
On Divisible Codes over Finite Fields

Thesis by

Xiaoyu Liu

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Submitted May 24, 2006)



ii

c© 2006

Xiaoyu Liu

All Rights Reserved



iii

In memory of my grandfather

Lingyun Shaohan He



iv

Acknowledgements

Foremost, I would like to acknowledge the guidance from my advisor, Rick Wilson, who got

me interested in this line of research and helped me through many challenging situations.

Next, I wish to thank the others on my committee – David Wales, Dinakar Ramakrishnan

and Cheng-Yeaw Ku – for their willingness to help.

I thank the California Institute of Technology, and especially the Department of Math-

ematics, for providing me with an opportunity to pursue my Ph.D. degree, and supporting

me for five wonderful years.

Appreciation also goes to the department staff: Elizabeth Wood, Stacey Croomes, Kathy

Carreon, and Pamela Fong, for all their help that makes my everyday life easier so that I

can focus my attention on research.

Finally, and most of all, I want to thank my parents, who have always been an endless

source of love and support to me.



v

Abstract

We study a certain kind of linear codes, namely divisible codes, over finite fields. These

codes, introduced by Harold N. Ward, have the property that all codeword weights share a

common divisor larger than 1. These are interesting error-correcting codes because many

optimal codes and/or classical codes exhibit nontrivial divisibility.

We first introduce an upper bound on dimensions of divisible codes in terms of their

weight spectrums, as well as a divisibility criteria for linear codes over arbitrary finite fields.

Both the bound and the criteria are given by Ward, and these are the primary results that

initiate this work.

Our first result proves an equivalent condition of Ward’s bound, which involves only some

property of the weight distribution, but not any other properties (including the linearity)

of the code. This equivalent condition consequently provides an alternative (and more

elementary) proof of Ward’s bound, and from the equivalence we extend Ward’s bound to

certain nonlinear codes.

Another perspective of the equivalence gives rise to our second result, which studies

weights modulo a prime power in divisible codes. This is generalized from weights modulo

a prime power in linear codes, and yields much better results than the linear code version

does. With a similar method we propound a new bound that is proved to be better than

Ward’s bound.

Our third result concerns binary divisible codes of maximum dimension with given

lengths. We start with level one and level two codes, which are well described from this

point of view. For higher level codes we prove an induction theorem by using the binary

version of the divisibility criteria, as well as Ward’s bound and the new generated bound.

Moreover, this induction theorem allows us to determine the exact bound and the codes

that attain the bound for level three codes of relatively small length.
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Chapter 1

Introduction

Let p be a prime, and let l be a positive integer. Set q = pl. Let Fq denote the field of q

elements. A q-ary linear code of length n and dimension k, or an [n, k]q code for short, is a

k-dimensional subspace of Fn
q , where Fq is said to be the alphabet of the code. Linear codes

form a large class of error-correcting codes, which includes various subclasses all of great

importance in coding theory. From now on, we shall occasionally mention definitions and

results on linear codes from the encyclopedic references [PW72] and [MS77] without further

citing them.

Suppose C is an [n, k]q code. Any basis of C forms a k by n matrix G that is called

a generator matrix of C, and C is uniquely determined by any of its generator matrices.

The Hamming weight wt(c) of any codeword c ∈ C is defined to be the number of nonzero

coordinates in c. The weight enumerator w(x) of C, or wC(x), is a polynomial written as

w(x) =
∑
c∈C

xwt(c) =
n∑

i=0

wix
i,

where each coefficient wi, 0 ≤ i ≤ n, represents the number of codewords of weight i in C.

The MacWilliams transform of w(x) is defined as

w⊥(x) = q−k(1 + (q − 1)x)nw

(
1− x

1 + (q − 1)x

)
, (1.1)

which is also a polynomial in x. For any two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in

Fn
q define their inner or scalar product as a ·b = a1b1+ · · ·+anbn. If a ·b = 0, a and b are said

to be orthogonal. The dual or orthogonal code C⊥ of C is the set of vectors in Fn
q that are

orthogonal to all codewords in C, and obviously C⊥ is an [n, n− k]q code. The well-known
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MacWilliams identity asserts that the weight enumerator of C⊥ is exactly the MacWilliams

transform w⊥(x) as defined in (1.1). Moreover, C is called self-orthogonal or weakly self-

dual if C ⊆ C⊥, (strictly) self-dual if C⊥ = C, and formally self-dual if wC⊥(x) = wC(x).

Self-dual codes are automatically formally self-dual due to the MacWilliams identity. In

addition to the code length n and dimension k, another important parameter of the linear

code C is the so called minimum weight, by which we mean the minimum Hamming weight

of the nonzero codewords in C. An [n, k]q code of minimum weight d may also be denoted

as an [n, k, d]q code.

In this work, we are interested in a certain kind of linear codes that exhibits nontrivial

divisibility such that all codeword weights have a common divisor greater than one. Such

codes are named by Harold N. Ward as divisible codes. The simplest divisible code is a

replicated code, which is created by repeating each coordinate in a selected code a certain

number of times. Besides, several families of classical codes exhibit nontrivial divisibility.

Moreover, their dimensions are usually larger than those for replicated codes of the same

divisor and length. As a matter of fact, we shall discuss divisible codes mainly in two aspects:

bounds for divisible codes; and divisibility properties of linear codes. This opening chapter

consisting of two sections is an introduction to the entire thesis. Section 1.1 introduces the

background of divisible codes including the origination and the description of these codes,

as well as the previous results that initiate this work. Section 1.2 outlines our new results.

Throughout this thesis, p, q, and l are as above set, and unless otherwise stated, C is a

q-ary linear code of length n.

1.1 Background

Divisible codes were introduced by Ward [War81] in 1981. A q-ary divisible code is a linear

code over the field Fq whose codewords all have weights divisible by some integer ∆ > 1,

where ∆ is called a divisor of the code. Ward proved that if a divisor ∆ of a divisible

code is relatively prime to the field characteristic, then the code is merely equivalent1 to a

∆-folded2 replicated code. Thus for a q-ary divisible code C, one is most interested in the

case where the greatest divisor of C equals pe for some integer e ≥ 1. In such a case, C is
1A code C1 is said to be equivalent to another code C2 if, after rearranging its coordinates, C1 will be

the same as C2.
2A ∆-folded replicated code is a replicated code created by repeating each coordinate in a selected code

∆ times.
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said to be of (divisibility) level e. Suppose t is an integer that is relatively prime to p, and

let C be a level e code as above defined. Then any t-folded replication of C is also called a

level e code. In other words, a q-ary divisible code C is of level e if and only if the exponent

of the highest power of p that divides the greatest divisor of C equals e.

The study of divisible codes was motivated by a theorem of Gleason and Pierce giving

constraints on the divisor and field size for divisible codes that are formally self-dual, and

Ward [War81] recast the theorem as follows:

Theorem 1.1 (Gleason and Pierce). Suppose C is a q-ary divisible code of length n,

dimension k = bn/2c, and greatest divisor ∆ > 1. Then the possibilities for q and ∆ are

limited to the following types:

I. q = ∆ = 2;

II. q = 2, ∆ = 4, and C is self-orthogonal. Moreover, C is self-dual if n is even;

III. q = ∆ = 3, and C is self-orthogonal. Moreover, C is self-dual if n is even;

IV. q = 4, ∆ = 2;

V. ∆ = 2, and C is equivalent to the code obtained by duplicating each entry in the

codewords of Fk
q and adding on a 0 if n is odd;

VI. ∆ = 3, and C is equivalent to the code with generator matrix (1, 1, 1);

VII. q = ∆ = 4, and C is equivalent to the code with generator matrix

 1 0 1 1 1

0 1 1 ω ω2

 ,

where F4 = F2(ω).

The Roman numeral appropriate to C is customarily called the type3 of C. All codes

covered by Theorem 1.1 may be viewed as divisible codes of length n attaining the largest

conceivable dimension, except when q = ∆ = 2. Satisfactory bounds on dimension of divis-

ible codes in terms of length and divisibility level are not known in general. However, Ward

3A code of type I or IV may also be of type V, and a code of type III may also be of type VI.
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[War92] stated as follows an upper bound for the dimension of a divisible code depending

on its weight spectrum.4

Theorem 1.2 (Ward [War92]). Let C be a q-ary divisible code whose nonzero weights

are among the m consecutive multiples w1 = (b−m + 1)∆, . . . , wm = b∆ of the divisor ∆.

Then

dim C ≤ m

(
vp(∆)

l
+ 1
)

+
1
l

vp

((
b

m

))
, (1.2)

where the p-adic valuation vp(x) is defined to be the exponent of the highest power of p that

divides x. By convention, vp(0) = ∞.

We call bound (1.2) Ward’s bound. Besides the original character-theoretic proof [War92],

Ward [War01a] gave another combinatorial proof of this bound. One of the main applica-

tions of the bound is providing upper bounds on minimum weight for formally self-dual

codes, or equivalently, codes of even lengths in Theorem 1.1. Before Ward’s work, the best

known such bound for type I codes was the bound of Conway and Sloane [CS90], which

says that the minimum weight of a type I code of even length n is at most 2b(n + 6)/10c,

except for some low values of n. Ward improved the bound to b(n+4 log2 n+12)/6c, which

is asymptotically stronger. For type II codes, Ward’s bound generally cannot beat the

best known upper bound, 4bn/24c+ 4, given by Mallows and Sloane [MS73]. However, the

technique in Ward’s proof is more elementary. Later on, Rains [Rai98] gave an analogous

(and better) bound for type I codes that says that the minimum weight for a type I code

of even length n is at most 4bn/24c + 4, except for n ≡ 22 (mod 24), when the bound is

4bn/24c+ 6.

Besides the bound, Ward [War90] presented a divisibility criteria for linear codes by

employing the technique of combinatorial polarization in the system of p-adic numbers.5

The books by Serre [Ser79] and Cassels [Cas86] are references for what follows. Let Qp be

the field of p-adic numbers, let Qq be the splitting field of xq −x over Qp, and let Zq be the

ring of integers6 of Qq. Zq is a discrete valuation ring. Suppose P is the (unique) nonzero

prime ideal of Zq. Consider Zq
π−−−−→ Zq/P

σ−−−−→ Fq, where π is the residue class map

and σ is an isomorphism. Then Zq/P, which is isomorphic to Fq, is the residue field of Zq.
4The weight spectrum of a code is the list of nonzero weights its codewords may have.
5p-adic numbers are the completion of Q with respect to the p-adic metric, which defines the p-adic norm

of any rational number x = par/s (r, s are integers not divisible by p) as p−a.
6Each p-adic number x can be uniquely represented by

∑∞
j=m ajp

j , with m an integer, and 0 ≤ aj ≤ p−1
integers. When m ≥ 0, x is called a p-adic integer, and m is called the order of x.



5

Moreover, Zq contains the full group Uq−1 of (q − 1)-st roots of unity, and R = Uq−1 ∪ {0}

maps one-to-one onto Fq under σ ◦ π. For each x ∈ Zq, there is a unique member T̃(x) ∈ R

for which x ≡ T̃(x) (mod p). T̃(x) is called the Teichmüller representative of x, and R

is the set of Teichmüller representatives. Lifting T̃ by σ ◦ π, the Teichmüller lift T(α) of

α ∈ Fq is the member of R corresponding to α for which the diagram

Zq/P
σ−−−−→ Fq

π

x T

y
Zq

T̃−−−−→ R

is commutative. The Teichmüller lift T : Fq → R gives a one-to-one correspondence from the

code alphabet Fq to the set of Teichmüller representatives in p-adic integers, which allows

us to deal with divisibility properties for q-ary codes by means of weight polarization. For

any vector c = (c1, . . . , cn) in Fn
q , the Teichmüller lift of c is defined componentwise as

T(c) = (T(c1), . . . ,T(cn)). For each 1 ≤ i ≤ n, let λi(·) represent the i-th coordinate

operator. Define a form M = (r1, . . . , rm) as

M(T(c1), . . . ,T(cm)) =
n∑

i=1

λi(T(c1)r1 . . .T(cm)rm), (1.3)

where each cj , 1 ≤ j ≤ m, is a vector in Fn
q , and the product in the right hand side of (1.3)

is taken componentwise. For any integer u, let δp(u) represent the sum of the digits of u

when written base p. For any p-adic integer v, let ord(v) represent the order of p in v. Then

the divisibility criteria is as follows:

Theorem 1.3 (Ward [War90]). Let C be a q-ary linear code with spanning set B. Then

pe is a divisor of C if and only if

e ≤ 1
p− 1

m∑
i=1

δp(ri)− l + ord(M(T(b1), . . . ,T(bm)))

for all M = (r1, . . . , rm) with
∑m

i=1 ri ≡ 0 (mod q − 1), and all choices of b1, . . . , bm ∈ B.

Applications of the criteria involve giving alternative proofs for the theorem of Ax [Ax64]

and the divisibility properties of generalized Reed-Muller codes, as well as examining divis-

ibility properties and existence of Griesmer codes. These codes, together with the divisible
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formally self-dual codes as stated in the theorem of Gleason and Pierce, are the most con-

spicuous classical codes that exhibit nontrivial divisibility.

Generalized Reed-Muller Codes. An [n, k]q code C is said to be cyclic if for

every codeword c = (c0, c1, . . . , cn−1), the right cyclic shift (cn−1, c0, c1, . . . , cn−2) is also

a codeword. Identify each codeword c = (c0, c1, . . . , cn−1) with a polynomial c(x) =

c0 + c1x + · · ·+ cn−1x
n−1 in Fq[x] modulo xn − 1. Then for any cyclic code C there exists

a unique polynomial g(x) that is monic and has the smallest degree among all nonzero

polynomials in C, and g(x) is known as the generator polynomial of C in the sense that

C = 〈g(x)〉 in Fq[x]/(xn − 1). Suppose m is a positive integer and j =
∑m−1

i=0 aiq
i, where

0 ≤ ai < q for i = 0, 1, . . . , m − 1. Then we define δq(j) =
∑m−1

i=0 ai. The shortened r-th

order generalized Reed-Muller (GRM) code of length n = qm − 1 over Fq is the cyclic code

with generator polynomial

g(x) =
(r)∏

(x− αj),

where α is a primitive element in Fqm and the upper index (r) indicates that the product

is taken over integers j with 0 ≤ j < qm − 1 and 0 ≤ δq(j) < (q − 1)m − r. The r-th

order GRM code of length n = qm has a generator matrix G∗ obtained from the generator

matrix G of the shortened GRM code by adjoining a column of 0’s and then a row of

1’s. Binary generalized Reed-Muller codes are simply called Reed-Muller codes, and an

alternative definition of (binary) Reed-Muller codes is given in Section 1.2. The theorem of

Ax asserts that the r-th order GRM code of length n = qm is divisible by ∆ = qdm/re−1.

Moreover, this divisor is the highest power of p that divides the code, or equivalently, the

code is of divisibility level l(dm/re − 1). Ward [War90] concluded this divisibility property

for GRM codes by applying the criteria stated in Theorem 1.3.

