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ABSTRACT

The Chew meson theory has been applied in an attempt to
explain the observed resonance occurring in the photodisintegration
of the deuteron at an energy of about 250 Mev. The resonance is
interpreted as being due to the rescattering of a virtual photo-
produced meson in thé J =3/2, T=3/2 state from one of the two
nucleons, the meson being finally absorbed., The impulse approximation
is used to describe the scattering. Results are obtained for the
total cross section as a function of energy in qualitative agreement
with experiment, fut though an asymmetry in the angular distribution
is found, it does not give a different cross section at 0° ang 180°

as seems to be required by the data.
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" I. INTRODUCTION,.

For the past several years a considerable amount of experimental
information has been accumulating concerning the photodisintegration of
the deuteron abt energies running up to almost 500 Mev. (1) These results
indicate a resonance of sorts in the total cross‘ section at a photon
energy of about 225 Mev, Theoretieal calculations have been carried up
to about 150 Mev ignoring any explicit meson effects,(Z) and somewhat
further by means of including a meson magnetic moment. G) These do not
seem to predict any resonance behavior. In view of the observéd resonances
in both the meson nucleon scattering and meson photoproduction from
hydrogen in the J = 3/2, T = 3/2 states one is tempted to suggest that
the resonance in the deuteron photodisintegration is due to the scattering
in a virtual state of a meson which has been produced by the photon, the
meson being finally absorbed by one of the two outgoing nucleons. In order
to attempt a quantitative description of the effeect of such processes it
is neceasary to fix on a particular meson theory to deseribe the meson
nucleon interactions. Since relativistic forms of meson theory have been
notoriously unsuccessful in predicting anything, and since there is no
reasonably valid approximation method which can be applied to them, it
seems advisable to use Chew's form of meson theory. 4) This theory has
several advantages. First, it is not a complete theory (and is rather more
of a phenomenological approach), in the sense that no attempt is made to
describe a large group of meson phenomena, such as S-wave interactions,
relativistic effects, or heavy mesons. The S-wave interactions are just
ignored, the rest is assumed to be describable by a cutoff on the momentum
of any virtual meson, thus restricting one to low energies and provlding



an extra parameter. The theory 1s constructed to agree with the important
qualitative features observed in the meson nucleon interaction; namely
étrong P-yave couplings, pseudo scalar mesons and conservation of isotopic
spln. Second, the coupling constant is amall, so that there exist fairly
reasonable approximation methods. Third, the theory is relatively easy to
use, at least compared with the existing relativistic theories. last, but
not least, the theory agrees fairly well with all low energy meson effects,
(except, of course, the S-waves).

The above being considered good and sufficient reasons, the
Chew theory will be used in an attempt to describe the deuteron photodis=
integration up to energies of several hundred Mev. Since even a relatively
simple theory such as this becomes unpleasantly complicated when applied to
two nucleon problems, some rather drastic approximations will of course be
necessary. It is therefore not to be expected that more than mere
qualitative features of the cross sections will be reproduced.
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II. FORMAL EQUATIONS.

The Hamiltoni@n for a two-nucleon system interacting with both

electromagnetic and meson fjields may be written
- ot - + -
H=H_ +Hg(a) + Hpye) + Hy,(b) + nm(b) + 7, (1)

where Ho denotes the free nucleons, and the free meson and photon field,
We assume any forces between the nucleons to be correctly given by meson
theory, so there is no separate term to describe the n-p interaction. V2
represents all electromagnetic interactions, and for a © ¢« Y meson

theory will have the form

v2 = Hrmcleon current + Hnuason current + chree-ﬁeld . (2)
+

H:m (asb) denotes the interaction creating or destroying a meson
on micleon a or b. Denote the sum of these four H ., terms by V,.

In order to caleculate a cross section for the deuteron photodis-
integration we will be interested in evaluating the R-matrix for the above
interaction V1 + V2 between a state of 2 nucleons, 1 photon, O mesons and
a state of 2 nucleons, O photons and O mesons., Since electromagnetic inter=
actions are weak, it will be sufficient to calculate R only to first

- 1 1 1 1
R=Ry +V, +R) gV, +V, oRy+R gV, g}y )

where R‘I is the transition matrix associated with the interaction V1
above; that is:

R =T 4V 3R &
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',Now, observing that Vz has only matrix elements connecting
states of n mesons with states of n + 0,1,2 mesons, and remembering

that R is to be calculated between 2 states of O mesona, we can write

olzlo) = (0]v.|0) + 2 (o|R,|0,1,2) + (0,1,2]V.l0
(or|o) (|2|)+O12(|R1| ) 3 ( |v,l0)
+ Z (017,10,1,2) 3 (041,218 ]0)

+ 2. (0lryln) L @lvylat) L @iz l0) (5)

nynt!

wvhere n' =n % 0,1,2, The term R1 gives no contributions, since ths
disintegration also goes from a state of 1 photon to a state of O photons,
and R1 contains no e=-n interactions.

The matrix elsment (n|R1|0) includes all possible Feynman
diagrams leading from a state of 2 free nucleons (the initial state) to
some intermediate state of n mesons. It may thus be split into two
parts, as |

(alz,10) = (alrtfo) [1 + L (olre|0)] (6)

vhere (an% |0) has at po intermediate point in the diagram a state of
0 mesons, Thus (nIR%IO) contains all diagrams going from O to n with
no gaps, and (OIR.'I‘IO) contains all diagrams going from O to O.

In an analogous fashion, (OIR,ln) can also be broken down into
the form

(olg,1n) = [1 + (olrglo) 11 (olrsln) . (7)



(Note 1f n = 0, then we have directly (0lR, |n) = (0]r3]0).) Hence the

entire matrix element may be written

(o|rfo) = [1 + (o]rg|0) 1}] % (o]v,l0) + % (olr3l1 2) 1— (1 2|v,}o0)
+ 122 (©olv,1 2) 1 (1 2[rslo0)

+ 2 ” (OIR{In) 'l' (nlvzln') &(n'lR{]O) i

n,n'
* [1+1 olrjo) . 9

Now observe that

] 1

- 1 141 .o
(oln,lo)-v+vav+vavav+ .

where V 1is the exact nuclear force predicted by the meson theory. Hence

(el = (o] + (olry 1

=@ + (o (v+vivsen)d

= +@vl . (10)

This is the equation given by Lippman and Schwinger (6) for the exact
solution corresponding to a potential V. It is thus possible to replace
{1+ (OIRulo) 'l-] (o] vy (Wf'l. where ¥, ropresents the final state wave
function of the scattering neutron and proton with the appropriate energy.

simlarly, [ (0|H]0) + 11 may be replaced by the deuteron wave function
lwi).m We can thus finally write
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Oltlo) = @l o by ey, by em b duiy  on

where ‘Ff and ‘I’i represent the desired initial and final statesof
the two-nucleon system. Thus "111 may be chosen as the deuteron wave
function, and ‘!’r as the wave function for n-p scattering of the
appropriate energy.

We have thus in a sense changed our point of view, in that
once it has been assumed that the n-p system can be exactly deseribed by
meson theory, we do not attempt to actually so describe it, but use
phenomenoclogical wave functions for \Yf an’d,: !’1. Thmas all explicit meson
offects are removed from the problem except for those directly connected
(1.e.with no gaps) to the electromagnetic interaction. All other meson
effects are taken to be equivelent to putting in as initial and final
statesordinary wave functions for two nucleons, provided it is assumed
that meson theory is in principle capable of predicting two nucleon
behavior properly.

It should be emphasized that as yet no approximation has been
made to the meson theorys later on we shall drop the point of wiew of
using an exact meson theory, and use for all interactions the Chew type of
theory, which is not thoughtof as being in any sense a limit of a full
scale relativistic theory, but rather interpreted merely as being the type
of coupling indicated at low energies by experiment.

The expression (11) can be broken down still further as follows.
Congider for example the term V, 1 R! . This is to be taken between two

2a
states of zero mesons. It may thus be written in the form



(@,lv, Lntlw)
= (7 lv,l1) Lalt + = 11) Lo 18, 1v))
+ (@ Iv,12) L2lag, 11) Lot + & 10 2ajugy 1s)
+ @IV, 12) Laluhy 13) 2ofra i) damy 1y (12)

since V, can only comnect O to 1 or 2 mesons. Here R, represents
the scattering amplitude for mesons op deuterons.
Now, if we assume a Chew type of theory, the coupling constant
(after renormalization) is rather small (f2 ~ «1) 80 that a weak coupling
expansion may be expected to be adequate except for cases in which
resonant (i.e.vanishing) energy denominaters occur in intermediate states.
In the above expression for v, 'l- Ri s &ll energy dencminators.
for intermediate states lie before the photon interaction, are therefore
of the form E ~E, . =k = (k + meson energies) = - (meson energles),
and thus cannot vanish, These terms can therefore presumably be treated

in a weak coupling expansion.
1 - 1y lg 1lg4t
(v, = RS lwi) ~ (txrt.lv2 T Ho t Vo o Hy ¢ By ""1) . (13)

For the term R; i- V2 s however, all meson effects occur after the photon
has been absorbed, and thus it cannot be immediately argued that the energy

denominators will not vanish. We may write
1 =
(welry 2 v lv,) =
- 1 1 - 1 1y 1
= (Tl a(1 +R) SV, +H 2(1 +R) S Hyy ¢ v,lY,)

+ @l 11) 2a1Rs13) 16185y 12) Lealv,lv,) . (14)

For a discussion of the features of the Chew theory, see Appendix B.
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The secorid term here contains Iat least an intermediate state of three

mesons. The energy denominator here cannot therefore vanish unless the

_ ﬁhoton energy is at least three meson rest masses,(ie) 420 Mev. This is

beyond the region of interest here, so the second term will be dropped.
The same kinds of arguments may be applied to the term

-l' 72 -l- R{ » resulting in

(eplry Lv, Lrslyy) =

= (vl L +r) Ly, Lab
¢ glig 2o ) Lo T, Lol S, 1w (15)

The seoond of these two terms contains one more f2 than the first; also
the energy denominator in it 4in some places requires at least a 24
photon to vanish which the ones in the first do not., The seccnd term
should therefere be smaller than the first, and will be neglected.

