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Abstract 

Current stress studies often utilize stress inversions of earthquake focal 

mechanisms to estimate four parameters of the spatially uniform stress tensor, three 

principal stress orientations, and a ratio of the principal stresses.  An implicit assumption 

in these studies is that earthquakes are good random samplers of stress; hence, the set of 

earthquake focal mechanisms within some region can be used to estimate the spatial 

mean stress state within the region. Numerical simulations indicate some regions, such as 

Southern California, have sufficient stress heterogeneity to bias the stress inversions 

toward the stress rate orientation and that stress studies using stress inversions need to be 

reinterpreted by taking this bias into account.  An outline of how to subtract out this bias 

to yield the actual spatial mean stress is presented.  

 Numerical simulations demonstrate that spatially heterogeneous stress in 3D can 

bias stress inversions of focal mechanisms toward the stress rate tensor instead of the 

stress.  Stochastic models of 3D spatially heterogeneous stress are created, synthetic 

earthquake focal mechanisms are generated using the Hencky-Mises plastic yield 

criterion, and results are compared with Hardebeck’s Southern California earthquake 

catalog [Hardebeck, 2006].  The presence of 3D spatial stress heterogeneity biases which 

orientations are most likely to fail, a bias toward the stress rate tensor.  When synthetic 

focal mechanisms are compared to real data, estimates of two stress heterogeneity 

parameters for Southern California are obtained:  1) A spatial smoothing parameter, 

! " 0.8 , where !  describes the spectral falloff of 1D cross sections through a 3D grid 

for the three principal stresses and three orientation angles.  2) A heterogeneity ratio, 

HR ! 1.25 , which describes the relative amplitude of the spatial stress heterogeneity to 
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the spatial mean stress.  The estimate for !  is tentative; however, varying !  for ! " 1.0  

has little to no effect on the observation that spatially heterogeneous stress biases failures 

toward the stress rate.  The estimate for HR  is more robust and produces a bias toward 

the stress rate of approximately 40%.  If the spatial mean stress and the stress rate are not 

aligned, the average focal mechanism failure mechanism should yield a stress estimate 

from stress inversions, approximately halfway between the two. 
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Chapter 1.  Introduction 

 In geophysics there is increasing interest in modeling spatially nonuniform stress, 

i.e., spatially heterogeneous stress, on 2D planar faults as a means of explaining a variety 

of geophysical phenomena.  This thesis goes beyond 2D and models the effect of 3D 

spatially heterogeneous stress on focal mechanism orientations, seismic clustering, stress 

rotations after mainshocks, and strength of the crust.  We ask, what happens when one 

drops the assumption that stress is approximately spatially uniform in the crust.  We find 

that there is ample reason to believe that stress is spatially heterogeneous in 3D for some 

regions (Figures 1.1–1.3), and including heterogeneity may profoundly change how one 

interprets seismic observables.  It is our hope that by modeling stress heterogeneity 

statistically, we can encourage others to view stress in the crust from a substantially 

different perspective.  The problems addressed in this thesis using heterogeneous stress 

are only the tip of the iceberg for what we hope will be a rich research field in the future. 

 

Observations of Heterogeneous Stress 

 Observations of spatially varying slip along fault zones and in earthquakes 

suggest that both slip and stress are very spatially heterogeneous and possibly fractal in 

nature [Andrews, 1980; 1981; Ben-Zion and Sammis, 2003; Herrero and Bernard, 1994; 

Lavallee and Archuleta, 2003; Mai and Beroza, 2002; Manighetti, et al., 2005; 

Manighetti, et al., 2001].  For example, McGill and Rubin [1999] observed a 1 m change 

in slip over a distance of approximately 1 km in the Landers earthquake, which is a 10-3 

strain change.  This implies possibly a 100 MPa stress change over the distance of 1 km.  

The observed strain and stress change reported by McGill and Rubin is just one example 
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indicating the Earth may contain large stress fluctuations over small spatial wavelengths.  

Similar strain changes can be seen in the slip inversion from the Landers earthquake 

[Wald and Heaton, 1994] (Figure 1.1).  Another example of highly variable, 

heterogeneous slip over short wavelengths comes from Manighetti et al. [2001] (Figure 

1.2).  Using altimetry data in the Afar depression, East African rift, they show 

heterogeneous cumulative slip as a function of distance, with short wavelength strains of 

the order 5x10-2.  While it is true that non-elastic processes may come into play at such 

large shear strains, it does demonstrate a few features.  Heterogeneous slip patterns exist 

not just for individual earthquake slip histories but persist for the entire cumulative slip 

history of fault zones, indicating that slip heterogeneity is a stable feature.  In addition, 

the cumulative slip shows possibly self-similar, fractal patterns as seen in Figure 1.2b; 

i.e., subsections of cumulative slip have similar slip heterogeneity patterns as the sum of 

all the subsections. 

Borehole studies, which measure the orientation of maximum horizontal 

compressive stress directly from borehole breakouts, also indicate that stress can be quite 

heterogeneous.  Figure 1.3, a summary figure from Wilde and Stock [1997], shows the 

inferred directions of S
H

, the maximum horizontal compressive stress, from borehole 

breakouts.  Multiple boreholes with different orientations had been drilled at 

approximately the same locations, which Wilde and Stock analyzed to constrain the 

relative magnitudes of the principal stresses. What is most interesting to our study is that 

boreholes drilled within close proximity of each other can show greatly varying S
H

 

orientations, indicative of heterogeneous stress (Figure 1.3).  Figure 1.4, taken from a  
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Figure 1.1.  Figure modified from Wald and Heaton [Wald and Heaton, 1994] showing 

the final slip distribution for the 1992 Landers earthquake.  The contours are for 1m slip 

intervals with the higher slips shaded with darker greys.  There are places within the slip 

distribution on this figure where the strain is approximately 10!3 .  The strain varies over 

the surface of the rupture, which would produce stress changes over the surface of the 

rupture and lock in heterogeneous stress.  This slip distribution is limited by the data to 

longer wavelength variations in slip; therefore, there may be even shorter wavelength 

spatial stress heterogeneity that was locked in by the dynamic rupture process. 
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study of the Cajon pass borehole [Barton and Zoback, 1994], also shows significant 

heterogeneity in the orientations of borehole breakouts for an individual borehole near an 

active fault.  The +  signs or pulses represent the actual breakout data from the Cajon 

well, and the triangles represent the modeled breakouts from Barton and Zoback [1994].  

There are variations in the breakout orientations over different lengthscales, and there is 

an anomaly at approximately 2850 m depth, but the feature we find most interesting is the 

short length-scale variations in the orientations of S
H

.  In places there is an 

approximately 90° rotation of S
H

over a 1–10 m length.  This would appear to support 

our hypothesis that stress can be quite heterogeneous over short length-scales in 

tectonically active regions.  

 Liu-Zeng et al. [2005] have also shown that the assumption of short wavelength 

heterogeneous fractal slip can reproduce distributions of earthquakes having slip vs. 

length ratios similar to real earthquakes and realistic Gutenberg-Richter frequency 

magnitude statistics.  Using simple stochastic models, they showed that spatially 

connected slip can produce averaged stress drops (a constant times average slip divided 

by rupture length) similar to real data.   

 Perhaps the most interesting piece of data comes from Zoback and Beroza [1993] 

(Figure 1.5).  They studied the orientations of aftershock planes from the Loma Prieta 

earthquake and plotted their distributions as a function of strike and dip.  Interestingly, 

they found aftershocks that had both right-lateral and left-lateral orientations on similar 

fault planes as well as normal and reverse orientations.  Given that this is considered a 

San Andreas fault earthquake and the San Andreas fault is a strongly right-lateral fault, 

the existence of left-lateral aftershocks on fault planes parallel to the San Andreas Fault 
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presents a curious problem.  Zoback and Beroza proposed that the principal compressive 

stress direction was almost normal to the fault and that the aftershocks occurred on 

extremely weak faults of different orientations surrounding the mainshock zone.  

However, if one allows for the new paradigm of spatially heterogeneous stress in three 

dimensions, which is being advocated in this thesis, the left-lateral orientations naturally 

occur.  Figure 1.6, taken from Chapter 5, shows our initial hypothesis for what a 1D cross 

section of shear stress in Northern or Southern California might look like.  While most of 

the points have positive shear stress on the !
12

 plane, a small percentage have negative 

shear stress on the !
12

 plane.  Heterogeneity similar to this could explain why Zoback 

and Beroza observed left-lateral aftershocks after the Loma Prieta earthquake; the large 

local stress change to the system from the mainshock, combined with stress heterogeneity 

in the left-lateral direction, would create the left-lateral aftershocks.    
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Figure 1.2 a) 

 
Figure 1.2 b) 
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Figure 1.2.  Sample evidence of large stress and strain spatial heterogeneity due to a 

series of earthquakes (from Manighetti et al., 2001).  a) A map of the fault system 1, in 

the East African Rift.  b) Typical slip vs. length plots within one of the fault systems.  

There is great spatial heterogeneity in slip, which implies short wavelength strains of the 

order 5x10-2. 
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Figure 1.3.  Wilde and Stock [1997] plotted inferred maximum horizontal compressive 

stress, S
H

, orientations from borehole breakouts in Southern California.  There are a 

variety of orientations for borehole breakouts from the same borehole or from boreholes 

spatially close to one another.  This suggests short-wavelength spatial stress 

heterogeneity.  In this modified plot, we have used red circles to point out a few of the 

locations studied by Wilde and Stock that show evidence for S
H

orientation heterogeneity. 
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Figure 1.4.  Barton and 

Zoback [1994] plotted 

maximum horizontal 

compressive stress, S
H

, 

azimuth as a function of depth 

for breakouts in the Cajon Pass 

borehole.  The plus signs are 

the breakout data and the 

triangles represent Barton and 

Zoback’s model.  There is an 

anomaly at 2850 m depth, and 

there is significant short 

wavelength rotation of S
H

 as a 

function of depth.  In this 

modified figure, we have shown 

a sample location with an 

approximately 90° rotation of 

S
H

 over a distance of 1–10 m.  

This provides support for our 

hypothesis that there can be 

significant short wavelength 

stress heterogeneity in 

tectonically active regions. 
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Figure 1.5.  Figure modified from Zoback and Beroza [1993] shows histograms of the 

different aftershock orientations.  Most of the aftershocks had a right-lateral fault 

orientation.  About 10% had left-lateral orientation.  We propose that stress 

heterogeneity is the most natural explanation for left-lateral mechanisms on the right-

lateral San Andreas Fault.   
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Figure 1.6.  Figure taken from Chapter 5 of this thesis.  If the spatial stress heterogeneity 

has a moderate to large amplitude compared to the spatial mean stress, there will exist 

both points with positive shear stress and points with negative shear stress.  Therefore, it 

is possible in a right-lateral shear stress regime to have a few left-lateral aftershocks as 

seen in Figure 1.5. 
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Motivation for Heterogeneous Stress from Dynamics Ruptures 

 Now that we know fractal-like, spatially heterogeneous slip and heterogeneous 

stress is observed in the real Earth and that heterogeneous slip/stress is compatible with 

seismic observables, one may ask, how does the Earth possibly produce this spatial 

heterogeneity.   

 In the dynamic paradigm, we find that simulated dynamic earthquake ruptures 

produce increasingly heterogeneous slip as the dynamic friction becomes increasingly 

sensitive to the slip velocity.  This is what Aagaard and Heaton [in preparation, 2006] 

discovered when they simulated long earthquake sequences on a planar fault subject to 

constant shear strain in time.  If the value of dynamic friction in the real Earth is quite 

sensitive to changes in the slip velocity, it could explain observed slip heterogeneity; and 

indeed, there is evidence this may be true.  The argument is as follows.  Exhumed faults 

tend to yield thin primary deformation zones indicating there is little to no melting during 

the dynamic earthquake rupture [Sibson, 2003].  Given the typical sliding velocities of 1 

m/s, it suggests that the dynamic friction value is quite small for the duration of the 

rupture; otherwise, one would see significant pseudotachylyte friction-melt.  Heat flow 

studies of the San Andreas Fault also yield anomalously low heat flow values for a 

dynamic coefficient of friction of µ ! 0.6 [Lachenbruch and Sass, 1980], again indicating 

that the dynamic coefficient of friction may be small.  A possible explanation is that there 

is a sudden transition from the high static friction, µ > 0.6 , to low dynamic friction, 

µ < 0.1 , in the vicinity of the rupture front, with a similar transition back to high friction 

as one moves away from the rupture front, i.e., extreme velocity weakening.  

Interestingly, this is similar to Rice’s [1999] flash heating friction law and experimental 
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results reported by Tullis and Goldsby [2005] where they observed dramatic reductions in 

sliding friction for velocities > 50 cm / s , possibly flash heating.  Tullis, in a recent 

presentation [Tullis, 2005] available online at 

http://online.itp.ucsb.edu/online/earthq05/tullis, showed plots of friction coefficient as a 

function of sliding velocity for three different materials:  quartz, granite, and gabbro.  The 

low velocity friction coefficients range from a little over 0.6 to approximately 0.9 

depending on the material.  At sliding velocities of > 50 cm / s , the sliding coefficient of 

friction approaches a value of 0.2.  Interestingly, these experiments also observe 

instantaneous full healing.  This combination of high static friction, low sliding friction, 

and instantaneous healing back to high static friction will freeze in short length-scale 

stress heterogeneity, i.e., abrupt spatial stress changes along the length of the fault. 

In flash heating, as the two sides of the fault begin sliding past some threshold 

velocity under normal stress and with asperities, a thin layer melts and dramatically 

lowers the coefficient of friction for a short time.  After flash heating, other mechanisms 

may be activated such as full or partial melting and pore pressure evolution.   If the real 

Earth experiences flash heating or other strongly velocity dependent effects during 

earthquakes, then it is quite plausible that very heterogeneous stresses would be locked 

into the crust when high dynamic stresses are frozen in by the sudden transitions from 

static to dynamic friction, then back to static friction.  This is a length-scale independent 

effect.  Since the two types of stress states that are compatible with length-scale 

independent processes are homogeneous stress and fractal stress, we believe some type of 

fractal heterogeneous stress is a good initial hypothesis.   
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Of interest, Rice, Lapusta and Ranjith [2001] showed through theoretical studies 

that there are problems with only velocity-dependent friction that have no solution (i.e., 

are ill-posed).  The problems do not converge; i.e. there is no solution as you reduce the 

grid size.  We hypothesize that a fractal heterogeneous solution (with no inherent length-

scale) might be the answer to this problem. 

  A static effect that can also produce heterogeneous stress was recently presented 

by Dieterich [2005].  Fault traces in nature are rarely if ever completely planar; there is 

usually some small-scale 3D geometry to the fault trace.  Modeling fault traces with 

fractal geometry, solving for slip with boundary elements and using a µ = 0.6 , he found 

that even very small variations in fault trace can produce significant near-fault stress 

heterogeneity and create spatially heterogeneous aftershock rates.  In this case, the 

coefficient of friction was not varied dynamically, so this is an entirely independent effect 

that also creates stress heterogeneity. 

 

Stress Model to Be Used in the Thesis 

 In this thesis, we create 3D grids like Figure 1.7, where the full or deviatoric 

stress tensor is defined at each spatial grid point using equation (1.1).  The principal 

stresses and orientations of the heterogeneous stress tensor, !"
H
x( ) , are randomly 

generated; then a discrete spatial filter is applied to produce power-law spatial stress 

heterogeneity.  Chapters 2 and 3 explain how we do this in detail.  A spatially and 

temporally homogeneous stress tensor, !"
B

, what stress inversions approximately solve 

for, is added.  Last, points are brought to failure by adding on a linearly increasing 

tectonic stress due to the stress rate, 
 
! !"
#

, and applying a plastic yield failure criterion. 
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This generates point failures within our 3D grid, which we call earthquakes, and produces 

our set of synthetic focal mechanisms.  Chapter 4 shows the steps of bringing points to 

failure as well as simulations that demonstrate how large amplitude spatially 

heterogeneous stress biases stress inversions toward the stress rate tensor, 
 
! !"
#

.  

 

 

 

 

 

Figure 1.7.  A sample 3D grid of points.  In our numerical simulations we would define 

the full or deviatoric stress tensor at each spatial grid point. 
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In creating equation (1.1) we approximate stress in time and space as a 

decomposition that is a linear sum of parts that are 1) spatially and temporally uniform, 2) 

varying with time, but relatively homogeneous spatially, and 3) spatially very 

heterogeneous, but do not vary much over the time scale of decades. While there are 

many features of real mechanics that are not included in this description but are discussed 

more in the following section, this is the simplest decomposition that we could think of, 

which also contains the essential features of a temporally varying stochastic stress model.  

 
 
!" x,t( ) = !"

B
+ ! !"

T
t + !"

H
x( )  (1.1) 

Where  

!"
B

 is the background stress, which is the spatially and temporally averaged stress 

tensor in the region of interest. This is the quantity that traditional stress 

inversions are designed to find.  

 
! !"
T
t( )  is the temporally varying stress due to plate tectonics.  For example, if there is 

far-field loading but the fault in the brittle upper crust is locked, there can be a 

temporal increase of stress as a function of time (Figure 1.8).  There may also be 

fault interactions that can produce regional stress rates similar to what is seen in 

Figure 1.9, modified from Becker et al. [2003] for Southern California.  Or short-

term stress rates could be created by post-seismic visco-elastic relaxation. 

This term is assumed to grow linearly with time for our short simulation 

time windows of 10–20 years, but is assumed to be small compared to !"
H
x( )  and 

!"
B

. While, in reality, it varies with space, the spatial variations are small by St. 

Venant’s principle since the forces are applied at a distance.  In general, we 



I-18 

 

assume that !"
B

 and 
 
! !"
T

 have different orientations. For example, the principal 

compression of the average background stress might be oriented nearly 

perpendicular to the San Andreas Fault [Townend and Zoback, 2004]; whereas, 

the stress rate compression axis must be at a 45°
 
angle, since shear on the San 

Andreas Fault accommodates most of the plate motion.  Simulations in Chapter 4 

explore this possibility.   

!"
H
x( )  is spatially varying stress. By definition, its spatial average is zero. The 

heterogeneous stress is assumed to be due to all of the stress changes caused by 

local inelastic deformations such as the slip distribution due to faulting, 

compaction, fluids, thermal stresses, topography, etc.  The heterogeneity is 

described by two parameters,  

1. ! , where the amplitude spectrum of any 1D cross section through our 3D 

!"
H
x( )  grid is proportional to 1

k
!  and [Barnsely, et al., 1988] 

2. 

Heterogeneity Ratio =

HR =
Mean Spatially Heterogeneous !I

2[ ]  Units of Stress[ ]

Spatially Uniform Background  Stress !I
2

  Units of Stress[ ]

, which 

is a dimensionless number relating the size of the heterogeneity to the size 

of the background stress to create a dimensionless heterogeneity 

amplitude.  !I
2

, the second invariant of the deviatoric stress tensor, a 

nonnegative number, is a measure of maximum shear stress regardless of 

orientation, and is the quantity used in our primary failure criterion. That 

is why we use !I
2

 for our measure of heterogeneity amplitude. 
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We also assume that the stochastic properties of !"
H
x( ) , described by HR  

and ! , do not significantly evolve in time for the simulations we present in the 

thesis; therefore, we do not update !"
H
x( )  after each event.  Specifically, we are 

interested in stress inversions that are applied to background seismicity, in 

between major seismic events over a time window in the range of 1–20 years.  A 

major event will significantly change the 3D stress pattern and would have to be 

taken into account, which is a future research direction we have begun delving 

into.  However, we assume that the heterogeneous slip patterns, after some stress 

relaxation, regenerate heterogeneous stress that will have approximately the same 

stochastic properties as before the major earthquake. 
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Figure 1.8.  Cartoon of one mechanism that could create our stress rate, 
 
!!
T

.  There is 

far-field loading of a locked, strike-slip fault that will build up stress in time. 
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Figure 1.9.  Figure modified from Becker et al. [2003].  They compared the major 

horizontal compressive axes between:  1) Residual strain rates (in black) modeled from 

GPS data and block fault models and 2) regional stress inversions (in yellow) from 

earthquake focal mechanisms.  While there is variation in the strain rate data from 

region to region, one can pick a region like the Los Angeles Basin where there is little to 

no variation in the orientation of the black strain rate vectors, indicating it is possible to 

use a spatially uniform stress rate tensor, 
 
!!
T

, for some regional studies.  At the very 

least, this shows that the strain rate orientations, and by implication the stress rate 

orientations, have much less spatial variability than the stress heterogeneity, !"
H
x( ) . 
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Assumptions/Limitations of This Stress Formulation 

From the outset it is important to clearly indicate the assumptions used in this 

thesis and the possible limitations.  We do not attempt to create stress heterogeneity in 3D 

from first principals because of the inherent difficulties.  Aagaard and Heaton have 

numerically created self-sustaining heterogeneous stress on a 2D plane that repeatedly 

ruptures in time through a dynamic calculation [Aagaard and Heaton, personal 

communication].  However, to faithfully create realistic 3D stress heterogeneity, one 

would have to numerically simulate all the faults in the region at all lengthscales, from a 

small 10 cm dislocation to a 100 km rupture, and simulate appropriate spatial 

distributions of slip for every rupture, throughout thousands of years, because the current 

stress heterogeneity pattern is a superposition of all the past faulting and fracture history 

in the crust.  Not only does this require many assumptions, such as the distributions of 

fault orientations, fault lengths, slip on fault, etc., it is also currently numerically 

impossible using dynamic fracture simulations.  Therefore, we have chosen to approach 

this problem statistically in a simple manner.  On the plus side, this enables us to describe 

spatially heterogeneous stress with two statistical parameters, HR  and ! , generate 

synthetic focal mechanisms quickly, and compare our simulations with real data to 

constrain the statistical properties of the crust.  On the other hand, this statistical approach 

makes many simplifying assumptions in an attempt to obtain a first-cut answer about the 

statistics of the Earth’s crust and overlooks details that are necessary if one wishes to 

model stress heterogeneity from first principles. 
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First, while we satisfy rotational equilibrium when we create our stress tensors, 

we do not satisfy the other equilibrium equation, 
!" ij

!x jj=1

3

# = fi , which specifies no internal 

accelerations if there are no sources.  In order to satisfy 
!" ij

!x jj=1

3

# = fi  and have spatially 

heterogeneous stress, we would have to include sources, which requires a whole set of 

additional assumptions; see the beginning of Chapter 3 for a more thorough explanation 

as to why we do not satisfy the equilibrium equation, 
!" ij

!x jj=1

3

# = fi . 

This leads to some of our other assumptions: 1) We do not allow for slip on pre-

existing faults.  This means our seismicity tends to cluster in 3D clouds rather than 

lineations or planes as seen in the real Earth.  2) We only allow for point source 

dislocations.  3) We do not update the stress field after a failure; hence, there is no 

explicit interaction between events.  Equation (1.1) is written for stress inversions of 

background seismicity where stress perturbations due to individual events are small and 

should have little to no effect on the other events included in the regional inversions.  4) 

There is no inclusion of creep, which could change the heterogeneous stress distribution.  

5) We assume failure occurs on fresh-fracture, maximally oriented planes at ±45°  from 

the !
1
 and !

3
 principal stress axes.  This is a consequence of using a plastic yield 

criterion.  In Appendix C, we do use a Coulomb Failure criterion and find similar but 

more complicated results when we compare our results for Coulomb Failure criterion to 

our results for the plastic yield criterion in Chapter 4.  6) Last, the spatial stress 

heterogeneity in the Earth may not vary exactly as a fractal according to our formulation 

described in Chapters 2 and 3. 
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A major difference between the assumptions in this thesis vs. those in stress 

inversions is summarized in Table 1.1.  We are assuming an end-member model, 

heterogeneous stress and homogeneous nucleation strength, whereas stress inversions 

[Angelier, 1975; 1984; Carey and Brunier, 1974; Etchecopar, et al., 1981; Gephart, 

1990; Gephart and Forsyth, 1984; Mercier and Carey-Gailhardis, 1989; Michael, 1984; 

1987] represent the other end-member model, homogeneous stress but heterogeneous 

strength.  To understand this difference it is helpful to review some of the basic steps of 

stress inversions.  Figure 1.10, from Angelier [1990], diagrams part of this procedure.  

One begins by collecting a set of earthquake focal mechanisms in a study region for some 

time window.  The focal mechanisms are converted into slip vectors on a plane that can 

be described by the parameters strike, dip, and rake, or by a slip vector, 
 

!
s
K

, and normal 

vector, n̂
K

, as shown in Figure 1.10 a).  An estimated spatially uniform stress tensor, !
K

, 

is resolved onto each plane to produce normal traction vectors, 
 

!
!

N
K

, and shear traction 

vectors, 
 

!
!
K

, as shown in Figure 1.10 b).  The relative angles between the actual slip 

vectors, 
 

!
s
K

, and the projected shear traction vectors, 
 

!
!
K

, are called the misfit angles as 

shown in Figure 1.10 c).  The inversion routine attempts to find a best-fit spatially 

uniform stress tensor, !
K

, that minimize the overall misfit statistics.  A study by Rivera 

and Kanamori [2002] of data in Southern California showed that one needs either 

heterogeneous friction (strength), heterogeneous stress, or both to describe the inversion 

statistics of real data.  Current interpretations of stress inversions assume the stress is 

spatially homogeneous, and the strength is heterogeneous.  In contrast, for our modeling 

we explain the misfit statistics with heterogeneous stress and assume that the physical 

processes initiating rupture are homogeneous, i.e., homogeneous nucleation strength. 
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Figure 1.10.  Figure modified from Angelier [1990].  a) The slip plane, slip vector and 

normal vector to the slip plane for a single focal mechanism.  b) Best guess spatially 

homogeneous stress tensor resolved into normal and shear tractions on the fault plane.  

c) The relative angle between the shear traction vector for the best guess spatially 

homogeneous stress tensor and the focal mechanism slip vector.  This relative angle is 

called the misfit angle. 

 

Table 1.1.  Two End Member Models for Explaining the Misfit Statistics of Focal 

Mechanism Inversions 

Current Assumptions in Stress Inversion 

Modeling 

Assumptions Used in Our Modeling,  

the Other End-Member Case 
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Overview of Thesis 

The method used to generate the heterogeneous stress, !"
H
x( ) , is explained in detail 

in Chapters 2 and 3.  Chapter 2 explains how to generate a scalar quantity with fractal 

characteristics in 3D.  Chapter 3 explains how we generated a full tensorial quantity with 

fractal characteristics in 3D, i.e., where 5–6 independent quantities have been filtered 

spatially (5 if one is working with a deviatoric stress tensor, 6 if one is working with a 

full stress tensor).   

 In Chapter 4, we describe how we create our synthetic focal mechanism catalogs 

combining the Hencky-Mises plastic yield criterion with equation (1.1).   That chapter 

explains why stress inversions will be biased towards the orientation of time-varying 

stress terms, be it the far-field plate tectonic stress rate, 
 
! !"
T

, or the stress perturbations 

associated with a mainshock that occurs at time T
E

.  Appendix C demonstrates 

numerically that the same bias occurs when one uses the Coulomb Failure Criterion, but 

the results become more complicated for µ ! 0.0 , because the two conjugate planes are 

no longer perpendicular.  In Chapter 4, we also explore the consequences of the bias 

towards the stress rate, 
 
! !"
T

, for the case of background seismicity, in between 

mainshocks.  We find that if stress is highly heterogeneous, the standard stress inversions 

of focal mechanisms [Angelier, 1975; 1984; Carey and Brunier, 1974; Etchecopar, et al., 

1981; Gephart, 1990; Gephart and Forsyth, 1984; Mercier and Carey-Gailhardis, 1989; 

Michael, 1984; 1987] simply yield 
 
! !"
T

, instead of !"
B

, if 
 
! !"
T

 and !"
B

 have different 

orientations.  Whereas, if there is little to no heterogeneity, the inversions do yield !"
B

 as 

commonly thought.  
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 In Chapter 5, we begin estimating stress heterogeneity parameters, !  and HR , in 

the real Earth.   Our estimates for the amplitude of the heterogeneity, HR , is more robust 

than our estimates for the spatial smoothing, ! ; however, we find that the increasing bias 

toward 
 
! !"
T

 with increasing heterogeneity amplitude, HR , is independent of the !  we 

use for ! " 1.0 .  Determining the value of !  has important implications for calculating 

the strength of the crust as a function of length-scale, but it does not affect our 

observations that focal mechanism inversions are biased toward 
 
! !"
T

 when there is 

spatially heterogeneous stress.  Our best estimate for stress heterogeneity in Southern 

California, HR ! 1.25 , produces stress inversion orientations rotated approximately 30–

40% from !"
B

 toward the stress rate tensor,
 
! !"
T

, a non-trivial bias.  This result suggests 

that stress studies using focal mechanism inversion routines [Angelier, 1975; 1984; Carey 

and Brunier, 1974; Etchecopar, et al., 1981; Gephart, 1990; Gephart and Forsyth, 1984; 

Mercier and Carey-Gailhardis, 1989; Michael, 1984; 1987] need to be reinterpreted.  In 

light of this, we suggest a new procedure for interpreting focal mechanism inversions 

where the bias toward 
 
! !"
T

 would be subtracted out to yield the actual !"
B

.   
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Chapter 2.  Creating a Spatially Heterogeneous Scalar Quantity 

 Our objective is to create spatially heterogeneous stress that has appropriate 

spectral properties for the real Earth.  In this chapter, we will address how to produce one 

scalar component of heterogeneous stress, and in the next chapter, we will show how we 

construct the complete 3D deviatoric stress tensor with five independent components. 

