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Abstract

This thesis presents studies in two distinct areas of theoretical astrophysics: dynam-

ics of planetary systems and relativistic fluid flows from shocks emerging from stellar

envelopes. The first pertains to the early solar system, planet formation, and extra-

solar planets; the second is related to extreme explosions like gamma-ray bursts and

supernovae.

We present two investigations of the dynamics and population evolution of so-

lar system bodies. First, we explore the dynamics of mean-motion resonances for a

test particle in a highly eccentric long-period orbit in the restricted circular planar

three-body problem—a scenario relevant to the scattered Kuiper belt and the forma-

tion of the Oort cloud. We find infinitely many analogues to the Lagrange points;

an explanation for the presence of asymmetric librations in particular mean-motion

resonances; and a criterion for the onset of chaos at large semimajor axes.

Second, we study the size distribution of Kuiper belt objects (KBOs), which is

observed to be a broken power law. We apply a simple mass conservation argument

to the KBO collisional cascade to get the power-law slope for KBOs below the break

in the distribution; our result agrees well with observations if KBOs are held together

by self-gravity rather than material strength. We then explain the location and time

evolution of the break.

We also present investigations of the flow that results when a relativistic shock

propagates through and breaks out of a stellar envelope with a polytropic density pro-

file. This work informs predictions of the speed of and energy carried by the relativis-

tic ejecta in supernovae and perhaps in gamma-ray bursts. We find the asymptotic

solution for the flow as the shock reaches the star’s edge and find a new self-similar
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solution for the flow of hot fluid after breakout. Since the post-breakout flow accler-

ates by converting thermal energy into bulk kinetic energy, the fluid eventually cools

to nonrelativistic temperatures. We derive a second new self-similar solution that

includes the cooling portions of the flow. This second solution gives an exact relation

between the terminal Lorentz factor of each fluid element and the Lorentz factor it

acquired upon being shocked before breakout.
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Chapter 1

Introduction

While “theoretical astrophysics” includes an enormous range of phenomena, relates

to nearly all the physics now known, and spans, for example, size scales ranging from

neutron stars (∼106 cm) to the observable universe (∼1028 cm), the same princi-

ples and techniques recur surprisingly often in studies of different phenomena. The

dynamical friction that operates on dwarf galaxies in rich clusters also applies to pro-

toplanets in a circumstellar disk; turbulence that in the earth’s atmosphere blurs stars

seen from the ground also manifests itself as galactic blobs of gas that cause scintil-

lation of Sagittarius A* and compact extragalactic sources. As a result, theoretical

astrophysics remains a field in which ongoing curiosity about and investigations into

subfields outside one’s own specialty is tolerated and even encouraged, valued, and

widely practiced.

In that spirit of continuing broad education, this thesis presents investigations into

two very different areas of theoretical astrophysics: applications of planetary dynamics

and self-similar solutions for relativistic shocks in the envelopes of exploding stars.

These topics are introduced separately below.

1.1 Small bodies in the solar system

Chapters 2 and 3 describe the dynamics and population evolution of small bodies

in the solar system including, in particular, Kuiper belt objects (KBOs) and comets.

The Kuiper belt is a collection of bodies smaller than a few thousand kilometers in size
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which are believed to consist of ice and rock. While most KBOs reside in a puffy disk—

the “classical belt”—between 30 and 50 AU from the sun, a significant fraction—the

“scattered disk”—are characterized by long-period orbits with high eccentricities and

inclinations probably acquired through interactions with Neptune. By contrast, most

comets are believed to reside in the Oort cloud, a spherically symmetric population

located ∼10,000 AU from the sun. The Oort cloud is believed to have formed as the

giant planets perturbed nearby small bodies onto high-eccentricity long-period orbits

that were later circularized by passing stars or galactic tides.

Both KBOs and comets are interesting and important to our understanding of

planetary systems for several reasons. First, small, cold bodies like comets and KBOs

are some of the least processed bodies in the solar system since they were never

subject to the heat or pressure associated with the accretion and differentiation of

the major planets. As such, comets and KBOs are relics of the early solar system; an

understanding of, for example, their size distribution and composition may provide

clues to early solar system composition and the accretion process.

Also, while the planets were forming, numerous small bodies provided a mass

reservoir for accretion and constrained the major planets’ velocity evolution. Since

small bodies now contain much less mass than the planets and are concentrated in

just a few regions, most of the small bodies must have been removed. Small-body

reservoirs like the Kuiper belt represent the tail end of the removal process; comets

were removed from areas near the giant planets’ orbits. The Kuiper belt and Oort

cloud may therefore shed light on the final stages of planet formation and the fate of

the disappearing planetesimals and dust.

Finally, interactions between small bodies and the giant planets should have

caused the giant planets’ orbits to migrate and evolve. An analysis of small-body or-

bits may yield a picture of how and why the planets attained their current marginally

stable configuration and why this configuration looks so different from most other

planet systems seen to date. An understanding of the small-body populations in our

solar system may thus also inform investigations into the formation and evolution of

extrasolar planetary systems.
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1.1.1 Eccentric test particles and analogues to the Lagrange

points

Chapter 2 describes work on the dynamics of a test particle moving in the same plane

as a massive planet in a circular orbit around a much heavier star, a system known

as the restricted circular planar three-body problem. The Lagrange points are well-

known fixed points for low-eccentricity test particles in such a system. Associated

with the two stable Lagrange points are families of orbits known as “tadpoles” and

“horseshoes.” The Trojan asteroids, ∼1700 objects in two groups which lead and trail

Jupiter in its orbit, are examples of objects in tadpole orbits. While these standard

Lagrange points, tadpoles, and horseshoes correspond to low-eccentricity orbits, we

found an infinite number of Lagrange point analogues and tadpole and horseshoe

analogues that are associated with test particles in highly eccentric long-period or-

bits. These analogues resulted from a framework we developed for the evolution of

high-eccentricity long-period test particle orbits and used to explore mean-motion

resonances between a particle and the massive bodies.

Though this work is quite mathematical, it has led to results of considerable

physical interest. Determination of the resonance widths gave a condition for the

onset of chaos at large semimajor axis — the analogue to the Wisdom (1980) criterion

for chaos for particles in nearly circular orbits close to the planet. These explorations

also produced 1) a redefinition of resonance orders for the high-eccentricity regime in

which a p : p + q resonance is called “pth order” instead of the usual “qth order” to

reflect the importance of interactions at periapse; and 2) a simple explanation for the

presence of “asymmetric librations” in exterior 1 : N resonances and the absence of

these librations in other exterior resonances.

Our framework for high-eccentricity particles might be applied to the origins of

long-period comets and the structure of Oort cloud. This population is believed to

have formed from small bodies originally on roughly circular orbits within Neptune’s

orbit; these were kicked by the giant planets into very eccentric orbits ∼10,000 AU in

size which were later circularized by bodies outside the solar system. One surprising
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result of our work is that for sufficiently small planets (planet/star mass ratio μ <

5 × 10−6), a test particle initially close to the planet cannot escape from the system.

1.1.2 The size spectrum of Kuiper belt objects

Chapter 3 investigates the size distribution of KBOs. Early observations of KBOs gave

a power-law size distribution but were unable to probe KBO sizes below ∼100 km.

However, the size distribution produced in the most recent KBO survey conducted by

Bernstein et al. (2004) using the Hubble Space Telescope was a broken power law that

became shallower for KBOs smaller than about 70 km in size. We explained these

results by assuming that KBOs are gravity-dominated bodies with negligible mate-

rial strength and are part of an equilibrium collisional cascade. Using a simple mass

conservation argument, we derived the slope of the size distribution in the collisional

cascade. The break location followed from this slope through a self-consistent calcu-

lation: while bodies smaller than the size at the break are effectively in collisional

equilibrium, bodies larger than the break size have never undergone catastrophic col-

lisions. The existence of this break, the break’s location, and the power-law slope

we expect below the break are consistent with the findings of Bernstein et al. (2004).

The agreement with observations indicates that KBOs as small as ∼40 km are held

together by self-gravity rather than material strength.

1.2 Relativistic shocks and self-similar solutions

Chapters 4 and 5 describe the physics of relativistic shocks passing through stellar

envelopes, a topic relevant to energetic explosions such as gamma-ray bursts (GRBs)

and supernovae. Over the last decade, studies of GRBs and supernovae have flour-

ished. GRBs are flashes of γ-rays lasting between ∼10−3 and ∼103 seconds that are

often followed over several days by x-ray, ultraviolet, and optical radiation known as

an afterglow. They occur at cosmological distances, are very energetic (∼1051 ergs),

and must involve extremely relativistic motion. Like some supernovae, GRBs are



5

believed to be associated with the deaths of massive stars. A physical understanding

of these extreme phenomena would shed light on the process of stellar death.

Since these explosions are believed to deposit their energy in the stellar and/or

circumstellar material via strong shocks, they have motivated much numerical and

analytic work on the physics of shock propagation. While analytic work on shock

propagation is confined to particular geometries and density profiles for which the

calculations are tractable, analytic results often yield physical insight that enhances

our understanding of numerical simulations. The investigations we present here give

analytic descriptions of flows produced by shocks.

Because studies of shocks require solutions of the nonlinear partial differential hy-

drodynamic equations, much of the analytic work on strong shock propagation to date

has focused on self-similar solutions of these equations. In these solutions, the pro-

files of the hydrodynamic variables have constant overall shapes whose time evolution

consists simply of scalings in amplitude and position. This form of solution allows the

simplification of the usual system of partial differential hydrodynamic equations to a

system of ordinary differential equations. However, it can be applied only to systems

that contain no natural scales. Fortunately, many stellar envelopes have polytropic

profiles in which the pressure scales as a power law of the density. In the envelopes’

outermost layers, where gravity can be assumed constant, the polytropic profiles im-

ply that the density is a power-law function of the distance from the star’s surface

and, therefore, scale-free.

1.2.1 Shock breakout through polytropic stellar envelopes

When the engine producing a GRB or supernova explosion deposits ∼1051 ergs of

thermal energy in the interior of a star, we expect a strong shock to be driven through

the star’s envelope. We investigated the case in which this shock accelerates to

ultrarelativistic speeds in a star whose envelope has a polytrope-like density profile.

When the shock is close to the star’s outer boundary, its behavior follows the self-

similar solution given by Sari (2006) for implosions in planar geometry. We used this
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solution to find the asymptotic solution as the shock reaches the star’s edge. We

then showed that the motion after the shock breaks out of the star is described by a

new self-similar solution remarkably like the solution for the motion inside the star.

In particular, the characteristic Lorentz factor, pressure, and density vary with time

according to the same power laws both before and after the shock breaks out of the

star. After emergence from the star, however, the self-similar solution’s characteristic

position corresponds to a point behind the leading edge of the flow rather than at the

shock front, and the relevant range of values for the similarity variable changes. Our

numerical integrations agree well with the analytic results both before and after the

shock reaches the star’s edge.

1.2.2 Relativistic solutions with cold fluid temperatures

The energy and Lorentz factor of the ejecta in models of supernovae/GRBs are im-

portant because they constrain the amount of energy that can be deposited in the

photons we observe from these explosions. Previous calculations of the final Lorentz

factors in relativistic explosions have all been approximate: analytic results for the

accelerating fluid flow apply only while the flow is hot and so do not account correctly

for the period after the fluid cools to nonrelativistic temperatures, when the accelera-

tion slows and stops. Here we present a new self-similar solution encompassing both

hot and cold fluid in the flow produced when a relativistic shock breaks out of a star.

The key ingredient in this new solution is to identify the characteristic position with

the point where the fluid becomes cold—in other words, to realize that the transition

between hot and cold fluid in the flow is self-similar. This is surprising since the cold

fluid is not self-similar in the original solution for the post-breakout flow discussed

in section 1.2.1. The new solution for the cooling fluid is valid at late times when

the accelerating fluid’s bulk kinetic Lorentz factors are large but when the thermal

Lorentz factors of given fluid elements are not necessarily large.
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Chapter 2

A generalization of the Lagrangian
points: studies of resonance for
highly eccentric orbits

Abstract

We develop a framework based on energy kicks for the evolution of high-eccentricity

long-period orbits in the restricted circular planar three-body problem with Jacobi

constant close to 3 and with secondary to primary mass ratio μ � 1. We use this

framework to explore mean-motion resonances between the test particle and the mas-

sive bodies. This approach leads to a redefinition of resonance orders for the high-

eccentricity regime in which a p : p + q resonance is called “pth order” instead of the

usual “qth order” to reflect the importance of interactions at periapse. This approach

also produces a pendulum-like equation describing the librations of resonance orbits

about fixed points that correspond to periodic trajectories in the rotating frame. A

striking analogy exists between these new fixed points and the Lagrangian points as

well as between librations around the fixed points and the well-known tadpole and

horseshoe orbits; we call the new fixed points the “generalized Lagrangian points.”

Finally, our approach gives a condition a ∼ μ−2/5 for the onset of chaos at large

semimajor axis a; a range μ < ∼ 5 × 10−6 in secondary mass for which a test par-

ticle initially close to the secondary cannot escape from the system, at least in the

planar problem; and a simple explanation for the presence of asymmetric librations

in exterior 1 : N resonances and the absence of these librations in other exterior
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resonances.

2.1 Introduction

The three-body problem, or the dynamics of three masses due to their mutual gravita-

tional influences, has a number of well-known special cases. One of these, the circular

planar restricted case, requires that the primary and secondary bodies, m1 and m2,

follow circular orbits about their common center of mass and that the third body be

a massless test particle moving in the massive bodies’ orbit plane. These conditions

simplify the three-body problem enough to produce an integral of the motion: the

Jacobi constant CJ = −2(E−Ωh) where E is the particle’s energy1, h is the particle’s

angular momentum, and Ω is the massive bodies’ constant angular velocity.

Still, the circular planar restricted case has important applications to the dynamics

of our solar system. Many of the orbits of major planets about the sun are nearly

circular and are roughly confined to a plane; the same goes for many of the orbits of

large moons about their planets. Common examples of applications for the circular

planar restricted case include the effects of Jupiter on the asteroid belt; of Neptune

on the Kuiper belt; of moons on planetary rings; and of giant planets on comets.

This paper describes a study of this problem in the regime where m2 � m1, the

test particle’s eccentricity is large, and the Jacobi constant is greater than but close

to 3 in the standard system of units where G = 1, the primary-secondary separation

is 1, 1 = m1 + m2 � m1, and, therefore, Ω = 1. Since values of CJ near 3 correspond

to test particles on circular orbits close to the secondary, this special regime includes

particles originally in circular orbits around a star close enough to a planet for the

planet to perturb them into very eccentric orbits. Our interest in this regime arises

from an intent to investigate the paths through which small particles are perturbed

by a planet until they escape or are captured. This problem was studied by Ford et al.

(2001) and Rasio & Ford (1996) via numerical simulations of three massive bodies in

1We refer to the test particle as “the particle” and to its energy per unit mass and angular
momentum per unit mass (in the limit of a massless test particle) as its “energy” and “angular
momentum.”
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three dimensions. Due to this motivation we use “star” and “planet” to refer to the

primary and secondary in the remainder of this paper.

In §2.2 we derive to first order in μ = m2/(m1 + m2) = m2 the energy kick

received by a particle in a highly eccentric orbit with semimajor axis a � 1 at

each periapse passage. We show that since the interaction is localized at periapse,

this energy kick is essentially independent of a and depends only on the periapse

distance and the azimuth difference between the planet and particle at periapse. In

§2.3, §2.4, and §2.5 we use these energy kicks to find “fixed” particle orbits and

describe motion near them. These “fixed” orbits are located at planet-particle mean-

motion resonances. When observed stroboscopically at periapse only, they appear as

fixed points just like the well-known Lagrangian points. We use both a continuous

approximation and a discrete mapping in a derivation of the particle’s motion around

resonances, the resonance widths, and the libration periods. When these librations are

observed stroboscopically, they likewise become analogies of the well-known tadpole

and horseshoe orbits. In §2.6 we discuss types of chaos for large-eccentricity orbits,

and in §2.7 we summarize and discuss our findings.

2.2 Energy kick to first order in µ

Let ΔE be the change in the particle’s energy between its consecutive apoapse pas-

sages. In our units, where the angular velocity of the star-planet is set to unity,

the change in angular momentum is also ΔE 2. Therefore, it can be calculated by

integrating the torque exerted on the particle:

ΔE =

∫
− ∂V

∂f

∣∣∣∣
r

dt (2.1)

where V is the gravitational potential produced by the planet and star and f is the

particle’s azimuth in inertial space.

2Since the angular momentum is always perpendicular to the orbit plane, only one of its com-
ponents is nonzero. We therefore treat the torque and the change in angular momentum as scalars
equal to the components of the vector torque and the vector change in angular momentum, which
are perpendicular to the orbit plane.
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To begin with, we estimate the energy kicks to first order in μ. We express ΔE as

ΔE = μΔE1 + O(μ2). To evaluate ΔE1 we calculate the torque assuming that the

particle moves on a Keplerian trajectory around the star, with its focus at the center

of mass. The effect of the deviation of the trajectory from that description on ΔE is

of order μ2 or higher.

