
Engineering Design Synthesis of Sensor and Control Systems
for Intelligent Vehicles

Thesis by

Yizhen Zhang

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended May 3, 2006)

ii

c© 2006

Yizhen Zhang

All Rights Reserved

iii

dedicated to my parents, my family, and my friends ...

iv

Acknowledgements

There are a lot of people to whom I am grateful for their help and support.

First of all, I would like to especially thank my advisor, Professor Erik K. Antonsson, for his great

guidance, valuable advice, full support, warm encouragement, and patience. He gives his graduate

students quite a lot freedom in exploring and pursuing their own interests, and lets them enjoy their

research in their own way as much as possible.

My co-advisor, Professor Alcherio Martinoli, introduced me to the field of intelligent vehicles

and evolutionary computation, and helped me to start quickly with my graduate research during

the early years. I have learned a lot from his research ideas and knowledge, as well as his research

attitude, enthusiasm, and persistence.

Many thanks to Professor Karl Grote, who always tries to help me out whenever possible. Also

I am thankful to Professor Maria Yang for her help and support.

I would like to thank my thesis committee members who are not mentioned above—Professor

Richard Murray, Professor Joel W. Burdick, and Professor Ken Pickar, for their support and helpful

discussions.

I am also grateful for the sponsorship of Caltech Engineering and Applied Science Division Fel-

lowship, Delphi Delco Electronic Systems, Caltech Center for Neuromorphic Systems Engineering as

part of the Engineering Research Centers Program of the National Science Foundation, NASA Glenn

Research Center, and the National Center for Metropolitan Transportation Research (METRANS)

under the California Department of Transportation (Caltrans).

Moreover, I appreciate the help and support from the people I have worked with, including

Fabien Nicaise, Tomonori Honda, Bingwen Wang, Olivier Michel, Naveed Near-Ansari, Michael

Potter, Dr. Sanza Kazadi, Piyush Prakash, Noé Lutz, Nikolaus Correll, Jim Pugh, Dr. Rodney

Goodman, Dr. Ian Kelly, Kjerstin Williams, William Agassounon, Adam Hayes, Maria Koeper,

Lynn Burgess, etc.

Finally I owe special thanks to my parents, my family, and all my friends for their endless love

and support.

v

Abstract

This thesis investigates the application of formal engineering design synthesis methodologies to the

development of sensor and control systems for intelligent vehicles with a series of meaningful case

studies.

A formal engineering design synthesis methodology based on evolutionary computation is pre-

sented, with special emphasis on dealing with modern engineering design challenges, such as high

or variable complexity of design solutions, multiple conflicting design objectives, and noisy evalua-

tion results, etc., which are common when design and optimization of distributed control systems

such as intelligent vehicles are considered. The efficacy of the evolutionary design synthesis method

is validated through multiple different case studies, where a variety of novel design solutions are

generated to represent different engineering design trade-offs, and they have achieved performances

comparable to, if not better than, that of hand-coded solutions in the same simplified environment.

More importantly, this automatic design synthesis method shows great potential to handle more

complex design problems with a large number of design variables and multi-modal noise involved,

where a good hand-coded solution may be very difficult or even impossible to obtain. In summary,

the evolutionary design synthesis methodology appears promising to

• propose a variety of good, novel design solutions according to specified fuzzy fitness functions;

• deal with uncertainty in the problem efficiently;

• adapt to the collective task nature well.

In addition, multiple levels of vehicle simulation models with different computational cost and

fidelity as well as necessary driver behaviors are implemented for different types of simulation exper-

iments conducted for different research purposes. Efforts are made to try to get as much as possible

out of limited computational resources, such that good candidate solutions can be generated effi-

ciently with less computational time and human engineering effort.

Furthermore, different threat assessment measures and collision avoidance algorithms are re-

viewed and discussed. A new threat assessment measure, time-to-last-second-braking (Tlsb), is pro-

posed, which directly characterizes human natural judgment of the urgency and severity of threats

in terms of time. Based on driver reaction time experimental results, new warning and overriding

vi

criteria are proposed in terms of the new Tlsb measure, and the performance is analyzed statistically

in terms of two typical sample pre-crash traffic scenarios. Less affected by driver behavior vari-

ability, the new criteria characterize the current dynamic situations better than the previous ones,

providing more appropriate warning and more effective overriding at the last moment. Finally, the

possibility of frontal collision avoidance through steering (lane-changing) is discussed, and similarly

the time-to-last-second-steering (Tlss) measure is proposed and compared with Tlsb.

vii

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Intelligent Vehicles . 1

1.1.1 Background . 2

1.1.2 Introduction . 2

1.2 Motivation . 3

1.3 Thesis Contributions . 4

1.4 Thesis Overview . 5

2 Evolutionary Computation Design Methodologies 7

2.1 Evolutionary Computation . 8

2.1.1 Genetic Algorithms . 9

2.1.2 Evolution Strategies . 10

2.1.3 Evolutionary Programming . 10

2.1.4 Genetic Programming . 11

2.2 Evolutionary Computation Theory . 11

2.3 General Structure . 12

2.4 Implementation in Design Synthesis . 14

2.4.1 Encoding . 14

2.4.2 Initialization . 14

2.4.3 Crossover . 15

2.4.4 Mutation . 16

2.4.5 Evaluation and Re-evaluation . 16

2.4.6 Selection . 16

2.4.7 Termination . 17

2.4.8 Final Evaluation . 17

viii

3 Multi-level Simulation and Modeling of Intelligent Vehicles 18

3.1 Literature Review . 19

3.2 Vehicle Simulation . 20

3.2.1 Point Models . 21

3.2.1.1 Theoretic Models . 21

3.2.1.2 Probabilistic Models . 22

3.2.2 Kinematic Embodied Simulation . 22

3.2.3 Dynamic Embodied Simulation . 27

3.2.3.1 Vehicle Dynamics Overview . 27

3.2.3.2 Basic Vehicle Model . 30

3.2.3.3 Joint Models . 31

3.2.3.4 Friction Model . 34

3.2.3.5 Rotational Motions . 36

3.3 Driver Models . 38

3.3.1 Helbing Model . 38

3.3.2 Rule-based Model . 39

3.3.3 PID Control Model . 42

3.3.4 Evolved Model . 44

4 Evolutionary Design of Sensory Systems 45

4.1 Introduction . 45

4.2 Background . 46

4.3 Problem Definition . 48

4.3.1 Sensor Parameters . 48

4.3.2 Evaluation Tests . 50

4.3.3 Fitness Function . 52

4.3.3.1 Preferences . 53

4.3.3.2 Aggregation . 54

4.4 Evolutionary Experiments . 56

4.5 Results and Discussion . 57

4.5.1 Comparison of Different Evaluation Tests . 57

4.5.2 Evolving Engineering Design Trade-offs . 61

4.6 Conclusion . 67

5 Evolution of Neural Controllers 68

5.1 Background . 68

5.2 Evolution of Artificial Neural Networks . 69

ix

5.2.1 Encoding . 70

5.2.2 Initialization . 71

5.2.3 Genetic Operations . 71

5.3 Case Study 1: Collective Robotic Inspection . 72

5.3.1 Application Background . 73

5.3.2 Problem Formulation . 73

5.3.3 Hand-coded Controller . 75

5.3.4 Results . 76

5.3.4.1 Single Robot Single Object (SRSO) Scenario 77

5.3.4.2 Single Robot Multiple Objects (SRMO) Scenario 79

5.3.4.3 Multiple Robots Multiple Objects (MRMO) Scenario 80

5.4 Case Study 2: Driver Behavior Modeling . 83

5.5 Conclusion . 85

6 Collision Avoidance System 86

6.1 Previous Work . 87

6.1.1 Measures Defined . 87

6.1.2 Driver Reaction Time . 88

6.1.3 Collision Warning Systems . 90

6.2 Warning and Overriding Algorithms . 93

6.2.1 Mazda Algorithm . 94

6.2.2 Honda Algorithm . 94

6.2.3 Berkeley Algorithm . 95

6.2.4 NHTSA Alert Algorithm . 96

6.2.5 CAMP Alert Algorithm . 97

6.2.6 Other Alert Algorithms . 98

6.3 New Criterion Proposal . 98

6.3.1 Time-to-last-second-braking (Tlsb) Measure 99

6.3.2 Scenario 1: Lead Vehicle Stopped or Moving Slowly (aL = 0) 99

6.3.3 Scenario 2: Lead Vehicle Decelerating (aL < 0) 101

6.3.4 General Scenario . 103

6.3.5 Error Estimation of the Tlsb Measure . 103

6.3.6 Warning/Overriding Criteria in terms of Tlsb 105

6.4 Analysis . 107

6.4.1 Performance in terms of Pmiss versus PFA . 107

6.4.2 Comparison under Scenario 1 (aL = 0) . 108

x

6.4.3 Comparison under Scenario 2 (aL < 0) . 109

6.4.4 Last-second Braking versus Steering . 113

6.5 Conclusion . 117

7 Conclusions 119

7.1 Summary . 119

7.2 Limitation and Future Directions . 120

Bibliography 122

xi

List of Figures

2.1 The Evolutionary Optimization Loop Used in the Automatic Engineering Design Syn-

thesis Process . 12

2.2 Illustration of One-point Crossover Scheme for Two Vectors of Different Lengths . . . 15

3.1 Sample Point Vehicle Models with Speed v and Collision Disk with Diameter D Moving

on a Three-lane Highway . 22

3.2 Screen Shot of Traffic Simulation in Kinematic Embodied Simulator—Webots 23

3.3 Close-up of the Real Khepera Robot (a) and its Simulation Model in Webots (b) with

its Distance Sensor Rays Illustrated in Solid Red Lines 24

3.4 2D Vehicle Occurrence PDF: The Host Vehicle Sits at the Origin Facing the Positive

y Axis. 25

3.5 1D Vehicle Occurrence PDF in Cartesian (a) and Polar (b) Coordinates 26

3.6 Significant Forces Acting on a Two-axle Vehicle . 27

3.7 The Friction Ellipse Concept Relating the Maximum Cornering Force Fy to a Given

Longitudinal Force Fx . 28

3.8 Cornering Characteristics of Car Tires . 29

3.9 Construction of a Friction Ellipse for a Given Slip Angle 30

3.10 Screen Shot of the Dynamic Embodied Vehicle Model 30

3.11 Sample Freeway Traffic Simulation with Dynamic Embodied Vehicle Models 32

3.12 Schematic View of a Simple Two-axle Vehicle Model [Epiney 2004] 32

3.13 The (a) Hinge and (b) Slider Joints Defined in ODE 33

3.14 The Hinge-2 Joint Defined in ODE . 33

3.15 Variation of Friction Coefficient vs. Wheel Slip Curves on (a) Dry Asphalt and (b) Dry

Asphalt, Loose Gravel, and Ice [Harned et al. 1969] 34

3.16 Typical Relationship between Friction Coefficient μ and Wheel Slip i 35

3.17 The Original (a) and Modified (b) ODE Friction Models: Fapp represents applied trac-

tive or braking effort on the wheel while Feff represents effective force available from

the ground contact, with fm representing the maximum friction limit. 36

3.18 Illustration of the Three Rotational Motions: Pitch, Yaw, and Roll 37

xii

3.19 The Simulated Vehicle Pitch, Yaw, and Roll Motions with Steering Angles 37

3.20 The Logic Scheme of a Simple Car-following Behavior 40

3.21 The Logic Scheme of a Simple Lane-keeping Behavior 41

3.22 The Logic Scheme for Initiating a Lane Change . 41

3.23 The Logic Scheme of a Simple Lane-changing Behavior 42

3.24 (Top): Time Histories of Vehicle Lane Deviation Error (E), Integral Lane Deviation

Error (iE ≡ ∫ t

0
E(τ)dτ), and Lane Position Y in terms of Lane Widths (Wl = 3.5 m);

(Bottom): Time Histories of Vehicle Steering Angle δ and Wheel Speed ω 43

4.1 Sensor Parameters and the Target Detection Region 48

4.2 Graphical Representation of Different Types of Evaluation Tests Based on Point Model 51

4.3 Approximate Relative Time Costs of Different Evaluation Tests Plotted on a Log Scale 52

4.4 Designer’s Fuzzy Preferences for Coverage and Total cost 54

4.5 Illustration of the One-point Crossover Scheme for Two Sensory Systems with Different

Numbers of Sensors: The sectors (or lines) represent the sensor scanning areas (or rays). 56

4.6 (Top): Performances of the Best Design Solutions Evolved under Different Conditions

and Evaluation Tests with each Final Noise Test Conducted under the Same Evaluation

Test Used in Evolution, respectively; (Bottom): Numbers of Sensors Used by the Best

Design Solutions Evolved with Variable Number of Sensors 58

4.7 Performances of the Best Design Solutions Evolved under Different Conditions and

Evaluation Tests with the Final Noise Tests Conducted under the 2D Full Coverage

Evaluation Test (Top) and the Kinematic Embodied Evaluation Test (Bottom), respec-

tively . 60

4.8 Evolution Process of the Population Mean Fitness and Preferences (Top) and the Best

Sensor Configuration Evolved (Bottom) with s = 0 and w =
3
17

. 63

4.9 Evolution Process of the Population Mean Fitness and Preferences (Top) and the Best

Sensor Configuration Evolved (Bottom) with s = −∞ and arbitrary w (i.e., Fitness =

min(μcoverage, μcost)) . 64

4.10 Evolution Process of the Population Mean Fitness and Preferences (Top) and the Best

Sensor Configuration Evolved (Bottom) with s = 0 and w = 4 65

4.11 Evolved Pareto Frontier for the Design Trade-offs Present in the Case Study 66

5.1 Evolutionary Run for Automatic Robotic Neural Network Controller Synthesis 70

5.2 Top View of the Structure Inspection Experiment Setup in the Kinematic Embodied

Simulator (Webots): The bigger blue disks represent the cylindrical objects to be

inspected while the smaller green dots are the miniature robots. 74

5.3 The Logic Scheme of the Hand-coded Rule-based Controller for Structure Inspection . 75

xiii

5.4 Screen Shot of the SRSO Scenario . 77

5.5 Sample Robot Trajectories of the SRSO Scenario for 500 Time Steps (32 s) Using the

Hand-coded Rule-based Controller (a) and the Best Evolved ANN Controller (b): “S”

represents the constant starting point and “E” the ending points, with “+” symbols

placed along the trajectories every 40 time steps (2.56 s). 78

5.6 Sample Robot Trajectories of the SRMO Scenario for 2000 Time Steps (128 s) Using

the Hand-coded Rule-Based Controller (a) and the Evolved ANN Controller (b). The

dashed lines delimit the wrap-around boundaries. “S” represents the random initial

starting points and “E” the ending points. The trajectories are shown in gradually

changing colors with “+” symbols placed along the trajectories every 40 time steps

(2.56 s). 79

5.7 Sample Robot Trajectories of the MRMO Scenario for 800 Time Steps (51.2 s) Using

the Hand-coded Rule-based Controller (a) and the Evolved ANN Controller (b). The

dashed lines delimit the wrap-around boundaries, but some trajectories beyond the

boundaries are kept to enhance the display. “S” represents the random initial starting

points and “E” the ending points. Different robots’ trajectories are shown in different

colors with different markers placed along the trajectories every 40 time steps (2.56 s). 80

5.8 Coverage Values Achieved by the Hand-coded Rule-based Controller (hndcd) and the

Best Controllers Evolved with Different ANN Architectures (refer to the symbols de-

fined in Table 5.1) and Selected according to (a) Minimum and (b) Average Performance

for the MRMO Scenario. Each column shows the coverage values (the green dots) ob-

tained by one controller during the 100 evaluations in its final noise test and the error

bars indicate the standard deviation. 82

5.9 Curved Road Shape for Driver Model Evaluation . 84

5.10 NN Inputs and Outputs of a Sample Driver Model Evolved on the Curved Road Shown

in Figure 5.9 . 84

6.1 Hypothetical Reaction Time Distribution [Green 2000] 89

6.2 Warning Curves (solid lines) Parametric in aL (v0 = 48 mph, tr = 1.5 s, aHmax
=

−5 m/s2) with a Sample Time Trajectory (dash dot lines) of th = 2 s and aL = −3 m/s2 93

6.3 Interpretation of the Mazda Overriding Algorithm . 94

6.4 Interpretation of the Honda Overriding Algorithm . 95

6.5 Interpretation of the Berkeley Warning/Overriding Algorithm 96

6.6 Interpretation of the NHTSA Alert Algorithm . 96

6.7 Tlsb Contours in Seconds with CAMP Data under Scenario 1: Host Vehicle Approaches

Stopped or Slow Lead Vehicle (aL = aH = 0, aHmax
= −5 m/s2). 100

xiv

6.8 CAMP Data Represented in terms of the Tlsb Measure under Scenario 2: Lead Vehicle

Decelerates (aHmax
= −5 m/s2). 102

6.9 Error Distributions of the Estimated Tlsb (Tlsb,est−Tlsb,true) due to Sensor Noise under

Scenario 1 and Scenario 2 . 105

6.10 Tlsb Contours (solid lines) in Seconds with Various Warning (Rw, dotted lines) and

Overriding (Ro, dashed lines) Boundary Curves under Scenario 1: Host Vehicle Ap-

proaches Stopped or Slow Lead Vehicle (aL = aH = 0, aHmax
= −5 m/s2). 110

6.11 Tlsb Contours (solid lines) in Seconds with Various Warning (Rw, dotted lines) and

Overriding (Ro, dashed lines) Boundary Curves under Scenario 2: Lead Vehicle Decel-

erates 0 s (a) and 1 s (b), respectively, where both vehicles initially travel at the same

speed 70 mph (aH = 0, aHmax
= −5 m/s2). 112

6.12 Tlsb Contours (solid lines) in Seconds with Various Warning (Rw, dotted lines) and

Overriding (Ro, dashed lines) Boundary Curves under Scenario 2: Lead Vehicle Decel-

erates (vL = 60 mph, vH = 70 mph, aH = 0, aHmax
= −5 m/s2). 113

6.13 Tlsb and Tlss Contours in Seconds under Scenario 1: Host Vehicle Approaches Stopped

or Slow Lead Vehicle (aL = aH = 0, aHmax
= −5 m/s2). 116

6.14 Tlsb and Tlss Contours in Seconds under Scenario 2: Lead Vehicle Just Starts to De-

celerate (vL = vH = 70 mph, aH = 0, aHmax
= −5 m/s2). 117

xv

List of Tables

3.1 Average Values of Coefficient of Road Adhesion [Taborek 1957] 36

3.2 The IDM Parameters . 39

4.1 Approximate Time Costs of Different Evaluation Tests 52

4.2 Evolutionary Algorithm Parameters . 57

5.1 Different ANN Types Considered in the Evolutionary Design Synthesis 76

6.1 Various Threat Assessment Measures Defined in the Literature 88

6.2 Estimates of Unexpected Driver Reaction Time in Seconds 90

6.3 Input Noise Distributions . 103

6.4 True Input Distributions . 104

6.5 Error of Tlsb Estimation Due to Sensor Noise in Seconds 104

1

Chapter 1

Introduction

The core of this thesis research work is dedicated to the application of new, emerging, and ad-

vanced formal engineering design synthesis methodologies towards the development of underlying

technologies essential for implementation of intelligent vehicles, which aim to improve traffic safety

as well as fluidity by actively assisting human drivers with collision prevention and crash mitigation,

if unavoidable.

1.1 Intelligent Vehicles

An intelligent vehicle that assists driving must give warnings in dangerous situations, act automat-

ically to avoid collisions in emergencies, and facilitate a smooth traffic flow. The basic goal is to

improve traffic safety as well as fluidity by reducing collisions and collision impacts if unavoidable.

The specific idea of intelligent vehicles considered here is to equip current vehicles with necessary

sensory and control systems that provide the following functions in real time and noisy traffic envi-

ronments:

• Monitor traffic and road conditions as well as driving behavior and host vehicle states;

• Identify and assess potential threats;

• Generate appropriate warning signals;

• Brake automatically to avoid collisions if necessary.

Satisfying these functional requirements in a dynamic and noisy traffic environment presents ex-

tremely complex system design and control problems for human engineering design researchers to

solve with traditional engineering methods. Instead formal engineering design synthesis methodolo-

gies are presented here to automatically develop novel and diverse engineering design solutions to

these complex problems.

2

1.1.1 Background

Tremendous progress has been made in the last few decades in terms of traffic safety. Particularly

in the automotive industry, improvements in passive safety features such as safety belts, air bags,

crumple zones, etc., and active safety features such as anti-lock braking systems (ABS), traction

control systems (TCS), and electronic stability control (ESC) systems, etc., have dramatically helped

to reduce the accident fatality rate. For instance, the fatality rate per 100 million vehicle miles

traveled in the U.S. had gradually fallen from 5.50 in 1966 to 1.44 in 2004. However, the number of

police-reported motor vehicle crashes occurring on U.S. highways was still nearly 6.2 million in 2004.

They kill more than 42,000 people, injure approximately 3 million others, and cost more than $230

billion each year. On average, a police-reported motor vehicle crash occurs every 5 seconds, a person

is injured every 11 seconds, and someone is killed every 12 minutes in the U.S. [NHTSA 2006].

Driver error is the leading cause of highway crashes [Campbell et al. 2003]. Also the popularity of

in-vehicle devices such as cellular phones increases driver distraction and the injury crash likelihood

by as many as four times [McEvoy et al. 2005]. The mission of intelligent vehicles is to help reduce

the number and severity of these crashes.

1.1.2 Introduction

The term “Intelligent Vehicle”, or IV, refers to a range of systems from driver assistance tech-

nologies to autonomous vehicles and advanced mobile robots, which usually integrate some type

of information or control system into the existing vehicle to enhance its performance. Intelligent

vehicle systems are defined as systems that sense the driving environment and provide information

and/or vehicle control to assist the driver in optimal vehicle operation [Bishop 2005]. Intelligent

vehicle systems operate at the “tactical level” of driving (throttle, braking, steering), as contrasted

with strategic decisions such as route selection, etc. For instance, an intelligent vehicle can assist

the driver directly with making decisions related to the driving task, even taking action required to

improve overall safety.

Intelligent vehicle systems are seen as the next generation beyond current active safety systems,

such as ABS, TCS, ESC, etc., which provide relatively basic control assist but do not sense the

environment or assess risk. Intelligent vehicle systems offer the potential for significant enhance-

ments in safety and operational efficiency. As one important component of intelligent transportation

systems (ITS), intelligent vehicle systems use sensing and intelligent algorithms to understand the

environment immediately around the vehicle and make critical threat assessments and judgments in

real time, either assisting the driver in vehicle operations (driver assistance) or fully controlling the

vehicle (automation). Generally, the intelligent vehicle application areas can be divided into three

groups of systems that

3

• advise or warn the driver (e.g., collision warning, lane departure warning, etc.);

• partially control the vehicle, either for constant driver assistance (e.g., adaptive cruise control)

or as an emergency intervention to avoid a collision (collision avoidance);

• fully control the vehicle (e.g., autonomous driving, vehicle platooning, etc.).

In this thesis, the first two groups of intelligent vehicle systems are considered, which are also the

current focus of the automotive industry.

Safety has always been a priority for automotive companies and their engineers. Using advances

in sensors and semiconductors, engineers are developing and testing on-board, knowledge-based

technologies for improving driving safety to a new level. Some collision warning devices have already

entered consumer markets. For example, the 2003 Jaguar features a forward alert system from Delphi

that advises a driver to brake in the approach of slow-moving traffic ahead [Sharke 2003]. If the

driver does not adequately respond to warnings, collision avoidance systems might take control of

the throttle, brakes, or steering, to maneuver the vehicle back to a safe state. For instance, Nissan’s

new gas pedal will lift itself to alert the driver of a possible collision, and the brakes are automatically

applied if the radar sensor detects a possible collision ahead and when the driver’s foot is off the

gas [Kageyama 2006]. Taking a step further, the 2006 Honda Acura RL will even actively brake

the car if an imminent rear-end collision is sensed [Honda 2005]. The so-called Honda Collision

Mitigation Braking SystemTM (CMBSTM) predicts potential collision situations with a millimeter-

wave radar unit, which monitors the distance between the RL and objects in front of the car, as

well as closing rates. If CMBS determines the closing rate between the RL and the vehicle directly

in front has increased beyond an acceptable level, visual and audible warnings prompt the driver

to take preventive action. If the distance further diminishes, the system provides a tactile warning

by gently retracting the seatbelt and then applies light braking. If an accident is determined to be

unavoidable, the system applies strong braking and strong retraction of the front seatbelt to reduce

the speed of impact and to mitigate the damage of a collision.

1.2 Motivation

Design has traditionally been a creative process that requires human ingenuity and experience.

In a modern engineering design process, highly complex design tasks such as the development of

intelligent vehicle systems are characterized by severe reliability and robustness requirements, where

each unit consists of an intelligent vehicle and a human being. The main challenges in designing and

optimizing such complex distributed control systems include, but are not limited to, the following

difficulties:

• high, or sometimes even a priori unknown, complexity of good design solutions;

4

• multiple objectives, competing factors, and trade-offs;

• simultaneous hardware and software optimization requirements;

• dynamic and stochastic evaluation results instead of static and deterministic ones.

All these problems make it difficult for an engineer, using traditional engineering methods, to syn-

thesize an appropriate design solution under complex system design requirements such as a traffic

system.

Until now, no traditional engineering methods have been available for meeting all of the challenges

mentioned above. Alternatively, stochastic simulation methods such as Monte Carlo methods can be

used to explore possible designs randomly. However, a random, undirected approach such as this will

be computationally expensive, and provides no systematic exploration of more promising regions of

the design space. On the other hand, biological systems serve as a great source of inspiration. The

principal advantage of a biologically inspired approach is that such techniques have stood the tests

of eons of competitions and evolutions. Not only are these techniques robust and more efficient than

random search, they also have the advantages of being fairly scalable and applicable to distributed

systems that might consist of various heterogeneous agents.

Formal engineering design synthesis methodologies [Antonsson and Cagan 2001, Lee 2002] re-

duce the reliance on human resources and shorten design cycles. They can be used to computationally

synthesize novel designs and assist the human designers in the engineering design decision-making

process with more knowledge and reduced uncertainties.

1.3 Thesis Contributions

In my research, I applied novel and formal engineering design synthesis methodologies to develop

underlying technologies essential for intelligent vehicles.

First, I developed a formal engineering design synthesis methodology based on evolutionary com-

putation especially for design and optimization of distributed control systems in an autonomous way.

I validated the efficacy of the evolutionary design synthesis method through multiple engineering

design case studies in the framework of developing sensor and control systems for intelligent vehicles.

I have shown that the evolutionary design synthesis method is able to generate a variety of novel de-

sign solutions that can reflect different engineering design trade-offs selected by the human designer,

and have achieved performances comparable to, if not better than, that of hand-coded solutions in

the same simplified environment. More importantly, this automatic design synthesis method shows

great potential to handle more complex design challenges such as those mentioned in Section 1.2,

where a good hand-coded solution may be very difficult or even impossible to obtain. Moreover,

5

the evolutionary design synthesis methodology appears promising to deal with uncertainty in the

problem efficiently and adapt to the collective task nature well.

In addition, I implemented multiple levels of vehicle simulation models with different compu-

tational cost and fidelity as well as necessary driver behaviors for different types of simulation

experiments conducted for different research purposes. I have tried to get as much as possible

out of limited computational resources, such that good candidate solutions can be generated more

efficiently with less computational time and human engineering effort.

Furthermore, I reviewed and discussed different threat assessment measures and collision avoid-

ance algorithms. I proposed a new threat assessment measure, time-to-last-second-braking (Tlsb),

which directly characterizes human natural judgment of the urgency and severity of threats in terms

of time. Based on driver reaction time experimental results, I proposed new warning and overrid-

ing criteria in terms of the new Tlsb measure, and analyzed the performance statistically in terms

of two typical sample pre-crash traffic scenarios. Less affected by driver behavior variability, the

new criteria characterize the current dynamic situations better than the previous ones, providing

more appropriate warning and more effective overriding at the last moment. Finally, I explored the

possibility of frontal collision avoidance through steering (lane-changing), proposed the time-to-last-

second-steering (Tlss) measure and compared it with Tlsb.

1.4 Thesis Overview

Chapter 2 briefly reviews the evolutionary computation methods and presents a specific automatic

design synthesis methodology based on evolutionary computation principles, with some special fea-

tures introduced to deal with the design challenges mentioned in Section 1.2.

Chapter 3 first reviews the various existing vehicle simulation models and driver behavior models

presented in the literature, then describes the multiple levels of vehicle simulation tools implemented

for different applications considered in this thesis. Finally, different methods are applied to imple-

ment the driver behavior models used in the simulation, such as car-following, lane-keeping, and

lane-changing behaviors.

Chapter 4 presents a first case study of developing a collective sensory system for intelligent ve-

hicles, using the evolutionary design synthesis method introduced in Chapter 2. It is demonstrated

that a full family of engineering design trade-off solutions can be generated efficiently using aggre-

gated fuzzy fitness functions with different weights and trade-off strategies selected by the human

designer to reflect different preferences on multiple performance measures.

Chapter 5 presents two case studies concerned with synthesizing novel neural network controllers

for intelligent vehicles in two different application backgrounds, using the same evolutionary design

synthesis method introduced in Chapter 2. It is shown that the performances of various evolved

6

neural network controllers are comparable to, if not better than, that of a hand-coded rule-based

controller under the same conditions.

Chapter 6 reviews different threat assessment measures and collision avoidance algorithms pre-

sented in the literature and their limitations, and presents a new threat assessment measure and

corresponding warning/overriding criteria, whose performance is analyzed and its advantages over

previous ones are discussed. Moreover, the options of frontal collision avoidance through either

steering (lane-changing) or braking are compared and discussed.

Chapter 7 concludes the thesis with a summary and discussion of the limitations and future

research directions.

7

Chapter 2

Evolutionary Computation Design
Methodologies

Evolution is ubiquitous in nature. Natural systems are undoubtedly the most remarkable known to

humans. However, nature cannot be considered a designer in the traditional sense. Natural designs

are rather a result, not a goal, of evolution.

In his seminal work, On the Origin of Species, Charles Darwin described the process of natural

selection, or “survival of the fittest” evolution, and introduced the foundations for evolutionary

algorithms (EA) [Darwin 1859]. An EA describes how any system may evolve over time through

repeated actions of transmission, variation, and selection of individuals with different traits. For

example, in biological evolution, individuals reproduce and transmit their genetic code to offspring

with some variation, then the combined pool is subject to a selective environment where only the

fittest individuals are left to repeat the above evolution process. In general, transmission ensures

that good traits are passed on to future generations while variation enables the discovery of new,

better traits. Selection guides evolution by eliminating unfit individuals with weak traits. Evidently

nature’s design synthesis algorithm, the EA, has been extremely successful in generating novel and

complex designs.

Human designers have also been trying to use evolution to achieve their own specific goals.

Unfortunately, the problem of evolving non-biological systems is not trivial, i.e., implementing re-

production, variation, and selection to achieve desired design goals effectively. In nature this problem

was answered by Mendel in his brilliant work with peas [Mendel 1866], which led to the development

of genetics. However, it was not until the 1950’s that evolution and genetics were reconciled, and a

theory of “evolutionary synthesis” emerged. Since then, studies on stochastic search and optimiza-

tion techniques based on the biological principles of the natural evolution process have led to the

development of evolutionary computation (EC) methodologies.

Natural evolution has been an inspiration for developing automatic design synthesis methods

and computing the solutions to problems that have previously appeared intractable. EC methods

8

can often outperform conventional optimization methods when applied to challenging and complex

real world problems. Although EC algorithms are good design and optimization methodologies, the

actual implementation of EC’s still requires special attention and engineering ingenuity for effective

application in engineering design synthesis.

Recent research has demonstrated the ability of EC methods to successfully synthesize novel

design configurations in various engineering design application domains [Bentley 1999, Lee 2002,

Lipson and Pollack 2000, Nolfi and Floreano 2000]. However, many conventional EC applications

such as design parameter optimization have assumed a fixed design architecture with a single well-

defined design objective, which is represented by a deterministic fitness function. Therefore, standard

EC methods have to be appropriately adjusted to deal with the current engineering design challenges

mentioned in Section 1.2.