Liu-Zeng et al. [2005] estimated slip heterogeneity in the real Earth by comparing 

slip vs. length scaling in the real Earth to the scaling predicted by different mathematical 

models of slip heterogeneity.  Their equation for generating heterogeneous slip is  

D x( ) = D
0
R x( )*F x( ) = D

0
FT

!1
R̂ k( )k!"#$ %&   (2.1) 

where D x( )  is slip as a  function of position, R x( )  is a Gaussian random function of 

xwith zero mean and variance of 1.0, F x( )  is a spatial filter, R̂ k( ) is the Fourier 

transform of R x( ) , and k!"  is the Fourier transform of F x( )  where k  is the spatial 

wavenumber, and !  is a constant [Liu-Zeng, et al., 2005].  We use ! as the filtering 

symbol for Liu-Zeng et al. instead of ! , to distinguish between the slip filtering in their 

paper vs. the stress filtering in this thesis.  They find that 1.25 < ! < 1.5  best describes 

slip vs. length data in the real Earth.   

 In our studies, we are interested primarily in stress, which along faults should have the 

same spectrum as the spatial derivatives of slip.  In particular, Hooke’s law connects 

stress and strain  

                                                 ! ij = " #kk( )$ ij + 2µ#ij        (2.2) 
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where i = 1,2,3  and j = 1,2,3 , and !  and µ  are constants known as Lamé parameters. 

Strain, !
ij
=
1

2

"u
i

"x
j

+
"u

j

"x
i

#

$
%

&

'
( , where !ui

!x
j

  is the derivative of the ith  component of 

displacement in the jth  direction.  Therefore, stress along faults should have spatial 

roughness equivalent to the spatial derivative of slip. 

If the displacement along a 1D cross section can be described as 

D x( ) = D0
FT

!1
R̂ k

x( )kx
!"#$ %& ,  (2.3) 

then a single scalar component of the stress tensor along a 1D cross section can be 

filtered as follows: 

!
xx
x( )"

dD x( )

dx
= D

0
FT

#1
R̂ k

x( )kxkx
#$%& '(

= D
0
FT

#1
R̂ k

x( )kx
1#$( )%& '( = D

0
FT

#1
R̂ k

x( )kx
#)%& '(

  (2.4) 

 
where ! = " #1 .  Consequently, if we wish to have appropriate length vs. slip scaling in 

the real Earth, we should have heterogeneous stress with 0.25 < ! < 0.5  along 1D cross 

sections. 

For our purposes we produce a suite of different heterogeneous stresses ranging 

from ! = 0.0  to ! = 1.5  and compare these to real Earth data in Chapter 5 to find an 

optimal ! .  Note that ! = 1.0  produces spatially filtered stress that has smoothing 

equivalent to integrating Gaussian white noise once.  An ! = 0.5  produces spatially 

filtered stress that has smoothing equivalent to fractionally integrating Gaussian white 

noise, 0.5 times, etc.  Figures 2.1 and 2.2 demonstrate how this filter operates for filtered 

Gaussian white noise.  
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 Figures 2.3 and 2.4 show spatially filtered Gaussian white noise for ! = 0.0  (our 

test case, which should have a flat spectral slope for no filtering) and ! = 0.5  (filtered 

white noise that yields smoothness equivalent to a fractional integration of 0.5). 
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Figure 2.1.  Gaussian white noise is integrated once (top panel) and is filtered with 

! = 1.0  (bottom panel).  While the functions look different since one is an integral and 

the other is simply smoothing the Gaussian noise, they have approximately the same 

degree of spatial heterogeneity. 
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Figure 2.2.  The Fourier spectral amplitude is plotted for the integrated Gaussian white 

noise (top panel) and filtered Gaussian white noise with ! = 1.0  (bottom panel).  A black 

line with slope = -1 is plotted on both the top and bottom panels.  
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Figure 2.3.  Gaussian white noise in the top panel.  Filtering with our smoothing 

parameter, ! = 0.0 , which is equivalent to no smoothing.  The bottom panel is a log-log 

plot of the Fourier amplitude spectra of the noise vs. spatial frequency.  Since ! = 0.0 , 

the slope of the Fourier amplitude spectra for the log-log plot  = 0, as expected.  This 

figure simply shows our baseline test case. 
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Figure 2.4.  In this case, our Gaussian white noise is filtered with an ! = 0.5  in the top 

panel.  The bottom panel is the log-log plot of the Fourier amplitude spectrum of our 

filtered noise vs. spatial frequency.  Note that the slope of the trend ≈ -0.5.  This is the 

approximate desired slope for a filtering parameter of ! = 0.5 .  
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So far all the results presented have been for 1D Gaussian white noise.  Now we 

need to extrapolate the results to 2D and 3D, since our simulations will require a 3D grid 

of spatially smoothed Gaussian white noise to represent the spatially heterogeneous 

stress.  One constraint we place on this extrapolation is that any 1D cross section through 

a 2D or 3D grid should have the same spectral falloff as our simple 1D examples.  A 

common equation that is used for filtering random Gaussian white noise in multiple 

dimensions is the Spectral Approximation [Barnsely, et al., 1988], 

 

 F k
1
,k
2
,...,k

n( )!
1

k
i

2

i=1

n

"
#

$
%

&

'
(

2H +n

2

    (2.5) 

where F k
1
,k
2
,...,k

n( )  is the n -dimensional filter we convolve with our noise, and H  is 

the Hurst exponent. H  relates to !  as follows:  ! =
2H +1

2
, where !  describes the 

spectral falloff of any 1D straight line within our multidimensional grid.  So we can 

rewrite this filter as 

F k
1
,k
2
,...,k

n( )!
1

k
i

2

i=1

n

"
#

$
%

&

'
(

A ) ,n( )
  (2.6) 

where 

A !,n( ) = ! +
n "1( )

2 .
 (2.7) 

The filter exponent, A !,n( ) , in 1D simplifies to 
 

A
1D

!( ) = !,  (2.8) 
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which means, F k
1( ) =

1

k
1

!
, the 1D falloff we want. 

However for 2D and 3D, we find that the approximation is more limited.  For 2D we 

have 

A
2D

!( ) = ! + 0.5( ),  (2.9) 

and in 3D 
A
3D

!( ) = ! +1( ).  (2.10) 

 
These equations are typically used for the range, 0.5 < ! < 1.5 .  As !  approaches 0 (no 

filtering, just random Gaussian white noise), the Spectral Approximation breaks down, 

because we have 

A
2D
0( ) = 0.5 ! 0

A
3D
0( ) = 1.0 ! 0

 

while we need A !,n( )" 0  as ! " 0  to generate Gaussian white noise. 

For example, in 2D we would have 

F k
1
,k
2( )!

1

k
i

2

i=1

2

"
#

$
%

&

'
(

1
2

,  

which produces filtered, fractal noise, instead of what we want,  

F k
1
,k
2( )!

1

k
i

2

i=1

2

"
#

$
%

&

'
(

0
= 1,  

which maintains the Gaussian random noise.  We will be testing a range of 0.0 < ! < 1.5 , 

which has values of !  that fall out of the commonly accepted range of 0.5 < ! < 1.5 ; 

therefore, we need to develop a better approximation.   
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 To visually display this need for a better approximation, we filter 2D and 3D grids 

with many different exponents for the filtering transfer function, F k
1
,k
2
,...,k

n( ) , plot 

their respective 1D spectral falloffs, and then plot A !,n( )  vs. ! .   In essence, we are 

numerically computing the actual relationship between the exponent function, f !,n( ) , 

and ! , where F k
1
,k
2( )!

1

ki
2

i=1

2

"
#

$
%

&

'
(

f ) ,n( )
.  Then we are comparing this numerically 

computed value to the spectral approximation, A !,n( ) , to demonstrate any 

discrepancies.  Figure 2.5 shows the 2D and 3D results of this numerical test.    

To address the problems with A !,n( )  as ! " 0 , we develop a new 

approximation to f !,n( ) , the actual exponent function.   Note that this new 

approximation is geared toward our particular size of grids, 201x201x201 points.  When 

the number of points, N, along any one dimension is sufficiently large, the filtering 

exponent becomes stable, but for grids with N = 201, there is an added effect due to the 

finite size of the grid.  Hence, our new approximation is only valid for this size of grid.  

For our new approximation we define:  

F k
1
,k
2
,...,k

n( )!
1

k
i

2

i=1

n

"
#

$
%

&

'
(

B ) ,n( )
  (2.11) 

where B !,n( )  is our new exponent function.  For 2D 

 

B
2D

!( ) = 2
! + 2.5

2.25

"
#$

%
&'

2

(1
)

*
+
+

,

-
.
.

  (1,   (2.12) 
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and for 3D 

B
3D

!( ) = 4.5
! + 7.5

7.45

"
#$

%
&'

2

(1
)

*
+
+

,

-
.
.

 ( 0.5.   (2.13) 

Figure 2.6 compares these new approximations to our numerically determined, f !,n( ) , 

exponent function.  Note, by design they are so closely matched it is difficult to 

distinguish one from another. B !,n( )  plots almost on top of f !,n( )  for both 2D (n = 2) 

and 3D (n = 3). 

 Now that we have a new approximation that produces the appropriate spectral 

properties for 2D and 3D data sets, we display some results in Figures 2.7 and 2.8, using 

! = 0.0,  0.5,  and 1.0 .  We find that as !  increases the scalar quantity becomes 

increasingly smooth spatially, i.e., the scalar values have increasing spatial correlation.  

Using the new approximation, the results for 2D and 3D have similar properties, with 1D 

spectral falloffs described by ! . 
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Figure 2.5.  When we filter scalar values in 2D and 3D, we still desire that any 1D cross 

section maintain the !"  slope.  For 1D grids, we could simply use the fractal filter, 

F k
1( ) =

1

k
1

!
, to produce a !"  slope, but in 2D and 3D it becomes more complicated.  

For multiple spatial dimensions, the exponent on the filter can now be expressed as a 

function of ! , i.e., as a function of the desired 1D cross-sectional smoothness.  This 

figure shows the following in 2D (top panel) and 3D (bottom panel).  The solid black line 

is a plot of f !,n( )  vs. ! , determined from numerical simulations for a 201x201x201 

grid, where Ff k1,k2 ,...,kn( )!
1

ki
2

i=1

n

"
#

$
%

&

'
(

f ) ,n( )
, and !  describes the 1D spectral falloff of 

Gaussian white noise filtered with Ff k1,k2 ,...,kn( ) .  The dashed blue line is a plot of 

A !,n( )  vs. !  where A !,n( ) is the Spectral Approximation function used in the filter, 

F
A
k
1
,k
2
,...,k

n( )!
1

k
i

2

i=1

n

"
#

$
%

&

'
(

A ) ,n( )
.  A !,n( ) = ! +

n "1( )

2
  [Barnsely, et al., 1988] where 

n  is the number of spatial dimensions and !  is the 1D spectral falloff of Gaussian white 

noise filtered with F
A
k
1
,k
2
,...,k

n( ) .  We wish to find a function that accurately describes 

the numerically determined curve, f !,n( ) ; hence, if A !,n( )  is a good approximation, it 

will plot directly on top of f !,n( ) .  Unfortunately, this figure shows that the Spectral 

Approximation, designated by A !,n( )  becomes a poor approximation for small values of 

! .  Most of our simulations use a range of 0.0 ! " ! 1.0 , where this approximation has 

trouble; hence, a better approximation for 2D (n = 2) and 3D (n = 3) is needed. 
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Figure 2.6.  This is similar to Figure 2.5 except now our improved approximation, 

B !,n( )  (dashed blue line), is plotted on top of the numerically determined curve, 

f !,n( )  (solid black line).  This time, our new approximation plots almost exactly on top 

of the numerically determined curve, f !,n( ) , indicating we have significantly improved 

our filtering exponent approximation.  By visual inspection we choose hyperbolic 

functions to represent our new approximation.  For 2D (n = 2) we have 

B !( ) = 2
! + 2.5

2.25

"
#$

%
&'

2

(1
)

*
+
+

,

-
.
.

  (1    

and for 3D (n = 3) it is   

B !( ) = 4.5
! + 7.5

7.45

"
#$

%
&'

2

(1
)

*
+
+

,

-
.
.

  ( 0.5 .  

 These new approximations should be sufficient to produce our desired !  smoothing for 

1D cross sections. 
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Figure 2.7.   Samples of our new smoothing approximation, B !,n( ) , for 2D (n = 2).  

! = 0.0  for the top row, ! = 0.5  for the middle row, and ! = 1.0  for the bottom row.  

The left column is a 2D surface plot where the height and color indicate the amplitude of 

the scalar quantity.  The right column shows a log-log Fourier amplitude spectra vs. 

spatial frequency for various 1D cross sections through the 2D grid where the solid black 

shows what the slope should be if our filter, B !,n( ) , is working properly.  Note two 

features:  1) The slopes of the 1D cross sections are approximately correct.  2) As the 

filtering power, ! , increases, the 2D spatial correlation of the values increases, i.e., it 

becomes spatially smoother as expected. 
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Figure 2.8.  This is very similar to Figure 2.7, except we have 2D cross sections through 

a 3D grid.  It is meant to demonstrate our new 3D (n = 3) filtering approximation.  In 

this case, the same seed data are used for the top (! = 0.0 ), middle (! = 0.5 ), and 

bottom (! = 1.0 ) rows, to show what happens as !  increases.  Again 1D cross sections 

have approximately the proper spectral falloff, and as !  increases, the observed spatial 

clumping in 2D and 3D increases. 
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Chapter 3.  Creating a Spatially Heterogeneous Full Stress Tensor 

 The previous chapter discussed how one would filter a scalar quantity in three 

dimensions.  The ultimate goal is to filter both full and deviatoric stress tensors, which 

are comprised of six and five independent quantities respectively.  

Rotational equilibrium requires that a 3D stress tensor is symmetric.  This 

symmetry means that six degrees of freedom are required to specify stress.  The other 

equilibrium condition, 
!" ij

!x jj=1

3

# = fi , which specifies no internal accelerations if there are 

no internal sources, provides an additional three constraints; however, the introduction of 

this equilibrium condition would force us to introduce random sources (dislocations) 

within the medium to produce our heterogeneous slip.  Otherwise, by St. Venant’s 

principle, the inside of a medium far away from the external boundaries and with no 

internal sources would have an approximately uniform stress distribution by definition if 

!" ij

!x jj=1

3

# = fi  is satisfied.  Since the introduction of random sources requires additional 

assumptions about the statistics of fault distributions, fault sizes, slip on faults, etc., in 

this study we opt for not satisfying 
!" ij

!x jj=1

3

# = fi  so that we can produce stress 

heterogeneity without the introduction of internal sources.  Again in this study we are 

primarily interested in producing a first-cut statistical description of the Earth’s crust, 

parameterized by two numbers, Heterogeneity Ratio  and ! , without having to model the 

individual sources that create the heterogeneity. 
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For deviatoric stress tensors, the pressure is subtracted out such that the trace 

(summation of the diagonal elements) equals zero.  This additional constraint reduces the 

degrees of freedom from six to five.  The formula for pressure is 

 p = 1 / 3( ) !
11
+!

22
+!

33( )  (3.1) 

and when we subtract the pressure from our stress tensor, we have the following 

deviatoric stress tensor, 

 
!

11
" p !

12
!

13
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12

!
22
" p !

23
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%
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'
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$

%
%

&

'

(
(

,

 (3.2) 

where 

 !"
11
+ !"

22
+ !"

33
= 0.  (3.3) 

 
The constraint can also be written as 

 !"
22
= # !"

11
+ !"

33( ),  (3.4) 

and our deviatoric stress tensor can be rewritten as 

!"11 !"12 !"13

!"12 # !"11 + !" 33( ) !" 23

!"13 !" 23 !" 33

$

%

&
&

'

(

)
)

.

 5 D.O.F. for a symmetric, deviatoric stress tensor[ ]  (3.5) 

 
 Recognizing that a symmetric, full stress tensor has six degrees of freedom and a 

symmetric, deviatoric stress tensor has five degrees of freedom, the question arises, 

“How does one filter a tensor with five or six degrees of freedom?”  At first glance we 

might wish to simply filter !
11

, !
22

, !
33

 !
12

, !
23

, and !
13

 as six independent scalar 

quantities for the full stress tensor or filter !"
11

, !"
33

, !"
12

, !"
23

, and !"
13

 as five 

independent scalar quantities for the deviatoric stress tensor, using the strategy outlined 



III-3 

 

in Chapter 2.  Unfortunately, ! ij  and !" ij  are always defined for a particular coordinate 

system.  If we filter in this way, then we find that the general characteristics of the 

filtered stress are changed when we rotate from one coordinate frame to another.  To 

resolve this problem, we need to rethink how to write our stress tensors.  

 An alternative way would be to represent the five degrees of freedom of the 

deviatoric stress tensor in terms of two scalar invariants of the stress tensor, and three 

orientation angles.  Likewise, we can represent the full stress tensor with three scalar 

invariants and three orientation angles. 

 

Invariant Filtering 

 It is fairly staightforward to filter invariants, quantities that remain unchanged 

upon rotation of the stress tensor or coordinate system.  We have many choices of 

invariants to choose from.  For simplicity, we choose to filter the principal stresses (!
1
, 

!
2

, and !
3
).  For the full stress tensor, we use all three of these principal stresses and for 

the deviatoric stress tensor we will filter !
1
, !

2
, and !

3
 then subtract out the pressure, 

p , so that  

 
!"
1
= "

1
# p

!"
2
= "

2
# p

!"
3
= "

3
# p.

 (3.6) 

 
This reduces the independent invariant quantities from three to two because 

!"
1
+ !"

2
+ !"

3
= 0 .  

 When generating and filtering each scalar principal stress (!
1
, !

2
, or !

3
), we 

begin with Gaussian random noise, clip it at the three standard deviation level, and then 
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apply the 3D filtering described in Chapter 2 to produce 3D filtered heterogeneity with 

1D spectral falloffs of some specified ! .  The Gaussian white noise that we start with is 

clipped at the three standard deviation level to remove extreme outliers because in the 

real Earth there is probably a limit on the amplitude of deviatoric stress, perhaps          

200 MPa, beyond which the rock will begin to fail.  Each scalar is given a zero mean; 

then the composite set of principal stresses (!
1
, !

2
, and !

3
) are given an overall size 

defined by !I
2
= 1.0 , where  

 !I
2
= !"

11

2
+ !"

22

2
+ !"

33

2
+ 2 !"

12

2
+ 2 !"

23

2
+ 2 !"

13

2  (3.7) 

or 

 !I
2
= !"

1

 2
+ !"

2

 2
+ !"

3

 2
. (3.8) 

 
We choose !

1
= 0.0 , !

2
= 0.0 , and !

3
= 0.0  when generating our heterogeneous stress 

tensor, !"
H
x
i( ) , so that any mean values will be subsumed into the spatially 

homogeneous background stress tensor, !"
B

.  This means that there are times when 

!
3
> !

2
> !

1
 does not hold for the heterogeneous principal stresses.  The problem can be 

solved by sorting the principal stresses and their associated orientations to produce 

degenerate principal stress orientations.  However, we will visualize the principal stresses 

in Figures 3.1–3.2 without sorting.   

Figure 3.1 shows !
1
 and !"

1
 for 10,000 Gaussian random points along a 1D 

length, filtered with ! = 0.0 , ! = 0.5 , ! = 1.0 , and ! = 1.5 .  The left-hand plots display 

the filtered principal stresses, and the right-hand plots display the Fourier transform of the 

principal stresses as a function of spatial frequency.  Additionally, on the right-hand 

plots, a straight, thick black line shows the expected !  spectral falloff.   Since !
1
, !

2
, 
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and !
3
 are generated using the identical process, it is only necessary to plot one of the 

principal stresses to show the filtered properties.  The main point of the plots in Figure 

3.1 is to show that indeed our principal stresses, !
1
, !

2
, and !

3
, and deviatoric principal 

stresses, !"
1
, !"

2
, and !"

3
, have the correct spectral falloff.  They should because it is a 

simple application of the principle already demonstrated in Chapter 2.  It is not 

unexpected that our deviatoric principal stresses also have the correct spectral falloff.   

Deviatoric stresses are the principal stresses with the pressure subtracted, where the 

pressure is described by equation (3.1).  We know that for filtered random processes, the 

linear sum of filtered random processes have the same spectral properties as the two 

individual processes if the same filter is used.  Specifically, if R
1
x( )  and R

2
x( )  are two 

Gaussian processes, then if 

 R x( ) = R
1
x( ) + R

2
x( )  (3.9) 

and if F x( )  is a spatial filter,  

 
F x( )* R x( ) = F x( )* R

1
x( ) + R

2
x( )!" #$

                   = F x( )* R
1
x( ) + F x( )* R

2
x( ).

 (3.10) 

Figure 3.2 shows plots of 2D cross sections through 3D grids of 201x201x201 

points.  The principal stress, !
1
, the deviatoric principal stress, !"

1
, and the pressure, p , 

are shown for ! = 0.0 ,! = 0.5 , ! = 1.0 , and ! = 1.5 . For each ! , the 2D cross section 

of stress is visualized two different ways:  1) On the left, are surface plots where the 

vertical amplitude and color corresponds to the amplitude of the scalar principal stress.  

2) On the right, are map view plots, where only the color corresponds to the amplitude of 

the scalar principal stress.  The 2D cross sections are taken from the same location in 

each 3D grid, about halfway along the ẑ  axis.  
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Figure 3.1 a) 
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Figure 3.1 b) 
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Figure 3.1 c) 
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Figure 3.1 d) 
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Figure 3.1.  Filtered scalar invariants, !
1
 and !"

1
, for 10,000 points in 1D.  We start 

with Gaussian white noise and apply the filtering strategy from Chapter 2 to produce !
1
 

with spectral 1D falloffs of ! .  In a) ! = 0.0  is applied, which means no filtering of the 

Gaussian white noise, b) ! = 0.5  is applied, c) ! = 1.0  is applied, and d) ! = 1.5  is 

applied.  Then we subtract out the pressure, p = 1 / 3( ) !
1
+!

2
+!

3( )  to produce !"
1
 with 

the same spectral 1D falloff as !
1
.  On the left are plots of the filtered stresses as a 

function of 1D length, and on the right are the Fourier transforms of the stresses plotted 

as a function of spectral frequency.  The desired !  spectral falloff is represented by a 

thick black line, and we find that indeed the spectral falloff of the filtered principal 

stresses closely follows the desired falloff represented by the thick line. 
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Figure 3.2 a) 
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Figure 3.2 b) 



III-13 

 

 

 

 

 
 

Figure 3.2 c) 
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Figure 3.2 d) 
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Figure 3.2.  Plots of filtered scalar invariants, !
1
, !"

1
, and p  for 2D cross sections of 

3D grids. The original 3D grids are 201x201x201; therefore, the 2D cross sections are 

201x201 points.  The cross sections are x-y planes at z = 101 , approximately the center 

of the grid. We start with Gaussian white noise and apply the filtering strategy from 

Chapter 2 to produce filtered scalar invariants with spectral 1D falloffs of ! .  In a) 

! = 0.0  is applied, which means no filtering of the Gaussian white noise, b) ! = 0.5  is 

applied, c) ! = 1.0  is applied, and d) ! = 1.5  is applied.  On the left are surface plots of 

the filtered scalars where the 2 spatial dimensions of the 2D cross section are 

represented by the x and y axes and the amplitude of the scalar quantities is represented 

by the vertical height and color.  On the right, are map view plots of the same 2D cross 

sections where the scalar amplitude is represented by color.  The same color scale is 

used for the left and right hand plots, which goes from -2.5 to 2.5 for ! = 0.0 ,! = 0.5 , 

and ! = 1.0  and from -2.0 to 2.0 for ! = 1.5 .  
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Upon inspection one can notice a few features.  The principal stress, !
1
, tends to have a 

larger amplitude than the deviatoric principal stress, !"
1
, but similar spatial smoothing.   

By design as the value of !  increases so does the spatial smoothing.  Since Figure 3.2 

shows only 2D cross sections through a 3D grid, and the mean is set to zero for the entire 

3D grid, the means of the 2D cross sections are not necessarily zero; in fact, the means of 

the 2D cross sections are often non-zero. 

 

Orientation Filtering 

 The next three quantities we wish to consider filtering are the three angles 

describing the orientation of the stress tensor.  There are several sets of three angles we 

could choose.  We could choose  

• Three Euler angles that describe the rotation of a stress tensor relative to a 

reference orientation.  This would be analogous to the strike, dip, and rake of slip 

vector on a fault plane. 

• Azimuth and plunge of the P axis plus an angle describing the orientation of the T 

axis about the P axis 

• A total rotation angle, ! , about a rotation axis, !,"[ ]  that represents a single 

rotation from a reference stress orientation to our desired point stress orientation. 

The representation we prefer to use is the third one, a total rotation angle, ! , 

about a rotation axis, !,"[ ] .  This seems to be the most natural set of three angles to filter 

if our intended goal is to filter stress tensor orientations.  Namely, when we filter ! , we 

are simply filtering the amplitude of the rotation (amplitude of the spherical linear 

interpolation from the reference orientation to our desired orientation).  When we filter 
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the angles in the rotation axis, !,"[ ] , we are filtering the axis about which the rotation 

takes place, where !,"[ ]  describe the path of the spherical linear interpolation.  So by 

filtering these three quantities (! , ",#[ ] ), we smooth out in space the total 3D orientation 

of the stress tensor.  See Figures 3.3 and 3.4 for graphical explanations of this 

representation.  Figure 3.3 explains how the rotation axis is defined; it passes from the 

origin through the point with colatitude, ! , and longitude, !  (this point is called the pole 

of rotation).  Figure 3.4 shows how once the rotation axis is defined with !,"[ ] , we can 

then apply our single rotation of amplitude ! , about this axis, !,"[ ] . 

 

Figure 3.3.  How the rotation axis, !,"[ ] , is defined.  The rotation axis, is the thick black 

arrow projecting out of the unit sphere.  !  is the colatitude of the rotation axis, the angle 

between the Up vector and the rotation vector, while !  is the longitude of the rotation 

axis, the angle between the North vector and the horizontal projection of the rotation 

axis, in a right-hand coordinate system about the Up vector. 
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a)       b) 
 
 

Figure 3.4.  Two examples of our ! , ",#[ ]( )  representation of 3D rotations.  In a) we 

have ! = 0  and ! = any value  for the rotation axis.  For b) we have ! = " 2  and 

! = " 2  for the rotation axis.  Both a) and b) have an ! = " 2  rotation about their 

respective rotation axes.   

 
 
 
 
 Now that we have defined the three scalar angles we wish to filter, an amplitude, 

! , plus a rotation axis, !,"[ ] , how do we go about filtering them?  We first wish to 

generate completely random sets of ! , ",#[ ]( ) , then filter the three angles.  Random sets 

of ! , ",#[ ]( )  are ! , ",#[ ]( )  such that the summation of N  stress tensors as N !"  

combined with random !"
1
, !"

2
, and !"

3
, produces an expected value of 
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!" =

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

#

$

%
%

&

'

(
(

, i.e.,E !" = 0 .  This is important because when we create our 

filtered heterogeneous component of the stress tensor, there should be no net orientation 

to the deviatoric, heterogeneous term in 3D. 

 E !"Heterogeneous
= 0  (3.11) 

To create truly random sets of ! , ",#[ ]( ) , it is helpful to work in quaternion space, 

producing random quaternions, then transform them back to ! , ",#[ ]( )  space. 

  A quaternion is simply a four-component vector that represents a 3D rotation. 

Analogy can be used to understand this.  To describe a point on a 3D unit sphere, there 

are two different ways to represent the position.  One representation would be a three-

component vector, 
 

!
u = u

x
,u

y
,u

z
!" #$ , with the constraint that 

 

!
u = u

x

2
+ u

y

2
+ u

z

2
= 1 , so 

that the point lies on the surface of the 3D unit sphere.  This reduces the degrees of 

freedom from three to two.  Another representation would be in terms of two angles, !  

and ! .  In the case of a 4D unit hypersphere, we again have two possible analogous 

representations.  We can use a four-component vector, a quaternion, 
 

!
q = q

0
,q
1
,q

2
,q

3[ ] , 

with the constraint that 
 

!
q = q

0

2
+ q

1

2
+ q

2

2
+ q

3

2
= 1 , so that the point lies on the surface 

of the 4D unit sphere and the degrees of freedom reduce from four to three.  

