
COHERENT OPTICAL ARRAY RECEIVER FOR PPM 
SIGNALS UNDER ATMOSPHERIC TURBULENCE 

 

Thesis by 
Michela Muñoz Fernández 

 
In Partial Fulfillment of the Requirements for 

the Degree of 

Doctor of Philosophy 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

2006 

(Defended  December 19, 2005) 



 ii

 

 

 

 

 

 

 

 

 

 

 

 

© 2006 

 Michela Muñoz Fernández 

All Rights Reserved 



 iii

 

 

To my mother Alicia, for all her immense love, 

encouragement, kindness, and support. 

 

 

 

 

 

 

 

 

 

 

 

 



 iv

 

Thesis Committee 
 
 
 

Babak Hassibi 
Associate Professor of Electrical Engineering 

 
 

Victor Vilnrotter 
Digital Signal Processing Group, Jet Propulsion Laboratory 

 
 

Ryan Mukai 
Digital Signal Processing Group, Jet Propulsion Laboratory 

 
 

Charles Elachi 
Vice President; Director of Jet Propulsion Laboratory; Professor of Electrical 

Engineering and Planetary Science 
 
 

Hideo Mabuchi 
Associate Professor of Physics and Control and Dynamical Systems  

 
 

Demetris Psaltis 
Thomas G. Myers Professor of Electrical Engineering 

 
 

Changhuei Yang 
Assistant Professor of Electrical Engineering and Bioengineering 

 
 



 v

 

Acknowledgements 
 
 
First of all, I wish to thank my advisor at Caltech, Prof. Babak Hassibi for welcoming me 

as part of his group and for his sincere mentorship and advice, and my advisors at the Jet 

Propulsion Laboratory, Dr. Victor A. Vilnrotter and Dr. Ryan Mukai, for their guidance 

and support in making it possible to conduct this research. 

 I am very grateful to the members of my defense and candidacy committees for 

their advice and helpful suggestions:  Prof. Charles Elachi, Prof. Hideo Mabuchi, Prof. 

Demetris Psaltis, and Prof. Changhuei Yang. 

 I extend my appreciation to the Jet Propulsion Laboratory (JPL) IND 

(Interplanetary Network Directorate) Advanced Program and staff for their dedication to 

the higher education of research scientists and engineers.  The financial support and 

honor of working with Dr. Tsun-Yee Yan, and Dr. Norm Lay’s Group is gratefully 

acknowledged.  The research described in this dissertation was carried out at the Jet 

Propulsion Laboratory, California Institute of Technology, under contract with the 

National Aeronautics and Space Administration (NASA). 

Special thanks to the members of the Digital Signal Processing Group at JPL, 

especially to Dr. Marvin Simon for his invaluable advice that has enhanced this research.  

I thank immensely Carlos Esproles for teaching me the experimental skills required for 

my research; I really enjoyed working all the countless hours in the optical laboratory.  I 

am very grateful to Dr. Hammid Hemmati for allowing me to use the laboratory facilities 



 vi

 

of his group and to Bill Farr for his technical advice, and for letting me use equipment 

that has been very useful for my research. 

I also acknowledge Dr. Marc Rayman for giving me the opportunity to 

accomplish my dream to come to JPL and work on an incredibly successful mission like 

Deep Space 1 when I was at the International Space University.  I am immensely thankful 

to my mentor at that time, Jim Taylor for sharing his considerable knowledge and for 

spending endless hours explaining all these exciting topics about communicating with a 

deep space probe.  It was an amazing experience to work with the Deep Space 1 team and 

to participate in the tracking activities at the Mission Support Area.  I am also very 

grateful to Dr. Kar-Ming Cheung for being a wonderful mentor, supervisor, and a 

brilliant mind that I have been very fortunate to work with.  Thanks to that work, I 

coauthored the Deep Space Communications and Navigation Systems Center of 

Excellence report on Deep Space 1 Telecommunications.  Thanks to Dr. Vilnrotter for 

taking me to Goldstone to complete my tour of the three DSN complexes. 

Special thanks to the Zontian International Foundation for the two Amelia Earhart 

Fellowship Awards, and also thanks to the Zontians of the L.A. area, especially Dr. 

Sharon Langenbeck, Inez López, and Tricia Vick for their motivation and 

encouragement. 

I also need to thank the International Space University in Strasbourg (France), the 

European Space Agency (ESA), and the National Aerospace Institute (I.N.T.A.) in 

Madrid (Spain), for giving me the first opportunities to work on space research. 



 vii

 

Furthermore, I consider myself very fortunate for sharing these years with so 

many brilliant individuals in such a unique environment at Caltech and JPL.  I would like 

to thank all my friends and colleagues who through the years have enriched my life 

through their intellect, advice, humour, and generosity, especially, Gabriela Alexandru, 

Jim Burke, Matthieu Liger, Reece Lumsden, Erika Podest, Carlos Romero, Myriam Ruíz, 

and Ian Ruíz, and all my colleagues of the Communications Group at Caltech. 

Finally, I would like to thank my family and especially my mother Alicia whom I 

admire and love with all my heart, and who has always encouraged me to pursue all my 

dreams.  I have been very fortunate to grow up in a loving family that has provided me 

with all the education and moral values that ultimately led me to where I am today.  

 

 

 

 

 

 

 

 

 



 viii

 

List of Publications 
 

[1] Michela Muñoz Fernández, Victor A. Vilnrotter, Ryan Mukai, and Babak Hassibi.  

March 2006.  “Coherent optical array receiver experiment: Design, implementation and 

BER performance of a multichannel coherent optical receiver for PPM signals under 

atmospheric.”  Proc. SPIE Photonics West, Free-Space Laser Communication 

Technologies XVIII, G. Stephen Mecherle, Editor, vol. 61050R.

[2] Michela Muñoz Fernández, Babak Hassibi, Ryan Mukai, and Victor A. Vilnrotter.  

2005.  “Multichannel Coherent Optical Receiver for PPM Signals in the Presence of 

Atmospheric Turbulence.”  Submitted to IEEE Transactions on Communications. 

[3] Michela Muñoz Fernández, Victor A. Vilnrotter, Babak Hassibi, and Ryan Mukai.  

2005.  “Coherent Optical Array Receiver Experiment: BER performance of a 

multichannel coherent optical receiver for PPM signals under atmospheric turbulence.”  

Submitted to Journal of Lightwave Technology. 

[4] M. Munoz Fernandez and V. A. Vilnrotter.  2005.  “Optical System for Reception of 

Coherently Detected PPM Signals in the Presence of Atmospheric Turbulence.”  

Accepted to Journal Acta Astronautica, International Academy of Astronautics (IAA). 

[5] Michela Muñoz Fernández and Victor A Vilnrotter.  May 15, 2005.  “Optical System 

for Reception of Coherently Detected PPM Signals in the Presence of Atmospheric 

Turbulence,” Interplanetary Network Progress Report, IPN vol. 42-161.  Joseph H. Yuen 

http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&possible1=Fernandez%2C+Michela+Munoz&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&possible1=Vilnrotter%2C+Victor+A.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&possible1=Mukai%2C+Ryan&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&possible1=Hassibi%2C+Babak&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournals=SPIEDL&possible1=munoz+fernandez&possible1zone=article&SMODE=strsearch&OUTLOG=NO&deliveryType=spiedl&viewabs=PSISDG&key=DISPLAY&docID=1&page=0&chapter=0
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournals=SPIEDL&possible1=munoz+fernandez&possible1zone=article&SMODE=strsearch&OUTLOG=NO&deliveryType=spiedl&viewabs=PSISDG&key=DISPLAY&docID=1&page=0&chapter=0
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournals=SPIEDL&possible1=munoz+fernandez&possible1zone=article&SMODE=strsearch&OUTLOG=NO&deliveryType=spiedl&viewabs=PSISDG&key=DISPLAY&docID=1&page=0&chapter=0
http://spiedl.aip.org/dbt/dbt.jsp?KEY=PSISDG&Volume=6105&Issue=1
http://spiedl.aip.org/dbt/dbt.jsp?KEY=PSISDG&Volume=6105&Issue=1


 ix

 

Editor in Chief.  Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 

California. 

[6] Michela Muñoz Fernández and Victor A. Vilnrotter.  April 2005.  “Coherent optical 

receiver for PPM signals under atmospheric turbulence.” Proc. of SPIE Photonics West, 

Free-Space Laser Communication Technologies XVII, vol. 5712, G. Stephen Mecherle, 

Editor, pp. 162-173  

[7] Michela Muñoz Fernández and Victor A. Vilnrotter.  March 2005.  “Coherent Optical 

Receiver for PPM Signals under Atmospheric Turbulence.”  Proc. IEEE Aerospace 

Conference, pp. 1–8. 

[8] M. Muñoz Fernández and V. A. Vilnrotter. October 2004.  “Optical system for 

reception of coherently detected PPM signals in the presence of atmospheric turbulence.”  

International Astronautical Congress, Space Communications Symposium, Advanced 

Systems, Vancouver, Canada. 

[9] Victor A. Vilnrotter and Michela Muñoz Fernández.  2004.  “Coherent Detection of 

High-Rate Optical PPM Signals via Focal-Plane Array Detectors.”  (NTR 40974) NASA 

Tech Brief 40974. 

[10] M. Muñoz Fernández and V. A. Vilnrotter.  November 2004.  “Adaptive combining 

of coherently detected PPM signals in the presence of atmospheric turbulence via focal 

plane array.”  Proc. SPIE Remote Sensing Europe, Optics in Atmospheric Propagation 

and Adaptive Systems VII, John D. Gonglewski, Karin Stein, Editors, vol. 5572, pp. 175-

186  

[11] M. Muñoz Fernández and V. A. Vilnrotter.  April 2004.  “Performance analysis and 



 x

 

preliminary experimental verification of a coherent optical receiver for PPM signals in 

the presence of atmospheric turbulence.”  Proc. 5th International Conference on Space 

Optics (ICSO 2004), Toulouse, France.  Ed. by B. Warmbein. ESA SP-554, Noordwijk, 

Netherlands: ESA Publications Division, ISBN 92-9092-865-4, pp. 411-418. 

[12] M. Muñoz Fernández and V. A. Vilnrotter.  June 2004.  “Coherent optical receiver 

for PPM signals received through atmospheric turbulence: performance analysis and 

preliminary experimental results.”  Proc. SPIE Photonics West, Free-Space Laser 

Communication Technologies XVI, G. S. Mecherle, Cynthia Y. Young, John S. 

Stryjewski, Editors, vol. 5538, pp. 151-162. 

[13] J. Taylor. M. Muñoz Fernández, A. Bolea Alamanac, Kar-Ming Cheung October 

2001.  “Deep Space 1 Telecommunications.”  Design and Performance Summary Series, 

Deep Space Communications and Navigation Systems Center of Excellence 

(DESCANSO), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 

California, U.S.A., http://descanso.jpl.nasa.gov/DPSummary/All_Article2.pdf

http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournals=SPIEDL&possible1=munoz+fernandez&possible1zone=article&SMODE=strsearch&OUTLOG=NO&deliveryType=spiedl&viewabs=PSISDG&key=DISPLAY&docID=3&page=0&chapter=0
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournals=SPIEDL&possible1=munoz+fernandez&possible1zone=article&SMODE=strsearch&OUTLOG=NO&deliveryType=spiedl&viewabs=PSISDG&key=DISPLAY&docID=3&page=0&chapter=0
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournals=SPIEDL&possible1=munoz+fernandez&possible1zone=article&SMODE=strsearch&OUTLOG=NO&deliveryType=spiedl&viewabs=PSISDG&key=DISPLAY&docID=3&page=0&chapter=0
http://descanso.jpl.nasa.gov/DPSummary/All_Article2.pdf


 xi

 

 
Abstract 
 
 
The performance of a coherent free-space optical communications system operating in 

the presence of turbulence is investigated.  Maximum Likelihood Detection techniques 

are employed to optimally detect Pulse Position Modulated signals with a focal-plane 

detector array and to reconstruct the turbulence-degraded signals.  

Laboratory equipment and experimental setup used to carry out these experiments 

at the Jet Propulsion Laboratory are described.  The key components include two lasers 

operating at 1064 nm wavelength for use with coherent detection, a 16 element (4 X 4) 

InGaAs focal-plane detector array, and a data-acquisition and signal-processing assembly 

needed to sample and collect the data and analyze the results.  The detected signals are 

combined using the least-mean-square (LMS) algorithm.  In the first part of the 

experimental results we show convergence of the algorithm for experimentally obtained 

signal tones in the presence of atmospheric turbulence.  The second part of the 

experimental results shows adaptive combining of experimentally obtained heterodyned 

pulse position modulated (PPM) signals with pulse-to-pulse coherence in the presence of 

simulated spatial distortions resembling atmospheric turbulence.  The adaptively 

combined PPM signals are phased up via an LMS algorithm suitably optimized to operate 

with PPM in the presence of additive shot noise. A convergence analysis of the algorithm 



 xii

 

is presented, and results with both computer-simulated and experimentally obtained PPM 

signals are analyzed. 

The third part of the experimental results, in which the main goal of this thesis is 

achieved, includes an investigation of the performance of the Coherent Optical Receiver 

Experiment (CORE) at JPL.  Bit Error Rate (BER) results are presented for single and 

multichannel optical receivers where quasi shot noise-limited performance is achieved 

under simulated turbulence conditions using noncoherent postdetection processing 

techniques.  Theoretical BER expressions are compared with experimentally obtained BER 

results, and array combining gains are presented.  BER results are shown as a function of 

signal-to-noise ratio (SNR), photons per symbol, and photons per bit (PPB). 

 

 

 

 

 

 

 

 



 xiii

 

Table of Contents 
 
ACKNOWLEDGEMENTS ....................................................................................V 

LIST OF PUBLICATIONS.................................................................................VIII 

ABSTRACT.........................................................................................................XI 

TABLE OF CONTENTS....................................................................................XIII 

LIST OF FIGURES........................................................................................... XVI 

LIST OF TABLES .......................................................................................... XVIII 

GLOSSARY OF ACRONYMS.......................................................................... XIX 

CHAPTER 1: INTRODUCTION............................................................................ 1 

1.1 Motivation to use optical technologies for deep space communications .............................................1 

1.2 Laser communications: Coherent versus direct optical communications ........................................10 

1.3 Statement of the problem caused by atmospheric turbulence...........................................................14 

1.4 Possible solutions ...................................................................................................................................16 

1.5 Outline of the thesis...............................................................................................................................16 

1.6 Contributions of the thesis....................................................................................................................21 

CHAPTER 2: DESIGN OF A COHERENT OPTICAL RECEIVER ARRAY 
DETECTOR........................................................................................................ 22 

2.1 Existing space optical communication systems...................................................................................22 

2.2 Design methodology of an optical receiver to detect signals from deep space .................................24 
2.2.1 Transmitter technologies...............................................................................................................25 

2.2.1.1 Transmitter source ................................................................................................................25 
2.2.1.2 Transmitter modulation formats ..........................................................................................29 

2.2.2 Optical channel ..............................................................................................................................32 



 xiv

 

2.2.3 Receiver architecture ....................................................................................................................32 

CHAPTER 3: PERFORMANCE ANALYSIS OF THE COHERENT OPTICAL 
RECEIVER ARRAY ........................................................................................... 49 

3.1 Introduction ...........................................................................................................................................49 

3.2 Probability of bit error for coherent (heterodyne and homodyne) optical receiver for pulse 
position modulated (PPM) signals .............................................................................................................53 

3.3 Probability of bit error for non-coherent (heterodyne) optical receiver with random phase 
channels for pulse position modulated (PPM) signals..............................................................................61 

3.3.1 Case I:  Probability of bit error for the single channel...............................................................61 
3.3.2 Case II:  Probability of bit error with array combining.............................................................69 

3.4 Probability of bit error for non-coherent (heterodyne) optical receiver with random phase 
channels for Pulse Position Modulated (PPM) signals in the presence of leakage in the noise slots....69 

3.4.1 Expressions specific to the case with leakage ..............................................................................75 
3.4.2 Obtaining the SNR, signal, noise, and leakage parameters........................................................76 

CHAPTER 4: RESULTS OF THE COHERENT OPTICAL RECEIVER 
EXPERIMENT (CORE) ...................................................................................... 83 

4.1 Description of the experimental setup .................................................................................................83 

4.2 Adaptive combining of beatnotes using the LMS algorithm .............................................................90 
4.2.1 Adaptive combining simulated data: Signal tone and 32-PPM signals.....................................91 
4.2.2 Experimental results I: Convergence of LMS algorithm for unmodulated beatnote under 
ideal conditions and with atmospheric turbulence ..............................................................................95 
4.2.3 Experimental results II: Convergence of the LMS algorithm with PPM signals and no 
atmospheric turbulence........................................................................................................................107 
4.2.4 Convergence of LMS algorithm in the presence of spatial distortions caused by a static 
plexiglass plate in the optical path ......................................................................................................111 

CHAPTER 5: THE LMS ALGORITHM AND ITS APPLICATION TO COHERENT 
OPTICAL SIGNAL RECEPTION ..................................................................... 115 

5.1 The signal model..................................................................................................................................116 

5.2 Gradient descent and LMS.................................................................................................................118 

5.3 Non-stationarity of the input signal and convergence time .............................................................120 
5.3.1 Case I: No leakage present..........................................................................................................122 
5.3.2 Case II: Leakage present.............................................................................................................131 

5.4 More on the effects of leakage on the eigenstructure .......................................................................132 

5.5 LMS with a constant target ................................................................................................................136 



 xv

 

5.6 LMS convergence with real world data.............................................................................................139 

CHAPTER 6: INVESTIGATION OF PERFORMANCE OF THE COHERENT 
OPTICAL RECEIVER EXPERIMENT (CORE): COMPARISON OF 
EXPERIMENTAL RESULTS WITH THEORY.................................................. 152 

6.1 Overview and methodology ................................................................................................................152 
6.1.1 Operation of the software receiver.............................................................................................155 

6.1.1.1 Overview ...............................................................................................................................155 
6.1.1.2 Correction for frequency offset using FFT centering .......................................................156 
6.1.1.3 Decision feedback system ....................................................................................................157 
6.1.1.4 Decision feedback operation ...............................................................................................158 

6.1.2 Synchronization issues in the optically coherent PPM system.................................................159 

6.2 Evaluation of experimental system performance and comparison with theory.............................166 
6.2.1 BER performance bounds...........................................................................................................166 
6.2.2 Results with the single detector ..................................................................................................169 
6.2.3 Results with the focal plane array ..............................................................................................180 

6.3 Conclusions ..........................................................................................................................................195 

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS ......................... 197 

7.1 Summary of key results ......................................................................................................................197 

7.2 Future directions .................................................................................................................................199 

APPENDIX: A MATHEMATICAL CHARACTERISTIC OF LEAKAGE ........... 201 

BIBLIOGRAPHY.............................................................................................. 204 
 



 xvi

 

List of Figures 

Figure 1.  Future data return needs relative to current capabilities.........................................................4 
Figure 2.  Comparison of beamspreads of optical and RF communications from Saturn......................5 
Figure 3.  Interactions among different organizations centered at the ITU for spectrum management.

...............................................................................................................................................................8 
Figure 4.  Optimized cost model for reception systems in optical, Ka-band, and X-band......................9 
Figure 5.  Electromagnetic radiation spectrum. .......................................................................................10 
Figure 6.  High-bit-rate space communication network based on future free-space laser 

communications. ................................................................................................................................23 
Figure 7.  Evolution of the demonstration experiments in space laser communications from 1994 to 

2004. ....................................................................................................................................................24 
Figure 8.  Diagram of an optical communication system.........................................................................25 
Figure 9.  Generic transimpedance front-end receiver configuration. ...................................................43 
Figure 10.  Functional diagram of the 1611 photoreceiver. .....................................................................44 
Figure 11.  Responsivity of 1611 New Focus InGaAs photodetector. .....................................................46 
Figure 12.  Detailed view of the 4 X 4 FPA of InGaAs detectors.............................................................48 
Figure 13.  Diagram of the Coherent Optical Receiver Experiment (CORE)........................................49 
Figure 14.  Pulse position modulation format. ..........................................................................................53 
Figure 15.  BER for homodyne detection. .................................................................................................60 
Figure 16.  BER for heterodyne detection.................................................................................................61 
Figure 17.  Coherently detected PPM beatnotes in the presence of atmospheric turbulence channels 

show leakage signal in noise slots example 1. ..................................................................................81 
Figure 18.  Coherently detected PPM beatnotes in the presence of atmospheric turbulence channels 

show leakage signal in noise slots example 2. ..................................................................................82 
Figure 19.  Coherently detected PPM beatnotes in the presence of atmospheric turbulencechannels 

show leakage signal in noise slots example 3. ..................................................................................82 
Figure 20.  Coherent combining experiment at the Jet Propulsion Laboratory, NASA. ......................84 
Figure 21.  Snapshot of an individual PPM pulse beatnote. ....................................................................86 
Figure 22.  Intensity distribution of the signal beam under ideal conditions. ........................................87 
Figure 23.  Beam profile under spatial distortions resembling atmospheric turbulence generated with 

a plexiglass plate in the laboratory...................................................................................................87 
Figure 24.  Beam profile of the signal laser (left) and local oscillator (right) beams on the detector 

surface.................................................................................................................................................88 
Figure 25.  Perfect alignment of signal and local oscillator beams at the InGaAs detector surface. ...88 
Figure 26.  Sampled sequences of 4 channels containing PPM-modulated 6 MHz beanotes under ideal 

conditions............................................................................................................................................89 
Figure 27.  Sampled sequences of 4 channels containing PPM-modulated 6 MHz beatnotes in the 

presence of atmospheric turbulence.................................................................................................90 
Figure 28.  Comparison of output convergence for signal tone and 32-PPM signal (real part of LMS 

output) ................................................................................................................................................93 
Figure 29.  Comparison of convergence for signal tone and a 32-PPM signal with a 16-detector array 

µ = 0.003..............................................................................................................................................94 
Figure 30.  Comparison of convergence for signal tone and a 32-PPM signal with a 16-detector array 

with µ = 0.008. ....................................................................................................................................95 
Figure 31.  Combined output signal with μ = 10.......................................................................................96 
Figure 32.  Phase of the weights with μ = 10. ............................................................................................97 
Figure 33.  Error signal for μ = 10. ............................................................................................................97 



 xvii

 

Figure 34.  Combined output power with μ = 100. ...................................................................................98 
Figure 35.  Phase of the weights with μ = 100. ..........................................................................................99 
Figure 36.  Error signal with μ = 100.......................................................................................................100 
Figure 37.  Combined output signal with μ = 1000.................................................................................101 
Figure 38.  Phase of the weights of the four different channels with µ = 1000.....................................102 
Figure 39.  Error signal with μ = 1000.....................................................................................................103 
Figure 40.  Combined output power of the beatnote signal in the presence of simulated atmospheric 

turbulence with µ = 20.....................................................................................................................104 
Figure 41.  Phase of the weights with μ = 20,000. ...................................................................................105 
Figure 42.  Error signal with µ = 20,000..................................................................................................106 
Figure 43.  Combined output with µ = 1..................................................................................................108 
Figure 44.  Combined output with µ = 7..................................................................................................109 
Figure 45.  Phase of the weights for µ = 7................................................................................................110 
Figure 46.  Combined output and weighted signal components with µ = 7..........................................111 
Figure 47.  Combined output with µ = 8..................................................................................................112 
Figure 48.  Combined output with µ = 22................................................................................................112 
Figure 49.  Phases of the weights for µ = 22. ...........................................................................................113 
Figure 50.  Combined output with µ = 22................................................................................................113 
Figure 51.  Magnitude of the reference signal (blue) and the LMS output (red).  The LMS output 

shows an apparent delay because it makes one or two samples for the LMS algorithm to 
converge, as predicted by Eq. (5.3.22) for N = 4............................................................................129 

Figure 52.  LMS convergence with decision feedback and with µ = 6.31. ............................................141 
Figure 53.  LMS instability with µ = 7.94 and decision feedback..........................................................142 
Figure 54.  The behavior of LMS with µ = 10 but with a perfect training sequence. ..........................143 
Figure 55.  LMS Convergence with µ = 100 but with a perfect training sequence. .............................144 
Figure 56.  Convergence with µ =1000 and with a perfect target sequence. ........................................145 
Figure 57.  LMS loss of stability at µ = 10,000.  Perfect training sequences are of limited value here.

...........................................................................................................................................................146 
Figure 58.  Tracking of the input phase of channel 1 by the first weight. ............................................148 
Figure 59.  Tracking of the input phase of channel 2. ............................................................................149 
Figure 60.  Tracking of the input phase of channel 3. ............................................................................150 
Figure 61.  Tracking of the input phase of channel 4. ............................................................................151 
Figure 62.  Block diagram of the software receiver................................................................................156 
Figure 63.  Example of time misalignment prior to correction.  There are five FPA channel signals 

that suffer a delay of approximately 10 samples relative to the modulator reference pulse. ....161 
Figure 64.  Time misalignment between modulator reference pulses and receiver prior to correction.  

