
A Compact System for Self-Motion Estimation

Thesis by

Ania Mitros

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended February 15, 2006)



ii

c© 2006

Ania Mitros

All Rights Reserved



iii

Acknowledgements

This thesis would not be without Christof Koch, in whose lab I started my days at Caltech and

its Computation and Neural Systems option. He continued to support me even when our primary

research interests drifted apart and provided valuable editing of this manuscript. I am beholden

to Chris Diorio who welcomed me into his lab at the University of Washington, provided me with

resources, and shared some of his wisdom. The majority of the work presented herein was done in

Chris’s lab. I am lucky to have had two advisors who are not only intelligent, but who also deeply

care about people and doing what is right.

I grew under the guidance of Oliver Landolt, an excellent analog circuit designer, from whom

I learned much about engineering and project management. While we worked on the Vibrating

Retina, he provided me with the most consistent mentoring of my PhD thesis.

My years at Caltech were more educational, fulfilling, and fun thanks to the other Forever-

First-Years. We entered CNS together, took classes together, studied for candidacy together, and

supported each other through some of the big bumps of graduate school. I hope the friendships I

have out of those years last. Thanks to Reid Harrison, Theron Stanford, Alberto Pesavento, and

Chuck Higgins for the engineering I learned in my early days at Caltech. Amish, I still think fondly

of our days at the Aralia house.

Jeremy Holleman, Seth Bridges, Kambiz Rahimi, Jaideep Mavoori, and Miguel Figueroa were

excellent technical resources and great folks with whom to chat and share a lab at the UW. Thanks

to Ed Lazowska for his listening, understanding and advice. I am grateful to UW’s CSE department

for graciously hosting my first public art installation.

A PhD is a long road, and many people contributed to my happiness and balance during that

time. My parents, Jozef and Katarzyna (or Tata and Mama), always encouraged my curiosity

and did all they could to further my education. I could always rely on my brother, Piotr Mitros,

and virtual sister, Jana Edelbrock, for advice and unconditional support. Thanks also to Piotr for

chatting about circuits and building with discrete components. Thanks to Tata for answering my

questions on processing, device physics, and floating gate transistors. I couldn’t have kept my sanity

without the love and wise advice of many good friends: Bjorn Christianson, Cameron Etezadi, Matt

Knapp, Heidi Kneller, Seth LaForge, Ofer Mazor, Chris Simison, and others.



iv

Abstract

Self-motion estimation is a vital problem for autonomous robots, frequently and appropriately ad-

dressed by vision algorithms. Most approaches involve repeating some local calculation over the

entire imaging array, such as detection of locally salient features. A simple and local calculation can

be efficiently implemented on the same chip as the photo-sensing array, thus parallelizing a huge

computational task and vastly reducing the amount of data to transmit off chip. Mismatch between

devices has previously been a stumbling block to producing truly useful arrays of local processing

elements. Floating gate technology is used here as a compact means of programming away offsets

in subcircuits to remedy this problem. A custom analog chip performs the above functions. For

each pixel, the chip outputs sensed light intensity, the values of the vertical and horizontal intensity

gradients, and a binary value indicating whether a feature is centered on that pixel. These values

can be used as inputs to a motion estimation algorithm implemented on a standard computer.



1

Contents

Acknowledgements iii

Abstract iv

1 Introduction 15

1.1 Vision for Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Custom Single-Chip Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Analog versus Digital Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Motion Estimation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 The Basic Gradient Model for Motion Estimation . . . . . . . . . . . . . . . . 18

1.4.2 Energy Models for Motion Estimation . . . . . . . . . . . . . . . . . . . . . . 20

1.4.3 The Kanade Motion Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.4 Token-Based Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.5 Our Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Motion Estimation in Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Mismatch Between Array Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Beyond Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Feature Detection for Motion Estimation 27

2.1 Motion Detection Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Tomasi Kanade Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Prior aVLSI Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Overview of Pesavento’s Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Mismatch Problems in Pesavento’s Chip . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Brief Overview of Floating Gates for Mismatch Reduction . . . . . . . . . . . 35

2.3.4 Reducing Circuit Mismatch in Non-linear Circuits . . . . . . . . . . . . . . . 36

2.3.5 Requirements for Mismatch Correction in Pesavento’s Circuits . . . . . . . . 38

2.4 Orthogonal Gradient Detector (OGD) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Reducing the Kanade Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 39



2

2.4.2 Definition of the Orthogonal Gradient Detector (OGD) . . . . . . . . . . . . 40

2.4.3 Comparison of Kanade detector and OGD . . . . . . . . . . . . . . . . . . . . 40

3 Circuit Design and Chip Data 49

3.1 Mismatch Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Briefly, on Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Mismatch-Invariant Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.3 Mismatch in Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.4 Reducing Mismatch with Floating Gates . . . . . . . . . . . . . . . . . . . . . 51

3.2 Pixel Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Photoreceptor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Light Detection Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 The CMOS Integrating Pixel Sensor . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 The CMOS Continuous-Time Logarithmic Photoreceptor . . . . . . . . . . . 58

3.3.4 Mismatch and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.5 The Fabricated Logarithmic Floating-Gate Photoreceptor . . . . . . . . . . . 60

3.4 Difference Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Difference Circuit Topology and Analytical Description . . . . . . . . . . . . 64

3.4.2 Difference Circuit Current-to-Voltage Conversion . . . . . . . . . . . . . . . . 70

3.4.3 Difference Circuit Measured Results . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Sample-and-Hold Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.1 S/H Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.2 S/H Measured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Saliency Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Power Supply Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.1 Effects of Power Supply Fluctuations on the Photoreceptor . . . . . . . . . . 82

3.7.2 Effects of Power Supply Variation on Difference Circuit . . . . . . . . . . . . 88

3.8 Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.8.1 Temperature Effects in the Photodiode . . . . . . . . . . . . . . . . . . . . . 89

3.8.2 Review of MOS Transistor Temperature Effects . . . . . . . . . . . . . . . . . 92

3.8.3 Impact on Floating-Gate Devices . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.8.4 Temperature Effects in the Photoreceptor . . . . . . . . . . . . . . . . . . . . 100

3.8.5 Temperature Effects in the Difference Circuit . . . . . . . . . . . . . . . . . . 101

4 Technical Conclusions 105

4.1 Engineering a Sensory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Architecture for Real-Time Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 106



3

4.3 Floating Gates for Mismatch Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.1 Retention Time: Benefits and Oxide Scaling . . . . . . . . . . . . . . . . . . . 109

4.3.2 Calibration Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.2.1 Calibrating the Calibration . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.2.2 Continuous Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.2.3 Speed and External Algorithms . . . . . . . . . . . . . . . . . . . . 111

4.3.2.4 Constant Programming Rate . . . . . . . . . . . . . . . . . . . . . . 111

4.3.2.5 Art and Magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.3 High Voltages for Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Mentoring in Academia 113

A Derivations of Equations for Differential Pair 116

B Analog vs. Digital Layout Area 118

Bibliography 122



4

List of Figures

1.1 Three motion models shown on a space-time plane, where t denotes time and x denotes

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 The motion estimation algorithm detects salient features within each image. It then

estimates the local motion of each feature between successive frames. Based on these

local motion vectors, it generates a global motion estimate. . . . . . . . . . . . . . . 28

2.2 The images above show sample image patches that might be sensed by a 3x3 pixel

grid. The central pixel (outlined in red) would use its neighborhood to determine a

saliency value. The saliency value can be thresholded to decide whether the pixel is

centered on a feature or not. Left: A patch of low contrast pixels. One low contrast

patch is not uniquely different from a neighboring low contrast patch. Center: A

high contrast edge. Motion parallel to the edge will result in little change to the

central pixel’s neighborhood. Thus, an edge is a poor feature for tracking motions

having a component parallel to that edge. This is termed the “aperture problem”

since in principle a larger viewing area would include elements that could provide

correct information about parallel motion. Right: A feature that has a high intensity

gradient in both the vertical and the horizontal direction can be tracked regardless of

the direction of motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Local motion estimation: Consider the central 3×3 patch of pixels. This is the central

pixel’s immediate neighborhood. The motion of the corner in the image can be correctly

calculated even from just this small local neighborhood. . . . . . . . . . . . . . . . . 29

2.4 The resistive grid in Pesavento’s Detector2, shown for C1,1. Similar grids exist for C1,2

and C2,2. Each node represented by a dot corresponds to one pixel. Resistors connect

neighboring pixels. The input to each node is the current output of a multiplier, in this

case calculating the square of the horizontal gradient at that pixel. The output current

flows through a resistor (drawn vertically) and to the selection circuit that determines

whether or not a sufficiently salient feature exists that is centered on that pixel. . . . 33



5

2.5 The resistive grid in Pesavento’s Detector2 changes the weighting of the summation of

terms in the calculation of the characteristic matrix. Left: The pixels along a single

row of the feature window W would be weighted uniformly and equally in the original

Kanade algorithm. Pixels outside the feature window would be given a weight of zero,

that is, not used in the calculation. Right: The resistive grid gives more weight to

outputs from nearby pixels, and gradually decreasing weight to more distant pixels in

the array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Diagram of Detector2. Each pixels shares its detected light intensity value with its

neighbors. Each pixel takes the difference of these intensities (the gradient) and mul-

tiplies them to generate precursors of the terms in the characteristic equation C. A

sum of these values is approximated by resistive grids shared among all pixels. Each

pixel then draws values from the resistive grids as inputs to its selection circuit. The

selection circuit within each pixel produces a binary value to indicate whether a feature

is centered on that pixel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 A sample image used to generate the features shown in fig. 2.8 . . . . . . . . . . . . . 42

2.8 The 30 best features detected by a 3x3 Kanade feature detector (bottom) and the

Orthogonal Gradient Detector (top) in the image from fig. 2.7. The red outline indicates

pixels considered by each detector. Values above each patch are the “featureness”

of that image patch, that is, the value that is thresholded to determine whether to

classify the patch as a feature. For the 3x3 Kanade detector, FK is the smaller of

the eigenvalues λ. For the OGD, FO is the smaller of the gradient values. Both FK

and FO are normalized to range between 0 and 100 within the image. Implications of

differences between the detectors are discussed in the text and in figs. 2.10–2.16. . . . 43

2.9 Example of detecting local motion. To find the local motion, the 3×3 image patch

around each feature in frame 1 is compared to equally-sized patches around neighboring

images in frame 2. The patch bearing the most similarity is assumed to be at the

destination location of that feature. Red dots indicate features detected in this small

patch of an image. The green arrows in frame 2 indicate the calculated motions between

frames 1 and 2. Note that since one of the features was lost in the second frame, the

motion of one of the three features is estimated erroneously. . . . . . . . . . . . . . . 44



6

2.10 This synthetic image shows some of the fundamental differences between the Kanade

detector and the OGD. Each red dot marks one feature. The percentages listed above

the images indicate the fraction of features for which local motion was correctly esti-

mated, as described in the text. Note that the Kanade detector responds strongly to

high-contrast areas of local structure. The OGD selects both those areas and also sev-

eral edges, which it confuses for a series of salient features. However, enough variation

exists at those edges for the percentage of correctly tracked features to be only slightly

lower for the OGD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.11 In images with much structure and thus easily-trackable points, both the Kanade and

the OGD perform similarly. There are few diagonal lines and highly textured areas

that would confuse the OGD in a manner manageable by the Kanade detector. . . . 45

2.12 Many city scenes contain simple structures, such as cars, and the performance difference

between the two detectors seen here is typical. . . . . . . . . . . . . . . . . . . . . . . 46

2.13 In this image, the diagonal lane marker vastly reduces the effectiveness of the OGD.

Because the OGD responds to diagonal lines, the chosen “features” along the edges of

the line provide poor locations for motion estimation and thus incorrect local motion

estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.14 Many highly textured images result in local motion estimates of similar quality, sur-

prisingly. While one might expect that the ability of the Kanade detector to detect

structure would be especially critical in such images, in practice it turns out that local

structure provide a small advantage over simply finding very high-contrast spots within

the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.15 In images with relatively high frequency structure, the Kanade detector significantly

outperforms the OGD. The backs of the chairs have spatial structure that is picked out

well by the Kanade detector. For the OGD, on the other hand, each chair is simply

a highly textured area with one spot no more salient than another. It is unable to

consistently recognize the same features. . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.16 An unusual example wherein the OGD performs better than the Kanade detector. The

jagged skyline with its diagonal lines is preferred by the OGD. Enough variation exists

in the texture of the buildings that the features detected along the diagonal edges

suffice for good local motion estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 48



7

3.1 Layout for mismatch reduction. Left: Common-centroid layout improves matching be-

tween nearby transistors. Consider what happens if a linear doping gradient exists on

the chip such that the left side of the figure receives a lower dopant concentration. The

transistor formed by the left side of D2 and S will have low doping. The transistor

formed by the right side of D2 and S will have higher doping. If the doping is linear,

the doping of the left channel will differ from that in the center of the structure by

an amount equal and opposite to the amount of change in the right channel of that

transistor. Their average value remains constant and equal to that of the transistor

between S and D1. Thus, the two transistors (D1 to S, and D2 to S) will be matched.

Right: Photolithographically invariant layout compensates for non-vertical dopant im-

plantation, not uncommon in drain/source implants. If dopants are implanted from a

source to the right of the shown transistor, each gate can cast a shadow wherein fewer

ions are implanted to the left of the gate. This results in capacitance mismatch between

CGS and CGD. Laying out each transistor as two oppositely oriented transistors, the

effect of the implant angle is matched. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Cross section of a floating gate transistor (not to scale). . . . . . . . . . . . . . . . . 52

3.3 NMOS floating gate transistor, shown with structures for injection and tunneling. The

circuit symbol for the NFET floating gate transistor is shown on the right. . . . . . . 52

3.4 PMOS floating gate transistor, shown with structures for injection and tunneling. The

circuit symbol for the PFET floating gate transistor is shown on the right. . . . . . . 53

3.5 Gate oxide thickness as a function of time. The date is extracted from two books (by

Brown [64] and by Sharma), a talk by Gordon Moore (Intel), and the International

Technology Roadmap for Semiconductors [1]. LOP = “Low Operating Power.” MPU

= “Microprocessor Unit,” referring to high-performance digital logic. NVM = “Non-

Volatile Memory.” While the exact values are open to discussion based on whether one

prefers to note cutting edge technology in development or well-established processes,

we can note some trends. First, as lithographic transistor dimensions are scaled down

every year, oxide thicknesses also decrease monotonically. Second, the oxide thicknesses

for non-volatile memories plateau at about 70Å. . . . . . . . . . . . . . . . . . . . . . 54

3.6 Conceptual block diagram of a single pixel. L denotes the photoreceptor output in re-

sponse to the sensed light intensity. The analogous responses of the pixel’s neighbors are

denoted as LUP , LDOWN , LLEFT , and LRIGHT . The outputs of the difference circuits

are stored in sample-and-hold circuits. Since they represent the vertical (Up-Down)

and horizontal (Left-Right) gradients, they are denoted as GUD and GLR, respectively.

The pixel stores gradient values for the current time step as GUD(t) and GLR(t); and

for the previous time step as GUD(t − 1) and GLR(t − 1). . . . . . . . . . . . . . . . 55



8

3.7 Block diagram of a single pixel, as implemented. To reduce layout area, only one

difference circuit is used. Switches are used to select between inputs (either horizontal

or vertical) and which sample-and-hold should store the difference. . . . . . . . . . . 56

3.8 The basic topology of an integrating photodiode sensor. The capacitance of the NFET

and PFET instantiations is provided by the inherent capacitance of the photodiode. . 57

3.9 Simple logarithmic sensors based on photodiodes. . . . . . . . . . . . . . . . . . . . . 58

3.10 Logarithmic photoreceptors with feedback. The topology shown in A was used by Ni

et al. [58]. Landolt et al. [50] chose topology B after analysis of all three topologies

for bandwidth and damping. Delbrück et al. [21] implemented a topology similar to

C. The transconductance of the amplifier is denoted by gm. Most simply, the amplifier

can be implemented as a single transistor with node a attached to the gate and the

source and drain connected to node b and ground. The output resistance is denoted

by gb. When the circuit is not driving a resistive load, gb arises from the amplifier. . 59

3.11 I uniformly illuminated a linear array of 16 logarithmic photoreceptors. As I swept the

magnitude of the illumination, the voltage output of the photoreceptors changed with

the log of the light intensity, as expected. . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 Logarithmic photoreceptor, with and without a floating gate for reducing mismatch,

both fabricated in the same 0.35µm process. A: A basic logarithmic photoreceptor. B:

The response of 16 non-programmable logarithmic photoreceptors to a uniformly illu-

minated LCD monitor. C: The response of 16 floating-gate logarithmic photoreceptors

to the same stimulus. D: A floating-gate logarithmic photoreceptor. . . . . . . . . . . 61

3.13 Floating-gate photoreceptor output voltage as a function of the illumination for a 16×16

array. Bars show the standard deviation of the pixel values at each point. Left: Data

as a function of the LCD monitor value, in units used by the monitor. Right: The

same data with the x-axis converted to light intensity, based on data from a light meter. 62

3.14 Overview of the difference circuit diff. Both the intermediate output Idiff and the

final output Vdiff are proportional to the difference of the inputs (V2 − V1). In the

context of the feature detection chip, V1 and V2 come from neighboring photodetectors

such that Vdiff is proportional to either the vertical or horizontal light intensity gradient. 63

3.15 Cartoon illustrating the concepts of “gain” and “offset” as applied to the diff circuit.

The output of the difference circuit should ideally be a line proportional to the inputs

(V2 − V1). The “gain” is the slope of this line, and the “offset” is how far the line is

shifted from crossing the origin (0,0). Gain mismatch or compensation refer to changing

the slope of the line, whereas offset mismatch or compensation refer to translating the

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.16 A differential pair constitutes the computational core of the difference circuit. . . . . . 64



9

3.17 The topology of the fabricated difference circuit. Note that P1 and P3 are twice as

wide as P2 and P4 to build an offset into each input differential pair, as discussed in

the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.18 Mismatch in the difference circuit can be represented as offsets in the threshold voltages

of the input PFETs. The threshold voltage shifts are denoted by VM1, VM2, VM3, and

VM4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.19 Simulation results for programming the difference circuit to remove mismatch. The

black line shows initial simulation with no mismatch. Red line shows circuit output

with error added to some of the inputs to model mismatch. Calibration phase 1: The

dotted blue line corresponds to output after offset removal by adjusting Vfgρ and thus

the ratio between Iρ and Iref . Calibration phase 2: The green line is current output

after adjusting both Vfgρ and Vfgγ to correct offset and gain, respectively. The gain is

proportional to Iγ , which is controlled by Vfgγ . . . . . . . . . . . . . . . . . . . . . . 70

3.20 The current-to-voltage circuit integrates current onto a capacitor for a prespecified time

interval. The resulting voltage is buffered and sampled by a sample-and-hold (S/H)

which outputs a voltage that is linearly proportional to the input current. . . . . . . 71

3.21 Injection to the floating gate fgρ changes the offset of the difference current output. Left

and center: Measured data for two distinct difference circuits. Before programming,

the data is offset due to mismatch (red circles). After programming, the transfer

function is calibrated to cross the origin (black squares). Unmarked cyan lines indicate

intermediate values during programming. Note that the gain is slightly affected by

programming fgρ in both examples. Right: Cartoon of concept. . . . . . . . . . . . . 72

3.22 Sweeping the floating gate voltage Vfgγ changes the bias current Iγ in the difference

circuit, and thus the magnitude of the output current, allowing calibration of the gain.

Left: Measured data. Right: Cartoon of concept. . . . . . . . . . . . . . . . . . . . . 72

3.23 Output of difference circuit to blank screen and edge stimuli. . . . . . . . . . . . . . . 73

3.24 Output of difference circuit to corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.25 Block diagram of the sample-and-hold circuit. . . . . . . . . . . . . . . . . . . . . . . . 75

3.26 Transistor schematic of the sample-and-hold circuit. . . . . . . . . . . . . . . . . . . . 75

3.27 Generating a simultaneous pair of clock waveforms. Note that the circuit contains two

identical stages in series. The delay between clk and Nclk after the first stage is 14.6ps

(simulated). The delay after the second stage is 0.8ps (simulated). In comparison, one

inverter delay is about 134ps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.28 Channel charge in triode (top) and saturation (bottom). . . . . . . . . . . . . . . . . . 77



10

3.29 Measured data for a single sample and hold circuit. Left: Entire operating range.

Center: Zoomed in near 2.5V. Right: Zoomed in near 4.4V. The input Vrst is swept

(x-axis). The blue lines indicate the output of the sample-and-hold circuit in sample

mode. The red line indicates the output after the transition to hold mode. As can be

seen from this figure, the functional range of the circuit is from 2.45V to 4.42V. . . . 79

3.30 Effect of sweeping Vncas on the size of the pedestal with Vpcas = 2.2V . . . . . . . . . 80

3.31 Effect of sweeping Vpcas on the size of the pedestal with Vncas = 1.0V. . . . . . . . . 80

3.32 Left: The saliency circuit. If the input gradient value VgradX (or VgradY ) exceeds the

boundaries of the programmed thresholds VthL and VthH , the intermediate saliency

value nSALX (or nSALY ) will be zero. If both nSALX and nSALY are zero, then

SAL will be high. Thus, the circuit will be deemed salient only if both the X and Y

gradients exceed the thresholds. Right: Subcircuits to compare the gradient values to

preset thresholds. The Memory Cells [30] are programmed by tunneling and injection

to store the thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.33 Photoreceptor and supporting circuitry. Vfg is the voltage on the floating gate, which

allows adjustment of the DC offset of the photoreceptor output. The PFET source-

follower is used within each pixel to buffer the sensitive photodiode node. An on-

chip bias generator produces the voltage Vfol which is shared among all pixels. An

externally generated bias current Ifbias provides a reference to the bias generator. The

power supply is broken up into VddA, VddB, and VddC to facilitate discrimination of

the different ways in which subcircuits are affected by their power supplies. The three

supplies can be independently controlled in the fabricated chip and its test board. . . 83

3.34 Photoreceptor with NFET follower for reduced sensitivity to power supply fluctuations

(not fabricated). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.35 Measured data showing dependence of photoreceptor on the power supply voltage,

directly on the left and including impacts on other biases on the right. Cyan lines

show individual curves for each pixel in an 8x8 block. Black line and circles show

mean values for those 64 pixels. The power supply can affect circuit response in several

places. To separate the magnitudes of fluctuations at different points in the circuit,

different biasing configurations were tried wherein only some of the supply rails and

biases were swept. Shown here are the two most extreme situations. On the left, only

VddA is swept. On the right, four parameters are swept simultaneously: VddA (the

photoreceptor power supply), VddB (the follower power supply), Vphn (photoreceptor

bias), and Ifol which controls the follower bias. Note the different scales on the y axis.

The circuit topology is shown in fig. 3.33. . . . . . . . . . . . . . . . . . . . . . . . . 87



11

3.36 To assess the effect of power supply variation on the photoreceptor, I swept the power

supply both on the fabricated chip and in simulation. The results are similar, confirming

the accuracy of my simulations. I swept Vphn as if it were generated by a resistive divider

between VddA and ground, since that was my default configuration for generating Vphn.

That is, a 10% reduction in VddA would correspond to a 10% reduction in Vphn when

both were swept. An on-chip bias generator creates the follower bias voltage Vfol. Vfol

is swept by tying the power supply for the off-chip resistor sourcing Ifbias to VddA.

When VddB was swept, it was tied directly to VddA and left at 5V when not swept.

Note that the values listed in the table are the change on Vout for a 500mV change

on VddA, which is much greater than the actual power supply noise that we should

reasonably expect. Voltages are defined as shown in fig. 3.33. . . . . . . . . . . . . . 88

3.37 Effects of power supply fluctuations on the difference circuit (simulation). Left: The

slope presented here is a measure of the change in output current Idiff as a function

of the differential input V1 − V2. It is directly proportional to the gain, as introduced

in fig. 3.15. Right: The offset is the input V1 − V2 necessary to produce a zero output

current, also introduced in fig. 3.15. The curves in each plot correspond to sweeping a

different set of biases. Since Vbias and Vref may be generated by on-chip bias generators,

their dependence on Vdd may vary. On the currently fabricated chip, they are provided

by independent power supplies and thus independent of Vdd inasmuch as laboratory

instruments are independent. Blue �: Sweep of Vdd, with all other biases constant

with respect to ground. Red triangles: Sweep of Vdd and Vbias, where Vdd − Vbias is

constant. Magenta squares: Sweep of Vdd, Vbias, and Vref , where both (Vdd − Vbias)

and (Vdd − Vref ) are constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.38 The effect of temperature on photo-generated current in the photodiode is negligible.

Left: Bandgap and corresponding wavelength as a function of temperature. The blue

line shows how the bandgap of silicon decreases with increasing temperature. The

wavelength of photons having an energy equal to the bandgap increases proportionately,

as shown by the dashed green line. Right: The efficiency with which a silicon diode

generates photocurrent is a function of frequency. (Plot reprinted with permission

from Melles Griot [2].) Both: From the left figure, we can see that a 10◦C shift in

temperature results in a 2.7nm shift in the absorption spectrum. From the right figure,

we can see that this is only a tiny fraction of the absorption spectrum, which is several

hundred nanometers wide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



12

3.39 Left: Finding the threshold voltage relies on extrapolating transistor curves to find

where the transition between subthreshold and above threshold operation occurs. Since

these curves are shifted by temperature, discussion of how the threshold voltage shift

impacts the physics of the device inherently becomes circular. Solid black curves show

measured transistor current (courtesy of Jeremy Holleman). Dashed red and dotted

blue curves rescale the measured data to show how it would be different if µ ∝ T−3/2

varied in above-threshold operation. Right: The assumption that transistor current

varies primarily with µ is consistent with the results of physical simulations in Atlas

(courtesy of Jaideep Mavoori). Lines show results of physical simulation for several

temperatures. ×s indicate values resulting from rescaling the green line for T=300K

as if µ ∝ T−3/2, discarding any other sources of variation with temperature. . . . . . 94

3.40 Physical simulations in Atlas show temperature dependence of transistor current. Be-

low threshold, current increases with temperature. Above threshold, the opposite re-

lationship holds, such that current decreases with temperature. The point where the

relationship inverts is called the temperature compensation point (TCP). The same data

is plotted on a log scale (left) and linear scale (right). Left: Below threshold. The up-

ward shift (on the log scale) for successively higher temperatures can be characterized

by the term e−φ0/kT . The decreasing slope with temperature can be explained by the

term e
qVgs
kT . Note that the simulated transistor was not saturated, so the tempera-

ture dependence of the Early effect term would decrease the current as a function of

temperature by about 0.5% over the temperature range shown. Right: Above threshold. 95

3.41 NFET gate capacitance as a function of the gate–source voltage Vgs, from an EKV

model simulation. As described in the text, the capacitance decreases as the channel

becomes more strongly depleted due to increasing gate voltage in subthreshold. When

the device reaches threshold, the channel inverts and gate capacitance returns to its

maximum, proportional to εox · A/tox, where A is the area of the device. . . . . . . . 96

3.42 Left: The band diagram of an MIS diode. A positive bias applied on the gate causes the

bands to bend downwards. When the conduction band Ec reaches the Fermi level EF ,

as shown here, the device is at threshold. The potential difference between the intrinsic

and Fermi levels is defined by qφb ≡ Ei − EF . The level of the conduction band EC

at the silicon-oxide interface defines the surface potential, φs. Right: As temperature

increases, the intrinsic carrier concentration increases. This causes the Fermi level EF

to shift closer to Ei. The amount of band-bending necessary for EC to reach EF is

thus reduced, which corresponds to a decreased threshold voltage for the device. . . . 97

3.43 Change in gate capacitance for an n-channel transistor, as estimated from the EKV

model (fig.3.41) and equations for voltage threshold shift (eqn. 3.21). . . . . . . . . . 98



13

3.44 Cadence simulations of the effect of temperature on photoreceptor output, assuming

constant Vfg. The general trend is that the photoreceptor output voltage increases by

1.835 mV/◦C for Vph and 1.113 mV/◦C for Vout. Top left: Unbuffered photoreceptor

output (Vph) as a function of photocurrent for several temperatures. Top right: Pho-

toreceptor output buffered by a source-follower (Vout) as a function of photocurrent

for several temperatures. Bottom left: For a single photocurrent, unbuffered photore-

ceptor output as a function of temperature. Bottom right: For a single photocurrent,

buffered photoreceptor output as a function of temperature. . . . . . . . . . . . . . . 99

3.45 Cadence simulation of temperature effects on difference circuit. . . . . . . . . . . . . . 102

3.46 Cadence simulation of temperature effect on bias current in the difference circuit. . . 103

A.1 A differential pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.1 Layout area (in µm2) of a digital multiplier (left) and adder (right) as a function of

speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Layout area (in µm2) of a digital multiplier (left) and adder (right) as a function of

the number of input bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



14

List of Tables

3.1 Overview of some previous implementations of logarithmic CMOS sensors with reduced

fixed-pattern noise (FPN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.1 Fabricated layout areas for a multiplier and a difference circuit in a 0.35µm process.

Both use floating gate devices for mismatch compensation. The areas of the injection

transistor, tunneling junction, and well spacing are included. The charge pump is not

included in the totals since then number of charge pumps needed can vary from zero,

to one per chip, to one per floating gate. If the tunneling voltage is provided from

off-chip, no charge pumps are needed. If used, a charge pump can be shared between

multiple floating-gate devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Estimated layout area for digital adders in a 0.35µm process. . . . . . . . . . . . . . . 120

B.3 Estimated layout area for digital multipliers in a 0.35µm process. . . . . . . . . . . . . 121



15

Chapter 1

Introduction

Self-motion estimation is a vital problem for autonomous robots. To move through an environment

effectively and without harm to oneself, a robot must possess some means of estimating its motion

relative to surrounding objects. The problem is constrained by the need for real-time operation, a

compact solution that constitutes only a fraction of the robot’s payload, and limited power avail-

ability. This thesis presents part of the solution, specifically circuits for image and feature detection,

to be followed by digital processing for ego motion estimation. The system comprises a chip con-

taining a photodetector array as well as local processing circuitry within the array. For each pixel,

the chip outputs the detected light intensity, horizontal and vertical gradients at the current and

previous time steps, and whether or not the pixel is centered on a salient feature. Off-chip digital

postprocessing can be used to estimate the local 2-D motion at each salient pixel. The local motion

estimate then can be combined to calculate the 3-D motion of the imager relative to its environment.

The postprocessing could easily be integrated onto the photo-sensing chip.

1.1 Vision for Motion Estimation

A variety of sensory modalities can be used for motion estimation. The choice of one over another

depends on the system and the environment in which it is to operate. For tracking absolute self

motion, inertial sensors that directly measure linear or rotational acceleration may be the right

answer. Inertial sensors may be implemented as MEMS (Micro Electro-Mechanical Systems), while

necessary postprocessing can be embedded in either an analog or a digital circuit fabricated in CMOS

(Complementary Metal-Oxide-Semiconductor). Because of the difficulties of integrating MEMS and

CMOS on the same die, such integration can be solved by either a two-chip solution, or a more

expensive bonding of the two dies into one package. Depending on the noise levels within the sensor

and required precision of measurement, the sensor may need to be recalibrated to known landmarks

by some secondary sensing scheme.

Many mobile robot applications also require knowledge of motion relative to the environment



16

and motion of nearby objects. This is particularly true in the case of airborne or underwater robots,

where motion relative to their medium may be different from the absolute motion measured by an

inertial sensor. Also, inertial sensors cannot be extended to assess the approach of another object or

vehicle. Medium- and long-distance sensors that are able to deal with such tasks include both vision

sensors that detect light reflected by objects in the environment, and active sensors that emit and

detect their own signal such as laser range finders. Of these, the preferred choice is dependent on the

application. Benefits of active sensors include some independence from ambient lighting conditions.

