonal) direction. Using these Coordinates,

the magnetic field B can be written as the summation of the toroidal magnetic field

BT and the poloidal magnetic field BP :

B = BT + BP , (7.23)

while

BP = ∇× (Aey), (7.24)

and

BT = Bey, (7.25)

where A and B are two scalars. Here we assume that the magnetic field is azimuthally

symmetric, so A and B are the functions of x, z, t only. For the rapidly rotating

planet, the magnitude of the zonal flow is generally much larger than the flow in

the vertical and meridional direction. Thus, we only consider the influence due to

the zonal flow. Assume the gradient of the zonal flow to be γ, A and B satisfy the

following equations:
∂A

∂t
= λ(z)∇2A + αB, (7.26)
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and
∂B

∂t
=

∂

∂z

(
λ(z)

∂B

∂z

)
+ λ(z)

∂2B

∂x2
− ikγA. (7.27)

These equations admit the local solution: A = A(z) exp(pt+ikx) and B = B(z) exp(pt+

ikx), where k is the latitudinal wave number. If Re(p) is smaller than zero, the solu-

tion decays with time, and the magnetic field cannot be generated. If Re(p) is larger

than zero, the solutions for A and B grow with time, the magnetic field can be gen-

erated by means of α and ω effect. If Re(p) = 0, the solution is migrating magnetic

waves.

7.6.1 No α-effect and no ω-effect

Consider first the simplest case: the modification of the magnetic field generated in

the dynamo region simply comes from the electromagnetic screening effect. In this

case, we do not consider the influence of the flow. Under the thin shell assumption,

the analysis in the Cartesian geometry is almost the same as the previous analysis in

the spherical geometry. In this section, we get a simpler expression for the attenua-

tion effect produced by the semi-conducting hydrogen layer in Cartesian geometry.

In this case, the magnetic induction equation can be simplified as

∂A

∂t
= λ(z)∇2A. (7.28)

Let the outer margin of the dynamo generation region be z = 0. Since the electrical

conductivity drops exponentially from the dynamo generation region with scale height

1/b, the magnetic diffusivity can be written as λ(z) = λ0 exp(bz), where λ0 is the

magnetic diffusivity at the outer boundary of the dynamo generation region. The

equation (7.28) has the local solution A = A(z) exp(pt + ikx). Change the variable

from z to ζ : ζ = 2
√

p
λ0b

exp
(
− bz

2

)
. A(ζ) satisfies the following equation:

p

[
d2a

dζ2
+

1

ζ

dA

dζ
−
(

1 +
4

β2ζ2

)
A

]
= 0, (7.29)
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where β is defined as β = b/k. The latitudinal wavelength for the dipole magnetic

field is about 1/k = RJ/2. Under the thin shell approximation, we have β � 1. The

solution for this equation is �2/β(ζ)(Abramowitz and Stegun, 1995), where �2/β(ζ) is

the first or second kind of the modified Bessel function: I2/β(ζ) or K2/β(ζ). Choosing

�(
√

p) > 0, we obtain that ζ → 0 (z → +∞) corresponds to the place outside of the

planet, and ζ = 2
√

p
λb

(z = 0) represents the outer margin of the dynamo generation

region. Without considering the influence due to α-effect and ω-effect, the magnetic

field decays outside of the dynamo generation region. The solution for equation (23)

is

A(ζ) = A0I2/β(ζ). (7.30)

Since the electrical conductivity is an exponential function of z, the asymptotic limit

is already reached for a few bz, it is not necessary to impose a separate boundary

condition at the planet surface or to account for the spherical geometry. The physical

attenuation factor Fa can be written as

Fa =
limz→∞ exp(kz)I1/β(ζ)

I2/β

(
2
√

p
λ0b2

) =

(√
p

λ0b2

)2k/b

I2/β

(
2
√

p
λ0b2

) . (7.31)

Here, the geometric attenuation factor exp(−kz) has been removed. Let p = iω,

where ω is the frequency of the magnetic field and is a real number. For small p (low

frequency), the attenuation factor F can be simplified to

Fa =
1

1 + p
λ0b2

=
1 − iω

λ0b2

1 +
(

ω
λ0b2

)2 . (7.32)

Clearly, ω ∼ λ0b
2 defines the frequency at which the significant attenuation is starting

to occur. The semi-conducting layer can significantly modifying the phase of the out-

going field even without significantly modify the amplitude of the field. For example,

at ω ∼ 0.1λ0b
2, there is only a 1% reduction in field amplitude, but a 10% shift in

phase. For very low frequency ω → 0, the attenuation factor approaches 1, which

means that there is no attenuation effect at low frequency. The semi-conducting hy-
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drogen layer behaves as a low pass filter.