The misalignment only changes slowly over time. ........................................................................162 
Figure 65.  Time-corrected pulse alignment, corresponding to the case shown in Figure 63. ............165 
Figure 66.  Time corrected pulse alignment, corresponding to the case shown in Figure 64. ............166 
Figure 67.  BER vs. photons per pulse with the single detector and 256 PPM.....................................171 
Figure 68.  BER vs. photons per bit with the single detector and 256 PPM.........................................172 
Figure 69.  BER vs. Es/N0 in dB for the single detector and 256 PPM.................................................173 
Figure 70.  BER vs. Ks assuming a hypothetical shot-noise limited single detector with 256 PPM. ..175 
Figure 71.  BER vs. photons per bit assuming a hypothetical shot-noise limited single detector with 

256 PPM............................................................................................................................................176 
Figure 72.  BER vs. Ks with the single detector and 32 PPM. ...............................................................177 
Figure 73.  BER vs. photons per bit with the single detector and 32 PPM...........................................177 
Figure 74.  BER vs. Es/N0 in dB for 32 PPM with the single detector..................................................178 
Figure 75.  BER vs. Ks assuming a shot-noise-limited single detector and 32 PPM. ...........................179 
Figure 76.  BER vs. photons per bit assuming a shot-noise-limited detector with 32 PPM. ...............180 
Figure 77.  BER vs. Es/N0 with the FPA for 256 PPM...........................................................................181 



 xviii

 

Figure 78.  BER vs Ks for a shot noise-limited FPA system with 256 PPM..........................................183 
Figure 79.  BER vs. photons per bit for a shot-noise-limited FPA system with 256 PPM...................184 
Figure 80.  BER vs. Ks assuming an FPA with the same characteristics as the single detector (256 

PPM). ................................................................................................................................................185 
Figure 81.  BER vs. photons per bit assuming an FPA with the same characteristics as the single 

detector (256 PPM). .........................................................................................................................186 
Figure 82.  BER vs. Ks for 256 PPM with the FPA.................................................................................187 
Figure 83.  BER vs. photons per bit for 256 PPM with the FPA...........................................................188 
Figure 84.  BER vs. Ks for a hypothetical shot-noise-limited FPA (32 PPM).......................................190 
Figure 85.  BER vs. photons per bit for a hypothetical shot-noise-limited FPA (32 PPM). ................190 
Figure 86.  BER vs. Ks for a hypothetical FPA with the same noise characteristics as the single 

detector (32 PPM). ...........................................................................................................................191 
Figure 87.  BER vs photons per bit for a hypothetical FPA with the same noise characteristics as the 

single detector (32 PPM). ................................................................................................................192 
Figure 88.  BER vs Ks actually achieved with the FPA (32 PPM).........................................................193 
Figure 89.  BER vs photons per bit actually achieved with the FPA (32 PPM). ..................................193 
Figure 90.  BER vs. Es/N0 for 256 PPM: Illustration of single channel performance vs. combined 

channel. Single channel BER is plotted vs. single channel SNR and not against combined 
channel SNR as in previous figures. ...............................................................................................194 

Figure A1.  Magnitude and phase of the first channel plotted as a function of time...........................201 
Figure A2.  Magnitude and phase of the second channel plotted as a function of time.  The phase 

behavior of this channel differs greatly from that of the first......................................................202 
 

List of Tables 

Table 1.  ITU frequency allocation for deep space research......................................................................6 
Table 2.  Possible technologies for free-space systems. ............................................................................26 
 



 xix

 

Glossary of Acronyms 

APD Avalanche Photodiode  
BER Bit Error Rate 
COSPAR Committee of Space Research 
DSN Deep Space Network 
ESA European Space Agency 
FO Fiber-Optic  
FOV Field of View 
FPA Focal Plane Array 
IAU International Astronomical Union 
IF Intermediate Frequency 
ITU International Telecommunications Union 
IUCAF Scientific Committee on Frequency Allocations for Radio 
Astronomy and Space Science 
JPL Jet Propulsion Laboratory 
LMS Least Mean Square 
LO Local Oscillator 
LWIR Far or Long Wave IR 
MGS Mars Global Surveyor 
MSA Mission Support Area 
NASA National Aeronautics and Space Administration 
NIR Near Infrared 
NUV Near Ultraviolet  
PD Photodiode 
PLL phase-locked loop  
PMT Photomultiplier Tube  
PPM Pulse Position Modulation 
RF Radiofrequency 
SER Symbol Error Rate 
SFCG Space Frequency Coordination Group 
SNR Signal to Noise Ratio 
SWIR Shortwave IR 
URSI International Union of Radio Science 
WRC World Radiocommunications Conference 



 1

 

Chapter 1: Introduction 

 
1.1 Motivation to use optical technologies for deep space 

communications 
 

For future interplanetary missions, there is a need for higher capability and smaller and 

more efficient space-borne telecommunications, but there are constrains due to limits on 

RF spectrum allocation. Optical space communications systems are becoming more 

practical as technology develops and offer significant advantages over radio frequency 

communications. The main advantages are the ability to concentrate power in narrower 

beams (small beam divergence), the absence of bandwidth limitations in the optical 

communications frequency range, and the drastic reduction in component sizes.  Optical 

wavelengths are very short and correspond to very high carrier frequencies. Increasing 

the carrier frequency theoretically increases the available transmission bandwidth and, 

therefore, the information capacity of the system.  Optical communications operate at 

frequencies much higher than those of RF communications.  There are no bandwidth 

limitations imposed on optical communications at this time.  It is not unusual for an 

optical crosslink to achieve antenna (telescope) gains in excess of 110 dBi (dB relative to 

an isotropic radiator) with apertures of 20 cm.  This high gain translates directly into a 

significant reduction in the required transmitted power.  Because of their highly 
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directional characteristics, lasers provide higher security and greater resistance to 

interference (low probability of intercept, and freedom from jamming). 

Because the strength of a signal decreases as the square of the distance it might 

travel, deep space communications are extremely challenging. Near-earth modern 

communications satellites use geosynchronous orbits, Molniya orbits, or low earth orbits. 

Comparing the case of a spacecraft in the geosynchronous orbit (Arthur C. Clark, 1945, 

building on work by Konstantin Tsiolkovsky and on the 1929 work by Herman Potočnik) 

transmitting at 10 Gbps vs. a deep space system at Pluto/Neptune at distances times 

greater, only 1 bit/sec could be achieved due to the fact that the beam would spread over 

an area times larger. 

510

1010

 

In order to overcome spreading effects due to propagation over large distances, 

communication systems at the transmitter and receiver sides have been improved over the 

years. An example is that current links to Mars achieve data rates of the order of 10 to 

100 kbps as in the case of the Mars Exploration Rovers (Taylor et al., 2005). Current RF 

technology has already reached an extremely high level of performance since spacecraft 

transmitter antennas are already large and are transmitting at a high power that should not 

be increased due to the fact that it is very difficult to generate electrical power at long 

solar distances, and waste heat due to inefficiencies of the energy conversion components 

of the transmitter should be eliminated. On the receiver side, NASA’s Deep Space 

Network uses 34 m and 70 m antennas in the three complexes around the globe 

(Goldstone, Madrid, and Canberra) and ESA uses its own 35 m antennas at New Norcia, 

http://en.wikipedia.org/wiki/Herman_Poto%C4%8Dnik
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Australia, and Cebreros, Spain to track near-earth satellites and deep space probes. 

Development and maintenance costs of these ground antennas are substantial.  

Instrument data volumes from space missions are increasing, but the data return 

capabilities for systems in deep space are orders of magnitude below what is attainable at 

near-Earth distances. Figure 1 (Lesh, J., 2005) shows the future data return needs relative 

to current capabilities for the Mars Global Surveyor (MGS) mission that has been 

mapping features of the Martian terrain. The horizontal axis represents data rate and the 

vertical blue lines on the left side represent the current MGS capability scaled to Saturn 

distance. For the vertical dimension, things above the central data rate axis arrow need to 

be further investigated while those below are thought to encourage public interest in 

space exploration. The oval elements refer to horizontal data rate regions where 

instruments are expected to operate and the regions of improvement of several 

communications technologies are shown. The winning technologies will be selected 

based on research and technology planning and on life-cycle-cost analyses. The 

improvements that optical communications have to offer are tremendous. 
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Figure 1.  Future data return needs relative to current capabilities. 
 

 

The DSN’s RF performance has undergone an improvement of twelve orders of 

magnitude over the years, mainly because of a gradual increase in the carrier frequency.  

The DSN uses X-band, and more recently Ka-band as in the case of the Deep Space One 

mission that successfully tested Ka-band downlink capabilities (Taylor et al., 2001).  Ka-

band holds a potential four-fold increase in data rate compared to X-Band.  Theoretically, 

the improvement in going from X-band to Ka-band is 11.6 dB due to frequency squared 

gain, even if experimentally only 6 dB of gain have been achieved.  This fact is obviously 

important as at the end it means reduced project cost because a higher data rate requires 

fewer ground resources and less mission operation support.  Another advantage of using 

Ka-band is the availability of greater bandwidth as NASA and other agencies move away 

from frequency bands that face increasing encroachment by personal communications 
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systems and other emerging information technologies.  Following the same trend, if even 

higher frequencies of approximately  GHz are used, as in the case of optical 

communications, the improvement is potentially immense.  

53 10×

Illustrating a comparison of the relative beam spreads of RF and optical 

frequencies, Figure 2 (Lesh, 2005) shows that for an optical wavelength of 1 µm, the spot 

size of a beam transmitted from a 10 cm optical telescope on the Voyager spacecraft is 

equal to one Earth diameter.  If X-band had been used instead with a 3.7 m transmitter 

antenna, the spot size would have been equivalent to a thousand Earth diameters.  

Theoretically the improvement is 90 dB, although experimentally 60 dB could be 

achieved with current technology. 

 
 

Figure 2.  Comparison of beamspreads of optical and RF communications from Saturn. 
 

 

Another important point in dealing with optical frequencies is the fact that their 

use has not been regulated yet. The International Telecommunications Union (ITU) is 
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responsible for coordinating spectrum management at the global level.  The ITU allocates 

the frequency ranges for use in deep space research (for spacecraft greater than 2 million 

km from Earth) as shown in Table 1: 

Frequency Band Carrier Frequency Range 

S-band uplink 2110-2120 MHz 

S-band downlink 2290-2300 MHz 

X-band uplink 7145-7190 MHz 

X-band downlink 8400-8440 MHz 

Ka-band uplink 34,200-34,700 MHz 

Ka-band downlink 31,800-32,300 MHz 

 
Table 1.  ITU frequency allocation for deep space research. 

 

The global framework for spectrum management is provided by the Radio 

Regulations of the ITU, which have international treaty status and thus are binding for all 

members of the ITU (Van Driel, 2004).  They provide rules to national administrations 

that allow them to regulate equitable access to the radio spectrum for all entities requiring 

frequency allocations.  The Radio Regulations contain the international Frequency 

Allocation Table.  In order to modify the Radio Regulations, the ITU organizes a World 

Radiocommunication Conference (WRC) once every three years on average, which is 

attended by over 2000 representatives of 180+ national administrations and other 

accredited organizations, such as IUCAF (the Scientific Committee on Frequency 
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Allocations for Radio Astronomy and Space Science) and which lasts for a month. In the 

past, the ITU concerned itself only with regulating spectrum use at radio frequencies up 

to 275 GHz (1 mm wavelength), but recent developments indicate that the role of the ITU 

as a global body for the coordination of spectrum management will be extended over the 

entire electromagnetic spectrum as required.  It is foreseen that at the WRC in 2010 

frequency allocations will be considered between 275 GHz and 3000 GHz (100 µm 

wavelength).  It seems clear that the inclusion of infrared and optical wavelengths in the 

ITU Radio Regulations is still remote, but the process starts with providing information 

on optical systems and the characteristics that can be used to regulate their frequency 

protection.  Concerning the protection of both Earth-based astronomical observations and 

spaced-based Earth exploration observations from intersatellite communication lasers, 

studies were made in the period 2002-2003, which resulted in an ITU Recommendation 

on this issue. Since systems operating at these unregulated frequencies cannot yet be 

registered at the ITU, it was decided that a register of such laser systems be kept by the 

Space Frequency Coordination Group (SFCG), which gathers national and international 

space agencies and where the IUCAF has observer status, with IUCAF as liaison to the 

IAU (International Astronomical Union) on the proliferation of these systems.  The 

complex structure centered on the ITU is sketched in Figure 3.  In the left half of the 

picture one finds different organizations dealing with astronomical research, such as 

COSPAR, the IAU and URS, under ICSU, and IUCAF.  The right half indicates the 

various ITU forums where studies related to both Radio Regulations and updates of ITU 

Recommendations are performed. 
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Figure 3.  Interactions among different organizations centered at the ITU for spectrum management. 
 

Research that has been conducted on optical communications will contribute to all 

future missions contemplating the use of optical frequencies for high-rate or long distance 

communications, including Mars data return, Europa Orbiter, and Pluto Flyby, enabling 

the use of near real-time video from Mars rovers and future human explorers.  The 

technology developed in this effort will contribute to successful links from deep space to 

an optical ground station to be used with all future NASA spacecraft incorporating laser 

communications capabilities.  However, optical technologies will not replace microwave 

systems for all applications because low-rate systems and applications requiring high 

availability from Earth are often better served by RF systems.  

 

The high volume of data from a spaceborne network would need to be transmitted 

to Earth by means of ground station site diversity (Alexander and Stephen, 1997).  The 
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optical ground stations should be far enough apart to be located in uncorrelated weather 

systems to ensure a high probability that at least one of the sites would have a clear view 

of the satellite.  The ground sites would be connected using high data-rate optical fiber 

technology (Chapman and Fitzmaurice, 1991).  JPL (Lesh and Robinson, 1986) has 

conducted cost studies for optical and X-band technologies.  For X-band three DSN 

stations would be needed, while for optical technologies, nine stations would be needed.  

Figure 4 shows an optimized cost model for reception systems operating in Ka-band, X-

band and optical frequencies representing total NASA costs ($B) as a function of 

communications growth (dB), (Lesh, 2005). 

 
 

 

Figure 4.  Optimized cost model for reception systems in optical, Ka-band, and X-band. 
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1.2 Laser communications: Coherent versus direct optical 

communications  

Laser communication refers to the use of light produced by lasers in the Near Ultraviolet 

(NUV), Visible (Vis), Near Infrared (NIR), Shortwave IR (SWIR), and Far or Long 

Wave IR (LWIR) infrared portions of the electromagnetic spectrum to communicate 

information.  The communication process in those frequency bands differs significantly 

from that of Radio Frequency (RF) or Fiber-Optic (FO) systems.  Figure 5 shows the 

electromagnetic radiation spectrum. 

 
 

Figure 5.  Electromagnetic radiation spectrum. 
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The performance of an optical link depends on the receiver sensitivity measured 

in terms of received photons per bit.  It is very important to improve receiver sensitivity 

in order to reduce the high cost associated with increasing the transmit power and 

receiver aperture.  

Optical receivers can be divided into two basic types (Gagliardi and Karp, 1995): 

power detecting receivers and heterodyne receivers.  Power detecting receivers are 

usually called direct detection, or noncoherent, receivers.  These receivers represent the 

simplest type for implementation and can be used whenever the transmitted information 

occurs in the power variation of the received field.  On the other hand, in the case of 

heterodyne receivers (also called coherent receivers), a locally generated field is optically 

mixed with the received field through a front end mirror, and the combined wave is 

photodetected.  Direct detection is more commonly used for higher frequencies (SWIR 

and higher), while for LWIR, coherent or heterodyne detection is used.  The potential for 

coherent systems at shorter wavelengths exists, but such systems pose significant 

implementation challenges.  

In digital communications (Proakis, 2000), the term “coherent” refers to those 

systems that employ carrier phase recovery.  In coherent optical communications 

systems, the term “coherent” is defined differently.  An optical communication system is 

called “coherent” as long as there is optical signal mixing, and carrier phase recovery 

need not be present.  Even if the demodulator does not use carrier phase recovery but 

instead uses non-coherent or envelope detection, the optical communications system is 

called a coherent optical communication system due to the presence of optical mixing.  
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For example, in RF communications, a differential phase-shift keying (DPSK) system is 

considered a noncoherent communication system (Proakis, 2000), whereas in optical 

communication, it is considered a coherent system (Betti et al., 1995, Hooijmans, 1994, 

Okoshi and Kikuchi, 1988, Ryu, 1995).  Following the traditional terminology of 

coherent optical communications, coherent optical receivers with and without phase 

tracking would be called synchronous and asynchronous receivers, respectively.  

Asynchronous receivers usually employ power or envelope detection. 

In terms of sensitivity, phase-modulated coherent optical communications systems 

generally provide the best performance with all types of modulation schemes.  JPL 

decided to use Pulse Position Modulation for optical deep space communications for 

reasons that will be further explained. 

The mixing of two lasers for communication purposes was considered in the 

earliest days of optical communications (Goodwin, 1967, Oliver, 1961).  Early systems 

operated in free space used high power long-wavelength laser sources (DeLange, 1972, 

Goodwin, 1967, Nussmeier et al., 1974, Peyton et al., 1972).  Even today, coherent space 

communications still has advantages over on-off keying (Chan, 1987, 2000, 2003, Rochat 

et al., 2001), especially for inter-satellite communications.  Coherent optical 

communication is also used for ultra dense radio-on-fiber signal (Kikuchi and Katoh, 

2002a,b, Kuri and Kitayama, 2002, 2003). 

High performance quantum-limited operation of optical detector arrays can be 

achieved with current technology in the two different ways previously mentioned, namely 

by the use of photon-counting detector arrays (Vilnrotter et al., 2002) and by the use of 
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optical mixing prior to detection.  It has been determined that focal plane arrays that 

sample the spatially degraded signal fields, together with high-speed signal processing to 

implement the real-time combining algorithms, provide the necessary capability for 

optimizing receiver performance when direct detection is employed. This technique has 

been evaluated through analysis and laboratory simulation with high-gain photon-

counting PMT arrays and shown to provide approximately 3-5 dB gain over a large area 

single-detector PMT receiver covering the same FOV when operating in turbulent and 

high-background environments (Vilnrotter et al., 2002).  However, currently available 

PMT arrays have low quantum efficiency (less than 10%) at the wavelengths of interest 

(1.064 micrometers). Similar gains have been demonstrated analytically with higher 

quantum-efficiency (40%) APD arrays over large area single-detector APD receivers, but 

the performance of APD receivers is impeded by thermal noise due to their limited gain. 

Coherent detection can be accomplished with detector arrays without internal 

gain, but requires the addition of a precisely aligned optical field.  This detection scheme 

is not sensitive to background radiation and, hence, suffers no measurable degradation 

from background light under most conditions of interest. However, the detector outputs 

must be phased up and added in real time.  Coherent detection together with focal-plane 

arrays provides very high gain through the coherent addition of a strong optical field to 

the received signal fields, producing a “signal-local” cross term after detection that 

overcomes thermal noise and achieves shot noise-limited performance.  An additional 

advantage of coherent detection is that high quantum efficiency InGaAs detector arrays 

can be used. Since a local optical field has to be added to the received field prior to 
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detection, this technique is more difficult to implement, but not prohibitively so. It was 

initially demonstrated (Muñoz Fernández et al., 2004) in the laboratory that simply 

“flooding” the detector array with the local field is sufficient to produce the required 

cross-terms, generating an easily detectable difference frequency tone at the output of 

every detector element.  Further work has demonstrated shot-noise limited coherent 

detection of pulse-modulated fields with an array and determined the potential gain 

through the use of this technique (Muñoz Fernández et al., 2005a,b,c). 

1.3 Statement of the problem caused by atmospheric turbulence 

Problems arise when using optical communications due to short optical wavelengths.  

The three main atmospheric processes that affect optical wave propagation are 

absorption, scattering, and refractive-index fluctuations.  Index of refraction fluctuations 

lead to irradiance fluctuations, beam broadening, and loss of spatial coherence of the 

optical wave at the receiver. Absorption by water vapor reduces the energy content in the 

communication beam, and turbulence increases the beam's divergence.  Terrestrial 

reception suffers from clear-air turbulence and cloud absorption effects that do not plague 

longer-wavelength RF systems.  Here, only the clear-air turbulence problem is addressed. 

The use of a laser beam as a carrier for a satellite-to-ground link enables 

transmission using very narrow beam divergence angles.  Inhomogeneity in the 

temperature and pressure of the atmosphere leads to variations of the refractive index and 

the transmission path.  Since the index of refraction of air is not uniform, electromagnetic 

waves passing through it will be distorted.  As a result, laser communications 
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performance is affected by the atmosphere since it is a dynamic and imperfect medium. 

Atmospheric channel effects include fluctuations in the signal amplitude and phase as 

well as attenuation.  

Therefore, a laser beam traversing the atmosphere is constantly refracted (bent), 

resulting in scintillation.  This turbulence-induced fading impairs free-space optical links 

in much the same way that flat multipath fading impairs radio-frequency wireless links.  

These variations of refracted index as well as pointing vibrations can cause fluctuations 

in the intensity and phase of the received signal leading to an increase in link error 

probability. 

In the context of optical communications, this randomization of the optical phase-

front often requires the use of a larger receiver field of view, thus admitting more 

unwanted background radiation into the receiver.  In the presence of background 

radiation, performance of direct detection optical receivers often degrades significantly.  

One way to overcome the effects of background radiation is to use coherent detection, 

which is generally much less sensitive to background effects than direct detection 

(Gagliardi and Karp, 1995). In addition, detectors used for coherent detection have higher 

quantum efficiency than those used for direct detection photon-counting applications.  

In order to improve the optical link performance one of the important tasks is to 

develop new communications techniques that will mitigate the effects of atmospheric 

turbulence. 
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1.4 Possible solutions 

The solution proposed here is to use focal-plane arrays to collect the optical signals from 

different spatial modes of the received signal field simultaneously, and then recombine 

the signals coherently using adaptive algorithms.  Analysis and proof-of-concept 

demonstration of coherent adaptive array detection with PPM signals will be described in 

the following sections.  

1.5 Outline of the thesis 

A method of coherent detection of high-rate pulse-position modulation (PPM) on a 

received laser beam has been conceived as a means of reducing the deleterious effects of 

noise and atmospheric turbulence in free-space optical communication using focal-plane 

detector array technologies.  In comparison with a receiver based on direct detection of 

the intensity modulation of a PPM signal, a receiver based on the present method of 

coherent detection performs well at much higher background levels. 

In principle, the coherent-detection receiver can exhibit quantum-limited 

performance despite atmospheric turbulence.  The key components of such a receiver 

include standard receiver optics, a laser that serves as a local oscillator, a focal-plane 

array of photodetectors, and a signal processing and data acquisition assembly needed to 

sample the focal-plane fields and reconstruct the pulsed signal prior to detection.  The 

received PPM-modulated laser beam and the local-oscillator beam are focused onto the 

photodetector array, where they are mixed in the detection process.  The two lasers are of 

the same or nearly the same frequency. If the two lasers are of different frequencies, then 
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the coherent detection process is characterized as heterodyne and, using traditional 

heterodyne-detection terminology, the difference between the two laser frequencies is 

denoted the intermediate frequency (IF).  If the two signals are of the same frequency and 

remain aligned in phase, then the coherent detection process is characterized as 

homodyne (essentially, heterodyne detection at zero IF). 

As a result of the inherent squaring operation of each photodetector, the output 

current includes an IF component that contains the signal modulation. The amplitude of 

the IF component is proportional to the product of the local oscillator signal amplitude 

and the PPM signal amplitude.  Hence, by using a sufficiently strong local-oscillator 

signal, one can make the PPM-modulated IF signal strong enough to overcome thermal 

noise in the receiver circuits: this is what makes it possible to achieve near quantum-

limited detection in the presence of strong background. 

Following quantum-limited coherent detection, the outputs of the individual 

photodetectors are automatically aligned in phase by use of one or more adaptive array 

compensation algorithms (e.g., the least-mean-square (LMS) algorithm).  Then the 

outputs are combined, and the resulting signal is processed to extract the high-rate 

information as though the PPM signal were received by a single photodetector.   

The thesis has been structured following the subsequent order. Chapter 1 will 

describe the role of optical communications in deep-space exploration and high data-rate 

terrestrial communications: inherently greater energy concentration than comparable cost 

and weight RF systems; greater useful bandwidth than conventional RF systems; and 

order-of-magnitude smaller required transmitter and receiver apertures than comparable 
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X-band or Ka-band systems. Problems encountered due to short optical wavelengths 

include clear-air turbulence and cloud absorption effects that do not plague longer-

wavelength RF systems.  Here, we address only the clear-air turbulence problem. 

Chapter 2 will focus on the design of a coherent optical communications system 

concept for turbulence mitigation.  In the absence of background interference, the 

capacity of unconstrained optical pulse-position modulation (PPM) for the photon 

counting channel is infinite (Pierce, 1978).  This inherently high photon information-

efficiency prompted consideration of PPM for deep-space communications. PPM 

modulation at the transmitter could be either coherent or non-coherent from pulse to 

pulse. 

Chapter 3 will focus on optical focal-plane array detection theory and on the 

coherent optical receiver for turbulence-degraded signals.  The theoretical model consists 

of a lens (representing the receiving telescope); a local laser field mixed with the received 

signal field; a focal-plane detector array for optically detecting the sum fields; optical 

detection options (homodyne, heterodyne); an array of amplifiers providing suitable 

signal levels to the adaptive combining algorithms; adaptive algorithms for optimally 

weighing and combining electrical array signals designed specifically for PPM; and 

combined-signal PPM symbol detection options (coherent homodyne and heterodyne, 

non-coherent baseband).  In modal homodyne detection of turbulence-degraded optical 

fields, the subjects to be covered include the local optical field matched to optical phase 

of received signal in each spatial mode; the model of array-detected homodyne signal 

fields and shot-noise spectral level; the comparison with single spatial-mode signal field 
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of same power; the SNR of homodyne-detected multi-mode array signal and equivalent 

single-mode signal; and the theoretical PPM symbol-error probabilities for homodyne-

detected optimally combined array signal fields. In modal heterodyne detection of 

turbulence-degraded optical fields the subjects to be covered include: local optical field 

matched to array dimensions, but not to each spatial mode; model of array-detected 

heterodyne signal fields and shot-noise spectral level; SNR of heterodyne-detected multi-

mode array signal and equivalent single-mode signal; and theoretical PPM symbol-error 

probabilities for heterodyne-detected optimally combined array signal fields. 