Active sensors are not appropriate for environments where stealth is important, since the signal

emissions could be detected by other agents. Active sensors also require additional power to emit

their signal. Power constraints thus limit the range of an active sensor since it becomes impractical

to illuminate too distant an object.

Therefore, a number of applications are best served by passive vision sensors, for example, an

autonomous mobile robot with limited power resources and the need to detect both ego-motion and

motion or location of nearby objects. Although the system presented here does not calculate the

trajectories of other moving objects, it provides a basis to do so in the future.

1.2 Custom Single-Chip Approach

Image processing systems, whether human, animal, or robotic, extract meaning from the world

by building up an internal representation. Most such systems do this by hierarchically merging the

information from individual photodetectors into simple features and processing those simple features

to extract more abstract information. The simple features may be spatial, such as edges, salient

local contrast patterns, or patches of color. They may be temporal, such as patches of pixels whose

intensity changed significantly over some time interval. The type of simple features and the number

of processing steps between these features and the desired abstract information will vary with the

application and medium of implementation.

To determine the locations of all features in a given image, the same computation must be

applied to each local image patch. This is a very computationally intensive processing step. In

one implementation, for example, extracting the features required 20 times more computations

than tracking the features as they moved from one image frame to the next, and 50 times more

computations than estimating the camera motion [32]. Low-level computations require the most

resources since they need to be repeated so many times. In some applications, the easiest ways to

handle this computationally intensive problem are to use a fast modern CPU or to accept slower

than real-time operation. However, for autonomous robotics applications, neither of these may be

acceptable. Mobile robots are constrained by battery life and benefit from lower-power processors.

They are constrained in the size of the payload that they may carry. Nonetheless, they need real-



17

time control as they move through their surroundings. Likewise, the emerging field of ubiquitous

computing desires small, cheap, low-power processors for embedding throughout an environment.

In both these scenarios, embedding the most expensive computation in a specialized, lower-power

processor can be a big win. Since the computation of features is a local computation, it lends itself

well to a focal-plane implementation where the computational elements are located within the pixel

array and process information in parallel.

1.3 Analog versus Digital Processing

The output of a pixel array requires substantial processing before a useful quantity like speed or

direction of motion can be extracted. People argue whether analog or digital systems are better

suited for information processing [68]. The underlying and more general question is when (or if ever)

during signal processing should one switch from the analog to the digital domain. At a macroscopic

scale, variables of interest are fundamentally continuous: volume or frequency of a sound, velocity,

acceleration, light intensity1 or wavelength, force, etc. Likewise, the sensors designed to measure

these variables are analog. Proponents of digital systems cannot argue against the inherent existence

of analog signals, but rather, for the conversion from analog to digital to occur as early as possible

in the processing scheme.

The merits of analog and digital cause them each to be preferable in different situations. Since,

typically, digital platforms can be reprogrammed more easily than custom analog chips, digital

processing is a reasonable choice for parts of a system that may need to be modified, either as

an algorithm is developed or refined or to accommodate a different set of requirements. On the

other hand, analog processing is appropriate for initial amplification and filtering of a signal. It

is well-suited to performing well-understood transformations known to be useful and unlikely to

require modification. Analog implementation may result in a more compact and power efficient

system, although the design process is more demanding. When applied to arrays of elements, due

to connectivity limitations, analog processing tends to befit local computation and is less suitable

for global analyses. The precision of the computation is limited by noise and distortion in analog

systems, and by the number of bits chosen in a digital implementation. Increasing the number of

bits requires more silicon area or processing time, and requires more power.

In general, then, local early processing that needs to be applied to every element of an array

lends itself well to analog processing. If high precision is not required and the designer finds a means
1Technically, if we delve down to the level of quanta of light, we will be forced to admit the non-continuous,

quantized existence of photons. However, in typical robotics applications, we collect so many photons per unit time
that the quantity of interest is a continuous one, namely light intensity, rather than a discrete photon count. Even
under dim lighting conditions when a single photon may be a significant fraction of the total count, it is more likely
that we are interested in the average or expected value–a continuous value, possibly fractional when expressed as a
photon count.



18

to embody the desired computation in a compact analog circuit, the resulting circuit may be faster

(due to its parallelism), more compact, and less power hungry than an equivalent digital version.

These traits describe exactly the vision application at hand. Detecting local features is a time-tested

first step in many algorithms (e.g., [12, 29, 36, 43, 57, 70, 71, 72, 84]) so the loss of flexibility to

easily reprogram that step of the computation is not likely to impact the final system.

1.4 Motion Estimation Algorithms

Several approaches to motion estimation exist in the literature. I will give a brief overview of some

popular algorithms. The gradient model and energy models compute a value at each image location

that combines information about how the image varies in space (the gradient) and time. The motion

estimate is computed directly from the image. Token-based motion detectors select salient “tokens”

or “features” and track these in time. The motion estimate is computed based on information about

the location of these tokens, with the token detection as an intermediate step. This thesis uses a

token-based algorithm.

Oftentimes, image detection is not continuous. Instead, the system acquires “frames” wherein a

“frame” contains intensity information for one instant in time, and frames are typically separated

by a constant time interval. Descriptions of the algorithms within this section use this notion of

frames since, in practice, image processing algorithms are often implemented in this temporally

discontinuous manner.

1.4.1 The Basic Gradient Model for Motion Estimation

Gradient-based motion methods are based on the approximation that local 2-D velocity can be

calculated from the local gradient and from the change in local intensity over time [28, 41, 44, 45].

The basic gradient model computes the ratio of the temporal flicker and the spatial flicker, as

illustrated in fig. 1.1. The temporal flicker is δI
δt , pictorially represented as (T + − T−). The spatial

flicker is δI
δx , pictorially represented as (S+ − S−).

We can derive the mathematical expressions for the model as follows. For a linear image, denote

the image intensity at location x and time t by I(x, t). Assuming that the brightness of image points

does not change during the motion (i.e. δI/δt = 0), the image subjected to a translation at velocity

v for a time interval τ is denoted by I(x− vτ, t+ τ). By the chain rule of basic calculus we then can

write the 1-D velocity as:

δx

δt
= −δI

δt
· δx

δI

To extend this to two dimensions, represent image intensity at location (x, y) and time t by I(x, y, t).



19

S+S−

T+

T−

t

x

− + − +

− + − +

R
0

L
0

L
1

R
1

t

x

R+

R− L+
L−t

x

Gradient Hassenstein-Reichardt Adelson-Bergen

T+−T−
S+−S− (R0 × R1) − (L0 × L1) (R+ − R−) − (L+ − L−)

Figure 1.1: Three motion models shown on a space-time plane, where t denotes time and x denotes
space.

The same assumption of light constancy leads to the following for motion in two dimensions:

dI

dt
=

δI

δx
· dx

dt
+

δI

δy
· dy

dt
+

δI

δt
= 0

=
δI

δx
· vx +

δI

δy
· vy +

δI

δt

where vx and vy are the components of the velocity along the x-axis and y-axis, respectively. The set

of velocities that satisfy this equation then lie on the line defined by (vx, vy) in velocity space. This

formulation is somewhat problematic, however, in that a solution for velocity will necessarily involve

the spatial gradient (δI/δx or δI/δy) in the denominator. This is an ill-conditioned equation since

the denominator can go to zero. More sophisticated implementations of the gradient model extend

the equations, for example incorporating higher derivatives into the denominator. Taking multiple

measurements, each being a different order derivative of the intensity, leads to the following set of

linear equations:

δ2I

δtδx
= vx

δ2I

δx2
,

δ3I

δtδx2
= vx

δ3I

δx3
, ... ,

δnI

δtδxn−1
= vx

δnI

δxn

A least-squares approach to approximate vx produces [45]:

vx =
∑n

k=2
δk

δxk I(x, t) · δk

δxk−1 · δ
δtI(x, t)∑n

k=2
δk

δxk I(x, t) · δk

δxk I(x, t)

The terms in the denominator are various order derivatives of the intensity at a single point in

the image. Since the derivatives are unlikely to all have values near zero, the equation should be

well-conditioned.



20

1.4.2 Energy Models for Motion Estimation

Energy-based motion detectors (e.g. [3, 14, 38, 39, 78]) merge spatial and temporal information to

compute the motion energy, as shown in fig 1.1. These models look for patterns in x-y-t space; a

velocity corresponds to orientation in this space. In contrast to the basic gradient model which

calculates speed directly (e.g., in pixels per frame), the output of these detectors indicates how

closely the stimulus matches the tuned detector. A nice review of the basics of spatio-temporal

motion detection can be found in [45].

The inspiration behind some of these models has been biologically driven. The Adelson-Bergen

model [3] and that of Watson and Ahumada [78] are consistent with the electrophysiology of motion

perception in primate cortical complex cells. The Hassenstein-Reichardt [38] correlation motion

detector accurately models the optomotor response in flies and was later extended by van Santen

and Sperling [76, 77] to human motion perception. The Barlow-Levick [8] mechanism describes

direction selectivity in the rabbit retina.

Fig. 1.1 illustrates two of these models, the Hassenstein-Reichardt [38] and the Adelson-Bergen [3].

The Reichardt correlation motion model computes a correlation between two patches in time-space

(L0 × L1) and subtracts the result from the correlation between two other patches (R0 × R1). For

example, consider a high-contrast feature that stimulates R0. If it moves in space and time to stim-

ulate R1, the correlation (R0 × R1) will be high, and the overall response will be large. The pair of

detectors L0 and L1 will respond to motion in the opposite direction from R0 and R1. Thus, the

sign of the difference of the final output (R0 ×R1)− (L0 ×L1) will indicate direction. The detector

is velocity-tuned. The Adelson-Bergen model uses filter kernels oriented in space-time detect the

presence of motion in a particular direction [78]. A black and white bar moving rightward will

cause a large response in R = R+ − R−. Conversely, the same bar moving leftward will activate

L = L+ − L−. Like the Reichardt model, the final output of the Adelson-Bergen motion detector

is a comparison of motion in the rightward and leftward directions. In the Adelson-Bergen model,

pairs of filters in quadrature phase are applied to images and the outputs are squared and added.

The use of filters in quadrature phase ensures a response to both edge and bar stimuli. The squaring

operation results in indifference to the sign of the changes.

1.4.3 The Kanade Motion Detector

Tomasi and Kanade [75] proposed a motion detector based on the assumption that local patches of

an image are not distorted substantially between frames. This is true if the illumination is constant

and if motion can be fully described by a translation. This notion is mathematically summarized



21

as:

L(�x, t) = L(�x + �d, t + τ) (1.1)

where L(�x, t) is an image patch at location �x and at time t, �d is the displacement (motion) between

frames, and τ is the time between frames. The full formulation provides an algorithm for detecting

salient features that are easily trackable, where trackability is rigorously defined by minimizing the

error between the constraint in eqn. 1.1 and the actual change in image patches. I describe the

mathematics in more detail in sec. 2.2. The Kanade algorithm provides a means of estimating the

displacement �d by inverting a matrix and multiplying it by a vector (see eqns. 2.3 and 2.4).

The Kanade detector and variations upon it are popular in vision literature. However, the com-

putations are difficult to implement directly with analog circuits and computationally expensive in

digital post-processing. Sec. 2.3.2 describes the difficulties encountered by Pesavento [61] in building

analog circuits that were ultimately crippled by mismatch [62], while in sec. 2.3.5 I explain why

the very non-linear nature of Pesavento’s circuits would make it very difficult to fix his mismatch

problems. Digital implementations require a sequence of computationally expensive operations. The

analog image data first needs to be digitized by an A/D (Analog to Digital converter). The Kanade

feature computation itself requires 3 multiplications to calculate the characteristic matrix, plus an-

other two multiplications and one subtraction to calculate the featureness value, plus a thresholding

operation (see sec. 2.2 and 2.4.3). Floating-point multiplications are especially expensive and in

some computer architectures may require multiple clock cycles to compute. Even an integer mul-

tiplier requires approximately 40 times more layout area than a comparable analog multiplier with

floating gates for mismatch compensation (see sec. B).

1.4.4 Token-Based Motion Estimation

Token-based (or feature-based) motion detectors [12, 33, 57, 65, 82, 85] compute local motion by

selecting salient “tokens” or “features” to track between frames. They compare a target image

patch in one frame to potential match candidates in another frame and select the closest match.

This match provides an estimate of where the image patch moved between the frames. Attempts

are made to perform correlations more selectively since performing a correlation between every

pixel’s neighborhood and every other pixel’s neighborhood in another frame would be unmanageably

expensive.

Consider an image of N pixels within which we would like to make comparisons between neigh-

borhoods of K pixels. To compare the neighborhood of every pixel in one frame to the neighborhood

of every other pixel in a successive frame, N2 neighborhood comparisons are necessary. Assuming

no limitations on memory size nor memory speed, this calls for N2 multiplications, N · K · (K − 1)



22

additions, and N · (K − 1) comparisons. We also need to store in memory the N2 floating-point

results from each multiplication. A modern 2 GFLOPS (billion floating-point operations per second)

processor could process images of up to 38×39 pixels at a frame rate of 30Hz. Token-based methods

improve throughput and thus allow processing larger images.

Token-based correlation methods restrict correlations to patches centered on tokens (aka fea-

tures), where “tokens” are defined [75] as image patches that are easy to recognize from frame to

frame at multiple points in time. Computational resources thus are not wasted on image patches

that are unlikely to be correctly and uniquely tracked, such as areas of low contrast.

1.4.5 Our Implementation

In all these motion estimation methods, some local calculation is repeated over the entire imaging

array. If a multi-purpose digital computer is used, it implements these massively parallel operations

serially. These low-level repeated calculations are thus a major hindrance in the implementation of

real-time solutions [11, 32, 48].

The system presented herein implements a token-based correlation algorithm. I considered using

Kanade features, extending the work of Pesavento [61], but correcting for mismatch in a circuit

as complex as that necessary to calculate Kanade features is prohibitively expensive. Instead, the

hardware embodies a simpler feature detector introduced in sec. 2.4. Each pixel measures the local

light intensity. Based on its neighbors’ outputs, it also calculates the local horizontal and vertical

gradients. Each pixel is deemed to be centered on a salient feature if both the x-gradient and y-

gradient are of sufficiently large magnitude. For those pixels deemed salient, a local search compares

each given pixel to its neighbors to determine which neighbor most likely viewed that same feature at

a previous time step. The gradient calculation is performed by an analog circuit embedded within

every pixel. When a pixel is selected to be read out, its outputs are also directed to a saliency

circuit (unique on the chip). The local search for a match in a previous frame is controlled by digital

processing external to the chip. Thus, a compromise is struck to take advantage of the merits of both

the digital and analog domains. The simple and local calculation is efficiently implemented on the

same chip as the photo-sensing array, parallelizing a huge computational task and vastly reducing

the amount of data to transmit off chip. Calculations requiring more complex addressing, namely

the search for a most-similar neighbor, are performed by digital circuitry.

1.5 Motion Estimation in Hardware

This work is not the first to attempt to implement motion estimation in custom hardware. Multi-

chip designs rely on a CCD camera as the front-end. The raw image data is serially read out to

a multi-purpose digital postprocessor. Monolithic implementations integrate photodetection and



23

information processing (often in the analog domain) on the same custom chip.

Multi-chip designs benefit from flexibility to reprogram the system. However, the serial nature of

CCD readout and typical digital processor operation is poorly matched to the dramatically parallel

nature of the image processing problem. Real time implementations thus rely on clever optimizations

and modern hardware with fast clock rates. For a demonstration or application where size and power

are not of concern, this is very appropriate. The target application of this thesis, namely mobile

robotics, has more stringent requirements.

Monolithic implementations often parallelize the low-level image processing by including some of

it within each pixel. Alternately, the processing is done by circuitry at the edges of the photodetector

array but still on the same chip. If done well, focal-plane processing can reduce the amount of

repetitive local computation required off-chip, and can also reduce the amount of data that must be

transferred from one chip to another. Unfortunately, many previous single-chip designs emphasized

biological inspiration rather than motivating functional reasons for design decisions, showed test

data only for synthetic bar stimuli, failed to discuss the effects of using natural stimuli, and/or used

a communication scheme (Address Event Representation, aka. “AER”) that has limited application

to larger arrays than those built on the demo chips.

However, it is more edifying to focus on previous work that has chosen similar design priorities

as this thesis than to rebuff those whose authors apparently had different priorities. The following

pieces of work are most closely related to the work of this thesis. Fiore et al. [32] and Benedetti

and Perona [11] both implemented in hardware motion algorithms based on the Tomasi-Kanade

feature tracking algorithm [75]. The central algorithm of this thesis derives from the same source

as theirs. Pesavento [61] implemented the Tomasi-Kanade detection algorithm on a single chip, but

did not attempt to extend the system to complete a higher level task. Dı́az et al. [23] implemented

a gradient optical flow algorithm (in contrast to feature tracking), also on an FPGA.

Benedetti and Perona [11] developed some simplifications to reduce the computational complex-

ity and facilitate real-time implementation. Benedetti’s Field Programmable Gate Array (FPGA)

implementation did not perform feature tracking nor motion estimation; it only detected Tomasi-

Kanade features. The interesting aspect of Benedetti’s work was that it showcased his system of

multiple FPGAs. This is a worthwhile technique for solving problems too complex for a single

FPGA. What is more relevant to this thesis is that the choice of feature detection as a represen-

tative task underscores the high demands of early vision processing and exemplifies the difficulty

of accommodating an inherently parallel computation by an architecture that is itself not equally

parallel.

Fiore’s implementation [32] consisted of an input video stream fed to an FPGA which performed

all the necessary calculations. The FPGA performed feature extraction, feature tracking, and motion

estimation. Fiore’s system achieved a throughput of 15 frames/sec for 256×256 8-bit images. The



24

feature extraction accounted for 93.5% of the computational cycles. Parallelization of the feature

extraction, as recommended in this thesis, is a worthwhile improvement on the design [31] because

it decreases the computational demands placed on the digital postprocessor. This frees the multi-

purpose digital hardware for use in other tasks, allows the use of a smaller cheaper digital processor,

and makes possible the integration of digital postprocessing as an Application-Specific Integrated

Circuit (ASIC) on the same die as the image sensing and feature extraction. It also permits motion

estimation from a larger imaging array.

Pesavento’s chip [61] successfully implemented the Tomasi-Kanade feature detector in local ana-

log circuits embedded within every pixel. While the individual feature detectors worked well, it was

impossible to find bias settings where an acceptably large percentage of the feature detectors would

all function. Mismatch between elements rendered the array as a whole unusable [62] because the

array elements had such dramatically different operating characteristics at any single bias setting.

Dı́az et al. [23] implement the Lucas and Kanade [53] gradient optical flow algorithm in an FPGA.

Dı́az provides tables that allow an estimate of the number of gates used and thus the silicon area

of the FPGA. If that same area of silicon were used for an analog pixel array, an imager of similar

resolution performing the same calculation could be built but without the frame rate limitation of

30Hz. That is, the all-analog version using the same silicon area could run much faster.

This thesis presents a chip that is similar at a functional level to that of Pesavento, in that it

implements feature detection within every pixel. However, mismatch is compensated by integrated

programmable floating gates. The circuits have been completely redesigned due to this constraint.

The chip is then combined with a digital postprocessor to extend the system to one akin to that of

Fiore. The system presented here is more appropriate for mobile robotics applications than that of

Fiore because it is, in principle, more compact and less power hungry. It is also easily scalable to

larger array sizes simply by making the custom pixel array bigger, with minimal additional demands

on the digital processor.

1.6 Mismatch Between Array Elements

Mismatch between devices has been a critical barrier to producing truly useful arrays of local pro-

cessing elements. Imperfections in chip manufacturing result in circuit elements which are not quite

identical. These disparities can render arrays of circuits unusable [62] when the array elements

operate too differently. Standard approaches to mismatch reduction, such as using larger devices,

surrounding critical devices with non-functional dummies, or mismatch invariant layout (sec. 3.1.2),

require too much silicon area to be practical for embedding in every single element of an array.

Subthreshold design has been disproportionately plagued by mismatch. This is partly due to its

widespread application in arrays of neuromorphic elements, where mismatch is difficult to counter



25

as for any array. Additionally, the proportional change in current due to a given threshold offset

may be greater for a transistor in subthreshold than for the same device above threshold, since

subthreshold transistors display an exponential relationship between current and voltage while above-

threshold transistors exhibit a square relationship. Mismatch has limited application of designs using

subthreshold transistors, possibly more than any other factor [20].

The problem of mismatch is pronounced in analog focal plane processing arrays due to their use

of logarithmic photodetectors. Integrating photoreceptors, which reset a photodiode and sample

it some time later, are affected primarily by mismatch between the photodiodes. In modern high-

quality processes, this mismatch is low enough to be acceptable for many applications. Measurements

in 1.2µm and 2.0µm processes [46] indicate less than 2% mismatch between photodiodes. Unfor-

tunately, because they are sampled, integrating photoreceptors are not well-suited to continuous-

time analog computation. In contrast, logarithmic photoreceptors output a continuous-time voltage

in response to illumination. Logarithmic photoreceptors send the photocurrent generated by the

photodiode through a transistor. The transistor is operated in subthreshold and thus performs a

logarithmic compression on the signal. Logarithmic compression is analogous to human vision and

extends the dynamic range of the photoreceptor far beyond that of a CCD camera [51] or a CMOS

integrating photoreceptor. Mismatch in logarithmic photoreceptors results primarily from voltage

threshold mismatch in the transistor that performs the logarithmic transformation, and the mis-

match between transistors is larger than that between photodiodes. Fig. 3.11 illustrates the effects

of mismatch on a small array of logarithmic photoreceptors. The shift in output voltage due to mis-

match is of a magnitude comparable to that resulting from typical signals. Some sort of mismatch

correction, either within the photoreceptor array or in later processing, is critical to fabrication of

functional logarithmic imagers [51, 61]. I present a modified photoreceptor with floating-gate mis-

match compensation and compare it to a non-programmable photoreceptor in fig. 3.12. Sec. 3.3.5

quantifies the obvious improvement.

Other subcircuits within the pixel are also impacted by mismatch. Floating gate technology

(described further in sec. 3.1.4) is used here as a compact means of reducing mismatch in both the

photoreceptors and other thoughtfully-chosen subcircuits where mismatch could cripple the desired

computation. Floating gates are a form of non-volatile memory, which means they are able to

store their values for extended times (on the order of years) as well as when power to the circuit is

turned off. Floating gate transistors are widely used in digital memory storage, namely in EPROM

and EEPROM, whose applications include CompactFlash cards and the BIOS (Basic Input/Output

System) of a computer. However, floating gate use in analog circuits remains within the toolbox of

a much smaller group of designers. This thesis describes circuits which are an interesting addition

to that toolbox. Floating gates are embedded in the logarithmic photoreceptor, in a novel difference

circuit, and in the circuit which determines saliency of image features. The floating gates are



26

programmed once to permanently remove mismatch between the subcircuits into which they are

embedded.

1.7 Beyond Preprocessing

This thesis presents a focal plane aVLSI (analog Very Large Scale Integration) chip specifically

intended for integration into a system which accomplishes a useful task: ego motion estimation.

Focal plane processing has existed for years. Many interesting vision preprocessors have risen out

of this field [7, 15, 17, 27, 49, 52, 69, 79, 80, 81]. However, much of this prior work did not target a

clearly defined application, or focused on some simple toy problem without a clearly defined path to

deal with messier real-world problems. Keeping the end application in mind is critical to building

components which will be truly expandable to real-world problems and have a practical interface.

Admittedly, the implementation of feature detection in analog circuitry takes away the flexibility

to modify the feature detector itself. However, since the Kanade feature detector is widely regarded

as a robust front end, it is unlikely that one would need to modify it. Being a local computation,

it is ideally suited for local implementation in an analog circuit. However, the aggregation of local

data into a global estimate is better done by a single digital circuit to succeed the fabricated analog

chip.

If a more compact system is desired, the path from an FPGA to a stand-alone digital chip (ASIC)

is straightforward. The resulting system could be compact and have low power requirements, and

thus be ideally suited for mobile robotics applications.



27

Chapter 2

Feature Detection for Motion
Estimation

This chapter will focus on the algorithmic basis for a feature detector implemented in hardware,

beginning with an overview of motion detection and culminating in a derivation of a feature de-

tector appropriate for implementation in hardware. The highly repetitive nature of low-level image

processing makes feature detection an ideal candidate for embedding in the circuitry of a custom

chip, as discussed in chapter 1. However, a prior attempt at such an implementation [63] was de-

bilitated by mismatch. To avoid this pitfall in my design, I modified the feature detector to allow

incorporation of floating gates for mismatch reduction. This chapter includes simulations of the

functionality of the implemented feature detector. Sec. 3.2 provides the implementation details of

the circuits embodying my feature detector.

2.1 Motion Detection Overview

This section presents an overview of a motion estimation algorithm to provide background for un-

derstanding the remainder of this chapter. I explain how feature detection fits into the broader

application of motion estimation and outline the basic steps of motion estimation, the first of which

is feature detection and the focus of the current chapter.

As illustrated in fig. 2.1, the motion estimation algorithm can be subdivided into three steps.

The second and third steps occur outside the photoreceptor array, in my system in an off-chip

postprocessor, with the option of implementation on the same chip. The image and feature data

become available only at discrete time intervals, the length of which is determined by how long it

takes to read out the array. Each complete chunk of analog data about the entire array is termed a

“frame”.

1. Detect features: Within each frame, detect salient points in the image that will be easy to

track from one frame to another.



28

Detect features Estimate local motion Estimate global motion

Figure 2.1: The motion estimation algorithm detects salient features within each image. It then
estimates the local motion of each feature between successive frames. Based on these local motion
vectors, it generates a global motion estimate.

2. Estimate local motion: For each detected feature, find the location to which it has moved

in the next image frame. We assume a high frame rate relative to the speed of motion, so we

need only search a local neighborhood of the feature to find its location one time step later.

The vector pointing from the original feature location to the new location is the local motion

vector for that feature.

3. Estimate global motion: Aggregate the local motion vectors to estimate a global motion

vector that would have resulted in the local motions.

Good features for motion estimation are those that we can track easily over time, in this case

from one frame to the next. To uniquely match an image patch in one frame to its corresponding

patch in another frame, the feature which constitutes the image patch should be distinct from

its neighborhood. Fig. 2.2 shows examples of image patches that make for poor features and good

features to illustrate the idea. Areas of low contrast provide no trackable features. Panning a camera

across a blank wall or other swath of uniform intensity results in little change to the neighborhood

viewed by a given pixel, and thus little information about the motion. Low contrast variations

can furthermore be overwhelmed by noise. High contrast edges are good indicators of motion

perpendicular to the edge, but poor indicators of motion parallel to the edge. In the edge shown

in the the center of fig. 2.2, each column of pixels views an almost identical image patch. Vertical

motion would be undetectable. Thus, edges are poor general purpose features. The best features for

tracking are those which can be distinguished from their neighborhoods regardless of the direction

of image motion. A corner is an example of such a feature, as shown in the right of fig. 2.2 and in

fig. 2.3. In general, a corner can be defined as an image patch having high intensity gradients along

two axes.



29

Poor feature Poor feature Good feature
low contrast aperture problem: Both vertical and

similar neighborhood as horizontal gradients
image moves vertically. are large.

Figure 2.2: The images above show sample image patches that might be sensed by a 3x3 pixel grid.
The central pixel (outlined in red) would use its neighborhood to determine a saliency value. The
saliency value can be thresholded to decide whether the pixel is centered on a feature or not. Left:
A patch of low contrast pixels. One low contrast patch is not uniquely different from a neighboring
low contrast patch. Center: A high contrast edge. Motion parallel to the edge will result in little
change to the central pixel’s neighborhood. Thus, an edge is a poor feature for tracking motions
having a component parallel to that edge. This is termed the “aperture problem” since in principle
a larger viewing area would include elements that could provide correct information about parallel
motion. Right: A feature that has a high intensity gradient in both the vertical and the horizontal
direction can be tracked regardless of the direction of motion.

Figure 2.3: Local motion estimation: Consider the central 3×3 patch of pixels. This is the central
pixel’s immediate neighborhood. The motion of the corner in the image can be correctly calculated
even from just this small local neighborhood.



30

2.2 Tomasi Kanade Features

Tomasi and Kanade [75] proposed a mathematically based description of a feature targeted at local

motion estimation. Their definition fits the general overview presented in the previous section. The

derivation begins by defining a feature as an image patch whose motion between two frames can

be calculated, assuming translational motion with minimal other warping and assuming constant

illumination. The resulting equations select as features those image patches having both large

horizontal and large vertical intensity gradients, thus responding to corners and highly textured

areas. They discard image patches having a large gradient along only one axis (edges) and low

contrast areas. Tomasi-Kanade features have been used widely as the first step in algorithms for

motion estimation.

Consider an image sequence L(�x, t) where L denotes the light intensity, �x = [xh, xv]T denotes

location within an image with xh the horizontal coordinate and xv the vertical coordinate, and t

denotes the time when that image occurred within the sequence. We can express the motion between

successive frames by motion vectors such that �d(�x, t) = [dh, dv]T expresses the motion at point �x at

time t, where dh is the direction and magnitude of horizontal motion and dv is the direction and

magnitude of vertical motion. Assuming a high frame rate (temporal sampling frequency), we can

assume that small image regions undergo a geometric transformation due to motion of the camera

or within the image, but the intensities of objects remain the same. Given these assumptions, the

transformation from one frame to next over a time interval τ can be expressed as:

L(�x, t) = L(�x + �d, t + τ) (2.1)

The task of the motion estimation algorithm is then to find �d for each of a set of automatically

selected point features in a pair of successive image frames in the sequence.

However, eqn. 2.1 will not be satisfied exactly. The assumption of intensity constancy is not

perfect so the light intensity of an image patch L may change in a way not captured in eqn. 2.1, for

example as objects move into a differently illuminated area. Points may also disappear or appear

due to occlusion. Lastly, various sources of random noise exist, such as thermal noise within the

sensor or distortion within the optics. Even the best estimate of �d will not satisfy eqn. 2.1 perfectly.

To estimate �d, then, find the �d which minimizes the squared residual error:

ε =
∑
W

[L(�x + �d, t + τ) − L(�x, t)]2 (2.2)

over a small image patch centered on �x which we call the feature window W . Approximate L(�x +



31

�d, t + τ) by its Taylor series expansion:

L(�x + �d, t + τ) ≈ L(�x, t) +
[
δL(�x, t)

δxh
,
δL(�x, t)

δxv

]
�d +

δL(�x, t)
δt

· τ

= L(�x, t) + �G(�x, t)T �d + Lt(�x, t)τ

where �G(�x, t) = [Gh, Gv]T denotes the horizontal and vertical intensity gradients at location �x

and time t, and Lt(�x, t) is the change in intensity over time. This expression incorporates the

crucial assumption of this feature detection algorithm, namely, that the motion field can be locally

approximated by a constant displacement of the local image patch.

We can then rewrite the residual error from eqn. 2.2 as:

ε =
∑
W

(
�G(�x, t)T �d + Lt(�x, t)τ

)2

To minimize the residual, differentiate it with respect to �d, and set the result to zero:

δε

δ�d
= 2 ·

∑
W

�G(�x, t) ·
(

�G(�x, t)T �d + Lt(�x, t)τ
)

= 0

Algebraic reshuffling of the terms and rewriting in matrix form leads to a definition of the charac-

teristic matrix C.