Since we are considering only the time elapsed between two consecutive apoapses,

we choose coordinates such that the time t = 0 when the particle is at periapse and

the direction of periapse is along the positive x-axis. The planet and star are in

uniform circular motion, so we can write V = V (θ, r) where θ is the angle between

the planet and the particle and r is the particle’s distance from the origin. This gives

ΔE =

∫
∂V

∂θ

∣∣∣∣
r

dt . (2.2)

V is given explicitly by

V = Vplanet + Vstar = − μ

|	r − 	rplanet| −
1

|	r − 	rstar| ; (2.3)

to first order in μ, this gives

V = −1

r
− μ

(
1

(r2 + 1 − 2r cos θ)1/2
− cos θ

r2

)
. (2.4)

Let φ be the angle between the planet and the particle at periapse3, so that

θ = φ + t − f . Then the derivative with respect to θ at fixed r that appears in

Eq. (2.2) can be replaced by a derivative with respect to φ. To first order in μ the

particle trajectory r(t) can be assumed fixed and independent of φ, so we can move

the φ derivative outside the integral of Eq. (2.2). Using the first-order expression for

V we get

ΔE1 = −dU1

dφ
(2.5)

3Thus defined, φ is the usual resonant argument measured at periapse only.
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where the effective potential U1 is given by

U1 =

∫ [
1√

r2 + 1 − 2r cos θ
− 1√

r2 + 1 + 2r cos(t − f)
− cos θ + cos(t − f)

r2

]
dt .

(2.6)

The integral is performed over one Keplerian orbit of the particle.

In this expression for U1, the first term in the brackets is the “direct” term; it

represents the planet’s contribution. The second term does not contribute to ΔE1;

it keeps U1 from diverging when a → ∞ and is obtained from the first term by

substituting φ = π. The third term is the “indirect” term; it represents interactions

with the star. ΔE1 and its effective potential U1 are functions of μ, φ, and the

particle trajectory shape, which determines r and f as a function of t. Note that up

to a constant, the effective potential U1 is simply the time-integrated potential over

the trajectory of the particle.

When the apoapse distance a(1 + e) is much larger than both 1 and the periapse

distance rp = a(1−e), the perturbing effects of the star and planet on the particle near

periapse dominate over perturbing effects on the particle elsewhere in its orbit. In this

regime, the entire energy kick ΔE occurring between consecutive apoapse passages

can be thought of as a discrete event associated with a particular periapse passage.

In the limit as a diverges due to energy kicks but CJ remains constant, e → 1, rp

approaches a constant, and except near apoapse the entire trajectory approaches a

parabola independent of a: a → ∞. If the particle is outside the planet’s Hill sphere,

lim
a→∞

rp = lim
a→∞

[
−1

2

(
CJ +

1

a

)
1√

1 + e

]2

=
C 2

J

8
(2.7)

r = 2rp/(1 + cos f) (2.8)

df

dt
=

(1 + cos f)2

(2rp)3/2
(2.9)

t = (2rp)
3/2 · 1

6
tan

f

2

(
3 + tan2 f

2

)
. (2.10)

For particles that start close to the orbit of the planet, the periapse distance is
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therefore rp = 9/8.

Given this asymptotic form for the orbit, we can calculate the asymptotic forms

of U1(a, e, φ) → U1(rp, φ) and ΔE1(a, e, φ) → ΔE1(rp, φ) in the large-a limit. For

CJ = 3, the computed values of U1 and its derivative ΔE1 as a function of φ are

shown in Figures 2.1 and 2.2. Near φ = 0, ΔE1 is dominated by the direct particle-

planet interaction because the minimum planet-particle distance is much less than

the star-particle distance. When φ = 0, ΔE1 = 0 because of symmetry. When φ < 0

but |φ| � 1, the planet lags the particle for most of the time the particle spends near

periapse, so ΔE1 < 0. Similarly, when φ > 0 and |φ| � 1, ΔE1 > 0.

When ||φ|−π| � 1, the indirect contribution ΔE1
ind due to the star’s reflex motion

dominates because the star passes closer to the particle. From the φ-dependent part

of star’s contribution to the integral in Eq. (2.6), ΔE1
ind is a sinusoidal function of φ:

∂

∂φ

∫ ∞

−∞

cos θ

r2
dt = − sin φ√

2rp

∫ π

−π

cos(t − f) df � −2.0 sin φ (2.11)

where in the last step we use rp = 9/8 as an example in evaluating the coefficient.

The integral in Eq. (2.11) seems to suggest that star-particle interactions over

all intervals in f should contribute significantly to ΔE1
ind. However, as Eq. (2.10)

shows, |t| increases much faster than |f | as |f | approaches π. As a result, oscillations

in cos(t − f) kill contributions to the integral at |f | near π, and the star-particle

interaction is important only near periapse.

We can also get the total contribution of terms that are second order or above in

μ: this is just the difference between values of ΔE found by numerical integration of

the equations of motion and values of μΔE1 given by Eq. (2.6) (see Figure 2.1).

2.3 First-order resonances

Resonances occur when the particle completes p orbits in exactly the time needed

for the planet to complete p + q orbits for some integers p, q. This situation is

known as a p : p + q resonance. In the standard treatment of these resonances,
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Figure 2.1: First-order energy kick ΔE1 in the large-a regime (solid line) with CJ = 3
computed using Eqs. (2.5) and (2.6). The dotted line is the energy kick ΔE/μ
calculated using Eqs. (2.2) and (2.3) for a μ = 10−3, CJ = 3 parabolic orbit with all
higher-order terms included. For this μ, the first-order term clearly dominates for all
values of φ; higher-order effects in μ are visible only near φ = −0.12. The dashed
line is the planet’s direct contribution to ΔE1 using Eq. (2.5) and Eq. (2.6) with the
third term dropped; the dash-dotted line is the indirect contribution to ΔE1 from
the star’s reflex motion calculated using Eq. (2.5) and Eq. (2.6) with the third term
only.
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Figure 2.2: Potential U1 in the large-a regime (heavy solid line) with CJ = 3 computed
using Eq. (2.6). For comparison we also show U1 for CJ = 3 elliptical orbits with
finite a. For later reference we chose as examples orbits corresponding to mean-
motion resonances. The dotted line is U1 for a � 2.5 (1:4 resonance); the dashed line
corresponds to a � 4.6 (1:10 resonance); and the lighter solid line corresponds to a
a � 10.1 (1:32 resonance). Though these curves show some quantitative differences
due to changes in the orbit shape, they and particularly the shapes of their potential
wells are qualitatively similar.
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both orbits in question are usually nearly circular and a significant interaction occurs

every time the bodies are at conjunction, i.e., whenever their azimuths coincide. This

happens once every resonant cycle if q = 1, so q = 1 resonances are usually termed

“first-order” resonances. During a conjunction between a test particle and planet

in orbits with low eccentricity e � 1, the torque exerted on the particle while the

particle precedes the planet almost cancels the torque exerted while the particle lags

the planet; the residual is of order e. When q > 1, q conjunctions occur during each

resonant cycle. Because they occur in different positions in inertial space, their effects

tend to cancel each other, leaving a residual torque of order eq. Since the interaction

strength decreases exponentially with increasing q as eq, resonances in the standard

treatment are usually classified by q value. Accordingly, a p : p+ q resonance is called

a “qth-orde’r’ resonance regardless of the value of p.

However, the high eccentricities of orbits in the large-a regime discussed here make

the standard definition of resonance order meaningless. Since e → 1, resonances of

different order under the standard definition have comparable significance because

eq � 1. Also, encounters at periapse are physically far more important than con-

junctions at other points in the particle’s orbit. We therefore redefine the “orders of

resonance” to focus on interactions at periapse. If the planet completes an integer

number of orbits in the time it takes the particle to orbit exactly once, then we say

the particle is in a “first-order” resonance. In general, we say the particle is in an

“pth-order” resonance if the planet completes an integer number of orbits in the time

it takes the particle to orbit p times: then there are p interactions within one resonant

cycle. In terms of the standard resonance treatment, we say a p : p + q resonance

in the large-a regime is “pth-order” regardless of the value of q. In both the large-

and small-eccentricity cases, the order of the resonance is given by the number of

significant interactions within a single resonant cycle.

In the following we show that this revised definition does indeed make sense. We

calculate the widths of resonances of various orders in the large-a limit and show

that with this new definition, their widths decay exponentially with the order of

the resonance. We discuss in detail the first-order or 1 : N resonances and begin
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by making a ‘continuous approximation’ to the action of the discrete energy kicks

discussed in §2.2.

According to the new definition of resonance orders, φ should be constant in time

if we consider a particle exactly at a first-order resonance of semimajor axis ares

and if we ignore the effects of energy kicks. A particle close to resonance with, say,

semimajor axis a = ares + Δa should drift in φ over time at a constant rate, again

ignoring energy kicks. The amount of drift per orbit of the test particle is just the

difference between its orbital period 2πa3/2 and the resonant one 2πa
3/2
res . We can

express this drift as
dφ

dt
=

3

2

Δa

a
. (2.12)

The differential is a good approximation assuming Δa � a−1/2 so that many particle

orbits must elapse before φ changes by an angle of order π. We refer to this differential

form as the continuous approximation.

Energy kicks cause the semimajor axis to evolve in time. To first order in μ we

have
d(Δa)

dt
=

1

π
a1/2 dE

dn
= −1

π
a1/2μ

dU1

dφ
. (2.13)

To justify the differentials here we require that μ be small enough for the change

in Δa due to a single kick to be much less than the typical Δa. We differentiate

Eq. (2.12) and substitute Eq. (2.13) to get

d2φ

dt2
= − 3

2π
a−1/2μ

dU1

dφ
. (2.14)

This shows that φ simply evolves as a particle moving in the potential U1(φ).
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2.3.1 Generalized Lagrangian points

Since U1 has four extrema4 at the four zeroes of ΔE1, there are four fixed points in φ.

According to Eqs. (2.13) and (2.12), these fixed points in φ are also fixed points in a

with Δa = 0. Then each particle trajectory corresponding to one of these fixed points

must be a resonance trajectory whose periapse direction is constant with respect to

the planet’s position. These fixed points therefore represent periodic orbits of the

particle in the planet’s rotating frame and in the inertial frame5.

Of the four fixed points, two are unstable since they correspond to maxima of

the potential θ = 0, π. The other two are stable since they correspond to potential

minima at θ = ±1.21. The existence of two extrema at θ = 0, π is guaranteed by

symmetry arguments. The two additional extrema at φ = ±1.21 occur where the

energy kicks from the planet and star cancel each other exactly. These extrema

therefore appear only when the indirect term—or, equivalently, the star’s motion—is

taken into account.

This discussion suggests an analogy between the five well-known Lagrangian points

and the new fixed points. The two stable points correspond to the stable Lagrangian

points L4 and L5, which also appear only when the motion of the star, i.e., the indirect

term, is taken into account. The unstable fixed point at φ = π is the analogue of L3;

the one at φ = 0 corresponds to L1 and L2, which merge in this generalization. For

a given resonance 1 : N , N = a3/2, we therefore denote the fixed points by LN
12, LN

3 ,

LN
4 , and LN

5 . The positions of these new fixed points in comparison to their standard

Lagrangian counterparts is summarized in Table 2.3.1.

4These extrema are shown in Figure 2.2 for CJ = 3. Since, given a value for CJ , we can use
Eq. 2.6 to set bounds on U1 and its derivatives with respect to φ, we can check that, at least for
CJ = 3, U1 has no other extrema. We have done this for several CJ in the regime we are considering:
CJ close to but greater than 3. Physically, this is equivalent to saying that changes in the system
over time and space are slow and smooth enough that sharp variations in U1 do not occur.

5When higher-order terms in μ are included, the shape of ΔE1 changes slightly (see Figure 2.1 for
an example); this shifts the positions of the fixed points in φ. The positions of the fixed points in a
also shift slightly away from resonance due to the effects of precession. With the higher-order terms,
then, the particle trajectories corresponding to the fixed points remain periodic in the rotating frame
but become aperiodic in the inertial frame.
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2.3.2 Generalized tadpoles

The analogy is more obvious when motion around the fixed points is investigated.

Small-amplitude motion around the stable fixed points LN
4 and LN

5 can be approxi-

mated by expanding U1 around its minimum. This results in a harmonic oscillator

equation:
d2φ

dt2
= − 3

2π
a−1/2μ

(
d2U1

dφ2

)∣∣∣∣
φ=φN

4,5

(φ − φres) . (2.15)

The small-amplitude libration period around either LN
4 or LN

5 is therefore given by

K =
Tlibration

2πa3/2
=

(
3

2π

d2U1

dφ2

∣∣∣∣
φ=φN

4,5

)−1/2

a−5/4μ−1/2 = 0.79a−5/4μ−1/2 (2.16)

where in the last step we use rp = 9/8 in the large-a limit to get d2U1/dφ2 � 3.3 at

φ = φ4,5. Note that K gives the number of periapse crossings per libration period. In

our units, where 2π is the period of the massive bodies, the libration period is then

2πa3/2K.

Since Eq. (2.14) describes motion under the influence of a fixed potential, we can

write down the conservation of energy equation by multiplying Eq. (2.14) by dφ
dt

and

integrating with respect to t:

1

2

(
dφ

dt

)2

+
3

2π
a−1/2μU1 = constant . (2.17)

The constant of integration is the ‘energy’ associated with the movement of the orbit

in φ and a. Since the potential is finite, it can only support a finite particle ‘speed’

in libration around LN
4 or LN

5 . The ‘speed’ is directly related to the deviation of

the semimajor axis from the resonance via Eq. (2.12), so the maximal width of these

librations in a is given by

Δamax =

(
4

3π

)1/2

μ1/2a3/4[U1(π) − U1(φ4)]
1/2 � 0.78a3/4μ1/2 . (2.18)

These librations around the fixed points LN
4 or LN

5 are analogues of the well-known
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tadpole orbits. Note that the maximal widths of both the standard and generalized

tadpole orbits scale as μ1/2 (see Table 2.3.1). The similarity is more apparent if we

treat the (a, φ) parameters, which describe the orbit of the particle, as polar coordi-

nates as shown in Figure 2.3. Seen in this way, (a, φ) are analogous but not identical

to the polar coordinates of the particle in the rotating frame: a is the semimajor axis,

not the radius, and φ is the azimuth of the test particle in the rotating frame only at

periapse passage. Then the fundamental difference between the (a, φ) plane and the

rotating frame is that while generalized Lagrangian points and the motion around

them exist in a surface of section made up of discrete points representing periapse

passages, the standard rotating frame with the standard Lagrangian points is made

up of continuous trajectories. Therefore, while the standard Lagrangian points are

fixed points in the rotating frame, the generalized points represent periodic orbits in

that frame.

Since φ is equivalent to the usual resonant argument measured at periapse only,

and since the drift in φ is assumed to be slow, librations in φ about φN
4 or φN

5 are

equivalent to librations of the resonant angle about φN
4 or φN

5 . Then the generalized

tadpoles are equivalent to ‘asymmetric librations’—trajectories whose resonant argu-

ments librate about a value other than 0 or π. In this context, LN
4 and LN

5 correspond

to ‘asymmetric periodic orbits’ whose resonant argument is constant but not equal

to 0 or π. Our discussion above gives a simple physical argument for the existence

of asymmetric librations in all stable 1 : N exterior resonances. Again, note that the

existence of these asymmetric librations and asymmetric periodic orbits follows from

analysis of U1 only when both the direct and indirect terms are accounted for.

2.3.3 Generalized horseshoes

As the energy of the particle moving under the U1 potential increases beyond that of

the maximal tadpole orbit, it overcomes the lower potential barrier at φ = π. As long

as its energy is still below the higher barrier at φ = 0, the particle will librate around

both the LN
4 and LN

5 points, avoiding only a narrow range in φ around φ = 0. These
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Figure 2.3: The Lagrangian point analogues LN
i for N = 1, 2, 3, 4 with generalized

horseshoes and tadpoles. The diagonal lines trace the azimuths of L∞
4,5—that is, the

φ values of the minima in U1. The horseshoes and tadpoles shown were calculated
with μ = 2.5 × 10−4 via full numerical integration of the circular planar restricted
three-body problem. The LN

i , the diagonal lines, and the ‘horseshoes’ and ‘tadpoles’
all have CJ = 3.
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trajectories are the generalized horseshoe orbits. Using the same method as we used

for the tadpoles, we calculate their widths in the continuous approximation to be

Δamax =

(
4

3π

)1/2

μ1/2a3/4[U1(0) − U1(φ4)]
1/2 = 1.8a3/4μ1/2 . (2.19)

The width of the maximal standard horseshoe does not follow this μ1/2 pattern,

since the standard horseshoe case differs qualitatively from its generalized version.

For the standard horseshoe, the angular momentum change is concentrated near the

horseshoe’s two ends. The close approach of the particle to the planet there increases

the strength of the interaction beyond μ. As a result, the width of the horseshoe

scales as μ1/3 rather than μ1/2. For a generalized horseshoe, the librating particle

never gets closer to the planet than rp − 1.