Thus we finally obtein the form to be used in explicit calculations. It
can be broken up into two parts, to be treated separately. The first
consists of all terms of order ef> or lower; this will be called the
perturbation part. The second contains all terms with Rs in then,

and will be called the rescnant part., Written in detail, and with the

appropriate part of vz explicitly put in, these are:

(1) Perturbation Part.

(wf‘ Hnucleon current + Hlm a HB + l@!3 a HNM + HNM a HHM 8 Hmeson current
- 1 1.t 1yt 14
+ HNM a Hmaon current a HNM + Hmeson current a HNM a HNFI
v 1 1 4
+ Hyy a Hnucleon current a Hym Iwi) * (16)



(11) Resonant Part.

| (@l Lr, 1, + Hﬁuﬂ:ﬂsif 1 % Foason current

+ By L By Boaon current & P

' B By oo curront & B 171) - (17)

The notation in the above two expressions is H = H; + H; ; thus effects
of coupling to either nucleon are implied. In Fig. (1) are shown dia=

grams for each of these terms, in the same order as above.
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III, PERTURBATION TERMS,

These do not contain any virtual scattering processes of meson
or muclecns, so they should noﬁ be expected to produce any resonant
effects, It may be expected therefore, that these terms should include
the earlier caloulation of Schiff and Marshall and Guth, (%) and in
addition provide a kind of background for any resonant effects which may
arise- from other sources.

The explicit form of the perturbation interaction is given in
equation (16). For the various interactions the following expressions
will be used.”

1 +72
- (-] 2
B mcleon current - Z;bi‘%ﬁ 2 é'Y-a
a
-(P1+M£)+”f2 ’ja)zl. T .f
2 -a
(o K
Ta'k ik “v " ik
H%L’ =1g —= Z,%ae * +4g—2—— T g o
V2o a 2w
+) (=) y+
H =gy ) .
T « € il(o G 06 iK o
(=) -g = -"E4 -5 =
= igeT L *ae + igeT - 'Be
E i E - Vol

Hmeaoncurrent=-e§_' (@Y g*=-g=Vg)

can be rewritten in what will turn ocut to be a more
(8)

Hnuclaon current

convenient form by using Siegert's Theorem. This states

We use the notation g = /4w £/, , wvhere f 1is Chew's coupling
constant. )w
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'
513

»® [ ) - [ ] 2-1}1.\/2/\
é'. Y+i°£‘- gvexc':hzmge E-D 2 2 &°L

- for the electric dipole part of the coupling. Here vexcl denotes the
charge exchange part of the nucleon force. This exchange forcs term may
be interpreted as the low photon energy contribution of the charged meson
exchange effects; thus this should already be contained in the remairing

meson terms, We shall therefore instead take

S 1) /E a .
Hx'mcleon current = 2 2 &°%L

-7 (ME"L’EHLW o .y
a,b - a =

and include the additional term - de A ¢ E Vg ..no.

effects. The reasons for making this replacement of g *Y by @ *

in with the meson

are the following:

(1) It allows a more direct comparison with the Schiff and Marshall
and Guth calculations, since their coupling is taken to be & * L .

(11) It emphasizes the deuteron wave function at larger distances,
where 1t 1s better known.

The discussion will now be split into two ;a_rts; first a cal-
culation of the photodisintegration amplitude produced by Hl'1 ucleon current’
and second that produced by explicit measure effects. In calculating
the meson contribution, it must be remembered that the term ie A *

v exchange must be subtracted, so it will be necessary to calculate it
explicitly. In view of the interpretation of this term as the effect

of charged. mescn exchange interactions at low energles, it may be expected
that this. subtraction will simply remove the charged meson exchange

effect at low energies. This will be verified by direct eemparison of

such effects and the vexchan ge term.
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In discussing the contrit(m‘;.ion of H ucleon ent? ¥© first
2

observe that previous ealculations'~’ have indicated that the T * g
“term gives very small effects in the energy region of interest. This

term can therefore be neglected, and we can take

' - fEg.
Bmeleon current = = 2 2 8°L o

We therefore wish to caleculate just the matrix element

ie 3
S!’}(--é- %’é‘;)’l‘id; .
The initis]l wave function here is to represent a deuteron, which we take

as a triplet Sestate, so that we may write

']
wi = —1:';i Ioo(n’r) X I‘r

where the radial function u, is not at present specified in more detail.
Ioo(ﬂ-r) = 1/ /4% 18 the angular dependence of an S-state, and X?
denotes a triplet apin function of projection m.

The final state we shall take to be a plane wave, of momentum
Pf which is given by overall energy conservaticne In general its spin
dependence may be either triplet or singlet; in this case the coupling
is spin independent, sc only the triplet state will contribute. The
momentum of the nucléons in the final state is high enough so that the
assumption of a plane wave state is probably fairly reasonable; in fact,
it is exact for P-yave outgoing particles (as one has in this term) for
a 50 per cent exchange force. Therefore

iP, e ¢
ce—t '
"Ff-e X? ’.



and sinece only the P=wave part of this will contribute here, equivalently
1 93 (g2
Tp=an 7)) ()

The coupling E * r may be written as

gaer= /_rz e* Y (ﬂr)

= B in
where
+ 1 - §
e ==X ¥ o == % .o,
1 J3 -1 /2 o Z

It is then a straightforward calculation to evaluate the matrix element,
and the result is

~ B R [T g5

where
u, =T j1('Pfr) .
Defining
m .
I(k) = lfo uf rou, dr‘ .
the final result is

g
-e /§2£ -r;:: k) 5, (18)

and the final state can only be a triplet. The integral I(k) has been
evaluated for various cholces of u, to represent the deuteron by
Marshall and Guth. (2
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" let us now continue on to meson effects. These included the

4

- _ 1 - - - 1
gl By Ly vy g v uy Lol Lo, v 2, 3

R R L | 14t
* Hiog o Bung Hunt By 5 Bysleon current a H Wi) ’ (19)

with the provision that we must subtract the term ie 4 * ¢ Vqxohangs®
which presumably is the three field and meson current contribution at
low energies.

To verify this, and to see in detail how to subtract the
vex change contribution, it will be convenient to begin with a discussion
of the form of the meson current and three field interaction diagranms.
The nucleon current parts (that is, terms like H;M i’ H cleon current
L gt) will not be affected by the subtraction of le 4+ V. . go?
and their discussion will eonsequently be deferred.

Obgerving that H; can only produce an S-wave meson relative
to nucleon a, while Hg, only can couple P~wave mesons, and arguing that
terms like H;M(a) % H;M(a ) are essentially included in the anomalous
magnetic mowent terms (which are known to be small), one can easily
convince oneself that the only diagrams which need to be taken into
account are those listed in Figﬁre (2)s The matrix element representing
the sum of all these diagrams we shall denote by (gfln}gi) between
plane wave states of the nucleons of relative momentum gf and _l:l "
Consider first the contr;lbutioh from the H3 couplings. The relevant

diagrams here are shown in Figure(2a)
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The plane wave matrix element, from a state of relative nucleon momentum
2!. to a state of relative nucleon momentum gf representing the first
diagram may be directly written down. It is

since the interaction

G— N
emit) ~*e

5

where T, is the charge of the emitted meson. The operators T+ and

= ige Tz

w— L4

C - change n > p and p * n respectively.
Conservation of momentum determines X = gﬁ - z:‘, 3 in the
c-m system, this gives K =~ P, + _131 + k/2. We first evalute the
isotopic spin parts. The deuteron is an isotopic spin singlet atate,

80 we want to evaluate
b

b .a a, .0
(zpzl=-z_ T )X,
vhere X: is the isotopic spin singlet wave function. This is easily'
done; the result is
o
24

vhere x? 1s a triplet isotopic spin state of profection O. The matrix
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element thus becomes

-éesiv.x

\/Ekf-b

The second diagram may be calculated in an analogous fashion. The

S —

T e 2

result for both ia:

T e K T . a T e T e
--_.5_292{:5;-1 e _ =% e % (20)
) ]
= K2 o p? 2 _ 2
where
K!' =P = B +Kk/2, K=-P, +B +k/2.

Look next at the terms in Hma The diagrams included here are

son current’®
shown in Figure (2a), where it is understood that all 6 possible time

orderings are to be included. The result here is:

-.ItEgEU' .Ii.-...l—.—'é.(p ...21) _;__IL_.._.O'.E'I
\/z—i-b Kz_/“_Z =f K2_f~2—a

(21)
Adding (20) and (21) we find the entire plene wave matrix element from
the H3 and meson current ccuplings to be

= 2 - 12 W12 2
s S 8B -E)S X g (22)
(k2 - p?) (k12 = 1?3

We actually want the matrix element of these interactions not between
plane wave states, but between the wave functions. ¥f + ‘}Ii describing
the outgoing n-p system and the deuteron respectively. Thus it is

neceesary to evaluate



3 3

& P d
wrnr)=j——-::j v_|p.) (B IMIP. )(P. v, )
(v, I, (znp (n)3(|zf(|| 2, Iv,

j (2n) J (2u) «( J @ g Hzp)

ip. -iP, *
o T (g lulp) e * oty (g (23)

If the exponential is written as
P, =P
opa [ Bpt. g -x)+ A F. o],
then since (P lMlP) is a function only of P, ~ P, we can evaluate

SdB(::"i _+_I:f), and get O (;i -;f) as the result, Thus

& p 3 -iPep
(v lMly,) = J‘z;-)-; J‘d £ ¥(x) (BolMIE) e ¥ (z)
where

BB - -

We want to calculate these meson terms for amall photon energies, so we
can verify that these terms actuelly do equal the coupling

(w'-ie—/\

f \/2-1? e°r Ve:tc:l;atr1gemr

;)

predicted by Siegert's Theorem. Therefore we shall first get the low k
linit of (¥,|M|¥,)s This is easily found to be

