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Appendix B. Using Unit Quaternions to Represent Rotations: How a Unit

Quaterion Applied to a Reference Vector Can Create Our Fault Parameters, Strike,
Dip, and Rake

Two alternative representations of a 3D rotation are quaternions and Euler angle
rotations. Typically, Euler angle rotations are applied to a reference vector to describe an

earthquake slip vector in terms of the fault parameters, strike, dip, and rake (0,8,1).

This appendix utilizes the relationships between unit quaternions and Euler angles to

derive the fault parameters (0,8,1) given a unit quaternion applied to a reference slip

vector.

Figure B.1 starts with an arbitrary slip vector on a fault plane. The local, rotated

coordinates for this slip vector are defined as E” , N” , and ljp’” where E” and N”

” ”

are on the fault plane and ljp is perpendicular to the fault plane. N is aligned with the

slip vector. The slip vector represents the motion of the footwall; therefore, this is

primarily a normal fault with a small amount of right-lateral strike-slip motion. To

A

represent the slip vector in terms of the coordinates, E, N , and ljp , we rotate the

coordinates with Euler angle rotation matrices. The first rotation matrix is

cosA —sinA O
R, =|sinA cosA O (B.1)
0 0 1/,

which is a clockwise rotation of the coordinate system by the rake angle, A. The second

one is

cosé 0 sind
Rp=| 0 1 0 (B.2)
—sind 0 cosé ),
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which is a clockwise rotation of the coordinate system by the dip angle, 8. The last and

final rotation matrix is

cos® sin® O
Ry =| —sin® cos® 0 (B.3)
0 0 1),

which is a counter-clockwise rotation of the coordinates by the strike angle, ®. The

three consecutive rotations are shown in Figure B.1, where the triple primed coordinates,

E” , N” , and ljp’” are transformed into the unprimed coordinates, E , N , and 0p.

0
Indeed, if we begin with the slip vector I”=|1|inthe triple primed coordinates, aligned
0

with the N” direction, and apply these three rotation matrices to transform the

coordinates, we derive

sin®cos A — cos®cosdsin A
[ =| cos®cos A +sin®cosdsin A

sindsin A ,

which is the same as Equation A.9 from Appendix A.
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Slip occurs on the footwall; therefore, this is a normal fault.

2) Rs

Figure B.1. Our triple primed coordinates are oriented so that our slip vector is aligned
with N” . We rotate the coordinate system with three rotations: 1) A clockwise rotation

of angle A about the Up” axis. 2) A clockwise rotation of angle & about the N” axis.

3) A counter-clockwise rotation of angle © about the 0p’ axis.

This demonstration of fault parameters strike, dip, and rake (0,8,4) using Euler

angle rotations on a reference slip vector, will help us explain how to apply a unit

quaternion to a reference slip vector to produce (0,8,1).

o

To work with unit quaternions, we start with the reference slip vector, =1

)

in the local, triple primed coordinate system, and measure other slip vectors in terms of
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their rotations relative to [”. The unit quaternion, §” = [616': q,» g5 q;"] =[1,0,0,0],

produces a rotation of zero degrees; therefore, when applied to [”, simply reproduces

["””. We then translate our Euler angle rotations (©,6,4) into unit quaternions, and rotate

I”” into the global, unprimed coordinate system. From Chapter 3, we can rewrite

Equation 3.12 in terms of a Cartesian coordinate system for our Euler angle rotations:

q, = cos(w/2)

q, =sin(®/2)u,
q, =sin(®/2)u,
g, = sin(w/2)u,

(B.4)

where 4 =[u,,u,,u,] is the rotation axis for the Euler rotations, and

|i| = \Ju} +u; +u; =1.0.

Ifu = E” , Uy, = N” ,and u, = l}p’” , for the first Euler rotation of angle A, then

the corresponding unit quaternion would be

qé = COSE

q; =0

q’l B (B.5)
b=

q; =sin—

Ifu = E” , Uy, = N” ,and u, = ljp” , for the second Euler rotation of angle &, then the

corresponding unit quaternion would be
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g = cos
)
=0
N (B.6)
q, =sin—
g5 =0

Last, if u, = E’ , Uy, = N’ ,and u, = ljp’ , for the third Euler rotation of angle ©, then the

corresponding unit quaternion would be

Q)
q; = cos—
g’ =0
6]6 B (B.7)
o=
®= sinﬁ = —sin9
s 2 2

Since a quaternion is a hyper complex four vector,
4=4q,+iq, + jq, + kq;, (B.8)
with the rules that

i2:j2:k2:_1
j=—ji=k

(B.9)
Jk=-kji=i
ki=—ik = j,
we can rewrite our three unit quaternions as
A
G" = cos=+ksin=
2 2
o 0
-5 . .
=CcOos—+ jsin— B.10
q 5 tJsing (B.10)