For the large p, the attenuation factor can be simplified as

F =
√

4π
(

p

λ0b2

)1/4

exp

(
−2

√
p

λ0b2

)
. (7.33)

For the high frequency variation, the attenuation factor is an exponential function

of p. The semi-conducting hydrogen layer significantly reduces the high frequency

component of the magnetic field through the electromagnetic screening effect.

7.6.2 Finite α-effect and no ω-effect: no time dependence

Here we consider the influence of the turbulent flow in the semi-conducting layer

to the outgoing magnetic field. The turbulent flow can interact with the toroidal

magnetic field and produce poloidal magnet field through α-effect (Moffatt, 1978).

For the interior of Jupiter, the turbulent flow can come from convection with the

typical magnitude 1 cm s−1 (Guillot et al., 2004). In this section, we assume there is

no shear acting on the zonal winds and ignore the influence of the ω-effect. In steady

state, the magnetic induction equation can be written as:

λ(z)∇2A + αB = 0 (7.34)

and
∂

∂z

(
λ(z)

∂B

∂z

)
− λ(z)k2B = 0. (7.35)

Here A and B admit the following local solutions: A = exp(pt + ikx)A(z) and B =

exp(pt + ikx)B(z). Change of variables from z to ζ : ζ = exp
(
−1

2
bz
)
, B(ζ) satisfies

the following equation:

d2B

dζ2
− 1

ζ

dB

dζ
−
(

2k

b

)2
B

ζ2
= 0, (7.36)
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and A(ζ) satisfies

d2A

dζ2
+

1

ζ

dA

dζ
−
(

2k

b

)2
A

ζ2
+

4αB

λ0b2
= 0. (7.37)

The particular solution for equation (7.36) is B = B0ζ
2, where B0 is a constant.

Substituting this particular solution into equation (30) yields A = A0ζ
2k/b + A1ζ

4.

Here A0 is a constant and A1 = − αB0

4λ0b2
. Analogous to the attenuation factor, we

define a ”reduction factor” FR, where FR is the ratio of the radial field outside of

planet (z → +∞) to the radial field at the outer boundary of the dynamo generation

region (z = 0) after removing the geometric attenuation effect. In this case, the

reduction factor is

FR =
1

1 − αB0

4λ0b2A0

. (7.38)

Define q to be the ratio of the actual toroidal field to the radial field (poloidal field)

at the outer boundary of the dynamo generation region:

q =
B0

ik
[
A0 − αB0

4λ0b2

] . (7.39)

The reduction factor FR can be written as a function of q:

FR =
1 + ikα

4λ0b2

1 − ikα
4λ0b2

(1 − q)
. (7.40)

If we assume that the magnetic field generated by the dynamo is isotropic at the outer

margin of the dynamo generation region, i.e., the magnitude of the toroidal field is

the same as the magnitude of the poloidal field, we have q = 1 and the reduction

factor FR can be simplified as

FR = 1 +
ikα

4λ0b2
. (7.41)

For the dipole field, the latitudinal wave number of the magnetic field is: k ∼
2

RJ
∼ 3 × 10−8 m−1. Choosing the scale height of the magnetic diffusivity to be

1/b ∼ 1000 km; the magnitude of the α-effect to be 0.01 m s−1; the outer margin of
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the dynamo generation region to be: ∼ 0.87RJ , which corresponds to the electrical

conductivity σ0 = 5 × 103 S m−1, we obtain kα
4λ0b2

∼ 2. It means that the α-effect

significantly increases the magnitude of the outgoing poloidal magnetic field even in

the low conductivity region. If the electrical conductivity at the outer boundary of

the dynamo generation region is higher (λ0 is lower) or the scale height (1/b) is larger,

the induced poloidal magnetic field produced by the α-effect is larger.

7.6.3 Finite α-effect and no ω-effect: with time dependence.

In this section, we consider the modification of the time-dependent magnetic field by

the α-effect. The time-dependent outgoing magnetic field from the dynamo region

is enhanced by the poloidal field generation through the α-effect, and is reduced by

the electromagnetic screen effect produced in the semi-conducting layer at the same

time. The magnetic field observed on the surface of the planet is the combination of

these two effects. In this case, the magnetic induction equation can be written as

∂A

∂t
= λ(z)

∂2A

∂z2
− λ(z)k2A + αB, (7.42)

and
∂B

∂t
=

∂

∂z

(
λ(z)

∂B

∂z

)
− λ(z)k2B. (7.43)

Do variable transformation from z to ζ : ζ = 2
√

p
λ0b2

exp
(
− bz

2

)
, the equation for B

can be rewritten as
d2B

dζ2
− 1

ζ

dB

dζ
−
(
ζ2 +

4k2

b2

)
B

ζ2
= 0. (7.44)