∑
W

�G(�x, t) · �G(�x, t)T �d = −
∑
W

�G(�x, t) · Lt(�x, t)τ

∑
W

⎡
⎢⎣

(
δL(�x,t)

δxh

)2
δL(�x,t)

δxh
· δL(�x,t)

δxv

δL(�x,t)
δxh

· δL(�x,t)
δxv

(
δL(�x,t)

δxv

)2

⎤
⎥⎦ · �d = −τ

∑
W

⎡
⎣ δL(�x,t)

δxh

δL(�x,t)
δxv

⎤
⎦ · δL(�x, t)

δt
(2.3)

C · �d = e (2.4)

The displacement �d can then be calculated as �d = C−1e. The solution will be numerically stable

only if the characteristic matrix C is well-conditioned and has entries well above the noise level.

C will be well-conditioned if the eigenvalues of C, λ1 and λ2, do not differ by many orders of

magnitude. The noise requirement is satisfied if λ1 and λ2 are both well above zero. In practice,

the maximum magnitude of the eigenvalues is bounded by the maximum possible pixel value. Thus,

the requirements can be simplified to:

min(λ1, λ2) > λt (2.5)

where λt is a threshold.

Features useful for motion estimation, then, are those image patches whose characteristic equation



32

C has eigenvalues exceeding some threshold λt, as expressed by the constraint in eqn. 2.5.

2.3 Prior aVLSI Implementation

To parallelize the computation of Tomasi-Kanade features, Pesavento [63, 61] built an analog VLSI

(aVLSI) photoreceptor array with Kanade feature detectors integrated into the pixel array.

2.3.1 Overview of Pesavento’s Chip

Each pixel contained modified Gilbert multipliers. As inputs, the multipliers took light intensity

values detected by neighboring pixels. The circuits were wired such that the three multipliers output

currents proportional to:

1. The square of the horizontal gradient,
(

∆L(�x,t)
∆xh

)2

2. The square of the vertical gradient,
(

∆L(�x,t)
∆xv

)2

3. The product of the horizontal and vertical gradients,
(

∆L(�x,t)
∆xh

)
·
(

∆L(�x,t)
∆xh

)
To calculate the terms constituting the characteristic matrix, each of the above products needs to

be summed over the several pixels in a feature window W . These summations are the components

of the characteristic matrix:

C =

⎡
⎣ C1,1 C1,2

C2,1 C2,2

⎤
⎦

1. C1,1 =
∑

W

(
∆L(�x,t)

∆xh

)2

2. C2,2 =
∑

W

(
∆L(�x,t)

∆xv

)2

3. C1,2 = C2,1 =
∑

W

(
∆L(�x,t)

∆xh

)
·
(

∆L(�x,t)
∆xh

)
Since the multipliers output currents, summation can be done easily by simply connecting the

outputs onto a single wire. The current flowing through this wire is then the sum of the incoming

currents by Kirchhoff’s Current Law. Indeed, the original version of Pesavento’s design, Detector1,

did exactly that. A 3x3 block of pixels constituted the feature window W . The multiplier outputs

from the nine pixels were summed to produce C1,1, C2,2, and C1,2.

The original Kanade algorithm calls for calculating the eigenvalues of the characteristic matrix

and verifying that both are larger than some threshold λt. Pesavento derived a simplification of this

calculation and showed that it was sufficient to instead threshold the quantity:

(C1,1) · (C2,2) − (C1,2)2 > pt (2.6)



33

from
multiplier

to
selection
circuit

(
∆L(�x,t)

∆xh

)2

∼
(∑

W
∆L(�x,t)

∆xh

)2

Figure 2.4: The resistive grid in Pesavento’s Detector2, shown for C1,1. Similar grids exist for C1,2

and C2,2. Each node represented by a dot corresponds to one pixel. Resistors connect neighboring
pixels. The input to each node is the current output of a multiplier, in this case calculating the
square of the horizontal gradient at that pixel. The output current flows through a resistor (drawn
vertically) and to the selection circuit that determines whether or not a sufficiently salient feature
exists that is centered on that pixel.

where pt is the threshold [61]. The selection circuit which calculated the quantity in eqn. 2.6 was

also implemented within each pixel.

Detector1 worked as expected. However, dedicating each 3x3 block of pixels to calculate only

one feature wastes space, especially since with three modified Gilbert multipliers in each pixel the

pixels are rather large. In an improved design, Detector2, Pesavento used a two-dimensional diffusion

network (resistive grid) to allow overlapping use of multiplier outputs (see fig. 2.4). The resistive

grid performs a weighted summation of nearby currents, approximating the sum over W . For ex-

ample, the summation of C1,1 at location �x = [xh, xv]T for a 3x3 pixel grid would be approximated as:

w1 · C1,1(xh + 1, xv − 1) + w2 · C1,1(xh, xv − 1) + w3 · C1,1(xh − 1, xv − 1)∑
W C1,1(xh, xv) ≈ + w4 · C1,1(xh + 1, xv) + w5 · C1,1(xh, xv) + w6 · C1,1(xh − 1, xv)

+ w7 · C1,1(xh + 1, xv + 1) + w8 · C1,1(xh, xv + 1) + w9 · C1,1(xh − 1, xv + 1)
In the original Kanade formulation, wi = 1 for all i. With a resistive grid, wi corresponding to a

nearby pixel has a larger value than one corresponding to a distant pixel. See fig 2.5 for a graphical

representation.

The output currents of the resistive grids correspond to C1,1, C1,2, and C2,2. In Detector2, these

currents were input to a 47 transistor circuit which performed the thresholding of eqn. 2.6 and thus

determined whether a feature was centered on the pixel or not.

The block diagram of Detector2 is shown in fig. 2.6.

2.3.2 Mismatch Problems in Pesavento’s Chip

While each feature detector of Pesavento’s Detector2 correctly identified features as prescribed by

the Tomasi-Kanade algorithm, mismatch between circuits rendered the array unusable [62]. With



34

−4 −2 0 2 4

Original Kanade

Pixel

w
ei

gh
t

−4 −2 0 2 4

Resistive Grid

Pixel

w
ei

gh
t

Figure 2.5: The resistive grid in Pesavento’s Detector2 changes the weighting of the summation
of terms in the calculation of the characteristic matrix. Left: The pixels along a single row of the
feature window W would be weighted uniformly and equally in the original Kanade algorithm. Pixels
outside the feature window would be given a weight of zero, that is, not used in the calculation.
Right: The resistive grid gives more weight to outputs from nearby pixels, and gradually decreasing
weight to more distant pixels in the array.

photo- multipliers resistive selection
diodes grid circuit

C
11

C
22

-C
12

2 >
p t

Light Precursors Approx.
intensities to C of C

L([xh−1,xv ]T ,t)
(

∆L(�p,t)
∆xh

)2
C11≈

∑
W

(
∆L(�p,t)

∆xh

)2
L([xh+1,xv ]T ,t)

(
∆L(�p,t)

∆xv

)2
C22≈

∑
W

(
∆L(�p,t)

∆xv

)2
L([xh,xv−1]T ,t)

(
∆L(�p,t)

∆xh

)
·
(

∆L(�p,t)
∆xv

)
C12≈

∑
W

(
∆L(�p,t)

∆xh

)
·
(

∆L(�p,t)
∆xv

)
L([xh,xv+1]T ,t)

IN DISTRIBUTE IN
EACH INFO EACH
PIXEL BETWEEN PIXEL

PIXELS

from all to all
pixels pixels

Figure 2.6: Diagram of Detector2. Each pixels shares its detected light intensity value with its
neighbors. Each pixel takes the difference of these intensities (the gradient) and multiplies them
to generate precursors of the terms in the characteristic equation C. A sum of these values is
approximated by resistive grids shared among all pixels. Each pixel then draws values from the
resistive grids as inputs to its selection circuit. The selection circuit within each pixel produces a
binary value to indicate whether a feature is centered on that pixel.



35

all voltage bias settings configured as best possible, some pixels always indicated a feature, while

others never flagged the presence of a feature even when surrounded by a highly salient image patch.

Neither the multipliers nor other circuits within the pixel incorporated techniques for mismatch

minimization.

Pesavento suspected that the mismatch was primarily due to mismatch within the three multi-

pliers used to calculate the characteristic matrix. This is a plausible explanation. Small differences

in threshold voltages could lead to significant errors when amplified by a multiplication operation.

My simulations of mismatch within a resistive grid suggest approximately 17% variation in the

magnitude of the currents representing C1,1, C1,2, and C2,2 when minimum size transistors are used,

8.5% with both length and width doubled (4x area), 4.4% with both length and width quadrupled

(16x area). Thus, mismatch within the resistive grid would have impaired performance but should

not have rendered the array useless.

Mismatch in the selection circuit has not been quantified by either simulations or measurements.

However, this circuit may contribute as much to the mismatch problems as the multipliers. Since it

relies on current mirrors for subtraction, small differences in threshold voltages would be reflected in

the magnitudes of the currents. These currents are then multiplied, an operation performed by using

subthreshold transistors cleverly. Mismatches in the voltage thresholds of these transistors would

contribute further to mismatch errors. In short, the sources of mismatch in the modified Gilbert

multipliers and mismatch in the selection circuit are similar. Further analysis would be required to

tease apart the exact contribution of each.

2.3.3 Brief Overview of Floating Gates for Mismatch Reduction

We chose to use floating gate devices to reduce mismatch in these circuits, as explained in detail

in sec. 3.1.2. Layout techniques are inappropriate or insufficient. Common-centroid layout can be

used to reduce mismatch between nearby transistors but is not applicable to hundreds of transistors

nor transistors on opposite ends of a large array. Photolithographically invariant layout would not

improve matching sufficiently. Simply making larger devices requires too much area when we desire

an array of identical circuits. Floating gate devices can be programmed permanently to modify the

offset of a single transistor’s operating point so as to null the mismatch introduced by imperfections

within the single circuit within which the transistor is embedded.

Floating gate devices are described in detail in sec. 3.1.4. In brief, a floating gate transistor is

a transistor whose gate is fully isolated. Charge stored upon the gate sets the gate voltage. The

amount of charge can be modified by tunneling or hot-carrier injection, processes that do not occur

under normal circuit operation. The charge is stored in a non-volatile manner, with retention times

on the order of years or decades. Thus, we are able to program the floating gates to remove offset

initially and operate the chip without further reprogramming.



36

2.3.4 Reducing Circuit Mismatch in Non-linear Circuits

Any technique for mismatch correction should be applied judiciously, since some cost or performance

trade-off is typically required. Floating gates require some additional layout area and increased

operational complexity to initialize their values appropriately prior to operation. One way to consider

the number of floating gates appropriate for a given circuit is to analyze the number of degrees of

freedom that must be programmed to compensate for the major sources of mismatch.

Given a series of linear stages, only a single floating gate is necessary since the mismatch can be

expressed as a single term requiring a correction with only one degree of freedom. Consider a series

of circuits with linear transfer functions Hi(V ) = Ai ∗V , each introducing some mismatch Vi, where

i is an index referring to each circuit. For an input Vin, the output of the series will then equal Vout,

as expressed below.

V̂out = An ∗ ( An−1 ∗ ( An−2 ∗ ( ... ∗ A1 ∗ Vin) ... ))) ideal

Vout = Vn+An ∗ (Vn−1+An−1 ∗ (Vn−2+An−2 ∗ ( ... ∗(V1+A1 ∗ Vin) ... ))) mismatched

Denote ideal output assuming no mismatch by V̂out and output including mismatch by Vout. Simplify

and combine the two equations:

Vout = Vn + (An ∗ Vn−1) + (An−1 ∗ Vn−2) + ... + (A2 ∗ V1) + V̂out

= V̂out +
N−1∑
n=1

An+1 ∗ Vn︸ ︷︷ ︸
mismatch term

Since we are considering linear circuits, the gain terms, Ai, are scalars and thus the mismatch term

is a constant. Compensating for the mismatch requires adjusting the value of a single term.

For every added degree of freedom in the circuits, we need to add one more floating gate to

compensate. For example, a multiplier has two degrees of freedom which can be expressed as gain

and offset:

Vout = Again ∗ (Vin1 ∗ Vin2) + Voffset

or equivalently, as offsets within each input term:

Vout = (Vin1 + Voffset1) ∗ (Vin2 + Voffset2)

Regardless of how we reshuffle the terms, it is impossible to generate an expression where the

mismatch will be encapsulated into a single term. Thus, we must correct for the mismatch along

two degrees of freedom. In this case, we could consider using two floating gates, one which corrects

for Voffset and a second which corrects for Again. Alternately, the roles of the floating gates could be



37

to correct for Voffset1 and Voffset2, respectively. The choice should rest on ease of implementation,

that is, which expression can be better translated into a reasonable circuit topology.

Lastly, note that the mismatch in one circuit sometimes can be compensated in a succeeding

circuit without introducing modifications beyond what already exists in that latter circuit. For

example, a difference circuit has one degree of freedom, requiring one floating gate to correct. A

multiplier has two degrees of freedom, requiring two floating gates. A multiplication of a difference,

implemented as a difference circuit followed by a multiplier, has only two degrees of freedom. The

mismatch in this combined circuit can then be compensated for by the two floating gates in the mul-

tiplier, making a floating gate in the difference circuit extraneous. The outputs of these two circuits

and of their combination are expressed in the table below. Note that the form of the expression for

the mismatch in the combined circuit is the same as that of the multiplier alone. Offset mismatches

are represented by Vos1, Vos2, and Vos3. Gain mismatches are denoted by Am1 and Am2. The inputs

to each circuit are expressed as Vi1 and Vi2.

circuit: expression

difference: Vdiff = Vi1 − Vi2 + Vos3

multiplier: Vmult = (Vi1 + Vos1) ∗ (Vi2 + Vos2)

both: Vout = (Vdiff1 + Vos1) ∗ (Vdiff2 + Vos2)

= (Vi1 − Vi2 + Vos3 + Vos1︸ ︷︷ ︸
mismatch term

) ∗ (V1 − V2 + Vos3 + Vos2︸ ︷︷ ︸
mismatch term

)

In contrast, consider a different example where the mismatch terms for one circuit are only partly

absorbed by the successive circuit. A squaring operation and exponentiation each have two degrees

of freedom. The square of an exponent has three degrees of freedom.

circuit: expression

square: Vsqr = Am1 ∗ (Vi1 + Vos1)2

exponential: Vexp = Vos2 + Am2 ∗ eVi1

both: Vout = Am1 ∗ (Vexp + Vos1)2

= Am1︸︷︷︸ ∗(Am2︸︷︷︸ ∗eVi1 + Vos1 + Vos2︸ ︷︷ ︸
mismatch term

)2

A general rule to determine whether a successive circuit can be used to compensate for mismatch in

a previous circuit does exist. If the mismatch in one circuit can be expressed in the same form as

one of the mismatch terms in a succeeding circuit, then the terms can be merged. In other words,

the number of floating gates necessary to remove all offsets is equal to the number of degrees of

freedom in a circuit.



38

2.3.5 Requirements for Mismatch Correction in Pesavento’s Circuits

Consider the number of degrees of freedom in Pesavento’s feature detector to assess how many

floating gates would be necessary to correct for mismatch within the constituent circuits.

The first stage of processing consists of the modified Gilbert multipliers which calculate a dif-

ference ( ∆L
∆xh

or ∆L
∆xv

, the horizontal or vertical light intensity gradients) and a product of these

differences. This stage can exhibit mismatch along two degrees of freedom. Both from Pesavento’s

experience and from an understanding of the circuits and the nature of the multiplication operation,

we can know that even minor mismatch in the threshold voltage of the transistors can significantly

impair the matching of the multiplier outputs. Mismatch compensation is necessary.

The next stage consists of the resistive grid, which calculates a weighted sum of the multiplier

outputs. Summation is a linear operation. Since the output of each multiplier is split between

several outputs of the resistive grid, mismatch within the resistive grid cannot be corrected in a

straightforward manner within the multipliers. A useful correction in one multiplier for one output

could lead to an exactly wrong correction for another output. However, the magnitude of the

mismatch within this circuit is small enough that slightly increasing the size of the constituent

transistors could suffice. Further simulations would need to be done.

The last stage consists of the calculation of (C1,1) · (C2,2) − (C1,2)2 > pt from eqn. 2.6. We can

note two degrees of freedom in the multiplication, and another two in the squared term. A total of

four floating gates would be required to remove mismatch in this stage.

In total, ten floating gates would be necessary to compensate for mismatch. Six floating gates

would compensate for the two degrees of freedom in each of the three Gilbert multipliers. Four

floating gates would compensate for mismatch in the selection circuit. This is an unreasonable

number of floating gates. First, the layout area needed for all ten of the floating gates would enlarge

the pixel significantly. The primary layout cost comes from the increased spacing needed between

the wells for the tunneling junctions and wells in the rest of the circuits. Secondly, programming ten

floating gates could require a complex procedure. Programming is straightforward if a single variable

can be observed to gauge the progress of the programming procedure. With ten degrees of freedom,

intermediate pixel outputs would need to be routed for readout, possibly requiring amplification,

certainly requiring switching onto shared buses. While possible, this solution is unwieldy.

2.4 Orthogonal Gradient Detector (OGD)

I simplified the feature detector to a level where the necessary mismatch correction could be reason-

ably implemented. A straightforward application of mismatch reduction techniques to the topology

fabricated by Pesavento seemed to require too many undesirable trade-offs.



39

2.4.1 Reducing the Kanade Detector

Let us consider the intuitive meaning of the equations describing the Kanade feature detector

(eqns. 2.3–2.5). The Kanade feature detector selects as features those image patches whose charac-

teristic matrix has large eigenvalues. This matrix is rewritten below using slightly simpler notation

than previously for clarity. Let Gv be a vertical gradient at a single pixel and Gh the horizontal

gradient. Use
∑

G2
v to represent the sum of the squares of all vertical gradients within a window,

and analogously
∑

G2
h and

∑
GhGv to represent the other terms of the matrix. Then:

C =

⎡
⎣ ∑

G2
h

∑
GhGv∑

GhGv

∑
G2

v

⎤
⎦

To find the eigenvalues, we set the determinant of the characteristic matrix to zero:

∣∣∣∣∣∣
(
∑

G2
h) − λ

∑
GhGv∑

GhGv (
∑

G2
v) − λ

∣∣∣∣∣∣ = 0

((∑
G2

h

)
− λ
)
·
((∑

G2
v

)
− λ
)
−
(∑

GhGv

)
·
(∑

GhGv

)
= 0∑

G2
h

∑
G2

v −
(∑

GhGv

)2

︸ ︷︷ ︸
c

+
(
−
∑

G2
v −

∑
G2

h

)
︸ ︷︷ ︸

b

λ + 1︸︷︷︸
a

λ2 = 0 (2.7)

To solve for the eigenvalues λ, we can use the quadratic equation that reduces for a = 1 to:

λ =
−b ±√

b2 − 4ac

2a
→ 2λ = −b ±

√
b2 − 4c

For both λ to be large, b needs to be large and the square root term needs to be small. For b to be

large, either one or both gradients (Gh and Gv) need to be large at many pixels within the feature

window. Minimizing the square root term requires b2 and 4c to be similar in magnitude, which will

be the case if Gh and Gv are of similar magnitude at many points within the feature window. Both

these conditions are true if many pixels observe both a large vertical and a large horizontal gradient.

Pixels detecting significantly different gradients along the two axes will adversely affect the term

(b2 − 4c), while pixels detecting gradients of small magnitude will adversely affect b.

Scaling the Kanade detector to fewer pixels, consider the most minimal case of a feature window

consisting of only one pixel calculating a single horizontal gradient and a single vertical gradient.

The calculation of the eigenvalues can be written directly, after eqn. 2.7:

G2
hG2

v − (GhGv)2 +
(−G2

v − G2
h

)
λ + λ2 = 0

G2
v + G2

h = λ



40

This mathematically correct and stable answer is nonetheless unsuitable in that it fails to enforce

the critical constraint that both gradients be large.

2.4.2 Definition of the Orthogonal Gradient Detector (OGD)

Consider, then, what would constitute a minimal unit that embodies some of the basic objectives of

the Kanade feature detector. At its smallest, it must calculate a single horizontal gradient, a single

vertical gradient, and a binary function indicating whether both gradients were above a threshold.

A mathematical description can be represented by either of the equivalent statements:

(abs(Gh) > thold) and (abs(Gv) > thold)

min(abs(Gh), abs(Gv)) > thold

or using notation from earlier in the section:

abs
(

∆L(�x,t)
∆xh

)
> thold and abs

(
∆L(�x,t)

∆xv

)
> thold

min
(
abs

(
∆L(�x,t)

∆xh

)
, abs

(
∆L(�x,t)

∆xv

))
> thold

Call this the Orthogonal Gradient Detector (OGD).

The difference between a Kanade detector and the OGD is twofold. First, the Kanade detector

can be straightforwardly applied to any size feature window, obviously requiring more computation

in proportion to the number of pixels evaluated, while the OGD by definition considers exactly four

neighboring pixels. Second, the two detectors differ in the ordering of the two steps of accumulation

of information over the feature window and of thresholding. The Kanade detector first accumulates

the products of gradients into the characteristic matrix, and secondly applies a threshold to the

eigenvalues of that matrix. The OGD applies the threshold to each pixel. If multiple OGDs were to

be aggregated, that accumulation would be done as a second step. The Kanade detector enforces a

structural constraint on the local image patch in the manner in which it aggregates information from

the constituent pixels. The OGD does not have an inherent mechanism for responding to structure

on a larger scale.

2.4.3 Comparison of Kanade detector and OGD

The Kanade detector and the OGD differ in the types of features they detect. Most obviously,

the Kanade detector uses a larger patch of the image and thus has more information from which

to decide whether a given image patch is salient. For the Kanade detector, the calculation of the

eigenvalues of the characteristic matrix (see eqn. 2.3) is trivial and meaningless if only the gradients

for a single pixel are used. Minimally, gradients from several pixels are necessary. For the feature

calculation to be centered conveniently on a pixel rather than a location between pixels, a 5x5 pixel



41

window provides a minimal 3x3 patch of gradient values. In comparison, the OGD relies on only

a single vertical gradient and a single horizontal gradient, thus incorporating information from 4

pixels. Secondly, since the Kanade detector responds to structure within this larger pixel window,

it responds to more complex structure than the OGD. Using Gh and Gv to represent the horizontal

and vertical gradients, respectively, at each pixel within the feature window W , rewrite eqn. 2.3 for

the characteristic matrix C:

∑
W

⎡
⎣ G2

h GhGv

GhGv G2
v

⎤
⎦

︸ ︷︷ ︸
C

·�d = −τ

⎡
⎣ Gh

Gv

⎤
⎦ · Lt (2.8)

The eigenvalues are then the solution to the quadratic equation:

∑
G2

h

∑
G2

v −
(∑

GhGv

)2

︸ ︷︷ ︸
c

λ +
(
−
∑

G2
v −

∑
G2

h

)
︸ ︷︷ ︸

b

+ 1︸︷︷︸
a

λ2 = 0

2λ = −b ±
√

b2 − 4c

A feature is defined where both eigenvalues are large and of a similar order of magnitude. In practice,

the latter constraint is enforced by limitations on the maximum possible pixel values, and only the

former constraint is of concern. The b term enforces response to high contrasts. The c term enforces

response to patches having structure, such as corners or textures, while reducing response to linear

edges. The OGD has no analogous means of enforcing constraints on structure.

In practice, the features selected by both detectors in response to the image in fig. 2.7 are shown

in fig. 2.8. The 30 best features selected by each feature detector are shown. The red outlines

indicate which pixels within each image patch were used for the feature calculation. Both detectors

respond positively to corner-like features. The Kanade detector also responds to end-points of lines,

which are composed of two corners. As a result of its inability to consider structure over a larger

window, the OGD detector responds to diagonal lines as it would to a sequence of corners, while

the Kanade detector correctly rejects them as it would any other edge.

From the perspective of hardware implementation, the two detectors differ in that the mathemat-

ical computations involved in the OGD are reduced relative to the Kanade detector in a manner that

facilitates implementation in hardware. Pesavento’s Kanade detector requires 3 multiplications to

calculate the characteristic matrix, plus another two multiplications and one subtraction to calculate

the featureness value, plus a thresholding operation. The OGD requires two subtractions to calcu-

late the gradients, two thresholding operations, and a single AND. The OGD can be implemented

with simpler circuits and ones whose mismatch can be corrected with far fewer floating gates, since



42

                         

Figure 2.7: A sample image used to generate the features shown in fig. 2.8

the circuits have fewer degrees of freedom. The details of the circuit implementation of the OGD

are described in sec. 3.2.

To complete the comparison of the Kanade detector and the OGD, I considered how well the

detected features could be applied to local motion estimation. For every feature in an image frame,

I compared the 3×3 pixel patch surrounding that feature with 3×3 patches surrounding nearby

features in the succeeding frame to calculate the local motion at a feature. Local motion is calculated

to be that which would take the feature in the first frame to its best matched nearby patch in the

succeeding frame. I limited the search to neighboring image patches, rather than searching the entire

image. This limit on search area reduces the computational requirements, improves matching for

small motions by effectively rejecting matches to distant image locations, and restricts the magnitude

of detectable motions. The limit must thus be chosen with regard for the fastest motion that the

detector may need to detect. The matching was not further optimized for the detector comparison

presented herein. For example, if feature A matches A’, then B is nonetheless also allowed to match

A’. This simplistic matching algorithm is illustrated in fig. 2.9. In hardware, such comparisons could

be performed using a modified bump-circuit [42, 19] incorporating floating gates to remove mismatch,

with the output currents simply summed onto a wire to calculate an overall similarity measure of

each patch. The comparisons could be done serially for each feature within the image. Since the

number of useful features within the image is presumably much smaller than the number of pixels

within the image, the additional time necessary to perform this calculation would be reasonable.

Using this method of computing local motion, I compared the fraction of features at which the

resulting local motion estimate was correct for the two feature detectors. I considered a number of

image sequences, most outdoors. For a fair comparison, the thresholds for the detectors were set such



43

F
O
=100.00

F
K
=77.69

F
O
=77.27

F
K
=3.22

F
O
=77.27

F
K
=3.45

F
O
=77.27

F
K
=4.13

F
O
=72.73

F
K
=4.16

F
O
=72.73

F
K
=3.08

F
O
=68.18

F
K
=57.83

F
O
=68.18

F
K
=4.62

F
O
=68.18

F
K
=4.62

F
O
=68.18

F
K
=5.56

F
O
=68.18

F
K
=34.71

F
O
=63.64

F
K
=8.08

F
O
=63.64

F
K
=16.65

F
O
=59.09

F
K
=7.14

F
O
=59.09

F
K
=59.95

F
O
=54.55

F
K
=6.96

F
O
=50.00

F
K
=9.01

F
O
=50.00

F
K
=29.53

F
O
=50.00

F
K
=3.34

F
O
=50.00

F
K
=72.02

F
O
=50.00

F
K
=5.45

F
O
=50.00

F
K
=4.91

F
O
=50.00

F
K
=50.11

F
O
=45.45

F
K
=45.73

F
O
=45.45

F
K
=73.11

F
O
=45.45

F
K
=5.07

F
O
=45.45

F
K
=2.35

F
O
=45.45

F
K
=8.75

F
O
=45.45

F
K
=2.72

F
O
=45.45

F
K
=16.78

                         
F

K
=100.00

F
O
=31.82

F
K
=95.85

F
O
=4.55

F
K
=87.25

F
O
=27.27

F
K
=82.28

F
O
=13.64

F
K
=77.69

F
O
=100.00

F
K
=77.44

F
O
=9.09

F
K
=75.91

F
O
=31.82

F
K
=73.11

F
O
=45.45

F
K
=72.02

F
O
=50.00

F
K
=59.95

F
O
=59.09

F
K
=58.97

F
O
=13.64

F
K
=58.09

F
O
=0.00

F
K
=57.83

F
O
=68.18

F
K
=56.72

F
O
=22.73

F
K
=55.57

F
O
=27.27

F
K
=55.14

F
O
=22.73

F
K
=52.04

F
O
=40.91

F
K
=50.11

F
O
=50.00

F
K
=48.49

F
O
=18.18

F
K
=47.74

F
O
=4.55

F
K
=47.47

F
O
=4.55

F
K
=46.81

F
O
=36.36

F
K
=46.15

F
O
=9.09

F
K
=46.14

F
O
=36.36

F
K
=46.00

F
O
=9.09

F
K
=45.73

F
O
=45.45

F
K
=45.12

F
O
=40.91

F
K
=44.96

F
O
=9.09

F
K
=44.83

F
O
=4.55

F
K
=44.50

F
O
=4.55

                         

Figure 2.8: The 30 best features detected by a 3x3 Kanade feature detector (bottom) and the
Orthogonal Gradient Detector (top) in the image from fig. 2.7. The red outline indicates pixels
considered by each detector. Values above each patch are the “featureness” of that image patch,
that is, the value that is thresholded to determine whether to classify the patch as a feature. For
the 3x3 Kanade detector, FK is the smaller of the eigenvalues λ. For the OGD, FO is the smaller of
the gradient values. Both FK and FO are normalized to range between 0 and 100 within the image.
Implications of differences between the detectors are discussed in the text and in figs. 2.10–2.16.



44

frame 1 frame 2

Figure 2.9: Example of detecting local motion. To find the local motion, the 3×3 image patch
around each feature in frame 1 is compared to equally-sized patches around neighboring images in
frame 2. The patch bearing the most similarity is assumed to be at the destination location of that
feature. Red dots indicate features detected in this small patch of an image. The green arrows in
frame 2 indicate the calculated motions between frames 1 and 2. Note that since one of the features
was lost in the second frame, the motion of one of the three features is estimated erroneously.

that the numbers of features detected in the first frames of each sequence were almost the same for

each detector and each image sequence. I used motion sequences with small displacements such that

the motion between frames was approximately equal to the spacing between pixels. Thus, a correct

local motion estimate would indicate motion to one of the neighboring eight pixels or no motion,

and I could aggregate the local motion estimates into a fraction of correctly-estimated motions. The

results are shown in figs. 2.10–2.16. The Kanade detector consistently performs slightly better, but

the margin of improvement varies with the type of image and is often very slim. As mentioned

previously, the OGD is sometimes confounded by diagonal edges. In highly structured scenes with

many non-textured areas, such as parking lots and other city scenes, both detectors perform well

with only a small margin of improvement for the Kanade detector. Such scenes simply do not

present the sorts of complex features where the added benefits of the Kanade detector would yield

a significant improvement. Some textured images, however, such as the chairs in fig. 2.15, contain

repetitive structure that provides the Kanade detector with good features but confuses the OGD

as it responds to the many lines and unstructured high-contrast areas. Perhaps surprisingly, in

spite of its simplicity, the OGD sometimes outperforms the more sophisticated Kanade detector

(ex. fig. 2.16). While the Kanade detector looks for trackable local structure, it does not verify

that neighboring image locations do not have very similar appearances. Thus, sometimes the OGD

selects features which are trackable by virtue of having high contrast and being different from their

surround, such as edges flanked by lower contrast patches. The OGD’s results tend to be more

uniformly distributed, while the Kanade detector’s features tend to clump in a smaller number of

locations within the image. In some sense, then, the OGD has better coverage since the features

provide information about more areas of the image than the Kanade detector.



45

49.8 % 45.6 % 

Kanade OGD

Figure 2.10: This synthetic image shows some of the fundamental differences between the Kanade
detector and the OGD. Each red dot marks one feature. The percentages listed above the images
indicate the fraction of features for which local motion was correctly estimated, as described in the
text. Note that the Kanade detector responds strongly to high-contrast areas of local structure.
The OGD selects both those areas and also several edges, which it confuses for a series of salient
features. However, enough variation exists at those edges for the percentage of correctly tracked
features to be only slightly lower for the OGD.

61.0 % 63.0 % 

Kanade OGD

Figure 2.11: In images with much structure and thus easily-trackable points, both the Kanade and
the OGD perform similarly. There are few diagonal lines and highly textured areas that would
confuse the OGD in a manner manageable by the Kanade detector.