Griesmer Codes. Given integers k and d, denote by nq(k, d) the smallest integer n

such that there exists an [n, k, d]q code. In 1960 Griesmer [Gri60] proved that for binary

codes, one has n2(k, d) ≥
∑k−1

i=0 dd/2ie. In 1965 Solomon and Stiffler [SS65] generalized the

result to linear codes over arbitrary finite fields, which says that nq(k, d) ≥
∑k−1

i=0 dd/qie.

This is called the Griesmer bound. A code meeting the bound is called a Griesmer code.

Dodunekov and Manev [DM90] showed that for a binary Griesmer code, the power of 2

dividing the minimum weight is a divisor of the code. Making use of the divisibility criteria,
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Ward [War98] extended the result to Griesmer codes over prime fields, which says that for

a p-ary Griesmer code, the power of p dividing the minimum weight is a divisor of the code.

Ward [War01b] conjectured that any q-ary Griesmer code has a divisor pe+1/q, where e is the

exponent of the highest power of p that divides the minimum weight of the code, and proved

his conjecture when q = 4 or e = vp(q). Baumert and McEliece [BM73] proved that for any

given k, binary Griesmer codes exist for sufficiently large d. Hamada and Tamari [HT80]

and Dodunekov [Dod84] generalized this result to q-ary codes. However, the existence of

Griesmer codes with relatively small minimum distances is still an interesting problem.

Various researchers [DHM87, HN92, GH94, DGS99, LM99, Mar99, LRM03, War04] have

worked on this problem when k = 3, 4, 5, 6, 7, 8, 9 and q = 2, 3, 4, 5, 7, 8, 9. Divisibility

properties of Griesmer codes were employed by Ward [War98] to prove the non-existence of

Griesmer codes over small prime fields with certain parameters k and d.

1.2 New Results

We present three new results that are initiated from the previous work on divisible codes

in the following three chapters, respectively.

Our first result, presented in Chapter 2, concerns Ward’s bound. The main theorem

gives as follows a sufficient and necessary condition of Ward’s bound involving only the

values of the m consecutive multiples of ∆, but not any property (including the linearity)

of the code:

Theorem 1.4. Suppose w1 = (b−m + 1)∆, . . . , wm = b∆ are m consecutive multiples of

the divisor ∆. Then Ward’s bound

k ≤ m

(
vp(∆)

l
+ 1
)

+
1
l

vp

((
b

m

))

holds if and only if there exist integers aw1, . . . , awm such that the following m + 1 congru-

ences

aw1 + · · ·+ awm ≡ −1 (mod qk)(
w1

j

)
aw1 + · · ·+

(
wm

j

)
awm ≡ 0 (mod qk−j), j = 1, 2, . . . ,m
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are satisfied.

Applications of this equivalent condition include an alternative proof of Theorem 1.2,

as well as an analogous bound for binary Z4-linear codes.7

Another perspective of Theorem 1.4 is that it indicates the possibility of improving

Ward’s bound. Since Ward’s bound is determined by the weight spectrum, one natural

question is: Can it be improved when some weights in the middle of the spectrum are

missing? Our second result, presented in Chapter 3, tries to answer this question. Inspired

by a theorem of Wilson [Wil03] about weights modulo a prime power in linear codes, we

examine weights modulo ps, s a positive integer, in q-ary divisible codes.

Theorem 1.5. Let e, t, and s be positive integers. Suppose C is a q-ary level e divisible

code. Let N(j, pm) denote the number of codewords in C that have weights congruent to j

modulo pm. If

dim C > (
e

l
+ 1)((s(p− 1) + 1)pt−1 − 1),

then for all integers j

N(jpe, pe+t) ≡ 0 (mod ps). (1.4)

This theorem actually provides an upper bound on dimension of divisible codes that do

not endure the property (1.4). Further, we “generalize” Theorem 1.5 as follows to provide an

upper bound on dimension of divisible codes involving some divisibility property of weight

enumerator modulo ps, and show that our new bound improves Ward’s bound.

Theorem 1.6. Let e ≥ 1, r ≥ 0, s ≥ 1 be integers, and let C be a q-ary level e divisible code.

Suppose that the weight enumerator of C is w(xpe
), where w(x) ≡ (1 − x)rg(x) (mod ps)

for some integer-coefficient polynomial g with g(1) 6≡ 0 (mod ps). Then

dim C < r(
e

l
+ 1) +

s

l
.

Note that both Ward’s bound and the bound given in Theorem 1.6 provide bounds

on dimensions of divisible codes without involving code length. These bounds are usually

attainable when the code length is sufficiently large. However, for relatively short (compared

to the width of the weight spectrum, or the degree of the weight enumerator modulo a prime

7These are binary (nonlinear) codes with details given in Section 2.2.
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power) codes, these bounds may often be improved spectacularly, because both bounds

follow from the linearity of the code, and the divisibility property requires more than the

linearity of the code. Thus the more interesting bound on dimensions of divisible codes

relies on the code length. No such bound is known in general. Nevertheless, our third

result, presented in Chapter 4, discusses upper bounds on the dimension of level e binary

divisible codes of given length by detailed analyzing the structure of such codes. The

discussion is started from a well-known fact about level one and level two codes, given by

the following theorem:

Theorem 1.7. Suppose C is a binary linear code with length n and level e. Then

(i) if e = 1 then dim C ≤ n − 1, with equality if and only if C is the code consists of all

words of even weights;

(ii) if e = 2 then dim C ≤ n/2, with equality if and only if C is a doubly even self-dual

code in which case 8|n.

For level e ≥ 3 codes, we start with codes of length n = 2e+1. Ward’s bound or the bound

given in Theorem 1.6 gives that the dimension of such codes is at most e + 2. Moreover,

the bound is attained if and only if the code is equivalent to the first order Reed-Muller

code of the given length. In general, The r-th order Reed-Muller code of length L = 2n,

denoted RM[r, n], is the binary linear code whose 2n coordinate positions are indexed by

the vectors u1, . . . , uL in Fn
2 , and where there is one codeword (f(u1), . . . , f(uL)) for every

multi-linear polynomial f(x) = f(x1, . . . , xn), x = (x1, . . . , xn), of total degree at most r

over F2. Note that this is just the binary case of the r-th order generalized Reed-Muller

codes. Our conjecture is that when the code length is 2e+1m, then the dimension is bounded

from above by m(e + 2), and the bound is attained if and only if the code is equivalent to

the concatenation of m copies of RM[1, e + 1]. Here the concatenation of C1 and C2 simply

means C1 ⊕ C2, the direct sum of C1 and C2. Though the conjecture remains unproved, a

weaker induction theorem is developed as follows:

Theorem 1.8. Let e ≥ 1, m ≥ 2 be integers, and set n = 2e+1m. Suppose the dimension

of a binary level e divisible code of length n− 2e+1 is at most (m− 1)(e + 2). Suppose also

that such a code is unique up to equivalence if its dimension equals (m − 1)(e + 2). Then

if C is a binary level e divisible code of length n, and there exists some codeword of weight
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2e+1 in C, then dim C ≤ m(e+2). Moreover, if dim C = m(e+2) such code C is equivalent

to the concatenation of m copies of RM[1, e + 1].

This theorem, together with the hypothesis that any binary level e divisible code of

maximum dimension contains a codeword of weight 2e+1, will assure the above conjecture.

Though the hypothesis remains unproved in general, it can be shown true when n is rel-

atively small. Thus for binary level three codes of relatively small length, we prove the

following theorem:

Theorem 1.9. Let C be a level three binary code of length n, where n is 16, 32, 48, 64,

80, 96, or 112. Then the dimension of C cannot exceed 5n/16. Moreover, for those listed

lengths except n = 112, such a code of dimension 5n/16 is equivalent to the concatenation

of n/16 copies of the RM[1, 4].
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Chapter 2

On Ward’s Bound

We discuss more about Ward’s bound in this chapter. In Section 2.1 we first prove an

equivalent condition of the bound, and conclude that the bound is a consequence of the fact

that the MacWilliams transform of the weight enumerator has integer coefficients. Further,

we provide an example to show that the integrality of the MacWilliams transform implies

more than Ward’s bound. Moreover, for a single or double weighted code, we show that the

integrality of the MacWilliams transform is indeed equivalent to the bound. In Section 2.2,

we first briefly revisit Z4-linear codes, then give an analogous bound for nonlinear binary

codes obtained from Z4-linear codes using the fact that the MacWilliams transform of the

weight enumerator of such a code has integer coefficients.

2.1 An Equivalence of Ward’s Bound

Suppose C is an [n, k]q code whose nonzero codeword weights are among the m consecutive

multiples w1 = (b − m + 1)∆, . . . , wm = b∆ of the divisor ∆. Recall Ward’s bound says

that

k ≤ m

(
vp(∆)

l
+ 1
)

+
1
l

vp

((
b

m

))
,

which is equivalent to

vp

(w1 . . . wm

m!

)
≥ l(k −m). (2.1)

Now put aside the code C, and consider just inequality (2.1) that involves nothing more

than the values of m, k, and the m consecutive multiples w1, . . . , wm. By an “equivalence”

of Ward’s bound, we simply mean a sufficient and necessary condition such that inequality

(2.1) holds. As a matter of fact, we claim that (2.1) holds if and only if there exist m
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integers aw1 , . . . , awm , such that the following m + 1 congruences

aw1 + · · ·+ awm ≡ −1 (mod qk)(
w1

j

)
aw1 + · · ·+

(
wm

j

)
awm ≡ 0 (mod qk−j), j = 1, 2, . . . ,m

(2.2)

are satisfied.

2.1.1 Proof of the Equivalence

The proof of the equivalence embraces two directions, and we shall first show that if (2.1)

holds then the set of congruence equations (2.2) has an integer solution. Consider, instead

of the congruence equations, the following m equations on the m variables aw1 , . . . , awm :

aw1 + · · ·+ awm = −1(
w1

j

)
aw1 + · · ·+

(
wm

j

)
awm = 0, j = 1, 2, . . . ,m− 1.

(2.3)

Our first goal is to find the solution of (2.3). The coefficient matrix of (2.3) is

A =



1 1 . . . 1

w1 w2 . . . wm

...
...

. . .
...(

w1

m− 1

) (
w2

m− 1

)
. . .

(
wm

m− 1

)


. (2.4)

Then the solution of (2.3) is


aw1

aw2

...

awm

 = B


−1

0
...

0

 ,

where B is the inverse matrix of A. For convenience, write bij as the (i, j)-th entry of B.

Then awi = −bi1 for all 1 ≤ i ≤ m. Let Aij be the (i, j)-th minor of A. Then

bi1 = (−1)i+1 det A1i

det A
,
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hence

awi = (−1)i det A1i

det A
. (2.5)

Lemma 2.1. Suppose A is the m by m matrix as set in (2.4). Then

det A =

∏
1≤r<s≤m(ws − wr)
2! . . . (m− 1)!

, (2.6)

and for each 1 ≤ i ≤ m

det A1i =
w1 . . . wm

wi

∏
1≤r<s≤m

r,s 6=i
(ws − wr)

2! . . . (m− 1)!
. (2.7)

Proof. Note that adding a multiple of one row to another row of a square matrix does not

change the determinant. Thus

det A = det



1 1 . . . 1

w1 w2 . . . wm

...
...

. . .
...

wm−1
1

(m− 1)!
wm−1

2

(m− 1)!
. . .

wm−1
m

(m− 1)!


=

1
2! . . . (m− 1)!

det M,

where

M =


1 1 . . . 1

w1 w2 . . . wm

...
...

. . .
...

wm−1
1 wm−1

2 . . . wm−1
m


is a Vandermonde matrix with detM =

∏
1≤r<s≤m(ws − wr). Therefore,

det A =

∏
1≤r<s≤m(ws − wr)
2! . . . (m− 1)!

,

as desired. Then for any 1 ≤ i ≤ m, consider the (1, i)-th minor

A1i =


w1 . . . wi−1 wi+1 . . . wm

...
. . .

...
...

. . .
...(

w1

m− 1

)
. . .

(
wi−1

m− 1

) (
wi+1

m− 1

)
. . .

(
wm

m− 1

)
 .
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By the same reason we have

det A1i = det


w1 . . . wi−1 wi+1 . . . wm

...
. . .

...
...

. . .
...

wm−1
1

(m− 1)!
. . .

wm−1
i−1

(m− 1)!
wm−1

i+1

(m− 1)!
. . .

wm−1
m

(m− 1)!


=

w1 . . . wi−1wi+1 . . . wm

2! . . . (m− 1)!
det Mi,

where

Mi =


1 . . . 1 1 . . . 1

w1 . . . wi−1 wi+1 . . . wm

...
. . .

...
...

. . .
...

wm−2
1 . . . wm−2

i−1 wm−2
i+1 . . . wm−2

m


is also a Vandermonde matrix, and

det Mi =
∏

1≤r<s≤m
r,s 6=i

(ws − wr).

Therefore,

det A1i =
w1 . . . wm

wi

∏
1≤r<s≤m

r,s 6=i
(ws − wr)

2! . . . (m− 1)!
.

Since w1, . . . , wm are distinct, detA 6= 0. Thus it is valid to plug (2.6) and (2.7) in (2.5),

and we conclude that the (unique) solution (aw1 , . . . , awm) of (2.3) is

awi = (−1)i w1 . . . wm

wi

∏
1≤r<s≤m

r,s 6=i
(ws − wr)∏

1≤r<s≤m(ws − wr)

= (−1)i w1 . . . wm

wi

1∏
1≤r<s≤m
r=i or s=i

(ws − wr)

= (−1)i w1 . . . wi−1∏
1≤r<i(wi − wr)

wi+1 . . . wm∏
i<s≤m(ws − wi)

= (−1)i

(
b−m + i− 1

i− 1

)(
b

m− i

)
(2.8)
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for all 1 ≤ i ≤ m. Note that (2.8) may also be viewed as a solution of the first m congruence

equations in (2.2). Then we shall consider the last congruence equation in (2.2).

Lemma 2.2. Let awi, 1 ≤ i ≤ m, be as set in (2.8). Then

m∑
i=1

(
wi

m

)
awi = (−1)m w1 . . . wm

m!
. (2.9)

Proof. Plug (2.8) in the left hand side of (2.9), we have

m∑
i=1

(
wi

m

)
awi

=
m∑

i=1

(
wi

m

)
(−1)i

(
b−m + i− 1

i− 1

)(
b

m− i

)

=
m∑

i=1

(b−m + i)∆ . . . [(b−m + i)∆−m + 1]
m!

(−1)i

(
b−m + i− 1

i− 1

)(
b

m− i

)

=
m∑

i=1

m∑
t=1

ct(b−m + i)t(−1)i

(
b−m + i− 1

i− 1

)(
b

m− i

)

=
m∑

t=1

ct

m∑
i=1

(b−m + i)t(−1)i

(
b−m + i− 1

i− 1

)(
b

m− i

)
,

where ct does not depend on i, and cm = ∆m/m!. For all integers 1 ≤ t ≤ m,

m∑
i=1

(b−m + i)t(−1)i

(
b−m + i− 1

i− 1

)(
b

m− i

)

=
m∑

i=1

(−1)i(b−m + i)t−1m

(
b

m

)(
m− 1
i− 1

)

= m

(
b

m

)m−1∑
i=0

(−1)i+1

(
m− 1

i

)
(b−m + 1 + i)t−1

=


(−1)mm!