In Figures 2.4 and 2.5 we show libration around L4
4,5 and L10

4,5. In order to fo-

cus on the motion close to these points we plot a and φ as Cartesian rather than

polar coordinates. In these plots, the librations in the surfaces of section appear to

be ‘warped’ when compared to the continuous approximations calculated using the

pendulum-like Eq. (2.14). This ‘warping’ is due to the discrete nature of the motion

in the surfaces of section. As a trajectory moves from Δa = 0 toward larger positive

Δa values, for example, the energy kicks stay positive and Δa should keep increas-

ing until the trajectory reaches a φ value corresponding to a zero in the ΔE1 versus

φ curve. Within the continuous approximation, we expect the trajectory to begin

moving back toward Δa = 0 at exactly this φ because ΔE1 changes sign. A discrete

trajectory will ‘overshoot’ the nominal φ where ΔE1 = 0 since a positive energy kick

will carry the trajectory past this φ before the first negative kick is applied. As a

result, the libration trajectories in the surfaces of section tend to become warped in

the direction in which orbits move when librating. A quantitative discussion of this

feature is given in the next section.
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Figure 2.4: a vs. φ plot for N = 4, μ = 10−4, CJ = 3. We use [0, 2π] as the range
in φ to show the trajectories more clearly. The left-hand plot contains trajectories
computed under the continuous approximation. The middle plot contains a surface of
section computed via full numerical integration of the circular planar restricted three-
body problem. The right-hand plot contains trajectories computed via the eccentric
mapping discussed in §2.4. The same initial conditions were used for the trajectories in
all three plots. The continuous approximation plot lacks the chaotic behavior evident
in the numerical integration and eccentric mapping plots. Trajectories in the mapping
plot differ from the numerical integration plot mostly because they were calculated
with U1, the potential in the large-a limit. Note that the separatrix trajectory in the
middle plot is chaotic but on a scale too small to see in this figure (see Figure 2.9).
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Figure 2.5: Same as Figure 2.4 but for N = 10. For this larger N , the resonances
are wider. So the resonance overlap is more severe for the outer edges of the N = 10
resonance than for the N = 4 one. This causes the destruction of all horseshoe
orbits and the distortion of the tadpoles relative to those computed in the continuous
approximation.
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2.4 The eccentric mapping

The ‘warping’ noted above suggests that the discrete nature of the surface of section

is essential to understanding some feature of the motion in the (a, φ) plane. To study

this, we define a mapping from the (a, φ) plane to itself. Beginning at an arbitrary

point, this mapping produces an infinite series (a(i), φ(i)) of points visited by the test

particle in the (a, φ) plane. Except perhaps in the few lowest-N resonances, we can

build an excellent approximation to the correct mapping by applying the first-order

kicks in the large-a limit:

− 1

2a(i+1)
= − 1

2a(i)
+ μΔE1(φ(i)) (2.20)

φ(i+1) = φ(i) + 2π(a(i+1))3/2 (2.21)

where the new value of φ is calculated modulo 2π, i.e., brought back into the interval

(−π, π) by adding an integer multiple of 2π. Note that the a-value used to find φ(i+1)

itself has index i + 1; physically, this corresponds to the large-a limit assumption

that each energy kick is a discrete event associated with a given periapse passage.

Applying this mapping for several initial values in the (a, φ) plane results in the right

panels of Figures 2.4 and 2.5. The close resemblance between trajectories generated

with the mapping and with numerical orbit integrations demonstrate this mapping’s

accuracy.

It turns out that the warping of the small amplitude tadpoles can be understood

completely in terms of the mapping. Close to the fixed points LN
4 and LN

5 , we define

Δa(i) = a(i) − ares and Δφ(i) = φ(i) − θres so that the mapping becomes

Δa(i+1) = Δa(i) − 2a2
resμΔφ(i) d2U1

dφ2

∣∣∣∣
φ=φN

4,5

(2.22)

Δφ(i+1) = Δφ(i) + 3πa1/2
res Δa(i+1) . (2.23)

Since these are linear recursive equations, they can be solved analytically by standard

techniques. We seek a solution of the form (Δa(i), Δφ(i)) = (A, Φ)α(i). Substituting
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in the recursive equations, and seeking a non-trivial solution, we obtain

(α − 1)2 + 6πμa5/2
res

d2U1

dφ2

∣∣∣∣
φ=φN

4,5

α = 0 . (2.24)

Note that the dimensionless parameter in this equation is simply (2π/K)2 where K

is the number of periapse passages per libration in the continuous approximation as

given by Eq. (2.16). If we denote the solutions as α1 and α2, it is clear from the

above equation that their product α1α2 equals 1. Since we are interested in potential

minima, K2 > 0.

For K ≥ π, the two roots are complex conjugates and each has unity norm. The

fixed point is therefore an elliptical point in the discrete mapping as well as in the

continuous approximation. The two values of α are given by

α1,2 = 1 − 2(π/K)2 ± 2
√

1 − (π/K)2(π/K)i . (2.25)

The number of periapse passages per libration is given by

Kmap =
2π

arg(α)
= 2π

[
arctan

(
2
√

1 − (π/K)2(π/K)

1 − 2(π/K)2

)]−1

. (2.26)

As K → ∞, Kmap/K → 1. This is expected since the continuous approximation is

justified in this limit. Using the two values of α, we can find the eigenvectors:

(A, Φ) =

(
μa2

res

d2U1

dφ2
, (π/K)2 ±

√
1 − (π/K)2(π/K)i

)
. (2.27)

Since the eigenvectors determine the axes of the ellipses representing small librations

about the fixed points, the similar shapes and orientations of the smallest librations in

the middle and right-hand panels in each of Figures 2.4 and 2.5 confirm the eccentric

mapping’s accuracy.

For a = 102/3, μ = 10−4, the continuous approximation gives 11.6 orbits per

tadpole libration (Eq. (2.16)). The eccentric mapping gives 11.4 orbits (Eq. (2.26)).

This is close to the the 10.7 orbits per libration observed for very small librations
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about the fixed points6. The negative power of a in Eq. (2.16) implies that as a

increases, the number of periapse passages per tadpole libration period will decrease

and the trajectory shapes will become increasingly warped.

In fact, when a grows so large that K falls below π, the tadpoles are destroyed.

For K < π, the roots of Eq. (2.24) are real and distinct; therefore one of them is

larger than unity. Then the fixed point is not stable despite being at a potential

minimum. Our quantity K is closely related to the residue R discussed by Greene

(1979): R = 1 − (π/K)2.

The warping of the tadpoles which, at its extreme, leads to destruction of the

resonances is absent in the continuous approximation. However, it can be understood

as perturbations from nearby resonances. Interactions between neighboring first-

order resonances should become large enough to destroy these resonances when the

resonances begin to overlap. Eq. (2.19) implies that as a increases, the resonances

widen in a while the distance between them decreases. Then we can find a condition

on μ and a for resonance overlap by dividing half the distance between consecutive

first order resonances by the width Δamax of each resonance as given by equation

(2.19). In the large-a limit, the distance between resonances is given by 2
3
a−1/2 so we

obtain

resonance separation

2Δamax
=
( π

12

)1/2

a−5/4μ−1/2[U1(0) − U1(φ4)]
−1/2 = 0.18a−5/4μ−1/2 .

(2.28)

This is proportional to K: in the large-a limit with rp = 9/8, the right-hand side is

0.23K and first-order resonances overlap when K < 4.5. In this case, therefore, first-

order resonances formally overlap before they are destroyed. Indeed, when μ = 10−3,

stable first-order resonances are observed numerically to disappear for a > ∼4. This

agrees well with the a > 4.0 overlap criterion given by Eq. (2.28) with the left hand

side set to 1 but is well below the a > 5.25 condition for resonance destruction given

6The largest tadpole libration shown in Figure 2.5 breaks into 14 islands. This is an example
of the Poincaré-Birkhoff fixed-point theorem. It indicates that this tadpole’s libration period is 14
orbits. This lengthening of the period is expected as the trajectory grows toward the separatrix
passing through φ = π.
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by Eq. (2.31) or Eq. (2.16) with K = π.

2.5 Higher-order resonances

As defined in §2.2, higher-order resonances are the p : p + q resonances with p > 1.

These resonances are located at ares = (N/p)2/3 where N = p + q is an integer

relatively prime to p. In analogy to our treatment of first-order resonances, we note

that if we neglect energy kicks, a particle exactly at resonance should move in φ by

2π during each resonant cycle and by 2πq/p between consecutive periapse passages.

The stationary points of this resonance should therefore occur at regular intervals of

2π/p in φ.

To study motion near but not at resonance, we include energy kicks. For a particle

close to resonance, we can follow its trajectory by treating each resonant cycle as p

applications of the eccentric mapping, one for each periapse passage in the cycle:

⎛
⎝ Δa(j+1)

Δφ(j+1)

⎞
⎠ =

p−1∏
i=0

⎛
⎜⎝ 1 −2a2

resμ
d2U1

dφ2

∣∣∣
φ=φN

p +2πi/p

3πa
1/2
res 1 − 6πa

5/2
res μ d2U1

dφ2

∣∣∣
φ=φN

p +2πi/p

⎞
⎟⎠
⎛
⎝ Δa(j)

Δφ(j)

⎞
⎠ .

(2.29)

As before, Δa(j) = a(j) − ares and Δφ(j) = φ(j) − φN
p where φN

p corresponds to the

nearest fixed point in the resonance. The condition under which the linearization in

dU1

dφ
is valid is now Δa(j) � a1/2/p2 instead of Δa(j) � a1/2 because the number of

energy kicks per resonant cycle is p instead of 1 and because the scale in φ over which

the potential changes is now π/p instead of π. The condition under which linearization

in μ is valid also changes because the largest term linear in μ that appears in the

mapping matrix is a
5/2
res μd2U1

dφ2 . Though μ itself is small, cross-terms of order μ2 and

higher are now important unless a
5/2
res μd2U1

dφ2 � 1. This stronger condition is equivalent

to K � 1, so the higher-order resonance treatment does not offer any simplifying

advantages over the eccentric mapping discussed in §2.4 unless K is large.

Since Δφ changes very little between consecutive periapse passages in this K � 1

regime, we can use a variant of the continuous approximation where we neglect the



29

effects of drift in φ within a single resonant cycle. Then we can treat the particle’s

motion in terms of the net energy kick over an entire resonant cycle rather than a

single particle orbit. The net energy kick is just the sum of p energy kicks spaced

2π/p apart in φ, so the particle appears to move in the potential

U1
p =

p−1∑
k=0

U1(φ − 2πk/p) . (2.30)

Note that effects of the star’s reflex motion do not contribute to U1
p if p > 1: the

indirect term in U1 is exactly sinusoidal and the sum of p identical sine curves spaced

2π/p apart in phase is 0, so U1
p,ind = 0. Since the part of U1 due to the planet’s direct

contribution has just one maximum and one minimum at φ = 0, π respectively, U1
p

has p identical maxima and minima (see Figure 2.6). Then a trajectory librating in

one of the minima of U1
n should appear as a series of ‘islands’ spaced evenly in φ in

the (a, φ) plane. As a result, no asymmetric librations are possible in higher-order

resonances. Our result that, among exterior resonances, only 1 : N resonances show

asymmetric librations is consistent with work done by Frangakis (1973). He analyzed

expressions for the time-averaged direct and indirect terms of the disturbing function

to find that asymmetric librations can exist only in p : p+q resonances where p = ±1.

Because the p energy kicks received by the particle during each resonant cycle are

spaced evenly by 2π/p in φ, we expect that the kicks will partially cancel over each

resonant cycle and that this cancellation will improve exponentially as p increases. We

therefore expect the amplitude of U1
p to decrease exponentially with p. As Figure 2.7

shows, this exponential decay is observed numerically: a best-fit line in log-log space

gives amplitude ∝ 1.20−p.

2.6 Chaos in the large-a limit

We discuss just a few of the types and regions of chaos that arise when a is large. We

first discuss ‘global’ chaos, which consists of chaotic regions that span a few resonance

widths or more. We then give a few examples of ‘local’ chaos—chaos confined to
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Figure 2.6: U1
10, or U1

p for a 10th-order resonance: U1 summed over 10 consecutive
periapse passages spaced evenly in φ. As before, CJ = 3.
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Figure 2.7: Amplitudes of U1
p plotted on a log scale as a function of p. Used CJ = 3.

Best-fit line is log10[amplitude] = −0.078p + 0.21, or amplitude ∝ 1.2−p.
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regions within a single resonance—and compare the structure seen in trajectories in

the (a, φ) plane on local and global scales.

On large scales in a, chaotic regions arise where there is overlap between neigh-

boring resonances or instability due to a small winding number as discussed in §2.4.

In regions of the (a, φ) plane where first-order and/or higher-order resonances overlap

even partially, we expect to see contiguous “globally” chaotic regions that span large

ranges in a. Any remaining stable regions within resonances will appear as ‘islands’ of

stable librations. Particles can undergo large changes in a only if they move in these

chaotic regions, so such regions provide the only channels through which initially

bound particles can escape from the star-planet system.

If a is large enough, K falls below π and these “islands” disappear as discussed

in §2.4. For a given value of μ, we see from Eq. (2.16) that this occurs when

a > μ−2/5

(
3π

2

d2U1

dφ2

)−2/5

= 0.33μ−2/5 (2.31)

where, again, the numerical example corresponds to rp = 9/8. The condition K < π

for resonance destruction in higher-order resonances does not follow simply from

Eq. (2.28): effects of order μ2 or higher may make the winding number expressions

for higher-order resonances differ from the first-order resonance case in Eq. (2.16).

However, numerical experiments suggest that the a at which higher-order resonances

become unstable is comparable to but less than that given by Eq. (2.31).

If μ is small enough, there should be regions in a where the resonances do not

overlap. In these regions we expect to see stable trajectories that circulate around the

resonances instead of librating in them. We find numerically that stable circulating

trajectories exist for μ values up to at least μ = 5 × 10−6; an example is shown in

Figure 2.8. Greene (1979) suggests that as μ increases, the last stable circulating

trajectory should have semimajor axis a such that a3/2 is the golden ratio (1+
√

5)/2.

Our situation differs qualitatively from Greene’s in that our potential depends on its

linear coordinate, the semimajor axis, while Greene’s potential, which is given by the

standard map, is independent of its linear coordinate r. Specifically, when a is not
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much larger than 1, rp − 1 � 1; this leads to a larger maximum energy kick and

potential well depth than is expected for rp = 9/8, so the resonances are wider and

more prone to overlap for a given a close to 1 than we would expect in the large-a

limit. However, as a increases the resonance spacing decreases as discussed in §2.4.

These competing effects suggest that the last stable circulating trajectories—those

which, in a sense, are ‘farthest’ from any resonances—should lie neither near a = 1

nor at a � 1. Also, effects of order μ2 and higher that are present in our situation

have no analogue in Greene’s analysis of the standard map. So it is unsurprising that

the last stable circulating trajectories that we found numerically have a3/2 unrelated

to (1 +
√

5)/2.

Continuity and uniqueness imply that in a system with two degrees of freedom,

stable trajectories in a two-dimensional surface of section cannot be crossed. In the

planar restricted three-body problem, therefore, stable circulating trajectories divide

the (a, φ) plane into separated regions in a. This implies that for any μ < 5 × 10−6,

chaotic and regular trajectories that start close enough to the planet are confined to a

set range in a. Then the particles associated with these trajectories can never escape

from the star-planet system.

This bounding of chaotic regions by stable trajectories also leads to confinement

of chaos on very small scales in a. Regions of small-scale ‘local’ chaos arise from

unstable fixed points that must be saddle points due to the area-preserving nature of

the eccentric mapping; the separatrices associated with the saddle points are chaotic.

If stable continuous trajectories exist near a saddle point, they act as boundaries to the

chaotic separatrix. Prominent examples of these separatrices include those dividing

tadpole and horseshoe analogue trajectories within individual first-order resonances.

These regions are bounded by the largest stable tadpole and smallest stable horseshoe,

so their maximum range in a is at most the resonance width. One of these is shown

in Figure 2.9.

The existence of similar separatrices on all scales smaller than a single resonance

width follows from the Poincaré-Birkhoff theorem, which states that for small enough

μ, a trajectory with rational winding number K is associated with equal numbers of
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Figure 2.8: a vs. φ plot showing 1) a stable circulating trajectory, 2) a stable libration
in a 10th-order resonance, and 3) a chaotic trajectory, all calculated via numerical
integration with μ = 5× 10−6 and CJ = 3. The stable circulating trajectory prevents
the chaotic trajectory from attaining large a values.
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alternating stable and unstable fixed points. According to the KAM theorem, some

continuous trajectories—that is, trajectories with irrational K—should also be stable

as long as μ is small enough. If a trajectory with rational K is bounded on either

side by stable continuous trajectories with irrational K, then the chaos associated

with the unstable fixed points is confined to the region bounded by the continuous

trajectories. As for the stable fixed points, they are associated with their own librating

trajectories; the tadpole analogue made up of islands shown in Figure 2.5 gives an

example of such librations. We expect some librations like these to have rational

winding numbers and, therefore, their own sets of unstable fixed points and confined

chaos on an even smaller scale. In principle, this argument can be applied repeatedly

within a single resonance to unearth similar chaotic regions on scales as small as

desired.

