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Abstract

Particulate air pollution is of growing concern in the United States and around the
world. Elevated concentrations of aerosols (solid particles and liquid droplets sus-
pended in air) are correlated with increased cases of lung cancer, cardiopulmonary
disorders, and human mortality. A detailed understanding of the size, chemical com-
position, and concentration of atmospheric particles is needed to assess their effects
on human health, as well as on regional visibility and global climate. One can acquire
such knowledge through direct measurements, or by utilizing mathematical air quality
models. New and innovative instruments allow us to measure the size and compo-
sition of individual particles, rather than to infer aerosol chemical properties from
bulk particulate matter samples. Concurrently, air quality models have been devel-
oped to numerically simulate the emissions of discrete particles, and their transport
and chemical evolution in the atmosphere. This thesis focuses on how to integrate
and compare measurements taken by state-of-the-science single-particle instruments
with the air pollutant properties calculated using state-of-the-science mathematical
models. A 1996 field experiment conducted in the Los Angeles air basin serves as the
case study for this thesis research.

Comparisons of model calculations against single-particle observations identify
specific areas where model improvements are needed, and also identify important
areas for future instrumental development. These comparisons contribute to our
understanding of atmospheric pollution at the single-particle level, and ultimately,
may provide tremendous value to policy makers who are seeking least-cost solutions
to urban and regional air quality problems. After presenting initial comparisons

of single-particle measurements and model results, efforts to quantify and catego-



vii
rize the single-particle chemical composition data are described. The quantitatively
reconstructed single-particle measurements are compared with mathematical model
calculations of the atmospheric aerosol mixing characteristics. Finally, an example
is presented of how the model and measurement combination enhance our ability to

reduce particulate pollution in the air we breathe.
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Chapter 1

Introduction

1.1 Motivation

The size and composition of atmospheric particles determine their deposition effi-
ciency in different regions of the human lung [1], their toxicity [2], their degradation
of visibility [3], and their effects on regional and global climate [4]. For these reasons,
particulate air pollution has received increasing attention over the past decade from
scientists, regulatory agencies, and in the public media. On July 17, 1997, in re-
sponse to mounting epidemiological evidence correlating atmospheric fine particulate
matter concentrations with elevated human mortality rates [5], the United States En-
vironmental Protection Agency (EPA) announced new standards to regulate ambient
concentrations of particles with diameter less than 2.5 micrometers (PMgs). The
EPA set an annual average PM, 5 standard at 15 micrograms per cubic meter (ug
m3) and a 24-hour average PM, 5 standard at 65 pug m—3. During the 1999-2001
time period, over 65 million Americans lived in counties with PMy 5 concentrations
exceeding the annual standard. During the same period, the 24-hour standard was
exceeded at more than a dozen PM, 5 monitoring sites, all located in either southern
or central California (www.epa.gov).

In order to reduce atmospheric particulate matter concentrations to a level that
meets the federal standards intended to protect public health, it is important to un-
derstand the processes that influence particle concentrations. The atmosphere is an

extremely complex system in which numerous physical and chemical processes occur
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simultaneously. Mathematical models provide the necessary framework to integrate
our understanding of the complex processes governing air pollutant formation, trans-
port, and removal. Increased confidence in our understanding of the ensemble of
these processes can only be achieved through extensive model evaluations against
atmospheric measurements. The comparison of state-of-the-science measurements
with state-of-the-science model calculations offers the most promising approach for
expanding our knowledge about particulate air pollution, and such comparisons are

the focus of this thesis.

1.2 Background

1.2.1 Mathematical Models of Ambient Particulate Matter

Mathematical models for the prediction of ambient particulate matter concentra-
tions have been under development for roughly three quarters of a century. Early
work in the field produced expressions known as Gaussian plume and Gaussian puff
equations, for predicting the spatial density distribution of particulate matter result-
ing from continuous (plume) and instantaneous (puff) point and line sources [6, 7].
These single-source models were developed from observations of the dispersion of
smoke trails from smoke stacks and anti-aircraft shell bursts. A quantitative relation-
ship between the emissions from multiple sources and air pollutant concentrations
over a large area was first reported by Meetham, using measurements of smoke and
gas-phase SO, taken by local authorities in Britain over the course of many years [8].
Meetham was puzzled by the observation that ambient SO, concentrations were less
than ambient smoke concentrations, even during periods when SO, emissions were ap-
proximately two times greater than smoke emissions. Because early Gaussian models
only accounted for the advection, dispersion, and deposition of bulk primary partic-
ulate mass, and assumed that gases and particles do not interact with each other,
Meetham could not explain the atmospheric losses of SOs.

Since that time, numerous studies have investigated the interactions of ambient
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particulate matter with the surrounding gas phase. Most of the early models of these
“gas-to-particle conversion” processes were limited to calculations of a single chemical
component in bulk particulate matter, such as sulfate [9], ammonium nitrate [10, 11],
and organic carbon [12]. Meanwhile, mathematical models for calculating atmo-
spheric particle size distributions were developed separately, using continuous [13],
discrete [14], and lognormally-parameterized representations [15]. The first multi-
component, size-resolved particulate matter model was described by Pilinis et al. in
1987, and applied to the Los Angeles area [16, 17]. That model included a discrete
representation of the particle size distribution (using nine size sections) and a treat-
ment of six inorganic particle-phase components (NH;}, NO;, SO7, Na™, Cl~, and
H,0).

During the 1990’s, several more mathematical models were developed to describe
the size distribution and chemical composition of atmospheric particles [18-27]. In
all of these models, it was assumed that the atmospheric particulate matter is inter-
nally mized, meaning the chemical compositions of all like-sized particles are identical.
Kleeman et al. demonstrated that this internal mixture assumption can result in a
misrepresentation of the aerosol size distribution [28]. Internally mixed aerosol repre-
sentations have the additional disadvantage of masking the individual contributions
made by distinct emission sources, because the particle source identity is lost when
all particles are averaged into a common aerosol distribution, upon emission to the
atmosphere. Furthermore, global-scale model calculations reveal that inaccurate as-
sumptions about the mixing state of ambient aerosols can introduce significant error
in the calculations of radiative forcing and climate change [29]. Before proceeding, it
is helpful to clarify that the term “aerosol” refers to a metastable suspension of solid
or liquid particles in a gas. The terms “aerosol” and “particulate matter” are used
interchangeably throughout this thesis, as is the case in much of the air pollution
literature.

In the late 1990’s, Kleeman and Cass developed mathematical air quality models in
which the ambient aerosol is represented as an ensemble of compositionally distinct

particle classes, rather than as an internally mixed distribution [28, 30]. In these
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models, all particles interact with the same gas-phase conditions, but differences
in the chemical compositions of particles emitted at different initial sizes and from
different emission sources are retained. This aerosol representation is referred to as
a source-oriented external mizture [28]. Models which employ this representation
have the capability of simulating the particle-to-particle differences within a given
size range, as illustrated in Figure 1.1. The accuracy of such model results could
not be readily evaluated until recently, due to the dearth of observational data on
particle-to-particle differences in the atmosphere. The advent of real-time single-
particle measurement techniques provides sufficient data to test the detailed model

calculations against atmospheric observations.

1.2.2 Single-Particle Measurements of Atmospheric Aerosols

Traditional methods for analyzing the chemical composition of atmospheric aerosols
require the collection of large numbers of particles (10" —10'%) on a substrate, followed
by bulk chemical analyses of the entire sample. Using these methods, the chemical
composition of particle ensembles can be assessed, but particle-to-particle differences
are lost during the analysis procedure. If the ambient aerosol is size-segregated prior
to collection, as is the case when cascade impactors are employed, the size-resolved
chemical composition of an aerosol can be determined. Even with such information,
the analyst can only approximate the aerosol distribution as an internal mixture or
make other simplifying assumptions regarding the aerosol mixing state.

During the 1980’s and 1990’s, a variety of single-particle techniques were used
to assess the compositional heterogeneity of atmospheric particles collected on sub-
strates. These techniques include computer controlled scanning electron microscopy
(CCSEM) [31], laser microprobe mass spectrometry(LMMS) [32], and electron probe
X-ray microanalysis (EPXMA) [33]. Although these techniques made it possible to
probe the particle-to-particle differences in atmospheric aerosols, they are all relatively
slow, requiring several seconds to a minute for the analysis of each particle. Conse-

quently, few particles can be analyzed in a reasonable span of time. For example,
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EPXMA applications typically involve the analysis of only 400 particles per atmo-
spheric sample [33, 34], which is insufficient to fully characterize a complex ambient
aerosol. Another drawback of these techniques is that they are performed “off-line.”
Particle ensembles are first collected on a filter or impaction substrate, and then sub-
jected to analysis. This limits the temporal resolution of the atmospheric observations
to periods of several hours. In addition, the chemical properties of collected parti-
cles can change between sample collection and analysis. For example, semivolatile
species can volatilize from the substrates, water droplets collected can crystallize or
evaporate depending on temperature and humidity conditions after collection, and
particle-particle, gas-particle, and particle-substrate reactions can modify the aerosol
composition prior to analysis.

To bypass the problems associated with sample collection and to increase the
speed of analysis, “on-line” methods were developed, that allow the determination of
individual particle composition within a fraction of a second after they are sampled
from the atmosphere. These instruments combine aerosol beam spectrometry [35]
with a variety of mass spectral techniques, including magnetic sector, quadrupole,
time-of-flight, and quadrupole ion trap mass spectrometry (see [36, 37] for reviews).
Among these, time-of-flight mass spectrometry has a very fast analysis time (~ 107°
s) and the ability to collect the entire mass spectrum of individual particles, thus per-
mitting the on-line analysis of highly concentrated and chemically complex aerosols,
such as those found in polluted urban atmospheres. During the last decade, sev-
eral different particle sizing techniques have been coupled with time-of-flight mass
spectrometry, including light scattering intensity measurement [38-40], single-laser
aerodynamic particle sizing [38], dual-laser aerodynamic particle sizing [41], split-
laser aerodynamic particle sizing [42], and dynamic source-pressure alteration [43].
These coupled devices allow simultaneous measurements of the size and chemical
composition of individual atmospheric particles to be made on-line. Furthermore,
the single-particle data acquisition rates of certain on-line techniques are nearly two
orders of magnitude faster than the off-line methods described earlier, thus permit-

ting a reasonably thorough characterization of an ambient aerosol to be made within
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sampling intervals of twenty minutes to an hour.

To date, four distinct on-line techniques for measuring the size and chemical
composition of individual particles have been developed and applied in multi-day
field campaigns. The first on-line chemical analysis of individual atmospheric parti-
cles was conducted by Murphy and Thomson at Idaho Hill, Colorado, in September
1993 [44, 45]. Using the particle analysis by laser mass spectrometry (PALMS) tech-
nique, particle size is coarsely estimated from the single-particle light scattering inten-
sity and particle composition is determined from either a positive or negative ion mass
spectrum obtained by laser ablation and ionization. The next field applications of
on-line single-particle mass spectrometry instruments were conducted by Prather and
co-workers at Riverside, California, in 1995 [46, 47]. Their sampling method, aerosol
time-of-flight mass spectrometry (ATOFMS), uses a dual-laser technique to obtain
precise measurements of the aerodynamic particle size [48], prior to laser ablation
and ionization. One research group has documented their development of an instru-
ment based on the ATOFMS design, and already used it for atmospheric sampling
in Toronto, Canada, in December 2000 [49]. To date, ATOFMS has been utilized in
more field experiments than any other single-particle technique, and is the only com-
mercially available on-line single-particle mass spectrometry instrument. Hinz and
co-workers were the third group to deploy an on-line single-particle instrument in a
major field campaign, during the 1998 Lindenberger Aerosol Characterization Ex-
periment, near Berlin, Germany [50]. Their instrument, the laser mass analyzer for
particles in the airborne state (LAMPAS), uses a single-laser aerodynamic sizing tech-
nique that permits the sampling of particles in one narrow size fraction at a time. The
distance between the detection and ablation lasers is periodically adjusted to sample
particles of different size. The fourth on-line single-particle technique to be used in
major field experiments was developed by Johnston and Wexler [51], and deployed
during some of the recent EPA Supersite experiments [52, 53]. This instrument, re-
ferred to as a rapid single particle mass spectrometer (RSMS), is uniquely capable of

measuring the size and composition of individual ultrafine particles, which have aero-

dynamic diameters (D,) smaller than 0.1 gm. In contrast, the PALMS, ATOFMS,
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and LAMPAS are configured to sample particles in the D, > 0.2 um range only.
Size and chemical composition measurements at the single-particle level open the
possibility of evaluating air quality models that mathematically calculate the com-
positional heterogeneity among like-sized particles. State-of-the-science models and
state-of-the-science instruments have been developed for assessing single-particle size
and composition of atmospheric aerosols, yet the question remains: “How well can

the aerosol models represent atmospheric single-particle characteristics?”

1.2.3 1996 Los Angeles Basin Trajectory Study

In late September and early October, 1996, a collaborative field experiment was
conducted between the Cass research group from Caltech and the Prather research
group from UC Riverside [54]. The primary goal of the field campaign was to collect
atmospheric single-particle size and chemical composition measurements that could be
used later to evaluate air quality model calculations of the compositional heterogeneity
among like-sized particles. Aerosol instruments were stationed at three sites in the Los
Angeles, California area: Long Beach, Fullerton, and Riverside. In addition, the size
and chemical composition distribution of airborne particles and the concentrations
of gas-phase pollutants were measured upwind of the study area at Santa Catalina
Island on September 21-22, 1996, for the purpose of specifying initial conditions to
the mathematical air quality model. Figure 1.2 displays each field sampling location
on a map of the study region.

Members of the Prather research group collected single-particle measurements
at Long Beach, Fullerton, and Riverside, using ATOFMS. This was the first major
field experiment when ATOFMS instruments were deployed, therefore, significant
resources were invested to determine how best to interpret the single-particle data.
Alongside the ATOFMS instruments, members of the Cass research group operated
cascade impactors, laser optical particle counters, and a number of other conventional
aerosol sampling devices. The reasons for operating these instruments were to verify

that the ATOFMS instruments were analyzing a random sample of the ambient par-
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Figure 1.2: Field sampling locations for the 1996 Los Angeles Basin Trajectory Study.

ticles, and to ensure that useful model evaluation data could later be quantitatively
reconstructed from the ATOFMS measurements.

A source-oriented externally mixed aerosol model was used to calculate the size
distribution and chemical composition of the atmospheric aerosol at Long Beach,
Fullerton, and Riverside. Comparison of air quality model calculations to both filter-
based and cascade impactor-based measurements of the particle size distribution and
bulk chemical composition show good agreement at all three air monitoring sites, as
described by Kleeman et al. [55]. Air quality model calculations of fine particulate
(D, < 1.8 um) mass, sulfate, ammonium, and nitrate concentrations, as well as total
particulate sodium concentrations, agree within 35% of filter-based measurements at
all three monitoring sites during the episodes studied [55, Figure 3]. Furthermore,
the shapes of the size distributions of fine particulate mass, ammonium, nitrate,
and sulfate, as measured by cascade impactors at all three monitoring sites, were
accurately calculated using the air quality model [55, Figure 4]. Having established
confidence in the air quality model calculations of the aerosol size distribution as well
as the bulk and size-segregated aerosol chemical composition at all three monitoring

sites, the groundwork was laid to evaluate the air quality model results against single-
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particle ATOFMS measurements.

1.3 Research Objectives

The primary objective of this thesis is to evaluate source-oriented air quality model
calculations of aerosol size and chemical composition against atmospheric single-
particle ATOFMS measurements. Within the scope of this research are assessments of
the ATOFMS particle detection efficiencies and the ATOFMS instrument sensitivities
to specific chemical components in atmospheric aerosols. Rendering the ATOFMS
data and model results into comparable formats, such that model evaluations can be
conducted, constitutes a major portion of this work.

Accomplishment of the primary research objective will identify specific areas where
model improvements are needed, and may also identify important areas for instrumen-
tal development. The comparisons will contribute substantially to our understanding
of atmospheric pollution at the single-particle level.

The secondary objective of this thesis is to use the detailed particle descriptions,
obtained through mathematical model calculations, to evaluate the accuracy of a
receptor-oriented method for identifying the sources of individual atmospheric parti-
cles. Source apportionment of atmospheric particulate matter has been attempted by
various researchers using a number of different techniques, but no methodology has

been established for testing the accuracy of source apportionment calculations.

1.4 Approach

The first objective of this work is to evaluate air quality model results by comparison
with single-particle ATOFMS measurements. To begin with, methods must be devel-
oped for arranging model results and ATOFMS measurements in a manner such that
a side-by-side comparison of the multi-dimensional data sets is possible. Either the
model results must be interpreted similar to the way that the ATOFMS instruments
sample and describe ambient particles, or the ATOFMS data must be quantitatively
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reconstructed to match the actual distribution of particles in the atmosphere. Both
of these approaches are taken in the present work.

Chapter 2 describes a method for transforming model results in a manner com-
parable to the ATOFMS measurements. This transformation involves simulating the
losses of information incurred due to (1) the limited size range of particles detectable
by the dual-laser aerodynamic particle sizing apparatus in ATOFMS instruments, (2)
the non-uniform transmission efficiency of the ATOFMS instruments, (3) the varying
sensitivities of ATOFMS instruments to different chemical components in atmospheric
particles, and (4) the interference of ATOFMS instrumental noise with real ion signals
in the single-particle mass spectra. Model calculations of the aerosols at Long Beach
and Riverside during the 1996 Los Angeles Basin Trajectory Study are transformed
by this method and compared against ATOFMS measurements collected at the corre-
sponding times and locations. These comparisons focus on the percentage of particles
within size-segregated aerosol populations at each site, that contain sodium, nitrate,
ammonium, carbon, or mineral dust. Two methods of comparison are devised and
presented in Section 2.3.

One limitation of the model-ATOFMS comparisons presented in Chapter 2 is that
particle information had to be reduced to a level of the presence or absence (i.e., not
the quantitative abundance) of selected chemical components in each individual par-
ticle. This reduction was necessary because the ATOFMS instrument sensitivities to
specific aerosol components were not known under ambient sampling conditions. In
Chapter 3, a method is described for determining the ATOFMS instrument sensitivi-
ties to ammonium (NHJ ) and nitrate (NO3 ) under atmospheric sampling conditions.
These two chemical components are chosen primarily because NH4NO3 constitutes a
very large fraction of the PM, 5 concentrations in the eastern portion of the Los Ange-
les area [54, 56|, a region where PMs 5 standards are exceeded most frequently. The
instrument sensitivity factors, derived from comparisons with collocated impactor
measurements, are used to quantitatively reconstruct size-resolved mass distributions
of NHf and NOj from the ATOFMS data collected at Riverside.

Another limitation of the model-ATOFMS comparisons presented in Chapter 2 is
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that particles were categorized according to the presence of a few selected ion signals
in the mass spectra, rather than the most prominent spectral patterns. In Chap-
ter 4, an alternative method is devised for chemically categorizing ATOFMS data,
that focuses on the entire particle spectrum while also mitigating the need to distin-
guish between instrumental noise and real ion signals. Broadly defined particle classes
selected for this analysis are sea salt, mineral dust, carbonaceous particles, and mis-
cellaneous particle types. These classes are further subdivided into 35 compositionally
distinct particle categories, in a manner that can be conveyed in the literature, such
that particle categorization results can be reproduced by other investigators. The
spectral categorization method is applied to ATOFMS data collected during a five
day sampling period at Riverside, as part of the 1996 Los Angeles Basin Trajectory
Study.

In Chapter 5, the ATOFMS measurements are transformed into a format similar
to the air quality model results, permitting a direct quantitative comparison of the
model calculations and atmospheric single-particle measurements to be made. Model
evaluations presented in this chapter are performed at finer temporal and particle
size resolution than in any previous study. In addition, model calculations of the
absolute contributions of sea salt, mineral dust, and carbonaceous particles, to the
size-resolved aerosol mass distribution, are compared with corresponding ATOFMS
measurements. This is the first quantitative comparison of air quality model calcula-
tions with atmospheric measurements of the aerosol mixing state.

The secondary objective of this thesis is addressed in Chapter 6. The source
apportionment accuracy of a receptor-oriented method is tested based on its applica-
tion to synthetic single-particle data generated using the source-oriented air quality
model. Effects of particle “aging,” caused by gas-to-particle conversion processes, on
the receptor model accuracy are investigated. This methodology for evaluating the
accuracy of a source apportionment technique may be applied in the future to test
other receptor-oriented methods that are currently in use.

