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Chapter 5.  Estimating Stress Heterogeneity and Background Stress in the Real 
Earth 

Ultimately, we wish to estimate stress heterogeneity parameters in the real Earth 

by comparing our simulations to real focal mechanism data.  Very little is known about 

the parameters of stress heterogeneity in the Earth, so this is an exciting topic of 

investigation.  At the same time we have to keep in mind that there are limitations to our 

ability to test this, because of all the simplifying assumptions incorporated into our 3D 

numerical models.  For example, when generating the three principal stresses (!
1
, !

2
 

and !
3
), we start with Gaussian random noise in 3D and then smooth it with a fractal 

filter.  In the real Earth, a Weibull distribution may be more appropriate.  While spatial 

smoothing using a fractal filter may simply describe the statistics of our simulations, 

there is no guarantee that the real Earth’s spatial stress heterogeneity varies exactly in a 

fractal manner.  Then when we generate the actual failures, they are point failures, not 

finite dislocations, and we do not update the stress field.  We also use a plastic yield 

criterion to determine failures, which means we do not allow the possibility of slip on 

pre-existing faults.  The lack of pre-existing faults means that the spatial clustering of our 

focal mechanisms tends to occur in 3D clouds rather than lineations or planes; whereas, 

in the real Earth, seismicity often occurs on lineations or planes due to preexisting faults 

and fracture zones.  Therefore, any conclusions derived from comparing our simulations 

to real data are meant to yield an initial estimate to be tested and refined by better future 

techniques.   

 The two stress heterogeneity parameters we wish to estimate are ! , the degree of 

spatial smoothing, and HR , which describes the relative magnitudes of the spatial 

heterogeneity and the spatial mean.  We will also have to estimate how much model noise 
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(as opposed to stress heterogeneity) to add to our simulated focal mechanisms to 

accurately compare them with real focal mechanisms; i.e., there is a mechanism 

uncertainty/error in the generation of real focal mechanism data that has to be taken into 

account if we wish to compare our simulations to real data.  We will also show that the 

failure threshold, 
2

3
!
0

2 , can be an important factor as well.   

 To estimate ! , HR , and the model noise, we compare our simulations to a plot 

by Hardebeck [in review, 2006], that plots the average angular difference between pairs 

of focal mechanisms as a function of distance between the pairs for three different 

regions (Figures 5.1–5.2).  Figure 5.1 is a modified map from Hardebeck [in review, 

2006] that shows the regions in which she computed the average angular difference 

between pairs of focal mechanisms and the two regions we numerically model.  Figure 

5.2, another modified plot from Hardebeck [in review, 2006], shows the average angular 

difference as a function of distance for two of the regions she studied.  According to 

Hardebeck, for length scales < ~ 2 km the average focal mechanism variation could be 

explained purely by uncertainty in the focal mechanism orientations.  However, as the 

length scale increases, the average focal mechanism variation also increases, which we 

will show is consistent with smoothed heterogeneous stress similar to our simulations.  

We will show that: 

• The minimum average angular difference between focal mechanisms in Figure 

5.2 can be used to estimate how much noise should be added to our simulated 

data.  One assumes the stress is uniform at those small distances, and the 

minimum average angular difference is due purely to model noise. 
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Figure 5.1.  A modified map of the three regions Hardebeck [in review, 2006] studied 

and P-T plots of the mechanisms used to calculate average focal mechanism difference as 

a function of length as seen in Figure 5.2.  In this chapter we model two of the three 

regions, Southern California and East Bay.  The P axes in the stereonet plot are the 

darker-shaded points.  They are slightly rotated from a North-South trend.  The T axes 

are the ligher-shaded points, slightly rotated from an East-West trend. 
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Figure 5.2.  Average focal mechanism difference between pairs of focal mechanisms as a 

function of distance between the pairs, for two regions, Southern California and East 

Bay, San Francisco, modified from Hardebeck [in review, 2006].  At first glance, we can 

begin pulling out numbers that will help us parameterize the heterogeneity.  If one 

assumes that the stress is approximately spatially uniform where the curve levels out for 

small scales on the left, then any non-zero average focal mechanism difference must be 

due purely to noise.  When we numerically simulate the model noise, we will find how to 

reproduce a ~ 26° average focal mechanism difference or ~ 30° average focal 

mechanism difference for uniform focal mechanisms with noise added.  The increasing 

average focal mechanism difference as a function of length is compatible with a spatially 

smoothed heterogeneous crust as we will show later.  The maximum average focal 

mechanism difference should occur at the point where the points are far enough away 

that there is no longer significant spatial correlation due to smoothing.  This curve 

flattens out to what one would expect for completely random, uncorrelated heterogeneous 

noise to produce; hence, the amplitude of this maximum will depend on the amplitude of 

the heterogeneity, HR , and of course the noise level.  For Southern California, it flattens 

out to ~62° and for East Bay, San Francisco to ~57°.  We will use these values to help us 

set the HR  parameter.  Last, the slope of the lines will help us set the spatial smoothing 

parameter, ! .  If ! = 0.0 , Southern California would be a straight line at ~ 62°, and 

East Bay would be a straight line at ~ 57°.  Instead, it appears that there is spatial 

smoothing to the heterogeneity.  In general, the steeper the slope the more smoothed the 

heterogeneity; therefore, we would expect a larger value of !  for East Bay, San 

Francisco than for Southern California. 
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• Once we have an estimate of the model noise, the maximum average angular 

difference between focal mechanisms in Figure 5.2 can be used to estimate the 

heterogeneity ratio, HR .  In Figure 5.2, the average angular difference increases 

as a function of distance then levels out at some maximum.  When we produce 

similar plots from our numerical simulations using the three-component method 

from Chapter 4, we find that ratio of heterogeneity to !"
B

, HR , determines this 

maximum.  If  HR!" , the average angular difference saturates at 

approximately 75°, whereas if HR ! 0 , the maximum is simply at the noise level 

because all the focal mechanisms have approximately the same orientations, and 

the only source of variation is noise. 