2_gg J J FE w*(r)i SHE Set SF S8
(2n) 2

+ 2

AR g -
p2 5 Lo o . (24)
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Vo mist now calculate (vl -L:-;' 2z vexchangewi) and
compare it to the above.
| To lowest order in g
ik r -iK °I,
- O’ ® K = -a -——J—-—— 0- Y K -
vexchanga g ig L= ° Kr?' - {uz (-1g) - =°®
3
a’ K
b a_b -
(c2cl+c2c))—= ,
+ + (2,“)3

vhere K2 = p? = a(® + %), Evalustion of the isctopic spin
operators on x: gives -ng o Hence (writing =P for X, and r for
L, - n,)

o .
AL B

_ 3 -
2 rE S
exchange

.p
v = w2
® @’ T Eepd

Since this is integrated on all & Ps P may be replaced by P +¢
for any constant vector ‘&, without changing anything. Thus

) J- B T (@43 LE+3)  Alw)r
v = =2g - ~ — e
exchange (21:)3 (P+81% + mt :

Since '_e: is arbitrary, the first order term in '_e: mat by itself be

Z28Y0¢ dBE V'P 0..3 + U.P 0.‘&
0=-2g2\§ = = e = ~a = >
(21:)3 Pz-l!-,uz
R e-R I R -ip- ,\.G'EE’;&_’E -iP'r
-2 2. 22 B I R
(®+ %) + M

i.e. s We have

3 ~
é 2 G‘og G'Q"“ 0‘.9- G‘E
5 Z mdp® | —— BT B b= ==
18°T Voychange = 28 j 2n)? 5 2+ ,,«.2
, ST TR SF g i (25)
(1:‘2 +)¢~2)2
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and taking the matrix element of this between initial and final states,

~ we have, comparing to (24),

~de__ 5. _
(Wf' \/ZT IR exchangew) f'lei)lFo

exactly as desired.

Thus the above caleulation verifies that we have already in=
elu_ded 15 the § * ¢ coupling (wflulvi)kzo; the corrections to this
coming from these meson parts of. the perturbation term mmst therefore
be given by

(wluley) - (wolMle) o .

Let us now return to the problem of caleulating (‘I’fIMIYi)

explictly., This requires a particular choice of \Ff and \Yi. As before,
we shall take \I’f to be a plane wave state., Thus all we really need is
& p |
f—;(zﬂj (B IR ) (R 1%, ) - (26)

where (gflnl_f_:i) is the plane wave matrix element calculated aboves

Using the mean value theorem, we can write

a’p
J(—Z-;)-; (Bolmle ) (B, 1¥y)
“ P aP
= ( JCREED [y j -L—A(Zup (g, l7,)

an

[j e (BlMIP )], ¥ (0) (27)
eff :

provided (gﬂ‘?’d) is everywhere > O as a function of |P1|. (This is

actually the case‘ for most of the commonly used deuteron wave functions.)



-f’
k, etc., 80 we have not really gained anything by writing it this way.

Pe £p in the above expressioh will of course in general depend on P

' However, one might hope that Pgpp Will be much less than Py, so that

ff £

we could neglect it and obtain the result

3
@ p i
J‘ (2‘5)3 (thﬂzi)(gilwd) - (zf‘M'O) q’d(o)o (28)

Pa £ will probably be of the order of the average momentum in the

deuteron, i.e., about 50 Msve The smallest value of Po which will
interest us will be about 300 Mev., Hence such an approximation might
not seem too unreasonable,

Since it is, however, possible to compute exactly (for some
particular choices of the deuteron wave function) part of the above
expression (that arising from the H, coupling), we shall lock at the
exact answers for these terms to see what error this approximation makes,
and to see how the approximation may be improved. Furthermore, the
above form implies a great sensitivity to the deuteron wave functionm.
at the origin, and it will be of interest to see if this apparent
sensitivity really exists.

We first consider the diagram l({;‘ s for which we
found _the plane wave matrix element to be

o2 Dt o B W2 28

( 'P > . (29)
TR & w2 - (g - By - k2P p P

We shall neglect the (k/2)2 part of the energy denominator. This intro=-
duces no great error since kz/A << Pf,. We thus wish to campute
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' -iP. ¢
jdﬁ; Eﬁ (E_fIM'I_El) e 1 v.@ .

The evaluation of this expression is straightforward and yields

'3
n

mP

%°E &% Qg(P)
where _
| %(P) = —\/Z'-ln_ % fo 3, (Be)(p+ g:) e T w (r) ar ,

=Jf j-om 11(Pr)(lu-r +1) e [T ‘I’d(r) dr,
and

-P. ='2f-"/2.

It is first interesting to observe that the approximation (28)
discussed above is equivalent to an approximate evaluation of % (P)
by assuming ?Ifd(r) is a constant over the range of r in which the
integrand in % is eppreciable. Thus

J@ 2o [ gm0+ 1) e

0
%0
P? 4+ p2

L

whare *Fd(o). here represehts the constant value of the deuteron wave
function. The notation w;i(o) is therefore somewhat misleading in that
if implies a strong sensitivity of the result to the deuteron wave function
near the origin. Actually, as looking at the approximation from this
point of view demonstrates, wd(o) repr;sents a sort of average value of

the deuteron wave function, weighted by ji(Pr)( pr + 1) e I'F,
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In order to discuss more carefully the dependence of % (p)
on a particular choice_ of deuteron wave functions, it will be convenient
to set }A« = Qo This does not appreciably change the region in which
the integrand is large; as can be seen from the original expression (29),
1t 1s equivalent to neglecting o 2 compared to P, and thus intro-
duces an error of £ Xper cent. _

The problem thus resolves itself into determining the sensitivity

of the e xpression

o=} yeme e
to a choice of ‘I’d(r), and discovering to what extent the approximation
Y = qiéci)-
P
is a valid one.

For very amall momenta, i.e., as P - 0O, ,11(&») -+ pp. Hence
as P -0, \"%(P) - J. mr ‘Fd(r) dr. This weights the deuteron wave
function at large dist:nces, and is therefore not sensitive to the cholce
of ‘Fd, since the asymptotic form of ‘Yd is fairly well determined. The
approximation ’Fd(o)/P"2 is clearly not valid, as can also be seen from
the original point of view as expressed in equation (28).

For very large P, 51 (Pr) » = JP;!: cos Pry so that
Yora-d [ 72 g6 e

This emphasizes small distances, so the approximation ‘!fd(o)/Pz becomes
valid, but the sensitivity to wd(r) in unknown reglons also becomss

great,



-2 -

One might hope, therefore, that in an intermediate region it

will be possible to both use the approximation (28) and still not have

| %.(P) very sensitive to a cholce of V,(r). The mamenta P of interest
here are, roughly, 2/A < P < 4//« » where [~ is the meson mass.

Sinece the first zero of j1(Pr) occurs at Pr = 4.5, it comes at a
position comparable to this deuteron radius for the range of P, Hence
one should not expect the dominant effect to be due to the inner part

of the deuteron only, but the whole volume of the deuteron should
contribute,

In Table (1) are shown theresults for P 7 (P) for several
choices of \I’d(r), and also the approximate value Wd(o)/P. The exact
values for the square well are obtained by numerical integration. As
is clearly to be expected the approximation (28) is not at all good for
wgve functions which are not relatively flat over the region of the
first loop of j, (Pr), such as the Hulthen wave function and the repul-
sive core wave function. For a squarse well, however, the approximation
(28) i3 excellent, since the square well wave function is nearly flat
over a large reglon.

As can be seen from the table, the variation of % (P) with
different deuteron wave functions is not excessive, only amounting to
about 25 per cent at P = 400 Mev, and of course becoming greater as P
increases. We can thus conclude that the choice of wave functions does
not much matter, and we therefore choose a square welle For the square
well, approximation (28) is excellent, so the final result will be to
take %(P) . 2‘{’:(0)2

"+ F-
where ‘Fd(o) is a square well wave function evaluated at the origin.
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TABLE 1.

j N Jy(pr) ¥y(r) ar =p @a ().

o

p= 4 2p 3w b 5 p
(Hulthén. ) o123 105 102 087 .078
(App;-ou:.a) +501 250 L167 o125 +100
(Square) +120 103 074 +055 <044
(Approx.Sqe) = .225 J12 OB «056 045

To summarize, then, in order to include the fact that the
initlal state is not a plane wave state, but is really a deuteron, all
that is necessary is to drop the initial momenb.m_lai in the plane wave
matrix element and miltiply by wd(o), where ¥.(r) represents the
square well wave function of the deuteron. This will be good; for the
Ssquare well wave function, to an accuracy ranging from 3 per cent at
F‘f = 280 Mev to 2 per cent at Pf = 700 Mev, Furthermore, this result
is not extremely senaitive to the choice of the deuteron wave function
as a square well, in spite of the misleading notation Yd(O). The
variation with wave mncti‘ons depends on the photon energy, but is
generally of the order of 25 per cent.

Thus, the matrix element of the perturbation meson effects,
(ineluding now both the H, coupling and the meson current coupling) may
be written
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[ 2 - ./\ 6-. G-.A
"geizi% (Bp-kR) S 2 B S8
2 o . 2 2 2
\/_2; Pf-.?f .1§+r' Pf“'f&
L, BB tWA Gt SR %8
2 2
CEPRPTY LT
T . - I~ .
" (zg x/2) e Ee % (££+I_C/2)
. 2 . 2
(R =pp ek +pA)F 4B o K+ 1)
()—.P ’-e:og T e p
12 2L L = L % * %,(0), (30)
(B2 + )22 + 1 ?)

where this now includes the fact that the initial state is a deuteron,
and not a plane wave state. 117d (0) represents, as argued above, the

square well wave function at the origin. Its value is chosen as

¥*

v,(0) = 308 (Mev)>/2 .