We can treat the entire (a, φ) plane as an extension of this self-similarity to the

largest possible scales. If we plot (a, φ) as polar coordinates, a p : p + q resonance

trajectory appears to ‘wind’ around the point a = 0 with rational winding number

p/(p+q). Also, the corresponding resonance is associated with p stable and p unstable

fixed points when p > 1 and 2 stable and 2 unstable fixed points when p = 1. This

provides a striking visual analogy to the librations seen within a single resonance.

2.7 Discussion and conclusions

Using simple physical reasoning instead of explicit analysis of terms in the disturbing

function, we have developed a framework for studying particles with CJ close to but

larger than 3 perturbed into exterior high-eccentricity orbits in the circular planar

restricted three-body problem. We have found that, to first order in μ, these orbits

move in (a, φ) phase space according to a potential with maxima at φ = 0, π sepa-

rated by symmetrical minima. In the special case of resonance orbits, movement in

this potential translates into behavior governed by a modified pendulum equation.

Previous pendulum-analogue analyses of this problem have usually been formulated

via the disturbing function and the continuous resonant argument (Winter & Murray,
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Figure 2.9: A single chaotic trajectory corresponding to the separatrix dividing ‘tad-
pole’ and ‘horseshoe’ librations in the N = 4 resonance when μ = 10−4 and CJ = 3.
This trajectory was computed via numerical integration with the same initial con-
ditions as were used to produce the separatrix trajectory in the middle panel of
Figure 2.4. It is confined in the (a, φ) plane by stable librations similar to the small-
est horseshoe and largest tadpoles shown in Figure 2.4. Note the empty spots in the
outer reaches of the chaotic trajectory; these ‘avoided’ areas correspond to islands
of stable librations around stable fixed points in trajectories with rational winding
number.
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1997a; Dermott & Murray, 1983).

Our analysis, specifically that of mapping, is most similar to that of Malyshkin &

Tremaine (1999). They consider the evolution of high-eccentricity comet-like orbits in

the low-inclination circular restricted three-body problem by integrating numerically

to find the energy kick as a function of the resonant angle at periapse and then using

this energy kick to create a mapping that takes one periapse passage to the next.

However, Malyshkin & Tremaine (1999) are interested in particle orbits that cross

the orbit of the secondary, so the form of their energy kick is qualitatively different

from ours. In particular, while a small nonzero orbital inclination would barely affect

our energy kick function, it could drastically change the shape of the overall energy

kick function in the case of planet-crossing orbits. Partly because of this, they do not

discuss their energy kick it in terms of a potential. Also, they focus on the chaotic

diffusion of the particle toward escape or capture rather than on motion in resonances.

For 1 : N resonance orbits—that is, those we call first-order resonance orbits—

the shape of the potential with CJ close to but larger than 3 generates analogues

of the Lagrangian points for N > 1 resonances. The potential similarly leads to

two kinds of libration analogous to the horseshoe and tadpole orbits seen in a 1 : 1

resonance. p : N resonances—that is, those we call higher-order resonances—show

only one kind of libration: when the winding number is large, the sum relating the

higher-order resonance potentials to the first-order resonance potential eliminates the

indirect term responsible for the tadpole analogues.

Several authors discuss the tadpole analogues’ presence or absence in mean-motion

resonances in general under the name “asymmetric librations;” Nesvorný & Roig

(2001) are the only others we know of to refer to the 1 : N resonance librations as

“tadpoles” and “horseshoes,” though they do not elaborate on this analogy. Some

authors have used analytical studies of the Hamiltonian and the disturbing function

to set conditions for the existence of asymmetric resonances (Bruno, 1994; Frangakis,

1973; Message, 1970). In particular, Frangakis (1973) analyzed the time-averaged

direct and indirect parts of the disturbing function to deduce that only what we call

first-order resonances should show asymmetric librations. Bruno (1994) also found
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analytically that asymmetric librations only exist in what we call first-order exterior

resonances. We confirm this and provide a simple physical explanation.

Others have used numerical methods to confirm the existence of asymmetric li-

brations for particular 1 : N resonances and ranges in eccentricity (see, for example,

Winter & Murray, 1997b; Beaugé, 1994; Message & Taylor, 1978; Frangakis, 1973;

Message, 1958). Some of these also compare their numerical results to expressions

for the Hamiltonian correct to first or second order in eccentricity. Although the

agreement is generally good for what we call first-order resonances, the Hamiltonian

expressions for what we call higher-order resonances tend to predict spurious asym-

metric librations. We believe these are due to extra extrema introduced into the

potential when too few terms are included in the eccentricity expansion of the Hamil-

tonian. In some of the more recent studies involving asymmetric librations (Nesvorný

& Roig, 2001; Malhotra, 1996) the discussion is framed in terms of the dynamics of

the classical Kuiper Belt and so is confined mostly to what we call low-N first-order

and low-p higher-order resonances in the low- to moderate-eccentricity regime.

We find a limit on a for stable first-order resonances. Overlap between the reso-

nances creates chaotic regions of (a, φ) phase space; for semimajor axes larger than

some a ∝ μ−2/5, the resonance centers are overlapped and no stable librations are

possible. This is the high-eccentricity analogue of the well-known chaotic criterion

|a − 1| � μ2/7 found by Wisdom (1980) for the circular planar restricted three-body

problem in the low-eccentricity case. We use the Chirikoff criterion for resonance

overlap to estimate the location of the onset of chaos. For sufficiently narrow reso-

nances, or small enough μ, there exist regions in (a, φ) space that lie outside all of

the resonances but that are not chaotic. In the planar problem we consider, particles

interior to the circulating trajectories in these regions are never able to escape from

the star-planet system.

The basic framework for the behavior of high-eccentricity orbits and the properties

of chaotic regions in (a, φ) space can be applied to the orbital evolution of small bodies

in the solar system. Objects in the Kuiper Belt, for example, are believed to have

arrived there via interactions with Neptune (see, for example, Malhotra et al., 2000);
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we can apply this framework to study their trajectories. Many of these objects are

known to be in resonances (see Chiang et al., 2003, for a recent compilation). The

mass ratio between Neptune and the sun is μN = 4.4 × 10−5. Since this is above the

critical μ ≈ 5 × 10−6, Kuiper belt objects with CJ = 3 are either librating around a

resonance or moving chaotically. The latter could, in principle, be ejected as there

is no stable circulation for that value of μ = μN and CJ = 3. However, the known

Kuiper belt objects span a range in CJ of roughly 2.6 < CJ < 3.2. In the planar

problem with μ = μN and, for example, CJ = 3.1, stable circulations exist and protect

some of these objects from escape. To study the ultimate fate of such Kuiper belt

objects, the effect of inclination must be understood.

Similarly, we might apply this framework to the scattering of small planetesimals

by giant protoplanets and could provide insight to numerical integrations such as

those of Rasio & Ford (1996) and Ford et al. (2001). Studies like this require an

investigation of the way in which the energy kicks move orbits through the ‘global

chaos’ region surrounding the resonances in the (a, φ) plane. Although the antisym-

metry of ΔE1(φ) about φ = 0 suggests that the orbits should random walk through

phase space, effects of nearby resonances (e.g., Malyshkin & Tremaine, 1999) and

terms of higher order in μ become important on timescales long enough for escape

to become possible. The importance of second-order effects may be understood as

follows. Since the amount of extra energy needed to escape is 1/ainit ∼ 1 and the

energy kick per orbit is ∼ μ, we expect that the average number of kicks needed to

escape is ∼ μ−2. Note that unlike the first-order kicks, the O(μ2) energy kicks do

not average to 0 over the interval (−π, π] in φ. This is also apparent from Figure 2.1.

Therefore, with μ−2 kicks, the sum of O(μ2) effects produced by the energy kicks will

be of order unity—that is, of size comparable to the total first order effect.
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Chapter 3

Shaping the Kuiper belt size
spectrum by shattering large but
strengthless bodies

Abstract

The observed size distribution of Kuiper belt objects (KBOs)—small icy and rocky

solar system bodies orbiting beyond Neptune—is well described by a power law at

large KBO sizes. However, recent work by Bernstein et al. (2004) indicates that the

size distribution breaks and becomes shallower for KBOs smaller than about 70 km

in size. Here we show that we expect such a break at KBO radius ∼40 km since

destructive collisions are frequent for smaller KBOs. Specifically, we assume that

KBOs are gravity-dominated bodies with negligible material strength. This gives a

power-law slope q � 3 where the number N>r of KBOs larger than a size r is given

by N>r ∝ r1−q; the break location follows from this slope through a self-consistent

calculation. The existence of this break, the break’s location, and the power-law

slope we expect below the break are consistent with the findings of Bernstein et al.

(2004). The agreement with observations indicates that KBOs as small as ∼40 km

are effectively strengthless.
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3.1 Introduction

The Kuiper belt, a population of small bodies moving beyond the giant planets, was

discovered when its first member was found in 1992 (Jewitt & Luu, 1993). As of

late 2003, ∼800 KBOs have been discovered. Due to KBOs’ faintness, however, the

size distribution of KBOs is well determined observationally only for bodies larger

than ∼100 km (Trujillo et al., 2001; Gladman et al., 1998; Chiang & Brown, 1999).

Their size distribution is usually parametrized as a power law N>r ∝ r1−q; its slope

is consistent with q = 5 (N>r ∝ r−4) (Bernstein et al., 2004). Numerical studies

concluded that the differential size distribution below ∼100 km should follow a power

law with the somewhat shallower q = 3.5 (N>r ∝ r−2.5) due to the effects of de-

structive collisions (Farinella & Davis, 1996; Davis & Farinella, 1997; Kenyon, 2002).

The results seemed consistent with loose observational constraints available on the

number of ∼2 km KBOs based on the number of Jupiter-family comets seen (Holman

& Wisdom, 1993).

In this context, the deficit in small KBOs observed by Bernstein et al. (2004) was

a surprise. Using the Advanced Camera for Surveys recently installed on the Hubble

Space Telescope, they found just 3 KBOs of size ∼25–45 km where they expected

∼85 such bodies based on an extrapolation of the accepted best-fit large-KBO size

distribution at the time (Trujillo et al., 2001). While this observed decrement of more

than an order of magnitude in the number of small KBOs clearly indicates a break

between 45 and 100 km, the exact break position and slope below the break may well

be refined by future data on small KBOs. Still, the results of Bernstein et al. (2004)

are inconsistent with the previously expected small-end distribution q = 3.5 at better

than 95% confidence.

This paper describes a simple self-consistent analytic calculation of the break lo-

cation and the slope below the break. Note that using the N>r ∝ r−4 size distribution

obtained by Bernstein et al. (2004) for large KBOs, we can estimate the size below

which collisions between equal size bodies should be frequent to be ∼ 1 km—well

below the observed break location. However, this estimate needs two modifications.
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First, due to the large velocity dispersion in the Kuiper belt, small bodies can shatter

much larger objects. Since there are more small than large bodies, destructive col-

lisions will occur frequently even for objects much larger than 1 km. Second, when

collisions are important, they reduce the number of small bodies; this in turn de-

creases the frequency of collisions. Therefore, calculations of the effects of collisions

and the size below which collisions are important must be done in a self-consistent

manner.

3.2 Slope of the steady-state distribution

In order to find the break location self-consistently, we first calculate the power-

law slope q for a collisional population of bodies. We assume a group of bodies

with isotropic velocity dispersion v in which the cumulative number of bodies of

radius r is given by a power law N>r ∝ r1−q. This implies a differential distribution

dN>r/dr ∝ r−q. If we assume that the population is in a steady state and that mass

is conserved in the collision process, the total mass of bodies destroyed per unit time

in a logarithmic interval in radius must be independent of size. This situation is

analogous to that of a turbulent cascade where the total energy transported per unit

time by eddies of a given size into smaller eddies is independent of size because the

system is in steady-state and no energy pile-up occurs at any point.

Note that our conservation of mass argument is equivalent to the standard ap-

proach (see, for example, Dohnanyi, 1969; Tanaka et al., 1996; O’Brien & Greenberg,

2003) in which the rates of destruction and creation for a given body size are equated.

Assume for simplicity that all of the mass in a dispersed target of size R will go into

fragments of some characteristic size r(R) (Fig. 3.1). The standard approach equates

the mass creation rate of bodies of size r(R), or process I in Fig. 3.1, to the mass

destruction rate of the same bodies, or process II in Fig. 3.1. We reinterpret process I

as the destruction of mass in bodies of size R since this is the process that creates

bodies of size r(R). Then the steady-state condition—rate of process I = rate of pro-

cess II—says that the mass destruction rates for size r(R) bodies and size R bodies
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must be equal. Since this holds for all target sizes, the mass destruction rate must be

independent of size. A more detailed discussion of the mass conservation argument

is given in the Appendix.

We assume that the main channel for mass destruction is the shattering of larger

“targets” of size r by smaller “bullets” of size rB(r) (Fig. 3.1). Under this condition,

a constant mass destruction rate reads

ρr3 · N>r · N>rB

V
· r2 · v = constant . (3.1)

Here ρ is the internal density of each body and rB(r) is the size of the smallest bullet

that, on impact, can shatter a target of radius r. V is the volume occupied by all the

bodies; their velocity dispersion and therefore their distribution within V are assumed

independent of body size. We have also used the fact that N>r equals the number

of bodies of size r up to a factor of order unity. When supplemented by a relation

between the sizes of the bullet and target, Eq. 3.1 dictates the power-law index q.

This very simple formalism based on conservation of mass captures the essence

of Dohnanyi’s (1969) more elaborate pioneering treatment. Based on laboratory

experiments that involved solid bodies dominated by material strength, Dohnanyi

chose rB ∝ r. When rB ∝ r and N>r ∝ r1−q are inserted into Eq. 3.1, we retrieve

the q = 7/2 of Dohnanyi and several subsequent authors (for example, Williams &

Wetherill, 1994; Tanaka et al., 1996). This slope is much steeper than the best-fit

small-end q = 2.3 found by Bernstein et al. (2004), who rule out q = 7/2 at better

than 95% confidence.

Indeed, work on the structure of small solar system bodies suggests that many of

them are gravitationally bound rubble piles rather than solid monoliths. Based on

oscillating lightcurves of the large KBO (20000) Varuna (radius R > 100 km), Jewitt

& Sheppard (2002) find that this body has density ∼ 1 g cm−3 and is therefore unlikely

to be solid. However, other effects may also be responsible for the lightcurve shape

(see, for example, Goldreich et al., 2004). The rotation statistics of much smaller

bodies (R ∼ 10 km) in the more easily observed region between the asteroid belt and
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Figure 3.1: Schematic of the collisional cascade: bullets of size rB(R) shatter targets
of typical size R (process I); these targets break into new targets of size r, which
are in turn shattered by bullets of size rB(r) (process II); and so on. Since mass
is conserved in collisions, the mass destruction rate of bodies of size R is the mass
creation rate of bodies of size r. Steady state then requires that the rate of process I
and process II be equal, so that the rate of mass destruction is independent of body
size.
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the sun also suggest that small bodies in the solar system are rubble piles rather than

monoliths. That no small asteroids are observed to rotate faster than their breakup

speed suggests that those which were spun up beyond breakup simply broke apart

(Harris, 1996); this in turn suggests that these asteroids have no tensile strength.

A study including 26 small near-earth asteroids came to similar conclusions about

asteroid internal structure (Pravec et al., 1998). The most detailed probe available

of the structure of small KBOs is research on short-period comets, kilometer-sized

bodies that are thought to have originated in the Kuiper belt. Work on the breakup

and impact of comet Shoemaker-Levy 9, thought to be 1–2 km in size, indicates that

its strength before breakup was ∼ 60 dyn cm−2 or less (Asphaug & Benz, 1996); a

body like Shoemaker-Levy 9 would have a binding energy due to material strength of

at most about ten times less than its gravitational energy. These indications motivate

an investigation of the influence of negligible material strength on the fragmentation

size distribution.

We might therefore replace the rB ∝ r destruction criterion used by Dohnanyi with

the requirement that the kinetic energy of the bullet be equal to the total gravitational

energy of the target:

ρr3
Bv2 ∼ ρr3v2

esc (3.2)

where vesc ∼
√

Gρr is the escape velocity from a target of size r, and, again, v is the

bodies’ constant velocity dispersion. Then

rB(r) ∼
(

Gρ

v2

)1/3

r5/3 ∼ r−2/3
eq r5/3 , req ∼ v√

Gρ
. (3.3)

Physically, req is the size of a body whose escape velocity equals the velocity dispersion

of the system. The Kuiper belt’s current velocity dispersion of v ∼ 1 km s−1 follows

from the inclinations reported by Brown (2001) and Trujillo et al. (2001) and from

the average eccentricity ē � 0.12 obtained from data provided by the IAU Minor

Planet Center. When velocity dispersion v and density ρ ∼ 1 g cm−3 are used,

req ∼ 103 km ∼ the radius of Pluto. Equivalently, a target of size req, or roughly
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Pluto’s size, would require a bullet of equal mass to shatter it. Then a body smaller

than Pluto—that is, virtually any KBO—can be shattered by bullets smaller than

itself. When we substitute Eq. 3.3, or essentially the proportionality rB ∝ r5/3, into

Eq. 3.1, we get the power-law slope

q = 23/8 . (3.4)

Recently, O’Brien & Greenberg (2003) extended Dohnanyi’s treatment to other de-

struction conditions where rB scales as an arbitrary power of r; they show that q is

a simple function of this power so that a range of q values can be obtained from a

calculation like Dohnanyi’s. The simple argument we express in Eq. 3.1 reproduces

their analytic results for q. Eq. 3.3 is a special cases of their general power law which

is clearly motivated by energy considerations and which leads to the size distribution

given by Eq. 3.4.