• Last, the slope of the plots in Figure 5.1 will enable us to estimate the degree of 

spatial smoothness in the heterogeneity, the parameter, ! .  For example, if 

! = 0.0 , there is no spatial correlation between focal mechanisms, and each pair 

of focal mechanisms is equally uncorrelated regardless of spatial separation; 

hence, one would expect a flat line at the maximum angular difference associated 

with HR .  As ! increases, the slope will also increase because the stress tensors 

for closely spaced points are becoming increasing similar.   

 

Estimating the Model Noise in Real Data Due to Focal Mechanism Orientation 

Uncertainty 

In Figure 5.2, modified from Hardebeck [2006], the average angular difference 

reaches a minimum at ≈ 26° for the Southern California region and ≈ 30° for the East Bay 

region.  We will assume that these minimum angular differences are purely an effect of 
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model noise, and that the stress itself is approximately uniform at those distances.  We 

can simulate this by creating a set of focal mechanisms with the same orientations, 

adding Gaussian noise with different mean deviations, calculating the average angular 

difference between pairs of focal mechanisms, and eventually finding a level of Gaussian 

noise that duplicates the 26° and 30° minima.  We add the model noise using the 

quaternion mathematics shown in Chapter 3, where we: 

• Generate completely random unit quaternions. 

• Convert them into our three rotation parameters, ! , ",#[ ]( ) . 

• Keep the random rotation axes, !,"[ ] , and combine them with a new !" . 

• The new !"  is generated using Gaussian white noise with a mean of zero and 

some specified mean deviation.  The mean deviation is the parameter we need to 

vary to match it with the average angular difference of ≈ 26°. 

• Convert !" , #,$[ ]( )  into unit quaternions and use quaternion multiplication to add 

these random rotations to the set of uniform focal mechanisms. 

• Use these unit quaternions to transform the original focal mechanism and derive 

the new strike, dip, and rake, !," ,#( )  or P and T axes. 

Figure 5.3 shows what P-T axes would look like for different levels of model 

noise starting with completely homogeneous stress (all the focal mechanisms have the 

same orientation before adding the noise).  We show a total of 2,000 focal mechanisms 

on each plot.  On the left, we use the Southern San Andreas Fault background stress 

tensor, !"
B
1

, that is applied to the simulations in Chapter 4, and on the right, we use the 

San Gabriel Mountains background stress tensor, !"
B
2

, also from our simulations in 
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Chapter 4.  We add noise onto these background stresses for !  mean deviations of 10°, 

20° and 30°, where the mean noise deviation is defined as, 

 MeanDeviation =
1

N
!

i

i=1

N

" .  (5.1) 

When we try to estimate the model noise parameter for real data, we find that an 

!  mean deviation of ~ 17° yields an ~ 26° minimum angular difference as seen in 

Hardebeck [2006] for the Southern California region.  For the East San Francisco Bay 

region, there may be a slightly larger minimum average angular difference, ~30°, which 

can be modeled with an !  mean deviation of ~ 20°.  Figure 5.4 shows the average 

angular difference as a function of distance for uniform focal mechanisms that have had  

random Gaussian noise added with ~17° and ~ 20° mean deviations.  They are 

approximately straight lines because we have simply added spatially uncorrelated noise 

to all points. 
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Figure 5.3.  P-T plots of noise.  The P axes are plotted with red asterisks, and the T axes 

are plotted with blue open circles.  For each plot, 2,000 focal mechanisms of the same 

orientation are given random rotations; therefore, any scatter in the P-T axes is due 

purely to model noise, not stress heterogeneity.  On the left, we start with the Southern 

San Andreas Fault background stress tensor, !"
B
1

, used in our simulations for Chapter 4.  

On the right we start with the San Gabriel Mountains background stress tensor, !"
B
2

, 

also used in our Chapter 4 simulations.  The top row plots the noise generated from 

random Gaussian angle rotations, ! , with mean deviation = 10°.  The center row has a 

mean deviation of 20°, and the bottom row has a mean deviation of 30°.  Mean deviations 

of  ≈ 17– 20° produce model noise that best matches real data, similar to the center row. 
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Figure 5.4.  We start with 500 uniformly oriented focal mechanisms and add random 

Gaussian noise with a mean deviation of ~17° for the top plot and ~20° for the bottom 

plot.  Then we calculate the average focal mechanism difference as a function of 

distance.  It yields approximately straight lines at ~26° for the top plot and ~ 30° for the 

bottom plot.  This matches the minimum values for Southern California and East Bay, 

San Francisco respectively in Figure 5.2; therefore, we now know how much model noise 

to add to our simulations to adequately represent focal mechanism uncertainties.  

 

Table 5.1.  Misfit Statistics for Synthetic Simulations With Gaussian Noise Added 

Mean Deviation for 
Simulations 

Mean of the Misfit Angle Standard Deviation of 
the Misfit Angle 

Southern San Andreas, 17° 10.0944° 13.7134 
San Gabriel Mountains, 17° 10.1084° 13.6266 
Southern San Andreas, 20° 12.9599° 18.7245 
San Gabriel Mountains, 20° 12.9816° 18.7866 
Southern San Andreas, 26° 20.0672 29.0822 
San Gabriel Mountains, 26° 20.0372 29.0511 

 

For each row in the table, we generate 50 sets of 1,000 noisy uniform focal mechanisms 

and apply Andy Michael’s program, “slick” [Michael, 1984; 1987].  Each inversion 

produces a mean misfit, and we average this parameter over the fifty sets.  We start with 

two different uniform orientations, which we call the “Southern San Andreas Fault” and 

“San Gabriel Mountains” from Chapter 4, and apply Gaussian random noise with mean 

deviations of ~ 17° and ~20°.  As the mean deviation of the model noise applied 

increases, so does the mean misfit angle from the inversions.  Even though the Southern 

