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Abstract 

The microelectronic revolution has spawned many fields that take advantage of the 

incredibly small size devices that can be made.  However, the limits of photolithography 

and even electron beam lithography are fast approaching.  Future progress in 

miniaturization of electronics, mechanical devices and optical structures will require new 

processes and materials. 

The work presented in this thesis is an investigation into the possibilities of using 

new nanomaterials to fabricate simple devices.  It is a challenge to integrate these materials 

with traditional microfabrication techniques.  The processes commonly used to make 

electronics can damage or destroy some nanomaterials.  Also, it is difficult to place and 

orient these novel substances.  Finally, at the nanometer scale, different physical properties 

emerge due to confinement effects and the large surface-area-to-volume ratio. 

We have fabricated devices out of carbon nanotubes and electrodeposited 

nanowires.  The nanowires have been fabricated in gold, platinum, silver and nickel.  For 

all the nanowires except silver we have measured the temperature dependence of the 

resistance and found that it is consistent with bulk metals.  We have created and tested 

crossed nickel nanowires for magnetoresistive effects and found none. 

From the platinum wires we have fabricated and tested the first doubly clamped 

resonator fabricated out of “bottom-up” materials.  This resonator has much lower Q than 

comparable devices made by traditional techniques.  The resonator also exhibits non-linear 

behavior well described by the Duffing oscillator. 



 v
From carbon nanotubes we have created a doubly-clamped beam.  In addition, we 

have created a novel carbon nanotube field emission device with integrated grid.  Work is 

ongoing to achieve experimental results from these devices. 

The appendix describes photonic crystal defect cavity lasers, which offers 

interesting potential for integration with nanotubes and nanowires. 
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