3.3 Realistic destruction criteria

The destruction criterion just discussed neglects any energy loss during the impact

process. It is then a lower limit on the energy needed to shatter and disperse a given

target. Indeed, numerical simulations and dimensional analysis of impact events find

that in the “gravity regime,” or target size range where gravity dominates material

strength, the impact energy needed to shatter a given target lies well above the level

indicated by Eq. 3.3 (Housen & Holsapple, 1990; Holsapple, 1994; Love & Ahrens,

1996; Melosh & Ryan, 1997; Benz & Asphaug, 1999). Further, the rB(r) scalings

indicated by these studies1 are consistently shallower than the one in Eq. 3.3. With

rB ∝ rα, they give 1.37 ≤ α ≤ 1.57 rather than the α = 5/3 in Eq. 3.3.

Upon insertion into Eq. 3.1, the rB(r) scalings above give 2.95 < q < 3.11. These

values indicate a power-law slope between the one given by Eq. 3.4 and Dohnanyi’s

q = 3.5. This range in q is consistent with the best-fit slope q = 2.8 ± 0.6 (95%

1Again, we assume a constant velocity dispersion for the collisional population.
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confidence) derived by Bernstein et al. (2004) below the break for the classical Kuiper

belt and with the best-fit q = 2.3+0.9
−1.1 (bounds of 68% confidence contour) slope they

find for the entire Kuiper belt. The value for the entire belt may be skewed downward

by the scattered Kuiper belt data, which include too few faint objects for the scattered

belt’s small-end slope to be well determined. The observed KBO size distribution

is thus consistent with the assumption that gravity dominates material strength in

KBOs of size near the break.

That the simulations give rB(r) scalings shallower than that of Eq. 3.3 implies that

the energy lost in a catastrophic collision depends on the bullet/target size ratio. As

has previously been noted (see, for example, Melosh & Ryan, 1997), we would expect

energy loss in the impact of a small bullet on a much larger target. Initially the

bullet would transfer most of its energy to a volume the size of itself at the impact

site; much of this energy would escape from the site via a small amount of fast ejecta,

though some would propagate through the target as a shock.

Somewhat more quantitatively, we can think of a collision between a very small

bullet and a large target as a point explosion on the planar surface between a vacuum

and a half-infinite space filled with matter. The analogous explosion in a uniform

infinite material leads to the Sedov-Taylor blast wave, a self-similar solution of the

first type in which total energy is conserved as the spherical shock propagates (Sedov,

1946; Taylor, 1950). By contrast, a point explosion in a half-infinite space is a self-

similar solution of the second type (Zel’dovich & Raizer, 1967); the shock moving

into the half-space must lose energy as some of the shocked material flows into the

vacuum. Also, the nonzero pressure in the shocked material increases the momentum

in the shock. So as the shock propagates, its velocity should fall off faster than it

would have given conservation of energy but slower than it would have in the case of

momentum conservation.

We can use these considerations to constrain rB(r) scalings for catastrophic col-

lisions. We assume that a given target is destroyed if the velocity of the shock wave

when it reaches the antipode of the impact site exceeds the escape velocity2 (see, for

2Strictly speaking, this destruction condition requires that the velocity imparted to the target
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example, Melosh et al., 1994). Let the shock velocity decay as vshock ∝ x−β where x

is the distance traveled by the shock. If the energy in the shock were conserved, we

would expect β = 3/2 from dimensional analysis; if the momentum were conserved,

we would expect β = 3. Note that both calculations involve the energy and momen-

tum contained in the swept-up material behind the shock front since a strong shock

front will impart its energy and momentum to the shocked material. The actual point

explosion solution loses energy but gains momentum, so it must have 3/2 < β < 3. To

get the criterion for target destruction, we equate the target’s gravitational binding

energy and the energy in the shock when it arrives at the antipode. In Eq. 3.2 this

available kinetic energy was simply the kinetic energy of the incoming bullet. Here

the available energy is the energy of the shock after it has penetrated through the

target: if we assume the bullet initially deposits its energy in a volume the size of

itself, the available energy is smaller than the total impact energy by (rB/r)2β−3. The

resulting destruction criterion is

ρr3
Bv2

(
r

rB

)3−2β

∼ Gρ2r5 . (3.5)

This implies

rB ∝ r1+1/β , q =
7β + 1

2β + 1
. (3.6)

The 3/2 < β < 3 condition requires 4/3 < α < 5/3 and 23/8 < q < 22/7, both of

which are satisfied by all of the impact simulation and dimensional analysis results

discussed at the beginning of this section. Holsapple (1994) mentions that energy

and momentum conservation should represent limiting cases for the impact process

and that laboratory experiments involving impacts into sand, rock, and water satisfy

those limits. Also, the range in q implied by the rB(r) scalings found in the previous

studies discussed above, 2.95 ≤ q ≤ 3.11, spans most of the allowed range for q. This

suggests that the catastrophic impact process and α depend on more specific details

material by the shock wave at the antipode (rather than the shock velocity itself at the antipode)
exceed the escape velocity. However, for strong shocks in strengthless material, the imparted velocity
grows linearly with the shock velocity via a slope of order unity (see, for example, Landau & Lifshitz,
1959) so the scalings derived here still hold.
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of the collisions such as the equation of state. Finally, note that at rB ∼ r there

should be no energy loss because the initial energy is deposited in a volume of linear

size r. Eq. 3.5 reflects this. Then the req expression in Eq. 3.3 is still valid.

3.4 Location of the break

The above calculation of the size distribution treats N>r as constant in time. To

maintain this steady state exactly would require the power law to extend to bodies of

infinite size, which is impossible. To find the range of masses where this assumption

holds, we first find the size rbreak of the largest KBO to have experienced a destructive

collision after an elapsed time τ . We equate τ to the timescale for destructive collisions

for each KBO of size rbreak:

1

τ
∼ N>rB(rbreak)

V
· r2

break · v . (3.7)

To get N>r we note that bodies of size r > rbreak, having never collided, should be

effectively primordial at time τ . For their size distribution we write N>r = N0r
1−q0

where N0 ∼ 4 × 107q0−3 cmq0−1 from observations Trujillo et al. (2001). This is

equivalent to a Kuiper belt with 4× 104 bodies larger than 100 km. They are spread

over an area A � 1200 AU2 in the plane of the solar system Trujillo et al. (2001), so

V � Av/Ω where Ω = 0.022 yr−1 is the typical orbital angular velocity of the Kuiper

belt. We can now use Eq. 3.5 and the req expression in Eq. 3.3 to get rbreak from

Eq. 3.7. With q for the slope below the break and, as above, q0 and N0 for the slope

and normalization above the break, we have

rbreak ∼
[
N0Ωτ

A
r7−2q
eq

] 1
4+q0−2q

. (3.8)

If we set τ � 4.5 × 109 yr to be the age of the solar system, take 3/2 < β < 3, and

use the observed q0 = 5, we get

20 km � rbreak � 50 km . (3.9)
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This is consistent with the observed break position of ∼70 km Bernstein et al. (2004).

Note that if the system had had the high velocity dispersion assumed above over a

time considerably shorter than 4.5 Gyr, the break would have occurred at a much

smaller KBO size. We therefore infer that the Kuiper belt’s current excited state has

been a long-lived phase of at least a few billion years’ duration rather than a recent

phenomenon.

The evolution of the total mass and velocity dispersion of the Kuiper belt is a

potential concern, as the break location depends strongly on both. The mass of the

Kuiper belt may have been larger by a factor of ∼100 when the solar system was very

young (107–108 years old) (see, for example, Kenyon, 2002). The collision frequency

would have been much higher then, so collisions during that period might be expected

to have increased the break radius. At that time, though, the velocity dispersion of

KBO precursors is believed to have been just ∼1 m/s (see, for example, Goldreich

et al., 2002). With this impact velocity, req ∼ 1 km, so only targets of size <1 km can

be shattered by bullets smaller than they. As a result, collisional evolution during

the early solar system should only have affected bodies of size <1 km. The observed

break in the size distribution must have been created later. The break location could

have been affected if there was a sufficiently long period during which both v and the

Kuiper belt mass were large.

The timescale on which collisional equilibrium is established for bodies of size

r is the time needed for all size r bodies to be replaced (destroyed by catastrophic

collisions and, simultaneously, replenished by fragments). This timescale is equivalent

to the total mass in bodies of size r divided by their mass destruction rate. Since

the mass destroyed per unit time is independent of body size, the time to establish

collisional equilibrium is proportional to the mass in bodies of size r. With q � 3,

the mass contained in bodies of size r � rbreak is N>rρr3 ∝ r. The time taken to

establish collisional equilibrium at body size rbreak is by definition τ , so the timescale

on which collisional equilibrium is established is (r/rbreak)τ � τ . Then the steady-

state approximation—our assumption that the rate at which N>r changes is much less

than the rate of destructive collisions—is self-consistent for r � rbreak. Specifically,
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as rbreak increases, N>rbreak
decreases—both on a timescale τ—and the q � 3 power

law below rbreak follows adiabatically (Fig. 3.2). Our formalism yields the asymptotic

size distribution far below rbreak even though the system is not in steady state overall,

since for r � rbreak the destruction rate is faster than the evolution timescale of

the system. Dohnanyi (1969) did not discuss the slow decrease in N>r by which

the size distribution differs from a true steady state; he claimed that non-steady-

state power-law solutions do not exist. Bernstein et al. (2004) conjectured that the

disagreement between their results and Dohnanyi’s calculations might indicate a non-

steady-state condition in the Kuiper belt. However, the discussion above shows that

the fragmentation size distribution below rbreak should be unaffected by the system’s

evolution.

As for the lower size boundary, the strength limit derived by Asphaug & Benz

(1996) implies that material strength dominates gravity at r � 0.3 km. Impact

simulations reach similar conclusions; they put the threshhold in the 0.1–1 km size

range (see, for example, Love & Ahrens, 1996; Melosh & Ryan, 1997; Benz & Asphaug,

1999). Below this size threshhold a different q will apply to an equilibrium collisional

population. The changes introduced by this effect in the KBO size distribution below

∼100 m will affect the size distribution of larger bodies through catastrophic collisions.

Both analysis of the shape of the collisional size distribution and numerical simulations

of collisional populations indicate that “waves” may appear in the size distribution

due to a break introduced by a different q (O’Brien & Greenberg, 2003). However,

the average slope of the size distribution is not affected by its “wavy” shape (Fig 3.3).

3.5 Summary

We have derived a self-consistent size distribution given by 23/8 < q < 22/7 for a

collisional population of bodies whose binding energy is dominated by gravity. We

emphasize that this distribution does not truly represent a steady state; instead, the

number density of bodies decreases slowly compared to the collision timescale. For the

case of the Kuiper Belt, the size distribution’s small-end power-law slope q � 3 and
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Figure 3.2: Temporal evolution of the number of bodies. Here we use q = 3 as a
numerical example. The solid line represents the current KBO size distribution. The
dotted line is the extrapolation of the large-KBO size distribution to small sizes; we
assume this line also represents the primordial size distribution. Dashed lines show
the size distribution at earlier times τ = 0.2 and 1 billion years. Because rbreak

increases with time, N>rbreak
decreases with time. The evolution of rbreak and N>rbreak

is much slower than the rates of collisional destruction and creation below rbreak, so
these two rates must be very nearly in balance. Then the steady-state approximation
is valid in this size range and the size distribution below rbreak follows a q = 3 power
law.
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Figure 3.3: Schematic KBO size distribution (heavy solid line). We multiplied the
size distribution by r3 for this figure in order to show the “waves” more clearly. rbreak

is marked by the vertical dotted line on the right. Bodies smaller than rbreak have
not undergone catastrophic collisions; they follow the primordial size distribution,
which we take to be q � 5. We assume the transition between strength- and gravity-
dominated bodies occurs at ∼104 cm (marked by the vertical dotted line on the left).
Below this transition, the asymptotic size distribution is close to Dohnanyi’s q = 3.5
power law. The region where 104 cm < r < rbreak, which has an average q of about 3,
is the main focus of this paper. Due to the steepening of the size distribution below
∼104 cm, there are more bullets of size less than 104 cm than would be expected if the
q � 3 size distribution continued to arbitrarily small sizes. Since these extra bullets
can break the smallest targets in the gravity-dominated regime, the excess affects
the size distribution far above 104 cm: “waves” are produced in the distribution
for ∼ 104 cm < r < rbreak as described by O’Brien & Greenberg (2003). In our
calculations of the “wavy” spectrum, we took the energy needed to break a given body
to be the sum of the material strength and self-gravity contributions. This produced
a smooth transition between the strength- and gravity-dominated parts of the size
distribution and a significant decrease in the amplitudes of the “waves” as r increases.
Despite the “waves,” the gravity-dominated part of the size distribution below rbreak

retains an average q of 3 (shown by the dashed line) and, as a result, lies well below
the extrapolation of the primordial size distribution to smaller r (thin solid line).
The plotted points represent the KBO size distribution determined observationally
by Bernstein et al. (2004) as shown in their Figs. 3 and 4. Squares mark the data
points for the entire Kuiper belt; triangles mark the data points for the classical KBOs
only. The points were given a constant vertical offset chosen to facilitate comparison
between the theoretical and observed shapes of the size distribution. For clarity, the
classical KBO data points have also been offset slightly in r.
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break radius rbreak ∼ 40 km agree well with those found observationally by Bernstein

et al. (2004). Since the power-law slope derived in the steady-state approximation

depends heavily on the particular criterion for catastrophic destruction adopted for

the bodies, observations of the KBO size distribution constrain the balance between

internal strength and gravitational binding in KBOs. The close agreement between

this slope and break radius and the best-fit values found by Bernstein et al. (2004)

suggests that large KBOs are virtually strengthless bodies held together mainly by

gravity. Rubble-pile structure for KBOs of size ∼ rbreak and larger is consistent with

but not required by these findings since the structural flaws expected in bodies this

large may weaken their internal structure enough for gravity to dominate material

strength. Further surveys of small KBOs between ∼10 and ∼70 km in size would

better constrain both the exact position of the actual break in the size distribution

and the power-law slope below the break. Data of this kind would thus confirm or

refute our analysis. Such surveys would also allow more detailed comparison of the

break locations in the classical and scattered KBO populations, which should reflect

differences in the surface densities and velocity dispersions for those two groups.

3.6 Appendix: mathematical justification of the

steady-state criterion

We can show mathematically that the standard criterion for a collisional steady state

used in the literature (see, for example Dohnanyi, 1969; Tanaka et al., 1996; O’Brien

& Greenberg, 2003) follows from our steady-state criterion as expressed in Eq. 3.1. In

other words, we can show that if the mass destruction rate per logarithmic interval

in target size is independent of target size, then the rates of collisional destruction

and creation of bodies of a given size are equal.

We assume that all target bodies break in the same way—that is, that the size

distribution of fragments has the same form for all targets and is a function only

of the ratio between fragment and target sizes. Then the mass in fragments of size
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r created via catastrophic destruction of targets of size R per unit time, per unit

fragment size, and per unit target size can be expressed as

D(r, R) = A(R)f
( r

R

)
. (3.10)

Here f(r/R) is a dimensionless function that gives the shape of the fragment size

distribution and A(R) is a normalization factor that gives the total mass rate of

destruction of bodies of size R.

Our criterion that the total mass of bodies destroyed per unit time in a logarithmic

interval in body size be independent of body size is

∫ ∞

0

R A(R)f
( r

R

)
dr = constant . (3.11)

A change of variables to x = r/R gives

R2A(R) =
constant∫∞
0

f(x) dx
(3.12)

and, therefore,

A(R) = A0R
−2 (3.13)

for some constant A0.