In addition to the above terms, there is a contribution coming
from the mucleon current interaction occurring while a meson is present,
which up to now has not been discussed in detail, This comes from the

term
- 1 1.+
HNM a I'Ixmclecm current =a I'lNM

appearing in equation 19 (p. 15 ) the relevant diagrams here are

This results from taking a range b = 2.07 x 10"13 cm(g) and adjusting
depth V, = 22,9 Mev to fit the triplet scattering length ay = 5.39

x 10~13 cm as given by Blatt and Weisskopf, "Theoretical Nuclear
Physics®,
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where processes in which the .meson is reabsorbed by the same nucleon
are ignoéed as theéa are essentially a vertex modification and included
‘by the use of a renormalized coupling comstant. (1’). Nucleon recoil will
here, as in the resonant terms tc be discussed later, be neglected when
a virtual meson is present. The nucleon current coupling here is there=~
fore limited to that coming from the anomalous moments.

_ .There is no need of a subtraction here, since no part of these
diagrams is included in the @ * r coupling. The matrix element may
therefore be calculated in a streightforward way, giving approximately:

2 - 2
lei‘:‘ (PPe f‘£> ia(g;'*gb)'f.f EfOKx/é

o
2 %

0.6 .A ® .A L
(G * 8 & *8+Z P Ty +9)k rfg

-& =f -b
. 1@rg(o)
2
W f(wf - k/2)
where
2 ~ 2
w Pt P§ + k /4 . (31)

The entire perturbation matrix element is then given by the sum of
expressions (18), (30) and (31).

The cross section resulting from the perturbation terms may be
easily computed, using the well=known Golden Rule,

4o = 2n % S lel? ¢ (E,)



where the sum is over the initial three spin states, two polarizations
‘and final four spin states. ¢ (E f) denotes the density of final states,

and is given by

It is most convenient to split the metrix element M into
parts resulting in a final triplet and singlet spin state. Since these

do not interfere, the cross section breaks up into two parts,

ag glg O_trip;gt
an an *

The expressions for 4T /dQ_ and 4G, /dﬂ.. are given below. In obtain-
ing these results, the angular dependence in the denominators of (f£|M|1)
has been expanded out to order P ° k/ P?. + /“-2. Neglecting all terms

of order kz/Pf. + }A—z and higher, there is no contribution at all to a
triplet final state from meson current and I-I3 parts, and no contri-

bution to a singlet final state from the mucleon anomalous moment terms.

ao, 2 P
1
= w G ®r M) (g° ¥4 (0))° { 3 (2 ”*2)2 [1 "AR irz
| £
P P2 P
f g ___....._._.. N 2
L —5——5 1 =2 sin® @
(Pi +f’“2) 1 3 (P +r‘.2)3 [ P?. +f"'2 ] n
P‘"
g __°f 4
+3 (P?. N 2)4 ain® 8 g (32)
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do, |
-E?z = Z; (& ) (P Mk ) é % II(k)|2 sin® ©
L (te = Fn) 4 2 £
+ v.(0)
3 ( ° ) 817 )] W (w, - k/2)°
© (4 + 8in° @ + 5 sin® e)g (33)

The total cross section may be obtained upon integration over d ’

giving
2
=1 ey A4 2
U =3 (Pp Me) (G3) *7,(0)]

bt (1.8 P +J__...P_4___) (34)
"2 pRP 3P§+r2 > D)

CT

2
2
3 (Pp M) (55 E B3]

Po =Fu)2 4 2 P?
v_{0) ~ 35)
( s ) g, (o) 5, - k/2)2 B

+
B~

The numerical evaluation of these cross sections requires the calculation
of I(k) using the square well wave function previously written down.
This is most easily done by numerical integration., Using the resulting
values for I(k), and chosing f£° =.1, W___ =M, which fits the meson
nucleon scattering data as determined by Gammel(1e) we find the results

- glven in Table 2.
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TABLE 2,

g +60
s .

43.7 PP
2249
14.1
10.8
8.9
8.0
7.8

No resonance is shown here, as is, of course, to be expected, The

perturbation terms provide a fairly constant background of about 5 pb

which diminishes quite slowly with photon energy.

The angular distribution resulting from these terms is seen to

be symmetrical around 90°. This does not seem to agree with the experi~

mental results, which indicate that an asymmetry forms well before the

appearance of the resonance, and even as low as 20 Mev., However, at

energies far below or far above the resonant area, the angular distri-

bution tends to become symmetric.

This completes the discussion of the lowest order meson effects.

We shall now proceed to an analysis of the resonant parts.



IV. RESONANT TERMS,

These were defined to consist of the cases in which one or

more mesons was ;ufducedbw'ﬂé; or H £? and

Hﬁeson current nucleon curren

then allowed to rescatter virtually in the deuteron before being absorbed.
If it were not for the presence of the second nucleon, these processes
could be described as photoproduction off of one nucleson, with the meson
then being absorbed on the other nucleon., (The meson cannot be re=
absorbed on the same nucleon if it is to be produced in a 3/2 3/2 state
relative to it.) The fact that there are two nucleons, however, destroys
this simple viewpolnt., First, it allows the possibility of multiple
scattering. Second, mesons produced in S-waves from nucelon (a), which
in simple photoproduction cannot be enhanced by rescattering, can now
rescatter from nucleon (b).

We shall discuss these difficulties in order, beginning with a
discussion of scattering of mesons in deuterium, i.e., a discussion of
the form of the scattering matrix Rs.

R_  was supposed to represent the amplitude to go from a state

of one meson to another state of one meson under the interaction
+ +
Hoyla) + Hp(b)e Thue R satisfies the equation

+ +
(&) R, = H;M(a +b) + H;M(a +b) %RS . (36)

In lowest order, for example, the dlagrams contributing to

Rs are given in Figure (3), remembering that we had chosen to divide

things in such a way that a state of zero mesons never appeared.
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Fig. (3)

In a different Lorentz frame, diagrams (3c¢) and (3d) might look like

Figure (4), in which there is a state of zero mesons. If we were to

Fg. (4)

neglect terms such as in Figs. (3c) and (3d), we would be essentially
dropping the field theory approach, and rather consider the meson to be

simply a particle which can be scattered by either nucleon a or nucleon
b with the potential

V, +V, = Hpa) 2HE(a) + Hp,0) L)
In this point of view, Rs would satisfy

Ry = (V, + V) + (V, + V) i R (37)
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and the lowest order diagrams here would be just those of Figs. (3a) and
(3b)e We shall adopt this view, and replece equation (36) as determining
‘Rs by equation (37). This preserves the features of resonant scattering
in the 3/2 3/2 state from either nucleon as given by field theory, and
only neglects diagrams in which the resonant scattering is coupled to
higher orders in f resulting from otherprocesses. Examples of the

types of diagrams included in (36) and (37) are given in Fig., (5).

, P '
rd A
- N 7
/( T, !
. Y ' /
o t ~ ¢ 4
N
Lyt S / ,/ v
/“I P ’
b s i : - # 4
~ ~. . -
‘ ~ e A ~z - ‘
~ ; 3 -~ [ - ’ 4
~ 7 ’ ~ \ - s
e Sl , s 4
) e~ , L.
vy v/ ’/ Pid
/‘\/‘._ s 4 4
. A / Fd ’
// » // e
. U K
Fig. (5)

Determining Rs then resolves itself into the problem of
finding the scattering from two sources when that from either source by
itself is known.

Equation (37) may be rewritten as

- 1 1 1 1 .
Ro=V, +V +V, v +vlv+v iy v lv ..
— l l [ R N ]
=R, *Ry+R gBR tR R+ (38)
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where

R =V

1
a,b +V. b glRap* (39)

a’b s

Thus Ra'Rb represent the exact scattering from nucleons a, b alone,
and Rs iz the sum of the amplitude to scatter from a or b, or first
on a and then on b, etc.

One approximation which has often(11)

been applied to problems
of fhe interaction of mesons and deuterium is the impulse approuiﬁation,
which consists of taking Rs = Ra + Rb. This one would ecpect to be
fairly good whenever the two scatterers are fairly well separated compared
to the range of interaction with the scattered particle. That is, even
though the interaction of the scatterer and projectile may be quite strong,
the scatterers are far enough apart so that the probability of the pro=
Jectile bouncing from one to the other is quite small., There are diffi-
culties with this approximation;(12) nevertheless we shall adopt it here.
It therefore is necessary to have an expression for the
scattering of a n-meson from a single nucleon, located at somé position
L+ We shall take the scattering as appreciable only in the J = 3/2,
T = 3/2 state, so that we can write

~1(xV=K )ep
('R IKT) = (<'| B | <) Q5 ] I (K RIX) @ 2, (40)

where Pg/é denotes the angular momentum 3/2 projection on nucleon a,

and Q;/Q the isotopic spin 3/2 projection on nmucleon a. These are (13)

1

(E'ng/zlﬁ)=m(3\s‘Oli— :.K_} an\i)
Il On - ae 5 5w -



The factor exp =i(k' = K) * r, comes in because the nucleon is not
located at the origin. For (x'|R|K) the approximate expression given
by Gamel(1?? w111 be used.

We thus finally end up with

Rs = Ra + Rb

where Ra, R.b are described above,

With this approximation for R a? the resonant matrix elements
may be written down in detail. The indices (a) and (b) denote the

two nucleons.
e +b0) L +r) Lla(a+n)

- 1 - 1
+ HNM(a +b) a (Ra + Rb) i- HNM(a +b) a Hmeson current

l + ..
Hmeson current a HNM(a * b)

®

+ip@+n) L@ +R)

P =

1.4
B ucleon current a Hoyla + b) . (41)

- 1
+HNM(a+b)a (Ra+ab)
As an example, the diagrams corresponding to the first line here are
written in Fig. (6).

Fig. (6)
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A1l but one of theée terms (in Fig, (6)) maey immediately be
thrown out, once we assume the no-recoil approximation except when mesons
| are exchanged. The first and third diagrams cannot have the scattering
occurring in the 3/2 3/2 state. The first and second diagrams have
an S-yave meson to scatter. Thus only the fourth diagram remaing.