Finally in Chapter 7, the major results of this research are summarized. Important

accomplishments are highlighted and areas for future research are identified.
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Chapter 2

Evaluation of a Source-Oriented
Air Quality Model Using
Semi-Quantitative ATOFMS
Measurements

2.1 Introduction

As discussed in Section 1.2.1, the vast majority of aerosol processes air quality mod-
els do not track the size and composition of individual atmospheric particles, but
rather, they calculate the average chemical composition of particles falling within
certain size intervals. These models include the California Institute of Technology
model (CIT) [25], the European Air Pollution Dispersion model (EURAD) [26], the
Urban Airshed Model-IV with aerosols (UAM-AERO) [18, 21], the Urban Airshed
Model-1V with the Aerosol Inorganics Model (UAM-AIM) [24, 57|, the Denver Air
Quality Model (DAQM) [22], the Gas, Aerosol, Transport, and Radiation model
(GATOR) [23], the SARMAP Air Quality Model with aerosols (SAQM-AERO) [27],
and the Community Multiscale Air Quality model (CMAQ) [58]. Of these, the CMAQ
and EURAD models parameterize the aerosol size distribution as the sum of two or

three overlapping lognormal modes and the remaining models approximate the aerosol

*This chapter is reproduced with permission from “Evaluation of an Air Quality Model for the
Size and Composition of Source-Oriented Particle Classes,” by P. V. Bhave, M. J. Kleeman, J. O.
Allen, L. S. Hughes, K. A. Prather, and G. R. Cass; Environmental Science and Technology, 36:
2154-2163, 2002. Copyright 2002 American Chemical Society.
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size distribution using a sectional representation. All of the models listed above treat
the ambient aerosol as an internally mixture, in which all particles in a given size in-
terval or lognormal mode have identical chemical compositions. Several investigators
have shown that this internal mixture assumption is inaccurate by observing and re-
porting significant compositional heterogeneity among ambient particles of the same
size [46, 59, 60]. Furthermore, the use of internally mixed aerosol representations in
air quality models creates a number of problems, as described in Section 1.2.1.

Recently, an air quality model has been developed to overcome the internal mix-
ture assumption, by separately tracking the evolution of source-oriented particle
classes as they undergo atmospheric chemical reactions during transport across a
polluted air basin. This model has been used to identify the effect of individual
emission sources on ambient air quality [30, 61], and to evaluate the effectiveness of
numerous proposed air pollution control strategies on particulate matter concentra-
tions [62] and visibility [63] in the southern California region. Model calculations of
the overall aerosol size distribution and chemical composition have undergone exten-
sive evaluation and agree favorably with measurements taken during the 1987 South-
ern California Air Quality Study [28, 64] and the 1996 Los Angeles Basin Trajectory
Study [55]. Aerosol time-of-flight mass spectrometry (ATOFMS) measurements that
describe ambient single-particle size and composition are available from the 1996 Los
Angeles Basin Trajectory Study [54], but model comparison against ambient single-
particle measurements has yet to be attempted. The purpose of this chapter is to
determine how well an air quality model that tracks source-oriented particle classes
can account for single-particle characteristics observed in the atmosphere. This is the
first comparison of aerosol mathematical air quality model results with atmospheric

single-particle measurements.
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2.2 Methods

2.2.1 Description of the Source-Oriented Air Quality Model

The air quality model used in this study simulates the most important processes that
affect the size and composition distribution of the ambient aerosol. These processes
are listed in Table 2.1. Detailed descriptions of the model structure and formulation
can be found in the published literature [28, 30, 55, 64]. In the model, the ambient
aerosol is represented as a source-oriented mixture of particle classes that are released
to the atmosphere as primary emissions at 15 discrete particle sizes spanning the
0.01-10 pum particle diameter range. Primary particles are separated into 10 emission
source categories: paved road dust, crustal material, diesel engine exhaust, food
cooking, catalyst-equipped gasoline-powered engine exhaust, non-catalyst gasoline
engine exhaust, sulfur-bearing fuel combustion and industrial sources, sea salt, non-
sea salt background particles, and other miscellaneous sources [28]. The chemical
composition of particles emitted from each source category is obtained from the results
of emission source sampling experiments. Primary particles emitted from the most
important sources in southern California are represented using chemical composition
data that vary by particle size, based on impactor measurements of those emission
sources [65, 66]. Particles emitted at each discrete size, from each source category,
and during each hour along the air parcel trajectory, are tracked separately from
all other particle classes in the model. In this manner, a source-oriented mixture of
atmospheric particles is created in which all particle classes interact with the same gas-
phase conditions, but differences in the size and composition of particles emitted from
different sources are retained. Coagulation processes are not included in the present
model formulation, because it has been determined that they do not significantly affect

the aerosol mass distribution during the air pollution episode under investigation [30].
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Table 2.1: Description of source-oriented air quality model: Lagrangian formulation.

Feature Treatment Ref.
Spatial and Temporal Dimensions
Spatial Scale Urban-scale applications, 5km x 5km hori-
zontal grid resolution, 5 vertical cells
Temporal Scale Episodic applications, 1 day — 1 week
Aerosol Representation
Chemical Species Distinct chemical species in each particle class [67]
(EC, OC, NH}, NO3, Na*, C1—, SO7, and 30
minor species)
Particle Size Discrete source-oriented particle classes: 15
Distribution initial sizes ranging from 0.01-10 pgm, from
each of 10 emission source categories, emitted
during each hour of air parcel transport
Particle Size Discrete particles change size as material con-
Evolution denses/evaporates
Particle Aging Source-oriented particle classes are segregated [64]
by hour of emission
Emissions
Aerosol Phase Size-resolved chemical composition from all  [55, 67]
major emission sources
Gas Phase SO3, NO, NO3, NH3, CO, and over 400 spe- [20]
cific organic compounds
Transport
Advection Horizontal only, using interpolated wind fields ~ [10, 68]
Diffusion Vertical only [10]
Vertical Wind Shear not included®
Chemical Mechanisms
Gas Phase SAPRC mechanism with extensions: 100 [12]

Chemistry

species (O3, NOo, NO, N5Os, etc.) and 195

reactions

continued on next page
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Table 2.1: Description of source-oriented air quality model (continued).

Feature Treatment Ref.

Inorganic Aerosol Aerosol Inorganics Module (AIM) with exten-  [28, 69]

Thermodynamics sions: condensation, evaporation, dissolution,
crystallization

Organic Aerosol Absorption of semi-volatile organics into  [62, 70,

Thermodynamics aerosol organic phase 71]

Fog Kinetic 58 species, 177 irreversible reactions [28, 72,

Reactions 73]

Fog Equilibrium 29 acid-base reversible reactions (28, 72,

Reactions 73]

Physical Mechanisms

Dry Deposition Surface resistant model with land use specific [10]
parameters

Wet Deposition not included®

Nucleation not included®

Coagulation not included®

% Process shown to be negligible during current episode [30]

Figure 2.1a displays an example of the air quality model results. The pie chart
quantitatively illustrates the chemical composition of an atmospheric particle class
tracked in the air quality model. This particle class contains 15 of the 37 different
aerosol phase chemical species that are tracked in the current model formulation. The
atmospheric concentration, physical diameter (D,), and density (p) of particles in this
class, are also calculated in the model. Furthermore, each particle class tracked in the
model is labeled according to the source category from which the particle core was
initially emitted and the hour at which the particle was injected into the air parcel.
Based on model calculations, the particle class shown in Figure 2.1a was emitted from
a diesel-powered vehicle, 16 hours before reaching the receptor site.

In late September and early October, 1996, field measurements of the aerosol size

distribution and chemical composition were collected to evaluate results of the air
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a. Source-Oriented Air Quality Model Prediction  b.

Single-Particle ATOFMS Measurement

200
Organic Material + =0.82 um
Elemental Carbo A 271 C, a K
67 fg A
Ammonium >150
321g £
@
Nitrate € c
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Sulfate o) Other %
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19 fi -
OKQQ p=1.859cm3
noszfg Al /Ca | Ni \ *R°™ | Source = diesel

J
0.111g 0.26 fg 0.044 fg0.061 fg Age = 16 hours

m/z

o} d.

1. Modify chemical composition according to ATOFMS
instrument relative sensitivity factors (RSFs).

2. Remove chemical species which fall below the 2.
ATOFMS instrument detection limits.

3. Determine whether each chemical species of interest
is present or absent in the particle. 3.

4. Convert physical diameter to aerodynamic diameter. is present or absent in the particle.

1. Duplicate mass spectrum using the ATOFMS
instrument-specific counting efficiency functions.

Tabulate mass spectrum information in a peak
list, that contains the heights, areas, and mass-to
charge ratios (m/z) of each peak in the spectrum.

Search the peak list using predefined criteria to
determine whether each chemical species of interest

D,=0.76 um
Number = 5440 m™
Sodium: present
Ammonium: absent
Nitrate: absent

D,=0.82 um
Number = 6400 m™
Sodium: absent
Ammonium: present
Nitrate: present

Carbon: present
Dust: absent

Carbon: present
Dust: absent

N4

Collect particles into impactor
size intervals and compare

Figure 2.1: Schematic illustration of the model evaluation procedure.

a) Air qual-

ity model calculation of a source-oriented particle class arriving at Long Beach on
September 24, 1996 (1 fg = 107!5g). b) Mass spectrum of an ambient particle sam-
pled by ATOFMS at Long Beach, on September 24 (peak intensities are indicated in
arbitrary units on the vertical axis). c-d) Procedures to transform model calculations
and single-particle mass spectra into a common format. e) Transformed description

of the particle class shown in (a).
spectrum shown in (b).

f) Transformed particle description of the mass
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Figure 2.2: Three-day air parcel trajectory path terminating over Riverside, at 1700
PDT on September 25, 1996. Each circle represents the position of the air mass
during a different hour.

quality model just described (see Section 1.2.3) [54]. Instruments were stationed at
three sites in the Los Angeles, California area: Long Beach, Fullerton, and Riverside.
These monitoring locations were chosen because they lie along a seasonally typical air
parcel pathway crossing the Los Angeles Basin. The size and composition distribution
of airborne particles and gas-phase pollutant concentrations were measured upwind
of the study area at Santa Catalina Island on September 21-22, 1996, for the purpose
of specifying initial conditions to the air quality model. Air parcel trajectories that
passed over the Riverside site during the study period were calculated by backward
integration through wind fields that were interpolated from wind observations at 29
locations in southern California [68, 74]. Trajectory calculations indicate that the air
mass arriving at Riverside during the 1500-1900 PDT intensive sampling period on
September 25, passed over Fullerton between 1430-1900 PDT on September 24, and
stagnated near the Long Beach monitoring site during the 0700-1100 PDT intensive
sampling period and throughout the morning of September 24 (see Figure 2.2).

The source-oriented air quality model described above was used to calculate the

size distribution and chemical composition of the airborne particle mixture observed
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at Long Beach and Fullerton on September 24, and at Riverside on September 25,
1996. Comparison of air quality model results against both filter-based and cascade
impactor-based measurements of the particle size distribution and bulk chemical com-
position show good agreement at all three air monitoring sites (see Section 1.2.3 [55]).
Having established confidence in the air quality model calculations of the aerosol size
distribution as well as the bulk and size-segregated aerosol chemical composition at
all three monitoring sites along the air parcel trajectory, model results now can be

tested against atmospheric single-particle measurements.

2.2.2 Description of Single-Particle Aerosol Measurements

On September 24-25, 1996, ATOFMS instruments operated continuously at the
Long Beach and Riverside sites. The Long Beach site was equipped with a field-
transportable ATOFMS instrument [75], and a laboratory-bound ATOFMS instru-
ment [46] was stationed at the Riverside site. A third ATOFMS instrument located
at the Fullerton site was not operated during the September 24-25 time period. Con-
sequently, model calculations of the Fullerton aerosol cannot be evaluated against
ATOFMS measurements, and is not discussed in this chapter.

A thorough description of the ATOFMS instrument operating principles is pro-
vided elsewhere [46]. Briefly, ambient air is drawn into the ATOFMS instruments and
particles are focused into a narrow beam and accelerated to a terminal velocity that
is a function of their aerodynamic size. The velocity, hence aerodynamic size, of each
particle is measured by detecting scattered light from two continuous wave timing
lasers, positioned a fixed distance apart, orthogonal to the particle beam and to each
other. The arrival time of the sized particle is predicted based on the particle velocity
measurement, and a third laser is fired to intercept the sized particle. This third laser
ablates and ionizes the contents of the particle and a time-of-flight mass spectrometer
analyzes the generated ions, producing a mass spectrum. In this manner, ATOFMS
instruments simultaneously measure the chemical composition and size of individ-

ual particles. Figure 2.1b shows the mass spectrum and aerodynamic diameter (D)
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measurement of an individual atmospheric particle sampled using the transportable
ATOFMS instrument at Long Beach.

At the time of the 1996 field study, the ATOFMS instruments could obtain ei-
ther a positive ion or a negative ion mass spectrum for each particle hit by the
ablation/ionization laser. Positive ion mass spectra were collected throughout the
intensive sampling periods described in this study. As a result, negative ion markers
for certain species, including sulfate, silicon, and chloride, are not available for use
in this model evaluation study. Modifications to the transportable ATOFMS instru-
ment design following the 1996 study have added dual ion detection capability, so
both positive and negative ion mass spectra are obtained from individual particles in

more recent field studies [76-81].

2.2.3 Model Evaluation Procedure

In order to evaluate the air quality model calculations, several steps are required to
render the ATOFMS measurements and model results into a common format that
permits a direct comparison to be made. The procedure used to transform ATOFMS
measurements into such a format is outlined in Figure 2.1d. ATOFMS instruments are
known to undercount ambient particles by a factor, ¢, that increases with decreasing

aerodynamic particle diameter, D, [82].
¢=aD,” (2.1)

where parameters « and § are determined by comparing ATOFMS data with col-
located reference measurements. For ATOFMS data collected during the 1996 field
experiment, parameter values of o and S are 2133 and -5.527, respectively, for the
ATOFMS instrument stationed at Long Beach, and 4999 and -3.236, respectively, for
the Riverside-based ATOFMS instrument [82]. These “counting efficiency” functions
were derived for particles smaller than 1.8 ym diameter, because reference measure-
ments at larger particle sizes were not available. In order to maximize the particle size

range over which model results can be evaluated in the present study, the ATOFMS
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counting efficiency functions are extrapolated upward to 3.5 um. Each particle in the
0.32-3.5 pum aerodynamic diameter range for which a mass spectrum was obtained,
is “duplicated” in proportion to the degree to which particles of that size were un-
dercounted by the ATOFMS instruments; each particle is assumed to have the same
chemical composition as the particle from which it was duplicated. This calculation
accounts for the tendency of ATOFMS instruments to preferentially detect large par-
ticles rather than smaller ones, and results in a particle number distribution matching
that of the atmosphere as measured by collocated laser optical particle counters and
cascade impactors during the time of sampling [82].

Because manual classification of the ATOFMS data is slow, labor intensive, and
subject to operator bias [83], automated computer software is used to generate a peak
list that contains the areas, heights, and mass-to-charge (m/z) ratios of all peaks
in a particle spectrum. A variety of data analysis programs use these peak lists
along with the corresponding D, measurements, to group individual particles into
meaningful classes. At the time of this study, chemical sensitivities of the ATOFMS
instruments were not known with sufficient accuracy to quantitatively reconstruct
the chemical composition of individual particles. Therefore, in this chapter, particle
spectra obtained by ATOFMS are used to indicate only the presence or absence of
selected chemical species in each particle rather than the quantitative amounts of
each chemical component in the particle. The presence or absence of chemical species
in each particle can be used to separate the ambient aerosol into compositionally
distinct particle classes. Evaluations presented in this chapter compare the presence
or absence of selected species in source-oriented model particle classes to the presence
or absence of these species in the ATOFMS measurements.

The presence of sodium, ammonium, nitrate, carbon, or mineral dust, in each
individual particle is determined by searching for certain indicator peaks in the peak
list corresponding to that particle. All searches of the ATOFMS data are performed
using the YAADA data analysis system [84]. The search criteria used to determine
whether or not a particle contains sodium, ammonium, nitrate, and/or carbon, are

described by Hughes et al. [85]. Search criteria for detecting mineral dust in ambient
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particles are updated for the present model evaluation, based on recent findings from
an ATOFMS single-particle source characterization study of suspended soil samples
commonly found in the southern California region [86]. Eight mineral dust search
criteria are defined precisely in Table 2.2. A particle spectrum that meets at least
one of these criteria is classified as a dust-containing particle in the present study.
Ninety percent of the positive ion mass spectra obtained from suspended soil samples
in the source characterization study satisfy these search criteria. This represents
a marked improvement in the source classification of southern California ambient
particles, in comparison to previous studies [85]. Because these search criteria were
developed by visual inspection of single-particle spectra from southern California soil
and ambient samples, they should not be used to categorize ambient ATOFMS data
collected in other regions.

By following the procedure outlined in Figure 2.1d, each mass spectrum acquired
by ATOFMS is rendered into the format shown in Figure 2.1f. Aerodynamic parti-
cle diameters are obtained directly from the ATOFMS measurements, whereas the
atmospheric number concentration of particles having the same size and composition
as the sampled particle is determined using the counting efficiency function in Equa-
tion 2.1. The peak list search criteria are used to determine whether the five chemical
species of interest were present or absent in each sampled particle. For example, the
mass spectrum shown in Figure 2.1b contains peaks that indicate the presence of

ammonium, nitrate, and carbon.

Figure 2.1c outlines the procedure followed to transform the quantitative air qual-
ity model results into the semi-quantitative ATOFMS data format. The sensitivity
of ATOFMS instruments for detecting individual chemical components present in the
mixed ambient aerosol varies dramatically from one chemical component to another.
For example, recent laboratory work demonstrated that ATOFMS instruments de-
tect Kt in individual particles with 360 times greater sensitivity than NH; [87]. In
order to make an accurate comparison between the air quality model results and the
single-particle characteristics measured by ATOFMS, the chemical sensitivities and

chemical detection limits of the ATOFMS instruments must be accounted for. For
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Table 2.2: Criteria for identifying the presence of mineral dust in ATOFMS positive
ion spectra collected in southern California.

Ton m/z range? Peak List Search Criteria®
1 Al* [27] Height > 200 AND
Fet/CaOH™ [54,58] Height > 200
2 H+ 0.5,2.5]  Height > 100 AND
ct [12] Height < 100
3 Metals [40,50] Area > 50000
4 Tit [47,49]  Height > 200 AND
TiO* [63,65] Height > 200
5 Na* [22,24] (Height > 100 OR Relative Area® > 0.5) AND
K+ 38,39.5]  Height < 50 AND
Na,Cl* [81] Height < 10 AND
Na,NOF [107,109]  Height < 10 AND
NazSO; [164,166]  Height < 10 AND
c+ [12] Height < 50 AND
ct [36] Height < 50 AND
CQH30+ [43] Helght < 50
6 K+ [38,39.5] (Height > 100 OR Relative Area® > 0.5) AND
o [12] Height < 50 AND
Cy [36] Height < 50 AND
not sea saltd
7 Ca* [40] Height > 200 AND
CaO*/CaOH*  [55,58]  Height > 20 AND
Ca, Ot [95,97] Height > 20 AND
ct [12] Height < 50 AND
cf [36] Height < 50 AND
not sea salt?
8 Al* [27] Height > 20 AND
Fet /CaOH™ [54,58] Height > 100 AND
v+ [51] Height < 50 AND

not sea saltd

®Unless otherwise specified, m/z range is +0.5 Daltons

"Height and area thresholds are listed in arbitrary units

‘Relative area is the ratio of the area of a given peak to the total area under the mass spectrum

Sea salt particle spectra contain a peak in the m/z range [22,24] with Height > 50 arbitrary
units (indicative of Nat) and meet at least one of the four criteria listed in Table 2.3.
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Table 2.3: Exceptions to mineral dust search criteria #6-8.

Ton m/z range® Peak List Search Criteria®
1 NayCl*t [81] Height > 30
2 NapNOj  [107,109]  Height > 30
3 NagSO;  [164,166]  Height > 10 AND
NayCI* [81] Height > 10
4 NagSOf  [164,166]  Height > 10 AND
NapgNOF  [107,109]  Height > 10

®Unless otherwise specified, m/z range is £0.5 Daltons
Height and area thresholds are listed in arbitrary units

the present evaluation, the air quality model calculations of the chemical composi-
tion of each source-oriented particle class are transformed to simulate the ATOFMS
instrument sensitivity to different chemical substances. Mass concentrations of the
chemical components within each particle are scaled to reflect the fact that some sub-
stances stand out clearly in an ATOFMS single-particle spectrum even when present
at very small concentrations within the particle. ATOFMS relative sensitivity factors
(RSE’s) are defined as the sensitivity of ATOFMS instruments to a species of interest
divided by the ATOFMS sensitivity to sodium [87]. Estimated and experimentally
determined RSF’s for all chemical species tracked by the air quality model appear in
Table 2.4. Conversion of the mass concentrations, calculated in the air quality model,
to molar concentrations, and then multiplying by the positive ion mode RSF’s, results
in a collection of particles with increased apparent concentrations of chemical species
whose RSF’s are greater than unity and decreased apparent concentrations of species

whose RSF’s are less than unity.