Alternatively, we can use three angles, ! , ! , and ! .  Thus this problem of producing 

random ! , ",#[ ]( )  reduces to the problem of choosing completely random points on the 

surface of a unit 4D hypersphere, which was solved by Marsaglia [1972].   
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The method of Marsaglia [1972] for picking random points on a 4D hypersphere, 

which produces unbiased 3D orientations, is summarized at the following web link 

http://mathworld.wolfram.com/HyperspherePointPicking.html [Weisstein].  In this 

method, one uses a uniform random number generator to pick pairs of points x
1
, x

2( )  and 

x
3
, x

4( ) , keeping only those pairs that satisfy the following constraints, x
1

2
+ x

2

2
< 1 and 

x
3

2
+ x

4

2
< 1.  For each set of points that are retained, one calculates the random 

quaternion, 
 

!
q
R
= q

0

R
,q
1

R
,q

2

R
,q

3

R!" #$ , as follows, 

 

q
0

R
= x

4

1! x
1

2
! x

2

2

x
3

2
+ x

4

2

q
1

R
= x

1

q
2

R
= x

2

q
3

R
= x

3

1! x
1

2
! x

2

2

x
3

2
+ x

4

2
.

 (3.12) 

 Once the random unit quaternions are calculated, we then transform the four-

vectors into their equivalent angles, ! , ",#[ ]( ) .  We use the standard relation between a 

quaternion, 
 

!
q = q

0
,q
1
,q

2
,q

3[ ] , and our set of angles, ! , ",#[ ]( )   

 

q
0
= cos ! 2( )

q
1
= sin ! 2( )sin "( )cos #( )

q
2
= sin ! 2( )sin "( )sin #( )

q
3
= sin ! 2( )cos "( )

 (3.13) 

where 

 
 

!
q = q

0

2
+ q

1

2
+ q

2

2
+ q

3

2
= 1.  

Conversely, we can turn the quaternions into our three angles, ! , ! , and ! . 
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! = 2cos
"1
q
0( )

# = cos
"1
q
3
/ sin ! 2( )( )

$ = tan
"1
q
2
q
1( )

 (3.14) 

where 0° !" ! 360° , 0° !" ! 180° , and 0° ! " ! 360° . 

 After generating random points on the 4D hypersphere (quaternions) and 

transforming these points into our orientation representation, ! , ",#[ ]( ) , we can now 

filter these three angles separately using the scalar filtering technique outlined in the 

previous chapter.  As we will show in Figures 3.11, the filtering process introduces an 

orientation bias.  We remove this bias by stacking at least 10–20 simulations where a 

random rotation has been added to the orientations in each simulation.  Any orientation 

bias cancels out in the stacking process also seen in Figure 3.11.   

To add a random rotation to our stress orientations, we again employ quaternions.  

Quaternions allow rotations to be added algebraically.  For example, if we have a stress 

tensor orientation represented by the quaternion 
 

!
q
A
= q

0

A
,q
1

A
,q

2

A
,q

3

A!" #$  and we wish to add 

on the 3D rotation represented by quaternion 
 

!
q
B
= q

0

B
,q
1

B
,q

2

B
,q

3

B!" #$  to produce a final 

orientation represented by quaternion 
 

!
q
C
= q

0

C
,q
1

C
,q

2

C
,q

3

C!" #$ , the algebra would simply be 

(adapted from 

http://www.mathworks.com/access/helpdesk/help/toolbox/aeroblks/aeroblks.html, 

Quaternion Multiplication) [Mathworks, 1994-2006], 

 

q
0

C
= q

0

B
q
0

A
! q

1

B
q
1

A
! q

2

B
q
2

A
! q

3

B
q
3

A

q
1

C
= q

0

B
q
1

A
+ q

1

B
q
0

A
! q

2

B
q
3

A
+ q

3

B
q
2

A

q
2

C
= q

0

B
q
2

A
+ q

1

B
q
3

A
+ q

2

B
q
0

A
! q

3

B
q
1

A

q
3

C
= q

0

B
q
3

A
! q

1

B
q
2

A
+ q

2

B
q
1

A
+ q

3

B
q
0

A
.

 (3.15) 
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As expected, the order of rotations is important, i.e., rotations are noncommutative.  

 Figure 3.6 shows 1D plots of our filtered orientation angles, ! , ",#[ ]( ) , before 

and after random rotations have been added.  The amplitude angles, ! , are plotted on the 

left as a function of 1D linear distance, and the rotation axes, !,"[ ] , are plotted on the 

right as points on an equal area plot where 0° <! < 360° , 0° < ! < 180° , and 

0° < ! < 360° .  The longitude, ! , is represented by the azimuthal angle about the 

circular, equal area plot as shown in Figure 3.5, and !  is represented by the radial 

distance from the center of the circle. ! = 0°  at the center, and ! = 180°  at the 

circumference.  At first this may seem like an odd representation until one thinks about 

the plot in terms of latitude, ! = 90° "# , instead of the colatitude, ! .  In terms of the 

latitude, ! , ! = 90°  at the center and ! = "90°  at the circumference, which is similar to 

an equal area P-T plot that shows the full plunge range of ± 90° . 

 The top and bottom rows show ! , ",#[ ]( ) , where random orientations have been 

filtered with an !  then multiplied with a reference quaternion.  The top row shows the 

unrotated ! , ",#[ ]( ) , and the bottom row shows the rotated ! , ",#[ ]( ) .  When the 

reference quaternion is q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ] , as seen in the top row, ! , ",#[ ]( )  is 

unchanged upon multiplication, because q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  produces no 

rotation; ! = 2cos
"1
q
0( ) = 2cos"1 1.0( ) = 0° .  When the reference quaternion is 

something other than q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ] , as seen in the bottom row, ! , ",#[ ]( )  

is rotated upon quaternion multiplication. 
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 If there is no filtering, ! = 0.0 , then our ! , ",#[ ]( ) s are produced using the 

random unit quaternion generator, and the rotation axes, !,"[ ] , are uniformly distributed 

on the equal area plot as seen in Figure 3.6 a).  As the filtering constant, ! , increases, the 

spatial smoothing of ! , ",#[ ]( )  increases:  1) !  becomes smoother as a function of 

distance.  2) The rotation axes, !,"[ ] , at first clump for ! = 0.5  and ! = 1.0 , then track a 

clearly distinguishable linear path on the equal area plot for ! = 1.5 .  The rotated and 

unrotated cases have fairly similar properties (degree of spatial smoothing, clumping, 

etc.); therefore, we should be able to stack the filtered and randomly rotated ! , ",#[ ]( ) s 

to produce no net orientation, while maintaining to first order, the ! -filtered properties of 

each individual run.  

 

Figure 3.5.  A cartoon of the equal area plots used in Figure 3.6 for the rotation axes, 

!,"[ ] .  The longitude, ! , is the azimuth of the circle, and latitude, ! = 90° "# , is plotted 

as a function of radial distance where, ! = 90° "# = 90°  at the center and 

! = 90° "# = "90° , at the circumference.  Note the cartoon is not necessarily to scale. 
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Figure 3.6 a) 
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Figure 3.6 b) 

 

 

 



III-26 

 

 

Figure 3.6 c) 
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Figure 3.6 d) 
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Figure 3.6.  A series of 1D simulations are shown with different degrees of smoothing, 

! , applied where a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  Each simulation is 

approximately 10,000 points.  For each ! , there are a total of four subplots.  On the top 

left is a 1,000-points-long segment of the filtered rotation angle, ! .  As expected, as !  

increases, the spatial smoothness of the rotation angle, ! , increases.  On the bottom left 

is again ! , but after a random rotation has been applied to the orientation angles.  It 

appears to maintain its filtered properties to first order upon inspection.  See Figure 3.8 

for a more thorough evaluation of what happens to the spectral properties upon rotation 

of coordinate system.  On the top right is an equal area plot with the rotation axes, !,"[ ] , 

plotted as black dots.  On the bottom right is another equal area plot of the rotation 

poles, !,"[ ] , after a random rotation has been applied.  Again the spatially smoothed 

rotation poles maintain their spectral properties to first order.   

 For ! = 0.0 , no spatial smoothing or completely random orientations produce 

completely random rotation poles on our equal area plot.  This unbiased distribution 

remains unchanged upon rotation of coordinate systems.  As !  increases, the rotation 

poles begin clumping together until they form 1D lines, representing the wander of the 

1D data set.  
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 In Figure 3.7, our three orientation angles, ! , ",#[ ]( ) , for 1D simulations are 

visualized in a different way.  3D unit spheres have been plotted with a wire mesh, then 

the position of the rotation axes, !,"[ ] , are plotted as points on the sphere.  Last, the 

color of the points represents the amplitude angle, !  according to the horizontal color 

bars underneath.  On the left, are the unrotated, ! , ",#[ ]( ) , and on the right are the 

rotated, ! , ",#[ ]( ) .  When there is no filtering, ! = 0.0 , the rotation axes, !,"[ ] , are 

uniformly distributed over the sphere, and the color, which represents the amplitude, ! , 

is random.  Additionally, when ! = 0.0  the angles, ! , ",#[ ]( ) , appear to be unchanged 

upon rotation.  There is the same random pattern after rotation as before.  As the filtering, 

! , increases, the spatial smoothing of the points on the sphere increases, and the spatial 

smoothing of the colors increases, representing the smoothing of the three angles, 

! , ",#[ ]( ) , until at ! = 1.5  the data form clear demarcated linear tracks.  The rotated data 

on the right have similar smoothness as the unrotated data to first order. 

 The spectral properties of the unrotated and rotated !  are plotted in Figure 3.8 to 

examine how closely our filtered angles approach the desired !  spectral falloff.  While 

not shown, the rotation axes, !,"[ ] , have similar properties, but !  is more difficult to 

plot because one needs to wrap the phase appropriately before calculating the spectral 

properties.  The plots on the left in Figure 3.8 show the angle !  as a function of 1D 

length, and the plots on the right in Figure 3.8 show the Fourier transform of the angle !  

as a function of spatial frequency.  The right-hand plots also have a thick black line, 

which shows the desired !  spectral falloff.  To first order, ! , follows the desired !  

spectral falloff for both the rotated and unrotated cases with the lowest frequencies 
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sometimes a little underrepresented.  The exact spectral falloff for our three orientation 

angles, ! , ",#[ ]( ) , is calculated in Table 3.1, where the spectral falloffs for 200 1D 

simulations, approximately 10,000 points each is averaged for different values of ! .  

Then the results of Table 3.1 are plotted in Figure 3.9.  We find that indeed the unrotated, 

! , ",#[ ]( ) , has exactly the spectral falloff we want, ! , but the rotated angles, are slightly 

rougher for ! < 0.6 . 
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Unrotated ! , ",#[ ]( ), $ = 0.0   Rotated ! , ",#[ ]( ), $ = 0.0  

 

Figure 3.7 a) 

Unrotated ! , ",#[ ]( ), $ = 0.5   Rotated ! , ",#[ ]( ), $ = 0.5  

 

Figure 3.7 b) 
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 Unrotated ! , ",#[ ]( ), $ = 1.0    Rotated ! , ",#[ ]( ), $ = 1.0  

 

Figure 3.7 c) 

Unrotated ! , ",#[ ]( ), $ = 1.5    Rotated ! , ",#[ ]( ), $ = 1.5  

 

Figure 3.7 d) 
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Figure 3.7.   This is another way to visualize our filtered orientation data.  The position 

of the plotted points on the 3D spheres represents the rotation axes !,"[ ] , and the color 

represents the rotation about the poles, ! , where blue = 0°  and red = 360° .  Of course, 

for ! = 0.0 , there are random positions of the points and random colors, representing 

the random 3D orientations, ! , ",#[ ]( ) .  As !  increases, the spatial smoothing of point 

locations increases until there are linear tracks.  Concurrently, as !  increases, the 

spatial smoothing of color increases until the color changes smoothly from one to 

another along the 1D lines for ! = 1.5 .  This demonstrates that we have successfully 

smoothed the three orientation angles, ! , ",#[ ]( ) , together.   On the left, we plot 

! , ",#[ ]( )  without the random rotation added, and on the right, we plot ! , ",#[ ]( )  with 

the random rotation added.  These show that ! , ",#[ ]( )  still has similar properties 

regardless of the random rotation added. 
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Figure 3.8 a) 
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Figure 3.8 b) 



III-36 

 

 

Figure 3.8 c) 



III-37 

 

 

Figure 3.8 d) 
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Figure 3.8.  A series of 1D simulations are shown with different degrees of smoothing, 

! , applied where a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  Each simulation is 

approximately 10,000 points.  In this figure, !  is plotted for all 10,000 points on the left, 

and its spectral falloff is plotted on the right.  The top plots represent !  before the 

random rotation is added, and the bottom plots represent !  after the random rotation is 

added.  The main feature to notice is that !  does indeed have the approximately the 

appropriate spectral falloff both before and after the random rotation.  The thick black 

line represents the expected !  falloff, and the smoothed !  data for all the cases we tried 

between 0.0 <! < 1.5  approximately follows this expected thick black line.  Sometimes, 

the very low frequencies are a little underrepresented, but overall this works quite well. 
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Table 3.1.  The Spectral Falloff Calculated for Each Filtered Angle as a Function of !  

!  
!  

Unrotated  
Falloff 

!  
Unrotated  

Falloff 

!  
Unrotated  

Falloff 

!  
Rotated  
Falloff 

!  
Rotated  
Falloff 

0 -4.16E-03 -2.79E-03 -1.62E-03 -4.85E-03 1.19E-03 
0.1 0.1020 0.1016 0.0978 0.0548 0.0489 
0.2 0.2010 0.2016 0.2008 0.1358 0.1317 
0.3 0.2985 0.2951 0.3039 0.2299 0.2211 

0.35 0.3480 0.3525 0.3461 0.2796 0.2645 
0.4 0.4011 0.4003 0.4019 0.3459 0.3301 
0.5 0.5003 0.5008 0.5021 0.4623 0.4352 
0.6 0.6001 0.6006 0.6007 0.5841 0.5475 
0.7 0.7016 0.7006 0.7005 0.6872 0.6609 
0.8 0.8008 0.7987 0.8066 0.8009 0.7778 
0.9 0.8999 0.8999 0.8970 0.8987 0.8822 
1 1.0000 1.0051 1.0030 1.0023 1.0028 

1.1 1.0986 1.0980 1.0969 1.0924 1.1060 
1.2 1.2026 1.1982 1.1961 1.2031 1.2030 
1.3 1.2963 1.3026 1.2996 1.2984 1.2964 
1.4 1.3960 1.4012 1.4020 1.4002 1.3977 
1.5 1.5033 1.4986 1.4989 1.4980 1.4944 

 

If everything is working properly, the spectral falloff should ≈ ! .  For each ! , we 

• generate 200 1D simulations, approximately 10,000 points each,  

• determine the spectral falloff for the log-log plots of the data,  

• then average the slopes for all 200 simulations. 

As expected, the spectral falloff of the unrotated angles, ! , ! , and !  equals !  for 

0.0 ! " ! 1.5 .  The rotated simulations have spectral falloffs close to ! , but tend to be a 

little spatially rougher, especially for ! < 0.6  (Figure 3.9).  We calculate the spectral 

falloff of only the !  and !  rotated angles because the jumps in !  for a rotated 

simulation make it difficult to accurately assess a new spatial roughness. 
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Figure 3.9.   Plots of Table 3.1 data.  The top plot shows spectral falloff as a function of 

!  for the unrotated data, and the bottom plot shows the spectral falloff as a function of 

!  for the rotated data.  In both cases, the desired relationship is a linear line with a 

slope of 1.0 and an intercept of 0.0, indicated by a thick black line.  In the top plot, the 

unrotated, !  (in blue), !  (in red), and !  (in green) plot directly on top of the desired 

black line.  In the bottom plot, the rotated !  (in blue) and !  (in red) tend to be slightly 

rougher spatially for ! < 0.6 , which produces spectral falloff values (negative slopes on 

a log-log plot) that are slightly less than ! . 

 

 

 

Now that we have determined how to create filtered, approximately random, 

heterogeneous stress tensor orientations in terms of our three angles ! , ",#[ ]( )  and 

thoroughly examined their spectral properties, we can convert ! , ",#[ ]( )  into strike, dip, 

and rake, !," ,#( ) . Last, we will combine !," ,#( )  with filtered !
1
, !

2
, and !

3
 to 

produce our full-filtered heterogeneous stress tensor.  Technically, in the code used for 

this thesis, once ! , ",#[ ]( )  has been filtered, we convert it first into the associated 

quaternion vectors, 
 

!
q
F
= q

0

F
,q
1

F
,q

2

F
,q

3

F!" #$ , where F  stands for filtered, then calculate 

!," ,#( ) .  Using the derived equations in Appendix B, we have, 

 tan! =
q

0

F
 q

1

F
 + q
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F
 q

3

F

q
0

F
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 - q
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F
 q
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F
 (3.16) 
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.
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Appendix A describes how to combine !," ,#( )  with !
1
, !

2
, and !

3
 to produce the full 

heterogeneous stress tensor.  It also explains how to convert !," ,#( )  into the azimuth 

and plunge of the P-T axes, !
P
,"

P( )  and !
T
,"

T( ) .   

 Plots of !
P
,"

P( )  and !
T
,"

T( )  from filtered 1D heterogeneous orientations, 

! , ",#[ ]( ) , are shown in Figure 3.11 for four different levels of smoothing, 

! = 0.0, 0.5, 1.0, and 1.5 .  !
P
,"

P( )  and !
T
,"

T( )  are plotted on equal area plots for a 

plunge range of ± 90°  as diagrammed in Figure 3.10.  Typically, P-T equal area plots 

only have a plunge range of 0° ! 90° , because if for example, !
P
< 0 , then one can just 

apply the following transformation, !
P
' = "!

P
 and !

P
' = !

P
+ " , to create a vector with a 

non-negative plunge that produces the same stress tensor.  However, in our simulations, 

when ! = 1.5 , it is interesting to see the unbroken linear track of the 1D simulation in P-

T space, and this can only be seen if we use the full range of ± 90° .  In the top row, the 

P-T angles, !
P
,"

P( )  and !
T
,"

T( ) , are plotted for filtered, unrotated ! , ",#[ ]( ) , and in the 

bottom row the same data are plotted after a rotation.  The quaternion vector listed for 

each plot is the quaternion that is multiplied with ! , ",#[ ]( ) , where, 

q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  produces no rotation, and 

 

!
q ! q

0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  

produces a rotation.  For ! = 0.0 , the points in P-T space on the equal area plots are 

uniformly distributed.  This means that indeed, the random quaternion generator does 
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produce random orientations in 3D.  Last, as the spatial smoothing, ! , increases, the 

smoothing in P-T space increases.  Thus, it would appear that the spatial smoothing of 

our orientations ! , ",#[ ]( )  translates well into !
P
,"

P( )  and !
T
,"

T( ) . 

 

 

 

Figure 3.10.  A cartoon of the equal area plots used in Figure 3.11 for the P-T azimuths 

and plunges, !
P
,"

P( )  and !
T
,"

T( ) .  The longitude, ! , is the azimuth of the circle, and 

plunge, ! , is plotted as a function of radial distance where, ! = 90°  at the center, and 

! = "90°  at the circumference.  Note the radial lines are not necessarily to scale. 
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Figure 3.11 a) 
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Figure 3.11 b) 
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Figure 3.11 c) 
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Figure 3.11 d) 
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Figure 3.11.  The Principal Compression Axes (P axes) and Principal Tension Axes (T 

axes) are plotted as on equal area plots for a series of simulations.  The P axes are red 

on the left, and the T axes are blue on the right.  The plunge range is ± 90°  on the equal 

area plots instead of the usual 0° ! 90° , so that when ! = 1.5  one can more easily track 

the linear track of the data in P-T space.  The top rows show P-T angles, !
P
,"

P( )  and 

!
T
,"

T( ) , for the filtered and unrotated, ! , ",#[ ]( ) , and the bottom row shows the same 

data except that ! , ",#[ ]( )  were rotated.  The quaternion by which the data ! , ",#[ ]( )  

were multiplied is listed on each plot, where q
0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  produces no 

rotation, and 
 

!
q ! q

0
= 1,q

1
= 0,q

2
= 0,q

3
= 0[ ]  produces a rotation. 

 Note that for a) ! = 0.0  the P-T axes are evenly and randomly distributed on the 

equal area plots for both the unrotated and rotated cases.  This indicates there is no 

orientation bias for ! = 0.0 , which is not surprising since our unfiltered orientations 

were by design generated randomly.  For b) ! = 0.5  one can see that the axes are still 

somewhat randomly distributed, but there is a slight radial clumping for the unrotated P-

T plots, and this clumping of orientations is rotated for the bottom P-T plots.  As !  

increases further, to c) ! = 1.0 , more fine-scale structure and orientational clumping 

arises, and it still has some orientational bias.  Last, when d) ! = 1.5 , the orientations 

smoothly vary from one point to another such that it forms a continuous, wandering line 

in P-T space.  One can see that for ! > 0.0 , a single filtered simulation may not generate 

randomly orientated data; hence, this is why we wish to stack many simulations where 

each data set has been given a random rotation.  Figure 3.13 shows the efficacy of this 

approach. 
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 While the filtering of the orientation angles, ! , ",#[ ]( ) , works quite well in 

producing filtered, P-T axes angles, !
P
,"

P( )  and !
T
,"

T( ) , it also produces an orientation 

bias.  Since we wish to generate heterogeneous stress with no orientation bias, we employ 

the strategy mentioned previously.  Generate at least 10–20 filtered data sets, add a 

random rotation to each data set, then stack the data sets.  Figure 3.13 compares the 

stacking of multiple data sets with and without the random rotations to demonstrate the 

necessity of randomly rotating the data sets before stacking them.  P-T axes are plotted in 

Figure 3.13, using the typical 0° ! 90°  plunge range for P-T equal area plots.  This 

typical plunge range is diagrammed in the Figure 3.12 cartoon.  In Figure 3.13, the top 

row of P-T equal area plots for each !  has stacked 200 1D simulations, each 1,001 

points long, without any random rotations applied to ! , ",#[ ]( ) .  The bottom row of P-T 

equal area plots for each !  has stacked 200 1D simulations, each 1,001 points long, with 

a random rotation applied to ! , ",#[ ]( )  for each simulation.   

One finds that stacking the data alone (top rows), without any random rotations 

applied, helps, but still produces an average bias in the P-T orientations; one can visually 

see this in Figure 3.13 with the uneven coverage of the equal area plots especially for 

! = 1.5 .  When one adds a random rotation to each simulation and then stacks multiple 

simulations (bottom rows), the P-T orientations begin to average out until the equal area 

plots are fairly uniformly covered, and there is little to no orientation bias.  

 Underneath each set of P-T plots, we have also listed the component-wise mean 

heterogeneous stress tensor, that is calculated as follows: 

  !"HeterogeneousMean =
1

N1  N2
!"Heterogeneous

 ij !"
1

 ij
, !"

2

 ij
, !"

3

 ij
,# ij

,$ ij
,% ij( )

i=1

N1

&
j=1

N 2

&  (3.19) 
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where N1  is the number of points in each simulation and N2  is the number of 

simulations.  Note, filtered deviatoric principal stresses, !"
1
, !"

2
, and !"

3
 have been 

combined with our orientation angles ! , ",#[ ]( ) , to generate !"Heterogeneous  for each 

simulation; then the above component-wise mean equation above is applied.  Last, the 

square root of the second invariant of the deviatoric stress tensor, !I
2

, is calculated for 

the component-wise mean heterogeneous stress tensor.  In Chapter 4, we will see why 

!I
2
= !"

11

 2
+ !"

22

 2
+ !"

33

 2
+ 2 !"

12

 2
+ 2 !"

23

 2
+ 2 !"

13

 2 , is so important; !I
2

 is an invariant measure 

of the maximum shear stress and is the quantity used to determine when points fail for 

our grid.  Also, as mentioned in Chapter 1, !I
2

 is used in calculating the ratio of 

heterogeneous stress to background stress.  Therefore, !I
2  HeterogeneousMean  is a natural way 

of measuring the size of the residual average stress tensor.  The smaller the 

!I
2  HeterogeneousMean  the better when attempting to produce heterogeneous deviatoric stress 

tensors with an approximately zero component-wise mean.  We find that in Figure 3.13 

indeed, stacking the data alone is insufficient to produce approximately zero mean stress 

tensors; adding a rotation to each simulation then stacking is necessary if one wishes to 

have a zero mean stress tensor for any filtering power, ! . 

 Our last figure with filtered 1D data, is Figure 3.14, which shows one component 

of the filtered deviatoric stress tensor, !"
11

, and its spectral properties.  The other 

components of the deviatoric stress tensor, !"
22

, !"
33

, !"
12

, !"
23

, and !"
13

, have similar 

spectral properties and are not shown.  The main point of Figure 3.14 is to show that even 

if the orientations ! , ",#[ ]( )  and the principal stresses, !"
1
, !"

2
, and !"

3
 are all filtered 
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with an ! > 0.0 , the components of the stress tensor in a Cartesian coordinate system, 

!"
11

, !"
22

, !"
33

, !"
12

, !"
23

, and !"
13

 do not have the ! spectral falloff.  To create our stress 

tensor, we have rotated principal stresses at each point into their specified reference 

frames.  The simple act of rotating principal stresses into different reference frames, even 

using smoothed rotations, causes the symmetric stress tensor to not have the same !  

smoothing as the principal stresses.  Even if one started with a Cartesian stress tensor and 

smoothed each component separately, then rotated to another reference frame, one loses 

all the !  smoothing spectral properties.  So Figure 3.14 helps demonstrate why we 

choose not to filter the components of a stress tensor for a particular reference frame but 

instead choose to filter the principal stresses and orientation angles. 

 

 

Figure 3.12.  A cartoon of the equal area plots used in Figure 3.13 for the P-T azimuths 

and plunges, !
P
,"

P( )  and !
T
,"

T( ) .  The longitude, ! , is the azimuth of the circle, and 

plunge, ! , is plotted as a function of radial distance where ! = 90°  at the center, and 

! = 0°  at the circumference.  Note the radial lines are not necessarily to scale. 
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Figure 3.13 a)  
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Figure 3.13 b) 
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Figure 3.13 c) 
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Figure 3.13 d) 
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Figure 3.13.  For 4 different levels of smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and 

d) ! = 1.5 , we stack the results of 200 simulations, 1D length of 1,001 points each, and 

inspect whether or not there still is an orientation bias.  In the top row, each simulation’s 

three orientation angles, ! , ",#[ ]( ) , are filtered, converted to the P-T angles, !
P
,"

P( )  

and !
T
,"

T( ) , then stacked.  In the top row each simulation’s three orientation angles, 

! , ",#[ ]( ) , are filtered, given a random rotation, converted to the P-T angles, !
P
,"

P( )  

and !
T
,"

T( ) , then stacked.  Below each set of P-T equal area plots is an associated 

!"HeterogeneousMean  stress tensor.  This is calculated as follows.  For each simulation, filtered 

principal stresses, !"
1
, !"

2
, and !"

3
 with !I

2
= 1.0 , are combined with the unrotated or 

rotated angles, ! , ",#[ ]( ) , to produce filtered heterogeneous stress tensors.  Then all the 

stress tensors from all the simulations are averaged component-wise to create, 

!"HeterogeneousMean .    Last, !I
2  HeterogeneousMean , is shown as a measure of the size of 

!"HeterogeneousMean .  It shows the extent to which the components of !"HeterogeneousMean  have not 

canceled out in the stacked simulations, and there is still a bias in the heterogeneous 

stress.  Ideally, we want stacked simulations that have the following properties:  1) P and 

T equal area plots with uniform distributions of points (indicating no orientation bias) 2) 

!"HeterogeneousMean  with each component approaching zero; therefore, I '
2  HeterogeneousMean

! 0  

as the number of stacked runs !" .  We find that stacking filtered data alone is 

insufficient (the top row), that one needs to both randomly rotate each simulation and 

then stack the data to produce heterogeneous stress with no orientation bias and a 

I '
2  HeterogeneousMean

! 0  for all ! . 
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Figure 3.14 a) 

Figure 3.14 b) 
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Figure 3.14 c) 

Figure 3.14 d) 
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Figure 3.14.  We plot the one component of a stress tensor for different levels of !  

smoothing.  The other components of the stress tensor have similar spectral properties.  

Smoothed orientation angles, ! , ",#[ ]( ) , and smoothed principal stresses, !"
1
, !"

2
, and 

!"
3
, are combined together to produce a symmetric stress tensor in a particular reference 

frame.  Note that the independent components of the stress tensor are much rougher than 

the smoothed orientation angles and principal stresses.  When the smoothed principal 

stresses, !"
1
, !"

2
, and !"

3
, are rotated into their respective reference frames using the 

smoothed angles, ! , ",#[ ]( ) , to produce the Cartesian stress tensor components, much of 

the !  smoothing is lost.  This occurs because the symmetric stress tensor is defined for a 

Cartesian coordinate system in a particular reference frame, and stress components can 

lose their spectral properties upon rotation.  This property is the reason we chose to filter 

the principal stresses and orientation angles rather than components of the Cartesian 

stress tensor in a particular reference frame.  
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 The last few plots show results for our 201x201x201 3D grids.  Figures 3.15–3.18 

show 2D slices through our filtered 3D grids at the Z = 100  height, midway through the 

3D grids.  The quantities shown in Figures 3.15–3.18 are shown for four different levels 

of smoothing, ! = 0.0, 0.5, 1.0, and 1.5 .  In Figures 3.15–3.17, we find plots of the 

filtered and rotated 3D orientation angles, ! ",#[ ]( ) .  Note for each ! , a different 

random seed is used to create the 3D grid prior to filtering, and a different random 

rotation is applied to each grid.  Random rotations can change the mean values of 

! ",#[ ]( ) ; hence, the 2D slices of ! ",#[ ]( ) , shown in Figures 3.15–3.17, have different 

mean levels for different ! .  This has nothing to do with the filtering.  It is simply a 

function of the different random rotations that are applied. 