In this thesis, an evolutionary design synthesis methodology is introduced especially for design-

ing and optimizing distributed embodied systems in an autonomous way [Antonsson et al. 2003,

Zhang et al. 2003b, Martinoli et al. 2002]. This methodology shows several characteristics that ap-

pear promising for the distributed control system design challenges. First, it works off-line: Solu-

tions are first evaluated in realistic simulations, preventing the test of unsafe solutions directly on

real hardware, yet are realistic enough to be transported to real hardware. Second, it is platform-

independent and system-oriented, i.e., it can be applied to different platforms with respective special

system constraints. Third, it can deal with uncertainty in the problem efficiently and easily adapt

to collective tasks. Finally, in comparison to traditional hand-coded design, the design solutions are

automatically synthesized and the human engineering effort involved is minimized to the mathemat-

ical formulation of the desired performance and to the encoding of real problems in the search space

of the stochastic exploration algorithm.

In the following sections, the EC literature is reviewed and the evolutionary engineering design

synthesis method is presented, including special features introduced to face the modern engineering

design challenges.

2.1 Evolutionary Computation

Since the 1960’s, there has been an increasing interest in simulating the natural evolution process

to solve optimization problems, leading to the development of evolutionary computation methods

[Bäck et al. 2000, Bäck 1996]. The basic idea of EC is to make use of the powerful process of

natural evolution as a problem-solving paradigm by simulating it in a laboratory or on a computer.

The general approach is to have a pool of candidate solutions evaluated in parallel, from which the

“fittest” solutions are chosen to reproduce new candidate solutions using stochastic genetic operators

such as recombination and mutation. This procedure is iterated until the population converges

9

or a preset condition is met. Therefore all EC methods involve reproduction, random variation,

evaluation, and selection of competing individual solutions in a population, which form the essence

of evolution. Moreover, before an EC method can be applied to a real design or optimization problem,

appropriate encoding of the design variables in the feasible search space needs to be determined by

the designer. In addition, initialization and termination are also two indispensable steps for EC

methods. Although simplistic from a biologist’s viewpoint, these algorithms are sufficiently complex

to provide robust and powerful adaptive search mechanisms.

Some advantages of EC methods include that they

• optimize with continuous, discontinuous, or discrete search space;

• do not require derivative information;

• can deal with a large, even variable, number of variables;

• simultaneously search a wide sampling of the search space;

• can deal with extremely complex fitness landscapes;

• provide multiple novel solutions, not just a single solution;

• are well suited for parallel computers.

These advantages are intriguing and produce stunning results when traditional optimization ap-

proaches such as gradient descent or direct, analytical discovery are impossible. Combinatoric and

real-valued function optimizations which deal with “rugged” optimization surfaces or fitness land-

scapes, possessing many locally optimal solutions, are well suited for EC.

Today there are four mainstream representatives of evolutionary computation methods. They

are genetic algorithms (GA), evolution strategies (ES), evolutionary programming (EP), and genetic

programming (GP), which is a derivative of GA’s.

2.1.1 Genetic Algorithms

Genetic algorithms were first developed by John H. Holland at the University of Michigan in the

1960’s [Holland 1975] and were later popularized by his student David E. Goldberg [Goldberg 1989].

The work of De Jong [De Jong 1975] showed the usefulness of GA for function optimization and

made the first effort to find optimized GA parameters. Today GA’s are the most widely known type

of EC algorithms, receiving attention all over the world.

Besides the general properties of EC described above, genetic algorithms emphasize recombi-

nation (crossover) as the most important genetic operator, and apply mutation with very small

probability. Individuals are chosen for crossover probabilistically: Each individual is assigned a

10

probability proportional to its observed performance (fitness value). Thus better individuals are

given more opportunities to produce offspring (i.e., reproduction with emphasis). GA’s usually

maintain a fixed-sized population, and each new population is created by taking all the children

generated and selecting from the old population for the rest if needed. The selection here could be

stochastically or deterministically biased toward better individuals or be randomly unbiased. Finally

GA’s often use a binary representation, while other representations, such as real-valued parameters,

are also used.

2.1.2 Evolution Strategies

Evolution strategies were first developed jointly by Peter Bienert, Ingo Rechenberg, and Hans-Paul

Schwefel in Berlin in 1964 [Rechenberg 1965].

Evolution strategies use normally distributed mutations to modify real-valued vectors and em-

phasize mutation and recombination as essential operators for searching both in the search space and

in the strategy parameter space at the same time. Hence the self-adaption of strategy parameters

has also been implemented in the evolution process. The selection operator is deterministic, and

parent and offspring population sizes usually differ from each other.

The general frame of evolution strategies can be easily presented by the symbolic notation de-

scribed in [Schwefel 1977]. The abbreviation (μ + λ) ES denotes an ES that generates λ offspring

from μ parents and selects the μ best individuals from the μ + λ individuals (parents and offspring)

in total, where 1 ≤ μ ≤ λ < ∞. For instance, the simple ES can be expressed by (1+1) ES. In

contrast, the abbreviation (μ, λ) ES denotes an ES that generates λ offspring from μ parents but

selects the μ best individuals only from the λ offspring, where 1 ≤ μ < λ < ∞.

2.1.3 Evolutionary Programming

Evolutionary programming was first introduced by Lawrence J. Fogel in San Diego, California, in

1960 [Fogel et al. 1966], and was extended and popularized by his son David B. Fogel in the late

1980’s [Fogel 1992].

Evolutionary programming emphasizes mutation and does not use recombination at all. Similar

to ES, EP also works with normally distributed mutations and extends the evolution process to the

strategy parameters. The selection operator is probabilistic or deterministic. Unlike GA’s, which

typically involve encoding the problem solutions as binary strings, the representation of EP directly

follows from the problem. For instance, a neural network can be represented in the same manner as

it is implemented, e.g., a vector of its real-valued weights.

11

2.1.4 Genetic Programming

Genetic programming was invented by John R. Koza in the 1990’s [Koza 1992, Koza 1994].

Genetic programming applies the evolutionary search principle to automatically develop com-

puter programs in suitable languages, e.g., LISP. The data structures that undergo adaption in GP

are executable computer programs, which are usually represented by tree structures of variable size.

GP uses both recombination and mutation operators, which need to be especially designed for the

data structure used. Fitness evaluation in GP involves executing these evolved programs and GP

searches in the space of possible computer programs for ones that produce the best fitness.

2.2 Evolutionary Computation Theory

As evolutionary computation methods become more and more widely used for practical problem

solving, increasing emphasis is placed on understanding the theories behind them.

The traditional theory of GA’s [Holland 1975, Goldberg 1989] assumes that GA’s work by dis-

covering, emphasizing, and recombining good “building blocks” of solutions. In other words, good

solutions tend to be made up of good building blocks, or schemas. Hence steps should be taken

to ensure that better solutions reproduce more offspring to promote their good genes. These basic

notions are powerful, important, and a key to understanding and implementing the GA’s better

[Goldberg 2002].

Modern theories consider EC as a Markov chain process [De Jong et al. 1995]. Possible pop-

ulation configurations during the evolution correspond to the states in the Markov chain process,

and state transition probabilities then depend on the genetic and selection operators chosen. This

relationship is often too complex to be characterized. In addition, the transition matrix rapidly

grows intractable when the number of states increases.

It follows that the effectiveness of EC implementations cannot generally be predicted in advance,

hence the need for empirical implementation and computer experimentation is justified. In addition,

according to the No Free Lunch (NFL) theorem [Wolpert and Macready 1995], no single optimization

algorithm is the best for solving all possible (optimization) problems. Two points can be derived

from the NFL theorem. First, EC should not be blindly applied to any problem. Second, each

particular EC algorithm design and implementation should be carefully customized for the specific

problem. In other words, GA, ES, EP, or any derivative EC method is good at solving a certain

class of problems, and they are not competitive for the classes of problems that have been solved

using traditional optimization methods such as gradient descent. This implies that EC should be

applied when other traditional methods have failed or simply do not apply, e.g., when discontinuous,

nondifferentiable, multi-modal, noisy, and/or unconventional response surfaces are involved. The

effectiveness and robustness of EC thus extend to a broader field of applications beyond the simple

12

���������	�	�	�
����
��	���������
�

���
��������	�	�	�
����
��	��

��
������������������	���������	���
��������	����
���	���������

���
�����������������	��������
�����
���������������������������	��

���
������	��������	����������
	��	�	��
�	���������
��	������
��������������������	��

�����������	���

���

���

��

��
�������������	��	�	��
����������
������	���������	�	��
����
��	�����
��������������������
��	��

���
��������������	��
�� ���
����������	�	��
����
��	��
������������	����������	����	�����

!	��
���	��������������	����	�����

Figure 2.1: The Evolutionary Optimization Loop Used in the Automatic Engineering Design Syn-
thesis Process

classes of problems solved by classical methods.

2.3 General Structure

In this thesis, an automatic engineering design synthesis methodology based on evolutionary com-

putation is introduced and its general structure is presented below, along with its special features

to deal with the current engineering design challenges [Antonsson et al. 2003, Zhang et al. 2003b,

Martinoli et al. 2002].

Based on evolutionary computation methods reviewed in Section 2.1, the evolutionary optimiza-

tion loop used is shown in Figure 2.1. First, an initial population of solutions is generated randomly.

Then, each individual is evaluated under a performance test in terms of the specific design prob-

lem for one evaluation span. According to the evaluation results, i.e., the fitness value of each

13

individual, the parent selection scheme chooses pairs of parent solutions for crossover, promoting

individuals with higher fitness. Crossover between the selected pairs of parents is conducted under

certain crossover probability to generate pairs of offspring. Mutation is also applied to each gene

of the original pool under certain mutation probability and generates more offspring. If the fitness

evaluation function is deterministic, then only the offspring (from both crossover and mutation) are

evaluated, otherwise the original parent population may also be re-evaluated to get a better estimate

of their true fitness values. The best individuals are then deterministically selected from both the

original population and the offspring, i.e., elitist generation selection, to constitute the next genera-

tion. Hence an offspring will only replace an individual of the original population if it has a higher

fitness, conforming to the (μ + λ)-selection scheme in ES, which ensures that the mean of the pop-

ulation fitness is generally non-decreasing1 over generations. At the end of each generational loop

the program verifies whether or not another generation is needed in order to meet a preestablished

criterion for terminating the evolutionary run.

This evolutionary design synthesis methodology is especially developed to deal with the en-

gineering design challenges mentioned in Section 1.2. First, the encoding allows variable-length

chromosomes, making it possible to evolve design solutions of suitable complexity (e.g., an appropri-

ate number of design parameters) and optimize parameter values simultaneously. In this case, the

initial pool is randomly generated with solutions of diverse complexity. The crossover and mutation

operators have to be adjusted from the standard ones to conform to the variable-length chromosome

encoding, which will be explained in detail in Section 2.4.3 and 2.4.4.

Second, multiple competing design objectives can be expressed as preferences using fuzzy sets

[Otto and Antonsson 1991, Scott and Antonsson 1998]: Each value of a design objective or per-

formance indicator is assigned a preference value between 0 (totally unacceptable) and 1 (com-

pletely acceptable). Each objective may have a different level of importance, or weight. The

fuzzy preferences can then be aggregated into the fitness function with different weights and com-

pensation strategies, which can be tuned to evolve solutions with different engineering design

trade-offs [Antonsson et al. 2003]. Simultaneous hardware and software optimization could also

be addressed by co-evolution of the system morphology and controller [Bugajska and Schultz 2000,

Lipson and Pollack 2000], which appears to be more promising than evolving the morphology or

controller alone, but is not addressed in this thesis.

Third, as stochastic optimization methods, evolutionary algorithms are good at working in noisy

environments and searching for robust solutions, in contrast to traditional optimization methods,

which strongly rely on deterministic information to find optimal solutions. When the evaluation

process and result are non-deterministic, i.e., dynamic and stochastic, as characterized by real traf-
1For the case of non-deterministic fitness function, the individual fitness might decrease after re-evaluation adjust-

ment, which in turn might cause the mean of the population fitness to decrease in some rare case.

14

fic scenarios investigated in this thesis, multiple re-evaluations of the surviving individuals may be

introduced when appropriate. Generally an aggregated fitness value from multiple evaluation results

would give a better estimate of an individual’s true fitness than a single evaluation. However, multi-

ple evaluations of each individual would certainly increase the computational time, which is why only

the surviving individuals would be considered for a possible re-evaluation, since more computational

power is reserved for more promising solutions that have survived over multiple generations. But

there is still a trade-off between the accuracy of the fitness estimate and computational time during

the evolution process. In general, the more expensive the evaluation test is than the genetic opera-

tions, the smaller the number of evaluations that should be used [Fitzpatrick and Grefenstette 1988].

Finally, a fair final noise test consisting of 100 evaluation spans is performed on all distinct

individuals in the final population in the noisy environment in order to assess the “best” and the most

robust design solution as specified by the aggregation criterion according to design requirements.

2.4 Implementation in Design Synthesis

In this section, the implementation of the evolutionary design synthesis methodology is presented

in detail. In general, real-valued vector representation is used with variable vector size, and both

crossover and mutation operators are used to modify candidate solutions. Traditional fitness pro-

portional (roulette wheel) selection with fitness scaling is used for parent selection, while elitist

generation selection is chosen.

2.4.1 Encoding

Like ES and EP, the design parameters are directly encoded as real-valued vectors during the evo-

lutionary synthesis. When the appropriate number of design parameters is a priori unknown, the

sizes of the vectors in the evolutionary pool are also variable to allow design solutions of suitable

complexity to be evolved [Lee and Antonsson 2000]. For instance, a neural network can be encoded

as a vector of its real-valued weights, with variable sizes representing neural networks of different

complexity and topologies.

The crossover and mutation operators must be carefully designed to make them meaningful for

the variable-length real vector encoding, which will be explained in detail in Section 2.4.3 and 2.4.4.

2.4.2 Initialization

Generally, the initial population of design candidate solutions are randomly generated within the

feasible search space. When variable size encoding is used, the initial population of individuals is

randomly generated with candidate solutions of various complexity. For instance, when the topology

15

"��
��#

$������% $������&

$���	�
�
���������
��	���

'��������
��	���

'��������

'�	
��% '�	
��&

"��
��%

"��
��&

"��
��(

"��
��)

"��
��*

"��
��+

Figure 2.2: Illustration of One-point Crossover Scheme for Two Vectors of Different Lengths

of neural networks is also evolved, an initial pool of neural networks is generated with different

topologies and weights.

2.4.3 Crossover

Standard crossover operators such as one-point or uniform crossover can be directly applied to two

real vectors of equal length. When the vector size is variable, the crossover operator needs to operate

on two vectors of different lengths.

A simple and efficient solution [Lee and Antonsson 2000] is to identify each parameter in a vector

with an index value chosen from a preset range, from which the crossover point is randomly chosen

and divides the index range into two sub-ranges. Then the two parent vectors swap their parameters

of the same index sub-range to generate two children.

However, to protect possible modules in the candidate solutions, crossover points should not be

arbitrarily chosen along the whole vector. As shown in Figure 2.2, the elements in the vector can be

grouped into modules or blocks according to each specific underlying design problem. For example,

the parameters of each sensor can be considered a module of a collective sensory system. Each

module can be identified with an index value, and sequenced accordingly as shown in Figure 2.2.

The new one-point crossover operator proposed here only allows interchange of modules between the

parents. From all the possible crossover points, shown by dashed arrow lines in Figure 2.2, a random

crossover point is selected for both parents and they exchange their modules below the crossover

point to create two children. For the example shown in Figure 2.2, two parents of 7 and 4 modules

produce two children of 5 and 6 modules, respectively.

16

2.4.4 Mutation

Mutation is also a powerful tool for creating new design solutions. Gaussian mutation is always

applied to change values of the design parameters with a certain mutation probability for each

parameter. When the complexity of design solution is variable, insertion and deletion are also

used as mutation operators, in addition to the standard mutations that only change the parameter

values, to change the number of design parameters, i.e., directly insert or remove a design module.

For example, a sensor module can be added into or removed from a collective sensory system to

generate a new sensory system design. For another example, a hidden neuron can also be added

into or removed from a neural network design to create a new one.

2.4.5 Evaluation and Re-evaluation

The principle of evolutionary computation is “survival of the fittest”. Evaluation is used to determine

the fitness or performance of an individual design solution, i.e., to assess how “good” the solution is.

Then the reproduction and selection schemes will be able to bias toward those “fitter” individuals

with higher fitness values. Evaluation is problem-dependent and it is up to the human designer to

decide how the candidate solutions should be evaluated to represent the specific design goals.

As mentioned above, the evaluation process and result for a given design solution could be

intrinsically dynamic and stochastic instead of static and deterministic. In this case it is desirable to

re-evaluate each candidate solution multiple times to get a better estimate of its real fitness, since a

single evaluation could be deceptive due to noise. However, as mentioned in Section 2.3, a trade-off

between the computational time cost and the accuracy of the true fitness estimate has to be made

according to each specific design problem.

2.4.6 Selection

Selection involves both selection for reproduction (parent selection) and selection for survival (gen-

eration selection). A variety of selection schemes have been proposed, including both unbiased and

biased selection (toward “fitter” individuals), which could be either deterministic or stochastic.

The most common selection operators are the roulette wheel (proportional), rank, and elitist

selection [Mitchell 1996]. In the roulette wheel selection, the probability that an individual is selected

is proportional to its scaled fitness value, promoting fitter individuals with higher fitness values.

The original (raw) fitness values are usually scaled to avoid the problem of excessive or insufficient

selection pressure due to disproportional fitness values. Rank selection, as the name suggests, ranks

the solutions according to their fitness values and then probabilistically selects individuals according

to their ranks. Finally, the elitist selection deterministically selects a certain number of the fittest

individuals of the population; such individuals could be lost otherwise.

17

In the evolutionary design synthesis process shown in Figure 2.1 proposed in Section 2.3, the

roulette wheel selection is used with a scaling factor 2 for parent selection, and the elitist selection

is used for generation selection.

2.4.7 Termination

Usually the evolution is terminated when a preset number of generations is reached, or the desired

design goal is met before that. The maximum number of generations is carefully selected to try

to ensure that the evolution process has found the best design solutions it could for the particular

evolutionary run. The same evolutionary process is also repeated multiple times to generate multiple

(usually different) design solutions and avoid being unilateral by one particular run.

2.4.8 Final Evaluation

As shown in Figure 2.1 and mentioned in Section 2.3, final evaluation is only needed when the

evaluation process is stochastic with noisy fitness results. In this case a final noise test is conducted

on all distinct individuals in the final population in order to assess the truly “best” design solution

of each evolutionary run. Each individual is subject to 100 repeated evaluations, from which the

100 fitness samples obtained are aggregated to the individual’s overall fitness value according to the

aggregation criterion selected by the designer. For instance, the worst fitness value could be taken

as the overall fitness when robustness of solutions is emphasized. Finally the individual with the

best overall fitness is selected as the final result of the evolutionary design synthesis.

18

Chapter 3

Multi-level Simulation and
Modeling of Intelligent Vehicles

The development of advanced intelligent vehicle technologies that improve traffic safety demands

multiple levels of dynamical vehicle models and human driving behavior models. These models can

serve as useful tools in analytical investigations and simulations of the effects of the proposed sensor

and control systems. The simulation time complexity usually increases as the model complexity and

accuracy increase, hence different trade-offs between the two factors have to be made under different

situations and requirements.

In general, traffic simulations can be divided into microscopic and macroscopic simulations.

The macroscopic traffic flow simulations [Gartner et al. 1997] are usually concerned with global

characteristics of the overall traffic flow, such as the average vehicle speed and the traffic flow density,

where individual vehicle behaviors are usually not modeled. Most macroscopic models are based on

the continuity equation and related to particle physics and gas kinetics [Helbing et al. 2001]. Since

intelligent vehicles are considered in this thesis, all the vehicle models discussed here fall into the

microscopic traffic simulation category.

Vehicle simulation models can be divided into several categories. The simplest vehicle model

is the point model, where vehicles are only represented by moving points without any details of

the vehicle. The embodied vehicle simulation models characterize different levels of details of the

vehicle model, which usually contains a three-dimensional (3D) representation of specific vehicle

modules, such as vehicle body and wheels. The kinematic embodied vehicle simulation model only

describes some kinematic characteristics of the simulation, such as the vehicle position, speed, wheel

speed, etc. While the dynamic embodied vehicle simulation can simulate certain dynamic scenarios,

such as applying a driving/braking torque, friction force and wheel slip, body roll and pitch, or wind

effects, etc. In addition, noise can be added to all different levels of vehicle simulation to simulate

actuator and environmental noise effects.

On the other hand, driver models also play an important role in microscopic traffic simulation. In

19

fact, most traffic simulation systems are focused on driver behavior modeling, such as car-following,

lane-keeping, and lane-changing, etc. Different methods are applied to try to obtain realistic human

driving behavior models.

3.1 Literature Review

Various levels of simulation of traffic systems with different vehicle models and driver models have

been published previously. Each simulation model has its own characteristics and specific target

application background. Conversely, different models have been developed for various design re-

quirements and research purposes. An overview of the prior work is given below.

An overview of simulation of traffic systems is given in [Pursula 1999]. Macroscopic traffic models

[Helbing et al. 2001] describe the collective vehicle dynamics in terms of the spatial vehicle density

and the average velocity as a function of the freeway location and time, while microscopic traffic

models delineate the positions and velocities of all interacting vehicles. It is shown that a link

between microscopic and macroscopic traffic models can be established with good agreement on

collective vehicle dynamics [Helbing et al. 2002]. Hence the macroscopic properties of the traffic

systems must be considered when developing realistic microscopic traffic models to ensure good

transportability.

Vehicle and driver behavior modeling is the core of the microscopic traffic models. In the litera-

ture, there have been many research efforts devoted to the development of vehicle models and driver

models for various purposes. Traditionally, vehicle and driver behavior modeling is classified into

two major types of models, which are concerned with longitudinal and lateral motions of the vehicle,

respectively. The longitudinal vehicle control models are concerned with the vehicle’s longitudinal

dynamics, while the lateral vehicle control models relate to the vehicle steering behaviors.

The vehicle models developed in the literature are mainly based on physical equations and some

specific car experimental data. As a result, these models are quite complex and detail-oriented. For

example, a longitudinal dynamics model of an automotive powertrain system [Hedrick et al. 1993,

Cho and Hedrick 1989] involves 12 state variables: four for the engine, two for the transmission, and

six for the drivetrain, plus two time delays associated with the engine. The relationships involving

the state variables are tested under certain experimental conditions, and then approximated by

curve-fit models.

The longitudinal driver behavior models are mainly focused on the development and analy-

sis of car-following models, which act as the link between microscopic and macroscopic models

[Gartner et al. 1997, Helbing et al. 2002]. The class of suitable basic models proposed in the lit-

erature is characterized by continuous acceleration functions depending on the velocity, the gap,

and the relative velocity with respect to the preceding car, etc. Some examples include the well-

20

known Gipps model [Gipps 1981], the optimal velocity model (OVM) [Bando et al. 1995], the in-

telligent driver model (IDM) [Treiber et al. 2000], the velocity difference model [Jiang et al. 2001],

the bounded rational driver model [Lubashevsky et al. 2003], and the human driver (meta-)model

(HDM) [Treiber et al. 2006].

On the other hand, driver and vehicle steering system models date back to the 1950’s, when the

vehicle dynamics were readily characterized by differential equations of motion [Segel 1956]. Then,

the driver steering control behavior was modeled by a closed-loop feedback control system for lane

position regulation with a feed-forward term to anticipate road changes [McRuer et al. 1977]. Fol-

lowing a series of human operator models, it was suggested that driver steering control strategy

during path-following can be modeled by a time-lagged optimal preview control process with driver

delay and preview time parameters [MacAdam 1981]. A more complex driver steering control the-

oretic model was then presented [Hess and Modjtahedzadeh 1990, Modjtahedzadeh and Hess 1993]

with both high and low frequency compensation modules as well as a preview module. More recent

work also tried to model the driver steering control model uncertainty [Chen and Ulsoy 2001].

Finally, a comprehensive discussion of human driver modeling involving both longitudinal and

lateral control models was summarized in [MacAdam 2003]. And an integrated driver model with

both longitudinal and lateral motion controls was developed based on the preview-follower theory

[Guo et al. 2004].

Every model mentioned above has its own specific application background and study purposes

that it was developed for; subsequently different trade-off of model complexity and precision was

selected for each model. Most models in the literature are quite complex and specific with parameters

to be tuned for different vehicles. In this thesis, a more generic class of vehicle and driver models is

desirable, therefore multiple levels of simulation models with different trade-offs of model complexity

and reasonable simulation time are implemented, as described in the following sections.

3.2 Vehicle Simulation

Three different levels of vehicle simulation models are implemented for different research application

requirements. The principle here is to keep the models as simple as possible with only the necessary

characteristics.

The simplest vehicle models are point models, where each vehicle is simply represented by a

moving point and all details of vehicle dynamics are ignored. The advantages of point models are

their simplicity and fast simulation. No specific simulator is needed and basic numerical analysis

can be performed efficiently. However, the disadvantage is that they only simulate ideal situations

and are not easy to view graphically. To make point simulations more realistic, probabilistic models

are introduced to the point models, where the motions of the points can be modeled with certain

21

probabilistic distributions.

To have an animated graphic interface of the simulation, a kinematic embodied simulation is

introduced, where each vehicle consists of several modules, such as the vehicle body and wheels as

well as on-board sensors, with certain shape defined for each module, and certain relative position

and simple joints (motion constraints) defined between modules. The simulation could run either

with or without noise, i.e., under ideal situations.

To simulate more realistic vehicle dynamics effects, a dynamic embodied simulation is imple-

mented, where customized physical properties of each module can be defined and more complex

joints are introduced. The simulation time complexity increases as additional features are intro-

duced into the simulation, and the appropriate level of model complexity necessary and sufficient

for a certain research purpose must be carefully chosen.

Each of these three different vehicle simulation types is described in detail below.

3.2.1 Point Models

Point models are by far the simplest vehicle models. Each vehicle is only represented by a point

moving in a two-dimensional (2D) surface space. Each point has its own position, velocity, and

acceleration without any other characteristics. A point’s trajectory and velocity time history can

be fully determined using only particle kinematics, given its acceleration history profile and initial

position/velocity. The acceleration of a point is defined by the driver model, which will be discussed

in Section 3.3, and may be related to the point’s goal and relative position on the road as well as its

position and velocity relative to other moving points.

3.2.1.1 Theoretic Models

Under theoretic conditions, the point movements are governed by fundamental kinematic equations,

as shown below:

v(t) = v0 +
∫ t

0

a(t) dt (3.1)

R(t) = R0 +
∫ t

0

v(t) dt (3.2)

Here a(t), v(t), and R(t) are the point’s acceleration, velocity, and position time histories, respec-

tively, with v0 and R0 representing its initial velocity and position, respectively. Hence the v(t) and

R(t) of a point can be computed from the above equations given its a(t), v0, and R0.

On the other hand, given the distance between two points, their relative velocity and acceleration,

it is easy to compute when they would collide assuming certain acceleration histories a1(t) and a2(t),

and when the following vehicle needs to brake to avoid a potential collision. The collision is defined

22

D v

Figure 3.1: Sample Point Vehicle Models with Speed v and Collision Disk with Diameter D Moving
on a Three-lane Highway

here when two points are within a certain distance D from each other. In other words, the vehicle can

be considered to have a safety disk with center at the point and diameter D, as shown in Figure 3.1.

It can be noted here that even with a simple theoretic vehicle model, the driver model part that

decides the acceleration profile a(t) could be complex and highly stochastic in nature, which makes

the whole simulation and subsequent analysis a non-trivial task.

3.2.1.2 Probabilistic Models

Variations exist in the real vehicles in that the vehicle response could be different under various

conditions. For example, the engine performance could be different under different temperatures

and air pressures; the transmission and drivetrain could run differently with different levels and

status of the transmission fluid and lubrication oil; the brakes could behave differently under different

temperature, humidity, cleanness and road surface conditions, etc. All these factors bring uncertainty

to the vehicle dynamical response and should be considered in the vehicle models.

In the point model, a random term could be added into the deterministic vehicle kinematic

Equation 3.1 and 3.2 to model the uncertainty of vehicle dynamics. When vehicle characteristics

(e.g., vehicle speed) are measured by on-board sensors, there also exists measurement noise, which

could be simulated with an additional random term. The noise probability distributions of different

parameters are usually assumed to be independent of each other, and can be estimated from specific

noise analysis experimental data [Brunson et al. 2002].

3.2.2 Kinematic Embodied Simulation

When more concrete models with good graphic display are desired, a kinematic embodied simulator

such as Webots1 [Michel 2004] could be used. As shown in Figure 3.2, sample traffic scenarios can

be simulated in Webots, a sensor-based, 3D, embodied mobile robotics simulation software, where

kinematic vehicle models with simple driver behaviors are moving on a simulated three-lane highway.
1Refer to http://www.cyberbotics.com.

23

Figure 3.2: Screen Shot of Traffic Simulation in Kinematic Embodied Simulator—Webots

The vehicle model here is based on the Khepera2 robot [Mondada et al. 1994], which is a minia-

ture unicycle vehicle with a cylindrical shape measuring 5.5 cm in diameter and 3 cm in height. It is

equipped with two motor wheels and eight infrared proximity sensors, as shown in Figure 3.3 (a).

The kinematic vehicle simulation model implemented in Webots contains the vehicle body and

its two wheels as well as eight sensors, as shown in Figure 3.3 (b). The wheels can spin at different

rotational speeds in either direction independently relative to the body, which is the only relative

motion allowed between different vehicle modules, and enables the body to move freely on a 2D

plane. Therefore this vehicle model has five degrees of freedom (DOF) in total, where the vehicle

body has the three planar DOF (i.e., two translational and one rotational) plus two additional DOF

for wheel spinning.

Each vehicle is controlled by a customized C or C++ controller program and there could also

be a supervisor program managing the higher level simulation as a whole. The vehicle movement is

simply controlled by specifying the left and right wheel speeds in the controller at each simulation

time step. The controller can read sensor measurement values of light or distance, which can be

used to compute appropriate left and right wheel speeds in order to implement the desirable robot

behavior. The sensor measurements and wheel motor outputs can be simulated with realistic noise

values.

Simple driver behaviors can be implemented for each vehicle model with different parameters, as

will be described later in Section 3.3. Assuming the drivers are alert and react responsively, ideal
2Refer to http://www.k-team.com.

24

(a) (b)

Figure 3.3: Close-up of the Real Khepera Robot (a) and its Simulation Model in Webots (b) with
its Distance Sensor Rays Illustrated in Solid Red Lines

sample traffic scenarios can be simulated as shown in Figure 3.2.

From this kinematic traffic simulation, the relative distances and approaching angles of all other

vehicles that have appeared around the host vehicle can be recorded at each time step and accumulate

to the vehicle occurrence data. Then a 2D vehicle occurrence probability density function (PDF),

as shown in Figure 3.4, can be generated from the normalized vehicle occurrence data collected

in the kinematic embodied simulation for a long enough period of time. This PDF is reflective of

the accumulation of vehicle occurrences for 5000 test spans, where each test span contains 2000

simulation time steps, representing 128 seconds in real time. In addition, each vehicle is initialized

with a random position and preferred speed for each test span. The number of test spans used

to generate the PDF is judged to be sufficient to capture the 2D spatial distribution of vehicle

occurrence probability, while averaging the temporal variations in traffic conditions.

Note that the x and y axes are fixed to the host vehicle and all other vehicles’ positions are

recorded relative to the host vehicle. Therefore the host vehicle is fixed to the origin of the 2D PDF,

facing the positive y axis direction. The two peaks in the front and back of the host vehicle imply

that the vehicles follow each other quite closely under the current car-following driver behavior. In

addition, the dimensions of the 2D PDF shown are scaled to real lane width at 3.5 meters, hence

the vehicles on the left and right adjacent lanes correspond to the lower peaks at x = ±3.5 m,

respectively.

When only the relative approaching angle of the other vehicles is considered, the above 2D

PDF can be further simplified to a 1D vehicle occurrence PDF, which can be plotted in either the

Cartesian coordinates or the polar coordinates, as shown in Figure 3.5.

These vehicle occurrence PDF’s capture basic characteristics of the dynamic traffic scenarios

around the host vehicle more efficiently than the kinematic embodied simulation itself. For instance,

25

Figure 3.4: 2D Vehicle Occurrence PDF: The Host Vehicle Sits at the Origin Facing the Positive y
Axis.