Similar arguments may be applied to the other terms. The

rema_ining terms are listed below:
ASELEEASEE SOF NE $X
+ H;M(a) i Rb ?13.' (H;M(a +b) ; Hmeson + Hmeson % H;M(a +b))
+ HNM(b) a a a (HNM(a + b) a meson meson a HNM(a * b))

+HNM(a) R'ba. leon +b)-}H;M(a+b))
rig e L@ o (aew) LEG+b). (42)

The spirit of the impulse approximation, which we used above to
calculste R s? is that the amplitude to exchange mesons between the two
nucleons is fairly small. Thus one expects that if a process of re-
scattering can occur with, say, one meson exchange, the contribution
from it will be larger than one with two mesoﬂ exchanges, which is other-

wise the same. To sketch the reason for this, consider the two terms

HNM(S‘) a B‘b a nuc.leon(b) HNM(b)

and

HNM(a) Rba nucleon(a) HNM(a)’



The first term may be rewritten as (symbolically)

H
fraclecn ) (e Lo Lo m) Lap o))

£ ()
I,'Inuclgv:m( HNM(B‘) 1 R, »
HNM(b)
so that the ratio of the second to this is (again symbolically)
‘ 1 2
i. Hnucleon(a) ; H;M(a) - (HNM)
Hm:.clec‘n(b7 B a2 )

Hpy(b)
Since the coupling constant is small, and since there is no resonance
here (due to not having any resonant scattering matrix present), this
ratio is small.
Therefore, using essentially the impulse approximation, only

the following terms remain.
e 1o, Lua) + i) Lr L)

+ (@) Loy 000 Lt + Hrgon 7 ®)

+H;M(b)18 L a<—>b )

a aa

+ I'INM(a) Rh a leon(b) l-lil;u(b))

+ Hy()

b b<—>a ) . (43)

® ._.
m-a
—
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' ‘ Now, the last four terms here represent' Just the magnetic
.dipole and electric quadrupole photoproduction terms from one nucleon,
‘with absorbtion on the other. In the photoproduction calculations, it
is known that by far the greater contribution comes from the anomalous
moment coupling of the nucleon and very little from the meson current

(14)

terns, The meson current terms may therefore be ignored, and the

final result is
@ L Lo + 0 L, Lo
+ HNM(a) Rb a nucleon(b) %H;M(b)

+ HHM(b) a a a nucleon(a) HNM(s‘) * (44)

The corresponding diagrams are shown in Fig., (7), in the same order.

Fig. (7)

We shall now proceed to calculate these, starting with the H3 terms.



A. H3 tems.
The matrix element of interest is:

(el (e) Lo, L Ef(a) + v 0) LR LSy, . (45)

The energy denominators 'l- are m 3 these should really be
o

replaced by renormalized propagators, (4)

1 1
E-Hy+ic o, (f//w)2 AE ~ H_ + 1€))

SI(E - HO +4e) =

where

3(E - H)) fwmax K B_QW

AE=-H) =
[} 1) t" wz(w"E-Ho)

Chew states that the function A(E) 4is appreciable only in the range
#r<Ex W ax 3 for this case E is not in this range, so we shall
ignore the renormalization effects.

Consider Hp,(a) :I;Rb i— H;(a) first. The plane wave matrix

element of this quantity is
@PK T .Ki

- 1
Z ig-—-ar— T o gyt m—eeree (5' Q',', '55)
asa' (21:)3 a7 2 — E-Ey 4 ic Ry
1 Go’a .
E E1+i€ \/2—12 ,—--zw -t
where '
K'=pP.-P -K2+XK
Iﬁ k2 ( (Pi+ k/2)2 (Pi-&k/z_‘s)z)
E"E1=(R+M+Zﬁ)"w+ T S
( Pi k2 , P:fa- (P1+k/2-§)2)
e (o Fog) <o G )



taken between states of relative momentum Ef and 21 for the nucleons.
Note that recoil is included hére during the exchange of mesons between
| the two nucleons, but not during the virtual scattering process from a
single mucleon.

Note also that the exp ~i(K! - K) * r, factor no longer
appears in (k' g'IRblﬁ a), since it has been taken into account by

conserving momentum., Thus in the above,
(< a'lrylk a) = (<75 le)(@r Q3 pla) @ [RLE)

The matrix element may be rewritten as a product of an isotopic spin
part, an angular integral, and a radial (ink ) integral, all of which

can be separately computed. The isotopic spin part is

+
‘8

l . l+2i - ¢ gt T Z
BZ'% a'(Ga' *a=- L ca" G ocal, T

8,8
and this 1s to act on an isotopic spin singlet wave function describing
the deuteron. The calculation is straightforward. Applying the above

to

xg=-—l—-(x

5 b b
el X/ = K12 X!

we get the result %-X?, where

b b

Taking the matrix element with a final triplet state X? » We get as a
result 4/3.
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The angular part is

| 4m<1t< de’K_ 2’(E+E)[3(E+E)'E- G_L-(g+§)gb.|<_]

where g = zf - 21 - k/2. This integrates to
K2
]
— T e - = T e G T
KK-'{B"'B. ET3 4 & o -b}
We have here assumed that there is no angular dependence in the energy

dencominators. In other words, we notr take

k2
E-E'l:k-w-ib-{
K2
- = -yl e -
E - E, k/2 ~w o
2 F
where we have used the conservation law k + i + m =% ° The
resulting matrix element may then be written
L e 1 G .0 5 ¢ Tl
-3@(32‘&'1;-3%'&_&'_1,)E:‘a‘g'l(k) (47)
where
x4ax
L) __.j 1 1 (krlRie) _ 1 1
(2n)3\/53:—' E-E2+ic ™ E-El-!»ia S

The otherterms, H;M(b ) i— R, g- H;(b), may be calculated immediately by

Just interchanging a and b in the above. This means g = - k/2

B- b
is replaced hy g = =P, + P, - k/2, since in the center of mass system,
th

Efa=£f="_-§:&nd 21a=Pﬂ.-l-c/2’2t=‘—Pi--/2‘ Since also

Xg »> - Xg upon interchange of a and b, the entire effect is therefore

to change the sign of k in g. This term therefore gives



g'= E-f - 21 +k/2 .

The entire resonant matrix element is the sum of expressions (47) and
(48)e |

As discussed before, if we use a square well wave function for
the deuteron, it is a good approximation to inelude the effect of the
initial being a deuteron and not a plane wave by dropping 2& everywhere
and multiplying by W&(O). We again use a plane wave as the final state.
The matrix element may be rewritten in two pieces, one given a triplet
and one a singlet final state. We find: (dropping the term in
1

- 7 [ W P .
3 % * -, from the matrix slement)

(1) Triplet Final State:

2 .
'Sj'azf Ik) %,00) (8« B+ 3 (T +F) * Bex 8] (49)
(1i) Singlet Final State:
2
21 % I(k) ¥.(0) (- G )k & (50)

The singlet contributions are clearly mch smaller than the triplet,

being in the ratio fi %L s and can therefore be neglected,
f
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B. Hnucleon current Terms.

Since the calculation of the H3 terms has been sketched in
some detail, it will suffice here to merely observe ore simplifying
reiation.

The nucleon current coupling (for a non-recoiling nucleon,
which we assume to be the case except when mesons are exchanged) is

T kx8
Hnucleon current =i N

where we can write, approximately,

Py = s ‘
P * S, = Bl .
F=—"7" % 2 =%

This 1a seen to be the same as H;I-M for a neutral meson of momentum

k X 8, aside from some numerical factors. This fact allows us to replace

1
Ra a Hnuclec;n current

() 1 8} (a)
by the quantity |

- )
_.(.,_A.-Rz.__l.f_ll_ (R-V)
g -} a

where Ra representsthe scattering of an incident neutral meson of
momentum k X g, and V_ represent the J = 3/2, T = 3/2 contribution
of the meson nucleon potential, as calculated to second order in the
coupling constant. The resulting matrix element may be written as

follows:
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(1) to a triplet final state.

vy . Av )l * . D .
+ (T * B T, k+ T, * P Ty k)E Ry
- . T G . G eQ .

(Tp * B G °e+ T P, T, *8lk"El (51)

2 500 = —] 1 (K'Ry/p 3pplk) = (k! | 342“‘

4n Kk
(52)

and

w'? PR 4 p?

(41) As before, the singlet states will contribute much less, being

of order 16- Pg- of the triplet.
f

The cross sections may be calculated in a straightforward wey from the
above matrix elements. The results, including interference from the

perturbation terms, are:

o |
triplet _ _1
= & ) (P, M) (53)

f 32g Iw (0)]? (—2) [T(c)1? (4 + sin® @)
v2, [7g? ¥ (0) (-Ei) I(k) Re I(k) sin® @

P
+ 128 g*|v (0)|? (—-‘L—-':-‘-‘-) \/E Re(I(k) s*(k))

. sin2 8 cos 8
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- 2
+ 419,017 (C2—E2)” krbls |2

(4+sin 8+5 sine)g

_G_ . y
triplet 33"'(41;) (P Mk) i%f 1;}2( ) ll

P P ,
Lj—; (5) &2 v,(0) £ 1(e) Re (k)
o = Byl
+ 88 4 2 _
+ B (D) sl } (54)

In order to arrive at numbers for these cross sections, it 1s

necessary to calculate T(k)e This had been defined by

4 : 1
I(k) = j - ‘-1-3’5- 1 S
(2n) 2 k/2 =w' =K%/2M + i¢

. (ktirlx) 1 1
1]
KK g mpm K%M+ 16 VZu

(55)

For (k'|R|« ), we choose the form given by .Gammel“o) which

reproduced the exact results very accurately.