San Andreas and San Gabriel Mountains background stresses provide significantly 

different baseline orientations upon which model noise has been added, the mean misfit 

angles are nearly identical for these two types of simulations. 
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The relationships between mean deviation, standard deviation, and average 

deviation between points for a 1D Gaussian distribution in 1D Cartesian coordinates, can 

shed some light on our statistics.   We know that for 1D Gaussians, 

 Mean Deviation =
2

!
 Standard Deviation  (5.2) 

and 
 Average Deviation Between Points = 2  Standard Deviation.  (5.3) 

Consequently,  
 Average Deviation Between Points = !  Mean Deviation. (5.4) 

 For 1D Gaussian distributions, if the Mean Deviation is 17, one would expect an 

Average Deviation Between Points of 30.13, and if the Mean Deviation is 20, one would 

expect an Average Deviation Between Points of 35.45.  Our average angular differences 

of 26° and 30° are slightly smaller than one might expect for Mean Deviations of 17° and 

20° using the above 1D statistics, but this most likely occurs because we are calculating 

the minimum angles between focal mechanisms using three dimensions instead of one.  

The statistics for 1D Cartesian Gaussians and our Gaussian angle, ! , do not have a one-

to-one correspondence.  

In Table 5.1 we show the statistics from applying a focal mechanism inversion 

program [Michael, 1984; 1987] to our noisy uniform focal mechanisms.  For each row in 

the table, we generate 50 sets of 1,000 noisy uniform focal mechanisms and apply the 

program, “slick.”  The program attempts to find a best-fit spatially uniform stress field 

that minimizes the angular misfits between the actual slip vectors and the model slip 

vectors from a uniform stress field.  One generated parameter is the mean angular misfit, 
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which we show in Table 5.1 for our homogeneous, but noisy focal mechanisms.  This 

parameter is important because the mean angular misfit will increase as the stress 

heterogeneity increases.  Therefore, one way of estimating the heterogeneity of a region 

is to 

• Apply a focal mechanism inversion to the focal mechanisms in the region. 

• Estimate the model noise in the focal mechanisms, due to uncertainty in focal 

mechanism orientations. 

• Run several simulations of the region with 3D stress heterogeneity of different 

heterogeneous amplitudes, HR .   

• Add the estimated model noise to the synthetic focal mechanisms. 

• Apply the focal mechanism inversion to the noisy focal mechanisms. 

• Compare the mean angular misfit from the real data in the region to the set of 

simulations with different levels of heterogeneity and find which HR  produces a 

mean angular misfit that best matches the real data.  

 

Estimating Stress Heterogeneity Parameters 

We calculate the average focal mechanism difference as a function of distance for 

our simulations. Note, we are using the three-component method from Chapter 4 that 

calculates the minimum angle between focal mechanisms using only angular information.  

The stress ratio, R , is not taken into account.  This is true for Figures 5.5–5.8.   Taking 

the first 2,000 failures from our 3D numerical simulations we calculate the angular 

difference between each pair of synthetic focal mechanisms and average those values as a 

function of pair distance.  Using the !  mean deviation levels of 17° and 20° to model 
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noise, we vary the two heterogeneity parameters, !  and HR , until we find curves that 

approximately match Hardebeck’s [2006] plots for Southern California and East Bay, San 

Francisco.  In Figures 5.5–5.7, we first show the effect of varying our three parameters, 

! , HR , and the mean deviation of the !  noise.  Then in Figure 5.8, we plot our best fits 

on top of Hardebeck’s data for Southern California and East Bay, San Francisco.   

The curves for Figures 5.5–5.7 are averaged over 4 different 3D simulations, 

using the same random seed for each ! .  Our final curves in Figure 5.8 use a minimum 

of five different random seeds, i.e, five different filtered 3D heterogeneous grids for each 

curve, and six different simulations per random seed, for a total of at least 30 different 

simulations for Southern California and 30 different simulations for the East Bay, San 

Francisco.  We then plot the average focal mechanism difference as a function of length 

for these two sets of simulations on top of Hardebeck’s data to assess our fit.  The 3D 

simulations have a limited spatial frequency bandwidth, a little under two orders of 

magnitude, for several reasons:  1) The size of our grids in 3D is limited, unless we go to 

a supercomputer, because the number of points increases as N3.  Currently, all 

computations are being done on an Apple G5 computer so we limit ourselves to 

201x201x201 grids.  2) The periodic boundary condition on the heterogeneity means that 

the average focal mechanism difference reaches a maximum at approximately 102 times 

the spacing between points, 102 grid spaces.  3) Distances less than 3 grid spaces produce 

unstable average focal mechanism differences because at that scale the discretization of 

the heterogeneous grid becomes important.  Therefore, in Figure 5.8 our 3D results are 

plotted with solid lines for a bandwidth of 3 –100 grid spaces, a little under two orders of 

magnitude, where each grid space would approximately match 1 km in the real Earth. 
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To extrapolate to smaller distances and cover a greater spatial frequency 

bandwidth, we quickly calculate synthetic focal mechanisms, using smoothed 1D 

heterogeneous stress as defined in Chapters 2 and 3.  We generate 1D smoothed 

heterogeneous stress with the same parameters as the 3D simulations, but with a greater 

bandwidth.   Using lines of 100,001 points, we bring the first 2,000 points to failure and 

calculate the average focal mechanism difference as a function of distance.  This 

produces curves with spatial frequency bandwidths of about three orders of magnitude, 1 

more order of magnitude than our 3D simulations.  We had hoped for four orders of 

magnitude, but the noise in the curves prevents this.  There are some aspects of the 1D 

simulations we still need to study.  In Figure 5.8 we just plot one simulation for Southern 

California and one plot for East Bay, San Francisco to give an initial idea.  The 1D 

simulations are drawn with dashed lines and begin where the 3D simulations leave off.  