Experimental results are first described in chapter 4.  The description of optical 

FPA receiver laboratory demonstration includes: local and signal lasers, external 

modulator producing pulse-to-pulse coherence, turbulence simulator, lens, beam splitter, 

optical detector array, amplifier array, GaGe data-acquisition card; description of PPM 

modulator; spectral levels of near shot-noise limited single detector, and shot-noise plus 

thermal-noise spectral levels. Experimental data analysis includes: digital filtering of data 

and complex baseband downconversion; description of data quality, including difficulty 

of obtaining stable PPM-modulated beat-frequency at ~6 MHz; use of recorded PPM 

symbol-stream to provide a perfect reference; processing of recorded data using both a 

perfect reference and averaged-PPM symbols; comparison of convergence rates for 

recorded data processed with known and averaged PPM data; description of coherent and 

non-coherent detection software receiver; comparison of theoretically detected PPM SER 

(BER) with theoretical results, for both single detector (near shot-noise limited) and array 

detector (experimentally measured shot-noise plus thermal noise spectral levels). The 
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study of the modified LMS algorithm applied to PPM symbols includes modified LMS 

algorithm applied to noiseless PPM symbols: instantaneous gradient estimate via 

correlation of the received signal vector with the error signal for known PPM symbols; 

equivalence of correlation using averaged PPM symbols and known PPM symbols, in the 

absence of noise; characteristics of phase-aligned combined signals; and suitability of 

coherent and non-coherent symbol detection techniques.  The effects of noise on LMS 

convergence and tracking, decision feedback, and performance of decision-aided 

averaged-PPM LMS via analysis and simulation are also included. 

Chapter 5 reviews the mathematical theory behind the LMS algorithm and 

examines the application of LMS to coherently combined PPM signals.  The convergence 

behavior of the LMS algorithm is analyzed in light of the time-varying eigen structure 

that results from the non-stationarity of the inputs.  Chapter 6 investigates receiver 

performance in terms of BER as a function of photons per bit and signal-to-noise ratios 

and compares the laboratory experimental results with theory, demonstrating shot noise 

limited performance for the single-channel coherent receiver.  Chapter 7 summarizes key 

results of this research and discusses possible future directions.  It includes significance 

of results; utility of non-coherent detection for intensity-modulated PPM (lack of pulse-

to-pulse coherence at the transmitter); future work including theoretical derivation of 

quantum-optimum receiver for turbulence-degraded optical fields; Reed-Solomon coding 

for coherently detected PPM to improve BER performance; and implications for future 

optical deep-space communications. 
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1.6 Contributions of the thesis 

The main contributions of the thesis are: 

1.  First time an optical coherent (heterodyne) system with PPM modulation has 

been designed and implemented for deep space communications that is 

capable of compensating for atmospheric turbulence distortions. 

2.  Use of PPM modulation for coherent (heterodyne) optical communications. 

3. Demonstration of shot noise limited performance for an optical coherent 

(heterodyne) receiver based on a focal plane array of InGaAs detectors for deep 

space communications applications. 

4. Application of the LMS algorithm to heterodyned PPM signals to compensate 

for atmospheric turbulence. 

5.  Demonstration of signal array combining gain by means of the LMS algorithm 

for an optical coherent receiver. 
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 Chapter 2: Design of a Coherent Optical Receiver 

Array Detector 

2.1 Existing space optical communication systems 

Multigigabit communications, widely introduced in terrestrial fiber-optic communication 

networks, will have an important role in future space communications.  Figure 6 shows a 

high-bit-rate space communication network based on future free-space laser 

communications (Arimoto, 2004). 

For near-terrestrial space optical systems, fine pointing systems (1 to 10 µrad 

accuracy) and very high bandwidths (≥ 10Gbps) are needed.  For deep space 

communication, in order to be competitive with RF communications, optical links must 

provide data rates on the order of 30 Mbps with extremely fine pointing accuracies of less 

than 1µrad. Deep space communications need high sensitivity receivers, large ground 

receiver apertures, and minimal power and mass at the transmitting end. 
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Figure 6.  High-bit-rate space communication network based on future free-space laser 
communications. 
 

 

Figure 7 shows the evolution of the demonstration experiments in laser 

communications from 1994 to 2004 including ETS-VI (LCE) with the collaboration of 

JPL, NASDA and CRL (Communications Research Laboratory, Japan) in the GOLD 

experiment; the flight demonstration component includes the laser communication package 

called the Laser Communication Experiment (LCE) on Engineering Test Satellite VI (ETS-

VI), and a flight demonstration called OICETS linking a LEO satellite with the European 

experimental communication satellite ARTEMIS; and SILEX (Spot 4), the world's first 

launch-ready civilian laser communication system. The first in-orbit test was in December 

2001, and the system has been operational since 2003 with Bit rates up to 50 Mbps.  There 

are several ongoing European developments in preparation for LEO and GEO 
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communication terminals.  The best result to date on coherent (homodyne) detection in 

space communications is by Donnier (European company) for intersatellite links that has 

demonstrated 20 photons/bit at 565 Mbps. 

 
 

Figure 7.  Evolution of the demonstration experiments in space laser communications from 1994 to 
2004. 

 

2.2 Design methodology of an optical receiver to detect signals 

from deep space 
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The goal of this thesis is to design, implement and analyze the performance of an optical 

receiver for deep space communications. Figure 8 shows a diagram of an optical 

communication system including the technologies involved (Swanson, 1994). 

 
 

Figure 8.  Diagram of an optical communication system. 
 

2.2.1 Transmitter technologies 

2.2.1.1 Transmitter source 

 

The choice of laser technology is the starting point when designing a free-space system as 

it drives the operating wavelength and usually determines the modulation format to be 

used.  This format, in turn, will determine the type of photodetection and demodulation 

employed at the receiver (Alexander, 1987).  Table 2 describes possible laser 

technologies for free-space systems. 
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Laser Type Examples Opearating 

Wavelengths 

Drawbacks 

Semiconductor AlGaAs 

InGaAsP 

830 nm 

980 nm 

1550 nm 

Low powers 

Solid state Nd:YAG 1060 nm Separate modulator 

Gas CO2

HeNe 

10,600 nm 

530 nm 

Complexity 

Lifetime issues 

Fiber Erbium doped fiber 1550 nm Not tested in space 

environment 

 

Table 2.  Possible technologies for free-space systems. 

 

The CO2 (carbon dioxide) laser and the HeNe (helium neon) gas lasers were 

regarded as good candidates at the beginning of the research on space optical 

communications (McElroy et al., 1997) but as more research was conducted, it soon 

became evident that the 10 µm CO2 laser was not the winning technology for use in space 

because of weight, lifetime, and operational problems.  It should be noticed that it also 

had good qualities such as high power, efficiency, narrow linewidth, broad tunability, and 

excellent atmospheric penetration.  The linewidth of a laser, typically a single-frequency 

laser, is the width of the spectral power spectral density of the electric field of its output. 

http://www.rp-photonics.com/lasers.html
http://www.rp-photonics.com/single_frequency_lasers.html
http://www.rp-photonics.com/single_frequency_lasers.html
http://www.rp-photonics.com/power_spectral_density.html
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It is strongly related to the temporal coherence, characterized by the coherence time or 

coherence length.  

Towards the end of the 1970s, semiconductor diode lasers operating at room 

temperature became available, providing a very promising transmitter source for optical 

intersatellite links.  In 1980, ESA conducted the first studies to explore the potential of 

using these new devices for intersatellite links.  Semiconductor lasers (GaAs, InGaAs, 

GaN) (Streifer, 1989, and Chan et al., 1983) are very attractive due to their high 

efficiency, long life, high pulse repetition frequency, small size and their ability to be 

directly modulated by varying their bias current.  However, these only provide a hundred 

milliwatts of usable optical power, which is not enough for deep space communications.   

Regarding solid-state lasers (Users Manual, Lightwave Electronics, 1988), 

Nd:YAG is the best example, where one or more 0.8 µm high power AlGaAs diode 

arrays are used to optically pump a crystal composed of Nd:YAG that will emit at 1.06 

µm.  Nd:YAG is capable of providing a few watts of usable continuous-wave (CW) 

output power but is not very efficient.  It needs a separate modulator which introduces 

additional optical alignment requirements and optical losses.  Pulsed mode operation is 

also allowed using cavity-dumping or Q-switching.  Coherent systems based on Nd:YAG 

lasers are highly promising for high-data-rate systems.  There is no restriction, in 

principle, to the achievable laser power, and detector sensitivity can almost reach the 

theoretical quantum limit.  Nd:YAG has continued to be useful as diode pumping has 

improved life, efficiency, and beam quality: it represents the best candidate for long 

range applications in space. 

http://www.rp-photonics.com/coherence.html
http://www.rp-photonics.com/coherence_time.html
http://www.rp-photonics.com/coherence_length.html
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Fiber lasers are a more recent development for use in the telecommunications 

industry.  This type of laser is typically fabricated with erbium doped fiber pumped at 

980 nm or 1480 nm.  They have not been considered because they have not been tested in 

a space environment. 

For the experiments conducted in this thesis, the technology selected for the laser 

source has been an Nd:YAG laser at 1064 nm.  It is a diode pumped solid state ring laser, 

series 120 by Lightwave Electronics (Users Manual, Lightwave Electronics, 1990) class 

IIIb laser as defined by the Federal Register 21 CFR 1040.10 Laser Safety Standard.  It is 

a single mode continuous wave output laser that produces an ultranarrow linewidth, 

frequency stable, single axial mode beam.  It incorporates diode pumping for reliability, 

compactness and efficiency.  Inside the unit, there is a monolithic traveling wave ring 

resonator that ensures stable, single frequency operation over a wide range of operating 

conditions. It features coarse frequency tuning with a digital counter and a clock as well 

as fine frequency tuning; both have been used to adjust the desired intermediate 

frequency in the experiments.  The beam is linearly polarized, collimated and single 

mode (TEM00).  It provides kHz short term stability and MHz long term stability.  The 

linewidth (1ms) provided by the manufacturer is 5 kHz and jitter (1sec) is 75 kHz.  As in 

the experiment, heterodyne detection was performed, two lasers were used: a lower 

power signal laser (Model 120-01 with CW output power of 4 mW) and a higher power 

local oscillator (Model 120-03 with CW output power of 40 mW).  The extremely stable, 

ultra narrow linewidth output of the series 120 lasers makes them prime candidates for 
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coherent communications, LIDAR, and other scientific as well as commercial 

applications.  

 2.2.1.2 Transmitter modulation formats 

A laser can be amplitude, frequency, phase, or polarization modulated.  There is a wide 

variety of possible transmitter symbol sets that are used in optical communications 

(Takasaki et al., 1976 and Yamamoto, 1980).  Usually, for direct detection systems, 

(Alexander, 1987) the modulation formats used are: On-Off Keying (OOK), Pulse 

Position Modulation (PPM), and Manchester coded OOK.  For coherent communications, 

the most commonly used are Frequency Shift Keying (FSK), Phase Shift Keying (PSK), 

and Amplitude Shift Keying (ASK).  The choice of specific modulation format is 

dependent on the type of laser used, the target cost of the system, the type of channel 

present, and the performance goals of the system.  Some signal sets convey information 

with a higher efficiency than others (Alexander, 1997).  One way of specifying system 

efficiency is in terms of the number of photons required to transmit a bit of information at 

a specified probability of error, typically 10-9.  Increased power efficiency is usually 

accompanied by an increase in modulator and demodulator complexity. 

JPL has chosen to use Pulse Position Modulation (PPM) for deep space optical 

communications.  The PPM scheme was first proposed by Pierce in 1978 for the photon 

counting channel.  In M-ary PPM, the data is divided into words that are log2M bits long. 

Each word corresponds to a specific transmitted symbol.  Time is divided into M time 

slots, with an optical pulse sent in only one of the possible slots.  It was demonstrated that 

the PPM scheme has unbounded transmission efficiency that can be increased infinitely 
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by merely increasing the number of pulse positions or time slots in the noiseless case.  

Since multiple bits of information can be transmitted using a single pulse, PPM can be 

more efficient than OOK in terms of the number of photons required to transmit an 

individual bit of information.  PPM systems are also attractive when there is a substantial 

amount of optical background present.  An extended description of this modulation 

scheme will be provided in future chapters of the thesis.  PPM combined with forward 

error correcting codes can be used to obtain high transmission efficiencies at tolerable 

bandwidth expansion.  The efficiency of the PPM format has led to its widespread 

consideration for the optical satellite communications channel.  For this experiment, 32-

PPM (5 bits per pulse) and 256-PPM (8 bits per pulse) systems have been proposed and 

their performance analyzed to be used with a heterodyne detection system.  PPM systems 

convert average laser power to peak power directly proportional to M. Thus, the higher M 

systems will operate at higher Ks values (Gagliardi and Karp, 1995).  4-ary PPM systems 

have been demonstrated (Alexander, 1997) in some moderate data rate free-space 

systems (McGregor and Dion, 1991, and Sun et al., 1990).  The signaling format is very 

attractive as mentioned earlier because it becomes increasingly power efficient as the 

alphabet size increases. Large alphabets have been proposed for power efficient optical 

communications with space probes (Lesh, 1982).  Unfortunately there are also some 

disadvantages to using PPM, including the need for accurate clock synchronization across 

all the time-slots (Sun and Davidson, 1990, Davidson and Sun, 1989), which becomes 

especially difficult with higher PPM orders.  Another disadvantage of PPM is that 

semiconductor lasers are typically peak power limited, and when M increases the pulse 
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width decreases and the peak power increases.  Therefore it is not feasible to achieve a 

high PPM order with semiconductor lasers (Katz, 1986), but in the experiments of this 

thesis, this is not a problem as already stated the selection of solid state lasers.  Another 

problem that needs to be addressed is that as M increases, the receiver bandwidth 

increases as well, and it becomes harder to achieve low-noise performance with a wider 

bandwidth.  This is why PPM is more commonly used in moderate data-rates systems 

(Davidson and Sun, 1991). 

For the purpose of modulating the signal laser in the experiments, an external 

modulator configuration was selected.  A PPM generator was used in conjunction with a 

CONOPTICS electro-optic (Pockle cell) modulator Model 350-210.  It is a modulator of 

the transverse field type, that is, the electric field signal voltage is perpendicular to the 

optical propagation direction.  The voltage swing required given operating wavelength to 

transit between the full off state to the full on state is called the Half Wave Voltage (V½).  

The transverse field structure allows reduction of V½ by manipulation of the crystal 

length to aperture ratio to a level achievable by available driver electronics.  V½ is 

roughly proportional to wavelength, and long wavelength devices usually require higher 

length to aperture ratios to accommodate existing driver output levels.  The modulator is 

constructed using crystal Potassium Dideuterium Phosphate (KD*P).  For the wavelength 

used, 1064 nm, the right model would belong to the 360 series, but it was not available at 

JPL.  The only option was to use the only available model, the 350-210, which is actually 

built for 530 nm.  With this model there is more insertion loss, multiple reflections are 

present, and the dynamic range is only 37%, as out of the 240 V that are needed for the 
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modulator driver, only 100 V are used when operated at 1064 nm. More details will be 

provided in the following chapters. 

The output of a laser transmitter is often collimated by a transmitter optical 

antenna to reduce beam divergence.  Beam divergence, by the principle of diffraction, is 

inversely proportional to the antenna aperture diameter.  Newtonian or Cassegrainian 

beam collimators could be used. 

 2.2.2 Optical channel 

A free-space optical channel is under study in this thesis.  More specifically the 

transmitter will be located in deep space, and the optical beam will travel to Earth and be 

distorted by atmospheric turbulence.  Effects of turbulence include intensity fluctuations 

(scintillation), beam wander, and beam spread.  Classical turbulence is commonly 

explained following the Kolmogorov theory of turbulence, which is the set of hypothesis 

that a small-scale structure is statistically homogeneous, isotropic, and independent of the 

large-scale structure.  The source of energy at large scales is either wind shear or 

convection. When the wind velocity is greater than the critical Reynolds number, large 

unstable air masses are created (Andrews, 2004). 

2.2.3 Receiver architecture 

This is the fundamental component of the optical communications link under research in 

this thesis.  The performance of an optical deep space link depends on receiver sensitivity 

measured in photons per bit.  The goal is to optimize the receiver design in order to 

obtain the highest possible sensitivity.  
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As it was mentioned in the previous chapter, an optical receiver could be 

implemented as a direct detection receiver or a coherent receiver.  For the case of a direct 

detection system, the implementation is not complex; basically the signal collected is 

filtered in order to reduce the amount of background noise incident on the photodetector.  

The capacity of this type of receiver has been studied by several authors.  Pierce (1978) 

proposed the Pulse Position Modulation format as a means to improve channel capacity.  

More recent work by Wyner (1988) demonstrated that in the presence of background 

noise, the capacity of a direct detection receiver may be expressed as follows: 
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where sλ  is the rate of arrival of the detected signal photon (photons/sec), s

b

λρ
λ

= is the 

peak signal to background power (Lesh, 2005) ratio and M is the peak to average power 

ratio for certain values of the average signal to background noise ratios.  For the case of a 

high peak to average power ratio (Lesh, Katz, Tan, Zwillinger, 1981, and Katz, 1982), a 

transmission efficiency of one bit per photon is attainable. 

 

For the case of a coherent system as previously explained, the signal coming from 

deep space is mixed with a strong local oscillator (LO) and the combined signal reaches 

the photodetector surface.  This process assures linear amplification and downconverts 

(heterodyne) the optical signal into an electrical output with a frequency of a few MHz in 

the case to be presented in this thesis.  If the local oscillator field is strong compared to 

the incoming signal field, it is possible to “amplify” the signal power above the noise 
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power of the electronics that constitute the front-end of the receiver and this allows shot 

noise limited performance to be achieved.  Another advantage of this type of receiver is 

that it is much less sensitive to background noise since only the contribution from the 

background noise that is in the same spatial-temporal mode of the LO will be detected.  

Hence, coherent detection is a perfect candidate for operation with very high levels of 

background noise as would be the case if the Sun were in the FOV (field of view).  

In terms of capacity, the sensitivity of a coherent receiver may be expressed as (C. 

Chen, 2005)  

( ) ( )s
2log In 1+ logC e B e

B
λ

2 sλ
⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

    (2.2.2) 

where sλ  is the rate of detected signal photons, and the approximated final result 

assumed a large bandwidth B.  As a result, from Eq. (2.2.2), the maximum attainable 

capacity of a heterodyne optical channel is ~1.44 bits/photon (Yamamoto and Haus, 

1986).  This type of receiver is more difficult to implement than a direct detection 

receiver since almost perfect spatial-mode matching has to be achieved. As an important 

goal of this thesis is to obtain the highest possible sensitivity, which is possible using a 

heterodyne receiver that will perform very close to the quantum limit; this is the type of 

system that will be investigated. 

 

A heterodyne detection system was selected for deep space optical 

communications with noncoherent (or asynchronous) demodulation since this choice 

should improve receiver sensitivity by 3 dB compared to that of a direct detection system 

(Gagliardi, 1995).  The choice of noncoherent demodulation is motivated to a high degree 
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by the physics of the problem.  A difficulty that arises with PPM modulation is that no 

signal is present except in the signal slots.   This makes it infeasible, in some but not all 

cases, to use a phase-locked loop (PLL) to track a signal carrier for two reasons.  The 

loop can lose lock when the PPM pulse is over, and the duration of a PPM pulse may not 

give the loop adequate time to reacquire lock.  Hence, the most common technique for 

maintaining phase synchronization in communications systems often will not apply.  

Furthermore, the wavelength of 1064 nm considered here is only slightly longer than 1 

micron.  When the optical path between the transmitter and the receiver goes through a 

change in length of one wavelength, there is a phase change of 2π  radians.  Since the 

distance from a remote spacecraft to Earth changes very quickly, the phase from one 

PPM pulse to the next is an i.i.d. uniform random variable over the range ( , ]π π− .  This 

makes traditional phase tracking methods such as PLLs difficult to use in this case unless 

extremely accurate position and velocity predicts are used as well, and non-coherent 

detection of the received signal is the most realistic option in many cases. 

 

Even low relative velocities of just 100 meters per second will result in a phase 

ramp that will go trough a full cycle of 2π  radians approximately  times per second.  

Assuming a data rate of 100 Mbps, this corresponds to a full phase cycle once every bit 

period.  For the case of 256 PPM, the symbol rate would be 12.5 megasymbols/sec, 

yielding a total of 8 phase cycles for each PPM symbol.  Due to uncertainties in 

spacecraft absolute position and velocity, the phase from one pulse to the next will be an 

i.i.d. uniform random process as described above, and errors in the predicted speed and 

810
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position would have to be very low to avoid this issue.  If a signal were continuously 

present, as in BPSK or QPSK modulation, a tracking loop could be used to track the 

phase and enable fully coherent demodulation.  The absence of a signal except in the 

signal slot, however, makes coherent phase detection a daunting engineering problem that 

is not taken up in this thesis.  For these reasons, a receiver that uses noncoherent or 

asynchronous demodulation is the most realistic choice in this case. 

At this point, it is useful to examine the meaning of the term “coherent.”  The 

optical receiver that is the subject of this work is optically coherent.  Instead of 

performing photon counting, it mixes the incoming optical signal with a locally generated 

local oscillator laser to produce an intermediate frequency (IF) communications signal 

that can be demodulated and processed using traditional methods.  Hence, the term 

“optically coherent” will be used in reference to systems that mix incoming laser signals 

with a local oscillator laser and demodulate the resulting IF signal.  This term differs 

from the term “coherent” in the communications context.  In communications systems, 

the term “coherent” is used in reference to those systems that are able to track the phase 

of the incoming signal.  Since this is not always a feasible task, a non-coherent envelope 

detection communications receiver was chosen. 

The choice of a focal plane array based receiver instead of a single detector based 

receiver was driven by the presence of atmospheric turbulence.  Even in clear weather 

there are random, time-varying patterns in the index of refraction of the air in the Earth’s 

atmosphere.  When a laser signal from a distance spacecraft (assumed to be a plane wave 

due to the tremendous distances involved in deep space communications) passes through 
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the atmosphere, the differences in refractive index will distort the planar phase front of 

the incoming signal wave.  This causes the wavefront that reaches the receiving telescope 

aperture to suffer from significant phase distortions that will cause the received signal 

pattern in the receiver focal plane to be spread out and be significantly distorted.  A 

single small detection element designed to capture the Airy pattern resulting from a 

perfect plane wave reaching the aperture will be too small to catch most of the signal, 

resulting in severe signal losses.  One could attempt to compensate for the spreading of 

the signal in the detector focal plane by using a single very large receiving element in the 

focal plane.  However, the field in the focal plane is a complex field with both magnitude 

and phase.  A single large detector element will effectively perform a simple addition of 

the focal plane field over its surface, and this could easily result in destructive signal 

cancellation, again resulting in severe signal losses.  The key to capturing the scattered, 

phase and amplitude distorted signal field in the focal plane is to have an array of small 

elements.  As signal components of varying amplitude and phase hit the array, the outputs 

of the receiving elements are coherently added together in order to reconstruct the 

original signal, avoiding both the self-cancellation that often occurs with large detection 

elements and the waste of useful signal energy in the focal plane that results from having 

a single small detection element incapable of capturing the entire signal field. 

The selection of the size and geometry of a coherent optical focal plane array will 

be driven by a series of key factors: 

1.  The wavelength λ  of the signal laser. 

 
2.  The diameter D of the telescope aperture. 
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3.  The focal length f of the telescope. 

4. The Fried parameter  that characterizes turbulence.  This parameter is 

described in greater detail below. 

0r

It is assumed that the incoming signal wavefront is of unit amplitude and also that 

it suffers from phase distortions induced by atmospheric turbulence following 

Kolmogorov’s model (Andrews, 2004).  This turbulence is characterized by a coherence 

length .  It is generally assumed that the phase does not experience RMS fluctuations of 

more than one radian over a distance  in the incoming wavefront.  A low value of  

implies an atmospheric phase screen with great phase changes over a short scale.  A high 

value of  implies an atmospheric phase screen with high spatial correlation whose 

phase varies slowly as a function of distance. 

0r

0r 0r

0r

 

It is well known that the approximate diameter of the Airy pattern in the focal 

plane of a telescope is f
D
λ (based on the Fourier transform relationship between the 

aperture plane and focal plane fields (Goodman, 2005) if the wavefront reaching the 

telescope aperture is an ideal plane wave.  It is also known that the average size of the 

spread and distorted focal plane field in the presence of Kolmogorov turbulence is 

approximately 
0

f
r
λ .  Hence, the presence of atmospheric turbulence will increase the 

diameter of the signal field in the focal plane by a factor of approximately 
0

D
r

.  For 

example, a one-meter diameter telescope operating with 0 0.1 mr =  will see a tenfold 
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increase in its focal plane spot diameter.  The need for a focal plane array to capture all of 

this energy for coherent recombining is now clear. 

The need for adaptive coherent combining algorithms is a direct result of the fact 

that the random refractive index fluctuations in the atmosphere that spread and distort the 

focal plane field are rapidly time-varying fluctuations that must be tracked by an adaptive 

algorithm. 

The nucleus of an optical communication receiver is the opto-electronic device 

that is used as the photodetector.  An ideal photodetector would detect a 100% of all 

incident photons, would respond to the fastest changes on the incoming signal that were 

of interest (Alexander and Stephen, 1997), and would not introduce any additional noise 

besides the inherent quantum shot-noise from the received signal. The desired 

photodetector should be small, lightweight, cost effective, reliable, and it should not age 

with time and environmental conditions.  The reality is that photodetectors have limited 

bandwidths with finite response times.  The probability of detecting an individual photon 

is less than 100%, and unwanted noise is introduced in the photodetection process.  

Depending on the technology used, some photodetectors are more sensitive to aging or 

environmental conditions.  