26

0 45 90 135 180 225 270 315 360
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Angle [o]

P
ro

b.
 D

en
si

ty
 o

f V
eh

ic
le

 O
cc

ur
re

nc
e

Front Front Rear

(a)

 0.005

 0.01

 0.015

 0.02

30

210

60

240

90

270

120

300

150

330

180 0
Front Rear

(b)

Figure 3.5: 1D Vehicle Occurrence PDF in Cartesian (a) and Polar (b) Coordinates

27

,

,�

,
�

!-�

���

!-�

���

��

��

�

�.

�

�

'/�/0��- -
��

-
1

Figure 3.6: Significant Forces Acting on a Two-axle Vehicle

the vehicle occurrence probability density reflects the degree of priority for each location/direction

to be covered by an on-board sensory system, i.e., when complete coverage is not achievable, some

regions with higher vehicle occurrence probability should get higher priority to be covered first.3

More generally, the same strategy could be applied to capture some of the fundamental char-

acteristics of the real traffic scenarios on the highway. One can imagine that the PDF would look

quite differently at different times and/or places with different traffic rules and driving styles that

form the driving behaviors ensemble, e.g., Rome or Paris vs. New York or Los Angeles. It would be

very interesting to investigate the differences among different areas and design appropriate sensor

and control systems accordingly, and perhaps to draw conclusions about the differences in driving

habits and tendencies.

3.2.3 Dynamic Embodied Simulation

To make the model more realistic and relevant for the automotive industry, some essential features

of vehicle dynamics are desirable for the vehicle model. It is also desirable to have a vehicle model

that is based on real cars instead of a desktop robot. The principle used here is to keep the vehicle

model as simple as possible while satisfying the above requirements.

3.2.3.1 Vehicle Dynamics Overview

First, important vehicle dynamics features are briefly reviewed in this section. Vehicle dynamics

[Wong 2001, Zuvich 2000] is concerned with the movement of vehicles, which includes longitudinal

(acceleration or braking), lateral (turning), and vertical (vibration) movements.

The major external forces acting on a two-axle vehicle are shown in Figure 3.6. W is the weight

of the vehicle acting at its center of gravity (C.G.), and its normal component (W cos θ) along the

3In addition to vehicle occurrences, vehicle velocities and estimated threat level might also be important factors
to consider.

28

F
Fymax

Fxmax

Fy

BRAKING

0

DRIVING

Fx

Figure 3.7: The Friction Ellipse Concept Relating the Maximum Cornering Force Fy to a Given
Longitudinal Force Fx

vertical z axis is balanced by the normal supporting forces provided by the road surface through

front and rear tires Wf (
b

L
W cos θ) and Wr (

a

L
W cos θ), respectively.4

The forces in the longitudinal direction (x axis) include the aerodynamic resistance Ra, rolling

resistance from the front and rear tires Rr (Rr ≡ Rrf + Rrr), grade resistance Rg (W sin θ), and

tractive (or braking) forces Fx (Fx ≡ Fxf + Fxr). The equation of motion along the longitudinal x

axis of the vehicle is

max = Fx − Ra − Rr − Rg (3.3)

where m is equivalent mass of the vehicle and ax is the linear acceleration or deceleration along the x

axis. The maximum acceleration (deceleration) achievable by the vehicle is limited by the maximum

tractive (braking) forces (Fx) available from the tire-road contact:

max |Ff | = μ · Wf = μ · b

L
W cos θ (3.4)

max |Fr| = μ · Wr = μ · a

L
W cos θ (3.5)

where μ is the friction coefficient between the tire and the road, which depends on many factors,

including load, velocity, road surface conditions, tire pressure, etc. Refer to Section 3.2.3.4 for more

details. Fx is the x component of the total friction force F (F ≡ Ff + Fr) available from both the

front and rear wheels, which is limited by the friction ellipse, as shown in Figure 3.7. Note that

there are no tractive forces available from the front tires (Fxf ≤ 0) for a rear-wheel drive vehicle,

and similarly Fxr ≤ 0 for a front-wheel drive vehicle.

The response of automobiles to steering control [Segel 1956, Whitcomb and Milliken 1956] is

quite complex. When the wheels are steered at some angle δ, they develop lateral (cornering) forces

Fy that turn (yaw) the vehicle, and lateral slip angle α, which is the angle between the wheel plane

4Dynamic load transfer is ignored here.

29

-

Figure 3.8: Cornering Characteristics of Car Tires

(heading) and the wheel travel direction. Figure 3.8 shows a typical plot of Fy as a function of α

for a bias-ply and a radial-ply passenger car tire [van Eldik Thieme and Pacejka 1971, Wong 2001].

At small slip angles (up to 5o), the following linear relationships can be assumed:

Fyf = Cαf · αf (3.6)

Fyr = Cαr · αr (3.7)

where Cαf and Cαr are the cornering stiffness of front and rear tires, respectively. More complex

models, such as the Magic Formula [Bakker et al. 1987, Bakker et al. 1989], could be used for more

accurate simulation.

The above relationship is affected by longitudinal forces, e.g., braking or accelerating in a turn,

which happen quite often. In general, a tractive or braking effort will reduce the cornering force that

can be generated for a given slip angle, and the cornering force decreases gradually with an increase

of the tractive or braking effort. This is due to the mobilization of the available local adhesion by the

tractive or braking effort, which reduces the amount of adhesion available in the lateral direction.

This is illustrated by the well-known friction ellipse concept, as shown in Figure 3.7, and one can

predict the cornering force available at a specific slip angle in the presence of a tractive or braking

effort, as shown in Figure 3.9 [Wong 2001].

In vehicle vertical vibration analysis, the cushioning characteristics of the suspension system and

the pneumatic tires may be represented by various mathematical models. The most widely used and

simplest model consists of a mass element and a linear spring in parallel with a viscous damping

element, representing the fundamental mode of vibration. The spring constant and the damping

coefficient can be determined from car experimental data.

30

Figure 3.9: Construction of a Friction Ellipse for a Given Slip Angle

Figure 3.10: Screen Shot of the Dynamic Embodied Vehicle Model

3.2.3.2 Basic Vehicle Model

As mentioned above, simple vehicle simulation models with some realistic vehicle dynamics charac-

teristics are desirable. A two-axle dynamic embodied vehicle model based on real passenger cars is

developed for this purpose and described below.

The new vehicle model integrates all three motions (longitudinal, lateral, and vertical) of the

vehicle, but it ignores the engine and transmission dynamics characteristics since they are not of

major concern here. The model is developed in Webots 5 [Michel 2004] to simulate a front-wheel

drive passenger car, which is based on a preliminary model developed at EPFL [Epiney 2004], as

shown in Figure 3.10.

The latest version of Webots 5 provides a useful platform for developing a dynamic embodied

simulation of multiple, intelligent vehicles. Webots 5 is a software package for fast prototyping and

realistic simulation of customized mobile robots. It uses the Open Dynamics Engine (ODE)5 library

for realistic physics simulation. The ODE library is an open source, high performance library
5Refer to http://ode.org.

31

for simulating rigid body dynamics. Customized physics and vehicle dynamics properties can be

implemented in Webots based on ODE. Therefore a real car-based vehicle model with realistic

vehicle dynamics features can be developed in Webots with ODE.

The model shown in Figure 3.10 is composed of the vehicle body and four wheels. The vehicle

body is able to move freely in all six DOF in the 3D space; while the wheels can all spin and move

vertically relative to the body, plus the steering wheels can also yaw. So the whole vehicle model

has 16 DOF in total (16 = 6 + 3× 2 + 2× 2), i.e., six DOF for the vehicle body, three DOF for each

of the two steering wheels, and two DOF for each of the two non-steering wheels.

The following parameters are predefined constant parameters for a given vehicle under a certain

operational condition:

• Wheel base L (m)

• Distance between C.G. and front axle center a (m)

• Distance between C.G. and rear axle center b (m)

• Equivalent total mass of vehicle m (kg)

• Cornering stiffness Cαf and Cαr (N/rad)

The vehicle model gets the following inputs from the driver controller updated in real time:

• Tractive or braking torque efforts acted on front and rear wheels Txf and Txr (N.m)

• Steering angle δ (rad)

The vehicle model makes corresponding movements according to the above parameters and inputs

under specified environmental conditions.

Built in Webots based on ODE, this model has already incorporated basic rigid dynamics prop-

erties including typical steering dynamics response. Therefore the major task here is to establish

and verify the vehicle model within the framework of existing ODE rigid body dynamics modules

and to introduce special characteristics essential for the simulation of vehicle dynamics. It is also

desirable to have a good graphic and animated representation of the traffic scenarios, such as the one

shown in Figure 3.11, which appears realistic yet is simple enough to have a fairly fast simulation.

The next sections will introduce special vehicle dynamics features implemented especially for the

dynamic embodied vehicle simulation model based on the basic model described above.

3.2.3.3 Joint Models

In a preliminary model [Epiney 2004], the driving and steering motions of the front wheels were

modeled by two active servo nodes, respectively. One implements forward driving—longitudinal

32

Figure 3.11: Sample Freeway Traffic Simulation with Dynamic Embodied Vehicle Models

x

y

O

3

1

2

2

3

1
1

2

3

Servo Node

Steering Node

Driving Node

Off Node

Figure 3.12: Schematic View of a Simple Two-axle Vehicle Model [Epiney 2004]

33

(a) (b)

Figure 3.13: The (a) Hinge and (b) Slider Joints Defined in ODE

Figure 3.14: The Hinge-2 Joint Defined in ODE

movement, and the other realizes vehicle steering—cornering (yaw) movement, as shown in Fig-

ure 3.12. The rear driven wheels were simply modeled by two off servo nodes, allowing them to

rotate freely. The servo node here was based on the hinge joint (as shown in Figure 3.13 (a)) defined

in ODE, and it models a rotation servo motor, which tries to reach a given position and/or angular

velocity goal under specified torque.

In addition, a customized slider joint (as shown in Figure 3.13 (b)) from the ODE can be

introduced to allow relative vertical motions between the vehicle body and the wheels, simulating

the car suspension system using a simple spring and damping system between the two.

An alternative way to implement all the relative motions between the vehicle body and the wheels

is to use the ODE customized hinge-2 joint (as shown in Figure 3.14), which is defined especially

for car simulation. The hinge-2 joint is equivalent to two hinges connected in series, with different

34

(a) (b)

Figure 3.15: Variation of Friction Coefficient vs. Wheel Slip Curves on (a) Dry Asphalt and (b) Dry
Asphalt, Loose Gravel, and Ice [Harned et al. 1969]

hinge axes. An example is the steering wheel of a car, which can both spin and steer along different

axes. As shown in Figure 3.14, Body 1 can be the vehicle body and Body 2 the wheel, Axis 1 is

the wheel steering (vertical) z axis and Axis 2 is the wheel spinning (lateral) y axis. Axis 1 can also

function as a suspension axis, allowing limited relative vertical motions between the vehicle body

and the wheels along Axis 1. The hinge-2 joint where Axis 1 is perpendicular to Axis 2 is equivalent

to a universal joint with added suspension. Therefore all three motions (wheel steering, spinning,

and vertical movements) of a steering/driving wheel can be conveniently integrated into just one

joint model. For consistency, four hinge-2 joints can be applied between the vehicle body and its

four wheels, respectively, where the steering motions of the rear (non-steering) wheels can be simply

turned off. This is a more compact and integrated joint model especially customized for dynamic

vehicle simulations.

In summary, a 16 DOF front-wheel drive vehicle model is implemented here, which allows the

vehicle body to move in all six DOF in a 3D space, and each wheel to move in three DOF relative

to the body.

3.2.3.4 Friction Model

As mentioned above, the friction coefficient μ between the tire and road is an important parameter

limiting the maximum tractive and braking forces available from the tire-road contact, and it varies

under different environmental and dynamical conditions. Figure 3.15 shows the variation of the

brake friction coefficient with longitudinal wheel slip i on various surfaces and under different speeds

35

0

p

60 80 100%4020
LONGITUDINAL WHEEL SLIP i

FR
IC

TI
O

N
 C

O
E

FF
IC

IE
N

T

A

C

B

s

2
p

Figure 3.16: Typical Relationship between Friction Coefficient μ and Wheel Slip i

[Harned et al. 1969], where the wheel slip or skid is defined by [Wong 2001]

i =

⎧⎨
⎩

(
1 − v

rω

)
× 100% v ≤ rω, tractive slip(

1 − rω

v

)
× 100% v ≥ rω, braking slip

(3.8)

where v is the linear speed of the wheel center (i.e., vehicle body), ω is the angular speed of the

wheel, and r is the rolling radius of the free-rolling tire.

It can be observed from Figure 3.15 that the friction force available from the tire-road contact

does not always increase linearly as the tractive or braking effort increases. When accelerating on a

slippery or icy surface, often the tire rotates without equivalent forward movement, i.e., v < rω and

a slip results. If the vehicle does not move forward at all (v = 0) with tire spinning (ω > 0), the slip

is 100%, as defined in the first part of Equation 3.8. On the other hand, when braking on a slippery

surface, sometimes the vehicle purely slides forward (v > 0) while the wheel is locked (ω = 0); then

the slip is also 100%, as defined in the second part of Equation 3.8.

In general, the tractive or braking effort first increases linearly with wheel slip because, initially,

slip is mainly due to elastic deformation of the tire tread. This corresponds to section OA of the

curve shown in Figure 3.16. A further increase of tractive or braking effort results in partially the

tire tread sliding on the ground, and the curve becomes nonlinear, corresponding to section AB of

the curve shown in Figure 3.16. Based on available experimental data, such as Figure 3.15, the peak

value of friction coefficient μp is usually reached between 15 and 20% slip. Any further increase of

slip causes the friction coefficient to fall from peak value μp to pure sliding value μs, as shown in

Figure 3.16. Average peak and sliding values of the friction coefficients μp and μs on various surfaces

are given in Table 3.1 [Taborek 1957].

A good approximation model of the curve shown in Figure 3.16 is the popular Pacejka “magical”

model [Bakker et al. 1989], which uses nonlinear mathematical equations with many model parame-

36

Surface Peak Value μp Sliding Value μs

Asphalt and concrete (dry) 0.8–0.9 0.75
Asphalt (wet) 0.5–0.7 0.45–0.6
Concrete (wet) 0.8 0.7
Gravel 0.6 0.55
Earth road (dry) 0.68 0.65
Earth road (wet) 0.55 0.4–0.5
Snow (hard-packed) 0.2 0.15
Ice 0.1 0.07

Table 3.1: Average Values of Coefficient of Road Adhesion [Taborek 1957]

fm

fm0 Fapp

Feff

if i > 20%

fm

fm0 Fapp

Feff

0.8fm

if i 20%

(a) (b)

Figure 3.17: The Original (a) and Modified (b) ODE Friction Models: Fapp represents applied
tractive or braking effort on the wheel while Feff represents effective force available from the ground
contact, with fm representing the maximum friction limit.

ters to be tuned with real experimental data. For the purpose of this research, a simpler and more

general model is desired. It can be observed from Figure 3.15 and Table 3.1 that μs ≈ 0.8μp in

most cases, therefore the original oversimplified friction model implemented in ODE (shown in Fig-

ure 3.17 (a)) can be modified by a simple conditional linear piece-wise curve shown in Figure 3.17 (b).

When this modified friction model is implemented, the slip ratio i is computed at each time step for

each tire-road contact, and the maximum friction force limit fm is adjusted to 80% of its original

value when i > 20%. For more details and examples, please refer to [Zhang 2005].

3.2.3.5 Rotational Motions

The three different rotational motions of the vehicle body are pitch, yaw, and roll, as shown in

Figure 3.18, which are also simulated by the dynamic embodied vehicle model through ODE.

Figure 3.19 shows the time histories of the three angles under a sample vehicle driving scenario,

where the vehicle drove along alternate straight and curved roads and changed lanes regularly. First

the vehicle accelerated on a straight road from static to its preferred speed (61 mph) for the first 12 s,

during which only the pitch angle was a non-zero value, since the dynamic weight transfer effects

37

Yaw

Roll Pitch

x

y

z

Figure 3.18: Illustration of the Three Rotational Motions: Pitch, Yaw, and Roll

20 40 60 80 100 120 140 160
−0.12

−0.08

−0.04

0

0.04

0.08

0.12

P
itc

h
A

ng
le

 [o]

20 40 60 80 100 120 140 160

−80

−60

−40

−20

0

Y
aw

 A
ng

le
 [o]

20 40 60 80 100 120 140 160
−2

−1

0

1

2

Time [s]

R
ol

l &
 S

te
er

in
g

A
ng

le
 δ

 [o]

−δ/1.7
Roll Angle

Straight Straight Straight Clockwise Curve
Counter−clockwise
Curve

Figure 3.19: The Simulated Vehicle Pitch, Yaw, and Roll Motions with Steering Angles

38

due to acceleration caused the vehicle to pitch backwards. Then the vehicle entered a clockwise

curve at time 37 s, before which it reduced its speed, and exited this curve at time 76 s, after which

it resumed its preferred speed. It also went through a counter-clockwise curve from time 106 to

145 s, with similar speed control as before. In addition, the vehicle changed lanes at time 22, 44, 68,

89, 112, 136, and 158 s, respectively. Note that the yaw and roll angles changed dramatically due to

the lane changes, while the roll angle followed the steering angle changes quite closely, especially on

straight roads. Moreover, the magnitude of the pitch and roll angles depends on the elasticity and

damping characteristics of the suspension system, which are adjustable vehicle model parameters to

fit real car experimental data.

3.3 Driver Models

Simple yet realistic driver behavior models are also important for intelligent vehicle simulations.

An ideal alert driver model should be able to drive safely under typical and normal conditions.

Specifically, they should be able to maintain the vehicle in the desirable lane within lane boundaries

on both straight and curved roads (lane-keeping behavior), keep a safe distance with vehicles ahead

to avoid rear-end collisions even if they might brake suddenly (car-following behavior), change lanes

safely as needed (lane-changing behavior), watch out for other lane-changing (cut-in) vehicles, and

keep its preferred driving speed as much as possible. The three main target driver behaviors needed

to be implemented are

• Car-following behavior

• Lane-keeping behavior

• Lane-changing behavior

The driver behavior models take sensor measurements updated in real time as dynamical inputs,

including host vehicle speed vH , distance to vehicle ahead (range R), relative speed to vehicle ahead

(range rate RR), etc., for longitudinal motion control; lane deviation error E, vehicle heading angle

and current steering angle δ, etc., for lateral motion control. Different driver models also have

different preference parameters such as preferred speed vpref and time headway th, etc.

There are different ways to implement these different driving behaviors, as described below.

3.3.1 Helbing Model

Many of the microscopic traffic simulation models proposed in the literature are focused on the

car-following behavior, as reviewed in Section 3.1. The key point of car-following behavior is setting

vehicle acceleration according to the current situation and driver preferences, which include the

39

current gap and desired gap between the host vehicle and the lead vehicle, current speed and relative

speed to the lead vehicle, driver’s preferred speed and driving style, etc.

Dirk Helbing presented an intelligent-driver model (IDM) [Helbing et al. 2002], which computes

the target acceleration ax as follows:

ax = aacc

[
1 −

(
v

vpref

)α

−
(

R∗(v,RR)
R

)2
]

(3.9)

where aacc is the maximum acceleration limit chosen; v and vpref are the current and preferred host

vehicle speed, respectively; α is the acceleration exponent parameter; and R and R∗ are the current

and desired range (gap) between the host vehicle and the lead vehicle, respectively. Equation 3.9

is a superposition of the acceleration term aacc [1 − (v/vpref)α] on a free road, and the (braking)

deceleration term −aacc(R∗/R)2, describing the interactions of the host vehicle with other vehicles

ahead. The desired range R∗ dynamically varies with current host vehicle speed v and the closing

speed relative to the lead vehicle (range rate RR):

R∗ = R0 + R1

√
v

vpref
+ v · th +

v · RR

2√aacc · acft
(3.10)

where R0 and R1 are constant distance parameters for each different driver, th is the preferred time

headway, and acft is the comfortable deceleration level of the current driver. The IDM parameters

used by Helbing are summarized in Table 3.2.

Parameter vpref α th aacc acft R0 R1

Value 75 mph 1 1.2 s 0.8 m/s2 1.25 m/s2 1 m 10 m

Table 3.2: The IDM Parameters

It can be observed from Table 3.2 that the Helbing model considers quite small values for accel-

eration parameters since it agrees with their macroscopic traffic model [Helbing et al. 2002], which

would ignore traffic accidents because they happen so rarely in the macro scene. However, the in-

telligent vehicle systems aim to improve traffic safety by focusing on avoiding collisions, which need

more aggressive driver behavior models.

3.3.2 Rule-based Model

A heuristic approach to implementing a driver model is to control the vehicle by a series of logical

commands according to driver preferences and sensor measurements as well as vehicle model re-

sponses updated in real time. Simple driver behaviors can be easily implemented this way, and some

control parameters and thresholds need to be hand-tuned or evolved to get desirable behaviors.

For example, the car-following behavior can be implemented following the logic scheme shown in

Figure 3.20, where vH and vL are current speeds of the host vehicle and the lead vehicle, respectively,

40

�23�.4��

����5�������������
�	��	���	��
�������

��

��

���

��

6���
�����

���

���

�����

�3�2��4��	��

�27������

����
�����

���

�23�����4��
���

��

8�����2

��

Figure 3.20: The Logic Scheme of a Simple Car-following Behavior

ε is a small positive constant speed buffer, and Rmin is a positive constant distance parameter. The

blocks “Accelerate” and “Decelerate” could be further expanded to implement more realistic car-

following behaviors, which could refer to the Helbing model or be hand-tuned through trial and

error. Although the logic scheme shown in Figure 3.20 seems simple, it could take considerable time

and effort to fine tune the parameters to get desirable and realistic car-following behaviors.

Similarly, simple lane-keeping behavior can be implemented following the logic flow chart shown

in Figure 3.21. This would apparently work for this simple behavior with appropriate parameters,

which would also take much time to be tuned by hand. When the desirable behavior gets more

complex, the time and effort needed to develop such driver models increase exponentially.

Lane-changing behaviors are generally triggered by a slower vehicle ahead in the same lane as the

host vehicle (besides the merge and exit scenarios), and when the desired adjacent lane is available.

The host vehicle is generally expected to be able to drive at a higher speed that is closer to its

preferred speed after changing lanes. According to U.S. traffic rules, it is OK to change to either the

left or right lane to pass a slower vehicle and it is not necessary to change back after that. Hence

the logic scheme used to initiate a lane change, as shown in Figure 3.22, would check both left and

right adjacent lanes for availability first, then change to an available lane if possible, and no attempt

is made to change back after passing. The lane-changing behavior itself can be simply implemented

using the logic scheme shown in Figure 3.23.

41

!��	���
���
������	����

5�������������	��	��
�������
��������	����

���

��

!��	���
���� !��	����	����
���

9����	���

9����
	���
��
���

��	����

��

!��	��������	����

��

9����
	���
���	���

!��	�������
����

���

9���
����	��� .���

���

�����:������

�� ���

�����

.��� �	���

Figure 3.21: The Logic Scheme of a Simple Lane-keeping Behavior

5�����������
����
���	�
��������

��

���

.����
���
���	
��
��

��

���

���

'��������
.����
���

�	����
���
���	
��
��

�� '��������
�	����
���

�����

�
�������

Figure 3.22: The Logic Scheme for Initiating a Lane Change

42

'
����������
�������
����

��

�!��	���������
�����������
����

��

��9���������
�����������
��� ���

;���������

���

9����
	���
�����<

���

!��	���������

�� ���

��

��9�����������

�����

�����:������

Figure 3.23: The Logic Scheme of a Simple Lane-changing Behavior

3.3.3 PID Control Model

Alternatively, the lane-keeping behavior, which follows both straight and curved roads, can be

implemented using a proportional-integral-derivative (PID) compensation controller, which is the

most common control methodology in classical feedback control systems [Phillips and Harbor 2000].

The control input is the lane deviation error E, which is the shortest distance from the car

center to the center line of the lane. The PID controller tries to reduce this error to zero under

varying driving conditions, such as different driving speeds and/or road curvatures. The output

of the PID controller is the steering angle δ, and the PID compensator can be described by the

following equation:

δ(t) = KP E(t) + KI

∫ t

0

E(τ)dτ + KD
dE(t)

dt
(3.11)

where KP , KI , and KD are PID controller parameters. The proportional term KP E(t) is the

major term in the feedback control loop to compensate for the error in a timely way, but using the

P controller alone usually leaves a steady state error due to changing operating conditions. The

integral term KI

∫ t

0

E(τ)dτ helps reducing the steady state error to zero in the long run. The

derivative term KD
dE(t)

dt
is used to anticipate a change in the system and speed up a controller’s

response to the change.

Figure 3.24 shows the time histories of the vehicle lane deviation error E,6 its integral iE, and

lane position Y , as well as the vehicle steering angle δ and wheel speed ω, under the same vehicle
6E was not updated (fixed) during lane changes.

43

20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

La
ne

 P
os

iti
on

 Y
 a

nd
 D

ev
ia

tio
n

E

E [m]
iE [100 m]
Y [W

l
]

20 40 60 80 100 120 140 160

−4

−2

0

2

4

Time [s]

S
te

er
in

g
A

ng
le

 δ
 a

nd
 W

he
el

 S
pe

ed
 ω

δ [o]
ω [20 rad/s]

Straight Clockwise Curve Straight Counter−clockwise
Curve Straight

Figure 3.24: (Top): Time Histories of Vehicle Lane Deviation Error (E), Integral Lane Deviation
Error (iE ≡ ∫ t

0
E(τ)dτ), and Lane Position Y in terms of Lane Widths (Wl = 3.5 m); (Bottom):

Time Histories of Vehicle Steering Angle δ and Wheel Speed ω

44

driving scenario as described in Section 3.2.3.5 and shown in Figure 3.19.

Again it takes considerable time and experience to tune the PID controller parameters by hand

for each different operational situation, e.g., different driving speeds and/or road curvatures. The

different parameters tuned for each different situation can then be stored in a table or generate

a fitted curve or piece-wise linear model for reference by the driver model. It turns out that the

controller works best (i.e., achieves smallest lane departure error) when the driving speed is low, and

the error increases with the speed, which agrees with one’s expectation. For instance, the maximum

lane departure error generated when a car entering a curve of radius 500 m from straight road is

0.6 m at speed 65 mph and 0.3 m at speed 38 mph.

The lane-keeping PID control algorithm can also be applied after a lane-changing algorithm to

bring the vehicle center to align with the new lane center laterally and keep the vehicle in the new

lane, as shown in Figure 3.24.

3.3.4 Evolved Model

Evolutionary methodologies as described in Chapter 2 can also be applied to evolve different human

driver behavior models with parameters tuned automatically. An example will be presented in

Section 5.4, where a smooth driving behavior is evolved.

45

Chapter 4

Evolutionary Design of Sensory
Systems

As a first case study, the evolutionary engineering design synthesis methodology presented in Sec-

tion 2.3 is applied to develop a collective sensory system for intelligent vehicles [Zhang et al. 2003a,

Zhang et al. 2003b]. This case study is concerned with the configuration design of a collective on-

board traffic monitoring sensory system for intelligent vehicles, addressing all of the engineering

design challenges mentioned in Section 1.2. Different evaluation tests are utilized to synthesize

novel design solutions efficiently. To assist the engineers in the design decision-making process, the

evolutionary design synthesis methodology is applied to generate the full family of Pareto optimal

design solutions, representing different engineering design trade-offs under various conditions and

formulations of the design problems [Antonsson et al. 2003].

4.1 Introduction

As mentioned in Section 1.1, intelligent vehicles aim to improve traffic safety as well as fluidity by

reducing collisions and collision impacts if unavoidable. To achieve this goal, an intelligent vehicle

should be equipped with necessary sensorial capabilities to monitor current dynamic traffic and road

conditions as well as host vehicle states in real time. Then the control system will be able to identify

and assess potential threats according to sensor data, and generate appropriate warning signals and

even brake automatically to avoid collisions if necessary. Therefore the first case study is focused

on the design of a collective intelligent sensory system, which identifies all potential dangers around

the vehicle and, for purposes of improving traffic safety and reducing crash risk, gives appropriate

warnings to bring attention to the unsafe factors probably overlooked by the driver.

This is not a simple problem since an individual intelligent vehicle is expected to efficiently

perceive, decide, and act in a heterogeneous group [Martinoli et al. 2002]. In other words, the key

question is: How to design an intelligent vehicle that has to share the road with a group of other

46

vehicles that it cannot control, nor can it assume collaboration, nor can it necessarily exchange

information with, e.g., standard cars? Even if it is assumed in the case study proposed here that

there is no decision and/or action taken by the host vehicle based on sensory data yet (i.e., no

consequences of its individual intelligent decision on the group behavior), deciding how many sensors,

what characteristics they should have, and where they should be placed in order to achieve high

monitoring performance and low cost, is not a trivial task, especially in a highly dynamic and

noisy traffic scenario. Of course, if there exist no considerations of cost, no noise, no variations in

manufacturing, and only a limited set of available choices for the sensors, a standard engineering

hand-coded solution may suffice and outperform what an evolutionary algorithm may find.

Although it is not guaranteed that a global optimum from a strict mathematical point of view

can always be generated, an evolutionary algorithm is able to discover some good and near-optimum

solutions suitable for the engineering design use. Highly tuned systems are often sensitive to small

imperfections, so engineers commonly design solutions to be slightly suboptimal to avoid such prob-

lems and increase robustness [Newman 2000].

4.2 Background

Today hundreds of sensors are used in a standard automobile, measuring linear and rotational

motions (positions, distances, speeds, accelerations), pressures, temperatures, air flow, fluid levels

and quality, etc., of all parts of the automobile. Automotive sensors must satisfy a difficult balance

between accuracy, robustness, manufacturability, interchangeability, and low cost [Fleming 2001].

Since the 1990’s there has been an increasing interest in developing new automotive sensors for

intelligent transportation systems to improve traffic safety, where obstacle detection and range/speed

measurements are of major importance. Several main technologies used for these purposes are

• Millimeter-wave radar

• Laser radar (or Lidar)

• Ultrasonic sensors

• Machine vision (camera) systems

• Infrared (IR) sensors

Millimeter-wave radars operate at specified government-regulated frequencies ranging between

24 GHz and 77 GHz, and they can accurately measure the range, range rate (i.e., relative speed), and

azimuth angular position of detected objects under a wide range of environmental conditions (rain,

snow, dirt, fog, darkness, etc.). The most popular waveform used by automotive radars is frequency-

modulated continuous wave (FMCW), which can track and measure the range and range rate of as

47

many as 32 targets. Range is derived from the transit time of the FMCW return signals, while range

rate is derived from the doppler frequency shift of the return signal. Mechanical or electronic beam

scanning can be utilized with a data update rate of 5 to 50 Hz. The measuring ranges for distance

and speed are customizable for short-, mid-, and long-range (up to 240 m) measurement needs with

different azimuth and elevation angles [Mende et al. 2005]. They can be mounted invisibly behind

other materials (e.g., bumper systems).

Laser radar, or Lidar (i.e., light + radar) emits narrow, pulsed, infrared beams at wavelengths

around 850 nm. Short-duration (25 ns) but high power laser pulses are emitted over wide range

of beam-scan (both horizontal and vertical) directions. Target distance is determined by transit

times of individual pulses. Speed information is derived from range information. Beam scanning

of automotive lidars can be accomplished by mechanically scanning systems, electrically switched

beam systems, or electro-mechanically driven mirror-scan mechanisms. Distances up to about 250 m

can be measured with resolution of a few cm and update rates of 10 to 50 Hz. Lidar sensors feature

high accuracy, wide angular coverage, and precise target location, but they need to be cleaned and

their performance is diminished in bad weather situations (e.g., heavy rain, snow, dirt, etc.).

Automotive ultrasound sensors are mainly used for parking aid applications because they offer

wide-area, near-distance beam coverage with relatively low cost. Current automotive ultrasound

sensors cover distances from about 10 cm up to 2.5 m with resolution of a few cm. These have

been in use for over 20 years; they are designed for low speed maneuvering and are not suitable for

high speed driving. Ultrasound sensors need to be visibly mounted at the vehicle, which might be

inconvenient for vehicle body design.

Machine vision systems use one or more cameras to monitor the current traffic situations. Ad-

vanced image processing software is usually required to provide further information, such as lane

recognition, object (e.g., traffic signs) classification, and forward path prediction/identification, etc.