(
b

m

)
if t = m,

0 if 1 ≤ t ≤ m− 1.

The last step above follows from an induction proof on m. Therefore,

m∑
i=1

(
wi

m

)
awi = cm(−1)mm!

(
b

m

)
= (−1)m∆m

(
b

m

)
= (−1)m w1 . . . wm

m!
.
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Now if (2.1) holds then Lemma 2.2 asserts that (2.8) gives a solution of (2.2), and one

direction of the proof is accomplished.

For the other direction, we shall show that if (2.2) has an integer solution then the

inequality (2.1) holds. Still let A be the coefficient matrix of (2.3) as set in (2.4). First note

that by Lemma 2.1,

det A =

∏
1≤r<s≤m(ws − wr)
2! . . . (m− 1)!

=
m−1∏
r=1

∏m
s=r+1(ws − wr)

(m− r)!
=

m−1∏
r=1

∆m−r = ∆m(m−1)/2.

Therefore, if p - ∆ then the set of equations (2.3) is still nonsingular when modulo qk−m.

Thus in this case, any integer solution of the first m congruences in (2.2) satisfies that

awi ≡ (−1)i

(
b−m + i− 1

i− 1

)(
b

m− i

)
(mod qk−m).

Consequently the fact that (2.2) has an integer solution implies that

(−1)m w1 . . . wm

m!
=

m∑
i=1

(
wi

m

)
(−1)i

(
b−m + i− 1

i− 1

)(
b

m− i

)
≡ 0 (mod qk−m),

hence (2.1) holds. Now we assume that p | ∆. In other words, vp(∆) ≥ 1. Suppose

(aw1 , . . . , awm) is an integer solution of (2.2), and write

Ã =



1 1 1 . . . 1

0 w1 w2 . . . wm

0
(

w1

2

) (
w2

2

)
. . .

(
wm

2

)
...

...
...

. . .
...

0
(

w1

m

) (
w2

m

)
. . .

(
wm

m

)


.

Then there exist integers s0, s1, s2, . . . , sm such that

Ã



1

aw1

aw2

...

awm


=



s0q
k

s1q
k−1

s2q
k−2

...

smqk−m


= qk−m



s0q
m

s1q
m−1

s2q
m−2

...

sm


.
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Therefore, 

1

aw1

aw2

...

awm


= qk−mB̃



s0q
m

s1q
m−1

s2q
m−2

...

sm


, (2.10)

where B̃ is the inverse of Ã. For any integer 0 ≤ i ≤ m, write bi as the (1, i + 1)-entry of

B̃, and write Ai as the (i + 1, 1)-st minor of Ã. Then the first row of (2.10) gives that

1 = qk−m(b0s0q
m + b1s1q

m−1 + b2s2q
m−1 + · · ·+ bmsm), (2.11)

where

bi = (−1)i det Ai

det Ã
= (−1)i det Ai

det A0
(2.12)

for all 0 ≤ i ≤ m. Note that as w1, . . . , wm are nonzero, the following lemma asserts that

det Ã = detA0 6= 0. Thus Ã is nonsingular, and (2.12) is valid.

Lemma 2.3. Let Ai be as above set. Then for any integer 0 ≤ i ≤ m

det Ai =

∏
1≤r<s≤m(ws − wr)

2! . . .m!

i∑
s=0

(−1)s

(
i

s

)
(w1 − s) . . . (wm − s). (2.13)

Proof. We shall use induction on i to prove (2.13). For convenience, write

λ =

∏
1≤r<s≤m(ws − wr)

2! . . .m!
.

By a similar argument as in the proof of Lemma 2.1, det A0 = λw1 . . . wm. Therefore,

Lemma 2.3 is true when i = 0. Now assume that for some positive integer i (2.13) holds for

all 0 ≤ r < i ≤ m, and compute det Ai. Consider the following matrix:

Mi =



1 1 . . . 1

i w1 . . . wm

...
...

. . .
...(

i

m

) (
w1

m

)
. . .

(
wm

m

)


.
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Observe that det Mi = λ(w1 − i) . . . (wm − i). On the other hand,

det Mi =
i∑

r=0

(−1)r

(
i

r

)
det Ar.

Therefore,

det Ai

= (−1)i

(
λ(w1 − i) . . . (wm − i)−

i−1∑
r=0

(−1)r

(
i

r

)
det Ar

)

= (−1)iλ

(
(w1 − i) . . . (wm − i)−

i−1∑
r=0

(−1)r

(
i

r

) r∑
s=0

(−1)s

(
r

s

)
(w1 − s) . . . (wm − s)

)

= (−1)iλ

(
(w1 − i) . . . (wm − i)−

i−1∑
s=0

(−1)s(w1 − s) . . . (wm − s)
i−1∑
r=s

(−1)r

(
i

r

)(
r

s

))

= (−1)iλ

(
(w1 − i) . . . (wm − i)−

i−1∑
s=0

(−1)s(w1 − s) . . . (wm − s)(−1)i−1

(
i

s

))

= λ
i∑

s=0

(−1)s

(
i

s

)
(w1 − s) . . . (wm − s),

as desired. By induction, Lemma 2.3 is true for all 0 ≤ i ≤ m.

Plugging (2.13) in (2.12), we get

bi = (−1)i

∑i
s=0(−1)s

(
i

s

)
(w1 − s) . . . (wm − s)

w1 . . . wm

for all 0 ≤ i ≤ m. Write

ti =
1
i!

i∑
s=0

(−1)s

(
i

s

)
(w1 − s) . . . (wm − s).

Then (2.11) becomes

1 = qk−m

∑m
i=0(−1)i i!

m!
tisiq

m−i

w1 . . . wm

m!

.

Therefore,
w1 . . . wm

m!
= qk−m

m∑
i=0

(−1)i i!
m!

tisiq
m−i.
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Now in order that inequality (2.1) holds, it suffices to show that

vp(ti) ≥ vp

(
m!
i!

)
− l(m− i) (2.14)

for all 0 ≤ i ≤ m.

Lemma 2.4. For 1 ≤ j ≤ m, let the number

σm(j) =
∑

1≤α1<···<αj≤m

α1 . . . αj

be the summation of all products of j distinct numbers in {1, . . . ,m}. Then the p-adic

valuation of σm(j) satisfies

vp(σm(j)) ≥ vp

(
m!

(m− j)!

)
− 2j

p− 1
.

Proof. First we prove by induction on j that

σm(j) =
j∑

i=1

lj,i

(
m + 1
j + i

)
, (2.15)

where the coefficients

lj,i =


j! if i = 1,

(2j − 1)!! if i = j,

(i + j − 1)(lj−1,i + lj−1,i−1) if 2 ≤ i ≤ j − 1.

(2.16)

Note that we may recursively decide from (2.16) the value of lj,i for any 1 ≤ i ≤ j ≤ m.

Note also that (2.16) asserts that all lj,1’s and li,i’s are integers. Moreover, any lj,i is an

integer as long as the “previous” lj−1,i and lj−1,i−1 are both integers. Therefore, if (2.16) is

satisfied then all lj,i’s are integers. Since

σm(1) =
m∑

i=1

i =
(

m + 1
2

)
,

(2.15) holds for the base case j = 1. Assume that (2.15) is true for σm(j − 1). Note the

fact that the difference between σm(j) and σm−1(j) is exactly mσm−1(j− 1). Thus we may
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deduce that

σm(j)− σm−1(j)

= m

j−1∑
i=1

lj−1,i

(
m

j + i− 1

)

=
j−1∑
i=1

(m− j − i + 1)lj−1,i

(
m

j + i− 1

)
+

j−1∑
i=1

(j + i− 1)lj−1,i

(
m

j + i− 1

)

=
j−1∑
i=1

(j + i)lj−1,i

(
m

j + i

)
+

j−1∑
i=1

(j + i− 1)lj−1,i

(
m

j + i− 1

)

=
j∑

i=2

(j + i− 1)lj−1,i−1

(
m

j + i− 1

)
+

j−1∑
i=1

(j + i− 1)lj−1,i

(
m

j + i− 1

)

=
j−1∑
i=2

(i + j − 1)(lj−1,i−1 + lj−1,i)
(

m

j + i− 1

)
+ jlj−1,1

(
m

j

)
+ (2j − 1)lj−1,j−1

(
m

2j − 1

)

=
j∑

i=1

lj,i

(
m

j + i− 1

)
.

So as σj(j) = j!, we have

σm(j) = σj(j) +
m−1∑
k=j

(σk+1(j)− σk(j))

= j! +
m−1∑
k=j

j∑
i=1

lj,i

(
k + 1

j + i− 1

)

=
j∑

i=1

lj,i

(j + 1
j + i

)
+

m−1∑
k=j

(
k + 1

j + i− 1

)
=

j∑
i=1

lj,i

(
m + 1
j + i

)
.

Therefore (2.15) holds for all integers 1 ≤ j ≤ m. Note that vp(n!) ≤ (n− 1)/(p− 1) for all

positive integers n, which follows from Legendre’s formula [UH39]: vp(n!) =
∑∞

r=1bn/prc.

Thus for each term in the above summation, the p-adic valuation

vp

((
m + 1
j + i

))
≥ vp

(
m!

(m− j)!

)
− vp((j + i)!)

≥ vp

(
m!

(m− j)!

)
− 2j

p− 1
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for 1 ≤ i ≤ j. Since all the coefficients lj,i’s are integers, σm(j) has a p-adic valuation no

less than this.

As an extension of Lemma 2.4 we consider arbitrary consecutive integers b−m+1, . . . , b

instead of the first m consecutive integers. Let σ̃m(j) denote the summation of all products

of j numbers in these m integers. Then

σ̃m(j) =
∑

1≤α1<···<αj≤m

(b−m + α1) . . . (b−m + αj)

=
j∑

s=0

(b−m)j−s

(
m− s

j − s

)
σm(s).

For each term in the above summation, the p-adic valuation

vp

((
m− s

j − s

)
σm(s)

)
≥ vp

(
(m− s)!

(j − s)!(m− j)!

)
+ vp

(
m!

(m− s)!

)
− 2s

p− 1

= vp

(
m!

(m− j)!

)
− vp((j − s)!)− 2s

p− 1

≥ vp

(
m!

(m− j)!

)
− j − s

p− 1
− 2s

p− 1

≥ vp

(
m!

(m− j)!

)
− 2j

p− 1
.

Thus for σ̃m(j) we still have

vp(σ̃m(j) ≥ vp

(
m!

(m− j)!

)
− 2j

p− 1
.

Moreover, suppose Wm(j) is the summation of all products of j numbers in {w1, . . . , wm}.

Remember that w1, . . . , wm are consecutive multiples of ∆. Thus

Wm(j) =
∑

1≤α1<···<αj≤m

wα1 . . . wαj = ∆j σ̃m(j).

By the assumption that vp(∆) ≥ 1, we have

vp(Wm(j)) ≥ vp

(
m!

(m− j)!

)
− j

p− 1
. (2.17)
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Now turn back to look at

ti =
1
i!

i∑
s=0

(−1)s

(
i

s

)
(w1 − s) . . . (wm − s)

=
1
i!

i∑
s=0

(−1)s

(
i

s

) m∑
j=0

(−s)m−jWm(j)

= (−1)m+i
m∑

j=0

(−1)jWm(j)

(
1
i!

i∑
s=0

(−1)i−ssm−j

(
i

s

))

= (−1)m+i
m−i∑
j=0

(−1)jWm(j)S(m− j, i), (2.18)

where S(m − j, i) represents the Stirling number of the second kind [LW92]. As a matter

of fact,

S(m− j, i) =
(m− j)!

i!

∑ 1
r1! . . . ri!

,

where the summation runs over the partitions r1 + · · · + ri of m − j into i nonzero parts.

Since

vp(r1! . . . ri!) ≤
r1 − 1
p− 1

+ · · ·+ ri − 1
p− 1

=
m− j − i

p− 1
,

we deduce that

vp(S(m− j, i)) ≥ vp

(
(m− j)!

i!

)
− m− j − i

p− 1
.

Together with (2.17), the p-adic valuation of each term in the summation of (2.18) is at

least

vp

(
m!

(m− j)!

)
− j

p− 1
+ vp

(
(m− j)!

i!

)
− m− j − i

p− 1
≥ vp

(
m!
i!

)
− l(m− i).

Therefore, the p-adic valuation of ti is no less than this, hence (2.14) holds as desired.

Now the main theorem of this section is established.

Theorem 2.5. Suppose w1 = (b−m + 1)∆, . . . , wm = b∆ are m consecutive multiples of

the divisor ∆. Then Ward’s bound1

k ≤ m

(
vp(∆)

l
+ 1
)

+
1
l

vp

((
b

m

))
1Though it does not involve a code, we call the inequality Ward’s bound because the right hand side is

exactly of the form of Ward’s bound.
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holds if and only if the set of congruence equations

aw1 + · · ·+ awm ≡ −1 (mod qk)(
w1

j

)
aw1 + · · ·+

(
wm

j

)
awm ≡ 0 (mod qk−j), j = 1, 2, . . . ,m

has an integer solution (aw1 , . . . , awm).

2.1.2 Further Comments

Note that Theorem 2.5 gives an equivalent condition for Ward’s bound: that is, the set of

congruence equations (2.2) has an integer solution. Moreover, (2.2) is partial of

aw1 + · · ·+ awm ≡ −1 (mod qk)(
w1

j

)
aw1 + · · ·+

(
wm

j

)
awm ≡ 0 (mod qk−j), j = 1, 2, . . . , k − 1,

(2.19)

and (aw1 , . . . , awm) is an integer solution of (2.19) if and only if the MacWilliams transform

w⊥(x) =
1
qk

(1 + (q − 1)x)nw

(
1− x

1 + (q − 1)x

)
(2.20)

of w(x) = 1 + aw1x
w1 + · · ·+ awmxwm has integer coefficients, as is implied by Theorem 2.6

below. The parameter n in (2.20) is an integer no less than the degree of w(x).

Theorem 2.6 (Wilson [Wil03]). Let a0, a1, . . . , an be integers, let r, k, and s be positive

integers, and let w(x) =
∑n

i=0 aix
i. Then

1
rk

(1 + (rs − 1)x)nw

(
1− x

1 + (rs − 1)x

)

has integer coefficients if and only if

n∑
i=0

ai

(
i

j

)
≡ 0 (mod rk−sj)

for all j = 0, 1, . . . , bk/sc.

The proof of the theorem is due to Wilson, employing merely elementary linear algebra.