The 1D simulations for distances greater than 2 km become very noisy, but still generally 

follow the 3D numerical simulation curves and Hardebeck’s [in review, 2006] data. 
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Figure 5.5.  Using the same random seed grid for each ! , we run four different 

simulations for each curve and plot the average.  Each curve has a heterogeneity ratio, 

HR = 1.5 , and an !  mean deviation of 17°.  The spatial smoothing parameter, ! , is 

varied, where ! = 0.8  corresponds to the most shallow curve on top, and !  increases by 

0.1 for each successive curve.  As !  increases, so does the slope of the average focal 

mechanism difference as a function of interevent distance.  Interestingly, !  does not 

appear to affect the maximum level at far interevent distances.   
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Figure 5.6.  Using the same random seed grid we run four different simulations for each 

curve and plot the average.  Each curve has an ! = 0.95  and an !  mean deviation of 

17°.  The heterogeneity ratio, HR , is varied from HR = 0.75 ! 2.0 .  As HR  increases, 

the maximum average focal mechanism difference increases.  Since !  does not affect the 

maximum average focal mechanism difference and HR  does, if we can fix the noise level, 

we can estimate HR  from the maxima in Hardebeck’s [in review, 2006] data.  
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Figure 5.7.  Using the same random seed, we run four different simulations for each 

curve and plot the average.  Each curve has an ! = 0.95  and an HR = 1.5 .  The !  mean 

deviation (focal mechanism uncertainty in real data) is varied from 13°–25° to show the 

effect of model noise on the simulations.  As the mean deviation of the noise increases, 

two things happen.  The curve’s maximum increases, and the slope decreases.  Therefore, 

it is important to have an accurate estimate of the model noise to parameterize both the 

heterogeneity ratio, HR  and the spatial smoothing parameter, ! .  
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Figure 5.8.  Figure modified from Hardebeck [in review, 2006].  The thin black line for 

Southern California and East Bay is Hardebeck’s HypoDD (+3D) solution for those two 

regions.  The average focal mechanism difference increases with distance between focal 

mechanism pairs, indicating there is some type of smoothed heterogeneity.  We calculate 

3D and 1D simulations that seem to best fit the curves.  We plot our results on top of 

Hardebeck’s data, with solid lines for our 3D simulations and dashed lines for our 1D 

extrapolations.  We find a heterogeneity ratio, HR = 1.75 , for Southern California in 
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both our 3D and 1D simulations, and an HR = 1.25  for East Bay in both our 3D and 1D 

simulations.  The spatial smoothing parameter, ! , estimated from these two types of 

simulations is slightly different.  The value of !  is approximately 0.1 lower in the 1D 

simulations for both Southern California and East Bay, San Francisco.  Whether that is 

due to the reduced dimensionality or the increased bandwidth is yet to be determined.  

Our guess is that this is an effect of increased bandwidth in the simulation, and if we 

were to simulate the entire bandwidth of Hardebeck’s data, almost four orders of 

magnitude, we might predict an ! = 0.6  for Southern California and an ! = 0.8  for East 

Bay, San Francisco.   

 Southern California may have a larger HR  and smaller !  than East Bay, San 

Francisco, due to the inclusion of aftershocks from moderate earthquakes such as 

Northridge, Landers, and Hector Mine. 
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The 3D simulations give the following heterogeneity parameter estimates for 

Southern California, a spatial smoothing parameter, ! = 0.8 , and an HR = 1.75  for a 

model noise level of 17° mean !  deviation.  The initial 1D simulation uses the same 

HR = 1.75  and mean deviation of 17°, but requires a slightly smaller spatial smoothing 

parameter to fit the data, an ! = 0.7 .  From our 3D simulations of East Bay, San 

Francisco, we estimate an ! = 1.0  and HR = 1.25  with a model noise mean deviation of 

20°, and from our initial 1D simulations, we estimate an ! = 0.9  and HR = 1.25  with a 

model noise mean deviation of 20°.  While the 1D simulations require the same HR  as 

the 3D simulations, the 1D simulations with the greater bandwidth require a spatially 

rougher stress, i.e., smaller values of ! .  

If we increase the bandwidth again to produce average focal mechanism 

difference as a function of distance to match Hardebeck’s entire plots, we might predict 

our estimates of !  to be lower once again (Table 5.2).  This gives us a range of 

! = 0.6 " 0.8  for Southern California and ! = 0.8 "1.0  for East Bay, San Francisco.  

The heterogeneity ratios would still be HR = 1.75  for Southern California and 

HR = 1.25 , for East Bay, San Francisco.  Again these values of !  are our best guess for 

now.  What is particularly important in our parameterization is the heterogeneity ratio, 

HR , because this determines to what degree the focal mechanism inversion results are 

biased toward the stress rate tensor.  Fortunately, HR  appears to be a stable quantity in 

these parameterizations regardless of what !  we use or spatial bandwidth we have. 

 Our guess as to why Southern California has a larger HR  than East Bay, San 

Francisco, and smaller ! , may be that Southern California includes aftershock data from 

moderate earthquakes such as Northridge and Landers.  Initial simulations (not shown) of 
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aftershocks due to moderate-major earthquakes suggest that aftershocks tend to have a 

larger average focal mechanism difference than background seismicity because the 

significant static stress change accesses a greater variety of stress states, which would 

raise the HR  estimate.  Also, the mainshock may roughen the local stress state 

immediately after the earthquake [Ben-Zion, et al., 2003] resulting in a lower estimate of 

the parameter ! .  In Figure 5.2, the curve for Southern California begins to flatten out at 

the same maximum angular difference as East Bay, San Francisco, about 57°, then begins 

to ramp up again and flattens out finally at approximately 62°.  Our speculation is that the 

background seismicity in Southern California may actually have parameters similar to 

East Bay, San Francisco, an HR = 1.25 , and predicted ! = 0.8.  Adding the effects of 

aftershocks may produce a plot similar to Figure 5.2 for Southern California. 
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Table 5.2.  Estimated Heterogeneous Parameters for Southern California and East Bay, 

San Francisco 

 !  Estimate for 
3D simulations 

!  Estimate for 1D 
simulation 

!  
Predicted 

HR for all 
simulations 

Southern 
California 

0.8 0.7 0.6 1.75 

East Bay, San 
Francisco 

1.0 0.9 0.8 1.25 

 