For the thin shell approximation (b � k), the term 4k2

b2
B
ζ2 can be neglected. Then,

the equation (36) has the following solution (Abramowitz & Stegun, 1970):

B = B0ζI1(ζ), (7.45)

where B0 is a constant. Substitute this solution into the equation of A, and do the
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same variable transformation. Thus,

d2A

dζ2
+

1

ζ

dA

dζ
−
(
ζ2 +

4k2

b2

)
A

ζ2
+

αB0ζI1(ζ)

p
= 0. (7.46)

The solution for this equation is: A = A0I2k/b(ζ) + αB0

2p

(
ζI1(ζ) − 1

2
ζ2I0(ζ)

)
. In this

case, the ”reduction factor” FR can be written as

FR =
limz→∞ A0 exp(kz)I2/β(ζ)

A0I2/β

(
2
√

p
λ0b2

)
+ αB0

2p

(
ζ0I1(ζ0) − 1

2
ζ2
0I0(ζ0)

) , (7.47)

where ζ0 is the value of ζ at z = 0: ζ0 = 2
√

p
λ0b2

. Let F to be the physical attenuation

factor produced by the magnetic diffusion in the semi-conducting hydrogen layer

without the α-effect

F =
limz→∞ exp(kz)I2/β(ζ)

I2/β

(
2
√

p
λ0b2

) =

(√
p

λ0b2

)2k/b

I2/β

(
2
√

p
λ0b2

) . (7.48)

As before, define q to be the radio of the actual toroidal field to the actual radial field

at the outer boundary of the dynamo generation region (z = 0).

q =
B0ζ0I1(ζ0)

ik
[
A0I2/β

(
2
√

p
λ0b2

)
+ αB0

2p

(
ζ0I1(ζ0) − 1

2
ζ2
0I0(ζ0)

)] . (7.49)

Substituting F and q into the definition of the reduction factor FR, we have that the

reduction factor FR can be simplified as

FR =
F
[
1 − ikαf

2p

]
1 − ikαf

2p
(1 − q)

, (7.50)

where f is defined as

f =
ζ0I1(ζ0) − 1

2
ζ2
0I0(ζ0)

ζ0I1ζ0
. (7.51)
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In the low frequency limit (|p| → 0), FR can be approximated to

FR =
F
[
1 + ikα

4λ0b2

]
1 + ikα

4λ0b2
(1 − q)

. (7.52)

Since F → 1 as |p| → 0 (there is no physical attenuation for the steady state field),

the reduction factor FR in the low frequency limit will reduce to the exact same result

as that for the steady state solution. As before, we let the real part of p equal zero

and analyze the outer boundary of the dynamo generation region. We express p as

p = iω. As the frequency of the field ω increases, the screening effect by the semi-

conducting layer increases, which decreases the value of the reduction factor FR. For

the high frequency field (ω → +∞), the magnitude of FR approaches zero. Evidently,

ω ∼ λ0b
2 is the important frequency for the transition from low frequency to high

frequency behavior. If we take the conductivity of the outer boundary of the dynamo

generation zone to be the same conductivity as the conductivity of metallic hydrogen

σ0 = 2×105 S m−1, and take the effective thickness of the semi-conducting layer to be

1000 km, we can plot out the absolute value of the reduction factor versus the period

of the magnetic field for α = 0.01 m s−1 and α = 0.0 m s−1 (see figure 7.4). Figure 7.4

shows that the reduction factors keep being constant at the low frequency for both α

values, and decay as the frequency of the field increases. However, the constants are

different for both cases. Without α-effect, the constant is 1; for the typical value of

α in the interior of Jupiter (α = 0.01 m s−1), the constant is about 60. It means that

the α-effect makes the poloidal magnetic field 60 times stronger than the pre-existing

field if the dynamo generation boundary is chosen to be the transition zone from the

metallic hydrogen to molecular hydrogen.

7.6.4 No α-effect and finite ω-effect: no time dependence.

On the surface of Jupiter, the speed of the observed zonal wind is about 100 m s−1(Ingersoll,

1990). The descending of the probe in Galileo spacecraft supports the idea that the

zonal wind in Jupiter penetrates to the deep interior along the cylindrical surface.
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Figure 7.4 The absolute value of the reduction factor versus the period of the magnetic
field for the different assumption of the magnitude of the α-effect.
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In the deep interior of the planet, the electrical conductivity of material is high

and the magnetic field line is fixed in the fluid. The relative velocity between the

fluid and the magnetic field is small. Comparing the measurement from the Voyager

spacecraft with that from the Galileo spacecraft, the dipole tilt is found to increase

0.3◦ over 25 period, which infers an upper bound for the relative velocity between

the magnetic field and the flow in the deep interior of Jupiter to be about 0.1 cm s−1

(Guillot et al., 2004). Therefore these deep penetrating zonal winds have to be trun-

cated in the interior of Jupiter. But, the position of the truncation zone is not clear.