46

78.1 % 67.8 % 

87.2 % 74.8 % 

Kanade OGD

Figure 2.12: Many city scenes contain simple structures, such as cars, and the performance difference
between the two detectors seen here is typical.

69.5 % 39.7 % 

Kanade OGD

Figure 2.13: In this image, the diagonal lane marker vastly reduces the effectiveness of the OGD.
Because the OGD responds to diagonal lines, the chosen “features” along the edges of the line
provide poor locations for motion estimation and thus incorrect local motion estimates.



47

61.1 % 57.0 % 

61.5 % 58.2 % 

71.0 % 60.4 % 

Kanade OGD

Figure 2.14: Many highly textured images result in local motion estimates of similar quality, sur-
prisingly. While one might expect that the ability of the Kanade detector to detect structure would
be especially critical in such images, in practice it turns out that local structure provide a small
advantage over simply finding very high-contrast spots within the image.

74.5 % 36.2 % 

Kanade OGD

Figure 2.15: In images with relatively high frequency structure, the Kanade detector significantly
outperforms the OGD. The backs of the chairs have spatial structure that is picked out well by the
Kanade detector. For the OGD, on the other hand, each chair is simply a highly textured area with
one spot no more salient than another. It is unable to consistently recognize the same features.



48

69.7 % 73.2 % 

Kanade OGD

Figure 2.16: An unusual example wherein the OGD performs better than the Kanade detector. The
jagged skyline with its diagonal lines is preferred by the OGD. Enough variation exists in the texture
of the buildings that the features detected along the diagonal edges suffice for good local motion
estimation.



49

Chapter 3

Circuit Design and Chip Data

3.1 Mismatch Reduction

Mismatch is a critical design issue in many circuits. Imperfections in chip manufacturing result in

circuit elements which are not quite identical and thus function differently than designed. People

have addressed the topic from many sides. Advancements in modeling accuracy assist in understand-

ing the repercussions of mismatch on a given circuit and facilitate choosing appropriate transistor

sizes. Improvements in processing address the fundamental physical reasons for the mismatch. Lay-

out techniques are available to the circuit designer to improve matching within the boundaries of a

given fabrication process. Other circuit design techniques focus on designing circuits that are less

sensitive to process variations or that can be compensated in some manner after fabrication.

This section reviews the impacts of mismatch as applicable to our circuits. Many layout tech-

niques rely on larger transistor sizing, which is impractical in arrays since each structure is repeated

multiple times. We instead chose to use floating-gate transistors, initialized once to null mismatch.

This section reviews both layout techniques and the use of floating-gate transistors for mismatch

reduction.

3.1.1 Briefly, on Modeling

Most approaches to modeling mismatch are based on the seminal work by Pelgrom et al. [60],

including the commonly used SPICE simulation parameters. Michael and Ismail extended Pelgrom’s

work to make the extracted parameters more compatible with existing circuit simulators and in [55]

thoroughly reference work prior to their own, providing a good review of the state of the art at

the time. While the Pelgrom parameters are computationally useful for modeling and simulating

mismatch, they do not directly map onto specific physical parameters. This makes them less useful

for understanding how to adjust the fabrication process to reduce mismatch, a concern addressed

by Drennan in [26]. Additional literature on mismatch modeling is profuse and research on this



50

G

G
S

S D
1

D1 D2D2 D

DG

GS

S

sh
ad

ow

sh
ad

ow

no
 s

ha
do

w

no
 s

ha
do

w

Figure 3.1: Layout for mismatch reduction. Left: Common-centroid layout improves matching
between nearby transistors. Consider what happens if a linear doping gradient exists on the chip
such that the left side of the figure receives a lower dopant concentration. The transistor formed
by the left side of D2 and S will have low doping. The transistor formed by the right side of D2
and S will have higher doping. If the doping is linear, the doping of the left channel will differ from
that in the center of the structure by an amount equal and opposite to the amount of change in
the right channel of that transistor. Their average value remains constant and equal to that of the
transistor between S and D1. Thus, the two transistors (D1 to S, and D2 to S) will be matched.
Right: Photolithographically invariant layout compensates for non-vertical dopant implantation,
not uncommon in drain/source implants. If dopants are implanted from a source to the right of the
shown transistor, each gate can cast a shadow wherein fewer ions are implanted to the left of the
gate. This results in capacitance mismatch between CGS and CGD. Laying out each transistor as
two oppositely oriented transistors, the effect of the implant angle is matched.

important topic continues to advance.

In our design flow, we simulated the effects of mismatch on our circuits prior to fabrication. We

used Pelgrom coefficients as provided by the foundry applied to the standard BSIM3V3.1 simulation

model.

3.1.2 Mismatch-Invariant Layout

Mismatch-invariant layout [5] is an obvious technique to consider. Some mismatch is due to doping

concentrations varying gradually across a chip. This can be counteracted by using common centroid

layout, illustrated and explained in the left side of fig. 3.1. Another source of mismatch occurs if ions

are implanted at an angle slightly off perpendicular to the chip. The transistor gate acts as a shield

and casts a shadow on the side opposite the ion source, causing differing impurity concentrations

in the source and drain diffusions. Photolithographically invariant layout addresses this issue, as

shown in the right side of fig. 3.1. Small scale local variations in doping or imprecise sizing due to

imperfect lithography can be compensated by simply making the transistors larger, thus averaging

over a greater area and decreasing the percent error. Lastly, the surround of a device impacts its

operating characteristics. For good matching within arrays, dummy devices can be used to surround

functional devices such that all functional devices are similarily influenced by abutting structures.



51

3.1.3 Mismatch in Arrays

Unfortunately, layout techniques are inadequate for reducing mismatch in the circuits in the pixel

array discussed in this thesis. Common-centroid layout can reduce mismatch among a small number

of nearby transistors. However, it is not applicable to reducing mismatch in circuits at distant ends of

a chip, such as the many pixels in an array. Photolithographically invariant layout could be applied

but the magnitude of the improvement would likely be insufficient. Simply resizing critical transistors

to be larger is impractical for circuits embedded within pixels. Performing any computations within

a pixel inevitably reduces the fill factor (percentage of a chip devoted to light sensing). Enlarging the

computational circuits to improve matching would further reduce the sensor resolution given a set

area of silicon, ultimately limiting the number of cells in the array to an impractically small number.

Mismatch between devices has previously been a critical barrier to producing truly useful arrays

of local processing elements [62], especially in design using subthreshold transistors [20]. Thus, we

must look to some other technique to address this problem

3.1.4 Reducing Mismatch with Floating Gates

Floating gate technology is used here as a compact means of reducing mismatch in circuits after

fabrication [25]. Floating gate devices are a form of non-volatile memory, which means they are able

to store their values for extended periods of time (on the order of years) as well as when power to the

circuit is turned off. The devices are programmed once to permanently remove mismatch between the

subcircuits into which they are embedded. Unlike EEPROMs which are programmed to either an on

or an off state, the floating gate transistors used herein are programmed to analog values. Floating

gate transistors are widely used in digital memory storage, namely in EPROM and EEPROM, whose

applications include CompactFlash cards and the BIOS of a computer. However, floating gate use

in analog circuits remains within the toolbox of a much smaller group of designers. This thesis

describes circuits which are an interesting addition to that toolbox. I have embedded them in the

logarithmic photoreceptor, in a novel difference circuit, and in the circuit which determines saliency

of image features.

The cross section of a floating gate transistor is shown in fig. 3.2. Unlike a standard MOSFET,

the gate is not electrically connected to any other circuit nodes. Since the gate is fully surrounded by

silicon dioxide, data retention times are vastly longer than those of capacitors. For processes with

gate oxide thicknesses exceeding about 70Å, the retention time is measured in years or decades.

Thus, we are able to program the floating gates to remove offset initially and operate the chip

without further reprogramming. The control gate, if fabricated, couples capacitively to the floating

gate. A transistor with a control gate functions much like a standard transistor with two exceptions.

First, the charge on the floating gate adds an offset to the threshold voltage. Second, because the



52

floating gate

source drain

control gate

Vcg

Vs Vd

substrate
or well

channel

Figure 3.2: Cross section of a floating gate transistor (not to scale).

floating
gate

n-
well

poly1

p+
diffusion

p+
diffusion n-

well

poly2
control
gate

tunneling
junction

injection
transistor

NFET
transistor

n+
diffusion

Control
Gate

Drain

Source

Floating
Gate

Figure 3.3: NMOS floating gate transistor, shown with structures for injection and tunneling. The
circuit symbol for the NFET floating gate transistor is shown on the right.

control gate couples to the channel via the floating gate, the coupling between the control gate and

channel is weaker than in a standard transistor, and thus the gain is lower. To calibrate the device

to its desired operating point, charge is added to or removed from the gate by hot carrier injection or

tunneling, respectively. In my circuits, tunneling is used globally to erase all floating gates. Injection

programs devices individually. The resulting analog value stored on the floating gate can be thought

of as either setting the current through the device to a chosen value, or adding an offset to the

transistor’s threshold voltage. The devices are programmed to values such that the circuit’s overall

operating characteristics match some desired goal.

Example layouts of floating gate devices are shown in figs. 3.3 and 3.4, including supporting

circuitry for erasing and programming. Note that the floating gate is not connected to any external

nodes. The left-most device in the two figures is the floating gate transistor. The control gate is

optional, although useful in experimental circuits for debugging purposes. The injection transistor



53

floating
gate

n-
well

poly1

p+
diffusion

p+
diffusion n-

well

poly2
control
gate

tunneling
junction

injection
transistor

PFET
transistor

p+
diffusion n-

well

Control
Gate

Drain

Source

Floating
Gate

Figure 3.4: PMOS floating gate transistor, shown with structures for injection and tunneling. The
circuit symbol for the PFET floating gate transistor is shown on the right.

uses hot carrier injection to deposit electrons onto the floating gate. In NFET transistors, channel

electrons are injected directly onto the gate. In PFET transistors, channel holes generate electron-

hole pairs, and these secondary electrons are then injected onto the gate. The tunneling junction uses

Fowler-Nordheim tunneling to remove electrons from the gate. In modern processes with thinner

oxides, direct tunneling may also occur. A more detailed discussion of injection and tunneling can

be found in [24].

When floating gate devices are expected to retain charge over long time periods, leakage through

the oxide is a concern. Charge can escape via direct tunneling. This process is exponential in the

thickness of the gate oxide. At gate thicknesses at or above 70Å, retention times are in years or

decades, depending on the desired precision. Below 70Å, leakage due to direct tunneling across the

gate oxide increases exponentially, limiting the scaling of oxide thicknesses and thus transistors to

be used in such memories. This trend is evident in the data of fig. 3.5. If we wish to fabricate analog

floating gate memories, we will run into the leakage problem. However, many modern processes

provide two types of transistors to circuit designers. In addition to the thin-oxide transistors scaled

as in fig. 3.5, the processes provide thick-oxide transistors intended for interfacing with higher voltage

devices off chip. These thick-oxide devices often have oxides thick enough for good retention times

and can be used within circuits wherever non-volatile analog (or digital) storage is useful.

3.2 Pixel Overview

The mathematical derivation of the Orthogonal Gradient Detector (OGD and comparison of the

OGD to the Kanade detector are presented in sec. 2.4, concluding with an algorithmic simplification.



54

1980 1985 1990 1995 2000 2005 2010 2015 2020
10

−1

10
0

10
1

10
2

T
ox

 (
nm

)

year

Brown
Sharma
Moore (Intel)
ITSR: LOP
ITSR: MPU
ITSR: NVM−NOR
ITSR: NVM−NAND

Figure 3.5: Gate oxide thickness as a function of time. The date is extracted from two books (by
Brown [64] and by Sharma), a talk by Gordon Moore (Intel), and the International Technology
Roadmap for Semiconductors [1]. LOP = “Low Operating Power.” MPU = “Microprocessor Unit,”
referring to high-performance digital logic. NVM = “Non-Volatile Memory.” While the exact values
are open to discussion based on whether one prefers to note cutting edge technology in development or
well-established processes, we can note some trends. First, as lithographic transistor dimensions are
scaled down every year, oxide thicknesses also decrease monotonically. Second, the oxide thicknesses
for non-volatile memories plateau at about 70Å.

This section discusses the VLSI implementation of the OGD.

Each pixel detects light and calculates the horizontal and vertical gradients at that point based on

its neighbors’ photoreceptor outputs. It stores these gradient values for two time steps, chosen by an

external clock. During readout, each pixel’s gradient values are thresholded to yield a determination

of whether that pixel is centered on a salient feature or not. This saliency calculation is performed

by a single on-chip circuit that is serially shared by all pixels. Digital processing external to the chip

can estimate local motion at each salient pixel. The salient pixel’s gradient values at the current

time step can be compared with values stored by neighbors at the previous time step to determine

where in the image the salient feature was located previously.

The functionality encapsulated by each pixel is shown schematically in fig. 3.6. Each pixel

contains a photoreceptor. Its output (L) is proportional to the logarithm of the light intensity and

provided as a voltage input to each of its neighbors. The pixel performs two difference operations,

one to calculate the horizontal gradient (LUP − LDOWN ) and a second to calculate the vertical

gradient (LLEFT −LRIGHT ). Four sample-and-hold (S/H) circuits store the gradient values for the

current and previous time steps, for each of the two difference calculations.

In practice, the pixel is implemented slightly differently, as shown in fig. 3.7. Since each dif-

ference circuit (sec. 3.4) contains two floating gates, including two copies of the difference circuit



55

L LUP

LDOWN

LLEFT

LRIGHT

GUD(t)

GUD(t-1)

GLR(t)

GLR(t-1)

Figure 3.6: Conceptual block diagram of a single pixel. L denotes the photoreceptor output in
response to the sensed light intensity. The analogous responses of the pixel’s neighbors are denoted
as LUP , LDOWN , LLEFT , and LRIGHT . The outputs of the difference circuits are stored in sample-
and-hold circuits. Since they represent the vertical (Up-Down) and horizontal (Left-Right) gradients,
they are denoted as GUD and GLR, respectively. The pixel stores gradient values for the current
time step as GUD(t) and GLR(t); and for the previous time step as GUD(t − 1) and GLR(t − 1).

would increase the layout area much more than the alternative implementation. In the alternative

implementation, the inputs from the neighboring pixels are switched such that the difference circuit

calculates first the horizontal gradient, and second the vertical gradient. The area of the switches is

less than that of a second difference circuit.

In-pixel processing is appropriate for local operations that map efficiently into circuits. This is

an example wherein a simple and local calculation is efficiently implemented on the same chip as

the photo-sensing array, parallelizing a huge computational task and vastly reducing the amount of

data to transmit off chip.

3.3 Photoreceptor Circuit

The light sensing element that serves as the input to each pixel is implemented as a logarithmic

continuous-time photoreceptor based on a photodiode. Before delving into the details of this pho-

toreceptor, I present a brief overview of silicon photodetectors to give context to the one I built.

Sec. 3.3.1 mentions several types of photo-sensitive devices. Sec. 3.3.2-3.3.3 present an overview of

some common photoreceptor topologies based on photodiode devices. Sec. 3.3.4 discusses a sampling

of previously fabricated photoreceptors with mismatch compensation. Finally, sec. 3.3.5 presents



56

L

LUP

LDOWN

LLEFT

LRIGHT

GUD(t)

GUD(t-1)

GLR(t)

GLR(t-1)

Figure 3.7: Block diagram of a single pixel, as implemented. To reduce layout area, only one
difference circuit is used. Switches are used to select between inputs (either horizontal or vertical)
and which sample-and-hold should store the difference.

my photoreceptor, along with measured data.

3.3.1 Light Detection Devices

Silicon photodetectors are implemented by means of one of several devices, whose photoresponse

is based on the same underlying principles of silicon physics. The most common devices used for

photodetection include photodiodes, charge-coupled devices (CCDs), and phototransistors, both

MOS and bipolar. Sze [74] provides a good introductory review of these devices. A photodiode

can be implemented (as in this thesis) as a lightly-doped n-well in a lightly-doped p-substrate. The

p-substrate is grounded while the n-well is held at a positive potential, reverse-biasing the diode.

When a photon strikes the silicon lattice in or near the diode’s depletion region, an electron-hole pair

is generated. The applied voltage sweeps the electron and hole in opposite directions, generating

a measurable current, the photocurrent. In this thesis and in other CMOS sensors, a small circuit

typically converts the current into a voltage or somehow amplifies the photocurrent before off-chip

readout. A CCD array is basically an array of closely spaced MOS diodes. Each device is reset to

some voltage and then photocurrent causes accumulation of charge in the CCD. For readout, the last

CCD in each row is read. Then the packets of charge are shifted to their neighbors, and the next row

is read. Specialized processes for fabricating CCDs allow this shifting of charge packets to be done

with minimal loss. Because the fabrication process is specialized, circuits are not implemented on

the same chip. For smart sensors that wish to incorporate some preprocessing, including windowing,



57

calibration, feature detection, or random-access readout, the CCD process is not an option. CMOS

processes allow fabrication of high quality circuits with embedded photodiodes or phototransistors.

3.3.2 The CMOS Integrating Pixel Sensor

Among CMOS image sensors, the most common technique for converting light into an electrical

output is to integrate the photocurrent onto a capacitor for some set time period. Such sensors

include those encompassed by the catch-phrase “Active Pixel Sensor” or “APS.” As shown in fig. 3.8,

a switch, implemented as either a PFET [22, 83] or NFET transistor, resets the output voltage node

Vout to a positive reset voltage, commonly the power supply rail Vdd. Light induces a current through

a photodiode, commonly formed by the junction of an n-well with the p-substrate. The photodiode

has a significant capacitance. Thus, the photocurrent I drains the voltage V out from the capacitor

C according to I = C · dVout

dt . The more light, the more photocurrent, and the more quickly V out

drops. After some set integration time, the voltage on the capacitor is read out. The voltage drop

Vdd − Vout is proportional to the number of photons captured by the device. The integration time

can be shortened at very bright light intensities and lengthened under dim conditions to extend the

dynamic range of the sensor.

The choice of NFET versus PFET switch is a trade-off between layout size and voltage range.

An NFET can be laid out directly in the p-substrate. PFETs require an n-well separate from

the photodiode and well spacing rules force the PFET-switched pixel to be larger than its NFET

counterpart. On the other hand, the maximum voltage to which the NFET version can be reset

is lower than with a PFET. For an NFET, Vout is reset to Vdd - Vth where Vth is the transistor

threshold voltage. With a PFET, that node can be fully reset to Vdd. As power supply voltages

drop in modern processes, maintaining a reasonable output range may require choosing a PFET

switch.

Vdd

Vout

Vdd

Vout

Vrst

Vdd

Vout

Vrst

General concept NFET integrating PFET integrating
photoreceptor photoreceptor

Figure 3.8: The basic topology of an integrating photodiode sensor. The capacitance of the NFET
and PFET instantiations is provided by the inherent capacitance of the photodiode.



58

3.3.3 The CMOS Continuous-Time Logarithmic Photoreceptor

Logarithmic photoreceptors send the photocurrent generated by by the photodiode through a transis-

tor operating below threshold. In subthreshold, the gate-source voltage of the transistor is exponen-

tially related to the current so the photoreceptor performs a logarithmic compression on the signal.

Such compression is analogous to human vision and extends the dynamic range of the photoreceptor

far beyond that of a CCD camera [51].

Possibly the simplest logarithmic photoreceptors based on a photodiode consist of one photo-

diode and one transistor, either an NFET or a PFET [7]. The respective topologies are shown in

fig. 3.9. Since the transistors in these photoreceptors operate below threshold, the voltage Vout is

Vdd

Vout

Vg

Vdd

Vout

NFET logarithmic PFET logarithmic
photoreceptor photoreceptor

Figure 3.9: Simple logarithmic sensors based on photodiodes.

logarithmically related to the photocurrent Iph:

NFET: Iph ∝ eVg−Vout

PFET: Iph ∝ eVdd−Vout

In the case of the NFET, the gate voltage Vg may be tied to Vdd for simplicity. Alternately, Vg can

be set by a bias to allow the output voltage to be shifted. If Vg is shifted down by some amount,

Vout will move down by the same amount.

Feedback may be used to increase the speed of the sensor [50, 21]. In the non-feedback topologies

shown in fig. 3.9 after a sudden change in the light intensity the photocurrent must fully charge the

capacitance of the photodiode to a new value before Vout reflects the change in illumination. Since

the photocurrent may be very small, at dim light levels this charging time limits the temporal

bandwidth of the photoreceptor. On the other hand, in the topologies shown in fig. 3.10, the current

driving the photodiode node is sourced by an amplifier and can be chosen to give a reasonable

bandwidth even at low illumination.



59

Figure 3.10: Logarithmic photoreceptors with feedback. The topology shown in A was used by Ni
et al. [58]. Landolt et al. [50] chose topology B after analysis of all three topologies for bandwidth
and damping. Delbrück et al. [21] implemented a topology similar to C. The transconductance of
the amplifier is denoted by gm. Most simply, the amplifier can be implemented as a single transistor
with node a attached to the gate and the source and drain connected to node b and ground. The
output resistance is denoted by gb. When the circuit is not driving a resistive load, gb arises from
the amplifier.

3.3.4 Mismatch and Calibration

The problem of mismatch is pronounced in analog focal plane processing arrays due to their use of

logarithmic photodetectors. Integrating pixel sensors, which reset a photodiode and sample it some

time later as explained in sec. 3.3.2, are affected primarily by mismatch between the photodiodes.

In modern high-quality processes, this mismatch is low enough to be acceptable for many applica-

tions. Measurements in 1.2µm and 2.0µm processes [46] indicate less than 2% mismatch between

photodiodes. Unfortunately, sampled photoreceptors are not well suited to continuous-time analog

computation. Mismatch in logarithmic photoreceptors, introduced in sec. 3.3.3, results primarily

from voltage threshold mismatch in the transistor that performs the logarithmic transformation.

Because mismatch between transistors is larger than that between photodiodes, logarithmic pho-

toreceptors suffer from much greater mismatch than integrating photoreceptors.

Fig. 3.11 illustrates the effects of mismatch on a linear array of 16 logarithmic photoreceptors

fabricated in a 0.35µm process. I uniformly illuminated the array and swept the illumination over

a wide range. Note that the constant slope of the photoreceptors. Most of the mismatch results in

offset error, which is what we should expect of subthreshold transistors whose thresholds are poorly

matched. Note also that this mismatch-induced shift in output voltage is of a magnitude comparable

to that resulting from typical signals. For example, the change in output voltage corresponding to

the difference between viewing an LCD monitor at its brightest setting and its darkest setting is

135mV. For a single light intensity, the 16 photoreceptors output voltages ranging over 60mV with

a standard deviation of 15mV, 44% and 11% of the LCD monitor signal range, respectively. Some

sort of mismatch correction, either within the photoreceptor array or in later processing, is critical

to fabrication of functional logarithmic imagers [51, 61].



60

BrightestDimmest  
2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

Log light intensity

P
h

o
to

re
ce

p
to

r 
o

u
tp

u
t 

(V
)

Response of 16 uniformly illuminated photoreceptors

LCD monitor range

No light

Vdd

Vbias

Vout

Figure 3.11: I uniformly illuminated a linear array of 16 logarithmic photoreceptors. As I swept the
magnitude of the illumination, the voltage output of the photoreceptors changed with the log of the
light intensity, as expected.

Samples of previous work on mismatch reduction in photoreceptors are summarized in Table 3.1.

Kavadias et al. [47] perform compensation for fixed-pattern noise (FPN) in a manner akin to cor-

related double sampling in integrating CMOS sensors. That is, they subtract the output of the

pixel in response to the photocurrent from the output in response to a calibration current. In a

different approach, Loose et al. [51] built a self-calibrating camera with logarithmic photoreceptors.

The photoreceptor topology is similar to the NFET logarithmic photoreceptor shown in fig. 3.9. A

capacitor in every pixel serves as an analog memory to store a calibration value for Vg to reduce

fixed pattern noise (FPN). Because capacitors leak charge, the stored voltages must be refreshed

periodically and calibration is performed every frame. Unlike capacitors, floating gate memories

(Electrically Erasable Programmable Read-Only Memories, EEPROMs) allow non-volatile storage.

The floating-gate calibration proposed by Aslam-Siddiqi et al. [6] calls for one-time calibration with

no further updates necessary during operation.

3.3.5 The Fabricated Logarithmic Floating-Gate Photoreceptor

The sensor presented in this thesis is shown in fig. 3.12D. It uses a basic logarithmic topology

with an NFET providing the logarithmic compression. Unlike its non-programmable counterpart

(fig. 3.12A), it incorporates a floating gate to allow for one-time calibration to remove mismatch.



61

first author year process pixel photo calibration remaining
feature size element technique mismatch

size (µm × µm)
(µm)

Aslam-Siddiqi [6] 1998 1.5 31.2 × 763 PFET floating-gate 2.5% of output
range

Poliquen [66] 1999 0.5 40 × 50 PNP capacitors for var = 6% mean
2.0 144 × 144 offset adjustment

Kavadias [47] 2000 0.5 7.5 × 10 diode subtract response 2.5% of output
to ref. current range

Loose [51] 2001 0.6 24 × 24 diode in-pixel capacitor- not
based memory available

Cohen [16] 2001 1.2 34 × 34 PNP floating-gate for not
gain adjustment available

Table 3.1: Overview of some previous implementations of logarithmic CMOS sensors with reduced
fixed-pattern noise (FPN).

Vdd

Vbias

Vout

0 50 100 150 200 250
2.48

2.5

2.52

2.54

2.56

2.58

2.6

2.62

2.64

2.66

LCD monitor value

P
h

o
to

re
ce

p
to

r 
o

u
tp

u
t 

(V
)

0 50 100 150 200 250

3.64

3.66

3.68

3.7

3.72

3.74

3.76

3.78

3.8

LCD monitor value

P
h

o
to

re
ce

p
to

r 
o

u
tp

u
t 

(V
)

Vdd

Vbias

Vout

Vfg

A B C D

Figure 3.12: Logarithmic photoreceptor, with and without a floating gate for reducing mismatch,
both fabricated in the same 0.35µm process. A: A basic logarithmic photoreceptor. B: The response
of 16 non-programmable logarithmic photoreceptors to a uniformly illuminated LCD monitor. C:
The response of 16 floating-gate logarithmic photoreceptors to the same stimulus. D: A floating-gate
logarithmic photoreceptor.

The mismatch is vastly reduced, as shown in fig. 3.12B–C. In the non-adjustable version, the two

worst-matched photoreceptor outputs differ by 60mV. The outputs of the sixteen photoreceptors vary

with a standard deviation of 15mV. In the floating-gate version, the mismatch drops to a standard

deviation of only 0.5mV at the light intensity at which I performed the calibration (monitor value of

177), and to a 1.5mV standard deviation when the standard deviations are averaged over all stimuli.

Both values for the floating-gate photoreceptor are less than the 2.1mV resolution of the ADC

(Analog-to-Digital Converter) in the instrument used to collect the data. Data from a larger array

of 256 pixels (16×16) is shown in fig. 3.13. I excluded the edge pixels of the complete 18×18 array.

After programming, the mean standard deviation among the 256 pixels is 5.2mV. Considering that

the ADC converter used for feedback during calibration and for the measurements has a resolution



62

of 2.1mV, this is quite reasonable. More precise programming is possible, limited here primarily by

equipment and noise in the test setup.

0 50 100 150 200 250 300
2.85

2.9

2.95

3

3.05

3.1

LCD value

P
ho

to
re

ce
pt

or
 o

ut
pu

t (
V

)

0 0.01 0.02 0.03 0.04 0.05
2.85

2.9

2.95

3

3.05

3.1

Light intensity (mW/m2)

P
ho

to
re

ce
pt

or
 o

ut
pu

t (
V

)

Figure 3.13: Floating-gate photoreceptor output voltage as a function of the illumination for a 16×16
array. Bars show the standard deviation of the pixel values at each point. Left: Data as a function
of the LCD monitor value, in units used by the monitor. Right: The same data with the x-axis
converted to light intensity, based on data from a light meter.

3.4 Difference Circuit

Having measured the light intensity at each pixel, we now need to extract the gradient of the

light intesity along both the x and y axes. An analog difference circuit calculates this quantity.

Unfortunately, analog circuits are impacted by transistor mismatch when small devices are employed.

To remedy this problem, we incorporate two floating-gate transistors into each difference circuit.

The floating gates are programmed to analog values, thus biasing the circuit in a manner that

nulls process-dependent mismatch. An overview of the circuit is shown in fig. 3.14. V1 and V2

are inputs from neighboring pixels and correspond to light intensities. Floating gates fgγ and fgρ

store precise quantities of charge which can be fine tuned individually for each difference circuit by

injection and tunneling. The output of the difference circuit is a current. Due to the requirements

of succeeding stages, we convert the current into a voltage. This voltage output is available for

external measurement and all presented data are derived from measurements of the output of the

current-to-voltage converter, Vdiff in fig. 3.14.

Sec. 3.4.1 presents the topology of the difference circuit, the mismatch compensation mechanism,

and equations characterizing both the basic functionality and the mismatch compensation. Sec. 3.4.2

explains the current-to-voltage converter, a simple circuit necessary for interfacing with subsequent

circuitry. Finally, sec. 3.4.3 presents measured results from difference circuits on the fabricated chip



63

V1

V2

Idiff

Calibration:

Inputs:

fgρfgγ

Current
to

Voltage
Converter

Vdiff

Figure 3.14: Overview of the difference circuit diff. Both the intermediate output Idiff and the final
output Vdiff are proportional to the difference of the inputs (V2 − V1). In the context of the feature
detection chip, V1 and V2 come from neighboring photodetectors such that Vdiff is proportional to
either the vertical or horizontal light intensity gradient.

−100 −50 0 50 100

V1 − V2 (mV)

I d
if

f: 
O

u
tp

u
t 

C
u

rr
en

t

 

 

Ideal
Gain mismatch
Offset mismatch

Figure 3.15: Cartoon illustrating the concepts of “gain” and “offset” as applied to the diff circuit.
The output of the difference circuit should ideally be a line proportional to the inputs (V2 − V1).
The “gain” is the slope of this line, and the “offset” is how far the line is shifted from crossing the
origin (0,0). Gain mismatch or compensation refer to changing the slope of the line, whereas offset
mismatch or compensation refer to translating the curve.



64

and discusses deviations from ideality.

3.4.1 Difference Circuit Topology and Analytical Description

The difference circuit is based upon a differential pair whose two output currents I1 and I2 are

subtracted by a current mirror, as shown in fig. 3.16. The operation of this circuit is described by:

Vdd

V1 V2

I1 I2

Ix

I2-I1

IxPX

P1 P2

N1 N2

Figure 3.16: A differential pair constitutes the computational core of the difference circuit.

Idiff = I2 − I1 = Ix tanh

(
κ

Ut
(V1 − V2)

)
(3.1)

where Ut is the thermal voltage (25mV at room temperature) and κ expresses the effect that the

transistor gate has on the surface potential in the channel, and is constant for a given process and

transistor geometry. Since the tanh function is approximately linear in the region of operation, we

can approximate eqn. 3.1 to:

Idiff = Ix ζ(V1 − V2) (3.2)

where ζ is a constant and Ix is set by the current source PX. As desired, the output current Idiff is

linearly dependent on the difference of the inputs (V1 − V2).

Since a line can be characterized by two parameters, and since this circuit is operated in its linear

range, mismatch within the circuit also can be characterized by two parameters. I will refer to a

shift in the slope of the line as a “gain” mismatch, denoted by γ. In physical terms, this corresponds

to a change in the absolute magnitude of the output current. A translation of the line is denoted

by ρ and referred to as an “offset” mismatch. “Offset” mismatch manifests itself as a non-zero

output current when V1 = V2. Using this nomenclature, the effect of mismatch on the circuit can



65

be expressed as:

Idiff = γIx ζ(V1 − V2) + ρ (3.3)

These concepts are expressed visually in fig. 3.15.