They are useful in the lane departure warning systems, where a vehicle’s position relative to roadway

lane markers is monitored and a warning is issued when the vehicle drifts out of the lane. They can

also help collision avoidance systems to identify whether an object detected is in the path of the

host vehicle.

Pyrometers are passive infrared sensors evaluating temperature differences between objects and

their environment through measurement of infrared radiation energy. They are often used in night

vision systems and can help detect and classify pedestrians, deer, other cars, etc.

In summary, all technologies have certain advantages. On the other hand, fusion of sensing

information acquired by different sensing technologies offers the highest potential to further increase

the overall sensing performance and reliability by complementing each other’s advantages. Currently,

fusion of radar and camera information seems to be the most promising candidate [Hoess et al. 2004].

48

6�����	������	��

9����=��	�
�

�-	�������������

��>�#

���
	�

���
���

��6
���

��	
��

��
��

	��

�

��>�#

�
�

;�:���
=��	�
�

!����

�
��

��
�

'
��

��
�

.	
��

�
�

�

������
'�������
����

Figure 4.1: Sensor Parameters and the Target Detection Region

4.3 Problem Definition

The case study investigated in this chapter is a simple problem in a complex (dynamic and noisy)

environment. The goal is to determine the optimal configuration (such as number, type, and place-

ment) of distance sensors (e.g., radar or lidar sensors) on an intelligent vehicle, in order to monitor

the traffic (i.e., other vehicles) in a preestablished desired detection region around the host vehicle in

realistic traffic scenarios. The vehicle model used here is the kinematic embodied model, as described

in Section 3.2.2, and the detection region chosen is circular around the host vehicle, as shown in

Figure 4.1. An object vehicle is considered detected by the collective sensory system if the vehicle’s

body has overlap with at least one sensor’s scanning area or ray.

4.3.1 Sensor Parameters

Sensors are mounted on the periphery of the vehicles, as shown in Figure 4.1. The type and placement

parameters, as well as the number of sensors, are the design variables to be determined and optimized

according to the designer’s preferences on various performance measures and the trade-off strategies

chosen, which will be described in detail in Section 4.3.3. Except for the number of sensors, which

49

may take any positive integer values, all other design variables are encoded as discretized real

numbers selected from predefined finite feasible ranges. The placement parameters of each sensor

are characterized by two angles: the position angle ϕ (the angle between the front direction of the

vehicle and the radius pointing to the sensor’s mount) and the orientation angle θ (the angle between

the radius pointing to the sensor’s mount and the center line of the sensor’s scanning area), as shown

in Figure 4.1. The type of each sensor is specified by its range ρ and cone of view δ. Therefore, each

sensor is characterized by four design variables, and the number of design variables for a collective

sensory system with n sensors is 4n.

Each sensor also has a cost factor that depends on its range ρ and cone of view δ.1 Typically

the sensors with wider cones of view and longer ranges have a higher cost. This relationship can be

determined from real sensor data or sensor models. A simple linear relationship is assumed in this

case study:

costi = c1ρi + c2δi + c3 (4.1)

Total cost =
n∑

i=1

costi (4.2)

where costi, ρi, and δi are the ith sensor’s cost, range, and cone of view, respectively; c1, c2, and

c3 are constant coefficients; n and Total cost are, respectively, the number and the total cost of all

sensors used in the current sensory system. Note that costi, ρi, and δi are all positive real numbers

except that δi is also allowed to equal zero when the ith sensor is a line sensor.

As an important competing factor in the engineering design synthesis, the designer’s preference

for cost will be defined and incorporated into the fitness function, which will be introduced later in

Section 4.3.3.

This seemingly simple case study problem reflects all of the engineering design challenges men-

tioned in Section 1.2. First, the optimal number of sensors is unknown, hence the number of design

parameters as well as the complexity of the design solution is also open and increases with the

number of sensors in the solution. Second, improving the coverage of the detection region and at

the same time keeping a reasonable total cost for the whole sensory system are the two main design

objectives here, whose relative importance lies in the aggregated fuzzy fitness function, described in

Section 4.3.3, that leads to a trade-off between the two. Moreover, the evaluation process of can-

didate design solutions may be stochastic or deterministic, depending on the evaluation test used,

which will be described in Section 4.3.2.
1For a real sensor, besides its range and cone of view, the sensor cost may also depend on several other factors,

such as accuracy, scanning frequency, and power, etc., which are not included in this case study for simplicity.

50

4.3.2 Evaluation Tests

To understand the role of noise in shaping the evolved solutions, and to find out the best and most

efficient evaluation tool for this kind of design synthesis, six different types of evaluation tests are

implemented [Zhang et al. 2003a]: static, 1D/2D quasi-static, 1D/2D full coverage, and a kinematic

embodied test, as shown in Figures 4.2 as well as Figure 3.2. Static and full coverage (FC) tests are

deterministic tests while quasi-static (QS) and embodied tests are stochastic tests, where different

evaluation results (fitness values) are obtained by repeating the same evaluation test multiple times

for a given solution.

As mentioned in Section 3.2.2, sample traffic scenarios based on the kinematic embodied vehicle

models are simulated in Webots, where candidate sensory configuration design solutions are embed-

ded on the test vehicle to detect and monitor other object vehicles that enter the detection region

of the test vehicle. Each evaluation span here contains 2000 simulation time steps, representing

128 seconds in real time. The noise involved in this type of evaluation test, based on the kine-

matic embodied simulation, includes random initial conditions (e.g., position and preferred speed)

for each vehicle at each evaluation span, sensor and actuator noise (e.g., wheel slip) introduced to

the kinematic embodied vehicle model, and variations in driver behavior.

From the kinematic embodied simulation, 1D and 2D vehicle occurrence probability density func-

tions can be generated as described in Section 3.2.2 and shown in Figure 3.4 and 3.5. These PDF’s

represent an accumulation of vehicle occurrences for 5000 evaluation spans, averaging the temporal

variations involved in the kinematic embodied traffic simulation, and capture basic characteristics

of the simulated traffic scenarios. Based on these PDF’s, less computationally expensive and more

abstracted traffic simulation tests, such as the quasi-static and full coverage tests, can be defined in

terms of the simple point model as described in Section 3.2.1.

In the quasi-static tests, as shown in Figure 4.2 (b)(c), the test vehicle lies at the center sta-

tically, and object vehicles are generated randomly according to the PDF’s on a ring (1D) or in

the area (2D) within the detection region. While in the full coverage tests, the object vehicles are

placed systematically along the ring (1D) or the area (2D) within the detection region, as shown

in Figure 4.2 (d)(e), where the PDF’s are used to weigh the detection of the object vehicle at each

position in order to estimate the coverage achieved by the current sensory solution in the underlying

traffic scenario represented by the PDF’s, as explained in Section 4.3.3. In the static test shown in

Figure 4.2 (a), 20 static object vehicles are distributed evenly on the same 1D ring, representing a

simple control experiment, which is not related to a traffic scenario at all.

The six types of evaluation tests simulate the traffic scenarios with different levels of abstraction

and significantly different simulation time costs, as shown in Figure 4.3 and Table 4.1.2 In general,

more realistic simulations are relatively more computationally expensive. To be more efficient, a
2The experiments are conducted on computers with 1.5 GHz AMD CPU.

51

(a) Static

(b) 1D Quasi-static (c) 2D Quasi-static

(d) 1D Full Coverage (e) 2D Full Coverage

Figure 4.2: Graphical Representation of Different Types of Evaluation Tests Based on Point Model

52

 Static 1D QS 2D QS 1D FC 2D FC Embodied
1

10

100

1000

10000

R
el

at
iv

e
T

im
e

C
os

t

Evaluation Test Type

Figure 4.3: Approximate Relative Time Costs of Different Evaluation Tests Plotted on a Log Scale

Evaluation Test Time for 2500 Evaluations Relative Cost
Static 4.6 seconds 1.0
1D Quasi-static 15.6 seconds 3.4
2D Quasi-static 8.9 minutes 116
1D Full Coverage 9.7 seconds 2.1
2D Full Coverage 10.3 minutes 134
Embodied (Kinematic) 10.4 hours 8100

Table 4.1: Approximate Time Costs of Different Evaluation Tests

new type of evaluation test could be a hierarchical test that combines some of these basic types

of evaluation tests. In the hierarchical test, an abstracted simulation test is performed first as a

prescreening test prior to a more realistic and computationally more expensive test, which then in

turn also serves as a pretest of an even more realistic and expensive test, and so on. Therefore, only

if an individual solution performs well enough in a pretest, would it have a chance to be evaluated

under a more realistic test at the next level up in the hierarchy. In this way more computational time

will be invested on more promising solutions, and poor solutions can be recognized and eliminated

quickly with little simulation time cost. Although no results are presented in this thesis based on

a series of hierarchical tests, this approach will be applied in future work when appropriate, and

is expected to be plausibly more time-efficient, especially for cases with several evaluation tools of

different levels of abstraction and time costs available.

4.3.3 Fitness Function

As mentioned above, the “goodness” of design solutions is evaluated by fitness functions defined by

the designers according to the desired design goals. In this case study, the goal is to achieve the best

53

coverage of the detection region of the test vehicle while at the same time maintaining a reasonable

cost for the whole sensory system. Other performance criteria such as the resolution and reaction

time of the sensory system are ignored in this case study for simplicity.

First, the Coverage under various evaluation tests is computed as follows:

Coverage =
V∑

i=1

ki · PDF(αi, ri) (4.3)

where V is the number of vehicles effectively appearing within the detection region during the

evaluation span; ki is 1 if the ith object vehicle is detected, or 0 if it is not; αi and ri are, respectively,

the approaching angle and distance of the ith object vehicle relative to the test vehicle. The PDF

indicates the weight of importance at each particular position αi and ri. For full coverage tests,

the PDF is generated from the vehicle occurrence data, as those shown in Figure 3.4 and 3.5; while

for all other tests, the PDF is simply a constant (1/V) for any αi or ri and V > 0. Therefore the

Coverage ∈ [0, 1] represents the effective percentage of object vehicles detected by the collective

sensory system.

4.3.3.1 Preferences

As mentioned above, the fuzzy fitness function is based on the designer’s overall preference on

each candidate design solution, which depends on the individual fuzzy preferences on all relevant

performance criteria achieved by the candidate solution. All design preferences here are expressed

using fuzzy sets and take real values between 0 (totally unacceptable) and 1 (completely acceptable).

In this case study, the fuzzy preference functions, μcoverage and μcost, are defined for the two

competing factors, Coverage and Total cost, respectively. The preference for coverage (μcoverage)

is simply defined as a power function of Coverage with power β, showing the designer’s preference

for better coverage; while the preference for cost (μcost) is chosen to decrease linearly from 1 to 0

when Total cost increases from A to B (0 ≤ A < B):

μcoverage = Coverageβ β ∈ N (4.4)

μcost =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 Total cost ≥ B

1 Total cost ≤ A
B − Total cost

B − A
otherwise

(4.5)

where β = 2, A = 2, and B = 20 for the current case study, as shown in Figure 4.4. Note that

Coverage ∈ [0, 1] and Total cost ≥ 0, so the preference functions only need to be defined for the

appropriate ranges. These simple preference functions are chosen for convenience in this case study,

the same methodology can be easily applied with more complicated preference definitions.

54

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Coverage

μ co
ve

ra
ge

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Total cost

μ co
st

Figure 4.4: Designer’s Fuzzy Preferences for Coverage and Total cost

4.3.3.2 Aggregation

A common way to construct the fitness function with multiple criteria is to assign importance

weights to each criterion, and then aggregate the weighted preferences into an overall preference.

The best design will have the highest overall preference. All current multi-criteria decision makings

ultimately rely on the aggregation of disparate preferences with aggregation functions. The axioms

that an aggregation function should obey to insure rational design decision makings were presented

in [Otto and Antonsson 1991]. It was also shown [Scott and Antonsson 1998] that there is a family

of aggregation function operators Ps that spans an entire range of possible operators between min

and max, of which the set {Ps|s ≤ 0} has included all operators that satisfy the design axioms. The

class of functional equations [Aczél 1966], known as quasi-linear weighted means, is given by

Ps(μ1, μ2; w1, w2) =
(

w1 μ1
s + w2 μ2

s

w1 + w2

) 1
s

(4.6)

Here, μ1 and μ2 are individual preferences on desired performance criteria. The parameter s estab-

lishes the degree of compensation, or the trade-off strategy adopted by the designer. Higher values of

s indicate a greater willingness to allow high individual preference on one performance criterion to

compensate for the other lower one. The parameters w1 and w2 are importance weights, and their

ratio w =
w2

w1
is sufficient to characterize the relative importance of the two performance criteria.

The definition above is only for two attributes, but it is straightforward to be extended to cases

involving more criteria.

It was also shown [Scott and Antonsson 1998] that

P−∞ = lim
s→−∞Ps = min(μ1, μ2) (4.7)

P0 = lim
s→0

Ps = (μ1
w1 μ2

w2)
1

w1+ w2 (4.8)

55

P1 = lim
s→1

Ps =
w1 μ1 + w2 μ2

w1 + w2
(4.9)

P∞ = lim
s→+∞Ps = max(μ1, μ2) (4.10)

Therefore the min operator P−∞ indicates no compensation at all among various criteria and the

weighted geometric mean P0 represents the highest degree of compensation in design-appropriate

(i.e., s ≤ 0) aggregation functions. Note that the commonly used weighted sum P1 is just one

special instance (where s = 1) of this whole family of aggregation functions, which, as well as the

max operator, turns out to be an inappropriate aggregation function for rational engineering design

[Otto and Antonsson 1991, Scott and Antonsson 1998]. It was also shown that any Pareto optimal

point can be reached by a choice of some combination of the weight ratio w and design-appropriate

trade-off strategy s.

Based on the above results, the fuzzy fitness function used in this case study is defined to be the

overall preference aggregated as a generalized weighted mean of the individual preferences, and is

given by

Fitness(w, s) =
(

μ s
cost + w · μ s

coverage

1 + w

) 1
s

(4.11)

where

w ≡ wcoverage

wcost
> 0 and s ∈ [−∞, 0].

The design goal here is to maximize the fitness of the sensory configuration designs by maximizing

both design preferences, which, according to the preference curves shown in Figure 4.4, is equivalent

to increasing the coverage of the detection zone while at the same time reducing the total cost of

sensors. To get better coverage of the detection region, more sensors with wider cones of view and/or

longer ranges are needed, which tends to increase the total cost of the sensing system. While the

achievable coverage of the detection region depends, to an important degree, on the number and types

of the sensors. So a trade-off has to be made between the two, and the key point is how to choose the

weight ratio w and trade-off strategy s that lead to a desirable trade-off between the coverage and

system cost under specific design requirements. Hence it is important not to arbitrarily limit the

range of Pareto optimal points that can be selected by choosing a predetermined trade-off strategy.

A method for establishing w and s for a given problem was presented in [Scott and Antonsson 2000].

Different Pareto optimal solutions for this case study can be easily obtained by setting the pair of

weight ratio w and trade-off strategy s in Equation 4.11 and letting the evolutionary algorithm au-

tomatically synthesize solutions according to each fitness function efficiently [Antonsson et al. 2003].

Sample results are presented in Section 4.5.2. Then the design engineer will be able to learn what

level of performance can be achieved under certain preference settings, along with the corresponding

cost of the sensing system, even in an early stage of design. This will help guide the design decision

to a desirable trade-off between various competing design objectives.

56

Zero line Zero line

Crossover line Crossover line

Zero line Zero line

Crossover line Crossover line

Parents Children

Crossover

Figure 4.5: Illustration of the One-point Crossover Scheme for Two Sensory Systems with Different
Numbers of Sensors: The sectors (or lines) represent the sensor scanning areas (or rays).

4.4 Evolutionary Experiments

The evolutionary design synthesis method presented in Section 2.3 is applied to generate the “best”

sensor configurations under different conditions, i.e., different evaluation tests and different fitness

functions with different values of w and s, which reflect the designer’s different emphasis assigned

to the two competing factors, Coverage and Total cost, and how much higher preference values

compensate for lower ones.

The evolutionary algorithm here uses a parent selection based on the roulette wheel scheme,

an elitist generation selection, a one-point crossover, and a uniform mutation with insertion and

deletion of individual sensors from the sensory system, as described in Section 2.4. Especially the

one-point crossover can be further specified in the context of this particular sensory configuration

case study, since each sensor can be considered as a module in the design variable vector that encodes

the collective sensory system. The crossover line can be randomly chosen along the position angle ϕ

(as shown in Figure 4.1) from its range [0, 2π), i.e., randomly selecting a point along the periphery

ring where the sensors are mounted and connecting with the vehicle center. Then the sensors of the

parents between the crossover line and the zero line (ϕ = 0) are swapped in the crossover operation,

as shown in Figure 4.5.

Table 4.2 summarizes the parameter values used in the evolutionary algorithm. The probabilities

of genetic operators are fixed during evolutions and are defined for each design solution.

57

Parameter Value
Population size 50
Selection scaling factor 2
pcrossover 0.2
pmutation 0.182
pinsertion 0.05
pdeletion 0.05

Table 4.2: Evolutionary Algorithm Parameters

4.5 Results and Discussion

Systematic experiments are performed to verify the effectiveness of the evolutionary design synthesis

method in terms of this sensor configuration design case study problem. First, different evaluation

tests are used and their respective evolved solutions are cross-tested, and the most computationally

efficient evaluation test is identified. Then different values are chosen for the parameters in the

fitness function to generate different Pareto optimum design solutions.

4.5.1 Comparison of Different Evaluation Tests

Evolutionary runs based on the static, 1D quasi-static, and 1D full coverage tests are repeated 20

times using different random number generator seeds and terminated after 200 generations for each

run; 2D quasi-static and 2D full coverage evolutionary runs are repeated 10 times and stopped after

200 generations; kinematic embodied evolutionary runs are repeated 5 times and stopped after 100

generations each. These values are selected upon consideration of the relative computational costs

of the different levels of simulation (refer to Figure 4.3 and Table 4.1). The 1D/2D quasi-static and

full coverage evaluation tests use the 1D/2D PDF’s shown in Figure 3.5 and 3.4, respectively, and

the traffic conditions in the kinematic embodied simulations are the same as those used to generate

the PDF’s.

The number of sensors is either evolved (variable) or preestablished (in this case, six sensors).

For the evolutionary runs with a variable number of sensors, the initial population is randomly

generated with sensory systems with a randomly chosen number of sensors from 1 to 20.

Note that the quasi-static and kinematic embodied tests are stochastic evaluation tests, so each

candidate solution’s fitness value during evolutions is based on not only one time performance but

an aggregation of multiple re-evaluations, as mentioned in Section 2.4.5, where the number of eval-

uations depends on the number of generations a solution has survived. The minimum aggregation

criterion is used here to search for robust solutions, and it has been verified that this scheme outper-

forms standard evolutionary algorithms when dealing with noisy fitness functions [Pugh et al. 2005].

Figure 4.6 (Top) shows a comparison of the performances achieved by the best design solutions

58

Embodied

Embodied

Figure 4.6: (Top): Performances of the Best Design Solutions Evolved under Different Conditions
and Evaluation Tests with each Final Noise Test Conducted under the Same Evaluation Test Used in
Evolution, respectively; (Bottom): Numbers of Sensors Used by the Best Design Solutions Evolved
with Variable Number of Sensors

59

at the last generations of the evolutionary runs with different evaluation tests and under different

conditions, i.e., forced symmetry (Sym) on the sensory configuration or not (Asym), fixed (6) or

variable number (V#) of sensors. The performances shown are statistics of the best final fitness

values obtained from the final noise tests conducted with the same evaluation tests used in the

evolutions, respectively. Note that for the deterministic evaluation tests (i.e., static and full coverage

tests), the final test is just a single evaluation test; while for stochastic evaluation tests (i.e., quasi-

static and embodied tests), a final noise test contains 100 repeated evaluations for each individual

and again the worst result over the 100 evaluation results is taken to be the final fitness value to

search for the most robust solution.

In the histograms shown in Figure 4.6 and 4.7, the height of a column represents the average

value, while error bars and triangular marks, respectively, correspond to the standard deviations and

the maximum values over the best design solutions evolved with repeated evolutionary runs under

the same type of evolutionary experiment.

Figure 4.6 (Bottom) shows the numbers of sensors used by the best design solutions evolved with

variable number of sensors, which provide some hints of the optimal number of sensors needed under

the specified conditions. This is also the reason why six is chosen to be the number of sensors for

the cases with a fixed number of sensors.

Figure 4.7 shows the performances of the best design solutions evolved under different conditions

and evaluation tests cross-checked under the same final evaluation test, i.e., the 2D full coverage

test (Top) and the kinematic embodied test (Bottom), respectively.

It is interesting to notice that the two cross tests show similar trends for qualitative compar-

isons among the best results from different evolutions, except that the embodied test results are

characterized with more variation. This is expected since the PDF used by the 2D full coverage

test is generated from data accumulated over much longer embodied simulation time (5000 evalu-

ation spans) than the embodied final noise test (100 evaluation spans), which in turn reduces the

noise effect. The two tests are intrinsically quite different: one being deterministic with just a single

evaluation test and the other being stochastic with 100 evaluation tests of expensive embodied simu-

lations; hence the 2D full coverage test is a much more efficient test that could replace the embodied

test itself in the final noise tests.

In addition, as expected, the static test is the simplest but has the worst performances in the

cross tests shown in Figure 4.7 due to lack of traffic information, although a comparable level of

performance is achieved in its “native” final test as shown in Figure 4.6. On the other hand,

significant differences are barely observed among the best results achieved by the embodied evolution

and other types of evolutions. In other words, the performances of the evolutionary design synthesis

under the expensive embodied evaluation and those cheaper ones based on the traffic PDF’s are

very close under general design conditions. The results from 2D full coverage and quasi-static

60

Embodied

Embodied

Figure 4.7: Performances of the Best Design Solutions Evolved under Different Conditions and
Evaluation Tests with the Final Noise Tests Conducted under the 2D Full Coverage Evaluation Test
(Top) and the Kinematic Embodied Evaluation Test (Bottom), respectively

61

evolutions are almost always comparable to, if not better than, those from the embodied evolutions,

which suggests that the computationally expensive embodied test could be replaced by simpler and

significantly faster evaluation tests during evolutions without compromising the performance of the

design solutions synthesized. Moreover, the 1D/2D full coverage and quasi-static evolutions have

achieved almost interchangeable performances in most cases, with the 2D cases slightly better than

the 1D cases, although the PDF’s are used quite differently in the two types of evaluation tests, as

explained in Section 4.3.3.

Furthermore, Figure 4.6 and 4.7 also show that enforcing symmetry does not necessarily improve

the performance achieved at the end of evolutions. Enforcing symmetry (and therefore reducing the

search space to half) usually only shortens convergence time but does not lead to major improvement

in performance of the evolved results, since 100 or 200 generations is long enough to synthesize good

design solutions in asymmetric cases.

Moreover, major difference is not observed between the performances achieved in the fixed six-

sensor cases and the corresponding variable number of sensors cases. Hence the exact optimal

number of sensors need not be known beforehand, which can be left to the evolutionary algorithm to

discover. Finally, it is also observed that a variety of good design solutions with different numbers of

sensors can achieve nearly the same level of performance, providing multiple alternative solutions.

4.5.2 Evolving Engineering Design Trade-offs

In this section, the automatic design synthesis method described above is applied to generate the

best sensor configurations with different values of the weight ratio w and trade-off strategy s in the

fitness function (Equation 4.11), which reflect the designer’s different emphasis assigned to the two

competing factors, Coverage and Total cost, and how much higher preference values compensate

for lower ones.

Since the evolutions under 2D full coverage and quasi-static tests can generate design solutions

of equivalent, if not better, quality as those under the embodied test, as shown in Section 4.5.1,

results exclusively gathered with a 2D full coverage test are presented in this section for simplicity

and computational efficiency, because the 2D full coverage test is a deterministic implementation

about 60 times faster than the embodied simulation, as shown in Table 4.1.

The evolutionary runs are conducted with the 2D full coverage evaluation test based on the

2D traffic PDF shown in Figure 3.4. For simplicity, the sensor configurations are forced to have

“modified” left-right symmetry in the evolutions, i.e., the sensors are generally left-right symmetric

except that those lying close to the symmetry axis are mirrored to the opposite end, as illustrated

in Figure 4.8, 4.9, and 4.10, conforming to the traffic PDF used. For each different experiment,

evolutionary runs are repeated 10 times with different random number generator seeds and termi-

nated after 200 generations for each run. Each initial population is randomly generated with sensory

62

systems with a randomly chosen number of sensors from 2 to 20, and the final optimal number of

sensors is determined by the evolutionary algorithm.

Figure 4.8, 4.9 and 4.10 show the results obtained from the evolutionary design synthesis exper-

iments under three different fitness function settings, respectively. The top plots show the evolution

processes of the mean of the population Fitness, as well as the two individual preferences, μcoverage

and μcost, over 200 generations; while the bottom plots show the corresponding best sensor configura-

tions evolved under each specific condition with their respective values of Coverage and Total cost.

Figure 4.8 shows the evolutionary result of an experiment with the weight ratio w =
3
17

and

the degree of compensation s = 0 in Equation 4.11, which indicates that reducing cost is considered

to be relatively more important than increasing coverage, and that the higher individual preference

(μcost) can compensate for the lower one (μcoverage). As a result, a simple and inexpensive sensory

system of four sensors with low cost and low coverage is selected to cover only the regions with

apparently high vehicle occurrence probability, as shown in Figure 3.4.

On the contrary, Figure 4.10 shows the result of an experiment with the weight ratio w = 4 and

the degree of compensation s = 0 in Equation 4.11, which means that the designer emphasizes on

obtaining better coverage rather than reducing cost, and that the same trade-off strategy is adopted

with opposite effects, i.e., the higher individual preference (μcoverage) can compensate for the lower

one (μcost). Consequently, a rather complex and expensive sensory system with eight sensors is

evolved to cover most areas of the detection region with a coverage rate of 98%.

Finally, Figure 4.9 shows the result of a special case with the degree of compensation s = −∞,

which means that the minimum of the two individual preferences is taken to be the overall preference

regardless of their relative weights, i.e., a non-compensating trade-off strategy is adopted. A sensory

system of medium cost and coverage is selected by the evolutionary algorithm in this case.

As expected, the evolutionary engineering design synthesis methodology selects considerably

different design solutions under different choices of fitness function parameters. More experiments

based on different combinations of w and s are performed and the set of the final best trade-offs

reached by the evolutionary algorithm constitutes an approximate feasible Pareto optimal frontier

for this design problem, which is shown in Figure 4.11. The top graph illustrates the Pareto frontier

by plotting the Coverage versus Total cost of the best sensory configurations evolved with different

fitness function parameters, while the bottom graph shows the same Pareto frontier depicted in

terms of the fuzzy preferences μcoverage and μcost. Each data point represents the best result of one

particular type of evolutionary experiments under a given combination of w and s in Equation 4.11.

The top graph of Figure 4.11 quantitatively outlines the general extent of the achievable coverage

at various levels of cost: The coverage increases as the cost increases, and the rate of coverage increase

lessens when the coverage approaches its upper bound 1, which agrees with common sense. It is

desirable to maximize both performance measures, i.e., reach the utopia point at the upper-right

63

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s,

 μ
co

ve
ra

ge
 &

 μ
co

st

Fitness
μ

coverage
μ

cost

Coverage = 53%, T otal cost = 4.6

Figure 4.8: Evolution Process of the Population Mean Fitness and Preferences (Top) and the Best

Sensor Configuration Evolved (Bottom) with s = 0 and w =
3
17

64

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s,

 μ
co

ve
ra

ge
 &

 μ
co

st

Fitness
μ

coverage
μ

cost

Coverage = 82%, T otal cost = 7.7

Figure 4.9: Evolution Process of the Population Mean Fitness and Preferences (Top) and the
Best Sensor Configuration Evolved (Bottom) with s = −∞ and arbitrary w (i.e., Fitness =
min(μcoverage, μcost))

65

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s,

 μ
co

ve
ra

ge
 &

 μ
co

st

Fitness
μ

coverage
μ

cost

Coverage = 98%, T otal cost = 11.9

Figure 4.10: Evolution Process of the Population Mean Fitness and Preferences (Top) and the Best
Sensor Configuration Evolved (Bottom) with s = 0 and w = 4

66

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Cost

C
ov

er
ag

e

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

μ
cost

μ co
ve

ra
ge

Figure 4.11: Evolved Pareto Frontier for the Design Trade-offs Present in the Case Study

67

corner of the bottom graph of Figure 4.11, which is, however, impossible to be achieved. Therefore

a trade-off has to be quantitatively established with an appropriate ratio of the relative importance

(w) and degree of compensation (s) between the two performance measures.

This result can be helpful for engineers in the design decision-making process. With the automatic

design synthesis method proposed, these results can be obtained with minimum human engineering

effort and a modest computational cost.3 Although the best solutions found by the algorithm do not

necessarily represent the optimal solutions under the specified conditions, they can quickly provide

the design engineers with a general idea of various novel, promising configurations in the early stage

of design.

Finally, the other parameters in the fitness function (Equation 4.1, 4.4, 4.5, and 4.11) and the

evolutionary algorithm (Table 4.2) can also be changed by the design engineers to investigate their

respective influences on the final results evolved and try to advance toward the desired design goals.

4.6 Conclusion

A first case study on effective design synthesis of sensory configurations for intelligent vehicles under

various design requirements is presented, with special emphasis on addressing the modern engineering

design challenges mentioned in Section 1.2. The engineering design synthesis method presented

in Section 2.3 is applied to the case study problem and novel design solutions are synthesized

automatically by the evolutionary algorithm.

The candidate design solutions are evaluated under several different levels of deterministic and

stochastic simulations of traffic scenarios in the evolutionary process. The results indicate that noisy

and time-consuming, but more realistic embodied simulations can be apparently replaced by more

abstract and computationally more efficient evaluation tests without compromising the quality of

the final evolved results in terms of this case study problem.

Different engineering design trade-offs are automatically synthesized utilizing fuzzy fitness func-

tions with different importance weighting ratios and trade-off strategies selected for multiple per-

formance measures, which can provide useful information to assist design engineers in the design

decision-making process.

The experimental results presented in this chapter show that the proposed evolutionary design

synthesis method can be efficiently applied to deal with the engineering design challenges appropri-

ately, and that it appears to be a promising approach for more complex engineering design synthesis

problems.

3An evolution of 200 generations with the 2D full coverage test and a population of 50 individuals requires about
22 minutes of computational time on a computer with 1.5 GHz AMD CPU.

68

Chapter 5

Evolution of Neural Controllers

In this chapter, the evolutionary design synthesis methodology presented in Section 2.3 is applied to

evolve neural controllers for a special class of intelligent vehicles, i.e., miniature autonomous mobile

robots. Both feed-forward and recurrent neural networks can be evolved with fixed or variable

network topologies. The efficacy of the evolutionary methodology is demonstrated again in the

framework of two case studies on collective robotic inspection of regular structures as well as simple

driver behavior modeling, respectively, where the vehicles (robots) are only equipped with limited

local on-board sensing and actuating capabilities.

The neural controllers generated during evolutions are evaluated in a sensor-based kinematic

embodied simulation environment with realistic noise, as introduced in Section 3.2.2. If the embod-

ied simulator is faithful enough for the target hardware platform, evolved controllers can be easily

transfered to real robots [Miglino et al. 1995]. Homogeneity of the robot team is enforced here to

limit the search space, achieve scalability, and bypass the credit assignment problem typically aris-

ing in distributed systems consisting of individuals using only local information [Hayes et al. 2003,

Versino and Gambardella 1997].

The performances of the evolved neural controllers are compared with that of a hand-coded rule-

based controller in terms of the inspection case study under the same conditions [Zhang et al. 2006].

It will be shown that the evolutionary algorithm appears powerful and promising for automatic

synthesis of novel neural controllers, requiring little prior domain knowledge or neural network

structural information. The evolved solutions can serve as good starting points for further study

and optimization by human engineers.

5.1 Background

Miniature autonomous mobile robots share important characteristics with simple biological sys-

tems: robustness, simplicity, small size, flexibility, and modularity. Each individual is rather simple

with limited local sensing and actuating capabilities, while as a group they can accomplish diffi-

69

cult global tasks in dynamic environments, without any external guidance or centralized control

[Bonabeau et al. 1999].