The photon-effect based photodetectors used in optical communications directly 

generate photocurrents from interactions between photons and atoms of the detector 

material.  When a photodetector material is illuminated, a great number of atoms interact 

with the light, but the probability that a specific atom will absorb a photon and generate 

free carriers in order to form a photocurrent is small but dependent on the quality of the 
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design of the detector.  For high-data rate communications, it is important to design 

detectors with fast response times and high sensitivities.  The four kinds of detectors that 

could be used are: photomultipliers, photoconductors, photodiodes, and avalanche 

photodiodes.  Characteristics of each of them (Alexander and Stephen, 1997) could be 

further explained, but it is a subject out of the scope of this thesis, and only a brief 

summary will be included. 

A photomultiplier tube (PMT) is a form of vacuum tube that utilizes the 

photoelectric effect and the secondary emission of electrons to provide high current gains 

once a photon is initially detected.  A photoconductor works using photon absorption in 

semiconductor materials.  The p-n photodiode (PD) type uses a p-n junction to form a 

diode (called a photodiode).  It relies on the absorption of photons in a semiconductor 

material.  The photogenerated carriers are separated by an applied electric field, and the 

resulting photocurrent is proportional to the incident optical power.  There is a variation 

of the p-n photodiode, which is the p-i-n photodiode that consists on a p-n photodiode 

with a layer of intrinsic or lightly doped (to assure that its characteristics are well 

controlled) semiconductor located between the p and n layers.  Another type of 

photodiode is the avalanche photodiode or APD, capable of generating many electron-

hole pairs in response to the absorption of a photon.  APDs are good candidates for 

sensitive receivers because of their internal gain.  

The SNR ratio is often the most important factor in choosing a detector 

(Kaufmann, 2005).  The noise in a detector has components that are proportional to the 

signal and those that are independent of the signal.  The components that are independent 
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of the signal consist of the thermal noise, or Johnson noise, and the dark current noise 

found in all types of detectors.  The Johnson noise (ij) is found only in solid-state 

detectors such as APDs and photodiodes (PDs), and can be described by  

 

sh
1/2

j = (4 / )i kTB R      (2.2.3) 

where k is Boltzmann’s constant, T is the absolute temperature, B is the frequency 

bandwidth, and Rsh is the shunt resistance.  

Dark current noise, or dark-current shot noise (isd), may be defined as  

1/2= (2 )sd di qI B     (2.2.4) 

where q is the electron charge and Id is the dark current.  The signal also has a noise 

component that, just like the dark current noise, is caused by statistical fluctuations.  It is 

given by the corresponding formula    

1/2= (2 )ss si qI B      (2.2.5) 

where Is is the photocurrent created in the detector when the light is converted via the 

photoelectric effect into electrons.  For a simple detector, the SNR could be expressed as  
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If the bandwidth is reduced, SNR could be improved. In the case of relatively 

high signal levels at the detector, SNR can be obtained basically by the contribution of 

the shot noise of the photocurrent; and then the SNR becomes proportional to (Is)1/2. This 
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regime is known as the shot-noise limit and represents ideal behavior for the detector.  

This limit when Is is much greater than 0.26/Rsh and Is is much greater than Isd.  

At high signal intensity, when the photocurrent is large enough to be in the shot-

noise limit, the best choice of detector is a PD.  The final choice of device will be driven 

by the wavelength and a cost tradeoff between optics that reduce the size of the light spot 

that falls on the detector and the cost per square millimeter for the active area of the 

detector.  For the wavelength range from 200 to 1100 nm, the best choice is a silicon 

detector.  For the near-IR (NIR) spectral region (1000 to 2600 nm), indium-gallium-

arsenide (InGaAs) detectors provide a good solution.  Between 2600 and 10,000 nm, a 

variety of detectors are available, including thermopiles and devices made of lead sulfide, 

lead selenide, indium arsenide, or mercury cadmium telluride.  The photodetector that 

best suits the requirements of the receiver under study is the InGaAs p-i-n diode (with 

wavelength of 1064 nm) as it has a high efficiency on the order of 70-90%, a uniform 

spectral response, unity gain, and good stability.  Furthermore, there are models that are 

quite fast. 

Once the photodetector type has been selected, the front-end design has to be 

studied in order to decide on the best option.  There are four types of front-end designs 

for a receiver (Alexander, 1997); resistor termination with a low-impedance voltage 

amplifier, transimpedance amplifier, high-impedance amplifier and noise-matched or 

resonant amplifier.  The front-end of the receiver will respond to the optical signal 

generating a photocurrent with the p-i-n photodiode, then, this photocurrent will be 

converted to a voltage.  The following step is to perform electrical signal processing in 
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order to extract the desired information from the recovered voltage.  The dimensions of 

the transfer function associated with this front-end stage will be in volts per amp or ohms. 

The configuration selected is the transimpedance amplifier (Alexander, 1997) as it 

provides a good compromise between the low-noise characteristics of the high-

impedance front-end and the wideband nature of the low impedance voltage-amplifier.  It 

is called a transimpedance amplifier because there is a shunt feedback around an 

inverting amplifier, which is a technique that is known to stabilize the amplifier’s 

transimpedance (Holt, 1978).  Figure 9 shows a transimpedance amplifier front end.  

Since the feedback utilizes the transimpedance and since the transfer function of an 

optical front end is inherently a transimpedance, this configuration is quite useful in 

optical communication receivers (Hullet and Muoi, 1976). 

 
 

Figure 9.  Generic transimpedance front-end receiver configuration. 
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As a conclusion on this subject, the transimpedance amplifier represents a 

compromise between the wideband resistor terminated low-impedance voltage amplifier 

(but comparatively noisy) approach, and the high-impedance type with low-noise, but 

equalization dependent (Alexander, 1997). 

The photoreceiver selected was New Focus Model 1611-AC-FS (free space), a 1 

GHz bandwidth photoreceiver based on an InGaAs PIN photodiode with a diameter of 

0.1 mm.  It includes an integrated lens (1.5 mm diameter ball lens) for quick optical 

coupling to the photodetector.  It offers a well-balanced combination of gain, bandwidth 

and very low noise.  It is AC-coupled with a low-frequency roll-off at 30 kHz.  Figure 10 

shows the functional block diagram of the 1611 photoreceiver (New Focus Manual), 

 
 

Figure 10.  Functional diagram of the 1611 photoreceiver. 
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In order to do low-power measurements, a photodetector with high sensitivity or 

high conversion gain is needed.  Conversion gain is wavelength dependent and is directly 

proportional to the responsivity.  Therefore, in order to calculate the conversion gain at 

the operating wavelength, 1064 nm, the only thing that is needed is the variation of 

responsivity as a function of wavelength.  Figure 11 shows the responsivity of the 

photodiode used in Model 1611.  Responsivity (R) is the amount of photocurrent (Iphoto) 

that results from an optical input of 1 W.  This number can be used to calculate the 

photocurrent that will result from the experiment’s input power (Pin) using the formula, 

photo inI RP=       (2.2.7) 

Responsivity is related to the quantum efficiency (the number of electrons 

released by an incident photon) by 

q
RhQE

e
νη= =      (2.2.8) 

 

where h is Planck’s constant,  ν is the frequency of the incident radiation, and e is the 

electron’s charge.  



 46

 

Figure 11.  Responsivity of 1611 New Focus InGaAs photodetector. 
 

Therefore, as shown in Figure 11, the responsivity for a wavelength of 1064 nm is 

0.75 A/W.  The quantum energy hν = 1.16607 eV, and using Eq. (2.2.8) the quantum 

efficiency computed is 87% for this type of detector.  

 

Regarding implementation of a coherent receiver in general, a good option would 

be to use a balanced receiver configuration.  There are two main advantages; first of all, 

since the balanced receiver generates the difference between the noise processes in the 

two photodetectors, this results in a cancellation of any correlated noise terms that appear 

in the two detectors.  Intensity fluctuations that appear due to RIN in the local oscillator 

laser (LO) are correlated in the two photodetectors and are cancelled (Abbas et al., 1985).  

The signal shot noises are uncorrelated in the two photodetectors and are not cancelled.  
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In order to achieve good wideband noise cancellation, it is critical to obtain a stable and 

accurate balance (Alexander and Stephen, 1997) between both photocurrents and also to 

have equal paths from the optical coupler to the each photodetector (Abbas et al., 1985 

and Alexander, 1987).  In practice, it is easy to achieve shot noise limited performance 

using this configuration (Henry and Personick, 1990 and Abbas et al., 1985). Another 

advantage of using the balanced receiver configuration is that it allows efficient use of 

LO and signal power as all the available power can be used instead of being wasted as in 

the case of the single detector receiver, where part of the LO as well as the signal laser 

power will be discarded.  

In the experiments in this thesis, it was not possible to implement the balanced 

receiver configuration due to equipment and budget constraints.  For single channel 

experiments, the 1611 New Focus photodetector was used.  For the multichannel 

configuration, a focal plane array of 16 InGaAs detectors was designed at JPL and 

fabricated by Fermionics Opto-Technology.  It is a 4 X 4 array of detectors that allows 

individual channels access for high speed signal processing.  The individual detector 

elements have large active areas with minimal shodowing from bonded leads 

(approximately 250 µm diameter active area) as shown in Figure 12. 
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Figure 12.  Detailed view of the 4 X 4 FPA of InGaAs detectors. 
 

For the focal plane array, a set of 16 MITEQ AU-1447 amplifiers (200 MHz,     

56 dB) were used.  This corresponds to the previously mentioned configuration of resistor 

termination with a low-impedance voltage amplifier that unfortunately presents high 

thermal noise, but only one transimpedance amplifier was available.  It was used for the 

single channel coherent receiver system that achieves nearly shot noise limited 

performance as shown later in the thesis (5 dB above thermal noise). 

 

Fermionics 4X4 InGaAs 
Diode Array 

Bonded 
leads 
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Chapter 3: Performance Analysis of the Coherent 

Optical Receiver Array 

3.1 Introduction 

Figure 13 shows the heterodyne receiver under study where the optical field is projected 

onto the photodetector surface by the receiver lens and front-end system.  A local field is 

aligned by means of a mirror and combined with a beamsplitter with the received field in 

the photodetector. 

 
 

Figure 13.  Diagram of the Coherent Optical Receiver Experiment (CORE). 
 

The received field envelope of a heterodyne optical system may be described as 

(Gagliardi, 1995) 

 

( ) ( ) ( )a t s t b t= +R      (3.1.1) 
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where  and are the complex envelopes of the signal and background noise 

respectively at frequency 

( )s t ( )b t

sω .  The precise form of the signal envelope and its associated 

frequency spectrum will depend on the signal modulation.  The received field mixes with 

a local oscillator field ( )L Lj t
La e ω θ+ at the beamsplitter.  Assuming a photodetector of unity 

gain, the intensity per unit receiver area may be expressed as (Yariv, 1997)  

( )2 2( ) ( ) 2 ( ) cos ( ) ,L L s L s LI t a t a a a t t tω ω θ θ∝ + + − + −⎡ ⎤⎣ ⎦R R   (3.1.2) 

over the receiver area .  The intensity function is integrated over the receiver surface to 

yield the count intensity   

A

( )c t

( ) ( ) ( ) ( )L Lc t c t c t c t= + +R R      (3.1.3) 

where 

 

2 2( ) ( ) ( )
A

c t a t d A a tα α= =∫R R Rr      (3.1.4) 

2( )L L
A

c t a d A aα α= =∫ r 2
L      (3.1.5) 

( )

( )
( )
( )

( ) 2 cos ( )

2 cos ( )

2 ( ) cos ( )

2 ( ) cos

L L s L
A

L s L

L s s L s L

L s L L

c t a a t t d

A a a t t

A a a t t t

A a b t t

α ω ω θ

α ω ω θ

α ω ω θ

α ω ω θ

L

L

θ

θ

θ

⎡ ⎤= − + −⎣ ⎦

⎡ ⎤= − + −⎣ ⎦
⎡ ⎤= − + −⎣ ⎦
⎡ ⎤+ − −⎣ ⎦

∫R R R

R R

r

   (3.1.6) 

 

where /q hα η ν=  
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s

In a typical heterodyne system, the power of the local field will be much 

stronger than the received signal power ( ).  The strong local field condition 

assures a high count rate at the detector output even for very low power received signal 

fields.  The current has an average value due entirely to the local field.  The shot noise 

spectrum at the detector output is 

LP

La a�

2
shN eα= LP ,      (3.1.7) 

where  is the average power of the local field, LP

2
L LP a A= .      (3.1.8) 

Because of the high count rate, the shot noise is a Gaussian process.  Heterodyned 

detector outputs are almost always assumed to be Gaussian processes, with the signal 

term corresponding to the modulated carrier and all the other components considered as 

additive Gaussian noise (shot noise, background noise, and thermal noise), (Gagliardi, 

1995).  

Taking into account the heterodyned carrier energy in a symbol time sT  

22( ) ,s s L sE e P P Tα=      (3.1.9) 

and the heterodyned noise level, including the two sided spectral components due to shot 

noise, background noise, and thermal noise, respectively may be expressed as (Gagliardi, 

1995): 

2 2
0 0[ ]L L bN e P P N Nα α= + + ,th              (3.1.10) 

As a result, the heterodyned decoding will be based on 
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( )2
0 0

2
1 /

s s s

b th L

E PT
N N N P e

α
α α

⎡ ⎤
⎢ ⎥=
+ +⎢ ⎥⎣ ⎦

              (3.1.11) 

Thermal noise can be eliminated, and shot-noise limited performance can be 

achieved by means of a strong local field such that .  The local source 

power  produces an effective amplification of the received signal field as far as 

achieving shot-noise limited behavior.  From Eq. (3.1.11), it can be observed that even if 

a strong local source is used, it is not possible to eliminate the term due to background 

noise.  Introducing 

2/L thP N eα �

LP

s s sK PTα=  as the detected average signal count per symbol, and 

assuming shot-noise limited operation due to a high local oscillator, Eq. (3.1.11) becomes 

0 0

2
1

s s

b

E K
N Nα

⎡ ⎤
= ⎢ ⎥+⎣ ⎦

               (3.1.12) 

In space systems with background noise such that 0 1bNα � , Eq. (3.1.12) 

represents approximately a quantum-limited result expressed as 

0

2s
s

E K
N

=                (3.1.13) 

 

that can be considered a heterodyning quantum-limited bound.  
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3.2 Probability of bit error for coherent (heterodyne and 

homodyne) optical receiver for pulse position modulated (PPM) 

signals 

When coherent detection is used, digital bits can be encoded directly on the phase or 

frequency of the laser carrier itself.  The received modulated laser carrier can be 

translated to a lower RF frequency, where the digital modulation can be decoded using 

standard decoding techniques (Gagliardi and Karp, 1995).  

In the heterodyne detection system examined, pulse position modulation (PPM) is 

used. PPM is a form of block encoding in which bits are transmitted in blocks instead of 

one at a time.  Optical block encoding is achieved by converting each block of k bits into 

one of M = 2k optical fields of transmission.  At the receiver end, decoding of each block 

is performed by determining which one of the M fields is received per block time.  For 

the PPM case, a PPM frame contains M slots and an optical pulse is placed in one of 

those M slots.  The data word is determined based on the position of the optical pulse in 

the frame, an example of which is shown in Figure 14. 

 
Optical pulse 

slot 

1st PPM frame with M slots          2nd PPM frame with M slots 
 

Figure 14.  Pulse position modulation format. 
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The receiver decides on the basis of maximum likelihood symbol detection; it 

selects the slot with the greatest energy, and the symbol that contains a signal pulse in 

that slot location is declared to be the transmitted symbol.  Under the assumptions of shot 

noise limited performance and negligible background noise levels, the performance of a 

coherent receiver will be examined in this section. 

 

s

)]L

If A is the aperture of the receiver, and , the resulting intensity counting 

rate process at the output of a unit gain photodetector is  

La a�

2 2 ( ) cos[( )L s L s L sa ea eAa t a tα α ω ω θ+ − θ+ − . 

Under shot-noise limited conditions, and after filtering out the DC term, the 

detector can be modeled as: 

( ) ( ) ( )r t s t n t= +       (3.2.1) 

where n(t) is a Gaussian noise process due to shot noise.  The variance of the shot-noise 

is calculated by integrating for τ seconds (duration of the PPM pulse) resulting 

in 2 2
S e Aa2

Lσ α= τ .  The value of the signal for homodyne detection is also obtained by 

integrating for τ seconds over the signal slot resulting in 2 S La a eAα τ .  For homodyne 

detection with s Lω ω= , and assuming perfect phase tracking, the resulting signal-to-noise 

ratio is 

[ ]2

2 2

2

2

4
4

S L

L

S

S

a a eA
SNR

e Aa

Aa
K

α τ
α τ

α τ

=

=

=

      (3.2.2) 



 55

 

Swhere 2
SK Aaα τ= is the average number of signal photons over the slot duration.  For 

the case of heterodyne detection, the frequencies are not equal ( )L sω ω≠  and the signal 

becomes  

( ) 2 cos[( ) )]S L s Ls t eAa a tα ω ω= −      (3.2.3) 

with rms value 2 2
2 S L S La a eA a a eAα τ α= τ .  This results in the signal-to-noise ratio for  

heterodyne detection 

2

2 2

2

2

2
2

S L

L

S

S

a a eA
SNR

e Aa

Aa
K

α τ

α τ

α τ

⎡ ⎤
⎣ ⎦=

=
=

     (3.2.4) 

The strong local field generates a high count rate at the detector output, which 

gives rise to Gaussian shot noise.  Therefore, heterodyne detector outputs are assumed to 

be Gaussian processes with the signal term corresponding to the modulated carrier, and 

shot noise components considered as additive Gaussian noise with the spectral level 

given above.  As a result, the photodetected field can be modeled as a Gaussian process, 

with mean 2 S La a eAα τ  for homodyne detection and 2 S La a eAα τ  for heterodyne 

detection, and variance in both cases 2 2
S e Aa2

Lσ α= τ .  The probability density can 

therefore be written as 
2 2( ) / 2

2

1( )
2

xp x e η σ

πσ
− −= where η  is a mean value due to the 

signal energy. 
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The probability of correct PPM detection is the probability that one Gaussian 

random variable (Papoulis, 1991) with mean η  exceeds (M-1) other zero-mean Gaussian 

random variables.  Since PPM signals are a type of orthogonal signals, for the homodyne 

detection case the probability of correct symbol detection P(SC) can be expressed as 

(Viterbi, 1966): 

( )
( ) ( )

2
2

2 2 2 2

12

2 2

2 2 2 2

1 1( )
2 ( ) 2 ( )

L S

L L

Mx ea a A y
xe a A e a A

L L

P SC e dx e dy
e a A e a A

α τ

α τ α τ

π α τ π α τ

−− −
−

+∞

−∞ −∞

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫   (3.2.5) 

With the change of variables:  

2 2 2 2 2 2
, and noting that when ,

L L

y dy xz dz y x z
e a A e a A e a ALα τ α τ α

= = = =
τ  

the following simplified Eq. is obtained: 

( )
( )

2

2 22 2 / 2

2 1
2 / 2

2 2

1 1( )
22 ( )

L s
x e a ALL

x ea a A M
e a A z

L

P SC e dx e dz
e a A

α τ

α τ

α τ

ππ α τ

− −−
+∞ −

−∞ −∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦∫ ∫   (3.2.6) 

Then with another change of variables: 

2 2 2 2
, we get

L L

x dxw dw
e a A e a Aα τ α τ

= =  

 

( )

( )

2
2

2

2
2

14

2 2

14

2 2

1 1( )
2 2

1 1
2 2

S

S

Mw a A zw

Mw K zw

P SC e dw e dz

e dw e dz

α τ

π π

π π

−−
+∞ − −

−∞ −∞

−−
+∞ − −

−∞ −∞

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

  (3.2.7) 
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or 

( )
( )

2
4

1
21( ) 1

2

Sw K
M

P SC e dw Q w
π

−
+∞ − −

−∞
⎡ ⎤= −⎣ ⎦∫   (3.2.8) 

where  

( ) 2 / 21
2

z

x
Q w e dz

π
∞ −= ∫     (3.2.9) 

Similarly, the probability of count symbol detection for the heterodyne case 

becomes 

( )
( )

2
2

1
21( ) 1

2

Sw K
M

P SC e dw Q w
π

−
+∞ − −

−∞
⎡ ⎤= −⎣ ⎦∫             (3.2.10) 

If equal a priori transmission probabilities are assumed for each symbol, the 

probability of symbol error can be expressed as:  

sP (E) = 1-P(SC)                (3.2.11) 

Finally, it is necessary to convert from symbol to bit errors (Simon et al., 1995, 

Proakis, 2000).  For the case treated in this derivation which is the study of orthogonal 

signals, the incorrectly decided symbol is equally likely to be any of the remaining M-1 

symbols since each symbol is equidistant from all others.  For equiprobable orthogonal 

signals, all symbol errors are equiprobable and occur with probability 

 

( ) ( )
1 2 1

s s
k

P E P E
M

=
− −

               (3.2.12) 
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There are  ways in which n bits out of k may be in error.  Therefore, the 

average number of bit errors per k-bit symbol is: 

k
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

1

( ) 2 ( )
2 1 2 1

kk
s

sk k
n

k P En k
n

−

=

⎛ ⎞
=⎜ ⎟ − −⎝ ⎠

∑ P E               (3.2.13) 

and the average bit error probability is obtaining by dividing Eq. (3.2.13) by k, the 

number of bits per symbol. Hence,  

12( ) ( )
2 1

/ 2 ( )
1

k

b sk

s

P E P E

M P E
M

−

=
−

=
−

              (3.2.14) 

Using Eq. (3.2.14) the probability of bit error for the case of homodyne detection 

is:  

[ ]
2

2

1( 4 ) / 2

1
( 4 ) / 2

/ 2 1( ) 1 1 ( )
1 2

/ 2 1 1 11
1 2 22 2

s

s

Mw K
b

M
w K

MP E e dw Q w
M

M we dw erf
M

π

π

+∞ −− −

−∞

−
+∞ − −

−∞

⎡ ⎤⎧ ⎫
= − −⎨ ⎬⎢ ⎥− ⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎥⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭⎣ ⎦

∫

∫
            (3.2.15) 

For heterodyne detection the bit error probability can be expressed as: 

2
1

( 2 ) / 2/ 2 1 1 1( ) 1
1 2 22 2

s

M
w K

b
M wP E e dw erf
M π

−
+∞ − −

−∞

⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= − −⎨ ⎬⎢ ⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭⎣ ⎦
∫ ⎥             (3.2.16) 

 

A simple bound often applied in block detection analysis is the union bound.  The 

probability of a finite union of events is bounded above by the sum of the probabilities of 
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the constituent events.  Since the binary test between any two decoding symbols is 

equivalent to an orthogonal coherent test, Eqs. (3.2.17) and (3.2.18) are obtained.  

The union bound for the case of homodyne detection is: 

1( ) [ 2
2 2 2b S
M MP E Q K erfc K⎛ ⎞ ⎛ ⎞⎧

S
⎫⎡ ⎤ ⎡≅ = ⎤⎨ ⎬⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣⎝ ⎠ ⎝ ⎠⎩ ⎦⎭

            (3.2.17) 

Similarly, the union bound for the bit error probability for heterodyne detection 

becomes: 

1( )
2 2 2

s
b S

KM MP E Q K erf
2

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞⎡ ⎤≅ = ⎨ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠
⎬

⎪ ⎪⎣ ⎦⎩ ⎭
             (3.2.18) 

 

The following figures show the exact bit error probabilities and union bound 

approximation for optical homodyne and heterodyne detection of PPM signals with        

M = 2, 4, 8, 16 slots.  Note that as M increases the bit error probability is higher because 

we are plotting versus the average number of photons per pulse and not per bit.  It can be 

observed that homodyne detection performs 3 dB better than heterodyne detection as 

expected. 
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Figure 15.  BER for homodyne detection. 
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Figure 16.  BER for heterodyne detection. 
 

3.3 Probability of bit error for non-coherent (heterodyne) 

optical receiver with random phase channels for pulse position 

modulated (PPM) signals 

3.3.1 Case I:  Probability of bit error for the single channel 

 

 

The receiver used here is non-coherent in the communications sense because the input 

phase is unknown and square-law envelope detection is used.  As shown in (Gagliardi 

and Karp, 1995), the output process of a coherent optical heterodyning system at 

baseband is complex Gaussian.  Since the phases of the complex Gaussian channel 
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outputs are not known, it is necessary to perform square law detection.  The treatment 

here follows (Simon et al., 1995).  The real and imaginary parts of the complex signal are 

each Gaussian random variables.  Summing the squares of two Gaussian random 

variables results in a chi-square random variable with two degrees of freedom.  If both 

Gaussian random variables are zero mean, the resulting random variable at the output is a 

central chi-square random variable with two degrees of freedom. 

For an M-ary pulse position modulation system, the probability of a correct 

symbol decision is the probability that none of the matched filter outputs in the noise 

slots exceeds the output in the signal slot.  Let ( ),Y sigf y  be the probability distribution 

function (PDF) of the output within a signal slot, and let ( ),Y noiseF y  be the cumulative 

distribution function (CDF) of the output in a noise slot.  Three assumptions are made: 

1.  All M possible PPM symbols are equiprobable. 

2.  The PDF ( ),Y sigf y  always applies to any one of the M slots when the signal is 

present. 

3.  The CDF  always applies to each of the M slots when the signal is 

absent. 

( ),Y noiseF y

The probability of a correct decision is: 

( ) ( ) ( )( ) 1
, ,

M
Y sig Y noiseP C f y F y dy

∞
−

−∞

= ∫   (3.3.1) 

 

The symbol error probability is then given by: 
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( ) ( )

( ) ( )( ) 1
, ,

1

1
M

Y sig Y noise

P E P C

f y F y dy
∞

−

−∞

= −

= − ∫
    (3.3.2) 

The probability of a bit error for M-ary PPM is related to the probability of 

symbol error by (Simon et al., 1995): 

( ) ( )2

1

M

bP E P E
M

=
−

     (3.3.3) 

The above Eqs. will be essential to the analysis of symbol error probabilities.  