In Figure 3.18 we have plots of !"
11

, the first diagonal component of the 

deviatoric stress tensor.  The 3D deviatoric stress tensor is calculated by combining the 

filtered, and rotated 3D orientation angles, ! ",#[ ]( )  with filtered 3D principal stresses, 

!"
1
, !"

2
, and !"

3
.  We only show one component of the filtered 3D deviatoric stress 

tensor because the other components are similar.  Again the components of the deviatoric 

stress tensor are not as spatially smooth as the orientation angles or principal stresses as 

we saw in the 1D.  The only pattern we find within the filtered deviatoric stress tensor is 

that the standard deviations of the off-diagonal components tend to be ≈14% smaller than 

the standard deviations of the diagonal components.   
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a)            b) 

     

c)           d)   

Figure 3.15.  2D slices of the angle, ! , through a 3D grid for four different levels of 

smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  Each grid is 

201x201x201 points, for a total of over 8 million grid points.  The 2D slices shown are in 

the x-y plane approximately halfway through the grid at z = 100.  All the planes exhibit 

similar spatial smoothing.  Since it is a different simulation for each ! , with a different 

random rotation of the angles ! , ",#[ ]( )  for each simulation, the mean value of the 

angle, ! , is different from simulation to simulation. 
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a)           b) 

      

c)           d) 

Figure 3.16.   2D slices of the angle, ! , through a 3D grid for four different levels of 

smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  The 2D slices shown are 

in the x-y plane approximately halfway through the grid at z = 100.  All the planes 

exhibit similar spatial smoothing.  Since it is a different simulation for each ! , with a 

different random rotation of the angles ! , ",#[ ]( )  for each simulation, the mean value of 

the angle, ! , is different from simulation to simulation. 
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a)            b) 

      

c)           d) 

Figure 3.17.  2D slices of the angle, ! , through a 3D grid for four different levels of 

smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  The 2D slices shown are 

in the x-y plane approximately halfway through the grid at z = 100.  All the planes 

exhibit similar spatial smoothing.  Since it is a different simulation for each ! , with a 

different random rotation of the angles ! , ",#[ ]( )  for each simulation, the mean value of 

the angle, ! , is different from simulation to simulation. 
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a)           b) 

     
c)           d) 
 
Figure 3.18.  2D slices of the first diagonal component of the deviatoric stress tensor, 

!"
11

, through a 3D grid for four different levels of smoothing, a) ! = 0.0 , b) ! = 0.5 , c) 

! = 1.0 , and d) ! = 1.5 .  The 2D slices shown are in the x-y plane approximately 

halfway through the grid at z = 100. !"
11

 is rougher than the smoothed principal stresses, 

!"
1
, !"

2
, and !"

3
, or smoothed orientation angles ! , ",#[ ]( ) .  See Figure 3.14, the 1D 

example, for an explanation.  The other components of the deviatoric stress tensor show 

similar spectral properties, i.e., degree of spatial smoothing. 
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 The next question we ask is how random are our 3D grids for different levels of 

spatial smoothing, ! .  Figure 3.19 explores this.  Using the azimuth and plunge ranges 

illustrated in the Figure 3.12 cartoon, Figure 3.19 plots the P-T axes from randomly 

selected points within our 3D grids for four different levels of ! .  For each ! , 100,000 

points are randomly selected and plotted, a component-wise mean stress tensor, 

!"HeterogeneousMean , is calculated, and its associated !I
2  HeterogeneousMean  (a measure of the size of 

!"HeterogeneousMean ) is shown.  If the 3D grid has unbiased orientations, we would expect to 

see a uniform coverage of the equal area P-T plots as we see in Figure 3.19 a) and if the 

stress heterogeneity has a zero mean (which is what we are trying to design), we would 

expect the components of !"HeterogeneousMean  to be close to zero and !I
2  HeterogeneousMean  to be 

very small.  For comparison, the deviatoric principal stresses used in creating the stress 

tensor, have an !I
2
= 1.0 .  We find that for the ! = 0.0  case, Figure 3.19 a), the P-T 

equal area plots are uniformly covered with points as one might expect for no filtering.  

As !  increases, the spatial clumping of data on the P-T plots increases.  Interestingly, 

!I
2  HeterogeneousMean  is quite small for both ! = 0.0  and ! = 0.5 , less than 1%  when 

compared to the size of the input principal stresses, !I
2
= 1.0 .  As !  increases, 

eventually, !I
2  HeterogeneousMean  increases to ! 2%  for ! = 1.0  and !I

2  HeterogeneousMean
" 8%  

for ! = 1.5 .  Consequently, if one remains within the range of 0.0 ! " < 1.0 , there will 

be less than 2% bias within the heterogeneity stress tensor for our 3D grids.   

For first order calculations, a single filtered 3D heterogeneous stress grid should 

be sufficient to approximate heterogeneous stress with zero mean for 0.0 ! " < 1.0  if one 

averages over the entire grid.  For 1.0 ! " ! 1.5 , other issues will arise.  Namely, as !  
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increases and the heterogeneous stress is increasingly smoothed, there will develop 

regions within the grid that will be more likely to fail than others (large !I
2

), which can 

produce an average orientation bias in simulations that generate synthetic focal 

mechanisms.  Again the answer will be to stack results from simulations with different 

3D heterogeneous stress grids.  See Chapter 4 for an explanation as to why regions with 

large !I
2

 are more likely to fail. 

Figure 3.19 demonstrates that there is little to no bias when one averages over our 

entire 3D grids, but what happens if one averages over only a subregion of our 3D grids?   

This is another subject unto itself [Heaton, 2006, in preparation], but for now we just 

want to show that as the spatial smoothing, ! , increases, there is increased clustering of 

orientations in P-T space, and the stress tensor has a significant non-zero mean for 

subregions.  Also some subregions will be more likely to fail than others, those with 

larger !I
2

.  Figure 3.20 diagrams how we divide our grid into subregions (with the 

unprimed numbers) and the subdivide into sub-subregions (with the primed numbers).  

Figure 3.21 shows P-T plots, !"HeterogeneousMean , and !I
2  HeterogeneousMean  for sample subregions 

and sub-subregions.  The azimuthal and plunge ranges are the same as in Figure 3.19.  

For each ! , one subregion, (1,1,1), containing 100,000 points and one sub-subregion, 

(1’,1’,1’), containing 1,000 points are plotted.  As expected, for ! = 0.0 , it is still 

uniform, random, even in the subdivisions of the grid.  For ! = 0.5 , a little spatial 

clumping begins.  It is for ! = 1.0  and ! = 1.5 , that we begin to notice marked 

differences between the average orientations of subdivisions and the entire grid.  For 

example, ! = 1.0 , (1,1,1) has a !I
2  HeterogeneousMean

" 18% , and the sub-subregion (1’,1’,1’) 
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has an !I
2  HeterogeneousMean

" 43% .  Compare that to the !I
2  HeterogeneousMean

" 2%  for 

randomly selected points from the entire 3D grid in Figure 3.19.  When ! = 1.5 , the 

effect can become even more extreme.  (1,1,1) has a !I
2  HeterogeneousMean

" 29% , and the 

sub-subregion (1’,1’,1’) has a !I
2  HeterogeneousMean

" 160%  whereas !I
2  HeterogeneousMean

" 8%  

for randomly selected points in Figure 3.19.   
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Figure 3.19.  We have P (Principal Compression Axis in red) and T (Principal Tension 

Axis in blue) plots for 3D, filtered, heterogeneous grids at four different levels of 

smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 .  Each grid is 

201x201x201 points for a total of over 8 million grid points.  We randomly choose 

100,000 points from the over 8 million possible points and plot their P and T Axes axes 

on equal area plots.  For these P-T plots, we choose the conventional plunge range 

shown in Figure 3.12.  For each ! , we calculate the component-wise mean tensor for the 

100,000 randomly selected points, !"HeterogeneousMean  and its associated !I
2  HeterogeneousMean , 

which has units of stress.  For comparison, the principal stresses that are used in 

creating, the stress tensors have a !I
2
= 1.0 .   In a) ! = 0.0 , there is no clumping of the 

points on the P-T plots indicating that the heterogeneous stress is without any 

appreciable orientation bias and is uniformly distributed over orientation space.  Also 

!I
2  HeterogeneousMean , a measure of the size of the stress bias, is quite small for ! = 0.0 , less 

than 1%.   As !  increases, the spatial clumping of the points begins to appear to a small 

degree.  In 3D simulations, this is a much smaller effect than in 1D if the entire 3D grid 

is being sampled.  As !  increases , !I
2  HeterogeneousMean  also begins to increase to ≈2%  for 

! = 1.0  and ≈ 8%  for ! = 1.5 .   
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Figure 3.20.  A diagram of how we divide, then subdivide the 3D grid.  The first division, 

produces subregions, approximately 100,000 points each.  The second division produces 

sub-subregions, approximately 1,000 points each. 
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Figure 3.21.   This is similar to Figure 3.19, except that we plot the P and T axes for all 

the points within different subregions.  The grid is first divided into 4x4x5 subregions of 

approximately 100,000 points each.  Then the (1,1,1) subregion is subdivided into 5x5x4 

sub-subregions, of approximately 1,000 points each.  The purpose of this exercise is to 

show that as the spatial smoothing increases, subregions develop coherent orientation 

patterns.  Therefore, even if the entire grid has little to no orientation bias, a subregion 

might have a significant orientation bias due to the long spatial wavelength coherence of 

orientations.  We plot one sample subregion, (1,1,1), and one sample sub-subregion 

(1’,1’,1’), for each level of smoothing, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) 

! = 1.5 .  We find that for no smoothing,  a) ! = 0.0 , it does not matter whether we are 

looking at a subregion or the entire grid as in Figure 4.17.  The subregions have random, 

uniform distributions of P and T axes on equal area plots.  There is no appreciable 

clumping and !I
2  HeterogeneousMean

" 0.0  for each subregion. Now as !  increases so does 

the spatial clumping in P-T space and the value of !I
2  HeterogeneousMean .  In fact, for ! = 1.5 , 

!I
2  HeterogeneousMean

" 1.6 , for (1’,1’,1’), the same order magnitude as !I
2
= 1.0 , the value of 

!I
2

 for the input principal stresses.  This indicates a very strong orientation bias in the 

sub-subregion.  Therefore, as ! increases the differential between subregion orientation 

bias and the entire grid orientation, grid bias increases.  This is interesting, because as 

we will see in later chapters, this orientation clustering in space reproduces some of the 

clustering statistics seen in the real Earth.  
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Summary of How to Create a Filtered 3D Heterogeneous Stress Tensor with 

Approximately Zero Mean 

 Now that we have explored some of the characteristics of our filtered principal 

stresses, orientation angles, and stress matrices in both 1D and 3D, let us summarize how 

to create our full heterogeneous stress matrices: 

• Spatially filter three or two invariants of the stress tensor.  We choose to filter the 

principal stresses for simplicity.   

o Generate 3D grids with Gaussian random noise for !
1
, !

2
, and !

3
 

independently. 

o Filter each principal stress in 3D using the Chapter 2 methodology.   

o Use all three filtered, independent principal stresses, !
1
, !

2
, and !

3
, to 

create the full stress tensor with six independent quantities. 

o Or use the deviatoric principal stresses, !"
1
, !"

2
, and !"

3
, where 

!"
1
= "

1
# p

!"
2
= "

2
# p

!"
3
= "

3
# p

 and p = 1 / 3( ) !
11
+!

22
+!

33( ) , so that the constraint 

!"
1
+ !"

2
+ !"

3
= 0  is satisfied, to create the deviatoric stress tensor with five 

independent quantities. 

• Create approximately random, spatially filtered orientations: 

o Generate a set of completely random orientations using a random unit 

quaternion generator. 

o Convert the quaternions into three angles, a rotation axis, !,"[ ] , and a 

rotation !  about the rotation axis. 
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o Spatially filter these three angles, ! , ",#[ ]( ) . 

o Resize the angles so that their spatial means have the following values, 

! = 180° , ! = 90° , and ! = 180° , and their possible ranges fall within, 

0° !" ! 360° , 0° !" ! 180° , and 0° ! " ! 360° . 

o Convert the spatially filtered ! , ",#[ ]( ) , back into its associated filtered 

quaternion, 
 

!
q
F
= q

0

F
,q
1

F
,q

2

F
,q

3

F!" #$ . 

o Add a random rotation to this filtered quaternion, using algebraic 

quaternion multiplication. 

o  Then convert this filtered, randomly rotated quaternion into strike, dip, 

and rake, !," ,#( ) . 

• Combine the spatially filtered fault parameters, !," ,#( ) , with the spatially 

filtered principal stresses, to produce an approximately randomly oriented, 

spatially filtered, heterogeneous stress matrix. 

• Use the heterogeneous stress matrix in simulations that produce synthetic focal 

mechanisms. 

• Repeat the above steps at least ten times and stack the results to produce data that 

have no substantial orientation bias in the heterogeneity. 
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Chapter 4.  Plastic Yield Criterion (Hencky-Mises Failure Criterion) and How Its 

Interaction with Spatially Heterogeneous Stress Biases Earthquake Failures Toward 

the Stress Rate Tensor, 
 
!!"
T

 

Overview of Why Understanding the Fracture Criterion Is Important 

 In this chapter we wish to demonstrate that as the amplitude of the heterogeneity 

increases, the orientations of the failures in our simulations become increasingly biased 

toward the stress rate tensor, 
 
!!"
T

.  We will do this by 1) analyzing the fracture criterion 

used to bring points to failure as synthetic earthquakes and 2) examining P-T plots of 

synthetic focal mechanisms from our simulations.   

If the real Earth has significant spatially heterogeneous stress, which we have 

reason to believe it does, our observation of bias toward the stress rate, 
 
!!"
T

, has important 

implications for interpreting stress inversion studies.  Currently, it is assumed that the 

popularly used stress inversion schemes [Angelier, 1975; 1984; Carey and Brunier, 1974; 

Etchecopar, et al., 1981; Gephart, 1990; Gephart and Forsyth, 1984; Mercier and Carey-

Gailhardis, 1989; Michael, 1984; 1987] measure the spatially uniform component of the 

tectonic stress tensor, which we call !"
B

 (the background stress).  If the Earth also 

experiences a bias toward the 
 
!!"
T

 in the presence of spatially heterogeneous stress as 

seen in our simulations, then this bias must be subtracted to correctly estimate !"
B

.  If the 

heterogeneity has too large of an amplitude, the correction may be possible, and one will 

not be able to determine !"
B

.  An outline of how one might begin to subtract out this 
 
!!"
T

 

bias and determine !"
B

 is presented in Chapter 5.  In any case, our simulation results 

imply that one must be very careful in interpreting stress inversion results, as they may be 

more complicated than commonly assumed. 
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 In the real Earth, stress inversion schemes are commonly used to infer deviatoric 

stress information from focal mechanism orientations.  In particular, the three principal 

deviatoric stress axes orientations are calculated along with a dimensionless quantity that 

relates the magnitudes of the principal stresses, the stress ratio, R =
!
2
" !

3

!
1
" !

3

#

$%
&

'(
 [e.g., 

Rivera and Kanamori, 2002].  In this study we are not addressing whether or not the 

stress inversion schemes accurately invert the given focal mechanism data.  Instead, we 

are questioning an assumption that goes into the interpretation of the results.  The implicit 

assumption we question is, “Focal mechanisms are a good uniform random measurement 

of stress in the Earth’s crust.”  In other words, “the points which fail and produce 

earthquake focal mechanisms uniformly sample the actual stress field, and upon 

inversion, yield the spatial mean stress tensor, !"
B

.”  In our simulations, we show that the 

interaction of the failure criterion with spatially heterogeneous stress produces a bias to 

which orientations and stress ratios, R , are most likely to fail, a bias toward our stress 

rate tensor, 
 
!!"
T

.  If this is indicative of the real Earth, then the answer to our question 

would be no, focal mechanism data sets are not a good uniform random sampler of stress.  

Not all points fail in the real Earth as earthquakes in a regional stress study, only a minute 

fraction.  The points that are most likely to fail will be those aligned with 
 
!!"
T

; hence, the 

set of focal mechanisms included in inversion studies will produce an inverted stress 

tensor biased toward 
 
!!"
T

.  See Figure 4.1 for a simple scalar example of bias to visually 

demonstrate this concept. 

 In Figure 4.1 we show a scalar quantity represented by the length of the vertical 

bars.  Set A represents the entire data set and Set B is the first half of the data.  The scalar 
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quantities have been arranged so that the larger values happen first and cluster in Set B.  

Because the larger values occur first, estimates of the scalar value will be biased if they 

use only the first half of the data set, Set B.  Similarly, we ask, could the focal 

mechanisms used in standard stress inversions be a biased sampling of stress in the real 

Earth?  Only a small fraction of all the possible points in a study region fail within the 

study window when applying stress inversions, and there is the possibility that this small 

subset of all possible points could have a biased average orientation.  If so, interpretations 

of stress inversions may need to be revised.  This is a difficult question to answer by 

observation alone, which is why we numerically investigate this problem. 
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Figure 4.1.  This is a simple scalar example of bias.  The entire data set is represented by 

Set A.  The first half of the data set is represented by Set B.  In this case, the larger values 

happen first and cluster in Set B.  One cannot estimate the mean of Set A by measuring 

only Set B, because of the bias towards larger scalar values in Set B.  Similarly, if there 

is a bias in which points fail as earthquakes, produce focal mechanisms, and are included 

in stress inversion studies, then the results of stress inversion studies may also be biased; 

consequently, stress inversion studies may not reflect the spatial mean stress as 

commonly assumed. 
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Fracture Criterion Used to Produce Earthquakes—Hencky-Mises Plastic Yield 

The Hencky-Mises plastic yield condition [Housner and Vreeland, 1965] is the 

preferred fracture criterion for this thesis because of its simplicity.  It predicts failure 

when the maximum shear stress is greater than a threshold value.  The measure used is an 

invariant quantity so this failure criterion works regardless of the coordinate system or 

orientation of the individual stress tensors.  The coefficient of friction is essentially zero 

(optimally oriented planes) and pressure does not enter into the equation.  (If one wishes 

to investigate non-zero pressures and coefficients of friction see Appendix C, Coulomb 

Fracture Criterion.)  Last, because we are dealing with optimally oriented planes, the 

conjugate planes become mathematically indistinguishable.  The equation for this plastic 

yield is  

 !I
2
=
2

3
"
0

2  (4.1) 

[Housner and Vreeland, 1965] where !
0
 is the uniaxial yield stress and !I

2
 is the second 

invariant of the deviatoric stress tensor, !" , where 

 !I
2
= !"

11

2
+ !"

22

2
+ !"

33

2
+ 2 !"

12

2
+ !"

23

2
+ !"

13

2#$ %&.  (4.2)   

 At this point it is useful to introduce the tensor scalar product to aid us in our 

equation derivations.  The scalar product of two tensors, A  and B , can be defined as  

 A :B = AijBij
j=1

3

!
i=1

3

! .  (4.3) 

In this notation the second invariant of the deviatoric stress tensor can now be written as,  

 !I
2
= !" : !" ,  (4.4) 

which is a much more compact notation. 
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In our simulations, we wish to determine when each individual point in the 3D 

grid fails; hence, we are interested in examining the failure equation for each single 

spatial grid point, x
i
, where x

i
 is the 3D coordinate of the ith  point in the grid.  The 

equation for a single point is 

 !I
2
x
i
,t( ) = !" x

i
,t( ) : !" x

i
,t( ).  (4.5) 

It is the summation of the squared deviatoric stress matrix elements.  If our deviatoric 

stress tensor at any point in the grid is  

 
 
!" x

i
,t( ) = !"

H
x
i( ) + !"

B
+ !!"

T
 t  (4.6) 

where !"
H
x
i( )  is the spatially heterogeneous stress, !"

B
 is the spatially and temporally 

uniform background tectonic stress, and 
 
!!"
T

 t  is the linearly increasing secular 

component of tectonic stress from plate motion, then our failure criterion can be rewritten 

as 

 
 
!I
2
x
i
,t( ) = !"

H
x
i( ) + !"

B
+ !!"

T
 t( ) : !"

H
x
i( ) + !"

B
+ !!"

T
 t( ).  (4.7) 

Multiplying through, we have 

 
 

!I
2
x
i
,t( ) = !"

H
x
i( ) : !"

H
x
i( ) + !"

B
: !"

B
+ !!"

T
: !!"

T( )t 2

                                     + 2 !"
H
x
i( ) : !"

B
+ 2 !"

H
x
i( ) : !!"

T
 t + 2 !"

B
: !!"

T
 t.

 (4.8) 

Note that  

!"
H
x
i( ) + !"

B( ) : !"
H
x
i( ) + !"

B( ) = !"
H
x
i( ) : !"

H
x
i( ) + 2 !"

H
x
i( ) : !"

B
+ !"

B
: !"

B
 (4.9) 

and  

 
 
2 !"

H
x
i( ) + !"

B( ) : !!"
T

 t = 2 !"
H
x
i( ) : !!"

T
 t + 2 !"

B
: !!"

T
 t.  (4.10) 

Therefore, we can rewrite our second invariant as 



IV-7 

 

 
 

!I
2
x
i
,t( ) = !"

H
x
i( ) + !"

B( ) : !"
H
x
i( ) + !"

B( )

               + !!"
T

: !!"
T( )t 2

+ 2 !"
H
x
i( ) + !"

B( ) : !!"
T

 t.
 (4.11) 

Interestingly, the first term is simply the second invariant of the deviatoric stress tensor at 

time t = 0 .  This means we can write our equation as 

 
 
!I
2
x
i
,t( ) = !I

2
x
i
,0( ) + !!"

T
: !!"

T( )t 2
+ 2 !"

H
x
i( ) + !"

B( ) : !!"
T

 t  (4.12) 

where 

 !I
2
x
i
,0( ) = !"

H
x
i( ) + !"

B( ) : !"
H
x
i( ) + !"

B( ).  (4.13) 

We now ask, at what time, t
F

, does !I
2
=
2

3
"
0

2 , for each point x
i
, where t

F
 is the time of 

failure?  To address this question conceptually, we can divide !I
2
x
i
,t( )  into three 

components,  

 
 

!I
2
x
i
,t( ) = !I

2
x
i
,0( ) +

d !I
2
x
i
,t( )

dt
t " !!#

T
: !!#

T( )t 2  (4.14) 

where 
 

 

 
 

d !I
2
x
i
,t( )

dt
= 2 !!"

T
: !!"

T( )t + 2 !"
H
x
i( ) + !"

B( ) : !!"
T
.  (4.15) 

 
For small stressing rates, 

 
!!"
T

, and small times, t  (which will be true for the simulations 

shown), all the 
 

!!"
T
: !!"

T( )t  terms are ! 0 . 

Therefore, we have two main terms, 

 !I
2
x
i
,t( ) " !I

2
x
i
,0( ) +

d !I
2
x
i
,t( )

dt
t  (4.16) 

where 
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 !I
2
x
i
,0( ) = !"

H
x
i( ) + !"

B( ) : !"
H
x
i( ) + !"

B( )  (4.17) 

and 
 

 
 

d !I
2
x
i
,t( )

dt
" 2 !#

H
x
i( ) + !#

B( ) : !!#
T
.  (4.18) 

 The first term of equation (4.16), !I
2
x
i
,0( ) , shows the state of the system at t = 0  

and the heterogeneity of the system.  The second term, 
d !I

2
x
i
,t( )

dt
, describes how quickly 

points are either increasing or decreasing their maximum deviatoric shear stress.  For a 

point to fail quickly, it generally needs to satisfy the following three criteria. 

• !I
2
x
i
,0( ) <

2

3
"
0

2 .  In other words, the point x
i
, at t = 0 , must have an !I

2
 less 

than the the failure threshold of 
2

3
!
0

2 , to be considered in the simulation.  We 

find that the placement of the failure threshold, 
2

3
!
0

2 , determines what part of the 

heterogeneity we sample; i.e., do we place 
2

3
!
0

2  above the maximum !I
2
x
i
,0( )  

and sample extreme outliers that would have already plastically yielded, or do 

we place the failure threshold at the 1.5–2.0 standard deviation level within 

!I
2
x
i
,0( )  and exclude the top 5–15% of the points as outliers? 
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• 

 

2

3
!
0

2
" #I

2
x
i
,0( )

2

3
!
0

2

!1 .  For a point x
i
 to fail quickly and be considered in the first 

2,000 failures of the simulations, it needs to start with a value of !I
2
x
i
,0( )  quite 

close to the failure threshold, 
2

3
!
0

2 , at t = 0 . 

• 
d !I

2
x
i
,t( )

dt
> 0 , and preferably maximized.  The time derivative of !I

2
x
i
,t( )  must 

be greater than zero if there is to be any failure at all.  If !I
2
x
i
,0( ) <

2

3
"
0

2  and 

d !I
2
x
i
,t( )

dt
> 0  then the point x

i
 is progressing toward the failure threshold 

2

3
!
0

2 .  

If !I
2
x
i
,0( ) <

2

3
"
0

2  and 
d !I

2
x
i
,t( )

dt
< 0  the point x

i
 is moving further away from 

the failure threshold 
2

3
!
0

2 .  Obviously, the larger the positive rate of change, 

d !I
2
x
i
,t( )

dt
, the more quickly x

i
 progesses toward failure. 

 

Placement of the Failure Threshold 

We opt to normalize !I
2
x
i
,0( )  so that the failure threshold 

2

3
!
0

2  falls somewhat 

below the maximum !I
2
x
i
,0( )  value to avoid outliers for several reasons:  1) The points 

with largest values of !I
2
x
i
,0( )  would already have plastically failed.  2) Sampling the 

extreme outliers in the simulations results in non-steady earthquake rates.  There are very 

few events at first, as one samples the extreme outliers, then the rate rapidly accelerates 
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as one begins to sample the rest of the heterogeneity.  Normalizing !I
2
x
i
,0( )  so that 

2

3
!
0

2  

falls at 1.5 or 2.0 standard deviations produces relatively constant earthquake rates over 4 

orders of magnitude in time.  3) The distribution of tensors present in the family of 

heterogeneous stress tensors, !"
H
x
i( ) , with values of !I

2
x
i
,0( )  close to the failure 

threshold, 
2

3
!
0

2 , partially depends on where the failure threshold falls within the !I
2
x
i
,0( )  

distribution.   If 
2

3
!

0

2
= Maximum "I

2
x
i
,0( ) , then all the points close to 

2

3
!
0

2  will have 

!"
H
x
i( )  ≈ !"

B
.  If 

2

3
!
0

2  falls at the 1.5 or 2.0 standard deviation level for !I
2
x
i
,0( )   (i.e. 

excluding the top ~ 15% or ~ 5% points in !I
2
x
i
,0( )  respectively), there is still bias 

toward !"
B

, but there is generally a greater variety of !"
H
x
i( )  that produce 

 

2

3
!
0

2
" #I

2
x
i
,0( )

2

3
!
0

2

!1 .  If 
2

3
!
0

2  falls at the 1.5 standard deviations level for !I
2
x
i
,0( )  or 

less, we start throwing out too many points associated with the !"
B

 orientation, and a hole 

appears right at the !"
B

 orientation in our P-T plots.  

On the other hand, if !I
2
x
i
,0( )  is normalized so that 

2

3
!
0

2  falls at the 2.0 standard 

deviation level for !I
2
x
i
,0( ) , with 95% of the points in !I

2
x
i
,0( )  below the failure 

threshold, we find a satisfactory tradeoff.  Simulations with this normalization of 

!I
2
x
i
,0( )  have fairly steady earthquake rates over several orders of magnitude in time and 

still provide a good variety of !"
H
x
i( )  close to and aligned with !"

B
.  
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Plots of !I
2
x
i
,0( )with units of Stress

2!" #$  and the failure threshold, 
2

3
!
0

2 , in 1D are 

shown in Figure 4.2 for four different values of spatial smoothing, 

! = 0.0, 0.5, 1.0, and 1.5 . Within each plot, !I
2
x
i
,0( ) is shown for three different values 

of the Heterogeneity Ratio, HR =
Mean  !"

H
x
i( ) : !"

H
x
i( )#$ %&   

 !"
B

: !"
B

  
, where !"

H
x
i( ) : !"

H
x
i( )  

is the second invariant of the heterogeneous stress tensor, !"
H
x
i( ) , and !"

B
: !"