Design and control of such an intelligent vehicle (robot) swarm are difficult mainly because their

group behavior is an emergent property of their mutual interaction and their interaction with the

environment. The robot swarm becomes a distributed dynamical system due to independent parallel

actions of different individuals [Martinoli 1999]. Since the robots only have partial perceptions based

on crude and noisy sensors, limited computational capabilities and energy budget, managing the

robots to solve a global task under such constraints presents significant technical challenges. This

is especially true because human intelligence is specialized in individuals and centralized control,

instead of the collective intelligence shown in nature.

Evolutionary robotics [Nolfi and Floreano 2000] is a new and promising technique for automatic

design synthesis of control strategies for autonomous robots in a distributed control system, especially

for miniature robots. Inspired by nature, evolutionary robotics makes use of tools such as neural

networks and evolutionary computation algorithms.

Inspired by biological neural networks, Artificial Neural Networks (ANN) have been a powerful

computational tool widely applied in science and engineering [Hertz et al. 1991]. They are often

used to implement robot controllers because of their light computational requirements and nonlinear

basic elements, properties that allow for real-time control and, potentially, modular implementation

of complex perception-to-action functions. ANN can be designed and trained using various methods,

including those based on evolutionary computation [Yao 1999, Nolfi and Parisi 2002]. As opposed to

optimization of behavior-based controllers, the key feature of ANN evolution is that, the genotypical

searching space is less constrained by ANN models and the resulting phenotypical solution directly

shapes the robot behavior as a whole.

Evolutionary computation algorithms, as reviewed in Chapter 2, have gained considerable pop-

ularity as effective tools for searching vast, complex, deceptive, and multi-modal search spaces with

little domain-specific knowledge. In recent years, they have found natural applications in the au-

tomatic synthesis of artificial neural network controllers for intelligent agents [Patel et al. 2001].

Evolutionary algorithms allow co-evolution of the network architectures as well as the connection

weights within task-specific design constraints. As stochastic optimization methods, evolutionary

algorithms are good at working in noisy environments to search for robust solutions, and can easily

adapt to collective robotic tasks.

5.2 Evolution of Artificial Neural Networks

Based on the same general evolutionary optimization loop presented in Section 2.3 and applied

in Chapter 4, the basic evolutionary loop used for automatic neural network controller synthesis

70

Figure 5.1: Evolutionary Run for Automatic Robotic Neural Network Controller Synthesis

is shown in Figure 5.1. Evolutions of both feed-forward and recurrent neural network controllers

are performed, using real-valued vectors to encode synaptic weights with variable ANN structures,

traditional roulette wheel parent selection with fitness scaling, elitist generation selection, and both

crossover and mutation genetic operations. Only synaptic weights are evolved if the ANN topology

is predefined, otherwise the network structure and synaptic weights are simultaneously evolved.

5.2.1 Encoding

The ANN synaptic weights are directly encoded as a sequential vector of real numbers. The vector

length is fixed if the network structure is a priori determined, where a fully connected ANN is

usually assumed and the fixed vector length can be computed as follows:

nc =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 + ni)no if nh = 0 & feed-forward

(1 + ni)nh + (1 + nh)no if nh > 0 & feed-forward

(1 + ni + no)no if nh = 0 & recurrent

(1 + ni + nh)nh + (1 + nh + no)no if nh > 0 & recurrent

(5.1)

71

where nc, ni, nh, no and “1” represent the numbers of fully connected weights, inputs, hidden

neurons, outputs, and biases, respectively.

When the ANN structure is also evolved, nh becomes a design variable to be optimized. So the

design vector length must also be variable to accommodate the variable ANN structure and evolve

solutions of suitable complexity. To give the algorithm more freedom to search for the appropriate

network structures, no restrictions are imposed on the number of permissible connections and the

variable vector length is computed as follows:

nc =

⎧⎨
⎩ (1 + ni)nh + (1 + ni + nh)no if feed-forward

(1 + ni + nh + no)(nh + no) if recurrent
(5.2)

where nc represents the maximum possible number of connections, but not all of them must be active.

A non-zero real value in the genotype vector represents the weight value of an active connection,

while zero values represent inactive (non-existent) connections. Note that the nh = 0 cases of

Equation 5.1 are also included in Equation 5.2.

5.2.2 Initialization

The population is randomly initialized at the beginning of an evolutionary run. For fixed network

structure cases, all the genotype vectors are of the same length with synaptic weight values randomly

drawn from [−1, 1]. For variable network structure cases, first nh is randomly selected from 1 to

101 for each individual, then the genotype vector length is computed by Equation 5.2, and each real

number in the genotype vector is set to 0 (inactive) or a random value between −1 and 1 (active)

with probability 50%.

The networks initialized this way might contain some useless hidden neurons that do not con-

tribute to the outputs at all. To improve the algorithm efficiency, they are identified and removed

from the network by a simple routine after initialization to make the network more concise and

relevant.

5.2.3 Genetic Operations

As mentioned above, crossover and mutation are both used in the evolutionary design synthesis

process here.

In fixed ANN structure cases, standard crossover operators such as one-point or uniform crossover

can be directly applied to two real vectors of equal length. In variable ANN structure cases, the

crossover must operate on two vectors of different lengths, which represent two distinct network

structures.
1There is, however, no upper limit for nh during the evolution.

72

It is known that evolutions relying on crossover do not perform well in ANN topology optimization

because of their intrinsic disruption feature and the permutation problem [Yao 1999]. To protect

possible modules in the network, crossover points can not be arbitrarily chosen along the whole

genotype vector. Following the scheme mentioned in Section 2.4.3 and illustrated in Figure 2.2, the

genotype vector of ANN can be grouped into modules or blocks according to the connections with

hidden neurons. For example, “Module 0” could represent all the connections directly from inputs

to outputs (i.e., not connecting any hidden neurons), “Module 1” could consist of connections to

and from hidden neuron #1, “Module 2” correspond to those of hidden neuron #2, and so on. The

one-point crossover implemented here only allows interchange of corresponding modules between

the parents. In practice, the algorithm tries to match the sequence of the hidden neuron modules

as much as possible before crossover to reduce influence of the permutation problem. Then, from

all possible crossover points, as shown in Figure 2.2, a random crossover point is selected for both

parents and their modules below the crossover point are exchanged to create two new offspring

networks. For the example shown in Figure 2.2, two parents networks of 6 and 3 hidden neurons

produce two new networks of 4 and 5 hidden neurons, respectively.

Mutation is also a powerful tool for creating new network structures as well as modifying synaptic

weights. In fixed structure cases, only Gaussian mutation is used to change values of the synaptic

weights by a small amount randomly drawn from a Gaussian (normal) distribution. In variable

structure cases, two extra types of mutations are introduced. First, a hidden neuron could be

added to or removed from the current network configuration. Second, a connection between any

two neurons could be turned on or off by switching between non-zero and zero values. When a

hidden neuron is added or a connection is switched on, the synaptic weight values are initialized as

described in Section 5.2.2.

The crossover and mutation operations could also introduce useless hidden neurons, which are

identified and removed from the network before evaluation. In addition, identical individual networks

might be generated as a result of these genetic operations. If identical copies are allowed to exist

in the population, the power of crossover and pool diversity are reduced, which might cause pre-

convergence of the evolution. Therefore each new individual is compared to all other individuals in

the population, and any redundant copies are removed before the evaluation step.

5.3 Case Study 1: Collective Robotic Inspection

This case study is concerned with the automatic synthesis of ANN-based robotic control algorithms

to enable autonomous inspection of regular structures using a homogeneous robot swarm. The goal

is to design relatively simple “local” control strategies for individual robots such that their emergent

group behavior can accomplish the complex global task of cooperative inspection. Sensor uncer-

73

tainty and vehicle position uncertainty should be taken into account when planning the individual

movements that carry out the integral motion plan, i.e., the collective effect of the multi-vehicle

platform as a whole.

5.3.1 Application Background

Autonomous robots find a wide variety of applications in the real world to release humans from

various chores, especially when the working environment is hazardous or not easily accessible by

humans. For instance, inspection of human-occupied space transportation systems and platforms

is currently heavily labor-intensive, costly and time-consuming. Another example could be the

inspection of propulsion systems (such as jet turbines), which usually requires full engine break-down

and human experts’ visual inspection using borescopes, a process which is both time-consuming and

cost-intensive [Martin and Stewart 2000].

Therefore it is desirable to have the inspection task performed autonomously by a swarm of

miniature mobile robots in these situations [Wong and Litt 2004], where robustness and fault toler-

ance are expected to be achieved through redundancy in task handling. In addition, the relatively

simple agent controllers demand minimal computational capability, which in turn allows for greater

miniaturization of the robotic agents. This idea is intellectually appealing and it could find broader

applications for general inspection of engineered or natural structures.

5.3.2 Problem Formulation

A simple 2D scenario is considered, where the objects to be inspected have regular cylindrical shapes

with a diameter of 20 cm and they are separated from each other by a distance of about 60 cm, as

shown in Figure 5.2. The kinematic vehicle model used here is again based on the miniature Khepera

robot with a diameter of 5.5 cm, as introduced in Section 3.2.2 and shown in Figure 3.3. A continuous

repetitive world without boundaries can be simulated by placing the robots to the corresponding

opposite side when they move out of one of the four sides (i.e., wrap-around world).

It is assumed that completely circumnavigating an object is a good emulation of the scanning-for-

flaws maneuver. Thus the collective performance measure for this case study depends on the ratio of

the inspected object surfaces over a pre-specified time span to all that needed to be inspected in the

world. The maximum performance “1” can be achieved by complete coverage, i.e., fully inspecting

all distinct objects in the world, within the time limit. Note that only 12 distinct objects are present

in the repetitive world shown in Figure 5.2 under the wrap-around condition.

The robots are equipped with eight distance sensors with extended virtual sensor range of 10 cm,

as shown in Figure 3.3 (b). The sensors are assumed to be line sensors characterized by a linear

response with the distance: The closer the sensed object the higher the value. Sensor values are

74

Figure 5.2: Top View of the Structure Inspection Experiment Setup in the Kinematic Embodied
Simulator (Webots): The bigger blue disks represent the cylindrical objects to be inspected while
the smaller green dots are the miniature robots.

integers ranging from [0, 1023] with ±10 white noise, and random integer values drawn from [0, 10]

are returned when nothing is sensed. These crude and noisy sensor measurements, normalized to

[0, 1], serve as the only inputs to the ANN controller to be evolved. Information received from

teammates could also be added in the multi-agent scenario in the future.

Both hidden (if any) and output neurons use sigmoid output functions producing outputs in the

range of [0, 1]. The ANN has two outputs mapping to the two wheel speeds2 of the robots, taking

integer values from [−20, 20], with each speed unit representing 8 mm/s in the real world. Wheel

slippage is also simulated with ±10% white noise on wheel speeds at each simulation step.

The geometric dimensions in this case study are chosen such that the robot can detect at most

one object structure (besides any teammates) at any time, and there is a good chance that it might

detect nothing at all. The inspection task requires the robot to approach an object structure, inspect

it with minimal redundancy and maximum speed, leave it, and search for other objects. In collective

scenario the robot also needs to distinguish its mobile teammates from static objects to be inspected

and avoid teammates. Although one could implement a heuristic hand-coded rule-based controller

(see Section 5.3.3), this is nevertheless a non-trivial task for a neural controller reading eight crude

distance sensors and controlling two imprecise motor wheels directly. Indeed, the controller must

not only evolve basic reactive behaviors such as object search, object inspection (i.e., follow the

2Either the left and right speeds, or the forward and rotation speeds.

75

;�:�����������?�������,�
<@

6�����������	���

���

��

;�:�������9�������� 9�������
���	�����

9�������

;�:���

;�:����5������	��

�����

6������9��������
���

��

!	�	���5������	���
��

���

Figure 5.3: The Logic Scheme of the Hand-coded Rule-based Controller for Structure Inspection

contour of the object), and teammate avoidance, but also correctly sequence them: for instance,

switching from object search to inspection when an object is found, and searching for new objects

after finishing inspecting an object.

5.3.3 Hand-coded Controller

In order to create a baseline of the achievable level of performance in this specific case with a

traditional engineering design method based on human intelligence, a simple hand-coded controller

based on logical rules is implemented for the same task as described in last section. It exploits

exactly the same sensor inputs and controls the same motor outputs as the evolved ANN controller

solutions, and can be used to evaluate and compare with the evolved ones. As shown in Figure 5.3,

this basic hand-coded controller is only based on the robot’s crude distance sensor inputs and some

internal timers. There is one key parameter that controls how long the robot keeps inspecting an

object. This parameter depends on the circumference of the objects to be inspected3 and is manually

tuned by systematic search in order to get the best performance. Except for that, the robot has no

other information about the objects (e.g., locations) and no memory of the past, and there is no

communication between teammates.

Although it is rather straightforward to implement such a simple hand-coded controller for the
3It is assumed here that all objects to be inspected have the same shape and size, as shown in Figure 5.2.

76

ANN Type Description Symbol Pool Size

feed-forward without any hidden neurons ffnh 50
recurrent without any hidden neurons rcnh 50
feed-forward with n∗

h hidden neurons ffvh 100
recurrent with n∗

h hidden neurons rcvh 150
∗Note that nh ≥ 0 is a variable number.

Table 5.1: Different ANN Types Considered in the Evolutionary Design Synthesis

specific scenario defined in Section 5.3.2, it is not obvious how to complete the same task with a

structural ANN controller. Moreover, it becomes more intractable, even infeasible, to implement

such a hand-coded controller for more complex (e.g., inspection of 3D, irregular structures) scenarios

without raising the complexity and requirement for each agent significantly, where evolutionary

algorithms might be more appealing to find a suitable trade-off.

On the other hand, more complex behavior-based controllers have been developed especially for

the turbine blade inspection case study [Correll and Martinoli 2004, Correll and Martinoli 2005],

which explore the special geometric properties of the turbine blades as well as information re-

ceived from teammates, etc. In addition, a theoretic coverage algorithm based on graph represen-

tation was presented for complete inspection of various convex objects in a 2D test environment

[Easton and Burdick 2005], where complete object geometry and location information with perfect

omnidirectional sensor models are assumed. It is expected that these controllers would achieve better

performance under specific conditions, but they also have higher requirements on each robot (e.g.,

more memory, better sensors, and extra communication modules), need more known information

of the environment to be inspected, and utilize more complex and more specialized hardware and

control software.

5.3.4 Results

The evolutionary design synthesis method presented in Section 5.2 is applied to evolve ANN con-

trollers under different configuration settings: feed-forward or recurrent networks with or without a

variable number of hidden neurons, as shown in Table 5.1. The population sizes of the evolutions

depend on the dimension of the genotype vector to be optimized. The first two types of neural

networks are of simplest fixed topologies with shortest vector lengths and smaller pool sizes. The

latter two types of neural networks are of variable structures with longer vector lengths on average

and larger pool sizes.

For each type of ANN controller synthesis, a series of evolutionary experiments are conducted

with different output speed maps and different coefficients in the sigmoid neuron output function.

For each evolutionary experiment, 5 evolutionary runs with different random seeds are executed,

77

Figure 5.4: Screen Shot of the SRSO Scenario

each lasting for 200 generations.

As mentioned above, the fitness evaluation of candidate controller solutions in the kinematic

embodied simulation environment is characterized with noise, due to sensor and actuator noise (e.g.,

wheel slip) introduced as well as random initial conditions for each evaluation span. However, only

one single evaluation is performed for each individual during the evolutions to save computational

time, because the evaluations here are significantly more computationally expensive than the genetic

operations and the variation of fitness value of a given solution is small compare to population fitness

variance. In this case single evaluation (i.e., smallest sample size) appears to be a computationally

effective strategy [Fitzpatrick and Grefenstette 1988, Miller and Goldberg 1996]. Again a final noise

test of 100 evaluations is performed for each ANN controller in the final population of each evo-

lutionary run as well as the hand-coded controller to get fair performance comparisons of different

controllers. Different aggregation criteria (minimum, geometric mean, average, etc.) can be used as

a measure to estimate the overall performance of each controller from its 100 fitness sample values.

In the following sections, the inspection task is approached by three systematic steps: the sin-

gle robot single object scenario (Section 5.3.4.1), the single robot multiple objects scenario (Sec-

tion 5.3.4.2), and the multiple robots multiple objects scenario (Section 5.3.4.3).

5.3.4.1 Single Robot Single Object (SRSO) Scenario

The global problem of collective robotic inspection of multiple objects can be decomposed to the

microscopic interaction between a single robot and a single object, as shown in Figure 5.4. Here the

78

S
E

S E

(a) (b)

Figure 5.5: Sample Robot Trajectories of the SRSO Scenario for 500 Time Steps (32 s) Using the
Hand-coded Rule-based Controller (a) and the Best Evolved ANN Controller (b): “S” represents the
constant starting point and “E” the ending points, with “+” symbols placed along the trajectories
every 40 time steps (2.56 s).

goal of the robot is to make one and only one full circle of the object as soon as possible without any

collisions. A short evaluation span of 500 time steps4 is chosen here. The robot always starts at the

same initial position and orientation (facing the object) for all evaluation spans here to reduce noise

effects. Walls are included in this scenario to facilitate the development of object avoidance behavior

of the ANN controllers during evolutions. Walls can be distinguished from the circular-shaped object

by their different sensory value patterns.

Figure 5.5 shows the sample robot trajectories with the hand-coded controller and the best ANN

controller evolved, respectively. It is interesting to note the distinct behaviors of the two robots

under different controllers. The robot with the hand-coded rule-based controller clearly follows the

logic shown in Figure 5.3: It goes directly to the object, inspects it by walking around it, then leaves

and starts a random walk. The robot with the evolved ANN controller hangs around in circles after

it finishes the inspection task.

For this scenario, neural controllers that have access to an additional timer input have achieved

better results than those do not, and are comparable to the hand-coded controller, which also uses

timers. This implies that timing is a key factor here probably due to lack of spatial clues in the

world. It was shown that recurrent neural networks can be trained to generate this additional timing

signal as needed [Gers et al. 2002].

4Each time step simulates 64 ms in real time.

79

S

E

S

E

(a) (b)

Figure 5.6: Sample Robot Trajectories of the SRMO Scenario for 2000 Time Steps (128 s) Using
the Hand-coded Rule-Based Controller (a) and the Evolved ANN Controller (b). The dashed lines
delimit the wrap-around boundaries. “S” represents the random initial starting points and “E” the
ending points. The trajectories are shown in gradually changing colors with “+” symbols placed
along the trajectories every 40 time steps (2.56 s).

5.3.4.2 Single Robot Multiple Objects (SRMO) Scenario

A single robot is set to explore the multi-object scenario shown in Figure 5.2 in the SRMO scenario.

Again the goal here is to inspect (circle around) as much as possible the 12 distinct circular-shaped

objects in the world. No walls are simulated in this scenario since wrap-around is applied to simulate

a continuous repetitive world, similar to an unfolded ball. The evaluation span is 2000 time steps

here for each ANN candidate controller during evolutions. The robot starts from a random initial

position and orientation for each evaluation.

Figure 5.6 shows the sample robot trajectories with the hand-coded and evolved controllers for the

SRMO scenario. The difference is quite obvious. The robot with the hand-coded controller always

tries to make a full circle of each object it finds, then walks away in rather straight lines to search for

“new” objects.5 On the other hand, different evolved ANN controllers demonstrate a variety of robot

behaviors. The one shown in Figure 5.6 (b) always walks in alternate curves: counterclockwise and

closely curved when inspecting an object while clockwise and less curved otherwise. Most engineered

solutions would probably apply the strategy of the hand-coded controller. It is surprising to discover

that the evolved ANN-based strategy can work equally well here. In addition, the evolved controllers
5Note that the robot has no clue to figure out whether a newly discovered object has been inspected before or not

according to the simple logic shown in Figure 5.3.

80

S
E

S

E

S

E

S

E

S

E

S

E

S

E

S

E

S

E

S

E

(a) (b)

Figure 5.7: Sample Robot Trajectories of the MRMO Scenario for 800 Time Steps (51.2 s) Using the
Hand-coded Rule-based Controller (a) and the Evolved ANN Controller (b). The dashed lines delimit
the wrap-around boundaries, but some trajectories beyond the boundaries are kept to enhance the
display. “S” represents the random initial starting points and “E” the ending points. Different
robots’ trajectories are shown in different colors with different markers placed along the trajectories
every 40 time steps (2.56 s).

no longer need additional temporal input here to be comparable with the performance of the hand-

coded controller, which still depends on its timers.

However, it appears more difficult for the evolved controllers to achieve complete coverage of

all objects. Because it often leaves (drifts away from) an object before fully inspecting it, it would

generally take longer to fully inspect all objects in the world than the hand-coded one. Some

possible reasons might be that the robot could hardly achieve complete coverage within the specified

evaluation span, and there is no pressure in the evolution to emphasize complete coverage.

5.3.4.3 Multiple Robots Multiple Objects (MRMO) Scenario

A homogeneous team of five robots is employed to collectively inspect the 12 distinct circular objects

in the simulated repetitive world, as shown in Figure 5.2. The goal as well as the wrap-around and

random initial conditions are the same as those in Section 5.3.4.2, with an evaluation span of 800

time steps.

Figure 5.7 shows the sample robot trajectories with the hand-coded and evolved controllers for the

MRMO scenario. Both behaviors seem to follow the respective strategies discussed in Section 5.3.4.2.

The robots could stick to each other (i.e., non-perfect teammate avoidance) occasionally over a large

81

number of evaluations using either the hand-coded or the evolved controllers, owing to the limited

sensor capability of the robots. However, it is noteworthy for the evolution to develop the obstacle

(including teammates) avoidance behavior, especially when it is not explicitly defined in the fitness

function, which only requires the robots to maximize their collective coverage over the evaluation

span.

Figure 5.8 shows the performances of the hand-coded and best controllers evolved with different

ANN types (as shown in Table 5.1) for the MRMO scenario. It is shown that the evolved controllers,

especially those with a variable ANN topology, seem to have achieved comparable performances

as the hand-coded controller in terms of average performance, and even slightly beat the hand-

coded controller in terms of worst performance, appearing more robust to noise. It is remarkable

for the evolutionary algorithms to automatically discover robust solutions from only single noisy

evaluation of each candidate solution during the evolutions, which verifies its ability to work in

noisy environments.

However, the hand-coded controller exhibits a better chance (>1%) of achieving complete cover-

age than the evolved ones (<1%) within the specified evaluation span. Generally longer evaluations

would be needed for the evolved controllers to achieve complete coverage with certain confidence

level. As discussed above, this might be due to the fact that there is no pressure in the fitness

function to favor complete coverage, which could be further investigated in the future.

It is also observed that controllers evolved with variable ANN topologies can generally achieve

better results than those with fixed ANN topologies. This demonstrates the power of evolutionary

algorithms to synthesize appropriate ANN topologies for a given problem, and evolve the necessary

synaptic weights simultaneously. For example, the trajectory shown in Figure 5.6 (b) is generated

with a controller evolved with ffvh, while Figure 5.7 (b) is rcvh, both using variable ANN topologies.

On the other hand, no significant performance differences are observed between the feed-forward

and recurrent ANN’s when all other conditions are the same.

Although the best evolved control strategies have achieved the same level of performance as

each other as well as the hand-coded controller, their underlying ANN topologies are completely

different, including both feed-forward and recurrent ANN’s with a number of hidden neurons from

two to six. In other words, even the evolutions might converge to a family of similar behavioral

strategies for a given problem, they could be implemented by a variety of ANN’s with vastly different

topologies, which can provide human engineers with diverse alternative candidate solutions that

might be difficult to conceive from human intelligence.

It is also noted that the evolutionary algorithm is able to adapt the controller solutions according

to the collective or single robot scenarios. As a result the controllers evolved in collective scenarios

can achieve better results in collective scenarios than those evolved in single robot scenarios, and

vice versa.

82

hndcd ffnh rcnh ffvh rcvh
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experiment type

C
ov

er
ag

e

maximum
average
minimum

(a)

hndcd ffnh rcnh ffvh rcvh
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experiment type

C
ov

er
ag

e

maximum
average
minimum

(b)

Figure 5.8: Coverage Values Achieved by the Hand-coded Rule-based Controller (hndcd) and the
Best Controllers Evolved with Different ANN Architectures (refer to the symbols defined in Table 5.1)
and Selected according to (a) Minimum and (b) Average Performance for the MRMO Scenario.
Each column shows the coverage values (the green dots) obtained by one controller during the 100
evaluations in its final noise test and the error bars indicate the standard deviation.

83

5.4 Case Study 2: Driver Behavior Modeling

As mentioned in Section 3.3.4, simple driver behaviors based on ANN could also be evolved with

the same design synthesis method presented in Section 5.2. An initial attempt is made to evolve

the lane-keeping driver behavior with the simple kinematic vehicle model described in Section 3.2.2.

The evolved “lane-keeping” control strategy shows a smooth driving behavior and a good ability to

adapt to new environments [Lutz 2005].

The driver model here is based on simple neural networks, whose weights are automatically tuned

by the evolutionary algorithms. A simple feed-forward neural network with two outputs, two inputs,

and a bias is chosen. Six synaptic weights, represented by real numbers in [−1, 1], directly connect

the inputs and bias to the outputs. The inputs of the neural network are the vehicle lateral position

in lane (alignment) and the vehicle heading angle, which are updated and normalized to [0, 1] by

the simulation software at each time step, with a constant bias input of +1. The two outputs can

be directly decoded into the vehicle’s left and right speeds, or its forward and rotation speeds. A

nonlinear sigmoid output function is used for both output neurons with output range [0, 1]. Scaling

factors for the two neuron output functions are either tuned manually or evolved together with the

six synaptic weights.

The candidate driver behavior models are tested in the kinematic embodied simulation environ-

ment, as shown in Figure 3.2. Individuals are evolved on two different road types: a strictly straight

road and a curved road, which has alternate curved and straight segments. Evolved controllers that

show good results in one world should be able to perform just as well on a different course. To

achieve a more general control strategy for different situations, the curved road is designed using

curved segments with different radii and straight segments with different lengths, as shown in Fig-

ure 5.9. The fitness function is defined in terms of the distance traveled during the evaluation span,

the maximum lane deviation error and lateral acceleration, etc.

It is observed that individuals evolved on the curved road perform in most cases better than the

ones evolved on the straight road. A curved road can be interpreted as a straight road with more

noise at certain places. Therefore individuals evolved on the curved road are expected to perform

better in noisy environments with a good ability to adapt to new environments.

Figure 5.10 shows the inputs and outputs time histories of a sample NN driver model evolved

on the curved road shown in Figure 5.9. The left vertical axis represents the normalized NN input

values, i.e., the vehicle heading angle and the lateral alignment, whereas the right axis designates

the output speed values. The horizontal axis represents the time in time steps. In the first curve

segment the robot turns left: The right speed increases and the left speed decreases. The difference

between the left and right speeds (i.e., the yaw speed) is bigger on the last two curve segments with

a smaller radius than the first two curve segments, while the average speed of the left and right

84

Start

Curved road (small radius)

Curved road (big radius)

End

Figure 5.9: Curved Road Shape for Driver Model Evaluation

0 500 1000 1500 2000
0.4

0.45

0.5

0.55

0.6

0.65

Time step

N
N

 In
pu

t v
al

ue

0 500 1000 1500 2000
12

12.5

13

13.5

14

14.5

15

15.5

S
pe

ed
 [r

ad
/s

]

Angle
Alignment
Right speed
Left speed

Curved road (big radius)
Curved road (small radius)

Figure 5.10: NN Inputs and Outputs of a Sample Driver Model Evolved on the Curved Road Shown
in Figure 5.9

85

speeds (i.e., the forward speed) always keeps the maximum value allowed. This is exactly the kind

of behavior promoted by the fitness function, which maximizes the distance traveled and minimizes

the alignment error.

The vehicle heading angle stays almost constant except for the start and the end of the curves

where the angle changes dramatically and then gets back gradually. While a constant non-zero

alignment error is observed on the curves because the robot drifts toward the outside of the curves.

This “drift” behavior is typical of proportional (P) controller, and it is noted that the evolved NN

driver model is very close to a simple P controller. While a PI or PID controller as described in

Section 3.3.3 would have performed better with zero alignment error but it is beyond the capability

of the specified simplest neural network model. Alternatively, the same evolutionary algorithm used

here could also be applied to the PID controller model as well as the rule-based models described in

Section 3.3 to tune their parameters automatically under various situations.

5.5 Conclusion

The evolutionary algorithm is applied to automatically synthesize neural network controllers for au-

tonomous robots in a noisy simulation environment. The evolutionary design synthesis methodology

is validated again in the framework of two case studies concerned with collective robotic inspection

of 2D regular structures as well as driver behavior modeling. It is demonstrated that both the

NN topologies and parameters can be effectively tuned by the evolutionary algorithm, and that the

best evolved NN controllers can achieve excellent and robust performances comparable to that of

a manually tuned hand-coded rule-based controller with a variety of NN representations, providing

multiple good candidate solutions for human engineers. In addition, the evolutionary design synthe-

sis method also appears to be able to deal with the noise in fitness evaluation efficiently and adapt

to the collective task nature well in terms of the collective robotic inspection case study.

In the future, the same methodology can be applied to more complex and realistic problems

such as collective robotic inspection of 3D irregular space structures and/or jet propulsion systems

as well as development of more complex and realistic driver behavior models. Implementation and

verification of evolved controllers with real robots would also be meaningful.

86

Chapter 6

Collision Avoidance System

Collision avoidance systems (CAS) are an emerging automotive safety technology that assists drivers

in avoiding potential collisions. The information sources of the collision avoidance systems come from

multiple on-board sensors. The range, range rate, and angular information of other vehicles and/or

objects around the host vehicle can be measured by radar, lidar, and/or cameras in real time, as

mentioned in Section 4.2. Other regular on-board sensors measure host vehicle speed, acceleration,

steering angle, yaw rate, etc. Collision avoidance systems process all the information in real time to

keep track of the most current vehicle-to-vehicle kinematic conditions. When a potential collision

threat is identified by the system, appropriate warnings are issued to the driver to facilitate collision

avoidance. If the driver fails to react in time to the warnings to avoid the imminent collision, an

overriding system takes over control to avoid or mitigate the collision in an emergency situation.

Therefore collision avoidance systems could assist drivers in two ways, warning and/or overriding,

according to the dynamic situation.

In developing a collision warning system (CWS), two important parameters involving driver

behavior have to be considered. One parameter is the time it takes for the driver to respond to

the crash alert and begin braking, i.e., driver reaction time, and the second parameter is the driver

deceleration (or braking) behavior in response to this alert across a wide variety of initial vehicle-to-

vehicle kinematic conditions. An overriding system has the advantage of being less sensitive to human

factors, hence it is more promising in terms of achieving better and robust system performance.

However, it is also the most intrusive way to assist the driver, so its timing has to be carefully

designed to get driver acceptance.

In addition, both warning and overriding systems are subject to some objective hardware limits

and environmental factors, such as the maximum traction available from the ground-tire contact

and brake efficiency, etc. A traction sensor could be used to obtain an estimate of the current road

traction conditions, as reviewed in [Li et al. 2006].

87

6.1 Previous Work

A lot of research has been done on collision warning systems, which are the first resort to assist

drivers in collision avoidance. The key is to ensure that warnings are issued to drivers at the

appropriate time, i.e., just in time for the driver to react and avoid the collision while not too early

or too frequent to become a nuisance or distraction to the driver. Different measures were defined to

characterize the emergency level of various dynamic situations, and different sets of human-vehicle

experiments were carried out to calibrate these measures to human performances and reactions,

based on which different warning criteria were developed to assist the human drivers.

6.1.1 Measures Defined

First, as mentioned above, quantitative measures need to be defined to characterize the emergency

level of various dynamic situations. The measures defined in the literature include time-based,

distance-based and deceleration-based measures.

One frequently used time-based measure is the time-to-collision or time-to-contact (TTC), which

refers to the time it would take for a collision to occur at the prevailing speeds, distances, and

trajectories associated with the host vehicle and the closest lead vehicle [van der Horst 1990]. In

particular, the minimum TTC value (TTCmin) indicates how imminent a potential or actual collision

has been during the process of approaching. More specifically, three different measures based on

TTC were further investigated in [Kiefer et al. 2003]. The TTC1 measure follows the TTC definition

above, which is mathematically defined as the range R (i.e., the bumper to bumper distance between

the two vehicles) divided by the closing speed between the two vehicles, or −R/RR, where RR is the

range rate. Note that the vehicle speeds are assumed to remain constant here, i.e., the accelerations

of both vehicles are ignored and assumed to be zero during the TTC1 calculation. The inverse

TTC1 measure is simply defined as the inverse of TTC1, or −RR/R. The TTC2 measure is defined

as the time it would take the host and lead vehicles to collide assuming the prevailing vehicle speeds

and acceleration/deceleration values (i.e., at the current “constant” rate of speeding/slowing), and

if either vehicle comes to a stop, it would remain stopped thereafter. Hence the difference between

TTC1 and TTC2 is that the latter takes into account the acceleration information of both vehicles

while the former does not.

