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Abstract

Various problems concerning waves on vortex filaments are
considered. The local force balance method introduced by Moore
and Saffman for the calculation of the induced velocity at a point of a
vortex filament with arbitrary structure and shape is used to examine
the effect of axial flow on the stability oftrailingvortices andvortex
rings. It is found that the effect is small in both cases. The method
is extended to study the stability of vortex rings carrying eleciric
charges, which are possible models for vortices in liquid helium.
Two cases are considered--the conducting ring and the uniformly
charged ring. In each of these cases it is found that the velocity of
a charged ring is smaller than an uncharged one, and if the charges
are strong enough, the ring may reverse its direction of motion.
Furthermore, the charged ring becomes unstable when the charge
effect is comparable to the vorticity effect. The motion and stability
of a buoyant vortex ring are also considered. It is shown that a heavy
ring travelling in the direction of gravity decelerates, thins and
expands, while a light ring accelerates, fattens and contracts. The
heavy ring is stable to disturbances of the centerline, but the light
ring is unstable with a growth rate independent of wave number.

Intrinsic equations governing the curvature k and torsion +
of a vortex filament are obtained. They form a set of coupled
nonlinear integro~partial differential equations. By retaining only

the leading order term in the singularity of the Biot~-Savart integral,
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which corresponds to the localized induction hypothesis introduced
by Arms and Hama, these can be reduced to a single nonlinear

Schrédinger equation for the complex variable

if ® rds

Yy=Ke ©
where s is the arclength. A compiete set of steady state solutions
for this equation is obtained. This includes the straight vortex, the
helical vortex, the vortex ring, and a solitary wave form, all being
limiting cases of a general periodic wé.ve structure. A modified
scheme is introduced to resolve an apparent nonuniformity of the
solitary wave solution in the limit ¥k -~ 0. Non-local effects (effects
~of the regular part of the Biot~Savart integral) are examined by
means of an asymptotic expansion of the intrinsic equations in the
- small parameter € = (log %—)'I where a is the core radius of the
filament. It is shown that even in the tail ends of the solitary wave

where the local effect fails to dominate, the solitary wave solution

exists to O(e?).
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I. INTRODUCTION

‘The subject of vortex motion was first brought to the attention
of mathematicians and physicists more than a hundred years ago by
Lord Kelvin when he presented his classical papers, ”On Vortex
Atoms, " and "On Vortex Motion, ' to the Royal Society of Edinburgh
in 1867. 1In these papers he explained and expanded the ideas of
Helmbholiz, and put forth the vortex atom theory, which states that
atoms are actually vortices in ether. He proposed that a thoroﬁgh
investigation of the properties of vortices should be made which he
hoped would shed light on the basic properties of maiter through the
vortex atom theory. This idea was shortlived. However, the proposal
gave birth to a fascihating branch of applied mathematics; in the
century that followed, the subject of vortex motion continued to
attract the attention of mathematicians and physicists. Interesting
results were obtained, but understanding of thé problem as of today
is still far from complete due to the complexity of the mathematics
involved. ;,

In this work, we consider the problem of waves on vortex
filaments. By a vortex filament, we meah a thin tube of fluid whose
surface is made up of vortex lines and into which most of the vorticity
is concentrated. For an inviscid fluid with uniform density, it was
shown by Helmholtz (1858) that such a tube moves with the fluid (i.e.,
the fluid elements constituting the tube are always the same ones)
and has constant strength, the strength of a vortex filainent being

defined as:



= [w-ds + (1-1)

where w is the vorticity and dS is the surface element bounded by a
closed curve on the tube which wraps around it once. The presence
of a non~-zero vorticity induces a velocity field given by

- f(gs DA 9(§)dv(§,) 9 (1-2)

x' - x|

Ea) tal

where X is the p'osition vector of the point of interest and the integral
is taken over the entire volume of non~-zero vorticity. Thus, an
isolated vortex filament in general moves under its own induction
even in the absence of external forces.
Let us consider the problem of waves on an isolated vortex

filament in an inviscid infinite fluid. There are several length scales
| involved. They are: the local ‘core'radius a, the local radius of
curvature (of the center line) p, the characteristic amplitude of the
waves D,‘ and the characteristic wavelength of the waves Xx. Almost
‘all of the results obtained so far are for limiting cases. Kelvin (1880)
treated the case ]al <« 1 by solving the l.inea,rized equations of motion
both inside and outside the filament and matching the solutions across
"the boundary. This is the so-called infinitesimal theory since the
amplitudes of the disturbances (or waves) considered are infinitesimal

quantities when compared to other length scales. This approach is

exact, but it is limited to cases where the unperturbed state has
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extremely simple geometry in order for the equations to have

solutions in closed form (Kelvin studied the perturbations on a
D
a
very restrictive when the filament is thin. For all practical purposes,

straight vortex). Furthermore, the requirement that = <« 1 becomes
the main use of the infinitesimal theory is to provide a check for
other methods since they must agree as g - 0. Another limiting
case is that of small waves on thin filaments. By "'small" waves we

mean waves with % <« 1 and % « 1, and by a "thin" filament we mean

% « 1 and % « 1; that is, both the wave amplitudes- and the core radius
are small compared to the geometric length scales. This assumption
allows us to make use of the mathematical idealization of a line

vortex where the core radius is allowed to approach zero while the
strength I remains finite. The effect of vorticity due to such a line
vortex can then be specified entirely by the strength T" and the position

of the line to which the filament has contracted. This is given by the

Biot-Savart law

’ (1-3)

where f denotes a line integral. The intégral becomes divergent

at X’ = X which is a consequence of the idealization that a is zero, The
singularity can be removed by returning to a finite core near x'= x.
The small wave assumption (? «< 1, %— « 1) allows us to expand
around the unperturbed state. Note that now the wave ampﬁtude D

and the core radius a are independent. This approach appears to have
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been originated by J. J. Thomson (1883) when he considered small
waves on vortex rings, and has been used extensively in various
modified forms ever since. Quite recently Arms and Hama (Hama,
1962, 1963; Arms and Hama, 1965) introdﬁced the localized induction
hypothesis. The idea is to retain only the singular term in the Biot~
Savart law and neglect logarithmic variations. This reduces (1-3) to
a differential equation instead of an‘in‘tegra,l since the singular term
depends only on local properties (the local curvature). Solutions in
closed form with finite amplitudes can then be found within this

order of approximation.

In essense, the three approaches mentioned above are just
different degrees of trade-off between accuracy and generality. The
exact infinitesimal analysis is applicable only to very simple configu~
rations while the localized induction hypothesis gives crude results
for problems with greater geometric complexity.

The three parts of the present work correspond fo these three
appfoaches. Part 1deals with the infinitesimal theory. Chapter II
examines the problem of infinitesimal waves on a straight vortex with
and without axial velocity to illustrate the method and provide a basis
of comparison for later results. Part 2 deals with small waves on a
thin filament. Chapter Il derives the equations of motion of a vortex
filament with axial flow following the work of Moore and Saffman
(1972). Chapter IV aﬁplies these equations to study the effect of axial
velocity on the stability of aircraft trailing vortices. Chapter V is

concerned with the stability of steady vortex rings. The cases
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considered are a ring with axial flow, an eiectrically charged
conducting vortex ring, and a vortex ring with a uniform electric
charge density. Chapter VI considers a bouyant ring, which is
unsteady in the sense that its ring radius, core radius, and propaga-
tion speed are all functions of time. Part 3 examines the localized
induction hypothesis and its extentions. Chapter VII derives the
general intrinsic equations governing the curvature and torsion of

a thin vortex filament. Chapter VIII solves the steady problem under
the iocalized induction hypothesis and obtains among others a solitary
wave solution. Chapter IX presents the modified hypothesis in which
the logarithmic variation neglected by the localized induction
hypothesis is introduced to eliminate an apparent non~uniformity and
resolve an ambiguity in the original method. Chapter X develops an
asymptotic expansion of the equations of motion as % -~ 0, which

has the localized induction hypothesis as the leading term, and
applies the first order equations to examine the validity of the solitary

wave solution.
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II. INFINITESIMAL WAVES ON A STRAIGHT VORTEX

§2. Thirteen years after the presentation of the vortex atom theory
Kelvin published the first work concerning waves on vortex filaments
titled, "Vibrations of a Columnar Vortex.  In this paper he studied
the infinitesimal disturbances on a straight vortex by solving the
linearized equations of motion both inside and outside the filament

and matching the solutions across the surface, requiring a continuity
of pressure and the normal velocity. In 1967, Krishnamoorthy
extended the analysis to include the effects of axial velocity. These

works are partly reproduced in the present chapter.

§3. The Governing Equatiohs of the Infinitesimal Theory

The equations of motion of an incompressible, {hviscid fiuid

with unit density are

Ju :
-t Yu=- 3, | (2-1)

2'1{"“09 (2-2)

where u is the velocity and p is the pressure.  Let us use cylindrical
coordinates (r, 8, z) with corresponding velocity components u =
(u, v, w). Then the unperturbed straight vortex is a circular cylinder

about the z axis with equation

T =3y, (2-3)



and corresponding velocity and pressure

u, = (0, v, (r), 0), O (2-4)
b =/ Yol ar. (2-5)

The equation of the perturbed filament can be written as

iz + wt = mo)
s

r =a, + De and the disturbed velocity and pressure are

given as

u,(r) cos nz sin(wt ~ mo)

U=y +4, =1, + v,(r) cos nz cos(wt ~ mé) | , (2-7)
w,(r) sin nz sin{wt ~ m6) |
P = P, + Pi(r) cos nz cos(wt ~ mo), _ (2-8)

w&here D, uv,v,,w, and p, are infinitesimal quantities compared with
a,, Vo and p,, and their dependence on z, 6 and t are chosen in view
of the parity of the continuity equation (2~2). These perturbations
describe sinusoidal disturbances along the vortex as well as undula-
tions of the surface. | The case m = 0 corresponds to periodic pﬁlsa-
tion of the filament core (‘sausaging'}, and |m] > 1 corresponds to
fluted distortions of the filament surface with no displacement of the
centerline. The cases m = + 1 are interesting, they represent a
sinusoidal disturbance of the centerline of the vortex with no change
in the core radius, these are the modes that we are mainly interested

in.



_ We now substitute the expressions in (2-7) and (2~8) into
(2~1) and (2~2) and linearize about the unperturbed state, This leads
to

.Go-m%ﬂ-)ul-z%l-vl:-%%&, (2-9)

(w -m %ﬂ)vl - (‘—;ﬂ + C—é‘%ﬂ-)v.l1 = m-gl , (2-10)

(w - m ‘—;ﬂ)wl = np,, (2-11)

d
allf-l-+%_l-+——-—-lmrv +nw, =0, (2-12)

If we include a constant axial velocity in the vortex, then the unper-

turbed velocity would be

Uy = | Vo ()|,  (2-13)
where

W (constant) r < a, '
Wy = ¢ ) (2-14)
0 r > a,

The equations for the perturbation quantities are then

(w ~m 1;9— + nwo) u, ~ 2 ‘—;ﬂ- v, =_g-¥-‘y (2~15)



d
(w -m YIQ- + nwo)v1 - (YIQ- + a‘-;.m)ul = m-Erl- 3 (2-16)
(w - m‘—;?- + nwo)w1 =np, - (2-17)

with no change in the continuity equation. These reduce to (2-9) -
(2-11) when W = 0.
For the a uniform distribution of vorticity inside the core,

vy (r) is given by

Qr r< g (2-18)
Yolr) = Qa2 . ’ (2-19)
T T

and the appropriate boundary conditions are the continuity of p,

and u, across the filament surface.

§4. Solution of the Equations of Motion and the Dispersion Relation

For simplicity, let us first consider the case w, = 0. {2~9)
and (2-10) can then be solved for u, and v, in terms of w,. These are
substituted into (2-12) to yield a second order equation of the Bessel
type for w, which can be solved inside and outside of the filament
to give w, as & function of r and parameters n, w and m( =+ 1). The
two integration éonstants are determined by the boundary conditions.
On the surface we can let r = a,(the linearized boundary) to obtain a
dispersion relation expressirig w in terms of n, m and a, . Proceeding

as such, we have, writing a instead of a, since the context is clear,



2

eorre (oo e e
2

Sl (@Au-o r<a G

where

. [4Q° - (w -~ mQ)?]
# = 1 . (2-22)
(w = mQ)?

The requirement that the solution should be bounded everywhere
(at r = w0 and r = 0) gives
w, = C, Km(nr), r>a (2-23)

w,=C, J (v}, r<a. | (2-24)

The boundary conditions on p,[given by (2-11)] and u, allow us to
eliminate C, and C, at the boundary r = a so that we obtain the dis-

persion relation

J7_{qa) X7’ _ (na) .
' m o = o (2-25)
(qa)'l!miqai 2’k " na mina)’
where
2 - 12 )
g = irl_(l_k.z;kl g (2-26)
and
g -w (2-27)
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We can treat (2-25) as a transcendental equation in k. It was pointed
out by Kelvin (1880) that this equation'has an infinite number of roots
in the range 0 < k < 1 and another infinite number of roots in

-1 < k< 0, but none for |k|> 1. When axial velocity is included,

a similar calculation leads tc

(qa-) m - 4Q%K m(na)
anm(qa) TETK T 0k - oWy \m K 0a)) (2-28)

which reduces to (2~25) when W = 0,
Both (2-25) and (2~28) are too complicated to permit a
complete discussion of all their roots, but it is possible to examine a
~ limiting case. This is the case when Inal « 1 and qa’, <« 1 so that
both sides of the expression can be expanded in power series of na

and qa. This was done by Kelvin for the case W = 0, and he obtained

2 HELr s (2-29)
where
—log—2—-C+ i;, (2-30)
|na |

and C = 0.5772+++ is Euler's constant. For the case W = 0, we

have

1 1 1 497k 1 2
= - qga - QBad +eee = [— + na(]_og -C)+ . .j
aa % 9 29k - nW)® U8 |na | ’

(2-31)
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which has been solved by Moore and Saffman (1972) assuming that W

isO(fa) by treating it as a cubic in q, expressed in—g— , it is

202 |~ 2 2q2 1%
8- (ot - 52 (B 0 -] B 02

Note that it reduces to Kelvin's solution when W = 0,
The assumption that Ina[ « 1 simply means that we are
considering long waves, since n = 12)2’!- , this assumption is equivalent

to
a 1
T <. . (2-33)

The assumption that qa « 1 has no direct physical meaning but it
turns out that this mode corresponds to low frequency oscillation
(since% <« 1) while other modes have w~ .

As we have pointed out earlier, the requirement :g— «< 1
becomes. severely restrictive when a gets small, thereby making
these results of only limited direct application. However, it does
provide a valuable check for more‘ approximate methods like the

cutoff method which we shall discuss in the next few chapters.
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IH. EQUATIONS OF MOTION FOR A THIN VORTEX FILAMENT
WITH AXTAL FLOW

§5 The infinitesimal theory is unsuitable for direct applications
not only because of the assumptioﬁ that g « 1, but to a greater
extent due to the impossibility of solving the flow equations in closed
form for almost any other case except the straight vortex. This
difficulty is partially resolved if we consider a thin filament. The
idea is that the velocity of a point on the vortex induced by the rest

of the filament can be given by the Biot-Savart law (1-3) which is a
formal solution .of the flow equations if we assume the vortex behaves
like a line vortex. This is indeed true when we consider contributions
from points far away from the point in question. For the contribution
of points close to the point of interest, the Biot~Savart integral
becomes singular since the line vortex approximation which assumes
a is small compé,red to all length scales cannot hold anymore as the
distance !;{\’ - X I approaches zero. In fact, these neighboring points
are the most influential, and their contribution must be determined
by réturning to the idea of a finite core.