Apply Theorem 2.6 with r = q and s = 1, we conclude that (2.19) is solvable if and only if

(2.20) has integer coefficients.
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Suppose C is an [n, k]q code of weight spectrum {w1, . . . , wm}, and suppose there are

awi , 1 ≤ i ≤ m, codewords of weight wi. Let w(x) = 1 + aw1x
w1 + · · ·+ awmxwm denote the

weight enumerator of C, let w⊥(x) denote the MacWilliams transform of w(x), and let C⊥

denote the dual code of C. We summarize this section as follows:

C is a linear code

⇓

w⊥(x) is the weight enumerator of C⊥

⇓

w⊥(x) has integer coefficients Theorem 2.6
⇐⇒ (2.19) has an integer solution

⇓

Ward’s bound holds Theorem 2.5
⇐⇒ (2.2) has an integer solution

This figure clearly shows that Ward’s bound follows from the linearity of the code. More

precisely, Ward’s bound is a consequence of the fact that the MacWilliams transform of the

weight enumerator has integer coefficients. However, the integrality of the MacWilliams

transform of the weight enumerator implies more than Ward’s bound, as is shown by the

following example:

Example. Let p = q = 2 and m = 3. Suppose w1 = 6, w2 = 9, w3 = 12, and k = 5. Then

Ward’s bound is attained:

vp

(w1w2w3

3!

)
= 2 = k −m.

In other words, if C is a binary linear code with nonzero weights 6, 9, and 12, then Ward’s

bound asserts that dim C ≤ 5. On the other hand, the MacWilliams transform of the weight

enumerator w(x) = 1 + aw1x
w1 + aw2xw2 + aw3x

w3 has integer coefficients if and only if the

following congruences are satisfied:

aw1 + aw2 + aw3 ≡ −1 (mod 32)

6aw1 + 9aw2 + 12aw3 ≡ 0 (mod 16)

15aw1 + 36aw2 + 66aw3 ≡ 0 (mod 8)

20aw1 + 84aw2 + 220aw3 ≡ 0 (mod 4)

15aw1 + 126aw2 + 465aw3 ≡ 0 (mod 2)

.
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Simplifying the above congruences, we get

aw1 + aw2 + aw3 ≡ −1 (mod 32), (2.21)

6aw1 + 9aw2 + 12aw3 ≡ 0 (mod 16), (2.22)

7aw1 + 4aw2 + 2aw3 ≡ 0 (mod 8), (2.23)

aw1 + aw3 ≡ 0 (mod 2). (2.24)

By (2.23), aw1 is even. Then aw3 is also even by (2.24), and aw2 is odd by (2.21). However,

aw2 is even by (2.22), which is a contradiction. Therefore, the whole set of all k = 5

congruence equations has no integer solution. Thus in this special case, the integrality of the

MacWilliams transform implies more than Ward’s bound, and the bound may be improved

to dim C ≤ 4. However, this is still not the exact bound for binary linear codes with weight

spectrum 6, 9, 12, as linearity of the code implies more than integrality of the MacWilliams

transform of the weight enumerator. As in this example, 6, 9, 12 are multiples of the divisor

∆ = 3, and it is relatively prime to the field characteristic p = 2. Therefore, a binary linear

code C with weight spectrum 6, 9, 12 must be equivalent to a 3-folded replication of a binary

linear code with weight spectrum 2, 3, 4, and such a code has dimension at most 3.

Though generally Ward’s bound (2.1) does not imply (2.19) being solvable, it is the

case for single and double weighted codes. That is, for linear code C of one or two nonzero

weights, Ward’s bound holds if and only if the MacWilliams transform of the weight enu-

merator of C has integer coefficients, if and only if the set of congruence equations (2.19)

has an integer solution, as is shown by the following theorem:

Theorem 2.7. When m = 1 or 2, Ward’s bound (2.1) holds if and only if the set of

congruences (2.19) has an integer solution.

Proof. Theorem 2.5 asserts that if (2.19) is solvable then Ward’s bound (2.1) holds. Now

it suffices to show the other direction that (2.1) implies (2.19) being solvable.

For m = 1, (2.1) says that vp(w1) ≥ l(k − 1). Then for all integers 1 ≤ j ≤ k − 1,

vp

((
w1

j

))
= vp

(
w1

j

(
w1 − 1
j − 1

))
≥ vp(w1)− vp(j) ≥ l(k − 1)− l(j − 1) = l(k − j).

Thus aw1 = −1 is a solution of (2.19).
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Now assume m = 2. Then (2.1) says that

vp

(w1w2

2

)
≥ l(k − 2).

By (2.8) and Lemma 2.2, aw1 = −b, aw2 = b− 1 is a solution of (2.2). We claim that this is

also a solution of (2.19), and it suffices to check the remaining congruences in (2.19) where

3 ≤ j ≤ k − 1. Note that

(
w1

j

)
aw1 +

(
w2

j

)
aw2

= −w1

j

(
w1 − 1
j − 1

)
b +

w2

j

(
w2 − 1
j − 1

)
(b− 1)

=
w1w2

j!

(
(w1 + ∆− 1) . . . (w1 + ∆− t + 1)− (w1 − 1) . . . (w1 − t + 1)

∆

)
.

Since ∆ | (w1 + ∆− 1) . . . (w1 + ∆− t + 1)− (w1 − 1) . . . (w1 − t + 1), we have

vp

((
w1

j

)
aw1 +

(
w2

j

)
aw2

)
≥ vp

(
w1w2

j!

)
= vp(w1w2)− vp(j!).

If p = 2, then

vp(w1w2) = vp

(w1w2

2

)
+ 1 ≥ l(k − 2) + 1, vp(j!) ≤ j − 1 ≤ l(j − 2) + 1.

If p 6= 2, then

vp(w1w2) = vp

(w1w2

2

)
≥ l(k − 2), vp(j!) ≤

j − 1
2

≤ l(j − 2).

Therefore, we always have vp(w1w2) − vp(j!) ≥ l(k − j), hence aw1 = −b, aw2 = b − 1 is

indeed a solution of (2.19).

Note that the previous example shows that for triple-weighted codes, we do not have

similar results as given by Theorem 2.7.

2.2 An Analogous Bound on Binary Z4-Linear Codes

In the previous section, we conclude that Ward’s bound is a consequence of the fact that

the MacWilliams transform of the weight enumerator has integer coefficients. Thus the
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linearity of the code is just a sufficient, but not a necessary, condition for Ward’s bound

being held. For some nonlinear codes with the property that the weight enumerator has

integral MacWilliams transform, Ward’s bound still holds, though in such cases the concept

of “dimension” is meaningless. As a matter of fact, for a q-ary (nonlinear) code C, we bound

logq |C| instead of dim C, where |C| denotes the size of the code, that is, the number of

codewords in C.

In this section, we first introduce Z4-linear codes, then show that binary codes obtained

from Z4-linear codes are examples of such codes that their weight enumerators have integral

MacWilliams transforms. Finally we develop a bound for these codes analogous to Ward’s

bound for linear codes.

2.2.1 Z4-Linear Codes

Let Z4 = Z/4Z be the ring of integers modulo 4, let n be a positive integer, and let Zn
4

be the set of n-tuples over Z4. Zn
4 is an additive Abelian group, where addition is defined

componentwise as (a1, . . . , an)+ (b1, . . . , bn) = (a1 + b1, . . . , an + bn), for all (a1, . . . , an) and

(b1, . . . , bn) in Zn
4 . Any subgroup C̃ of Zn

4 is called a Z4-linear code of length n. Note that

the size of any Z4-linear code C̃ must be a power of 2.

For any a = (a1, . . . , an) and b = (b1, . . . , bn) in Zn
4 , define their inner product as a · b =

a1b1 + · · · + anbn. If a · b = 0, a and b are said to be orthogonal. Suppose C̃ is a Z4-linear

code of length n. Define the dual code of C̃ to be

C̃⊥ = {c ∈ Zn
4 : c · c̃ = 0, for all c̃ ∈ C̃},

which is also a Z4-linear code.

We use 0, 1, 2, 3 to represent the elements in Z4. The Lee weights of 0, 1, 2, 3 ∈ Z4,

denoted by wL(0), wL(1), wL(2), wL(3), respectively, are defined as

wL(0) = 0, wL(1) = wL(3) = 1, wL(2) = 2.

The Lee weight wL(c) of any c = (c1, . . . , cn) ∈ Zn
4 is defined as wL(c) =

∑n
i=1 wL(ci), the

summation of the Lee weights of all its components. Then the Lee weight enumerator of a



28

Z4-linear code C̃ of length n is defined to be

LeeC̃(x) =
∑
c̃∈C̃

xwL(c̃) =
2n∑
i=0

Lix
i,

where Li, 0 ≤ i ≤ 2n, represents the number of codewords of Lee weight i in C̃. Note that

there is a generalization of the MacWilliams identity for LeeC̃ .

Theorem 2.8 ([Wan97]). Let C̃ be a Z4-linear code of length n. Then

LeeC̃⊥(x) =
1
|C̃|

(1 + x)2nLeeC̃

(
1− x

1 + x

)
. (2.25)

Note that the right hand side of (2.25) may be viewed as the MacWilliams transform

of LeeC̃(x). Thus Theorem 2.8 says that the Lee weight enumerator of the dual code is

exactly the MacWilliams transform of the Lee weight enumerator of the original Z4-linear

code. Since any Lee weight enumerator must have integer coefficients, we are interested in

binary codes whose weight enumerator equals the Lee weight enumerator of some Z4-linear

code.

2.2.2 Binary Images of Z4-Linear Codes

Consider the following bijection from Z4 to F2
2:

φ : Z4 −→ F2
2

0 7→ 00

1 7→ 01

2 7→ 11

3 7→ 10

.

φ is called the Gray map. Extend φ to a bijection from Zn
4 to F2n

2 and denote the map as

φ̃ : Zn
4 −→ F2n

2

(c1, . . . , cn) 7→ (φ(c1), . . . , φ(cn))
.

Then φ̃ maps any Z4-linear code C̃ of length n to a binary code C = φ̃(C̃) of length 2n, and

generally C is not linear. C is called the binary image of C̃ under the Gray map, or simply,
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the binary image of C̃. Moreover, a binary code C is called Z4-linear if after a permutation of

its coordinates, it is the binary image of a Z4-linear code. The Nordstrom-Robinson code,

the Preparata codes, the Kerdock codes, the Geothals codes, and the Delsarte-Geothals

codes are all examples of binary codes that exhibit Z4-linearity.

One of the advantages of the Gray map is that the Hamming weight of any binary

image is exactly the Lee weight of its pre-image. As a result, there is an analogous theorem

directly deduced from Theorem 2.8.

Theorem 2.9 ([Wan97]). Let C̃ be a Z4-linear code of length n, and let C̃⊥ be its dual

code. Let C = φ̃(C̃) and C⊥ = φ̃(C̃⊥) be their binary images. Then the (Hamming)

weight enumerators wC(x) and wC⊥(x) of C and C⊥, respectively, are related by the binary

MacWilliams identity

wC⊥(x) =
1
|C|

(1 + x)2nwC

(
1− x

1 + x

)
.

2.2.3 Bounds on Binary Z4-Linear Codes

Here we present an application of Theorem 2.5 to binary Z4-linear codes, which is given by

the following corollary:

Corollary 2.10. Let C be a binary Z4-linear code of length 2n and size 2k. Suppose the

nonzero weights of C are among the m consecutive multiples w1 = (b − m + 1)∆, . . . ,

wm = b∆ of the divisor ∆. Then the size of C is bounded from above by

k ≤ m(v2(∆) + 1) + v2

((
b

m

))
. (2.26)

Proof. By Theorem 2.9, the MacWilliams transform of the weight enumerator wC(x) has

integer coefficients. Thus by Theorem 2.6, there exist integers aw1 , . . . , awm such that

aw1 + · · ·+ awm ≡ −1 (mod 2k)(
w1

j

)
aw1 + · · ·+

(
wm

j

)
awm ≡ 0 (mod 2k−j), for all 1 ≤ j ≤ k − 1.

Therefore, Theorem 2.5 asserts bound (2.26).



30

Chapter 3

Weights Modulo a Prime Power
and a Related Bound

We continue to discuss bounds on dimensions of divisible codes in this chapter. Recall

that Ward’s bound is determined by the weight spectrum. In other words, absence of

intermediate weights does not affect the bound. However, we see from the following example

that the bound may be improved dramatically if some certain weights are missing from the

spectrum.

Example. Let C be a binary k-dimensional level e divisible code whose nonzero weights

are among the odd multiples of 2e. Suppose there are ai codewords of weight (2i− 1)2e, for

all positive integers i. Then consider the first two congruence equations in (2.19):

∑
i≥1

ai ≡ −1 (mod 2k), (3.1)

∑
i≥1

(2i− 1)2eai ≡ 0 (mod 2k−1). (3.2)

Since
∑

i≥1 ai and
∑

i≥1(2i− 1)ai are of the same parity, (3.1) gives that
∑

i≥1(2i− 1)ai is

odd. Therefore, e ≥ k − 1 by (3.2), hence dim C ≤ e + 1 no matter how wide the weight

spectrum is. Thus this is a much better bound than Ward’s bound.

Our main goal in this chapter is to improve Ward’s bound, at least when additional

information on the weight distribution is given.

Note first that nondivisible linear codes may be regarded as level zero codes. The

following theorem gives a sufficient condition for the weights modulo pt in a level zero q-ary

code being divisible by ps:
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Theorem 3.1 (Wilson [Wil03]). Suppose C is a q-ary linear code. Let N(j, pt) denote

the number of codewords in C that have weights congruent to j modulo pt. If

dim C ≥ (s(p− 1) + 1)pt−1

then N(j, pt) ≡ 0 (mod ps) for all integers j.

Theorem 3.1 actually gives an upper bound for the dimension of a linear code with

N(j, pt) 6≡ 0 (mod ps) for some j. In other words, if there exist integers j, t, and s such

that N(j, pt) 6≡ 0 (mod ps) for a q-ary linear code C then the dimension of C is bounded

from above by (s(p − 1) + 1)pt−1 − 1. As a first attempt to improve Ward’s bound, we

generalize this result in Section 3.1 to level e divisible codes, where e can be any positive

integer. This generalized result is called weights modulo a prime power in divisible codes.

The proof of Theorem 3.1 is based on the following lemma, which is also essential in our

generalization.

Lemma 3.2 (Wilson [Wil03]). Let t and s be positive integers, and let f be an integer-

valued function on the integers that is periodic of period pt. Then there exists a polynomial

w(x) = c0 + c1x + c2

(
x

2

)
+ · · ·+ cd

(
x

d

)

of degree d ≤ (e(p − 1) + 1)pt−1 − 1 so that w(j) ≡ f(j) (mod ps) for all integers j. The

coefficients ci are integers, and ci ≡ 0 (mod pm) whenever i ≥ (m(p− 1) + 1)pt−1.

The result on weights modulo a prime power in divisible codes, by a similar reason,

gives an upper bound on dimension of divisible codes with N(j, pt) 6≡ 0 (mod ps) for some

j. In Section 3.2 we further “generalize” this upper bound of level e divisible codes, and it

turns out that the bound is determined by the order of 1 − xpe
in the weight enumerator

modulo ps. We call this new bound a related bound, and show that this generalized bound

implies Ward’s bound.