Another related time-based measure is the time headway (th), which is calculated as the range

between the two vehicles divided by the following host vehicle speed, or R/vH [Fuller 1981]. Time

headway is important because it specifies how much time the following vehicle has to react in case

the lead vehicle suddenly brakes at the maximum deceleration level.

One important deceleration-based measure is the required deceleration (areq) measure, which is

defined as the constant deceleration level required for the host vehicle to avoid a potential collision

88

Type Definition
TTC1 projected time to collision assuming prevailing speeds and distance (−R/RR)

1/TTC1 inverse of TTC1 (−RR/R)
TTC2 projected time to collision assuming prevailing speeds, accelerations, and distance

th time headway between the host and lead vehicles (R/vH)
areq constant deceleration level required to avoid a rear-end collision
Dmin projected minimum distance during collision avoidance process

Table 6.1: Various Threat Assessment Measures Defined in the Literature

with the vehicle ahead [Kiefer et al. 1999]. This measure is calculated under the same assumptions

as the TTC2 measure above. In comparison, the actual deceleration (aact) measure is defined as

the constant deceleration level required to yield the actual stopping distance observed during an

experiment or real scenario. The difference between the two measures is due to the safety margins

adopted by individual drivers in avoiding the collisions during the practices.

One distance-based measure is the projected minimum distance (Dmin) between the host and

lead vehicles during the approaching/avoiding process [Brunson et al. 2002]. It is calculated using

the prevailing range and vehicle speeds, and the assumption that the lead vehicle would keep the

current acceleration level until it comes to a stop, while the host vehicle starts to brake at the

maximum deceleration level constantly after an assumed driver reaction time, during which it keeps

its original acceleration level. An alert is issued when the projected Dmin is within a distance

threshold Dthresh. Based on this warning criterion, the corresponding warning range (Rw) can be

calculated, and a warning is issued if the actual range R is within Rw [Burgett et al. 1998]. Another

related measure is the projected time to Dmin, which indicates the imminence or urgency of the

situation [Polychronopoulos et al. 2004].

Table 6.1 summarizes the various threat assessment measures reviewed above. Each of them

characterizes the current dynamic situation in one way and can be used as basis for threat assessment

and warning/overriding criteria. However, there does not exist a clear quantitative relationship

between these measures and the threat level, as well as the best timing for warning and overriding

actions.

6.1.2 Driver Reaction Time

Driver reaction time is an important parameter and plays a major role in the success of the collision

warning systems. In this thesis the driver reaction time includes the human mental processing time

in response to a signal or stimulus, the movement time for the driver’s foot to switch from gas to

brake petal, and the brake system delay.

Many research experiments have been performed to measure human driver reaction times to

different stimuli under various situations. There have been comprehensive reviews on driver reaction

times reported in the literature [Olson 1989, Sens et al. 1989, Green 2000]. It was noticed that the

89

Figure 6.1: Hypothetical Reaction Time Distribution [Green 2000]

driver reaction time data reported were almost always skewed toward longer values, as shown in

Figure 6.1. As a result, the lognormal probability distribution can be used as an approximate

statistical distribution model for driver reaction time tr with parameters μ and σ2 [Taoka 1989,

Brunson et al. 2002]. In other words, the logarithm of the driver reaction time (ln tr) is normally

distributed with the same parameters μ and σ2.

Of the various experiments conducted on driver reaction times, two kinds of situations are given

particular attention in this thesis. One is normal driver reaction times toward unexpected natural

driving scenarios, such as the onset of the brake lights of the lead vehicle or yellow traffic lights.

The other is the driver reactions in response to some unexpected artificial signals, such as a red icon

appearing in front of the driver or specific auditory signals, which could be considered as potential

warning signals.

From the results reported in the various literature, the best estimate for natural driver brake

reaction time to common but uncertain signals (e.g., lead vehicle brake lights or yellow traffic

lights) lies between 1.14 and 1.38 seconds [Gazis et al. 1960, Sivak et al. 1982, Chang et al. 1985,

Sivak et al. 1981]. Standard deviations of results vary widely across studies, but 0.6 s seems to be a

good estimate. Hence the lognormal distribution model with parameters μ = 1.13 s and σ = 0.46 s

would approximately represent the natural human driver reaction time tr with mean 1.25 s and

standard deviation 0.6 s.

On the other hand, the experiments on driver reaction times in response to the sudden appearance

of a red square reported mean values of 0.96 s on easy straight roads and 1.3 s on curvy routes,

resulting approximately 1.13 s on average for all driving conditions [Alm and Nilsson 1994]. The

driver brake reaction time in response to some completely unexpected auditory signals was estimated

to be 0.9 s or longer in 50% of all sudden accident situations, and about 1.2 s on the 75th percentile

[Johansson and Rumar 1971]. Finally, driver reaction times under different types of dual-modality

90

Type mean std median(μ) σ 75% 85% 90%
Natural (no alerts) 1.25 0.6 1.13 0.46 1.53 1.81 2.02

Visual alert 1.13 0.52 1.03 0.44 1.38 1.62 1.80
Auditory alert 0.99 0.44 0.9 0.43 1.2 1.40 1.55

Visual + Auditory alert 0.90 0.34 0.84 0.37 1.08 1.23 1.35

Table 6.2: Estimates of Unexpected Driver Reaction Time in Seconds

(i.e., both visual and auditory) crash alerts were extensively investigated in a series of experiments on

potential forward collision warning (FCW) systems [Kiefer et al. 1999], where the shortest reaction

times with the least variance were recorded under surprise, unexpected conditions. It was further

verified that brake reaction times were faster (0.90 s versus 1.15 s on average) with FCW alerts

[Kiefer et al. 2005a].

Table 6.2 gives a summary of driver reaction times in response to different types of unexpected

stimuli, characterized by the lognormal probability density model with parameters μ and σ. Note

that the parameter μ is also the median, i.e., the 50th percentile value, and the parameter σ is the

dispersion parameter. The mean and standard deviation (std) values as well as the 75th, 85th, and

90th percentile values are also listed in the table.

6.1.3 Collision Warning Systems

The Crash Avoidance Metrics Partnership (CAMP) was established to accelerate the research in

advanced automotive collision avoidance systems to improve traffic safety. In [Kiefer et al. 1999],

CAMP developed basic elements of FCW systems, which provide alerts intended to assist drivers in

avoiding or mitigating rear-end crashes. Crash alert timing and crash alert modality (auditory, visual

and/or haptic) requirements as well as driver reaction time and braking behavior were studied by

conducting a series of closed-course human factors studies using a “surrogate target” methodology,

where drivers were asked to perform last-second braking maneuvers while approaching a slowing or

stopped vehicle (surrogate target). Drivers were instructed to use either “normal” or “hard” braking

to avoid a crash. Drivers’ reaction times to a variety of stimuli under surprise and alerted conditions

were also measured and combined with knowledge of drivers’ braking behavior to develop the FCW

alert model. This timing criterion intends to provide an alert after most attentive drivers would

have started a “normal” last-second braking maneuver, yet soon enough for most inattentive drivers

to still avoid a crash using last-second “hard” braking. This approach tries to minimize the number

of nuisance alerts while maintaining high FCW effectiveness under tested conditions. Based on the

required deceleration (areq) measure, this model is significantly different from traditional models

that are based on TTC or th.

In [Kiefer et al. 2003], a follow-on study extended the previous CAMP human factors work ad-

dressing FCW timing requirements by gathering not only “last-second” braking maneuver data, but

91

also data from “last-second” steering (or lane-changing) maneuvers. Drivers performed “normal” or

“hard” last-second braking and steering maneuvers under a wide variety of vehicle-to-vehicle kine-

matic scenarios. It was observed that the mean last-second steering onsets tended to occur later

(i.e., were more aggressive) than the mean last-second hard braking onsets when the closing speed

was high.

Two last-second braking onset timing models, the required deceleration model and the inverse

TTC model, were developed using the last-second maneuver database established from both CAMP

studies mentioned above. Using the linear regression approach, the required deceleration model

estimates areq continuously in real time and uses it to decide if the driver is in a hard braking onset

scenario. In contrast, the logistic regression statistical modeling technique is used in the inverse

TTC model to predict the probability the driver is in a normal or hard braking scenario based on

an inverse TTC threshold that decreases linearly with speed [Kiefer et al. 2005b].

In both CAMP studies, the braking onset range, estimated based on the above models, along

with the assumed delay time range, is used to calculate the total warning range (Rw) as the crash

alert warning criterion [Kiefer et al. 1999]. The delay time range is calculated based on the projected

change in range during the driver reaction time interval assuming prevailing speeds and deceleration

levels of the lead and host vehicles.

The effectiveness of the CAMP FCW timing approach described above was further tested under

the surprise trial methodology and visual occlusion techniques [Kiefer et al. 2005a], which intended

to simulate a “surprised” distracted driver, who had been intentionally distracted by look-down

tasks or visual occlusion until the onset of an FCW alert, immediately following which the driver

had to quickly decide upon and execute a crash avoidance maneuver. Results indicate that under the

CAMP FCW alert timing conditions, drivers were able to execute an unassisted, successful braking

maneuver for over 85% of the trials across the approach conditions examined, while the unsuccessful

trial rates almost doubled when no alert was presented for the look-down trials, which may be due

to long alert onset–look up delays1 (the time between the alert onset and when the eyes “landed”

on the forward view) for some drivers. The average alert onset–look up delay time was 1,505 ms for

unsuccessful trials, while it was 566 ms for successful trials. In addition, it was observed that there

was generally no age or gender effects under the FCW alert conditions across all various experimental

approaches, suggesting that a “one size fits all” FCW alert timing approach may be feasible.

In a related research [Curry et al. 2005], a subset of the previous closed-course CAMP experi-

ments with a surrogate target was replicated on the National Advanced Driving Simulator (NADS)

facility for comparison and validation purposes. It was concluded that the test scenarios should em-

phasize high lead vehicle decelerations and high closing speeds (particularly when the lead vehicle

1Note that this is the additional delay time besides the assumed driver brake reaction time when the driver was
looking down during the distraction.

92

is stationary), and attention should be focused on the interpretation of last-second hard braking or

hard steering onset behavior. It was observed that the NADS data generally showed good agree-

ment with the closed-course data under the above conditions. When there was disagreement, it was

usually the case that the NADS drivers reacted more cautiously, initiating braking or steering earlier

than their closed-course counterparts.

Along another line of research on CWS, the National Highway Traffic Safety Administration

(NHTSA) developed an experimentally based rear-end collision warning algorithm and sponsored

analysis of its performance [Brunson et al. 2002]. Integrated along with a General Motor (GM)–

developed algorithm, the NHTSA alert algorithm processes data received from a vehicle-mounted

radar and other sensors to alert drivers to potentially dangerous situations and the need to take

evasive actions. The decision to issue an alert is based on the projected minimum distance (Dmin)

calculated at each time interval, assuming constant lead vehicle deceleration, a driver reaction time

estimate, the maximum host vehicle deceleration level, and measured parameters characterizing the

current host vehicle and vehicle-to-vehicle dynamic situations.

Two sets of theoretical analyses were performed on the NHTSA alert algorithm. The first analy-

sis examined the performance under the assumption of perfect input data. The second analysis

examined the effects of measurement noise and driver variability on the performance of the alert

algorithm in terms of probability of false alarm (PFA) versus probability of miss (Pmiss). The results

indicated that the driver response variability (braking level and reaction time) had a much greater

impact on algorithm performance than the vehicle dynamics measurement errors.

Verification testing was also conducted with the NHTSA alert algorithm installed in a test

vehicle equipped with a prototype CWS. It was noted that the algorithm performance depended on

the ability of the radar system to report valid targets on curves and at longer ranges. Algorithm

performance was most affected when the host vehicle was traveling at higher speeds. For instance,

sometimes the radar detection range is even shorter than the imminent warning range. In addition,

data quality and resolution also affect the algorithm performance, especially the resolution of relative

acceleration (aR) was the principal source of error. Moreover, it was shown through simulation results

that the probability of collision was closely related to the probability distribution of driver reaction

time tr.

A special situation was further investigated where two vehicles were initially traveling at the

same speed in the same lane when the lead vehicle suddenly braked [Burgett et al. 1998]. Following

the same logic as above, a warning range Rw as well as its corresponding range rate RRw could be

computed assuming constant lead vehicle deceleration level aL, driver reaction time tr, initial speed

v0 and time headway th, and assumed maximum host vehicle deceleration aHmax
. Then a family of

warning curves can be generated by plotting (Rw, RRw) pairs on a R-RR plot that are parametric

in aL for each combination of initial conditions (v0, th), as shown in Figure 6.2. It was then claimed

93

−12 −10 −8 −6 −4 −2 0
0

10

20

30

40

50

60

70

80

Range Rate (RR) [m/s]

R
an

ge
 (

R
)

[m
]

t
h
 = 1s

t
h
 = 2s

t
h
 = 3s

t
h
 = 4s

Time trajectory of t
h
 = 2s, a

L
 = −3m/s2

a
L
 = −0.5m/s2

a
L
 = −3m/s2 (Warning point)

a
L
 = −6m/s2

Host vehicle
brake point

Lead vehicle
brake point

Figure 6.2: Warning Curves (solid lines) Parametric in aL (v0 = 48 mph, tr = 1.5 s, aHmax
=

−5 m/s2) with a Sample Time Trajectory (dash dot lines) of th = 2 s and aL = −3 m/s2

that these warning curves could be used as an efficient warning criterion without the estimation of

aL. While it is desirable to eliminate the estimation of aL for the warning criteria, this would not

work under common conditions. An example is shown in Figure 6.2, where the warning curves for

v0 = 48 mph and several th values are plotted, along with a time trajectory for the case th = 2 s and

aL = −3 m/s2. It can be observed that the sample time trajectory is very close to the warning curve

of th = 2 s between the lead vehicle brake point and the warning point, hence it is not clear when to

issue the warning, even omitting the sensor noise in measuring range and range rate. In the example

shown in the paper [Burgett et al. 1998], these warning criteria would work when th is rather long

(e.g., th = 5 s), which is, however, not the imminent situation concerned by the CWS/CAS.

6.2 Warning and Overriding Algorithms

Various warning and overriding algorithms have been developed and investigated in the literature

[Lee and Peng 2005]. Most of these compute a warning range (Rw) based on the current kinematic

situation, and a warning is issued if the current range R is less than Rw. Some of the algorithms

calculate an overriding range (Ro), and automatic braking (overriding) is applied if R is within Ro.

94

vH

vL
- 1

- 2

1 + 22 t[s]

v[m/s]

RR
Ro Rmin

0

Figure 6.3: Interpretation of the Mazda Overriding Algorithm

6.2.1 Mazda Algorithm

The Mazda overriding algorithm [Doi et al. 1994] considers a hypothetic worst case, as shown in Fig-

ure 6.3. First, it assumes that initially both the host vehicle and the lead vehicle maintain constant

speeds vH and vL, respectively. Then the lead vehicle starts to brake after time τ2 at deceleration

level −α2, while the host vehicle starts to brake after an additional time τ1 at deceleration level

−α1, which continues until both vehicles come to a full stop. The overriding range Ro is computed

as the minimum range needed at time 0 to allow the above scenario to happen without collisions:

Ro = vH · τ1 − RR · τ2 +
v2

H

2α1
− v2

L

2α2
+ Rmin (6.1)

where RR is the range rate, i.e., RR ≡ vL − vH , and Rmin is a constant distance headway offset.

The shaded area in Figure 6.3 is the required safety range buffer between the two vehicles should

the hypothetic scenario described above happen. The following parameters were used: α1 = 6 m/s2,

α2 = 8 m/s2, τ1 = 0.1 s, τ2 = 0.6 s, Rmin = 5 m. The system provides a warning when the actual

range R approaches Ro, i.e., Rw = Ro + ε, where ε is a positive constant parameter. The system

applies automatic braking to try to avoid or mitigate collisions if R is within Ro.

6.2.2 Honda Algorithm

The Honda algorithm [Fujita et al. 1995] uses the following warning criterion:

Rw = −2.2 · RR + 6.2 (6.2)

which is based on the TTC1 measure, as defined in Section 6.1.1, with a constant distance headway

offset of 6.2 m. Warning is issued when the TTC1, after offset adjustment, is below 2.2 s.

The Honda overriding algorithm also considers a hypothetical scenario, as shown in Figure 6.4. It

95

vH

vL
- 1

- 2

1 2 t[s]

v[m/s]

RR
Ro

0

tLS < 2

tLS

vH

vL
- 1

- 1

1 2 t[s]

v[m/s]

RR
Ro

0

tLS 2

tLS

Figure 6.4: Interpretation of the Honda Overriding Algorithm

consists of two parts, depending on whether the lead vehicle is expected to stop within the considered

time range τ2. It is assumed that the lead vehicle brakes constantly at deceleration level −α2 (if the

estimated lead vehicle stopping time tLS ≡ vL/α2 < τ2) or −α1 (if tLS ≥ τ2), while the host vehicle

starts to brake after reaction time τ1 at deceleration level −α1. The safety range Ro is estimated as

the minimum range buffer needed to avoid collisions until τ2 at both situations, which is represented

by the shaded areas in Figure 6.4 and computed as follows:

Ro =

⎧⎪⎨
⎪⎩

vH · τ2 − 1
2
α1(τ2 − τ1)2 − v2

L

2α2
tLS < τ2

−RR · τ2 + α1τ1τ2 − 1
2
α1τ

2
1 tLS ≥ τ2

(6.3)

The following parameters were used: α1 = 7.8 m/s2, α2 = 7.8 m/s2, τ1 = 0.5 s, τ2 = 1.5 s. Automatic

braking is applied to assist collision avoidance if the current range R is within Ro.

6.2.3 Berkeley Algorithm

The Berkeley algorithm [Seiler et al. 1998] proposes a conservative Rw to provide a wide range of

visual feedbacks (cautionary warnings) to the driver, and a non-conservative Ro to reduce undesirable

effects of overriding to normal driving operations. As shown in Figure 6.5, it is assumed that the

lead vehicle brakes at the maximum constant deceleration level −α, while the host vehicle starts to

brake after reaction time τ at the same deceleration level. The warning range Rw is estimated as

the minimum range buffer needed to avoid collisions until both vehicles come to a full stop, while

the overriding range Ro only considers the range buffer needed from time 0 to τ .

Rw =
v2

H − v2
L

2α
+ vH · τ + Rmin (6.4)

96

vH

vL

-

t[s]

v[m/s]

RR

0 tLS

-

tHS

Ro

Rw Rmin

Figure 6.5: Interpretation of the Berkeley Warning/Overriding Algorithm

vH

vL

aL

t[s]

v[m/s]

RR

0 tLS

aHmax

tHS

Rw Dthresh

tLS tHS

aH

tr

vH

vL

aL

t[s]

v[m/s]

RR

0 tLS

aHmax

tHS

Rw Dthresh

aH

tr
tLS > tHS

Figure 6.6: Interpretation of the NHTSA Alert Algorithm

Ro = −RR · τ +
1
2
ατ2 (6.5)

The following parameters were used: α = 6 m/s2, τ = 1.2 s, Rmin = 5 m.

6.2.4 NHTSA Alert Algorithm

The NHTSA alert algorithm [Brunson et al. 2002] considers slightly more complicated scenarios, as

shown in Figure 6.6. It assumes that the lead vehicle brakes constantly at current deceleration level

aL until it comes to a stop if aL < 0, while the host vehicle keeps current constant acceleration level

aH for a reaction time tr, after which it starts to brake constantly at the maximum deceleration

level aHmax
(aHmax

≤ aL < 0). Two different situations are considered, depending on whether the

lead vehicle stops first or the host vehicle stops first under the above assumptions. The lead vehicle

97

stopping time tLS and host vehicle stopping time tHS are estimated by

tLS = −vL

aL
(6.6)

tHS =

⎧⎪⎨
⎪⎩

tr − vH + aHtr
aHmax

vH + aHtr > 0

−vH

aH
otherwise

(6.7)

Usually it is assumed that vH + aHtr > 0, otherwise the host vehicle is already decelerating hard

enough with a low frontal collision risk. The shaded areas in Figure 6.6 represent the range buffer

needed to avoid collisions under both situations, as computed below:

Rw =

⎧⎪⎪⎨
⎪⎪⎩

vH · tr +
1
2
aHt2r −

(vH + aHtr)2

2aHmax

+
v2

L

2aL
+ Dthresh tLS ≤ tHS

−RR · tr − 1
2
aRt2r +

(RR + aRtr)2

2(aL − aHmax
)

+ Dthresh tLS > tHS or aL ≥ −1
(6.8)

where

Dthresh = 0.1 · vH + 2 (6.9)

Here the system tries to estimate the relative acceleration (aR ≡ aL − aH) in real time from the

time derivative of range rate (RR) data measured by radar sensors, then the lead vehicle deceleration

level aL is computed from aR estimation and aH measurement, in contrast to previous algorithms

where aL is an assumed constant parameter. The driver reaction time tr, which includes both the

driver and system delays, is normally set to 1.5 s, and is reduced to 0.5 s when brake is applied. The

assumed host vehicle maximum braking capability aHmax
is set to −5.4 m/s2 (−0.55 g) for imminent

alerts, and lower levels for cautionary alerts.

6.2.5 CAMP Alert Algorithm

The CAMP alert algorithm [Kiefer et al. 1999] considers essentially the same scenarios with the

same assumptions as the NHTSA alert algorithm. The only differences are that Dthresh is set to

zero and that aHmax
is replaced by required deceleration aHreq

, which is modeled by

aHreq
=

⎧⎨
⎩ 0.685 · aL − 0.086(vH + aHtr) − 1.617 tLS ≤ tr

0.685 · aL + 0.086(RR + aRtr) − 0.833 tLS > tr
(6.10)

Note that the acceleration is expressed in m/s2, velocity and range rate in m/s, distance and range

in m, and time in s. Hence aHreq
varies according to the different underlying dynamic scenarios, and

is no longer a prefixed parameter as the aHmax
.

98

6.2.6 Other Alert Algorithms

There are other alert algorithms developed for use in automotive collision warning and avoidance

systems, as summarized in [Yang et al. 2003]. For example, if the current host vehicle acceleration

aH is set to zero in the NHTSA alert algorithm, then the first case of Equation 6.8 simplifies to

Rw = vH · tr − v2
H

2aHmax

+
v2

L

2aL
+ Rmin aH = 0, tLS ≤ tHS (6.11)

In addition, if the lead vehicle keeps a constant speed slower than the host vehicle, i.e., aL = aH =

aR = 0, then the second part of Equation 6.8 simplifies to

Rw = −RR · tr − RR2

2aHmax

+ Rmin aL = aH = 0, vL < vH (6.12)

Furthermore, if the lead vehicle is stopped or stationary, i.e., vL = 0, then the above equation can

be rewritten as

Rw = vH · tr − v2
H

2aHmax

+ Rmin aL = aH = 0, vL = 0 < vH (6.13)

There are still some other alert algorithms that are based on TTC1 (−R/RR), th (R/vH), or a

linear combination of the two:

Rw = −RR · τ1 + vH · τ2 + Rmin (6.14)

where τ1 and τ2 are predefined parameters as before.

6.3 New Criterion Proposal

As reviewed in the last section, most warning and overriding criteria used in automotive collision

avoidance systems are expressed in terms of range, i.e., a warning and/or overriding range (Rw/Ro)

is computed according to current sensor data and the respective algorithm parameters selected,

then the control system decides whether to issue an alert or apply automatic braking based on the

comparison result of the current range R with Rw and Ro. It is still difficult to clearly quantify the

level of danger or threat from the comparison result since the range criteria vary nonlinearly under

different dynamic conditions. For instance, a non-dimensional warning level w that varies linearly

between Rw and Ro was proposed [Seiler et al. 1998]:

w =
R − Ro

Rw − Ro
(6.15)

99

This is not appropriate since it is known that the danger level does not have a linear relationship

with the range criteria. Therefore it is desirable to have a new criterion that directly quantifies the

danger or threat level of the current dynamic situation objectively as well as assesses the urgency

level for the required evasive action, e.g., braking. A new time-based measure is presented next for

this purpose.

6.3.1 Time-to-last-second-braking (Tlsb) Measure

Time-to-last-second-braking (Tlsb), is a new time-based measure introduced here for rear-end col-

lision threat assessment. It is defined as the time left for the driver or the control system at the

current situation to take the last extreme evasive action, e.g., braking at the maximum level, to

avoid a rear-end collision. It is calculated based on the assumptions that the lead vehicle would keep

current deceleration or acceleration level aL constantly until it comes to a full stop if aL < 0 and

in this case it would remain stopped thereafter, and that the host vehicle also maintains a current

acceleration level aH until the last moment when it will be able to decelerate at the maximum

deceleration level aHmax
to avoid collisions if necessary. Therefore Tlsb tries to estimate how long

the host vehicle could maintain the current state until it has to brake at the maximum level to just

avoid a potential rear-end collision with the lead vehicle. It can be estimated from the following six

state variables:

Tlsb = f(vH , aH , R,RR, aR, aHmax
) (6.16)

where the current host vehicle speed vH and acceleration aH can be measured by vehicle state

sensors, the current range R and range rate RR between the host and lead vehicles can be measured

by on-board radar or lidar sensors, the current relative acceleration aR between the two vehicles can

be estimated from the RR history, and the current available maximum deceleration level aHmax
can

be estimated from tire-road friction coefficient monitor, as reviewed in [Li et al. 2006].

It follows from the definition of the new Tlsb measure that it gives a quantitative assessment of

the current urgency and severity levels of the potential threats in terms of time, which would be

very useful for threat assessment analysis of collision avoidance systems.

6.3.2 Scenario 1: Lead Vehicle Stopped or Moving Slowly (aL = 0)

First, a simple scenario is considered where the lead vehicle is initially stopped or traveling at a

constant slower speed than the host vehicle (i.e., aL = 0, RR < 0). This is an important type

of scenario where a collision avoidance system may be helpful. For instance, an inattentive driver

might overlook a stopped or slowly moving vehicle ahead or underestimate its threat level until it

is too late. The characteristic of this type of scenario is that the closing speed (RR) is usually

high and often an evasive action is necessary even when the range R is still rather large. Hence the

100

−70 −60 −50 −40 −30 −20 −10
0

50

100

150

Range Rate (RR) [mph]

R
an

ge
 (

R
)

[m
]

0.5

0.5

0.5

0.5

1

1

1

1

1.5

1.5

1.5

1.5

2

2

2

2

2.5

2.5

2.5

2.5

3

3

3

3

0

0

0

normal braking onset
hard braking onset1
hard braking onset2

Figure 6.7: Tlsb Contours in Seconds with CAMP Data under Scenario 1: Host Vehicle Approaches
Stopped or Slow Lead Vehicle (aL = aH = 0, aHmax

= −5 m/s2).

requirement for the driver or the sensory system to detect an object and estimate the R & RR at a

rather far range (up to 150 m∼ 200 m) is high in this case.

For simplicity, it is further assumed that the host vehicle currently keeps a constant speed vH

(i.e., aH = 0). Then the time-to-last-second-braking Tlsb for this scenario only depends on R, RR,

and aHmax
, as computed below:

Tlsb = −
R − Rmin +

RR2

2aHmax

RR
(6.17)

which can be obtained by solving tr from Equation 6.12. For a given road-tire friction condition,

e.g., aHmax
= −5 m/s2, and take Rmin = 2 m, then the contours of Tlsb can be plotted as parabolic

curves on a R-RR plot, as shown in Figure 6.7.

As mentioned in Section 6.1.3, the human drivers’ last-second “normal” and “hard” braking onset

data were recorded in CAMP experiments [Kiefer et al. 1999, Kiefer et al. 2003], and especially the

data for the lead vehicle stationary trials are also plotted in Figure 6.7 using different markers. These

data points represent the average range at host vehicle braking onsets under different conditions, i.e.,

101

last-second normal or hard braking condition, and different initial host vehicle speeds (vH = 30 mph,

45 mph, or 60 mph), respectively. It can be observed that the last-second normal braking data align

nicely with the Tlsb = 2.5 s curve, which implies that alert drivers normally brake 2.5 seconds before

the last moment when maximum braking is needed. Furthermore, two sets of CAMP last-second

hard braking data both align well with the Tlsb = 1 s curve, which suggests that an attentive driver

would perform a last-second hard braking action about 1 second before maximum (the hardest)

braking is needed to avoid a rear-end collision. These observations are especially true when the host

vehicle speed is not too high (e.g., vH = 30 mph or 45 mph) and within a range of 100 m or so, which

implies that human drivers have a fairly good sense of urgency about when to take a last-second

evasive action under an attentive condition and medium threat level, for instance, the host vehicle

approaches a red light or a car stopped at an intersection, and their response timings appeared to

be rather consistent under these conditions.

Therefore the proposed Tlsb measure appears to reflect human drivers’ sense of urgency to take

the last evasive action, and hence a good candidate for threat assessment analysis.

6.3.3 Scenario 2: Lead Vehicle Decelerating (aL < 0)

In Scenario 2, the lead vehicle and the host vehicle initially travel at the same speed (RR = 0) with

a certain initial time headway (th = R/vH) between them, then the lead vehicle suddenly starts to

brake at deceleration level aL constantly. This type of scenario is also important in the study of

collision avoidance systems, since the sudden braking of lead vehicles on freeways is a major cause

of traffic accidents. The characteristic of this scenario is that usually the initial range R is not too

large (e.g., R < 50 m) and the requirement for the driver or the sensory system to detect an abrupt

negative change in RR and relative acceleration aR is high.

For simplicity, it is still assumed that the host vehicle currently keeps a constant speed vH

(aH = 0) in this case. As in the NHTSA alert algorithm described in Section 6.2.4, two different

cases are considered in this Scenario 2 to estimate the time-to-last-second-braking Tlsb, depending

on whether the lead vehicle is expected to stop first or not. The lead vehicle stopping time tLS is

still estimated by Equation 6.6, while the estimation of the host vehicle stopping time tHS is slightly

changed from Equation 6.7, since it depends on the Tlsb instead of tr now:

tHS = Tlsb − vH

aHmax

(6.18)

Accordingly, Equation 6.8 also changes to the following when RR = 0 and aH = 0:

R =

⎧⎪⎪⎨
⎪⎪⎩

vH · Tlsb − v2
H

2

(
1

aHmax

− 1
aL

)
+ Rmin tLS ≤ tHS

−1
2
aLT 2

lsb +
(aLTlsb)2

2(aL − aHmax
)

+ Rmin tLS > tHS

(6.19)

102

−4 −3.5 −3 −2.5 −2 −1.5 −1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Lead Vehicle Deceleration Level (a
L
) [m/s2]

T
im

e−
to

−
la

st
−

se
co

nd
−

br
ak

in
g

(T
ls

b)
[s

]

30mph, normal
30mph, hard1
30mph, hard2
45mph, normal
45mph, hard1
45mph, hard2
60mph, normal
60mph, hard1
60mph, hard2

Figure 6.8: CAMP Data Represented in terms of the Tlsb Measure under Scenario 2: Lead Vehicle
Decelerates (aHmax

= −5 m/s2).

More generally, if RR �= 0 and aH = 0, the above equation has the following form:

R =

⎧⎪⎪⎨
⎪⎪⎩

vH · Tlsb − v2
H

2aHmax

+
v2

L

2aL
+ Rmin tLS ≤ tHS

−RR · Tlsb − 1
2
aLT 2

lsb +
(RR + aLTlsb)2

2(aL − aHmax
)

+ Rmin tLS > tHS

(6.20)

Then, Tlsb can be solved from Equation 6.19 or 6.20 depending on the current conditions. In practice,

first it is assumed that the lead vehicle stops first (tLS ≤ tHS), then Tlsb can be solved from the first

part of the equations, then tHS can be computed from Equation 6.18 and whether the condition

tLS ≤ tHS holds or not can be verified. If tLS ≤ tHS holds, then the computation for Tlsb is

completed. Otherwise Tlsb is solved from the second part of Equation 6.19 or 6.20 where the more

positive solution is taken and the other solution discarded.