After applying the RSF’s, the air quality model results are further modified to
simulate the chemical detection limits of the ATOFMS instruments. In ATOFMS
data, species present at very low levels in a particle may not be detectable due to
interference from noise in the mass spectrum. In one ATOFMS study, a 2% relative
peak area threshold was applied to distinguish real mass spectral peaks from mass
spectrometer noise [90], where the relative peak area is defined as the ratio of the area

of a given peak to the total area under the mass spectrum. In an analogous manner,
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Table 2.4: Relative sensitivity factor estimates for species detected by ATOFMS in
positive ion mode.

Species RSF
Aluminum 0.5
Ammonium | 0.014°
Barium 4.02
Calcium 3.0?
Carbon 0.05%
Cesium 7.9P
Chloride 0°
Copper 0.32
Iron 3.52
Lead 0.5%
Magnesium 0.8%
Manganese 0.5%
Molybdenum | 0.52
Nitrate 0.0184
Phosphorus 0°¢
Potassium 5.1P
Rubidium 6.0°
Silicon 0°
Silver 0.09?
Sodium 1.0P
Strontium 20.0?
Sulfate 0°
Tin 0.5
Titanium 0.352
Vanadium 0.132
Zinc 0.05%

“Estimates based on ionization potential and laboratory experience [88]

"Determined from laboratory experiments [87]

¢Zero entry indicates chemical species is not commonly detected in positive ion mode
4Determined from field experiments based on comparison with impactor measurements [89]
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the interference from mass spectrometer noise is approximated by discarding model
calculations of chemical species whose RSF-adjusted apparent concentrations in an
individual particle are less than 2% of the total apparent concentrations of all species
in the particle. The 2% chemical detection limit is applied to model results in order
to determine whether each particle class contains ammonium, nitrate, and/or carbon,
in quantities large enough to be detected by the ATOFMS instruments. No detec-
tion threshold is applied to categorize modeled particle classes as sodium-containing
because the ATOFMS instruments are thought to be capable of detecting particulate
sodium at a level far below the detection limits of the instruments used to dictate
sodium emission inputs to the air quality model. In the model results, dust-containing
particles are identified as such if they originated from the suspension of either crustal
material or paved road dust, taking advantage of the air quality model’s ability to
track the original source of each particle class. In this manner, each particle class
tracked in the air quality model is categorized according to whether or not it contains
sodium, ammonium, nitrate, carbon, and/or mineral dust.

As illustrated on the left-hand side of Figure 2.1, the detailed, quantitative parti-
cle description, calculated using the air quality model, is reduced to an abbreviated
particle description shown in Figure 2.1e, for the purposes of comparison with the
semi-quantitative ATOFMS data. The physical particle diameter tracked by the air
quality model is converted to aerodynamic diameter using the particle density calcu-
lated in the model and assuming that all particles are spherical, whereas the particle
number concentration is obtained directly from model calculations. The presence
or absence of the five chemical species of interest in each particle is determined af-
ter scaling the chemical composition according to ATOFMS instrument RSF’s, and
removing species that fall below the simulated ATOFMS detection limits. In the
example shown in Figure 2.1a, model calculations reveal that the particle contains
small amounts of ammonium and nitrate. While simulating the ATOFMS instrument
chemical sensitivities and detection limits, however, the particle is “stripped” of its
ammonium and nitrate, resulting in the particle description shown in Figure 2.1e.

After the ATOFMS measurements and air quality model results are transformed
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into a comparable format, the particles are separated into aerodynamic diameter in-
tervals corresponding to those of the cascade impactors (D, = 0.32-0.56 pm, 0.56-1.0
pm, 1.0-1.8 pym, and 1.8-3.5 um). Size-segregated and chemically-categorized air
quality model calculations and ATOFMS measurements can then be directly com-

pared with one another.

2.3 Results and Discussion

The remainder of this chapter focuses on two 4-hour air pollution episodes: (1) 0700—
1100 PDT on September 24 at Long Beach; and (2) 1500-1900 PDT on September 25
at Riverside. As discussed earlier, model calculations of the aerosol size distribution
and chemical composition agree favorably with the filter and impactor-based measure-
ments taken at both sites during the indicated time periods [55]. Moreover, air parcel
trajectory calculations reveal that the same air mass passed over both Long Beach
and Riverside monitoring sites in succession, during the 4-hour time periods listed
above. Selection of these two sampling periods permits an evaluation of air quality
model calculations of the evolution of a source-oriented particle mixture within a sin-
gle air parcel, as it is transported across the Los Angeles area. For these reasons, the
current model evaluation study focuses on the two indicated time periods.

In this section, air quality model results and ATOFMS measurements during the
two time periods of interest are compared. ATOFMS instruments acquired positive
ion mass spectra from 4780 particles with D, = 0.56-3.5 pm during the 4-hour inten-
sive sampling period at Long Beach, and 3517 particles with D, = 0.32-3.5 ym during
the intensive sampling period at Riverside. Model results are obtained by comput-
ing the pollutant evolution along trajectories terminating hourly at each monitoring
site during the 4-hour intensive sampling periods. The air quality model tracked the
evolution of 2388 source-oriented particle classes reaching the Long Beach site with
D, = 0.56-3.5 ym during the time period of interest, and 8872 particle classes with
D, = 0.32-3.5 pm reaching the Riverside site. In this section, model calculations are

compared with ATOFMS measurements in two steps. First, the fractions of particles
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in each size interval that contain one or more of the five chemical species of interest
are compared. These are referred to as single-component comparisons, because the
model results are compared with ATOFMS measurements one chemical component at
a time. Next, the compositional heterogeneity of size-segregated particle populations
calculated using the air quality model are compared with the ATOFMS measurements
at both sites. These are referred to as multi-component comparisons, because model
calculations of the fractions of particles consisting of unique combinations of multiple

chemical species are compared with ATOFMS measurements.

2.3.1 Single-Component Model Evaluation

Figure 2.3 displays the fraction of particles in each size interval containing any one
of the five chemical species of interest. Air quality model results are plotted as
black stars and ATOFMS measurements are plotted as solid lines. The left column
of Figure 2.3 depicts single-component comparisons at the Long Beach monitoring
site. Trajectory calculations indicate that the air parcels studied here spent between
thirteen and seventeen hours over land before reaching the Long Beach site during the
time period of interest. The aerosol sampled at Long Beach had therefore undergone
significant atmospheric processing in the polluted region upwind of Long Beach, and
this degree of atmospheric processing is simulated accurately in the air quality model.
The model calculations accurately reveal the abundance of sodium-containing and
nitrate-containing particles with D, = 1.8-3.5 um, and the abundance of ammonium-
containing, nitrate-containing, and carbon-containing particles in the 1.0-1.8 pm and
0.56-1.0 pum size ranges. Also, the air quality model calculations accurately reveal
that mineral dust is present in a relatively small fraction of the ambient particles
in all three size ranges studied. Overall, air quality model results and ATOFMS
measurements are in excellent agreement with one another for all five chemical species
of interest, across the entire particle size range measured using the transportable
ATOFMS instrument, at Long Beach.

The right-hand column of Figure 2.3 depicts single-component comparisons be-
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Figure 2.3: Single-component comparisons of model results and ATOFMS measure-
ments. Vertical axes indicate the fraction of particles in the given size interval that
contain the chemical component of interest. The transportable ATOFMS instrument
stationed at Long Beach did not sample a sufficient number of particles smaller than
0.56 pm to warrant a comparison in the 0.32-0.56 pm size range.
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tween the air quality model results and ATOFMS measurements at the Riverside
monitoring site. Overall, model calculations are in good agreement with ATOFMS
measurements in the largest particle size range measured at Riverside, but there is
less agreement at smaller particle diameters.

In the 1.8-3.5 um size range, the air quality model calculations match the percent-
age of atmospheric particles that contain sodium, nitrate, carbon, and mineral dust,
as shown in the upper right-hand subplot of Figure 2.3. The ammonium-containing
particle fraction calculated using the air quality model in the 1.8-3.5 pum size range is
almost three times as large as that measured by the ATOFMS instrument at Riverside.
The high ammonium-containing particle fraction calculated in the air quality model
results primarily from a large ammonia source located in the Chino dairy area upwind
of the Riverside site, as well as many smaller ammonia sources located throughout the
Los Angeles region. Filter and impactor measurements of the particulate ammonium
mass concentration at Riverside during the sampling period reinforce confidence in
the air quality model calculations [55]. One possible explanation for the difference be-
tween the model results and ATOFMS measurements is that the ATOFMS instrument
may be less sensitive to detecting ammonium ions in atmospheric particles than was
previously assumed. The ammonium ion RSF applied to model results in the current
study is based on laboratory measurements of an aerosol generated from equimolar
solutions of NaCl and NH,Cl [87]. Ammonium in the 1.8-3.5 ym range at Riverside
is present primarily in the form of NH4NOj3, not NH,Cl, raising the possibility that
the ammonium ion RSF may be inapplicable to the ambient aerosol studied here. We
can simulate a reduced sensitivity to ammonium by lowering the ammonium ion RSF
applied to the model results by a factor of two. Model calculations of the ammonium-
containing particle fraction, modified by this lower ammonium ion RSF, are displayed
as white stars in Figure 2.3. This RSF reduction brings model results into agreement
with ATOFMS measurements of the ammonium-containing particle fraction in the
1.8-3.5 pm size range at Riverside, and slightly improves agreement in the 0.32-0.56
pm size range. Furthermore, the reduced ammonium ion RSF does not significantly

affect model performance at the Long Beach site across all of the size ranges stud-
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ied. This lends credence to the hypothesis that ATOFMS sensitivity to ammonium
is lower in the ambient aerosol studied here, than in the laboratory-generated aerosol
from which the ammonium ion RSF was determined. The sensitivities of ATOFMS
instruments to NH; and NOj are assessed in Chapter 3 [91]. Use of those sensitiv-
ity factors will allow more refined comparisons of ATOFMS measurements and air
quality model calculations in Chapter 5.

In the three smallest size ranges examined at the Riverside site, model results
show less agreement with the single-particle ATOFMS measurements. The most no-
ticeable difference is that the model results show larger ammonium-containing and
nitrate-containing particle fractions in the fine particle size intervals (D, < 1.8 pm),
as compared to the the ATOFMS measurements. Some of this difference is miti-
gated by reducing the ammonium ion RSF as discussed above. However, this still
leaves air quality model calculations of both ammonium and nitrate in excess of the
ATOFMS measurements in the fine particle size range. Analysis of the single-particle
ATOFMS measurements at the Riverside site reveal a large class of fine carbonaceous
particles that contain neither ammonium nor nitrate. This particle class appears to
be composed of fresh combustion source emissions that did not have time to accu-
mulate ammonium nitrate before being sampled by the ATOFMS instrument. The
laboratory-based ATOFMS instrument was stationed on the second floor of Pierce
Hall at the University of California, Riverside, which unfortunately was located near
the loading docks for the campus cafeteria and bookstore. At the time of sampling,
the bookstore was receiving more deliveries than usual, due to the start of the fall aca-
demic term. In addition, a strong food cooking smell was noted at the sampling site
during the study period, possibly due to cafeteria operations upwind of the sampling
equipment. The number of purely carbonaceous particles measured by ATOFMS
dropped off by a factor of two after 1700 PDT on September 25, possibly correspond-
ing with the end of the business day for the campus cafeteria and bookstore. The
largest difference between the model calculations and ATOFMS measurements of the
ammonium-containing and nitrate-containing particle fractions at Riverside is noted

in the smallest measured size range (D, = 0.32-0.56 pm), which corresponds with
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the peak in the aerosol size distributions of freshly emitted motor vehicle exhaust
and emissions from meat cooking operations [65, 66]. For the reasons listed above,
vehicle exhaust from the loading docks and food cooking particles from the cafeteria
are both likely sources of the purely carbonaceous aerosol measured by ATOFMS at
Riverside. The air quality model operates using a horizontal spatial resolution of 5km
x bkm, and therefore, is unable to resolve emissions from sources located very near
a monitoring site. However, large quantities of gas phase ammonia and nitric acid
measured at the Riverside site during the sampling period [85] support air quality
model calculations that show most of the aged particles in the fine particle size range
having accumulated ammonium nitrate before reaching the Riverside monitoring site.

The fractions of dust-containing particles in the air quality model results be-
tween 0.32-1.0 um D, at Riverside and between 0.56-1.0 yum D, at Long Beach are
slightly larger than the corresponding dust-containing particle fractions measured by
ATOFMS. Air quality model calculations of the sodium-containing particle fractions
in these size ranges are also larger than the corresponding ATOFMS measurements.
Chemical composition profiles of both crustal material and paved road dust contain
sodium [92], suggesting that these two differences may be associated with one another.
Due to the unavailability of size-distributed measurements of suspended crustal ma-
terial and paved road dust, the submicron size distributions of these two aerosol
emission sources used in the air quality model are obtained from ambient impactor
measurements of the non-hygroscopic particle fraction collected at Claremont, Cali-
fornia [60]. In order to improve air quality model calculations of the dust-containing
and sodium-containing particle fractions in the submicron size range, a detailed char-
acterization of the size and composition distribution of both crustal material and
paved road dust is warranted. The presence of near-field sources of fresh carbona-
ceous particles at the Riverside site, discussed above, reduce the dust-containing and
sodium-containing particle fractions measured by ATOFMS, further contributing to
the differences between ATOFMS measurements and air quality model results in the

fine particle size range.
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2.3.2 Multi-Component Model Evaluation

After noting the general agreement between model results and ATOFMS measure-
ments in the single-component comparisons, the air quality model calculations are
subjected to an even more stringent evaluation. All particles in the air quality model
results and in the ATOFMS data set which contain the same combination of chemical
species are grouped together and compared against one another. Figure 2.4 shows
the results of this multi-component comparison as a color-coded display, illustrating
the chemical heterogeneity among size-segregated particles in both model results and
ATOFMS measurements at the Long Beach and Riverside sites. Each of the 100 dots
within a square plot in Figure 2.4 represents one percent of the particle population
at the time and location indicated, within the specified D, range. Each dot is striped
with colors that correspond to the chemical components found in one percent of the
size-segregated particle population. The exception to this rule is the dust particle
category; all mineral dust-containing particles are represented as solid gray dots be-
cause the ATOFMS ion peaks associated with dust often have areas so large that
they exceed the instrument’s dynamic range and produce noise in the rest of the
mass spectrum, making the detection of other peaks less reliable. Therefore, any or
all of the other chemical species may be present within the mineral dust-containing
particles represented by a solid gray dot. As a result, the gray dots in Figure 2.4
relay the same information depicted by the corresponding stars and solid lines in
Figure 2.3. In Figure 2.4, a colored stripe only qualitatively indicates the presence of
the corresponding chemical species; no conclusions should be drawn about the rela-
tive amounts of each chemical substance in a particle. The “many types” category,
shown in green, is the sum of those particle types which each encompass less than
approximately 0.5% of the particle population, which therefore, would not warrant
representation by an entire dot.

Table 2.5 provides a numerical representation of the color-coded display shown
in Figure 2.4. The values listed in Table 2.5 correspond to the number of dots in

Figure 2.4, that represent particles in the corresponding chemical class. For example,
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Long Beach Riverside
0700-1100 PDT, Sept. 24, 1996 1500-1900 PDT, Sept. 25, 1996
ATOFMS Model ATOFMS Model

1.80 - 3.50 um 1.80 - 3.50 um 1.80 - 3.50 um 1.80 - 3.50 um

1.00 - 1.80 pm 1.00 - 1.80 pm

OQoQ00022% OL222%222%%

0000000000 (OO00000000

0.56 - 1.00 um 0.56 - 1.00 um

OQ00000%%% @2909%%%%%

00000000080 (OOO000eee

0.32 - 0.56 um

O Sodium

@ Nitrate

O Ammonium
© Carbon

@ Dust

© Many Types
O Unclassitied

Figure 2.4: Multi-component comparisons of model results and ATOFMS measure-
ments. Each dot represents 1% of the particle population within the indicated aero-
dynamic particle diameter range. The transportable ATOFMS instrument stationed
at Long Beach did not sample a sufficient number of particles smaller than 0.56 ym to
warrant a comparison in the 0.32-0.56 pm size range.
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Table 2.5 indicates that 34% of the counting efficiency corrected ATOFMS mea-
surements in the 1.00 - 1.80 um particle size range at Long Beach contain nitrate,
ammonium, and carbon. The corresponding subplot of Figure 2.4 includes 34 dots
with red, yellow, and orange stripes.

The ATOFMS measurements displayed in Figure 2.4 are identical to those that
appear in [85, Figure 8 h-n|, with the exception that the mineral dust search criteria
updated for the present study result in a larger fraction of particles being classified as
“dust” across all size ranges and at both monitoring sites. The model results shown
in Figure 2.4 are obtained by following the procedures described above, and the RSF
applied to model calculations of ammonium ions at both sites and all particle size
ranges is reduced by a factor of two. This adjustment is made to simulate a lower
ATOFMS instrument sensitivity to ammonium ions in ambient particles, as inferred
from the single-component analyses presented in the previous section.

The left half of Figure 2.4 displays multi-component comparisons between air
quality model results and ATOFMS measurements at the Long Beach site. In the
1.8-3.5 pum size range, the model calculations accurately reveal the presence of sodium
and nitrate (represented by blue and red stripes) in the vast majority of particles.
Model calculations indicate that these particles originated as sea spray. Likewise,
ATOFMS spectra associated with the sodium and nitrate-containing particle class
in the 1.8-3.5 pum size range contain indicator peaks that commonly result from the
ablation /ionization of sea salt particles. This suggests that the model accurately
calculates the relative contribution of sea spray aerosols to the particle number con-
centration in this size range. The air quality model results also accurately reveal a
small fraction of particles containing sodium and carbon, that have not accumulated
ammonium nitrate. These particles are represented by blue and orange striped dots.
Model calculations suggest that these particles were emitted from motor vehicles near
the Long Beach site during the morning rush hour traffic period. Model calculations
of the dust-containing particle fraction (solid gray dots) are in excellent agreement
with the ATOFMS measurements in the 1.8-3.5 um size range. This agreement lends

credence to the emission inventories of paved road dust and crustal material, used as
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Table 2.5: Numerical representation of Figure 2.4.

Long Beach
0700-1100 PDT, Sept. 24, 1996

Riverside
1500-1900 PDT, Sept. 25, 1996

ATOFMS Model ATOFMS | Model

1.80-3.50 pm 1.80-3.50 pm
Sodium 4% 2% 1% 2%
Sodium & Nitrate 41% 67% 33% 44%
Sodium & Ammonium 1%
Sodium & Carbon 2% 2% 3% 1%
Sodium, Nitrate, & Ammonium 4% 2% 15%
Sodium, Nitrate, & Carbon 16% 9%
Sodium, Ammonium, & Carbon 2%
Sodium, Nitrate, Ammonium, & Carbon 18% 11% 2%
Nitrate, Ammonium, & Carbon 1% 17% 4% 12%
Carbon 2%
Dust 10% 11% 28% 23%
Many Types 1% 1% 1% 1%
Unclassified 1% 2%

1.00-1.80 pm 1.00-1.80 pm
Sodium 2% 1% 1% 1%
Sodium & Nitrate 9% 9% 10% 2%
Sodium & Carbon 4% 2% 1% 1%
Sodium, Nitrate, & Ammonium 1% 1%
Sodium, Nitrate, & Carbon 8% 5%
Sodium, Ammonium, & Carbon 5% 2%
Sodium, Nitrate, Ammonium, & Carbon| 21% 20% 14% 1%
Nitrate, Ammonium, & Carbon 34% 57% 22% 82%
Nitrate & Carbon 1% 5%
Ammonium & Carbon 5% 3%
Carbon 1% 2% 13% 1%
Dust 9% 9% 17% 8%
Many Types 1% 1%
Unclassified 2%

0.56-1.00 pum 0.56-1.00 um
Sodium 1%
Sodium & Nitrate 2% 1%
Sodium & Carbon 1% 2% 1% 1%
Sodium, Nitrate, & Carbon 1% 2% 1%
Sodium, Ammonium, & Carbon 1%
Sodium, Nitrate, Ammonium, & Carbon 8% 13% 6% 11%
Nitrate, Ammonium, & Carbon 53% 67% 11% 69%
Nitrate & Carbon 2% 10%
Ammonium & Carbon 17% 6%
Carbon 10% 1% 23% 1%
Dust 4% 12% 5% 16%
Many Types 1% 1% 1%
Unclassified 1% 1%

0.32-0.56 pm

Sodium & Nitrate 1%
Sodium & Carbon 3% 1%
Sodium, Nitrate, & Carbon 2% 7%
Sodium, Ammonium, & Carbon 1%
Sodium, Nitrate, Ammonium, & Carbon 4% 33%
Nitrate, Ammonium, & Carbon 33% 49%
Nitrate & Carbon 9%
Nitrate 1%
Ammonium & Carbon 9%
Carbon 26% 1%
Dust 1% 8%
Many Types 1% 1%
Unclassified 6%
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input to the air quality model.