B
 is the 

second invariant of the spatially homogeneous, background stress tensor, !"
B

.  In order of 

increasing heterogeneity amplitude, we have HR = 0.1  plotted in red, HR = 0.3  plotted 

in green, and HR = 1.0  plotted in blue.   They have been normalized so that 95% of the 

points fall below the same failure threshold level, 
2

3
!
0

2 , the !I
2
x
i
,0( )  2.0 standard 

deviation level.  
2

3
!
0

2  is plotted with the thick, horizontal, dashed, black line. The main 

points we wish to show are simply that 1) as HR  increases, the heterogeneous amplitude 

!I
2
x
i
,0( )  increases, 2) as ! increases, the spatial smoothing of !I

2
x
i
,0( )  increases. 
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Figure 4.2 a) 

 
Figure 4.2 b) 
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Figure 4.2 c) 

 
Figure 4.2 d) 
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Figure 4.2.  Plots of !I
2
x
i
,0( )  for 1,001 points in 1D, to show what the maximum shear 

stress looks like at t = 0.0 .  To create !I
2
x
i
,0( ) , we generate !"

H
x
i( )  with different levels 

of spatial filtering, a) ! = 0.0 , b) ! = 0.5 , c) ! = 1.0 , and d) ! = 1.5 , and add it 

component-wise to a background stress tensor, !"
B

, using three different heterogeneous 

amplitudes within each plot.  Within each plot, we have HR = 0.1  in red, HR = 0.3  in 

green, and HR = 1.0  in blue. !I
2
x
i
,0( )  is normalized so that the failure threshold, 2

3
!
0

2 , 

the thick, dashed, black line, falls at the 2.0 standard deviation level of !I
2
x
i
,0( )  values.  

This means approximately 95% of the values of !I
2
x
i
,0( )  are below 2

3
!
0

2 .  Any points 

below 2
3
!
0

2  can be counted as failures in the simulation, and any points above 2
3
!
0

2  at 

time t = 0  are considered outliers that have previously plastically failed.  The points that 

are most likely to fail first are those that have !I
2
x
i
,0( )  close to the failure threshold, 

2

3
!
0

2 , i.e., 

 

2

3
!
0

2
" #I

2
x
i
,0( )

2

3
!
0

2

!1 , and are quickly moving toward failure, i.e., 
d !I

2
x
i
,t( )

dt
 

large and positive. 
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Why the Most Likely Points to Fail Are Biased Toward 
 
!!"
T

, When the 

Heterogeneity Ratio, HR , Is Large 

 To understand why we have an increasing bias toward 
 
!!"
T

 as the heterogeneous 

ratio, HR  (a measure of the heterogeneity amplitude), increases, we once more look at 

equation (4.16), !I
2
x
i
,t( ) " !I

2
x
i
,0( ) +

d !I
2
x
i
,t( )

dt
t .  We rewrite the first and second terms.  

The first term on the right hand side, !I
2
x
i
,0( ) , which describes the initial stress state, can 

be rewritten as 

 !I
2
x
i
,0( ) = !"

H
x
i( ) : !"

H
x
i( ) + 2 !"

H
x
i( ) : !"

B
+ !"

B
: !"

B
 (4.19) 

or  

 !I
2
x
i
,0( ) = !"

H
x
i( ) : !"

H
x
i( ) + 2 !"

H
x
i( ) : !"

B
+ C

0
 (4.20) 

where the constant  

 C
0
= !"

B
: !"

B
.  (4.21) 

The second term on the right hand side of equation (4.16), 
d !I

2
x
i
,t( )

dt
, which 

describes whether or not the points are going toward failure, can be rewritten as,  

 
 

d !I
2
x
i
,t( )

dt
" 2 !#

H
x
i( ) : !!#

T
+ 2 !#

B
: !!#

T
 (4.22) 

or 

 
 

d !I
2
x
i
,t( )

dt
" 2 !#

H
x
i( ) : !!#

T
+ C

1
 (4.23) 

where the constant is 

 
 
C
1
= 2 !"

B
: !!"

T
.  (4.24) 
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Since C
1
 is a constant, it has the same value at every point x

i
 and C

1
 simply 

determines when 
d !I

2
x
i
,t( )

dt
> 0 .  For example, if 

 
!!"
T
= #c !"

B
, where c  is a constant, we 

will have C
1
< 0 , and a number of points will now go away from failure instead of 

toward it.  If the heterogeneity is sufficiently small, HR << 1 , and C
1
< 0 , we may find 

there are no failures right away.  Determining the set of points that have 
d !I

2
x
i
,t( )

dt
> 0  is 

the main effect of C
1
, but because it is a constant, we can ignore it when assessing which 

points are more likely to fail than others; instead, we need to primarily look at the terms 

that are a function of x
i
, to determine why the failures are biased toward 

 
!!"
T

.   

The term that is a function of x
i
 in 

d !I
2
x
i
,t( )

dt
 is 

 
2 !"

H
x
i( ) : !!"

T
.  Because it 

involves component-wise cross-terms of the heterogeneous stress tensor, !"
H
x
i( ) , and 

the stress rate tensor, 
 
!!"
T

, we predict that the points that have the largest, positive 

d !I
2
x
i
,t( )

dt
 will be those where !"

H
x
i( )  is on average aligned component-wise with 

 
!!"
T

.   

What about !I
2
x
i
,0( ) ?  How does this affect which points are most likely to fail?  

Examining equations (4.20) and (4.21), we see that the value of the constant C
0
 simply 

raises or lowers all the points in !I
2
x
i
,0( ) ; it has no bearing on which points are most 

likely to fail, because we normalize the overall size of !I
2
x
i
,0( ) , so that the 95% level is 

at the failure threshold, 
2

3
!
0

2 .  Now the other two terms in equation (4.20) are more 

interesting because they do have different values as a function of x
i
.  2 !"

H
x
i( ) : !"

B
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involves component-wise cross terms between the heterogeneous stress, !"
H
x
i( ) , and the 

background stress, !"
B

; therefore, this term will tend to promote points with !"
H
x
i( ) on 

average aligned with !"
B

 to be near the failure threshold.  However, there is one more 

term to consider, !"
H
x
i( ) : !"

H
x
i( ) , which is simply the second invariant of !"

H
x
i( ) .  

!"
H
x
i( ) : !"

H
x
i( )  promotes points to be near the failure criterion if the overall size of 

!"
H
x
i( )  is large irrespective of orientation.  Consequently, if 

!"
H
x
i( ) : !"

H
x
i( ) >> 2 !"

H
x
i( ) : !"

B
, then there will be little to no bias to which !"

H
x
i( )  

orientations are close to the threshold, and the 
 
2 !"

H
x
i( ) : !!"

T
 term will primarily choose 

points to fail where !"
H
x
i( ) is on average aligned with 

 
!!"
T

.  Now if 

!"
H
x
i( ) : !"

H
x
i( ) << 2 !"

H
x
i( ) : !"

B
, we expect the bias in !"

H
x
i( )  toward !"

B
 to be 

significant for points near the failure threshold.   

Another way to quantify this is in terms of the Heterogeneity Ratio, 

HR =
Mean  !"

H
x
i( ) : !"

H
x
i( )#$ %&   

 !"
B

: !"
B

  
, where if HR << 1 , 

!"
H
x
i( ) : !"

H
x
i( ) << 2 !"

H
x
i( ) : !"

B
, and the !"

HFailure

x
iFailure

( )  (the heterogeneous stress of 

those points that fail) will be biased toward the !"
B

.  As HR  increases, !"
HFailure

x
iFailure

( )  

will be decreasingly biased toward !"
B

 and increasingly biased toward 
 
!!"
T

, until as 

HR >> 1 , !"
H
x
i( ) : !"

H
x
i( ) >> 2 !"

H
x
i( ) : !"

B
, and 

 
!"
HFailure

x
iFailure

( ) # !!"
T

.   

Now that we have examined how the failure criterion, !I
2
x
i
,t( ) =

2

3
"
0

2 , affects the 

selection of !"
HFailure

x
iFailure

( ) , biasing it toward !"
B

 for HR << 1  and toward 
 
!!"
T

 for 
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HR >> 1 , keep in mind that the final stress tensor at failure is a summation of three terms, 

 
!"
Failure

x
iFailure

,t
Failure( ) = !"

HFailure

x
iFailure

( ) + !"
B
+ !!"

T
 t .  For small, 

 
!!"
T

 t , the orientation of our 

failure stress tensors are primarily a tradeoff between !"
HFailure

x
iFailure

( )  and  !"
B

.  If 

HR << 1 , !"
Failure

x
iFailure

,t
Failure( ) # !"

B
, and if HR >> 1 , 

!"
Failure

x
iFailure

,t
Failure( ) # !"

HFailure

x
iFailure

( ) . 

In summary:  

• If HR << 1  

o !"
HFailure

x
iFailure

( )  biased toward !"
B

. 

o !"
Failure

x
iFailure

,t
Failure( ) # !"

B
 

• If HR >> 1  

o 
 
!"
HFailure

x
iFailure

( ) # !!"
T

  

o !"
Failure

x
iFailure

,t
Failure( ) # !"

HFailure

x
iFailure

( )  

o 
 
!"
Failure

x
iFailure

,t
Failure( ) # !!"

T
 

• As HR  increases 

o !"
HFailure

x
iFailure

( )  becomes increasingly biased toward 
 
!!"
T

 instead of !"
B

 

o !"
HFailure

x
iFailure

( )  becomes increasingly important in the !"
Failure

x
iFailure

,t
Failure( )  

equation. 

o Therefore, !"
Failure

x
iFailure

,t
Failure( )  rotates from !"

B
 to 

 
!!"
T

. 

o And the heterogeneity of !"
Failure

x
iFailure

,t
Failure( )  increases. 
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Demonstration of the Bias Toward 
 
!!"
T

 as Heterogeneity Increases:  Simulations of 

the San Gabriel Mountains and the Southern San Andreas Fault Zone 

 In this section we simulate two different regions, the San Gabriel Mountains, 

Region #1, and the Southern San Andreas Fault Zones, Region #2, which we assume to 

have different background stresses, !"
B1

 and !"
B2

 (Figures 4.3 and 4.4).  The same stress 

rate is applied, 
 
!!"
T

, which is simply oriented 45°  relative to the major plate boundary, 

the San Andreas Fault (Figure 4.5, bottom).  As spatial heterogeneity increases, the 

simulations rotate from their respective background orientations ( !"
B1

 and !"
B2

) to the 

stress rate orientation,  !!"
T

 (Figure 4.5).  We run a series of simulations for each region 

with 32 different heterogeneity ratios, HR , spanning 0.1 ! HR ! 100  and for 

! = 0.0, 0.5, 1.0, and 1.5.   We save the first 2,000 failures as our synthetic focal 

mechanisms, !"
Failure

x
iFailure

,t
Failure( ) .  Indeed, as HR  increases, !"

Failure
x
iFailure

,t
Failure( )  

rotates 

from !"
B   to 

 
!!"
T

 and the heterogeneity of !"
Failure

x
iFailure

,t
Failure( )  increases as seen in P-T 

plots of !"
Failure

x
iFailure

,t
Failure( )  (Figures 4.6–4.7).  Figure 4.8 is interesting because it 

visually displays that the simulation failures tend to occur at the intersection of 

d !I
2
x
i
,t( )

dt
> 0  and 

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5%  (the top 5%  of the points close to the failure 

threshold), per our previous discussion.   

 One detail we need to emphasize is that since we are using a plastic yield criterion 

in this chapter, similar to Coulomb Failure with µ = 0.0 , failures occurs on maximally 
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orientated planes, ± 45° from the !
1
 and !

3
 axes.  This means that the P axis is aligned 

with the !
1
 principal stress, and the T axis is aligned with the !

3
 principal stress.  

Generally, the P and T axes are not aligned with the principal stresses, as in the case of 

Coulomb Failure with µ > 0.0 .  Appendix A explains the mathematics behind this.  For 

this chapter, however, we use the special case of maximally oriented planes, which have 

P and T axes aligned with !
1
 and !

3
 respectively. 

 

 

 

 

 

 

 

 

 

 

 



IV-21 

 

 

Figure 4.3.  Figure modified from Townend and Zoback [2004].  The dashed box with 

the #1 is magnified in Figure 4.4 a) to zoom in on the San Gabriel Mountains, our Region 

#1.  The dashed red box with the #2 is magnified in Figure 4.4 b) to zoom in on the 

Southern San Andreas Fault, our Region #2.  The orientations of maximum compressive 

stress in the Townend and Zoback figure are calculated using earthquake focal 

mechanism inversions, borehole breakouts, and hydraulic fracturing. 
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a) 

 
b) 

Figure 4.4.  a) is a magnified inset from Figure 4.3.  The diagram to the right shows the 

stress orientation we use for the San Gabriel Mountains background stress, !"
B1

.  We 

also have drawn the !
1
 and !

3
 axes next to the inset, where the inward pointing, red 

arrows indicate a N ! S  direction of the principal compression axis, and the small blue 

circle indicates a vertical direction of the principal tension axis.  In b) we have the 

second magnified inset from Figure 4.3.  The diagram to the right shows the stress 

orientation used for our Southern San Andreas simulations background stress, !"
B2

, with 

a principal compressive stress direction (red arrows) almost perpendicular to the fault. 
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Figure 4.5.  The inward pointing red arrows for !
B1

, !
B2

, and 
 
!!
T

 show the directions 

of their respective !
1
 axes.  The outward pointing blue arrows for !

B2
 and 

 
!!
T

 and the 

upward/downward blue arrow represented by the blue circle for !
B1

 show the directions 

of their respective !
3
 axes.  As the amplitude of spatial heterogeneity, HR , increases, 

the simulation stress tensors (component-wise average of the first 2,000 points that fail in 

our 3D grid) increasingly rotate from the background stress to the stress rate, 
 
!!"
T

.  Even 

though our two regions, the San Gabriel Mountains and the Southern San Andreas Fault, 

have very different background stresses, as HR  increases, the simulations for the two 

regions will become increasing similar until for  HR! 1 they will be indistinguishable 

from one another and will have an average failure stress tensor, !"
Failure

x
iFailure

,t
Failure( ) , 

aligned with stress rate, 
 
!!"
T

.  Figures 4.6–4.7 demonstrate this effect with P-T plots of 

simulations for different values of HR .  
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Figure 4.6.  P-T plots of Region #1 on top, the San Gabriel Mountains, and Region #2  

on the bottom, the Southern San Andreas, for different levels of spatial heterogeneity, 

HR =
Mean  !"

H
x
i( ) : !"

H
x
i( )#$ %&   

 !"
B

: !"
B

  
.  The spatial smoothing !  shown here is ! = 0.5 , 

and the plots for ! = 0.0  and ! = 1.0  look almost identical. The P axes are in red and 

the T axes are in blue.  HR , which compares the relative size of the heterogeneous stress 

to the background stress, increases from HR = 0.1  (almost no heterogeneity) to 

HR = 100  (almost all heterogeneity).  For HR = 0.1 , there is little to no scatter of the P-

T orientations, and they are centered on the respective background stress orientations, 

!"
B1

 and !"
B2

.  As HR  increases, the scatter of the P-T axes increases, and the average 

orientations of the simulations rotate toward the stress rate orientation, 
 
!!"
T

.  It becomes 

increasingly difficult to distinguish between the two regions as the spatial stress 

heterogeneity increases, until for HR = 100 , the San Gabriel Mountains simulations and 

the Southern San Andreas Fault simulations look almost identical.  If stress heterogeneity 

in the real Earth is this extreme, one could only measure the stress rate, 
 
!!"
T

; there would 

be no information for determining the actual background stress, which could be quite 

different from 
 
!!"
T

.  
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Figure 4.7.  P-T plots of Region #1 on top, the San Gabriel Mountains, and Region #2  

on the bottom, the Southern San Andreas, for different levels of spatial heterogeneity, 

HR =
Mean  !"

H
x
i( ) : !"

H
x
i( )#$ %&   

 !"
B

: !"
B

  
.  The spatial smoothing !  shown here is ! = 1.5 , 

and the effect of the spatial smoothing is apparent in the P-T plots.  The same 

heterogeneous grid is used for all the simulations with ! = 1.5  and one can see how the 

spatial filtering distorts the P-T patterns seen in the simulations for ! " 1.0 .  There is 

still a rotation as HR  increases as seen in Figure 4.6 and for HR = 100 , the two regions 

become indistinguishable as in Figure 4.6.  This degree of spatial smoothing is 

unrealistic for the real Earth but is kept as an end-member case. 
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Figure 4.8.  This figure containing P-T plots is taken from the simulation for Region #2, 

the Southern San Andreas Fault, with ! = 0.0 , and HR = 1.0 .  It is intended to show that 

simulation failures tend to occur at the intersection of 
d !I

2
x
i
,t( )

dt
> 0  and 

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5%  (the top 5%  of the points close to the failure threshold).  All the 

plots in this figure show the orientations of !"
H
x
i( ) , not the full stress tensor.  The top 

left two plots are the P axes in red and the T axes in blue for the points close to the 

failure threshold, 2
3
!
0

2 ; i.e., the 10,000 points plotted are a random sampling of those 

points within the 3D heterogeneous grid where 

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5%  is true.    The 

bottom left two plots are the P axes and T axes for points going toward failure; i.e., the 

10,000 points plotted are a random sampling of those points where 
d !I

2
x
i
,t( )

dt
> 0  is true.  

The bottom right two plots show the P and T axes for the first 2,000 failures within the 

simulation.  The top right two plots compare all three quantities and show that the 

simulation failures do indeed occur at the intersection of 
d !I

2
x
i
,t( )

dt
> 0  and 

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5% .  

2

3
!
0

2
" #I2 xi ,0( )

2

3
!
0

2

$ 5%  is plotted in green,  
d !I

2
x
i
,t( )

dt
> 0  is 

plotted in magenta, and the first 2,000 simulation failures are plotted in black.  Note that 

the black points occur at the intersection of the green and magenta. 
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Quantifying the Rotation from !"
B

 to 
 
!!"
T

 as Heterogeneity Increases 

 The most obvious way to quantify the rotation from  !"
B

 to 
 
!!"
T

 as heterogeneity 

increases, HR  increasing, would be to calculate the following:  1) The angular difference 

between !"
Failure

x
iFailure

,t
Failure( )  and !"

B
, which we call ! "#

Failure
"#
B

.  2) The angular 

difference between !"
Failure

x
iFailure

,t
Failure( )  and 

 
!!"
T

, which we call 
 
! "#

Failure
"!#
T

.  As HR  

increases and the average failure orientations rotate from !"
B

 to 
 
!!"
T

, ! "#
Failure

"#
B

 will 

increase and 
 
! "#

Failure
"!#
T

 will decrease.  If we wish to normalize this quantity, we can 

calculate 
 

! "#
Failure

"#
B

! "#
B

"!#
T

 and 
 

! "#
Failure

"!#
T

! "#
B

"!#
T

, which typically have values ranging from ≈ 0.0 to 

≈ 1.0.  For example, if 
 

! "#
Failure

"#
B

! "#
B

"!#
T

= 0.0 , the points that have failed in the simulation are 

on average aligned with the background stress, !"
B

.  This is what we would expect for  

HR = 0.0 .  Concurrently, we would expect 
 

! "#
Failure

"!#
T

! "#
B

"!#
T

$ 1.0  if 
 

! "#
Failure

"#
B

! "#
B

"!#
T

= 0.0 .  If 

HR!" , then we would expect the reverse, 
 

! "#
Failure

"!#
T

! "#
B

"!#
T

$ 0.0  and 
 

! "#
Failure

"#
B

! "#
B

"!#
T

$ 1.0 , 

where the points that have failed in the simulation are on average aligned with 
 
!!"
T

.   

If 
 

! "#
Failure

"#
B

! "#
B

"!#
T

$ ! "#
B

"!#
T
%
! "#

Failure
"!#
T

! "#
B

"!#
T

, then we know that the angular difference 

is purely due to a tradeoff of !"
B

 and 
 
!!"
T

, not any other orientations (except for small 

fluctuations due to randomness in the grid); consequently, we can think of these as:  1) 

normalized angular differences in terms of the normalized bias toward the stressing rate 

tensor, 
 
!!"
T

, where 
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! "#
Failure

"#
B

! "#
B

"!#
T

$ ! "#
B

"!#
T
%
! "#

Failure
"!#
T

! "#
B

"!#
T

$ Normalized  Bias (% rotation toward "!#
T

)  and 2)  

angular differences in terms of the angular bias toward the stressing rate tensor, where 

 
! "#

Failure
"#
B
$ ! "#

B
"!#
T
% ! "#

Failure
"!#
T
$  Bias (angular rotation toward "!#

T
) . 

The next question we have to address in quantifying the relationship between the 

stress heterogeneity, HR , and Bias / Normalized  Bias , is how to calculate the angular 

difference between our average failure stress tensor, !"
Failure

x
iFailure

,t
Failure( ) , and either !"

B
 

or 
 
!!"
T

.  In the real Earth, we have limitations on the information we can glean about the 

stress field using earthquakes.  For a single focal mechanism, we can determine only the 

orientations of the P, T, and B axes (three-parameters).  If one assumes the Hencky-Mises 

failure criterion and maximally oriented planes then this also gives us the orientation of 

the three principal stresses (three-parameters); however, if we invert a set of focal 

mechanisms, we can determine both the orientations of the three principal stresses 

(without having to assume maximally oriented planes) and the stress ratio, 

R =
!
2
" !

3

!
1
" !

3

#

$%
&

'(
 [e.g., Rivera and Kanamori, 2002] (four-parameters).  This means that a 

focal mechanism inversion can yield the relative sizes of the components within the 

failure deviatoric stress tensor, but not the overall size.   

This leads us to two different methodologies for quantifying the angular 

difference between two stress tensors.  The first methodology calculates the minimum 

angular difference when only the three orientation parameters are available.  This is 

particularly helpful when comparing individual focal mechanism orientations.  One 

would determine the four different possible sets of strike, dip, and rake, !," ,#( ) , for 
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each focal mechanism or stress tensor, allowing for 0 ! " ! 180°  (Appendix A).   Then 

one would convert the four sets of !," ,#( )  into quaternions for each focal mechanism or 

stress tensor.  Last, using quaternion algebra (see Chapter 3), one would calculate the 

minimum rotation between two focal mechanisms or stress tensors, by calculating the 16 

possible sets of !
R
, "

R
,#

R[ ]( )  and choose the minimum !
R

. 

The second methodology uses the scalar product of two deviatoric stress tensors to 

calculate an angular difference.  Since the scalar product is a scalar quantity, invariant 

upon rotation, we can define an angle between the rank two tensors, A  and B , as  

 !AB = cos
"1 A :B

A B

#

$%
&

'(
 (4.25) 

where  

 A = A :A  

and 

 B = B :B.  

Note that this measure of angular difference yields a result different from !
R

.  It isn’t a 

physical rotation in 3D space.  Instead, it is a measure of the similarity of the two tensors 

including information about the relative sizes of the eigenvalues. 

 Since a deviatoric stress tensor has five independent quantities, normalizing by 

A B  reduces the independent quantities to four in the calculation of !AB ; therefore, 

this type of calculation of angular difference is most useful when we know both the 

orientations of the three principal stresses and one other quantity like the stress ratio as in 
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focal mechanism inversions.  From the three principal stresses and stress ratio, one way 

to reconstruct the deviatoric stress tensor would be as follows: 

• Let !"
3
= 1.0  

• Combine the stress ratio equation, R =
!"
2
# !"

3

!"
1
# !"

3

$

%&
'

()
, and the deviatoric constraint 

!"
1
+ !"

2
+ !"

3
= 0  to derive !"

1
= #

2 # R
1+ R

$
%&

'
()

!"
3
. 

• Then let, !"
2
= # !"

1
+ !"

3( )  

• Then combine these principal stresses with principal orientations to produce the 

deviatoric stress tensor.  See Appendix A. 

As expected, the overall size of this deviatoric stress tensor is unspecified, but it does 

yield the relative sizes of each component. 

 In Figures 4.9–4.12, we apply these two different methodologies for calculating 

the angular difference between !"
Failure

x
iFailure

,t
Failure( )  and !"

B
 for our two regions, San 

Gabriel Mountains and the Southern San Andreas Fault.  Figures 4.9 and 4.10 plot the 

rotation away from !"
B

 toward 
 
!!"
T

 as a function of heterogeneity for our two regions 

using our first methodology, by showing the three-parameter Bias  in Figure 4.9 and the 

three-parameter Normalized  Bias  in Figure 4.10.  Figures 4.11 and 4.12 plot the same 

quantities as 4.9 and 4.10; only this time, we use the second methodology, four-parameter 

Bias  in Figure 4.11 and four parameter Normalized  Bias  in Figure 4.12.  Each point on 

the plots is an average over three simulations with different spatial smoothness, ! = 0.0 , 

! = 0.5 , and ! = 1.0 . 
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 Interestingly, when we use the three-parameter method of calculating Bias  

Region #2, the Southern San Andreas, rotates smoothly from the !"
B

 orientation to the 

 
!!"
T

 orientation as heterogeneity, HR , increases, but Region #1, the San Gabriel 

Mountains, does not.  Region #1, plotted in blue, quickly jumps from the !"
B

 orientation 

to the 
 
!!"
T

 orientation at HR ! 2.0  (Figures 4.9 and 4.10).  When we use the four 

parameter method of calculating Bias , both Region #1 and Region #2 rotate smoothly 

from !"
B

 to 
 
!!"
T

 as heterogeneity, HR , increases (Figures 4.11 and 4.12).  This occurs 

because the stress ratio R ! 1.0  for all HR  in Region #2, so it does not really matter 

which methodology we use, the three-parameter or four-parameter method of calculating 

angular difference, because all the information is contained in the three principal stress 

orientations.  However, for Region #1, the stress ratio, R , is significantly changing along 

with the principal stress orientations, and it follows that the three-parameter method of 

calculating Bias  is insufficient to fully represent the change in orientation as a function 

of HR .  That is why we see a step function at HR ! 2.0  for Region #1.  Regions #1 and 

#2 are extreme examples of this effect; most combinations of !"
B

 and 
 
!!"
T

 will have 

behavior in between these two for the three-parameter methodology of calculating Bias .   

At the same time, whenever possible, it is best to use the four-parameter 

methodology of calculating Bias , which uses the inner product to produce stable Bias  

and Normalized  Bias  curves as a function of HR .  For example, even though Regions #1 

and #2 have very different background stresses, their Normalized  Bias  curves are quite 

similar.  Chapter 5 will expand upon this topic by generating synthetic Bias  and 

Normalized  Bias  curves using the four-parameter methodology that can be compared to 

real data to estimate stress parameters in the real Earth. 
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Figure 4.9 a) 
 

 
Figure 4.9 b) 
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Figure 4.9.  Plots of angular Bias  toward the stressing rate orientation, 
 
!!"
T

, as a 

function of heterogeneity ratio, HR , for the a) San Gabriel Mountains and the b) 

Southern San Andreas Fault.  Bias is calculated two different ways in this plot.  The solid 

black line shows the angular difference between, !"
Failure

x
iFailure

,t
Failure( )  and !"

B
, 

! "#
Failure

"#
B

, and the dashed red line, which plots almost exactly on top shows 

 
! "#

B
"!#
T
$ ! "#

Failure
"!# .  The angular difference for these two quantities, ! "#

Failure
"#
B

 and 

 
! "#

B
"!#
T
$ ! "#

Failure
"!# , is calculated using our three-parameter method.  This methodology 

uses quaternions to determine the minimum rotation angle, ! , between two focal 

mechanisms or the principal orientations in a stress tensor. The red dashed line and the 

solid black lines are averages over simulations with three different levels of spatial 

smoothing, ! = 0.0 , ! = 0.5 , and ! = 1.0 .  The Southern San Andreas simulations 

smoothly rotate from the !"
B

 orientation to the 
 
!!"
T

 as HR  increases, but the San Gabriel 

Mountain simulations jump abruptly from !"
B

 to 
 
!!"
T

 at HR ! 2.0 .  This occurs because 

our fracture criterion is applied to the deviatoric stress tensor, not just the three 

orientation angles; hence, one must take into account the changes in the stress ratio, R , 

in addition to changes in the three principal orientations to adequately parameterize the 

rotation of !"
Failure

x
iFailure

,t
Failure( )  from !"

B
 to 

 
!!"
T

 as HR  increases for any pair of !"
B

 and 

 
!!"
T

. 
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Figure 4.10 a) 
 

 
Figure 4.10 b) 
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Figure 4.10.  Exactly the same plots as Figure 4.9 except that the Normalized  Bias  is 

now being plotted instead of the angular Bias , where all the angles have been divided by 

the maximum possible angular difference, 
 
! "#

B
"!#
T

.  The possible range of values is now 

0.0 ! Normalized  Bias ! 1.0 , where the Normalized  Bias  is really the percent rotation 

toward the 
 
!!"
T

 orientation. 
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Figure 4.11 a) 

 
Figure 4.11 b) 
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Figure 4.11.  Plots of angular Bias  toward the stressing rate orientation, 
 
!!"
T

, as a 

function of heterogeneity ratio, HR , for the a) San Gabriel Mountains and the b) 

Southern San Andreas.  Bias  is calculated two different ways in this plot.  The solid 

black line shows the angular difference between, !"
Failure

x
iFailure

,t
Failure( )  and !"