The human drivers’ last-second “normal” and “hard” braking onset data recorded during the

lead vehicle decelerating trials in CAMP experiments [Kiefer et al. 1999, Kiefer et al. 2003] can be

plugged in the above equations to compute the Tlsb measure, as shown in Figure 6.8. The CAMP data

include average range R and range rate RR at host vehicle braking onset under different conditions,

103

Parameter Noise Distribution
vH U [−0.15, 0.15]
aH G(−0.07, 0.17)
R G(0.4, 0.025)

RR U [−0.0625, 0.0625]
aR G(−0.6, 0.1)

Table 6.3: Input Noise Distributions

i.e., last-second normal or hard braking condition, different initial vehicle speeds (vH = 30 mph,

45 mph, or 60 mph), and different lead vehicle deceleration levels (aL = −1.5 m/s2, −2.7 m/s2, or

−3.8 m/s2), respectively. It can be noted from the figure that the Tlsb measure for all of the last-

second hard braking data under the heavy lead vehicle braking scenario (aL = −3.8 m/s2) converge

to about 0.5 second while the Tlsb for the corresponding last-second normal braking data are between

1 and 1.5 seconds, implying the urgency and severity of this kind of scenario. In addition, the time

buffer left until last-second braking increases as the lead vehicle deceleration level decreases and/or

the host vehicle speed increases, corresponding to lower threat levels.

6.3.4 General Scenario

In general, as with the NHTSA alert algorithm described in Section 6.2.4, two different cases are

considered to estimate the Tlsb, depending on whether the lead vehicle is expected to stop first or

not. The lead vehicle stopping time tLS is still estimated by Equation 6.6, while the estimation of

the host vehicle stopping time tHS is computed as follows:

tHS = Tlsb − vH + aHTlsb

aHmax

vH + aHTlsb > 0 (6.21)

Generally it is assumed that the condition vH + aHTlsb > 0 holds2 and the Tlsb measure can be

solved from the following equations, using the same strategy as described in Section 6.3.3.

R =

⎧⎪⎪⎨
⎪⎪⎩

vHTlsb +
1
2
aHT 2

lsb −
(vH + aHTlsb)2

2aHmax

+
v2

L

2aL
+ Rmin tLS ≤ tHS

−RR · Tlsb − 1
2
aRT 2

lsb +
(RR + aRTlsb)2

2(aL − aHmax
)

+ Rmin tLS > tHS

(6.22)

6.3.5 Error Estimation of the Tlsb Measure

From the above calculation process of the Tlsb measure, it follows that the error of the estimated

Tlsb depends on the error or measurement noise of the six underlying state variables as specified

in Equation 6.16. For simplicity, it is assumed that the input measurement noise is generated as

independent random variables with the distributions given in Table 6.3 [Brunson et al. 2002]. Here

2Otherwise the host vehicle is already decelerating hard enough, hence no emergency.

104

Parameter Scenario 1 Scenario 2
vH U [20, 30] U [20, 30]
aH L(0, 0.3) L(0, 0.3)
R U [60, 80] U [20, 40]

RR U [−vH ,−vH + 5] U [−vH + 20,−vH + 30]
aR L(−aH , 0.3) L(−5 − aH , 0.3)

Table 6.4: True Input Distributions

U [a, b] represents the uniform distribution in the interval from a to b, while G(μ, σ) represents

the Gaussian distribution with mean μ and standard deviation σ. All units are metric (m, m/s,

and m/s2) in this section unless otherwise noted. These noise distributions were derived from a

noise analysis of data collected from the prototype collision warning system in the Engineering

Development Vehicle (EDV) developed under the Automotive Collision Avoidance System field

operational test (ACAS FOT) [Brunson et al. 2002].

In order to estimate the error of the Tlsb measure, the assumed true input parameters under

different scenarios are drawn randomly using the distributions specified in Table 6.4, where L(μ, σ)

represents the Laplacian distribution with mean μ and standard deviation σ. The details of Scenario

1 (lead vehicle stopped or moving slowly) and Scenario 2 (lead vehicle decelerating) are described

in Section 6.3.2 and 6.3.3, respectively.

In addition, the true maximum available host vehicle deceleration aHmax,true
is drawn from a

truncated Gaussian distribution with mean −5.9 m/s2, standard deviation of 1 m/s2, minimum of

−7.8 m/s2, and maximum of −2.9 m/s2. Also it is assumed that aHmax
can be estimated based on

a friction coefficient monitor within ±10% white noise.

The true time-to-last-second-braking (Tlsb,true) can be calculated based on the true inputs drawn

from the random distributions described above, and the estimated value (Tlsb,est) can be calculated

based on the corresponding noisy sensor inputs data, which are obtained by adding sensor measure-

ment noise (drawn from Table 6.3) to the true inputs.

Then the relative frequency distribution of the error of the Tlsb measure (i.e., Tlsb,est − Tlsb,true)

can be estimated by repeating the above calculations for a large number of trials and normalizing

the data, as shown in Figure 6.9. The various percentile values and statistical measures of the Tlsb

estimation error are summarized in Table 6.5. It can be observed from the figure and the table that,

under the current assumptions, 99% of the Tlsb estimation error range is within 1 s, and that the

estimated value of Tlsb will not exceed the true value by more than 0.25 s with a probability of over

99.9%.

Percentile 0.1% 1% 50% 99% 99.9% mean std
Scenario 1 -1.0567 -0.7966 -0.2587 0.1640 0.2433 -0.2672 0.2067
Scenario 2 -0.8133 -0.6631 -0.2714 0.0330 0.1015 -0.2784 0.1577

Table 6.5: Error of Tlsb Estimation Due to Sensor Noise in Seconds

105

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
0

0.5

1

1.5

2

2.5

Time [s]

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n

Scenario 1
Scenario 2

Figure 6.9: Error Distributions of the Estimated Tlsb (Tlsb,est − Tlsb,true) due to Sensor Noise under
Scenario 1 and Scenario 2

6.3.6 Warning/Overriding Criteria in terms of Tlsb

As mentioned above, the Tlsb measure provides a straightforward and quantitative threat assessment

of the current dynamic situation. From its definition it follows that potential collisions would

be avoided if the driver or the control system could react within Tlsb with a sufficient level of

deceleration.

From previous work on driver reaction times as reviewed in Section 6.1.2, human drivers usually

do not have a consistently quick response time on the road. It may take up to 2 s to account for

90% of drivers’ reaction times under natural driving scenarios without any warning signals. The

situation is slightly better in that 90% of drivers can react within 1.8 s if a visual warning signal is

used, 1.55 s if an auditory warning signal is issued, and 1.35 s if visual plus auditory warning signals

are applied. However, on the other hand, the interference level of the warning signals also increases

(from none, visual, auditory, to visual + auditory signal) as the driver reaction time decreases. The

higher the interference level, the more probably drivers would experience the prewarning signals as

a nuisance. Hence it is desirable to set the warning timing not too early to reduce the interference

level, and at the same time not too late to give most drivers sufficient time to react. As a result

of this trade-off it is difficult to achieve a satisfactory performance if the collision avoidance system

solely relies on human drivers to take action in an emergency, due to the significant variations in

driver behavior.

106

To overcome human driver limitations, an overriding system can be used at critical moments to

automatically apply brakes at the maximum level to avoid collisions. The advantages are that it is

not subject to the influence of driver reaction time and braking level variability, and that the Tlsb

measure can give a relatively accurate estimate of how much time is left for the overriding system

to react.

Based on the above discussions and observations, the following warning and overriding criteria

in terms of the Tlsb measure are proposed:

• 1.5 s ≤ Tlsb < 2.5 s: Cautionary warning (e.g., visual signal)

• 0.5 s ≤ Tlsb < 1.5 s: Imminent warning (e.g., visual + auditory signal)

• Tlsb < 0.5 s: Overriding (automatic braking)

The overriding threshold (0.5 s) is chosen to avoid collisions with a probability of 99.9%, according

to the Tlsb error distribution described in Section 6.3.5 and assuming the system delay of automatic

braking to be 250 ms. The CAMP data shown in Section 6.3.2 and 6.3.3 also suggest that alert

drivers would have taken a normal or hard braking action before the Tlsb drops down to 0.5 s in

most situations.

The two one-second warning stages are defined according to general human driver reaction times

and the error distribution of Tlsb estimation. The warning thresholds can be further adjusted

according to each individual driver’s responsiveness and sensitivity level to warnings. For instance,

a responsive driver might desire shorter warning time ranges than a slow driver.

The proposed Tlsb warning and overriding criteria have several advantages over the previous ones

as reviewed in Section 6.2. First, they are defined in time domain instead of distance domain, which

is in agreement with natural human sense and judgment of urgency. Besides, Tlsb gives a concrete

time measure in terms of how much time is left for the driver or the control system to react to avoid

a potential rear-end collision ahead, which serves as an excellent direct measure of the urgency and

severity of threats under current situations.

Second, the estimation process of the Tlsb measure takes into account all possible current dy-

namic information (i.e., vH , aH , R,RR, aR, aHmax
) while most previous algorithms only used partial

updated information and assumed the rest of the state variables to be constants. It follows that the

estimation of Tlsb will be more sensitive to real-time sensor noise and that the accuracy of Tlsb esti-

mates can be improved by increasing the reliability and precision of sensor measurements. However,

even when the sensor data are noisy, it is still better than a constant assumption in most cases.

Third, as mentioned above, the Tlsb criterion is less sensitive to human driver variability. In con-

trast to previous algorithms, the computation of the Tlsb measure no longer depends on an assumed

human driver reaction time tr, even though the warning criterion is still established with reference

107

to the human driver reaction times. The overriding criterion depends on neither human driver reac-

tion time nor braking behavior, which are two important human factors in other warning/overriding

algorithms.

Fourth, the overriding system can avoid collisions more effectively at the last moment based

on the Tlsb measure. According to the error distribution analysis of the estimated Tlsb measure

described in Section 6.3.5, and assuming the automatic braking system delay to be 250 ms, the

overriding system is able to avoid rear-end collisions with a probability of over 99.9%.

Finally, the Tlsb measure can be combined with TTC information to compare with last-second

steering possibilities, which will be discussed in Section 6.4.4.

6.4 Analysis

In this section, the performance of the proposed warning and overriding criteria is analyzed in terms

of probability of miss (Pmiss) and probability of false alarm (PFA) first. Then the proposed criteria

are compared with other warning and overriding algorithms under both Scenario 1 and Scenario 2.

Finally the possibilities of last-second braking versus steering are discussed.

6.4.1 Performance in terms of Pmiss versus PFA

As mentioned above, a good collision avoidance system should assist drivers with effective collision

avoidance during emergencies and at the same time reduce its disturbance to drivers under non-

emergency situations. In other words, the system should minimize both the probability of miss

(Pmiss) and the probability of false alarm (PFA) simultaneously. A miss event is defined as a

situation where a warning is not issued (or an overriding action not performed) when the true

conditions indicate that an alert (or an overriding action) should be given (taken). Conversely, a

false alarm event is a situation where an alert is issued to the driver or an overriding action is taken

when the real conditions did not warrant such alert level or the overriding action. Mathematically

they are defined as follows according to the proposed Tlsb warning and overriding criteria:

Pmiss = Prob(Tlsb,est ≥ Tlsb,true + 0.5 s |Tlsb,true < 2.5 s) (6.23)

PFA = Prob(Tlsb,est ≤ Tlsb,true − 1 s |Tlsb,est < 2.5 s) (6.24)

Therefore a miss event is declared when the warning or overriding action is at least 0.5 s late, while

a false alarm event is identified when the warning or overriding action is more than 1 s early.

Using the same true input and noise distribution assumptions as specified in Table 6.3 and 6.4

of Section 6.3.5, the following results can be obtained for the proposed Tlsb warning and overriding

criteria after 107 test trials are conducted for both Scenario 1 and 2, respectively.

108

Scenario 1: Pmiss = 1.0120 × 10−6 and PFA = 9.5841 × 10−4

Scenario 2: Pmiss < 1.3792 × 10−7 3 and PFA = 3.0684 × 10−5

These data imply that Scenario 1 is more dangerous than Scenario 2 under the current assumptions.

In comparison, Pmiss and PFA were defined in terms of the projected minimum distance measure

(Dmin) [Brunson et al. 2002], as described in Section 6.1.1.

Pmiss = Prob(Dmin,est ≥ 2m |Dmin,true ≤ 0m) (6.25)

PFA = Prob(Dmin,est < 2m |Dmin,true ≥ 4m) (6.26)

The NHTSA alert algorithm with aHmax,est
= −5.4 m/s2 and tr,est = 1.5 s has the following results

reported:

Scenario 1: Pmiss = 0.03 and PFA = 0.65

And similar results were also obtained for Scenario 2.

A significant difference can be observed between these two criteria and their performance results.

This is because that the NHTSA warning algorithm and the corresponding Pmiss and PFA are defined

in terms of Dmin in distance domain where the permissible error range for Dmin without incurring

a miss or false alarm event is only [−2, 2] m, while the proposed warning/overriding criteria and the

corresponding Pmiss and PFA are defined in terms of Tlsb in time domain where the allowable error

range for Tlsb is [−1, 0.5] s. In fact [−2, 2] m is a narrow error range when the host vehicle speed

or range rate is high, which is why the corresponding Pmiss and PFA are so high. Additionally,

the error range represents different lengths in the time domain under different kinematic conditions.

Therefore it makes more sense to use the time domain criteria and performance definitions in terms

of Tlsb since it quantifies our human perception of urgency and it applies the same performance

criterion in terms of permissible error range in time under different kinematic conditions, adding

one more advantage to the Tlsb warning and overriding criteria in addition to those mentioned in

Section 6.3.6.

6.4.2 Comparison under Scenario 1 (aL = 0)

In this section, the first four warning and overriding algorithms described in Section 6.2 are com-

pared with the proposed Tlsb warning and overriding criteria under Scenario 1, i.e., the host vehicle

approaches a stopped or slowly moving lead vehicle with constant speed (aL = aH = 0).

As mentioned in Section 6.3.2, the Tlsb measure only depends on R and RR when aHmax
is

assumed, and its contours can be plotted as parabolic curves on a R-RR plot, as shown in Figure 6.7.
3Note that this result is obtained because no miss event is observed during the 107 test trials where Tlsb,true < 2.5 s

holds for 7,250,553 trials.

109

In Figure 6.10, the Tlsb contours are plotted again with thick curves representing the warning and

overriding thresholds proposed in Section 6.3.6, i.e., Tlsb = 0.5 s, 1.5 s, and 2.5 s.

In contrast, other algorithms have different warning or overriding thresholds for lead vehicle

stopped (LVS) scenario and lead vehicle moving (LVM) scenario, respectively, as shown in Fig-

ure 6.10. For the LVS scenario (vL = 0), the Mazda overriding curve is close to the Tlsb = 0.5 s

curve, the Berkeley warning curve is roughly close to the Tlsb = 1 s curve, and the NHTSA warning

curve is close to the Tlsb = 1.5 s curve. Note that these three curves are all concave curves like

the Tlsb contours. While the Honda warning/overriding and the Berkeley overriding thresholds are

straight lines on the R-RR plot, implying that they are only based on the TTC1 measure with a

possible constant distance headway offset adjustment.

For the LVM scenario, only the threshold curves with vH = 70 mph are plotted in Figure 6.10,

hence the LVS and LVM curves for the same algorithm intersect at RR = −70 mph. Note that all

LVM threshold curves are convex curves except for the NHTSA warning curve, this is because they

all assume certain constant lead vehicle deceleration level aL while the NHTSA alert algorithm uses

the current aL values estimated in real time. However, when vL is close to vH , the possibility of

sudden braking of the lead vehicle has to be considered even the current aL = 0, which converts to

the Scenario 2 to be discussed later.

Furthermore, it can be observed from Figure 6.10 that the NHTSA and the proposed Tlsb warning

criteria are the most conservative under the LVS scenario, giving drivers sufficient prewarning. It is

also noted that some warning and overriding thresholds even fall below the Tlsb = 0 curve, implying

that a deceleration level higher than −5 m/s2 is needed to avoid collisions at these situations. In

particular the Honda and Berkeley overriding algorithms require a deceleration level4 of more than

1 g (−9.8 m/s2) at the time of overriding when RR = −70 mph, which is obviously too large for

collision avoidance, even though they may still assist with collision mitigation.

6.4.3 Comparison under Scenario 2 (aL < 0)

When the lead vehicle decelerates (aL < 0), the situation becomes more complex with multiple

possibilities under different kinematic conditions. For simplicity, it is still assumed that the current

host vehicle acceleration aH = 0 and it will be able to decelerate at the maximum level of aHmax
=

−5 m/s2.

First a typical case is considered where the lead vehicle and the host vehicle travel at the same

speed (e.g., vL = vH = 70 mph) initially, and then the lead vehicle suddenly starts to brake at a

constant deceleration level aL < 0. At the moment the lead vehicle starts to brake (i.e., RR = 0

still holds), the Tlsb contours can be plotted in terms of R and aL, as shown in Figure 6.11 (a).

4The required deceleration level (in m/s2) for collision avoidance can be simply computed as −RR2/(2R) in this
case where RR is expressed in m/s and R in m.

110

−70 −60 −50 −40 −30 −20 −10
0

50

100

150

Range Rate (RR) [mph]

R
an

ge
 (

R
)

[m
]

0.5

0.5

0.5

0.5

1.5

1.5

1.5

1.5

2.5

2.5

2.5

2.5

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

5

5

5

0

0

0

Mazda R
o
 LVS

Honda R
w

Honda R
o
 LVS

Berkeley R
w

 LVS

Berkeley R
o

NHTSA R
w

 LVS

Mazda R
o
 LVM

Honda R
o
 LVM

Berkeley R
w

 LVM

NHTSA R
w

 LVM

Figure 6.10: Tlsb Contours (solid lines) in Seconds with Various Warning (Rw, dotted lines) and
Overriding (Ro, dashed lines) Boundary Curves under Scenario 1: Host Vehicle Approaches Stopped
or Slow Lead Vehicle (aL = aH = 0, aHmax

= −5 m/s2).

111

While Figure 6.11 (b) shows the Tlsb contours after the lead vehicle has braked constantly at aL

for 1 second, i.e., RR = aL · 1 s. Again the thick curves represent the Tlsb warning and overriding

thresholds proposed in Section 6.3.6, i.e., Tlsb = 0.5 s, 1.5 s, and 2.5 s.

The first four warning and overriding algorithms described in Section 6.2 are also plotted in

Figure 6.11 for comparison. Since all previous algorithms except for the NHTSA do not take current

aL into account, they are all plotted as horizontal lines in Figure 6.11 (a) and slant lines varying

with RR in Figure 6.11 (b), while the NHTSA warning curve is still close to the Tlsb = 1.5 s curve

in both plots as expected, since it assumed that tr = 1.5 s in addition to the assumptions used by

the Tlsb measure. It can be observed from the figure that when the lead vehicle brakes lightly (e.g.,

aL > −3 m/s2), the Berkeley warning and Mazda overriding thresholds are generally too conservative

since heavier aL was assumed in these algorithms, while the Honda warning/overriding and Berkeley

overriding systems might act too late when the lead vehicle brakes hard (e.g., aL < −3 m/s2).

The safe following distance between two vehicles traveling at the same speed could also be derived

from Figure 6.11 (a). Suppose the two vehicles have the same maximum braking capability, i.e.,

the same tire-road friction coefficient, since they are on the same road. Considering the possibility

of sudden braking of the lead vehicle at the maximum level, the host vehicle has to keep a time

headway th no less than the driver or the overriding system’s reaction time including brake system

delay. Similarly the following warning and overriding criteria based on th can be proposed for this

special case where vL ≈ vH and aL ≈ 0:

• 1 s ≤ th < 1.5 s: Cautionary warning (e.g., visual signal)

• 0.5 s ≤ th < 1 s: Imminent warning (e.g., visual + auditory signal)

• th < 0.5 s: Overriding (automatic braking)

where

th =
R − Rmin

vH
(6.27)

Smaller time thresholds are adopted in the above criteria for this tailgating mode to account for

the extreme possibility of the sudden maximum braking of the lead vehicle. Again these thresholds

can be adjusted according to individual driver’s alertness and sensitivity. For the example plotted

in Figure 6.11 (a) where vH = 70 mph and Rmin = 2 m, the host vehicle has to keep a following

distance of 49 m to eliminate visual warnings, 33 m to avoid imminent warnings, and braking is

automatically applied when R < 17.5 m.

Figure 6.12 shows another example of the Tlsb contours varying with aL and R, where the

moment of vL = 60 mph and vH = 70 mph (i.e., RR = −10 mph) is examined. All previous warning

and overriding thresholds except for the NHTSA are horizontal lines again here, since the different

situations with different aL but the same RR are explored, while the NHTSA warning curve is still

112

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

10

20

30

40

50

60

Lead Vehicle Deceleration Level (a
L
) [m/s2]

R
an

ge
 (

R
)

[m
]

0.5

0.5

1.5

1.5

1.5

1.5

2.5

2.5

2.5

2.5

1
1

1

1

2

2

2

2

3

3

3

4

4

4

5

5

Mazda R
o

Honda R
w

Honda R
o

Berkeley R
w

Berkeley R
o

NHTSA R
w

(a)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

10

20

30

40

50

60

70

80

Lead Vehicle Deceleration Level (a
L
) [m/s2]

R
an

ge
 (

R
)

[m
]

0.5
0.5

0.5

0.5

1.5

1.5

1.5

1.5

2.5

2.5

2.5

1

1

1

1

2

2

2

2

3

3

3

4

4

4

5

5

0

0
0

Mazda R
o

Honda R
w

Honda R
o

Berkley R
w

Berkley R
o

NHTSA R
w

(b)

Figure 6.11: Tlsb Contours (solid lines) in Seconds with Various Warning (Rw, dotted lines) and
Overriding (Ro, dashed lines) Boundary Curves under Scenario 2: Lead Vehicle Decelerates 0 s (a)
and 1 s (b), respectively, where both vehicles initially travel at the same speed 70 mph (aH = 0,
aHmax

= −5 m/s2).

113

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

10

20

30

40

50

60

70

80

Lead Vehicle Deceleration Level (a
L
) [m/s2]

R
an

ge
 (

R
)

[m
]

0.5

0.5

0.5
0.5

1.5

1.5

1.5

1.5

2.5

2.5

2.5

1

1

1

1

2

2

2

2

3

3

3

4
4

5

5

0

0
0

Mazda R
o

Honda R
w

Honda R
o

Berkeley R
w

Berkeley R
o

NHTSA R
w

Figure 6.12: Tlsb Contours (solid lines) in Seconds with Various Warning (Rw, dotted lines) and
Overriding (Ro, dashed lines) Boundary Curves under Scenario 2: Lead Vehicle Decelerates (vL =
60 mph, vH = 70 mph, aH = 0, aHmax

= −5 m/s2).

close to the Tlsb = 1.5 s curve as above. Similar observations can be made in this case as above too.

From the above plots and discussions, it can be inferred that it is important for a collision

avoidance system to take the lead vehicle deceleration (aL) information into account to make better

threat assessments of the current situations. Even if only a rough and slightly delayed estimate of

aL is available due to noisy sensor data, it would still be better than a constant assumption in most

cases. In addition, when the lead vehicle is not braking heavily (aL > −3 m/s2) now, the possibility

of sudden heavy breaking of the lead vehicle in the near future has to be considered, which, however,

seems to be the only focus of most previous algorithms.

6.4.4 Last-second Braking versus Steering

The discussions so far have only considered one way of rear-end collision avoidance through braking.

Normally a road vehicle has two choices for avoiding a potential conflict with other objects ahead

in the same lane, i.e., it could either brake or steer to avoid other objects in its path. The proposed

Tlsb measure as well as the corresponding warning/overriding criteria described above considers one

possibility of frontal collision avoidance through braking, which is always an available option. On

the other hand, when steering is considered in collision avoidance, special attention is needed to

114

make sure the steering option is available. For example, the host and lead vehicle may travel on a

lane with stationary objects (e.g., a fence, a wall, or parked vehicles) and/or other moving vehicles

traveling on either adjacent lane, which could make the steering option unavailable at the moment.

In addition, the driver or the control system must ensure that the steering maneuver is performed

appropriately without overreaction, which is a major cause for highway accidents. In comparison,

braking is a less dangerous maneuver and more intuitive reaction for most people in emergency

situations.

When the steering option is available, a time-to-last-second-steering (Tlss) measure can be simi-

larly defined as the time left for the driver or the control system to take the steering evasive action

at last moment to avoid a potential collision (e.g., with a lead vehicle ahead). From the definition of

Tlss it can be used to assess not only potential rear-end collisions but also side collisions with other

vehicles or road objects, etc. However the major concern here is still focused on typical rear-end

collision avoidance.

Similarly it is assumed that the lead vehicle would maintain the current acceleration level aL

constantly until it comes to a full stop if aL < 0 and in this case it would remain stopped thereafter,

and that the host vehicle keeps traveling at current acceleration level aH in the same lane as the

lead vehicle until the last moment when it is able to steer to an available adjacent lane to avoid

collision with the lead vehicle. Therefore Tlss tries to estimate how long the host vehicle could still

keep the current state until it has to change lanes just to avoid a potential rear-end collision with

the lead vehicle.

To calculate Tlss, the time it takes for a lane change has to be estimated first. From an NHTSA

study on naturalistic lane changes [Lee et al. 2004], the mean duration of a single lane change under

urgent conditions is about 6 seconds. For the purpose of collision avoidance, at least half of the

whole lane-change duration is necessary to avoid a potential frontal collision through steering, i.e.,

the time needed for a successful steering evasive maneuver ts can be roughly estimated to be 3

seconds. Furthermore, since it is assumed that both vehicles would keep their current acceleration

levels, respectively, the TTC2 measure defined in Section 6.1.1 can be used to get an approximate

estimate of Tlss. Because the driver or the control system has to finish the steering maneuver

successfully before the vehicles come into contact with each other, then Tlss can be simply estimated

as follows under the above assumptions:

Tlss = TTC2 − ts (6.28)

where

TTC2 = f(vH , aH , R,RR, aR) (6.29)

The calculation of TTC2 depends on whether the lead vehicle is expected to stop before it is

115

hit by the host vehicle from behind. The lead vehicle stopping time tLS can still be estimated by

Equation 6.6, and then TTC2 can be solved from the following equations:

R =

⎧⎪⎨
⎪⎩

vH · TTC2 +
1
2
aH · TTC22 +

v2
L

2aL
tLS ≤ TTC2

−RR · TTC2 − 1
2
aR · TTC22 tLS > TTC2

(6.30)

In practice, first it is assumed that tLS > TTC2 holds and TTC2 is solved from the second part

of Equation 6.30, where the more positive solution is taken and the other solution discarded. Then

whether the condition tLS > TTC2 holds or not can be verified. If it holds, then the computation

for TTC2 is completed. Otherwise TTC2 is solved from the first part of Equation 6.30.

Under the conditions of Scenario 1 where the lead vehicle is stopped or moving slowly (aL = aH =

0) as specified in Section 6.3.2, the TTC2 and TTC1 measures are equivalent to each other, and

they can be simply computed as −R/RR. Hence the Tlss contours in this case are simply straight

lines going through the origin point on a R-RR plot, as shown in Figure 6.13, together with the Tlsb

contours for comparison. By equating Tlss = −R/RR − 3 s with Equation 6.17, the condition for

Tlsb = Tlss under Scenario 1 can be solved, which is RR = −66 mph. Therefore there is more time

left for last-second braking rather than steering (Tlsb > Tlss) when the closing speed is not too high

(e.g., RR > −66 mph), and last-second steering may be a better choice for collision avoidance if it

is available when the speed difference is rather high (e.g., RR < −66 mph). This result also agrees

with the CAMP experimental findings that drivers tend to make last-second steering maneuvers

later than last-second braking when the closing speed is high [Kiefer et al. 2003].

A special case of Scenario 2 is also investigated here, where the vehicles initially travel at the

same speed when the lead vehicle suddenly starts to brake, e.g., vL = vH = 70 mph, aL < 0, aH = 0,

and aHmax
= −5 m/s2. In this case the Equation 6.30 is simplified to

R = −1
2
aL · TTC22 (6.31)

When R is not too large, and then the Tlss can be roughly estimated as follows:

Tlss =
√

2R

−aL
− ts (6.32)

Therefore the Tlss contours are again straight lines going through the origin point on a range (R)

versus lead vehicle deceleration (aL) plot, as shown in Figure 6.14, together with the corresponding

Tlsb contours for comparison. It can observed from the contour plot that there is usually more time

left for last-second braking rather than steering under the current assumptions in most cases. Only

when the initial range is large and the lead vehicle brakes very heavily would the steering be a better

option, if available.

116

−70 −60 −50 −40 −30 −20 −10
0

50

100

150

1

1

1

1

2

2

2

2

3

3

3

3

0

0

0

0

0.5

0.5

0.5

0.5

1

1

1

1

1.5

1.5

1.5

1.5

2

2

2

2

2.5

2.5

2.5

2.5

3

3

3

3

Range Rate (RR) [mph]

R
an

ge
 (

R
)

[m
]

0.5

0.5

0.5

0.5

1.5

1.5

1.5

1.5

2.5

2.5

2.5

2.5

0

0

0

T
lsb

T
lss

Figure 6.13: Tlsb and Tlss Contours in Seconds under Scenario 1: Host Vehicle Approaches Stopped
or Slow Lead Vehicle (aL = aH = 0, aHmax

= −5 m/s2).

117

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

10

20

30

40

50

60

1

1

1
1

2

2

2

2
3

3
3

3

0

0

0

0

0.5

0.5

0.5

0.5

1

1

1

1

1.5

1.5

1.5

1.5

2

2

2

2

2.5

2.5

2.5

3

3

3

Lead Vehicle Deceleration Level (a
L
) [m/s2]

R
an

ge
 (

R
)

[m
]

0.5

0.5 0.5 0.5

1.5

1.5

1.5

1.5

2.5

2.5

2.5

2.5

T
lsb

T
lss

Figure 6.14: Tlsb and Tlss Contours in Seconds under Scenario 2: Lead Vehicle Just Starts to
Decelerate (vL = vH = 70 mph, aH = 0, aHmax

= −5 m/s2).

In summary, braking is an effective and always available option for frontal collision avoidance.

When the steering option is considered, special attention needs to be paid to ensure that the intended

adjacent lane is clear and available, and the steering maneuver can be performed appropriately.

When both options are available, there seems to be more time left for the braking option under the

current assumptions in most cases, and only when the initial range is large and the closing speed is

high (in Scenario 1) or the lead vehicle deceleration is high (in Scenario 2) would the steering option

have more time margin. This is in agreement with our common driving experience. People tend to

avoid a slow or stopped object ahead by changing lanes when it is still quite far away, and braking

is used more often when the object is close.

6.5 Conclusion

Previous work and research related to the topic of rear-end collision avoidance systems are reviewed,

including different measures defined for threat assessment, research efforts made on measuring driver

reaction time as well as estimating its probability distributions, CAMP work on CWS based on their

118

extensive experiments with drivers’ last-second maneuvers, and the NHTSA analysis and testing of

its alert algorithm, etc. Several warning and overriding algorithms proposed in the literature are

reviewed and summarized.

A new threat assessment measure, time-to-last-second-braking (Tlsb) is proposed, and its advan-

tages over previous measures defined are discussed. It directly quantifies the danger or threat level

of the current dynamic situation objectively as well as assesses the urgency level for the required

evasive action, e.g., braking. It is also in agreement with human natural judgment of the urgency

and severity of threats. Furthermore, new warning and overriding criteria are proposed based on

the new Tlsb measure, which is least affected by driver behavior variability with reduced Pmiss and

PFA under statistical performance analysis. The new warning and overriding criteria characterize

the current dynamic situations better than the previous criteria under both Scenario 1 and Sce-

nario 2, providing more appropriate warning and more effective overriding at the last moment. It is

also shown that the information of lead vehicle deceleration level (aL) is essential for better threat

assessment of the frontal collision avoidance system, which is greatly improved with even a rough

estimate of aL. Finally, the possibility of frontal collision avoidance through steering (lane-changing)

is discussed, and similarly the time-to-last-second-steering (Tlss) measure is proposed and compared

with Tlsb, it turns out that braking is a better option under current assumptions in most cases.