We now show that this form of A(R) also satisfies the standard criterion for a

collisional steady state. The mass creation rate for fragments of size r is

∫ ∞

0

A(R)f
( r

R

)
dR =

A0

r

∫ ∞

0

f(x) dx , (3.14)

and the mass destruction rate for targets of size r is

∫ ∞

0

A(r)f

(
R

r

)
dR =

A0

r

∫ ∞

0

f(x) dx , (3.15)

so these rates are equal.
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Chapter 4

Self-similar solutions for relativistic
shocks emerging from stars with
polytropic envelopes

Abstract

We consider a strong ultrarelativistic shock moving through a star whose envelope has

a polytrope-like density profile. When the shock is close to the star’s outer boundary,

its behavior follows the self-similar solution given by Sari (2005) for implosions in

planar geometry. Here we outline this solution and find the asymptotic solution as

the shock reaches the star’s edge. We then show that the motion after the shock breaks

out of the star is described by a self-similar solution remarkably like the solution for

the motion inside the star. In particular, the characteristic Lorentz factor, pressure,

and density vary with time according to the same power laws both before and after

the shock breaks out of the star. After emergence from the star, however, the self-

similar solution’s characteristic position corresponds to a point behind the leading

edge of the flow rather than at the shock front, and the relevant range of values

for the similarity variable changes. Our numerical integrations agree well with the

analytic results both before and after the shock reaches the star’s edge.
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4.1 Introduction

The surge of activity over the past decade or so in the fields of supernovae and

of gamma-ray bursts and their afterglows has led to renewed investigation into the

behavior of strong shocks. Much of the analytic work on strong shock propagation

to date has focused on self-similar solutions to the hydrodynamic equations. In these

solutions, the profiles of the hydrodynamic variables as functions of position have

constant overall shapes whose time evolution consists simply of scalings in amplitude

and position. As a result, self-similarity allows us to reduce the nominal system

of two-dimensional partial differential hydrodynamic equations to a system of one-

dimensional ordinary differential equations. The existence of self-similar solutions

thus enables a significant simplification of problems free of spatial scales in regions far

from the initial conditions. The best-known such solutions are the pioneering Sedov-

Taylor solutions for nonrelativistic point explosions propagating into surroundings

with power-law density profiles (Sedov, 1946; von Neumann, 1947; Taylor, 1950).

Self-similar solutions are traditionally divided into two categories (see, for exam-

ple, Zel’dovich & Raizer (1967) for a detailed discussion). “Type I” solutions are

those in which the time evolution of the shock position and hydrodynamic variables

follows from global conservation laws such as energy conservation. The Sedov-Taylor

solutions are Type I; their ultrarelativistic analogues were found by Blandford & Mc-

Kee (1976). By contrast, global conservation laws are useless in “Type II” solutions,

which are instead characterized by the requirement that the solution remain well-

behaved at a singular point known as the “sonic point.” If, for instance, the density

of the surroundings falls off very quickly with distance, Type II solutions found by

Waxman & Shvarts (1993) for nonrelativistic spherical explosions hold instead of the

Sedov-Taylor solutions and relativistic solutions found by Best & Sari (2000) hold

instead of the Blandford-McKee solutions.

Here we study the case of an ultrarelativistic shock wave moving outwards through

a star whose envelope has a polytrope-like density profile. After the shock front

reaches the outer edge of the star, an event we refer to as “breakout,” the shock
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front itself ceases to exist but the shocked fluid continues outward into the vacuum

originally surrounding the star. We focus on the flow at times just before and just

after breakout. As explained in §4.2, the shock evolution just inside the star’s surface

is identical to that expected for an imploding planar shock in a medium with a power-

law density profile. Such a shock follows a Type II self-similar solution as discussed

by Sari (2006) and Nakayama & Shigeyama (2005) and outlined briefly here. §4.3

describes the asymptotic solution as the shock front reaches the surface of the star, a

singular point. In §4.4 we investigate the flow after breakout. We show that the self-

similar solution for the evolution inside the star also describes the behavior outside

the star except in that a different range of the similarity variable applies and in that

the physical interpretation of the characteristic position changes. We show in §4.5

that the analytic results of §4.2,4.3,4.4 agree with our numerical integrations of the

relativistic time-dependent hydrodynamic equations, and in §4.6 we summarize our

findings. Throughout our discussion, we take the speed of light to be c = 1.

4.2 Shock propagation within the star

Since we are interested in the shock after it has reached the envelope or the outermost

layers of a star, we assume that the mass and distance lying between the shock front

and the star’s outer edge are much less than the mass and distance between the

shock front and the star’s center. In this region, we can take the star’s gravity g to

be constant and the geometry to be planar. We also assume that the stellar envelope

has a polytrope-like equation of state, that is, p ∝ ρq where p is the pressure, ρ

is the mass density, and q is a constant. This type of equation of state occurs in

various contexts including fully convective stellar envelopes, in which case q is the

adiabatic index; radiative envelopes where the opacity has a power-law dependence

on the density and temperature; and degenerate envelopes.

Under these assumptions we can find the density profile from hydrostatic equilib-

rium and the equation of state as follows. Let x be the radial coordinate such that
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x = 0 at the star’s surface and x < 0 inside the star. Then

0 =
dp

dx
+ ρg (4.1)

and with the boundary condition ρ = p = 0 at the edge of the star, we have

q

q − 1
ρq−1 ∝ −gx (4.2)

ρ ∝ (−x)1/(q−1) = (−x)−k . (4.3)

For convective and degenerate envelopes, q is between 4/3 and 5/3; for radiative

envelopes with Kramers opacity, q = 30/17. These give k values between −1 and −3.

With the power-law density profile ρ ∝ (−x)−k, the evolution of an ultrarelativistic

shock propagating through the envelope is given by a Type II converging planar self-

similar solution to the hydrodynamic equations representing energy, momentum, and

mass conservation,

∂

∂t

[
γ2(e + β2p)

]
+

∂

∂x

[
γ2β(e + p)

]
= 0 (4.4)

∂

∂t

[
γ2β(e + p)

]
+

∂

∂x

[
γ2(β2e + p)

]
= 0 (4.5)

∂

∂t
(γn) +

∂

∂x
(γβn) = 0 , (4.6)

with the ultrarelativistic equation of state

p =
1

3
e . (4.7)

Here we will simply state the solution; for a detailed derivation see Sari (2006) or

Nakayama & Shigeyama (2005). We assume the effect of the star’s gravity on the

shock propagation is negligible. Following Sari (2006), we let R(t) be the solution’s

characteristic position, which we choose to be the position of the shock front while

the shock is within the star. We take t = 0 at the time the shock reaches the star’s
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surface (R = 0), and we take R < 0 when t < 0. We take Γ(t), P (t), and N(t) to be

respectively the characteristic Lorentz factor, pressure, and number density, and we

define
tΓ̇

Γ
= −m

2
,

tṖ

P
= −m − k ,

tṄ

N
= −m

2
− k . (4.8)

Following Blandford & McKee (1976), we define the similarity variable as

χ = 1 + 2(m + 1)
R − x

R/Γ2
. (4.9)

Note that for R < 0, x ≤ R and the relevant range in χ is −∞ < χ < 1 as long as

m > −1. We define the hydrodynamic variables—the Lorentz factor γ, the pressure

p, and the number density n—as follows:

γ2(x, t) =
1

2
Γ2(t)g(χ) (4.10)

p(x, t) = P (t)f(χ) (4.11)

n(x, t) = N(t)
h(χ)

g1/2(χ)
. (4.12)

Here g, f , and h give the profiles of γ, p, and n; expressions for the dependence of m

on k and for g, f , h as functions of χ make up the entire self-similar solution. The

above definitions and the ultrarelativistic hydrodynamic equations in planar geometry

put the sonic point, the point separating fluid elements that can communicate with

the shock front via sound waves from those that cannot, at gχ = 4− 2
√

3. Requiring

that the solution pass smoothly through this point gives

m =
(
3 − 2

√
3
)

k (4.13)

g = Cg

∣∣∣∣ gχ

3k − 2k
√

3 + 1
− 2(2 +

√
3)

∣∣∣∣
−(3−2

√
3)k

(4.14)

f = Cf

∣∣∣−gχ − 2k
√

3 + 4 + 2
√

3
∣∣∣−(4−2

√
3)k

(4.15)
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h = Ch

∣∣∣gχ + 2k
√

3 − 4 − 2
√

3
∣∣∣− (2

√
3−3)(2k−1)k

(−1+k
√

3−√
3) |gχ − 2| k

−1+k
√

3−√
3 . (4.16)

The boundary conditions g(χ = 1) = f(χ = 1) = h(χ = 1) = 1 that hold inside the

star allow us to determine the constants of integration Cg, Cf , Ch and write

g =

[
−gχ − 2k

√
3 + 4 + 2

√
3

−1 − 2k
√

3 + 4 + 2
√

3

]−(3−2
√

3)k

(4.17)

f =

[
−gχ − 2k

√
3 + 4 + 2

√
3

−1 − 2k
√

3 + 4 + 2
√

3

]−(4−2
√

3)k

(4.18)

h =

[
gχ + 2k

√
3 − 4 − 2

√
3

1 + 2k
√

3 − 4 − 2
√

3

]− (2
√

3−3)(2k−1)k

−1+k
√

3−√
3

[2 − gχ]
k

−1+k
√

3−√
3 . (4.19)

4.3 Transition at breakout

To know what happens to the shocked material after the shock front emerges from

the star, we need the behavior of the shock just as the front reaches the surface—the

“initial conditions” for the evolution of the shock after breakout. Specifically, we are

interested in the limiting behavior of each fluid element and in the asymptotic profiles

of γ, p, and n as functions of x as t and R approach 0.

The limiting behavior of a given fluid element may be found as follows. Due to

the self-similarity, we know the time taken for γ, p, and n of a given fluid element to

change significantly is the timescale on which R changes by an amount of order itself.

Since R can change by this much only once between the time a given fluid element is

shocked and the time the shock breaks out of the star, the limiting values of γ, p, and

n for that fluid element should be larger only by a factor of order unity from their

values when the fluid element was first shocked.

We can also find the scalings of γ, p, and n with x at breakout via simple physical

arguments. We denote by x0, γ0, p0, n0 the position, Lorentz factor, pressure, and

number density of a fluid element just after being shocked and by xf , γf , pf , nf

those values at the time the shock breaks out. Since the shock accelerates to infinite
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Lorentz factors, and since, as we found above, the Lorentz factor of a given fluid

element remains constant up to a numerical factor, this fluid element will lag behind

the shock by xf ∼ x0/γ
2
0 at t = 0. Eq. 4.8 gives Γ ∼ t−m/2, so we have γ0 ∼ (−x0)

−m/2;

then γf ∼ ((−xf )γ2
f)

−m/2 or

γf ∼ (−xf )−m/2(m+1) . (4.20)

Likewise, since P ∼ t−m−k and N ∼ t−m/2−k, we have p0 ∼ x−m−k
0 and n0 ∼ x

−m/2−k
0 ;

then

pf ∼ ((−xf )γ2
f)

−m−k ∼ (−xf )−(m+k)/(m+1) (4.21)

nf ∼ (−xf )−(m/2+k)/(m+1) . (4.22)

We can use the equations for the solution before breakout to perform equivalent

calculations of the limiting behavior of fluid elements and asymptotic profiles of γ, p,

n. For the limiting behavior of a fluid element, we take the advective time derivative

of gχ and use the result to relate γ and g to time for that fluid element. The advective

derivative is given by

D

Dt
=

∂

∂t
+ β

∂

∂r
= Γ̇

∂

∂Γ
+ Ṗ

∂

∂P
+

m + 1

t
(2/g − χ)

∂

∂χ
. (4.23)

We apply this derivative to Eq. 4.17 to get

D(gχ)

D log t
=

(2 − gχ)
(
gχ − 4 − 2

√
3 + 2

√
3k
)

(
gχ − 4 − 2

√
3
) (4.24)

and integrate to get

t/t0 = |gχ − 2|(3+
√

3)/(3k−√
3−3)

∣∣∣∣∣gχ − 4 − 2
√

3 + 2k
√

3

1 − 4 − 2
√

3 + 2k
√

3

∣∣∣∣∣
−3k/(−

√
3−3+3k)

(4.25)

where t0 is the time at which the fluid element is shocked, that is, when g = χ = 1.

When |gχ| � 1—which becomes true everywhere behind the shock front as t → 0—
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this simplifies to

t/t0 � |gχ|−1
∣∣∣1 − 4 − 2

√
3 + 2k

√
3
∣∣∣3k/(−

√
3−3+3k)

(4.26)

and Eq. 4.17 simplifies to

g �
[ −gχ

−1 − 2k
√

3 + 4 + 2
√

3

]−(3−2
√

3)k

. (4.27)

We substitute Eq. 4.26 into Eq. 4.27 to get the limiting Lorentz factor of the fluid

element as t → 0:

γ = γ0

∣∣∣1 − 4 − 2
√

3 + 2k
√

3
∣∣∣−(3−3

√
3)k/(2(−

√
3−3+3k))

(4.28)

which is greater only by a numerical factor than the initial Lorentz factor γ0 that the

fluid element received right after being shocked. To relate the limiting p, n to p0, n0,

we likewise take Eqs. 4.18, 4.19 in the limit |gχ| � 1 and use Eqs. 4.26, 4.27 with the

results to get

p = p0

∣∣∣1 − 4 − 2
√

3 + 2k
√

3
∣∣∣−(6−2

√
3)k/(−

√
3−3+3k)

(4.29)

n = n0

∣∣∣1 − 4 − 2
√

3 + 2k
√

3
∣∣∣− (4k+k

√
3−3−√

3)(3−2
√

3)k

2(k
√

3−1−√
3)

(4.30)

which again differ only by numerical factors from their values just after the fluid ele-

ment is shocked. This is consistent with the behavior given above by simple physical

considerations.

For the calculation of the asymptotic profiles of γ, p, and n as functions of x,

we cannot simply apply Eqs. 4.10, 4.11, 4.12: Eqs. 4.8, 4.9 require that χ → −∞
everywhere behind the shock and that Γ, P , and N diverge as t → 0. Instead we take

the t → 0 or, equivalently, χ → ∞ limit at a fixed position x. First we have

χ = 1 + 2(m + 1)(1 − x/R)Γ2 � 2(m + 1)(−x/R)Γ2 . (4.31)
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With Eqs. 4.10, 4.27 this gives

2γ2/Γ2 = g =

[ −4(m + 1)(−x)γ2/R

−1 − 2k
√

3 + 4 + 2
√

3

]−m

(4.32)

and

γ =

[
2
(−R)−m

Γ2

]−1/2(1+m) [
4(m + 1)

−1 − 2k
√

3 + 4 + 2
√

3

]−m/2(1+m)

(−x)−m/2(1+m) .

(4.33)

This is consistent with our qualitative discussion; the coefficient in the qualitative

relation is a numerical factor times the constant (−R)−m/Γ2. For the p and n profiles,

we apply a similar analysis to the expressions for f and h in the limit t → 0.

p = P

[
2
(−R)

Γ2

]m+k
1+m

[
4(m + 1)

−1 − 2k
√

3 + 4 + 2
√

3

]−m+k
1+m

(−x)−
m+k
1+m (4.34)

n = N

[
2
(−R)

Γ2

]m/2+k
1+m

[4(m + 1)]−
m/2+k
1+m

[
−1 − 2k

√
3 + 4 + 2

√
3
]m/2+k

1+m
+ k

−1+k
√

3−√
3

× (−x)−
m/2+k
1+m (4.35)

These results are likewise consistent with our qualitative discussion.

4.4 Evolution after breakout

4.4.1 Self-similar solution

Since the breakout itself does not introduce new spatial scales into the flow, we expect

the motion after breakout to remain self-similar. However, as the shock Lorentz factor

diverges at t = 0, we cannot continue to associate the characteristic position, Lorentz

factor, pressure, and number density with the values at the shock front after breakout.

So we begin by providing physical motivation for a different characteristic Lorentz

factor and exploring the implications of this choice.



67

We note that after breakout each fluid element expands and accelerates over time

until the element’s internal energy has been converted entirely into bulk motion.

Given a relativistic strong shock, the internal energy of a shocked fluid element in

the frame moving with the fluid is comparable to the bulk kinetic energy of the fluid

element. This implies that the fluid element’s final bulk Lorentz factor should be

much greater than the value of the shock Lorentz factor just after the fluid element

was shocked. The timescale tx for the resulting expansion and acceleration is the

time over which the fluid element’s size and Lorentz factor change by a factor of

order unity. For a fluid element located at −x and with Lorentz factor γx at t = 0,

the time of breakout, this timescale is tx = xγ2
x due to relativistic beaming. That

every time t > 0 is thus associated in a scale-independent way with a particular tx

and γ suggests that we pick Γ(t = tx) = γx to be the characteristic Lorentz factor.

To see how Γ evolves with time, we use γ ∝ (−x)−m/2(1+m) from Eq. 4.33 with

the tx relation above to get Γ ∝ t−m/2. For the characteristic pressure P and number

density N , Eqs. 4.34, 4.35 likewise give P ∝ t−m−k and N ∝ t−m/2−k. In other words,

Eq. 4.8 holds after breakout with exactly the same k, m that apply inside the star.

The characteristic position R is again the position which evolves according to the

Lorentz factor Γ: Ṙ � 1 − 1/2Γ2. Since the hydrodynamic equations still hold as

well, Eqs. 4.9, 4.14, 4.15, 4.16 must remain valid when t > 0.

To find the complete solution after breakout we need to specify the boundary

conditions. We proceed by looking at the behavior of the similarity variables χ, g,

f , h. The relevant range in χ depends on R, and while the relation between R

and Γ is the same before and after breakout, R after breakout is not the position

of the front. Instead, the front has infinite Lorentz factor and R lags farther and

farther behind the front with increasing time. A nice physical interpretation exists

for R after breakout. R tracks the position corresponding to a fluid element that has

expanded by a factor of order unity, so R marks the transition in position between

fluid elements that have expanded and accelerated significantly since being shocked

and fluid elements whose size and speed have remained roughly constant. Since it

takes longer for fluid elements with smaller Lorentz factors to expand and accelerate
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significantly, R moves backward relative to the leading edge of the flow at x = t. R is

positive after breakout, and the range of possible x in the solution outside the star is

x ≤ t. So χ = 0 at the “front” x = t, and the relevant range in χ in the post-breakout

solution is 0 < χ < ∞ rather than −∞ < χ < 1.