One hypothesis is that the zonal wind is truncated by Jupiter’s magnetic core (Busse,

1983; Ingersoll & Pollard, 1982). In this case the magnetic field is assumed to be gen-

erated in the metallic core region. However, since the definition of the metallic core is

not clear at all, this hypothesis could not give us a clear transition zone. The second

hypothesis is: the zonal winds are truncated in the solid core of Jupiter (Stevenson,

1982). The third hypothesis is that the penetrating zonal flow is truncated in the

weather layer.

In this section, we assume the vertical shear γ is uniformly distributed in the layer.

The upper bound of the shear is taken to be: γ = bΔu, where 1/b is the effective

thickness of the semi-conducting layer, and Δu is the difference between the zonal

wind velocity on the surface of the planet us to the zonal wind velocity in the trunca-

tion zone. Since the velocity in the truncation zone is approximately zero, we obtain

Δu = us. The lower bound of the vertical shear can be approximated as γ = Δu
RJ

,

where RJ is the radius of Jupiter.

Unlike the α-effect, the ω-effect produces a toroidal field from the vertical shear

of the zonal winds. The toroidal field is not observable on the surface of the planet,

but is of interest for understanding the total strength of the field. Here, we consider

only the modification of the outgoing field by ω-effect. In steady state, the magnetic
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induction equation can be written as

λ(z)Δ2A = 0, (7.53)

∂

∂z

(
λ(z)

∂B

∂z

)
− λ(z)k2B − ikγA = 0. (7.54)

These equations have the local solutions in Cartesian geometry: A = exp(ikx)A(z),

B = exp(ikx)B(z). For the equation of A, the solution is A = A0 exp(−kz), where

A0 is a constant. We define ζ = exp
(
−1

2
bz
)
, so the solution for A can be rewritten

as A = A0 (ζ)2k/b. Substituting the solution of A to the equation of B, we have

d2B

dζ2
− 1

ζ

dB

dζ
−
(

2k

b

)2
B

ζ2
=

4ikγA

λ0b2
. (7.55)

We construct a particular solution that does not change the bottom boundary con-

dition of B, i.e., a solution that has no current that goes to (or from) z → −∞, so

we choose: B = B0ζ
2 + B1ζ

2+ 2k
b − B1ζ

2, where B1 is a constant: B1 = 2iγA0

λ0b
. In the

regime bz ≤ 1, the induced toroidal field is significant:

B1ζ
2+ 2k

b − B1ζ
2 ≈ − iγkA0

λ − 0b2
bz exp(−bz). (7.56)

Therefore, the amplitude of the induced toroidal field at a typical location z is∣∣∣− ikγA0

λb2
bz exp(−bz)

∣∣∣. Since the amplitude of the pre-existing poloidal field at loca-

tion z is |−ikA0 exp(−kz)|, the ratio of the induced toroidal field to the pre-existing

poloidal field is

Λ =
∣∣∣∣ γ

λ0b2
bz exp(−bz + kz)

∣∣∣∣ . (7.57)

Under the thin shell approximation, we have b � k. Furthermore, since bz exp(−bz) is

an order of unity at bz ∼ 1
2
, Λ could be approximated as Λ ∼ γ

λ0b2
. We can estimate

the outer boundary of the dynamo generation zone at which the induced toroidal

magnetic field is on the same order of magnitude as the pre-existing poloidal field:

Λ ∼ 1. At this radius, the magnetic diffusivity is λ0 = γ
b2

. We choose the effective

thickness of the semi-conducting layer to be 1/b ∼ 1000 km; and the meridional
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wave number to be k = 2
RJ

∼ 3 × 10−8 m−1. The upper bound of the vertical

shear is γ = bΔu = 5 × 10−5 s−1; the lower bound of the vertical shear is γ = Δu
RJ

=

1.4×10−6 s−1. Taking the upper bound of the vertical shear, we get λ0 ∼ 1010 m2 s−1,

which corresponds to an electrical conductivity σ0 ∼ 10−4 S m−1, which is nine orders

of magnitude lower than the conductivity of metallic hydrogen and is around 0.95RJ .

Similarly, if we take the lower bound of the vertical shear, we have λ0 ∼ 109 m2 s−1,

which corresponds to an electrical conductivity σ0 ∼ 10−3 S m−1 and is around 0.94RJ

in Jupiter. Therefore, the place at which the induced toroidal magnetic field is in the

same order as the pre-existing poloidal field is around 0.94RJ ∼ 0.95RJ and quite

near the surface. If the outer boundary of the dynamo generation zone is choosing

to be at 0.90RJ , the induced toroidal field is 105 ∼ 106 G for the penetrating zonal

flow. A field with such a large magnitude is not stable due to the magnetic pressure

produced by the field.