In Section 3.3 we compare Ward’s bound, the related bound, and the bound following

from weights modulo a prime power in divisible codes. Moreover, we present several ap-

plications of the related bound and the bound from weights modulo a prime power, which

give better results than Ward’s bound in certain cases.
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3.1 Weights Modulo a Prime Power in Divisible Codes

In this section, our goal is to generalize Theorem 3.1 about weights modulo a prime power

in linear codes to a divisible code version. Before stating our main theorem, we give the

following lemma:

Lemma 3.3. Suppose C is an [n, k]q code. Let f(x) = xa1
i1

. . . xar
ir

, x = (x1, . . . , xn), be

a monomial defined on {0, 1}n with aj ≥ 1 for all 1 ≤ j ≤ r. Define c∗ for each n-tuple

c = (c1, . . . , cn) ∈ Fn
q as c∗ = (|c1|, . . . , |cn|), where |ci| = 0 if ci = 0, and |ci| = 1 if ci 6= 0

for all 1 ≤ i ≤ n. Then ∑
c∈C

f(c∗) ≡ 0 (mod qk−r).

Proof. Let C0 be the subcode of C that vanishes on the r coordinates xi1 , . . . , xir . Note

that C0 is the kernel of the linear projection of C on the corresponding r-dimensional space.

Therefore, dim C0 ≥ k − r. Since f takes the same value on any coset of C0, we have

∑
c∈C

f(c∗) ≡ 0 (mod qk−r),

as desired.

Throughout this section, e represents a nonnegative integer, C is set to be a q-ary level

e divisible code,1 and N(j, pm) denotes the number of codewords in C that have weights

congruent to j modulo pm. Since all codeword weights of C are divisible by pe, we have

N(j, pm) = 0 for all m, j such that m ≥ e and j 6≡ 0 (mod pe). Therefore, we are interested

in a condition for the dimension of C that asserts that all the numbers N(jpe, pe+t) are

always divisible by pe. This result, as a generalization of Theorem 3.1, is the main theorem

of this section, which is called weights modulo a prime power in divisible codes.

Theorem 3.4. If the dimension of C satisfies

dim C > (
e

l
+ 1)[(s(p− 1) + 1)pt−1 − 1],

then N(jpe, pe+t) ≡ 0 (mod ps) for all integers j.

1Actually we may assume that C is divisible by pe. That is, the divisibility level of C is at least e.
However, it does not affect our result whether C is assumed to be of level exactly e or at least e.
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Proof. Theorem 3.1 asserts the e = 0 case.

Now we assume that e ≥ 1. By Lemma 3.2, there exists a polynomial

g(z) =
(s(p−1)+1)pt−1−1∑

i=0

ci

(
z − 1

i

)

≡

 1 (mod ps) if z ≡ j (mod pt),

0 (mod ps) otherwise,

where ci ≡ 0 (mod pm) whenever i ≥ (m(p− 1) + 1)pt−1. Let f(x) = g((x1 + · · ·+ xn)/pe),

and let c∗ be as defined in Lemma 3.3. Then N(jpe, pe+t) ≡
∑

c∈C f(c∗) (mod ps).

For each term

ci

(
z − 1

i

)
, 0 ≤ i ≤ (s(p− 1) + 1)pt−1 − 1,

in g(z) the corresponding term in f(x) is

ci

(
(x1 + · · ·+ xn)/pe − 1

i

)
=

ci

i! pei
(x1 + · · ·+ xn − pe) . . . (x1 + · · ·+ xn − i pe).

The coefficient of the monomial xa1
j1

. . . xar
jr

, a1, . . . , ar ≥ 1, is

ci

i! pei
(−1)u (i− u)!

a1! . . . ar!
σi(u)peu,

where u = i − (a1 + · · · + ar), and σi(u) is as defined in Lemma 2.4. Then the p-adic

valuation of the coefficient is at least

vp

(
ci

i! pei

(i− u)!
a1! . . . ar!

)
+ vp

(
i!

(i− u)!

)
− 2u

p− 1
+ eu

≥ vp(ci)−
a1 − 1
p− 1

− · · · − ar − 1
p− 1

− ei− 2u

p− 1
+ eu

= vp(ci)− i(e +
1

p− 1
) + (e− 1

p− 1
)u +

r

p− 1

≥ −(e +
1

p− 1
)[(s(p− 1) + 1)pt−1 − 1] +

r

p− 1
.

Note that 0 ≤ r ≤ (s(p− 1) + 1)pt−1 − 1. So the number

l(dim C − r)− (e +
1

p− 1
)[(s(p− 1) + 1)pt−1 − 1] + (s− 1) +

r

p− 1
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attains its minimum

l dim C − (e + l)[(s(p− 1) + 1)pt−1 − 1] + (e− 1)

when r = (s(p− 1) + 1)pt−1 − 1. Hence by Lemma 3.3,

∑
c∈C

f(c∗) ≡ 0 (mod pl dim C−(e+l)[(s(p−1)+1)pt−1−1]+(e−1)).

Therefore, if we have

dim C > (
e

l
+ 1)[(s(p− 1) + 1)pt−1 − 1]

then N(jpe, pe+t) ≡
∑

c∈C f(c∗) ≡ 0 (mod ps).

Remark. For divisible codes over prime fields, the bound for dim C given in the above

theorem is the best possible for all integers t ≥ 1, e ≥ 0, and s ≥ 1. To see this, we consider

the concatenation C of m = (s(p − 1) + 1)pt−1 − 1 copies of the (e + 1)-dimensional dual

Hamming codes.2 The dimension of C is (e + 1)[(s(p − 1) + 1)pt−1 − 1]. Note that each

dual Hamming code has single nonzero weight pe. So the number of codewords in C with

weights divisible by pe+t is

N(0, pe+t) =
∑

0≤ipt≤m

(pe+1 − 1)ipt

(
m

ipt

)
.

Let λ = −(pe+1 − 1) ≡ 1 (mod p). Note the fact that

(λx− 1)(s(p−1)+1)pt−1−1 ≡ (−p)s−1
pt−1∑
j=0

xj (mod ps, xpt − 1),

which is given by Formula (6.3) in [Wil03]. That is,

(λx− 1)m = (−p)s−1
pt−1∑
j=0

xj + psf(x) + (xpt − 1)g(x)

for some integer-coefficient polynomials f and g. Let ω be a primitive pt-th root of unity.

2A q-ary k-dimensional dual Hamming code is a q-ary linear code of length n = (qk−1)/(q−1), generated
by a k by n matrix whose column vectors are pairwise linearly independent q-ary vectors of length k
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Plug in x = ωj for all 0 ≤ j ≤ pt − 1, we have that

(λω0 − 1)m = (−p)s−1pt + psf(ω0),

(λωj − 1)m = psf(ωj), 1 ≤ j ≤ pt − 1.

Note also that
pt−1∑
j=0

(λωj − 1)m = (−1)mpt
∑

i

(pe+1 − 1)ipt

(
m

ipt

)
.

Therefore,

(−1)mpt
∑

i

(pe+1 − 1)ipt

(
m

ipt

)
= (−p)s−1pt + ps

pt−1∑
j=0

f(ωj).

Suppose f(x) =
∑u

i=0 aix
i, where ai’s, 0 ≤ i ≤ u, are integers. Then

pt−1∑
j=0

f(ωj) =
pt−1∑
j=0

u∑
i=0

ai(ωj)i =
u∑

i=0

ai

pt−1∑
j=0

(ωi)j = pt

 ∑
0≤ipt≤u

aipt

 = ptM,

where M is some integer. Therefore

(−1)mpt
∑

i

(pe+1 − 1)ipt

(
m

ipt

)
= (−p)s−1pt + psptM.

As a result,

N(0, pe+t) =
∑

i

(pe+1 − 1)ipt

(
(s(p− 1) + 1)pt−1 − 1

ipt

)
≡ (−1)(s(p−1)+1)pt−1+sps−1

6≡ 0 (mod ps).

Thus the bound for dim C given in the theorem is the best possible for all t ≥ 1, e ≥ 0, and

s ≥ 1. Note that here C is assumed to be a p-ary code. However, for codes over arbitrary

finite fields we do not have a similar result concerning the sharpness of the bound.

Note that when e = 0, Theorem 3.4 coincides with Theorem 3.1. Note also that we

may view level e ≥ 1 divisible codes just as linear codes and apply Theorem 3.1 instead of

Theorem 3.4. However, the bound for the dimension of C given in Theorem 3.4 turns out

to be much better than that given in Theorem 3.1.



36

3.2 A Related Bound

In this section, we “generalize” Theorem 3.4 in the following sense. Suppose C is a q-ary

linear code of divisibility level e. Then we have

N(jpe, pe+t) ≡ 0 (mod p), 0 ≤ j < pt

if and only if w(x) ≡ (1 − x)pt
g(x) (mod p), where N(j, pm) denotes the number of code-

words in C that have weights congruent to j modulo pm, w(xpe
) denotes the weight enu-

merator of C, and g is some integer-coefficient polynomial. Therefore, Theorem 3.4 asserts

that

dim C ≤ (
e

l
+ 1)(pt − 1)

if the order of 1−x in w(x) modulo p is at most pt−1. This bound works well when the order

of 1 − x in w(x) modulo p exactly equals pt − 1 for some positive integer t. Nevertheless,

it does not seem a good bound when the order is not as such. As an extreme example,

suppose that the order equals pt−1, which is much less than pt − 1. However, the bound

for the dimension remains the same when applying Theorem 3.4. Therefore, the goal of

this section is to provide a good bound for the dimension when the order of 1− x in w(x)

modulo ps equals an arbitrary integer m. Before stating the main theorem, we give the

following lemma:

Lemma 3.5. Let f be an integer-coefficient polynomial with f(0) = 1. Suppose m is the

largest possible integer such that f(x) ≡ (1−x)mg(x) (mod ps) for some integer-coefficient

polynomial g with g(0) = 1. Then

∑
i≥0

(
i− 1

j

)
fi

 ≡ 0 (mod ps) if 0 ≤ j < m,

6≡ 0 (mod ps) if j = m,

where fi denotes the coefficient of xi in f .

Proof. Use induction on m, and first consider the base case m = 0. As f(x) modulo ps has

no factor of 1− x, we have that

∑
i≥0

(
i− 1
m

)
fi =

∑
i≥0

fi = f(1) 6≡ 0 (mod ps),
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as desired. Now assume that for some m ≥ 0 the lemma holds and consider then case when

f(x) ≡ (1 − x)m+1g(x) (mod ps), where g(1) 6≡ 0 (mod ps). Let h(x) = (1 − x)mg(x). By

induction hypothesis,3

∑
i≥0

(
i− 1

j

)
hi

 ≡ 0 (mod ps) if 0 ≤ j < m,

6≡ 0 (mod ps) if j = m,

where hi is the coefficient of xi in h. Observe that for j = 0

∑
i≥0

(
i− 1

j

)
fj =

∑
i≥0

fi = f(1) ≡ 0 (mod ps).

Now we assume that j ≥ 1. As f(x) ≡ (1− x)h(x) (mod ps), we have

fi ≡

 1 (mod ps) if i = 0,

hi − hi−1 (mod ps) if i ≥ 1.

Therefore

∑
i≥0

(
i− 1

j

)
fi ≡

(
−1
j

)
+
∑
i≥1

(
i− 1

j

)
(hi − hi−1)

=
∑
i≥0

(
i− 1

j

)
hi −

∑
i≥1

(
i− 2
j − 1

)
hi−1 −

∑
i≥1

(
i− 2

j

)
hi−1

= −
∑
i≥0

(
i− 1
j − 1

)
hi

 ≡ 0 (mod ps) if 1 ≤ j < m + 1,

6≡ 0 (mod ps) if j = m + 1,

as desired.

Remark. Given the same assumptions as in Lemma 3.5, we also have

∑
i≥0

(
i

j

)
fi

 ≡ 0 (mod ps) if 0 ≤ j < m,

6≡ 0 (mod ps) if j = m,

by a similar argument or by the fact that

(
i

j

)
=
(

i− 1
j

)
+
(

i− 1
j − 1

)
.

3Here we use that fact that g(x) modulo ps has 1− x as a factor if and only if ps|g(1).
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Now we may state the main theorem of this section.

Theorem 3.6. Let e be a nonnegative integer, and let C be a q-ary level e divisible code.

Suppose that the weight enumerator of C is w(xpe
), and m is the largest possible integer

such that w(x) ≡ (1− x)mg(x) (mod pe) for some integer-coefficient polynomial g. Then

dim C < (
e

l
+ 1)m +

s

l
.

Proof. First we deal with the e = 0 case separately. Let

f(c) =
(

wt(c)
m

)
.

By the remark of Lemma 3.5,
∑

c∈C f(c) 6≡ 0 (mod ps). On the other hand, Theorem 2.6

asserts that the MacWilliams transform

w⊥(x) = qdim C(1 + (q − 1)x)nw

(
1− x

1 + (q − 1)x

)

of the weight enumerator w(x) =
∑n

i=0 wix
i has integer coefficients if and only if

∑
i≥0

wi

(
i

j

)
≡ 0 (mod qdim C−j)

for all 0 ≤ j < dim C. Take j = m and we have that
∑

c∈C f(c) ≡ 0 (mod qdim C−m).

Therefore l(dim C −m) < s, or equivalently,

dim C < m +
s

l
.

Now we assume that e ≥ 1 and let

f(x) =
(

(x1 + · · ·+ xn)/pe − 1
m

)
.

Let c∗ be as defined in Lemma 3.3. By Lemma 3.5,

∑
c∈C

f(c∗) =
∑
i≥0

(
i− 1
m

)
wi 6≡ 0 (mod ps), (3.3)
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where wi denotes the coefficient of xi in w. On the other hand,

f(x) =
1

m! pem
(x1 + · · ·+ xn − pe) . . . (x1 + · · ·+ xn −mpe).

The coefficient of the monomial xa1
j1

. . . xar
jr

, a1, . . . , ar ≥ 1, is

1
m! pem

(−1)j (m− j)!
a1! . . . ar!

σm(j)pej ,

where j = m− (a1 + · · ·+ar) and σm(j) is as defined in Lemma 2.4. By a similar argument

as in the proof of Theorem 3.4, the p-adic valuation of the coefficient is at least

−(e +
1

p− 1
)m +

r

p− 1
.

Thus by Lemma 3.3,

∑
c∈C

f(c∗) ≡ 0 (mod p
l(dim C−r)−(e+ 1

p−1
)m+ r

p−1 )

when r = m. That is, when

l(dim C − r)− (e +
1

p− 1
)m +

r

p− 1

attains its minimum

l dim C − (e + l)m

for 0 ≤ r ≤ m. As a result,
∑

c∈C f(c∗) ≡ 0 (mod pl dim C−(e+l)m). Compare with (3.3), we

have

dim C < (
e

l
+ 1)m +

s

l
,

as desired.

Remark. We highly suspect that the result in Lemma 2.4 can be improved to

vp(σm(j)) ≥ vp

(
m!

(m− j)!