This entire approach has been rigorized by Moore and
Saffman (1972) when they derived the equations describing the motion
of an arbitrary thin filament with axial flow by balancing the various
forces acting on an element of the vortex. The Biot-Savart law is used
for far field contributions and a matched asymptotic expansion is used
for the influence of the neighboring points. This is the approach that

we shall follow.
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§6. Local Force Balance for an Element of the Vortex

Let us recall the assumption of a thin filameﬁt, which is

?’—) «< 1, (3-1)

where a is the core radius and p is the local radius of curvature.

In this limit is is meaningful to describe the filament by a position
vector R = R(§, t), where £ is a Lagrangian parameter along the
filament and t is the time. Actually, R describes the points on the
line vortex to which the filament has contracted, it can also be
thought of roughly as the centerline of the filament. It is also useful
to introduce the arc length parameter s = s(§, t) measured along the '
filament.

The velocity of a point on the filament is then given by

oR
I’I\(S,t) = 'a% (g ,t)- (3'2)

Let us consider an element A of the filament as shown in Fig. 3-1.
We denote the curved surface by (Z and the plane ends by E,(at £)
and E,(at £ + d£). The length of the filament is taken as ds, then

the force balance on A requires that

Fp+ Ep= 0, A (3-3)

where EE js the force per unit length exerted by the surrounding

fluid on the curved surface C and EI is the force per unit length

~ exerted by the fluid inside the core on the surface including the
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Fig. 3-1
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effects of fluid inertia. In the absence of external body forces, EE

and g'q c_ém be expressed as

gds= [ : - pL dA, (3~4)

Fy ds = ~ ?% fA udv - [éaé' fA(s) (ps + wy\)dzgds, (3~5)

where { denotes the outward normal on (: , p is the pressure, w
is the tangential component of the internal velocity relativeto (:, s

is the tangent vector defined by

y (3-6)

yon
Il
® |8

u is the velocity of the fluid, and A(s) is the cross sectional surface.
The expressions (3-4) and (3-5) have been evaluated ‘by Moore and
Saffman (1972) using matched asymptotic expansions. We shall not
present the details here but we shall summarize some of the intuitive

arguments which they provided.

§7. The Exterior Force EE

The first contribution in the exterior force is the Kutta~
Joukowski lift for flow past a cylinder with circulation, it is given

by

QN s ' (3-7)



17

where Q is the relative velocity of the element to the surrounding

ﬂuid. To find Q we argue as follows. The presence of the vortex
filament induces a velocity everywhere in the fluid. At each point §

on the filament, there is associated such a velocity which can be

‘thought of as the resulting velocity in the region a « [:’g - R | «<p when the
swirl is subtracted off. We call this velocity Y(&, t) and it is defined

as
Y(E:t) = YE(g’t) + YI(E’ t) ] _ (3"8)

where YE is the velocity due to some external fields (eg. the presence
of another vortex). YI(E ,t) must be defined more carefully. A direct
application 61" the Biot~Savart law leads to a divergent integral. To
obtain a well defined quantity we subtract off the divergent part by

considering the expression

where the first part of the integral is taken over the filament and
the latter part taken over an osculating circle to the vortex

filament at the point £. An osculating circle is a circle which lies
on the plane formed by the tangent s and the normal n touching the
point £ with radius equal to the local radius of curvature p. This
expression is regular since both parts have the same singularity and

therefore they cancel. We then define

dR
Q =V = ﬁ:\- ' (3'10)

” Ll
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where
V€, 8 = uR(E 05,0,

‘The next important contribution to EE is in the form of a
tension which is due to the curvature of the filament. This originates
from the fact that when the filament is curved the velocity is higher on
the concave side than the convex side and thus creates a pressure
gradient directed towards the center of the filament. If we take n

as the principle normal (pointing inward) which is given by

%5
EE)

s (3‘11)

e

this force can be expressed in the form

Ty 1

9

P

where T, is found by detailed analysis of the flow near the point of

interest to be

D 80 1
T, = 7= (log 33 - Z)- (3-12)

In the case where the core radius a varies with s, a tangential

force is created, it is found to be

¥ o
8ra® s

’
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as we shall see later, this term will become important when there
exist gravitational effects.

Other contributions are from the apparent mass effect and the
pressb.re gradient effect in the surrounding fluid, but both of these
are shown to be negligible by Moore and Saffman (1972).

Collecting the terms we have

(3-13)

§8. The Interior Force EI

The calculation of the interior force EI is as follows. Integra-

tion of the pressure term leads to a contribution of

1 —
1 -s% '2'3.2 VZ%,

where V2 is the averaged swirl inside the core, and the condition that
the pressure should be continuous on the surface is used. The

Reynolds stress term contribution is found to be

aR
a 22 2ee A 2 a
ﬁ-é-é-['aW’S;" aw-a—t—-ﬁ _£ rzvowodr]% 9 (3-'14)

where v, and w, are the leading order swirl and axial velocities. If

we define A as
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A =21 fa rv,wodr (3-15)
0o

awr

where w is the core averaged axial velocity, we have

oR
d - X _ATWwa’ -
T =35 [aws aW'ET 5 ?] (3~16)

as the Reynolds stress term. Finally, the rate of change of

momentum in the element A can be found as

08
- ma’w ﬁ - ",S\’é% (aZW) - ﬁazﬁﬁ-gt- (log -g-g-). (3-17)

Combining these, the interior force EI is given by

EI"‘JT— Zavs] 17-—[:6\725+aw§,[— b
as
-1raw—-t- -ﬂ—a-f(aw)s-naw EF log—g) (3-18)
The force balance equation (3-3) has now become
oR | iy 8p 1 I 92’
I‘(l’E*YI"'ér)’\i*m (10%’{' ) "B % 2

IR 2
+1r——- %—a‘vzs] -- aws+aw ~ ,ATwa 'b]

- 7 3W o (aw)s-iraw log %) s=0, (3-19)
ﬁ '55' 5‘6 R
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R
Before we invert this equation to obtain ‘a% , let us first
check it against some known results. For an isolated vortex ring
of radius R and core radius a, we have YE =0, «YI = 0, a = constant,

p = R = constant -Q—(a 13‘) = 0, and so the velocity is given by
19s ‘ot

oR | 2 23 2 Zemp

~_ T 8 1 4

% =gy los 5 g + T - )y, 620
where b is the binormal, this agrees with the result found by an energy
method (Saffman, 1970). Another check is to calculate the dispersion

relation of the m = + 1 modes for the centerline disturbance of a straight

vortex by considering the perturbed vortex to be a helix of large pitch

given by
_ . _ 0+ wt) _
R=Dcos 6 e, + D sing &y 7 e,- (3-12)

By a straightforward calculation, using A= %—, r=2r, v° = %—Qzaz,

and W = W? for a uniform core with top hat profile, we can recover
the result (2-32) given by the infinitesimal theory. The important
thing to note here is that the present derivation does not require

D

7 < 1 anymore, and thus extends the validity of (2-32) to waves that

are smail but not infinitesimal.

§9. The "Cutoff' Method

At this point of the analysis we digress to describe an alterna~-
tive approach known as the cutoff method. The method treats the

singularity in the Biot~-Savart integral by stopping the integration at
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a small distance £ from both sides of the singularity, therefore
expressing the result as a function of £. The value of ¢ is then
found by comparing to a known result (e.g., thé result for the ring
or the straight vortex). Let us do this for the perturbed straight

vortex. The velocity is given by

R dR'A (e,D - R) 622)
(2 {ﬂ |e D - R’ ? ’

where the integfal is a line integral over the helix given by (3~21) and
2] means that a small distance # is being cutoff from both sides
of the point R’ = %{D. The frequency w at the point 8 = 0 (and therefore

evefy point since the origin is arbitrary) is

By o

Evaluating (3-22) and assuming |na| « 1. g « 1, we obtain

o= 921 L é—-log(ZQ)] (3-24)

This would agree with (2-29) if

| 1
0=3eta (3-25)

The cutoff method assumes that this value of € is the same for thin
filaments of all shapes as long as the internal structure remains the
same. This can be verified by applying the method to a vortex ring,

the use of (3-25) leads to



R
S SR _ 1 i
*ar—m(“’gzr z)'fl’ (3-26)

which is the correct value for the speed of a vortex ring with uniform
vorticity and no axial flow.

Howéver, the cutoff method is only valid for |na! «<1lor
a
A
the next order in nzaz, we find that the cutoff method gives a value of

<& Z%F In order to see this we calculate (3-23) and (2~29) both to

5 which exceeds the exact value [found from the next order term

in (2-29)] by

4, 4 i
s’ gg(log rz;jc)gg(lg ]-3—|c) -5 o

It can also be shown that in the absence of axial velocity the osculating
circle method is equivalent to the cutoff method and therefore is also

limited to long waves only.

§10. The Internal Structure of the Core and the Velocity of the Filament

In the case of nonuniform vorticity and axial distributions the
structure of the core may change in time and we must have rules to
specify the time variation of a,v,w, and A. To leading order, it was

found that

a = a(t), | (3-28)

v =v0) = g 86, (3-29)
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and

W= WO + W6, 1) +5- ), (3-30)

where &, ¥ and b, are determined by initial conditions and chosen

so that
(1) =1, [ x ¥xdx = 0. (3-31)
0

It can be shown that these lead to an expression for A:

A= j;l xP(x) +-%]£T \P(X)@(x:)] dx. | (3-32)

Furthermore, itX denotes the total length of the filament (or length
of a period if the filament is periodic), then the conservation of

volume and circulation states that

a2Z = constant, ' (3-33)
w2 = constant. (3-34)

W, (&, t) can be found in terms of f after a lengthy calculation to
be
S d 5 1
W]_(E,t) R j(; i' —55 (YE + YI) ds "2 § (YE + 'YI) o ﬁds. (3"35)
We can now invert (3~19) by taking the vector product of both sides

with s to obtain
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R 2TEW A 2 x AWAZa A D[~

g 1 2
- 2 [ x¥ (x)dx
8 _ 1 1 ¢%(x)dx 2 0 _a’W*
T=Hlog—£-2-+f-—(—)——'4'” b, 2 T (7
]

o X
(3.37)
and
=0 T pl-ls 2
R‘E(YE*“YI*rp?\) (,S; as(YE‘*YI))E
s X _ S d R -

These equations represent a solufion of the initial value problem.
The actual computation is one of the "marching type" since § is
known in terms of R. We have seen that the presence of axial
velocity not only changes the cutoff length (by an amount proportional
to the last term in (3-37) but also couples the internal dynamics
of the core with the motion of the filament [through the terms in []
in (3.36)]. We note that this coupling effect cannot be obtained if
we apply a straightforward cutoff method, which would give us (3-36)
without the coupling terms in [ ]..

In the next three chapters we shall apply these equations

to study several examples of waves on thin filaments.
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IV. STABILITY OF TRAILING VORTICES WITH AXIAL FLOW

§11. Recent concern over air travel hazard caused by trailing
velocities of giant aircraft has increased with the number of giant
aircrafts in operation. Lack of reliable information about the breakup
of these trailing vortices has led to the necessity of imposing long
safety intervals between the successive landings of aircrafts and
consequently valuable airport time is lost. The question of stability
of trailing vortices is therefore one of considerable practical
interest.

Trailing vortices are caused by the rolling up of the sheet
vortex shed by the wings of an aircraft, and can be approximated
by a pair of straight infinite vortices with strengths + I" and separation
B. The values of I', B and core radius a depend on the characteristics
of the wings.

As far back as 1938, observations of the presence of axial
velocity in trailing vortices were reported (Hilton, 1938). Recent
experiments described in Olsen, Goldberg, and Rogers (1971)
confirmed this fact. Theoretical predictions were first made by
Batchelor (1964) but were only partially correct. A recent theoretical
explanation of the fact that the axial velocity can go in either direction
was given by Moore and Saffman (1973). Further references on the

topic can be found in a review by El-Ramly (1972).
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§12, The Governing Equations

Suppose the vortex pair is undisturbed. Then each filament
experiences the velocity field induced by the other and as a result
the pair drifts downwards at a constant speed of 2-]1%; . This effect is
called mutual induction. This downward drift is removed in our
stability analysis by attaching our coordinate system to the plane
containing the unpefturbed filaments, as shown in Fig. 4-1, Inthis

coordinate system, the unperturbed filaments are given by
Ro=&, (D2, 0 @-1)
2m = FEpo 22

where m = 1 or 2 denoted the two filaments. We let the perturbed
filaments take the form
(~1)™ B iwt + inx iwt + inx

Z

R, = & +¥, e m, z e m) (4-2)

where w is the frequency, n is the wave number per unit length,

are constants which are small compared to the separation

B and the wavelength A = g%. The core radius a is also assumed to

and y,.; Z,
be small compared to B and & but no restrictions exist between a and
Yin? Zm

It suffices to consider R, since the motion of R, requires only
a change in subscripts and the replacement of I' by ~I'. The equations
of motion of R, are given by (3-36) ~ (3-38) with Vg being the mutual

induction. Each of these terms will be evaluated in the next section.
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Fig. 4~-1
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The velocity of the perturbed filament is given by differentiating

(4-2) with respect to t:

oR,

iwt + inx
3t = W 1
3 y; © e

. iwt + inx
v wz, e e, (4~3)

R
When this is equated to the expression for -5’-‘{1 calculated from (3.36) -

(3.38), a linear eigenvalue problem for w is obtained. The existence

of an imaginary part in w denotes instability, and the stability

boundary is given by Im w = 0,

§13. The Components of the Velocity

The external velocity Vi in this case is given by the mutual

induction foxjmula

(112 - 13\1)/'\ d&g
!132 ~ R, i3 "

~~

r
Vg =17 f (4-4)
Now

(R - R = (%, = %) &, + Es+ (v, et TIN5 Ly, ei“’“““"lﬂ e

(4.5)

+ (%eiwt+1m_zleiwt+ma%,

dR, = (ﬁx + iny, ¥t + 105, g, + inz, Wt + InX, Ez) dx,,  (4.6)
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| o o 3/2
Bz - El |3 _ EXZ _ X1)2 + B2 + ZB(YZ elwt+1nx2 -y elwt+1nx1)+ O(yi?] ,

(4-17)
and if we denote (x, - X;) by X, we have upon linearization
r ° Bdx ' iwt+inx, ¢~ /|-nBz,sinnxdx
— - 1
YE ﬁf-co(x2+B2)372§‘z+2ﬁfe f-oo @ + B)3/2

Z, COS NX ~ Z, + Z, nX sin nx
+ =2 derfirr dx| e
[ (= + B?)°/ 4 ]"y

ry2 COS NX + y, = NX y, Sin nx , 3B (y, cos nx ~ Yl)\dx] _(4-8)
& + B> 4 & + B/

The first term is O(1) and is just the downwash velocity sors. The

8x term represents longitudinal convection and does not enter into the
analysis to this order of approximation. The last two terms in the
g, component can be combined by an integration by parts, and the

final expression for the first order terms upon integration becomes

1 T iwt + i ‘
YSE) . @t + 10X, 11, 4 (nBK,(nB) + n°BK, (nB))zz]gy

+{~y, + nBK,(mB)y,le }. (4-9)

where K, and K, are modified Bessel functions of the second kind.