Two floating gate devices within the circuit allow compensation for mismatch along both degrees

of freedom. To null gain mismatch, the current source for Ix is implemented by the floating-gate

PFET PX shown in fig. 3.17. Vbias is an externally applied voltage shared among all difference

circuits in all pixels. The precise amount of charge on the floating gate of PX (fgγ) sets the voltage

Vfgγ , in turn setting the current Iγ . Since Idiff ∝ Iγ , adjusting the charge on fgγ permits calibration

of the output magnitude of Idiff or equivalently compensation for gain mismatch as expressed by

the parameter γ of eqn. 3.3.

To compensate for offset mismatch, it is tempting to modify either P1 or P2 in fig. 3.16 to be

a floating gate device. Consider making P1 a floating gate device. Changing the amount of charge

on its floating gate is equivalent to introducing a shift in the threshold voltage, or adding a chosen

offset VP1 to the input:

Idiff = γIx ζ(V1 + VP1 − V2) + ρ

Being able to adjust VP1 would indeed permit nulling of ρ in eqn. 3.3 by setting VP1 = −ρ/(γIxζ).

Unfortunately, a floating gate device has a different transconductance than a regular transistor.

Since the poly2 control gate must couple through the poly1 floating gate to the channel, the effect

on the channel of a voltage change on the poly2 control gate is smaller than in the case of a regular

transistor with a poly1 control gate. Expressing this change in transconductance, once calibrated

the transfer function of the circuit would be:

Idiff = Ix ζ(κ1V1 − κ2V2)

with κ1 < κ2. The inputs of the circuit (V1 and V2) would not be symmetric. To reintroduce

symmetry, one could put a floating gate on each of P1 and P2 to equalize their transconductances.

However, such circuits are difficult to program. Error in the output current can be corrected by

either increasing the voltage on one floating gate or decreasing the voltage on the other floating gate.

Finding a good common mode is difficult.

Rather than implementing P1 or P2 as floating-gate transistors, I modified the circuit topology

as shown in fig. 3.17. In this solution, the gate voltages of all floating gate transistors remain

constant once programmed. These transistors’ transconductances thus do not affect the computation

performed by the circuit. Transistor P1 of fig. 3.16 is duplicated and thus replaced by P1 and P4 of



66

V1 V2 V1I1 I2 I3 I4

Vref
Iref

Vdd

Idiff

Vref

Vbias

Iρ

Vfgρ

Vfgγ

Iγ
PX

P1 P2 P3 P4

N1 N2

P5 P6

Figure 3.17: The topology of the fabricated difference circuit. Note that P1 and P3 are twice as
wide as P2 and P4 to build an offset into each input differential pair, as discussed in the text.

fig. 3.17; similarily P2 is replaced by P2 and P3.

Ignoring mismatch for a moment, note that the transfer function of the circuit is unchanged

compared to its simpler counterpart. The output current is Idiff = (I2 + I3) − (I4 + I1). The

operations of the differential pairs with V1 and V2 as inputs can be characterized by:

I2 − I1 = Iρζ(V1 − V2) for P1 and P2

I3 − I4 = Iref ζ(V1 − V2) for P3 and P4

We can combine these equations to describe the overall computation performed by the fabricated

circuit of fig. 3.17:

Idiff = Iρζ(V1 − V2) + Iref ζ(V1 − V2)

= Iγζ(V1 − V2)

which is the same as eqn. 3.2 for the simpler circuit in fig. 3.16.

From here, we can discuss how mismatch will affect the circuit’s transfer function and how



67

I1 I2 I3 I4

Iγ

Iρ

Vfgγ

Vfgρ

Vref
Iref

Vdd

Idiff

Vref

Vbias

V1+VM1

I1+I4

V2+VM3
V1+VM4

V2+VM2

I2+I3

I1+I4

Figure 3.18: Mismatch in the difference circuit can be represented as offsets in the threshold voltages
of the input PFETs. The threshold voltage shifts are denoted by VM1, VM2, VM3, and VM4.

programming floating gates fgρ and fgγ permits compensation for most of that mismatch. As

previously explained, deviation from ideality in PX is directly addressed by adjustment of Vfgγ .

Matching in P5 and P6 is only important inasmuch as it splits the current Iγ into Iρ and Iref ,

and directly addressed by programming fgρ. Of the remaining transistors, simulations suggest that

mismatch in the input PFETs (P1-P4) is the dominant source of mismatch. We can represent the

primary effect of this mismatch as a shift in the threshold voltage of transistors P1-P4. This is

represented in fig. 3.18 by VM1, VM2, VM3 and VM4. Mismatch in the current mirror (N1-N2) will

affect the circuit but mismatch simulations indicated that the resulting error is minor. Without

mismatch correction, mismatch in P1-P4 vastly overshadows that from N1-N2. Adjustment of Vfgρ

changes the relative weighting of the input differential pairs (P1-P2 and P3-P4), correcting for offset

error between these transistors.

We can now derive an equation characterizing the operation of the circuit, including mismatch

in the input PFETs, and then derive the constraint that must be met to null the mismatch. The

currents through the input PFETs are:

I1 =
1
2
Iρ +

1
2
Iρ · ζ · (V2 + VM2 − V1 − VM1)



68

I2 =
1
2
Iρ − 1

2
Iρ · ζ · (V2 + VM2 − V1 − VM1)

I3 =
1
2
Iref +

1
2
Iref · ζ · (V1 + VM4 − V2 − VM3)

I4 =
1
2
Iref − 1

2
Iref · ζ · (V1 + VM4 − V2 − VM3)

By Kirchhoff’s Current Law, Idiff = (I2 + I3)− (I1 + I4), which unifies the above equations to yield

the output current:

Idiff = (Iρ + Iref ) · ζ︸ ︷︷ ︸
gain

·(V1 − V2) + Iρ · ζ · (VM1 − VM2) + Iref · ζ · (VM4 − VM3)︸ ︷︷ ︸
offset due to mismatch

(3.4)

We would like Idiff to be a linear function of (V1 − V2) and include no mismatch terms. We would

also like the gain term that defines the relationship between Idiff and (V1 − V2) to be adjustable

so we can match all difference circuits on the chip. In short, we would like to find parameters that

return eqn. 3.4 to a form like: Idiff = gain× (V1 − V2). Regulating the gain is straightforward since

(Iρ + Iref ) is equal to Iγ , which in turn is directly programmable by fgγ. To remove offset due to

mismatch, the last two terms in eqn. 3.4 must sum to zero:

0 = Iρ · ζ · (VM1 − VM2) + Iref · ζ · (VM4 − VM3)

which is equivalent to the constraint:

Iρ

Iref
=

VM3 − VM4

VM1 − VM2
(3.5)

The current ratio Iρ/Iref is directly controlled by programming fgρ. Because both Iρ and Iref

are unidirectional, the left-hand side of eqn. 3.5 will always be positive. To satisfy the constraint

embodied by this equation, then, the fraction on the right also must be positive. However, since

each mismatch term is equally likely to be positive or negative, the right-hand side of eqn. 3.5 will

only be positive in about half the cases. To guarantee that this fraction is always positive, we build

in offsets such that VM4 > VM3 and VM2 > VM1 (or, VM4 < VM3 and VM2 < VM1). On the chip, P1

and P3 are twice as wide as P2 and P4. Denoting this built-in offset as Vbi, the transfer function of

eqn. 3.4 becomes:

Idiff = Iγζ(V1 − V2) + Iρζ(VM1 − VM2 − Vbi) + Irefζ(VM4 − VM3 + Vbi)

= Iγζ(V1 − V2) + (Iref − Iρ)ζVbi + Iρζ(VM1 − VM2) + Irefζ(VM4 − VM3) (3.6)



69

and the constraint of eqn. 3.5 becomes:

Iρ

Iref
=

Vbi + VM3 − VM4

Vbi + VM1 − VM2

We must choose Vbi such that even for the worst cases of mismatch, the mismatch terms of

eqn. 3.6 can cancel to zero:

0 = (Iref − Iρ)ζVbi + Iρζ(VM1 − VM2) + Iref ζ(VM4 − VM3) (3.7)

When this constraint is met, offset mismatch will be fully nulled. If we denote the maximum expected

value of VM1, VM2, VM3, or VM4 as VMmax, for the cases of mismatch that require the most extreme

adjustment the constraint of eqn. 3.7 becomes:

0 = (Iref − Iρ)ζVbi + 2IρζVMmax + 2IrefζVMmax CASE 1

0 = (Iref − Iρ)ζVbi − 2IρζVMmax − 2IrefζVMmax CASE 2

or more succinctly:

±1
2
· Iρ − Iref

Iρ + Iref
=

VMmax

Vbi
, (3.8)

The two cases are symmetric and differ in whether Iρ > Iref or Iref > Iρ, with the absolute value

|Iρ − Iref | being equal in both extreme cases. Recall that VMmax is the inherent process-dependent

mismatch which as circuit designers we do not control, Vbi is the built-in offset chosen prior to

fabrication, and Iρ and Iref are adjustable after fabrication. A proper choice of Vbi depends on

VMmax, which we can only estimate, and the range over which we adjust Iρ/Iref . If Vfgρ is set

significantly above (or below) Vref , one of the branches of the circuit will turn off entirely, with

Iref = Iγ and Iρ = 0 (or Iρ = Iγ and Iref = 0). This specifies the extremes of the range over which

we can adjust fgρ and thus the ratio Iρ/Iref . Thus, the left-hand side of eqn. 3.8 can range between
1
2 and − 1

2 . In order for the right-hand side to always remain within these bounds:

Vbi ≥ 2VMmax (3.9)

If the built-in offset Vbi is too small, not all mismatch in the offset will be removable. Since a

prefabrication estimate of VMmax is indeed merely an estimate, it is prudent to make Vbi more than

double the expected maximal mismatch VMmax. However, an overly large value of Vbi will require

only very small adjustments in Iref/Iρ and thus very precise control of the charge on fgρ. Such

precision in turn requires low noise on the supplies generating injection-related biases and careful



70

design of the injection algorithm, both of which add to complexity and can lengthen the time required

for calibration.

The calibration of the difference circuit can be divided into two phases, the first for fgρ and the

second for fgγ. In the first phase, we adjust the ratio Iρ/Iref by injecting fgρ. A change on the gate

of P5 (fig. 3.17) may cause a change in the voltage on the drain of PX, thus affecting the gain. Since

the difference circuits are programmed one at a time, we temporarily adjust Vbias, if needed, during

this phase of calibration to maintain a consistent gain. The second phase of calibration involves

permanently adjusting the gain of the circuit. Vbias is returned to its base value and injection to

fgγ brings the gain to its calibrated value. Simulation results in fig. 3.19 illustrate the calibration

technique. Measured results are presented in sec. 3.4.3.

−0.1 0 0.1

−4

−3

−2

−1

0

1

2

3

4

x 10
−8

V1−V2 (V)

Io
ut

 (
A

)

no error, v
fgp

=4.000, i
y
=100nA

w/ error, v
fgp

=4.000, i
y
=100nA

w/ error, v
fgp

=3.803, i
y
=100nA

w/ error, v
fgp

=3.803, i
y
=34.1nA

Figure 3.19: Simulation results for programming the difference circuit to remove mismatch. The
black line shows initial simulation with no mismatch. Red line shows circuit output with error added
to some of the inputs to model mismatch. Calibration phase 1: The dotted blue line corresponds to
output after offset removal by adjusting Vfgρ and thus the ratio between Iρ and Iref . Calibration
phase 2: The green line is current output after adjusting both Vfgρ and Vfgγ to correct offset and
gain, respectively. The gain is proportional to Iγ , which is controlled by Vfgγ .

3.4.2 Difference Circuit Current-to-Voltage Conversion

The output of the difference circuit is a current, yet a voltage is preferable as input to the succeeding

stage. To detect motion, we need to compare image intensity gradients at one step in time with

those at another step in time. To calculate features over the entire array for the same instant in

time, we need to store the calculated gradients until they can be read off the chip. After considering

a sample-and-hold (S/H) circuit topology with current input, we chose a voltage-input S/H to ease

minimizing mismatch-induced errors within the S/H.



71

S/H Vdiff

Idiff

Vreset

C

Figure 3.20: The current-to-voltage circuit integrates current onto a capacitor for a prespecified time
interval. The resulting voltage is buffered and sampled by a sample-and-hold (S/H) which outputs
a voltage that is linearly proportional to the input current.

The current-to-voltage converter is simply a capacitor, as shown in fig. 3.20. We reset the

capacitor to some voltage Vreset. We then allow the difference circuit to output its current Idiff

onto the capacitor for a set integration time tinteg. At the end of this time, we switch the S/H from

sample mode to hold mode. The voltage is then available for use by the on-chip saliency circuit

or for off-chip readout. The output voltage Vdiff is linear in the input current. The capacitance C

determines the scaling factor. The circuit is described by following equation:

Vdiff = Vreset + Idiff · tinteg

C
(3.10)

The range of the circuit is limited primarily by the limited range of our S/H circuit, approximately

2.25V to 4.25V. Since the output of the difference circuit should be symmetric around Idiff = 0, an

intermediate value such as 3.25V is a good choice for Vreset.

All measured results from the difference circuit are buffered by the current-to-voltage converter

and the sample-and-hold, as described here.

3.4.3 Difference Circuit Measured Results

Measured results from the difference circuit are presented in figs. 3.21 and 3.22. In each figure,

the x-axis corresponds to the difference between the inputs V1 and V2. V1 and V2 are generated

by photoreceptors, which in turn are activated by a visual stimulus generated by an LCD monitor.

The y-axis is the current output of the difference circuit, Idiff . As explained in sec. 3.4.2, Idiff is

not measured directly but rather calculated as dictated by eqn. 3.10 based on the measured voltage

Vdiff . Vreset, tinteg , and Vdiff are measured quantities. C is estimated to be 282pF from the laid out

area of the capacitor (a MOSCAP) and process parameters provided by the foundry.

Fig. 3.21 shows the shift in offset of the output of the difference circuit as Vfgρ changes due to



72

−100 −50 0 50 100
−200

−100

0

100

200

difference in V
ph

 (mV)

di
ff 

ou
tp

ut
 c

ur
re

nt
 (

nA
)

Before inj
After inj

−100 −50 0 50 100

−200

−100

0

100

200

difference in V
ph

 (mV)
di

ff 
ou

tp
ut

 c
ur

re
nt

 (
nA

)

Before inj
After inj

−100 −50 0 50 100

V1 − V2 (mV)

I d
if

f: 
O

u
tp

u
t 

C
u

rr
en

t

 

 

Ideal
Gain mismatch
Offset mismatch

Figure 3.21: Injection to the floating gate fgρ changes the offset of the difference current output.
Left and center: Measured data for two distinct difference circuits. Before programming, the data is
offset due to mismatch (red circles). After programming, the transfer function is calibrated to cross
the origin (black squares). Unmarked cyan lines indicate intermediate values during programming.
Note that the gain is slightly affected by programming fgρ in both examples. Right: Cartoon of
concept.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

highest V
fgγ

lowest V
fgγ

dV
ph

 = V
2
 − V

1
 (mV)

I d
if

f (
fA

)

−100 −50 0 50 100

V1 − V2 (mV)

I d
if

f: 
O

u
tp

u
t 

C
u

rr
en

t

 

 

Ideal
Gain mismatch
Offset mismatch

Figure 3.22: Sweeping the floating gate voltage Vfgγ changes the bias current Iγ in the difference cir-
cuit, and thus the magnitude of the output current, allowing calibration of the gain. Left: Measured
data. Right: Cartoon of concept.



73

0 100 200

−10

−5

0

5

10

Max contrast

I di
ff (

uA
)

vertical
horizontal

0 100 200

−10

−5

0

5

10

Max contrast

I di
ff (

uA
)

vertical
horizontal

0 100 200

−10

−5

0

5

10

Max contrast

I di
ff (

uA
)

vertical
horizontal

0 100 200

−10

−5

0

5

10

Max contrast

I di
ff (

uA
)

vertical
horizontal

Figure 3.23: Output of difference circuit to blank screen and edge stimuli.

calibration by injection. Injection to the floating gate fgρ changes the offset of the difference current

output. By precise injection, we can remove the offset such that the curve crosses the origin. In

this case, a lower value of Vfgρ shifts the curve right. Whether the curve shifts left or right with

injection depends on the mismatch. For example, we can see from eqn. 3.4 that if VM1 > VM2 and

VM3 ≈ VM4, increasing Iρ will increase the output current shifting the curves left. If the mismatch

is such that and VM1 < VM2, an increase in Iρ will have the opposite effect.

Fig. 3.22 shows the change in the gain of the difference circuit as the voltage on fgγ is changed.

As Vfgγ decreases, the bias current Iγ increases and the output current also increases. Numerical

values for Vfgγ are not provided because we cannot measure the floating-gate voltage. We can

increase Vfgγ by tunneling, decrease it by injection, and move it in either direction by sweeping

voltages capacitively coupled to all the γ floating gates (Vbias and Vtun). For this figure, the light

intensity was swept over the entire range of the monitor for the entire contrast range available from

this stimulus.

Response of the difference circuit to visual stimuli is shown in figs. 3.23 and 3.24. Note that these

results are for a poorly calibrated circuit, which is evident from the non-zero output in response to

an input with zero gradient. For each stimulus, the contrast was varied from zero (white and black

regions of the same intensity) to 255 (white and black regions maximally different, as permitted by

LCD monitor stimulus). The responses are as expected. For edges, only one of the outputs changes

with contrast, while the other gradient is calculated to be constant. For corners, both outputs

change simultanously. For low contrasts, the LCD monitor range is compressed and the difference

circuit does not detect a difference. For large contrasts, the difference circuit saturates because I

used a constant-length integration time in the current-to-voltage conversion.

Array data are not available because not all structures can be programmed. In order to null



74

0 100 200

−10

−5

0

5

10

Max contrast

I di
ff (

uA
)

vertical
horizontal

0 100 200

−10

−5

0

5

10

Max contrast

I di
ff (

uA
)

vertical
horizontal

0 100 200

−10

−5

0

5

10

Max contrast

I di
ff (

uA
)

vertical
horizontal

0 100 200

−10

−5

0

5

10

Max contrast

I di
ff (

uA
)

vertical
horizontal

Figure 3.24: Output of difference circuit to corners.

mismatch after fabrication, the built-in offset in the input transistors (P1–P4) must meet the con-

straint of eqn. 3.9. Unfortunately, I underestimated the magnitude of the mismatch (VMmax) and

did not build in a sufficiently large offset (Vbi). Approximately half of the difference circuits on the

chip cannot be calibrated.

3.5 Sample-and-Hold Circuit

The voltage output of the difference circuit is stored locally prior to readout. We would like to

capture information about gradients in the image at the same time for the entire image. If we stored

the gradient and intensity information externally at time of readout, the value for the first pixel

would be offset in time from that for the last pixel. More importantly, the information for a pixel on

one row would be offset from that for its neighbors in other rows. Instead, a single complementary

pair of clock signals initiates the transition from sample to hold for the entire array, assuring that

gradient information for each pixel is captured at the same instant in time.

3.5.1 S/H Design

The chosen sample-and-hold (S/H) circuit topology can be described by the block diagram in

fig. 3.25. The transistor level design is shown in fig. 3.26. Transistors P1-P5 and N6-N9 consti-

tute the amplifier. The buffer is implemented as a source-follower with transistors P10 and P11.

The MOS capacitor Ncap serves as the hold capacitor. The switches S12-S15 act to enable or disable

the amplifier, thus transitioning between sample and hold modes, respectively.

In sample mode, transistor P1 provides the bias current for the amplifier. Switches S12-15 are

as shown in fig. 3.26, setting their respective amplifier nodes to Vpbias, Vpcas, Vncas, and letting the



75

−

+Vin

Vout

amplifier buffer

Figure 3.25: Block diagram of the sample-and-hold circuit.

P1

P3

N6
N7

Ncap

P4 P5
P10

P11

N8

N9

Vpcas

Vncas

Vout

Vin

Vpbias

P2

S12

S13

S14

S15

Vbuf

Vhold

NC

Figure 3.26: Transistor schematic of the sample-and-hold circuit.



76

CLKin CLK

nCLK

Figure 3.27: Generating a simultaneous pair of clock waveforms. Note that the circuit contains two
identical stages in series. The delay between clk and Nclk after the first stage is 14.6ps (simulated).
The delay after the second stage is 0.8ps (simulated). In comparison, one inverter delay is about
134ps.

current mirror set itself. The input voltage Vin is buffered onto Vout by the combination of the

amplifier and the buffer. The voltage on the hold capacitor Vhold is driven to some Vout = Vin as

needed to set the current through P11 equal to that sourced by P10. Vbuf is generated by an on-chip

bias generator and shared by all the S/H circuits on the chip. Vbuf must generate a large enough

bias current through P10 to keep the follower bandwidth high enough for stability in the feedback

loop formed by the amplifier and the buffer. However, a large current through P11 forces Vhold

lower. As Vhold drops, eventually Ncap goes into subthreshold and its capacitance decreases. This

in turn increases the pedestal size, since the same amount of injected charge causes a larger voltage

jump on a smaller capacitor. Ideally, then, Vbuf would be just low enough to keep the S/H circuit

stable, but no higher.

To switch to hold mode, switches S12-S15 are switched opposite to the position shown in fig. 3.26,

setting their corresponding amplifier nodes to Vdd or Vgnd to turn off the amplifier. This turns off the

bias current in the amplifier (P1), the currents through the cascode transistors (P4-P5, N6-N7), and

the currents in the current mirror (N8-N9). Thus, voltages on most internal nodes of the amplifier

should remain roughly where they were during operation, hopefully reducing leakage from Vhold

through transistors P5 and N7 and decreasing the time needed for the amplifier to turn on when

transitioning from hold to sample.

At the transition from sample to hold, all transistors in the amplifier need to turn off at the same

time. The complementary clocks driving switches S12-S15 must be simultaneous. A single off-chip

clock is provided and split into two complementary signals on-chip by the circuit shown in fig. 3.27.

In simulation, the delay between the outputs clk and Nclk is only 0.8ps, much less than necessary

for the S/H to switch modes without a glitch.

A folded cascode topology was rejected for the smaller basic topology in fig. 3.26. While a folded

cascode topology can improve range, the voltage of the preceeding difference circuit can be chosen to

have a narrow enough range to allow for use of the non-folded topology. As a secondary benefit, the



77

Figure 3.28: Channel charge in triode (top) and saturation (bottom).

non-folded topology has only four noise-inducing transistors, compared to six in a folded topology.

Consideration of stability is essential in the design of any feedback circuit. A hand calculation

of the circuit in fig. 3.25, assuming two amplifiers and two capacitative nodes, suggests that the

circuit should always be stable. However, simulation of the complete circuit in fig. 3.26 indicates

the presence of a third significant pole. To maintain a phase margin of at least 60 degrees, we need

to make sure that the buffer (P10-P11) is fast enough. This constraint requires a current of at

least 450nA through these two transistors. The exact value of this current is controlled by Vbuf .

An on-chip bias generator produces Vbuf through a series of current mirrors that rescale an off-chip

reference current. P11 must be wide enough that even with this current, the gate (Vhold) will be

at a reasonable voltage. If P11 is too narrow, the voltage Vhold necessary for P11 to sink its bias

current may drop below the operating range of the amplifier or be insufficient to keep the channel

of Ncap inverted. If this MOSCAP goes out of inversion, its capacitance will drop.

The cascode capacitors (P4, P5, N6, and N7) reduce charge injection onto the hold capacitor

during the switch from sample to hold, as suggested by Dai and Harjani [18]. The cascode transistors

are operated in saturation rather than in the triode region. In the triode region, channel charge

is fairly evenly distributed throughout the channel, shown schematically in fig. 3.28. When the

transistor turns off, some of this charge flows to the drain and some to the source. In saturation,

the charge distribution is non-uniform with the majority of the charge near the source of the device.

Thus, upon turning off, the source receives most of the injected charge. Only a much smaller fraction

of the charge goes to the drain and thus the hold capacitor.

Most of the remaining pedestal should be a result of parasitic gate-to-drain capacitance in P5

and N7. This can be minimized by using narrow transistors for the cascodes. This effect is not

symmetrical in P7 and N5, however. The cascode voltages Vncas and Vpcas need to move a different

amount to reach their respective rails (Vdd and ground) and switch off the cascode transistors. In

simulation, values of Vncas = 1V and Vpcas = 2V worked well. Thus, Vncas needed to move 1V while

Vpcas needed to move 3V. With equal width drains, P5 would capacitively inject three times as much



78

charge as N7. Instead, I widened the NFET cascode transistors by a factor of three to equalize the

expected feedthrough due to this capacitive gate-to-drain coupling. This worked well in simulation.

Note however that if the mismatch between the cascode transistors is greater than the inherent

difference in operation between NFETs and PFETs, then mismatch could be a greater contributor

to the size of the pedestal. A balance must be struck between these two factors. Simulation was

used again to verify that the impact of mismatch in this regard was minor.

Consider the effects of mismatch elsewhere in the S/H circuit. Because of the feedback configu-

ration, mismatch resulting in varying values of Vhold will have some effect on the range of the circuit

but is generally a minor concern. Mismatch in the input pair P2 and P3 could manifest itself as

an offset between Vin and Vout, however, and thus could be worrysome. The input pair (P2 and

P3) and the current mirror (N8 and N9) were laid out with common-centroid and photolithographic

invariance1[5]. Their sizing was chosen to facilitate this layout.

The NMOS capacitor Ncap needs to be sized to reduce charge leakage over the hold time period.

A 6µm×6µm NMOS capacitor shows acceptable leakage in simulation for temperatures up to about

50◦C.

3.5.2 S/H Measured Data

The sample-and-hold performed as expected. Its input can be set to an arbitrary externally provided

voltage (Vrst of the current-to-voltage converter, see sec. 3.4.2). The results of sweeping the input

voltage Vin and measuring the output Vout are shown in fig. 3.29. The input voltage range of the

sample-and-hold was designed to be 2.25–4.25V and in practice measured to be 2.45–4.42V with a

5V power supply.

This works well with the output of the preceeding circuit. Recall that the difference circuit

outputs a current which is then integrated onto a capacitor and sampled by the S/H as Vin after

a set integration time. The middle point of the range of Vin is set by the externally-provided reset

voltage Vrst and can be chosen to coincide with the middle of the input range of the S/H (3.4V ).

The extent of the range of Vin is set by the magnitude of the output current from the difference

circuit, which is a function of a bias setting and the magnitude of the difference between two sensed

light intensities, and the length of the integration time. We choose an integration time during which

a current corresponding to the most extreme expected intensity difference integrates up or down by

1V , just reaching the limit of the range of the S/H.

Fig. 3.30 and fig. 3.31 show measurements of the pedestal. The pedestal is the output in hold

mode minus the output in sample mode while the input is held constant.

The pedestal size is dependent on the input voltage Vin. For values of Vin < 2.7V, the magnitude

of the pedestal is very large. Recall that Vhold is at a lower voltage than Vin and Vout. The difference
1p.59-61 of Allen and Holberg, 2002



79

2 3 4 5

2.5

3

3.5

4

sample
hold

2.3 2.4 2.5 2.6 2.7
2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7
Sampled
Held
fit to samp
fit to held

4.3 4.35 4.4 4.45
4.3

4.35

4.4

4.45
Sampled
Held
fit to samp
fit to held

Figure 3.29: Measured data for a single sample and hold circuit. Left: Entire operating range.
Center: Zoomed in near 2.5V. Right: Zoomed in near 4.4V. The input Vrst is swept (x-axis). The
blue lines indicate the output of the sample-and-hold circuit in sample mode. The red line indicates
the output after the transition to hold mode. As can be seen from this figure, the functional range
of the circuit is from 2.45V to 4.42V.

is a function of the current in P11, since Vhold will move to whatever value is necessary for the

currents in P10 and P11 to be equal. In the data shown, the current in P10 was large enough that

for Vin < 2.7, Vhold dropped below the threshold voltage of Ncap. The capacitance of this MOSCAP

thus decreased. For a constant amount of charge injected onto the capacitor, the resulting voltage

jump (the pedestal) was thus larger. The magnitude of the pedestal for Vin < 2.7V could be

decreased by setting a lower bias current through P10, or at design time by making P10 wider.

For 2.7 < Vin < 3.8, the circuit operates as previously described. Transistor N7 is in saturation

and above threshold.

As Vin increases above 3.8V, P3 goes into subthreshold. The absolute amount of charge flowing

through the channels of P5 and N7 decreases significantly. The pedestal is minimal simply because

there is minimal charge that might be injected in the channels of these two transistors. In this

region, most of the injected charge must be coming from gate-drain capacitive coupling as Vncas and

Vpcas swing to Vgnd and Vdd. That the pedestal is closest to zero for Vncas ≈ 1.2V when Vpcas = 2.2V

suggests that at these voltages, the capacitive coupling is equal for P5 and N7.

The value of Vncas also affects the size of the pedestal, as shown in fig. 3.30. At the transition

from sample to hold mode, the gate of N7 drops from Vncas to Vgnd to turn off N7. This voltage

swing couples capacitively through the gate-drain capacitance of N7 onto Vhold, injecting negative

charge onto the hold capacitor. Since for higher values of Vncas this swing is larger, more negative

charge is injected. For values of Vncas below 0.7V, the cascode NFETs N6 and N7 turn off and the

amplifier does not work (data not shown).

Similarily, the value of Vpcas affects the size of the pedestal as shown in fig. 3.31. As Vpcas is



80

2 2.5 3 3.5 4 4.5

−50

−40

−30

−20

−10

0

Sample−and−Hold input Vin (V)

pe
de

st
al

 m
ea

n 
(m

V
)

ncas=2.000
ncas=1.755
ncas=1.500
ncas=1.200
ncas=1.000
ncas=0.800

Figure 3.30: Effect of sweeping Vncas on the size of the pedestal with Vpcas = 2.2V .

2 3 4 5

−15

−10

−5

0

5

Sample−and−Hold input (V)

pe
de

st
al

 m
ea

n 
(m

V
)

pcas=0.000
pcas=0.500
pcas=0.800
pcas=1.000
pcas=1.250
pcas=2.000

Figure 3.31: Effect of sweeping Vpcas on the size of the pedestal with Vncas = 1.0V.



81

VgradX>VthH

VgradX<VthL

VgradY>VthH

VgradY<VthL

SAL

VgradX

VgradY

nSALX

nSALY

VthHMemory
Cell

Memory
Cell

VthL

−

+

Vgrad

Vgrad > VthH

−

+
Vgrad

Vgrad < VthL

Figure 3.32: Left: The saliency circuit. If the input gradient value VgradX (or VgradY ) exceeds the
boundaries of the programmed thresholds VthL and VthH , the intermediate saliency value nSALX (or
nSALY ) will be zero. If both nSALX and nSALY are zero, then SAL will be high. Thus, the circuit
will be deemed salient only if both the X and Y gradients exceed the thresholds. Right: Subcircuits
to compare the gradient values to preset thresholds. The Memory Cells [30] are programmed by
tunneling and injection to store the thresholds.

increased, it must move a smaller distance to reach Vdd during the transition to hold mode. Less

positive charge is thus injected onto Vhold due to capacitive coupling between the gate and drain of

P5, and the pedestal becomes more negative.

3.6 Saliency Circuit

Recall the Orthogonal Gradient Detector (OGD) from sec. 2.4. To determine saliency, we wish to

find all pixels which detect sufficiently large gradients in both the horizontal and vertical directions.

Within each pixel, a difference circuit (described in sec. 3.4) calculates the gradients and these two

values are stored in two sample-and-hold circuits (described in sec. 3.5). Thus, we have two values

VgradX and VgradY whose values relative to Vrst denote the gradient value and polarity. That is, if a

left-to-right gradient is denoted by VgradX > Vrst, a right-to-left gradient would have VgradX < Vrst.