)
− j

p− 1
,

so that we need not deal with e = 0 case separately in both proofs of Theorem 3.4 and
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Theorem 3.6. Moreover, if this is the case, we need not deal with p - ∆ case separately in

the proof of Theorem 2.5.

Remark. Theorem 3.6 says that if the weight enumerator w(xpe
) of a q-ary level e code C

satisfies that w(x) ≡ (1− x)mg(x) (mod ps), where m is the largest possible, then

m >
l dim C − s

e + l
.

This actually gives a restriction for the weight enumerator w(xpe
) of the code C. Precisely,

for any positive integer s,

w(xpe
) ≡ (1− xpe

)b
l dim C−s

e+l
c+1g(xpe

) (mod ps)

for some integer-coefficient polynomial g.

Remark. When s = 1, Theorem 3.4 is just a special case of Theorem 3.6 by taking

m = pt − 1. However, Theorem 3.4 is not simply covered by Theorem 3.6 when s > 1.

Formula (2.9) in [Wil03] says that

∑
i≡j (mod pt)

(−1)i

(
(s(p− 1) + 1)pt−1

i

)
≡ 0 (mod ps)

for all integers j. So (1 − x)(s(p−1)+1)pt−1 ≡ (1 − xpt
)h(x) (mod ps) for some integer-

coefficient polynomial h. Note that the above power (s(p− 1) + 1)pt−1 is the smallest one

we can achieve here to make the congruence holds. As a result, we need to assume that

dim C ≥ (
e

l
+ 1)[(s(p− 1) + 1)pt−1 − 1] +

s

l
,

which is a little stronger than assuming, as in Theorem 3.4, that

dim C > (
e

l
+ 1)[(s(p− 1) + 1)pt−1 − 1].

Then Theorem 3.6 asserts that w(x) ≡ (1− x)(s(p−1)+1)pt−1
g(x) (mod ps) for some integer-

coefficient polynomial g. Therefore w(x) ≡ (1−xpt
)h(x)g(x) (mod ps), which is equivalent

to N(jpk, pk+t) ≡ 0 (mod pe) for all integers j.
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Remark. For divisible codes over prime fields, the bound given in Theorem 3.6 is sharp

for all integers e,m ≥ 0 when s = 1. To see this, we consider the concatenation C of m

copies of (e + 1)-dimensional dual Hamming codes. The dimension of C is (e + 1)m, and

the weight enumerator w(xpe
) of C satisfies w(x) ≡ (1 − x)m (mod p). However, for the

case when s > 1 or for the codes over arbitrary finite fields, we do not have similar results

concerning the sharpness of the bound.

Comparing Ward’s bound with our bound given in Theorem 3.6, we see that our bound

is better than Ward’s bound. In other words, we may deduce Ward’s bound from Theorem

3.6, but not vice versa. In this section we will just show that Theorem 3.6 implies Theorem

1.2. In the next section we will give some examples in which the bound in Theorem 3.6 is

indeed better than Ward’s bound.

Proposition 3.7. Let p be a prime and f(x) = 1 + cb−m+1x
b−m+1 + · · · + cbx

b, where

cb−m+1, . . . , cb are nonnegative integers. Suppose

s = vp

((
b

m

))
+ 1,

and f(x) ≡ (1− x)ug(x) (mod pe) for some integer-coefficient polynomial g. Then u ≤ m.

Proof. It suffices to show that f(x) 6≡ (1 − x)m+1g(x) (mod pe) for any integer-coefficient

polynomial g. Otherwise suppose f(x) ≡ (1 − x)m+1g(x) (mod ps) for some g. Then as

deg(f) ≤ b, we may write g(x) = g0 + g1x + · · ·+ gb−m−1x
b−m−1. We claim that

gi ≡
(

m + i

i

)
(mod ps)

for all 0 ≤ i ≤ b−m. First note that

(1− x)m+1 =
m+1∑
i=0

(−1)i

(
m + 1

i

)
xi.

Since the coefficients of x, x2, . . . , xb−m in f(x) are all zero, we have

e∑
j=0

(−1)j

(
m + 1

j

)
ge−j ≡ 0 (mod ps)
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for all 0 ≤ e ≤ b − m. Now we will prove our claim by induction on i. Base case i = 0:

Consider the above congruences. The one with e = 0 gives

g0 ≡ 1 =
(

m + 0
0

)
(mod ps).

Assume that for some 1 ≤ i ≤ b−m, our claim is true for all 0 ≤ j < i. Then the congruence

with e = i gives

gi ≡
i∑

j=1

(−1)j−1

(
m + 1

j

)(
m + i− j

i− j

)
=
(

m + i

i

)
(mod pe).

Therefore,

gb−m ≡
(

b

b−m

)
=
(

b

m

)
6≡ 0 (mod ps),

which gives a contradiction!

We see that Ward’s bound can be directly derived from Theorem 3.6 by applying Propo-

sition 3.7. Moreover, from the proof of Proposition 3.7 we see that when Ward’s bound is

attained, one can completely determine the weight enumerator modulo ps, where

s = vp

((
b

m

))
+ e + l.

Thus if we have any extra information about the weight distribution that contradicts this

property, then the bound can be improved. We will discuss this more in the next section.

3.3 Applications

We have shown in the previous section that our so-called related bound implies Ward’s

bound. Note that Ward’s bound is determined by the spectrum of the weights and there is

no difference if some middle terms are missing, but our bound is determined by the weight

enumerator modulo ps. Therefore, in some certain cases our bound gives better results.

For example, let us consider the q-ary level e divisible codes whose nonzero weights are

among rpe, (r+p)pe, (r+2p)pe, . . . , (r+mp)pe, where r is some integer such that 0 < r < p.
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Ward’s bound says that the dimension of such codes cannot exceed

(mp + 1)
(e

l
+ 1
)

+
1
l

vp

((
mp + r

mp + 1

))
.

By applying Theorem 3.6, we see that no matter how large m is, the dimension is always

at most e/l +1, which is quite an improvement. Actually, this is the same as the bound for

constant weight codes of the same divisibility level.

Corollary 3.8. Suppose C is a q-ary linear code of level e. If there exists some integer r

with 0 < r < p such that all codewords in C have weights congruent to rpe modulo pe+1,

then

dim C ≤ e

l
+ 1.

Proof. Let w(xpe
) be the weight enumerator of C. Then

w(x) = 1 + arx
r + ar+px

r+p + · · ·+ ar+mpx
r+mp,

where m is some nonnegative integer. If w(1) 6= 0 (mod p), then there is no integer-

coefficient polynomial g such that w(x) ≡ (1− x)g(x) (mod p). Otherwise

w(x) ≡ (1− x)(1 + x + · · ·+ xr−1) + (1− x)pxrg(xp) (mod p),

for some integer-coefficient polynomial g. Since 0 < r < p and p ≥ 2, the power of 1− x in

w(x) modulo p is at most 1. By Theorem 3.6,

dim C ≤ e

l
+ 1.

Corollary 3.8 is a generalization of the example given at the beginning of this chapter.

More generally, if we assume that C is a q-ary level e code without nonzero weights divisible

by pe+1, then Theorem 3.4 asserts that

dim C ≤ (
e

l
+ 1)(p− 1).

We see that for these codes, both Theorem 3.4 and Theorem 3.6 yield better bounds than
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Ward’s bound. However, the following example shows that sometimes when Theorem 3.4

fails, Theorem 3.6 still may improve Ward’d bound:

Example. Let C be a binary level two code with nonzero weights among 16, 20, 28, and

32. In other words, the weight 24 is missing from the spectrum. Then Ward’s bound gives

dim C ≤ 5(1 + 2) + v2

((
8
5

))
= 18.

Theorem 3.4 fails because the best conclusion we may get from the weight distribution is

N(0, 64) 6≡ 0 (mod 2). Thus Theorem 3.4 gives

dim C ≤ (1 + 2)(24 − 1) = 45,

which is far worse than Ward’s bound. However, Theorem 3.6 works as follows: Let w(x4)

denote the weight enumerator of C, and assume that w(x) ≡ (1 − x)5g(x) (mod 16) for

some g ∈ Z[x]. Then by the proof of Proposition 3.7, we have

w(x) ≡ (1− x)5
(

1 +
(

5
1

)
x +

(
6
2

)
x2 +

(
7
3

)
x3

)
≡ 1− 6x4 + 8x6 − 3x8 (mod 16).

This contradicts the fact that C has no codeword of weight 24. Therefore Theorem 3.6

yields

dim C ≤ 4(1 + 2) + (4− 1) = 15,

which is better than Ward’s bound.

We further generalize Corollary 3.8 by assuming that there are t, t < p, series of nonzero

weights in a q-ary level e code C:

r1p
e, (r1 + p)pe, . . . , (r1 + m1p)pe,

r2p
e, (r2 + p)pe, . . . , (r2 + m2p)pe,

...
...

...
...

rtp
e, (rt + p)pe, . . . , (rt + mtp)pe,

where all mj ’s, 1 ≤ j ≤ t, are nonnegative integers and all rj ’s, 1 ≤ j ≤ t, are integers such
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that 0 < r1 < · · · < rt < p. The following corollary says that the dimension of such a code

satisfies

dim C ≤ t
(e

l
+ 1
)

.

Corollary 3.9. Suppose C is a q-ary linear code of level e. If there exists some integers

r1, . . . , rt with 0 < r1 < · · · < rt < p such that all codewords in C have weights congruent

to one of rjp
e, 1 ≤ j ≤ t, modulo pe+1, then

dim C ≤ t
(e

l
+ 1
)

.

Proof. Let w(xpe
) be the weight enumerator of C. Then

w(x) = 1 +
m1∑
i=0

ar1+ipx
r1+ip + · · ·+

mt∑
i=0

art+ipx
rt+ip,

where mj , 1 ≤ j ≤ t, are some nonnegative integers. Note that for any positive integer

i and 1 ≤ j ≤ t, xrj − xrj+ip ≡ xrj (1 − x)p(1 + x + · · · + xi−1)p (mod p). Therefore

w(x) ≡ 1+c1x
r1 + · · ·+ctx

rt +(1−x)pg(x) (mod p) for some integer-coefficient polynomial

g, and some integers 0 ≤ c1, . . . , ct < p such that 1 + c1 + · · · + ct ≡ 0 (mod p). We want

to show that the order of 1− x in w(x) modulo p is at most t. Otherwise, we should have

f(x) = 1+c1x
r1+· · ·+ctx

rt ≡ (1−x)t+1h(x) (mod p) for some integer-coefficient polynomial

h. Then the j-th derivative of f satisfies that f (j)(x) ≡ (1−x)t+1−jhj(x) (mod p) for some

integer-coefficient polynomials hj for all integers 1 ≤ j ≤ t. Thus f (j)(1) ≡ 0 (mod p) for

all 0 ≤ j ≤ t. Therefore,

c1 + · · ·+ ct ≡ −1 (mod p),(
r1

j

)
c1 + · · ·+

(
rt

j

)
ct ≡ 0 (mod p) 1 ≤ j ≤ t,

which is impossible. Hence the order of 1− x in w(x) modulo p is at most t and we get,

dim C ≤ t
(e

l
+ 1
)

by applying Theorem 3.6.

The previous corollaries concern only level e codes without nonzero weights a multiple
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of pe+1. For a level e code that does have some nonzero weights divisible by pe+1, we cannot

draw any general conclusion by Theorem 3.6. Yet as a first step, we may examine binary

codes with exactly two nonzero weights.

Suppose C is a binary level e code whose nonzero weights are w1 = 2en and w2 = 2em,

with n odd and m even.4 Let s be the 2-adic valuation of m, and N be the number of

codewords in C of weight 2en. Let w(x2e
) denote the weight enumerator of C.

Case 1: v2(N) ≥ s + 1. Then

w(x) ≡ 1− xm = (1− x)(1 + x + · · ·+ xm−1) (mod 2s+1).

Note that for even integers m, 1 + x + · · ·+ xm−1 modulo 2s+1 has no more factor of 1− x.

Thus by Theorem 3.6, dim C < (e + 1) + (s + 1). That is,

dim C ≤ e + v2(m) + 1.

Case 2: v2(N) = d < s. Then

w(x) ≡ 1 + (2d − 1)xm − 2dxn

≡ (1− xm) + 2d(xm − xn)

≡ (1− x)(1 + x + · · ·+ xm−1 + 2df(x)) (mod 2d+1),

where f(x) is an integer-coefficient polynomial with f(1) ≡ 1 (mod 2). As a matter of fact,

1 + x + · · ·+ xm−1 + 2df(x) modulo 2d+1 has no more factor of 1− x. Hence by Theorem

3.6, dim C < (e + 1) + (d + 1). Therefore,

dim C ≤ e + v2(m).

Case 3: v2(N) = s. Then

w(x) ≡ 1− xm = (1− x)(1 + x + · · ·+ xm−1)

≡ (1− x)2(1 + 2x + · · ·+ (m− 1)xm−2) (mod 2s).

4Note that if both n and m are odd integers, then C is a code as described in Corollary 3.8; and if both
n and m are even integers, then the divisibility level of C is at least e + 1.
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As 1 + 2x + · · · + (m − 1)xm−2 modulo 2s has no more factor of 1 − x, again by Theorem

3.6, dim C < 2(e + 1) + s. That is,

dim C ≤ 2e + v2(m) + 1.

As a conclusion, we always have

dim C ≤ 2e + v2(m) + 1 = v2(w1) + v2(w2) + 1 (3.4)

as a bound. We see that the bound can be attained when m = 2n, by letting C be the

concatenation of two n-folded replicated (e + 1)-dimensional dual Hamming codes.

If n > 2m, we claim that the bound can be improved to

dim C ≤ e + v2(m) + 1,

since in this case, all codewords of weight 2em (plus the zero word) form a subcode C1. Write

C = C1
⊕

C2, where C2 has constant nonzero weight 2en. Then dim C = dim C1 + dim C2.

If dim C1 ≥ v2(m) + 1, note that v2(N) = dim C1, so it falls in the above case 1. Therefore,

dim C ≤ e + v2(m) + 1; if dim C1 ≤ v2(m), note that dim C2 ≤ e + 1, so we still have

dim C ≤ e + v2(m) + 1. To see this bound is sharp for any e, m, and n > 2m, we may let

C be generated by (G 1), where G is the generating matrix of the t-folded, t = m/2v2(m),

replicated (e+v2(m)+1)-dimensional dual Hamming code, and 1 represents the e+v2(m)+1

by (n − m)2e all one matrix. Then C has nonzero weights 2em and 2en, and dimension

e + v2(m) + 1. Note that the construction simply requires n > m.

If m > 2n, we claim that the bound can be improved to

dim C ≤ e + 1.

Since in this case all codewords of weight 2en (plus the zero word) form a subcode C1, so

N ≡ 1 (mod 2), and hence Theorem 3.4 gives that dim C ≤ e + 1. Moreover, this bound is

sharp as it can be attained by letting C be generated by (G 1), where G is the generating

matrix of the n-folded replicated (e+1)-dimensional dual Hamming code, and 1 represents

the e + 1 by (m− n)2e all one matrix. Note that this construction simply requires m > n.
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If n < 2m and m < 2n, we cannot decide whether the bound (3.4) is sharp or not. The

following examples show that either case may occur depending on the value of m, n, and e.