Now we turn to V4, according to (3~7), it is
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(R] =~ 1)/\ dR/ R° ~R)AAR®
f 3 f o 3 ’ )
IR! - R, | IR® - R,|

where the second integral is taken over the osculating circle. We

can express the first integral as

. . (- o] .
r eiwt+ 1nx1[nm I (cosnx + nx sinnx - 1) . (~z.8, + ¥:8,) (4-11)

27 50 0 x° ~y

which can be evaluated in terms of € = nd to be

1 - i .

with Ci as the integral cosine. Expanding for small € leads to

iwt + inx;, =
N} ﬁz) {(4-13)

1
{% e {-loge - C+ -z-} ('Z1§y +,
where we recall C as being Euler's constant. The second integral
over the osculating circle can also be expressed in terms of 6 as §

approaches zero as

T
ﬁ lWl + X, {1og —69-} (-zle +¥18,) « (4~14)

The radius of curvature p in this case has been found to be

1

n* W2 + 2,2

p= (4-15)
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Subtracting (4-14) from (4-13) yields

Y, - 42 plwt +inx, nz[:%- - C~log4+logn+logVy> + z,° (“Z1§y+Y12z) .
(4~16)

To calculate the "tension” term, we first write down the binormal

b:

La

(ot + |
('z1£ +YI2z) el t + inx,

b = Y ;
-~ ‘6;12 + 212

(4-17)

then we have

' 3 - 1
(%19) = gir' gl + InX; ;2 (log %Q—- F+ A) ("iny + ylgz)

= ;%‘ lWt + inX; 2 (1og 8-2logn-~-logVy®+z2 (4-18)

..10ga-§-+A) (8 + 185 »

where _ )

) (2’.21.z ' f IIrz(x)x dx + azwz)
ot (X - A2 D. -
A—_jz ® 2L dx - 4r SR - (4-19)

is a dimensioniess parameter describing the ihternal structure

of the vortex. Combining (4~18) and (4~16) we have



2
T Tn 2
Vi+ v b= Fra (10g -ﬁ—é_—; ~-C+ 4—) (—-zley + ylez) , (4~20)
with
_ 1 - 211'2212 (—2 - 2""2 4-21
ag=aexply - =g w)l . (4~21)

At this point we note that for a uniform vortex with no axial flow the
result in (4-20) is consistent with Kelvin's result (2-29) for an
isolated straight filament.

The remaining two terms in-(3-36) which explicitly involves
W can be easily calculated by using the expressions found for YI’ YE

- and T. They are

. . 2
Glwt + inx, . %VTV y, - nBK,(nB)y, - .21_ ’B*Oy, + nZBZAYJ Sy

o+ [;1 - (nBK, (nB) + nZBZKo (nB))z, +—% n°B’0z, - nzBZAzz]gz},(4-22)

where we have defined © to be

2 1

© = log -C+7. (4-23)

[na, |

R
Collecting all the terms, the first order term of ﬁ-i, which

we denote by

=,
ot
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is given by
aRl(l) iwt + i r ©
~ 1 mx 2 2
_..5.{__ =e 1{W ["Zl + (nBKl(nB) + nzB KO (nB))Z2 “-n B2 E—ZJ

2
+in 9]—3-—2‘)‘—7 y, -~ nBK,(nB)y, - %nzBZ(G- 2A)y3} &y

+ i@t + 1nx, {Z?rI:BZ [-yl + nBK, (nB)y, + n*B g y]

2
+ in %2- W [zl - (nBK,(nB) + n2B2Ko (nB))z, + %—nsz e - 2A)z§ e,
(4-24)

(1)
R
A similar expression is found for ——gzt—— except that the subscripts

are interchanged and T is replaced by -~ T.

§14. The Eigenvalue Equations and Determinations of Stability

Boundary
0
Equating the expression for —E‘;f{n—- from (4-3) to that from

R
(4~24) and the corresponding result for -a—é'{i we obtain

iwy, = 21%;2. ~z, + (nBK,(nB) + nszKo (nB))z, =~ n’B° % z}

2

. A
+ még-z— y, = nBK,(nB)y, ~ %— n’B*(© -~ ZA)yl} y (4-25)

iwz, = 2.1.53, {-yl + nBK, (nB)y, + nsz—g- y}

. a*W

+ in 1

2 {2, - (uBK,(uB) + n’B® K, (nB))z, + 2—n2B2(6 - 2A)z,}, (4-26)
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iwy, = 2-11-;31 {zz ~ (nBK, (nB) + nZBZIs'D,(nB))z1 + n°B? -(2—3 zz}

. 2 1 o
+ in &y Wiy, - 1B, (B)y, - § BY(O - 2A)y?} . 20

. Tr 2.2 0
1wz, = 7782 Y2 - nBK1(nB)Y1 -nB T Y%

+ in iﬁ";’- z, - (nBK, mB) + n*B’K, (nB))z, + ; n’B*(O - 2A)z?} (4-28)
This fourth order system of algebraic equations for w can be simplified

by introducing the symmetric and antisymmetric modes defined as

(see fig. 4-2)

Vg = Y2 = Yy 2y = 2yt Iy (4~29)

YA =Y T Vi ZA= Zy = 2y« (4-30)

In terms of Vgr Zgr Ypr Zp the equations decouple to become

ioy = (1 - (BK, + FK,) + B g) Zg + inv;l{ - By~ 18%(@ - 2A)} y
>(4-31)

10z =(1+6K1-,826)y +1nW1-(BK1+BK y+16°(©- ZA}
y

1wyA (1-:-([3K1 ﬁzKo)-a-Bz%zA-i-inW1-ﬁK1~—;;ﬁ2(6—2A)}yA

iGzA=(1 = BK, = 32%) yA+inVV 1=~ (BK, + ﬁzKo) + %ﬁz(G-ZA} Za
(4.32)



Fig. 4-2
(a) Symmetric Mode S
(b) Antisymmetric Mode A
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2
2ra W.

2
where @ = w - E}E—, B=nBand W = 5 In order that y, z

s
are not identically zero, ® must satisfy the determinant equation

r ' j
@ - nW{l = 8K, - 38%(O - 24A) ; --:1(14(31{1 + BK,) + B g)

det | — — — — — — Z —  — — — —1=0,

_1(1 + BK, - Bzg) : @ - nvvé - (BK, + F°K,) + 14 (e~ 21%

for the symmetric mode,and a similar equation
T o ol
w=-nW({l - K, ~ %,82(6- ZA)}I,-i(l - (BK1+BZK0)+62-2-)

det | — — — — — e e —— — =0

- 1(1 - BK, - ﬁzzg):& - nW(l - (BK, + FK,) + 35°(© - ZA}

.
(4-34)

for the antisymmetric mode. The stability boundaries for these
modes are the values of B for which Im @ = 0 in (4.33) and (4. 34).

Let us first consider the case when W = 0. Then (4-33)
and (4-34) reduce to

&+ (1epg, - & -2‘?') (1 - (6K, + FK,) + £ %’) -0 (4-31)
-and
e’

o (t-m6-FF) (1v6r+ PRI+ G0 @-32)

respectively, where
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©’ = log 2 _ .cs i— (4-33)

|na|

This agrees with the result obtained by Crow (1970). The stability
boundaries for the symmetric and antisymmetric modes are given
by |

(1 + K,y - B -‘72’—) @ - (BK, + BK,) + ﬁz%—) =0, (4-34)

(1- BKI-B’*SZL).(H (ﬁK1+BZK0)+32%:) =0.  (4-39)

These are exhibited in Fig. 4-3 [after Crow (1970)] on a plot of

B vs % . The most unstable mode (8 for which Im & is a maximum)
are represented by the dotted line. The value of % depends on the
characteristics of the wing. For elliptic loading, Spreiter and

Sacks (1951} estimated that

2= 0.197. (4-36)

This value was used by Crow to obtain the resuit that only the
symmetric mode can be unstable and that the most unstable wavelength
is 7.2 B (Crow has made an algebraic mistake which led him to the
value 8.6B). However, this estimation of Spreiter and Sacks is
suspicious. A recent theory of vortex roll-up suggests a time
dependent core radius (Moore and Saffman, 1973), but this will not

be treated here.
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Symmetric Mode
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Antisymmetric Mode
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Let us now examine the effect of axial velocity. The main
consequence of a nonzero W is to replace a by a, (or 6’ by ©).
Only to a smaller order [order ?‘;.W—,or O(a) since W is assumed to
be O(T" /a)] that the terms explicitly containing W alter the stability

boundary. The most interesting effect is that a travelling wave is

induced with speed given by:

2

c =:%2 W (28K, + £°K, - B°(© - 24)). (4~37)

A similar result has been obtained by Widnall and Bliss (1971) but
they have left out the term 2n2a2WA due to an incomplete estirnation
of the Reynolds stress term (3-14). Parks (1971) gave a travelling
wave speed of O(W) which is in error, but it has been corrected in |
a private communication.

Thus we can conclude that axial velocity does not drastically
alter the stability criteria for trailing vortices as far as the simple
straight line vortex pair model is concerned. It will be interesting
to repeat the analysis with a more sophisticated roll-up model like

that given by Moore and Saffman (1973).
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V. The Stability of Steady Vortex Rings

§15, ‘The vortex atom theory of Lord Kelvin stated that atoms are
actually vortex rings in a perfect fluid (or ether). For this idea to be
plausible, these rings must maintain their identities and therefore it
is necessary for these rings to have a stable steady motion when no
exterior forcés are present. Kelvin (1867) stated without proof the
first step towards this condition: that a thin isolated vortex ring in an
infinite ideal fluid moves without change of shape with a steady velocity

given by

on _(1og L %) b, (65D

where ]R is the unit binormal and the ring is taken to have uniform
vorticity. The next question is the stability of this

steady motion. This was studied by J. J. Thomson in 18’83 in his
Adam Prize winning paper "A Treatise on the Motion of Vortex
Rings, " which showed that vortex rings are stable to small sinusoidal
disturbances of the centerline. A question was raised on the validity

of Thomson's work because his value for the speed of the ring, being

ax (e T -1) 5-2)

did not é.gree with Kelvin's result. Subsequent investigations by
Hicks (1884), Dyson (1893), Pocklington (1895), Gray (1912), Lamb
{1932), Fraenkel (1970) and Saffman (1970) showed that Kelvin's
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value was correct, and that Thomson's error was due to an invalid
approximation. It appears, however, that this error should not
affect the stability criterion.

Quite recently, Widnall and Sullivan (1973) repeated Thomson's
analysis using a rigorized cutoff method and obtained very similar
results, but when a numerical evaluation was made on the stability
conditions, some short wé.ve instabilities were found. This result will
be examined in detail later in the chapter.

Three céses of the motion and stability of steady vortex rings
are considered in this chapter. They are: a ring with axial velocity ,
an electrically charged conducting vortex ring, and a uniformly charged
vorfex ring. The latter two cases are intended as models for vortices

in liquid helium. -

§16. The Velocity of a Perturbed Vortex Ring with Axial Flow

For an isolated ring Y~E = 0, and it was shown by Moore and
Saffman (1972) that when equations (3~36) ~ (3-38) are applied to an

unperturbed ring, we obtain its velocity as

R |
= =g (10g B 14 A) b, (5-3)

where A is defined in (4~19). In the case of uniform vorticity and

no axial flow, A is i— and the result agrees with that of Kelvin.
Let (gx, iy’ gz) be a coordinate system attached to the

center of the moving unperturbed ring. On each point of the
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unperturbed ring, we define a local orthogonal system (gr, egs &, )
as shown in Fig. 5~1. This system is dependent on the location of
the point and therefore is a function of §. In these coordinate

systems, the perturbed ring can be expressed as

in6 in . inf
R= (R+r1e )cosegx+(R+r1e e)sme Ey—s-zle e,
= (R + rleine) e+ z,e'1? e, (5~4)

where the perturbing quantities r, and z, are small compared to R.
We shall now calculate the velocity at a point of the pertﬁrbed

ring, we recall that YI has been determined as

R’ -RIAAR’ . (R®° - RIAMR®
IR* - Rf? R>-R[*

Y=z (J (5-5)

where the first integral is taken over the perturbed ring and the
second over the osculating circle. If we let § = 9’ - 8, which is the

angle between R’ and R, we have

R’ -R= [:R(cos g-1)+ rleine (cos Fel™? - 1)]6

~I

+ [:R sin ¥ + rleine sin 9 einG] €g + zleine (einb' - 1) €, (5-6)
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Fig. 5-1
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dR’
dli’ =-=-dg

d

= [—Rsin‘g + rleine(- sin 7 + in cos ?)einy:] e,

+ [Rcos—é +r,_ein9 (cos T + in sin E)einy g + zleine' (ineiny)g\z} da,
(5-7)

| "3 » .
lE’ -R f'3'= R™ E (1 - cos @)] 2 {-%%emg (1+ e1n§)+ 0(%:) , (5-8)

so that the first integral in (5-4) becomes

r (1 -cos ) do I" r, ind (einy(i 4cos§)+(ein9-cos€),
R [f[z(l-cosa)]m] % H RS [f

[2(1 - cosB)]3/2

_insin@ einf - % (i + einy)(l - cos B))\ d(;} o
[21 - cos 9)]3/2 [2(1 - cos D] 3/2 } ~

_ . o inD
+ 4%‘? 'Zﬁg‘ oiné [f cos (1 - e . in sin 7 e dg} ©,.(5-9)
[2(1 - cos 9)]3/2

The osculating circle lies in the plane formed by n and s,

thus the components of the second integral are

§°'- R = p(cos § -~ 1)(- n) + psin® s, (5-10)



46
dR° = (~p sin B)(~n) + pcos G s, . (5-11)
R°-R|7 =57 [201 - cos B)] Y2, (5-12)

‘where s and n are the local tangent and principle normal at the point

0, and p is the local radius of curvature given by

p=R (1 @ -1k em"’) . (5-13)

Therefore, the e, and e, components of the second integral in (5-5)

are
. T (1 -cos®) 2z _inf .
gr._mf 372 dF(nﬁke ), (5~14)
[2(1 - cos B)]
’e\z: T:E;: f (L -~ cos E-) 4o (1 + (n2_1) ?RL eine). (5~15)

[2(1 - cos P)]3/2

The definition of V requires it to be regular. This provides
a check on our calculations. If we expand (5-9) near § = 0 and

retain only the singular terms, we would get

I‘. '.9 dg T ind dg
TRE [”“2 /5%t mx [(“(nz‘”ll;f‘em) /5] %

(5~16)
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It is clear that this possesses the same singularities as the expres~
sions in (5~14) and (5~15) and so the difference will be nonsingular.
Thus we have

ind

ind) | insinfe

ing/ T f cos Ol -e
4TR?