A pixel is said to be seeing a feature if the magnitudes of both gradients are suffciently large, that

is:

(|Vrst − VgradX | > Vth)
∧

(|Vrst − VgradY | > Vth) (3.11)

To directly implement the above equation, we need to calculate a difference, and absolute value,

and a comparison. Instead, the saliency circuit is implemented equivalently by the circuit as shown

in fig. 3.32. Instead of calculating an absolute value, two thresholds VthL and VthH are stored in

floating-gate memory cells [30]. These thresholds are set to be equidistant from Vrst, the voltage

corresponding to no gradient. We can restate the saliency constraint of eqn. 3.11 as:

(
(VgradX < VthL)

∨
(VgradX > VthH)

) ∧ (
(VgradY < VthL)

∨
(VgradY > VthH)

)



82

where VthL = Vrst − Vth and VthH = Vrst + Vth. If the gradient values (VgradX and VgradY ) are

very close to one of the thresholds, the comparator may output a voltage midway between the rails.

Driven by such an intermediate input, the gates may also output some intermediate value. To limit

current draw in this scenario, the gates are drawn with moderately long transistors. The saliency

output is buffered by an inverter both to increase the driving ability of the circuit and to decrease

the range over which the final chip output may be at a non-binary value.

A single saliency circuit is implemented for the entire chip. As the pixels are sequentially read

out, their gradient values are sequentially presented as inputs to the single saliency circuit. Thus,

the binary saliency determination is made at read-out. This method requires the saliency circuit

to be fast enough not to limit the read-out speed of the array. A miniumum 30Hz readout of the

array and an 18 × 18 pixel array on this test chip calls for 100us readout time per pixel. Aiming

to have a 1µs settling time, an approximately 1µA current driving the comparators is sufficient (in

simulation). The biasing circuitry can be adjusted to provide a smaller or larger current on the

fabricated chip.

Mismatch is a concern in this circuit, since we require symmetric responses for horizontal and

vertical gradients. We wish each of the four comparisons to be performed identically. Note that since

the threshold values for each of the four comparisons are stored on four floating gates, programming

of the floating gates can compensate for offset mismatches within the four comparators.

3.7 Power Supply Sensitivity

In a practical circuit for use beyond the lab bench, effects of fluctuations in environmental variables

are a concern. Floating gates remove undesired variations introduced by mismatch resulting from

non-idealities of fabrication. A one-time initialization cannot compensate for changes that occur

later such as fluctuations in temperature or power supply voltage. In circuits wherein calibration is

performed once rather than continuously, then, we must examine the effects of these variables.

3.7.1 Effects of Power Supply Fluctuations on the Photoreceptor

Fluctuations in the photoreceptors are of little consequence for the overall task of feature detection.

Since the subsequent circuit in the feature computation calculates the difference of nearby pho-

toreceptor outputs, a common-mode increase in nearby photoreceptor outputs will be nulled in the

difference computation. Power supply fluctuations resulting from perturbations external to the chip

will affect nearby pixels almost identically and thus be cancelled by the difference operation. The

fast clocks for the in-pixel sample-and-hold circuits switch simultaneously in all pixels, similarily pro-

ducing common-mode fluctuations. The digital switches for selecting a particular pixel for readout

could introduce non-uniform current draw, but since only one pixel is being read out at a time, the



83

small total number of gates switching is unlikely to cause a notable fluctuation on the power supply.

On-chip analog circuits draw relatively little current so non-uniformities in the currents drawn by

the analog circuits will have negligible impact on the supply voltage. Thus, sources of power supply

fluctuations on this chip either affect nearby photoreceptors in a common-mode manner that will be

cancelled by subsequent computations, or are of negligible magnitude.

However, if we desire to read the photoreceptor values off chip, global fluctuations could be a

concern. A full-field change in the output of the photoreceptor array may indicate a change in the

overall environmental illumination or a fluctuation in the power supply, and we may care about

the former but not the latter. In other applications, the photoreceptor could be embedded within

a circuit that is more susceptible to local power supply fluctuations or sensitive to common-mode

fluctuations of the photoreceptor output. In these contexts, we need to understand the severity

and means of reducing the effects of power supply fluctuations on the photoreceptor output. The

remainder of sec. 3.7.1 will discuss the pathways by which fluctuations in the power supply affect the

photoreceptor output. It begins with an analytical and intuitive discussion explaining the pathways

by which fluctuations in the power supply affect the photoreceptor. An understanding of the means

by which the power supply affects the output suggests which nodes are most sensitive and thus where

to focus to find solutions to the problem. The section concludes with simulations and measurements

to substantiate the discussion and illustrate the magnitude of the effects.

VddA

Vfg
VddB

Vph
Vout

Vfol

Iph

{

photoreceptor

{ {

source-follower bias generator

VddB

Vphn

Vx

VddC

one per
chip

one per pixel

off
chip

M=10M=1

N1

N2
P1

P2

P3

P4

P5 P6

Ifbias

Figure 3.33: Photoreceptor and supporting circuitry. Vfg is the voltage on the floating gate, which
allows adjustment of the DC offset of the photoreceptor output. The PFET source-follower is used
within each pixel to buffer the sensitive photodiode node. An on-chip bias generator produces the
voltage Vfol which is shared among all pixels. An externally generated bias current Ifbias provides a
reference to the bias generator. The power supply is broken up into VddA, VddB, and VddC to facilitate
discrimination of the different ways in which subcircuits are affected by their power supplies. The
three supplies can be independently controlled in the fabricated chip and its test board.



84

The photoreceptor topology was originally introduced in fig. 3.12 and is redrawn along with

some supporting circuitry in fig. 3.33. The photodiode node Vph is sensitive, being driven by a

potentially very small photocurrent, and thus must be buffered before being used by other circuits.

Both the photoreceptor and its buffer rely on bias voltages which may be affected by power supply

fluctuations, depending on how these biases are generated. We will see that while the photoreceptor

output Vph is fairly insensitive to fluctuations on the photoreceptor power supply VddA, it is sensitive

to fluctuations in the bias voltage Vphn. The source-follower is sensitive to fluctuations in the value

of VddB − Vfol.

First, consider the photoreceptor alone and the analytical expression characterizing it. Since the

photoreceptor operates in subthreshold2, its output can be approximated to first order by

Vph = Vfg − 2 · VT

κ
· ln

(
Iph

Io

)
(3.12)

Since Vph ∝ ln(Iph), we call this a logarithmic photoreceptor. Note that VddA does not appear

in this expression. This suggests that variations in VddA should have only a minor effect on the

unbuffered output Vph. This will be true as long as both photoreceptor transistors (N1 and N2)

stay in saturation. N2 always will be saturated because it is diode-connected. We can assure

that N1 remains saturated by choosing a sufficiently large floating-gate voltage Vfg in a mismatch-

compensated photoreceptor (see fig. 3.33), or a sufficiently large bias voltage in a photoreceptor

without mismatch compensation (compare fig. 3.12).

To examine the effects of power supply variation, we must consider other means by which N1

and N2 can be affected. First, the Early effect describes the increase in transistor drain current as

the drain-source voltage increases (VddA−Vx for N1, and Vx−Vph for N2). Second, the floating-gate

voltage Vfg may be affected by other voltages that capacitively couple to the floating gate.

Including the Early effect gives the following equation to describe currents in N1 and N2:

Iph = Ioe
κ

Vfg−Vx

VT

(
1 − e

−VddA−Vx
VT

)
︸ ︷︷ ︸

upper transistor

= Ioe
κ

Vx−Vph
VT

(
1 − e

−Vx−Vph
VT

)
︸ ︷︷ ︸

lower transistor

(3.13)

where Vx is the photoreceptor node inbetween the constituent transistors. Note that VddA figures

in the last term of the equation for the upper transistor. Since Iph is fixed by the photocurrent,

2The transistor current I for a subthreshold NMOS transistor can be stated as:

I = Ioe
qκVgs

kT

(
1 − e−

qVds
kT

)
= Ioe

κVgs
VT

(
1 − e

− Vds
VT

)
where Io is dependent on the process and the width-to-length ratio (W/L) of the transistor, q is the charge of an
electron, k is Boltzmann’s constant, T is the temperature in Kelvin, and κ parametrizes how effectively the gate
couples to the channel and has a value around 0.7. VT is the thermal voltage and equal to kT

q
or approximately

26mV. Vds is the drain-to-source voltage and Vgs is the gate-to-source voltage. Io and terms in the first exponential
capture the first order logarithmic behavior of a subthreshold transistor. The second term, in parentheses, captures
the Early effect, that is the effect of drain-to-source voltage.



85

a fluctuation on VddA will result in a shift in Vx. A shift in Vx will in similar fashion affect the

lower transistor to cause a shift in Vph. Eqn. 3.13 is difficult to solve analytically for Vph but we

can roughly approximate its meaning nonetheless. The transistors are operated in saturation so

VddA will exceed Vx by a couple hundred millivolts. Vx exceeds Vph by a similar amount. VT is

a constant equal to 26mV. Consider then the expected magnitude of the Early effect, that is, the

amount by which the parenthesized term deviates from unity. Since (VddA − Vx) ≥ 200mV, the

exponent −VddA−Vx

VT
≤ −7.7, and the exponential term e

−VddA−Vx
VT ≤ 0.000456, so the Early effect

term changes the value of the right-hand side of the equation by 0.0456% or less. Thus, we can

expect fluctuations on VddA to have negligible effect on the photoreceptor output by means of the

Early effect.

Consider now means by which other voltages couple capacitively to the floating gate. As stated

in eqn. 3.12, the photoreceptor output is directly related to the floating-gate voltage Vfg. Capacitive

coupling will impact a floating gate much more strongly than similar coupling would affect an

actively driven node, since no mechanism opposes change due to the coupling. The voltage change

on Vfg is directly related to the magnitude of the capacitive coupling to some secondary node and

the voltage change on that node, and inversely related to the total floating-gate capacitance. This

capacitive coupling is explicitly shown in fig. 3.33 between Vphn and Vfg. Other nodes including

VddA, GND , and the tunneling voltage Vtun also couple to the floating gate, with the magnitude

of the capacitance dependent on layout. Vtun couples to the poly1 floating gate via the tunneling

junction, which consists of the gate oxide of a PFET whose source, drain, and well are tied to

Vtun. Vphn is applied to poly2 which couples to the poly1 floating gate as a poly1-poly2 capacitor.

Since gate oxide is very thin and since the poly1-poly2 oxide is also intended for making capacitors,

both these capacitances should strongly couple to the floating gate. To connect the floating-gate

transistor N1 with the tunneling junction, the poly1 floating gate runs over some grounded substrate

and thus couples to GND through the field oxide. There are some unrelated bias lines which run

on metal1 above the floating gate, but the much thicker oxide between poly1 and metal1 along with

the small area where the two cross should result in negligible coupling to the floating gate. VddA

directly couples to Vfg only weakly, primarily via the drain-gate capacitance of N1.

The currently fabricated chip does not allow a direct measurement of these capacitances. In

simulations of the overall impact of fluctuations of the power supply on photoreceptor output, I

have assumed that VddA couples to the floating gate only via Vphn. The close matching of my

simulations to chip measurements (see fig. 3.36) suggests the validity of this assumption. On my

test board, Vphn is generated by a resistive divider between VddA and ground. Thus, fluctuations on

VddA directly change Vphn and thus affect Vph. By the same mechanism, fluctuations of the tunneling

voltage Vtun will affect Vph (junction not shown in fig. 3.33). To minimize the capacitive coupling

of external voltages onto Vfg, we can ground Vphn and Vtun after programming is completed. Since



86

these two sources dominate the capacitive coupling to Vfg, coupling of VddA through the floating

gate should be virtually eliminated.

The analysis thus far suggests that the photoreceptor is virtually impervious to power supply

fluctuations. This would be true if we could operate the photoreceptor without a succeeding follower.

However, the Vph node is very sensitive and must be buffered. The current driving Vph is only the

photocurrent, which can be very small (pA or less) under indoor lighting conditions. It is thus unable

to drive large loads, and the frequency response of the photoreceptor is sensitive to the capacitive

load of even a small number of transistor gates. The follower used to buffer the photodiode node is

the primary source of power supply sensitivity in this photoreceptor circuit. In the fabricated chip,

a PFET source-follower is used to buffer Vph. A PFET follower was chosen over an NFET follower

for a better match with the input operating range of succeeding circuitry. A PFET follower outputs

a voltage Vout that is roughly a diode drop above its input, whereas an NFET follower would output

a voltage below its input. The voltage VddB −Vfol sets the current through the follower. Vout moves

to whatever voltage is necessary for P2 in the follower to source the current provided by P1, given

Vph on P2’s gate. Neglecting the Early effect and using α to denote the ratio between the sizes of P1

and P2: VddB − Vfol ≈ α(Vout − Vph). Thus, a fluctuation in the difference between VddB and Vfol

will directly cause a fluctuation on the output Vout. The bias generator used on this chip was not

designed with power supply rejection in mind and indeed if either VddB, Ifbias, or both are allowed

to fluctuate, the buffered photoreceptor output is significantly affected.

VddA

Vfg

VddB

Vph

Vout

Vfol

Iph

{

photoreceptor

{

follower

Vphn

Figure 3.34: Photoreceptor with NFET follower for reduced sensitivity to power supply fluctuations
(not fabricated).

In a redesign to improve power supply rejection, at least two solutions are possible. First, the

bias generator could be redesigned to use a bandgap voltage reference to generate the bias Vfol



87

relative to VddB, ensuring that VddB − Vfol stays constant independently of the power supply (and

conveniently, also of temperature). Secondly, an NFET follower could be used, as shown in fig. 3.34.

The NFET follower output is dependent on the difference between the bias voltage and ground and

independent of VddB: Vfol − Vgnd ≈ α(Vout − Vph). In this case, the bias voltage Vfol would need

to be made constant relative to ground rather than the power supply. The redesign would need to

accommodate the different output range of an NFET source follower.

Simulations and measurements bear out the conclusions of the above analysis. I tested several

3 4 5 6

3.52

3.54

3.56

3.58

3.6

Power supply (V)

P
ho

to
re

ce
pt

or
 o

ut
pu

t (
V

)

500mV

13.84mV

3 4 5 6
2.8

3

3.2

3.4

3.6

3.8

4

Power supply (V)

P
ho

to
re

ce
pt

or
 o

ut
pu

t (
V

)

500mV

221.5mV

VddA swept; VddB, Vphn and Ifol constant VddA, VddB, Vphn and Ifol all swept
with VddA = VddB

Figure 3.35: Measured data showing dependence of photoreceptor on the power supply voltage,
directly on the left and including impacts on other biases on the right. Cyan lines show individual
curves for each pixel in an 8x8 block. Black line and circles show mean values for those 64 pixels. The
power supply can affect circuit response in several places. To separate the magnitudes of fluctuations
at different points in the circuit, different biasing configurations were tried wherein only some of the
supply rails and biases were swept. Shown here are the two most extreme situations. On the left,
only VddA is swept. On the right, four parameters are swept simultaneously: VddA (the photoreceptor
power supply), VddB (the follower power supply), Vphn (photoreceptor bias), and Ifol which controls
the follower bias. Note the different scales on the y axis. The circuit topology is shown in fig. 3.33.

scenarios, varying which power supplies and biases were swept. Fig. 3.35 shows measurement data

for the cases of least and greatest power supply sensitivity. Fig. 3.36 summarizes the results for all

scenarios. First, note that the changes on Vout are linear in VddA regardless of which biasing scenario

we try. Secondly, note that the effects of the two power supplies and the biases follow the trends

explained previously. The photoreceptor output changes minimally as we sweep VddA only. The

output is much more sensitive to fluctuations on Vphn, which couple to the floating gate voltage,

Vfg, and change the operating point of the photoreceptor. The magnitude of the power supply

sensitivity was greater yet when I swept biases related to the follower.

To give context to the absolute magnitudes of the voltage values, as my LCD monitor is swept

from its darkest to its brightest, the resulting photoreceptor output swings over 180mV. A 13.8mV



88

Effect of 500mV change in VddA Variables

0 50 100 150 200 250
0

50

100

150

200

250

measured V
out

si
m

ul
at

ed
 V

ou
t

Measured Simulated swept with VddA

Vout(mV ) Vph(mV ) Vout(mV ) VddA Vphn VddB Ifbias

13.8 7.2 5.4
√

77.0 117.7 89.4
√ √

207.5 117.8 212.6
√ √ √

221.7 117.8 238.8
√ √ √ √

141.0 7.3 137.8
√ √

158.0 7.3 161.8
√ √ √

Figure 3.36: To assess the effect of power supply variation on the photoreceptor, I swept the power
supply both on the fabricated chip and in simulation. The results are similar, confirming the
accuracy of my simulations. I swept Vphn as if it were generated by a resistive divider between VddA

and ground, since that was my default configuration for generating Vphn. That is, a 10% reduction in
VddA would correspond to a 10% reduction in Vphn when both were swept. An on-chip bias generator
creates the follower bias voltage Vfol. Vfol is swept by tying the power supply for the off-chip resistor
sourcing Ifbias to VddA. When VddB was swept, it was tied directly to VddA and left at 5V when
not swept. Note that the values listed in the table are the change on Vout for a 500mV change on
VddA, which is much greater than the actual power supply noise that we should reasonably expect.
Voltages are defined as shown in fig. 3.33.

change, as for the case of changing VddA by 500mV, represents 7.6% of the LCD monitor signal

range. A 10mV fluctuation on the power supply would result in the output fluctuating over 0.15%

of its range, which is negligible.

3.7.2 Effects of Power Supply Variation on Difference Circuit

Taking the lessons learned from the photoreceptor analysis, we can realize that the difference circuit

(fig. 3.17)will have similar weaknesses with regards to power supply sensitivity. In the present test

setup, both Vbias and Vref are externally provided. To minimize insensitivity to power fluctuations,

a bias generation circuit should reference Vbias to Vdd such that the difference Vdd − Vbias stays

constant.

Consider in more detail how the circuit operation is influenced by fluctuations on Vdd. When

we move just Vdd, the difference between Vdd and Vbias increases, resulting in increased source-gate

voltage on PX, a larger current Iγ , and larger gain. This is shown in the blue curves on the left side

of fig. 3.37. This change in Iγ also affect the offset. As Iγ increases, the source voltage of P5 and

P6 also increases. Since the source-drain voltage of transistors does affect their current, and since

the drain voltages of P5 and P6 are not identical, the ratio of their currents may change slightly.

Also,Vdd may couple to the floating gate fgρ and directly affect the offset-nulling ratio Iref/Ifgρ.

If we move both Vdd and Vbias, the gain mismatch is much reduced since the gate-source voltage

on PX stays constant. However, the offset may still be affected as above.

Since keeping Vbias constant relative to Vdd helps tremendously with the dependence of gain on



89

4.8 5 5.2

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Vdd

sl
op

e 
(n

A
/m

V
)

 

 

4.8 5 5.2
−20

−10

0

10

20

Vdd

X
 o

ffs
et

 (
m

V
)

v
dd

v
dd

, v
bias

v
dd

, v
bias

, v
ref

Figure 3.37: Effects of power supply fluctuations on the difference circuit (simulation). Left: The
slope presented here is a measure of the change in output current Idiff as a function of the differential
input V1 − V2. It is directly proportional to the gain, as introduced in fig. 3.15. Right: The offset
is the input V1 − V2 necessary to produce a zero output current, also introduced in fig. 3.15. The
curves in each plot correspond to sweeping a different set of biases. Since Vbias and Vref may be
generated by on-chip bias generators, their dependence on Vdd may vary. On the currently fabricated
chip, they are provided by independent power supplies and thus independent of Vdd inasmuch as
laboratory instruments are independent. Blue �: Sweep of Vdd, with all other biases constant with
respect to ground. Red triangles: Sweep of Vdd and Vbias, where Vdd − Vbias is constant. Magenta
squares: Sweep of Vdd, Vbias, and Vref , where both (Vdd − Vbias) and (Vdd − Vref ) are constant.

power supply fluctuations, it is tempting to think that a similar trick could be employed with regards

to Vfgρ. However, the programming of Vfgρ is relative to Vref so both values would have to be tied

to Vdd in the same manner. A large control gate tied to Vref and coupled to Vfgρ would reduce the

differing effects of Vdd on these two voltages, but without active feedback, a perfect adjustment is

not possible given the current topology.

3.8 Temperature Sensitivity

This section will analyze the effects of temperature variations on some of the subcircuits on this

chip. I will begin with a discussion of the effects of temperature variation on individual devices:

photodiodes, subthreshold transistors, and floating-gate transistors. I will then discuss in more detail

temperature-induced repercussions on the photoreceptor and difference circuits.

3.8.1 Temperature Effects in the Photodiode

The photodiode is simply a reverse-biased pn junction fabricated as an n-well in the p-substrate.

Electron-hole pairs generated within the n- to p- depletion region are swept across the depletion

region by the applied electric field. Carriers generated within one diffusion length of the deple-



90

tion region are likely to diffuse into the depletion region and similarily contribute to the current.

Electron-hole pairs generated by photons hitting the silicon lattice result in a measurable photocur-

rent which is the basis for light detection in CCD and CMOS image sensors. Since the sum of

the diffusion lengths in the p- and n- areas is typically larger than the width of the depletion re-

gion, photo-induced carrier generation outside the depletion region tends to contribute more to the

photocurrent than carrier generation within the depletion region. Electron-hole pairs also can be

thermally generated, constituting what is equivalently termed “leakage current” in a diode or “dark

current” in a photodiode. Changes in the temperature of the photodiode have little effect on the

photocurrent and a significant effect on the dark current. Consequently, at high illumination levels

where the photocurrent is orders of magnitude greater than the dark current, temperature has neg-

ligible effect on the overall photodiode current. At low illumination levels where the photocurrent

is small enough that the dark current is a significant fraction of the total diode current, increased

temperatures result in increased dark current and thus a lower signal-to-noise ratio.

260 280 300 320 340 360 380 400
1.08

1.09

1.1

1.11

1.12

1.13

ba
nd

ga
p 

E
G

 (
eV

)

temperature (K)

ro
om

 te
m

pe
ra

tu
re

bandgap

wave
length

260 280 300 320 340 360 380 400
1100

1110

1120

1130

1140

1150

w
av

el
en

gt
h 

(n
m

)

Figure 3.38: The effect of temperature on photo-generated current in the photodiode is negligible.
Left: Bandgap and corresponding wavelength as a function of temperature. The blue line shows how
the bandgap of silicon decreases with increasing temperature. The wavelength of photons having an
energy equal to the bandgap increases proportionately, as shown by the dashed green line. Right:
The efficiency with which a silicon diode generates photocurrent is a function of frequency. (Plot
reprinted with permission from Melles Griot [2].) Both: From the left figure, we can see that a 10◦C
shift in temperature results in a 2.7nm shift in the absorption spectrum. From the right figure,
we can see that this is only a tiny fraction of the absorption spectrum, which is several hundred
nanometers wide.

The photo-generated current is only weakly affected by temperature. Increasing the temperature

reduces the bandgap EG as [74]:

EG(T ) = EG(0) − αT 2

T + β

where EG(0) = 1.16eV , α = 7.02 × 10−4eV/K, β = 1108K, and the temperature T is in Kelvin.

Decreasing the bandgap shifts the absorption spectrum of silicon to longer wavelengths. Given the

wide absorption spectrum of silicon, in practice this has a negligible effect on responsivity [2] as



91

shown in fig. 3.38.

Dark current, arising from thermally generated electron-hole pairs, has a clear temperature

dependence. This temperature dependence is somewhat complicated as it is a sum of the thermally

generated diffusion currents within the n- and p- areas and the drift current within the depletion

region, and the two vary differently with temperature.

Within the depletion region, the rate of generation of electron-hole pairs U is governed by [34]:

U ≡ − ni

2τ0

where ni is the intrinsic carrier concentration and τo is the effective lifetime within a reverse-biased

depletion region. We shall shortly see that U varies exponentially with temperature because ni has

an exponential dependence on temperature, while τo is nearly independent of temperature.

The intrinsic carrier concentration ni can be calculated from:

pn = n2
i = NcNve

−EG/kT (3.14)

where EG is the energy gap between the conduction and valence bands: EG = (Ec−Ev). Nc and Nv

are the effective densities of states in the conduction and valence bands, respectively, and are each

proportional to T 3/2 [74]. The intrinsic carrier concentration depends on temperature approximately

in an exponential manner. The actual temperature dependence is somewhat stronger because Nc

and Nv also increase with temperature.

The effective lifetime τo is given by:

τo ≡ σne(Et−Ei)/kT + σpe
(Ei−Et)/kT

2σpσnvthNt

where σn and σp are the electron and hole capture cross sections, vth is the carrier thermal velocity

equal to
√

3kt/m∗, Nt is the trap density, Et is the trap energy level, and Ei is the Fermi energy

level. Only the generation centers whose energy level Et is near the Fermi level Ei contribute

significantly to the generation rate, since the generation rate falls exponentially as Et moves away

from Ei. Since the centers of generation are indeed near the intrinsic Fermi level, τo will be nearly

independent of temperature.

Carriers generated within the depletion region are almost immediately swept away by the electric

field. Almost none recombine and the resulting current can be expressed as:

Idep = q|U |WAJ = q
ni

2τ0
WAJ (3.15)

where q is the charge of an electron, W is the width of the depletion region, and AJ is the cross-



92

sectional area of the pn Junction. Since the rate of electron-hole generation U varies with temper-

ature as ni varies with temperature, the component of the thermal current generated within the

depletion region Idep has the same temperature dependence.

Carriers generated outside the depletion region contribute to the dark current by a somewhat

different set of physical processes. Once generated, they travel by diffusion until they either recom-

bine or diffuse to the edge of the depletion region. Only in the latter case are the carriers swept

across the depletion region and thus contribute to the overall dark current. Equations describing

the carriers which diffuse to the edge of the depletion region in a reverse-biased diode are [34]:

Idiff,n = qDn
n2

i

NALn
AJ Idiff,p = qDp

n2
i

NDLp
AJ (3.16)

The temperature dependence of the diffusion current is the same as that of n2
i [34].

In summary, the dark current has an exponential dependence on temperature. From eqns. 3.15

and 3.14 we see that the thermal current generated within the depletion region varies with temper-

ature as e−EG/2kT . Eqns. 3.16 and 3.14 indicate that dark current generated outside the depletion

region varies with temperature as e−EG/kT . Near room temperature, thermal electron-hole pair

generation within the depletion region dominates the dark current and its temperature dependence

is proportional to e−EG/2kT . Around 125◦C, the two mechanisms are of similar magnitude. Above

225◦C, most of the dark current is generated outside the depletion region and its magnitude changes

with temperature as e−EG/kT .

3.8.2 Review of MOS Transistor Temperature Effects

The impacts of temperature fluctuation on a transistor are typically expressed as changes in carrier

mobility µ in the channel and in threshold voltage Vt. The temperature dependence of mobility3

can be described by [4, 74]:

µ = KµT−m m =
3
2

(3.17)

3Mobility is limited by two effects. Carrier collisions with the vibrating silicon lattice constitute lattice scattering,
also known as acoustic phonons. The temperature dependence of this effect is µl ∼ (m∗)−5/2T−3/2 where m∗ is
the conductivity effect mass, a constant for our purposes. Carriers can also be deflected by ionic impurities with the
temperature dependence being: µi ∼ (m∗)−1/2N−1

I
T 3/2. The combined mobility due to both mechanisms is:

µ =

(
1

µl
+

1

µi

)−1

=
(m∗)−1/2T 3/2

(m∗)2T 3 + NI

Which effect dominates depends on the relationship between (m∗)2T 3 and N1. NI , the ionized impurity density,
depends on the doping level and also on the temperature, since ionization rates of electrons and holes decrease with
increasing temperature. The material is usually doped such that the extrinsic range extends beyond the highest
temperature at which the device is to be used [73]. That is to say, we choose a doping level at which lattice scattering
dominates over impurity scattering and µ ∝ T−3/2.



93

where Kµ ∼ (m∗)−5/2 and is a constant, m∗ is the conductivity effect mass [74] and T is temperature.

The threshold voltage Vt varies with temperature as [4]:

Vt(T ) = Vt(To) − α(T − To) (3.18)

where To is a reference temperature, typically 27◦C, and α is approximately 2.3mV/◦C. These

equations are valid near room temperature [4]. Mobility shift and threshold voltage shift interact

non-linearly and in opposite directions. As temperature increases, the mobility decreases, lowering

the current. That same temperature increase causes decreased threshold voltage, increasing the

current. The overall change in current is thus a function of both effects. Which factor dominates

is a function of how deeply inverted the channel is. When the channel is strongly inverted (well

above threshold), decreasing mobility becomes the more significant factor and the transistor output

current decreases with increasing temperature. The opposite effect occurs below threshold: current

increases with temperature. Eqns. 3.17 and 3.18 describe the measurable effects of temperature for

above-threshold transistors. The effects of temperature for subthreshold transistors require further

analysis.

Some texts (e.g. [4]) suggest that temperature dependence in weak inversion is dominated by

voltage threshold shift. However, since the subthreshold current equation I = Ioe
qVgs
kT does not

explicitly include a term for voltage threshold, a description of temperature effects in terms of

threshold voltage shift begs the questions: “What is threshold?” and “How does its physical meaning

affect the subthreshold transistor?” One way of defining threshold involves fitting a line to the

output characteristics of the transistor and extrapolating. However, if we plot what happens to

subthreshold voltage as we vary T in this equation, we can see that temperature shifts the slope

of the line for subthreshold operation. Likewise, if we vary the mobility term µ ∝ T−3/2 for the

above-threshold equation4 I = 1
2µnCox

W
L (1−λVds)(Vgs −Vt)2, the slope of the curve in that regime

changes. See fig. 3.39. A discussion of temperature effects that begins with threshold shift quickly

becomes circular.

To understand the effects of temperature on subthreshold current, let us look at a more complete

version of the subthreshold current equation [54]:

I = qDN1
W

L
e

qVgs
kT

(
1 − e−

qVds
kT

)
(3.19)

4The above-threshold transistor current in saturation is:

I =
1

2
µnCox

W

L
(1 − λVds)(Vgs − Vt)

2

and in the linear region:

I = µnCox
W

L
Vds(Vgs − Vt − 1

2
Vds)



94

0 0.5 1 1.5
0

0.01

0.02

0.03

0.04

0.05

gate−source voltage: V
gs

sq
ua

re
 r

oo
t o

f s
ou

rc
e 

cu
rr

en
t: 

  I
s1/

2 µ for T=300
µ for T=350
µ for T=250

1 2 3 4
0

0.5

1

1.5

2

2.5
x 10

−5

gate−source voltage: V
gs

Is

T=275
T=300
T=325
T=350
T=375
T=400

Figure 3.39: Left: Finding the threshold voltage relies on extrapolating transistor curves to find
where the transition between subthreshold and above threshold operation occurs. Since these curves
are shifted by temperature, discussion of how the threshold voltage shift impacts the physics of the
device inherently becomes circular. Solid black curves show measured transistor current (courtesy
of Jeremy Holleman). Dashed red and dotted blue curves rescale the measured data to show how it
would be different if µ ∝ T−3/2 varied in above-threshold operation. Right: The assumption that
transistor current varies primarily with µ is consistent with the results of physical simulations in Atlas
(courtesy of Jaideep Mavoori). Lines show results of physical simulation for several temperatures.
×s indicate values resulting from rescaling the green line for T=300K as if µ ∝ T−3/2, discarding
any other sources of variation with temperature.

where q is the charge of an electron, D is the diffusion constant of carriers in the channel, N1 is

the carrier density in the channel, W and L are the length and width of the device, Vgs is the gate-

to-source voltage, and Vds is the drain-to-source voltage. To observe the temperature dependencies

hidden within some of these variables, expand them further. We can apply the Einstein relation

to rewrite D =
(

kT
q

)
µ. From eqn. 3.17 µ = KµT−3/2 so that D =

(
kT
q

)
KµT−3/2. We can also

expand N1 in terms of the carrier density at the Fermi level N0 and the built-in barrier between

source and channel created at the time of fabrication φ0: N1 = N0e
−φ0/(kT ).