In the future, the proposed measures and warning/overriding criteria will be applied to develop

real effective collision avoidance systems. The evolutionary design synthesis methodology introduced

in Chapter 2 can be applied here again to synthesize an appropriate collective sensory system as well

as the corresponding sensor fusion algorithms for collision avoidance systems. The system software

and hardware design can also be simultaneously evolved to get an optimal integrated system design.

In addition, the warning and overriding system control strategy parameters can be automatically

tuned and adapted to each individual driver by machine learning algorithms.

119

Chapter 7

Conclusions

This thesis investigates the application of formal engineering design synthesis methodologies to the

development of sensor and control systems for intelligent vehicles. Both formal engineering design

synthesis and intelligent vehicles are rather new research areas; this thesis makes an first attempt

to combine these two with a series of meaningful case studies, through which great potential and

interesting results are shown.

7.1 Summary

A formal engineering design synthesis methodology based on evolutionary computation is presented,

with special emphasis on dealing with modern engineering design challenges, such as high or vari-

able complexity of design solutions, multiple conflicting design objectives, and noisy evaluation

results, etc., which are common to encounter when design and optimization of distributed control

systems such as intelligent vehicles are considered. The efficacy of the evolutionary design synthesis

method is validated through multiple different case studies. In the sensor configuration case study,

a variety of novel design solutions are generated using fuzzy fitness functions with different weights

and trade-off strategies selected by the human designer to reflect different engineering design trade-

offs made on multiple performance measures. In the neural controller evolution case study, it is

shown that the various evolved neural network controllers can achieve performances comparable to,

if not better than, that of a hand-coded rule-based controller in the same simplified environment.

More importantly, this automatic design synthesis method shows great potential to handle more

complex design problems with a large number of design variables and multi-modal noise involved,

where a good hand-coded solution may be very difficult or even impossible to obtain. In summary,

the evolutionary design synthesis methodology appears promising to

• propose a variety of good, novel design solutions according to specified fuzzy fitness functions;

• deal with uncertainty in the problem efficiently;

120

• adapt to the collective task nature well.

In addition, various vehicle simulation tools and driver behavior models are reviewed and dis-

cussed. Multiple levels of vehicle simulation models with different computational cost and fidelity

as well as necessary driver behaviors are implemented for different types of simulation experiments

conducted for different research purposes. Efforts are made to try to get as much as possible out

of limited computational resources, such that good candidate solutions can be generated efficiently

with less computational time and human engineering effort.

Furthermore, different threat assessment measures and collision avoidance algorithms are re-

viewed and discussed. A new threat assessment measure, time-to-last-second-braking (Tlsb), is pro-

posed, which directly characterizes human natural judgment of the urgency and severity of threats

in terms of time. Based on driver reaction time experimental results, new warning and overriding

criteria are proposed in terms of the new Tlsb measure, and the performance is analyzed statistically

in terms of two typical sample pre-crash traffic scenarios. Less affected by driver behavior vari-

ability, the new criteria characterize the current dynamic situations better than the previous ones,

providing more appropriate warning and more effective overriding at the last moment. Finally, the

possibility of frontal collision avoidance through steering (lane-changing) is discussed, and similarly

the time-to-last-second-steering (Tlss) measure is proposed and compared with Tlsb.

7.2 Limitation and Future Directions

The power of the evolutionary engineering design synthesis methodology presented here awaits more

validation studies on more complex design problems defined in more complicated environments.

The set of design problems for which the automatic design synthesis method excels or matches other

methods in terms of both performance and computational cost needs to be further clarified and

categorized. The proposed automatic design synthesis method can be further improved to make it

more efficient and pertinent to each specific engineering design synthesis problem. For instance, the

hierarchical evaluation test idea mentioned in Section 4.3.2 could be tested in the future to improve

computational efficiency.

All the results presented in this thesis are based on computer simulations; it would be desirable

and meaningful to implement and validate the sensor and control system designs discussed in this

thesis on real intelligent vehicles in the future. In turn those validation studies can help to further

improve the different vehicle and driver models used to simulate more realistic and complicated traffic

scenarios without slowing down the simulation speed too much. It is also desirable to simulate more

sample traffic scenarios to further testify the system designs comprehensively.

The discussions on the new threat assessment measures and warning/overriding criteria are based

on purely theoretical computations with basic kinematic equations and statistical predictions with

121

simplified assumptions. The real traffic scenarios are expected to be much more complicated. For

instance, effective multiple target tracking and identification of the most dangerous object have to

be implemented from noisy sensor data, and also the sensor fusion and synchronization in both time

and space have to be solved if multiple sensors are used. Therefore the effectiveness of the new

criteria is yet to be proved and validated with real human drivers driving physical test vehicles in

real traffic environments.

Finally, the evolutionary design synthesis methodology can be applied again to develop an op-

timal integrated hardware and software system design for real collision avoidance systems. All the

results presented in this thesis will be useful, especially the threat assessment measures and the

warning/overriding control system strategies.

122

Bibliography

[Aczél 1966] Aczél, J. (1966), Lectures on Functional Equations and Their Applications, Academic

Press, New York, NY.

[Alm and Nilsson 1994] Alm, H. and Nilsson, L. (1994), “Changes in driver behaviour as a function

of handsfree mobile phones—A simulator study”, Accident Analysis and Prevention, 26(4):441–

451.

[Antonsson and Cagan 2001] Antonsson, E. K. and Cagan, J., (Eds.) (2001), Formal Engineering

Design Synthesis, Cambridge University Press, Cambridge, U.K.

[Antonsson et al. 2003] Antonsson, E. K., Zhang, Y., and Martinoli, A. (2003), “Evolving engineer-

ing design trade-offs”, In Proceedings of the 15th International Conference on Design Theory and

Methodology, number DTM-48676, Chicago, IL, ASME.

[Bäck 1996] Bäck, T. (1996), Evolutionary Algorithms in Theory and Practice, Oxford University

Press, New York, NY.

[Bäck et al. 2000] Bäck, T., Fogel, D. B., and Michalewicz, Z., (Eds.) (2000), Evolutionary Compu-

tation, Institute of Physics Publishing, Bristol, U.K.

[Bakker et al. 1987] Bakker, E., Nyborg, L., and Pacejka, H. B. (1987), “Tyre modelling for use in

vehicle dynamics studies”, SAE Technical Paper No. 870421.

[Bakker et al. 1989] Bakker, E., Pacejka, H. B., and Lidner, L. (1989), “A new tire model with an

application in vehicle dynamics studies”, SAE Technical Paper No. 890087.

[Bando et al. 1995] Bando, M., Hasebe, K., Nakayama, A., Shibata, A., and Sugiyama, Y. (1995),

“Dynamical model of traffic congestion and numerical simulation”, Physical Review E, 51(2):1035–

1042.

[Bentley 1999] Bentley, P. J., (Ed.) (1999), Evolutionary Design by Computers, Morgan Kaufmann,

London, U.K.

[Bishop 2005] Bishop, R. (2005), “Intelligent vehicle R&D: A review and contrast of programs

worldwide and emerging trends”, Annales des Télécommunications, 60(3–4):228–263.

123

[Bonabeau et al. 1999] Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999), Swarm Intelligence:

From Natural to Artificial Systems, Oxford University Press, New York, NY.

[Brunson et al. 2002] Brunson, S. J., Kyle, E. M., Phamdo, N. C., and Preziotti, G. R. (2002), “Alert

algorithm development program: NHTSA rear-end collision alert algorithm”, Final Report DOT

HS 809 526, Applied Physics Laboratory, The Johns Hopkins University, National Highway Traffic

Safety Administration.

[Bugajska and Schultz 2000] Bugajska, M. D. and Schultz, A. C. (2000), “Co-evolution of form

and function in the design of autonomous agents: Micro air vehicle project”, In Proceedings of

Workshop on Evolution of Sensors (GECCO 2000), pages 240–244, Las Vegas, NV.

[Burgett et al. 1998] Burgett, A. L., Carter, A., Miller, R. J., Najm, W. G., and Smith, D. L. (1998),

“A collision warning algorithm for rear-end collisions”, In Proceedings of 16th International Tech-

nical Conference on Enhanced Safety of Vehicles, number 98-S2-P-31, pages 566–587, Washington,

DC.

[Campbell et al. 2003] Campbell, B. N., Smith, J. D., and Najm, W. G. (2003), “Examination

of crash contributing factors using national crash databases”, Technical Report DOT HS 809

664, John A. Volpe National Transportation Systems Center, National Highway Traffic Safety

Administration.

[Chang et al. 1985] Chang, M. S., Messer, C. J., and Santiago, A. J. (1985), “Timing traffic signal

change intervals based on driver behavior”, Transportation Research Record, 1027:20–30.

[Chen and Ulsoy 2001] Chen, L.-K. and Ulsoy, A. G. (2001), “Identification of a driver steering

model, and model uncertainty, from driving simulator data”, Transactions of the ASME: Journal

of Dynamic Systems, Measurement, and Control, 123(4):623–629.

[Cho and Hedrick 1989] Cho, D. and Hedrick, J. K. (1989), “Automotive powertrain modeling for

control”, Transactions of the ASME: Journal of Dynamic Systems, Measurement, and Control,

111(4):568–576.

[Correll and Martinoli 2004] Correll, N. and Martinoli, A. (2004), “Modeling and optimization of

a swarm-intelligent inspection system”, In Proceedings of the 7th Symposium on Distributed

Autonomous Robotic System (DARS), pages 351–360, Toulouse, France, Springer-Verlag.

[Correll and Martinoli 2005] Correll, N. and Martinoli, A. (2005), “Modeling and analysis of bea-

conless and beacon-based policies for a swarm-intelligent inspection system”, In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA), pages 2488–2493,

Barcelona, Spain.

124

[Curry et al. 2005] Curry, R. C., Greenberg, J. A., and Kiefer, R. J. (2005), “Forward collision

warning requirements project—Task 4 final report: NADS versus CAMP closed-course comparison

examining ‘last-second’ braking and steering maneuvers under various kinematic conditions”,

Final Report DOT HS 809 925, Crash Avoidance Metrics Partnership, National Highway Traffic

Safety Administration.

[Darwin 1859] Darwin, C. (1859), On the Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life, John Murray, London, U.K.

[De Jong 1975] De Jong, K. A. (1975), An Analysis of the Behavior of a Class of Genetic Adaptive

Systems, PhD thesis, University of Michigan, Ann Arbor, MI.

[De Jong et al. 1995] De Jong, K. A., Spears, W. M., and Gordon, D. F. (1995), “Using Markov

chains to analyze GAFOs”, In Whitley, L. D. and Vose, M. D., (Eds.), Foundations of Genetic

Algorithms 3, pages 115–137, Morgan Kaufmann, San Francisco, CA.

[Doi et al. 1994] Doi, A., Butsuen, T., Niibe, T., Yakagi, T., Yamamoto, Y., and Seni, H. (1994),

“Development of a rear-end collision avoidance system with automatic braking control”, JSAE

Review, 15(4):335–340.

[Easton and Burdick 2005] Easton, K. and Burdick, J. (2005), “A coverage algorithm for multi-

robot boundary inspection”, In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), Barcelona, Spain.

[Epiney 2004] Epiney, L. (2004), “Modeling of car dynamics and realistic traffic patterns in We-

bots”, Technical Report SWIS-SU1, Swarm-Intelligent Systems Group (SWIS), École Polytech-

nique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

[Fitzpatrick and Grefenstette 1988] Fitzpatrick, J. M. and Grefenstette, J. J. (1988), “Genetic al-

gorithms in noisy environments”, Machine Learning, 3(2-3):101–120.

[Fleming 2001] Fleming, W. J. (2001), “Overview of automotive sensors”, IEEE Sensors Journal,

1(4):296–308.

[Fogel 1992] Fogel, D. B. (1992), Evolving Artificial Intelligence, PhD thesis, University of Califor-

nia, San Diego, CA.

[Fogel et al. 1966] Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966), Artificial Intelligence Through

Simulated Evolution, John Wiley and Sons, Inc., New York, NY.

[Fujita et al. 1995] Fujita, Y., Akuzawa, K., and Sato, M. (1995), “Radar brake system”, In Pro-

ceedings of the 1995 Annual Meeting of ITS America, volume 1, pages 95–101, Washington, DC.

125

[Fuller 1981] Fuller, R. G. C. (1981), “Determinants of time headway adopted by truck drivers”,

Ergonomics, 24(6):463–474.

[Gartner et al. 1997] Gartner, N. H., Messer, C. J., and Rathi, A., (Eds.) (1997), Traffic Flow

Theory: A State of the Art Report, Transportation Research Board, Revised Monograph on

Traffic Flow Theory.

[Gazis et al. 1960] Gazis, R., Herman, R., and Maradudin, A. (1960), “The problem of the amber

signal light in traffic flow”, Operations Research, 8(1):112–130.

[Gers et al. 2002] Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2002), “Learning precise

timing with LSTM recurrent networks”, Journal of Machine Learning Research, 3:115–143.

[Gipps 1981] Gipps, P. G. (1981), “A behavioral car-following model for computer simulation”,

Transportation Research Part B: Methodological, 15(2):105–111.

[Goldberg 1989] Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, Reading, MA.

[Goldberg 2002] Goldberg, D. E. (2002), The Design of Innovation: Lessons from and for Competent

Genetic Algorithms, Kluwer Academic Publishers, Boston, MA.

[Green 2000] Green, M. (2000), “‘How long does it take to stop?’ Methodological analysis of driver

perception-brake times”, Transportation Human Factors, 2(3):195–216.

[Guo et al. 2004] Guo, K., Ding, H., Zhang, J., Lu, J., and Wang, R. (2004), “Development of a

longitudinal and lateral driver model for autonomous vehicle control”, International Journal of

Vehicle Design, 36(1):50–65.

[Harned et al. 1969] Harned, J. L., Johnston, L. E., and Scharpf, G. (1969), “Measurement of

tire brake force characteristics as related to wheel slip (antilock) control system design”, SAE

Technical Paper No. 690214.

[Hayes et al. 2003] Hayes, A. T., Martinoli, A., and Goodman, R. M. (2003), “Swarm robotic odor

localization: Off-line optimization and validation with real robots”, Robotica, 21(4):427–441.

[Hedrick et al. 1993] Hedrick, J. K., McMahon, D. H., and Swaroop, D. (1993), “Vehicle modeling

and control for automated highway systems”, Technical Report UCB-ITS-PRR-93-24, Longitu-

dinal Control Group, University of California, Berkeley, California PATH Program.

[Helbing et al. 2001] Helbing, D., Hennecke, A., Shvetsov, V., and Treiber, M. (2001), “Master:

Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model”, Transportation

Research Part B: Methodological, 35(2):183–211.

126

[Helbing et al. 2002] Helbing, D., Hennecke, A., Shvetsov, V., and Treiber, M. (2002), “Micro- and

macro-simulation of freeway traffic”, Mathematical and Computer Modelling, 35(5–6):517–547.

[Hertz et al. 1991] Hertz, J., Krogh, A., and Palmer, R. G. (1991), Introduction to the Theory of

Neural Computation, Perseus Books, Reading, MA.

[Hess and Modjtahedzadeh 1990] Hess, R. A. and Modjtahedzadeh, A. (1990), “A control theoretic

model of driver steering behavior”, IEEE Control Systems Magazine, 10(5):3–8.

[Hoess et al. 2004] Hoess, A., Slater, S., Sjögren, A., Beutner, A., Bullinger, W., Möhle, K., Maier,

D., Rasshofer, R., Saroldi, A., Miglietta, M., Rohling, H., Lübbert, U., Schiementz, M., Garrod,

A., Rickett, B., Pycock, D., Hoare, E., Castanie, F., Doerfler, R., and Brandt, M. (2004), “Mul-

tifunctional automotive radar network (RadarNet)”, Final Report D40, RadarNet Consortium,

Information Societies Technology.

[Holland 1975] Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, MI.

[Honda 2005] Honda (2005), “Acura RL luxury performance sedan combines sleek styling, su-

per handling all-wheel driveTM (SH-AWD) and a comprehensive list of technology features”,

http://corporate.honda.com/press/article.aspx?id=2005081757434, Honda Press Releases.

[Jiang et al. 2001] Jiang, R., Wu, Q., and Zhu, Z. (2001), “Full velocity difference model for a

car-following theory”, Physical Review E, 64(1):017101.

[Johansson and Rumar 1971] Johansson, G. and Rumar, K. (1971), “Drivers’ brake reaction times”,

Human Factors, 13(1):23–27.

[Kageyama 2006] Kageyama, Y. (2006), “Nissan develops gas pedal safety feature”, Associated

Press.

[Kiefer et al. 2005a] Kiefer, R. J., Cassar, M. T., Flannagan, C. A., Jerome, C. J., and Palmer,

M. D. (2005a), “Forward collision warning requirements project—Tasks 2 and 3a final report:

Surprise braking trials, time-to-collision judgments, and ‘first look’ maneuvers under realistic

rear-end crash scenarios”, Final Report DOT HS 809 902, Crash Avoidance Metrics Partnership,

National Highway Traffic Safety Administration.

[Kiefer et al. 2003] Kiefer, R. J., Cassar, M. T., Flannagan, C. A., LeBlanc, D. J., Palmer, M. D.,

Deering, R. K., and Shulman, M. A. (2003), “Forward collision warning requirements project:

Refining the CAMP crash alert timing approach by examining ‘last-second’ braking and lane

change maneuvers under various kinematic conditions”, Final Report DOT HS 809 574, Crash

Avoidance Metrics Partnership, National Highway Traffic Safety Administration.

127

[Kiefer et al. 2005b] Kiefer, R. J., LeBlanc, D. J., and Flannagan, C. A. (2005b), “Developing an

inverse time-to-collision crash alert timing approach based on drivers’ last-second braking and

steering judgments”, Accident Analysis and Prevention, 37(2):295–303.

[Kiefer et al. 1999] Kiefer, R. J., LeBlanc, D. J., Palmer, M. D., Salinger, J., Deering, R. K., and

Shulman, M. A. (1999), “Development and validation of functional definitions and evaluation pro-

cedures for collision warning/avoidance system”, Final Report DOT HS 808 964, Crash Avoidance

Metrics Partnership, National Highway Traffic Safety Administration.

[Koza 1992] Koza, J. R. (1992), Genetic Programming: On the Programming of Computers by

Means of Natural Selection, The MIT Press, Cambridge, MA.

[Koza 1994] Koza, J. R. (1994), Genetic Programming II, The MIT Press, Cambridge, MA.

[Lee 2002] Lee, C.-Y. (2002), Efficient Automatic Engineering Design Synthesis via Evolutionary

Exploration, PhD thesis, California Institute of Technology, Pasadena, CA.

[Lee and Antonsson 2000] Lee, C.-Y. and Antonsson, E. K. (2000), “Variable length genomes for

evolutionary algorithms”, In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I.,

and Beyer, H.-G., (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2000), page 806, Las Vegas, NV, Morgan Kaufmann.

[Lee and Peng 2005] Lee, K. and Peng, H. (2005), “Evaluation of automotive forward collision

warning and collision avoidance algorithms”, Vehicle System Dynamics, 43(10):735–751.

[Lee et al. 2004] Lee, S. E., Olsen, E. C. B., and Wierwille, W. W. (2004), “A comprehensive exami-

nation of naturalistic lane-changes”, Final Report DOT HS 809 702, Virginia Tech Transportation

Institute, National Highway Traffic Safety Administration.

[Li et al. 2006] Li, L., Wang, F.-Y., and Zhou, Q. (2006), “Integrated longitudinal and lateral

tire/road friction modeling and monitoring for vehicle motion control”, IEEE Transactions on

Intelligent Transportation Systems, 7(1):1–19.

[Lipson and Pollack 2000] Lipson, H. and Pollack, J. B. (2000), “Automatic design and manufacture

of robotic lifeforms”, Nature, 406:974–978.

[Lubashevsky et al. 2003] Lubashevsky, I., Wagner, P., and Mahnke, R. (2003), “Rational-driver

approximation in car-following theory”, Physical Review E, 68(5):056109.

[Lutz 2005] Lutz, N. (2005), “Evolution of a robot neural controller for keep lane behavior”, Tech-

nical Report EDRL-SWIS-SU3, Engineering Design Research Laboratory, California Institute of

Technology, Pasadena, CA.

128

[MacAdam 1981] MacAdam, C. C. (1981), “Application of an optimal preview control for simulation

of closed-loop automobile driving”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-

11(6):393–399.

[MacAdam 2003] MacAdam, C. C. (2003), “Understanding and modeling the human driver”, Ve-

hicle System Dynamics, 40(1–3):101–134.

[Martin and Stewart 2000] Martin, K. and Stewart, C. V. (2000), “Real time tracking of borescope

tip pose”, Image and Vision Computing, 10(18):795–804.

[Martinoli 1999] Martinoli, A. (1999), Swarm Intelligence in Autonomous Collective Robotics: From

Tools to the Analysis and Synthesis of Distributed Control Strategies, PhD thesis, École Polytech-

nique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

[Martinoli et al. 2002] Martinoli, A., Zhang, Y., Prakash, P., Antonsson, E. K., and Olney, R. D.

(2002), “Towards evolutionary design of intelligent transportation systems”, In Proceedings

of the 11th International Symposium of the Associazione Tecnica dell’Automobile on Advanced

Technologies for ADAS Systems (ATA 2002), Siena, Italy.

[McEvoy et al. 2005] McEvoy, S. P., Stevenson, M. R., McCartt, A. T., Woodward, M., Haworth, C.,

Palamara, P., and Cercarelli, R. (2005), “Role of mobile phones in motor vehicle crashes resulting

in hospital attendance: A case-crossover study”, BMJ (British Medical Journal), 331(7514):428.

[McRuer et al. 1977] McRuer, D. T., Allen, R. W., Weir, D. H., and Klein, R. H. (1977), “New

results in driver steering control models”, Human Factors, 19(4):381–397.

[Mende et al. 2005] Mende, R., Behrens, M., and Milch, S. (2005), “A 24 GHz ACC radar sensor”,

In Proceedings of the International Radar Symposium (IRS 2005), Berlin, Germany.

[Mendel 1866] Mendel, G. (1866), “Versuche über pflanzen-hybriden”, In Verhandlungen des Natur-

forschenden Vereins, volume 4, Brünn, Czech Republic.

[Michel 2004] Michel, O. (2004), “Webots: Professional mobile robot simulation”, Journal of Ad-

vanced Robotic Systems, 1(1):39–42.

[Miglino et al. 1995] Miglino, O., Lund, H. H., and Nolfi, S. (1995), “Evolving mobile robots in

simulated and real environments”, Artificial Life, 2(4):417–434.

[Miller and Goldberg 1996] Miller, B. L. and Goldberg, D. E. (1996), “Optimal sampling for genetic

algorithms”, In Dagli, C. H., Akay, M., Chen, C. L. P., Fernandez, B. R., and Ghosh, J., (Eds.),

Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 96), volume 6,

pages 291–297, St. Louis, MO, ASME Press.

129

[Mitchell 1996] Mitchell, M. (1996), An Introduction to Genetic Algorithms, The MIT Press, Cam-

bridge, MA.

[Modjtahedzadeh and Hess 1993] Modjtahedzadeh, A. and Hess, R. A. (1993), “A model of driver

steering control behavior for use in assessing vehicle handling qualities”, Transactions of the

ASME: Journal of Dynamic Systems, Measurement, and Control, 115(3):456–464.

[Mondada et al. 1994] Mondada, F., Franzi, E., and Ienne, P. (1994), “Mobile robot miniaturisa-

tion: A tool for investigation in control algorithms”, In Proceedings of the Third International

Symposium on Experimental Robotics, pages 501–513, Kyoto, Japan, Springer-Verlag.

[Newman 2000] Newman, M. (2000), “Applied mathematics: The power of design”, Nature,

405:412–413.

[NHTSA 2006] NHTSA (2006), “Traffic safety facts 2004: A compilation of motor vehicle crash

data from the fatality analysis reporting system and the general estimates system”, Final Report

DOT HS 809 919, National Center for Statistics and Analysis, National Highway Traffic Safety

Administration.

[Nolfi and Floreano 2000] Nolfi, S. and Floreano, D. (2000), Evolutionary Robotics: The Biology,

Intelligence, and Technology of Self-Organizing Machines, The MIT Press, Cambridge, MA.

[Nolfi and Parisi 2002] Nolfi, S. and Parisi, D. (2002), “Evolution of artificial neural networks”, In

Arbib, M. A., (Ed.), Handbook of Brain Theory and Neural Networks, pages 418–421, The MIT

Press, Cambridge, MA.

[Olson 1989] Olson, P. L. (1989), “Driver perception response time”, SAE Technical Paper

No. 890731.

[Otto and Antonsson 1991] Otto, K. N. and Antonsson, E. K. (1991), “Trade-off strategies in engi-

neering design”, Research in Engineering Design, 3(2):87–104.

[Patel et al. 2001] Patel, M., Honavar, V., and Balakrishnan, K., (Eds.) (2001), Advances in the

Evolutionary Synthesis of Intelligent Agents, The MIT Press, Cambridge, MA.

[Phillips and Harbor 2000] Phillips, C. L. and Harbor, R. D. (2000), Feedback Control Systems,

Prentice Hall, Upper Saddle River, NJ, fourth edition.

[Polychronopoulos et al. 2004] Polychronopoulos, A., Tsogas, M., Amditis, A., Scheunert, U., An-

dreone, L., and Tango, F. (2004), “Dynamic situation and threat assessment for collision warning

systems: The EUCLIDE approach”, In Proceedings of the IEEE Intelligent Vehicles Symposium

(IV 2004), pages 636–641, Parma, Italy.

130

[Pugh et al. 2005] Pugh, J., Zhang, Y., and Martinoli, A. (2005), “Particle swarm optimization for

unsupervised robotic learning”, In Proceedings of the IEEE Swarm Intelligence Symposium (SIS

2005), pages 92–99, Pasadena, CA.

[Pursula 1999] Pursula, M. (1999), “Simulation of traffic systems—An overview”, Journal of Geo-

graphic Information and Decision Analysis, 3(1):1–8.

[Rechenberg 1965] Rechenberg, I. (1965), “Cybernetic solution path of an experimental problem”,

Technical report, Royal Aircraft Establishment, Farnborough, Hants, U.K., Library Translation

No. 1122.

[Schwefel 1977] Schwefel, H.-P. (1977), Numerische Optimierung von Computer—Modellen mit-

tels der Evolutionsstrategie, volume 26 of Interdisciplinary Systems Research, Birkhäuser, Basel,

Switzerland.

[Scott and Antonsson 1998] Scott, M. J. and Antonsson, E. K. (1998), “Aggregation functions for

engineering design trade-offs”, Fuzzy Sets and Systems, 99(3):253–264.

[Scott and Antonsson 2000] Scott, M. J. and Antonsson, E. K. (2000), “Using indifference points

in engineering decisions”, In Proceedings of the 11th International Conference on Design Theory

and Methodology, number DTM-14559, Baltimore, MD, ASME.

[Segel 1956] Segel, L. (1956), “Theoretical prediction and experimental substantiation of the re-

sponse of the automobile to steering control”, Proceedings of The Institution of Mechanical En-

gineers, Automobile Division, 7:310–330.

[Seiler et al. 1998] Seiler, P., Song, B., and Hedrick, J. K. (1998), “Development of a collision

avoidance system”, In Proceedings of 1998 SAE Conference, pages 97–103, Detroit, MI, SAE

Technical Paper No. 980853.

[Sens et al. 1989] Sens, M. J., Cheng, P. H., Wiechel, J. F., and Guenther, D. A. (1989), “Percep-

tion/reaction time values for accident reconstruction”, SAE Technical Paper No. 890732.

[Sharke 2003] Sharke, P. (2003), “Smart cars”, Mechanical Engineering, 125(3):50–52.

[Sivak et al. 1982] Sivak, M., Olson, P. L., and Farmer, K. M. (1982), “Radar measured reaction

times of unalerted drivers to brake signals”, Perceptual and Motor Skills, 55:594.

[Sivak et al. 1981] Sivak, M., Post, D. V., Olson, P. L., and Donohue, R. J. (1981), “Driver responses

to high-mounted brake lights in actual traffic”, Human Factors, 23(2):231–235.

[Taborek 1957] Taborek, J. J. (1957), Mechanics of Vehicles, Penton.

131

[Taoka 1989] Taoka, G. T. (1989), “Brake reaction times of unalerted drivers”, Institute of Trans-

portation Engineers (ITE) Journal, 59(3):19–21.

[Treiber et al. 2000] Treiber, M., Hennecke, A., and Helbing, D. (2000), “Congested traffic states in

empirical observations and microscopic simulations”, Physical Review E, 62(2):1805–1824.

[Treiber et al. 2006] Treiber, M., Kesting, A., and Helbing, D. (2006), “Delays, inaccuracies and

anticipation in microscopic traffic models”, Physica A, 360(1):71–88.

[van der Horst 1990] van der Horst, A. R. A. (1990), A Time-based Analysis of Road User Behav-

ior in Normal and Critical Encounters, PhD thesis, Delft University of Technology, Delft, The

Netherlands.

[van Eldik Thieme and Pacejka 1971] van Eldik Thieme, H. C. A. and Pacejka, H. B. (1971), “The

tire as a vehicle component”, In Clark, S. K., (Ed.), Mechanics of Pneumatic Tires, National

Bureau of Standards Monograph 122, chapter 7, pages 545–839, U.S. Department of Commerce,

Washington, DC.

[Versino and Gambardella 1997] Versino, C. and Gambardella, L. M. (1997), “Learning real team

solutions”, In Weiss, G., (Ed.), Distributed Artificial Intelligence Meets Machine Learning, pages

40–61, Springer-Verlag, Berlin, Germany.

[Whitcomb and Milliken 1956] Whitcomb, D. W. and Milliken, W. F. (1956), “Design implications

of a general theory of automobile stability and control”, Proceedings of The Institution of Me-

chanical Engineers, Automobile Division, 7:367–391.

[Wolpert and Macready 1995] Wolpert, D. H. and Macready, W. G. (1995), “No free lunch theorems

for search”, Technical Report SFI-TR-95-02-010, The Santa Fe Institute, Santa Fe, NM.

[Wong and Litt 2004] Wong, E. and Litt, J. S. (2004), “Autonomous multi-agent robotics for in-

spection and repair of propulsion systems”, In Proceedings of AIAA First Intelligent Systems

Technical Conference, number AIAA-2004-6364, Chicago, IL.

[Wong 2001] Wong, J. Y. (2001), Theory of Ground Vehicles, John Wiley and Sons, Inc., New York,

NY, third edition.

[Yang et al. 2003] Yang, L., Yang, J. H., Feron, E., and Kulkarni, V. (2003), “Development of a

performance-based approach for a rear-end collision warning and avoidance system for automo-

biles”, In Proceedings of the IEEE Intelligent Vehicles Symposium (IV 2003), pages 316–321,

Columbus, OH.

[Yao 1999] Yao, X. (1999), “Evolving artificial neural networks”, Proceedings of the IEEE,

87(9):1423–1447.

132

[Zhang 2005] Zhang, Y. (2005), “Towards evolution of collective sensory systems for intelligent vehi-

cles”, Annual report, Engineering Design Research Laboratory, California Institute of Technology,

METRANS.

[Zhang et al. 2006] Zhang, Y., Antonsson, E. K., and Martinoli, A. (2006), “Evolving neural con-

trollers for collective robotic inspection”, In Abraham, A., Baets, B., Köppen, M., and Nickolay,

B., (Eds.), Applied Soft Computing Technologies: The Challenge of Complexity, Advances in Soft

Computing, pages 721–733, Springer, Germany.

[Zhang et al. 2003a] Zhang, Y., Martinoli, A., and Antonsson, E. K. (2003a), “Evolutionary de-

sign of a collective sensory system”, In Proceedings of the AAAI 2003 Spring Symposium on

Computational Synthesis, pages 283–290, Palo Alto, CA.

[Zhang et al. 2003b] Zhang, Y., Martinoli, A., Antonsson, E. K., and Olney, R. D. (2003b), “Evo-

lution of sensory configurations for intelligent vehicles”, In Proceedings of the IEEE Intelligent

Vehicles Symposium (IV 2003), pages 351–356, Columbus, OH.

[Zuvich 2000] Zuvich, T. (2000), “Vehicle dynamics for racing games”, In Proceedings of the Game

Developers Conference (GDC 2000), San Jose, CA.