ATOFMS measurements reveal that 16% of the particles in the 1.8-3.5 um size
range at Long Beach contain carbon, sodium, and nitrate (orange, blue, and red
striped dots), whereas air quality model calculations in the same size range at Long
Beach do not contain this particle type. Analyses of the associated single-particle
measurements indicate that this class of particles originated as sea spray. In the air
quality model calculations, sea spray aerosols are initialized as an internal mixture
of sodium, chloride, and nitrate [55], and these particles do not accumulate sufficient
amounts of secondary organic material during transport between the coastline and
Long Beach to exceed the simulated ATOFMS detection threshold for carbon. This
suggests that the carbon detected by ATOFMS in these particles may be primary
in nature. Although it is not possible to discern from the Long Beach ATOFMS
data whether this sea salt-associated carbon is primary or secondary, recent single-
particle measurements of clean marine air indicate that a large fraction of sea salt
particles contain primary organic carbon [93]. In the future, it may be possible to
seed the air quality model with multiple classes of sea spray aerosol, each having a
distinct chemical composition. This will very likely improve the agreement between
model results and ATOFMS measurements of the coarse mode carbon-containing
particle fraction. The air quality model results show that 17% of particles in the 1.8
3.5 pm size range contain ammonium, nitrate, and carbon (red, orange, and yellow
striped dots), but they lack sodium. This particle type composes only 1% of the
ATOFMS data. Instead the ATOFMS data show 18% of particles in the coarse size
range containing sodium, nitrate, ammonium, and carbon (blue, red, yellow, and
orange striped dots). The likely cause of this difference is that ATOFMS instruments
are extremely sensitive to the sodium ion, and therefore detect sodium in particles
that originated from emission sources for which the model’s emission source profiles
contain no sodium.

In the 1.0-1.8 pm size range at Long Beach, the model results continue to meet
the stringent multi-component evaluation. Model calculations of particles containing

sodium only (solid blue dots), sodium and nitrate (blue and red striped dots), sodium
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and nitrate and ammonium and carbon (blue, red, yellow, and orange striped dots),
carbon only (solid orange dots), and mineral dust (solid gray dots), all match the
ATOFMS measurements within 1%. The close agreement between model calcula-
tions and ATOFMS measurements of the particle class containing sodium, nitrate,
ammonium, and carbon, suggests that ammonium nitrate formation and partitioning
processes within the model are relatively accurate. The only noteworthy difference
between model results and ATOFMS measurements in the 1.0-1.8 um size range at
Long Beach is the excess fraction of particles containing ammonium, nitrate, and
carbon in the model results (red, orange, and yellow striped dots). This difference is
to be expected based on the single-component comparisons, which showed that the
model results slightly overestimates the ammonium-containing, nitrate-containing,
and carbon-containing particle fractions, in the 1.0-1.8 pm D, range (see Figure 2.3).

The air quality model results accurately reveal that the most common particle type
present in the 0.56-1.0 um size range at Long Beach contains ammonium, nitrate,
and carbon (red, orange, and yellow striped dots). The air quality model results
also contain three compositionally distinct sodium-containing particle types, agreeing
fairly well with the chemical heterogeneity of sodium-containing particles measured
by ATOFMS. The model overestimation of dust-containing particles (solid gray dots)
in the 0.56-1.0 um size range at Long Beach was discussed in conjunction with the
single-component comparison. The only other apparent difference between the model
results and ATOFMS measurements at Long Beach in the 0.56-1.0 pym size range is
the lack of a particle type containing only carbon and ammonium (orange and yellow
striped dots) in the model calculations. Instead, the model results show an excess of
particles containing ammonium, nitrate, and carbon (red, orange, and yellow striped
dots). The absence of nitrate in the ATOFMS measurements of the particle type
containing only carbon and ammonium may be due to the fact that only positive ion
mass spectra were collected during the 1996 field experiment. ATOFMS instruments
are known to be more sensitive to nitrate when operating in the negative ion mode
than when operating in the positive ion mode. The availability of dual polarity

ATOFMS data in more recent field experiments may yield better agreement between
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model results and ATOFMS measurements of the nitrate-containing particle fraction.

The right half of Figure 2.4 documents the multi-component comparisons between
model results and ATOFMS measurements at the Riverside site. In the 1.8-3.5
pm size range, the air quality model results accurately show that the most common
particle types at Riverside contain either sodium and nitrate (blue and red striped
dots) or mineral dust (solid gray dots). The air quality model results show seven
compositionally distinct particle types in quantities greater than 0.5% of the particle
population in the 1.8-3.5 um size range at Riverside. ATOFMS measurements in
the same particle size range display 10 compositionally distinct particle types at
the Riverside site. Comparing the number of distinct particle types serves as yet
another measure of the model’s ability to represent the complex mixtures present in
the polluted ambient aerosol. The multi-component comparisons in the fine particle
size range (D, < 1.8 pum) studied at Riverside are very likely affected by the presence
of combustion sources located near the ATOFMS instrument during the sampling

period, and therefore, are not discussed in detail.

2.3.3 Evolution of the Aerosol Mixture

Taken as a whole, Figure 2.4 displays the ability of the air quality model to represent
the urban aerosol as an ensemble of source-oriented particle classes, and to calculate
how that particle population evolves due to emissions of new particles, dry depo-
sition, and atmospheric reactions, as it is transported across the Los Angeles area.
Most coarse particles (D, > 1.8 ym) in the air parcel studied here contain sodium and
nitrate at Long Beach. As the air parcel traverses the Los Angeles urban area, it picks
up significant quantities of mineral dust material. The particles which originally con-
tained sodium and nitrate (blue and red striped dots) accumulate ammonium, nitrate,
and carbon, due to gas-to-particle conversion processes. At first glance, the smaller
particles studied here (D, < 1.8 um) appear to undergo a less pronounced evolution
than their coarse mode counterparts, based on the color-coded display shown in Fig-

ure 2.4. However, Figure 2.4 does not display the relative amounts of the various
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chemical species present in the atmospheric particles. The air quality model results
reveal substantial increases in the amounts of ammonium, nitrate, and organic carbon
on fine particles over time. As the quantification ability of single-particle instruments
is improved, it may be possible in the future to quantitatively evaluate model calcula-
tions of the relative amounts of various chemical substances present in source-oriented
particle classes.

While the results of the multi-component comparisons presented in this study are
promising, it appears that the air quality model results somewhat underestimate the
number of compositionally distinct particle types present in the urban aerosol, as
compared to the number of distinct particle types measured by the ATOFMS instru-
ments. One possible explanation for this underestimation is that some of the particle
types measured by ATOFMS are coagulation products of two or more particles that
were emitted from different source types. Coagulation processes are not included in
the current model formulation, but they may be necessary to improve the accuracy of
model calculations in future applications. A second possible explanation is that the
method by which ATOFMS data are categorized is highly dependent on the analyst-
defined peak list search criteria, which can lead to significant uncertainties if the
thresholds are within the range of detection limits (see Section 4.2). An alternative
method for spectral categorization is presented in Chapter 4. A third possible expla-
nation for the underestimation of ambient particle heterogeneity is that the emissions
inputs to the air quality model are represented as source-specific internal mixtures,
where all particles emitted from a certain source type at a given initial size are as-
sumed to have identical chemical compositions. Recent ATOFMS studies reveal that
primary particles emitted at the same size from the same emission source actually
exhibit different chemical compositions [86, 94-97]. In future work, emissions inputs
to the air quality model may be represented as source-specific mixtures of composi-
tionally distinct particle types, by incorporating the results of single-particle emission

source characterization studies that are currently underway (see Section 7.2.3).



42
2.4 Conclusions

Air quality model calculations of the size and composition of atmospheric particle
classes have been evaluated by comparison with ATOFMS single-particle measure-
ments at Long Beach and Riverside, during September 1996. The air quality model
tracks the physical diameter, chemical composition, and atmospheric concentration of
thousands of particle classes as they are transported from sources to receptors while
undergoing atmospheric chemical reactions. In the model, each particle class interacts
with a common gas phase, but otherwise evolves separately from all other particle
classes. The model calculations yield an aerosol representation, in which particles of
a given size may exhibit different chemical compositions. Model results were trans-
formed to simulate the chemical sensitivities and compositional detection limits of
the ATOFMS instruments, and ATOFMS data were adjusted for instrument-specific
particle detection efficiencies. This permitted direct, semi-quantitative comparisons
between the air quality model results and single-particle ATOFMS measurements
to be made. The fractions of atmospheric particles containing sodium, ammonium,
nitrate, carbon, and mineral dust, across all particle sizes measured by ATOFMS
at the Long Beach site, and in the coarse particle size range at the Riverside site,
are accurately simulated in the air quality model. Given that this model evalua-
tion is very likely the most stringent test of any aerosol air quality model to date,
the model calculations show impressive agreement with the single-particle ATOFMS

measurements.
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Chapter 3

A Field-Based Approach for
Determining ATOFMS Instrument
Sensitivities to Ammonium and
Nitrate

3.1 Introduction

The development of on-line single-particle mass spectrometry techniques has been
identified as the most significant advance in aerosol instrumentation during recent
years [98]. Although single-particle mass spectrometry instruments differ from one
another in their particle sizing techniques (see Section 1.2.2), the vast majority obtain
chemical composition information by laser ablation/ionization of individual particles,
time-of-flight mass spectrometry, and subsequent analysis of the ion mass spectra. A
commonly cited limitation of laser ablation/ionization techniques is that the chem-
ical composition measurements are not quantitative [37, 99]. There are two main
obstacles to quantitation. First, the ion signal intensities produced by laser abla-
tion/ionization of nominally identical particles vary greatly from shot-to-shot [100],
primarily because of inhomogeneities in the laser beam [101]. Second, instrument

sensitivities to different aerosol-phase chemical species are largely unknown. In the

*This chapter is reproduced with permission from “A Field-Based Approach for Determining
ATOFMS Instrument Sensitivities to Ammonium and Nitrate,” by P. V. Bhave, J. O. Allen,
B. D. Morrical, D. P. Fergenson, G. R. Cass, and K. A. Prather; Environmental Science and Tech-
nology, 36: 4868-4879, 2002. Copyright 2002 American Chemical Society.
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present work, instrument sensitivity is defined as the ion signal intensity per unit
mass of a chemical species, averaged over a particle ensemble.

It has been reported that shot-to-shot variations in the ion signal intensities can
be mitigated by using very high laser irradiances, but molecular information is lost
due to fragmentation of polyatomic ions [102]. For example, laser irradiances >
2 x 10! W cm~2 have been shown to fragment pure ammonium sulfate particles
into monatomic N, H, S, and O [102]. To retain molecular information, most single-
particle mass spectrometry techniques use moderate laser irradiances (~ 107-10° W
cm™?). Operating at moderate irradiances, it is not yet possible to quantify the
chemical composition of individual particles due to the shot-to-shot variations in
ion signal intensities described above. However, it may be possible to quantify the
chemical composition of small ensembles of single particles if the mass spectra from
a collection of nominally identical particles are obtained and averaged [100, 103].

Quantifying aerosol chemical composition from an ensemble of single-particle spec-
tra requires a knowledge of instrument sensitivities to each chemical species in the
particle ensemble. Instrument sensitivities can vary dramatically from one chemical
species to another [87, 103], due to chemically specific differences in ionization effi-
ciency. To date, all efforts to determine instrument sensitivities have been based on
particles generated in laboratory environments [87, 100, 102-104]. These laboratory-
generated particles are typically monodisperse, spherical, and have nominally identi-
cal chemical compositions. By comparing the average ion signal intensities obtained
from 20 or more identical particles to the known chemical composition of the parti-
cle ensemble, investigators have been able to determine instrument sensitivities to a
few chemical species under controlled laboratory conditions [100, 103]. Recent stud-
ies revealed that instrument sensitivities can be affected substantially by the size of
the individual particle being sampled [103, 105], trace impurities in the particle ma-
trix [106], and relative humidity of the background gas [107]. Due to an incomplete
understanding of these effects, extrapolation of the instrument sensitivities derived
from simple laboratory-generated particles to the more complex atmospheric particles

has not been successfully demonstrated.
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In contrast to the laboratory-based approach described above, a field-based ap-
proach for determining instrument sensitivities would rely entirely on atmospheric
particle measurements. Instrument sensitivities determined from a field-based ap-
proach would be directly applicable to ambient aerosol data. Moreover, a field-based
approach can potentially elucidate the relative influences of particle size, particle
composition, and meteorology, on instrument sensitivities under ambient sampling
conditions. Ideally, the instrument sensitivities deduced from a field-based approach
may be verified and further tested in laboratory experiments. Although a field-based
approach for determining instrument sensitivity is appealing, it is subject to three
limitations which are not encountered in a laboratory-based approach. First, a field-
based approach requires quantitative reference measurements of the chemical species
of interest to be taken in parallel with the single-particle measurements, because the
chemical composition of an atmospheric aerosol is unknown at the time of sampling.
Consequently, the accuracy of instrument sensitivities determined from a field-based
approach is limited by the precision of the reference measurements. Second, a field-
based approach requires the collection of a much larger number of single-particle
spectra than are needed for most laboratory-based approaches, in order to obtain
a statistically significant number of nominally identical particles from the complex
mixture of particle types in the atmosphere. Third, particle detection efficiencies of
the single-particle instrument must be well characterized to ensure the success of a
field-based approach. Unlike the laboratory-generated particles, atmospheric aerosols
are distributed by size, chemical composition, density, and morphology, all of which
can influence the particle detection efficiency of a single-particle instrument [82, 108].

In the present study, we describe a field-based approach for determining single-
particle instrument sensitivities that addresses the three limitations listed above. Our
approach uses parallel measurements of atmospheric particles taken by an aerosol
time-of-flight mass spectrometry (ATOFMS) instrument and a cascade impactor.
ATOFMS is a rapidly developing and increasingly accepted single-particle mass spec-
trometry technique (see Section 1.2.2). ATOFMS instruments have been deployed

in numerous field campaigns, yielding very large data sets (~ 10*-10° spectra) of
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ambient single-particle size and chemical composition [76-81, 85]. Recently, Allen
et al. developed a procedure for determining ATOFMS particle detection efficiencies
under ambient sampling conditions [82]. After the single-particle spectra are dupli-
cated to correct for particle undercounting, ATOFMS ion signal intensities can be
compared quantitatively with collocated cascade impactor measurements of aerosol
chemical composition, yielding instrument sensitivity factors that can be used to
quantify the chemical composition of size-segregated atmospheric particle ensembles.

The procedure is developed using ATOFMS and impactor measurements of ammo-
nium and nitrate, taken at Riverside, California, in September 1996, August 1997, and
October 1997. ATOFMS instrument sensitivities, determined from the ATOFMS-
impactor comparisons, are used to reconstruct continuous time series of quantitative,
size-segregated NH; and NOj3 measurements over the 0.32-1.8 ym aerodynamic di-
ameter (D,) range. The applicability of the instrument sensitivity factors derived in
this study to other aerosol data sets, collected at locations where different ATOFMS
instrument designs are used and different particle types are abundant, remains to
be tested. However, application of the ATOFMS-impactor comparison methodology
described herein to other atmospheric data sets will be straightforward. In the fu-
ture, it may be possible to extend the field-based approach to single-particle mass
spectrometry instruments other than ATOFMS, and to aerosol species other than
NH; and NO;. The purposes of this chapter are to develop a field-based approach
for determining ATOFMS instrument sensitivities, and to illustrate some applications

of the NH; and NOj sensitivity factors.

3.2 Related Studies

Prior to this work, two quantitative comparisons of ATOFMS data with collocated
measurements of atmospheric aerosol chemical composition have been reported in
the literature. Liu et al. [90] compared the number of nitrate-containing particles
detected by an ATOFMS instrument (defined as those particles which yielded an ion

signal at mass-to-charge ratio 30 (NO™) with relative intensity greater than 2%) with
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collocated NOj3 mass concentration measurements taken by an automated nitrate
monitor [109], at 10-minute sampling intervals. The numbers of nitrate-containing
particles detected by ATOFMS exhibited a linear correlation (R? = 0.73) with the
automated nitrate monitor measurements throughout the 53-hour sampling event at
Riverside, demonstrating the ability of an ATOFMS instrument to track atmospheric
NOj3 concentrations based on the presence of a specific chemical marker (NO™) in
the single-particle mass spectra [90].

Fergenson et al. [89] applied a multivariate calibration technique to compare
ATOFMS data with collocated impactor measurements of 44 different aerosol-phase
chemical species taken at Riverside, California, on September 23-26, 1996. In that
study, ATOFMS data were grouped into a large number (~ 600-700) of clusters
based on similar features of the single-particle mass spectra. The masses of each
particle cluster were compared with collocated impactor measurements by the partial
least-squares algorithm, yielding multivariate linear regression coefficients that relate
the cluster masses with the atmospheric concentrations of 44 different aerosol-phase
chemical species. Using eleven data cohorts as calibrants and one as a predictor, it
was possible to evaluate the predictive value of the multivariate calibrations. The
good overall agreement, (R? = 0.83) between impactor measurements and the multi-
variate calibrated ATOFMS data presented in that study provides further evidence
that ATOFMS data can potentially yield quantitative measurements of atmospheric
aerosol chemical composition [89].

Both of the previous studies compared quantitative, bulk measurements of at-
mospheric aerosol chemical composition with the presence and abundance of specific
particle types detected by ATOFMS. This work differs from previous studies because
it presents the first comparison of zon signal intensities measured by a single-particle
mass spectrometry instrument with quantitative, bulk measurements of atmospheric
aerosol chemical composition. A unique advantage of the present approach is that
instrument sensitivities can be deduced from atmospheric aerosol data. In the future,
these sensitivity factors can be verified and further tested under controlled labora-

tory conditions. As such, the results of the present study can assist in the design of
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laboratory experiments aimed at quantifying the chemical composition of aerosols by

single-particle mass spectrometry.

3.3 Methods

The data presented in this chapter were collected as part of four multi-site field ex-
periments that are described in detail elsewhere [54, 56, 79, 85, 110, 111]. During
each of these experiments, individual atmospheric particles were sampled continu-
ously by an ATOFMS instrument stationed at Riverside, California. In addition,
a collocated micro-orifice impactor collected size-segregated samples of the fine am-
bient aerosol (D, < 1.8 um) during selected time periods. The periods of tandem
ATOFMS-impactor sampling are referred to hereafter as intensive operating periods

(IOPs). Data from 11 IOPs are analyzed in this work (see Table 3.1).

3.3.1 Aerosol Measurements

Operating principles of the ATOFMS instrument stationed at Riverside during the
IOPs are described in detail elsewhere [41, 46, 112], so only the details relevant to
the present study are given here. Ambient particles are drawn into the ATOFMS
instrument through a converging nozzle where they are accelerated to terminal veloc-
ities that are a function of their aerodynamic diameters. Next, each particle enters
a sizing region where it passes through and scatters light from two continuous wave
lasers separated by a known distance. The time difference between the scattering
pulses indicates the velocity of the particle, which is recorded and later used to de-
termine the particle aerodynamic diameter. The time difference between scattering
pulses is also used to actuate the firing of a high power pulse from a Nd:YAG laser,
operating at 266 nm wavelength and 2 x 1074 x 10® W ¢m~? irradiance, upon the
particle’s arrival in the source region of a time-of-flight mass spectrometer. The ion
signals resulting from ablation/ionization of a single particle by the Nd:YAG laser are
detected by a dual microchannel plate and digitized using an 8-bit data acquisition

board (Signatec, Model DA500), interfaced to a personal computer. The digitized
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mass spectrum is later analyzed to determine the chemical composition of the par-
ticle. Although field-transportable ATOFMS instruments are capable of dual ion
acquisition [75], the ATOFMS instrument stationed at Riverside [46] was configured
to analyze only positive ions during the IOPs. The number of positive ion mass
spectra collected by ATOFMS during each IOP, as a function of D,, are listed in
Table 3.1.

A summary of impactor operations and sample analyses relevant to the present
work is presented here; detailed descriptions can be found elsewhere [54, 110, 111].
Size-segregated particles were collected on Teflon impaction substrates loaded in a
10-stage micro-orifice impactor (MSP Corporation, Model 110) [113]. Fine parti-
cles (D, < 1.8 pum) in the Los Angeles atmosphere are generally sticky enough to
avoid particle bounce problems within the impactor [114]. Coarse particles (D, >
1.8 pm), which are more likely to bounce off their intended impactor stage, were
removed by Teflon-coated AHIL-design cyclone separators positioned upstream of
the impactor inlets. No coatings were applied to the impaction substrates. After
each IOP, the substrates were removed immediately and refrigerated until analysis,
to prevent volatilization losses. The size-segregated particle ensembles on each im-
paction substrate were analyzed by ion chromatography (Dionex Corp, Model 2020i)
for NO; [115], and by an indophenol colorimetric procedure for NH, [116] using an
Alpkem rapid flow analyzer (Model RFA-300). Impactor measurements of NH} and
NOj in three aerodynamic diameter ranges, 0.32-0.56 ym, 0.56-1.0 ym, and 1.0-1.8
pm, are selected for the present analysis because particles collected on these three
impactor stages span the overlapping aerodynamic size range of the ATOFMS instru-
ment and the impactor. Data collected from the chemical analyses of 33 impaction

substrates (11 IOPs x 3 D, ranges) are used in this work.