Following the derivation on (Simon et al., 1995) for the case of equal energy signals the 

M-ary receiver selects the message corresponding to maximum for 

  The joint pdf has to be obtained in order to 

compute the probability of symbol error.  The received signal, which corresponds with 

the expression from Eq. (3.2.3) for a heterodyne system will be used in a generic form in 

this derivation in order to simplify the analysis.  The received signal assuming message 

is transmitted, is: 

km 2
iξ

.1,,1,0 −= Mi " ),,,( 2
1

2
1

2
0,,, 2

1
2

1
2
0

−
−

M
M

f ξξξ
ξξξ

""

km

( ) 2 ( )cos( ) ( )k cr t s t t n tω θ= + +      (3.3.4) 

with as the bandpass Gaussian noise process (Simon et al., 1995) ( )n t

{ }( ) 2 ( ) cos ( )sinc c sn t n t t n t tcω ω= −     (3.3.5) 

 

where the baseband noise components are independent Gaussian processes with PSDs 

that may be expressed as 
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0

( ) ( ) 2
0

nc ns

N f B
S f S f

otherwise

⎧ ≤⎪= = ⎨
⎪⎩

    (3.3.6) 

with  

0 0
( ) ( ) ( ( ) cos ( ) ( )

T T

ci c i k c iz r t s t dt s t n t s t dtθ= = +∫ ∫     (3.3.7) 

0 0
( ) ( ) ( ( ) cos ( ) ( )

T T

si s i k s iz r t s t dt s t n t s t dtθ= = +∫ ∫     (3.3.8) 

The conditional means are computed for a fixed θ ,  

{ }
0

cos ,
/ cos ( ( ) ( )

0,
T s

ci k i

E i
E z s t s t dt

i k
θ

θ θ
k=⎧

= = ⎨ ≠⎩
∫    (3.3.9) 

{ }
0

sin ,
/ cos ( ( ) ( )

0,
T s

si k i

E i
E z s t s t dt

i k
θ

θ θ
k=⎧

= = ⎨ ≠⎩
∫             (3.3.10) 

In order to compute the variances, 

( )2
2 0

/ 0
( ) ( )

2ci

T

z c i
NE n t s t dtθσ ⎧ ⎫
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⎩ ⎭
∫ sE=              (3.3.11) 

( )2
2 0

/ 0
( ) ( )

2si

T

z s i
NE n t s t dtθσ ⎧ ⎫

= ⎨ ⎬
⎩ ⎭
∫ sE=              (3.3.12) 

Even if  and are bandlimited processes; they could be considered to be 

nonbandlimited assuming that 

)(tnc )(tns

1>>BT , using the matched filter argument. As and 

are independent, and  are conditionally uncorrelated and therefore 

independent as they are conditionally Gaussian, 

)(tnc

)(tns ciz siz
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(3.3.13) 

If the pairwise relation is considered among the various  and , 

 Assuming that  is transmitted, then  

ciz siz
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Also, 
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which is true for the cases of ki = or kj = but not both. As a result, the variables, and 

,  are uncorrelated and therefore independent as they are 

ciz

siz 1,,1,0 −= Mi "
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unconditionally Gaussian. Then if ( )sisii zz /tan 1−=θ , then Eq. (3.3.13) can be expressed 

as follows 
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Using the definition of the zero-order modified Bessel function of the first kind 

then ),(0 xI
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Then, with the change of variables 22
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Normalizing and with  2
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then  
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where is the step function. The variables )(au 1,,1,0, −= MiAi "  are independent 

because they are nonlinear functions of independent random variables. Then 
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Using this expression for the joint pdf, it is possible to obtain the probability of 

symbol error . If message is transmitted, and the output of the envelope detector 

matched to is , the probability of correct symbol detection conditioned on 

message and is 
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Then, with the expansion 
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Taking into account that the integral 
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and with the change of variables  2xu =
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The probability of correct symbol detection 
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The probability of symbol error, 
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As the expression for the probability of bit error rate is 
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with of the channel under study. 0/sE N SNR=

The bit error rate for a non-coherent receiver in random phase channels could be 

calculated by substituting the signal-to-noise ratio obtained in Eq. (3.1.11). 

3.3.2 Case II:  Probability of bit error with array combining 

 

For the case of signals under AWGN, the probability of bit error is given by the 

same expression from Eq. (3.3.35), but instead of using the SNR of one channel, the right 

term to use is the addition of the SNR of the individual channels to be combined 

(Vilnrotter et al., 1992).  Expressing the SNR directly as a ratio instead of in decibels and 

letting 
0

S

i

E
N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 denote the SNR of the ith channel, the total SNR is: 
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∑ E                (3.3.36) 

for the case of N channels.  Eq. (3.3.36) assumes that the noise is zero-mean Gaussian.   

 

3.4 Probability of bit error for non-coherent (heterodyne) 

optical receiver with random phase channels for Pulse Position 
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Modulated (PPM) signals in the presence of leakage in the noise 

slots 

The derivations from previous sections assume a system model with zero mean 

noise variances for signal as well as noise slots. Theoretically that is the case to be 

expected, but the reality is that the equipment used for this thesis had some limitations 

and constraints, necessitating changes in the mathematical model. The PPM modulator is 

not ideal, and during the dead time it was “leaking” signal energy.  This unwanted signal 

energy, referred to as “leakage,” was mixed with the local oscillator laser, generating a 

heterodyned beatnote in the noise slots. This resulted in a non-zero signal mean in the 

noise slots, which in this section will be explained in more detail. Different channels 

presented different leakage characteristics that have been taken into account in the 

following signal model based on a non-central chi square distribution for the signal as 

well as the noise slots.  

Previous sections analyzed the case of zero mean Gaussian random variables 

resulting in a central chi-square random variable with two degrees of freedom in the noise 

slots.  If either or both of the Gaussian random variables has non-zero mean, then the 

result will be a non-central chi square random variable with two degrees of freedom.  The 

central chi-square random variable is simply a special case of the non-central chi-square 

random variable (Simon et al., 1995). 

First, consider the matched filter output in the signal slot.  Since the signal 

consists of two Gaussian random variables with non-zero mean in the real and imaginary 
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parts, the resulting pdf is a non-central chi-square pdf with two degrees of freedom.  Let 

 and  be the means of the real and imaginary parts of the complex Gaussian, and let 

them both have variance 

1m 2m

2σ .  Define the sum of the squares of the means: 

 

2 2
1s m m2

2= +       (3.4.1) 

Then the pdf is given by: 
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where ( )0I x  is the zeroth order modified Bessel function of the first kind. 

If a leakage term is present in the noise slots, then the sum of squared means for 

those slots, , will be non-zero.  The resulting cdf will then be: 2
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where  is the Marcum-Q function. (1 ,Q a b

Plugging Eqs. (3.4.2) and (3.4.3) into Eq. (3.3.1) yields: 
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The integral in Eq. (3.4.4) presents the following difficulties: 
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1.  It does not have a known closed form expression. 

2.  It is difficult to evaluate numerically for large M (i.e., M = 256). 

One approach is to upper bound and lower bound the Marcum-Q function, and by 

using numerical bounds judiciously it is possible to obtain upper and lower bounds for 

the probability of symbol error given in Eq. (3.4.4).  The bounds on the Marcum-Q 

function are given by (Simon, 2002): 
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    (3.4.5) 

The bounds in Eq. (3.4.5) play an important role in the analysis of the bit error 

probability performance of this system.  Another possibility involves direct 

approximation of the integral in Eq. (3.4.4).  The first stage is to expand the probability of 

correct decision as shown below: 

( ) ( ) ( )

( )( ) ( )

( )( )

,
0

1
, ,

0

2
1

, 02 2 2
0

1 2

1 02 2

Correct Decision Correct Decision

1 exp
2 2

11 , exp
2 2

Y sig

M
Y noise Y sig

M sig
Y noise

M

sigleak

P P y f y dy

F y f y dy

y s sF y I y dy

y sys sQ I

σ σ σ

σ σ σ σ σ

∞

∞
−

∞
−

−

=

=

⎡ ⎤⎛ ⎞+ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞+
= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

∫

∫

∫

2
0

sigy dy
∞ ⎡ ⎤⎛ ⎞

⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫

 

 

Next, a binomial expansion is followed by an approximation step: 
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The approximation from Eq. (3.4.6) is usable if the following condition is met: 
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The approximation of Eq. (3.4.6) is used to simplify the integral: 
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  (3.4.8) 

The approximation used in Eq. (3.4.8) is very useful in that the integral on the last 

line has a closed form expression given by (Simon, 2002)  
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The theoretical BER error rate can therefore be approximated using Eqs. (3.4.9) 

and (3.4.8) to obtain: 
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Below a series of expressions specific to the case without leakage are given.  If 

there is no leakage, then  and the CDF 0Ls = ( ),Y noiseF y  is then given by: 
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This makes the upper and lower bounds in (3.4.5) equal to each other and therefore tight.  

It is now possible to write: 

( ), 21 exp
2Y noise

yF y
σ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

              (3.4.13) 

The resulting expression for symbol error probability is: 
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which is equivalent to the expression derived by Simon et al. (1995) for M-ary 

orthogonal symbol error probabilities for non-coherent (from a communications 

perspective) receivers.  Since: 
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is the SNR, it is possible to perform a change of variables in order to obtain symbol error 

probability as a function of SNR.  The final answer in the no leakage case is (Simon et 

al., 1995): 
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3.4.1 Expressions specific to the case with leakage 

Since even numerical evaluation of the integral for the symbol error probability in (3.4.4) 

is difficult in general, a different strategy was taken.  An upper bound on  yields 

a upper bound on the probability of making a symbol error in Eq. (3.4.17), and similarly a 

lower bound on  will yield a lower bound on the symbol error probability.  The 

upper bound expression is given by: 
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Similarly, the lower bound expression is: 

( )
( )

12
2

02 2 2 2
0

11 exp 1 exp
2 2 2

M

L
lower

y ss yy sP E I d
σ σ σ σ

−

∞ ⎛ ⎞⎛ ⎞+⎛ ⎞⎡ ⎤+ ⎜ ⎟⎜ ⎟= − − − −⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟⎜ ⎟⎣ ⎦ ⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠
∫ y          (3.4.18) 

 

The bounds on SER given by Eqs. (3.4.17) and (3.4.18) were evaluated via 

numerical integration using measured values of the following three parameters: 
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1.  : The sum of the squared means of the matched filter outputs in a signal slot. 2s

2.  : The sum of the squared means of the matched filter outputs in a noise slot. 2
Ls

3.  2σ : The variance of the matched filter real and imaginary parts.  Since the real 

and imaginary parts each have variance 2σ , the total variance of the complex 

Gaussian matched filter output is 22σ . 

The three parameters above must be estimated from the experimental data since 

the leakage is unknown a priori. 

 

3.4.2 Obtaining the SNR, signal, noise, and leakage parameters 

 

From Section 3.2, which follows the treatment in (Simon et al., 1995), it is known 

that given the time-varying input phase ( )tθ  of the incoming signal, the means of the 

Gaussian matched filter outputs are: 
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The expression for  is: 2s

( ) ( ) ( ) ( )2 22 2 2 2 2
1 2 cos sin 2

s ss m t m t E t E t Eθ θ= + = + = s             (3.4.20) 

It is also known that the variances of the real and imaginary parts are given by: 

2 0

2
SE Nσ =                (3.4.21) 

 

The SNR can be expressed as: 
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             (3.4.22) 

The main difficulty in evaluating , , and 2s 2
Ls 2σ  lies in the fact that the phase θ  

is really a slowly varying function of time ( )tθ .  Since ( )tθ  is unknown, there is a need 

for a way to estimate the three key parameters , , and 2s 2
Ls 2σ .  Given that the non-

central chi-squared outputs are available, one can take advantage of two Eqs. that 

describe the mean and the variance of the non-central chi-square outputs, assuming two 

degrees of freedom (Simon et al., 1995).  Let y be the non-central chi-square random 

variable.  Then: 

[ ] 2 22E y sσ= +               (3.4.23) 

[ ] 4 2Var 4 4 2y sσ σ= +               (3.4.24) 

One computes the sample mean and the sample variance of the non-central chi-

square outputs from the square-law device over all of the signal slot outputs.  The results 

are plugged into Eqs. (3.4.23) and (3.4.24), and the Eqs. are solved to obtain both  and 2s

2σ  as shown below: 

 

First,  is expressed by solving Eq. (3.4.23) to obtain: 2s
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[ ]2 22s E y σ= −               (3.4.25) 

Next, plug Eq. (3.4.25) into Eq. (3.4.24) to obtain: 

[ ]( ) [ ]4 2 24 4 2E y Vaσ σ σ+ − = r y              (3.4.26) 

Eq. (3.4.26) is then simplified to obtain a quadratic Eq. in 2σ : 

( ) [ ] [ ]22 24 4 VarE y yσ σ 0− + =              (3.4.27) 

where the expression (  was used to make the quadratic form more apparent.  The 

quadratic formula yields: 

)22σ

[ ] [ ]( ) [ ]2

2
Var

2

E y E y y
σ

± −
=               (3.4.28) 

Although Eq. (3.4.28) yields two solutions due to the ±  ambiguity, this ambiguity 

is readily resolved.  Substituting Eq. (3.4.28) into Eq. (3.4.25) yields: 

[ ]
[ ] [ ]( ) [ ]

[ ] [ ] [ ]( ) [ ]

[ ]( ) [ ]

2

2

2

2

Var
2

2

Var

Var

E y E y y
s E y

E y E y E y y

E y y

± −
= −

= − −

= −

∓

∓

             (3.4.29) 

Since  has to be positive, one must chose the positive sign in the last line of Eq. 

(3.4.29).  This implies choosing the negative sign in Eq. (3.4.28).  The results are: 

2s

[ ] [ ]( ) [ ]2

2
Var

2

E y E y y
σ

− −
=               (3.4.30) 

 

and  
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[ ]( ) [ ]22 Var ys E y= −               (3.4.31) 

 

Although Eqs. (3.4.30) and (3.4.31) are mathematically true, the receiver does not 

have access to the true values of [ ]E y  and [ ]Var y .  Instead, the receiver must compute 

time averages of these variables from the sample outputs of the matched filter for the 

signal slots.  The time averages are themselves random variables that have the values of 

[ ]E y  and [ ]Var y  as their means.  Since decision feedback must be used in a realistic 

receiver to determine which slot is most likely to be the signal slot, there will be some 

additional noise due to incorrect symbol decisions as well.  This poses a significant issue 

because the term ( ) ( )2 2

signal slots signal slots
signal slots

y y y− −  used to approximate the 

term [ ]( ) [ ]2
Var yE y −  may be close to zero for very small values of .  This is rarely 

a problem with the signal slots, but it is a significant problem with the noise slots if the 

leakage  is very low because  is computed just as  is except that the averaging is 

performed over the noise slots and not over the signal slots.  If the time average is less 

than zero, then the result of taking the radical would be an imaginary number.  However, 

if the time average is less than zero, this usually signifies that the term  (averaging over 

signal slots) or  (averaging over noise slots) must be zero or very close to zero.  In that 

case, one simplifies the problem by setting either  or  to zero as appropriate.  One 

then solves Eq. (3.4.25) for 

2s

2
Ls 2

Ls 2s

2s

2
Ls

2s 2
Ls

2σ  in a straightforward manner. The variance is the same for 

the noise slots as well as the signal slots.  Once these temporal estimates are obtained, it 
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is possible to numerically compute the integrals in Eqs. (3.4.17) and (3.4.18) in order to 

bound the BER curves. 
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Summary 

The methods used to obtain the SNR; the signal, noise and leakage statistics, and 

the upper and lower bounds on BER performance have been presented in this section.  

All of these operations are carried out in the software receiver.  As an example, the 

following figures show coherently detected PPM beatnotes under atmospheric turbulence 

conditions (OFF time of the electro-optic modulator) where the leakage may be clearly 

observed in different channels during the noise slots. 

 

 

 

Figure 17.  Coherently detected PPM beatnotes in the presence of atmospheric turbulence channels 
show leakage signal in noise slots example 1. 
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Figure 18.  Coherently detected PPM beatnotes in the presence of atmospheric turbulence 
channels show leakage signal in noise slots example 2. 
 

 
 

Figure 19.  Coherently detected PPM beatnotes in the presence of atmospheric 
turbulencechannels show leakage signal in noise slots example 3. 
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Chapter 4: Results of the Coherent Optical 

Receiver Experiment (CORE) 

4.1 Description of the experimental setup 

The experimental setup consists of two Nd:YAG (YAG denotes yttrium aluminum 

garnet) lasers operating at 1064 nm, whose outputs are aligned and combined on the 

surface of a 4 X 4 Fermionics InGaAs detector array.  One of the lasers serves as a local 

oscillator, while the other simulates the received signal. The two lasers are operated at 

slightly different wavelengths, yielding a relatively stable difference-frequency tone of 

approximately 6 MHz in the detected signal.  In the presence of spatial distortions 

simulating atmospheric turbulence conditions, the difference-frequency tone is generally 

observable in several array elements simultaneously, but usually with different phases.  If 

the detector element outputs were simply summed, the addition of out-of-phase tones 

could result in significant cancellation, yielding a weak signal tone at the output.  Non-

coherent addition of signal components from different elements of the detector array is 

analogous to detection with a single large detector: this is the prime reason why a single 

large detector is not effective for coherent detection of signal fields under turbulent 

conditions.  However, if small areas of the detector surface over which the signal field is 

essentially coherent are processed separately, then the outputs can be phase aligned prior 

to addition, recovering the lost signal power.  
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Figure 20 is a photograph of the optical setup at the Jet Propulsion Laboratory 

where the experiments described in this thesis have taken place.  This signal laser beam is 

focused into the photodetector via the receiver lens.  

 

Figure 20.  Coherent combining experiment at the Jet Propulsion Laboratory, NASA. 
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In the current coherent combining experiment, each of the 16 outputs of the 

detector array is amplified, and input to a 16-channel data-acquisition assembly (using 

GaGe data-acquisition cards). The analog signals are digitized to 8 bits at a sampling rate 

of 25 megasamples per second (MSPS). The data-acquisition system is capable of 

synchronously recording up to 1 megabyte of data per channel (or one million 8-bit 

samples). However for the initial tests, only 104,128 samples were taken per channel in 

order to simplify the data transfer from the data-acquisition computer to the signal-

processing computer. At a sampling rate of 25 MSPS, this sample stream represents 

4.16512 ms of elapsed time. For the first results, channels that contained significant 

signal were identified, and at a certain time synchronously collected 104,128 samples 

were collected from each channel (in a realistic communications scenario, the combining 

algorithm would automatically select the “signal” pixels for processing). The modulation 

format for the transmitted laser signal is PPM using an external Electro-Optic Modulator 

(Pockle cell).  A snapshot of an individual laser pulse that contains the coherently 

detected PPM beatnote is shown in Figure 21.  At the GaGe scope we can see the PPM 

modulated beatnotes (Figure 26) at a rate of 97.65 kHz.  The PPM frame period is exactly 

10.24 µs.  The slot width is approximately 320 ns, resulting in a 32 PPM system.   
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Figure 21.  Snapshot of an individual PPM pulse beatnote. 
 

The resulting sample stream acquired with the GageScope is digitally 

downconverted to complex baseband. The resulting downconverted complex samples 

served as input to a least-mean-square (LMS) algorithm, which was used to estimate the 

complex weights required to reconstruct the signal. The complex-weighted samples from 

each channel were then combined, in order to maximize the combined signal-to-noise 

ratio (SNR). 

A rotating predistorted plexiglass plate was incorporated into the experimental 

setup to simulate atmospheric turbulence. Intensity distributions of the signal beam 

obtained with a Spiricon camera at the input to the focal-plane array under ideal 

conditions are shown in Figure 22. 

 

 



 87

 
 

Figure 22.  Intensity distribution of the signal beam under ideal conditions. 
 

While when the plexiglass plate is introduced in the signal path, as observed in 

Figure 23, the beam is broken up into several “hot spots” that can be captured by 

different detectors of the focal plane array  

 

 
 
Figure 23.  Beam profile under spatial distortions resembling atmospheric turbulence generated with 
a plexiglass plate in the laboratory. 
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The signal and local beams were characterized using the Spiricon camera; Figure 

24 shows plots of the image taken at the detector surface for the signal and local 

oscillator beams respectively under ideal conditions, while Figure 25 shows perfect 

alignment of both beams with a 3D beam profile representation. 

 
Figure 24.  Beam profile of the signal laser (left) and local oscillator (right) beams on the detector 

surface. 

 

 

 

 

 

 

 

 

 

 
Figure 25.  Perfect alignment of signal and local oscillator beams at the InGaAs detector surface. 
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Figure 26 illustrates coherently detected PPM beatnotes in four different channels 

under ideal conditions and Figure 27 shows the four channels in the presence of 

atmospheric attenuation. 

 

 
 
Figure 26.  Sampled sequences of 4 channels containing PPM-modulated 6 MHz beanotes under ideal 
conditions. 
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Figure 27.  Sampled sequences of 4 channels containing PPM-modulated 6 MHz beatnotes in the 
presence of atmospheric turbulence. 
 

4.2 Adaptive combining of beatnotes using the LMS algorithm 

The discrete complex version of the LMS algorithm can be described by the recursive Eq. 

(Widrow and Steerns, 1985, Godara, 1997, Benvenuto and Cherubini, 2002): 

*( 1) ( ) ( ) (k k e kμ+ = +w w r )k      (4.2.1) 

The LMS is a recursive algorithm that allows the value of of the weight vector w 

at time (k+1) to be calculated from the value at time k, using the signal vector at time k.  

The sampled error signal is obtained from the sampled reference signal and array output, 

as follows: 

 

( ) ( ) ( ) ( )He k d k k k= − w r      (4.2.2) 
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The LMS algorithm described in Eqs. (4.2.1) and (4.2.2) is complex in the sense 

that the input and output data as well as the weights are all complex values. In the initial 

simulations and experiments, the target signal used was a constant value, equal to the sum 

of the average magnitudes of the signals in the signal channels (Compton, 1988). Later 

on, a different desired signal was utilized as explained later on in the chapter.  Since these 

are early results, obtained prior to the mathematical analysis presented in Chapter 5, the 

parameter µ was chosen experimentally.  However, the unusually large values of µ 

encountered in this Chapter and in the next, while not normally encountered in the 

literature, can be explained by the eigenvalue analysis presented in Chapter 5.  Here, the 

focus will be exclusively on the earlier experimental results. 

The nominally 6 MHz signal tones were downconverted to complex baseband and 

input to a least-mean-square algorithm, or LMS. This adaptive algorithm automatically 

estimates the complex weights required to reconstruct the signal, applies the weights to 

the complex signal in each channel, and combines the “phased-up” signals in order to 

maximize power, or SNR. The weights are computed from Eq. (4.2.1) starting with zero 

initial values. Varying the stepsize, it is possible to control the fraction of the current 

gradient estimate applied during each update, providing a desired degree of smoothing to 

the weight estimates.  A mathematical discussion of LMS is presented in Chapter 5. 

4.2.1 Adaptive combining simulated data: Signal tone and 32-PPM signals 

Convergence of the combining weights as a function of sample number has been 

analyzed. Several cases have been considered, including a signal tone and a PPM signal 
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observed under ideal conditions. Figure 28 shows the comparison of the convergence of 

the LMS algorithm for the case of signal tone vs. a 32-PPM signal.  

It has been demonstrated that the number of samples required to obtain 

convergence in the case of M-ary PPM signals with a peak power constraint is M times 

the number of samples required by a continuous tone, due to decreased total signal 

energy in the lower duty-cycle modulated waveform. Therefore, for the simulated case of 

a signal tone, convergence is obtained after 4 samples, while for 32-PPM, 128 samples 

are required for convergence, as illustrated in Figure 28, for µ = 1 and an introduced 

phase weight variation of 1 radian between every channel. 
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Figure 28.  Comparison of output convergence for signal tone and 32-PPM signal (real part of LMS 
output) . 
 

Figure 29 shows a comparison of convergence for a simulated signal tone and a 

simulated 32-PPM signal where the stepsize is µ = 0.003 (detector array consists of 16 

detectors).  Convergence is obtained for a signal tone after 125 samples, and for the 32-

PPM signal after 4000 samples, as expected.  

Signal 
 Tone 

PPM  
Signal 
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Figure 29.  Comparison of convergence for signal tone and a 32-PPM signal with a 16-detector array 
µ = 0.003. 
 

Other cases have been studied using different values of stepsize. If the stepsize 

value is increased to µ = 0.008 as shown in Figure 30, the LMS algorithm converges 

faster, hence only 1000 samples are needed for convergence as opposed to 4000 samples 

for the previous case.  
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Figure 30.  Comparison of convergence for signal tone and a 32-PPM signal with a 16-detector array 
with µ = 0.008. 
 

4.2.2 Experimental results I: Convergence of LMS algorithm for unmodulated 

beatnote under ideal conditions and with atmospheric turbulence 

 

In these initial experiments, the reference signal is a constant value calculated based on 

the addition of the magnitude of the signal in the four channels, which resulted in a value 

of 0.06.  Therefore, the error signal obtained is a complex number that contains the phase 

information required.  The error signal has to be minimized in order for the phase weights 

to converge; at that point, the four signals will be phased up and the combined output will 

be maximized.  The weights are computed from Eq. (4.2.1) starting with zero initial 

values.  Varying the stepsize, it is possible to control what fraction of the latest weight 
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estimate is applied to the current weight during each update, providing additional 

smoothing to the weight estimates.  