Example. (e = 1, m = 2, n = 3.)

Bound (3.4) gives that dim C ≤ 4, where the nonzero weights of C are 4 and 6. We see

that the bound can be attained by letting C be generated by


1 1 1 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1

1 1 0 1 0 0 1 0 0

1 0 0 0 1 0 1 1 0


4×9

.

Example. (e = 1, m = 4, n = 7.)

Bound (3.4) gives that dim C ≤ 5, where the nonzero weights of C are 8 and 14.

Suppose c ∈ C has weight 14. Let I be the complement of the support of c. Let CI denote

the projection code of C on I. Then CI has no nonzero weights other than 1, 4, 7. Weight

1 can also be eliminated as CI is linear. Thus dim CI ≤ 2 · 0 + v2(4) + 1 = 3. Note that c

is the only codeword in C that vanishes on I. Therefore dim C ≤ 1 + 3 = 4 < 5, and hence

the bound cannot be attained. Moreover, 4 is the exact bound in this case as we may let C

be generated by 
111111110000000 111111

111100001111000 111111

110011001100110 111111

101010101010101 111111


4×21

.

Note that this exact bound is just e + v2(m) + 1.

Inspired by this example we see that generally if m < n < 2m and 2(2m− n) < n−m,

that is, 5m/3 < n < 2m, then the bound can be improved to dim C ≤ e + v2(m) + 1 by

an induction proof on e. Moreover, the bound is sharp because the same construction as

before in the n > 2m case still works here.

Similarly if 5n/3 < m < 2n, the bound can be improved to dim C ≤ e + 2 by an

induction proof on e. Note that the base case says that if C has nonzero weights m and

n, with m even, n odd, and 5n/3 < m < 2n, then dim C = 2. We see that the bound is
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sharp by the following inductive construction: Let C0 be the 2-dimensional code with one

codeword of weight m, and two codewords of weight n, and G0 be the generating matrix of

C0. Then for any i ≥ 1, let Ci be generated by

Gi =

 Gi−1 Gi−1 0

1 0 1

 ,

where the 0 in the first row is a zero matrix, and the second row (1 0 1) represents a

codeword of weight 2em. Note that by this construction, each Ce has nonzero weights 2em

and 2en, and dimension e + 2.

Example. (e = 1, m = 4, n = 3.)

The bound (3.4) gives that dim C ≤ 5, where the nonzero weights of C are 8 and 6.

Suppose c ∈ C has weight 8. Let I be the complement of the support of c. Let CI denote

the projection code of c on I. Then CI has no nonzero weights other than 2, 3, 4. If at

least one of 2, 3, 4 is missing, then dim CI ≤ 3. Otherwise, CI must be equivalent to the

code generated by 
1 1 0 0 0

1 0 1 0 1

1 1 1 1 0

 .

So dim CI = 3. Since c is the only nontrivial word in C that vanishes on I, dim C =

1 + dim CI ≤ 4. Therefore, the bound cannot be attained. Moreover, dimension 4 can be

attained by letting C be generated by


1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 0 0


4×14

.
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Chapter 4

Binary Divisible Codes of
Maximum Dimension

Both Ward’s bound and our new bounds given in Chapter 3 depend on weight distribution,

but not length of the divisible codes. These bounds are derived from the linearity of the

codes, and work well when the code length is sufficiently large. However, for divisible codes

of relatively small length (in comparison to the width of the weight spectrum or the degree

of the weight enumerator) these bounds are weak because the divisibility properties often

require more than the linearity of such codes. Nevertheless, it is interesting to bound the

dimension in terms of the code length and divisibility level. With this intention, we study

binary divisible codes of certain length and level that achieve maximum dimension.

Throughout this chapter, we suppose that C is a binary divisible code of length n and

level e. When e = 1 or 2, we have a complete description of such codes that attain the

maximum dimension. The result is stated in Section 4.1. When e ≥ 3, we prove an induction

theorem in Section 4.2, which is applied to study level three codes of small lengths in Section

4.3.

4.1 Level One and Level Two Codes

The following theorem is a well-known result, and we provide an elementary proof here.

Theorem 4.1. Suppose C is a binary level e code of length n. Then

(i) if e = 1 then dim C ≤ n − 1, with equality if and only if C is the code consists of all

words of even weights;



51

(ii) if e = 2 then dim C ≤ n/2, with equality if and only if C is a type II1 self-dual code

in which case 8|n.

Proof. (i) Trivial, since every codeword in a level one binary code has even weight, and all

words of even lengths in Fn
2 form a level one code.

(ii) For any two codewords a, b ∈ C we have 4|w(a), 4|w(b), and 4|w(a + b). Therefore

a · b = 0 and so C is self-orthogonal. This implies that dim C ≤ n/2. Now suppose

dim C = n/2 and as C is self-orthogonal, C must be a type II self-dual code. Consider the

all one word 1. Since 4|w(a) for all a ∈ C, 1 ∈ C⊥ = C. Thus as 4|w(1) we get 4|n. Let

w(x) be the weight enumerator of C. Then the MacWilliams transform of w(x, y),2

w

(
1√
2
(x + y),

1√
2
(x− y)

)
,

is the weight enumerator of C⊥ = C. Therefore

w(x, y) = w

(
1√
2
(x + y),

1√
2
(x− y)

)
.

Also as C is divisible by 4 and 4|n, we have w(x, y) = w(ix, y). Let

S =
1√
2

 1 1

1 −1

 , T =

 i 0

0 1

 .

Then

(ST )3 =

 ω 0

0 ω

 ,

where ω = −(1 + i)/
√

2 is a primitive 8th root of unity. Since both S and T preserve

w, (ST )3 also preserves w. Hence we have w(x, y) = w(ωx, ωy) = ωnw(x, y). Therefore

8|n.

As a matter of fact, Theorem 4.1 provides an exact upper bound on dimension of level

one and level two binary divisible codes of fixed length n, and describes all codes that attain

the bound.

1Refer to Theorem 1.1.
2This is another form of the weight enumerator, which defines w(x, y) =

∑n
i=0 aix

n−iyi, where ai repre-
sents the number of codewords of weight i.
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4.2 Higher Level Codes

Now we want to extend the problem to codes of a higher level e ≥ 3. In other words, we

want to find:

• an exact upper bound for the dimension of length n binary linear codes of divisibility

level e; and

• the codes that attain this bound.

A test for a code to be divisible is developed by Harold N. Ward in [War90], as stated

in Theorem 1.3. The following proposition is just the binary case of Theorem 1.3, for which

we give an elementary proof:

Proposition 4.2. C is a binary linear code of divisibility level at least e if and only if for

any spanning set B of C we have

2e+1−j |wt(c1 . . . cj) (4.1)

for all 1 ≤ j ≤ e and c1, . . . , cj ∈ B, where c1 . . . cj is the componentwise product of

c1, . . . , cj.

Proof. Suppose C is divisible by 2e. We use induction on j to prove (4.1). Base case j = 1

is trivially true as each codeword has a weight divisible by 2e. Assume that (4.1) holds for

some j − 1. Then as

wt(c1 + · · ·+ cj) =
j∑

i=1

(−2)i−1
∑

1≤α1<···<αi≤j

wt(cα1 . . . cαi), (4.2)

for all c1, . . . , cj ∈ B, we have (−2)j−1wt(c1 . . . cj) ≡ 0 (mod 2e). Therefore (4.1) also holds

for j.

On the other hand, suppose (4.1) holds for all integers 1 ≤ j ≤ e and c1, . . . , cj ∈ B.

Since B is a spanning set of C, any codeword c ∈ C is a linear combination c = c1 + · · ·+ ck

for some c1, . . . , ck ∈ B. Then (4.2) together with (4.1) assert that wt(c) is divisible by 2e.

Therefore, the code C is divisible by 2e.

Denote the set of binary linear codes of length n and divisibility level e as C(n, e). By

assuming that C ∈ C(n, e) and the all-one-word is in C, n must be a multiple of 2e. Note
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that on the other hand, if n is a multiple of 2e, the all-one-word must be in C in order

that its dimension attains the maximum. Now we start with the first nontrivial case where

n = 2e+1.

Theorem 4.3. Suppose C ∈ C(n, e), where n = 2e+1 and e ≥ 0. Then the dimension of C

cannot exceed e + 2. Moreover, such a code C is equivalent to the first order Reed-Muller

code RM[1, e + 1] if dim C = e + 2.

Proof. Write k = dim C. Let C1 be a (k − 1)-dimensional subcode of C such that the all-

one-word 1 /∈ C1. Then all the nonzero codeword in C1 has weight 2e. By Ward’s bound,

k − 1 ≤ e + 1. That is, k ≤ e + 2. If k = e + 2, C1 is a code of length 2e+1, single nonzero

weight 2e, and dimension e+1, so it is equivalent to the (e+1)-dimensional dual Hamming

code. Therefore, C is equivalent to RM[1, e + 1].

Our next step deals with code length n = 2e+2, and we have a similar theorem as follows:

Theorem 4.4. Suppose C ∈ C(n, e), where n = 2e+2 and e ≥ 3. Then the dimension

of C cannot exceed 2(e + 2). Moreover, such a code C is equivalent to the concatenation

RM[1, e + 1]⊕ RM[1, e + 1] if dim C = 2(e + 2).

Proof. Let k = dim C. First we prove that k ≤ 2(e + 2) by induction on e. Otherwise

assume k = 2e + 5, and there exists some codeword c with weight 2e+1 by Corollary 3.8.

Let I be the support of c and J be the complement of I. Let C1 be the projection of C on

I and C0 be the subcode of C that vanishes on I. Then

dim C = dim C1 + dim C0.

C1 is divisible by 2e−1 by Proposition 4.2. Thus C1 ∈ C(2e+1, e−1). When e = 3, dim C1 ≤

2e = 2(e + 1) by Theorem 4.1; and when e ≥ 4, dim C1 ≤ 2(e + 1) by induction hypothesis.

Ignoring the zero-coordinates, C0 ∈ C(2e+1, e). So by Theorem 4.3, dim C0 ≤ e + 2. If C1

is also divisible by 2e, then dim C1 ≤ e + 2 again by Theorem 4.3. Hence dim C ≤ 2(e + 2).

Moreover, if dim C = 2(e + 2) then C is equivalent to RM[1, e + 1] ⊕ RM[1, e + 1], still by

Theorem 4.3.

Now suppose there exists some c1 ∈ C1 such that 2e−1|wt(c1) but 2e - wt(c1). Let c′1 be

the codeword in C whose projection on I is c1. Since c, 1, and 1 + c are all codewords in
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C, we may assume that after rearranging the coordinates,3 c′1 looks like

1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0

L K
,

where each block contains 2e−1 0’s or 1’s. Note that we assume that the first four blocks

form I. Now suppose c0 ∈ C0. Then the support of c0 must either include K or disjoint

with K by Proposition 4.2. Since 1 + c ∈ C0, we may assume K ⊆ supp(c0). In order that

dim C0 ≥ 3, there must exist a basis of C0 that looks like

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1

L K

.

Thus dim C0 cannot exceed 3, and dim C = 2e + 5 implies that dim C1 = 2(e + 1) (which is

the maximum by Theorem 4.3), and dim C0 = 3. By symmetry, we know that the following

words are also in C:

1 . . . 1 1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

L K

.

Therefore a basis for C1 contains

1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

L

.

Let C2 be the subcode of C1 generated by the above four codewords and let C3 be such

that C1 = C2 ⊕ C3. Then all codewords in C1 that are not divisible by 2e must be in C2.

3Rearrangement of coordinates is always allowed, and we just mention it here once and for all.
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Now there is a 3-dimensional subcode C4 of C2 with divisor 2e. Consider C5 = C3 ⊕ C4,

which is of length 2e+1 and divisor 2e. So by Theorem 4.3, dim C5 ≤ e + 2. Since

dim C1 = dim C2 + dim C3 = dim C3 + dim C4 + 1 = dim C5 + 1 ≤ e + 3,

we know that dim C = dim C1 + dim C0 ≤ e + 6 < 2e + 5. Therefore we must always have

dim C ≤ 2(e + 2) for all e ≥ 3.

Now suppose dim C = 2(e + 2). Besides the case we already have, which gives

C = RM[1, e + 1]⊕ RM[1, e + 1],

there are two other possibilities for dim C1 and dim C0, which we want to eliminate by using

induction on e.

(i) dim C1 = 2(e + 1), dim C0 = 2.

If e = 3, there are exactly two cases of C1 up to equivalence. The generator matrices

for C in the two cases are as follows:

Case (a). C is generated by

G =



11110000

00001111

11001100

10101010

0

11110000

00001111

11001100

10101010

0

0

11110000

00001111

11001100

10101010

0

11110000

00001111

11001100

10101010

0 0
11111111

00000000

00000000

11111111



,

where 0’s represent zero matrices of proper sizes, and C1 is equivalent RM[1, 3]⊕ RM[1, 3]

generated by the upper left 16 by 8 minor of G. Note that this code is equivalent to

RM[1, e + 1]⊕ RM[1, e + 1].



56

Case (b). C is generated by

G =



1111000000000000

0011110000000000

0000111100000000

0000001111000000

0000000011110000

0000000000111100

0000000000001111

1010101010101010

A

0
1111111100000000

0000000011111111



,

where 0 is a zero matrix, and A is some 16 by 8 {0, 1}-matrix. However, no matter what A

stands for, we cannot complete the generator matrix G without violating Proposition 4.2.

If e ≥ 4, C1 is equivalent to RM[1, e] ⊕ RM[1, e] by the induction hypothesis, and a

generator matrix for C is similar as in case (a), which implies that C is equivalent to

RM[1, e + 1]⊕ RM[1, e + 1].

(ii) dim C1 = 2e + 1, dim C0 = 3.

Since (i) cannot give any new code, a similar argument as above leads to dim C ≤ e+6 <

2e + 4 for all e ≥ 3.

Therefore up to equivalence there is a unique C ∈ C(2e+2, e) with dimension 2(e + 2).

Moreover, it is the concatenation RM[1, e + 1]⊕RM[1, e + 1] of two copies of the first order

Reed-Muller code.

Now our idea is to generalize Theorem 4.4 for larger code length n by an induction

proof. The following theorem guarantees that if there always exists a codeword of weight

2e+1, then the induction will go on well:

Theorem 4.5. Suppose the dimension of a level e code of length n − 2e+1 (n = m · 2e+1

and m ≥ 2 an integer) cannot exceed (m− 1)(e + 2), and suppose such a code is unique up

to equivalence if its dimension equals (m− 1)(e + 2). Then if C ∈ C(n, e), and there exists

some codeword of weight 2e+1, then dim C ≤ m(e + 2). Moreover, if dim C = m(e + 2),

such a code C is equivalent to the concatenation RM[1, e+1]m of m copies of the first order
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Reed-Muller code.