+n2(1-cos€)d9- e
[2(1 cos 6)]3/2 ~

Vi=z€

+1, eine{q_;‘m_ f[m;my(l -cos @) + (einB' - cos 0) ~ in sin B'einy

- g—(l- ein@) l-cos®~(1-cosd)n®~- 1§] ) €, (5-17)
[2(1-0089')]3/2

and by denoting the terms in{ } as U, and U, we can write

V. =2, elnb U,e.+1; Do U.e,. (5-18)

Withp givenbjr (5-13), the term-g-ﬁ E is calculated to have e, and e,

components given by
—41—1-— logg-li -3+ A} ( ? —ZRL e-ine) =z, o0 T,, (5-19)

ﬁ 10g8_R. - —2—+A} %1- eineé“ﬁ&nz-l) (log.g_f_{ -3+ A)}

=V, +r, e 1| (5-20)
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where we recognize V, as the velocity of the unperturbed ring.

We are now left with the two terms involving W explicitly,

a straightforward calculation gives them as

[%}Tra—W inr, e eind (U + T ) - AW2 (m(n - 1) 1n9)] e,

2 - .
+ [gllr-.a'—W in z, elné (U, +T,) - AWa® (msl-%—g- em@)] e, 06-21)

where A, we recall, is given by (3~15). Combining these terms, we

have the velocity of the perturbed ring

oR

ona’ W(U +T )
~ 1n6 1n9 n 1n n -1 AWa®

. . [in2ra*W(U_+T, )
+ é‘l eme(Ur+Tr) + 2, el R z 2z _n AWa]}Az (5-22)

§17. Stability of a Vortex Ring with Axial Flow

From equation (5-4), %%- in the moving frame is given by

oR . .
Fod e et g (5-22)

and by equating this to the first order terms in (5-22) we obtain

in 272°W(U.. + T.) -
o (U, +T) 2 - ( o — + int” Rsl)"‘wa ) r,, (5-24)
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2
in 2raW(U, + T,) .3 2
%%‘L = (Ur + Tr) ry + ( RT - lnéswa) Z. (5-25)
The solutions have the form r;= r, elwt, Zy= Zy eiwt, which leads

to an eigenvalue problem for w with the characteristic equation

2 - -
o (n 2w a W(Ur + Tr UZ Tz) + n(2n® 1)1\.Wa.2

RT RS ) @

2r2°W(U_ + T.) 2 _ 2
+ (U, + T,)U_ +T)+ nz( 4 é)rAWa ) . (5-26)

2
2ma W(Uz * Tz) _ mwAWa® | _ 0
R RS -

2
Again, the terms explicitly involving W are of O(ETV—V)
[or O(a)] which are small compared to the other terms. Thus to

leading order we have
2
W + (UZ + Tz)(Ur + Tr) =0, (5-27)

which has roots

W=+ i\/(Ur + Tr)(Uz + TZ). (5-28)
This means that the ring is unstable only when
(Ur + Tr)(Uz + Tz) > 0, (5-29)

otherwise, the ring simply oscillates (or vibrates) with a frequency

given by (5-28).
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Similar to the case of trailing‘vortices, the main effect of the
axial velocity is to replace the core radius a by an effective core radius
a, and does not alter the stability criteria to leading order. There~
fore we only need to analyze condition (5-29) provided we keep in
mind that axial velocity effect is reflected in the definition of A.

In the limit as % - 0, we get by retaining only the terms
involving log % the following,

(U, + T )U, +T,) = E?I%Z’P (10g fa—‘) "R -1d),  (5-30)
which is less than or equal to zero for all values of n. Thus the ring
in this limit is stable and we can check that this frequency agrees
with the leading order frequency given by Thomson (1883). What
Widnall and Sullivan (1973) did was to numerically evaluate (Ur + Tr) X
(UZ + TZ) for various values of n (n being an integer). They have
found that for almost any ratio of %, there exists an associated

unstable mode n* = n* (%). This can be seen if we assume n is

R

comparable to o which gives the asymptotic values

(Ur + Tr) ~ (1 - nd) (log 2% +C=1-~ A)- n® (log n+1) + %—logn, (5-31)
(UZ + TZ) ~ nz(log 2%+ C~1-~ A) +m®~1)(logn ~ 1) + i—log In. (5-32)

Now (Ur + Tr) and (U, + Tz) no longer change sign at the same values

of n but there exist bands of values of n for which the log n terms
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balances the log % terms, thereby resulting in positive values of
the product (Ur + Tr)(Uz + TZ). These instability bands are
exhibited in Fig. 5-2, where we have plotted

Vv, ¥R o10g B 144 (5-33)

versus the imaginary part of

w =

S

(5-34)

These results are identical to that given by Widnall and Sullivan
(1973).

The dependence of n* on 1—3— can be estimated from (5~31)
and (5-32). The instability bands must lie between the zeros of
(Ur + Tr) and (UZ + TZ). This leads to the approximate relation

5

-C
ne = 2R o1 (5-35)

for a uniform core with no axial flow, which means that the corres-

ponding unstable wavelength is

ae= 2R - ar (5-36)
4- - C
€

and therefore,

(5-37)

e
Il
B
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Fig. 5-2
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Unfortunately, this value of core radius~-to~wavelength ratio clearly

violates the condition fhat

2 wot, (5-38)

which is necessary for the osculating circle method or the cutoff
method to work, since the error of these methods are 0((-2-{&)4) (see
3-29). Thus the short wave instability found by Widnall and Sullivan
(1973) is not consistent with the method used and is not valid. These
instabilities, which have been observed experimentally by Widnall
et al., must be treated by the more exact infinitesimal analysis.

The only conclusion that can be drawn here is that vortex
rings, with or without axial velocities, are stable to long sinusoidal
- perturbations of the centerline. Existence of shortwave instabilities
is indicated both by experiments and extrapolation of long wave

results to regions outside the region of validity but not proved.

§18. The Cutoff Method as an Alternative

Before leaving this problem let us illustrate how the cutoff
method used by Widnall and Sullivan {1973) can be applied to give the

same results in the case of no axial velocity. Here the two terms

% b and YI are combined into the singular Biot-Savart integral

R

® - DA’
=1 ¢

5-39
R -’ y (5-39)
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where 95 means that a cutoff is used to remove the singularity at
R’ = R. If we define F(k) as
T

Flk) = cos k@ = .
() f_w AL s s TVE (5-40)

then by substituting (5-4) into (5-39) and expanding for small ZJ-,

zﬁ-, we can get

R ' i
< = TR {(F(O) - F(1) g, + & ™ [F(l) - 3(F(n+1) +Fn-1)

+ % (F(n+1) - F(n-l)ﬂ e, + FRJ- elnd [ZF(H)
- X(F@+1) + Fn - 1)) - F1) - § (F(n+1) - F(-1))
- 0 + Tl + W) - 3@+ 1) + ¥ - 1) g% . (5-4D)

To evaluate F(k) we write

F(k) = 2 lim [:f cos k@ a7 - “ coskfdf _1 %
€0 [2(1 ~ cos 7]°/4 fe g 8 fe

-8 -0
e °cos ko de] +2 lim fw cosk@ d@ . fooe cos kO d‘é']‘ (5-42)
g €0 g3 ]
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In this form the first part is regular, and in fact can be considered

as the cosine transform G(k) of a discontinuous function g(f) defined

by
-0
[ . ""13’.""?":’ [
[2(1 - cos '9‘)]3/2 5 8
g®) = (5-43)
_E_a__e;y, G> 7.
9 0 80

G(k) can be evaluated numerically bya Fast Fourier Transform sub-
routine.
The singular part of (5~35) can be evaluated as the limit of

€ - 0 of the expression

lim coes2 ke _k sein ke | kZCi(ke) - é- Ci (eV1 + k2 )] , (5-44)
e-0 :

where Ci is the integral cosine whose expansion for small argument

is
Ci(x) = C + log x, (5-45)

with C being Euler's constant. Therefore, (5-44) becomes

6-12+k2(-§-+C+loge+logk)-

W =

(C + logk + %-log 1+ kz)) , (5-46)

and from (5-42) we have
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F(n) = G(n) + n° (-'- %—+C + loge + logn) - i— (C+ logn + %-log(l + nz)),
' (5-47)

where we have dropped the term 612 since examination of (5-41) shows
 that any terms not explicitly depending on n cancel out.

To evaluate €, which is the cutoff angle, we recall the assump-
tion that the cutoff length £ is independent of the geometry and must,
therefore, be the same as that found in the case of a perturbed straight
filament (3-25), except now %— is replaced by the parameter A. This

means
logI% = log 2‘% + %— - A, (5-48)

where A is defined in (4-19) with W = 0. ~ The relation between ¢ and

€ is a geometric one:

= é (1_ - % em") +0 (1" 2) (5-49)
and therefore

ng (5-50)

gm
+

g =
]
N>
¥

v b
[1»)

log € = log

The additional %‘-— term is only important in the leading order term
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(F(0) - F(1)) since the other terms in (5-41) are already O(%).

By writing
H(k) = Fs) + 2 ™0 @ - 1)

= k% (10g§11% +C-§-+A) -%- log (1 + k%) + GK), (5-51)

and
dR . .
RA— =V, e, + rleme Vr e, + zlelmg VZ €. (5-25)
we have
V, = o 0 1 5-53
o"'m(H()'"H())a (5-53)

V.= 4—,%: H(1) - %(H(n +1) + H(n = 1)) + 3(H(@® + 1) - H(n - 1)z| , (5-54)
v, = 4;,% 2H(n) - %(H(n +1) + H@ - 1)) - H(1) - 5 (H(@n + 1) - H(n - 1))

-3 H(O) + H@) - HQ) - LH@+1) +Ho - 1)) + 1] . (5-55)
3 P

We can check immediately that V, agrees with that found in the
previous section, using the numerical values for G(k) (see Table 1).
" Some algebra confirms that Vr and V_Z are identical with (Ur + Tr)

and (Uz + TZ) when W = 0. The stability equations are now
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Table I

Gn)

0.4535
0.0731
0.0253
0.0120
0.0080
0.0050
0.0045
0.0019
0.0032
0.0021
0.0026



I -y, 2, | (5-56)
dz, _y (5-57)
H'EL_ r To

and the stability boundary is’

V.V, =0. (5-58)

The rest of the discussions in the previous section carried through
entirely. The advantages of this form is that the form is very

suitable for numerical calculations.

§19. The Resultant Electric Force on a Charged Conducting Ring

In this section we shall calculate the resultant electric force
on a charged conducting ring with small core radius as a first step
towards the .problem of stability of a charged conducting vortex ring.
The method used will be the matched asymptotic expansion used by
Moore and Saffman (1972) to calculate the velocity at a point of a
vortex filament. The expansion parameter is :—),where p is the local
radius of curvature (p = R for a ring). In a strained coordinate
system (with % as the small parameter) the problem becomes two
dimensional in the leading order and can thereforebe solved. This
near field solution is then matched to the inner limit of the far field
solution obtained by considering the ring as a circular line charge.
A mathematical discussion as well as some interesting examples

concerning this technique are given by Fraenkel (1969).
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We recall that a point on the filament is represented by the
vector I}(E.), where £ is a Lagrangian parameter along the filament.
For any such point £ we define a local orthogonal coordinate system
(i, i E(g)) where g is the local tangent of the filament. It is clear
that i and j lie in the n— b plane where n is the principal normal
and b is the binormal of the filamenf. For a filament of arbitrary
shape, i and | make an angle ¢ with n and b, where y is defined

by
d
aws =T, (5-59)

with 7 being the torsion and s the arc length. However, T is zero

for a circular ring, so that y is a constant and can be taken to be

zero without loss of generality. Since our discussion will be generalized
to an arbitrary filament, we shall keep { along in our calculations.

(See Fig. 5-3).

x,y)

Y

1=

2
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With respect to this coordinate system, any point in space

can be despribed by
x = R() + xi + 7}, (5-60)
We further introduce the local polar coordinates (o, ) by
x=0cos{, y=osinl. (5~61)
The cylindrical polar system (o, {, s) possesses the metric
hy=1, he=0, hy=h=1- (g) cos(€ - ¥), (5-62)
thus, the Laplacian operator in (0, §, s) becomes

2

9. 1 1 & 1 1 9(1 2
=9t 6T+FW+E'§660+%5'§"5§'+'55§(H%) (5-63)

We shall now calculate the electric potential ¢ induced by the charges

on the ring. The problem is

v?¢ = 0 outside the core , (5-~64)

¢ = constant, 99 _ surface charge distribution on the core surface.

80 -
(5-65)

The system of units that we shall use is the electrostatic units (e.s.u.).
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For the near field solution ¢, where o ~0(a) « p, we can

expand

G =9 + Byt or, (5-66)

where the subscripts denote orders of powers of % We shall also
assume that the core cross~section is circular to the leading order,

so that

a=2ay +a;+ . (5-67)

In this region, the variation along s will be 0(713-) compared to the

variations in the (o, ) plane, i.e., ggis O(%) while '9'86 and % 5%—

are O(1). Thus we have

2 1 29
Sa s e e =0 1>, (5-68)

as the leading order equation, which is the equation for the potential
of an infinite circular cylinder. If we denote by A the charge per unit

length (A = 2raZ,where Z is charge per unit area); we have
¢, = P, ~ 2X log % y (5-69)

where P, is some constant poeential fixed by a particular choice of
normalization. The value of P, does not affect the electric field
E or the electric force.

Substitution of (5-69) into (5-64) yields an equation for ¢,.