Referring to Figures 31, 32, and 33 with µ = 10, the stepsize is so small that the 

LMS algorithm cannot keep up with the phase variations in the beatnote.  The combined 

output signal shows that the four channels are not perfectly combined as it oscillates and 

never reaches its maximum value of 0.06.  The weights have a sawtooth shape, which is 

due to continuously changing phase in the downconverted output, which is not exactly at 

zero frequency, but very close to it. Note that the error signal never settles down to a 

small value in Figure 33. 
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Figure 31.  Combined output signal with μ = 10. 
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Figure 32.  Phase of the weights with μ = 10. 
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Figure 33.  Error signal for μ = 10. 
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Referring to Figures 34, 35, and 36, we observe that as we increase the value of 

the stepsize, now set to µ = 100, we get greatly improved performance.  The combined 

output shown in Figure 34, has increased in value approaching its maximum.  The error 

signal has decreased, showing partial convergence of the weights as we can see in Figure 

36. 
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Figure 34.  Combined output power with μ = 100. 
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Figure 35.  Phase of the weights with μ = 100. 
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Figure 36.  Error signal with μ = 100. 

Finally, when the stepsize is large enough so that the LMS algorithm is able to 

keep up with the phase rotation of the complex downconverted beatnote, at µ = 1000, the 

combined output signal reached its expected maximum value of 0.06. With this optimum 

value of µ, the error approaches zero and it is concluded that the signals are phased up.  

Figures 37, 38, and 39 illustrate the combined output, phase of the weights, and error 

signal respectively. 
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Figure 37.  Combined output signal with μ = 1000.  
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Figure 38.  Phase of the weights of the four different channels with µ = 1000. 
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Figure 39.  Error signal with μ = 1000. 

These results illustrate that increasing the stepsize allows the LMS algorithm to 

follow and track the phase rotation of the complex downconverted beatnote.  It was found 

that a good value of µ for the particular case discussed here is 1000.  For this value there 

is accurate tracking of the signals and accordingly, the error signal approaches zero, and 

maximum combined output is achieved. 

 

It is important to note that usually in books and papers, the stepsize is shown to be 

much smaller than one, but that is because the signal is assumed to be of unity amplitude. 

In this experiment, the signal levels that we are dealing with are very small since there is 

not enough amplification after detection.  Therefore, large values of stepsize are needed 

to provide adequate updates to the weights. 
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The purpose is to analyze the case of a signal tone received in the presence of 

simulated atmospheric turbulence conditions using the rotating plexiglass plate shown in 

Figure 20.  The reference signal used in the algorithm for this situation resulted in a value 

of 0.0036. As in our previous case, four channels that contained significant signal were 

identified, and at a certain time 104,128 samples were synchronously collected from each 

channel.  After some experimentation, it was determined that for this data set good results 

could be obtained by correlating over 10,000 samples, and using a stepsize of 20,000 as 

the signal is even weaker than for the ideal case due to the loss introduced by the 

atmospheric turbulence added to the system.  Figure 40 shows the combined output that 

reaches its maximum value of 0.0036.  Convergence of the LMS algorithm is 

accomplished after 200 samples, and therefore the acquisition time is 8 µs. 
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Figure 40.  Combined output power of the beatnote signal in the presence of simulated 
atmospheric turbulence with µ = 20. 
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In order to minimize higher frequency noise contributions in this case, we use a 

narrower filter bandwidth on the signal processing block. 

Figure 41 shows the phase of the weights with µ = 20,000. For this case, the 

weights also have a sawtooth shape, due to the continuously changing phase in the 

downconverted output, as it is not exactly at 0 Hz.  
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Figure 41.  Phase of the weights with μ = 20,000. 
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Figure 42.  Error signal with µ = 20,000. 

Figure 42 shows that the error signal approaches zero when the stepsize is µ = 

20,000. Therefore, convergence of the LMS weights has been achieved and the combined 

output value has been maximized with minimum error. 

 

These results illustrate, that increasing the stepsize allows the LMS algorithm to 

follow and track the phase rotation of the complex downconverted beatnote in the 

presence of atmospheric turbulence conditions. It was found that a good value of µ for 

the particular case discussed here is 20,000 when there is accurate tracking of the signals 

and accordingly, the error signal approaches zero, and maximum combined output is 

achieved. It is important to note that usually books and papers, the stepsize is shown to be 

much smaller than one, but that is because the signal is assumed to be of unity amplitude. 
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In our experiment, the signal levels that we are dealing with are very small as there is not 

enough amplification after detection. Therefore, large values of stepsize are needed to 

provide adequate updates to the weights. 

4.2.3 Experimental results II: Convergence of the LMS algorithm with PPM signals 

and no atmospheric turbulence 

We first consider the case using a stepsize of µ = 1 (considered to be small for the 

experimentally recorded data, which are on the order of 0.01 for the individual channels). 

The sum of the magnitudes of the signals in the four selected channels is approximately 

0.186.  Figure 43 shows the combined output (and weighted channel components) of the 

LMS combiner for this case; with a stepsize of 1, the LMS algorithm cannot keep up with 

the phase variations in the beatnote, hence the combined output signal never reaches its 

maximum value of 0.186; instead, it reaches only about 0.037. 
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Figure 43.  Combined output with µ = 1. 

 

When a larger stepsize is used, µ = 7, the combined output achieves the desired 

value of 0.186 as illustrated in Figure 44.  We see that the combined output reaches its 

desired maximum value after approximately 800 samples; this translates to an acquisition 

time of approximately 32 µs.  
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Figure 44.  Combined output with µ = 7. 

 

 

Figure 45 shows the behavior of the phase of the combining weights, as a function 

of time (or samples). We observe that the phase of the weights has a sawtooth shape due 

to the continuously changing phase in the downconverted output, which is not exactly at 

zero frequency.  
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Figure 45.  Phase of the weights for µ = 7. 

 

 

Figure 46 also shows an individual combined pulse and its weighted components 

in greater detail. The addition of the magnitudes of the four channels is 0.186; indeed, the 

components sum to the expected value, verifying the validity of the instantaneous 

combining operation.  
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Figure 46.  Combined output and weighted signal components with µ = 7. 

In summary, it can be seen that the experimentally obtained PPM signals are 

combined correctly with the larger stepsize, and converge to their desired final value in 

less than a millisecond.  

4.2.4 Convergence of LMS algorithm in the presence of spatial distortions caused by 

a static plexiglass plate in the optical path 

 

For the case of combining detector array output signals spatially distorted by the 

plexiglass plate, the desired signal magnitude is the addition of the average magnitudes of 

the individual channels, which in this case turned out to be 0.063. Initially, we attempt to 

combine adaptively using a stepsize of 8, however it can be seen from Figure 47 that the 

stepsize is too small, hence the LMS algorithm cannot keep up with the residual phase 

variations and only attains a magnitude of 0.033.  
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Figure 47.  Combined output with µ = 8. 
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Figure 48.  Combined output with µ = 22. 
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Figure 49.  Phases of the weights for µ = 22. 

1755 1760 1765 1770 1775 1780 1785
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of samples

M
ag

ni
tu

de

Combined output, µ=22

Combined output
Weighted output channel 3
Weighted output channel 7
Weighted output channel 11

 

 

Figure 50.  Combined output with µ = 22. 
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Referring to Figures 48, 49, and 50, we observe that as we increase the value of 

the stepsize to µ = 22, we get greatly improved combining performance. The combined 

output shown in Figure 48, and in more detail in Figure 50, has increased, approaching its 

maximum value of 0.063. At this point, the stepsize is large enough so that the LMS 

algorithm is able to keep up with the phase rotation of the complex downconverted 

beatnote. These results illustrate, that increasing the stepsize allows the LMS algorithm to 

follow and track the phase rotation of the complex downconverted beatnote. For this 

value there is accurate tracking of the signals and accordingly, the error signal approaches 

zero, and maximum combined output is achieved. 
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Chapter 5: The LMS Algorithm and Its 

Application to Coherent Optical Signal Reception 
 

In this system, the well-known LMS algorithm is used for the purposes of combining the 

outputs of the individual FPA channels in order to generate a combined channel whose 

performance is close to that of a single channel without any signal losses due to 

atmospherically induced phase distortions.  The LMS algorithm was briefly introduced in 

Chapter 4, and this Chapter discusses it in greater depth. 

In Section 5.1, the signal combining problem and the goal of minimizing the mean 

squared error are presented along with the optimal (in the minimum mean squared error 

sense) Wiener solution.  This discussion leads into a discussion of the LMS algorithm for 

stationary, ergodic signals in Section 5.2.  The time adaptive nature of LMS enables it to 

work well in many cases even in non-stationary environments (Sayed, 2003), and some 

of the mathematical implications of non-stationarity for the case of reception of signals 

with an FPA are considered in Section 5.3.  Further discussion of the effects of a leakage 

signal (defined in Section 5.3) are presented in Section 5.4.  A variant of the LMS 

algorithm presented in Compton, (1988) that utilizes a constant target signal is considered 

in Section 5.5, and the convergence time performance of the LMS algorithm with real 

world data is considered in Section 5.6. 
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5.1 The signal model 

The signal is modeled as a desired component corrupted by Gaussian noise.  Let d(k) 

denote the desired communications signal.  Let s(k) denote the signal vector, which 

contains information on the desired signal d(k),  and let n(k) denote a zero-mean vector 

additive white Gaussian noise (AWGN) process.    All signals are represented in complex 

baseband.  The vector AWGN process n(k) is assumed to satisfy: 

( ) ( )
22H i j

E i j
i j

σ⎧ =⎡ ⎤ = ⎨⎣ ⎦ ≠⎩

I
n n

0
     (5.1.1) 

where 2σ  is the variance of both the real and imaginary parts of the Gaussian noise in 

each of the individual channels of the FPA, yielding a net variance of 22σ  per complex 

baseband channel. 

The received vector signal at time k can be written as: 

( ) ( ) ( )k k= +r s n k      (5.1.2) 

where, in the FPA case: 

( ) ( )k d k=s a       (5.1.3) 

Here a is the vector of complex magnitudes and phases at the focal plane array 

(FPA) detector elements due to the focal plane field distribution and d(k) is the desired 

communications signal. 

The output of the adaptive filter is given by: 

( ) ( ) ( )Hy k k= w r k      (5.1.4) 

 
and the goal is to minimize the mean squared error, which is defined as: 
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( ) ( ) 2
MSE E d k y k⎡ ⎤= −⎢ ⎥⎣ ⎦

    (5.1.5) 

The goal of the LMS algorithm is to find the optimal weight vector  such that 

the MSE defined in Eq. (5.1.5) is minimized.  However, an alternative to minimizing the 

MSE is minimizing the BER as shown by Chen et al. (2001) since the MSE criterion may 

not always be optimal from a BER standpoint.  This subject is not considered further in 

this thesis, but is a good direction for future research. 

optw

Following the treatments in both Haykin, (1991) and Sayed, (2003), and assuming 

ergodicity and wide-sense stationarity, define the autocorrelation and cross-correlation 

matrices shown below: 

( ) ( )HE k k⎡ ⎤= ⎣ ⎦R r r      (5.1.6) 

( ) ( )E k d k∗⎡ ⎤= ⎣ ⎦p r      (5.1.7) 

The optimal solution, or Wiener solution, is given by: 

1
opt

−=w R p       (5.1.8) 

If the input stochastic process is both stationary and ergodic, then Eq. (5.1.8) 

yields the optimal weight vector.  If the process is non-stationary, but if both R(k) and 

p(k) are perfectly known as a function of time, then minimization of the expected value 

of the mean squared error in Eq. (5.1.5) would yield: 

( ) ( ) ( )1
opt k k−=w R p

 

k      (5.1.9) 
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5.2 Gradient descent and LMS 

Theoretical analyses of the behavior of the LMS algorithm are widely available in the 

literature, and the results from Haykin, (1991) will be stated here.  The LMS algorithm is 

designed to perform a gradient descent approximation that converges closely to the 

Wiener solution.  The treatment of Haykin, (1991) assumes that the input and the desired 

signal are jointly wide-sense stationary, but this assumption is not true in the system 

under consideration.  The implications of the non-stationarity will be briefly considered 

and are a topic of future research although the LMS algorithm is both widely and 

successfully used for the tracking of non-stationary signals (Sayed, 2003). 

Consider the problem of adaptively finding a good estimate of the weights in real 

time.  In that case, the gradient of the MSE with respect to the weight vector w(k) is given 

by (Haykin, 1996): 

( ) ( ) ( ) ( ) ( )MSE =-2 2k k k k∇ +w p R w k     (5.2.1) 

It should be noted that substitution of the Wiener solution from Eq. (5.1.8) into 

the gradient in Eq. (5.2.1) results in a gradient of zero as expected. 

 

The statistical quantities p and R are usually difficult to obtain.  The gradient in 

Eq. (5.2.1) can be approximated using the instantaneous sample r(k) and reference d(k) as 

shown below: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

MSE =-2 2

2 2

2

2

k

H

H

k k k k

E k d k E k k k

k d k k k

k e k

∗

∗

∗

∇ +

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦

≈ − −

= −

w p R w

r r r

r w r

r

w
  (5.2.2) 

where ( ) ( ) ( ) ( )He k d k k k= −w r .  The LMS approximation to gradient descent is given 

by 

( ) ( ) ( ) ( )1k k e kμ ∗+ = +w w r k      (5.2.3) 

The learning rate parameter μ , which includes the factor of 2 from Eq. (5.2.2), 

must be chosen large enough to ensure rapid convergence but small enough to insure 

stability.  Stability of the algorithm is assured if the following condition is met (Haykin, 

1996): 

max

20 μ
λ

< <       (5.2.4) 

where maxλ  is the largest eigenvalue of R(k). 

The convergence time constant of the LMS algorithm depends on the eigenvalues 

of the correlation matrix R(k).  Define the average eigenvalue to be: 

1

1 M

av i
iM

λ λ
=

= ∑       (5.2.5) 

Then the approximate time constant for convergence is (Haykin, 1996): 

 

,
1

2mse av
av

τ
μλ

≈       (5.2.6) 
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A larger learning rate parameter is desirable for shorter convergence times, but 

that learning parameter must not exceed the allowable limit or the LMS algorithm will 

not converge.  In the cases shown in Figures 52 and 54, the convergence time is 

approximately 3 ms for 6.31μ =  and 2 ms for 10μ = .  The sampling period is 40 ns, 

which implies that the convergence times in samples are approximately 50,000 samples 

for μ  = 10 and 75000 samples for μ  = 6.31.  Using the convergence time equation 

above and using the number of samples for τ  in this discrete-time analysis, the following 

average eigenvalue is inferred: 

610avλ −≈       (5.2.7) 

Caution must be exercised in assuming the above average eigenvalue.  Mainly, 

the matrix R(k) is a time-dependent correlation matrix as explained below, so the 

stationarity assumption does not hold.  Hence, the average eigenvalue shown in Eq. 

(5.2.7) is not correct, and a more detailed analysis is necessary.  This is one of several 

areas where the non-stationarity of the signal will play an important role in understanding 

the behavior of LMS. 

5.3 Non-stationarity of the input signal and convergence time 

 

The use of time-variant autocorrelation and cross-correlation matrices R and p is not 

correct in general when the input signal is non-stationary.  Although the additive white 

Gaussian noise assumption holds (Gagliardi and Karp, 1995), the desired signal d(k) is 

not statistically stationary.  In particular, the mean of the signal d(k) is time dependent in 

the case of PPM modulation.  Each PPM frame contains 512 slots, 256 of which may 
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contain a symbol with equal probability and 256 of which are dead time slots.  Since the 

eigenstructure of the correlation matrix has a direct impact on LMS stability and 

convergence time as shown by Eqs. (5.2.4), (5.2.5), and (5.2.6), it is necessary to examine 

this eigenstructure in order to make meaningful statements about convergence times and 

learning rate parameters.  The analysis in this Section focuses extensively on the 

eigenvalues of the time-varying correlation matrix for this reason. 

According to Sayed (2003) and Honig and Messerschmitt (1984), the LMS 

algorithm does not require a statistically stationary input.  Its time adaptive nature will 

allow it to converge and track even with some time variation in the input statistics.  Yet it 

remains necessary to examine the nature of the non-stationarity of the signal under 

consideration, and this is considered in the analysis below.  Assume that there are N FPA 

channels. The instantaneous ensemble autocorrelation matrix of the received N-

dimensional signal vector  modeled in Eq. (5.1.2) can be written as: ( )kr

( ) ( ) 22sk k σ= +R R I      (5.3.1) 

where 

( ) ( ) ( )H
s k E k k⎡ ⎤= ⎣ ⎦R s s      (5.3.2) 

At this stage, it is necessary to analyze two distinct cases.  In the first case, the 

following model of the signal s(k) will be assumed: 

 

( ) ( ) signal slot
noise slot

d k
k

⎧
= ⎨
⎩

a
s

0
    (5.3.3) 
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In this case, since s(k) = 0 in the noise slots, r(k) = n(k) in the noise slots since the 

signal contribution is zero. 

In the second case, the following signal model will be assumed: 

( ) ( ) signal slot
noise slot

d k
k

⎧
= ⎨
⎩

a
s

b
     (5.3.4) 

In Eq. (5.3.4) it is assumed that a certain amount of signal energy “leaks” from the 

source even in the noise slots.  Although this leakage energy would not be present in a 

realistic deep space communications system, it was present in the laboratory setup.  The 

vector a contains the complex amplitude and phase responses of the FPA detector 

elements to the spatial distribution of the signal in the focal plane in a PPM signal slot.  

The vector b contains the complex amplitude responses of the FPA detector elements to 

the spatial distribution of the leakage in the focal plane.  In the laboratory setup, the 

spatial distribution of the leakage was not the same as the spatial distribution of the 

signal, so the vectors a and b were not the same: these vectors were not even collinear.  

In Section 5.3.1 the case of no leakage, described by Eq. (5.3.3), will be covered.  In 

Section 5.3.2 the case with leakage seen in the laboratory as described by Eq. (5.3.4) will 

be covered. 

5.3.1 Case I: No leakage present 

The matrix sR  is obtained by substituting Eq. (5.3.3) into Eq. (5.3.2), resulting in: 

 

( ) ( ) 2
signal slot

noise slot

H

s

E d k
k

⎧ ⎡ ⎤⎪ ⎢ ⎥⎣ ⎦= ⎨
⎪⎩

aa
R

0
    (5.3.5) 
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Substitution of Eq. (5.3.5) into Eq. (5.3.1) yields: 

( ) ( ) 2 2

2

2 signal slot

2 noise slot

H E d k
k

σ

σ

⎧ ⎡ ⎤ +⎪ ⎢ ⎥⎣ ⎦= ⎨
⎪⎩

aa I
R

I
    (5.3.6) 

In any event, the time-dependent correlation matrix R(k) is expressed in the form: 

( ) ( ) 2 2
,0 2sk d k σ= +R R I      (5.3.7) 

where: 

,0
H

s =R aa      (5.3.8) 

For the moment, ignore the exact form of ,0sR  specified in Eq. (5.3.8) and assume 

that ,0sR  is a generic, non-time-varying correlation matrix.  Let the set of eigenvectors of 

,0sR  be given by { }iv  and the set of corresponding eigenvalues be given by { }iλ .  Each 

 is also an eigenvector of iv ( ) 2
,0s s E d k⎡ ⎤= ⎢ ⎥⎣ ⎦

R R  with corresponding eigenvalue: 

( ) ( ) 2
i ia k E d kλ ⎡ ⎤= ⎢ ⎥⎣ ⎦

     (5.3.9) 

In turn, each eigenvector  of iv ( ) 2
sE d k⎡ ⎤

⎢ ⎥⎣ ⎦
R  is also an eigenvector of 

( ) ( ) 2 22sk E d k σ⎡ ⎤= ⎢ ⎥⎣ ⎦
R R + I  with corresponding eigenvalue: 

( ) ( )( )2 22ib k E d k

 

iσ λ⎡ ⎤= +⎢ ⎥⎣ ⎦
             (5.3.10) 
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The set { }iv  is, therefore, a set of non-time-varying eigenvectors of the time-

varying correlation matrix ( )kR  with time varying eigenvalues given by Eq. (5.3.10).  

Define the matrix whose columns are the constant eigenvectors: 

 

[ ]1 2 N=V v v v…               (5.3.11) 

and define the diagonal matrix containing the time-varying eigenvalues: 

 

( )

( )
( )

( )

1

2

0 0
0 0

0 0 M

b k
b k

k

b k

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B

…
…

# # % #
…

             (5.3.12) 

 

Since a correlation matrix is always Hermitian, R(k) can be expressed as: 

 

( ) ( ) Hk k=R VB V               (5.3.13) 

Eq. (5.3.13) holds for any time-varying correlation matrix of the form specified in 

Eq. (5.3.7).  The time dependence of the eigenvalues ( )ib k  will affect the learning rate 

parameter μ  and the convergence time τ , and the effects will be determined by the 

eigenvalues ( )ib k . 

 

For the particular ,0sR  in Eq. (5.3.8), a will be an eigenvector with eigenvalue 

2a  and the (N-1) dimensional subspace ⊥a  of vectors perpendicular to a will be 
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spanned by a (N-1) dimensional basis of the remaining orthogonal eigenvectors (which 

are non-unique) all with corresponding eigenvalue zero.  The fact that a is itself an 

eigenvector of R(k), assuming Eq. (5.3.8) holds, is shown below: 

( ) ( )

( )

( )

( )( )

2 2

2 2

2 2 2

2 2 2

2

2

2

2

H

H

a

k E d k

E d k

E d k

E d k

σ

σ

σ

σ

λ

⎡ ⎤⎡ ⎤= +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦
=

R a aa I

aa a Ia

a a a

a a

a

a

             (5.3.14) 

where: 

( )( )2 2 22a E d kλ σ⎡ ⎤= +⎢ ⎥⎣ ⎦
a               (5.3.15) 

is the eigenvalue that corresponds to eigenvector a. 

Let  denote the (N-1)-dimensional subspaces of all vectors that are orthogonal 

to a.  Let the set {

⊥a

}ic  be any orthogonal basis for the subspace ⊥a .  Then for any vector 

 from this basis: ic

( ) ( )

( )

( ) ( )
( )

2 2

2 2

2 2

2 2

2

2

2

2

0 2

2

H
i i

H
i i

H
i i

i

i

k E d k

E d k

E d k

E d k

σ

σ

σ

σ

σ

⎡ ⎤⎡ ⎤= +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦

=

R c aa I c

aa c c

a a c c

a c

c

 

+              (5.3.16) 
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By Eq. (5.3.16) it is now clear that the vectors  must also be eigenvectors of 

R(k).  No matter how the set 

ic

{ }ic  of orthogonal vectors spanning  is chosen, the set of 

eigenvalues of R(k) will be given by: 

⊥a

( ) ( ) 222

2

2 1

2 2
i

E d k i
b k

i

σ

σ

⎧ ⎡ ⎤+ =⎪ ⎢ ⎥⎣ ⎦= ⎨
⎪ ≥⎩

a
             (5.3.17) 

Only the largest eigenvalue of R(k) is a function of time, but it is the largest 

eigenvalue that will also determine the upper limit on the learning rate parameter μ  as 

well as the convergence time constant.  Since Eq. (5.2.4) yields an upper bound on the 

learning rate parameter, and since the location of the signal pulse is not known until 

demodulation is performed, it is necessary to bound the learning rate parameter using the 

largest possible value of maxλ , which is: 

22 2
max max2 dλ σ= + a               (5.3.18) 

This yields the following upper bound on the learning rate parameter: 

22 2
max

2
2 d

μ
σ

<
+ a

              (5.3.19) 

Furthermore, the average eigenvalue used in Eq. (5.2.6) depends on the average 

eigenvalue from Eq. (5.2.5).  A substitution of the eigenvalues from Eq. (5.3.17) into Eq. 

(5.2.5) yields: 

 

2 2
max22avg

d
N

λ σ= +
a

              (5.3.20) 
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Replacing μ  in Eq. (5.2.6) with the upper bound from Eq. (5.3.19) and plugging 

in Eq. (5.3.20) yields: 

22 2
max

2 2
max2

2

4 2

d

d
N

σ
τ

σ

+
≈

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

a

a
              (5.3.21) 

In the limit of high SNR when 2 2
maxd N 2σa � , Eq. (5.3.21) can be further 

approximated by: 

22 2
max

2 2
max2

2 2
max

2 2
max

2

4 2

4

4

d

d
N

d

d
N

N

σ
τ

σ

+
≈

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

≈
⎛ ⎞
⎜ ⎟
⎝ ⎠

=

a

a

a

a
              (5.3.22) 

As stated previously, N is the number of FPA channels.  In principle, for a          

16 channel system at sufficiently high SNR, convergence times can be as rapid as only 4 

samples.  However, the convergence time constant shown in Eq. (5.3.22) is based on Eq. 

(5.2.6). 

 

Eq. (5.3.18) is an upper bound on the maximum eigenvalue, and Eq. (5.3.20) is an 

upper bound on the average eigenvalue.  These upper bounds hold within the signal slots.  

Within the noise slots, the maximum and average eigenvalues are both equal to 22σ , 
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resulting in even larger maximum allowable values for μ  (i.e., 2

1
2

μ
σ

< ) that are very 

large for small noise variance. 

Since the goal of a PPM communications system is to determine the location of 

the signal slot, the signal slot’s location is not known a priori.  Hence, the upper bound 

for the learning rate parameter μ  is necessarily given by the largest possible eigenvalue 

as shown in Eq. (5.3.19).  For the data set shown from Figure 54 through Figure 57, the 

magnitude of the term 2 2
maxda  is -31.3064 10⋅ .  The maximum learning rate parameter 

that may be used throughout the entire data sequence in both signal and noise slots is thus 

given by the upper bound from the signal slots from Eq. (5.3.19), which yields: 

3
max 1.53 10μ ≈ ⋅                (5.3.23) 

Therefore it is no surprise that stable convergence is achieved in the case when    

µ = 1000 in Figure 56 but that instability occurs when µ = 10,000 in Figure 57 in light of 

the upper bound in Eq. (5.3.23).  Furthermore, the nearly instantaneous convergence of 

the system is also not a surprise.  Since N = 4 in the figures above, Eq. (5.3.22) would 

suggest that within a signal slot the system should converge in only about 1 sample of 

training.  This is clearly in evidence in Figure 51 because the output pulse in red is very 

nearly equal to the target pulse in blue even for the very first PPM pulse. 