I = q

(
kT

q
KµT−3/2

)(
N0e

− φ0
kT

) W

L︸ ︷︷ ︸
Io

· e
qVgs
kT

(
1 − e−

qVds
kT

)
(3.20)

The above equation explicitly enumerates all dependencies on temperature for subthreshold current.

This is a complicated relationship. However, we can recognize that the exponential terms involving

T should dominate over T−1/2 within the Io term. Thus, current will vary with temperature as

I ∝ e
qVgs−φ0

kT . For small values of Vgs, φ0 dominates over qVgs and the current increases with

temperature, as reflected by the upward shifting of the lines in fig. 3.40. As Vgs increases, the

temperature dependence of the term eqVgs/kT increases in significance, affecting the slope of the



95

0.4 0.6 0.8 1

10
−14

10
−12

10
−10

10
−8

gate−source voltage: V
gs

so
ur

ce
 c

ur
re

nt
: I

s 
(lo

g 
sc

al
e)

T=275
T=300
T=325
T=350
T=375
T=400

1 2 3 4

0.5

1

1.5

2

x 10
−5

gate−source voltage: V
gs

so
ur

ce
 c

ur
re

nt
: I

s

T=275
T=300
T=325
T=350
T=375
T=400

Figure 3.40: Physical simulations in Atlas show temperature dependence of transistor current. Below
threshold, current increases with temperature. Above threshold, the opposite relationship holds,
such that current decreases with temperature. The point where the relationship inverts is called the
temperature compensation point (TCP). The same data is plotted on a log scale (left) and linear
scale (right). Left: Below threshold. The upward shift (on the log scale) for successively higher
temperatures can be characterized by the term e−φ0/kT . The decreasing slope with temperature
can be explained by the term e

qVgs
kT . Note that the simulated transistor was not saturated, so

the temperature dependence of the Early effect term would decrease the current as a function of
temperature by about 0.5% over the temperature range shown. Right: Above threshold.

plots. Note that the slopes decrease with temperature. The derived eqn. 3.20 is consistent with

physical simulations in Atlas. Both sources indicate that the general trend in subthreshold is for

current to increase with temperature, but the rate of increase lessens for large Vgs.

In summary, in weak inversion, increasing temperature generates electron-hole pairs in the chan-

nel. The increased number of carriers results in an increased subthreshold current. In moderate

inversion, the opposite temperature coefficients of mobility and voltage threshold shift counter one

another and result in small changes in channel current as a function of temperature. In strong

inversion, decreasing mobility with temperature results in an overall decrease in current.

3.8.3 Impact on Floating-Gate Devices

Temperature impacts floating-gate transistors in ways identical to non-floating-gate transistors and

additionally by changing the capacitance of the floating gate. Every transistor whose poly1 gate is

floating is essentially an MOS capacitor. If a temperature fluctuation causes a change in the capac-

itance, the floating-gate voltage will change proportionally since Qfg = CfgVfg. The magnitude of

the change in capacitance with temperature depends on the biasing.

The dependence of the MOS capacitance as a function of gate voltage is shown in fig. 3.41. When

the gate voltage Vg is very low (below the flatband voltage VFB , to be precise) and the transistor



96

−0.5 0 0.5 1 1.5 2 2.5 3
2

2.5

3

3.5

4

4.5

5

cg
g 

(f
F

) 

vgs (V)

Vds = 3.0
Vdd = 3.0
Vth = 0.6

NFET gate capacitance

Figure 3.41: NFET gate capacitance as a function of the gate–source voltage Vgs, from an EKV
model simulation. As described in the text, the capacitance decreases as the channel becomes more
strongly depleted due to increasing gate voltage in subthreshold. When the device reaches threshold,
the channel inverts and gate capacitance returns to its maximum, proportional to εox ·A/tox, where
A is the area of the device.

is turned off, the capacitance per unit area between the gate and channel is simply Cox = εox/tox,

where εox is the dielectric constant of SiO2 and tox is the thickness of the oxide between the gate and

channel. As Vg increases, majority carriers are pushed away and the surface of the channel becomes

depleted. This can be represented as a weak downward band bending. Recall that the surface

potential, φs, corresponds to the energy level q · φs where EC intersects the silicon-oxide interface.

When qφ̇s is between EC and Ei, the channel is depleted. Since no carriers exist in the depletion

region, the effective dielectric thickness is now equal to tox + Wdep, where Wdep is the thickness of

the depletion region, and the capacitance per unit area now equals Cox + Cdep = εox

tox
+ εsi

Wdep
. As

the gate voltage increases, the bands bend more. Threshold voltage is the gate voltage at which the

conduction band EC bends enough to intersect EF at the silicon-oxide interface (that is, q ·φs = EF )

as shown in in fig. 3.42. In other words, threshold is the point at which the channel inverts. The

inverted channel contains plentiful charge carriers and the dielectric thickness is again tox. Since the

effective dielectric thickness in subthreshold is greater than either when the transistor is fully off or

when it is fully inverted, the capacitance is lowest just below threshold.

Above threshold, the MOS capacitance depends primarily on tox and εox, neither of which changes

much with temperature. The temperature coefficient of the MOS capacitance is very small, on the

order of 20ppm/◦C [67] or 50ppm/◦C [4]. In fact, the modern BSIM3V3.3 model and earlier versions

of BSIM3V3 do not even include a parameter to simulate this thermal coefficient directly, and indeed

simulations based on this model show no temperature dependence of the capacitance of a MOSFET.

For a floating gate holding a constant charge and coupled only to above-threshold transistors, we

can expect the effect of temperature on the voltage to be very small. This effect is certainly smaller



97

EC

EV

Ei

EF

p-
ty

pe
 s

ili
co

n
ga

te
 o

xi
de

EC

EV

Ei

EF

EF at higher
temperature

EF at lower
temperature

Figure 3.42: Left: The band diagram of an MIS diode. A positive bias applied on the gate causes the
bands to bend downwards. When the conduction band Ec reaches the Fermi level EF , as shown here,
the device is at threshold. The potential difference between the intrinsic and Fermi levels is defined
by qφb ≡ Ei − EF . The level of the conduction band EC at the silicon-oxide interface defines the
surface potential, φs. Right: As temperature increases, the intrinsic carrier concentration increases.
This causes the Fermi level EF to shift closer to Ei. The amount of band-bending necessary for EC

to reach EF is thus reduced, which corresponds to a decreased threshold voltage for the device.

than the effects of mobility and threshold voltage that affect the operations of floating-gate and

non-floating-gate circuits identically.

In subthreshold, on the other hand, a clear temperature dependence exists because the depletion

layer thickness Wdep changes with temperature. Wdep is equal to [73]:

Wdep =

√
2εsφs

qNa

The permittivity of silicon εs and the charge of an electron q are constants. Na is the impurity

concentration, set at fabrication. Only the surface potential φs is dependent on temperature. Cal-

culating the value of φs is not straightforward. However, we can approach the computation from

another angle. As shown in fig. 3.42, the Fermi level EF shifts closer to Ei with temperature, equiv-

alently expressed as a decrease in q ·φb. Since threshold voltage is the voltage necessary to bend EC

enough to intersect EF at the oxide-silcon interface, decreasing φb directly decreases the threshold

voltage:

Vth = VFB + 2φb + other terms



98

0 20 40 60 80 100 120

2.46

2.465

2.47

2.475

2.48

2.485

2.49

2.495

temperature (C)

to
ta

l g
at

e 
ca

pa
ci

tn
ac

e 
cg

g 
(f

F
)

Figure 3.43: Change in gate capacitance for an n-channel transistor, as estimated from the EKV
model (fig.3.41) and equations for voltage threshold shift (eqn. 3.21).

where VFB is the flat-band voltage. The temperature depencence of φb is described by:

φb =
kT

q
· ln
(

Na

ni

)

where

ni = 2 ·
(

2πkT

h2

) 3
2

· (m∗
nm∗

p)
3
4 · e−Eg/2kT

and thus

φb =
kT

q
·
[

Eg

2kT
− 3

2
ln
(

2πkT

h2

)
+ ln

(
Na

2
· (m∗

nm∗
p)

− 3
4

)]
(3.21)

where h is Planck’s constant, m∗
n and m∗

p are the effective masses of electrons and holes, and Eg is

the bandgap. In short, φb will vary with temperature as T · ln(T ). A shift in threshold voltage is

equivalent to the same magnitude shift parallel to the x-axis of fig. 3.41. Using eqn. 3.21 to compute

the shift in threshold voltage and applying the resulting change in gate capacitance from the data in

fig. 3.41, we estimate that for this NFET the gate capacitance will change at 2.489 fF per 100◦C, or

1.18% per 100◦C. The results are shown in fig. 3.43. This is an approximation and the exact change

in capacitance may vary with the biasing of the device.



99

−50 0 50 100
1.05

1.1

1.15

1.2

1.25

1.3

Temperature (C)

V
ph

−50 0 50 100

3.2

3.25

3.3

3.35

3.4

Temperature (C)

V
ou

t

Figure 3.44: Cadence simulations of the effect of temperature on photoreceptor output, assuming
constant Vfg. The general trend is that the photoreceptor output voltage increases by 1.835 mV/◦C
for Vph and 1.113 mV/◦C for Vout. Top left: Unbuffered photoreceptor output (Vph) as a function
of photocurrent for several temperatures. Top right: Photoreceptor output buffered by a source-
follower (Vout) as a function of photocurrent for several temperatures. Bottom left: For a single
photocurrent, unbuffered photoreceptor output as a function of temperature. Bottom right: For a
single photocurrent, buffered photoreceptor output as a function of temperature.



100

3.8.4 Temperature Effects in the Photoreceptor

The general effect of increasing temperature within the photoreceptor will be to increase the output

voltage. Recall from eqn. 3.12 the transfer function of the photoreceptor (shown in fig. 3.33):

Vph = Vfg − 2 · VTH

κ
· ln

(
Iph

Io

)

where VTH is the thermal voltage kT
q . Recall from the discussion in the previous section that the

term e−
φ0
kT within Io tends to dominate temperature effects for a subthreshold transistor. Making

that term explicit by splitting Io into two terms Io = I ′o ·e−φ0/kT , the photoreceptor transfer function

becomes:

Vph = Vfg − 2 · VTH

κ
· ln

(
Iph

I ′o · e−φ0/kT

)

= Vfg − 2 · VTH

κ
·
(

ln

(
Iph

I ′o

)
+

φ0

kT

)
(3.22)

Thus, the photoreceptor output voltage Vph should increase linearly with temperature. This is

consistent with circuit simulations in Cadence, shown in fig. 3.44.

A more intuitive explanation of these equations notes that increasing temperature increases Io

roughly proportionally to e−φ0/kT for a given Vgs (see eqn. 3.20). In the photoreceptor, conversely,

the current Iph is fixed by the illumination level while Vgs is free to vary. As temperature increases,

the transistor would like to source more current, but since the current is fixed, it must instead

decrease its Vgs. A decrease in Vgs requires increasing Vph. Thus, Vph increases with temperature.

Another notable phenomenon in fig. 3.44 warrants explanation. For the highest temperatures

and low photocurrents, the output voltage plateaus as photocurrent decreases. The photocurrent at

which this plateau occurs corresponds to the sum of the substrate currents in the transistors of the

photoreceptor. What is happening here is that the thermally generated current in the transistors

exceeds the photocurrent, and we see the transistors responding to their own thermal current.

Each of the source-bulk and drain-bulk junctions in the transistors is a reverse-biased pn junction.

Electron-hole pairs that are thermally generated within the depletion regions of these junctions or

within a diffusion length of those junctions will contribute to the thermal current (see discussion

of dark current in sec. 3.8.1). The magnitude of this current is exponential in temperature and

indeed we see that the interval (along the x-axis) at which the curves plateau is evenly spaced on a

logarithmic scale.

The photoreceptor output Vph is next buffered by a source-follower. The source-follower has a

gain of less than one, which is the main reason for the apparent decreased sensitivity to temperature

mentioned in fig. 3.44. Since the follower output Vout is almost exactly one threshold voltage above

its input Vph, its main temperature dependence will be to shift the output by as much as its threshold



101

voltage changes. The resulting temperature dependence of -0.4mV/◦C (simulated) is much smaller

than the temperature dependence of the two subthreshold transistors constituting the photoreceptor.

Lastly, the capacitance of the floating gate will change with temperature, affecting the stored

voltage on the floating gate. This effect will be additive to the effects described above. Whether a

change in the floating gate capacitance increases or decreases the photoreceptor output depends on

the voltages to which the floating gate is most strongly coupled, which depends on both the circuit

topology and on the layout. The floating gate is intentionally coupled to a tunneling voltage Vtun

and a control gate Vbias. It also couples to the channel of the injection PFET which is near ground,

the channel of the photoreceptor NFET which is 1V or 2V, and parasitically to other voltages in a

manner depending on layout. The total charge stored on the floating gate can be written as:

Qfg = C1 · (Vfg − V1) + C2 · (Vfg − V2) + ... + CN · (Vfg − VN )

= Vfg ·
(

N∑
n=1

Cn

)
−

N∑
n=1

VnCn

which can be solved for Vfg:

Vfg =
Q +

∑N
n=1 VnCn∑N

n=1 Cn

It is clear that the magnitude and direction of the change on Vfg depends on the relative magnitudes

of all these capacitances. For example, an increase in the coupling to a high voltage will increase

Vfg and the photoreceptor output Vph will increase by the same amount as Vfg. An increase in the

coupling to ground will have the opposite effect and decrease Vfg, and thus Vph. ratio of Cvdd to

Cgnd. To minimize temperature dependence, we want to balance the coupling to voltages above Vfg

and below Vfg. We can do this by carefully choosing the voltages to which we tie biases such as Vtun

and Vbias, which are not actively used after programming and during normal operation. Because the

exact values of the capacitances Cn are difficult to estimate analytically, the choice of values would

be estimated best experimentally.

3.8.5 Temperature Effects in the Difference Circuit

Temperature affects the difference circuit (fig. 3.17) primarily by increasing the bias current. The

transistor sourcing IB typically operates just above threshold to provide a constant bias current to

the circuit. The current through this device increases with temperature, as shown in fig. 3.46. Recall

that:

I =
1
2
µnCox

W

L
(Vgs − Vt)

2 in strong inversion

Vt(T ) = Vt(To) − α(T − To) from eqn. 3.18



102

Figure 3.45: Cadence simulation of temperature effects on difference circuit.

µ = KµT−3/2 from eqn. 3.17

and that threshold voltage shift dominates the temperature dependence of transistors just above

threshold while mobility dominates well above threshold. Since, for the simulation shown in fig. 3.46,

the bias transistor operated just above threshold, its temperature dependence was dominated by a

shift in Vt. Since the output current is proportional to the square of Vt, we see that the resulting

bias current rises as the square of temperature.

The choice of desired bias current, and thus operating point of the bias transistor, depends on the

desired and possible clocking of the sample-and-hold circuit. Recall from sec. 3.4 that the current

output of this circuit is integrated onto a capacitor and then sampled by a sample-and-hold to convert

from the current Idiff to the voltage Vdiff . The current used to produce the shown simulation results

is typical for our test setup, where the clocking speed is limited primarily by our test equipment. If a

faster test setup were available, we might choose to output a larger Idiff and integrate it for a shorter

time to generate Vdiff . The biasing transistor PX would then operate further above threshold, the

effect of mobility on temperature would begin to play a stronger role, and the overall temperature

coefficient of the difference circuit would decrease in magnitude. Note that it is possible for PX

to operate slightly above threshold even while the other PFETs (P1-P6) continue to operate below



103

−20 0 20 40 60 80 100
0

50

100

150

200

250

Temperature (  C)

di
ff 

bi
as

 c
ur

re
nt

 (
nA

)

o

Figure 3.46: Cadence simulation of temperature effect on bias current in the difference circuit.

threshold, since the threshold voltage of PX is lower than that of the rest of the PFETs in the

circuit. The wells of all the PFETs in the circuit are at Vdd but their sources vary. Due to the body

effect, the threshold voltages of the PFETs increase as their source voltages drop. Thus, a current

for which the differential pairs remain within subthreshold and compute a difference as desired may

be sufficiently large to require above-threshold operation of the bias transistor. However, there is

a limit of how far above threshold we can operate PX since eventually, the differential pairs in the

remainder of the circuit will start coming out of subthreshold, and the computation at the core of

the circuit will degrade.

The operation of the rest of the difference circuit will not be notably impacted by temperature

shift. The crux of the difference computation relies on a subthreshold differential pair approximat-

ing a tanh function. In subthreshold transistors, temperature affects primarily the Io term of the

subthreshold current equation (eqn. 3.20). Since this factor is not dependent on the biasing of the

subthreshold transistor, all subthreshold transistors will be affected in the same manner. That is,

their Io and their source currents will be multiplied by the same factor for a given temperature shift.

If we look at the derivation of the tanh computation by a differential pair (see app. A), we note

that the Io terms for the two transistors cancel out. Since the Io of both transistors changes with

temperature by the same factor, the response of the differential pair is unaffected.

The calibration of the offset of the output is set by programming the floating gate fgρ to balance

Iρ with Iref (in fig. 3.17). By similar reasoning, if Vref and Vfgρ remain constant, this offset should

be similiarily unaffected by temperature. Since the devices sourcing Iρ and Iref will have their Io

terms affected by the same temperature-dependent factor, the ratio of Iρ to Iref will not change and

the calibration will remain intact. This is evidenced by Cadence simulation results shown in fig. 3.45,



104

in that the zero-crossing of the y-axis does not change with temperature. However, as discussed in

sec. 3.8.3, the gate capacitance of subthreshold MOSFETs has a temperature dependence. Given

a carefully chosen and constant charge on fgρ, if the capacitance changes, the voltage will change

correspondingly and the offset calibration will be disturbed. The relationship that defines what

magnitude voltage corresponds to a given shift in the offset depends on the built-in offset, as discussed

in sec. 3.4.1. However, the range over which we program fgρ is inevitably no greater than a couple

hundred millivolts, since that is the useful range of a differential pair. Using the ballpark estimate

from the end of sec. 3.8.3, if the capacitance change is 1.18% per 100◦C and the range over which

we might move fgρ is 200mV, and Vref is around 3.5V, we might expect a change equivalent to 20%

of the adjustable range for a 100◦C in the temperature.



105

Chapter 4

Technical Conclusions

The most important things I learned in the course of my research and in the course of writing this

thesis are a combination of technical knowledge directly related to electronic circuits and of ideas

about project management. The technical knowledge includes topics which I have mulled over while

designing my circuits, while testing them and being thankful or rueful for my design choices, and

during final evaluation of the approach I had chosen. Some of these conclusions are presented in

earlier parts of my thesis. Others–those which are partly a matter of opinion or which are conjectured

but backed by some experience–are best discussed here, in the final part of my thesis where I may

muse freely.

4.1 Engineering a Sensory System

Interacting with the complex and unpredictable world is a difficult task. Today, we laugh at state-

ments from the 1960’s when engineers and science fiction writers expected the problem to be entirely

solved by the turn of the millenium.

Machines will be capable, within twenty years, of doing any work that a man can do.

Herbert Simon, 1965

As a benchmark of how far we have come in the 40 years since, consider the Defense Advanced

Research Projects Agency (DARPA) Grand Challenge, created by the United States government to

promote robotic development. In its first year, 2004, the best vehicle managed to travel only 7.4

miles. In its second year, 2005, five vehicles competed the 132 mile course. DARPA then created

the Urban Challenge which, in 2007, will require vehicles to navigate a 60 mile mock urban area

while negotiating other traffic and following traffic laws. Today’s computational and algorithmic

developments still are not able to replicate the skills of a nervous 16-year old in navigating the

world.



106

Animal sensory systems vary in their complexity and processing requirements. A single-celled

organism accomplishes very simple tasks guided primarily by chemical sensors. Worms perform

more sophisticated behaviours, guided by touch and primitive light detection, with data processing

occurring in ganglia. Mammals engage in yet more difficult tasks, relying on several sensory modali-

ties and a hierarchy of levels of processing in their brains. Evolution developed both the sensors and

the subsequent processing in small steps, starting simply. Neuromorphic engineers started at the

other end, largely focusing on one of the most exciting and complex sensory modalities that requires

the most processing: vision.

In retrospect, with the experience of trying to implement a system to do both sensory detection

and processing, starting more simply seems like a prudent approach. It is plausible to imagine

that we might be able to evaluate, engineer, implement, refine, and re-implement a simpler sensory

modality, like the whisking of a rat, with only a single type of computation. Animal vision, on the

other hand, tends to involve multiple types of early processing, succeeded by at least one further

level of computation to merge the local responses into a global observation. The approach I took

for this thesis involved incorporating a computation into every pixel. This is appropriate if a single

computation is sufficient to solve a task. However, it does not scale well if multiple computations are

necessary. Expanding my motion detection system to include other types of image processing would

require re-engineering the chip, with each additional computation requiring the pixel to be laid out

again. In short, parallel computation within an array of custom pixels makes sense for simple sensory

modalities wherein a single computation may indeed suffice to complete a task, and wherein the raw

sensory output is unlikely to be reused by other computations. For the task of vision, wherein

multiple early processing computations can be useful, the system architecture should allow for easy

incorporation of additional computations without significant modification of the existing system.

4.2 Architecture for Real-Time Processing

Designers of focal-plane processing imagers who embed computational circuitry into each pixel ex-

plain the loss of layout area as justified by gains thanks to parallel processing by every pixel. On

the other end of the spectrum are those designers who read out pixel arrays and feed the data into a

serial digital processor. They tout the ease of reprogramming their systems and reduced design time

in comparison to custom hardware. Some argue that the lesser computational throughput of a serial

system is justified by reduced chip area for the imager, thus allowing higher resolution imaging.

However, rarely is the chip area of the off-the-shelf digital processor compared to the area of the

analogous custom analog processing.

In retrospect, an intermediate approach seems obvious yet largely neglected. In fact, if I were

designing yet another system to do image acquisition and processing based on a custom imager,



107

I carefully would analyze this middle path. A promising compromise between the two extremes

would be to combine on a single chip a dense array of simple photoreceptors with a single serial

just-in-time analog processor. The cost of parallel processing is high indeed when we try to cram

computation into every pixel. These analog computation blocks tend to either perform trivial oper-

ations, be poorly matched and output imprecise values, or take up impractically much area. On the

other hand, if only a single block were needed to perform some analog computation, many of these

problems could be ameliorated. With only one block, rather than hundreds, I could apply layout-

intensive areas such as common-centroid layout to reduce mismatch problems within the circuit.

Compensation with floating-gate transistors would be much faster since only one circuit would need

to be calibrated. Furthermore, with only one circuit, mismatch between circuits would not even

arise as a consideration. So far, this description roughly matches that of the serial digital camp.

What is the benefit in using an analog computational block over a digital one, then?

The benefit comes from keeping the computation on the same chip, from reduced layout area,

and from the need for fewer chips in the complete system. We simply need fewer resources. Off-chip

capacitances are much greater than on-chip capacitances. It is thus easier to design fast communica-

tion into a circuit on a single die than between two chips. In short, we can present raw photoreceptor

data to another on-chip subcircuit more quickly than to an identical subcircuit on another chip. For

applications such as mobile robotics, a real-time system is desirable. In a serial system, this calls

for the necessary computations to be performed in less time than is required to read the result

for a single pixel. Consider an array of 1 million pixels that we wish to read out at 30Hz. That

read-out rate allows 33ns per pixel. In a standard serial digital system, within those 33ns the system

would need to digitize the photoreceptor output with an A/D and squeeze in enough clock cycles to

complete the computation. In an analog system, the frequency response of some analog circuit must

be high enough that the output to a step response settles within 33ns. Is it reasonable to expect

this? I simulated the response to a step input to my difference circuit (presented in sec. 3.4). The

settling time of this circuit, biased with a few hundred nanoamps of current, was less than 10ns and

thus entirely adequate. Other circuits, such as the bump circuit [19] or a Gilbert multiplier, have a

sufficiently similar structure that their settling times should be similar. Increasing the bias current

would reduce settling time, if required. In short, a single analog block at the output of a chip could

perform just-in-time computations in lieu of individual processing elements within every pixel.

To perform computations on small patches of the image, pixel data can be temporarily stored

in on-chip sample-and-hold circuits. Some additional control circuitry would be required, either on-

chip or incorporated into an external controller. Previous implementations of on-chip digital control

systems exist, eg. [59], in this case for windowing. In a digital system, some equivalent sort of control

circuitry must also exist, typically implemented by programming general-purpose hardware.

Consider one last question about the suggestion of on-chip just-in-time computation, as described



108

above: Why analog, not digital? One answer is noise. With regards to feasibility, one could argue

that digital computation at 30MHz (requiring a higher clock rate, if multiple steps are necessary)

or analog computation with a 30ns settling time are both feasible. However, photoreceptors are

sensitive. Photocurrents are small. A digital processor running at well over 30MHz will inject a lot

of noise in the substrate, affecting the photodetection. A secondary consideration could be layout

area. To perform the computation digitally, an on-chip A/D converter would be needed and the

digital blocks would require more area than an efficient analog implementation. For example, an 8-

bit digital multiplier requires 40 times more layout area than an analog version incorporating floating

gates for mismatch compensation (see sec. B). For simple post-processing computations next to a

dense photoreceptor array, these blocks may be just a fraction of the die area and not worth quibbling

about. For more complex computations involving several multiplications, the area savings can be

substantial. A commonly lauded benefit of analog over digital computation is power savings. Indeed,

the power savings of an analog system can be substantial over a digital implementation, especially

when subthreshold analog is employed. In many robotics applications the motors draw require so

much more power than the on-board computer that the power argument for analog computations

fails to stand up to reality. However, a limited number of applications does exist in which power is so

limited that even processing must be considered in the energy budget, like ultra-small MEMS-based

robots, medical implants, and ubiquitous computing devices intended to operate for a long time on

limited battery power.

Lastly, this proposed architecture is amenable to the incorporation of multiple types of computa-

tion on the same chip, as suggested in sec. 4.1. After the raw photoreceptor data is read off from the

array, it can be channeled to several on-chip analog subcircuits for parallel processing. The addition

of another type of computation involves the addition on another subcircuit on the side of the array,

but does not require redesigning the pixel nor the other computational blocks already in place.

In summary, I propose combining the imager and computational blocks on the same chip. I

propose performing the calculations serially, since it is reasonable and feasible to make on-chip analog

computations run quickly relative to off-chip read-out rates. I propose using analog computational

blocks rather than digital ones, for reduced noise and efficiency in layout area.

4.3 Floating Gates for Mismatch Reduction

Floating gates are a sexy idea. We can incorporate these small structures into circuits to reduce mis-

match, saving much space relative to layout techniques for mismatch correction. We can program

them once and null mismatch indefinitely (or at least for years or decades). While floating-gate

technology is not without its own set of design challenges, many applications could benefit from

floating-gate devices to address mismatch. Floating gates are a useful tool that can enable some



109

exciting applications when implemented well. Under what circumstances is it appropriate to incor-

porate floating gate transistors as a means of mismatch reduction? How difficult are these devices

to program? What subtle issues must be overcome in using these devices? These types of questions,

unfortunately, are rarely answered in modern journal or conference publications. In this section, I

discuss little bits of wisdom and practical advice that I gleaned through the experience of working

with floating-gate transistors.

4.3.1 Retention Time: Benefits and Oxide Scaling

One obvious benefit of floating-gate devices is the non-volatile nature of the charge storage. Floating

gates have a long retention time made possible by storing charge on a fully-isolated conductor. In

contrast, when a transistor is used as a switch to control charge flow onto a capacitor (eg. in

DRAM, Dynamic Random Access Memory), subthreshold current through the transistor allows

charge to leak off the capacitor. The difference in leakage rates depends on design and operational

parameters, but the difference can be as large as years for floating gates versus milliseconds for

traditional capacitors. Calibration is retained even if the power is cycled, unlike the latches used in

SRAM (Static Random Access Memory). The obvious concern expressed by designers considering

using floating-gate devices is whether they will continue to work in modern fabrication processes

with their shrinking gate oxides, down to about 10Å as of time of this writing[1]. As shown in

fig. 3.5, this issue is reflected in plateauing gate oxide thicknesses in processes optimized for non-

volatile memories (NVM) which use floating gates. Indeed, 70-80Å is the magic number for oxide

thickness below which floating-gate retention times are too short for long-term non-volatile storage.

Charge leaks away due to direct tunneling across these thin oxides, at a rate exponential in the oxide

thickness. However, many modern processes include as an option thicker oxide transistors having

oxides of at least 70Å. The purpose of these transistors is to interface with off-chip devices that

run at higher voltages (like 5V), but they can also be used for floating-gate devices. Any processes

that allow for these thicker oxide transistors, then, will support floating-gate transistors with good

retention times.

4.3.2 Calibration Complexity

An important consideration in designing any programmable system is how to program it. The

characteristics that are unusual in floating-gate devices are their long retention times and the ex-

ponential dependence of programming rates on applied voltages. With their long retention times,

floating-gate devices may be expected to be programmed once to initialize them and never again,

in which case the complexity and speed of the programming algorithm introduce only an infrequent

or one-time cost. Even a complicated programming procedure may not be unreasonable if it only



110

needs to be done once. A little extra complexity in the calibration of a floating gate compared to

other alternatives may be acceptable.

However, the exponential dependence on applied voltages of programming rates can necessitate

complex calibration procedures, and the final system design must reflect this or else the “little extra

complexity” will become an impractical hurdle. Tunneling has an exponential dependence on the

voltage across the oxide. Hot carrier injection is exponentially dependent on the source-drain and

gate-drain voltages of the injection transistor. Thus, slight mismatch between devices can have a

dramatic impact on their relative programming rates. This can be countered in several ways, and

one of these or some other technique is, in practice, essential. If properly applied, one of these

techniques can make programming floating-gate devices a viable and reliable procedure.

Lastly, note that if the calibration is intended to remove offsets in a system that itself may be

affected by temperature or other environmental variables, repeated calibration may be necessary.

4.3.2.1 Calibrating the Calibration

We can apply the tool to itself by using floating-gate devices to adjust some parameter that controls

the injection or tunneling rate [40], first setting all calibration rates equal, and secondly calibrat-

ing the system. This is a useful technique if the system is to be recalibrated multiple times or

continuously.

4.3.2.2 Continuous Adaptation

A second option is continuous adaptation [37] used with feedback. If, as is usual, a separate injection

transistor shares its gate with the functional floating-gate transistor, injection can change the stored

charge on the floating gate without interrupting normal operation of the remainder of the circuit.

Thus, if some observable parameter is available during operation to indicate the calibration state

of the circuit, the calibration can be continuously adjusted via some feedback circuit. Observable

parameters may include the response to a periodic known stimulus, long-term statistics of the output,

or response during a reset phase of the circuit. Continuous adaptation may be implemented within

the floating-gate circuit itself or imposed by an external monitoring circuit.

It is more difficult to do continuous adaptation with tunneling. When a tunneling voltage is

applied across the oxide of a tunneling junction, the capacitive coupling to the floating gate pulls

the floating-gate voltage towards that of the tunneling voltage. We can reduce the magnitude of

this swing by coupling a second capacitor that attempts to transiently pull the floating gate voltage

down equally much as the tunneling pulse pulls it up, as in [35]. However, the accuracy to which this

method succeeds is limited by the matching of the capacitances on the floating gate. In practice,

the operation of the floating-gate device should be expected to change somewhat during a tunneling

pulse.