0 1 2 1 -2X
S vy B m = rcos €~ w), (5-70)
which has solution of the form

¢, = (Blo' + %—1 -%— o log %) cos(€ - Y). (5-71)

The constants B, and B, will be determined by the boundary conditions
that o = a is an equipotential surface and as ¢ - «, this solution”¢
approaches @ which is the solution for a circular line charge. The

first condition requires that

=g + P+ e0r =P, ato=a, (5~72)
which means
¢,=0ato=a, (5-73)
or
¢1=-zx§; at 0 = a,, (5-74)

where we have used (5-67). However, the form of ¢, (5.71) implies

that

a;*= a*(0) cos({ - y) (5-75)

which is a rigid displacement of the centerline and does not enter into
our analysis. Indeed, if we define the centerline as being the center

of gravity of the cross-section, a,*(o) must be zero. Thus, we can
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write without loss of generality that

¢,=0 ato=a,. (5-76)

~

Let us now turn to the far field solution ®, to which ¢ must
match when o gets large. The region in which we shall compute &
is

Ak 0 Kp. (5-177)
To find & we return to the cylindrical coordinate system located at
the center of the ring, with radial component r, axial component z,

and azimuthal angle 8 (Fig. 5-4).
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Fig. 5 ~ 4

Since ¢ > a, weean treat the ring as a circular line charge of radius
p with charge density A lying in the plane z = 0. The potential is
given by
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®(r,0) =2 f 8(r’ - p)6(z’)r'dr’dz’de’ - (5-79)
Vv {rz + 1'% = 2rr! cos 8’ + (z ~ z’)z}E

where we have taken the point of interest to be 6 = 0, and V denotes

the volume of the ring. This gives

27
de’
d=x [ - ; (57 9)
fﬁ (* + r’* - 2rr’cos 6* + zz}z

-

By letting 6’= 20 and defining k to be

. 2 (5-80)

_(r+p)2+z29

the integral can be transformed into a complete elliptic integral of

the first kind, which can then be integrated to give

® = 220K ® k), (5-81)
rp
where K is the complete elliptic integral of the first kind. Now if

we write

T=p-X9 ‘ (5'82)

where X is increasing jn the direction of the principal normal n,

then

12 = 4p2 - 4Xp _ 4p° = 4Xp ) (5-83)
4p* ~4Xp + X + 2% 4p° - 4Xp + ?
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Recalling that X, ¢ « p, we have

2 o? 1
S R - +o(p—§-). (5-84)

Let us define the complementary argument k’ by

k/%=1- ¥° = 4p20-2i- I~ ;;2 (1 +}p£+ O(I—:z)) (5~85)

and for later use, we note that

H=20 ( -2%). (5-86)

k’ is of O(‘—;-),and so K (k) can De expanded in k’ to give
2 Q%k 4 1
_ A
TR posie +o (3]

= 2\ (1+2)%)(1+0(5%—))E0ggﬂ~2}%+ O(l—}z-)], (5-87)
which leacis to

»
d =2\ log%ﬂ +—7% 10g'%_8‘]+0(é-)0 (5~88)

Wenowmatch ¢ to ® as o gets large. The leading order

gives us a value for P,
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P, = 2\ log -g-f- , | (5-89)

which does not enter into the analysis. Matching of the first order

terms leads to the equation

(B1 -g-log -%-)= % (log goﬂ ~1 «1log %) ) (5-90)

where we have made use of the relation X = o cos (§ - ),this gives

B, as
A
B, = ;) (L - 1), (5-91)
where L is given by °
L=log 3, (5-92)
a,

Therefore
¢, = (L-1)+£,§B+logi A 5 cos € - y) (5-93)
1 ao p 9
and the condition ¢, = 0 at 0 = a; gives

B, =2, (L~1) (5-94)

o>

Finally, we have

¢, = EL - 1) - gﬁ (L ~ 1) - log a%] 7[—;-0 cos(€ - y).  (5-95)
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Now, the surface charge density Z is given by

=

T = 4— P --2%3—0 + ﬁ—p [ZL ~ 3] cos(€ - y). (5-96)

g

Therefore, the outward force per unit area acting on the curved

surface is

21;22 e [2;2%4 Zuaop [2L-~3] cos(€ - ¢)+O(?-):] (5-97)
Sihce
. g = cos( - Y)n + sin(§ - Y)b, (5-98)

we have upon integration over the surface { the electric force per

unit length as

'__7\ - A% ga? -
F=-5(logg? - 5 np o & & (5-99)

A contribution of -2%2? n which is due to the fact that the surface ele-
ment of the tube is curved is balanced by an equal and opposite term
caused by the pressure difference acting over the two ends of the
element when we require the continuity of pressure across the

surface.

§20. The Velocity of a Charged Conducting Vortex Ring

The velocity of a charged conducting ring can be found by

the local force balance method given in Chapter III. The exterior
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force now becomes

; ¥ 80 1 8 3
pp=moT (sA %) + o {10g 22 -5 -€ (e 2 - §)}n

- g) aaz s (5~100)

where m, is the density of the fluid, and ¥ is defined to be

47r7\ 2
g - - 5 (5-101)

with Q as the total charge on the ring. E gives the ratio of the
electric force to the tensile force due to swirl and curvature.

Since the ring is assumed to be a conductor, no electric
field is present inside the core and therefore the internal force EI
is unchanged. Actually, the core has a magnetic force induced by
the swirling of the charged surface fluid elements but no magnetic
force is present again because there is no charge inside. Thus EI
is still given by

| .
Fy = m, -a% (Z nazvzs) - (5~102)

and the component of the force balance equation perpendicular to
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oR
(EA'&") +4§$ 1og—af- g+ A- Z (1og gf- - %)}Es (5-103)

where A is the internal structure parameter defined earlier in (4;-19).

Inverting this, we get

R

= = {ﬁ 1og§f-- z+A-E (1og§‘{l~%)}g. (5-104)

This result agrees with that obtained by Pocklington (1895) using an
energy method. It shows that the presence of the electric charges
reduces the steady velocity of the ring. In fact, for strong enough
charges the ring may reverse its direction (i.e., move in an opposite
" direction as the velocity induced by the swirl when no charge is

present). For a suitable value of £ , given by

8 1
E = (log 55 -3 + A)/ (log g;ﬁ - g-) (5-105)
the ring does not move at all.

'§21. The Resultant Electric Force on a Uniformly Charged Ring

Before we consider the stability of a charged vortex ring,
let us first repeat our calculations for a uniformly charged ring. The
difference between this case and the conducting ring is that there
exists an electric field inside the core, the potential of which must
be found by solving the Poisson equation. Let us denote the solution
inside thecoreas®, and we still have ¢ and & és the near and far

field solution outside. At the boundary ¢ = a, we require



ol =01, » (5-106)
| =2, | (5-107)

fo 1aw 1 o .1 oha 1 shoow o | 1 '
iR tE R TRt WT‘?*@E(H%)“‘*’TQ
(5-108)

where q is the charge density inside, being 2?2%21’{" The leading

order in the strained coordinate system is

& 1 1 @ 4
R R AR R (5-109)

where we have written A = 7a2q as the charge per unit length, and

expanded ¢ as

P =Pyt Py F e (5-110)

The solution for (5-109) is
A
9, = Py - 2, (5-111)

where again P, is an undetermined constant. The next order

equation is



73

& 1 1 & -2X |
—%l-a + E%‘gl + o —-?Q—aa = —-—2—--3‘;y cos(C - y), (5-112)
which has solution ' |

@, = (0!0 "z%z-ﬁ 03) cos(€ ~ y), (5-113)

where o is a constant to be determined by matching. At o=a, we

have
@, = (aa - %—%) cos(€ ~ Y) = (aﬂk - z}) ;% cos(C ~ y), (5-114)

.%(%l = (a - 2—%) cos(C ~ y) = ( - g—) % cos(€ - y). (5-115)

Again, a=a, +a, + **+, and a, represents a shift of the centerline

and can be taken to be zero. Thus

a=ag, +0 (b”{') , (5-116)

and we can drop the subscript , to our order of approximation.
The far field solution ® is unchanged. Therefore, the near

field solution ¢ is given by

b= + EL -« 1)o + %3\9- - oL + olog %é]%cos({ - ), (5-117)

and at o =2a
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¢ = -1+ —59] ~=cos(f ~ y) = []:; 1+ B} cos(§ 1,(;), (5-118)

%, - [L-1-Bf-L+L-1] %cos €-y9=@0L-2- B’g)%cos(C - Y).

(5-119)
Equating (5-118) and (5~119) to (b~114) and (5-115) we obtain
Ca*=By*+ (L - 1)+ 1. (5-120)
@ =L -2-B*+5, (5-121)
which leads to
By*=-4 a*=L- 1,  (5-122)
Thus we have
@ =P, - L‘;_ + EL - 1)o - 42:-2—] %cos € - ¥, (5-123)
so that
g = {ZMI [ ..1)-231222- %cos(ﬁ-zpﬁgr
- EL - 1) -{;} % sin(§ ~ ¢)  ep. (5-124)

The resultant force per unit length is given by

F=--7 [ Yo dA. (5-125)
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Since

e, = cos(§ - zP) n + sin(€ - ) b,

e = - sin( - ) n+ cos(C - Y) b, (5-126)
we have

- 27 . a
E:-%—z&fo L{E{,-l)-%g; %coﬁ(g-@-;ﬁL-l)-%%
%— sin?(§ ~ 1[/)} odod

a
20 (5-127)

2
F{e-0g -

Again we have dropped the term due to curvature of the tube since
it is balanced by the excess pressure acting over the ends. There~
fore, the resultant force per unit length due to the charges is

given by
F= A2 (log §§- - 2—) n + 2255 %aé{ S. (5-128)

§22. The Velocity of a Uniformly Charged Vortex Ring

The exterior force EE in this case is given by

Fp=mT (s/\gf-) 7{'“"— log—P- 7" 5(108—3 4‘)} “grzr % (1-ps.

(5-129)
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The interior force EI requires more care. The electric field

inside the core gives an additional term to the pressure. Further-
more, the charges moving with the fluid elements experiences a
magnetic force due to its own induction. This would be quite compli-~
cated since it couples with the velocity distribution. Fortunately,
self-induced magnetic fields are in general extremely weak compared
to the electric field. In fact, the self~induced magnetic force is

O (g%z-) when compared to the electric force, where CL is the velocity
of light in vacuo, and we can definitely ignore it in our analyses.

Since the electric field is radial to leading order, we can

expand the velocity and pressure inside by

V =V, (0) + v,(0,8) + «--
u=u {0, L)+ (5-130)

P =1 (0) + p (0, 8) + +o-

These are to be substituted into the two dimensional steady equations

of motion [since the axial effect is of O (g,)]

(5-131)




7

The leading order equation is

1 3 2220 1
m, 'a%“ - c;L T T (5-132)

and the first order equations are

NI A %P_L [ -1 - 3% _p_Wcos(C ¥) (5-133)

OVy .V, OV u,V, 1 23 oz | Az .
WGt tTe T T m, o o +EL-1)-ET]WSIH(C“W)

Examination of the form of these first order equations allow us to

conclude that the first order pressure p, must have the form
P; = P, *(0) cos(C ~ ¢) (5-136)

which vanishes when we integrate over the area. Thus, EI is given

by
2
EI = m,7T ’aaE (%— azve + %?) §] (5-137)

correct to O(p™?). Adding to Fp and inverting, we obtain

R
~ r 8 1 8 7
o mp 1°gae'z+A'§(1°gf£'4*)}R (5-138)
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as the velocity of a uniformly charged vortex ring.

§23. The Motion of a Charged Vortex Filament of Arbitrary Shape

The discussion in this section will apply to both the conducting
core and the uniformly charged core. It is simply an extension of
the ideas of Chapter III. Let us consider a charged vortex filament
of small core radius, then the interior force EI will be given by
(5-102) or (5-137) depending on the core we are interested in. The
exterior force EE will be different from -that ‘of the ring. It must be
found in a way such that the near field solution matches to a far field
solution which is consistent with the shape of the filament. .To do

this we define

, [®-R)as" ®-R)ds°
G=2* [ — - . (5-139)
- R-R'[° [R-R°[°

where the first integral is taken over the filament and the second is
taken over the osculating circle at R. The definition of force G is
analogous to the definition of the velocity YI The total force due to

the filament is then
Fp=G+ EEO’ (5-140)
where ’ISE: is the exterior force due to the osculating circle at the

point of interest. However, }’:‘% is just the force on a ring which

coincides with the osculating circle and has been found in the previous
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sections [(5-101) and (5~125)], all we now need is to find G. From
the deﬁniﬁon of G; it is regular everywhere, and in most cases can
be numerically evaluated. This means that the velocity at a point
of a,.cha.rged vortex filament of arbitrary shape is given by

oR
(sAG) + 155§ log —B -5+ A~ ZF b+Vno+V (5-141)
—E_}F T- 2' ~E " Al

where p is the local radius of curvature, and F° is proportional to
the electric force contribution of the osculating ring. For a conducting

ring, F° is (log %ﬂ - %—), for a uniformly charged ring, it is (log %E- g—)

§24, The Stability of Charged Vortex Rings

The stability of a charged vortex fing can be studied using the
techniques of 8§17 and §18, Now W = 0, and the equation of motion
is given by (5-141). This can be done as follows. We recall the

definition of the perturbed ring as
R= (R + rleino) e, + zleine 8- (5~142)

We now calculate

SAR - RY) d

2 [

IR-R’[?

substitution of (5-142) gives
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R - R’)ds’
o [ PE-mIa l:f(cosy' 1)a /]e

R-R |2 [2(1 - cos B)]3

Xz (cos nf -~ 1)df
-rRe™ |/
[[ 2(1-cos G)]s/z]

+?F‘; FL oInf [fe"@cos -1)+(cosnfcos - 1)_2.(e1n9'+ 1)(cosT~1) d%
' [2(1 - cos P')]3/2

(5.143)

where we have used
_ .1y . ind .z, in@ _ .., _ in@ _ind.
g=ingte g +eg+ ing-e g,;ds’ = R+r,e " e ")df. (5-144)

The integration over the osculating circle is similar to that done in

§16, we have
R° - R =p(cos § ~ 1)(- n) + p sin G5, (5-145)
so that
(R°-R)As =plcos ¥ - 1) b, (5-146)

and therefore
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sA[R-R") ds® oz (cos F ~ 1) ) 2z, _inf
22 dgi |- =
*J R-R[° B (f[z(l cos 9)]%/ 4 ( "RC )

(cos @ - 1)d§ 2 . 1) Lo oinfd -
+22 (f[za oty )(1+(n )i e ) (5-147)

It is straightforward to check that (5-147) and (5-143) have the same
singularities at § = 0 and thus sAG is regular.

The stability equations can now be obtained by substituting into
(5-141) and equating the coefficients to that of (5-23). In the limit

when % - 0 where only terms with log % need to be retained, we get

gt£1 - 4711‘27 o 10%? [1-£ ]z, (5-148)
dz, _ T R :
= e @ - 1) 1°€5-[1_-E]r1, (5-149)

which gives a stable oscillation with frequency w given by

W= zr;‘rl%r R @-&) @ - ). (5-150)

Note that the modes zero and one are neutrally stable.

However, this limiting result is only valid if |1 - £ | is finite.
For |1 - E | very close to zero, (5-148) and (5-149) no longer
represent the leading terms. In fact, it is suspected that as
It - g | = 0, the ring can become unstable since those

terms neglected in (5~148) and (5-149) would dictate the sign
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of .wz and may very well give rise to an imaginary w. This conjecture
is confirmed by numerical evaluation, and the results are exhibited
in Fig. 5-5. It is found that for a given ratio %, there exists a band
of values of 5 within which the ring is unstable both to long and short
waves. These instability bands decrease in width as % - 0. Further-
more, if we let i increase from 0, it will be seen that the instability
sets in before the value of a at which the ring feverses direction
is reached.

Hence we conclude that the charged vortex rings (conducting or
uniformly charged) are unstable to centerline disturbances when
the charge and the swirl effects become comparable. The instabilities
are not limited to short waves only, as opposed to the case when no

electric charges were present.
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VI. STABILITY OF AN UNSTEADY VORTEX RING--THE BUOYANT

RING

§25. When light cream is dropped into cold water, a vortex ring is
formed, but it rapidly disintegrates into a number of smaller rings.
This process of disintegration is repeated several times for each of
the daughter rings until they collide and mix turbulently. This
phenomenon is vividly exhibited in the fluid mechanics film "Flow
Instabilities' (Mollo-Christensen, 1969) and is known as vortex ring
cascading. Results from the previous chapter show that vortex rings
.are stable to long wave disturbances; in this chapter, we shall include
gravity and examine its effect on stability.

The behavior of vortex rings under gravity is of practical
interest due to concern over the spread of radioactive clouds during
a nuclear explosion where the heated gas eventually forms a vortex
ring substan’éially lighter than the surrounding air. Of course, in such
cases intense heat transfer is present and viscosity may also be
important (Onufriev, 1967). However, we can consider the stability
of a buoyant vortex ring in an inviscid fluid with no heat transfer as a
first step towards a more complex theory, besides,it is probably a
reasonable model for industrial chimney exhaust of waste gas which
may be relevant to environmental engineers.