Far behind x = t, the profiles of γ, p, and n before breakout must coincide with the

profiles after breakout. We know this because at a given time after breakout, sound

waves carrying the information that breakout occurred can only have traveled a finite

distance; material farther behind the front continues to flow as if the breakout had

never occurred. Also, the two sets of profiles must coincide at t = 0, when everything

is far behind the front. To phrase this requirement on the profiles in terms of the

similarity variable, g(χ → −∞), f(χ → −∞), and h(χ → −∞) before breakout must

coincide with g(χ → ∞), f(χ → ∞), and h(χ → ∞) after breakout. Then as χ → ∞
after breakout, g, f, h → 0 and gχ → ∞. In addition, the constants Cg, Cf , Ch in

Eqs. 4.14, 4.15, 4.16 must be the same for both the pre- and post-breakout solutions.

In other words, the solutions before and after breakout, as specified by Eqs. 4.9, 4.14,

4.15, 4.16 and expressions for Cg, Cf , Ch, are the same; only the relevant ranges in χ

and the physical interpretations of the variables differ. So the expressions for g, f , h

after breakout are

g =

[
gχ + 2k

√
3 − 4 − 2

√
3

−1 − 2k
√

3 + 4 + 2
√

3

]−(3−2
√

3)k

(4.36)

f =

[
gχ + 2k

√
3 − 4 − 2

√
3

−1 − 2k
√

3 + 4 + 2
√

3

]−(4−2
√

3)k

(4.37)

h =

[
−gχ − 2k

√
3 + 4 + 2

√
3

1 + 2k
√

3 − 4 − 2
√

3

]− (2
√

3−3)(2k−1)k

−1+k
√

3−√
3

[gχ − 2]
k

−1+k
√

3−√
3 . (4.38)

The boundary conditions after breakout are given explicitly by g = f = 1 and

h =
(
5 + 4

√
3 − 4

√
3k
)k/(−1−√

3+k
√

3)
at χ = 7+4

√
3−4

√
3k. A graphical comparison

between the pre- and post-breakout γ versus position profiles is given in Figure 4.1

along with sample trajectories of fluid elements.
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Figure 4.1: Profiles of γ as a function of position (heavy lines) at seven different times
marked on the figure and trajectories of three fluid elements in position-Lorentz factor
space (thin lines). Fluid elements at the characteristic positions R are marked by
open circles. We use x− t as the position coordinate to allow easy comparison of the
profiles. The t = 0 curve (heavy dotted line) is the asymptotic profile corresponding
to the pure power law γ ∝ (−x)−m/2(1+m) given in Eq. 4.33. The profiles with t < 0
(heavy solid lines) are given by Eqs. 4.10, 4.17 and the profiles with t > 0 (heavy
dashed lines) are given by Eqs. 4.10, 4.36. When t < 0, the natural choices for R and
Γ are respectively the location of the shock front and the Lorentz factor of the front.
When t > 0, a fluid element at position R has accelerated by a factor of order unity
and its Lorentz factor is of order Γ. So the positions R lie just above the “knees”
in the profiles, which separate fluid elements that have already expanded from those
that have not. When |x− t| � R/Γ2 or, equivalently, |χ| → ∞, all profiles approach
the t = 0 power law since at t = 0, |χ| → ∞ everywhere behind the front. When
|x − t| � R/Γ2, the t < 0 profiles approach a constant (γ → Γ/

√
2) and the t > 0

profiles approach γ ∝ |x− t|−1 (g ∝ χ−1 from Eq. 4.36). Because every fluid element
is always accelerating, the t < 0 profiles always lie below the t = 0 power law and the
t > 0 profiles are always above the t = 0 power law. Trajectories of individual fluid
elements before breakout are given by Eq. 4.25. After breakout, Eq. 4.25 still applies.
The power laws relating t to gχ stay the same after breakout since the equations for
g before and after breakout are nearly identical; also, matching the pre- and post-
breakout trajectories at t = 0 gives the same |t0| in the evolution both before and
after t = 0.
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4.4.2 Type I or Type II?

While the flow before breakout follows a Type II self-similar solution, the solution

describing the flow after breakout contains elements of Type I and Type II solutions.

Unlike the Type II solution that applies before breakout, the post-breakout solution

does not contain a sonic point. Differentiating Eq. 4.36 with respect to gχ shows that

the only local extremum of gχ occurs at g = ∞ or χ = 0, where gχ = 4+2
√

3−2k
√

3;

since gχ → ∞ as χ → ∞, gχ must attain its global minimum at χ = 0. But then for

k < 0 neither the sonic point, gχ = 4−2
√

3, nor the other singular points, gχ = 2 and

gχ = 4 + 2
√

3, is included in the solution after breakout. A more physical argument

for the exclusion of the sonic point from the post-breakout solution is that since each

fluid element is accelerating while Γ decreases with time, the fluid element moves

forward relative to R and its χ must decrease with time. Using Eq. 4.23 we see that

Dχ/Dt < 0 requires gχ > 2 > 4 − 2
√

3 for every fluid element. Then the entire

post-breakout solution is causally connected as would be expected if it were Type I.

Unlike Type I solutions, however, the solution after breakout contains infinite

energy. As a result, global conservation laws do not apply just as would be expected in

a Type II solution. So the post-breakout solution lies between the standard Type I and

Type II solution categories. While this unusual situation implies that, in principle,

the infinite energy contained in the solution can communicate with and affect the

region near the front, the regions of the solution containing this infinite energy lie

arbitrarily far behind x = t and therefore take arbitrarily long to communicate with

the fluid near the front. Similarly, in any application of the post-breakout solution,

the flow will be truncated at some position well behind R, potentially introducing

a spatial scale into the problem. However, the solution is valid until information

from the truncation region propagates to areas close to the front. The further the

truncation from the front, the longer this will take.
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4.4.3 Behavior of fluid elements at late times

While in the post-breakout solution described above the fluid elements formally ac-

celerate forever, each fluid element must in practice stop accelerating when all of its

internal energy has been converted to bulk kinetic energy, or when p/n ∼ γf/h ∼ 1.

Then we can estimate the final Lorentz factor of a given fluid element from Eqs. 4.36,

4.37, 4.38. By taking the advective time derivatives of γ and of f/h we can write

differential equations for their time evolution following a single fluid element. These

are

Dγ

Dt
=

γ

t

(√
3 − 3

)
k

gχ − 4 − 2
√

3
� γ

t

(√
3 − 1

2

)
(4.39)

D(f/h)

Dt
=

(f/h)

t

[
(2 − gχ) +

(
gχ − 4 − 2

√
3 + 2k

√
3
)

gχ − 4 − 2
√

3

]

× k

−1 + k
√

3 −√
3

(4.40)

� (f/h)

t

(−1√
3

)
. (4.41)

In the last steps we have taken the limit of late times when the accelerating fluid

element approaches the front at χ = 0. In this limit Eq. 4.36 implies g → ∞ and

gχ → (gχ)0 = 4 + 2
√

3 − 2k
√

3. Let γ0, f0, and h0 be the values of the functions

in question just after our fluid element is shocked; then at late times γ � γ0 so

(f/h)/(f0/h0) ∼ γ−1. Integrating the above differential equations then gives

γ

γ0
=

(
t

t0

)(
√

3−1)/2

∼ γ(3−√
3)/2 −→ γ ∼ γ1+

√
3

0 . (4.42)

We know the fluid is thermally hot just behind the front: though p approaches 0

as χ approaches 0, n approaches 0 there faster than p does, and p/n actually increases

toward the front. So the hottest fluid lies at the front of the solution, and we expect

the cold fluid elements to lie behind it. Fluid elements at the back of the solution were

shocked before fluid elements near the front, so elements at the back have smaller γ0

values and smaller ratios γ
√

3
0 between the final and initial Lorentz factors than do
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those near the front. It turns out that the elements at the back cool faster than those

near the front. We can see this by checking that gχ, the value of gχ that satisfies

p/n ∼ 1, decreases—that is, moves toward the front of the solution—with time:

1 ∼ p

n
∼ Γ

√
g
f

h
∝ t−m/2

√
g(gχ)

f(gχ)

h(gχ)
(4.43)

d ln gχ

d ln t
= −gχ − (gχ)0

gχ
· gχ − 2

gχ − 2(3 + 4/
√

3)
< 0 (4.44)

where, again, we have used Eqs. 4.36, 4.37, 4.38.

Because the fluid is hot near the front, the relativistic hydrodynamic equations

and equation of state apply there and our self-similar solutions should hold. However,

to confirm the solutions’ validity for fluid near the front, we need to check that

information from the cold fluid at the back cannot reach the hot fluid before it cools.

To do this we look at the forward characteristics, which we denote by gχ+. In the

frame of the unshocked fluid, the speed of a sound wave with βs = 1/
√

3 travelling

forward relative to the flow moving at β � 1 − 1/2γ2 = 1 − 1/Γ2g is

dx+

dt
=

β + βs

1 + ββs

� 1 − 1

Γ2g

√
3 − 1√
3 + 1

(4.45)

so we have
dχ+

dt
� (1 + 2(m + 1)Γ2)

(
1 − dx+

dt

)
1

t
− (m + 1)

χ+

t
(4.46)

d ln gχ+

d ln t
=

d ln gχ+

d lnχ+

d ln χ+

d ln t
= −gχ+ − (gχ)0

gχ+
· gχ+ − 4 + 2

√
3

gχ+ − 4 − 2
√

3
. (4.47)

For gχ > (gχ)0, d ln gχ/d ln t is always more negative than d ln gχ+/d ln t: by the time

sound waves moving forward from the cold fluid reach a given fluid element farther

forward, that fluid element has become cold. So the self-similar solution is valid for

the hot fluid near the front. In the last line we have used Eq. 4.36. While the sound

wave propagating along the forward characteristic may in principle move through

both hot and cold fluid, the fluid temperature given by the self-similar solution is an

upper bound on the actual temperature of the fluid, so Eq. 4.47 gives the path of the
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fastest possible forward-moving sound wave.

4.4.4 Relation to previous work

The first analytic investigation of an ultrarelativistic planar shock wave was performed

by Johnson & McKee (1971). The problem they consider is broadly similar to the one

we discuss here, but our work differs in important respects from theirs. First, Johnson

& McKee (1971) used the method of characteristics in their work: they analyzed the

flow associated with the shock by tracing the paths of sound waves travelling through

the fluid. Our analysis uses the self-similarity of the flow instead. So while some of

their work can be applied to flows moving through fluids with arbitrary decreasing

density profiles, their methods do not give profiles for the hydrodynamic variables as

functions of x at a given time. By contrast, our self-similar solutions require a power-

law density profile inside the star but give explicit profiles for the hydrodynamic

variables. Second, the methods used by Johnson & McKee (1971) require initial

conditions consisting of a uniform stationary hot fluid about to expand into cold

surroundings. In our scenario the hot expanding fluid is never uniform or stationary

and always follows the self-similar profile specified by our solution. The self-similarity

analysis tells us that the solution is Type II, at least before breakout; this implies

that the asymptotic solution is independent of the initial engine.

The behavior of individual fluid elements at very late times indicates that our

asymptotic solution is consistent with the findings of Johnson & McKee (1971): ac-

cording to both our and their solutions, the final Lorentz factor is γ ∼ γ1+
√

3
0 for a

fluid element with initial Lorentz factor γ0 in a strong ultrarelativistic shock propagat-

ing into a cold medium with decreasing density. The agreement provides additional

support for our claim that the solution outside the star behaves like the solution de-

scribing a standard planar shock up to the initial conditions and the interpretation

of the characteristic values R, Γ, P , N . Note that the differences between the initial

conditions used in their work and in ours are unimportant to the scaling law relating

the final and initial Lorentz factors of a given fluid element. This result agrees with
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the findings of Tan et al. (2001) concerning the scaling law: partly because of uncer-

tainty over the different initial conditions, they used numerical simulations to check

the γ ∼ γ1+
√

3
0 result.

Recently, Nakayama & Shigeyama (2005) also investigated the problem of an

ultrarelativistic planar shock. While the self-similar solution they give for the flow

before breakout is identical to the one in Sari (2006) and outlined here, they do

not give analytic results for or a physical interpretation of the self-similar solution

after breakout. The case of a nonrelativistic planar shock approaching the edge of

a polytropic atmosphere was studied by Gandel’man & Frank-Kamenetskii (1956)

and Sakurai (1960); both papers investigate the nonrelativistic pre-breakout flow

and asymptotic t → 0 profiles. Sakurai (1960) also plots some nonrelativistic post-

breakout profiles obtained via numerical integration.

4.5 Comparison with numerical integrations

To verify our results numerically, we integrated the time-dependent relativistic hydro-

dynamic equations using a one-dimensional code. Figure 4.2 shows curves for γ as a

function of position at a single time before breakout, while Figure 4.4 shows the time

evolution of Γ, P , and N before breakout. The numerical and analytic results are in

excellent agreement. Figures 4.3 and 4.5 respectively show the γ versus x profile and

time evolution of Γ, P , and N after breakout; the agreement between numerical and

analytic results here confirms the choice of scale R(t) after breakout that we discussed

in § 4.1.



75

   

10
2

10
3

x

γ

−3×10−8 −2×10−8
−10−8

Figure 4.2: Lorentz factor γ as a function of position x shortly before the shock
breaks out of the star. The density profile has power-law index k = −1.5. The
analytic profile taken from the self-similar solution (solid line) agrees well with the
numerical profile (crosses).
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Figure 4.3: Same as Figure 4.2 but for a time shortly after the shock emerges from
the star.
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Figure 4.4: Evolution of Γ (top panel), P (middle panel), and N (bottom panel) with
R while the shock is still inside the star. The density profile has power-law index
k = −1.5. The evolution of Γ, P , N with R is equivalent to time evolution when
Γ � 1. Crosses represent numerical data; solid lines are the best-fit lines to the data.
That the data are well fit by lines implies that Γ, P , and N do indeed evolve as power
laws; that the numerical and analytic slopes agree confirms that the evolution is as
expected.
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Figure 4.5: Same as Figure 4.4 but for times after the shock emerges from the star.
Γ, P , N , and R were deduced from the numerical data by finding at each time the
position where γ−1p/n, the ratio of the thermal and the bulk kinetic energies in the
frame of the fluid, fell just below the constant value we expect at the time of breakout.
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4.6 Summary

We have shown that, given an ultrarelativistic shock propagating into a planar poly-

tropic envelope, the flow upon the shock’s emergence from the envelope into vacuum

follows a self-similar solution strikingly similar to the self-similar solution describing

the flow while the shock remains within the envelope. Both self-similar solutions obey

the same relations with regard to the time evolution of the characteristic quantities

R, Γ, P , N and with regard to the similarity variables χ, g, f , h. The pre- and

post-breakout solutions differ only in that the applicable ranges in χ and the physical

interpretations of the characteristic quantities differ. As a result of these differences,

the behavior of the flow after breakout lies somewhere between the traditional Type

I and Type II classes of self-similar solutions; before breakout a Type II solution

applies. To arrive at these results we have looked in detail at the behavior when the

shock reaches the outer edge of the envelope.

We have discussed these results in the context of an application—the motion of

a shock wave through a polytropic envelope near the surface of a star, the shock’s

emergence from the surface, and the subsequent flow into vacuum. This situation

may be related to the explosions believed to cause gamma-ray bursts and supernovae

(see, for example, Tan et al., 2001) and should be especially relevant in very optically

thick media such as neutron stars.

Acknowledgements. This chapter was originally published in 2006 in the Astrophys-

ical Journal. It is reproduced here with the permission of the copyright holder, the

American Astronomical Society.
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Chapter 5

Self-similar solutions for relativistic
shocks: the transition to cold fluid
temperatures

5.1 Introduction

The energy and Lorentz factor that we expect in the ejecta in supernovae and gamma-

ray bursts are important because they constrain the amount of energy that can be

deposited in the photons we observe from these explosions. Previous work on the

ejecta, notably Tan et al. (2001), uses as a starting point the analytic solutions of

Johnson & McKee (1971) for a planar relativistic shock propagating into cold sur-

roundings: by the time the shock reaches the outer envelope of the star, the likely

source of the ejecta, it has accelerated to relativistic speeds and its geometry is pla-

nar. The work of Johnson & McKee (1971) and other analytic work on the flow from

a relativistic shock that breaks out of a star (Nakayama & Shigeyama, 2005; Pan &

Sari, 2006) show that significant acceleration occurs after the fluid is shocked. As

the hot fluid expands adiabatically, its thermal energy is converted to bulk kinetic

energy.

Since these authors assume an ultrarelativistic equation of state for the fluid, the

final Lorentz factor their solutions predict for the fluid is formally infinite as the fluid

never cools. They avoid this difficulty by following fluid elements in the flow only

to the point where the fluid temperature becomes nonrelativistic and approximating
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the final coasting Lorentz factor as the one given by their solutions at that point.