B
, 

! "#
Failure

"#
B

, and the dashed red line, which plots almost exactly on top shows 

 
! "#

B
"!#
T
$ ! "#

Failure
"!# .  The angular difference for these two quantities, ! "#

Failure
"#
B

 and 

 
! "#

B
"!#
T
$ ! "#

Failure
"!# , is calculated using our four-parameter method.  This method takes 

the tensor scalar product of deviatoric stress matrices that have been calculated from the 

three principal stress orientations and the stress ratio,R , and calculates an angle.  The 

red dashed line and the solid black lines are averages over simulations with three 

different levels of spatial smoothing, ! = 0.0 , ! = 0.5 , and ! = 1.0 .  In this figure, using 

the four-parameter method, both the Southern San Andreas Fault simulations and the 

San Gabriel Mountain simulations smoothly rotate from !"
B

 to 
 
!!"
T

 as HR  increases, 

which is more desirable than the abrupt transition seen for the San Gabriel Mountains 

seen in Figure 4.9 using the three-parameter method. While the four-parameter method 

for calculating angular differences is by far the best, it can only be applied when one has 

an estimate of the stress ratio, R .  If one has only orientation information, such as strike, 

dip, and rake !," ,#( )  when dealing with individual focal mechanism orientations, then 

one cannot use this four-parameter methodology. 
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Figure 4.12 a) 

 
Figure 4.12 b) 
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Figure 4.12.  Exactly the same plots as Figure 4.11 except that the Normalized  Bias  is 

now being plotted instead of the angular Bias , where all the angles have been divided by 

the maximum possible angular difference, 
 
! "#

B
"!#
T

.  The possible range of values is now 

0.0 ! Normalized  Bias ! 1.0 , where the Normalized  Bias  is really the percent rotation 

toward 
 
!!"
T

.  Note how similar are the Normalized  Bias  plots of the San Gabriel 

Mountains and Southern San Andreas as they both smoothly rotated toward 
 
!!"
T

 using 

this four-parameter method of estimating angular differences. 
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Chapter 5.  Estimating Stress Heterogeneity and Background Stress in the Real 
Earth 

Ultimately, we wish to estimate stress heterogeneity parameters in the real Earth 

by comparing our simulations to real focal mechanism data.  Very little is known about 

the parameters of stress heterogeneity in the Earth, so this is an exciting topic of 

investigation.  At the same time we have to keep in mind that there are limitations to our 

ability to test this, because of all the simplifying assumptions incorporated into our 3D 

numerical models.  For example, when generating the three principal stresses (!
1
, !

2
 

and !
3
), we start with Gaussian random noise in 3D and then smooth it with a fractal 

filter.  In the real Earth, a Weibull distribution may be more appropriate.  While spatial 

smoothing using a fractal filter may simply describe the statistics of our simulations, 

there is no guarantee that the real Earth’s spatial stress heterogeneity varies exactly in a 

fractal manner.  Then when we generate the actual failures, they are point failures, not 

finite dislocations, and we do not update the stress field.  We also use a plastic yield 

criterion to determine failures, which means we do not allow the possibility of slip on 

pre-existing faults.  The lack of pre-existing faults means that the spatial clustering of our 

focal mechanisms tends to occur in 3D clouds rather than lineations or planes; whereas, 

in the real Earth, seismicity often occurs on lineations or planes due to preexisting faults 

and fracture zones.  Therefore, any conclusions derived from comparing our simulations 

to real data are meant to yield an initial estimate to be tested and refined by better future 

techniques.   

 The two stress heterogeneity parameters we wish to estimate are ! , the degree of 

spatial smoothing, and HR , which describes the relative magnitudes of the spatial 

heterogeneity and the spatial mean.  We will also have to estimate how much model noise 



V-2 

 

(as opposed to stress heterogeneity) to add to our simulated focal mechanisms to 

accurately compare them with real focal mechanisms; i.e., there is a mechanism 

uncertainty/error in the generation of real focal mechanism data that has to be taken into 

account if we wish to compare our simulations to real data.  We will also show that the 

failure threshold, 
2

3
!
0

2 , can be an important factor as well.   

 To estimate ! , HR , and the model noise, we compare our simulations to a plot 

by Hardebeck [in review, 2006], that plots the average angular difference between pairs 

of focal mechanisms as a function of distance between the pairs for three different 

regions (Figures 5.1–5.2).  Figure 5.1 is a modified map from Hardebeck [in review, 

2006] that shows the regions in which she computed the average angular difference 

between pairs of focal mechanisms and the two regions we numerically model.  Figure 

5.2, another modified plot from Hardebeck [in review, 2006], shows the average angular 

difference as a function of distance for two of the regions she studied.  According to 

Hardebeck, for length scales < ~ 2 km the average focal mechanism variation could be 

explained purely by uncertainty in the focal mechanism orientations.  However, as the 

length scale increases, the average focal mechanism variation also increases, which we 

will show is consistent with smoothed heterogeneous stress similar to our simulations.  

We will show that: 

• The minimum average angular difference between focal mechanisms in Figure 

5.2 can be used to estimate how much noise should be added to our simulated 

data.  One assumes the stress is uniform at those small distances, and the 

minimum average angular difference is due purely to model noise. 
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Figure 5.1.  A modified map of the three regions Hardebeck [in review, 2006] studied 

and P-T plots of the mechanisms used to calculate average focal mechanism difference as 

a function of length as seen in Figure 5.2.  In this chapter we model two of the three 

regions, Southern California and East Bay.  The P axes in the stereonet plot are the 

darker-shaded points.  They are slightly rotated from a North-South trend.  The T axes 

are the ligher-shaded points, slightly rotated from an East-West trend. 



V-4 

 

 



V-5 

 

Figure 5.2.  Average focal mechanism difference between pairs of focal mechanisms as a 

function of distance between the pairs, for two regions, Southern California and East 

Bay, San Francisco, modified from Hardebeck [in review, 2006].  At first glance, we can 

begin pulling out numbers that will help us parameterize the heterogeneity.  If one 

assumes that the stress is approximately spatially uniform where the curve levels out for 

small scales on the left, then any non-zero average focal mechanism difference must be 

due purely to noise.  When we numerically simulate the model noise, we will find how to 

reproduce a ~ 26° average focal mechanism difference or ~ 30° average focal 

mechanism difference for uniform focal mechanisms with noise added.  The increasing 

average focal mechanism difference as a function of length is compatible with a spatially 

smoothed heterogeneous crust as we will show later.  The maximum average focal 

mechanism difference should occur at the point where the points are far enough away 

that there is no longer significant spatial correlation due to smoothing.  This curve 

flattens out to what one would expect for completely random, uncorrelated heterogeneous 

noise to produce; hence, the amplitude of this maximum will depend on the amplitude of 

the heterogeneity, HR , and of course the noise level.  For Southern California, it flattens 

out to ~62° and for East Bay, San Francisco to ~57°.  We will use these values to help us 

set the HR  parameter.  Last, the slope of the lines will help us set the spatial smoothing 

parameter, ! .  If ! = 0.0 , Southern California would be a straight line at ~ 62°, and 

East Bay would be a straight line at ~ 57°.  Instead, it appears that there is spatial 

smoothing to the heterogeneity.  In general, the steeper the slope the more smoothed the 

heterogeneity; therefore, we would expect a larger value of !  for East Bay, San 

Francisco than for Southern California. 
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• Once we have an estimate of the model noise, the maximum average angular 

difference between focal mechanisms in Figure 5.2 can be used to estimate the 

heterogeneity ratio, HR .  In Figure 5.2, the average angular difference increases 

as a function of distance then levels out at some maximum.  When we produce 

similar plots from our numerical simulations using the three-component method 

from Chapter 4, we find that ratio of heterogeneity to !"
B

, HR , determines this 

maximum.  If  HR!" , the average angular difference saturates at 

approximately 75°, whereas if HR ! 0 , the maximum is simply at the noise level 

because all the focal mechanisms have approximately the same orientations, and 

the only source of variation is noise. 

• Last, the slope of the plots in Figure 5.1 will enable us to estimate the degree of 

spatial smoothness in the heterogeneity, the parameter, ! .  For example, if 

! = 0.0 , there is no spatial correlation between focal mechanisms, and each pair 

of focal mechanisms is equally uncorrelated regardless of spatial separation; 

hence, one would expect a flat line at the maximum angular difference associated 

with HR .  As ! increases, the slope will also increase because the stress tensors 

for closely spaced points are becoming increasing similar.   

 

Estimating the Model Noise in Real Data Due to Focal Mechanism Orientation 

Uncertainty 

In Figure 5.2, modified from Hardebeck [2006], the average angular difference 

reaches a minimum at ≈ 26° for the Southern California region and ≈ 30° for the East Bay 

region.  We will assume that these minimum angular differences are purely an effect of 
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model noise, and that the stress itself is approximately uniform at those distances.  We 

can simulate this by creating a set of focal mechanisms with the same orientations, 

adding Gaussian noise with different mean deviations, calculating the average angular 

difference between pairs of focal mechanisms, and eventually finding a level of Gaussian 

noise that duplicates the 26° and 30° minima.  We add the model noise using the 

quaternion mathematics shown in Chapter 3, where we: 

• Generate completely random unit quaternions. 

• Convert them into our three rotation parameters, ! , ",#[ ]( ) . 

• Keep the random rotation axes, !,"[ ] , and combine them with a new !" . 

• The new !"  is generated using Gaussian white noise with a mean of zero and 

some specified mean deviation.  The mean deviation is the parameter we need to 

vary to match it with the average angular difference of ≈ 26°. 

• Convert !" , #,$[ ]( )  into unit quaternions and use quaternion multiplication to add 

these random rotations to the set of uniform focal mechanisms. 

• Use these unit quaternions to transform the original focal mechanism and derive 

the new strike, dip, and rake, !," ,#( )  or P and T axes. 

Figure 5.3 shows what P-T axes would look like for different levels of model 

noise starting with completely homogeneous stress (all the focal mechanisms have the 

same orientation before adding the noise).  We show a total of 2,000 focal mechanisms 

on each plot.  On the left, we use the Southern San Andreas Fault background stress 

tensor, !"
B
1

, that is applied to the simulations in Chapter 4, and on the right, we use the 

San Gabriel Mountains background stress tensor, !"
B
2

, also from our simulations in 
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Chapter 4.  We add noise onto these background stresses for !  mean deviations of 10°, 

20° and 30°, where the mean noise deviation is defined as, 

 MeanDeviation =
1

N
!

i

i=1

N

" .  (5.1) 

When we try to estimate the model noise parameter for real data, we find that an 

!  mean deviation of ~ 17° yields an ~ 26° minimum angular difference as seen in 

Hardebeck [2006] for the Southern California region.  For the East San Francisco Bay 

region, there may be a slightly larger minimum average angular difference, ~30°, which 

can be modeled with an !  mean deviation of ~ 20°.  Figure 5.4 shows the average 

angular difference as a function of distance for uniform focal mechanisms that have had  

random Gaussian noise added with ~17° and ~ 20° mean deviations.  They are 

approximately straight lines because we have simply added spatially uncorrelated noise 

to all points. 
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Figure 5.3.  P-T plots of noise.  The P axes are plotted with red asterisks, and the T axes 

are plotted with blue open circles.  For each plot, 2,000 focal mechanisms of the same 

orientation are given random rotations; therefore, any scatter in the P-T axes is due 

purely to model noise, not stress heterogeneity.  On the left, we start with the Southern 

San Andreas Fault background stress tensor, !"
B
1

, used in our simulations for Chapter 4.  

On the right we start with the San Gabriel Mountains background stress tensor, !"
B
2

, 

also used in our Chapter 4 simulations.  The top row plots the noise generated from 

random Gaussian angle rotations, ! , with mean deviation = 10°.  The center row has a 

mean deviation of 20°, and the bottom row has a mean deviation of 30°.  Mean deviations 

of  ≈ 17– 20° produce model noise that best matches real data, similar to the center row. 
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Figure 5.4.  We start with 500 uniformly oriented focal mechanisms and add random 

Gaussian noise with a mean deviation of ~17° for the top plot and ~20° for the bottom 

plot.  Then we calculate the average focal mechanism difference as a function of 

distance.  It yields approximately straight lines at ~26° for the top plot and ~ 30° for the 

bottom plot.  This matches the minimum values for Southern California and East Bay, 

San Francisco respectively in Figure 5.2; therefore, we now know how much model noise 

to add to our simulations to adequately represent focal mechanism uncertainties.  

 

Table 5.1.  Misfit Statistics for Synthetic Simulations With Gaussian Noise Added 

Mean Deviation for 
Simulations 

Mean of the Misfit Angle Standard Deviation of 
the Misfit Angle 

Southern San Andreas, 17° 10.0944° 13.7134 
San Gabriel Mountains, 17° 10.1084° 13.6266 
Southern San Andreas, 20° 12.9599° 18.7245 
San Gabriel Mountains, 20° 12.9816° 18.7866 
Southern San Andreas, 26° 20.0672 29.0822 
San Gabriel Mountains, 26° 20.0372 29.0511 

 

For each row in the table, we generate 50 sets of 1,000 noisy uniform focal mechanisms 

and apply Andy Michael’s program, “slick” [Michael, 1984; 1987].  Each inversion 

produces a mean misfit, and we average this parameter over the fifty sets.  We start with 

two different uniform orientations, which we call the “Southern San Andreas Fault” and 

“San Gabriel Mountains” from Chapter 4, and apply Gaussian random noise with mean 

deviations of ~ 17° and ~20°.  As the mean deviation of the model noise applied 

increases, so does the mean misfit angle from the inversions.  Even though the Southern 

San Andreas and San Gabriel Mountains background stresses provide significantly 

different baseline orientations upon which model noise has been added, the mean misfit 

angles are nearly identical for these two types of simulations. 
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The relationships between mean deviation, standard deviation, and average 

deviation between points for a 1D Gaussian distribution in 1D Cartesian coordinates, can 

shed some light on our statistics.   We know that for 1D Gaussians, 

 Mean Deviation =
2

!
 Standard Deviation  (5.2) 

and 
 Average Deviation Between Points = 2  Standard Deviation.  (5.3) 

Consequently,  
 Average Deviation Between Points = !  Mean Deviation. (5.4) 

 For 1D Gaussian distributions, if the Mean Deviation is 17, one would expect an 

Average Deviation Between Points of 30.13, and if the Mean Deviation is 20, one would 

expect an Average Deviation Between Points of 35.45.  Our average angular differences 

of 26° and 30° are slightly smaller than one might expect for Mean Deviations of 17° and 

20° using the above 1D statistics, but this most likely occurs because we are calculating 

the minimum angles between focal mechanisms using three dimensions instead of one.  

The statistics for 1D Cartesian Gaussians and our Gaussian angle, ! , do not have a one-

to-one correspondence.  

In Table 5.1 we show the statistics from applying a focal mechanism inversion 

program [Michael, 1984; 1987] to our noisy uniform focal mechanisms.  For each row in 

the table, we generate 50 sets of 1,000 noisy uniform focal mechanisms and apply the 

program, “slick.”  The program attempts to find a best-fit spatially uniform stress field 

that minimizes the angular misfits between the actual slip vectors and the model slip 

vectors from a uniform stress field.  One generated parameter is the mean angular misfit, 
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which we show in Table 5.1 for our homogeneous, but noisy focal mechanisms.  This 

parameter is important because the mean angular misfit will increase as the stress 

heterogeneity increases.  Therefore, one way of estimating the heterogeneity of a region 

is to 

• Apply a focal mechanism inversion to the focal mechanisms in the region. 

• Estimate the model noise in the focal mechanisms, due to uncertainty in focal 

mechanism orientations. 

• Run several simulations of the region with 3D stress heterogeneity of different 

heterogeneous amplitudes, HR .   

• Add the estimated model noise to the synthetic focal mechanisms. 

• Apply the focal mechanism inversion to the noisy focal mechanisms. 

• Compare the mean angular misfit from the real data in the region to the set of 

simulations with different levels of heterogeneity and find which HR  produces a 

mean angular misfit that best matches the real data.  

 

Estimating Stress Heterogeneity Parameters 

We calculate the average focal mechanism difference as a function of distance for 

our simulations. Note, we are using the three-component method from Chapter 4 that 

calculates the minimum angle between focal mechanisms using only angular information.  

The stress ratio, R , is not taken into account.  This is true for Figures 5.5–5.8.   Taking 

the first 2,000 failures from our 3D numerical simulations we calculate the angular 

difference between each pair of synthetic focal mechanisms and average those values as a 

function of pair distance.  Using the !  mean deviation levels of 17° and 20° to model 
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noise, we vary the two heterogeneity parameters, !  and HR , until we find curves that 

approximately match Hardebeck’s [2006] plots for Southern California and East Bay, San 

Francisco.  In Figures 5.5–5.7, we first show the effect of varying our three parameters, 

! , HR , and the mean deviation of the !  noise.  Then in Figure 5.8, we plot our best fits 

on top of Hardebeck’s data for Southern California and East Bay, San Francisco.   

The curves for Figures 5.5–5.7 are averaged over 4 different 3D simulations, 

using the same random seed for each ! .  Our final curves in Figure 5.8 use a minimum 

of five different random seeds, i.e, five different filtered 3D heterogeneous grids for each 

curve, and six different simulations per random seed, for a total of at least 30 different 

simulations for Southern California and 30 different simulations for the East Bay, San 

Francisco.  We then plot the average focal mechanism difference as a function of length 

for these two sets of simulations on top of Hardebeck’s data to assess our fit.  The 3D 

simulations have a limited spatial frequency bandwidth, a little under two orders of 

magnitude, for several reasons:  1) The size of our grids in 3D is limited, unless we go to 

a supercomputer, because the number of points increases as N3.  Currently, all 

computations are being done on an Apple G5 computer so we limit ourselves to 

201x201x201 grids.  2) The periodic boundary condition on the heterogeneity means that 

the average focal mechanism difference reaches a maximum at approximately 102 times 

the spacing between points, 102 grid spaces.  3) Distances less than 3 grid spaces produce 

unstable average focal mechanism differences because at that scale the discretization of 

the heterogeneous grid becomes important.  Therefore, in Figure 5.8 our 3D results are 

plotted with solid lines for a bandwidth of 3 –100 grid spaces, a little under two orders of 

magnitude, where each grid space would approximately match 1 km in the real Earth. 
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To extrapolate to smaller distances and cover a greater spatial frequency 

bandwidth, we quickly calculate synthetic focal mechanisms, using smoothed 1D 

heterogeneous stress as defined in Chapters 2 and 3.  We generate 1D smoothed 

heterogeneous stress with the same parameters as the 3D simulations, but with a greater 

bandwidth.   Using lines of 100,001 points, we bring the first 2,000 points to failure and 

calculate the average focal mechanism difference as a function of distance.  This 

produces curves with spatial frequency bandwidths of about three orders of magnitude, 1 

more order of magnitude than our 3D simulations.  We had hoped for four orders of 

magnitude, but the noise in the curves prevents this.  There are some aspects of the 1D 

simulations we still need to study.  In Figure 5.8 we just plot one simulation for Southern 

California and one plot for East Bay, San Francisco to give an initial idea.  The 1D 

simulations are drawn with dashed lines and begin where the 3D simulations leave off.  

The 1D simulations for distances greater than 2 km become very noisy, but still generally 

follow the 3D numerical simulation curves and Hardebeck’s [in review, 2006] data. 
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Figure 5.5.  Using the same random seed grid for each ! , we run four different 

simulations for each curve and plot the average.  Each curve has a heterogeneity ratio, 

HR = 1.5 , and an !  mean deviation of 17°.  The spatial smoothing parameter, ! , is 

varied, where ! = 0.8  corresponds to the most shallow curve on top, and !  increases by 

0.1 for each successive curve.  As !  increases, so does the slope of the average focal 

mechanism difference as a function of interevent distance.  Interestingly, !  does not 

appear to affect the maximum level at far interevent distances.   
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Figure 5.6.  Using the same random seed grid we run four different simulations for each 

curve and plot the average.  Each curve has an ! = 0.95  and an !  mean deviation of 

17°.  The heterogeneity ratio, HR , is varied from HR = 0.75 ! 2.0 .  As HR  increases, 

the maximum average focal mechanism difference increases.  Since !  does not affect the 

maximum average focal mechanism difference and HR  does, if we can fix the noise level, 

we can estimate HR  from the maxima in Hardebeck’s [in review, 2006] data.  
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Figure 5.7.  Using the same random seed, we run four different simulations for each 

curve and plot the average.  Each curve has an ! = 0.95  and an HR = 1.5 .  The !  mean 

deviation (focal mechanism uncertainty in real data) is varied from 13°–25° to show the 

effect of model noise on the simulations.  As the mean deviation of the noise increases, 

two things happen.  The curve’s maximum increases, and the slope decreases.  Therefore, 

it is important to have an accurate estimate of the model noise to parameterize both the 

heterogeneity ratio, HR  and the spatial smoothing parameter, ! .  
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Figure 5.8.  Figure modified from Hardebeck [in review, 2006].  The thin black line for 

Southern California and East Bay is Hardebeck’s HypoDD (+3D) solution for those two 

regions.  The average focal mechanism difference increases with distance between focal 

mechanism pairs, indicating there is some type of smoothed heterogeneity.  We calculate 

3D and 1D simulations that seem to best fit the curves.  We plot our results on top of 

Hardebeck’s data, with solid lines for our 3D simulations and dashed lines for our 1D 

extrapolations.  We find a heterogeneity ratio, HR = 1.75 , for Southern California in 
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both our 3D and 1D simulations, and an HR = 1.25  for East Bay in both our 3D and 1D 

simulations.  The spatial smoothing parameter, ! , estimated from these two types of 

simulations is slightly different.  The value of !  is approximately 0.1 lower in the 1D 

simulations for both Southern California and East Bay, San Francisco.  Whether that is 

due to the reduced dimensionality or the increased bandwidth is yet to be determined.  

Our guess is that this is an effect of increased bandwidth in the simulation, and if we 

were to simulate the entire bandwidth of Hardebeck’s data, almost four orders of 

magnitude, we might predict an ! = 0.6  for Southern California and an ! = 0.8  for East 

Bay, San Francisco.   

 Southern California may have a larger HR  and smaller !  than East Bay, San 

Francisco, due to the inclusion of aftershocks from moderate earthquakes such as 

Northridge, Landers, and Hector Mine. 
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The 3D simulations give the following heterogeneity parameter estimates for 

Southern California, a spatial smoothing parameter, ! = 0.8 , and an HR = 1.75  for a 

model noise level of 17° mean !  deviation.  The initial 1D simulation uses the same 

HR = 1.75  and mean deviation of 17°, but requires a slightly smaller spatial smoothing 

parameter to fit the data, an ! = 0.7 .  From our 3D simulations of East Bay, San 

Francisco, we estimate an ! = 1.0  and HR = 1.25  with a model noise mean deviation of 

20°, and from our initial 1D simulations, we estimate an ! = 0.9  and HR = 1.25  with a 

model noise mean deviation of 20°.  While the 1D simulations require the same HR  as 

the 3D simulations, the 1D simulations with the greater bandwidth require a spatially 

rougher stress, i.e., smaller values of ! .  

If we increase the bandwidth again to produce average focal mechanism 

difference as a function of distance to match Hardebeck’s entire plots, we might predict 

our estimates of !  to be lower once again (Table 5.2).  This gives us a range of 

! = 0.6 " 0.8  for Southern California and ! = 0.8 "1.0  for East Bay, San Francisco.  

The heterogeneity ratios would still be HR = 1.75  for Southern California and 

HR = 1.25 , for East Bay, San Francisco.  Again these values of !  are our best guess for 

now.  What is particularly important in our parameterization is the heterogeneity ratio, 

HR , because this determines to what degree the focal mechanism inversion results are 

biased toward the stress rate tensor.  Fortunately, HR  appears to be a stable quantity in 

these parameterizations regardless of what !  we use or spatial bandwidth we have. 

 Our guess as to why Southern California has a larger HR  than East Bay, San 

Francisco, and smaller ! , may be that Southern California includes aftershock data from 

moderate earthquakes such as Northridge and Landers.  Initial simulations (not shown) of 
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aftershocks due to moderate-major earthquakes suggest that aftershocks tend to have a 

larger average focal mechanism difference than background seismicity because the 

significant static stress change accesses a greater variety of stress states, which would 

raise the HR  estimate.  Also, the mainshock may roughen the local stress state 

immediately after the earthquake [Ben-Zion, et al., 2003] resulting in a lower estimate of 

the parameter ! .  In Figure 5.2, the curve for Southern California begins to flatten out at 

the same maximum angular difference as East Bay, San Francisco, about 57°, then begins 

to ramp up again and flattens out finally at approximately 62°.  Our speculation is that the 

background seismicity in Southern California may actually have parameters similar to 

East Bay, San Francisco, an HR = 1.25 , and predicted ! = 0.8.  Adding the effects of 

aftershocks may produce a plot similar to Figure 5.2 for Southern California. 

 

 

 

 

 

 

 

 

 

 

 

 



V-24 

 

Table 5.2.  Estimated Heterogeneous Parameters for Southern California and East Bay, 

San Francisco 

 !  Estimate for 
3D simulations 

!  Estimate for 1D 
simulation 

!  
Predicted 

HR for all 
simulations 

Southern 
California 

0.8 0.7 0.6 1.75 

East Bay, San 
Francisco 

1.0 0.9 0.8 1.25 

 

These are the estimated parameters from Figure 5.8.  Because of the limited bandwidth of 

the 3D simulations, we probably overestimate the spatial smoothing parameter, ! .  The 

1D simulations with greater bandwidth, almost three orders of magnitude spatially, lead 

us to estimates of ! , approximately 0.1 less than the 3D simulations.  If we were to 

successfully model the entire bandwidth shown in Figure 5.8, it may lower the estimates 

of !  once more.  The best we can say at this point is that an !  in the range of 0.6 ! 0.8 , 

may fit the data for Southern California, and an !  in the range of 0.6 ! 0.8  may fit the 

data for East Bay, San Francisco.  Interestingly, the 1D simulations work with the same 

HR , HR = 1.75  for Southern California and HR = 1.25  for East Bay, San Francisco; 

therefore, this parameter may be insensitive to bandwidth.  
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Comparing Inversions of Real Focal Mechanism Data to Inversions of Our 

Synthetic Focal Mechanisms 

 Using Hardebeck’s 1984–2003 Southern California data set [Hardebeck and 

Shearer, 2003] from the web site, www.data.scec.org/research/altcatalogs.html, we apply 

Andy Michael’s “slick” focal mechanism inversion program to A and B quality data for 

seven regions.  We attempt to avoid aftershock zones such as Northridge, Landers, and 

Hector Mine.  Using a type of bootstrapping for each region, we resample the region until 

we have 1,000 focal mechanisms, invert the data, and repeat this 50 times.  We then 

average two of the statistics, mean misfit angle and the standard deviation of the misfit 

angle over the 50 inversions.  See Table 5.3 and Figure 5.9 for the P-T plots of the seven 

regions we sample and the statistics we compute.   

In order to compare our synthetic focal mechanisms to the real focal mechanisms, 

we apply the inversion program “slick” to our numerical simulations in the following 

manner.  For each simulation we add model noise (to simulate focal mechanism 

measurement error) with a specified mean deviation, invert 1,000 noisy focal 

mechanisms, repeat this 50 times (adding a different random noise each time), and 

average the mean misfit angle and standard deviation misfit angle over the 50 sets.  We 

create these statistics for ! = 0.0,0.5,and 1.0 , HR = 0.1!100 , and mean !  deviation = 

17°, 20°, and 26°, to examine the effect of each parameter.  Typically, the greater the 

heterogeneity is, HR , the larger the mean misfit angle and the standard deviation of the 

misfit angle.  Varying ! , for ! = 0.0 "1.0 , appears to have little to no effect on the 

statistics.  Increasing the noise, the mean !  deviation also increases the mean misfit 

angle and the standard deviation of the misfit angle.  
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Table 5.3.  Seven Study Regions in Southern California from A and B Quality Focal 

Mechanism Data 

 Latitude 
Range 
(°N) 

Longitude 
Range 
(°E) 

Mean Misfit 
Angle 

(Degrees) 

Standard 
Deviation of the 

Misfit Angle 
(Degrees) 

Number 
of Points 

Test Region 1 
LA Basin 

33.75–34.25 241.2–241.7 18.0641 20.7630 192 

Test Region 2 
San Gabriel 
Mountains 

34.25–34.5 
34.4–34.7 
34.5–37.5 

241.75–242.25 
241.5–241.75 
241.25–241.5 

24.7288 25.7336 64 

Test Region 3 33.5–33.75 243–243.25 24.2155 25.7085 170 
Test Region 4 33.75–34 243–243.25 23.6730 20.1619 260 
Test Region 5 33.5–33.75 243.25–243.5 25.9741 21.6666 215 
Test Region 6 33.25–33.5 243.5–243.75 22.3788 22.2544 191 
Test Region 7 33.75–34 243.5–243.75 21.1410 19.6019 222 

 
We picked seven regions to study, preferably with minimal aftershock activity. Columns 2 

and 3 are the Latitudes and Longitudes that prescribe the box within which we choose 

focal mechanisms for the seven regions from the A and B quality data [Hardebeck and 

Shearer, 2003].  Using a type of bootstrapping explained in the text, we calculate the 

mean misfit angle and the standard deviation of the misfit angle for our three regions.  