The existence of buoyancy effect renders the vortex ring unsteady.
The velocity V,, ring radius R and core radius a are all functions of

time. If we call the direction in which gravitational force acts as
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"downwards, "' then we shall show that the heavy ring moving down-
wards or a light ring moving upwards will decelerate, expand, and
become thinner; while a light ring moving downwards or a heavy ring
moving upwards experience an opposite change, i.e., they accelerate,
contract, and fatten. This may at first sound a little surprising, |
since one would expect a heavy ring moving in the direction of gravity
to pick up momentum and therefore accelerate. However, it will be
seen that while such a ring indeed picks ﬁp momentum, it does so not
by accelerating but by increasing its radius R, and since the velocity
is proportional to R"l, the ring decelerates. The decrease‘s in the |
core radius a is a consequence of the conservation of volume bf the

ring.

§26, The Velocity of an Unperturbed Buoyant Vortex Ring

Let m, be the density of the fluid inside the ring and m, be the
density of the surrounding fluid. The buoyancy force per unit length
is given by

(m, - m,) gra?. (6-1)

It e, is the direction of motion of the vortex ring, then we shall

consider

g=*88, » (6-2)
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which corresponds to the ring having its axis parallel to g. Two

different cases are present, (i) (m, ~ m,) 7a? +e_> 0and (ii)
) 1 mO a AZ

(m; - m, )wazg- e, < 0. The first includes.heavy rings travelling

downwardé or light rings travelling upwards, while the second

includes light rings travelling downwards and heavy rings upwards.

We refer to these cases as cases of negative and positive buoyancy

respectively. The buoyancy force (6-1) must be included in the

exterior force per unit length EE“

We now consider the flow inside the core which is given by, -

to leading order;

2
1 QE_V ~ i
& =t -gsint,

1 8p ..
E:b——a-g-— gCOSC.

These give

C 2
p=m1f —g—do-mlgosinc,

and when integrated over the cross section gives

Fr=m« ?@s' (%- a2v? §) '

(6-3)

(6-4)

(6-5)

(6-6)

since the term containing g integrates to zero. Thus EI is unchanged

by the presence of gravity and (3-38) gives the velocity at a point of

the unperturbed ring as
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R
~_ T 8R _1_ Am, (m, ~ m,) 7a? -
&® " 4R (1°g_é— z2%m )Ez"’g T, &’ (6-7)
where we have used the relationships
egp n=-¢€, b=e,. (6-8)

We note here that if g =0 and A = i— then (6~7) reduces to the velocity
of a uniform vortex ring with density difference but not under gravity,
and agrees with the value given by Basset (1888). When m, = 0, we
recover the hollow vortex (Hicks, 1884).

The radial component in the velocity which contains g causes a

change in the radius of the ring R given by

g% g(m1 )1r.'=L2 gml -mn} /f/ (6-9)

where ’V is the volume of the ring, being

’V = 272a?R = constant (6-10)
since the volume of the ring is conserved. Thus
N : .
R =R, (1 +p0)Z , (6-11)

where R, is the radius of the ring at t = 0 and 8 is the buoyancy factor

‘given by
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B= Eﬁﬁgl—ﬂ(m - 4 - lmy - my) . (g%i) - (6-12)

with a, as the core radius at t = 0. The conservation of volume also

gives

a=a,(1+pt) /4 (6-13)

Using (6~11) and (6-13), the propagation velocity of the ring is found

to be
T S8R 1 m 3
= 4 (log —8 ~ 5 + A =31 4 > log(l + Bt)} « (6-14)
®  4gR, (1 + Bt)Z { B 27 0m, T

From these we can seé that the ring decelerates, expands, and gets
thinner if 8 > 0, which corresponds to the negative buoyancy case.

It must be pointed out that while the rihg velocity approaches zero as
t - oo, the ring never actually stops since j;t V,dt is unbounded as
t - w. For B < 0 (positive buoyancy), the ring accelerates, expands
and fattens, In fact, the ring ceases to be a toroid at a finite time

given by

4/3 |
1=~
t = —-Eﬁ (6-15)

-8

which is the time when a = R. Of course, our equations of motion

<1 :p &
would no longer be valid if § & 1.
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The tangential component of the force balance equation simply

gives
I?  9a? _ | '
B pe =0 (6-16)

which implies that a is independent of t in the leading order.

§27. Stability of a Buoyant Vortex Ring

The velocity of the perturbed buoyant ring is given by

oR
AN T 8p _1 m g(m, - m, )ra? _
% =Y+ @ logg 2+A—Lmo]‘2+ tm, & 1D

We first examine the last term, with g given by (5~144), we have

g(mfl-nmo)ffaz &r +ind o %] :  (6-18)
o

The first two terms in the right hand side are very similar to those
given in (5-54) and (5-55) for a perturbed vortex ring with axial flow
except that now W = 0. Before we write them out, we first look at the

tangential force balance equation, which is

I?  9a% g(m, ~ m,)ra?

" Bra? s o 80 8= 0 (6-19)

By letting wa2 =oyR» W€ can integrate this equation with respect to

6 to obtain
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3 -
log a = log a, - i— log (1 + Bt) + 2m -~ B %L eme. (6~20)

This means that an O(Izg-) dependence on s is present in a, resulting

in an additional 0(%) velocity in the e direction of magnitude

2 i .
- g- %ﬂz— Z, e!nf e, (6-21)

which must be included in the stability equations.

In the moving frame, we have

oR
5{_\_ dR +HFL el +%{:Z_L elIlG e, V, AZ, (6-22)

oR '
but 'Et: given by (6-17) is

+V, 2, e e (Vr ro-5 B 'zl) e e, (6-23)
thus
Vo =41%Rf Eog %B- - % + ‘:,‘n—rf-l:] . (6-24)
R AR, (6-25)
dr

=V, 2 (6~26)
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dz

F=Vrl- g— %‘Q—z— Zy, (6-27)

and V, and V. are defined by
Vy = fgr [HQ) - 2HE@ + 1) + H - 1)+ FHE + 1) - B - 1)% , (6-28)
Vr = ghpr | 2H@) - 3H@+ 1) + H(n - 1) - (HE + 1) - H@ - 1) - 60)
- %{H(O) + H(n) - -H(l) - é(H(n +1) +H@n =~ 1)9 + 1] , (6~29)

where

H(n) = H(n;t) = n? [log 2%—- +logn+C - 2— + == A 1og(1 + Bt)]

+ %log(l + n2) + G(n). (6-30)

Notice that in (6~-30) we have used (6-11) and (6~13) for the time

dependence of a and R, this is consistent with (6-25).

If we write
V. = iy V¥ (6-31)
Z 'ITTREO Z
TR
and let

t* =m 10g(1 + ﬁt), (6-33)
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we would get

T =V, *z, (6-34)

g%i_ =V "_Z“I‘BR'LZ Zy5 (6-35)

where now

2 .
H(n, t*) = n? [logza-ﬁ: +logn+C - %— +Am1 - 3"11-‘:.“ ﬁ‘t’a+313-1og(1+n2)

Mgy

+ G(n) . (6-36)

In the limit of l% - 0, we have

vV, * o~ -n2 [ 3—"%:— ] | (6-37)
V% ~ (0% - 1) log—Rﬂ ?’-’-’-It‘.n-— ] (6-38)

and by letting

a = 1%-2-@- (log %:) - (6-39)

we get

g B~ dry _ 2(1 + 3ai*) z,, 6-40
gao a"fi“ n“(l + o )zn ( )

-k
(log %) %’% = 02 ~ 1)(1 + 3at¥)r, ~ 2az,. (6~41)

t
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These equations represent a time dependent coupled oscillation with
a growth or damping term, depending on the sign of a. If ais
posiﬁve, then the motion is damped and the system is stable; while
for a negative, the motion is amplified and the system is unstable.
From (6-38) we see that sgn(a) = sgn(g), therefore we conclude that
negative buoyancy stabilizes the system while positive buoyancy renders
the ring unstable. Numerical integration of (6~26) and (6-27) confirms
~this observation. | |

The mechanism of this stabilization or destabilization is as
follows. The perturbation in the e, direction introduces a periodic
dependence of the core radius a on the angle 8. When 8> 0, the
dependence on a is such that it causes the portions moving ahead to
fatten, those falling behind to thin., Since the dependence of the local
velocity on a is like log %, the fattened parts have velocities less than
the me'an velocity V, and the thinned parts have velocities greater
than V,. Thus a stabilizing mechanism is formed (see Fig. 6-1).
For 8 < 0, the reverse situation happens and the ring becomes unstable
because the thinned parts continue to move ahead faster than the mean
velocity while the fattened parts slow down even further. Notice
that the growth rate is independent of wave numbers and therefore all
- modes are equally unstable.

Some observations have been made on vortex rings formed by
dropping light cream and heavy ink into water. It is found that the
rings experience the cascading process in both cases. The number of

daughter rings produced in each breakup ranges from 1 to 7 and with
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" (a) Stable configuration (8 > 0)

(b) Unstable configuration (8 < 0)

Fig. 6-1 |
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no apparent pattern. Furthermore, the light rings break up much
faster than the heavy ones. The eventual disintegration of the heavy
rings shows that the foregoing theory does not completely explain the
| cascading phenomenon, and that the breakup of the heavy rings must
be due to disturbances other than the long centerline perturbation.

It is likely, however, that the light rings disintegrate due to the
mechanism described. It mustalso be pointed out that these experi-
ments are extremely crude and the rings formed are slow and fat and
highly non~-uniform. More precise experiments have to be performed

in order that a valid comparison can be made.

§28. SU_.rface Tension Effect

In general, surface tension is present if the ring fluid is
different from the surrounding fluid, and we shall examine its effects
in this section. Lety be the surface tension, then the exterior force
per unit length contains an additional term given by Moore and Saffman

(1972) as
%(Zﬂayls__) . (6-42)

The interior pressure p now becomes
2 s
p=m1f0%ﬂ-dr—m10'gsm§+1;-a (6-43)
and when integrated over the area gives

FI =m, ETa§ (g- a?v2 §) ~ -a%(ﬂay 8). (6-44)

o~
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Therefore, the presence of surface tension introduces a net force

o %K n + ——- (ﬂay) 8. (6-45)

The term in the normal direction modifies the propagation velocity,

leading to

v, n 1og§-Ri-%+A_IEL+4I’%§-} (6-46)
0

The term in the tangential direction must be included in the tangential

force balance, so that now

2 aa a_ (wa'y) _ g(m; ~mg)wa? ;

qra 38 05 \m, g €' 5 (6-47)

zZ

Let us define the dimensionless parameter E by

1

2
- T,  (6-48)

where = is the ratio of surface tension effect to swirl effect.

Integration yields
1
- ~Z ..  2aR %8 inf -
loga"é: loga, ~ Ilog(1+ﬁt) (L+pt) "= +—fR{l— z, e . (6-49)

Since the combination

p—
az

- log a + ==
2% %
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appears in the leading order velocity, we can substitute (6~49) into

(6-48) to obtain

r 8R, 1 _ Am _3 o -1/4
log gy +=2+rlog(1+Bt)+E(+pt e
41ar(1+Bt)I7Z{ 2 m 4 ) %
- g % o gy (6-50)

which shows that the O (Z-Rl) contribution to e, is unaltered by the
presence of surface tension, and the stability analysis in the previous
section carries over completely. The only effect of ¥ is to alter the

mean propagation velocity of the ring.



99

VIIL. THE INTRINSIC EQUATIONS OF MOTION

§29. Arms and Hama (Hama, 1962, 1963; Arms and Hama, 1965)
introduced an approximate equation for tI}e self~-induced motion of a
vortex filament which they used to study numerically the progressive
deformation of vortex filaments with various initial profiles. This

is known as the localized induction hypothesis in the sense that the
motion of the filament is assumed to depend only on the local geometric
structure, thus making the governing equation a differential, instead

of an integral equation as in the Biot~-Savart law. This hypothesis

is valid for very thin filaments with geometric length scales much
larger than the core radius a.

Betchov (1965) studied the analytical consequence of the
localized induction equation by coupling it with the Frenet~-Serret
formulae of differential geometry to obtain a set of intrinsic equations,
or equations which govern the curvature and torsion of the filament
when it is considered as a space curve. They form a pair of coupled

-non~linear partial differential equations, from which he recoveredthe
vortex ring and the helical vortex as particular solutions. He also
found a stationary plane rotating loop solution which he claimed is
not physical since it possesses a crossing point. Hasimoto (1972)
rederived the intrinsic equations by a different method, the process
of derivation showed that they are actually the real and imaginary
of a nonlinear Schrodinger equation which occurs in several other

contexts (Tsuzuki, 1971, Ono and Hasimoto, 1972). He also showed
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that the plane loop found by Betchov (1965) is the projection of a
three-dimensional twist on the filament which he called a solitary
wave,
This chapter derives a general set of intrinsic equations,
independent of the localized induction hypothesis (which is contained
as a particular case), the following chapters examine the consequences

of these equations.

§30. The Equation of Motion and its Relation to the Frenet-Serret

Formulae
The general equation for the motion of a vortexﬁlament can
be put into the form
R
79%!£=AR+BE+C§ (7-1)
where the partial time derivative is taken at a fixed g (£ as defined
earlier, is a Lagrangian parameter along the filament), and A, B,
C are functions of £ and t whose forms depend on the shape and
structure of the filament. Of course, we recognize that in general
the actual decomposition of the equation of motion (3~36) into the
form of (7~1) may be rather cumbersome, butf at the present moment
we shall proceed on the assumption that this has been done. |
We recall that the Frenet-Serret formulae of differential
geometry give a set of relationships between the filament R and its

local tangent, normal and binormal, they are



1_3’ =5 (7-2)
§’ = Kn, (7-3)
2' =7h - K5, (7-4)
b’ = -, (7-5)

where k and 7 are respectively the curvature and torsion of the
filament, and ( )’ denotes differentiation with respect to the arc-~

. length parameter s. Theideaisto get equations for k and 7 by applying
theseto (7~1). However (7-1) as it stands now is not suitable for our purpose
because the time differentiation is taken at fixed & (instead of fixed s)
which would not permit the interchange of order of differentiation

when we differentiate (7-1) with respect to s. Therefore, we must

calculate 813 l .

S
The arclength s is a function of £ and t

s = s(&, t), (7-6)

so that if we consider R = R(s(£,t),t), we have

B, R (R (o
'gt-ls='§f-1£' 5'5!1) (ﬁf'lg (7-7)

Now, by (7-2) we know

1
¢
-

(7-8)

%)H&
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0s
and ?l £ which is the rate of change of arclength, can be expressed

as

£ R £ oR
2ok [ iEle- L (7)o
_ 0

0

The term in the integrand is calculated as follows:

oR
o (2) .2 08'811=,a(a§
# (=) - = (w) e (@)
ot

since £ and t are independent of each other, we can interchange the

order of differentiation and make use of (7-1) to get

0
0 ~\ _ 0
5{('59"55 [AR‘”BE*C?;]

= a_i EAJR + Bn + Cf:](%g- It)
={(A’ + B7)b + (B’ = AT + Ck)n + (C’ ~ Bx)g} (gzs- t) , (7-10)

where the last expression is obtained by applying the Frenet-Serret

formulaé. Therefore
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:
%%l;fg (€’ - Br) ¢ as

s
=C - [ Bxds +c(t). (7-11)

o

where we have chosen s(£,) = 0 and c(t) is a function of time, giving
the tangential velocity of the point s = 0. Substitution into (7-9) and
(7-7) gives

ag, Ab [fs d 7-12
= Ab + Bn + Brds + c(t) | s. -
ol TARTBRY | Bds c()]i (7-12)

In fact, (7-12) can be obtained from (7~1) more directly if

we noie that the difference between

must be in the tangential direction, so that we can write

aR[ Ab & (7-13)
—~| =Ab+Bn+Cg ~13
E 3 5 ~ ~ s :
for some unknown €. Now

&)

s \ot s

must be normal tos since it is merely ﬁaf(i)’ and so by requiring
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_8_(813|)
95 \at '

to have no targential component we must have

[@)- B¢ =0, (7-14)
which immediately gives

.3

S
C= [ Bkds+c(t), (7-15)

and therefore (7-12). This simpler method of derivation was sug~

gested by Professor P, G. Saffman.