7.6.5 No α-effect and finite ω-effect: with time dependence

In this section, we consider the modification of the outgoing time-dependent field by

the ω-effect. The outgoing time-dependent magnetic field is enhanced by the ω-effect

and reduced by the electro-magnetic screening effect at the same time. In this case,

the magnetic induction equation can be written as

λ(z)∇2A =
∂A

∂t
, (7.58)

and
∂

∂z

(
λ(z)

∂B

∂z

)
− λ(z)k2B − ikγA =

∂B

∂t
. (7.59)

As before, we change the variable from z to ζ : ζ = 2
√

p
λ0b2

exp
(
− bz

2

)
. The solution for

A is A = A0I 2k
b
(ζ) and the homogenous solution for B is B = B0ζI1(ζ) (Abramowitz

& Stegun, 1970). Here we neglect the second order term. The particular solution for

B is B1ζI1+ 2k
b
(ζ), where B1 = 2iγA0

λ0b
ζ0I1+ 2k

b
(ζ0). We construct a particular solution

that has no electrical current flow out of the inner boundary of the dynamo generation
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region z → −∞. Then, the solution of the equation B is

B = B0ζI1(ζ) + B1

(
ζI1+ 2k

b
(ζ) − ζI1(ζ)

)
. (7.60)

Since k 	 b, I1+ 2k
b
(ζ) can be approximated as: I1+ 2k

b
≈ I1(ζ)(1− kz). Thus the ratio

of the induced toroidal field to the poloidal field Λ is

Λ ∼
∣∣∣∣∣∣
B1

(
ζI1+ 2k

b
(ζ) − ζI1(ζ)

)
A0I 2k

b
(ζ)

∣∣∣∣∣∣ ∼
∣∣∣∣∣− iγ

λ0b2
bz

ζI1(ζ)

ζ0I0(ζ0)

∣∣∣∣∣ , (7.61)

for |ζ | ≤ 1, i.e., |p| ≤ λ0b
2, we have ζI1(ζ) ∼ ζ2

2
. The results are approaching the

steady state solution. At large |p|
λ0b2

, the value of ζI1(ζ)
ζ0I0(ζ0)

decreases rapidly as the

distance from the outer boundary of the dynamo generation region increases, so the

toroidal field is accordingly smaller. If we choose the period of the magnetic field to

be 104 years and the outer boundary of the dynamo generation zone to be 0.90RJ ,

the induced toroidal field is 100 ∼ 1000 times larger than the pre-existing poloidal

field.

7.6.6 Finite α-effect and finite ω-effect: no time dependence.

In this section, we consider the influence of the finite α-effect and the finite ω-effect

to the outgoing magnetic field in the steady state. In this case, the equations for A(z)

and B(z) are

d2A

dζ2
− 1

ζ

dA

dζ
−
(

2k

b

)2
A

ζ
= −4αB

λ0b2
, (7.62)

and
d2B

dζ2
− 1

ζ

dB

dζ
−
(

2k

b

)2
B

ζ
= −4ikγA

λ0b2
, (7.63)

where the variable ζ has the following relation with the variable z: ζ = 2
√

p
λ0b2

exp
(
− bz

2

)
.

For an α-ω dynamo, it is impossible to have a dynamo in the steady state (Re(p) = 0

and Im(p) = 0) (Moffatt, 1978), so there is no particular solution that satisfies the

above coupled equations. Here, we calculate how a particular field is modified by suc-
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cessive actions, i.e., start with the homogenous solution for the field equation (51):

A0ζ
2k
b , which will induce the toroidal field: B ∼ B1ζ

2 through ω-effect, then the

induced toroidal field will produce the following poloidal field A ∼ A2ζ
4 through the

α-effect, and so on.

So as before, from A0ζ
2k
b , we get the induced B field to be 2ibγ

λb2

(
ζ2+ 2k

b − ζ2
)
.

Inserting this into the equation for A, the induced poloidal field can be written as

A1ζ
4+ 2k

b −A1ζ
4, where A1 is a constant A1 ≈ 1

16

(
− 4α

λ0b2

) (
2ibγA0

λ0b2

)
, so that the ratio of

the induced poloidal field to the pre-existing poloidal field is

A1

A0
∼ k

b

(
α

λ0b2

)(
γ

λ0b2

)
, (7.64)

where k/b is the typical magnitude of ζ4+ 2k
b −ζ4 relative to ζ4 in the region bz ≤ 1; α

λ0b2

is the magnetic Reynolds number based on α-effect; γ
λ0b2

is the magnetic Reynolds

number based on ω-effect. For α = 1 cm s−1 and the meridional wave number

k = 3 × 10−8 m−1, the ratio of the induced poloidal field to the pre-existing poloidal

field can be as large as 106 even at the place far out of the semi-conducting envelop

(0.94RJ), the larger ratio is due to the generation of the magnetic field by the α-effect

and the ω-effect.