50

Apnjg ouoz() RIUIOR) UIYINOS L66T 4

dO] Sulnp suonIpuod joW 98RIOAY ,

LO6T €sel 162 666  S9¢ | LSdOIST-0SPT L6 %0 1€ q-€N yuowpdxy 9yexdIN PAYL L6SODS

6671 6001 €9¢ e1e '8¢ | ISd €SET-SS60 L6 10 1€ e-gN JuomLIadxy 9YeI)IN PANYL L6SODS

679 (443 Ige L'€¢  6°0¢ | LAJO00ST-SSET L6 9NV 8 2ZA yuewIedXy OPIYIA PU0ddg L6SODS

LyL LT 1€ .6 6¢c | LAd000T-0090 L6 S0V 8% q-cA yuowlodXE OPIYIA Puodeg L6SODS

8.9 2 4} e8¢  €7¢ | LAd00ST-00FT L6 SNV LG e-gA yuewIedXy OPIYIA PU0ddg L6SODS

LS L9 LS ¢Lz 0S¢ | LAd00ST-00¥T L6 SNV &g qQ-TA JueWLIDAXE SPIYOA 18I L6SODS

099 6.9 oLy 9'.% TV | LAd00ST-00F¥T L6 30V Ig e-TA yuowIod Xy OPIYIA ISILT ¢L6SODS

€78 €791 779 989 9Lt | LAd006T-00ST 96 doS 9g P-96L Apnyg L10300(e1], 9661

0€TT L¥ST 70 V8F  ¥L¢ | LAJ006T-00ST 96 dog ¢g 2-96.L Apnmyg L10300lel], 9661

QLTT 44 109 92y z0¢ | 1ad006T-00ST 96 doS ¥¢ q-961L Apmyg L10300le1], 9661

688 cLe 61 ey 1'¢¢ | 1LAd 0061-00ST 96 dog €¢ ©-961 £pmyg £10%000e1], 9661
8'T-0'T 0'T-99°0 95020 | (%) (Do) SLUN ore@  9poD dOI yusurtredxy PloLA
peamboy eijdadg jo JequinN | ,HY ,duag,

"RIUIOJI[R)) ‘OPISIDATY je spourad Surjerado sAsualuy :1°¢ 9[qR],




51

The masses of NH] measured on three of the impaction substrates was found to
be less than that measured on “blank” substrates which were unexposed to ambient
aerosols, due to a combination of analytical error and low atmospheric NH] con-
centrations, yielding “negative” impactor measurements after blank subtraction. In
ATOFMS measurements, ion signal intensities are nonnegative by definition, and
there is no data analysis procedure analogous to blank subtraction. To avoid intro-
ducing a positive bias in the ATOFMS-impactor comparisons, NH; measurements
from the 3 affected impactor samples are excluded from the present analysis. These
samples contained (1) 1.0-1.8 pm particles collected at 1400-1800 PDT on August
22,1997, (2) 0.56-1.0 um particles collected at 1400-1800 PDT on August 27, 1997,
and (3) 1.0-1.8 pm particles collected at 1400-1800 PDT on August 27, 1997. In
total, 30 impactor measurements of NH; and 33 impactor measurements of NOj are

compared with the corresponding ATOFMS data.

3.3.2 ATOFMS Data Treatment

Before ATOFMS and impactor measurements can be compared with each other,
the measurements which best represent ATOFMS instrument responses to NH} and
NOj3 must be selected, and the ATOFMS data must be corrected for certain sampling

biases.

3.3.2.1 ATOFMS Response Functions

To compare ATOFMS data with quantitative measurements of NH; and NOj, a
measure of the ATOFMS instrument’s response to NH; and NOj; must be precisely
defined. Ton signals indicating the presence of NH] in an individual particle are de-
tected most often at mass-to-charge (m/z) ratio 18, when sampling Riverside aerosols
by ATOFMS [46]. The ion signal at m/z 30 (NO™) is an established measure of aerosol
nitrate at Riverside [90]. Ton signals at other m/z ratios (e.g., m/z 35 (NH,;NHJ ), m/z
46 (NO3), and m/z 108 (NagNOj3)) also indicate the presence of NHJ and NO; in

atmospheric particles [90]. As a first approximation, only the ion signals at m/z 18
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and 30 are considered because they are the most common and pronounced indicators
of NH; and NOj in positive ion ATOFMS measurements of Riverside aerosols. The
validity of this approximation is discussed in Section 3.4.3.4. In ATOFMS positive
ion spectra, the presence of particulate HoO is typically indicated by a peak at m/z
19 (H307) [46], and therefore does not augment the NH, signal at m/z 18.

Ion signals at m/z 18 and 30 are also detected when the ablation/ionization
laser fragments certain nitrogen-containing organic compounds [96, 117, 118]. How-
ever, NH;NOj typically comprises the largest fraction of fine particle mass sampled
at Riverside [54, 56, 110], so we expect the contributions of fragmented nitrogen-
containing organic compounds to the ion signals at m/z 18 and 30 to be negligible
relative to the contributions from NH; and NOj. The validity of this assumption is
discussed in Section 3.4.3.4.

Although there are several possible measures of ion signal intensity, absolute area
and relative area are the most appropriate for quantification of mass spectrometry
data. In laboratory ATOFMS studies of nominally identical particles, shot-to-shot
variations caused the absolute areas of specific ion signals to vary by an average
of 59%. During the same studies, relative areas, defined as the absolute area of
the ion signal of interest divided by the total area of the mass spectrum, varied by
an average of only 16% [87]. This evidence suggests that relative areas should be
used for quantification of ATOFMS data. However, when sampling a polydisperse
multi-component aerosol, such as that found in an urban atmosphere, relative area
measurements can be affected greatly by the presence of additional chemical species in
the particle. For example, the relative area of an ion signal at m/z 18 produced from
ablation /ionization of a pure NH;NOj3 particle will likely be larger than the relative
area at m/z 18 measured from an identical particle that also contains a trace amount
of potassium, because potassium is efficiently ionized [87] and will therefore increase
the total area of the mass spectrum. Hence, relative area is not a stable measure of ion
signal intensity when determining instrument sensitivities by a field-based approach.
Instead, absolute area is selected as the measure of ion signal intensity in the present

work. For the remainder of this chapter, we define the ATOFMS instrument response
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to NHj, RespNHI, as the absolute area of the ion signal at m/z 18 £+ 0.5 Daltons,

and the ATOFMS response to NO; , RespNOS—, as the absolute area of the ion signal
at m/z 30 £ 0.5 Daltons.

3.3.2.2 Dynamic Range Exceedances of the Data Acquisition Board

Ion signal intensities produced by laser ablation/ionization can vary dramatically
from shot-to-shot, due to inhomogeneities in the laser beam [101], and due to differing
ionization efficiencies among the chemical species of interest [87]. As a result, laser
ablation /ionization of a single particle can produce a very large quantity of ions in
a narrow m/z interval, occasionally exceeding the dynamic range of the 8-bit data
acquisition board that was used to digitize the mass spectra collected at Riverside in
1996 and 1997. While conducting the present analysis, a peculiar feature was observed
among a small class of particles that yielded ion signals at m/z < 3, which were large
enough to exceed the dynamic range of the data acquisition board. Mass spectra of
this type have been reported in ATOFMS data from ambient and emission source
testing experiments [85, 86], and are believed to result when ATOFMS instruments
encounter certain types of dust-containing particles. The peculiar feature observed
in mass spectra of this type is a substantially elevated noise level in the 0 < m/z <
60 Dalton range. The elevated noise levels at m/z 18 and 30 make it impossible to
estimate the quantities of NH} and NO, that were initially present in these particles.
Therefore, RespNHI and RespNog from particles of this type are assumed to be zero in
the present analysis. Only 3.3% of the single-particle spectra analyzed in the present
work (802 out of 24502) are affected by this assumption. The affected spectra are
believed to result from ablation/ionization of resuspended dust particles, which are
hydrophobic and hence unlikely to accumulate significant amounts of NH; and NOJ .
Therefore, disregarding the ion signals at m/z 18 and 30 in this small class of spectra
should not have a significant effect on results of the present study. However, when
attempting to determine ATOFMS instrument sensitivities to chemical species that
are known to be abundant in dust aerosols (e.g., Si, Fe, Al), it may be necessary to

estimate and subtract the mass spectrometer noise level from the total mass spectrum
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generated by ablation/ionization of each particle in this specific class.

When an ion signal exceeds the dynamic range of the 8-bit data acquisition board,
the signal height reaches a maximum recordable value of 2% arbitrary units while the
width continues to increase nonlinearly. This hinders our ability to reliably measure
the areas of very large ion signals. Fortunately, dynamic range exceedances at m/z
18 and 30 were relatively infrequent among the single-particle spectra analyzed in
the present work. Ion signals at m/z 18 and 30 exceeded the dynamic range in only
763 (3.2%) and 668 (2.8%) of the 23700 spectra, respectively, that were unaffected by
the elevated noise levels described above (24502 — 802 = 23700). At these low levels,
dynamic range limitations of the data acquisition board should not have a significant

effect on the results of the present study.

3.3.2.3 Corrections for Particle Detection Efficiency

Allen et al. determined that ATOFMS instruments undercount particles by a factor,

¢, that follows a power law dependence on aerodynamic particle diameter [82],
¢=aD,” (3.1)

where parameters o and f are determined by nonlinear regression of impactor mass
concentrations on the number of particles detected by ATOFMS [82]. In the present
work, the procedure of Allen et al. is modified slightly such that the nonlinear regres-
sion parameters, o and [, are determined from the ATOFMS single-particle measure-
ments of D,, rather than assuming an average diameter for all particles within each
narrow size interval.

In the procedure described by Allen et al., each impactor size interval is subdivided
into 10 narrower size intervals, j. Individual particle spectra acquired by ATOFMS are
aggregated into these narrow size intervals based upon their measured aerodynamic
diameters. Once aggregated, all particles within a given size interval are assumed
to be of identical aerodynamic diameter, W,j, calculated as the logarithmic mean

of the upper and lower limits of size interval j. The physical diameter of particles
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in each size interval, D, ;, is calculated by assuming all particles in size interval j
are spherical with density, p, = 1.3 g cm™3, and aerodynamic diameter, D, = D—a]
Aggregated ATOFMS data collected during each intensive operating period (IOP) are
then compared with impactor measurements collected over the corresponding time

period and size interval, using the following model:

—_— —3
s
NjaDg; 5ppDp,;

jCi

where subscript 7 represents the particle ensemble within a specified aerodynamic
diameter interval, sampled during a given IOP. In Equation 3.2, m; is the impactor
mass concentration measurement of particle ensemble 7, N; is the number of particle
spectra recorded by ATOFMS in size interval j, V; is defined in Equation 3.4 be-
low, and the parameters o and 3 are determined by minimizing the sum of squared
residual aerosol mass concentrations, Y, ¢; %, by nonlinear regression. For brevity, the
procedure outlined above uses slightly different notation than that used by Allen et
al. [82].

In the present work, the procedure of Allen et al. [82] is modified slightly to
eliminate the aggregation of ATOFMS data into narrow size intervals. The modified

regression model is

aD,;? Tp,D, ;3
mi=) — Vi_p P g (3.3)

j§Ci
where the subscript j now represents an individual particle spectrum acquired by
ATOFMS, rather than an aggregation of particle spectra in a narrow size interval. In
Equation 3.3, D, ; is the single-particle aerodynamic diameter measured by ATOFMS,
rather than an assumed mean aerodynamic diameter, and D, ; is calculated from D, ;
for each individual particle. As in the procedure of Allen et al. [82], all particles are
assumed to be spherical with p, = 1.3 g cm™.

In Equations 3.2 and 3.3, V; refers to the volume of air sampled by ATOFMS

(m?) during the IOP when particle ensemble 7 was sampled. These sample volumes
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are calculated as

Vi = Qarorms X (tiop,i — toft,i — tbusy,i) (3.4)

where Qarorums is the volumetric flow rate of ambient air through the ATOFMS
instrument (20 x10°% m?® s ') [46, 48], t;op; is the duration of the IOP (s) when
particle ensemble i was sampled, tof; is the amount of time (s) that the ATOFMS
instrument was off-line during the IOP, and tpyusy; is the amount of time (s) the
ATOFMS electronic data acquisition system was busy recording particle data [82].

To calculate t,q,;, ATOFMS data collected during the given IOP are searched for
gaps of two minutes or longer when no particle data were recorded. These data gaps
are presumed to be periods when the ATOFMS instrument was off-line. The sum of
all such data gaps within the IOP when particle ensemble ¢ was sampled, is designated
Lot -

The amount of time during each IOP that the ATOFMS electronic data acquisition

system was busy recording particle data is calculated by
tbusy,i = A1 X Sizedi + AQ X H:ltZ + A3 X (1AVgH:1JDPOSZ X Hltz) (35)

where Sized; is the number of D, measurements that the ATOFMS instrument recorded
during the IOP when particle ensemble ¢ was sampled, Hit; is the number of particle
spectra that the ATOFMS instrument recorded, and AvgHitPos; is the average folder
position each particle spectrum was stored in. A; is the time required to record a
particle velocity measurement by the data acquisition system, A, is the time required
to record a particle velocity and spectrum, and Ajs is the amount of additional time
required to record each spectrum depending on the number of spectra that are already
stored in the given folder. The parameters A, Ay, and As, were measured as 130 ms,
504 ms, and 0.167 ms, respectively, for the data acquisition system used at Riverside
in 1996, and 100 ms, 450 ms, and 0.244 ms, for the system used at Riverside in 1997.
ATOFMS particle detection efficiencies varied gradually from one field experiment
to the next, as a result of a routine instrument cleaning procedure that inadvertently

modified the inlet nozzle dimensions. To account for the inlet modifications, best-fit
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values of the nonlinear regression parameters in Equation 3.1 are calculated sepa-
rately for each field study (see Table 3.2). Note that the first two field studies in
1997 (V1 and V2) were spaced one week apart from each other, whereas the second
and third studies (V2 and N3) were conducted three months apart (see Table 3.1).
During the interim periods, the instrument inlet was routinely cleaned. The larger
change in parameter values between V2 and N3, relative to the modest change be-
tween V1 and V2 (see Table 3.2), reflects the cumulative effect of the inlet cleaning
procedure on ATOFMS transmission efficiencies over the three month interim pe-
riod. The slight differences between the 1996 parameter values shown in Table 3.2
and those reported previously [82, Table 2], result from the regression model revision
described above. Using the parameter values listed in Table 3.2, each single-particle
mass spectrum obtained by ATOFMS is duplicated by a dimensionless factor, ¢ (see
Equation 3.1), which accounts for the degree to which particles of a given size were
undercounted by ATOFMS during the given experiment. Allen et al. demonstrated
that ATOFMS particle detection efficiencies during the 1996 Los Angeles Basin Tra-
jectory Study were not significantly affected by chemical composition, when averaged
over the size-segregated ambient aerosol [82]. By a similar analysis, no clear evidence
could be found to indicate that chemical composition affected ATOFMS particle de-
tection efficiencies during the 1997 field experiments. Therefore in the present work,
ATOFMS data corrected for particle detection efficiencies are assumed to have the

same chemical composition as the particle spectra from which they were duplicated.

3.3.3 ATOFMS-Impactor Data Comparison

Having corrected the ATOFMS measurements for detection biases, a quantitative
comparison of the ATOFMS and impactor data can be made. The purpose of this
comparison is to determine ATOFMS instrument sensitivities to NHf and NO; in
size-segregated atmospheric particles under the sampling conditions encountered dur-
ing the IOPs at Riverside. Recall that instrument sensitivity is defined as the ion

signal intensity per unit mass of a chemical species, averaged over a particle ensemble.
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Table 3.2: Parameter values and 95% confidence intervals fit to the ATOFMS particle
detection efficiency function ® = a D, ?

Field Q 15} Number of Samples
Experiment for Comparison

T96* 5040 & 1190° -3.13 £ 0.64° 12
SCOS97-V1¢ 1450 £ 434  -3.90 &+ 0.52 6
SCOS97-V2¢ 2050 £ 624  -4.46 + 0.46 9
SCOS97-N3¢ 5130 £ 2140 -4.68 + 1.04 6

21996 Los Angeles Basin Trajectory Study

’In reference [82, Table 2], a = 4999 + 998 and B = —3.236 + 0.520
€1997 Southern California Ozone Study - First Vehicle Experiment
41997 Southern California Ozone Study - Second Vehicle Experiment
€1997 Southern California Ozone Study - Third Nitrate Experiment

In the present study, we compare large ensembles of single-particle ATOFMS data
with collocated impactor measurements of NH; and NO;. The ATOFMS spectra
recorded during each IOP are segregated into three aerodynamic diameter intervals:
0.32-0.56 pm, 0.56-1.0 pm, and 1.0-1.8 pym. This size-segregation yields 33 ensem-
bles of ATOFMS spectra (11 IOPs x 3 D, ranges) which can be compared with
corresponding impactor measurements, using a regression model of the form

chi oy Respjk Vi
Vi

Mk = + €k (3.6)
In Equation 3.6, the subscript ¢ represents the particle ensemble within a specified
aerodynamic diameter interval, sampled during a given IOP. The subscript j repre-
sents an ATOFMS single-particle measurement, and & represents the chemical species
of interest. The mass concentration of species k (ug m™?), from the impactor mea-
surement of ensemble %, is designated as m;,. The dimensionless factor ¢;, is used to
correct for the undercounting of particles by ATOFMS. For each particle j detected
by ATOFMS, ¢; is calculated from the corresponding ATOFMS measurement of aero-
dynamic diameter, D, ;, using Equation 3.1. The ATOFMS instrument response (ion

signal area units) to species k in particle spectrum j, defined earlier, is designated as
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Resp,. The variable 1), represents the reciprocal of the ATOFMS instrument sensi-
tivity (ug/ion signal area) to species k in particle j. The volume of air (m?) sampled
by ATOFMS, during the IOP when particle ensemble ¢ was analyzed, is designated V;
and defined in Equation 3.4. The residual mass concentration (ug m=3) of species k
in ensemble %, unexplained by the regression model, is denoted as €;;. In the following
section, we seek a physically meaningful parameterization of v;; that minimizes the
sum of squared residuals, ), € 2 in Equation 3.6. All calculations are performed
using the Matlab statistics package (The MathWorks, Natick, MA), and facilitated
by the YAADA data analysis system [84].

3.4 Results

Figure 3.1 illustrates a first-order comparison of the ATOFMS and impactor mea-
surements of NHf and NO3. The vertical coordinates of each data point represent
ATOFMS measurements, %ﬁesl}jk, after correcting for particle detection efficien-
cies. The horizontal coordinates of each data point represent the impactor measure-
ment, m;, with horizontal error bars spanning 4 2 standard deviations, as determined
from the repeated analysis of a fraction of the impactor samples and from consistency
in the repeated analyses of a set of standards. It is important to emphasize that the
horizontal coordinates of each data point represent the ATOFMS measurements of
a size-segregated ensemble of individual particles sampled during the indicated IOP.
The number of single-particle measurements represented by each data point is listed
in Table 3.1. Data points are plotted with different symbols and shading patterns, to
represent data collected during different IOPs and in different particle size intervals,
respectively.

Without any prior knowledge of the numerous factors that can affect ATOFMS
instrument sensitivities, one might hypothesize that ion signal intensities are linearly
correlated with the mass of a chemical species of interest (i.e., 1, = constant). If
this were the case, all of the data points in Figures 3.1a and 3.1b would lie along

a straight line (R? = 1.0). Instead, the data points appear to be clustered along
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Figure 3.1: First-order comparison of impactor measurements with corresponding
ATOFMS measurements, duplicated to correct for particle detection efficiencies. Hor-
izontal error bars indicate + 2 standard deviations in the impactor measurements. In
cases where + 2 SD is small relative to the horizontal axis scale, the error bars may
be covered entirely by the plotting symbol, and therefore, not visible. IOP codes are
defined in Table 3.1.
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separate lines as a function of particle size range, indicating that 1, is strongly
influenced by the size of the particle sampled. The ratio of a data point’s vertical
coordinate to its horizontal coordinate is generally largest for particle ensembles in
the 1.0-1.8 pym D, range, and smallest for ensembles in the 0.32-0.56 pym range, for
both NH} and NOj3 (see Figure 3.1). This suggests that the ion signal intensity
produced by laser ablation/ionization of a unit mass of either species (NH; or NO3)
decreases as particle aerodynamic diameter increases over the 0.32-1.8 pm range.
In other words, ATOFMS instruments are more sensitive to NH; and NO; when
sampling particles of smaller size. The increased instrument sensitivity to chemical
species in smaller particles is presumed to be due to (1) a greater volume fraction
of small particles being vaporized by the ablation/ionization laser relative to larger
particles, and (2) a lower probability of positive-negative charge recombination in the
ablation plume of small particles relative to larger ones [105]. Similar trends have been
reported in single-particle mass spectrometry analyses of pure, laboratory-generated
RbNO3, (NH4)2SOy4, NaCl, and KCl particles [103, 105, 119], but this is the first such

observation in atmospheric aerosol measurements.