These are the estimated parameters from Figure 5.8.  Because of the limited bandwidth of 

the 3D simulations, we probably overestimate the spatial smoothing parameter, ! .  The 

1D simulations with greater bandwidth, almost three orders of magnitude spatially, lead 

us to estimates of ! , approximately 0.1 less than the 3D simulations.  If we were to 

successfully model the entire bandwidth shown in Figure 5.8, it may lower the estimates 

of !  once more.  The best we can say at this point is that an !  in the range of 0.6 ! 0.8 , 

may fit the data for Southern California, and an !  in the range of 0.6 ! 0.8  may fit the 

data for East Bay, San Francisco.  Interestingly, the 1D simulations work with the same 

HR , HR = 1.75  for Southern California and HR = 1.25  for East Bay, San Francisco; 

therefore, this parameter may be insensitive to bandwidth.  
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Comparing Inversions of Real Focal Mechanism Data to Inversions of Our 

Synthetic Focal Mechanisms 

 Using Hardebeck’s 1984–2003 Southern California data set [Hardebeck and 

Shearer, 2003] from the web site, www.data.scec.org/research/altcatalogs.html, we apply 

Andy Michael’s “slick” focal mechanism inversion program to A and B quality data for 

seven regions.  We attempt to avoid aftershock zones such as Northridge, Landers, and 

Hector Mine.  Using a type of bootstrapping for each region, we resample the region until 

we have 1,000 focal mechanisms, invert the data, and repeat this 50 times.  We then 

average two of the statistics, mean misfit angle and the standard deviation of the misfit 

angle over the 50 inversions.  See Table 5.3 and Figure 5.9 for the P-T plots of the seven 

regions we sample and the statistics we compute.   

In order to compare our synthetic focal mechanisms to the real focal mechanisms, 

we apply the inversion program “slick” to our numerical simulations in the following 

manner.  For each simulation we add model noise (to simulate focal mechanism 

measurement error) with a specified mean deviation, invert 1,000 noisy focal 

mechanisms, repeat this 50 times (adding a different random noise each time), and 

average the mean misfit angle and standard deviation misfit angle over the 50 sets.  We 

create these statistics for ! = 0.0,0.5,and 1.0 , HR = 0.1!100 , and mean !  deviation = 

17°, 20°, and 26°, to examine the effect of each parameter.  Typically, the greater the 

heterogeneity is, HR , the larger the mean misfit angle and the standard deviation of the 

misfit angle.  Varying ! , for ! = 0.0 "1.0 , appears to have little to no effect on the 

statistics.  Increasing the noise, the mean !  deviation also increases the mean misfit 

angle and the standard deviation of the misfit angle.  
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Table 5.3.  Seven Study Regions in Southern California from A and B Quality Focal 

Mechanism Data 

 Latitude 
Range 
(°N) 

Longitude 
Range 
(°E) 

Mean Misfit 
Angle 

(Degrees) 

Standard 
Deviation of the 

Misfit Angle 
(Degrees) 

Number 
of Points 

Test Region 1 
LA Basin 

33.75–34.25 241.2–241.7 18.0641 20.7630 192 

Test Region 2 
San Gabriel 
Mountains 

34.25–34.5 
34.4–34.7 
34.5–37.5 

241.75–242.25 
241.5–241.75 
241.25–241.5 

24.7288 25.7336 64 

Test Region 3 33.5–33.75 243–243.25 24.2155 25.7085 170 
Test Region 4 33.75–34 243–243.25 23.6730 20.1619 260 
Test Region 5 33.5–33.75 243.25–243.5 25.9741 21.6666 215 
Test Region 6 33.25–33.5 243.5–243.75 22.3788 22.2544 191 
Test Region 7 33.75–34 243.5–243.75 21.1410 19.6019 222 

 
We picked seven regions to study, preferably with minimal aftershock activity. Columns 2 

and 3 are the Latitudes and Longitudes that prescribe the box within which we choose 

focal mechanisms for the seven regions from the A and B quality data [Hardebeck and 

Shearer, 2003].  Using a type of bootstrapping explained in the text, we calculate the 

mean misfit angle and the standard deviation of the misfit angle for our three regions.  

These values are plotted in Figures 5.10–5.12.  Then in Figure 5.13 we use the mean 

misfit values for each region to estimate their heterogeneity ratios,HR . 

 

 



V-27 

 

        

  

 

 



V-28 

 

 

Figure 5.9.  P-T plots of the seven study regions from the A and B quality focal 

mechanism data.  The red asterisks represent the P (compression) axes and the blue open 

circles represent the T (tension) axes for each focal mechanism. 

 

Interestingly, measurement noise and heterogeneity appear to increase these two 

statistics differently.  Defining a new parameter, which we will call the misfit ratio,  

 MR =
Mean Misfit Angle

Standard Deviation of the Misfit Angle
,  (5.5) 

we find that if there is only model noise and no stress heterogeneity one would expect a 

MR ! 0.7 .  If there is no model noise and only stress heterogeneity, one could achieve a 

MR ! 1.5 .  One way of assessing whether or not a mean deviation of 17° is appropriate 

for Southern California is to compare the mean misfit angle and the standard deviation of 

the misfit angle for our simulations with different ! , HR , and noise to our seven regions 

in Table 5.3.  In Figures 5.10, we explore this by plotting mean misfit angle vs. standard 

deviation of the misfit angle for our simulations and for our seven regions of real focal 

mechanism data.  Generally, as HR  increases (variable not shown), both the mean misfit 
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angle and the standard deviation of the misfit angle increase, creating the lines seen in 

Figure 5.10.  The three red dashed lines represent ! = 0.0, 0.5, and 1.0 , for the 

simulation background stress, “Southern San Andreas,” !"
B
2

, from Chapter 4 with a mean 

model noise deviation of 17° added to the synthetic focal mechanisms.  The three solid 

blue lines represent ! = 0.0, 0.5, and 1.0 , for the simulation background stress, “San 

Gabriel Mountains,” !"
B
1

, from Chapter 4, with a mean model noise deviation of 17° 

added to the synthetic focal mechanisms.  The lines follow the path of increasing 

heterogeneity, HR , in the mean misfit angle vs. standard deviation of the misfit angle 

space.  We plot small solid circles for the end-member, HR = 0 , case from Table 5.1.  