7.6.7 Finite α-effect and finite ω-effect: with time depen-

dence

In this section, we consider the modification of the outgoing time-dependent mag-

netic field by finite α-effect and finite ω-effect. The time dependent magnetic field

will also be attenuated by the electromagnetic screening effect produced by the semi-

conducting hydrogen layer. Similar to the previous sections, we analyze the modifi-

cation of the field by the successive actions, i.e., from the homogenous solution of the

A field equation A0I 2k
b
(ζ), where the variable ζ is defined as: ζ = 2

√
p

λ0b2
exp

(
− bz

2

)
.

The induced toroidal magnetic field is: 2ibγA0

λ0b2

(
ζI1+ 2k

b
(ζ) − ζI1(ζ)

)
, which in turn
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produces the following poloidal magnetic field:

A1 = −1

2

(
− 4α

λ0b2

)(
−2ibγA0α

λ0b2

)[(
ηI1+ 2k

b
(ζ) − 1

2
ζ2I 2k

b
(ζ)
)
−
(
ζI1(ζ) − 1

2
ζ2I0(ζ)

)]
.

(7.65)

Choose λ0 ∼ 104 m2 s−1 (it is four orders of magnitude higher than that of metallic

hydrogen) and assume γ
k
∼ 100 m s−1, the induced toroidal field B is accordingly

about 1000 times larger than the pre-existing poloidal field: B1

A0k
∼ 1000. Then the

ratio between the induced poloidal field versus the induced toroidal field is

A1k

B1
∼ αk

λ0b2
∼ 0.01 × 3 × 10−9

104(5 × 10−7)2
∼ 102, (7.66)

so that A1

A0
∼ A1k

B1

B1

A0k
∼ 10. Therefore, the induced field is much larger than the

previous field and the induced poloidal field is much less than the induced toroidal

field.

7.7 α-ω dynamo generation in large electrical con-

ductivity variation region: Cartesian geome-

try

The calculation in last chapter indicates the possibility that dynamo generation might

occur at the region with primarily low but highly variable conductivity. Accordingly,

we assess the possible solution of simple α-ω dynamo in this region.

Consider a simple dynamo generation model: a uniform α-effect and a shear

concentrated at z = 0, where z → −∞ expresses the region inside the dynamo

generation region, and z → +∞ represents the region outside the planet. Also, we

assume that there is no pre-existing magnetic field. The boundary conditions at z = 0
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are:

[A]z=0 = 0,[
∂A

∂z

]
z=0

= 0,

[B]z=0 = 0,[
λ(z)

∂B

∂z

]
z=0

= −ikγA|z=0. (7.67)

Similar to before, we assume the fields have the local solution: A = A(z) exp(pt+ikx)

and B = B(z) exp(pt + ikx). The equations for the fields A and B could be reduced

to

pA = λ(z)
d2A

dz2
− λ(z)k2A + αB, (7.68)

and

pB =
d

dz

(
λ(z)

dB

dz

)
− λ(z)k2B. (7.69)

For Re(p) > 0, the magnitude of A,B grow exponentially with time and the magnetic

field is generated by the dynamo. For Re(p) < 0, the magnitude of the magnetic

field A, B will decay with time, and the magnetic field cannot be generated by the

dynamo. Then, Re(p) = 0 is the critical condition for the dynamo generation.

For the constant conductivity case, the solution for B is B(z) ∝ exp(mz) for

z < 0, and B(z) ∝ exp(−mz) for z > 0, and m satisfies the following equation:

λm2 = p + λk2. (7.70)

The boundary condition at z = 0 implies that

γ

λ0k2

α

λ0k2
= −4i

(
m

k

)3

, (7.71)

where γ
λ0k2 is the magnetic Reynolds number based on ω-effect, and α

λ0k2 is the mag-

netic Reynolds number based on α-effect. Since γα > 0 in the interior of Jupiter, we
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need −4i
(

m
k

)3
to be real. Therefore the value of m satisfies: m = Ck exp

(
iπ
6

)
, where

C is a real constant. Since m also satisfies: λm2 = p + λk2, we have:

λC2k2

(
1

2
+

i
√

3

2

)
= p + λk2, (7.72)

so that C =
√

2, p = i
√

3λk2 and γ
λ0k2

α
λ0k2 = 8

√
2, which completely determines the

critical condition for the dynamo generation, i.e., the condition at which Re(p) = 0.