ul " w - " -i
(¢tR|e ) = (kI|V]|K) o { 1-J K (23;3 iK lvl:ii g
—u“

. K 02 dK" (k1 ylk »)(ew]y|k )
% : I I J 21!) k -w¥ + ic

_ Sgn2g,<n (kujylx ) § ’
(211)3 k ~R" + ic

(56)
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snd  (“'|V|¥ ) = 4ng?/3 *K'K/ S2B 20T o+ 4fk ~w-w', Using the

relation

= P(; 1u>“) -ind (k =w"), (57)

lim 1
£+*0 k =w" + it

where P denotes the principal value at the pole, this may be written

- as

- jal .
('R} ) = (k'|viK) % 1+1-ALIIF+iAI\%, § Ge)

where we define

K '!3 dw ]

_ 62 wma.x du
T 08 L ® —o")(k - 267

2 “max 3
_ G Kn dw"
AI'---"""'BM,2 (k -w-w') j (k -t -w“)(k- ")(k —w—u")
rr

(59)

2 3
S « SR ¢ R

2 3
M
2 2M2 3 . .
Here G° represents (8mg“M°)/(Qu)’. One should observe that in all the
energy denominators internal to the rescattering process, nucleon recoil
has been neglected. It has not, hovever, been neglected in the processes

of meson exchange between the two nucleons,
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Using this form for (K '|R|«k ), I{k) may be written as (*)

I(k) = K4 gk 1 1 (¢ 1Rl ®) 1 1
(20)  VZBT k/2 - K3/2M -t €'k Kk =K2/2M = 0 /30
- in (_“w- 1 1 (ople) 1 )
() BGT k/2 =k mwr KK /3o
| k= ¥2/2M 10 =0
-iﬂ( KBU) 1 (l(llRIK) 1 1 )
@) foaT k'K k=Rww fGe

/2= K2/2M 10120,

(60)
and the integral (that is, the first of the above three terms) becomes

2
I' (k) = 3—‘:5 (I, () + L,(k)) (61)
where w _
max 3 ' .
Iyk) = J g 1 - =t L
I w k/2= K</2Mm 0V kmwe=w! k= K5/2M- W
wmax 3
I(k) = —] J - L .~
1=Ag+L Al - w k/2= K< /2M= 01
A, = §at
(%) —— (62)
k= K</2M= w

The integral Iz(k) shall be further split up:

2
12(1:) = o IT(k) (63)

22 TR

If the equations k = X2/2M =w =0 and k/2 = K2/2M =w! = 0
have no solutions, then the indicated terms do not appear.
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where

w
mex 3
o) = J : ?w ‘ 12 12
r w k/2- K/2M=wt k= K/2M =0
3 _
. (G, W, w) - 1m KD ) (64.)
w .
and

w
Al(k""vw')=—§-2- f = g gwt
k=w=w? 3M2 v (k= wi=w®) (k=w ) (k= w= ")

&R
E;‘M-z' Glkywoyot) o ‘ (65)

Finally, we write II(k) as
(k) = II, (k) + 4 3 (k) T, (k) | (66)

These integrals can all be evaluated numerically.i The result=

ing numbers are given in Table (3).

k (Mev) I, (k) I, (k) I, (k) Re I'(k) Im I'(k)
100 =390 =099  1.40 x 10° -1.00 x 1070 0x 1070
150 =407 =122 1440 ~1.34 ~0
200 =420 =126 1.30 -1.51 -~ 625
250 =358  -.129 1.14 - 606 - 1.153
300 =348 =.134 973 - 060 - 739
350 =326 =142 »791 .018 - 461
400 =303  -.164 660 013 - 382

TABLE 3.
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Combining this with the contributions from the ie parts at

the poles, we finally get Table (4).

K (HeV) Re I(k) Im I(k) |1(k)|2
100~ =-1.00 x 10~° 0x 1070 1,00 x 10~ 12
150 =134 - 015 1.80
200 -1.38 - 905 2,72
250 - .016 "’1 -411 1 099
350 o521 - 366 : o405
400 0461 - 0295 .299

TABLE (4).

Similarly, to calculate S(k), Gammel's approximate famecan
again be used. Here no integral is involved, since S(k) was defined

simply by

g% S(k) = —L 1 (K"Rﬂa g/plk) = (K!Vs 5 5 p0lk)
\/2(/0' k/2-b0‘ 4n k' k
A{w 'skek) = 44
= g2 3J2 1 1 (_L . AF) &)
W (w! - k/2) JK 1= 8, +1ap

and AI, AF and A% are defined as before.
Using these results for S(k) and I(k), the cross sections

may be computed directly to give the results shoun in Table (5).
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. (*)

k (Mev) Gresomnt : Gperturbat.ion O’tcﬂ'.a.l
100 “12-2 1!-3.7 31 05
150 17.2 22.9 40.1
200 86.2 141 100.3
300 6344 8.9 72,3
350 34.9 8.0 -~ 42.9
400 23.0 7.8 30.8

TABLE (5)

The theoretical cross section obtained above is plotted in
Fig. (8). It is seen to be considerably too high for large photon
energies, running from 20 per cent to 50 per cent above the experimental
points. In view of the numerocus approximations, it is qnsstionable
vhether any better agreement than this could be expecteds The theoretlcal
results do, at least, predict accurately the qualitative features of the
resonance, such as its position and general shape. |

It may be useful to mention, however, several points in the
approximation used which tend to overestimate the cross section.
First, as was observed earlier, the choice of wave functions for the deuteron
could alter the results by up to 40 per cent in the cross section.
A repulsive core wave function.would tend to reduce the resulis, a
Hulthan well to increase them. Second, the fact thet mltiple scattaring.

in the deuteron has been neglected also tends to overestimate the results.

*
resonant here denotes the entire contribution to the cross section

produced by the resonant terms, including interference with the
perturbation terms.
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Brueckner(12) has estimated that inclusion of multiple scattering effects
may decrease the predictions of the impulse approximation in u=D
scattering by up to 40 or 50 per cent. Finally, the coupling constant
is not known completely accurately, and the resonant features of the
cross section depend quite sensitively on it. The choice of f2 = .1
 made here is; as a matter of fact somewhat higher than values generally
considered now. In order to indicate the sensitivity to the coupling
constant, the cross section has been computed using f2 = .08 and
making the reasonable assumption that the R matrix for scattering is
not altered mmch by this change. The resulting cross section is also
shown in Fig. (8), and clearly agrees quite well with experiments,
except for the dip before the resonance.

Regarding the angular distribution: an asgymmetry is obtained
from the resonant terms of the form sin2 8 cos 8., This asymmetry
becomes very small at low and high energles, and also gives the same
cross section at 0° and 180°, which is apparehtly inconsistent with the
experiments. It may be that a cos & term can only be found by
investigating the D state in the deuteron.

In conclusion, then, it may be stated that the qualitative
features of the cross section are correctly predicted by this model;
more than this cannot really be stated in view éf the approximation

required in the calculation.
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Appendix A,
FORMAL SCATTERING THEORI.(s’é)
If one is interested in determining the scattering cross section

produced by an interaction V in the Schrodinger equation

(H, + V)Y =E¥ (1)
the perturbation theory approach provides the answer in the following
form. The cross section is given by 2w times the density.of final states
times the square of some matrix element, this matrix element being the
sum of the perturbation series, to whatever order is desired. If the

matrix element is denoted Mfi’ the perturbation series give

Mfi +Z i‘g———-.{.z T———-m-—;r—l___y XX (2)
o nyn'!
One might try to sum this series exactly by rewriting it as
= - 1 '
= (£lMl1) = (£]vle) + (£lv g T v|1_)+... (3)
or in operator notation
ME VT Ve Vgl Ve e @)
o o o (+] o o
=V + Vg M
o o

We have thus obtained an integral equation for the operator M, and upon
taking the matrix element of the operator between the initial and final
states have also obtained an exact solution for the scattering amplitude.
The above procedurs 1s, unfortunately, an oversimplification.
The principal difficulty with it is that it mﬁkes no mention of how to

treat the poles appearing in the energy denominators. It will therefore



be convenlent to start from a time dependent point of view, and try

to determine how these difficulties are to be overcome. It will turn

out that the above equation for M 1s valid, but that the method of
trgating the pole will determine which of several quite distinct
quantities will be obtained. We begin with the time dependent Schrodinger
equation, |

_ Lo |
H@-(H°+v)w-1at . (5)

and are interested in a scattering process going from some initial
eigenstate of H°,¢ , to another state ﬂf. Usually the procedure is
to say the initial state is fed in suddenly at time t, so that the

exact state at time t is

—1H(t-t°) p ~iE to

Wi(t) =@ ;e i (6)

Actually, the physical situation is always to feed in a beam of incident
waves over & period of time T. Thus it might be better to write the

wave function at time t as

-1H(t=t ) ~iE.t _
wi(t)=3T-f°e > ge T°a, | (7)

~7

where this form implies producing the incident state contimuously from
time ~T to time O. Instead of starting the incident beam suddenly,
however, it will be convenient to start feeding it in gradually. This

can be described by writing
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fo -1H(t-¢o) p ~4E ¢ to/'l‘ .
d

= 1 i'e
‘I’i(t) im T e N e e

T-*e0 ~T

J‘ o LHt e—i(Ei-H-*-ie)to

=1lim ¢
1/e i

>0

ét,

(8)

where € = 1/T. With this method of introducing the incident wave, the

exact wave function at time t is given by 113’:’(_“')(1.) (the (+) is put in

to denote propagation from negative to positive time) and the ‘probability

to be in a final state ¢f at time t is

_ 2 -
wﬁ(t) = [fﬁ(t)l o N

where ~4E
fuw =@ ©,7w)

= (), @),
i i
N 1is time independent because H is Hermitian. Now

‘ ) o -i(E~HHeE)t
¥H(e) = o1 ¢ f o ° g at,
-0

e ic
e E, ~H+1ic sz1

and since H,di = (V + Ei)ﬂi, this results in

+)
“’1( (0) 7 (Ei -H+ 1) +

i-H+is

E

i-H+is

_ 1
_¢1+E1-H+iev¢i

=¢+ _1
i Ei H°+ic

+)
Wi( (0) .