These values are plotted in Figures 5.10–5.12.  Then in Figure 5.13 we use the mean 

misfit values for each region to estimate their heterogeneity ratios,HR . 
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Figure 5.9.  P-T plots of the seven study regions from the A and B quality focal 

mechanism data.  The red asterisks represent the P (compression) axes and the blue open 

circles represent the T (tension) axes for each focal mechanism. 

 

Interestingly, measurement noise and heterogeneity appear to increase these two 

statistics differently.  Defining a new parameter, which we will call the misfit ratio,  

 MR =
Mean Misfit Angle

Standard Deviation of the Misfit Angle
,  (5.5) 

we find that if there is only model noise and no stress heterogeneity one would expect a 

MR ! 0.7 .  If there is no model noise and only stress heterogeneity, one could achieve a 

MR ! 1.5 .  One way of assessing whether or not a mean deviation of 17° is appropriate 

for Southern California is to compare the mean misfit angle and the standard deviation of 

the misfit angle for our simulations with different ! , HR , and noise to our seven regions 

in Table 5.3.  In Figures 5.10, we explore this by plotting mean misfit angle vs. standard 

deviation of the misfit angle for our simulations and for our seven regions of real focal 

mechanism data.  Generally, as HR  increases (variable not shown), both the mean misfit 
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angle and the standard deviation of the misfit angle increase, creating the lines seen in 

Figure 5.10.  The three red dashed lines represent ! = 0.0, 0.5, and 1.0 , for the 

simulation background stress, “Southern San Andreas,” !"
B
2

, from Chapter 4 with a mean 

model noise deviation of 17° added to the synthetic focal mechanisms.  The three solid 

blue lines represent ! = 0.0, 0.5, and 1.0 , for the simulation background stress, “San 

Gabriel Mountains,” !"
B
1

, from Chapter 4, with a mean model noise deviation of 17° 

added to the synthetic focal mechanisms.  The lines follow the path of increasing 

heterogeneity, HR , in the mean misfit angle vs. standard deviation of the misfit angle 

space.  We plot small solid circles for the end-member, HR = 0 , case from Table 5.1.  

Last, we plot the values computed for our seven regions listed in Table 5.3, with black 

asterisks.    The point of this graph is to show that the real data, with black asterisks, are 

compatible with the predicted mean misfit angles and standard deviation of the misfit 

angles from our numerical simulations when we add a mean model noise deviation of 17° 

to our synthetic focal mechanisms.  The real data points fall within the possible range of 

values.  In Figure 5.11, we have the exact same graph but now a mean model noise 

deviation of 20° has been added to our synthetic focal mechanisms and our synthetic 

lines are no longer centered on the real data, indicating 20° could be an overestimate for 

Southern California data, at least for these seven regions.  Increasing the mean model 

noise deviation again to 26°, we plot in Figure 5.12 the same information.  The real data 

are completely offset from our synthetic curves, indicating that a mean noise deviation of 

26° is an overestimate of noise for those regions in Southern California.  These results 

give us increased confidence in using our mean model noise deviation of 17° when 

parameterizing !  and HR  in Southern California. 
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Figure 5.10.  In this Figure we compare two observables, mean misfit angle and the 

standard deviation of the misfit angle, for noisy simulated focal mechanisms and real 

data from our regions 1–7.  While these two parameters should be linearly related for a 

Gaussian distribution, the distributions of focal mechanism orientations are not 

necessarily Gaussian.  When we start adding model noise to our synthetic, heterogeneous 

focal mechanisms, we find that the ratio of mean misfit angle vs. standard deviation of 

the misfit angle, MR , depends on how much of the scatter comes from model noise vs. 

true stress heterogeneity.    In this plot, we add noise with a mean model noise deviation 
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of 17° (what we use when trying to parameterize Southern California in Figure 5.8) to 

our synthetic focal mechanisms, invert the focal mechanisms to calculate the mean misfit 

angle and standard deviation of the misfit angle, repeat this procedure fifty times, and 

average the two parameters.  We do this for a range of HR = 0.1!100  and plot the path 

of increasing HR  in the mean misfit angle vs. standard deviation of the misfit angle 

space.  The red dashed lines are for ! = 0.0, 0.5, and 1.0 , using the “Southern San 

Andreas” background stress, !"
B
2

, from Chapter 4.  The blue solid lines are for 

! = 0.0, 0.5, and 1.0 using the “San Gabriel Mountains” background stress, !"
B
1

, from 

Chapter 4.  We find that the !  parameter has little to no effect on the calculation of the 

mean misfit angle or standard deviation of the misfit angle parameters.  The black 

asterisks are the seven study regions.  We find that their mean misfit angle and standard 

deviation of the misfit angle fall within the possible values for our noisy simulated data.  

The real data for seven regions in Southern California are nicely centered on the 

simulated curves.  Therefore, it appears that the addition of a mean model noise 

deviation of 17° to our synthetic focal mechanisms produces statistics compatible with 

real data. 
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Figure 5.11.  Symbology as in Figure 5.10, with a mean model noise deviation of 20° 

added to the synthetic focal mechanisms.  The paths of increasing heterogeneity in the 

mean misfit angle vs. standard deviation of the misfit angle space no longer center on the 

real data in black asterisks, our Southern California regions 1–7.  Instead, the paths are 

slightly offset to the bottom right.  This level of model noise is what we use for the East 

Bay San Francisco parameterization, but it appears that it is not as compatible as 17° for 

the Southern California data.  This is a good check.  It shows that we most likely use the 

correct level of model noise, mean deviation of 17°, for our parameterization of Southern 

California. 
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Figure 5.12.  Same type of plot as Figures 5.10 and 5.11, only we further increase the 

mean  model noise deviation to 26°.  In this case, the paths of increasing heterogeneity, 

the red dashed and blue solid lines, for our noisy simulated data are completely offset 

from the real Southern California data.  This indicates that a mean deviation of 26° 

overestimates the model noise for background seismicity in Southern California. 
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Figure 5.13.  This plot of mean misfit angle as a function of Heterogeneity Ratio, HR  

was constructed by adding a mean model noise deviation of 17° to our synthetic focal 

mechanisms for ! = 1.0 , inverting the focal mechanisms using the program “slick” 

[Michael, 1984; 1987] to produce the mean misfit angle, repeating this 50 times, then 

averaging the mean misfit angle.  The solid blue line uses the simulations with the “San 

Gabriel Mountains” background stress, !"
B
1

, and the dashed red line uses the 

simulations with the “Southern San Andreas” background stress, !"
B
2

, both introduced in 

Chapter 4.  For these two very different background stresses, the mean misfit angle vs. 

HR  curves are fairly similar.  Of greater interest is that the increase of mean misfit 

angle as a function of HR  has a very similar shape to the curves in Figure 4.12.  In 
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Figure 4.12, we plot the percent bias toward the stress rate tensor, 
 
& !"
T

, as a function of 

HR .  This gives us hope that there may be a linear relationship between mean misfit 

angle for real data and the bias toward the stress rate tensor, 
 
& !"
T

. 

 

 

 

 It is true that the mean misfit angle and the standard deviation of the misfit angle 

are related by a constant for a 1D Gaussian distribution; therefore, in our attempt to vary 

the noise until we have an appropriate misfit ratios, MR , that matches real data, we are 

really varying the shape of the distribution of the focal mechanism scatter until it is 

similar to what is seen in the real Earth. 

Now that we have confirmed that a mean model noise deviation of ≈17° is 

appropriate for the Southern California, we plot in Figure 5.13 the mean misfit angle as a 

function of heterogeneity ratio, HR  for our simulated data with 17° model noise added.  

Presumably, we can use this relationship between mean misfit angle and heterogeneity to 

estimate the HR  for real data.  In Figure 5.13, we use a mean model noise deviation of 

17° added to our synthetic focal mechanisms, and we use an ! = 1.0 , which is close to 

our estimated ! .  The value of !  has little to no effect on the curves in Figure 5.13 so it 

probably does not matter exactly what value to use in these calculations so long as it is 

close to our estimate.  The solid blue line shows our results for simulations with a “San 

Gabriel Mountains” background stress, !"
B
1

, and the red dashed lines shows our results 

for simulations with a “Southern San Andreas” background stress, !"
B
2

.  There are three 

features to note:  1) Mean misfit angle increases with heterogeneity ratio, HR . 2) The 



V-36 

 

two very different sets of simulations give similar curves.  3) The relation between mean 

misfit angle and HR  looks very similar to the relation between the normalized bias 

toward our stress rate tensor, 
 
& !"
T

, and HR  as seen in Figure 4.12 in the previous chapter.  

This gives us hope that we can use the mean misfit angle in focal mechanism inversions 

for the real Earth to estimate both the heterogeneity ratio, HR , and the percent bias 

toward the stress rate tensor, 
 
& !"
T

.  Figure 5.14 explores this relationship, by plotting the 

percent bias toward 
 
& !"
T

 from Figure 4.12 as function of mean misfit angle using the 

parameter, HR , to connect the two quantities; therefore, the solid lines are paths of 

increasing heterogeneity, HR .  We plot this for our two sets of simulations, “San Gabriel 

Mountains,” !"
B
1

, and the “Southern San Andreas,” !"
B
2

.  We find that the relationship 

between percent bias toward
 
& !"
T

 as a function of mean misfit angle is approximately a 

linear relationship for a mean misfit angle range of 15°–37°.  The two sets of simulations 

produce slightly different slopes and intercepts for the linear best fits (see dashed lines in 

Figure 5.14), but there is some similarity.  This type of relationship between percent bias 

and mean misfit angle needs to be studied further, and the effects of all the simulation 

parameters carefully dissected before we will have much confidence.  At the same time, it 

is a starting point.   
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Figure 5.14 a) 

 

Figure 5.14 b) 
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Figure 5.14.  We plot paths of increasing HR  in the bias toward 
 
& !"
T

 vs. mean misfit 

angle space.  We use the relationship between bias and HR , and the relationship 

between mean misfit angle and HR  to create these plots.  The solid lines are our 

numerical simulations, synthetic focal mechanisms with ! = 1.0 , a mean model noise 

deviation of 17°, averaged over 50 sets of noise.  The dashed lines are the best fit linear 

relationships.  In a) we plot the relationship between normalized bias and mean misfit 

angle for our “San Gabriel Mountains” simulations and in b) we plot the same 

relationship for our “Southern San Andreas Fault” simulations (See Chapter 4).  Both 

sets of simulations produce a fairly linear relationship between normalized bias and 

mean misfit angle for a mean misfit angle range of ≈ 15–37°.  The slopes and intercepts 

and the two lines are slightly different, but they lead to similar estimates of bias.  We 

apply these curves to our seven regions of real focal mechanism data to estimate percent 

bias toward 
 
& !"
T

 and show the results in Table 5.4. 
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Hypothetically, using this type of plot, one can subtract out the bias toward the 

stress rate tensor, 
 
& !"
T

, to give the actual orientation of the background stress, !"
B

.  The 

procedure may be as follows: 

• Select a region to study. 

• Remove the aftershocks, if any, and invert the focal mechanisms within the 

region. 

• From the mean misfit angle, estimate the heterogeneity ratio, HR , in the region 

and the percent bias toward the stress-rate tensor, 
 
& !"
T

. 

• Compare the orientation of the best-fit stress tensor from the focal mechanism 

inversion to the predicted stress-rate tensor from GPS data/modeling.  Models like 

those of Becker et al. [2005] , which combine fault block modeling with GPS data 

as constraints, can provide the stress-rate tensors.  

• If the focal mechanism inversion tensor and the stress-rate tensors are nearly 

identical, and HR < 5.0  (maximum bias of 70%), then one can estimate that the 

stress rate tensor, 
 
& !"
T

, and the background stress, !"
B

, are approximately aligned 

with one another. 

• If there is a significant difference between the focal mechanism inversion tensor 

and the stress-rate tensor, and HR > 0.5  (minimum bias of 10%), then there is an 

even greater difference between the !"
B

 and 
 
& !"
T

.  Use the estimate of the percent 

bias toward 
 
& !"
T

, combined with the values of the inverted tensor, !"
Inverted

, and 

 
& !"
T

, to estimate !"
B

. 

In summary, this new methodology may enable seismologists to still use standard 

focal mechanism inversions to estimate !"
B

, with the caveat that the interpretation is now 



V-40 

 

more complicated because any bias toward 
 
& !"
T

 due to spatial stress heterogeneity needs 

to be removed.  At the same time, this new methodology allows the estimation of a new 

parameter, HR , the ratio of the magnitudes of the spatially heterogeneous stress and the 

spatial mean stress, for the region.  Then, using plots like Figure 5.8 to determine the 

spatial smoothness of the heterogeneity, ! , setting the maximum sustainable stress ≈ 200 

MPa, at distance of 10 cm (what one would expect for dislocations), one may be able to 

estimate the size of !"
B

 for the study region, the effective strength of the crust for the 

study region size [Heaton, 2006, in preparation].  

Returning to our seven regions of real focal mechanism data, we use Figures 5.13 

and 5.14 to estimate HR  and the percent bias toward 
 
& !"
T

.  Table 5.4 lists our estimates 

based on these curves.  We obtain HR  estimates ranging from 0.62–0.70 for the LA 

Basin, the least heterogeneous of our seven regions, to an HR  = 1.21–1.44 for Region 5.  

We also obtain bias estimates anywhere from 14–42% bias toward the stress rate tensor, 

 
& !"
T

; this indicates that the heterogeneity in Southern California is sufficient to 

significantly bias the focal mechanism inversions toward 
 
& !"
T

, but not completely.  

Hypothetically, it should be possible to remove this bias due to spatially heterogeneous 

stress and extract the actual !"
B

. 

 Interestingly, it appears that the seven regions we chose in Southern California 

are more compatible with an HR = 1.25  than the HR = 1.75  that we had calculated from 

Figure 5.8.  As mentioned previously, the average focal mechanism difference as a 

function of distance for Southern California (Figure 5.8) includes both background 

seismicity and aftershocks, and we hypothesize that the inclusion of aftershocks raises the 

HR  estimate and lowers the !  estimate.  Indeed, the curve for Southern California 
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begins to flatten out at the same level as East Bay San Francisco, HR  = 1.25, then begins 

to rise again and finally levels out at a HR  = 1.75.  Combining this information with the 

HR  estimates from comparing mean misfit angle information between our simulations 

and real data leads us to an estimate of HR  ≈ 1.25 and ! " 0.8  for regions with 

background seismicity (no aftershocks) in Southern California and East Bay, San 

Francisco.   

Figure 5.15 shows P-T plots of simulation focal mechanisms using our best guess 

parameters and our model noise with mean deviation =  17°.  We show one plot from our 

“San Gabriel Mountains” simulations with !
B
1

 and one plot from our “Southern San 

Andreas Fault” simulations with !
B
2

.  The plot from our “Southern San Andreas Fault” 

simulations looks similar to some of the P-T plots of real data in Figure 5.9. 

 

 

Figure 5.15.  P and T axes plotted for 300 synthetic focal mechanisms each, using our 

best guess stress heterogeneity parameters.  We use an ! = 0.8 , HR = 1.25 , and a model 

noise with mean deviation = 17°.  The strike-slip example on the right looks similar to 

some of the P-T plots of real focal mechanisms in Figure 5.9. 



V-42 

 

In Figure 5.16 we plot what the spatial variation might look for a 1D cross section 

for 1 component of the deviatoric stress tensor, using our best guess parameters.  We 

create 1D heterogeneous stress with 100,001 points and an ! = 0.8 ; we then add the 

following background stress tensor,  

!"
B
=

0 1 0

1 0 0

0 0 0

#

$

%
%

&

'

(
(
,

 

normalizing this background stress and our heterogeneity so that we have an HR = 1.25 .  

We equate 1 grid spacing to 10 cm; therefore, our entire spatial bandwidth is 

approximately 10 km, or 5 orders of magnitude.  We set the maximum stress at 200 MPa, 

which is what one may expect for granitic rock [Scholz, 1990], focus on a stress asperity, 

and calculate what the mean stress may be on a variety of length scales.  This is 

motivated by a hypothesis from Heaton that strength in the Earth is length scale 

dependent [Heaton, 2006, in preparation]; if so, averagering stress over different length 

scales produces different estimates of strength.  Interestingly, if we average over different 

length scales around the asperity, we calculate for one of the components of the 

deviatoric stress tensor, !
12

: 

• ≈ 54 MPa if we average over 10 km 

• ≈ 72 MPa if we average over 1 km, centered on the asperity 

• ≈ 111 MPa if we average over 100 m, centered on the asperity 

• ≈ 150 MPa if we average over 10 m, centered on the asperity 

The increase of mean stress as we narrow our focus on the stress asperity, i.e., reduce the 

window over which we average, supports Heaton’s hypothesis that strength in the crust 

depends on the length scale of the measurement.   
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Figure 5.16 a) 

 

Figure 5.16 b) 
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Figure 5.16 c) 

 

Figure 5.16 d) 
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Figure 5.16.  We create spatially smoothed heterogeneous stress in 1D with ! = 0.8  and 

add a spatially uniform background stress with an HR = 1.25 .  Therefore, it has the 

parameters we hypothesize  for heterogeneous stress in East Bay, San Francisco and for 

Southern California if one were to subtract out aftershocks.  We plot 100,001 points of 

one component of the stress tensor, !"
12

 in a).  If we let the grid spacing equal 10 cm, 

then the entire range of our stress 1D cross section is approximately 10 km.  In a) we plot 

the entire width, a 10 km length.  In b), c), and d) we successively narrow our plotting 

window by an order of magnitude each time, to focus in on a stress asperity.  If we set 

our maximum stress to be 200 MPa, what one might expect for a 10 cm dislocation, then 

we can estimate mean stresses at different length scales for the asperity.  The mean stress 

tends to increase as the window narrows over which we average the stress, supporting 

Heaton’s hypothesis [2006, in preparation] that the strength of the crust is length scale 

dependent. 
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Table 5.4.  Estimates of the Heterogeneity Ratio, HR , and the Percent Bias Toward the 

Stress Rate Tensor for Our Seven Regions of Real Focal Mechanism Data 

 Mean Misfit 
Angle 

Estimate of 
Heterogeneity Ratio, HR 

Estimate of Tensor Dot 
Tensor Dot Product Bias 
Toward 

 
&!
T

 
Test Region 1 
LA Basin 

18.0641 0.62–0.70 14–28% 

Test Region 2 
San Gabriel 
Mountains 

24.7288 1.14–1.31 32–39% 

Test Region 3 24.2155 1.09–1.24 31–38% 
Test Region 4 23.6730 1.06–1.18 29–36% 
Test Region 5 25.9741 1.21–1.44 36–42% 
Test Region 6 22.3788 0.95–1.04 26–33% 
Test Region 7 21.1410 0.82–0.95 22–30% 
 

The estimates come from applying Figures 5.13 and 5.14 to their misfit angles.  Our 

seven interseismic regions yield HR  estimates more compatible with 1.25 than 1.75.  It is 

possible that the Southern California parameterization of HR  in Figure 5.8 is elevated to 

1.75 by the inclusion of aftershock data.  Indeed, the curve for Southern California 

(Figure 5.8) begins to maximize at an angle that is compatible with HR = 1.25 , then 

increases again to an angle compatible with HR = 1.75 .  Our guess is the initial 

flattening is background seismicity, and the final maximum is due to aftershock data.  It 

would be interesting to have the average focal mechanism difference as a function of 

distance recalculated for them separately.  
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Chapter 6.  Conclusion 

We created simple stochastic models of spatially heterogeneous stress in three 

dimensions.  By breaking up the stress tensor into three invariant quantities (principal 

stresses) and three orientation angles (a rotation amplitude, ! , about a rotation axis 

!,"[ ] ), we were able to produce filtered heterogeneous 3D matrices of the full stress 

tensor with properties that are approximately unchanged upon rotation of coordinate 

system.  We generated random principal stresses !
1
,!

2
,!

3( )  using Gaussian white noise 

and random orientations ! , ",#[ ]( )  using random unit quaternions, then filtered each 

quantity in three dimensions.  The spatial smoothing parameter we used in the filtering is 

! , which is the spectral falloff of any 1D cross section through our 3D grids.  We find 

that the larger the value of ! , the greater the spatial smoothing.  For our 201x201x201 

grids and spatial smoothing ! " 1.0 , any orientation bias due to filtering is small and can 

be eliminated by stacking grids with a different random rotation applied to the stress 

tensors within each stacked grid.  Subtracting out the pressure, we then added our filtered 

heterogeneous deviatoric stress in 3D, !"
H
x( ) , to a spatially uniform background stress, 

!"
B

.  This introduces our second stress heterogeneity parameter, HR , which uses a ratio 

of !I
2

s (second invariants of deviatoric stress tensors), which are functions of the 

deviatoric principal stresses ( !"
1
, !"

2
, and !"

3
), as a measure of the relative amplitude of 

the spatially heterogeneous stress, !"
H
x( ) , to the amplitude of the spatial mean, !"

B
.  

Last, we add a stress-rate 
 
! !"
T

, due to far-field plate loading, to bring points to failure via 

our Hencky-Mises plastic yield criterion. 
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 We showed analytically that, in the presence of extremely heterogeneous stress 

and our plastic yield criterion, we would expect bias to which points fail as earthquakes 

for HR >> 1 , a bias towards 
 
! !"
T

.  Assuming that only a small percentage of the possible 

failure points in the Earth actually fail, we found that if the spatial stress heterogeneity is 

large in comparison to the spatial mean, the most likely points to fail will have an average 

stress rotated toward 
 
! !"
T

.  Numerically testing this with our 3D filtered heterogeneous 

stress, we computed !"
Failure

x
iFailure

( )  from the first 2,000 failures for a variety of 

simulations and show that !"
Failure

x
iFailure

( ) # !"
B

 for HR << 1 , 
 
!"
Failure

x
iFailure

( ) # !!"
T

 for 

HR >> 1 , and !"
Failure

x
iFailure

( )  is rotated approximately halfway between !"
B

 and 
 
! !"
T

 for 

HR ! 2.0 .   

Current stress studies using focal mechanism inversions [Angelier, 1975; 1984; 

Carey and Brunier, 1974; Etchecopar, et al., 1981; Gephart, 1990; Gephart and Forsyth, 

1984; Mercier and Carey-Gailhardis, 1989; Michael, 1984; 1987]  assume that there is 

no bias toward 
 
! !"
T

 in their measured focal mechanism orientations.  It is assumed that the 

set of earthquakes used in the inversions are a good random sampler of the mean stress 

state in the real Earth; therefore, the tensor obtained from these inversions is equated with 

the spatial mean, !"
B

.  However, according to our studies, if there is significant 

heterogeneity, the interpretation of focal mechanism inversions is not that simple; one 

must take into account the bias toward 
 
! !"
T

.   

To determine whether or not this bias toward 
 
! !"
T

 is important in the real Earth, 

we compared our synthetic focal mechanisms produced from spatially heterogeneous 

stress to real focal mechanism data and estimated our heterogeneous ratio, HR . The 
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parameter !  has little to no effect on the percent bias toward 

 
! !"
T

 for ! " 1.0 .  Based on 

our numerical simulations, if HR ! 1.0 , there will be a minimum 25–35% bias toward 

 
! !"
T

 in the stress inversions.  Our first step was to estimate the model noise that must be 

added to our synthetic focal mechanisms, i.e., how much noise there is in real focal 

mechanism calculations due to errors in determining the mechanisms.  Our next step was 

to calculate the average focal mechanism difference (an average angular difference) as a 

function of distance for simulations with varying amounts of stress heterogeneity, HR , 

and compare our results to a figure from Hardebeck’s recently submitted paper [in 

review, 2006].  Hardebeck determined these quantities for three regions, Southern 

California; East Bay, San Francisco; and the Loma Prieta region.  We attempted to model 

the Southern California and East Bay, San Francisco.  We also compared focal 

mechanisms from Hardebeck’s focal mechanism catalogue [Hardebeck and Shearer, 

2003] for Southern California to our synthetic simulations.  Applying Michael’s inversion 

program, “slick” [1984; 1987], to focal mechanisms within seven non-aftershock regions 

using A and B quality data and then to our synthetic focal mechanisms with model noise 

added, we compare misfit angle statistics.  Using these two methods, our best estimate is 

HR = 1.25  for Southern California and East Bay, San Francisco in aftershock free areas.  

According to our simulations, this would generate an ≈ 40% bias toward the stress rate, 

 
! !"
T

.  This is a non-trivial bias; hence, we conclude that stress studies that use focal 

mechanism data sets and standard stress inversion tools [Angelier, 1975; 1984; Carey and 

Brunier, 1974; Etchecopar, et al., 1981; Gephart, 1990; Gephart and Forsyth, 1984; 

Mercier and Carey-Gailhardis, 1989; Michael, 1984; 1987] to determine the stress state 

in the crust need to be reinterpreted.  We illustrate how one might subtract out this bias 
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toward 

 
! !"
T

 in our new heterogeneous stress paradigm to produce a more accurate 

estimate of !"
B

.  This new method of interpreting stress studies is significantly more 

complicated than current methods, but also generates a new parameter, the heterogeneity 

ratio, HR . 

We also attempted to parameterize the spatial smoothing, ! , by comparing our 

numerical simulations to Hardebeck’s [2006] plot of average focal mechanism difference 

as a function of distance.  We estimated an ! " 0.8  for non-aftershock regions. This 

parameter is more difficult to constrain than HR ; clearly, more work can be done to 

refine this estimate.  The exact value of !  does not affect the main conclusion of this 

thesis, that stress heterogeneity biases stress inversion results toward 
 
! !"
T

, but !  is very 

important for determining the strength of the crust as a function of lengthscale.   

 

Caveats and Future Work 

 As mentioned in Chapter 1, the Introduction, in our attempt to create a simple, 

statistical model of spatial stress heterogeneity in the Earth’s crust, assumptions have 

been made that could have affected our results.  For example, we do not update the stress 

field after each event; therefore, our results are best compared to stress inversions of 

background seismicity in between large earthquakes.  If a large earthquake occurs and we 

wish to model its effect on the surrounding crust, namely how it produces aftershocks, we 

would have to modify our initial equation in Chapter 1, to take into account any 3D stress 

pertubations.  The term we would add is: 
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!
E
x( )H t "T

E( ) is the stress perturbation from major events that occur at time T
E

 

(e.g., Landers earthquake). While we assume that these large events make 

extremely complex variations in stress in the immediate vicinity of the rupture, 

the stress variations can be approximately modeled with simple source models at 

larger distances from the rupture. 

This produces our new stress equation: 

 
 
!" x,t( ) = !"

B
+ ! !"

T
t + !"

H
x( ) + "

E
x( )H t # T

E( ) . (0.1) 

A future direction of research would be to use equation (0.1) to study aftershocks from a 

moderate to large earthquake and simulate the apparent stress rotations.  The first step 

would be to model the pre-event !"
B

 and 
 
! !"
T
t  along with a spatially heterogeneous stress, 

!"
H
x( ) , with appropriate spectral properties, to produce the synthetic pre-event 

background seismicity.  The next step would be to add a source model of Landers, 

Northridge, Loma Prieta, or another earthquake, calculate the static stress change within 

the surround medium, !
E
x( )H t " T

E( ) , ask which points exceed the failure threshold as 

a result of !
E
x( )H t " T

E( ) , and count these points as aftershocks.  The last step would 

be to reapply the stress rate, 
 
! !"
T
t , on this updated system to produce synthetic focal 

mechanisms that would represent the seismicity after the aftershock sequence has died 

off.   

The point of this modeling would be to see if the pre-event seismicity, aftershock 

sequence, and post-aftershock seismicity have similar or different stress inversion 

orientations.  We predict that the 3D static stress perturbation, !
E
x( )H t " T

E( ) , will 

cause a rotation of the average failure mechanism, directly after the mainshock; therefore, 
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stress inversions of aftershock sequences will produce a tensor rotated relative to any 

inversions of premainshock seismicity.  Indeed, such rotations have been seen for 

Landers [Hardebeck and Hauksson, 2001], Northridge [Zhao, et al., 1997], and other 

earthquakes.  We also predict that after the aftershock sequence has died off, if the 

orientation of 
 
! !"
T
t  due to plate tectonics has remained constant, then the average focal 

mechanism orientation and stress inversion results will rotate back to the premainshock 

orientation.  Our predictions are based on what we learned from Chapter 4, that whatever 

is perturbing the system in time, be it the stress buildup due to far-field plate loading, 

 
! !"
T
t , or the transient processes initiated by the mainshock, !

E
x( )H t " T

E( ) , that affect 

the aftershock sequence, are what primarily determine the orientations of earthquake 

failures if stress is spatially heterogeneous in the crust.  Therefore, in our paradigm, prior 

to the mainshock, 
 
! !"
T
t , is the most important perturbation to the system, during the 

aftershock sequence processes related to !
E
x( )H t " T

E( ) , is the most important 

perturbation to the system (why the average failure orientation would rotate), and after 

the aftershock sequence has ceased, 
 
! !"
T
t , is the most important perturbation to the system 

(why the average failure orientation would rotate back to the premainshock orientation). 