111

4.3.2.3 Speed and External Algorithms

A third option is to use fast and sophisticated calibration controls external to the floating-gate circuit,

possibly off-chip. The exponential relationship between the applied voltages and the tunneling or

injection rate implies that due to slight mismatch, one structure may need an order of magnitude

more programming time than another to achieve the same change in state. If we are careful to

design a calibration setup that allows rapid change of tunneling and injection voltages, we can start

programming each structure using conservative values and adjust these voltages in small steps until

we reach a reasonable programming rate. Because a change in the floating gate voltage in turn

changes the programming rate, we may need to readjust these voltages several times.

Measurement speed is critical here. One error I made in designing my chip was expecting that

adaptation in my calibration algorithm would work as described above. Unfortunately for me,

the input to the difference circuit is a visual stimulus, which is more difficult to change rapidly

than an electrical signal without special equipment not common to an electrical engineering lab.

Consequently, I spent much time writing and rewriting code to generate the visual stimulus, and the

resulting algorithms were still unsatisfactorily slow. Had I thought ahead and provided an electrical

way to override the inputs to the difference circuits, algorithm development and programming time

both would have been vastly improved.

4.3.2.4 Constant Programming Rate

Figueroa et al. [30] developed a memory cell to address the problem of change in programming rate as

the floating-gate voltage changes. Without feedback, as charge is added or removed from a floating

gate, the voltage thereon changes. As already mentioned, change in floating-gate voltage affects

the programming rate in a direct and exponential manner. At the cost of layout area, Figueroa

et al. [30] maintain constant programming rates for a given structure by keeping the floating gate

at a constant voltage, regardless of the charge stored thereon. The output of a small comparator

capacitively couples to the floating gate. The comparator output swings to whatever voltage is

necessary to keep the floating-gate voltage equal to some reference, and the comparator output then

serves as the calibrated parameter. This memory cell is indeed as simple to use as the paper suggests.

4.3.2.5 Art and Magic

The ultimate option is sophisticated design. The best engineers are creative artists, which really

means that they come up with elegant designs to address potentially critical problems. Such artful

designs arise partly out of creativity, partly from willingness to take risks and try new ideas, and

partly from experience and reapplying previously-seen solutions. Floating-gate circuits can some-

times be made smaller or simpler to operate through slick tricks–but an improvement in functionality



112

in the hands of a master will happen with any tool.

4.3.3 High Voltages for Tunneling

Tunneling requires several volts across the oxide, typically more than the power supply provides.

In older 2.0µm 5V processes, tunneling voltages were around 40V. In a 0.35µm 3V process, we

externally apply voltages around 8V to induce tunneling. It is important to consider the best means

of providing such a high voltage for programming. Two practical options include a dedicated external

power supply or an on-chip charge pump. Both are viable and reasonable options.

An external power supply, to a large extent, is easier for the designer but requires more resources.

The designer must situate a second power supply on the board or test bench and allocate an extra

pin on the chip to provide the tunneling voltage. A bare pad should be used because a tunneling

voltage can blow out the sort of protection circuitry that is typically included in a standard bonding

pad. However, no further circuit design in necessary.

A charge pump on-chip requires some additional design but less off-chip support. The charge

pumps I designed and tested worked as expected, so in my experience they are not particularly

tricky. Note that a pin on the chip may still be necessary as a tunneling control signal, but since it

switches an normal inverter, alternately it may be generated on-chip. A few external control signals

can run through a demultiplexer to generate many on-chip control signals. In modern processes

where the tunneling voltage may be substantially higher than the operating voltage for which the

process was designed, the need for high-voltage transistors within the charge pump could complicate

the design. However, avoiding the requirement of a second power supply is a vast improvement at

the system level. For a stand-alone system to be used beyond a test bench, a charge pump should

be seriously considered.



113

Chapter 5

Mentoring in Academia

Good project design, mentoring, and management are highly beneficial to the success of any substan-

tial project, whether in industry or academia. Sadly, I have seen this truism repeatedly neglected

in the halls of academia as those in charge are only indirectly rewarded for good management prac-

tices. Research laboratories vary widely in how they are run, each subject to one professor’s style.

Professors with an intuitive grasp of good management manage well, while those without fend as

best they care to and based on anecdotal experiences acquired as graduate students. Students go to

graduate school to learn and be mentored, and graduate schools rely on students to produce much

of their research. Yet academic institutions select professors based on their ability to do research,

not on the ability to convey that skill through teaching and mentoring, and after hiring provide little

guidance on how to direct and manage students. The obvious results are that each laboratory has

its own set of strengths and weaknesses which persist over years and over generations of graduate

students.

More in recent years and less when I first started graduate school, I have seen programs targeted

at students and intended to alleviate some of the resulting problems. Some programs aim to educate

graduate students on how to manage their advisors through a direct discussion. Others promote

communication among students to give the participants a baseline for reasonable expectations and

appropriate responses. Yet others attempt to provide mentors to students whose official advisors

are not fulfilling that role. The trend of providing increasing resources to students is a very positive

improvement. Sadly, I have not heard of programs that target the more permanent component of

the academic institution–the professors themselves.

One example of a program for students is a seminar at the University of Washington CSE (Com-

puter Science and Engineering) department entitled “Managing Advisors” [56]. The title ironically

points out that the role of management may befall the student, not the senior mentor. The program

is run by an administrator in the department, Lindsay Michimoto. As another example, Caltech’s

student-run GSC (Graduate Student Council) Newsletter, sent out monthly to all graduate stu-

dents, decided to run a multi-part series entitled “The Grad Student–Advisor Relationship”. This



114

is a sample quotation from the first article [9]:

It is true some advisors only want to hear from the students when they have results, but

most times they’re more than willing to talk with a grad student when they are stuck.

This snippet addresses a neglect exhibited by some advisors, which in turn inspires a fear that keeps

some students from interacting productively with their advisors. The writer also provides realistic

encouragement. The second month’s article [10], subtitled “Conflict with Your Advisor”, provides

a series of constructive suggestions that combine in about equal parts generally useful advice on

interacting in a workplace with advice on dealing with difficult, lackadaisical, or angry people.

These anecdotal sources are indicative of broader trends that I have observed. First, many

advisors are poor managers. They may be over-committed, inattentive, or fail to apply different

management techniques for different people. Michimoto’s seminar aims to address this problem

directly. Second, the grossly imbalanced power relationship between graduate students and their

advisors makes for a particularly fragile situation. In the workplace, an employee may switch man-

agers, groups, or companies with little impact on their career. In graduate school, switching advisors

tends to be tantamount to starting over. This situation amplifies the stress of any conflict, at times

producing negative responses like the fear reflected in the GSC article. Third, little pressure is

exerted on and few resources are provided to professors to encourage them to mentor and manage

better. Hiring decisions are made based on publication record, letters of recommendation, and an

invited lecture, and not based on past mentoring results. Tenure decisions likewise may empha-

size research over teaching. Fourth, constructive means do exist for graduate students to avoid

or alleviate problems and improve communication, and the examples above aim to facilitate such

solutions.

Providing resources to help students manage their relationships with advisors is certainly a step

in a good direction. Some of the skills needed to successfully manage an incognizant advisor–or

recognize one’s own communication weaknesses–will be useful to the student in future jobs. On

the other hand, being mentored well can demonstrate good management practices by example, in

addition to conveying technical expertise. Well-mentored students produce research with a clear

direction and with minimal repetition of prior work.

A complete solution requires proactive involvement of both the students and the professors. The

most direct impacts of widely-variable mentoring are on the students, not the professors. The most

hard-hit are those students with the least ability to speak out and create change–because they are

the ones with advisors who don’t listen. Thus, some of the initiative for change must come from

those who don’t personally experience a problem. Professors are the people with the most power

to insist on department-wide or university-wide changes. They are a more permanent component of

the academic institution than students. A long-lasting and complete solution requires professorial



115

involvement. Professors who mentor well should be rewarded. Professors who want to teach well but

do not have the skills should be provided guidance. Professors who are poor managers and refuse

to do better should be given incentives to care. Programs aimed at students, like those mentioned

above, should be officially encouraged and substantially supported.



116

Appendix A

Derivations of Equations for
Differential Pair

The differential pair is the core of the difference circuit of sec. 3.4. We derive here the equations

describing its operation, after [54]. Consider the differential pair shown in fig. A.1. The currents in

P1 and P2 will be:

I1 = Ioe
Vx−κV1

VT and I2 = Ioe
Vx−κV2

VT (A.1)

where VT = kT
q is the thermal voltage and κ characterizes how strongly the gate of the transistor

couples to the channel. Since IB splits to form these two currents:

IB = I1 + I2 = Ioe
Vx
VT

(
e
−κV1

VT + e
−κV2

VT

)

Solving for eVx ,

eVx =
IB

Io
· 1

e
−κV1

VT + e
−κV2

VT

(A.2)

V2V1 I1 I2

IB

Vdd

VB

Vx

PX

P1 P2

Figure A.1: A differential pair



117

Substituting eqn. A.2 into the expressions from eqn. A.1:

I1 = IB
e

κV1
VT

e
−κV1

VT + e
−κV2

VT

and I2 = IB
e

κV2
VT

e
−κV1

VT + e
−κV2

VT

The difference of the currents I1 and I2 is:

I1 − I2 = IB
e

κV1
VT − e

κV2
VT

e
−κV1

VT + e
−κV2

VT

Multiplying the numerator and denominator by e−κ(V1+V2)/2VT gives a useful expression since we

can restate it using the tanh function:

I1 − I2 = IB
e

κ
2VT

(V1−V2) − e
− κ

2VT
(V1−V2)

e
κ

2VT
(V1−V2) + e

− κ
2VT

(V1−V2)

= IB · tanh
(

κ(V1 − V2)
2VT

)



118

Appendix B

Analog vs. Digital Layout Area

A digital multiplier or adder requires much more layout area and power than an analog counterpart.

This section presents a rough comparison of the difference in layout area, concluding that an equiva-

lent digital circuit is approximately 30 to 100 times larger. Analog computational circuits are limited

in the number of bits of precision by noise, and 8 bits is a reasonable upper bound using typical

circuit design techniques. For very precise computations with more than 8 bits, digital computation

may be the only reasonable solution. For computations where 8 bits of precision suffice, such as the

image data processing in this thesis, an analog computation is much cheaper in terms of layout and

power.

The layout areas for my analog circuits are approximately 270µm2 for the difference circuit and

655µm2 for the multiplier. Comparable digital circuits are sized approximately 6600µm2 for a ripple

adder and 26400µm2 for a multiplier. The analog circuits are 24 and 40 times smaller, respectively.

Both the analog and digital layout were done in the same 0.35µm process.

The data in this section comes from two sources. Layout estimates for the analog difference circuit

and analog Gilbert multiplier come from my fabricated layout. The difference circuit is presented in

sec. 3.4, while the multiplier is unpublished as of the writing of this thesis. Each incorporates two

floating gate devices to remove offset due to mismatch. For the digital adder and digital multiplier,

I used Cadence to automatically generate layout from Verilog expressions (script modified from

one by Seth Bridges [13]). Note that this is an integer multiplier, not floating-point, and that a

floating-point multiplier would be substantially larger. The automatically generated layout includes

all necessary gates but not the routing, which would increase the area by some amount like 10% or

20%. Cadence provides a choice of several topologies and I present results for each.

I present the data as follows. Fabricated layout areas for the analog difference circuit, the analog

multiplier, and constituent subcircuits are listed in table B.1. The layout areas of digital circuits

vary with the number of bits and the desired speed. Figs. B.1 and B.2 some reasonable span of these

parameters, while tables B.2 and B.3 list the raw numbers used to generate the plots.



119

Structure Area
difference circuit 9.3µm × 20µm 186µm2

excluding tun & inj
difference circuit total 271µm2

with tunneling junction
and injection structure

multiplier 20µ × 28.5µm 570µm2

excluding tun & inj
multiplier total 655µm2

with tunneling junction
and injection structure

tunneling junction 7µm × 8µm 56µm2

including well spacing
injection structure 5.65µm× 5.10µm 29µm2

consisting of FETs: for
injection and control of injection

charge pump 16.7µm× 13.9µm 232µm2

Table B.1: Fabricated layout areas for a multiplier and a difference circuit in a 0.35µm process.
Both use floating gate devices for mismatch compensation. The areas of the injection transistor,
tunneling junction, and well spacing are included. The charge pump is not included in the totals
since then number of charge pumps needed can vary from zero, to one per chip, to one per floating
gate. If the tunneling voltage is provided from off-chip, no charge pumps are needed. If used, a
charge pump can be shared between multiple floating-gate devices.

4 5 6 7
10000

15000

20000

25000

30000

35000

40000

speed (ns)

ar
ea

 (
µ 

m
2 )

Digital multiplier: layout area vs speed

 

 

auto, 6−bit
non−booth, 8−bit
booth, 6−bit

1.5 2 2.5 3 3.5
2500

3000

3500

4000

4500

5000

5500

6000

6500

speed (ns)

ar
ea

 (
µ 

m
2 )

Digital adder: layout area vs speed

 

 

csel, 5−bit
ripple, 5−bit

Figure B.1: Layout area (in µm2) of a digital multiplier (left) and adder (right) as a function of
speed.



120

4 5 6 7 8
 5000

10000

15000

20000

25000

30000

35000

40000

45000

number of bits (ns)

ar
ea

 (
µ 

m
2 )

Digital multiplier: layout area vs number of bits

 

 

auto, 6ns
auto, 5ns
non−booth, 4.3ns
booth, 5ns

3 4 5 6 7
 3000

 4000

 5000

 6000

 7000

 8000

 9000

10000

number of bits (ns)

ar
ea

 (
µ 

m
2 )

Digital adder: layout area vs number of bits

 

 

fcla, 1.5ns
ripple, 1.5ns

Figure B.2: Layout area (in µm2) of a digital multiplier (left) and adder (right) as a function of the
number of input bits.

topology input target simulated area note
bits speed speed

(ns) (ns) (µm2)
csel 5 4 3.15 3290.00 vary
csel 5 3 2.99 3307.50 speed
csel 5 2.5 2.46 3447.50
csel 5 2.0 2.13 5862.50

ripple 5 2.0 2.05 4322.50 compare
cla 5 2.0 1.94 3850.00 topologies
fcla 5 2.0 1.90 3517.50
fcla 5 1.5 1.50 5775.00
fcla 5 1.3 1.34 8715.00
fcla 3 1.5 1.48 3080.00 vary
fcla 4 1.5 1.48 3482.50 number
fcla 6 1.5 1.50 7997.50 of bits
fcla 7 1.5 1.54 9327.50

ripple 4 1.5 1.65 5372.50 vary
ripple 6 1.5 2.14 6002.50 number
ripple 7 1.5 2.56 6580.00 of bits
ripple 7 2.6 2.73 6107.50 vary
ripple 6 2.6 2.52 3955.00 number
ripple 5 2.6 2.59 2607.50 of bits
ripple 4 2.6 2.59 2100.00
ripple 6 2.7 2.70 4025.00
ripple 6 2.65 2.63 4130.00
ripple 5 3.0 2.99 2520.00 vary
ripple 5 4.0 2.99 2520.00 speed
ripple 5 2.0 2.05 4375.00
ripple 5 1.7 1.88 6370.00

Table B.2: Estimated layout area for digital adders in a 0.35µm process.



121

topology input target simulated area note
bits speed speed

(ns) (ns) (µm2)
booth 6 8.0 6.61 17692.50
auto 6 5.0 4.96 14700.00 vary
auto 6 4.5 4.46 15767.50 speed
auto 6 4.0 4.11 20090.00
auto 4 6.0 4.36 5827.50
booth 4 6.0 5.22 8872.50

non-booth 4 6.0 4.01 5372.50
booth 6 6.0 5.92 18060.00 compare

non-booth 6 6.0 5.64 13125.00 topologies
auto 6 6.0 5.47 14332.50 at 6ns
booth 6 5.0 5.00 19355.00 compare

non-booth 6 5.0 5.00 15522.50 topologies
auto 6 5.0 4.96 14700.00 at 5ns
auto 5 5.0 4.80 9940.00 vary
auto 4 5.0 4.36 5827.50 number
auto 7 5.0 4.98 21595.00 of bits
auto 8 5.0 5.03 31885.00 at 5ns
auto 5 6.0 5.26 9660.00 vary
auto 6 6.0 5.47 14332.50 number
auto 7 6.0 5.96 19845.00 of bits
auto 8 6.0 5.88 26407.50 at 6ns

non-booth 8 6.0 5.89 28315.00 vary
non-booth 8 5.0 5.00 33267.50 speed
non-booth 8 4.3 4.30 38132.50
non-booth 7 4.3 4.34 25602.50 vary
non-booth 6 4.3 4.37 22767.50 number
non-booth 5 4.3 4.03 10535.00 of bits
non-booth 4 4.3 4.01 5372.50

booth 8 5.0 5.09 40897.50 vary
booth 7 5.0 4.99 25742.50 number
booth 6 5.0 5.00 19355.00 of bits
booth 5 5.0 4.96 11795.00
booth 4 5.0 4.58 9397.50
booth 6 4.5 4.51 23520.00
booth 6 6.0 5.92 18060.00 vary
booth 6 7.0 6.61 17290.00 speed
booth 6 9.0 6.61 17290.00

Table B.3: Estimated layout area for digital multipliers in a 0.35µm process.



122

Bibliography

[1] International Technology Roadmap for Semiconductors, 2001–2005. http://public.itrs.net.

[2] Understanding photodiode detector performance, Dec 2005.

http://beammeasurement.mellesgriot.com/tut_photo_det.asp.

[3] E.H. Adelson and J.R. Bergen. Spatiotemporal energy models for the perception of motion. J.

Optical Society of America A, 2(2):284–299, 1985.

[4] E. Allen and D. Holberg. CMOS Analog Circuit Design. Oxford University Press, 2002.

[5] P.E. Allen and D.R. Holberg. CMOS Analog Circuit Design, pages 657–662. Oxford University

Press, 2nd edition, 2002.

[6] A. Aslam-Siddiqi, W. Brockherde, M. Schanz, and B.J. Hosticka. A 128-pixel CMOS image

sensor with integrated analog nonvolatile memory. IEEE J. Solid-State Circuits, 33(10):1497–

1501, 1998.

[7] M. Barbaro, P.-Y. Burgi, A. Mortara, P. Nussbaum, and F. Heitger. A 100x100 pixel silicon

retina for gradient extraction with steering filter capabilities and temporal output coding. IEEE

J. Solid-State Circuits, 37(2):160–172, 2002.

[8] H.B. Barlow and W.R. Levick. The mechanism of directionally selective units in rabbit’s retina.

J. Physiology, 178:477–504, 1965.

[9] O. Becker. The grad student–advisor relationship, part I: Choosing an advisor. The GSC

Newsletter, XX(6):6–7, March 2006.

[10] O. Becker. The grad student–advisor relationship, part II: Managing conflict with your advisor.

The GSC Newsletter, XX(7):3, April 2006.

[11] A. Benedetti and P. Perona. Real-time 2-D feature detection on a reconfigurable computer. In

Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 593–600, 1998.

[12] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik. A real-time computer vision system for

measuring traffic parameters. In Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion, pages 495–501, 1997.



123

[13] S. Bridges, 2006. Personal communication.

[14] C. Chubb and G. Sperling. Drift-balanced random dot stimuli; a general basis for studying

non-Fourier motion. J. Optical Society of America, (5):1986–2007, 1988.

[15] M. Clapp and R. Etienne-Cummings. A dual pixel-type imager for imaging and motion centroid

localization. In IEEE Int’l Symposium on Circuits and Systems, volume 3, pages 501–504, 2001.

[16] M. Cohen and G. Cauwenberghs. Floating-gate adaptation for focal-plane online nonunifor-

mity correction. IEEE Trans. Circuits and Systems II–Analog and Digital Signal Processing,

48(1):83–89, 2001.

[17] E. Culurciello, R. Etienne-Cummings, and K.A. Boahen. A biomorphic digital image sensor.

IEEE J. Solid-State Circuits, 38(2):281–294, 2003.

[18] Liang Dai and R. Harjani. CMOS switched-op-amp-based sample-and-hold circuit. IEEE J.

Solid-State Circuits, 35(1):109–113, 2000.

[19] T. Delbruck. Bump circuits for computing similarity and dissimilarity of analog voltages. CNS

Memo, (26), 1993.

[20] T. Delbruck. Library essentials: analog VLSI and neural systems by Carver Mead. The Neuro-

morphic Engineer Newsletter, 1(1):11, 2004.

[21] T. Delbruck and C.A. Mead. Analog VLSI phototransduction by continous-time, adaptive,

logarithmic photoreceptor circuits, 1996. Caltech Computation and Neural Systems Memo 30.

[22] F. Devos, M. Zhang, Y. Ni, and J.F. Pone. Trimming CMOS smart imager with tunnel-effect

nonvolatile analog memory. Electronics Letters, 29(20):1766–1767, 1993.

[23] J. Diaz, E. Ros, S. Mota, F. Pelayo, and E.M. Ortigosa. Real-time optical flow computation

using FPGAs. In Early Cognitive Vision Workshop, Isle of Skye, Scotland, UK, 2004.

[24] C. Diorio. A p-channel MOS synapse transistor with self-convergent memory writes. IEEE

Trans. Electron Devices, 47(2):464–472, 2000.

[25] C. Diorio, P. Hasler, B.A. Minch, and C. Mead. A single-transistor silicon synapse. IEEE

Trans. Electron Devices, 43(11):1972–1980, 1996.

[26] P.G. Drennan and C.C. McAndrew. A comprehensive MOSFET mismatch model. In Proc.

Int’l Electron Devices Meeting, pages 167–170, 1999.

[27] R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, and Mao-Zhu Zhang. A foveated silicon

retina for two-dimensional tracking. IEEE Trans. Circuits and Systems II: Analog and Digital

Signal Processing, 47(6):504–517, 2000.



124

[28] C.L. Fennema and W.B. Thompson. Velocity determination in scenes containing several moving

objects. Computer Graphics and Image Processing, 9:301–315, 1979.

[29] N.J. Ferrier, S.M. Rowe, and A. Blake. Real-time traffic monitoring. In WACV94, pages 81–88,

1994.

[30] M. Figueroa, S. Bridges, and C. Diorio. On-chip compensation of device-mismatch effects in

analog VLSI neural networks. In Proc. Neural Information Processing Systems Conf. 17, pages

441–448, Vancouver, Canada, 2005.

[31] P.D. Fiore, April 2002. Personal communication.

[32] P.D. Fiore, D. Kottke, W. Krawiec, and D. Gampagna. Efficient feature tracking with appli-

cation to camera motion estimation. In Conf. Record of the Thirty-Second Asilomar Conf. on

Signals, Systems and Computers, volume 2, pages 949–953, 1998.

[33] A. Fusiello, E. Trucco, T. Tommasini, and V. Roberto. Improving feature tracking with robust

statistics. Pattern Analysis and Applications, 2:312–320, 1999.

[34] A.S. Grove. Physics and Technology of Semiconductor Devices. John Wiley & Sons, Inc., 1967.

[35] R.R. Harrison, J.A. Bragg, P. Hasler, B.A. Minch, and S.P. Deweerth. A CMOS programmable

analog memory-cell array using floating-gate circuits. IEEE Trans. Circuits and Systems II-

Analog and Digital Signal Processing, 48(1):4–11, 2001.

[36] R.I. Hartley. In defense of the eight-point algorithm. IEEE Trans. Pattern Analysis and Machine

Intelligence, 19(6):580–593, 1997.

[37] P. Hasler, C. Diorio, and B.A. Minch. Continuous-time feedback in floating-gate MOS circuits.

In Proc. IEEE Int’l Symposium on Circuits and Systems (ISCAS), volume 3, pages 90–93,

Monterey, CA, 1998.

[38] B. Hassenstein and W. Reichardt. Systemtheoretische Analyse der Zeit-, Reihenfolgen-, und

Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers chlorophanus. Z. Natur-

forsch., (11b):513–524, 1956.

[39] D. J. Heeger. Model for the extraction of image flow. J. Opt. Soc. Am. A., (4):1455–1471, 1987.

[40] J. Holleman, 2005. Personal communication.

[41] B.K.P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17:185–204,

1981.

[42] D. Hsu, M. Figueroa, and C. Diorio. Competitive learning with floating-gate circuits. IEEE

Trans. Neural Networks, 13(3):732–744, 2002.



125

[43] Z. Hu and K. Uchimura. Motion detection from a moving observer using pure feature matching.

Int’l J. Robotics and Automation, 15(1):21–26, 2000.

[44] A. Johnston, P.W. McOwan, and H. Buxton. A biologically plausible scheme for measuring

image velocity. J. Physiology, (452):288, 1992.

[45] A. Johnston, P.W. McOwan, and H. Buxton. A computational model of the analysis of some

first-order and second-order motion patterns by simple and complex cells. Proc. Royal Society

of London B, (250):297–306, 1992.

[46] Z.K. Kalayjian and A.G. Andreou. Mismatch in photodiode and phototransistor arrays. In

Proc. IEEE Int’l Symposium on Circuits and Systems (ISCAS), volume 4, pages 121–124, 2000.

[47] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Bogaerts. A logarithmic re-

sponse CMOS image sensor with on-chip calibration. IEEE J. Solid-State Circuits, 35(8):1146–

1152, 2000.

[48] S. Kawahito, T. Eki, and Y. Tadokoro. A bit-serial column parallel processing architecture

for on-sensor discrete fourier transform. In IEEE Int’l Symposium on Circuits and Systems

(ISCAS), volume 4, pages 738–741, 2001.

[49] T. Komuro, I. Ishii, M. Ishikawa, and A. Yoshida. A digital vision chip specialized for high-speed

target tracking. IEEE Trans. Electron Devices, 50(1):191–199, 2003.

[50] O. Landolt, A. Mitros, and Koch C. Visual sensor with resolution enhancement by mechanical

vibrations. In Proc. 2001 Conf. Advanced Research in VLSI, pages 249–264, Salt Lake City,

Utah, 2001.

[51] M. Loose, K. Meier, and J. Schemmel. A self-calibrating single-chip CMOS camera with loga-

rithmic response. IEEE J. Solid-State Circuits, 36(4):586–596, 2001.

[52] Ziyi Lu and B.E. Shi. Subpixel resolution binocular visual tracking using analog VLSI vi-

sion sensors. IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing,

47(12):1468–1475, 2000.

[53] B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo

vision. In Proc. DARPA Image Understanding Workshop, pages 121–130, 1984.

[54] C. Mead. Analog VLSI and Neural Systems. Addison-Wesley Publishing Company, 1989.

[55] C. Michael and M. Ismail. Statistical modeling of device mismatch for analog MOS integrated

circuits. IEEE J. Solid-State Circuits, 27(2):154–166, 1992.



126

[56] L. Michimoto, 2006. Post to cs-grads@cs.washington.edu, a mailing list for all graduate students

in CSE department at the Univ. of Washington.

[57] T. Morita and T. Kanade. A sequential factorization method for recovering shape and motion

from image streams. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(8):858–867,

1997.

[58] Y. Ni, F. Devos, M. Boujrad, and J.H. Guan. Histogram-equalization-based adaptive image

sensor for real-time vision. IEEE J. Solid-State Circuits, 32(7):1027–1036, 1997.

[59] R.H. Nixon, S.E. Kemeny, B. Pain, C.O. Staller, and E.R. Fossum. Cmos active pixel sensor

camera-on-a-chip. IEEE J. Solid-State Circuits, 31(12):2046–2050, Dec 1996.

[60] M.J.M. Pelgrom, A.C.J. Duinmaijer, and A.P.G. Welbers. Matching properties of MOS-

transistors. IEEE J. Solid-State Circuits, 24(5):1433–1440, 1989.

[61] A. Pesavento. PhD thesis. Visual Sensors for Focal Plane Computation of Image Features.,

PhD thesis, California Institute of Technology, Pasadena, California, 2002.

[62] A. Pesavento. Personal communication.

[63] A. Pesavento and C. Koch. A wide linear range four quadrant multiplier in subthreshold CMOS.

In Proc. IEEE Int’l Symposium on Circuits and Systems, volume 2, pages 240–243, 1999.

[64] J.M. Pimbley, M. Ghezzo, H.G. Parks, and D.M. Brown. Advanced CMOS Process Technology.

Academic Press, Inc, 1989.

[65] C.J. Poelman and T. Kanade. A paraperspective factorization method for shape and motion

recovery. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(3):206–218, 1997.

[66] P.O. Pouliquen, A.G. Andreou, G. Cauwenberghs, and C.W. Terrill. Learning to compensate

for sensor variability at the focal plane. In Proc. Int’l Joint Conf. on Neural Networks (IJCNN),

volume 4, pages 2333–2336, 1999.

[67] K. Rahimi. Adaptive-Delay Sequential Circuits. PhD thesis, University of Washington, Seattle,

Washington, 2004.

[68] L.M. Reyneri. Implementation issues of neuro-fuzzy hardware: going toward hw/sw codesign.

IEEE Trans. Neural Networks, 14(1):176–194, 2003.

[69] R. Sarpeshkar, J. Kramer, G. Indiveri, and C. Koch. Analog VLSI architectures for motion

processing: From fundamental limits to system applications. Proc. IEEE, 84(7):969–987, 1996.

[70] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE Trans. Pattern

Analysis and Machine Intelligence, 19(5):530–535, 1997.



127

[71] J. Segen. A camera-based system for tracking people in real time. In Proc. 13th Int’l Conf. or

Pattern Recognition, volume 3, pages 63–67, 1996.

[72] Y. Song, L. Goncalves, and P. Perona. Learning probabilistic structure for human motion

detection. In IEEE Conf. on Computer Vision and Pattern Recognition, 2001.

[73] B.G. Streetman. Solid State Electronic Devices. Prentice-Hall, Inc., 4th edition, 1995.

[74] S.M. Sze. Physics of Semiconductor Devices. Wiley-Interscience, 2nd edition, 1981.

[75] C. Tomasi and Kanade T. Shape and motion from image streams: a factorization method–part

3 detection and tracking of point features. Technical Report CMU-CS-91-132, Carnegie Mellon

University, April 1991.

[76] J.P. van Santen and Sperling G. Temporal covariance model of human motion perception. J.

Optical Society of America A, 1(5):451–473, 1984.

[77] J.P. van Santen and Sperling G. Elaborated reichardt detectors. J. Optical Society of America

A, 2(2):300–321, 1985.

[78] A. B. Watson and A. J. Ahumada. Model of human visual-motion sensing. J. Optical Society

of America A, (2):322–341, 1985.

[79] M.J. Wilcox and D.C. Thelen Jr. A retina with parallel input and pulsed output, extracting

high-resolution information. IEEE Trans. Neural Networks, 10(3):574–583, 1999.

[80] C.Y. Wu and C.F. Chiu. A new structure of the 2-D silicon retina. IEEE J. Solid-State Circuits,

30(8):890–897, 1995.

[81] J.L. Wyatt, Jr., D.L. Standley, and W. Yang. The MIT vision chip project: Analog VLSI

systems for fast image acquisition and early vision processing. In Proc. IEEE Int’l Conf. on

Robotics and Automation, volume 2, pages 1330–1335, 1991.

[82] Y.-S. Yao and R. Chellappa. Tracking a dynamic set of feature points. IEEE Tran. Image

Processing, 4(10):1382–1395, 1995.

[83] M. Zhang, F. Devos, and J.F. Pone. Trimming smart imagers for an image converter with a

nonvolatile analog memory. Sensors and Actuators, 47(1-3):456–459, 1995.

[84] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust technique for matching two

uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelli-

gence, 78(1-2):87–119, 1995.

[85] Zhengyou Zhang and Ying Shan. Incremental motion estimation through local bundle adjust-

ment, 2001. Technical Report MSR-TR-01-54.