(9)

(10)

(11)

(12)

1 (H—Ei) ;di

(13)
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Thus the transition amplitude is

1

£,,(0) = &, 4 § =T, Tic (£lr[1) (14)
where we define
(elzle) = (B (™ 0)). (15)

The cross section is related to the transition rate, aa 1t is necessary

to calculate d/dt f This is

£1 ()] 2o

d

4 = +)
Do £, ()] = 1(Be (B, - BT (0))

1B v ¥ (0))
= -1(£|R|1). - (18)

Therefore the transition rate is, at t =0,

d

4 = .2 | 2 -1
5 Pyt = z 2511. Im(i|R|1) + ( °)2+€2 | (glr]1)] } e N

EffEi
(17)
N 1is easily calculated

N=2 £, (t)]%=1+2 m@|rl1) +7- 1 | (g]R|1)1?
g fi € i (Ef-Ei)2+62 ’

(18)

and since N is constant in time,

=9€§ |20 (812 = 2 m(1]r]1) + Z —-—-5—5——2- lelrlD® (19)

i (Ef Ei)

Then

¥=1+1malrl). (20)
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In the limit as & - 0 and the volume of the box in which ewerything
is quantized » » 4, N » 1, The reason for this is that the length of

the incident wave train, which is Tv = v/¢, must be less than 1L, the
gide of the boxe Hence as € -+ 0 and L » x, £ L stays finite so
e » » and therefore %(fIRIf) ~ (&;L3 )-'1 -+ 0, The cross section is
" related to the rate of change of transition probability by dividing by

the incident flux.

T -2 L w (1) (21)
fi v dt fi t=0 A

Since (1|R|i) » 0 as L » «, we have left

Ty =1 lim ~Z—— |(s]rID)I? 77 (22)
£%0 (Ef - Ei) + €
I»x

as the cross section for the transition to a particular state f. Now

3
14m —2EL 5 —> 218 (B, ~ E,) 2 | (23)
%0 (Ef - Ei) + € _

which gives the density of final states (together with the statement of

energy conservation) when integrated over the final states. Thus

o =1an | (slrIDIZ ¢ (B)) (24)

vhere ¢ is the density of states. The matrix element (f|R|i) may be

determined directly from an integral equation,
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(£Ir}|1)

= (B v (0))
_ , 1 (+)
o]
= (B, V8,) + Z (8., VE.) 1 I|R|1) (25)
B W)+ T Gy W) I Gl

This, rewritten in operator form, is simply

1

S REET R . (26)

R=V+7V
Ey

As an example, consider the scattering of a particle of spin zeroc from a
spherically symmetrical potential V. Let K. and K, denote the initial

and final momenta of the particle. The cross section is then given by

4 =1 anl (x lrIK)I? - s (27)

[o )]

2

Since V 1is spherically symmetric the scattering must conserve the angular
momentum 1, and its 2z component m. It must also be independent of m.
Thus if we transform R +to a representation in terms of the energy (or
equivalently the magnitude of the momentum) and angular momentum, R

will be diagonal.
(¢RI%) =1Zm (kgl1n) (2l 1) (kIR Jiy), (28)

and conservation of energy gives K ¢ = K Now

.
L | dn‘r
&Am)zl%; Tad@y ) Bylp) 1,00 555

= ¢ Tip(f) | (29)
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“ and similarly
(ml,) = (&5 ¥, () (30)

We thus obtain

.28
v

ey (31)

%ﬁ_ a2y ) D) (gly| ¥ )] (2rr)3

If the z-axis 1s chosen along th? direction of the incident beam, then
1/2
- (21 + 1 .
!m(QKi) > 1,(0,0) = (S50 8 ‘Thus

150
-z Vsz‘“‘“ o) (¥ lallw if;‘-;
=& | L % (21 + 1) (kIR %) P, (cos ef)l2 -(-:-55 (32)
Now if (k|R, [k) were defined as
(K|R1|K)=-%‘%3—- %sin Sleié;, (33)
the cross section would have the form
4= ='-<15 I% (21 +1) sin 5 9151 P, (cos ef‘)l2 (34)

This is precisely the usual form obtained from a partial wave analysis.
Identifying the diagonal matrix element of R with this
combination of the phase shifts can be done in general. If A denotes

any representation in which R is dlagonal, then

(£Ir]1) = % (g]a)(al4)R, (35)
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If the quantities (f|A) are normalized by

ZI § (& - EDQID(TIA) = 6(®) 8,4 » (36)
then we can define
- 19
.RA'-EJT"ELJ sin gAe A (37)

C(Ei) represents the density of states per unit energy range; The cross

section is therefore

-— ié‘ 2
%{L— %—E I% flA)(aIi) L gin 5 A ‘ c
) 1¢SA 2
= ST '% (£]4)(a]1) siné , e ' . (38)

The expansion into the states A may be interpreted in terms of projection

operators. Defining P, = [&)(a], -

(£|r[1) = % (z]p,11) R, o (39)

and since PAPA' = PA SAA" we have

1
+ R e A .
Re=V,*y E-H + i Ry (40)

Explicitly written out for the example treated above, this last equation is
Ry ) = (et [y ) + [ £ "
A NDENCI AT J o’ (k" 1V k™) g—gv gz (" IRy )

(41)

The cross section is then equally well written as

2rr|Z(fl Ii)RI ¢ (B) . W)
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It is possible to define another operator, called the reaction matrix,

as follows, Write

(£]Tf1) =% (rlp, l1) T, (43)
and
R, T
TA=1+1WCRA’ RA'1-1nc'rA - )
" Thus .
~1C T, = tan SA . (45)

Again referring to the explicit exemple previously discuéaed, an integral

equation may be derived for TA‘ We had

"2 L
(k[By [K) = <]y Je) + g—"?;:;;“-— vy k=L (kIR [6)

KM
e KORCLARE (46)

since

1 .1
E-E"+ic E =B

+ 1r §(E - E").

Now, by definition,

(' |1, |K)

(e |Ry lk) = 3T
1 «inr (2”)3 ("IT1"<)

(47)
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Thus
(el ) = ey fe) = 1w-z§;¥3 AP

Kul gk 1 .
{ (2r)° (kv fem) g5 (<mIT0)

KM
+ j:n-—(—z-’-r—i-j (K'Vlll‘) (K'Tl'l()
an ak n n 1 " . )
= (klvyfe) + SW ho b g7 (i - G

Thus, putting back in the projection operators, and writing the equation
in operator form,

1
T. (49)
E-H,

T=V+V

This is just the same equation as R satisfies, except that the principal
value is taken at the pole.
In a problem with two potentials, V = V1 + V2, where one of them,

say Vz, can be treated in lowest order perturbation theory, we have

R (T A V) ¢V 2V g R (50)
[+

which, to terms linear in Vé, is

- ---.—1---_—_— —-——l—-—-——-—
R R1"‘72"R1r;-no+15 V,* Y, E-H_+ic R,
+R ...._..._1...._......... v _.-...!_....._._... (51)
1 E-H, +vic 2 BE-H_+ic R,
where
1
R =V, +V E-H, *ic By o (52).

A similer equation holds for T,
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{

Appendix B,
THE CHEW MESON THECRY, (%)

Low energy experimental work on the interaction of 7 mesonsa.nd
nucleons has established fairly cronclusively the dominance of the P-wave
interaction. It is also a well known experimental fact that w mesomsare
| pséndoscalar particles, 4 simple guéss as to the forh of the interaction

at low energies is therefore
HNM=Jv\/4r-’-; g7 Z-g vaky, (1)

where ¥ and @ are the nucleon and meson wave functions, respectively.
This ccupliné is also part of the low energy limit of both the psemdoscalar
direct and the psendoscalar gradient relativistic theories, and as such
may be thought to have some theoretical justification, The point of view
adopted is not this, however, No attempt 1s made to discuss .a relativistic
theory; it is merely assumed that whatever the. complete theory is, it has
approximately this form at low énergies.

Since this theory is to apply only to low energy phenomena, the
nucleon will be treated as a static source, ¥(x) ?(x) = ¢ (x) being the

density function of the nucleon, The coupling thus may be written

ot | 1 VB 2 ;—fﬁ'-gfeif'xeuf

3
=ik * x a” K
-Tg, fe e®) &’x } ] (2)

vwhere the meson field has been expanded into creation and destruction
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+
operators a

¢ and &y Writing

Ix

i
v(k) = je T e dx (3)

we have

s | {1 32

19

o K

T avx)

V2 Wy
| 3
f U * K d” K
- 2 = gt v(x) = (4)
Vi FovEe, - = f (2n)°

If the nucleon were taken as a point source, v(K) = 1, and the inter=
action.would divérge at high meson momenta. The'assumption is therefore
made that for some unknown reasons (e.g., the appearance of heavy mesons,
and recoil effects) this coupling is effectively cut off at high energles.
In other words, the furction v(X) is assumed to produce a cutoff in

momentum, This is generally taken as a square cutoff, so that

1 K < K
v(K) =

0 k >.K
All integrals over virtual mesons are then cut off at K max’ which is
asgumed to be somewhere around the nuelecn mass, but other than that is
treated as a new free parameter to be adjusted.