This is a significantly different interpretation of “apparent” stress rotations.  

Currently, if there is a significant rotation of stress inversion results after a mainshock, it 

is assumed that the mainshock produced a nearly complete stress drop and that the 

magnitude of the background stress, !"
B

, is approximately equal zero.  In our 

interpretation, !"
B

, no longer has to approximately equal zero, it can have a significant, 

non-zero magnitude.  Instead, it is the interaction between the spatially heterogeneous 

stress and the perturbations to the system that “appears” to rotate the stress tensor, when 
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in fact it is just changing the bias as a function of time; i.e., which spatially 

heterogeneous stress tensors have preference for failure changes depending upon the 

current perturbation to the system. 

So far, we have tested this hypothesis with initial work on the reported stress 

rotation after the Northridge earthquake [Zhao, et al., 1997] with our heterogeneous 

stress models.  Immediately after the Northridge earthquake, Zhao and Kanamori 

reported an approximately 17° rotation of the P axis and found that within the months 

following the earthquake, it rotated back to the pre-Northridge orientation (Figure 6.1).  

Our initial models appear to replicate this reported rotation in average focal mechanism 

orientations.  In our heterogeneous stress models, the average focal mechanism 

orientations are biased toward whatever is perturbing the system in time; therefore, any 

rotations in our system for large HR  are a function of the perturbation, not the 

background stress + perturbation.  We confirmed that our numerical models with 

heterogeneous stress are capable of generating significant rotations in average focal 

mechanism orientations even with non-zero background stress, !"
B

.  They also appear 

capable of generating the rotation back to the premainshock orientation.  In essence, our 

heterogeneous stress models produce focal mechanism orientations biased from any 

aftershock time-dependent processes immediately after the mainshock. Then as 

aftershock processes die off and the stress rate from long-term tectonic processes become 

more important, the average focal mechanism orientations are predicted to rotate back.  

The time scale of this process is predicted to depend on the amount of slip in the 

mainshock compared to the long-term strain rate. 
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Figure 6.1.  Figure modified from Zhao et al. [1997] shows the rotation of the pressure 

axis as a function of time.  There is a discrete jump in orientation of about 17° at the time 

of the Northridge earthquake then a slow rotation back over the course of two years. 

 

 An additional route for new research would be to combine our spatially 

heterogeneous stress aftershock model with rate and state friction to study aftershock 

patterns and decays.  In essence, instead of letting all the points that exceed the failure 

threshold after mainshock fail simultaneously, we would apply the rate and state friction 

law.  Those heterogeneous points that exceed the failure threshold the most would fail 

first, and those that exceed it by a small amount would fail last.  It would be a natural, 
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physical way to produce the time delay for some points and explain why some fail 

quickly while others take much longer.  We would compare our statistics to those of real 

aftershock sequences.  In turn, this comparison with real data could provide additional 

constraints for our two statistical parameters, HR  and ! . 

 Another comparison/test of our spatially heterogeneous stress aftershock model 

would be to see if we can reproduce spatial/depth variations in the aftershock 

orientations.  Kerkela and Stock [1996; personal communication, 2006] in their borehole 

breakout studies of the San Fernando Valley found variability in the orientation of 

maximum compressive stress as a function of depth that may be compatible with our 

aftershock models; however, it is yet to be tested. 

 One other limitation of our method that could lead into future research and 

refinements is that we do not allow failure on non-optimal slip planes.  We do not allow 

spatial variability in the static or dynamic coefficient of frictions, µ .  It is possible that 

some of the heterogeneity seen in the data is due to non-optimally orientated fault planes 

and variable strength faults, which would lower our estimate of stress heterogeneity.  

Given the borehole breakout data presented in Chapter 1 that strongly indicate 

heterogeneity of stress orientations, we are fairly sure there is some short wavelength 

spatially heterogeneous stress in tectonically active regions, but of course the question is 

how much.  A future area for research would be to try to simply model this without using 

dynamic simulations.  To derive statistics of fault orientations, sizes, sources on the faults 

(i.e., heterogeneous slip) and evolve it through time, allowing for fresh fractures as well 

as failure on pre-existing planes.  It would involve many more assumptions that could 

complicate the problem and possibly add in hidden biases due to the statistics of 
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fault/source generation, but if it could be done, it would provide a good comparison to 

our current method.  The truest way to model the pre-existing failure and generate the 

heterogeneous stress field would be to employ dynamics fault failures for all faults 

throughout all time, but this is far beyond our current numerical capacity. 

There are many other possible directions for future work, such as developing new 

ways of generating our 3D spatially heterogeneous stress field, using Weibull statistics or 

other distributions; adding in finite fault ruptures; or updating the stress field after each 

event.  This thesis is meant to open the door for studying the effect of 3D stress 

heterogeneity on focal mechanisms and seismicity patterns in the real Earth and show 

that heterogeneity must be taken into account when interpreting stress inversions for the 

crust. 
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Appendix A.  Equations for Translating Between Stress Matrices, Fault Parameters, 

and P-T Axes 

Coordinate Systems and Rotations 

We use the same right-handed coordinate system as Andy Michael’s program, 

slick [Michael, 1984; 1987], which is East, North, and Up. 

 

 

Figure A.1.  Right-handed coordinate system used in generating code that is compatible 

with Andy Michael’s stress inversion programs.  All vectors generated will have a format 

v = [Ê, N̂ ,Ûp] . 

 

Therefore, our stress matrices will have the following Cauchy stress tensor format:  

 !
ij
=

!
EE

!
EN

!
EU

  

!
NE

!
NN

!
NU

  

!
UE

!
UN

!
UU

 .

 (A.1) 

For any component of ! ij , j  indicates the direction of the force applied, and i  describes 

the normal of the plane on which the force is acting.  Following physics sign convention 

for ! ij , where tension is positive and pressure is negative, if the force vector is acting in 

the positive direction and the normal is also in the positive direction, then the component 

!
ij
> 0 .  Conversely, if the force vector is acting in the negative direction and the normal 
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is in the positive direction, ! ij
< 0 . For example, !

EN
> 0  describes one of two scenarios:  

1) A force acting in the N̂  direction on a plane with a normal in the Ê  direction.  2) A 

force acting in the !N̂  direction on a plane with a normal in the !Ê  direction.  The 

diagonal components of ! ij  describe the normal tractions (forces normal to the plane on 

which they are acting), and the off-diagonal components describe the shear tractions 

(forces tangent to the plane on which they are acting).  Figure A.2 graphically shows all 

the components of the stress tensor. Figures A.3 and A.4 show 2D examples in more 

detail. 

As noted in Figure A.2, our Cauchy stress matrix must be symmetric resulting in: 

 !
ij
=

!
EE

!
EN

!
EU

  

!
EN

!
NN

!
NU

  

!
EU

!
NU

!
UU

 .

 (A.2) 

Figure A.3 shows in detail our convention for normal stresses and Figure A.4 shows in 

detail our convention for shear stresses. 
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Figure A.2.  The stress vectors are shown for three of the six exterior faces on a box.  

Note that in our convention, the diagonal elements of our stress tensor (!
EE

, !
NN

, and 

!
UU

) for tension are > 0  and for compression are < 0 .  In this figure all the elements of 

!
ij  are positive.  For example, !

EE
, !

NN
, !

UU
 are all pointing in the same direction as 

their respective normal vectors, resulting in tension.  The off-diagonal elements, !
EN

, 

!
NU

, !
UE

, have either a traction in the positive direction and a positive normal or have a 

traction in the negative direction and a negative normal for the given coordinate system.  

Since we are interested in systems where there is no net rotation, the matrix must be 

symmetric, i.e., !
NE

= !
EN

, !
UE

= !
EU

, and !
UN

= !
NU

  [illustration adapted from 

Housner and Vreeland, 1965]. 
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Figure A.3.  In this 2D example, !
EE

 and !
NN

 are both positive, i.e., the traction vectors 

are always pointing in the same direction as the normal vectors, resulting in 

E !W tension and N ! S  tension. 

 

Figure A.4.  Again, !
EN

 and !
NE

 are positive using our convention that a traction 

aligned in a positive direction on a plane with a positive normal, or a traction aligned in 

a negative direction on a plane with a negative normal, produce a positive component in 

our stress tensor.  Note, due to rotational symmetry, !
EN

= !
NE

. 
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In Figure A.4, if !
EN

 is the only stress being applied, then we could write our 

Cauchy stress tensor as follows, 

 ! ij

a( )
= A 

0 1 0

1 0 0

0 0 0

"

#

$
$

%

&

'
'

 (A.3) 

 
where A  is the scalar amplitude of !

EN
. 

If we wish to rotate the stress tensor, ! ij

a( ) , then we can apply any combination of 

the following rotation matrices,  

 R !( ) =

1 0 0

0 cos! " sin!
0 sin! cos!

#

$

%
%

&

'

(
(

         

for a counter-clockwise rotation !  

of the stress tensor about the 
ˆ
E  axis

 (A.4) 

 R !( ) =

cos! 0 sin!
0 1 0

" sin! 0 cos!

#

$

%
%

&

'

(
(

         

for a counter-clockwise rotation !  

of the stress tensor about the 
ˆ
N  axis

 (A.5) 

 R !( ) =

cos! " sin! 0

sin! cos! 0

0 0 1

#

$

%
%

&

'

(
(

         

for a counter-clockwise rotation !  

of the stress tensor about the 
ˆUp axis.

 (A.6) 

In Figure A.5, we apply the third rotation matrix, R !( ) , to rotate ! ij

a( )  about the 

positive Ûp axis  by ! = 45°  to produce a new Cauchy stress tensor, !
kl

b( ) .  We can write 

out the rotation as the following set of steps: 
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! kl

b( )
= Rki! ij

a( )
Rlj = R "( )! a( )

R "( )( )
T

= A

cos" # sin" 0

sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

0 1 0

1 0 0

0 0 0

$

%

&
&

'

(

)
)

#
cos" sin" 0

sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

= A

cos" # sin" 0

sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

# sin" cos" 0

cos" sin" 0

0 0 0

$

%

&
&

'

(

)
)

= A

# cos" sin" # sin" cos" cos" cos" # sin" sin" 0

# sin" sin" + cos" cos" sin" cos" + cos" sin" 0

0 0 0

$

%

&
&

'

(

)
)

= A

# sin2" cos2" 0

cos2" sin2" 0

0 0 0

$

%

&
&

'

(

)
)
,

 (A.7) 

 

and for ! = 45° , we find that our rotated stress is simply 

 !
kl

b( )
= A

"1 0 0

0 1 0

0 0 0

#

$

%
%

&

'

(
(
.

 (A.8) 

 
If we rotate the coordinate systems instead of the stress tensors themselves, the 

rotation matrices are the transpose of those used for rotating the stress tensors. 

 R
T !( ) =

1 0 0

0 cos! sin!
0 " sin! cos!

#

$

%
%

&

'

(
(

          

for a counter-clockwise rotation !  

of the coordinates about the 
ˆ
E  axis

 (A.9) 

 R
T !( ) =

cos! 0 " sin!
0 1 0

sin! 0 cos!

#

$

%
%

&

'

(
(

          

for a counter-clockwise rotation !  

of the coordinates about the 
ˆ
N  axis

 (A.10) 

 R
T !( ) =

cos! sin! 0

" sin! cos! 0

0 0 1

#

$

%
%

&

'

(
(

          

for a counter-clockwise rotation !  

of the coordinates about the 
ˆUp axis.

 (A.11) 
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Figure A.5.  The dotted lines indicate the unrotated stress tensor and the solid lines are 

for the rotated stress tensor.  Rotation of the stress field counter-clockwise by 45°.  Note 

that it results in E !W  compression and N ! S  tension.  This agrees with our tensor, 

!
kl

b( ) , where !
EE

b( )
< 0 , i.e., compression in the E !W  direction, and !

NN

b( )
> 0 , i.e., 

tension in the N ! S  direction. 
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Therefore, if we start with  

 ! ij

a( )
= A 

0 1 0

1 0 0

0 0 0

"

#

$
$

%

&

'
'

 (A.12) 

and rotate the coordinate system by 45° about the Ûp  axis, our stress tensor in the new 

coordinate system is: 

 

! kl

c( )
= Rik! ij

a( )
Rjl = R "( )( )

T
! a( )
R "( )

= A

cos" sin" 0

# sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

0 1 0

1 0 0

0 0 0

$

%

&
&

'

(

)
)

cos" # sin" 0

sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

= A

cos" sin" 0

# sin" cos" 0

0 0 1

$

%

&
&

'

(

)
)

sin" cos" 0

cos" # sin" 0

0 0 0

$

%

&
&

'

(

)
)

= A

cos" sin" + sin" cos" cos" cos" # sin" sin" 0

# sin" sin" + cos" cos" # sin" cos" # cos" sin" 0

0 0 0

$

%

&
&

'

(

)
)

= A

sin2" cos2" 0

cos2" # sin2" 0

0 0 0

$

%

&
&

'

(

)
)
,

 (A.13) 

and for ! = 45° , we find that our stress tensor in the rotated coordinate system is  

 !
kl

c( )
= A

1 0 0

0 "1 0

0 0 0

#

$

%
%

&

'

(
(
.

 (A.14) 

 
Figure A.6 graphically shows this rotation of the coordinate system. 
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Figure A.6.  Rotation of the coordinate system counter-clockwise by 45°.  The solid 

normal vectors represent the unrotated coordinates and the dashed normal vectors 

represent the rotated coordinates.  Note that the rotation results in compression in the 

primed, or new N ! S  direction, and tension in the new E !W  direction. 

 

Any symmetric stress matrix, ! , can be represented in terms of a diagonal matrix 

! ' , which contains the eigenvalues of ! , and a rotation matrix V , which contains 

eigenvectors of ! , where ! = V! 'V
T .  Once we know V , which rotates our coordinate 

system to the primed coordinate system, we can rotate our stress tensor !  or anything 

else into this coordinate system.  For example, ! ' = VT
!V .  This is called the principal 

coordinate system, and the diagonal values of ! '  are the principal stresses, where 
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! ' =
!
1

0 0

0 !
2

0

0 0 !
3

"

#

$
$

%

&

'
'

 

and the principal stresses, !
1
, !

2
, and !

3
 are ordered from most to least compressive, 

i.e., from smallest (most negative) to largest (most positive) given that in our convention 

compression yields negative values and tension yields positive values.  V = V
ij  is the 

eigenvector matrix associated with the eigenvalues where V
i1

 is the eigenvector for !
1
, 

V
i2

 is the eigenvector for !
2

, and V
i3

 is the eigenvector for !
3
.  !

1
 is the maximum 

compressive stress, !
3
 is the minimum compressive stress, and !

2
 is the intermediate 

compressive stress.  Therefore, for a deviatoric matrix where the trace has been 

subtracted, one finds that !
1
< 0  (compression), !

3
> 0  (tension), and !

2
= " !

1
+!

3( ) .  

!
1
, !

2
, and !

3
, are the eigenvalues of ! , and 

 

!
x
1
= VÊ = V

i1
, 
 

!
x
2
= VN̂ = V

i2
, and 

 

!
x
3
= VÛp = V

i3
 are the eigenvectors in the new principal coordinate system. 

 

Translating a Stress Matrix into Strike, Dip, and Rake Earthquake Fault 

Parameters 

 Ultimately, we wish to ask, given a particular stress state described by our stress 

tensors, what is the failure orientation?  What synthetic fault parameters (strike, dip, and 

rake) are produced when the material fails?  These questions can only be answered once a 

fracture criterion, that determines the timing, locations, and possibly the orientations of 

the failures, has been chosen.  The two fracture criteria we applied in this project were the 

Hencky-Mises plastic yield condition [Housner and Vreeland, 1965] and the Coulomb-

Mohr criterion.  Appendix B compares these two fracture criteria in detail; however, for 
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this section we need only compare how they affect the orientation of failure relative to 

the principal eigenvectors of the stress tensor. 

 In the Hencky-Mises plastic yield condition, failure always occurs on a plane at 

45° between the !
1
 and !

3
 axes.  There are two possible failure planes, and they are 

perpendicular to one another.  In this particular case, the two possible failure planes 

match the two possible planes on a focal sphere.  The optimally oriented planes of our 

plastic yield criterion are also equivalent to the failure planes in the Coulomb-Mohr 

criterion with coefficient of friction µ = 0 .  If the Coulomb-Mohr failure criterion is used 

instead, then the failure planes will occur at ±!  relative to the !
1
 axis, where ! " 45° .  

The formula for determining !  depends on the coefficient of friction, µ , where, 

! =
"

4
#
tan

#1 µ( )
2

.  If µ > 0 , then ! < 45°  and the two failure planes are no longer 

perpendicular to one another; thus the two possible failure planes will be associated with 

different focal mechanisms.  Therefore, the focal mechanism will depend on which 

failure plane one chooses. 

 Once one knows !  relative to the !
1
 axis based on the fracture criterion, then it is 

fairly simple to calculate all four possible slip and normal vectors by rotating the !
1
 and 

!
3
 axes (Figures A.7 and A.8).  The slip and normal vectors can then be converted to 

strikes, dips, and rakes.  Two possible triplets of strikes, dips, and rakes are associated 

with each failure plane depending on which side of the failure plane one considers fixed. 

Typically, we choose the strike, dip, and rake with dip ≤ 90.  This results in one triplet of 

strike, dip, and rake for each failure plane; given that we have two failure planes, we now 

have two triplets of strike, dip, and rake to randomly choose between when we create our 
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synthetic focal mechanism catalog.  However, we find that it is helpful to have all four 

sets of slip and normal vectors when attempting to determine the minimum angle 

between two different focal mechanisms.  It might be possible to reduce the problem to 

one set of slip and normal vectors per failure plane if we specify that the slip and normal 

vectors bound a compressional quadrant.  However, for the numerical calculations in this 

thesis, we use all four possible sets of slip and normal vectors per failure plane when 

calculating the minimum angular difference between pairs of focal mechanisms. 
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Figure A.7.  Slip and normal vectors for the two possible failure planes can be generated 

by rotating the !
1
 and !

3
 eigenvectors about the !

2
 axis.  For example, our first slip 

vector, 
 

!
l
a

, is the !
1
 eigenvector rotated counter-clockwise through an angle ! .  

 

!
l
b

, the 

slip vector for the alternate failure plane, is the !
1
 eigenvector rotated clockwise through 

an angle ! .  
 
!
!
n
a

, the negative of the normal vector associated with 
 

!
l
a

, is the !
3
 

eigenvector rotated counter-clockwise through an angle ! .  Last, 
 

!
n
b
, the normal 

associated with the slip vector 
 

!
l
b

, is the !
3
 eigenvector rotated clockwise through an 

angle ! .   
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 Figures A.7 and A.8 graphically show the rotation of eigenvectors in the principal 

coordinate system to produce our slip and normal vectors that will be converted into 

strikes, dips, and rakes.  The procedure to determine the four possible slip and normal 

vectors from an arbitrary symmetric stress tensor, ! , is as follows: 

1) Calculate the eigenvalues and eigenvectors of ! , where ! = V! 'V
T  and V  

is the eigenvector matrix. 

2) Rotate the coordinate system of the !
1
 and !

3
 eigenvectors into the principal 

coordinate system, using the transpose of the eigenvector matrix, VT . 

3) In the principal coordinate system, rotate the !
1
 and !

3
 eigenvectors about 

the !
2

 axis as shown in Figures A.7 and A.8 to produce the slip and normal 

vectors for the failure planes. 

4) Rotate the coordinate system of the slip and normal vectors back into the 

unprimed E , W , and Up  coordinate system using the eigenvector matrix,V . 

So the equations might look like 
 

!
l
a
= VR !( )VT !

x
1
, 
 

!
l
b
= VR

T
!( )VT !

x
1
, 

 

!
n
a
= !VR "( )VT !

x
3
, 
 

!
n
b
= VR

T
!( )VT !

x
3
, and 

 

!
l
c
= !

!
l
a
, 
 

!
l
d
= !

!
l
b

, 
 

!
n
c
= !
!
n
a

, 
 

!
n
d
= !
!
n
b
, 

where  

 R !( ) =

cos! 0 sin!
0 1 0

" sin! 0 cos!

#

$

%
%

&

'

(
(

 (A.15) 

 
and 

 

!
x
1
, 
 

!
x
2

, 
 

!
x
3
 are the eigenvectors for the !

1
, !

2
, and !

3
 axes. 
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Figure A.8.  The last two sets of slip and normal vectors are simply the slip and normal 

vectors on the other side of the fault planes.  In general, the slip vector on side two equals 

the negative of the slip vector on side one.  The normal vector on side two equals the 

negative of the normal vector on side one.  In a sense, these are the alternate slip and 

normal vectors for the two possible failure planes.  
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 Once we have a slip vector, normal vector pair, we can begin determining the 

strike, dip, and rake.  Figures A.9 and A.10 illustrate how the strike and dip of a plane 

can be calculated from a given normal vector.  The equation for the strike of the plane is 

 ! = tan
"1 sin!
cos!

#
$%

&
'(
= " tan"1 n

N

n
E

#

$%
&

'( ,
 (A.16) 

 
and the equation for the dip of the plane is, 

 ! = tan
"1 sin!
cos!

#
$%

&
'(
= tan

"1 n
E

2
+ n

N

2

n
U

#

$
%

&

'
(
.
 (A.17) 

 
Note that if the normal vector points down, one must first switch the sign of the normal 

and slick vectors, 
 

!
n = !

!
n  and 

!
l = !

!
l ,  if n

U
< 0  before calculating the strike and the dip 

of the plane. 

 Last, Figure A.11 graphically shows how one calculates the rake of the rupture 

given the strike angle and slip vector.  We calculate what is the strike vector,  
!
h , then find 

the angle between  
!
h  and  

!
l , which is rake, ! . 
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Figure A.9.  How to calculate the strike of a plane given the normal vector.   

 

 

Figure A.10.  How to calculate the dip of a plane given the normal vector.   
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Figure A.11.  How to calculate the rake of a rupture.  First, determine the strike vector, 

 

!
h , which by definition always has zero for the Ûp  component.  Then use the definition of 

a dot product of two vectors to derive the rake angle, ! . 

 

 

The formula for the strike vector will be 

 

 

!
h =

sin!
cos!
0

"

#

$
$

%

&

'
'
=

(n
N

n
E

0

"

#

$
$

%

&

'
'
.

 (A.18) 

Using the definition of the dot product, we can then determine the angle ! , 
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!
h !
!
l =||
!
h ||  ||

!
l || cos"

" = cos
#1

!
h !
!
l

||
!
h ||  ||

!
l ||

$

%&
'

() .

 (A.19) 

These formulas work for either set of conjugate planes.  

Now if one starts with the strike, dip, and rake of a failure, one knows the 

coefficient of friction, and one wishes to determine the stress tensor, the procedure is the 

inverse of what has just been done.  One calculates the slip and normal vectors of the 

plane, then rotates these by ±!  in the principal coordinate frame to produce the 

eigenvectors.  We will not go through the derivation, but one can look to Jarosch and 

Aboodi [1970] for how to calculate the slip and normal vectors from strike, dip, and rake.  

For our particular coordinate system, the equations are, 

 

 

!
l =

l
E

l
N

l
U

!

"

#
#

$

%

&
&
=

sin '( )cos (( ) ) cos '( )cos *( )sin (( )

cos '( )cos (( ) + sin '( )cos *( )sin (( )

sin *( )sin (( )

!

"

#
##

$

%

&
&&

!
n =

n
E

n
N

n
U

!

"

#
#

$

%

&
&
=

cos '( )sin *( )

) sin '( )sin *( )

cos *( )

!

"

#
##

$

%

&
&&
.

 (A.20) 

 
After we have rotated,  

!
l  and  

!
n  into our eigenvectors, x̂

1
 and x̂

3
, we can reconstruct the 

stress tensor exactly if we also know the eigenvalues.  If not, then there is an ambiguity 

as to the magnitude the stress tensor.  For example, if we have the stress tensor ! with its 

associated eigenvector matrix V and eigenvalue matrix ! ' , we can reconstruct !  

exactly. 

 ! = V! 'V
T  (A.21) 
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See the following example. 

 

! = 0.618

1 1 0

1 0 0

0 0 "1

#

$

%
%

&

'

(
(

V =

0 0.5257 -0.8507

0 -0.8507 -0.5257

1.000 0 0

#

$

%
%

&

'

(
(

       

! ' =

-0.618 0 0

0 -0.382 0

0 0 1.000

#

$

%
%

&

'

(
(

 

 (A.22) 

 
In this case, indeed, ! = V! 'V

T .  However, what if one does not know the eigenvalues 

(principal stresses) and one has to guess their values?   For example, assume one might 

choose ! '
Guess

 to be 

 ! '
Guess

=

-1.0000 0 0

0 0 0

0 0 1.0000

"

#

$
$

%

&

'
'
.

 (A.23) 

 
In this case our best guess for the stress matrix is, !

Guess
= V! '

Guess
V

T , where 

 !
Guess

=0.618

1.1708 0.7236 0

0.7236 0.4472 0

0 0 -1.6180

"

#

$
$

%

&

'
'
.

 (A.24) 

 
One can see that ! " !

Guess
.  They may be close but not quite equal to one another.  They 

do, however, produce the same strike, dip, and rake since the same eigenvector matrix, 

V , is used for both !  and !
Guess

.   
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Translating a Stress Matrix into P and T axes 

 Viewing  
!
P  (Pressure) and  

!
T  (Tension) axes on an equal area plot is an excellent 

way to visualize earthquake focal mechanism orientations for a large number of 

earthquakes.  The definition of the  
!
P  and  

!
T  vectors is 

 

 

!
P =

1

2

!
n !
!
l( )

!
T =

1

2

!
n +
!
l( )

!
B =
!
n "
!
l

 (A.25) 

where  
!
n  is the normal vector to a shear dislocation plane,  

!
l  is the slip vector, and  

!
B  is 

the vector normal to  
!
n  and  

!
l .   
!
P  and  

!
T  vectors are rotated ±45°  relative to  

!
n  and  

!
l .  

In the case of optimally oriented planes, i.e., µ = 0 ,  
!
P  corresponds to the !

1
 (most 

compressive) eigenvector of the stress matrix,  
!
T  corresponds to the !

3
 (least 

compressive) eigenvector of the stress matrix, and  
!
B  corresponds to the intermediate, !

2
 

eigenvector of the stress matrix.  Except for Appendix C, which explicitly discusses the 

Coulomb failure criterion, all our results assume optimally oriented planes with the 

plastic yield criterion; hence, this correspondence between the  
!
P  and  

!
T  vectors and our 

stress matrix eigenvectors for optimally oriented planes is especially useful.    

 For example, in Figure A.12 we have the following stress matrix being 

represented,  

 ! ij = A

1 0 0

0 "1 0

0 0 0

#

$

%
%

&

'

(
(

 (A.26) 
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where there is tension (blue) in the E !W  direction and compression (red) in the N ! S  

direction.  Since µ = 0 , the two possible failure planes are at ! = ±45°  from the !
1
 axes.  

We could take any one of the possible four sets of normal vectors and slip vectors to 

reproduce the same  
!
P  and  

!
T  axes.   

 

Figure A.12.  N ! S  compression (red) and E !W  tension (blue).  In this case of 

optimally oriented planes, µ = 0 , the stress matrix eigenvectors align with the  
!
P  and  

!
T  

axes.  The two possible failure planes are 45°  from the  
!
P  and  

!
T  axes. 

 

Figure A.14 is an equal area plot of  
!
P  and  

!
T  axes for 1,000 synthetic earthquakes where 

each red asterisk represents a  
!
P  axes for a single event and each blue circle represents a 

 

!
T  axes for a single event.  The average  

!
P  and  

!
T  orientation is approximately the same 

as Figure A.12.  The distance from center represents the dip or plunge, ! , of the  
!
P  or 

 

!
T vectors, where a plunge of 90° corresponds to the center and a plunge of 0° would plot 
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at the circumference of the circle.  The azimuth, or angular distance from the top of the 

circle, represents the azimuth from N , ! , for the  
!
P  or  

!
T vectors.  Figure A.13, a cartoon 

of an equal area plot, visually shows these relations. 

 

 

 

Figure A.13.  A cartoon of a typical equal area plot for P-T azimuths and plunges.  The 

longitude, ! , is the azimuth of the circle, and plunge, ! , is plotted as a function of radial 

distance where, ! = 90°  at the center and ! = 0° , at the circumference.  Note the radial 

lines are not necessarily to scale. 
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Figure A.14.   Equal area plot of  
!
P  and  

!
T  vectors for 1,000 synthetic earthquakes with 

an average compression axis in the N ! S  direction and an average tension axis in the 

E !W  direction.  The red asterisks are the  
!
P  vectors and the blue circles are the  

!
T  

vectors.  The azimuth, ! , of the vectors is represented by the angular distance from the 

top of the circle in the clockwise direction.  The dip or plunge of the vectors, ! , is 

represented by the radial distance where the center of the circle is a ! = 90° , and the 

circumference is a ! = 0° . 
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