Proof. Let c ∈ C, and wt(c) = 2e+1. Let I be the support of c and J be the complement

of I. Let C1 be the projection of C on I and C0 be the subcode of C that vanishes on

I. Still, we have dim C = dim C1 + dim C0. Note that C1 is of level e − 1 and C0 is of

level e. Let C2 be a maximum level e subcode of C1. Then we may write a basis of

C1 as B = {c1, . . . , cr, b1, . . . , bs, a1, . . . , at}, where {b1, . . . , bs, a1, . . . , at} is a basis of C2.

Moreover, 2e−1|wt(ci) but 2e - wt(ci), so we may assume that wt(ci) = 2e−1 for all 1 ≤ i ≤ r.

And suppose

{(c1, c
′
1), . . . , (cr, c

′
r), (b1,0), . . . , (bs,0), (a1, a

′
1), . . . , (at, a

′
t), (0, d1), . . . , (0, dl)}

is a basis of C, where {(0, d1), . . . , (0, dl)} is a basis of C0. We also know that

{a′1, . . . , a′t, d1, . . . , dl}

forms a basis of a level e code of length n − 2e+1. Thus t + l ≤ (m − 1)(e + 2). Moreover

r + s + t ≤ 2(e + 1) by Theorem 4.4. If s = e + 2 then r = 0 by Proposition 4.2, and t = 0

by Theorem 4.3. Therefore

dim C = r + s + t + l ≤ e + 2 + (m− 1)(e + 2) = m(e + 2),

and dim C = m(e + 2) implies that dim C0 = (m − 1)(e + 2), thus it is equivalent to

RM[1, e+1]m−1 by the hypothesis. So as C1 is another copy of RM[1, e+1], C is equivalent

to RM[1, e + 1]m. If 4 ≤ s ≤ e + 1 then we still have r = 0 by Proposition 4.2. Therefore

dim C = r + s + t + l ≤ 0 + (e + 1) + (m− 1)(e + 2) < m(e + 2).

If s = 3 then r ≤ 1 by Proposition 4.2. Still, we have

dim C = r + s + t + l ≤ 1 + 3 + (m− 1)(e + 2) < m(e + 2).

Therefore, we may suppose from now on that s = 1 or 2.

First we will show r ≤ e by induction on e. There must exist a codeword c̃ ∈ C2 with
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weight 2e. Otherwise Corollary 3.8 alone asserts that r ≤ e. Now consider the codewords

c1, . . . , cr ∈ C1. If for some ci, 1 ≤ i ≤ r, we have the componentwise product cic̃ = ci, then

〈c̃i〉+C̃2 is divisible by 2e−1, where ·̃ represents the projection on the support of c̃. Therefore

we may assume that there is no cj with cj c̃ = 0, otherwise 〈ci + cj〉 ⊕ C2 is divisible by

2e which contradicts that C2 is maximal. If there are some cj 6= ck distinct from ci with

cj c̃ = cj and ck c̃ = ck, then by Proposition 4.2, there is no such ch that wt(chc̃) = 2e−2.

Thus by apply Theorem 4.3 on C̃2 we have that r ≤ e. If there is exactly one cj 6= ci with

cj c̃ = cj , then again by Proposition 4.2 there is at most one ch with wt(chc̃) = 2e−2. Thus

r ≤ 3 ≤ e. Suppose for all 1 ≤ j ≤ r with j 6= i, we have wt(cj c̃) = 2e−2. Then for e = 3,

there exists at most one such cj with cicj = 0 and one such ck with w(cick) = 2. Thus

r ≤ 3 = e. For e > 3, by the induction hypothesis we have r − 1 ≤ e− 1. That is, r ≤ e.

Since s = 1 or 2 and r ≤ e, we have dim C = r+s+t+l ≤ 2+e+(m−1)(e+2) = m(e+2),

and dim C = m(e+2) implies that r = e, s = 2. Moreover, we cannot make dim C = m(e+2)

if r = e, s = 2, and 0 < t < e. Otherwise we have to construct the following codewords

satisfying that the weight of the componentwise product of each h, 2 ≤ h ≤ e, of them is a

multiple of 2e+1−h:

{(b1 · bj , b), (0,1), (0, b1), . . . , (0, bj−1), (bj , bj), (bj+1, bj+1), . . . , (be+1, be+1)},

where {1, b1, . . . , be+1} is a basis for RM[1, e + 1], and 3 ≤ j ≤ e + 1. To see that there

exists no proper b that satisfies the construction, we may just let h = e− j +2 and consider

for all 1 ≤ k ≤ j the following codewords: (b1bj , b), (δkjbk, bk), (bj+1, bj+1), . . . , (be+1, be+1).

Now the only undiscussed case is that of r = e, s = 2, and t = 0 or e. In order that

dim C = m(e + 2), C0 must be equivalent to RM[1, e + 1]m−1 by the hypothesis. Moreover,

a generator matrix for C must look like



B0 0 A1 . . . Am−1

1 0 0 . . . 0

0 1 0 . . . 0

B1 G . . . 0
...

...
. . .

...

Bm−1 0 . . . G


,
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where both G and  B0

1


are generator matrices for RM[1, e+1], and each Bi, 1 ≤ i ≤ m− 1, contains 0 or e linearly

independent vectors. By Proposition 4.2, there must be exactly one of the Bi’s containing

e linearly independent vectors and others are 0 matrices. Therefore C is equivalent to

RM[1, e + 1]m.

Note that if the length of the level e code C is an odd multiple 2e, then we have a similar

theorem as follows:

Theorem 4.6. Let C be a level e code of length (2m + 1)2e, where m ≥ 2. Suppose the

dimension of any level e code with length (2m− 1)2e cannot exceed (m− 1)(e + 2) + 1 and

attains the bound if and only if the code is equivalent to the direct sum of RM[1, e + 1]m−1

and a 1-dimensional code generated by a weight 2e word. Moreover, assume that there exists

a codeword of weight 2e+1. Then dim C ≤ m(e + 2) + 1 and equality happens if and only if

C is equivalent to the direct sum of RM[1, e + 1]m and a 1-dimensional code generated by a

weight 2e word.

Proof. Similar to Theorem 4.5.

Note that Theorem 4.6 is also developed for inductively studying binary code of level

e of general length n. The base case for the induction is m = 1. We may prove this by a

similar argument as in Theorem 4.4, except that we take a weight 2e codeword as c.

The hypothesis about the existence of a weight 2e+1 codeword is essential for the in-

duction step to work. Though it seems quite reasonable, we have not figured out a proof of

that.

Conjecture 4.7. Let C be a level e code of length m2e with m a positive integer. Suppose

the dimension of C attains the maximum value among such codes. Then there exists a

codeword in C with weight 2e+1.

4.3 Level Three Codes of Small Lengths

For level e codes with relatively small lengths, the absence of weight 2e+1 codewords may

cause dramatic decreasing in the code dimension. Thus Conjecture 4.7 may be proved true



60

for such codes. In this section we deal with level three codes of length 8m where 2 ≤ m ≤ 14.

First we consider the case of even m’s.

Theorem 4.8. Let C ∈ C(n, 3) where n is 16, 32, 48, 64, 80, or 96. Then the dimension

of C cannot exceed 5n/16. Moreover, such a code of dimension 5n/16 is equivalent to

RM[1, 4]n/16.

Proof. Theorem 4.3 and 4.4 give n = 16 and 32 cases. Then it suffices to prove that

Conjecture 4.7 is true for n = 48 to 112 cases.

For n = 48, absence of weight 16 codeword implies that no codewords is divisible by 16

except for the all-one-word. Thus Corollary 3.8 gives that dim C ≤ 5 < 15, hence C is not

the best one we can get.

For n = 64, absence of weight 16 codewords gives {8, 24, 32, 40, 56, 64} as the range of

the nonzero weights. All codewords of weights 8, 56, 64 must lie in a subspace of dimension

less than or equal to 5. Consider the complement subcode C ′ whose nonzero weights are

24, 32, 40. By Ward’s bound,

dim C ′ ≤ 3(3 + 1) + v

((
5
3

))
= 13.

Therefore such code C has dimension dim C ≤ 5 + 13 = 18 < 20.

For n = 80, if both 16 and 32 are missed in the weight range, then again Corollary

3.8 gives that dim C ≤ 5 < 25. Otherwise suppose a weight 32 codeword c does exist, but

a weight 16 codeword does not. Let I be the support of c and J be the complement of

I. Let C1 be the projection of C on I, and C0 be the subcode that vanishes on I. Then

dim C = dim C1 + dim C0. Since C1 is divisible by 4, we have dim C1 ≤ 16 by Theorem

4.1. As the nonzero weights of C0 are among {8, 24, 40, 48}, Corollary 3.8 again gives that

dim C0 ≤ 5. Therefore dim C ≤ 16 + 5 = 21 < 25.

For n = 96, absence of weight 16 codes implies that there are at most 15 codewords of

weight 8. Then linear programming bound gives dim C ≤ 28 < 30.

Theorem 4.9. Let C ∈ C(112, 3). Then the dimension of C cannot exceed 35.

Proof. If there exists a codeword of weight 16, then by Theorem 4.5, dim C ≤ 35. Now

suppose there exists no codeword of length 16. Then the number of weight 8 codewords is

at most 15. Thus linear programming bound gives dim C ≤ 35.
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Consider also codes with length n, which is an odd multiple of 8.

Theorem 4.10. Let C ∈ C(n, 3) where n is 24, 40, 56, 72, or 88. Then the dimension

of C cannot exceed 5(n − 8)/16 + 1. Moreover, such a code of dimension 5(n − 8)/16 + 1

is equivalent to the direct sum of RM[1, 4]n/16 and a 1-dimensional subcode generated by a

weight 8 codeword.

Proof. Similar to Theorem 4.8.

Theorem 4.11. Let C ∈ C(104, 3). Then the dimension of C cannot exceed 31.

Proof. Similar to Theorem 4.9.

From the above discussion we see that by assuming Conjecture 4.7, level e binary codes

with e ≥ 3 that attain maximum possible dimension are merely copies of the first order

Reed-Muller codes. This property is quite different from level two codes, that is, the doubly

even self-dual codes. As we know, the number of selfdual codes of length n grows rapidly

as n goes to infinity. Moreover, the minimum distance can also be sufficiently large.



62

Bibliography

[Ax64] J. Ax, “Zeros of polynomials over finite fields,” Amer. J. Math., vol. 86, pp.

255–261, 1964.

[BM73] L. D. Baumert and R. J. McEliece, “A note on the Griesmer bound,” IEEE

Trans. Inform. Theory, vol. 19, pp. 134–135, 1973.

[Cas86] J. W. S. Cassels, Local Fields, Cambridge University Press, Cambridge, 1986.

[CS90] J. H. Conway and N. J. A. Sloane, “A new upper bound on the minimal distance

of self-dual codes,” IEEE Trans. Inform. Theory, vol. 36, pp. 1319–1333, 1990.

[DGS99] S. M. Dodunekov, S. Guritman, J. Simonis, “Some new results on the minimum

length of binary linear codes of dimension nine,” IEEE Trans. Inform. Theory,

vol. 45, pp. 2543–2546, 1999.

[DHM87] S. M. Dodunekov, T. Helleseth, N. L. Manev, Ø. Ytrehus, “New bounds on

binary linear codes of dimension eight,” IEEE Trans. Inform. Theory, vol. 33,

pp. 917–919, 1987.

[DM90] S. M. Dodunekov and N. L. Manev, “Minimum possible block length of a linear

code for some distance,” Problems Inform. Transmission, vol. 26, pp. 173–176,

1990.

[Dod84] S. M. Dodunekov, “Minimum possible block length of a linear q-ary code with

specified dimension and code distance,” Problems Inform. Transmission, vol. 20,

pp. 239–249, 1984.

[GH94] P. Greenough and R. Hill, “Optimal linear codes over GF(4),” Discrete Math.,

vol. 125, pp. 187–199, 1994.



63

[Gri60] J. H. Griesmer, “A bound for error-correcting codes,” IBM J. Res. Develop.,

vol. 4, pp. 532–542, 1960.

[HN92] R. Hill and D. E. Newton, “Optimal ternary linear codes,” Designs, Codes and

Cryptography, vol. 2, pp. 137–157, 1992.

[HT80] N. Hamada and F. Tamari, “Construction of optimal codes and optimal factorial

designs using linear programming,” Ann. Discrete Math., vol. 6, pp. 175–188,

1980.

[LM99] I. Landjev and T. Maruta, “On the minimum length of quaternary linear codes

of dimension five,” Discrete Math., vol. 202, pp. 145–161, 1999.

[LRM03] I. N. Landjev, A. Rousseva, T. Maruta, R. Hill, “On optimal codes over the field

with five elements,” Designs, Codes and Cryptography, vol. 29, pp. 165–175,

2003.

[LW92] J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge Uni-

versity Press, Cambridge, 1992.

[Mar99] T. Maruta, “On the minimum length of q-ary linear codes of dimension four,”

Discrete Math., vol. 208/209, pp. 427–435, 1999.

[MS73] C. L. Mallows and N. J. A. Sloane, “An upper bound for self-dual codes,” Inform.

Contr., vol. 22, pp. 188–200, 1973.

[MS77] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes,

North-Holland Pub. Co., Amsterdam, 1977.

[PW72] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, MIT Press,

Cambridge, 1972.

[Rai98] E. M. Rains, “Shadow bounds for self-dual codes,” IEEE Trans. Inform. Theory,

vol. 44, pp. 134–139, 1998.

[Ser79] J.-P. Serre, Local Fields, Springer-Verlag, New York, 1979.

[SS65] G. Solomon and J. J. Stiffler, “Algebraically punctured cyclic codes,” Inform.

Contr., vol. 8, pp. 170–179, 1965.



64

[UH39] J. V. Uspensky and M. A. Heaslit, Elementary Number Theory, McGraw-Hill,

New York, 1939.

[Wan97] Z.-X. Wan, Quaternary Codes, World Scentific Pub., Singapore, 1997.

[War01a] H. N. Ward, “The divisible code bound revisited,” J. Combin. Theory, Ser. A,

vol. 94, pp. 34–50, 2001.

[War01b] H. N. Ward, “Divisible codes–a survey,” Serdica Math. J., vol. 27, pp. 263–278,

2001.

[War04] H. N. Ward, “A sequence of unique quaternary Griesmer Codes,” Designs, Codes

and Cryptography, vol. 33, pp. 71–85, 2004.

[War81] H. N. Ward, “Divisible codes,” Arch. Math., vol. 36, pp. 485–499, 1981.

[War90] H. N. Ward, “Weight polarization and divisibility,” Discrete Math., vol. 83, pp.

315–326, 1990.

[War92] H. N. Ward, “A bound for divisible codes,” IEEE Trans. Inform. Theory, vol.

38, pp. 191–194, 1992.

[War98] H. N. Ward, “Divisibility of codes meeting the Griesmer bound,” J. Combin.

Theory Ser. A, vol. 83, pp. 79–93, 1998.

[Wil03] R. M. Wilson, “A lemma on polynomials modulo pm and applications to coding

theory,” Proc. of Int. Workshop on Comb., Linear Algebra, and Graph Coloring,

2003.