One further important modification is made. That is that the
theory is renormalized, and the coupling constant fb replaced by a
renormalized constant f. It should be emphasized that this replacement
is not necessary to make the theory finite as it is in the relativistic
ones, The theory here is already finite., It is merely a computational
method, which sums part of the perturbation series explicitly first, and

treats the.rest in the usual weak coupling way.
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A short sketch of the renormalization procedure 1s the following.
Congider, for example, meson mucleon scattering. Any term in the pertur-

bation expansion will have the form

n 1 1 1

£ see Y = v = v V oo . (5)
o 13k EO Ei EO Ej EO - Ek . :

~where f V denotes the interaction (in this case HNM)’ and E,, ete.

are the energies assoclated with the 1th

intermediate state. E_ 1is the
initial energy. The erergy denomimator (B - Ei)-1 can be interpreted
as a mcleon propagation function S(B - Ei)'

In the above form, the coupling constent is the "theoretical
cne"; that is, the constent appearing in the original equation, The
energles are measured relative to zero energy for a free "theoretical®
nucleon; that is, one not interacting with anything., The renormalization
consists in re-expressing the calculation in terms of physical coupling
constants and energies, i.e., those e.ssoc:l._ated with a physicé.l, or inter-
acting, micleon. |

The free propagation of a physical mucleon is characterized by
the diagrams of Figure 1; the interaction of a physical nmucleon by those
of Figure 2., These, in both cases, may be split into two classes,
primitive and otherwise, according as they can be divided into sums of
simpler diagrams or not, Thus, the diagrams of Figurés la and 2a are
primitive, the others are not,

let S'(B), I‘(E.I ,Ez) represent the propagation and interaction
of a physical nucleon, These then include all the diagrams of Figures1 and

2 respectively,
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Now suppose I(fo, S(E), V) represents the exact matrix element
for any process, Then this can also be constructed as follows, ILet
Io(fo, Sy V) be the sum of all irreducible (that is, with no self energy
or vertex modifications) diagrams, Then the exact matrix element is obtained
by everywhere replacing S by S', V by TI' in Io‘ Thus

I(fog S(R), V) = Io(fos S'(B), T).

The renormalization procedure then consists of showing that it is possible

to replace fo’ S'yE and T by new quantities f, S;, B!, 1"1

in a different way, without altering I 0* In the relativistic case, St

s calculated

and T are infinite, while S{ and I‘.’ are finite, Here this replace-
ment is simply a matter of convenience, since f turns out to be smaller

than fo’ We thus want to define new functions so that
Io(fos s'(B), ) = Io(fa S{ (&), F1)-

Consider first the replacement of E by E', which corresponds
to mass renormalization., If we define > (E) to be the sum of all proper
irreducible (that is, containing no self energy diagrams, and not being

a combination of simpler self-energy diagrams) self energy diagrams, then
s'(E) = S(E) + s(E) Z (E) s'(E).

Here > (B) 1s to be computed using S' instead of S, so this is an

integral equation for S', 2 includes the diagrams

- ~
. A
3 -

o \\ >l
\ ! and L‘;/" s but not N\ or a 3 the
’ i +

o !

diagram f\ is included in S' by iterating the equation once,
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ard  |}: 1is included since  1s calculated with S' instead of S,

Since S(B) = 1/B, we have

&) FST -

Now consider the function defined by

" = 1
S"(E') = FTFRE) TS0

where S " 1s computed in the same way as Z , only using 8" instead of
S', If we choose the zero of emergy of E!' such that E' = 7 ®(0) =B,

we have
1

s"(8') =g =SwEy - SE *s(E) Z (') s"(E').
Hence, since > "(E') is the same function of S"(E') tixat 2 (B) 1is
of 8'(E), wve have that S"(E') and S'(E) satisfy the same integral
equation, and hence
s*(B') = s*(E).
Thus we have

= S(B") + S(B')(Z(E')- Z (0)) s'(E')

S'(B') = 1" -
E Z (B') z (0) = 3(E') + S(E') Z,'(E') st (B')

where we write S'(E') for S'(E), and Z (E').- 5(0) = Z,(E').

This completes the mass renormalization., We clearly have
I (£, S'(E), T) = I (£, S'(E'), T).

The charge renormalization procedure consists of the following,
Suppose we define
-1
t (™t = 1} ?
sL(') =2, s'(B')
T, (E{E}) = 2, T(EIEY) - | (1)

-1



Again E!' denotes the energy measure relative to zero for a physical
micleon, whereas E denotes the energy relative to zero for a theoretical
nucleon. Similarly f} can be thought of as the physical coupling,
and fo is the theoretical one.

Congider any vertex in I, This has associated two S' 's, one
‘T and one f_. Also each S' 1is shared between two vertices. Therefore,

if the replacement is made as indicated in equations (11), we have

1/2
2

- =1 -1 .-1/2 -
' 't = ' ' = ' 1
£ 3'TS 22 Z1 £ Z S Z1 r éz S £ S F} Sr ’

and hence

I(fo SIE'V) D) = I(fr SI'_(E'), rr) .

The final thing which must be done is to choose Z1 and Z2 and determine
the equations satisfied by S; and T, . We had
st(e) = 8(') + S(E') Z ,(B) s* (). (12)
Making the substitutions (11), we have
t =
2, SL(E') = S(E') +S(B') 2 | _(E') S!(E') (13)

since 2 12(E')s (vhich is > , with £ S'T replaced by f S! r,)
is related to 22:1(E') by |

Z (B =2, Z (B .

(This is easily seen since there is one unbalanced S! in 2211.) Now
expanding 2— 11‘(E') in powers of E', we obtain, remembering that Z 1

starts linearly in E!Y,
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E'=0

Z, S!"(E' = 3(E') + S(E') ( E! %EZ' \E'=0 + er(E') ) SI'.(E').
(14)
In S(E') = 1/E', so equation (14) becomes
7, 81(5) = S(E") + S—EZ.-‘E% S1E') + 8(2') Z, (81) S1(8') . (15)
: - Az
. Therefore, choosing 22 =1+ EET'.I results in
E'=0
SL(E') = S(E') + s_(E') ZZr(E') S!(E*)
- 1
=TT (16)
where
- - 8z
2 o (BY) =2 (B') = 2(0) - B &5 (17

where everything is caleulated with fr instead of £ o* 1 the same

way, choosing Z1 =1-A (O,Q) gives

1 pt) = 1 (Rt
r.(Ef EY) = V(E] EI) (1 + A\, (Bf E§)) (18)
where
1 t) = -
N o (8] E3) = A (51 BL) - /N\(0,0), (19)
and again everything is computed using fr instead of f o® This last
corresponds to charge renormalization in electrodynamics.

As an example of this, we may compute the fi corrections to

the propagation function. To order fi ’



B frjiws , T8 5 &k
El)=3 - -
Z o FJ S Eme o Koo@n)?
2
£ O ¢« K T o K
- T 1l = = = = 3
_Bé:jg(,,«.r) ZS‘ (EY =) d” 2
(8]
R AN
2 8113 Iu. P El -w
£ \2 (‘max g3
=%(T§) 5‘,» E!iz (20)
2
— £ KBdw
Z(O)=-%(7f') f-—w—' _ (21)
02|  __alk g 3., L
E'aE'E,zo‘E'n(r) KT T2 - (22)
Hence
2
> (@) z(f_r) fﬂd (sl +L 4B
2r T on /.,«- w E! = w w )
2
f 2
=2 (X 3 E! .
and we have, finally,
SI(E') = - 5! ; (24)
Y o ¥K7da»
E'(1 "(I"‘) E'sz(ga-w))

The lowest order correctiomsto the vertex operator are very small, and
can generally be neglected.
To give an example of the use of the Chew theory, it will now
be applied to set up the equations for meson mucleon scattering.
| The method of calculation is the following. Firat, lgnore all
diagrams which contribute only to renormalization effects. These are

already included by using fr instead of £ o Second, use lowest order
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perturbation theory on the remaining diagrams, except for those which
have energy denominators which can resonate. It is then easy to see that

only the diagrams of Figure 3 will be included.

Fig. 3

We should everywhere use Sz" and I‘r as the propagators and vertex

parts; in practice these differ from S and V so little for most

energies that we shall use SI'_ only in Figure 2b, and never use l"r.
The reaction matrix for the diagram of Figure 3b is readily

written down.

f 2 0-: ¢ %-' E * §'+ q » K E . a
(¢'a!|700)]x &) = 4u (;f) 5 Splug) = ——
! o
7 [+
(25)

An integral equation is easily set up for the reaction matrix of Figure
3a, which is identical with the second order Temm=Dancoff or Brueckner—
Watson approximations,
iIal - 1ot
'a'|T(3a)]K, &) = ('at|V|¥ &)
dB Kn

+ 2 T (&1 at| vk av) ;—1':,'&' (k" g"7(3a)|5; ),
a" (an)> — 5T =1%o | (26)




where

£\?T K Tea , Tee zeart
(€t a'|Vle g) = 47 ('?') o

r" \/20\) wo Lu' LW \ 20-"

(27)

and this represents just the firat diagram of Figure 3a. This may be

'split into angular momentun and isotopic spin states. We have
2
2 /£ '
(¢ g'lvix o) = (420 (-—‘-’-) =
FOLf2et o Wo T T

- (K"P-Vg_h‘) (a' IVQ1/2l§')
- 2[(§'|P3/2|E)(9.'|Q1/21§) + (ﬁ'lP1/2|E)(§.'lQ3/2i5)j

+ 4(.'.‘.' l PB/ZIE) (Q-.' ‘QB/ZI'a‘)

= Z (uple) @lz5le) @'lagle) (28)
where

(€171 ple) = e T

(€1pyple) = iy~ B E-grE 20E)

(a'lQ; spl2) =% Toat Tea

(a'lqy 12 =loat . a-Tea" T (29)

are angular momentum and isotopic spin projection operators for the states

J=1/2, 3/2 and T = 1/2,3/2. The integral equation for the reaction

matrix can then be brokem up as
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(' a'|T(3a)|K a) = JZT (e |ryele) (kMPrlE) (a'lQyl &) (30)

and
(e 1pple)) = (61Tl )

K n2 gre o, u 1 " ‘
+§ -—(-2-;)-3-—- (¢ ]VJTIK ) -;;-—:T:,; (e !TJTIK 0) (31)

Solving this integral equation then gives the phase shifts in the various
states through the relation

w |
—35 (KTl ) (32)

-7 tan 5 )=
4 g (2n)

To summarize, the Chew theory is a phenomenologicai desceription
of the principal experimental facts concerning low energy meson-nucleon
processes. It is a very incomplete description in that no attémpt is
made to discuss Swyave interactions, nucleon pairs, heavy mesons or recoil
effects, It is merely an attempt to see if all existing lou'energy
observations are consistent with nothing more than strong P-wave couplings,
pseudoscalar mesons and conservation of angular momentum and isotopic

spin.
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