§31, The Complex Transformation and the Schrisdinger Type
Equations.

Let us introduce the following complex functions

s
i f Tds
N=(n+ibe ° (7-16)
s
if Tds
Y = Ke ° y : (7-17)
S
if Tds
(p = Ae ° b (7'18)
s
if Tds

9 = Be , (7-19)
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and note that
N-N=0, N-N=2,5-N=5-N=0 (7-20)
Now s
i f Tds
N’ = (rh - R+ irp - ~ ag)e
= = wﬁ’ (7"21)
thus (N’), where ( .)“ denotes 72%' , is given by
W)=~ ys-vs (7-22)

é is calculated as follows

s=R'V=@R)

Cal

S
=mf+Bﬂg+®'-Aﬂa+K(£ Bds+ﬂ® n, (7-23)

which can be expressed in terms of N, v, ¢and 0 as

-~

§-31o/R-P N+ o R+ T NI Ao+ P {LS%['@+w1ds+c<t§o
C(7-24)

Substitution into (7-22) leads to
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W) =-ps- Y Io'N-3'N] - FloN+oN] - ¥LuN + Pl

s
{fo 9o + yflds +‘c(t)} . (7-25)

We now calculate (§)' . We can let Ij to have the form
N=£N + LN + s (7-26)

Since

0=§E'(N §)=§-§+ﬁ-h 21 +2 1, (7-27)
we see that f; is imag'ma.ry' and can be written as

£ =%, (7-28)

where Z is some real function of s and t. Similarly,

0= %(1:{.1’\3) = 2N - § = 41, (7-29)
and

0=FN-g=Neg+Neg

~n

=f, +i’ + 87 + {fs A P6 + aylds + c(t)}, (7-30)
4}
so it follows that

f£,=0, (7-31)
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and

f, =~ i¢p’ -0 - Y/ {fos HTo + yablds + C(@ . (7-31)

This gives us

(M) =12’ N+ ZN' - ¢"s- ¢'s’) - [ 0" +¢f{fs-;-['¢e+mds+c@ s

s
+ ¥[¢0+ W]§+ 9's’ + {f 16 + Bl ds + c(ta ’S‘j . (7-32)

But
s’ = 3[ YN + YN,

Fa)

therefore
@ = 2N - 20~ 975 F- T+ 97
S
- [eﬂ + {fo 9P + yBlds + c(t)} + g(ﬂ}'{) + ;,W)]§

- %@1}{-:« 4/@ {Lsi{{b‘e+ YBlds+c(t)) - QZ:{$§+ yN). (7-33)

We now equate the coefficients of s, N and N in (7-25) and (7-33)
to get

| ;p = (Zy + ") + 07 + Y {fos%@-g + yP)ds + c(t)}+ ‘21-’('1{79 + ),
(7-34)
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Z' = 3@ + yB’) + 5Po" - Y, (7-35)

the coefficients of N in (7-25) and (7-33) are identical.

(7-34) and (7-35) form a systefn of complex non-~linear
integropartial differential equations of the Schridinger type for the
unknowns k and 7, provided A and B are given (as functionals of
k and 7 or as functions of s and t or as both). Knowing « and 1, we

can resubstitute into the Frenet-Serret formulae to solve for E

§32. Steady State Equations

Equations (7-34) and (7-35) are too complicated to be
analysed in full. However, if we specialize to steady state and look
for equations which describe a steadily propagating filament with
no change of shape, we can reduce them to a set of ordinary integro~
differential equations. To do this we assume that both « and 7

are functions of s only, and similarly for A and B. This leads to

' S
ck’ =T'A+2TA’ -B” + 2B - k2B - k' [ Brds, (7-36)
[
' s
~CTK = ZK + A" = 2A + 7"B + 27B’ + ¢ f Bkds, (7-37)
0
Z' = (A’ -~ TB)k. (7-38)

If we let A = x and B = 0, which we shall see would correspond to
the localized induction hypothesis, then (7-36), (7-37) and (7-38)

reduce to
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ck’ = 7'k + 27K, - (7-39)
-CTK = ZK + K" = 12k, (7-40)
Z' = k'K, (7-41)

Equation (7-41) can be integrated to give

z = & + o), . | (7-42)

where 2 is an integration constant which in general is determined -
by the requirement that y is real at s = 0; however, in a steady
motion there is no initial conditions and £ becomes an arbitrary

constant. Therefore we have

(¢ - 27)k’ = 7'k, © (71-43)

~-Q+cr)k=k" - 12K 4+ -"23—, (7-44)

which are exactly the equations found by Hasimoto (1972), and have

been shown to be equivalent to those of Betchov (1965).
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VIII. THE LOCALIZED INDUCTION HYPOTHESIS AND ITS
COMPLETE STEADY STATE SOLUTIONS

§33. The localized induction concept assumes that the motion of
the filament can be well approximated by retaining only the leading
singular term in the Biot-Savart integral, which we recall is

r  B-RAdR
z J

= (8-1)

R -

Yy

To obtain this leading term,expand in Taylor series about the

singular point R = R. Let the point of interest be R = R(§,), then

B=RE, + O =R €,)+F &)+ S 35 € ()

where £ is small. Now

“R-t €)+ G ZR g )eee, (8-3)
and
i oR
d—E az—df T(go)"“ 7352' (Eg)+vey (8-4)

so that the numerator of the integrand becomes

oR #R r
% A 7 60 5 (8-5)
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and the denominator is just

I S
£]™ 57 I”° 1+ o). (8-6)

Therefore, the integral (8-1) becomes

aI'3(5 )/\62'3(5)
r o ElIN g h) a4 51
Y e

If we integrate this over the range 6 = I.S | = d,, where d; is an

arbitrary constant, we have

DA o 6)
r 0 o
4T = R 'aff

I3z @)

log(%) +0(1) . (8-8)

Here 0 is assumed to be a small constant proportional to the core
radius. We recognize that the term in the brackets is just Kb,
where k is the local curvature and b the local binormal. Thus we
have the result that the velocity of the filament at a point is

approximated by the equation

'4-1? log (é—) kb, (8~-9)
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By letting the normalized time t* to be

r 1
t* = 77 log @t
we obtain the localized induction equation

"
3{-*- = KR.

We see that (8~11) is equivalent to the assumption that
- _ T 1
B—O, A——;—n,—log(-ﬁ-)lc,

or
=1 6=0,

This reduces (7-34), (7-35) to a single equation

w=i [zpﬂﬂp(-éﬂigﬂ + ey,

(8~10)

(8-11)

(8-12)

(8-13)

(8-14)

with © being an arbitrary function of time. This is a nonlinear

Schrodinger equation which is the same equation considered by

Hasimoto (1972). Note that the real and imaginary parts of the

steady equation are just (7-43) and (7-44), which must be true for

consistency.
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§34. The Complete Solution of the Steady Localized Induction

Equations
We shall now look for the solutions of (7-43) and (7-44).

The first of these can be integrated to give

r=-;-(¢-k-}§-), (8-15)

where H is a constant of integration which must be determined by
an "initial condition' (i.e., a condition at a certain point on the

filament). Substitution of this into (7-44) gives

K" = 12K ._%3__*_41:1'{;9. (8-16)
where
vp=-0-F. (8~17)

For v real, (8~16) describes a non-linear oscillator with
an inverse cubic restoring force; and for v imaginary, no real

solution exists. This can be seen by letting
¢ = K2, (8-18)
so that after integrating once, (8-16) becomes

(€7)? = 4p2C2 = €3 - H2 + JC = g(£), (8-19)

where J is another constant of integration. Equations (8~18) and

(8-19) imply that for a real solution of k to exist, the polynomial
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g(€) must possess two non~-negative roots between which

g(8) is positive. This is analgous to nonlinear oscillations in a
potential well; if one of these roots is a double root, then an absorbing
~ barrier exists and the period of oscillation becomes infinite.

Let us examine the roots of g(€). In order for two real roots
to exist (which is equivalent to the requirement that all roots are

real), the discriminant A(g) of g({) must be non-negative, i.e.,
Alg) = -2°0°H - 290 + 3 2t 4 250 = 0, (8-20)

which actually is a condition on J given H and v. The implications of
the additional requirements that g({) should be positive between two

non-negative roots can be seen by writing g(§) = 0 as

=4 st - H° (8-21)

with some geometric arguments. First we note that we cannot
have all three roots positive, since the sign of the constant term
(~H2) is the same as the sign of §3. Thus we only need to consider

the following four cases:

(i) A=0, Hs 0 (2 positive simple roots) [fig. 8 - 1(i)],
(i) A =0, H = 0 (3 simple roots, one of them zero)
[fig. 8 - 1(ii)],
(iii) A = 0, H = 0 (a double root at zero) [fig. 8 - '1(4iii)],
(iv) A =0, H = 0 (a positive double root) [fig. 8 ~ 1(iv)].
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Let us write the cubic as
g®) = € = D& - LHE +T.) (8-22)

where §;, §,, §_, are all non-negative and €, 2 {,. By letting

n =8+ C_l, we have

gm) =G +T -~ ~5 -8 =0 -m0 - n)n (8-23)

wheren, = §, + C__l, n, =&, + §_1 are both non~negative. If we

further let t* = 57, the equation (8~19) transforms to

2tt’ = Vg(t) (8-24)

L/

S dt

= o, <Lt n, (8-25)
z ft VE-mm, -8

which is a standard elliptic integral, and has the solution

t =7, dn ("-’T@?— |1721_1;_!11_) . (8-26)

Since Kk = C% ={n- C_l)% = (¢ - §_1)%, we have

x = @:ﬂc_g ar (<§2+c_1>% ;I%;—%) c} ?(s-21)

where dn( - ! m) denotes the Jacobian elliptic function of the third

kind with modulus m. Case (i) corresponds to T,, §,, {_ all
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non-negative, which is a periodic wave with both 7 and k varying.
Case (iii) is when §, = 0, and correspond_s to the case when 7 is
constant but « is varying periodically. If 7 = ¢ = 0, then it reduces
to an elastica form found by Hasimoto (19'71). Case (ii) corresponds
to €, = §__1 = 0, Here the modulus m is 1 and dn degenerates to the
hyperbolic secant sech, We can also check that §, is just 4/? in this

case, and therefore

Kk = 2v dn® (vs|1)

= 2y sech vs, (8~28)
T= %. (8-29)

This is the solitary wave solution found by Hasimoto (1972).
Case (iv) is when {, = §, and the solution for x degenerates to a

constant, (k = x,), and the expression
2
Q =V~

simply gives the relation of the rotation rate to the curvature
and torsion of the helix. If ¢ = 0, then the solution represents a
vortex ring with radius El— Finally, if ¢ = 0 andx, = 0, we have

0
a straight filament.

§35. The Form of R(£,t) Corresponding to the Solitary Wave

Solution
From the Fundamental Theorem for space curves, we know

that given k and 7, there exists one and only one space curve,
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determined completely but for its position in space with the curvature
k and torsion 7. Thus we can recover the shape of the solitary wave
solution from (8-28) and (8~29) via the Frenet~Serret formulae.

Making use of the fact that 7 is a constant, we have -

R” = TQ' = = T("KE‘*‘ Tp), (8-30)
or
" + 72 =.TK_§, (8-31)

differentiating, we get

1 [b” + 72b])* = Tkn = = kb’, (8~32)
K"~ ~ ~ ~
which is just
! - _’%é’.i.(fz + K2) b’ - EK_'_ 72D =0, (8-33)

Substituting values of k and 7 from (8-28) and (8-29) gives

dsb o oo S\
a-a-g-‘-+tanhoa-6_§+(;2-+4secho)a§+§5twho§=0, (8-34)

where ¢ = ys. We now define the vector g as

db
E=H§ +tanh ob. . (8-35)

Thenwe have
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d2B 2 5
a-(-;z‘-+(7-+23echo) B =0,

which has solutions

ilg . --il-o
0, (i%+tanho)e v, (—177+tanho)e v
From these we can construct a solution for Q:
Zu%secho
- 2T s T 2T T
b = p[(l -17) sml-;o+7tanhocos-'-;c‘;} ,

T T .. 2T i T
p.[(l T}z') cos;—a—f——;—tanho sin c]
where

w= 202+ 1),

(8-36)

(8~37)

(8-38)

(8-39)

The normalizing constants are determined by the requirement that

b is a unit vector, and some + signs are dropped since they would

not alter the shape of the curve in view of the fundamental theorem

for space curves. Successive integration gives n and S as

2 sech o tanh o

n= -(il_—Zutanhzo')cos%o-zug-tanhosin%], (8-40)

- El-Zptanhzo) sin%o-s- Zp,-:-tanhocos%]
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/1 « 21 sech®o

T

8= -2 sech or(tanh ocos;o-&-% sin{-o)

..2p.sechofcanh osin;-o--—'cos— )

T T T

4 4

Integrating s gives R(s) as

s-%# tanh vs

g(s) = %E sech vscos 7s | -

The time dependence of R is established by the relation

which yields

%}Jﬁ sech vs sin 78

=x12+ cs

i BYs

s+ct*-—27,E tanh vs

R(s, t¥) = -2]-,& sech vs cos(rs - Qt*) |,

and the velocity

oR .
‘5%5\: (S’ t*) F

%E sech vs sin(rs - Qt*)

c
Q -2-# sech vs sin(rs = Qt*) | .

-Q%ﬂ sech vs cos(ts ~ Qt*)

(8-41)

(8-42)

(8~43)

(8-44)

(8-45)
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At s = 0, we see that this represents a point propagating with
velocity ¢ and rotating at an angular velocity Q@ about a circle of

radius —2-#- A numerical plot of the filament shape has been given

by Hasimoto (1972), a rough sketch is given in Fig. 8~2,
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IX. THE MODIFIED LOCALIZED INDUCTION HY POTHESIS

§36. Let us now take a closer look at the assumptions of the
localized induction hypothesis. We recall that the governing

equation is (8~4), which is

R

o~

= = 4%; log(é—) kb, (9-1)

The assumption made was that log (215-) can be considered as a large
constant so that the time scaling in (8=10) is independent of s.
Detailed examination of the singular term shows that 6 is in fact
proportional to xa where a is the core radius and therefore is a
function of k. Thus the transformation (8-10) depends on s through
k,and t* and s cannot be justifiably considered as independent
variables. Furthefmore, as the filament becomes straight (as in
the case for the tail ends of the solitary virave),, ka - 0 and
log (%—) - o which renders t* undetermined.