The magnetic Reynolds number is determined by the magnitude of the α-effect and

the magnitude of the ω-effect (γ). The critical dynamo number is 8
√

2 in this case.

For the variable conductivity dependence: λ = λ0 exp(bz), where b > 0. We

could assume the effective thickness of the semi-conducting layer (1/b) is much less

than the wavelength (1/k) of the magnetic field: b � |k|. Similar to before, we

let ζ = 2
√

p
λ0b

exp
(
− bz

2

)
and change the variable in the equation from z to ζ . The

homogenous equation for B has the solution

B =
ζK1(ζ)

ζ0K1(ζ0)
if z < 0, (7.73)

and

B =
ζI1(ζ)

ζ0I1(ζ0)
if z > 0, (7.74)

Here ζ0 is the value of ζ at z = 0: ζ0 = 2
√

p
λ0b2

. Note that B ∝ exp
(
2
√

p
λ0b2

exp
(
− bz

2

))
as z → −∞. This is very fast decay. Physically, it comes from the screening effect

of the high conductivity in this region (z → −∞). For the region z → +∞, the

magnitude of the field is B ∝ exp(−bz) as expected for the region outside of the

dynamo generation region.

The solution for A can be written as a sum of the homogenous solution Ah plus

the particular solution Ap: A(ζ) = Ah(ζ) + Ap(ζ). The homogenous solution is

Ah(ζ) = Ah−K 2k
b
(ζ) if z < 0, (7.75)
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and

Ah(ζ) = Ah+K 2k
b
(ζ) if z > 0, (7.76)

where Ah− and Ah+ are two constants. The particular solution is

Ap(ζ) =
α

2p

ζK1(ζ) + 1
2
ζ2K0(ζ)

ζ0K1(ζ0)
if z < 0, (7.77)

and

Ap(ζ) =
α

2p

ζI1(ζ) + 1
2
ζ2I0(ζ)

ζ0I1(ζ0)
if z > 0. (7.78)

Since both A and the derivative of A are continuous at ζ0, we have

Ah+I 2k
b
(ζ0) − Ah−I 2k

b
(ζ0) =

ζ0α

4p

(
K0(ζ0)

K1(ζ0)
+

I0(ζ0)

I1(ζ0)

)
, (7.79)

and

Ah+I 2k
b
(ζ0) = Ah−I 2k

b
(ζ0). (7.80)

If we assume that the effective thickness of the semi-conducting layer is much smaller

than the wavelength of the dipolar magnetic field, then we have b 	 |k|. Let the

value of A at ζ0 is A0, which can be approximated as

A0 =
α

2p
. (7.81)

From the boundary condition of B at z = 0, we have

−λ0bζ0

2

(
K0(ζ0)

K1(ζ0)
+

I0(ζ0)

I1(ζ0)

)
= − α

2p
ikγ. (7.82)

Suppose there exists a solution in which |ζ | 	 1, then we can do some approximation

for the Bessel functions:

I0(ζ0) ∼ 1, (7.83)

I1(ζ0) ∼ ζ0

2
, (7.84)

K0(ζ0) ∼ − ln(ζ), (7.85)
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K1(ζ0) ∼ 1

ζ
. (7.86)

Therefore, the left hand side of the equation (68) equals to −λ0b and the equation

can be simplified as

−λ0b = − α

2p
ikγ. (7.87)

This equation requires p to be pure imaginary number. In this case, the solution of

the α-ω dynamo equation is an oscillating dynamo waves.

To get the critical dynamo number, we must consider the finite k/b. If we assume

k << b, we have

I 2k
b
(ζ0) ≈ I0(ζ0) − 2k

b
K0(ζ0), (7.88)

and

K2kb(ζ0) ≈ K0(ζ0). (7.89)

Therefore, A0 is larger than the previous estimate by −2k
b
K0(ζ0)

αζ0
4pI1(ζ0)

. Returning

to the previous equation for p (equation (68)), we assume there exists a solution in

which |ζ0| 	 1, then

−λ0b
1

2

(
1 − 1

2
ζ2
0 ln

(
ζ0

2

))
= − α

2p

(
1 +

2k

b
ln

(
ζ0

2

))
ikγ. (7.90)

To the first order approximation, we take p = iC1, where C1 is a real number. So we

have the above equation can be changed to

−λb = − α

C1
kγ. (7.91)

And the constant C1 can be expressed as C1 = αkγ
λ0b

. And we also have

C1

λ0b2
=

k

b

α

λ0b

γ

λ0b
> 0. (7.92)
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The dynamo wave could exist in this case. Therefore, we have

ζ2
0 =

4iC

λ0b2
. (7.93)

And the value of ln
(

ζ0
2

)
is ln

(
ζ0
2

)
= iπ

4
+ ln

(
C

λ0b2

)
.