3.4.1 Size-Dependent Parameterization of Instrument Sensi-
tivity
Further analyses of the trends in Figure 3.1 indicate that instrument sensitivity can

be parameterized by a power law relationship in aerodynamic diameter,

Yik = Yk Daj % (3.7)

where 1), represents the inverse ATOFMS sensitivity (ug/ion signal area) to species
k in particle j, D, ; is the single-particle aerodynamic diameter (um) measured by
ATOFMS, and 7, and 6 are nonlinear regression parameters, specific to chemical
species k but independent of particle size, that can be determined using the re-

gression model in Equation 3.6. No major changes were made to the instrument’s
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ablation /ionization configuration between the IOPs, so 7, and ¢ are assumed to be
constant across all four field experiments. Pooling data from all four experiments per-
mits an evaluation of the stability of instrument sensitivities to NH;} and NO3 during
eleven IOPs spaced over a 1-year time period.

The power law form of Equation 3.7 can be related to the physical and chemical
factors that influence ATOFMS instrument sensitivities to NHf and NOj; under
ambient sampling conditions. In Equation 3.7, 7, can be treated as a surrogate
measure of the ionization efficiency of chemical species k. In general, chemical species
which are efficiently ionized should have a smaller v value than species which are
more difficult to ionize. Therefore, best-fit values of VNuf and TNo; are expected to
be different.

In Equation 3.7, d;x can be considered a surrogate measure of the volumetric frac-
tion of an individual particle that is vaporized by the ablation/ionization laser, as-
suming that the increased probability of positive-negative charge recombination in
the ablation plume of small particles has only a secondary effect. If §, ~ 0, instru-
ment sensitivity is independent of particle size, implying that the ATOFMS abla-
tion/ionization laser vaporizes either the entire particle volume or a constant volu-
metric fraction of each particle in the 0.32-1.8 ym D, range. If §; ~ 3, the instrument
sensitivity is proportional to particle volume, implying that the laser vaporizes a con-
stant volume of each particle in the 0.32-1.8 um range. A result of 0 < d; < 3 might
suggest that small particles are completely vaporized while particles at the upper
end of the 0.32-1.8 ym D, range are only partially vaporized. Laboratory studies of
ATOFMS instrument behavior indicate that laser irradiances similar to those used
during the IOPs vaporize the entire volume of submicron particles, but only partially
vaporize particles that are larger than approximately 1.0 um D, [120]. Hence, we
expect best-fit values of dyy+ and Oy to fall in the intermediate range (0 < 6 < 3).

When a particle is partially vaporized by the ablation /ionization laser, the ATOFMS
instrument is more likely to detect material near the particle surface than material
in the particle core [121]. NH] and NOj are believed to have similar spatial dis-

tributions within the individual particle matrices studied here, because the origin
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of these two species in Riverside aerosols is largely attributed to the condensation
of gas-phase ammonia and nitric acid molecules on the surface of pre-existing par-
ticles [55]. Therefore in the present work, it is reasonable to assume that neither
NH; nor NOj will be preferentially vaporized in the event of partial vaporization.
For this reason, the best-fit values of dyy+ and dyq- deduced in the present work are
expected to be similar.

Table 3.3 shows the best-fit values of v, and d;, along with 95% confidence intervals
for each, as calculated by nonlinear regression using Equations 3.6 and 3.7. Note that
the best-fit values of dyy,+ and dyp,- are identical within two significant figures (2.4
+ 0.4), even though they were calculated independently using two different sets of
measurements. Moreover, both § values are in the 0-3 range, as expected from the
above discussion. These two observations support the physical explanation of the
particle size-dependent instrument sensitivity parameterization (Equation 3.7), and
imply that NHS and NO3 do indeed have similar spatial distributions within the

matrices of the larger particles studied here.

Table 3.3: Parameter values and 95% confidence intervals fit to the ATOFMS instru-

ment sensitivity function ¥ = v D, ?.

Species y 0 Number of Samples
for Comparison
NHf 25 x 107 +04 x 107'° 24+ 04 30
NO; 47x 1074+ 0.7x 1079 24+ 04 33

Best-fit values of yyxg,+ and yyo,- are statistically different from one another with
95% confidence (see Table 3.3), as we had expected from the discussion above. The
ratio of these two values can be used to determine the relative sensitivity of ATOFMS

instruments to NH; versus NOj3 , as follows

(3.8)

RSF (NH4+> i 18 ] TNO3-

NO;~) 62 INH4+

where 18 and 62 are the molar masses of NHJ and NOj, respectively. Relative sen-
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sitivity factors (RSFs) are typically defined on a molar basis, and are often used to
correct for differences between the instrument sensitivities to two chemical species
of interest, when analyzing the composition of a multi-component sample [87, 122].
Prior to this study, all ATOFMS RSFs have been deduced from laboratory-generated
aerosols [87, 96], and their applicability to ambient aerosol data has not been tested.
Using Equation 3.8 and the best-fit y; values listed in Table 3.3, the RSF of NH ver-
sus NO3 under the Riverside IOP sampling conditions is 0.5, and lies in the 0.4-0.7
range with 95% confidence. This implies that ATOFMS measurements of particles
containing equimolar concentrations of NH; and NOj, should yield larger ion sig-
nals at m/z 30 than at m/z 18, by a factor of approximately two. The RSF derived
above should be verified in laboratory experiments so that ultimately, it may be used
to determine the relative abundances of NHf and NOj in individual atmospheric

particles.

3.4.2 Scaled ATOFMS Measurements of NH; and NO3

Using raw ATOFMS data and the best-fit parameter values listed in Tables 3.2
and 3.3, we can reconstruct quantitative measurements of NH} and NOj, nijy, in
size-segregated atmospheric particle ensembles.

~ 2jci 9 Resp vk

All terms in Equation 3.9 are defined in Equations 3.6 and 3.7. Scaled ATOFMS
measurements are compared with the corresponding impactor measurements of at-
mospheric NH; and NO; concentrations in Figure 3.2. The horizontal coordinate of
each data point in Figure 3.2 represents an impactor measurement, m;,, with error
bars spanning + 2 standard deviations. The vertical coordinate of each data point
represents a scaled ATOFMS measurement, ni;;,, with error bounds calculated by
propagating 95% confidence intervals on the best-fit values of ~; and . Vertical er-
ror bars do not account for uncertainties in the ATOFMS particle detection efficiency

parameters, « and 3, but those uncertainties are discussed below in detail.
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Figure 3.2: Comparison of scaled ATOFMS measurements with the corresponding
impactor measurements. Diagonal dashed lines represent the 1:2, 1:1, and 2:1 lines
of correspondence. Vertical error bars indicate 95% confidence intervals of the scaled
ATOFMS measurements. Horizontal error bars indicate + 2 standard deviations in
the impactor measurements. In cases where an error bar length is small relative to
the scale of the coordinate axes, it may be covered entirely by the plotting symbol,
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When evaluating the accuracy of the ATOFMS instrument sensitivity parameteri-
zation (Equation 3.7), impactor data are used as the reference because impactors cur-
rently provide the most reliable data on size-segregated aerosol composition. However,
impactor measurements of NH; and NOj are subject to certain biases. Volatiliza-
tion of NH4NOj; from impaction substrates during sampling is favored at high tem-
peratures and low relative humidities [123], and has been shown to result in 7-8%
losses of fine particulate nitrate under hot (35 °C) and dry (18% relative humid-
ity) conditions [114]. Volatilization losses can be even greater (~ 10-20%) when
aerosol loadings are low, because the exposed surface area of particle deposits is large
relative to the aerosol mass collected on the impaction substrates [124]. The pos-
sible effects of NH,;NOj volatilization on results of the present study are discussed
in Section 3.4.3.2. Future applications of the tandem ATOFMS-impactor sampling
procedure to less volatile chemical species (e.g., SO2~) might permit a more accurate
determination of ATOFMS instrument sensitivities.

One simple set of criteria for judging whether the ATOFMS scaling functions
yield accurate measurements of atmospheric NHf and NOj concentrations is as fol-
lows. If a scaled ATOFMS measurement falls within + 2 standard deviations of the
corresponding impactor measurement, it is judged to be “excellent.” If the 95% confi-
dence interval of an ATOFMS measurement overlaps within 4+ 2 standard deviations
of the corresponding impactor measurement, the ATOFMS measurement is consid-
ered to be “good.” If neither of the above conditions are met but the scaled ATOFMS
measurement falls within a factor of 2 of the impactor measurement, it is judged as
“fair.” If none of these conditions are met, the ATOFMS measurement is “poor.”
The advantages of these evaluation criteria are that they account for the analytical
error inherent in the impactor data, and the scaled ATOFMS measurements can be
evaluated easily by visual inspection of Figure 3.2.

Using these criteria, 16 of the 30 scaled ATOFMS NH; measurements are excel-
lent, 9 are good, 2 are fair, and only 3 are poor (see Figure 3.2a). The large fraction
(90%) of “excellent,” “good,” and “fair” ATOFMS measurements indicate that the

particle size-dependent parameterization of instrument sensitivity to NHJ is stable



67

over the range of fine particle concentrations encountered at Riverside (PM;g =
17.58 +2.02 — 127.8 + 1.76 ug m~3). All three of the “poor” ATOFMS NH} mea-
surements are smaller than the corresponding impactor measurements, and one of
these is largely due to inaccuracies in the ATOFMS particle detection efficiency, as
discussed below. Of the 33 scaled ATOFMS NOj; measurements, 10 are excellent, 6
are good, 7 are fair, and 10 are poor (see Figure 3.2b). All ten of the “poor” ATOFMS
NOj; measurements are greater than the corresponding impactor measurement, and
in all 10 cases, the impactor NO; measurements are less than 2.1 ug m= (see lower-
left corner of Figure 3.2b). Moreover, 9 of the 10 poor measurements correspond to
data collected during IOPs when the highest ambient temperatures were encountered
(T > 30°C), suggesting that the impactor measurements during these periods may
have been subject to volatilization losses. This issue will be explored in 3.4.3.2. The
“excellent,” “good,” and “fair” NO; measurements further increase our confidence
in the selected parameterization of ATOFMS instrument sensitivity (Equation 3.7).
Recall that the data plotted in Figure 3.2 were collected during four field experi-
ments spaced over a year, and the ATOFMS instrument’s inlet design was modified
between experiments. The lack of observable biases in the scaled ATOFMS mea-
surements, obtained from data collected during different field experiments (compare
positions of the experiment-specific plotting symbols relative to the 1:1 line), suggests
that the instrument sensitivities to NH; and NO, are unaffected by modifications to
the instrument’s inlet design.

A second set of criteria for evaluating the ATOFMS scaling functions employs sta-
tistical correlations of the impactor measurements with corresponding scaled ATOFMS
measurements, irrespective of the error bounds on each. The advantage of using
statistical correlations is that they may be used to estimate the relative influence
of different parameters on ATOFMS instrument sensitivities. For example, scaled
ATOFMS NH; measurements and corresponding impactor measurements exhibit a
squared correlation coefficient (R?) of 0.72. This indicates that approximately 72%
of the variance in wj,Nij is explained by the size-dependent instrument sensitivity

parameterization shown in Equation 3.7. By an analogous calculation, 81% of the
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variance in iNO; is explained by the size-dependent sensitivity parameterization.
These high correlation coefficients indicate that the most influential factor governing
ATOFMS instrument sensitivities to NH; and NO; is particle aerodynamic diame-
ter, under the sampling conditions encountered at Riverside. Note that the R? values
of 0.72 and 0.81 are significantly higher than those calculated under the assumption
that instrument sensitivity is independent of particle size (R? = 0.13 in Figure 3.1a
and R? = 0.26 in Figure 3.1b).

Attaining perfect correlations (R? = 1.00) is infeasible due to analytical error
inherent in the impactor measurements, but it may be possible to reduce the sum of
squared residuals further (i.e., increase R?) by identifying measurable factors other
than particle size which significantly influence ATOFMS instrument sensitivities. In
the following section, we assess the relative influence of other factors on ATOFMS
instrument sensitivities to NH; and NOj, under the Riverside ambient sampling

conditions.

3.4.3 Residual Analysis

Aside from particle size, the measurable factors which might also affect instrument
sensitivities include (1) accuracy of the ATOFMS particle detection efficiency cor-
rections; (2) properties of the background gas; (3) size-segregated aerosol chemical
composition, as determined from chemical analyses of the impactor samples; and
(4) single-particle chemical composition, as determined from ATOFMS ion signals
measured at m/z ratios other than 18 and 30. To identify which of these factors
significantly influenced ATOFMS sensitivities to NHf and NOj3 during the IOPs, we
examine the R? values of each factor with the residual concentrations, denoted as
€;x in Equation 3.6. For brevity, we discuss only those factors which show “strong
evidence” of an influence on ATOFMS instrument sensitivities. In the present work,

strong evidence requires that R? values exceed a critical value, defined as follows.

R s ara)” (3.10)
df —+ (tdf,w)Q ’
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where R? is the correlation coefficient squared and ¢4, is the critical value associated
with Student’s t-distribution at a confidence level of 1 — 2z, given df degrees of
freedom [125]. In the present work, we seek R? values which are greater than zero
with 95% confidence (i.e., z = 0.025 in Equation 3.10). The number of degrees of
freedom is defined as two less than the number of data points used to calculate R2.
The critical R? values required to satisfy Equation 3.10 with 95% confidence decrease
as the number of data points increases.

In some cases, an R? value satisfies Equation 3.10 with 95% confidence, but re-
moval of a single data point renders the R? value statistically insignificant at the 95%
confidence level. This indicates that the apparent correlation is largely due to the
presence of only one data point, and is not sufficient evidence that the correlation is
physically meaningful. Therefore, R? values in this regime are not discussed in this

section.

3.4.3.1 Influence of Particle Detection Efficiency Corrections

As stated earlier, one of the three main limitations of a field-based approach is that it
requires an accurate characterization of the ATOFMS instrument’s particle detection
efficiency. In other words, each single-particle spectrum j must be duplicated by a pre-
cise particle detection efficiency factor, ¢;, in order to reconstruct accurate NHJ and
NO; measurements from raw ATOFMS data (see Equation 3.9). For a variety of rea-
sons, it is not yet possible to determine precise values of ¢; under ambient sampling
conditions [82, 108]. Instead, particle detection efficiencies are approximated as a
function of D, (see Equation 3.1), and these approximations are somewhat uncertain.

To assess the influence of particle detection efficiency uncertainties on the scaled
NH; and NO; measurements, we define a residual aerosol mass concentration (ug
m~3), ¢, as

¢
€ = M; — Z VJZ 'OzogDp,j3 (3.11)

jCi
where m; is the mass concentration (ug m™2) of particle ensemble 7 determined from

gravimetric analysis of the impactor samples, and p,sD, ; 3 is the estimated mass of
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an individual particle detected by ATOFMS, assuming particles are spherical with
density, p, = 1.3 g cm™3, and physical diameter, D,. Note that m; and ¢; refer
to total aerosol mass concentrations, whereas m;; and ¢;; are specific to a chemical
component (compare Equations 3.6 and 3.11). In short, ¢; < 0 indicates that the
particle detection efficiency correction factors applied to ATOFMS data collected
from ensemble ¢ are too large on average, whereas ¢; > 0 indicates the correction
factors are too small.

In cases where the particle detection efficiency correction factors applied to ATOFMS
data are too large (i.e., ¢; < 0), one would expect the scaled ATOFMS measurements
of NHf and NO; concentrations to exceed the corresponding impactor measure-
ments (m;, > my), and vice versa. This hypothesis is confirmed by examining
the correlation of NH; and NOj residuals with aerosol mass concentration residu-
als, as illustrated in Figure 3.3. Both subplots show statistically significant positive
correlations (R? = 0.35 for NH; and R? = 0.36 for NO; ), indicating that approxi-
mately 35% of the variance in ¢; can be explained by a linear relationship with e;.
In other words, approximately one third of the error in the instrument sensitivities
to NH; and NOj is attributable to uncertainty in the ATOFMS particle detection
efficiencies. This demonstrates a need to precisely characterize ATOFMS particle
detection efficiencies, perhaps by comparing ATOFMS data with collocated particle
number concentration data, which can be obtained continuously at very fine particle

size and temporal resolutions.

3.4.3.2 Influence of Gas-Phase Properties

Neubauer et al. reported that relative humidity of the background gas can exert a
strong influence on single-particle mass spectra [107], motivating the present analysis.
Although our data set provided no clear evidence that instrument sensitivities to
NH} nor NOj are affected by ambient relative humidity over the 21-69 % range,
statistically significant negative correlations of ¢; with ambient temperature (R? =
0.14 for NH; and R? = 0.39 for NOj) indicate that scaled ATOFMS measurements

of NH; and NOj tend to exceed the corresponding impactor measurements when
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sampling at high temperatures. The highest ambient temperatures were encountered
during the afternoon IOPs of August 1997 (V1-a, V1-b, V2-a, V2-¢). This apparent
temperature effect is most likely due to the condensation of gas-phase NH; and HNOj
upstream of the ATOFMS instrument, which was stationed in an air conditioned
laboratory (T ~ 22-25°C) and drawing ambient air through a ~ 5 m long sampling
line at a relatively low flowrate. When the warmest temperatures were encountered
(T > 30.5°C), high ambient concentrations of gas-phase NH; (23.8 1.6 —45.4+1.5
pg m~3) and HNO; (5.6 £0.6 — 9.3 + 0.6 ug m—3) were present [110]. The apparent
ATOFMS overestimates during the high-temperature IOPs, which include 90% of the
“poor” ATOFMS NOj measurements, might be entirely explained by NH4;NO3 and
HNOj condensation in the ATOFMS sampling line. In addition, volatilization of
NH4NOj; from the impaction substrates during sampling may have decreased the
impactor measurements of NH; and NOj during the high-temperature IOPs by 10
20%, as discussed in Section 3.4.2.

Residual correlations indicate that the high-temperature sampling artifacts con-
tribute 39% of the variance in €;,NO; - To assess the effect of high-temperature sam-
pling artifacts on the results of the present study, sensitivity parameters can be
recalculated using the 21 data points corresponding to low-temperature IOPs (T
< 30.5°C). This recalculation does not affect the TNoy value shown in Table 3.3, but
the best-fit 5No; value is reduced from 2.4 £ 0.4 to 2.2 £ 0.4. In contrast with NOj,
only 14% of the variance in €;Nup Can be explained by the high-temperature sam-
pling artifacts. The effect on ATOFMS NH, measurements is less pronounced than
on NOj3 measurements because three of the NH} measurements taken during high-
temperature IOPs were excluded from the entire analysis, for reasons given above.
Recalculation of the NH] regression coefficients using only the 21 low-temperature
data points does not change the best-fit values of VNuf and (SNHjlr listed in Table 3.3.
This suggests that the instrument sensitivity parameterization (Equation 3.7) for
NH;] is stable over the 23-35 °C temperature range. Average temperatures and rel-

ative humidities during each IOP are listed in Table 3.1.
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3.4.3.3 Influence of Bulk Aerosol Composition

Laboratory studies of single-particle mass spectrometry instruments reveal that the
presence of certain chemical species in a particle can dramatically affect the instru-
ment response to other species present in the same particle [106]. These phenomena,
commonly referred to as matriz effects, have not yet been assessed under ambient
sampling conditions. Extensive bulk aerosol composition data are available from
chemical analyses of the impactor samples [54, 56, 85, 110], allowing an assessment of
whether chemical composition significantly affects ATOFMS instrument sensitivities
to NH} and NOj, when averaged over the size-segregated ambient aerosols studied
here. Correlation coefficients of €; v+ and €; yo- with all analyte measurements that
are greater than two standard errors above zero in at least half of the impaction
substrates (mass, organic carbon, NH;, NO3, SO, Na*, La, and Sb), were calcu-
lated. No evidence of bulk compositional effects on ATOFMS instrument sensitivity
to NH; was found. However, impactor measurements of aerosol mass, organic car-
bon, NHJ, NO3, and SO, all exhibit statistically significant negative correlations
with €; yo- (RB? = 0.26-0.34). These correlations are largely due to the ATOFMS-
impactor measurement discrepancies during high-temperature IOPs. Without the
high-temperature data points, none of the impactor measurements are correlated
with €; oz

Based on these calculations, one may conclude that aerosol chemical composition
had an insignificant influence on the sensitivity of ATOFMS instruments to NH; and
NOj ', when averaged over the size-segregated particle ensembles sampled at Riverside.
It is important to note that NHS and NOj comprise a large fraction of the aerosols
studied in this work, so the ATOFMS instrument response to NHf and NO; may
be less influenced by matrix effects than the instrument response to other species.
In addition, the aerosol mixtures during different IOPs may have been too similar
to one another to reveal bulk compositional biases in the instrument sensitivities.
In the future, it may be possible to elucidate such biases by comparing ATOFMS-

impactor data sets collected at two geographic locations with very different aerosol
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compositions, or by analyzing an ATOFMS-impactor data set collected at a single
location over an extended study period that spans a significant change in bulk aerosol

composition (see Section 7.2.2).