 

 



 129

 

 

Figure 51.  Magnitude of the reference signal (blue) and the LMS output (red).  
The LMS output shows an apparent delay because it makes one or two samples 

for the LMS algorithm to converge, as predicted by Eq. (5.3.22) for N = 4. 

For smaller μ , the LMS algorithm’s convergence performance will be slower.  If 

one assumes 10μ =  for example, then Eq. (5.2.6) along with 2 2 -
max 1.3064 10d = ⋅a

 

3  

would yield an approximate convergence time of 38 samples.  However, there are only 

about five or six large samples per pulse in this case, so it would take at least 5 to 8 PPM 

symbols for convergence to occur.  Indeed, this appears to be roughly consistent with the 

fact that convergence seems to occur primarily within the first 10 pulses in Figure 54 
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where the value 10μ =  is used.  Since the analysis here is very approximate due to the 

fact that this is a shaped pulse rather than a rectangular pulse, only very rough numbers 

can be obtained for convergence time.  Nevertheless, the fact that convergence times in 

the experimental data series roughly agree with the expected times found here should be 

encouraging. 

Note that convergence with 10μ =  is notably slower due to the presence of non-

stationarity.  In Chapter 4, one notes that LMS convergence times for M-ary PPM were 

approximately M times slower than they were for constant signals.  This is reasonable in 

light of the fact that the LMS time constant of convergence in Eq. (5.2.6) is inversely 

proportional to the average eigenvalue.  In the noise slots, the average eigenvalue is only 

22σ  while in the signal slots the average eigenvalue is 
2 2

max22
d

N
σ +

a
, which is 

significantly larger for high SNR.  Indeed, if 2 2
max 2d σa � 2N  then one can state: 

( ) ( )

2 2
max 2

2

2 2 2
max

1

2 2

1
4

2

sig

noise

sig noise

d
N

d N

τ

μ σ

τ
μσ

σ τ

=
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

=

⇒

a

a � �τ

            (5.3.24) 

 

In the high SNR case, convergence is largely dominated by the signal slots.  

Hence, the weights undergo useful convergence for a fraction of the total running time 

equal to 1
M

, and this is entirely consistent with the above analysis. 
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The type of non-stationarity encountered in the case of PPM modulation will, 

therefore, lead to a factor of M decrease in convergence times.  This is supported by 

theoretical analysis, by the simulation results of Chapter 4, and by some observations on 

convergence times with real-world PPM data. 

5.3.2 Case II: Leakage present 

The analysis with the presence of leakage necessarily changes because the vectors a and 

b are not parallel due to the fact that the leakage has a different complex spatial 

distribution in the focal plane than the desired signal.  Experimental evidence for this is 

provided in the Appendix.  In particular, it is no longer possible to claim that the 

eigenvectors of the correlation matrix are constant as a function of time because this is no 

longer true.  Following an analysis similar to that in Section 5.3.1, it can be stated that in 

the noise slots the largest eigenvalue is given by: 

222bλ σ= + b               (5.3.25) 

with b itself as the corresponding eigenvector.  The subspace of vectors orthogonal to 

vector b, which is denoted here as ⊥b , will not be the same as the subspace ⊥a .  

However, the following statements can still be made.  First, the leakage vector b is of 

much lower magnitude than the signal vector a.  This implies: 

2 22
maxda b�               (5.3.26) 

 

Since the highest eigenvalue in a signal slot given by Eq. (5.3.18) is significantly 

greater than the maximum eigenvalue in a noise slot given by Eq. (5.3.25), the upper 

bound on the parameter μ  in Eq. (5.3.19) does not change at all because it is necessary to 
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choose μ  to insure stability in both signal and noise slots.  Hence, Eq. (5.3.23) remains 

entirely valid even in the laboratory case with leakage present.  Furthermore, since 

leakage does not change convergence characteristics within a signal slot, where no 

leakage is present, the convergence time analysis from case I remains applicable as well.  

Hence, the eigenstructure of the time-varying correlation matrix within a signal slot is 

still the dominant factor in determining convergence behavior for LMS with a reliable 

training sequence.  Eq. (5.3.26) would imply that LMS convergence is again dominated, 

to a large extent, by the signal slots.  Hence, even with leakage present one expects to 

observe a factor of M slowdown in convergence for an M-ary PPM system when 

compared with a system with a constant signal. 

5.4 More on the effects of leakage on the eigenstructure 

Although leakage did not significantly impact the convergence time analysis, it still has 

important eigenstructure effects as explained in Section 5.3.  In particular, the leakage 

causes changes in the eigenvectors of the correlation matrix as a function of time.  Eq. 

(5.2.2) is repeated again below: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )
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r
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              (5.4.1) 

 

There are two important sets of eigenvectors that must now be considered.  First, 

let { },i sigv  be the set of eigenvectors of the signal slot correlation matrix given by: 
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( ) ( ) 2 22H
sig k E E d k σ⎡ ⎤⎡ ⎤= ⎢ ⎥ +⎢ ⎥⎣ ⎦⎣ ⎦

R aa I     (5.4.2) 

And let { },i leakv  be the set of eigenvectors of the leakage correlation matrix given 

by: 

( ) 22H
leak k σ= +R bb I      (5.4.3) 

Let the first eigenvector of each set be the one corresponding to the largest 

eigenvalue.  This yields: 

1,

1,

sig

leak

=

=

v a

v b
      (5.4.4) 

At this point, it helps to note that d(k) = 0 in noise slots and that: 

( ) ( ) ( )
( )
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noise slot

d k k
k

k
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a n
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This gives: 
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   (5.4.6) 

The reason p(k) = 0 in a noise slot stems from two facts.  First, d(k) = 0 whenever 

we are in a noise slot, so within a noise slot E[d(k)] = 0.  Second, it is assumed that the 

AWGN is zero mean and entirely uncorrelated with the desired signal whether in a signal 

slot or in a noise slot, which implies ( ) ( )E k d k∗⎡ ⎤ =⎣n

 
⎦ 0 .  The optimal weights for the 
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noise slots are zeros.  Since the locations of the signal slots and of the noise slots are not 

known a priori, it is not possible to set the weights to zero for each noise slot.  Here, it 

will be assumed that the optimal weights for the signal slot are available.  These weights 

are known to satisfy: 

( ) ( ) ( )sig opt sigk k =R w p k      (5.4.7) 

If 

α=w a       (5.4.8) 

then the previous eigenvector and eigenvalue analysis of the correlation matrix yields: 

( ) ( )

( )( 2222

sig sigk k

E d k
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α σ

=
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Yields: 
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             (5.4.11) 

 

which is the Wiener solution.  Since a constant scaling factor in the weights is 

unimportant, the best weight vector within the signal slot is really the largest eigenvector 
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a.  Setting w = a therefore yields the Wiener solution to within a scalar factor.  It must be 

emphasized at this point that the claim that the largest eigenvector a contains the optimal 

weights is dependent on Eq. (5.4.2) (or, equivalently, Eq. (5.3.8)) holding true. 

Assume now that the weights are kept fixed at w = a, the optimal weight vector 

for the signal slots.  This will have an effect on the gradient of the mean squared error in 

the noise slots.  In particular, substituting into Eq. (5.2.1) but with the correlation matrix 

R(k) for the noise and leakage used in place of the correlation matrix for the desired 

signal and with p(k) = 0 will yield the following gradient within the noise slots: 

( ) ( ) ( ) ( )
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             (5.4.12) 

 

Eq. (5.4.12) indicates that the gradient will be a linear combination of the vectors 

a and b.  This has the following implication: the updates of the LMS weights that are 

carried out within the leakage slots will, in general, not be parallel to the vector a.  

Hence, even in those cases where the system has converged very close to the optimum 

weights within the signal slot, there will be a tendency to drift away from the optimal 

weights during the updates in the noise slots.  Depending on the strength of the leakage as 

given by the magnitude of the inner product , this could result in significant 

performance degradation.  The effect has the potential to be very pronounced in 256 PPM 

since 255 out of 256 slots will have noise and leakage without the desired signal.  If LMS 

is continuously applied to a 256 PPM with 256 dead time slots in addition to 256 

potentially valid signal slots, the problem is compounded because the system spends 

Hb a

511
512  
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of its time performing a gradient update that takes it away from the SNR maximizing 

weights within the signal slot. 

Note that if b = 0 in Eq. (5.4.12) above, the no leakage case is obtained again and 

the weight update is parallel to the optimum weight vector a.  Hence, the absence of 

leakage would help to insure that this tendency to drift away from the optimal weights 

would be largely avoided, except for the natural wandering of the weights near the 

optimal set (Sayed, 2003).  Although BER results still indicate good LMS combining 

performance even with leakage presence, it will be seen that the leakage term negatively 

impacts a constant target version of the LMS algorithm considered next. 

5.5 LMS with a constant target 

A constant target variant of the LMS algorithm is described in Compton, (1988).  If the 

desired signal d(k) does not have a zero mean, then it possesses a correlation with a 

constant target.  It has been shown that it is possible to replace the true desired signal d(k) 

with a constant (Compton, 1988).  Two cases will be analyzed in this section: case I 

without leakage present and case II with leakage present. 

If no signal leakage is present, then the LMS update Eq. with a constant target can 

be written as: 
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  (5.5.1) 

From Eq. (5.5.1) it can be shown that the gradient can be set to zero by setting the 

weights equal to an appropriately scaled multiple of the eigenvector a.  In other words, 

for sufficiently small μ , Eq. (5.5.1) can converge in the mean to a scalar multiple of the 

optimal weight vector a.  This is an important result: if a reliable reference signal is not 

available then a constant reference signal may be used to obtain convergence of the 

weights.  The above analysis will work when no leakage is present.  If the weights are 

already a scalar multiple of a, then the above Eq. will tend to keep them there, although 

some noise will be present.  In the noise slots, ( ) 0E d k⎡ ⎤ =⎣ ⎦  and ( ) 22noise k σ=R a a , so 

there will not be a significant tendency at all to drift away from a scalar multiple of a 

provided that μ  is kept sufficiently small.  Only a certain amount of random weight 

noise will be present, as in “traditional” LMS. 

 

The leakage case, however, is significantly worse.  The update Eq. in the noise slots is 

given by: 
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   (5.5.2) 

Repeated iteration of Eq. (5.5.2) will cause the weights to drift away from the direction of 

a and toward the direction of b, which is not good.  This problem also exists in LMS with 

a standard training sequence.  At this point, it is useful to evaluate the gradient term with 

w = a.  Doing so yields: 

 

( ) ( )HC Cμ μ− = −b bb a b a bH     (5.5.3) 

It is useful to compare Eq. (5.5.3) to Eq. (5.4.12).  The term  is the same 

in both Eqs., but the term 

( )Hb a b

22σ a  in Eq. (5.4.12) is replaced by the term Cb in Eq. (5.5.3).  

In other words, the constant target LMS algorithm will exhibit a greater tendency to drift 

toward vector b than the traditional LMS algorithm will.  This is an important point.  The 

blind, constant target based updates will tend to reinforce the term ( )E k⎡⎣r ⎤⎦  in Eq. 

(5.5.2) blindly, and since ( )E k⎡ ⎤ =⎣ ⎦r

 

b  in the noise slots when leakage is present, this 

will result in notably degraded performance in the leakage case.  Hence, constant target 
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LMS works well in simulations in which leakage is not present but will often fail to work 

well in real-world cases where leakage is present. 

5.6 LMS convergence with real world data 

The difference between LMS with a known training sequence and decision feedback 

LMS is that the desired signal is computed based on receiver symbol decisions. For the 

experiment under study, the receiver had perfect knowledge of the first 10 PPM symbols 

that were used as a training sequence. This training sequence was used during the 

acquisition phase, and once this stage is completed it is assumed that PPM symbol 

decisions are reliable. The remaining PPM symbols of the target signal are obtained using 

decision feedback.  Symbol decisions from the demodulator are used to compute the 

target sequence in a symbol-by-symbol fashion via remodulation.  The new modulated 

sequence, assuming correct symbol decisions, is the desired signal d(k).  If this signal is 

used as the target sequence in the LMS algorithm, then provided that no symbol decision 

errors occur, there will be no difference between decision feedback LMS and LMS with a 

completely known training sequence.  When decision errors occur, however, the behavior 

of decision feedback LMS will not be identical to that of LMS with a perfect target 

sequence: errors in the target sequence will negatively impact convergence performance.  

Nevertheless, since communications is the primary objective, target sequences are 

unknown in general.  Hence, decision feedback is a practical necessity that is extensively 

used in real-world communication systems (Proakis, 2000). 
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If very large learning rate parameters are used in a decision feedback LMS 

system, a single decision error is sufficient to cause instability in the weights and in the 

outputs, particularly in the case of PPM.  If the learning rate parameter is kept sufficiently 

small, however, the weights will change relatively little even when a small number of 

errors are made in the decision feedback process.  Hence, one expects decision feedback 

based LMS systems to be less stable with high learning rate parameters than LMS 

systems with perfectly known target sequences. 

An example of the differences in stability between decision feedback LMS and 

LMS with a perfectly known target sequence is shown here.  The behavior of decision 

feedback LMS with learning rate parameters µ = 6.31 and µ = 7.94 is illustrated in 

Figures 52 and 53, respectively. 
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Figure 52.  LMS convergence with decision feedback and with µ = 6.31. 
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Figure 53.  LMS instability with µ = 7.94 and decision feedback. 

 

When a perfectly known training sequence is used throughout, LMS exhibits 

significantly different behavior.  This behavior is illustrated for µ = 10 in Figure 54.  

Note that LMS remains entirely stable due to the use of a reliable training sequence.  

Indeed, LMS with an ideal training sequence will remain stable even at much higher 

learning rate parameters as illustrate for µ = 100 in Figure 55.  However, LMS will 

eventually become unstable even with an ideal training sequence as illustrated for µ = 

10,000 in Figure 57. 
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The theoretical treatments of the LMS algorithm in the literature normally assume 

an ideal target sequence, and even with such a sequence there is an upper bound on 

allowable LMS parameters as explained in previous sections. 

 

 

 

Figure 54.  The behavior of LMS with µ = 10 but with a perfect training sequence. 
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Figure 55.  LMS Convergence with µ = 100 but with a perfect training sequence. 
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Figure 56.  Convergence with µ =1000 and with a perfect target sequence. 

 

  



 146

 

Figure 57.  LMS loss of stability at µ = 10,000.  Perfect training sequences are of limited value here. 

The convergence time of the LMS algorithm is a key issue in determining the 

learning rate parameter.  As shown in Figure 52, the LMS algorithm was able to acquire 

within 3 ms with 256 PPM modulation.  This represents the fastest realistic convergence 

time under this experimental setup for the case of decision feedback, as larger µ 

parameters lead to a loss of stability in the decision feedback case. 

 

Although amplitude convergence of the LMS algorithm is important, so too is 

phase convergence.  Since the desired signal d(k) is, in this case, a real-valued PPM 
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signal, the output ( ) ( ) ( )Hy k k= w r k  should ideally be real-valued and close to d(k) as 

well.  It is known that, 

 

( ) ( ) ( )
( )
( )

E k E d k k

E d k

E d k

⎡ ⎤ ⎡= + ⎤⎣ ⎦ ⎣
⎡ ⎤= +⎣ ⎦
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r a n

a

a

⎦
0     (5.6.1) 

The phases of the above expectation are simply the phases of the terms in the 

vector a.  It is argued, but not proven here, that the phases of the output process r(k) are 

therefore simply noise versions of the phases of the optimal weights.  Put another way, 

the phases of the optimal weights should be equal to the expected phases of the input 

channels to which they correspond.  The optimal Wiener solution has this property and, 

since the LMS algorithm converges to the Wiener solution, the weights computed by the 

LMS algorithm should also possess this property. 

There is experimental evidence that the weights generated by the LMS algorithm 

do track the phases well.  Following are four figures that constitute LMS phase 

performance snapshots with 100μ = .  In each of the following figures, the random (due 

to noise) channel phase is plotted using blue dots, and the phase of the weights computed 

by the LMS algorithm is plotted using a red line.  Each plot corresponds to a single 

channel. 
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Figure 58.  Tracking of the input phase of channel 1 by the first weight. 
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Figure 59.  Tracking of the input phase of channel 2. 
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Figure 60.  Tracking of the input phase of channel 3. 
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Figure 61.  Tracking of the input phase of channel 4. 

 

Since the four plots above correspond to four physical FPA channels, there is 

definite phase coherence among them even though their absolute phases differ.  In each 

of the four cases, the LMS algorithm’s weights tracking the phase, and the evidence for 

this comes from the red line denoting weight phase tracking the blue regions indicating 

channel input phase. 
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Chapter 6: Investigation of Performance of the 

Coherent Optical Receiver Experiment (CORE): 

Comparison of Experimental Results with Theory 
 

6.1 Overview and methodology 

The ability to achieve good bit error rate (BER) performance for weak signals received in 

the presence of atmospheric turbulence and the ability to coherently combine multiple 

channels with the LMS algorithm were both verified experimentally.  All of the results 

presented here are for uncoded bit error rates.  The available equipment did not enable 

gathering of coded BER data.  Furthermore, limitations on the quantity of data that could 

be gathered would have made it impractical to gather the sheer volumes of experimental 

data required to generate reliable coded BER curves, and these limitations are explained 

later.  In this section, both the experimental methodology and the manner in which results 

were generated are covered. 

Two forms of PPM modulation were used to obtain experimental BER data. 

1.  Fixed 32 PPM.  In this PPM version, a constant symbol of 0 (with possible 

symbols 0 through 31) was sent in each PPM frame.  Each slot consisted of 

eight samples, and there were 32 slots for a total of 256 samples per PPM 

frame.  Each data set contained 779 PPM symbols. 
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2.  Random 256 PPM.  In this case, a random set of integers from 0 through 255 

were modulated on the PPM frames.  Each frame consisted of 512 slots, with 

256 potential signal slots and 256 dead time slots.  Each slot contained five 

samples for a total of 2560 samples per PPM frame.  Each data set contained 76 

PPM frames. 

In both cases, the sampling time was constant at 40 ns.  Hence, 32 PPM was 

transmitted at  frames per second or 49.7656 10⋅ 54.8828 10⋅  bits per second.  In the case 

of 256 PPM, transmission occurred at 39.7656 10⋅  frames per second or 78125 bits per 

second. 

Two types of detectors were used in the experiments: 

1.  A single detection element in the focal plane.  This is called the “single 

detector.” 

2.  A focal plane array.  This is called the “FPA.” 

The single detector featured a higher quality amplifier circuit and notably lower 

thermal noise than the FPA detector did, resulting in much better BER performance as a 

function of Ks, which is the number of photons per PPM pulse, or “photons per bit,” 

which is Ks divided by five bits per symbol for 32 PPM or Ks divided by eight bits per 

symbol for 256 PPM. 

A number of difficulties were experienced with the gathering of experimental 

data: 

 

1.  Each data set requires a large amount of time, typically 10 minutes, to gather, 

due to equipment limitations of the GageScope software and the computer 
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hardware used in the data gathering process.  Since it takes 10 minutes to gather 

only 76 symbols (256 PPM), it is difficult to obtain good BER data at higher 

SNRs due to the scarcity of error events. 

2.  For a 256 PPM data set of 76 symbols, the lowest BER in a given set is only 

.  The only way to obtain lower BER points for a BER plot would be 

to gather many sets of data at the same (or very nearly the same) SNR and to 

average the achieved bit error rates.  It would take one error out of 13 data sets 

to obtain an experimental BER of approximately 

21.32 10−⋅

310− , and such a data point 

would be unreliable since only one error event would have occurred.  To 

obtain 20 error events at this BER, one would need to take approximately 263 

data sets, which is completely infeasible given the limitations of the 

equipment in the laboratory. 

 

3.  Computation of the SNR required direct analysis of the data.  The focal plane 

array used has a very small fill factor less than 20%, with the result that any 

changes in the focal plane field distribution would result in an unpredictable 

total energy striking the detector elements.  Since the low fill factor results in a 

large portion of the signal striking “dead regions” in the detector focal plane, the 

actual photons received would be significantly less than what one would expect 

from power meter measurements.  Signal-to-noise ratios were still obtained by 

analysis of the output data from the FPA or from the single detector, depending 

on which device was used.  The methods used to estimate the SNR from the 

output data were given in Chapter 3. 



 155

 

4.  Since only 76 PPM symbols were present in each 256 PPM data set, and since 

LMS convergence at moderate-to-high SNR is dominated by the signal slots 

(see Section 5.3), only a limited amount of time was available for LMS 

convergence.  Fortunately, the LMS algorithm converges rapidly, leading to 

good overall performance even with short data sets. 

Items 1 and 2 above impose a limit on the accuracy of the experimental BER 

curves at high SNR where bit error rates are low.  Item 3 necessitated the SNR estimation 

methods described in Chapter 3. 

6.1.1 Operation of the software receiver 

6.1.1.1 Overview 

The software receiver is designed to accept intermediate frequency (IF) samples.  It 

performs a mixing operation with a local oscillator to convert these samples to baseband, 

performs a frequency centering operation to bring the resulting signal as close to DC as 

possible, and performs coherent combining via LMS along with symbol demodulation.  A 

block diagram of this receiver is shown below: 
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Figure 62.  Block diagram of the software receiver. 

The operation of this receiver will be described in the next few sections. 

 

6.1.1.2 Correction for frequency offset using FFT centering 
 
Since the exact beatnote frequency that results from the difference in frequencies between 

the signal laser and the local oscillator is not precisely known, there often exists a small 

frequency offset from DC after the LO mixing stage.  In order to insure downconversion 

to baseband, the following operations are performed: 

1. An FFT of the strongest individual channel signal is taken. 

2. The peak of the magnitude of this FFT is located. 

3. The original FFT is circularly shifted in order to center the peak at DC. 

 

4. The circularly shifted FFT is then processed with an inverse FFT to yield a new, 

frequency-corrected signal. 
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5. All of the FPA channels (in the FPA case) are frequency shifted by an amount 

that is determined by the circular shift used for the strongest channel above.  

The FFT of each of the remaining channels is taken, circularly shifted, and 

inverse transformed back into the time domain. 

The above procedure provides a simple but effective way to avoid rapid phase 

ramping caused by imperfect downconversion.  However, it can be improved in future 

work.  The following improvement has not been implemented at the time of this writing: 

When the LMS algorithm has converged, use the FFT of the LMS output to determine the 

amount of the circular shift for each of the input channels. 

Continuously update the phase correction using a time-domain windowing 

technique.  The present system simply performs a single correction step over the entire 

data set.  This method does not yield the highly idealized phase tracking of a PLL.  If 

there is a slow phase drift near DC, this method will not, in general, track it out as a PLL 

would. 

6.1.1.3 Decision feedback system 

Although most mathematical analyses of LMS in the literature assume the presence of a 

known desired signal, it is necessary in general to use decision feedback.  Since the 

objective of a communications system is that of demodulating an unknown data stream, it 

is impossible to rely entirely on a known sequence.  Accordingly, decision feedback 

plays a well-known and important role in adaptive systems, with decision feedback 

equalizers being one of the most popular and important applications of decision feedback 

(Proakis, 2000), (Haykin, 1996). 
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6.1.1.4 Decision feedback operation 

The decision feedback system’s operation for 256 PPM is described in detail here, and 

the description for 32 PPM will be given later.  The modulation used has the following 

parameters: 

1.  PPM order: 256. 

2.  Slots per PPM frame including dead time: 512. 

3.  Samples per slot: 5. 

4.  Samples per PPM frame: 256. 

During the first ten symbols, the system operates in acquisition mode.  A known 

reference sequence, obtained by taking advantage of the demodulator reference output, is 

used to compute the sequence of target samples d(k).  Since there are 2560 samples per 

frame, and since there are ten frames (i.e., PPM symbols) used for acquisition, it is 

necessary to use the modulator reference over the first 25,600 samples to allow the 

weights to converge to a point where demodulator output decisions will be reliable.  

During this period, the switch shown in Figure 62 is set to the actual modulator reference 

sequence d(k). 

 

Once the first 10 symbols are finished, the switch shown in Figure 62 is set to 

, which is the output of the decision feedback modulator.  Here, symbol decisions 

from the demodulator are used to drive an internal PPM modulator in the receiver.  The 

output modulator sequence is 

� ( )d k

� ( )d k , an estimate of the true sequence d(k).  This sequence 
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is used as the LMS training sequence.  For each PPM frame, the decision feedback 

system performs the following steps: 

1.  Demodulate the output of the LMS combiner in the PPM demodulator.  This 

results in a symbol decision. 

2.  Send the resulting symbol decision to the decision feedback modulator.  This 

generates a noiseless PPM frame (noiseless in the sense of being free from 

Gaussian noise, although this frame would be in error if the wrong decision was 

made at the PPM demodulator). 

3.  Using the reference frame generated by the internal modulator, which is 2560 

samples long, run LMS training over the entire duration of the current PPM 

frame in order to update the weights. 

The above procedure is used for each PPM symbol after the first ten symbols.  

The process for 32 PPM is similar.  The only differences are: 

1.  A total of 25 symbols are used for acquisition.  This is possible because a data 

set contains a total of 779 symbols. 

2.  Since there are 32 slots with eight samples each, there are 256 samples per 

frame. 

6.1.2 Synchronization issues in the optically coherent PPM system 

PPM is a modulation that requires accurate knowledge of both slot and frame boundaries.  