To do the second order approximation, we let p = iC1 +C2, where both C1 and C2

are real numbers. Since we are interested in the critical dynamo generation condition

(p is purely imaginary), we can treat C2 → 0 in this approximation. Therefore we

have:
C2

C1

= − 2C1

λ0b2
ln
(

C1

λ0b2

)
− k

b

π

2
. (7.94)

In the critical situation, we have the real part of p approaches zero: C2 → 0, so that,

− 2C1

λ0b2
ln
(

C1

λ0b2

)
=

k

b

π

2
. (7.95)

And the critical dynamo number Dcrit = C1

λkb
= α

λ0b
γ

λ0b
satisfies the following equation:

Dcrit =
π/4

− ln
(

k
b
Dcrit

) > 0. (7.96)

In this case, the proper description for the critical condition for the generation of the

α-ω dynamo is based on the effective thickness of the semi-conducting layer 1/b, the

characteristic turbulent velocity α, the magnitude of the vertical shear of the zonal

winds, and the electrical conductivity in the outer boundary of the dynamo generation

region. If the effective thickness of the layer 1/b is different from the meridional wave

length 1/k, the critical dynamo number for the exponentially varying conductivity

profile (Dcrit = α
λ0b

γ
λ0b

) is different from the critical dynamo number for the constant

conductivity case (D∗ = α
λ0k

γ
λ0k

). Notice this constraint for the dynamo number re-

quires that k
b
	 1. If k

b
≥ 1, the correct dynamo number will be D∗ ∼ 8

√
2.

Here are some examples for the value of Dcrit and D∗ corresponding to different
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k/b:
k

b
= 0.01 Dcrit = 0.12 D∗ = 1200; (7.97)

k

b
= 0.04 Dcrit = 0.15 D∗ = 94; (7.98)

k

b
= 0.1 Dcrit = 0.2 D∗ = 20. (7.99)

It is clear that the difference between Dcrit and D∗ is larger for the smaller value

of k/b.

7.8 Conclusions and discussions

The descent of the probe from Galileo to Jupiter’s atmosphere supports the idea that

the zonal winds are the surface expression of the deep penetrating cylindrical flow.

Busse (1976) suggests that the zonal flow is formed by the drifting convection column

from the deep interior. From the observation of the magnetic field, it is clear that the

magnetic field of the planets is varying on a thousand-year timescale. Therefore, the

zonal flow in the deep interior must have small value. Otherwise, the magnetic field

will not be stable and will produce much larger variation than observed field varia-

tion. Analogous to Earth, the cylindrical flow has to be truncated at the surface of

the magnetic core. Outside of the magnetic core region, the interaction between the

magnetic field and the zonal flow does not need to be taken into account. However,

since Jupiter’s conductivity profile is a smooth function instead of a step function,

and the region of less conductivity is composed of fluid rather than solid, the magnetic

core will not to be confined in the metallic core anymore. What is the definition for

the metallic core? It is far from obvious. In this paper, we use two approaches to un-

derstand the definition of the magnetic core for the giant planet. The first approach is

to study the electromagnetic effect produced by the semi-conducting hydrogen layer.

In this case, we neglect the interaction between the magnetic field and the flow, and

only consider the attenuation of the magnetic field produced by the screening effect.

In combination with the observation of the magnetic field from the Galileo space-
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craft and the Voyager spacecraft, and the shockwave experiments, we find the outer

boundary of the dynamo generation region is at about 0.86RJ . The conductivity of

the outer boundary of the magnetic core corresponds to conductivity, which is three

orders of magnitude less than that of a typical metal.

Second, we conduct a preliminary estimation of the influence of the flow to the

magnetic field in the semi-conducting molecular hydrogen envelope. If the semi-

conducting envelope contains zonal flows that are comparable to those observed in

the atmosphere, then toroidal fields exceeding thousands of Gauss are easily gener-

ated. In the presence of modest conversion of toroidal to poloidal field (for example

that predicted by an α-effect with amplitude suggested by convective motions), dy-

namo generation of field can occur at radii where the conductivity is many orders of

magnitude below that of a metal. The fields generated in this region (and the mag-

netic Reynolds number that characterize their generation) are dictated by a length

scale comparable to the scale height of the electrical conductivity, which is much

smaller than the radius of the planet.

As a consequence of these two conclusions, we must expect significant currents

and their associated magnetic fields and significant MHD fluid dynamical effects well

outside the region of metallic or near metallic conductivity.
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