They thus find that the final Lorentz factor of a given fluid element scales as γ1+
√

3
0

where γ0 is the Lorentz factor acquired by the fluid when it is shocked. This method

neglects effects that occur around the time when the fluid cools to nonrelativistic

temperatures and can only produce approximate relations for the energy and velocity

of the ejecta. Also, since previous analytic work on the post-breakout flow assumes

the fluid is hot, the portion of the flow for which this work is valid decreases with

time as more and more of the flow becomes cold.

We approach this problem by introducing a new kind of self-similar solution for

the cooling and expanding fluid. In this solution, we require that the fluid move at

relativistic speeds but relax the assumption that the fluid be hot. We place the char-

acteristic position at the point where the fluid temperature becomes nonrelativistic.

We thus exploit the self-similarity of the transition between hot and cold fluid in the

flow rather than the self-similarity in the acceleration of the hot fluid. Indeed, this

flow when taken in its entirety is not self-similar: the size scales that characterize the

acceleration and the hot/cold transition evolve with time according to different power

laws. We derive this new solution in §2 and discuss its relation to previous self-similar

solutions for the post-breakout flow in §3. In §4 we find the terminal velocities of

fluid elements in the flow and compare our analytic results to numerical simulations.

In §5 we summarize our findings. We take the speed of light to be c = 1 throughout

our discussion.

5.2 Self-similar solution for the cooling fluid

We are interested in the behavior at late times of a fluid flow that begins as a relativis-

tic shock propagating through the outer layers of a star with a polytropic envelope.

We understand the behavior of the part of the flow that is hot (p/n � 1) and there-

fore obeys the equation of state p = e/3: it follows the self-similar solution given in

Eqs. 4.8–4.13, 4.17–4.19, and 4.36–4.38. We note for convenience in our discussion
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below that the self-similar variable χ, as given by Eq 4.9, is equivalent to

χ =
t − x

t − R
(5.1)

taken in the limit where Γ � 1, or where t � R(1 + 1/(2(m + 1)Γ2). The implied

characteristic length scale is t − R = R/(2(m + 1)Γ2).

As the fluid expands and accelerates after breakout, it cools adiabatically from

the back of the flow towards the front. At late times, then, the above post-breakout

solution, which we will refer to here as the “hot solution,” holds only for a region at

the very front of the flow, and this region shrinks with time. The hot solution sets

the boundary conditions for the new solution we seek: as we approach the vacuum

interface at χ = 0, the two solutions must coincide.

In the new solution, which we will refer to as the “cooling solution,” we must

include cold fluid. We therefore use the equation of state

p =
1

3
(e − n) (5.2)

rather than the ultrarelativistic p = e/3. We must also specify a characteristic scale

and define the characteristic Lorentz factor, pressure, and number density to be con-

sistent with this scale.

We seek the profiles of the hydrodynamic variables in the region where the fluid

temperature transitions from hot to cold. The natural scale for this transition is the

distance δ between the vacuum interface, where the fluid is hottest, and the point

where the fluid temperature becomes nonrelativistic. We set this point to be where

p/n = 1. Then the similarity variable is

ξ =
t − x

δ
(5.3)

and, by analogy with the hot solution, we express γ, p, and n as

γ2(x, t) =
1

2
Γ̄2(t)ḡ(ξ) (5.4)
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p(x, t) = P̄ (t)f̄(ξ) (5.5)

n(x, t) = N̄(t)
h̄(ξ)

ḡ1/2(ξ)
. (5.6)

We choose Γ̄, P̄ , and N̄ , the new characteristic values of the Lorentz factor, pressure,

and number density, to match the γ, p, and n values given by the hot solution where

p/n = 1. We take χcold to be the value of the old similarity variable χ corresponding

to p/n = 1 in the hot solution:

Γ̄2 = Γ2g(χcold) (5.7)

P̄ = Pf(χcold) (5.8)

N̄ = N
h(χcold)

g1/2(χcold)
. (5.9)

This choice of characteristic values dictates

P̄ = N̄ . (5.10)

In the limit of late times, when δ � R/Γ2 and gχ− gχ0 � gχ0, Eqs. 5.7 and 5.1 give

gχ0
Γ2

Γ̄2
� χcold � δ

t − R
� δ · 2(m + 1)Γ2

t
(5.11)

δ =
gχ0

2(m + 1)

t

Γ̄2
=
(
2 +

√
3
) t

Γ̄2
. (5.12)

Note that the characteristic scale t−R ∼ R/Γ2 in the post-breakout solution for the

hot fluid is unrelated to the new scale δ. R is the location of a fluid element that has

expanded by a factor of order unity since breakout. Because R evolves according to

the finite characterisitic Lorentz factor Γ, R lags farther and farther behind the front

of the flow, where the Lorentz factors are arbitrarily large. Since Γ decreases with

time as per Eq. 4.8, t−R increases with time. In the limit of late times, then, R lags

far behind the portion of the flow where the fluid remains hot and t − R becomes

much larger than the space occupied by the hot fluid. In other words, the scale t−R
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that characterizes the hot solution becomes irrelevant to the transition between hot

and cold fluid that is of interest here.

To get Γ̄ and δ as functions of time, we apply Eqs. 4.36, 4.37, 4.38 at the point

p/n = 1. We use P/N = Γ/(3
√

2), a relation that follows from the shock jump

conditions applied in the pre-breakout solution.

1 =
p

n
=

Γ

3
√

2

√
g(χcold)f(χcold)

h(χcold)
(5.13)

=
Γ

3
√

2
[g(χcold)]

1
m

“
3m
2

+k+ m(2k−1)

−1−√
3+k

√
3

”
[g(χcold) · χcold − 2]

−k
−1−√

3+k
√

3 (5.14)

Γ̄2 = Γ2g(χcold) (5.15)

= Γ2

(
3
√

2

Γ
(g(χcold) · χcold − 2)

k
−1−√

3+k
√

3

)m/
“

m
2
− k

−1−√
3+k

√
3

”

. (5.16)

This gives

2a =
2t ˙̄Γ

Γ̄
=

(
3 − 2

√
3
)
k

1 −√
3 − 3

(
2 −√

3
)
k

(5.17)

tδ̇

δ
=

1 −√
3 − (12 − 7

√
3
)
k

1 −√
3 − 3

(
2 −√

3
)
k

. (5.18)

Solving Eq. 5.13 for f(χcold) or h(χcold)/
√

g(χcold) similarly gives

b =
t ˙̄P

P̄
=

t ˙̄N

N̄
= − 4k

1 +
√

3 + 3k
. (5.19)

We now proceed to solve the hydrodynamic equations. We use the equation

of state Eq. 5.2 to rewrite Eq. 4.4, Eq. 4.6, and the difference equation obtained

by subtracting Eq. 4.5 from Eq. 4.4. We take the limit γ � 1. We rewrite the

differentiation operators as

∂

∂t
= ˙̄Γ

∂

∂Γ̄
+ Ṗ

∂

∂P
+ Ṅ

∂

∂N
+

1

δ

(
1 − ξδ̇

) ∂

∂ξ
(5.20)
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∂

∂x
= −1

δ

∂

∂ξ
(5.21)

and substitute these and Eqs. 5.70-5.10, 5.17, and 5.19 to get

0 = b

(
2f̄ +

h̄

ḡ1/2

)
+

t

δΓ̄2

[
−ḡ′

(
4

f̄

ḡ2
+

3

2

h̄

ḡ5/2

)
+

4f̄ ′

ḡ
+

h̄′

ḡ3/2

]

− ξ
tδ̇

δ

[
− ḡ′

2

h̄

ḡ3/2
+ 2f̄ ′ +

h̄′

ḡ1/2

]
(5.22)

0 = (2a + b)

(
2ḡf̄ +

h̄ḡ1/2

2

)
+

t

δΓ̄2

[
− ḡ′

4

h̄

ḡ3/2
+ f̄ ′ +

h̄′

2ḡ1/2

]

− ξ
tδ̇

δ

[
ḡ′
(

2f̄ +
h̄

4ḡ1/2

)
+ 2f̄ ′ḡ +

h̄′

4
ḡ

]
(5.23)

0 = (a + b)h̄ +
t

δΓ̄2

[
−ḡ′ h̄

ḡ2
+

h̄′

ḡ

]
− ξ

tδ̇

δ
h̄′ . (5.24)

We substitute Eqs. 5.12 and 5.18 into Eqs. 5.22, 5.23, and 5.24 and integrate this

ODE system numerically to produce the solution shown in Figures 5.1, 5.2, and 5.3.

We can check that the behavior of this solution at large ξ—where the fluid is

very cold and where the hot solution and cooling solution differ most—is physical.

Consider a fluid element far behind the vacuum interface at position x � t− δ. This

fluid element must have become cold at some time tcold � t; as a result, it has long

since stopped accelerating and has spent most of the time interval t − tcold coasting

at its current Lorentz factor γ. Then this fluid element has

ξ =
t − x

δ
� t − (t − tcold)

√
1 − 1/γ2

δ
� t/

(
Γ̄2ḡ
)

t/Γ̄2 · (2 +
√

3
) =

2 −√
3

ḡ
(5.25)

so at large ξ we expect

ḡξ = 2 −
√

3 . (5.26)

We cannot get exact relations for f̄ and h̄ in the large ξ limit in this way because p

and n change significantly while the fluid element finishes its acceleration. However,

we can check the scalings of f̄ and h̄ with ξ. Because the fluid elements far behind
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Figure 5.1: Profile of the Lorentz factor γ as a function of the similarity variable
ξ. The dashed line is the hot solution valid for the fluid near the front, at small
ξ; the solid line is the cooling solution. Data from numerical simulations are shown
as crosses. In order to cover a substantial range in ξ, data from six γ vs. ξ profiles
corresponding to different times in the same simulation run are shown. The data agree
well with the cooling solution. The overall y-axis normalization is arbitrary, but the
relative normalizations of the hot solution, the cooling solution, and the numerical
simulations are correct.
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Figure 5.2: Same as Figure 5.1 for the pressure p rather than γ. The “tails” at the
ends of the numerical simulation profile data are due to edge effects at the ends of
the simulation grid that are not self-similar.
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Figure 5.3: Same as Figure 5.2 for the number density n rather than p.
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the front are coasting with Lorentz factors that are virtually constant in time, the

volume of each fluid element increases linearly with time. This implies

n ∝ t−1 , p ∝ n4/3 ∝ t−4/3 (5.27)

for a single fluid element. From the definitions of Γ̄, P̄ , and N̄ in Eqs. 5.7, 5.8, and

5.9, we know γ(ξ = 1)/Γ̄, p(ξ = 1)/P̄ , and n(ξ = 1)/N̄ are constant in time. Then

for a single fluid element,

p = p(tcold)

(
t

tcold

)−4/3

∝ t
b+4/3
cold . (5.28)

Since

ḡ =
2γ2

Γ̄2(t)
∝ Γ̄2(tcold)

Γ̄2(t)
∝ t2a

cold , (5.29)

we have

ξ ∝ t−2a
cold ∝ p−

2a
b+4/3 −→ p ∝ ξ−

b+4/3
2a . (5.30)

A similar calculation yields

n ∝ ξ−
b+1
2a . (5.31)

That the relations in Eqs. 5.26, 5.30, and 5.31 hold at large ξ is shown in Figure 5.4.

We can check that the behaviors of fluid elements and sound waves in the hot

solution and the cooling solution are consistent. The characteristic position R in the

hot solution moves backwards relative to the vacuum interface with time because

Γ decreases with time. By contrast, the characteristic position t − δ in the cooling

solution moves forwards relative to ct because fluid elements at the back of the solution

cool faster than those at the front, and t−δ marks the location of a fluid element that

has just cooled. We confirm the forward motion by looking at Eq. 5.18, which indeed

gives tδ̇/δ < 0 for the range of k of interest (k < −1). We expect fluid elements in

the cooling solution to move backwards in the solution, or towards larger ξ: every

fluid element must eventually finish accelerating and become cold, so the point t− δ

that marks the hot/cold transition must overtake every fluid element. Fluid elements
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Figure 5.4: Verification of the scalings of ḡ, f̄ , and h̄ with ξ at large ξ, or cold fluid
temperatures. The functions plotted (dashed line for ḡ, dotted line for f̄ , solid line for
h̄) show that at large ξ the relations in Eqs. 5.26, 5.30, and 5.31 hold. In particular,
ḡξ approaches the expected value 2 −√

3 = 10−0.572.

in the hot solution move forwards in time since they accelerate while R decelerates.

If the proper sound speed in the fluid is βs =
√

4/3f̄ 1/2ḡ1/4h̄−1/2, then the motion

of a sound wave in the new solution is given by

d ln ξ±
d ln t

=
t

ξ±

1

δ

(
1 − dx±

dt
− ξ±δ̇

)
=

2 −√
3

ḡξ

(
1 ∓ βs

1 ± βs

)
− tδ̇

δ
(5.32)

where the signs denote forward- and backward-propagating sound waves. Since tδ̇/δ <

0, dξ±/dt > 0 everywhere and all sound waves move backwards in the cooling solution.

In other words, all fluid elements are disconnected from the vacuum interface. In the

sense that the front is disconnected from the fluid far back in the flow, the cooling

solution is similar to Type II solutions. However, in contrast to the usual Type II

scenario, there is no sonic point constraining the solution.
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5.3 Behavior of fluid elements at late times

Earlier analytic work has established that the final Lorentz factor γfinal of a given fluid

element should scale according to

γfinal = Kγ1+
√

3
shocked (5.33)

where γshocked is the fluid element’s Lorentz factor immediately after it is shocked

in the pre-breakout flow and the coefficient K is independent of γshocked (Johnson

& McKee, 1971; Pan & Sari, 2006). Tan et al. (2001) have found numerically that

K � 2.6 for k = −3. They note, and we confirm from our own experience, that it is

difficult to continue numerical simulations until the very end of the fluid acceleration

since the conversion of thermal to bulk kinetic energy is quite slow. To derive their

scaling relation, Tan et al. (2001) applied correction factors to their simulation results

of up to ∼50% for fluid elements with final Lorentz factors of order ∼ 103.

We can find γfinal for a given fluid element directly from our pre- and post-breakout

solutions. To track the acceleration of the fluid element while it is hot, we take the

advective time derivative of γ in the pre- and post-breakout solution for the hot fluid

and integrate with the proper limits.

Dγ

Dt
=

γ

t

(√
3 − 3

)
k

gχ − 4 − 2
√

3
(5.34)

Dgχ

Dt
=

1

t

(2 − gχ) (gχ − gχ0)

gχ − 4 − 2
√

3
(5.35)

Dγ

Dgχ
= γ

(√
3 − 3

)
k

(2 − gχ)(gχ − gχ0)
(5.36)

Before breakout, the fluid element’s gχ goes from gχ = 1 when it is shocked to

gχ → −∞ at breakout. After breakout, the fluid element’s gχ goes from gχ → ∞ to

gχ � gχcold. So when the fluid becomes cold, we have

γ = γshocked(gχ0 − 1)
(
√

3−3)k

gχ0−2

(
gχ − 2

gχ − gχ0

) (
√

3−3)k

gχ0−2

. (5.37)
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To find the correct gχ at which to evaluate the above, we set C = γf/h to be the

temperature (up to a factor of 3) at the gχ of interest and use Eqs. 4.37, 4.38 to

express (gχ − 2)/(gχ − gχ0) in terms of C. This gives

γ = C−√
3γ

√
3+1

shocked . (5.38)

To this we add the extra factor given by the solution shown in Figure 5.1 to get

γfinal = 1.95γ
√

3+1
shocked k = −3 (5.39)

γfinal = 2.71γ
√

3+1
shocked k = −3/2 . (5.40)

This result is close to the results of Tan et al. (2001), who find a coefficient of ∼ 2.6

when k = −3. Note that p/n = 1 corresponds to C−√
3 = 0.149: γ grows by a factor

of ∼ 15 after the fluid element becomes nominally cold.

The growth of γ as a function of the temperature for a single fluid element is

shown in Figure 5.5, which also shows good agreement between the cooling solution

and direct numerical simulations of the hydrodynamic equations. Because the Lorentz

factors near the front of the flow in particular become very large at late times, it is

difficult to produce numerical simulations that remain accurate as the fluid cools all

the way to p/n � 1. As a result, the numerical simulation shown in Figure 5.5 cuts

off while the fluid Lorentz factor is 9% smaller than the final Lorentz factor predicted

by the cooling solution.

5.4 Summary

We have derived a new self-similar solution, the cooling solution, for the flow that

results when a relativistic shock breaks out of a polytropic envelope. The cooling

solution is based on our identification of the characteristic position with the point

where the fluid cools to nonrelativistic temperatures. The cooling solution shows

that the transition between hot and cold fluid in the flow is self-similar even though
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Figure 5.5: Lorentz factor γ of a single fluid element as a function of the temperature
p/n of that fluid element. Lower temperatures and later times are towards the left.
The solid line is the self-similar solution; the points are the results of numerical
simulations. Both calculations were done for k = −3.

this transition is not included—indeed, is not self-similar—in the old post-breakout

solution for the hot fluid alone. The cooling solution allows an accurate calculation

of the final Lorentz factors of the shocked fluid elements.
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