3.4.3.4 Influence of Single-Particle Composition

In Equation 3.6, Respj’NHI and Respj’Nog are defined as the ion signals at m/z 18 and
30, respectively. To examine the influence of other ion signals on the scaled ATOFMS
NH; and NO; measurements, the correlations of €; nu and €; yo- with all ion signal
intensities in the 0 < m/z < 250 Dalton range that appear in at least one particle
spectrum in each size-segregated sample, are calculated. In this analysis, ion signals
are duplicated to account for ATOFMS particle detection efficiencies, and ion signals
in the 0 < m/z < 60 Dalton range are discarded from single-particle spectra in which
an elevated noise level was observed, for reasons described in Section 3.3.2.2.

Ion signals at 27 different m/z ratios exhibit statistically significant negative cor-
relations with €; s (0.14 < R? < 0.23), indicating that NH] concentrations are
overestimated when ion signals at these m/z ratios are abundant. Negative correla-
tions may imply that (1) some fraction of the ion signals at m/z 18 resulted from
aerosol species other than NH; and (2) the presence of other species in the aerosols
increased the ionization efficiency of NHj (i.e., a matrix effect). Determining the most
probable explanation for all 27 observed correlations is beyond the scope of this study.
Moreover, many of these correlations are likely to be interrelated.

In laboratory-based ATOFMS studies, Angelino et al. discovered that ion signals
at m/z 18 are commonly detected when sampling individual particles that contain
organic amines [118]. In ATOFMS data, the most common indicators of organic
amines appear at m/z 58 and 86 [118]. Ion signals at m/z 58 and 86 are among the
27 m/z ratios which are significantly correlated with residual NH] concentrations (R?
= 0.19 and 0.16, respectively). Laboratory experiments are necessary to quantify and
subtract the relative contribution of organic amine fragmentation from the total ion
signal at m/z 18. If this approach proves to be feasible, it may be possible in the

future to determine causes of the observed correlations with other ion signals.
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Ion signals at each m/z ratio are uncorrelated with €;No; » indicating that ions at
m/z ratios other than 30 do not significantly influence scaled ATOFMS NO; measure-
ments in the Riverside aerosols. When sampling larger particle sizes (D, > 1.8 um)
and/or marine aerosols, a significant fraction of the aerosol nitrate may be present in
the form of NaNOj3. In these cases, it may be necessary to incorporate the ion signal

at m/z 108 (Na;NO3) into the definition of Respy--

3.4.3.5 Summary of Residual Analysis

The analyses described in section 3.4.3 indicate the relative influences of various
measurable factors on ATOFMS instrument sensitivities to NH; and NOj, under the
Riverside sampling conditions. Aside from particle aerodynamic diameter, few factors
significantly influenced the instrument sensitivities to NH; and NO;. The second
most pronounced influence is attributed to uncertainties in the ATOFMS particle
detection efficiency. Sampling artifacts at high ambient temperatures contributed a
significant fraction of the variance in €, N0 - Finally, a small fraction of the variance
in € N May be attributed to interfering ion signals at m/z 18 resulting from the

fragmentation of organic amines, and to matrix effects that enhance the ionization

efficiency of NH; .

3.5 Discussion

The instrument sensitivity factors derived from tandem ATOFMS-impactor sampling
can be used to reconstruct continuous ATOFMS measurements of size-segregated
NH; and NOj concentrations throughout the 1996 and 1997 field experiments, with
very fine size resolution. For example, Figure 3.4a shows NH] measurements at
Riverside, binned into 15 particle size intervals spanning the 0.32-1.80 ym D, range,
and twenty-four 4 h time intervals spanning four days of the 1996 Los Angeles Basin
Trajectory Study. Each row in Figure 3.4a can be translated into a conventional plot
of NH; concentration as a function of particle size, during the specified 4 h sampling

period. To illustrate this, Figures 3.4b and 3.4c show size-resolved ATOFMS measure-
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Figure 3.4: Ammonium mass distributions at Riverside. (a) Time series based on
scaled ATOFMS measurements for 4-hour intervals from September 23 through 27,
1996, with divisions at 0300, 0700, 1100, 1500, 1900, and 2300 PDT. (b) Scaled
ATOFMS data and impactor data at 1500-1900 PDT on September 24, 1996. (c)
Scaled ATOFMS data and impactor data at 1500-1900 PDT on September 25, 1996.

ments of NH, concentration corresponding to the two highlighted rows of Figure 3.4a.
Also, impactor measurements taken during the same time periods are plotted in Fig-
ures 3.4b and 3.4c, for the purpose of comparison. Similarly, Figure 3.5 illustrates
the tandem ATOFMS-impactor NO; measurements. High-resolution chemical com-
position measurements capture many of the detailed characteristics of the Riverside
aerosol, which cannot be detected using impactors alone. For example, measure-
ments taken during the September 25, 1996 IOP show sharp peaks at ca. 0.7 ym in
the NH; and NOj size distributions (see Figures 3.4c and 3.5¢).

The applicability of the instrument sensitivity factors derived in this study to
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Figure 3.5: Nitrate mass distributions at Riverside. (a) Time series based on scaled
ATOFMS measurements for 4-hour intervals from September 23 through 27, 1996,
with divisions at 0300, 0700, 1100, 1500, 1900, and 2300 PDT. (b) Scaled ATOFMS
data and impactor data at 1500-1900 PDT on September 24, 1996. (c) Scaled
ATOFMS data and impactor data at 1500-1900 PDT on September 25, 1996.
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other data sets, collected at locations where different ATOFMS instrument designs
are used and different particle types are abundant, remains to be tested. However,
application of the methodology described herein to other tandem ATOFMS-impactor
data sets will be straightforward. In future field experiments, collocated reference
measurements of aerodynamic particle size distributions may yield more accurate
determinations of the ATOFMS particle detection efficiencies, which in turn will
improve the precision of the instrument sensitivity factors calculated using the field-
based approach. In addition, laboratory experiments can be designed to test and
verify the instrument sensitivities calculated in the present work. In the future, it
may be possible to extend the field-based approach to single-particle mass spectrom-
etry instruments other than ATOFMS, and to aerosol species other than NH; and
NOj3. Such applications remain to be tested. The strong influence of particle size
on instrument sensitivities is an important conclusion of the present work. This size-
dependence demonstrates a necessity for accurate particle sizing by single-particle
instruments [48], if the field-based approach is to be successfully applied and further
developed. In addition, collocated reference instruments must provide size-resolved
chemical composition data, if they are to be used for the purpose of determining the

sensitivities of laser ablation/ionization instruments to aerosol-phase species.

3.6 Conclusions

ATOFMS chemical composition measurements are difficult to quantify, largely be-
cause the instrument sensitivities to different chemical species in mixed ambient
aerosols are unknown. In this chapter, a field-based approach is described for deter-
mining ATOFMS instrument sensitivities to ammonium and nitrate in size-segregated
atmospheric aerosols, using tandem ATOFMS-impactor sampling. ATOFMS mea-
surements were compared with collocated impactor measurements taken at River-
side, California, in September 1996, August 1997, and October 1997. This is the
first comparison of ion signal intensities from a single-particle instrument with quan-

titative measurements of atmospheric aerosol chemical composition. The compari-
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son reveals that ATOFMS instrument sensitivities to both NH; and NOj decline
with increasing particle aerodynamic diameter over a 0.32-1.8 pym calibration range.
The stability of this particle size dependence is tested over the broad range of fine
particle concentrations (PM;g = 17.6 + 2.0 — 127.8 + 1.8 ug m™3), ambient temper-
atures (23-35 °C), and relative humidity conditions (21-69%), encountered during
the field experiments. This chapter describes a potentially generalizable methodol-
ogy for increasing the temporal and size resolution of atmospheric aerosol chemical
composition measurements, using tandem ATOFMS-impactor sampling. Continuous
measurements of size-resolved NH] and NO; will substantially augment the amount

of experimental data currently available for air quality model evaluations.
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Chapter 4

A Method for Categorizing
Atmospheric Single-Particle
Spectra

4.1 Introduction

Several mass spectrometry instruments have been deployed in field experiments to
measure the size and chemical composition of individual atmospheric particles on-
line (see Section 1.2.2). To help render the massive single-particle data sets into
condensed and usable formats, particles can be size-segregated based on the optical
or aerodynamic diameter measurements. However, no standardized method exists
for segregating the single-particle spectra into compositional categories. Chemical
categorization of single-particle spectra has a variety of potential applications. A
commonly cited application of spectral categorization is the source apportionment
of atmospheric particles. If individual particles can be categorized according to the
primary emissions source from which they originated, the contributions that different
emitting sources make to an ambient aerosol can be quantified readily. Another ap-
plication, tied closely to the work described in this thesis, is that the compositionally
segregated single-particle data can be compared with air quality model calculations
of the aerosol mixing characteristics, and thereby used for model evaluation purposes.
Spectral categorization is also a necessary prerequisite for improving our understand-

ing of matrix effects on the particle detection efficiencies [108] and chemical sensi-
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tivities [106] of single-particle instruments, because the atmospheric single-particle
matrices must be precisely defined before their effects on instrument performance can
be assessed quantitatively (see Section 7.2.2). Finally, spectral categorization may
be applied in epidemiological studies, to determine statistical correlations between
adverse human health effects and the atmospheric concentrations of compositionally
distinct particle types.

The complexities of atmospheric single-particle mass spectral analysis have re-
cently begun receiving attention in the literature [126-130]. The most common anal-
ysis methods currently in use focus on data reduction, typically by clustering single-
particle spectra into similar groups. However, none of the available methods address
the need for reproducibility and communicability of particle categorization results.
As single-particle mass spectrometry measurements become increasingly common, a
standard format for describing the compositional heterogeneity among individual par-
ticles must be established. Absent such a standard, the single-particle results will be
difficult to use and interpret by investigators who are outside the community of mass
spectral analysts. As a result, the important applications of single-particle obser-
vational data to a variety of fields, ranging from urban air quality management, to
epidemiology, to global climate change, will be delayed significantly.

The purpose of this chapter is to describe an efficient method for the chemical
categorization of atmospheric single-particle spectra, that can be communicated in a
condensed format, and that will yield reproducible results. The condensed format is
a list of particle categories along with quantitative criteria that each particle must
satisfy, in order to be placed into one of those categories. The method is described
and then used to group 82,261 single-particle spectra into 35 compositionally distinct
categories and one miscellaneous category. This is the first presentation of chemically
categorized single-particle data along with the complete details required to reproduce

the categorization results.
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4.2 Background

This section reviews the methods used for analyzing atmospheric aerosol spectra

collected by on-line single-particle mass spectrometry instruments.

4.2.1 Single-Component Analysis

In field applications of the PALMS instrument [44, 45, 93, 131-135] and some early
applications of ATOFMS [54, 80, 85, 90], mass spectra were analyzed primarily to de-
termine the presence or absence of selected chemical species in atmospheric particles.
These single-component analyses can provide general information on the fraction of a
particle population that contains an individual chemical species. By combining single-
component analysis results from more than one chemical species, the degree of internal
versus external mixing in ambient aerosols has been estimated [85, 131-134] and also
used to conduct the air quality model evaluations described in Chapter 2 [136].

There are three major shortcomings associated with single-component analyses.
First, the results are strongly dependent on analyst-defined thresholds for delineating
the presence or absence of selected ion signals in each particle spectrum. The shot-to-
shot variability in the interaction of individual particles with the ablation/ionization
laser causes the absolute detection limits for individual ions to vary significantly from
one particle to the next, in an unknown and unpredictable manner [100, 101]. Analyst-
defined thresholds that are set within this broad range of detection limits can lead to
large uncertainties in the single-component analysis results, whereas thresholds set at
conservatively high levels tend to underestimate the fractions of a particle population
that actually contain the species of interest.

Second, the results of single-component analyses can be hindered by multiple
interfering ion signals detected at a single mass-to-charge ratio (m/z). Some common
examples of such interferences in positive ion atmospheric particle spectra include
C3 and Mg™ at m/z 24, CoHy and Al* at m/z 27, C3H3 and Kt at m/z 39, Naj
and NOJ at m/z 46, C{ and Ti* at m/z 48, C,HS and V* at m/z 51, C{ and
FeO" at m/z 72, and C§ and NayNOj at m/z 108. To account for interfering ion
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signals in single-component analyses, one must define additional thresholds and mass
spectral search criteria. For example, Murphy and Thomson designated ion signals
at m/z 39 as KT indicators only when their intensities exceeded those of neighboring
spectral peaks at m/z 37, 38, or 41 [44]. Such criteria substantially increase the
complexity of single-component analysis procedures, and can potentially increase the
uncertainty in results. In a recent single-component analysis of atmospheric particle
spectra collected in Atlanta, Lee et al. reported that 20-99% of the particle population
contained nitrate [134]. With such large uncertainties, the results obtained from
single-component analyses are of limited value.

Third, single-component analyses “throw away” a substantial amount of spectral
information, and as a result, fail to describe the overall character of each particle. For
example, the combination of two single-component analyses may designate a particle
as “carbon and sulfate containing,” however, it is not clear whether these are the
dominant components of the particle or whether they are trace constituents that
marginally exceed the analyst-defined detection thresholds. Some investigators have
addressed this problem by displaying frequency histograms of the ion signal intensities
corresponding to a specific chemical component within a particle population [93,
131-133]. These chemical histograms provide semi-quantitative information on the
distribution of a single component within an aerosol population, but one would have
to extend the displays to two dimensions in order to convey any information on
the mixing characteristics of a multi-component aerosol. Numerous two-dimensional
histograms would be required to convey the many important mixing characteristics in
an atmospheric aerosol. This would be a very inefficient method of presenting aerosol

mixing characteristics measurements.

4.2.2 Multivariate Spectral Categorization

Due to the complexities and uncertainties associated with single-component analyses,
investigators more commonly are categorizing single-particle data based on patterns

and combinations of predominant ion signals in individual spectra. These spectral cat-
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egorization approaches effectively bypass all of the shortcomings of single-component
analyses listed in the previous section. First, arbitrary detection thresholds need
not be set by analysts, because ion signals that marginally exceed the spectral noise
level are essentially ignored. Second, the complex procedures to mitigate the effects
of interfering ion signals are unnecessary because the entire mass spectrum is con-
sidered as a whole, rather than focusing on any individual spectral peak. In many
cases of atmospheric importance, multivariate spectral categorization obviates the
need to consider interferences. For example, if the spectra acquired from sea salt
and soot particles are first separated into distinct categories, the chemical identity of
the ion signals at m/z 108 (C¢ or NagNOJ) becomes unambiguous. Third, spectral
categorizations are based on the overall character of each particle spectrum, thereby
preserving important information on the relative intensities of multiple ion signals.

In the first field applications of ATOFMS, single-particle mass spectra were man-
ually categorized by visual inspection [46, 47]. Particle categories were named accord-
ing to predominant characteristics of the individual spectra. For example, most of
the atmospheric particle spectra collected at Riverside in April and May 1995, were
categorized as either marine particles, organic/nitrate mixtures, inorganic/organic
mixtures, and inorganic oxides [46]. The drawbacks of visual inspection as a cate-
gorization method are that it is slow, labor intensive, and the results are not repro-
ducible, because they are subject to operator bias [83]. Moreover, many atmospheric
single-particle data sets collected during recent years consist of 10° — —10° mass spec-
tra [77-81, 134], rendering visual inspection an impractical and obsolete approach for
spectral categorization.

In more recent ATOFMS applications, single-particle mass spectra have been ex-
ported to custom-built databases in either Microsoft Access [137, Chapter 3] or the
Matlab programming environment [84], where various automated searches can be per-
formed on single-particle data. Analysts have developed complex search criteria to
group spectra into distinct compositional categories, such as sea salt, mineral dust,
and carbonaceous [76-78, 86, 95, 136, 138]. An example of such search criteria is

shown in Table 2.2. In most cases, the search algorithms used for these studies were
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too complex for mass spectral analysts to succinctly communicate them in the liter-
ature. As a result, the spectral categorizations reported in those studies cannot be

replicated readily.

4.2.2.1 Unsupervised Categorization Methods

The first application of an automated spectral categorization method to on-line single-
particle mass spectrometry data was reported by Song et al. in 1999 [127]. They used
an adaptive resonance theory-based neural network algorithm (ART-2a) [139] to clus-
ter approximately 43,000 single-particle spectra collected at Long Beach, California,
during the 1996 Los Angeles Basin Trajectory Study. The ART-2a algorithm has sev-
eral advantages over the methods discussed above. Most importantly, the algorithm
is fully automated and requires no prior knowledge of the particle characteristics.
Therefore, it can be used to cluster the members of a particle population with un-
known chemical composition, with minimum analyst intervention, and without the
need to define any mass spectral search criteria. For these reasons, the algorithm has
received widespread use in numerous field applications of ATOFMS [79, 81, 89, 127]
and RSMS [52, 53]. The ART-2a algorithm is described in more detail in Section 6.2.3.
Recently, Murphy and co-workers described the application of a hierarchical cluster
analysis method (HCA) to spectra acquired using their PALMS instrument [130].
The categorization method is referred to hereafter as HCA-PALMS. The method
is reported to have certain advantages over ART-2a algorithm [130]. For example,
results from both strict and loose classifications can be saved in a single run. In
contrast, the ART-2a algorithm must be rerun using different vigilance parameters
to yield strict and loose classifications.

The ART-2a and HCA-PALMS algorithms are referred to as unsupervised cate-
gorization approaches, those which do not require predefined groups. Both are excel-
lent tools for quickly assessing the compositional heterogeneity among atmospheric
aerosols sampled by single-particle mass spectrometry. Although these algorithms
result in groups of similar particle spectra, they do not provide quantitative criteria

for the determination of the membership of a given particle spectrum.
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4.2.2.2 Supervised Categorization Methods

In contrast to the algorithms described above, supervised methods categorize mem-
bers of a population into predefined groups. Supervised approaches that have been
applied to atmospheric single-particle data include fuzzy cluster analysis (FCA) [126]
and the algorithm for discriminant analysis of mass spectra (ADAMS) [129]. It is
important to emphasize that these methods do not replace the need for unsupervised
methods. In fact, applications of FCA and the ADAMS to atmospheric aerosol data
use some combination of ART-2a, HCA, and manual categorization, to construct the
predefined particle categories.

The unique feature of FCA is that each particle may be classified into more than
one category, with varying degrees of membership [126]. An example where this fea-
ture would be advantageous is for the categorization of a coagulation product of soot
and sea salt. In “hard” classification algorithms, such spectra would likely be cate-
gorized as either soot or sea salt, or otherwise, remain unclassified. In atmospheric
applications, the “fuzzy” classification feature is not particularly advantageous, be-
cause most particles tend to be classified into a single category with a much greater
degree of membership than in any other category, provided the categories are broadly
defined [50, Figure 5.

In the ADAMS, “discriminant” mass spectral markers are selected for each prede-
fined particle category, that discriminate the category from all others. Then, the mass
spectral peaks in each individual particle that are neither discriminant markers nor
statistically associated with those discriminant markers (“associated non-markers”),
are summed to obtain a “remainder” value. For each predefined category, a linear
combination of the discriminant markers and the remainder value of a particle spec-
trum is calculated to determine which category the particle should be placed in [129].
Advantages of the ADAMS are that the categorization procedure consistently yields
the same result for any given spectrum, all particle spectra in a data set are catego-
rized, and the discriminant markers can be selected such that the dominant peaks in

single-particle spectra do not govern the categorization results. One disadvantage of
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the ADAMS is that in order to communicate the categorization methodology with
sufficient detail to allow reproduction of the results, a significant amount of infor-
mation must be provided. For example, to convey the exact procedure for grouping
12,790 positive ion mass spectra collected at Toronto into nineteen compositionally
distinct particle categories [129], one must provide nineteen lists of discriminant mark-
ers, nineteen lists of associated non-markers, and nineteen “association matrices” that
contain weight values for each pair of discriminant marker and associated non-marker.
In the Toronto application of the ADAMS, individual association matrices contained
as many as 200 weight values [129].

Each of the spectral categorization methods discussed thus far have certain ad-
vantages and drawbacks. In the present chapter, a principle common to both ART-2a
and HCA-PALMS, namely the use of dot products as the measure of spectral simi-
larity, is exploited to devise a spectral categorization procedure that will consistently
yield identical results for a given set or subset of spectra. The final categorization
procedure is communicated in a condensed format, allowing other investigators to
easily reproduce, further improve, and quantitatively assess the resulting particle

categorization results.