To eliminate these problems we considered a modified

equation in which the logarithmic dependence is included

R
EE* = k*(1 - € log k*) b, (9~2)

where now

K* =% (9-3)
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is the dimensionless curvature, normalized against some character-

istic curvature k (say, k at s = 0), and

r 1 T -1 '
t*=%-klog(la)t=ﬁ ket (9~4)
with
¢= [log (&) ™ (9-5) -

Notice that t* defined by (9~4) is independent of k. The dimensional

form of (9-2) is just

oR
-é'f- = {—-’; K log(-’gi) b. (9-6)

§37. Solutions of the Steady Modified Localized Induction Equations

Equation (9-2) corresponds to the case

A=g*(1 ~e€logk*), B=0, (9-7)

Substituting these into (7~36) ~ (7-38) and dropping the superscript*

(Since the context is clear), we have

[e = 27(1 - e(log k + 1)) ]k’ = k(1 - € log K)7’, (9-8)

- {2+ ek =x"(1 -~ e(logk + 1)) - ek 72k(1 - € log k)
. K

+ 5 (1 - e(log K + %)) ., | (9-9)
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First we check that for € = 0, this reduces to the equations of the

localized induction hypothesis (we must keep in mind that € = 0

would make t* undefined and is therefore only a formal check).
The first of these equations can be integrated to give 7 in

terms of k

7= o gmg B {:[1 - e(log K - %)]- ;c-f-}} ©(9-10)

This reduces to (8~15) when € = 0, Furthermore, 7 given by

| (9~10) approaches % in both limits of large and small x, which is an
indication that the logarithmic term only has a weak effect on the
solution form. We substitute {9-10) into (9~9) to get an equation

“for x

Y . €K'2 c2 - 1
x”(1 -~ e(log k + 1)) —— {Q+4(1-elog1<) [1 T =¢log k)2

(E_fclﬁ' - 5-) 2]} K + ;Kzs-“ (1 -€ (1og K+ %)) = 0. (9-11)

Let us introduce W(k) as

Wik) = 55—, o (0-12)

and rewrite (9-11) as an equation for W in «
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dW(k) _ - ¢ 2W K c?
dk KI-c(logr+D) " T=elog & + 1)) T e og R)T

1 k3 (1 -€e(logk + %
[ T - € Iog K)"‘ :D %I - e%Iog K+ f;; =0, (9-13)

which can be integrated to give

1 K2 c2k2
‘N’ = 1 - L. -
w [1 - e(log « + 1)]? c (log o )) 2 8

[1 __ze_fz f.'c x[1 ~ e{log x + 1)dx]

K [1 ~ € log x]°

4 HCe 1 .____€
4 [(1-€elogk) 2(1 -~ € logk)?

i :s 1 L J
B kI -€logkP ' T

-.'g; [1 - €(2 log k + 1) + e2((log k)2 + log Kk + IZD ’ (9-14)

where J is the same integration constant as in (8~19). Again, by

letting § = x2, we have

€Y = gt} = 8W(L), (9-15)

theréfore
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1
= -4 |1 -1 1) ¢2
8(t) [1-e(%10g§+1)]2{ [ =llog £ + 3§ |

Lt .
cet |18 Il-eGlogy+ ] 4ot e
) [ 2l o A

- 2€HC[ 1 - £ ' ] Z
(1-2elog?) 2(1-Lelogl)?

H2

- + Jg
(1 - L€ log )

+ [1 ~e(log & + 1) + %2— ((log €)% + 2 log € + 4ﬂ C"} . (9-186)

Thus g(§) is a polynomial modified by small logarithmic terms, it

'is qualitatively similar to fchat found for the localized induction case

(e = 0)., For small € and moderate k, the effect is small. However,
a solitary wave solution has values of k going to zero (at the tail ends),
since log k-~ as k - 0, the logarithmic effect may be significant.
A numerical plot of g(€) is made and compared to that for € = 0 (fig.
9-1), where it is found that qualitative égr’eement is very good even
ior € as large as 0.2, only the maximum curvature at the center

is lowered for large values of € for given © and ¢, This implies that
the dropping of the logarithmic term only creates a uniform error

of O(e) even when ¥k -~ 0, and does not cause any qualitative
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difference. The localized induction hypothesis seems to be a
good first approximation of the Biot~Savart law, and this is

indeed what we shall show in the next chapter.
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X. ASYMPTOTIC EXPANSION OF THE BIOT-SAVART LAW OF
INDUCTION

§38. Letus consider the solitary wave solution given by (8-28)
and (8-29). We have just seen that the logarithmic term is not
gualitatively important. However, another possible objectibn is
raised against the localized induction solution as k — 0. For a
point near the tail end, where |s| = « (s = 0 being the midpoint),
the induced velocity given by the localized induction hypothesis

(8-11) is

f; x eV "S | . (10-1)

Now if we substitute into the exact Biot-Savart integral and expand

for large s, it will be seen that

R € 1

T S+ 0 ('s's') (10-2)
Regardless of how small € is, the O(¢€) term with its inverse square
decay will eventually dominate the O(1) term which decays expo-
nentially, This cannot be eliminated even with the introduction of
the logarithmic term. Thus it appears that the solitary wave
solution does not approximate the Biot~Savart laws of iﬁduction
uniformly. The reason for this is that near the tail end of a solitary
wave, the filament is effectively straight and the singularity (which

is proportional to the curvature) no longer dominates the integral.
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The regular part of the integral, whose contribution to the induced
velocity obeys the inverse square law, must be taken into account.

In the normalized time scale t*, this contribution is O(€) and is
comparable to the k*log k* term in the modified localized induction
equation. It must be included in a uniform approximation of the Biot-

Savart integral to O(e?).

§39. Analysis of the Solitary Wave Solution to O(e2)

Let the equation of motion be given by

#:K*(l-elogx*)2+ellg+elzg+eg§, (10-3)
where I, L, and I, are the binormal, normal and tangential com~
ponents of the Biot~Savart integral with the singularity removed
(they are the components of »YI except for a constant different in b
component). For a steady solution I, does not enter into the analysis

and we have

A = k* + €(I; -~ k*log k*) = k* + €a, (10-4)
B=€¢ L = €B. (10-5)
Note that @ and B8 have integral dependence on x* and 7%, so (10-3)

is actually an integro~-differential equation. We now expand k* and

T* in €:

K* = Ky + €Ky, (10-6)
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T*X=17, + €Ty, (10-7)

and substitute into (7-36) ~ (7~38). Equating coefficients of €,

we have
(
_ (c - 27—0)"0’ = Toi: . (10-8)
0(1): { = (Q +eTydky =Zgky + Ko = To2Ky (10-9)
. _
\ZO = LC_%__’ (10"10)
f

: S
CKy ! =Ty Ko+ 2Ty '+ 27, (1, + @' )~ B" + 7o 2B - Ko 2B = Ky J xoBds

_ (10-11)
O(e) J ~(Q+CTy )y =CKyTy = Lo Ky + Zyky + " ¥K," ~ T2 (04 Ky) = 2K, Ty Ty

s .
+ 27,8 + 7, Ky [ Ko B ds, (10-~12)

s .
kZl = f [k (@’ + k") + ko' Ky = To Ko Blds. (10-13)

The O(1) equations are just the localized induction equations and

therefore
K, = 2v sech vs, 7, = %— . (10-14)

To examine the O(e) equation, we have to compute ¢ and B,
which are integrals involving k* and 7*. 1In fact, we only need a
and 8 to leading order. If we write

A= 0 + Q@ + cee, (10-15)

B = Bo + B], + e ‘s (10"16)
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all we need to know are @, and 3,, which are

a, =1,(k,,7,) = Kk, log K, (10-17)

B, = Lo(ky, Ty ) (10-18)

Now I, and I, are given by

& - RIAAR
I, = 19\° — 5 (10-19)
[d,] [R-R[
L R - AR (10-20)
== -
~ Te] R-RP

where [d, ] means that the integration is stopped at €] =d,, 4,
being the same constant as that in §33. Explicit expressions for

a, and B, in terms of s are not available, however, we have seen
in §38 that the O(¢€) terms become important only when s gets large.
Therefore, we are mainly concerned with the asymptotic behavior
of (10-11) - (10~13) as |s| —~ o, and we only need the asymptofic

values of @, and g, for large s.

§40. Limits of the O(e) Equations as |s| — .

Since the solitary wave solution is symmetric with respect
to s, we can consider s - + « without loss of generality. In this

limit
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Kk, ~ O(e™), (10-21)
T, ~ O(1), (10-22)
a,, B, ~ O(s™), (10-23)
s0 that

Z, ~ 0(e™*%), %, ~ 0(e™®) (10-24)
and the leading terms of (10~11) and (10-12) are

By " = To2By = 219§ = 0, (10~-25)

K" = PRy = TR0 = 0" = 270, . ' (10-26)

Equation (10-26) gives k, in terms of k,, 7, and in fact has an
exponentially decaying solution for x,. Equation (10-25) is very
interesting. Since neither 7; nor «, appears in it, it appears to be
an additional constraint relating x, and 7, through o, and 8, as

g - o, Let us examine its implications.

We use equation (8~1) in the t* coordinates, we have

¢ - -zi-,E tanh v¢
13 = -21—}2 sech v€ cos(r,§ - Qt¥) | , (10-27)

DO

T}‘f sech ¥¢ sin(7,{ ~ Qt*)
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(€ - s) - 2 (tanh v - tanh vs)
"R~-R-= %’“—L[ sech V€ cos(7,§ - Qt*) - sech vs cos(r,s - Rt*)] | (10-28)

%E[ sech ¥§ sin(r, § - Qt*) ~ sech vs sin(rys — Qt*)

1~2p sech?t

-—21;“—7'& sech v¥ sin(r,§ - Qt*) - 2u sech v§ tanh vT.

)%)

cos(T,§ ~ Qt¥) (10-29)
9
?—LED sech v cos(t,{ ~ Qt*) - 2 sech »§ tanh »€.

sin(r, § - Qt*)

R-RI™=€-97 (1 - o(-é.)). (10-30)

So that (8~1) as s = « becomes
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o(2)
- 2UT, .
fag 7

l’éech ve cos (1, - Qt*) - %EE sech»{ tanh v¢ sin(r,{ - Qt*i]dt

L (s - L)
+O(-é1§-)
oR
e
- 2uTy
[d,] 7

(s - )2

o

-

[:sech 8 sin{r,§ - Qt*) +—21—f-"1 sech v tanh »¢ cos(7,§ -Qt*

)]dc

+8 (10~31)

where S is the singular part of the integral which is O(e-s). As

58 = o, we have from (8~40) and (8-38) that

O(e”5)

b~| - M sin(r,s - Qt*) + N cos(r,s - Qt¥) +0(e™%)| ,  (10-32)

M cos(r, s ~ t*) + N sin(r, s - Qt*) + O(e™®)
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0(e”™5)
n~ | Mecos(rys - 2t + N sin(r,s - Qt*) + O(e™5)| , (10-34)

M sin(r, s - Qt¥) ~ N cos(r,s — QU*) + O(e”5)

where we have written

- 2 2
M = _:f_in_z _ p.(l - 3,,%—) - - (1 - 2p), (10-34)
2Ty, _2pr, (10-35)

We now rewrite (10-31) as

O
R (1
%= €| P cosQt* + Q sin Rt* | + 0(‘@) , (10-36)
-P sin Qt* + Q cos Qt*
where
2uy
p=- 2u1, [sech v€ cos 7,¢ - T, sechy€ tanh»¢ sin7, §]d
= { v (s =€) '
- d, | .
(10-37)
2uy
Q-- 2ut, [ sech v€ cos 1,& + 71, sechwvtanh vt sint, £]dg
= {do] v » (S P C)Z

(10-38)
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We can express @, and §, in terms of M, N, P, Q by taking the b

and n components of (10-36):

a, = P(~M sin 748 + N cos 7,8) + QM cos 7,8 + N sin 1, s), (10-39)

B, = P(M cos 78 + N sin 7y 8) + QM sin 7,8 -~ Ncos 7, 8). (10-40)

The forms of P and Q imply that

P,Q~ 0 (3], (10-41)
? 9.9 (.gg.) , (10-42)

which means that P’ and Q' can be ignored to our order of expansion.

Thus,

By = To2By = =27 2P(Mcos T, s+ NsinTys) - 27,2Q(M sinT, s -

N cos 7, 8),

=27, 0y’ = 27, P(Mcos T4 8+ Nsintys) + 27,2Q(M sin 7, s - Ncos 7, s),
(10-43)

which shows that (10-25) is identically satisfied. Furthermore,
(10~26) reduces to

K," ~ 12Kk, = 0, (10-44)
giving, to leading order,

K, ~ evlsl, (10-45)
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These results show that the localized induction hypothesis
is better than it appears in the sense that the corresponding solitary
wave solution is self-consistent even in regions when the local
effects fail to dominate. The O(€) correction to the O(1) solution is
uniformly small for all values of x, and thus the expansions (10~6)
and (10-7) are justified. Even with an exponentially decaying curva-~
ture k, agreement with the induced velocity given by the Biot~Savart
integral appears to exist to O(e2) when the regular part of the

inte'gral is taken into account.
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Appendix. Conservation Forms of the Nonlinear Schridinger

Equation
For the _Korteweg~de Vries equation
U, +uu o+ ﬁzuxxx = 0, (A-1)

intei'esting information can be deduced from the conversion laws
and constants of motion (Miura,1968, Miura, Gardner and Kruskal,
1968, Su and Gardner,1969, Kruskal, Miura and Gardner,1970).

The real and imaginary parts of the nonlinear Schridinger equation

¥= iEV s y(blyl+ Q)] : (8-2)

which is equivalent to (8~14) in the non-propagating frame, can

also be put into conservation forms. If we define p and u as

p= Kzs u = 27, (A-3)
where
s
i f Tds
Yy=Ke ’ (A-4).
we have
P+ 55w =0, (a-5)

) 2
a(u+3%(puz-gi+%(%§) ..g?‘s)=o_ (A=6)
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Thus, for a solitary wave, when k - 0 exponentially as Isl ~ oo,

we immediately have

Ip = f_ ) p ds, (A=T)
= [ (ou) ds, (A-8)

as constants of motion. By expanding (B~6) and using (B~5) we

have

ou, )21 2
fa%l"*bg(*z P*z-r(as) 5 s) (A-9)

which leads to

I = [ uds. (A-10)

In addition to these three integrals, the form of the pair (B~5) and

(B-6) suggests a further integral explicitly dependent on x and

J= foo [sp - t(pu)]ds, (A-11)

which corresponds to one found by Miura, Gardner and Kruskal

(1968) for the Korteweg~de Vries equation.
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Epilogue

For God's Sake

Let us sit upon the ground and tell sad stories

Of vortex filaments.
How some have been ill-posed, some singular,
‘Some poisoned by their self~induction, some core size killed,

Some haunted by the mathematics they have involved. -

All murderous.

For within the swirling motion that rounds the mortal circulation
Of a vortex | |
‘Keeps futility his court,
And there the non~linearity sits
Scoffing at his state and grinning at his theories
Allowing him a breath, a little scene to linearize, compute
and fill with approximations

And then at last he comes and with a little inconsistency bores through

the costly hopes and

Farewell.coceceees

Shakespeare
Richard II. Act 3 Scene 2