Since these are temporal boundaries, any errors in timing will result in demodulation 

errors.  Such errors are unacceptable since the experimental setup is used to obtain bit 

error rate (BER) data to compare experimental outcomes with theoretical predictions.  
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The subject of PPM symbol timing recovery is beyond the scope of this thesis, and this 

problem has been covered in the open literature in Sun and Davidson, (1990) and 

Vilnrotter, Rodemich and Tan, (1986) among other sources.  However, recovery of 

symbol and slot timing information in the receiver remains an important problem: reliable 

PPM demodulation is necessary for the computation of bit error rates in the laboratory.  

The experimental setup in the laboratory did suffer from a timing offset between 

the transmitter and the receiver along with a slowly varying timing drift.  Since the 

reference output of the PPM modulator was readily available, timing control in the 

receiver was a matter of examining the modulator reference output and using it to 

perform both slot and symbol synchronization.  In this thesis, the terms “PPM symbol,” 

“PPM frame,” “symbol,” and “frame” are all used interchangeably.  This timing error is 

illustrated in Figure 63. 
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Figure 63.  Example of time misalignment prior to correction.  There 
are five FPA channel signals that suffer a delay of approximately 10 
samples relative to the modulator reference pulse. 
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Figure 64.  Time misalignment between modulator reference 
pulses and receiver prior to correction.  The misalignment only 
changes slowly over time. 

 

The approach taken in the software receiver does not attempt to implement the 

slot and symbol synchronization approaches present in the literature.  Instead, the rising 

edge of the modulator reference signal is used for synchronization purposes.  Since the 

modulator reference output has an amplitude of 0.10 V, the software receiver can reliably 

detect the rising edge of the modulator pulse, and rising edge detection is the key to the 

software receiver’s synchronization subsystem. 
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First, after taking a large number of data sets, it was found that the typical delay 

between the modulator pulse and the signal pulse observed at the receiver is 10 or 11 

samples, with slight drifts of one or two samples over time.  The steps taken to recover 

timing information at the receiver are described here. 

First, the mean symbol timing error, in samples, was computed from the data.  The peaks 

of the received signal pulses without any attenuation are located, and their locations are 

compared to the locations of the centers of the rectangular modulator pulses.  The 

average distance of 10 samples was calculated from this. 

Although the average distance from the modulator reference pulse centers to the 

receiver pulse centers is 10 samples, this distance changes during the course of data 

acquisition.  The clocks in the modulator and in the receiver are not synchronized in the 

laboratory, and they would not be synchronized in a realistic deep space communications 

link either.  To compensate for this timing drift, it is necessary to monitor the locations of 

the rising edges of the modulator reference pulses.  Whenever a modulator reference 

pulse arrives, the following steps are taken: 

1.  The rising edge of the pulse is always assumed to denote the start of a new 

slot. 

2.  The location of the rising edge, which is really the index of the first sample of 

the modulator reference stream exceeding a fixed threshold, is compared to 

the slot boundaries for the current frame. 

3.  The difference between the location of the rising edge and the closest slot 

boundary is determined. 
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4.  The PPM data frame window is shifted so that the slot boundary closest to the 

rising edge coincides exactly with the rising edge. 

This strategy is meant only for the laboratory and is not a viable solution in an 

actual deep space communications system.  Most of the misalignment of the pulses is 

caused by a fixed 10 sample delay between the modulator reference pulses and the 

receiver pulses, and the rising edge based method for maintaining slot alignment plays a 

less important role, usually correct one or at the most two samples of drift.  However, in 

the case of 256 PPM with only five samples per slot, a two sample drift in timing 

corresponds to 40% of the slot width.  Hence, the rising edge detection capability to 

correct for timing drift is necessary.  Timing correction cases are illustrated in Figures 59 

and 60. 
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Figure 65.  Time-corrected pulse alignment, corresponding to the 
case shown in Figure 63. 
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Figure 66.  Time corrected pulse alignment, corresponding to the 
case shown in Figure 64. 

 

6.2 Evaluation of experimental system performance and 

comparison with theory 

6.2.1 BER performance bounds 

 

The lower bound on achievable BER is given by the theoretical BER curve for the no 

leakage case derived in Chapter 3.  The upper bound was also computed, using measured 
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leakage statistics, in the same chapter.  In each of the single detector BER plots, four 

items are shown 

1.  The experimental data points. 

2.  The BER trend line fitted to these data points. 

3.  The BER upper bound curve based on measured leakage data. 

4.  The BER lower bound curve based on the no leakage case. 

The BER trend line was fitted to experimental data.  As such, it will tend to be 

less reliable outside of the regions where many points were gathered.  For this reason, the 

BER trend line may, in certain instances, fail to agree with the upper and lower bounds at 

extremely low SNR or at extremely low values of  where two effects occur.  First, 

since SNR is very low the reliability of the SNR estimate is also low, making reliable 

curve fitting difficult in the low SNR region.  Second, only a few points were gathered at 

very low combined SNR, and the scarcity of points in this region will also affect the 

reliability of trend lines in this area.  Near 0 dB SNR, a trend line may therefore fail to 

exhibit expected behavior and may even cross above or below the upper or lower bound 

lines, respectively. These effects are limited, but they still appear in some of the 

experimental data plots. 

SK

 

In each of the FPA plots, the same quantities are plotted for the individual 

channels.  Additionally, the combined channel actual performance is plotted along with 

the theoretical performance of a single detector system without leakage.  In all of the FPA 

plots, the x-axis represents combined SNR, combined Ks, or combined photons per bit.  

Hence, the single channel BER data are themselves plotted against the combined 
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channel’s maximum achievable SNR, although the lower bound curves for the single 

channels are computed using the theoretical expressions for the case without leakage. 

The goal of the FPA is to coherently combine the signals from the individual 

channels in order to achieve the same, or at least nearly the same, performance as an ideal 

single detector system without any atmospheric turbulence (i.e., with all of the photons 

reaching the single detector).  In the ideal, shot noise limited case, the SNR is given by 

(10 10
0

SNR 10log 10log 2S
S

E K
N

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
)     (6.2.1) 

where Ks is the number of photons per PPM pulse.  In a multiple channel system, let ,s iK  

denote the number of photons per pulse in the ith FPA channel.  The total number of 

photons per pulse is 

,
1

N

S
i

K K
=

= s i∑      (6.2.2) 

for an N-channel FPA system.  Whether or not the system is shot noise limited, the total 

array SNR, expressed as a ratio and not in decibels, is 

1

N

total i
i

SNR SNR
=

= ∑      (6.2.3) 

where  is the SNR of the iiSNR th channel.  This formula agrees entirely with (6.2.2) as 

well. 

 

If the FPA receiver achieves the same BER performance as a function of total 

SNR as would have been achieved by a single detector with the same total SNR, then the 

FPA receiver is successfully combining the signal energies to achieve the same 
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performance as a single detector receiving the same SNR all in one channel.  In this case, 

the FPA receiver has effectively combined the signal over its multiple elements to 

regenerate the signal that would have been received directly with a single detector with 

the same noise characteristics if no phase distortion had been present to spread the energy 

over the area of the FPA.  In that case, the FPA receiver has effectively compensated for 

the spreading of the signal in the detector plane by recombining the scattered signal 

energy. 

To determine the extent to which the FPA successfully recombines scattered 

signal energy, the BER of the combined channel is plotted as a function of the total SNR.  

A theoretical curve that illustrates BER performance as a function of total SNR for an 

ideal single-channel detector that captures all of the received signal energy without any 

spreading of the signal due to atmospheric phase is also drawn.  The closer the FPA’s 

performance lies to the theoretical curve, the closer the FPA is to combating the effects of 

atmospheric turbulence and achieving the same performance as that of an optical channel 

in which no atmospheric phase distortion is present. 

6.2.2 Results with the single detector 

Experiments involving a single detector were performed using both 32 PPM and 256 

PPM modulation.  The purpose of these experiments was to illustrate nearly shot-noise-

limited performance (shot noise 5 dB above thermal noise).  It was verified at the 

laboratory that the photocurrent noise was due to shot noise. The procedure that was 

followed was to measure the relationship between electronic noise power and optical 

power. The relationship was linear. This stems from the fact that the only fluctuations in 
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the photocurrent due to a coherent state will be shot noise fluctuations.  Although the shot 

noise due to the local oscillator was greater than the thermal noise component, thermal 

noise was still present.  Hence, the results presented here are not truly shot-noise limited.  

The relationship between the SNR ratio 
0

SE
N

, expressed as a ratio and not in decibels, and 

the number of photons per pulse, was 

0

1.52S
S

E K
N

=       (6.2.4) 

 

The first set of BER curves covers the case of random 256 PPM.  Figure 67 

illustrates BER performance as a function of , which is the number of photons per 

pulse.  The experimental points lie close to the theoretical BER performance line, and the 

trend line fitted to the experimental points is seen to lie very close to the theoretical 

bound.  The upper bound in this case, computed based on leakage statistics, is seen to be 

pessimistic.  In Figure 68, BER is plotted against photons per bit.  Each 256 PPM symbol 

carries 8 bits of information, and the number of photons per bit is 

SK

8
SK .  This figure shows 

a bit error rate only slightly above 23 10−⋅  at 1 photon per bit, illustrating the system’s 

performance in the presence of weak signals.  A plot of BER vs. 
0

SE
N

 is shown in Figure 

69. 
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Figure 67.  BER vs. photons per pulse with the single detector and 256 PPM. 
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Figure 68.  BER vs. photons per bit with the single detector and 256 PPM. 
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Figure 69.  BER vs. Es/N0 in dB for the single detector and 256 PPM. 

 

Since all of the noise in the system is assumed to be Gaussian (Gagliardi, 1995), 

one can convert directly between the signal-to-noise ratio, which is 
0

SE
N

, and the number 

of photons per pulse  provided that one knows the components of the noise spectral 

density  due to local oscillator shot noise, receiver thermal noise, and background 

noise.  If local oscillator shot noise strongly exceeds the other noise components, then the 

SK

0N
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noise spectral density will be shot noise dominated, and the system is said to be shot 

noise limited.  In the shot noise limited case 

0

2S
S

E K
N

=       (6.2.5) 

 

for optical heterodyning (Gagliardi, 1995).  Given that 
0

SE
N

 is available, one could plot 

hypothetical BER curves that would have been obtained with a shot noise limited 

receiver.  One would have to solve Eq. (6.2.5) for .  Using this procedure, the 

following hypothetical BER curves for a shot-noise limited receiver were obtained. 

SK
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Figure 70.  BER vs. Ks assuming a hypothetical shot-noise limited single detector with 256 PPM. 
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Figure 71.  BER vs. photons per bit assuming a hypothetical shot-noise limited single detector with 
256 PPM. 

 

Note that BER performance at 1 photon per bit is slightly better than 210− .  A 

similar set of curves were also generated with fixed 32 PPM. 
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Figure 72.  BER vs. Ks with the single detector and 32 PPM. 

 

 

Figure 73.  BER vs. photons per bit with the single detector and 32 PPM. 
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Figure 74.  BER vs. Es/N0 in dB for 32 PPM with the single detector. 

As with the 256 PPM case, the actual relationship between Ks and SNR is given 

by Eq. (6.2.4).  Again, the performance that could have been achieved with a shot noise 

limited detection system is plotted by solving for in Eq. (6.2.5).  The results are 

shown below. 

SK
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Figure 75.  BER vs. Ks assuming a shot-noise-limited single detector and 32 PPM. 
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Figure 76. BER vs. photons per bit assuming a shot-noise-limited detector with 32 PPM. 

The experimental results using a single detector illustrate the ability to receive 

telemetry even with signals as weak as 1 photon per bit or weaker.  Furthermore, actual 

single detector performance, while not shot noise limited, still illustrates very good weak 

signal reception capability. 

6.2.3 Results with the focal plane array 

 

The objective here is to demonstrate the ability to coherently combine multiple channels 

in a focal plane array in order to recover the desired signal.  The goal is to come as close 

as possible to the theoretical BER curve for BER vs. Ks or BER vs. photons per bit.  The 

FPA, by allowing signals from different parts of the detector plane to be summed 
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coherently, is able to come close to the level of performance that would be achieved with 

a single detector without any phase distortion in the aperture plane. 

The FPA amplifiers introduced a great deal of thermal noise into the system.  

Performance was not at all shot noise limited, and the Eq. relating SNR to  is SK

0

0.14S
S

E K
N

=     (6.2.6) 

 

 

Figure 77.  BER vs. Es/N0 with the FPA for 256 PPM. 
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From Figure 77, it is seen that the combined channel is within 1.0 to 1.5 dB of the 

theoretical curve, indicating that the FPA achieves good combining performance.  It 

should also be noted that the FPA’s combined BER curve is almost 3 dB better than the 

best single FPA channel.  This implies that a single detection element under the best of 

conditions would suffer from a 2.5 to 3.0 dB loss in performance relative to the FPA.  In 

Figure 77, a comparison between the combined channel using the LMS algorithm and the 

combined channel using only a sum of individual channel powers was made.  The sum of 

powers channel is a reasonable and intuitive performance baseline.  It is observed that the 

BER trend line for the sum of powers channel nearly coincides with the lower bound on 

BER for channel 3.  The sum of powers channel is observed to yield significantly worse 

performance than the coherently combined channel.  For this reason, the sum of powers 

combined channel will no longer be considered. 

The FPA’s gain is reasonable.  Four channels are being coherently combined.  

Channels 1 and 2 are very weak and contribute only a small amount to the total SNR.  

The two stronger individual channels are about 1 dB apart, and combining them 

coherently would lead to a gain of slightly more than 2.5 dB in theory.  Since SNR 

estimates obtained with the methods of Chapter 3 are themselves random variables, a 

certain amount of estimation error is to be expected. 

 

Given the SNR expressed as the ratio 
0

SE
N

, one could determine both Ks and the 

number of photons per bit if the FPA had been capable of shot noise limited operation.  
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The hypothetical plots of BER vs. Ks and BER vs. photons per bit are shown in Figures 

78 and 79. 

 

 

Figure 78.  BER vs Ks for a shot noise-limited FPA system with 256 PPM. 
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Figure 79.  BER vs. photons per bit for a shot-noise-limited FPA system with 256 PPM. 
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Similarly, one could compute hypothetical FPA performance if the detector 

elements had the same characteristics as the single detector, and this is done in Figures 80 

and 81. 

 

 

 

Figure 80.  BER vs. Ks assuming an FPA with the same characteristics as the single 
detector (256 PPM). 
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Figure 81.  BER vs. photons per bit assuming an FPA with the same characteristics as the 
single detector (256 PPM). 

 

The preceding figures clearly illustrate the FPA’s potential with improved 

detectors and/or a stronger local oscillator to achieve shot-noise-limited or near-shot-

noise-limited BER performance.  However, since the actual system suffered from high 
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levels of thermal noise, it was necessary to determine the actual achieved performance, 

which is shown in Figures 82 and 83. 

 

 

Figure 82.  BER vs. Ks for 256 PPM with the FPA. 
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Figure 83.  BER vs. photons per bit for 256 PPM with the FPA.  
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BER performance vs. Ks was far less impressive than what was achieved with the 

single detector.  Nevertheless, as shown in Figure 76, BER performance as a function of 

SNR comes within roughly 1.0 to 1.5 dB of theory.  This is a strong indication that LMS 

combining performance is good.  If the same LMS algorithm and the same signal to noise 

ratios had existing in a hypothetical FPA system with better detectors characterized by 

Eq. (6.2.4) (the equation for the single detector) instead of Eq. (6.2.6), BER performance 

vs. Ks would have been far more impressive. 

Figures 78 and 79 illustrate the potential of an FPA with shot noise limited 

detectors and amplifiers.  LMS combining, in Figure 79, achieves a level of performance 

within 0.5 photons per bit of the theoretical limit for an envelope detection receiver.  

Furthermore, it is clearly seen that the FPA’s performance easily exceeds that of any 

single channel, including the strongest, channel 3.  The ability to coherently combine 

signals in the focal plane allows the system to achieve BER performance close to that 

achievable without atmospheric turbulence using a single detector and is a significant 

improvement over single detector performance in the presence of turbulence.  In 

particular, most of the signal photon energy is successfully recovered as evidenced by the 

closeness of the BER curve to the theoretical curve.  Performance is close to what would 

have been achieved if no turbulence were present and if all of the signal photons had 

landed on a single detector instead of on the multiple detection elements of the FPA. 

Similar comments hold for the case of 32 PPM illustrated in the next six figures. 
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Figure 84.  BER vs. Ks for a hypothetical shot-noise-limited FPA (32 PPM). 

 

 
Figure 85.  BER vs. photons per bit for a hypothetical shot-noise-limited FPA (32 PPM). 
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Figure 86.  BER vs. Ks for a hypothetical FPA with the same noise characteristics as the single 
detector (32 PPM). 
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Figure 87.  BER vs photons per bit for a hypothetical FPA with the same 
noise characteristics as the single detector (32 PPM). 
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Figure 88.  BER vs Ks actually achieved with the FPA (32 PPM). 

 

 

Figure 89.  BER vs photons per bit actually achieved with the FPA (32 PPM). 
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Figure 90.  BER vs. Es/N0 for 256 PPM: Illustration of single channel performance vs. 
combined channel. Single channel BER is plotted vs. single channel SNR and not against 
combined channel SNR as in previous figures. 

 

Figure 90 shows BER as a function of SNR for 256 PPM.  Performance of a 

single channel (channel 3) is compared to that of the combined channel.  It is important to 

notice that single channel BER is plotted vs. individual channel SNR and not against 

combined channel SNR as in previous figures. One observes a 0.2 dB loss due to the 
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leakage term in channel 3 illustrated by the horizontal difference between the theoretical 

(blue-dotted curve) and the experimental channel 3 curve (cyan).  The combining loss for 

this case is 0.8 dB when comparing the experimental channel 3 curve with the 

experimental combined channel curve (continuous blue curve). 

In summary, high quality low noise receiver electronics and/or a sufficiently 

powerful local oscillator laser operating at or near the shot noise limit, used in 

conjunction with a focal plane array, will enable bit error rate performance close to that 

achievable in the absence of atmospheric turbulence.  Again, combined channel 

performance is within less than 0.5 photons per bit of the theoretical performance curve, 

indicating that much of the signal energy scattered across the five FPA elements used in 

combining can be recovered.  These results, like those for 256 PPM, indicate that 

coherently combining the outputs of the FPA channels permits very good reconstruction 

of the signal that would have existed if no turbulence had been present and if all photons 

had been hitting this detector. 

 

 

6.3 Conclusions 

The FPA experimental results indicate the ability of the focal plane array in conjunction 

with the LMS algorithm to coherently and constructively add signals together in order to 

achieve performance very close to that of a single detector without any atmospheric 

turbulence.  The BER curves for the combined output of the FPA channels are close to 
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the theoretical curves for a single channel system at the same SNR as the FPA combined 

channel.  The spreading of signal energy in the detector focal plane caused by 

atmospheric turbulence can therefore be corrected by means of coherent combining of the 

focal plane array channels using the LMS algorithm with decision feedback.  Thus, the 

FPA-based receiver in the laboratory achieves the goal of compensating for the phase 

distortions introduced at the aperture plane of the system and continues to achieve robust 

performance in the face of such distortions.  The large improvement in BER performance 

of the complete FPA over even the best single channel in the detector plane illustrates the 

fact that it is necessary to use spatial combining to recover from signal spreading in the 

focal plane induced by phase errors in the aperture plane caused by atmospheric 

turbulence. 

The strong performance of the single detector system provides real world 

laboratory verification of the ability to detect weak, low SNR signals in a reliable fashion 

as well.  Given the ability to receive such weak signals when high quality electronics are 

used, it is believed that the use of high quality low thermal noise amplifiers and circuits 

in an FPA system would yield very good results in the presence of turbulence.  The plots 

of hypothetical FPA performance assuming noise characteristics similar to those of the 

single detector clearly illustrates the potential that the FPA has, although the actual FPA 

suffered from significant thermal noise degradation. 
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Chapter 7: Conclusions and Future Directions 
 

7.1 Summary of key results 

The overall goal of this thesis is the development of a new set of optically coherent 

receiver technologies for deep space laser communications.  Specifically, there are two 

key challenges to deep space communications that were addressed: 

1. The weak signal challenge.  Although optical communications offer 

significantly narrower beamwidths and reduced free space losses compared to 

RF communications, free space losses will still necessitate good weak signal 

reception capability. 

2.  The atmospheric turbulence challenge.  Atmospheric turbulence distorts the 

incoming plane wave from the spacecraft laser transmitter.  These phase front 

distortions result in significant scattering of the received signal in the focal 

plane of the detector.  The challenge is to gather the spatial components of this 

signal and re-assemble them to recover the original signal. 

The Coherent Optical Receiver Experiment rises to these challenges.  

Specifically, the new technologies developed here 

1.  Provide the ability to receive telemetry successfully at signal levels as low as 

one bit per photon, demonstrated experimentally with a single detector and 

shown to be feasible theoretically for a focal plane array. 
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2.  Provide coherent combining capabilities to enable recovery of a signal 

scattered over the focal plane field by atmospheric turbulence.  In the 

laboratory, signals have been recovered to within almost 1 dB of the original 

signal using a focal plane array with LMS combining. 

Strong evidence for the ability to achieve good weak signal performance with an 

FPA in the presence of atmospheric turbulence has been given, illustrating the FPA’s true 

potential using higher quality detector electronics and, possibly, a stronger local oscillator 

to achieve shot noise limited performance.  Theoretical calculations describing the 

performance of an optically coherent focal plane array receiver have been performed, and 

experimental results provide good verification of these calculations, and the LMS 

algorithm in its application to the problem of optically coherent deep space 

communications has been analyzed for convergence and performance properties. 

In summary, the system designed presented herein has been shown, through both 

analysis and experiments, to have the potential to achieve good BER performance in the 

presence of weak signals and in the presence of distorted focal plane signal fields that 

result from phase errors due to atmospheric turbulence.  The technology developed here 

can enable fundamental gains in the performance of deep space communication links by 

overcoming both weak signal limitations and signal degradation due to atmospheric 

phase errors. 
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7.2 Future directions 

The results presented here are highly promising, and there are many very productive 

directions for future research. 

Coherent combining algorithms for focal plane arrays are an area of further 

research.  In a realistic space communications system utilizing PPM, the relative 

positions of the spacecraft and the ground receiver may change by many optical 

wavelengths between PPM pulses.  Since no signal exists during the inter-pulse intervals, 

tracking of the spacecraft signal phase poses a challenge under some operating 

conditions, depending on the degree of pulse-to-pulse phase coherence present. 

The use of coding would unleash the true potential of the focal plane array 

receiver.  Uncoded bit error rates below 110−  are achievable using a shot-noise-limited 

receiver running at slightly less than one photon per bit.  Corresponding coded bit error 

rates would be significantly lower, enabling very robust digital communications at low 

signal levels.  The ability to communicate reliably at such weak signal levels would 

greatly extend the utility and usefulness of optical communications for deep space, 

especially in light of the severe demands generated by deep space link budgets. 

 

Finally, more future work would include theoretical derivation of a quantum-

optimum receiver for turbulence-degraded optical fields.  The objective would be to find 

the structure and performance of the receiver that yields the best performance in the 

reception of signals that are described quantum mechanically.  The principles of 

statistical detection and estimation theory would be used with the laws of quantum 
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mechanics taken into account in order to show the configuration of the best quantum 

receiver for the specific case treated in this thesis (Hoversten 1967, Hoversten, Harger 

and Halme, 1970, Kennedy and Hoversten, 1968, Helstrom, 1967, Helstrom, Liu and 

Gorden, 1970). 
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Appendix: A Mathematical Characteristic of 

Leakage 
In Chapter 5, it was argued that the spatial distribution of the parasitic leakage signal in 

the noise slots differed from the spatial distribution of the desired signal in the signal 

slots.  The arguments of Chapter 5 relied extensively on two vectors.  The vector a, 

which was the nominal signal vector in the signal slots, is not parallel to the vector b, 

which is the corresponding leakage vector in the noise slots.  In this appendix, physical 

evidence for this assertion is presented. 

 

Figure A1.  Magnitude and phase of the first channel plotted as a function of time. 
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Figure A2.  Magnitude and phase of the second channel plotted as a function of time.  
The phase behavior of this channel differs greatly from that of the first. 

 
 

The above two figures illustrate phase and magnitude as a function of time for 

two FPA channels.  Magnitudes are shown in blue, with sharp peaks denoting the 

presence of PPM signal pulses.  Phases, in radians, are shown in red.  Although only two 

channels are shown, these two figures already illustrate a property of the leakage. 

First, in Figure A.1, there are sharp changes in phase that are clearly synchronized 

with the PPM pulses.  This indicates that in channel 1, the phase of the channel changes 

depending on whether we are in a signal slot or in a noise slot.  If the vectors a and b 

truly are parallel, then one would have to be a constant multiple of the other.  This means 
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that the phase “spikes” in all channels would need to be of the same magnitude.  For 

example, if a phase spike of 2 radians occurs in the first channel during a PPM pulse, the 

same phase spike of 2 radians would have to occur in all other channels if a and b truly 

are parallel.  Yet it is observed that the behavior of the phase in Figure A.2 differs greatly 

from the behavior in Figure A.1.  In particular, the first four phase spikes in Figure A.1. 

that occur synchronously with the first four PPM signal pulses are absent in Figure A.2.  

There is a phase spike between the fourth and fifth PPM signal pulses in Figure A.2, 

however, that is not present in Figure A.1.  Given the very different phase behaviors of 

these two channels, one cannot conclude that the first and second elements of vectors a 

and b are at all parallel.  Hence, the physical evidence forces one to assume that a and b 

are not parallel in general, and such disparate phase behavior has been observed many 

times in the laboratory. 
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