Last, we plot the values computed for our seven regions listed in Table 5.3, with black 

asterisks.    The point of this graph is to show that the real data, with black asterisks, are 

compatible with the predicted mean misfit angles and standard deviation of the misfit 

angles from our numerical simulations when we add a mean model noise deviation of 17° 

to our synthetic focal mechanisms.  The real data points fall within the possible range of 

values.  In Figure 5.11, we have the exact same graph but now a mean model noise 

deviation of 20° has been added to our synthetic focal mechanisms and our synthetic 

lines are no longer centered on the real data, indicating 20° could be an overestimate for 

Southern California data, at least for these seven regions.  Increasing the mean model 

noise deviation again to 26°, we plot in Figure 5.12 the same information.  The real data 

are completely offset from our synthetic curves, indicating that a mean noise deviation of 

26° is an overestimate of noise for those regions in Southern California.  These results 

give us increased confidence in using our mean model noise deviation of 17° when 

parameterizing !  and HR  in Southern California. 
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Figure 5.10.  In this Figure we compare two observables, mean misfit angle and the 

standard deviation of the misfit angle, for noisy simulated focal mechanisms and real 

data from our regions 1–7.  While these two parameters should be linearly related for a 

Gaussian distribution, the distributions of focal mechanism orientations are not 

necessarily Gaussian.  When we start adding model noise to our synthetic, heterogeneous 

focal mechanisms, we find that the ratio of mean misfit angle vs. standard deviation of 

the misfit angle, MR , depends on how much of the scatter comes from model noise vs. 

true stress heterogeneity.    In this plot, we add noise with a mean model noise deviation 
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of 17° (what we use when trying to parameterize Southern California in Figure 5.8) to 

our synthetic focal mechanisms, invert the focal mechanisms to calculate the mean misfit 

angle and standard deviation of the misfit angle, repeat this procedure fifty times, and 

average the two parameters.  We do this for a range of HR = 0.1!100  and plot the path 

of increasing HR  in the mean misfit angle vs. standard deviation of the misfit angle 

space.  The red dashed lines are for ! = 0.0, 0.5, and 1.0 , using the “Southern San 

Andreas” background stress, !"
B
2

, from Chapter 4.  The blue solid lines are for 

! = 0.0, 0.5, and 1.0 using the “San Gabriel Mountains” background stress, !"
B
1

, from 

Chapter 4.  We find that the !  parameter has little to no effect on the calculation of the 

mean misfit angle or standard deviation of the misfit angle parameters.  The black 

asterisks are the seven study regions.  We find that their mean misfit angle and standard 

deviation of the misfit angle fall within the possible values for our noisy simulated data.  

The real data for seven regions in Southern California are nicely centered on the 

simulated curves.  Therefore, it appears that the addition of a mean model noise 

deviation of 17° to our synthetic focal mechanisms produces statistics compatible with 

real data. 
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Figure 5.11.  Symbology as in Figure 5.10, with a mean model noise deviation of 20° 

added to the synthetic focal mechanisms.  The paths of increasing heterogeneity in the 

mean misfit angle vs. standard deviation of the misfit angle space no longer center on the 

real data in black asterisks, our Southern California regions 1–7.  Instead, the paths are 

slightly offset to the bottom right.  This level of model noise is what we use for the East 

Bay San Francisco parameterization, but it appears that it is not as compatible as 17° for 

the Southern California data.  This is a good check.  It shows that we most likely use the 

correct level of model noise, mean deviation of 17°, for our parameterization of Southern 

California. 
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Figure 5.12.  Same type of plot as Figures 5.10 and 5.11, only we further increase the 

mean  model noise deviation to 26°.  In this case, the paths of increasing heterogeneity, 

the red dashed and blue solid lines, for our noisy simulated data are completely offset 

from the real Southern California data.  This indicates that a mean deviation of 26° 

overestimates the model noise for background seismicity in Southern California. 
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Figure 5.13.  This plot of mean misfit angle as a function of Heterogeneity Ratio, HR  

was constructed by adding a mean model noise deviation of 17° to our synthetic focal 

mechanisms for ! = 1.0 , inverting the focal mechanisms using the program “slick” 

[Michael, 1984; 1987] to produce the mean misfit angle, repeating this 50 times, then 

averaging the mean misfit angle.  The solid blue line uses the simulations with the “San 

Gabriel Mountains” background stress, !"
B
1

, and the dashed red line uses the 

simulations with the “Southern San Andreas” background stress, !"
B
2

, both introduced in 

Chapter 4.  For these two very different background stresses, the mean misfit angle vs. 

HR  curves are fairly similar.  Of greater interest is that the increase of mean misfit 

angle as a function of HR  has a very similar shape to the curves in Figure 4.12.  In 



V-35 

 

Figure 4.12, we plot the percent bias toward the stress rate tensor, 
 
& !"
T

, as a function of 

HR .  This gives us hope that there may be a linear relationship between mean misfit 

angle for real data and the bias toward the stress rate tensor, 
 
& !"
T

. 

 

 

 

 It is true that the mean misfit angle and the standard deviation of the misfit angle 

are related by a constant for a 1D Gaussian distribution; therefore, in our attempt to vary 

the noise until we have an appropriate misfit ratios, MR , that matches real data, we are 

really varying the shape of the distribution of the focal mechanism scatter until it is 

similar to what is seen in the real Earth. 

Now that we have confirmed that a mean model noise deviation of ≈17° is 

appropriate for the Southern California, we plot in Figure 5.13 the mean misfit angle as a 

function of heterogeneity ratio, HR  for our simulated data with 17° model noise added.  