(C)
G® = cos— - ksin—
2 2
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and simply multiply these three unit quaternions in Equation (B.10), using the rules in
Equation (B.9) to produce the unit quaternion that rotates our reference slip vector, ",

into the unprimed, global coordinate system, E , N , and 0p.
§’q" = cosg—ksin9 cos§+jsin§ cos&+ksin&
2 2 2 2 2 2

oo _ . © . .
q, = C0S$—C0S—COS— + SIN—COS—Sin—
2 2 2 2 2 2

o8, __ @ . . . .
¢, =CO0S—SsIn—SIn—+ SIN-——SIN—COS —
2 2 2 2 2 2

(B.11)

%) @ . 5 2« . @ . .
4, =COS—SImM—COS— —Sin—SIn—Sin—
2 2 2 2 2 2

o5 _ S . .
q; = COS—COS—SINn— — SIn—COS—COS—
) 2 2 2 2 2 2

Rewriting equation (B.11), we can also represent our fault parameters, (©,5,1) in

terms of unit quaterion components, given our reference slip vector.

o8\ 08 051 08
l=tan_l(% q, T4, q; ]

Q6L _OOA Q6L O
b 99 — 49 4

(B.12)

Q6L OO Q6L _O/L
9 49, +49, q;

5o tan” [ 2(gg™ g™ +3%q9 ) [sin A ]

= tan-! [ @4 — 4> j

Q6L _O6A QoA O Q6L _O6A Q6L O/
9 99 —9 4 —9 9 t4q; q;



B-7

For a unit quaternion, g = g, +iq, + jq, + kq, , the rotation matrix one would apply to

0
rotate the coordinates of our vector I =| 1 | into another reference frame, is
0

I (@%+9—-9—-4 24,9, —29,4; 2q,9, +2q,9; (0
=\ |=| 29,9:+2949, 4 -4+ —-4; 24,q;—-2q4, |[1| (B.13)
l 24,95 — 24,4, 2q,9,+29,9; 45—, — 4> +q; )\0

In our case, we want to use the unit quaternion described in equation (B.11)

Therefore, we can write the components of [ as

l — zqe(ﬂq@ﬁl _ 2q®5/1q;95/1
1 1 2 0
L=(g2) = (q®) +(¢°*) - (¢*) (B.14)

l=245" ¢ + 245" ¢3"

or as

~

1

( ©.6. 1 .0 6 l]( ©. .46 1.6.5.1)
=2| | cos—sin—sin— + sin—sin—cos— || cos—sin—cos— — sin—sin—sin—
2 2 2 2 2 2 2 2 2 2 2 2

© 6 A .0 6.4 © 6.1 .0
—2| | cos—cos—cos—+ sin—cos —sin— || cos—cos—sin— — sin —cos —cos —
2 2 2 2 2 2 2 2 2 2 2 2

I, = cos’ 9sin2 —sin A —sin® ésin2 &sinG) +sin’ écos2 &sin(a —sin’ 9sin2 ésin/l (B.15)
2 2 2 2 2 2 2 2

—cos’ 9cos2 ésin/’t + cos? —cos’ &sinG) —cos? ésin2 isin@ + sin? 9cos2 —sinA
2 2 2 2 2 2 2 2

o o o o
I, = sin’ Ecoslsin@ +sin’ Ecos®sin A+ cos’ Ecoslsin@ — cos’ Ecos(asin A

I, =sin®cos A — cosOcosdsin A
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~
S}

A

( e . T ( ©e.8§. 1 .0. )2
=1 COS COS—COS— + SIn—COS—SIn — —| COS—SINn—SIn— + SIn—SINn —COS—
22 2 272 2727 2 272 2

A

e
2
(@. j( ./1.@5)2
+| cos—sin—cos = —sin—sin—sin— | —| cos— cos—sin— — sin —cos— cos —
2 2 2 2 2 2 2 2 2 2 2 2
Q) A o o) C) A o o)
I, = cos® —cos’ —(cos2 — + sin’ —j +sin® —sin’ —(cos2 — +sin’ —)
2 2\ g 27 2™ 2 (B.16)
—cosz—sinzi cosz§+sinZé —sianCoszi c052§+sinzé
2 2 2 2 2 2 2 2

+sin®sin A cos? g —sin®sin A sin? g

O] O]
l,= (cos2 2 sin’ E)cos A +sin®sin Acos§

I, =cos®cos A +sin®Ocosdsin A

~
W

(@ 0 A . O 5./1)( ©.6 A . 0.0 lj
=2| | cos—cos—cos— + sin—cos—sin— || cos—sin—sin— + sin—sin—cos —
2 2 2 2 2 2 2 2 2 2 2 2

©. 6 A .0O0.6. A © 6§ A .06 6 A

+2| | cos—sin—cos— —sin—sin—sin— || cos—cos—sin——sin—cos—cos— | | (B.17)
2 2 2 2 2 2 2 2 2 2 2 2
C] C]

[, = cos’ 5sin5sinﬂ. + sin’ EsinSsin?t

[, =sindsin A.

So again, now with unit quaternions, we have calculated that

sin®cos A — cos®cosdsin A
[ =| cos®cos A +sin®cosdsin A

sindsin A