Presumably, we can use this relationship between mean misfit angle and heterogeneity to 

estimate the HR  for real data.  In Figure 5.13, we use a mean model noise deviation of 

17° added to our synthetic focal mechanisms, and we use an ! = 1.0 , which is close to 

our estimated ! .  The value of !  has little to no effect on the curves in Figure 5.13 so it 

probably does not matter exactly what value to use in these calculations so long as it is 

close to our estimate.  The solid blue line shows our results for simulations with a “San 

Gabriel Mountains” background stress, !"
B
1

, and the red dashed lines shows our results 

for simulations with a “Southern San Andreas” background stress, !"
B
2

.  There are three 

features to note:  1) Mean misfit angle increases with heterogeneity ratio, HR . 2) The 
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two very different sets of simulations give similar curves.  3) The relation between mean 

misfit angle and HR  looks very similar to the relation between the normalized bias 

toward our stress rate tensor, 
 
& !"
T

, and HR  as seen in Figure 4.12 in the previous chapter.  

This gives us hope that we can use the mean misfit angle in focal mechanism inversions 

for the real Earth to estimate both the heterogeneity ratio, HR , and the percent bias 

toward the stress rate tensor, 
 
& !"
T

.  Figure 5.14 explores this relationship, by plotting the 

percent bias toward 
 
& !"
T

 from Figure 4.12 as function of mean misfit angle using the 

parameter, HR , to connect the two quantities; therefore, the solid lines are paths of 

increasing heterogeneity, HR .  We plot this for our two sets of simulations, “San Gabriel 

Mountains,” !"
B
1

, and the “Southern San Andreas,” !"
B
2

.  We find that the relationship 

between percent bias toward
 
& !"
T

 as a function of mean misfit angle is approximately a 

linear relationship for a mean misfit angle range of 15°–37°.  The two sets of simulations 

produce slightly different slopes and intercepts for the linear best fits (see dashed lines in 

Figure 5.14), but there is some similarity.  This type of relationship between percent bias 

and mean misfit angle needs to be studied further, and the effects of all the simulation 

parameters carefully dissected before we will have much confidence.  At the same time, it 

is a starting point.   
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Figure 5.14 a) 

 

Figure 5.14 b) 
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Figure 5.14.  We plot paths of increasing HR  in the bias toward 
 
& !"
T

 vs. mean misfit 

angle space.  We use the relationship between bias and HR , and the relationship 

between mean misfit angle and HR  to create these plots.  The solid lines are our 

numerical simulations, synthetic focal mechanisms with ! = 1.0 , a mean model noise 

deviation of 17°, averaged over 50 sets of noise.  The dashed lines are the best fit linear 

relationships.  In a) we plot the relationship between normalized bias and mean misfit 

angle for our “San Gabriel Mountains” simulations and in b) we plot the same 

relationship for our “Southern San Andreas Fault” simulations (See Chapter 4).  Both 

sets of simulations produce a fairly linear relationship between normalized bias and 

mean misfit angle for a mean misfit angle range of ≈ 15–37°.  The slopes and intercepts 

and the two lines are slightly different, but they lead to similar estimates of bias.  We 

apply these curves to our seven regions of real focal mechanism data to estimate percent 

bias toward 
 
& !"
T

 and show the results in Table 5.4. 
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Hypothetically, using this type of plot, one can subtract out the bias toward the 

stress rate tensor, 
 
& !"
T

, to give the actual orientation of the background stress, !"
B

.  The 

procedure may be as follows: 

• Select a region to study. 

• Remove the aftershocks, if any, and invert the focal mechanisms within the 

region. 

• From the mean misfit angle, estimate the heterogeneity ratio, HR , in the region 

and the percent bias toward the stress-rate tensor, 
 
& !"
T

. 

• Compare the orientation of the best-fit stress tensor from the focal mechanism 

inversion to the predicted stress-rate tensor from GPS data/modeling.  Models like 

those of Becker et al. [2005] , which combine fault block modeling with GPS data 

as constraints, can provide the stress-rate tensors.  

• If the focal mechanism inversion tensor and the stress-rate tensors are nearly 

identical, and HR < 5.0  (maximum bias of 70%), then one can estimate that the 

stress rate tensor, 
 
& !"
T

, and the background stress, !"
B

, are approximately aligned 

with one another. 

• If there is a significant difference between the focal mechanism inversion tensor 

and the stress-rate tensor, and HR > 0.5  (minimum bias of 10%), then there is an 

even greater difference between the !"
B

 and 
 
& !"
T

.  Use the estimate of the percent 

bias toward 
 
& !"
T

, combined with the values of the inverted tensor, !"
Inverted

, and 

 
& !"
T

, to estimate !"
B

. 

In summary, this new methodology may enable seismologists to still use standard 

focal mechanism inversions to estimate !"
B

, with the caveat that the interpretation is now 
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more complicated because any bias toward 
 
& !"
T

 due to spatial stress heterogeneity needs 

to be removed.  At the same time, this new methodology allows the estimation of a new 

parameter, HR , the ratio of the magnitudes of the spatially heterogeneous stress and the 

spatial mean stress, for the region.  Then, using plots like Figure 5.8 to determine the 

spatial smoothness of the heterogeneity, ! , setting the maximum sustainable stress ≈ 200 

MPa, at distance of 10 cm (what one would expect for dislocations), one may be able to 

estimate the size of !"
B

 for the study region, the effective strength of the crust for the 

study region size [Heaton, 2006, in preparation].  

Returning to our seven regions of real focal mechanism data, we use Figures 5.13 

and 5.14 to estimate HR  and the percent bias toward 
 
& !"
T

.  Table 5.4 lists our estimates 

based on these curves.  We obtain HR  estimates ranging from 0.62–0.70 for the LA 

Basin, the least heterogeneous of our seven regions, to an HR  = 1.21–1.44 for Region 5.  

We also obtain bias estimates anywhere from 14–42% bias toward the stress rate tensor, 

 
& !"
T

; this indicates that the heterogeneity in Southern California is sufficient to 

significantly bias the focal mechanism inversions toward 
 
& !"
T

, but not completely.  

Hypothetically, it should be possible to remove this bias due to spatially heterogeneous 

stress and extract the actual !"
B

. 

 Interestingly, it appears that the seven regions we chose in Southern California 

are more compatible with an HR = 1.25  than the HR = 1.75  that we had calculated from 

Figure 5.8.  As mentioned previously, the average focal mechanism difference as a 

function of distance for Southern California (Figure 5.8) includes both background 

seismicity and aftershocks, and we hypothesize that the inclusion of aftershocks raises the 

HR  estimate and lowers the !  estimate.  Indeed, the curve for Southern California 
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begins to flatten out at the same level as East Bay San Francisco, HR  = 1.25, then begins 

to rise again and finally levels out at a HR  = 1.75.  Combining this information with the 

HR  estimates from comparing mean misfit angle information between our simulations 

and real data leads us to an estimate of HR  ≈ 1.25 and ! " 0.8  for regions with 

background seismicity (no aftershocks) in Southern California and East Bay, San 

Francisco.   

Figure 5.15 shows P-T plots of simulation focal mechanisms using our best guess 

parameters and our model noise with mean deviation =  17°.  We show one plot from our 

“San Gabriel Mountains” simulations with !
B
1

 and one plot from our “Southern San 

Andreas Fault” simulations with !
B
2

.  The plot from our “Southern San Andreas Fault” 

simulations looks similar to some of the P-T plots of real data in Figure 5.9. 

 

 

Figure 5.15.  P and T axes plotted for 300 synthetic focal mechanisms each, using our 

best guess stress heterogeneity parameters.  We use an ! = 0.8 , HR = 1.25 , and a model 

noise with mean deviation = 17°.  The strike-slip example on the right looks similar to 

some of the P-T plots of real focal mechanisms in Figure 5.9. 
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In Figure 5.16 we plot what the spatial variation might look for a 1D cross section 

for 1 component of the deviatoric stress tensor, using our best guess parameters.  We 

create 1D heterogeneous stress with 100,001 points and an ! = 0.8 ; we then add the 

following background stress tensor,  

!"
B
=

0 1 0

1 0 0

0 0 0

#

$

%
%

&

'

(
(
,

 

normalizing this background stress and our heterogeneity so that we have an HR = 1.25 .  

We equate 1 grid spacing to 10 cm; therefore, our entire spatial bandwidth is 

approximately 10 km, or 5 orders of magnitude.  We set the maximum stress at 200 MPa, 

which is what one may expect for granitic rock [Scholz, 1990], focus on a stress asperity, 

and calculate what the mean stress may be on a variety of length scales.  This is 

motivated by a hypothesis from Heaton that strength in the Earth is length scale 

dependent [Heaton, 2006, in preparation]; if so, averagering stress over different length 

scales produces different estimates of strength.  Interestingly, if we average over different 

length scales around the asperity, we calculate for one of the components of the 

deviatoric stress tensor, !
12

: 

• ≈ 54 MPa if we average over 10 km 

• ≈ 72 MPa if we average over 1 km, centered on the asperity 

• ≈ 111 MPa if we average over 100 m, centered on the asperity 

• ≈ 150 MPa if we average over 10 m, centered on the asperity 

The increase of mean stress as we narrow our focus on the stress asperity, i.e., reduce the 

window over which we average, supports Heaton’s hypothesis that strength in the crust 

depends on the length scale of the measurement.   
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Figure 5.16 a) 

 

Figure 5.16 b) 
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Figure 5.16 c) 

 

Figure 5.16 d) 
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Figure 5.16.  We create spatially smoothed heterogeneous stress in 1D with ! = 0.8  and 

add a spatially uniform background stress with an HR = 1.25 .  Therefore, it has the 

parameters we hypothesize  for heterogeneous stress in East Bay, San Francisco and for 

Southern California if one were to subtract out aftershocks.  We plot 100,001 points of 

one component of the stress tensor, !"
12

 in a).  If we let the grid spacing equal 10 cm, 

then the entire range of our stress 1D cross section is approximately 10 km.  In a) we plot 

the entire width, a 10 km length.  In b), c), and d) we successively narrow our plotting 

window by an order of magnitude each time, to focus in on a stress asperity.  If we set 

our maximum stress to be 200 MPa, what one might expect for a 10 cm dislocation, then 

we can estimate mean stresses at different length scales for the asperity.  The mean stress 

tends to increase as the window narrows over which we average the stress, supporting 

Heaton’s hypothesis [2006, in preparation] that the strength of the crust is length scale 

dependent. 
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Table 5.4.  Estimates of the Heterogeneity Ratio, HR , and the Percent Bias Toward the 

Stress Rate Tensor for Our Seven Regions of Real Focal Mechanism Data 

 Mean Misfit 
Angle 

Estimate of 
Heterogeneity Ratio, HR 

Estimate of Tensor Dot 
Tensor Dot Product Bias 
Toward 

 
&!
T

 
Test Region 1 
LA Basin 

18.0641 0.62–0.70 14–28% 

Test Region 2 
San Gabriel 
Mountains 

24.7288 1.14–1.31 32–39% 

Test Region 3 24.2155 1.09–1.24 31–38% 
Test Region 4 23.6730 1.06–1.18 29–36% 
Test Region 5 25.9741 1.21–1.44 36–42% 
Test Region 6 22.3788 0.95–1.04 26–33% 
Test Region 7 21.1410 0.82–0.95 22–30% 
 

The estimates come from applying Figures 5.13 and 5.14 to their misfit angles.  Our 

seven interseismic regions yield HR  estimates more compatible with 1.25 than 1.75.  It is 

possible that the Southern California parameterization of HR  in Figure 5.8 is elevated to 

1.75 by the inclusion of aftershock data.  Indeed, the curve for Southern California 

(Figure 5.8) begins to maximize at an angle that is compatible with HR = 1.25 , then 

increases again to an angle compatible with HR = 1.75 .  Our guess is the initial 

flattening is background seismicity, and the final maximum is due to aftershock data.  It 

would be interesting to have the average focal mechanism difference as a function of 

distance recalculated for them separately.  
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