4.3 Methods

Aerodynamic diameter measurements and positive ion mass spectra were collected
using a laboratory-based ATOFMS instrument [46] stationed at the University of
California, Riverside, as part of the 1996 Los Angeles Basin Trajectory Study [54, 85,
89]. A total of 82,261 individual particles in the 0.32-1.8 ym aerodynamic diameter
(D,) range were sized and chemically analyzed by the ATOFMS instrument, between
September 23 07:00 PDT and September 28 08:30 PDT. All of these particle data are
used in the present study.

After field measurements are collected, automated computer software is used to
generate a peak list that contains the areas, heights, and mass-to-charge (m/z) ratios

of all peaks in each particle spectrum that exceed the spectral noise level by at
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least five arbitrary height units and ten area units. These peak lists, along with
the associated particle size measurements, are exported to the Matlab programming
environment (The MathWorks, Natick, MA). The data exporting and all subsequent
calculations are facilitated by the YAADA data analysis system [84]. Particle spectra
are processed into the form of a two dimensional data matrix, with rows corresponding
to each particle spectrum and columns corresponding to each integer unit of m/z.
Each row of this matrix is referred to as a “particle vector.” The jth element of a
particle vector contains the total area under all peaks within 0.5 Da of m/z j, in that
particle spectrum.

The spectral categorization procedure described in the present chapter consists
of three steps. The first step involves selecting categories that are considered to
be representative of the entire particle population. Any combination of unsupervised
approaches supplemented with visual inspection may be used in this step. Second, the
category descriptions are simplified to the extent that they can be conveyed succinctly.
Third, the simplified category descriptions are used to compositionally segregate the
entire set of atmospheric particle spectra. The method is designed in such a way that
the steps which are complicated and subject to operator bias are isolated from the
final categorization step. Given a set of simple particle category descriptions, one
needs to perform only the third step the procedure, in order to replicate the particle
categorization results.

To efficiently complete the first two steps, a random selection of 5000 spectra was
drawn from the full particle data set. The first 350 Da of each mass spectrum are
considered, because ion signals at higher m/z ratios are infrequently detected in typ-
ical ambient ATOFMS data. Therefore, the data matrix used in the first two steps
consists of 5000 rows and 350 columns. It should be noted that the spectral catego-
rization method is described here in the context of unipolar mass spectra, however,

application to dual ion mass spectra would require only a trivial modification.
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4.4 Results

4.4.1 Category Selection

As is the case in many supervised spectral categorization techniques, the most labor-
intensive step of the present method involves the selection of particle categories that
are representative of a large fraction of the particle population. There are a number
of available tools to help with this step, including the ART-2a and HCA-PALMS
algorithms. The method that one chooses to select particle categories is not the focus
of the present work, however a method is provided here for completeness, and may
be regarded as an example of how one might use the ART-2a algorithm to select
atmospherically relevant particle categories, and test their representativeness of the
entire population. It is important to emphasize that any category selection method
may be substituted for the one described in the following paragraphs.

For the present analysis, a two-tiered approach was taken, where particles are
first broadly classified as either sea salt, dust, carbonaceous, or miscellaneous, and
then subdivided into compositionally distinct particle categories. To help conduct
the first tier classification, the ART-2a algorithm was applied to the 5000 x 350
element data matrix, using a vigilance parameter of 0.7, a learning rate of 0.05, and
twenty iterations. This particular ART-2a run produced 417 clusters, of which 153
contained more than one member. The average mass spectrum of each non-singleton
cluster (obtained by columnwise averaging of the particle vectors corresponding to
members of that cluster) was visually inspected, and classified as either sea salt, dust,
carbonaceous, or miscellaneous, based on prominent spectral features. For example,
average spectra containing intense ion signals at m/z 12 (C*), 24 (C5), 36 (CJ), and
37 (CsH™T), were classified as carbonaceous [46]. Sea salt particle spectra typically
contain intense ion signals at m/z 23 (Na®) and 39 (K%), as well as less prominent
ion signals at m/z 46 (Naj ), 81 (NayCl™), 108 (NagNO;7 ), and 165 (NazSO; ) [138].
Mass spectra from the ablation /ionization of dust typically contain some combination
of ion signals at m/z 23 (Na*), 24 (Mg™), 27 (Al*), 39 (K*), 40 (Ca't), and 56

(Fe™) [86, 136]. Clusters in which the average spectrum did not contain a recognizable
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combination of peaks were classified as miscellaneous.

When the most appropriate class could not be determined by visual inspection of
the average mass spectrum, a histogram of the D, measurements for members of that
cluster was examined. Average mass spectra that appeared similar to both carbona-
ceous and sea salt particle spectra were categorized as sea salt if the size histogram
revealed an absolute maximum in the D, > 1 um range, as carbonaceous if the maxi-
mum was in the D, < 1 ym range, and as miscellaneous otherwise (e.g., size histogram
exhibited no absolute maximum). An analogous criterion was used to classify the av-
erage spectra that appeared similar to both dust and carbonaceous particle spectra.
These criteria are based on well-established evidence that atmospheric carbonaceous
particles are generated at very small sizes by combustion processes or result from
the condensation of secondary organic compounds onto the surfaces of accumulation
mode particles, whereas dust and sea salt particles are mechanically generated and
therefore, larger in size. In cases where it was not clear whether an average spectrum
was indicative of dust or sea salt, the cluster was classified as miscellaneous. The
average spectrum of one minor cluster, containing 11 members, appeared to be rep-
resentative of coagulation products of carbonaceous particles with either sea salt or
dust particles. This cluster was classified as miscellaneous. In this manner, 4 clusters
were classified as sea salt, 22 as dust, 75 as carbonaceous, and 52 as miscellaneous.
In total, the sea salt clusters contained 1027 members, the dust clusters contained
288 members, and the carbonaceous clusters contained 3222 members. The combi-
nation of all miscellaneous and singleton clusters contained 463 members. This set of
intermediate results is referred to hereafter as the “first tier” particle classification.

The four particle classes described above were chosen because, in most cases, they
can be identified readily by visual inspection of the mass spectra. However, these
classes are rather broadly defined, and hence, do not provide a very detailed repre-
sentation of the aerosol heterogeneity. Therefore, compositionally distinctive particle
“categories” were sought within the sea salt, dust, and carbonaceous “classes,” to
better represent the particle-to-particle heterogeneity among members of each class.

This is the second part of the two-tier category selection process. Distinguishing
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subtle spectral patterns by visual inspection is challenging and labor intensive, so
the ART-2a algorithm was applied separately to the members of each class, using
a 0.05 learning rate and five iterations. The algorithm was run twice on each par-
ticle class, at vigilance parameters of 0.5 and 0.7. The 0.5 vigilance parameter run
yielded 3 sea salt clusters, 9 dust clusters, and 21 carbonaceous clusters. The 0.7 vig-
ilance run yielded 4 sea salt clusters, 25 dust clusters, and 79 carbonaceous clusters.
These results indicate that the carbonaceous particle class included the most diverse
set of particle spectra, and the sea salt spectra were the most homogeneous. The
particle spectra belonging to each ART-2a cluster were averaged together, to create
two sets of “seed vectors” (one set obtained using each vigilance parameter). The
seed vectors were then evaluated in an iterative manner until those which are “most
representative” of the entire particle population were identified.

A flowchart of the iterative seed selection procedure is shown in Figure 4.1. Ini-
tially, only the set of 0.5 vigilance parameter seed vectors was considered. Each
particle vector and seed vector are normalized to unit length, and the Euclidean an-
gle between each particle vector and seed vector is calculated using the dot product.
Particle vectors are each assigned to the seed vector that they form the maximum dot
product with, provided that it exceeds a threshold of 0.7. Particle vectors that do not
satisfy this criterion with any seed vector are assigned to a miscellaneous group. This
association procedure is similar to applying the ART-2a algorithm with a vigilance
parameter of 0.7, one iteration, zero learning rate, and predefined weight vectors, such
that reproducibility of the cluster memberships is ensured. Seed vectors that are as-
sociated with fewer than 0.1% of the 5000 particle vectors are removed from the seed
matrix, and particle associations with the remaining seed vectors are recalculated.
Next, all particle vectors that assigned to a sea salt seed are grouped together, those
assigned to a dust seed are grouped, and those assigned to a carbonaceous seed are
grouped. These three groups of particle vectors along with the miscellaneous group
assembled earlier, are then compared against results of the first tier classification.
Cases where this comparison reveals large differences are analyzed in detail. Seed

vectors from the 0.7 vigilance parameter ART-2a results are manually selected based
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on their potential to improve agreement between the dot product particle associa-
tions and the first tier class memberships. The new seed vectors are added to the
seed matrix and particle associations with the revised set of seed vectors are recalcu-
lated. The entire procedure was repeated until all seed vectors were associated with
at least 0.1% of the particle population, and the dot product associations matched
the first tier classifications with at least 95% accuracy. In this manner, a total of 35
seed vectors (3 sea salt, 12 dust, and 20 carbonaceous) were selected to represent the
particle population.

A comparison of the supervised dot product associations with the first tier clas-
sifications is presented in Table 4.1. Summing all values along the main diagonal
indicates that 4811 of the 5000 spectra (96.22%) are “accurately” categorized using
the supervised approach with the 35 seed vectors selected above. Many of the mis-
cellaneous particle spectra appear to be “misclassified” as either sea salt, dust, or
carbon. Closer inspection of these particle vectors reveals that almost 10% of them
were among the singleton clusters in the initial ART-2a results, and were therefore
assigned to the miscellaneous class by default. In these specific cases, the dot product
associations likely yield better results than the ART-2a algorithm. In the supervised
approach, 75 of the carbonaceous spectra are assigned to the miscellaneous class.
This is indicative of the diversity among carbonaceous particle spectra, which can be
largely attributed to complex fragmentation patterns of organic aerosol species when
analyzed by laser ablation/ionization [117]. Even so, over 97% of the carbonaceous
spectra are accurately classified as such using the supervised approach, with only
twenty carbonaceous seed vectors. Overall, spectral categorization by the supervised
approach yields results of comparable accuracy to those obtained from the unsuper-
vised, manual classification of ART-2a clusters. Furthermore, the particle categories
obtained using the supervised approach are more narrowly defined than the first tier
classes, and will potentially yield a more detailed and accurate representation of the

ambient aerosol heterogeneity.
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Figure 4.1: Flowchart of the iterative seed selection procedure.
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Table 4.1: Comparison of the unsupervised first tier classification with the supervised
classification, using the entire 35 x 350 seed matrix.

Supervised Classification
First Tier Class Sea Salt Dust Carb. Misc.

Sea Salt 1018 0 7 2
Dust 6 270 3 9
Carbonaceous 3 5 3139 75
Misc. 26 13 40 384

4.4.2 Seed Simplification

The second step of the spectral categorization method is intended to increase the
communicability of the categorization procedure. Complete representation of the seed
vectors selected above would require displaying a 35 x 350 matrix of values. These
are too many values to convey in the published literature, however, simplification of
the seed matrix can reduce this number by over one and a half orders of magnitude
without a significant loss of accuracy in the final particle categorizations. This step
of the method distinguishes it from other spectral categorization methods.

During the seed selection process and in previous experiences using the ART-2a
algorithm, it was observed that the dot product between a particle and seed vector is
influenced primarily by the largest values in the particle and seed vectors, whereas the
smaller values have minimal effects on the categorization results. This indicates that
the seed matrix may be simplified by nullifying minor components of each seed vector,
without greatly influencing the final particle categorizations. To explore this in detail,
a series of numerical experiments were conducted. The seed matrix was simplified
by converting minor elements of each seed vector to zeros, where minor elements are
defined as those which individually contribute less than a fixed fraction of the sum of
all elements in the seed vector. This fixed fraction, or “relative intensity threshold,”
was varied between 0.1% and 10%. At each threshold, the dot product associations
were calculated for all 5000 particle vectors, and the spectra were aggregated into one
of the four major particle classes. Figure 4.2 provides a summary of the results.

As the relative intensity threshold is increased, the average number of nonzero
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elements in each seed vector decreases and the classification results become less accu-
rate. The loss of classification accuracy is calculated by comparing the classification
results obtained when using the complete seed descriptions (as shown in Table 4.1)
with those obtained using the simplified seed descriptions. By selecting a maximum
allowable loss of classification accuracy, one can determine the largest relative inten-
sity threshold to apply to the seed vectors, such that the seed matrix contains the
fewest possible number of nonzero elements. In the present study, the maximum al-
lowable loss of classification accuracy is set at 1%, shown by the gray dashed line in
Figure 4.2. This level can be attained with optimum seed simplification by applying
a 2% relative intensity threshold to the seed vectors.

The seed descriptions are further simplified by linearly scaling each row of the
seed matrix, such that the maximum value in each row is 1000, and then rounding
each element of the seed matrix to the nearest integer. This is similar to reporting
each seed vector value with four significant digits, except by scaling each seed vector
to a common maximum value, one can more easily assess the differences between seed
vectors with similar combinations of peaks. The scaling and rounding operations were
found to have no effect on the classifications of the 5000 particle spectra. Table 4.2.
lists all of the nonzero elements in the simplified seed matrix. Classification results
obtained by applying the supervised approach with 35 simplified seed vectors are
compared against the first tier classification in Table 4.3. These results are almost
identical to those shown in Table 4.1, illustrating the negligible effect of the seed

simplification procedure on classification results.

4.4.3 Spectral Categorization

After selecting and simplifying seed vectors that adequately represent the particle
population, the entire set of particle spectra can be compositionally segregated. Par-
ticle vectors are categorized according to the seed vector in Table 4.2 that they form
a maximum dot product with, and all particle vectors that do not yield a dot product

greater than 0.7 with at least one of the seed vectors are placed into a 36th mis-
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Table 4.2: Final description of the selected seed vectors.

ID |

m/z (Intensity)

Sea Salt Seed Vectors

S1
52
53

23(1000) 24(262) 39(164) 40(139) 25(91) 26(72) 41(57) 30(53) 27(48)
24(1000) 23(820) 40(334) 39(326) 25(261) 26(155) 41(124) 30(99)
23(1000) 36(641) 37(417) 12(392) 24(362) 39(292) 27(261) 43(234) 30(215) 18(163) 38(112)

Dust Seed Vectors

D1
D2
D3
D4
D5
D6
D7

D8
D9
D10

D11
D12

39(1000) 40(619) 41(499) 23(486) 42(274) 24(206) 57(153) 27(143) 56(123) 30(115)

40(1000) 41(590) 23(496) 24(480) 42(409) 57(408) 56(277) 39(254) 43(179) 44(165) 25(141) 28(132) 27(132)
56(1000) 39(812) 27(761) 24(624) 40(600) 23(475) 41(446) 57(407) 28(359) 30(313) 25(264) 54(209)
27(1000) 24(949) 2(690) 25(501) 28(494) 40(460) 23(422) 39(366) 16(301) 29(245) 26(237) 41(227) 57(182)
27(1000) 23(525) 29(521) 28(511) 24(257) 30(223) 1(218) 40(197) 48(189) 39(185) 25(181)

2(1000) 17(813) 28(719) 24(398) 25(369) 41(199) 27(197) 23(178) 48(138) 40(127)

64(1000) 48(738) 27(567) 49(315) 47(284) 46(282) 50(201) 66(189) 28(179) 65(176) 51(137) 23(130) 63(123)
62(123)

40(1000) 36(898) 37(383) 12(270) 56(225) 18(225) 27(208) 57(201) 43(179) 51(176) 30(169) 24(166) 39(137)
39(1000) 23(980) 40(411) 24(388) 41(315) 42(201) 36(125) 27(125) 25(112)

24(1000) 56(983) 25(635) 27(565) 23(487) 26(415) 39(376) 57(344) 28(294) 54(269) 41(241) 30(210) 58(203)
40(192)

56(1000) 39(814) 64(407) 48(331) 27(316) 23(301) 55(241) 57(220) 40(111)
56(1000) 40(677) 57(362) 24(143) 54(130) 27(119) 48(95)

Carbonaceous Seed Vectors

C1
C2
C3
C4
Ch
C6
C7
C8

C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20

36(1000) 37(183) 12(182) 24(117) 48(61) 39(56) 43(53) 27(49)

36(1000) 37(576) 12(352) 27(227) 43(226) 24(185) 39(151) 38(123) 30(100) 18(90) 29(87)

36(1000) 12(913) 24(639) 37(510) 27(271) 30(244) 18(214) 43(201) 39(157) 25(135) 17(131) 13(119)
36(1000) 37(909) 27(756) 12(697) 43(556) 24(436) 39(434) 30(377) 18(376) 29(264) 38(260) 19(200)
30(1000) 12(937) 18(901) 36(758) 24(669) 37(652) 27(620) 43(484) 39(453) 19(424) 29(284) 17(234)
39(1000) 36(344) 12(215) 37(153) 41(147) 24(134) 30(110) 18(100) 40(98) 23(76) 27(63)

36(1000) 60(389) 48(380) 37(262) 12(115) 39(114) 43(92) 61(82)

30(1000) 18(639) 19(372) 31(332) 12(306) 17(211) 24(198) 36(192) 39(188) 46(180) 27(173) 35(171) 32(165)

43(145) 37(132)
37(1000) 36(476) 27(292) 43(199) 39 )
56(1000) 57(426) 54(277) 55(246) 58 )
86(1000) 30(360) 18(238) 58(216) 87(202) 27(196) 36(183) 12(162) 37(161) 67(156) 43(129) 29(122)
51(1000) 56(568) 67(312) 12(229) 36(226) 27(179) 37(164) 58(156) 30(153) 24(151) 39(129) 18(129) 43(127)
)
)

) 185) 38(142) 18
)
)
)
18(1000) 39(758) 30(595) 37(463) 36(416) 27(371) 43(366) 12(294) 19(279) 86(200) 29(172)
)
)
)
)
)

203) 27(139) 39

133) 86(121) 30(119
135) 30(135) 73(120

12(108) 29(96) 24(80)
23(104)

( ( )
( ( )

43(1000
27(1000
39(1000
60(1000) 48(349) 36(312) 84(193) 132(117) 120(91) 72(75) 37(74) 144(66) 39(64)

60(1000) 36(960) 61(858) 132(838) 84(755) 37(742) 48(654) 120(596) 85(476) 108(454) 72(411) 39(367)
37(1000) 50(646) 86(414) 27(379) 38(357) 43(306) 36(281) 61(186) 49(167) 39(137) 26(112)

132(1000) 72(430) 36(309) 120(226) 180(184) 84(156) 168(130) 37(109) 108(100) 60(93) 61(86) 144(79)

(
37(804) 36(779) 27(360) 30(243) 39(238) 18(224) 29(162) 12(156) 19(151) 86(142) 38(134)
36(482) 37(335) 12(291) 30(260) 18(240) 43(175) 24(113) 29(87) 28(87)

43(723) 27(659) 41(584) 37(442) 40(423) 29(405) 57(400) 55(319) 38(291) 63(280) 51(278) 36(272)

3
3
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Table 4.3: Classification of 5000 spectra using the simplified seed matrix, compared
with first tier classifications.

Supervised Classification
First Tier Class Sea Salt Dust Carb. Misc.

Sea Salt 1020 0 5 2

Dust 6 263 5 14
Carbonaceous 2 7 3127 86
Misc. 26 12 36 389

cellaneous category. This is a computationally efficient process, requiring only ten

minutes to categorize 82,261 spectra on a 700 MHz personal computer.

4.5 Discussion

Table 4.2 contains all of the information necessary to compositionally segregate any
subset of the 82,261 ATOFMS single-particle spectra considered in the present study.
By following the procedure described here, any particle in the data set can be grouped
into one of the 35 compositionally distinct categories, or into a 36th miscellaneous
category. Most importantly, the final categorization of each particle is reproducible.
At first glance, the amount of data contained in Table 4.2 may appear overwhelming,
but this is far easier to handle than a set of complex peak list search criteria. The
other currently available method for precisely conveying particle categorizations is to
explicitly list each particle in a data set along with its category number. However,
that approach inhibits users of the single-particle data from further improving or
quantitatively assessing the chemical categorization results. Providing the full list of
category descriptions as shown in Table 4.2 can facilitate multiple applications of the
same single-particle data set. For example, investigators may assign different physical
or descriptive properties to each particle category (e.g., density, refractive index,
source origin) without having to explain the contents of that particle category. This
may be useful in air quality management applications, radiative forcing calculations,
and in the analysis of matrix effects on single-particle instrument sensitivities.

Application of the present method to any single-particle data set is fairly straight-



99

forward. The most difficult step involves defining particle categories that are represen-
tative of the sampled aerosol population. However, most single-particle data analyses
entail some form of data reduction using unsupervised clustering algorithms. In the
present study, a two-tiered approach based on the ART-2a algorithm was used to
select particle categories. The advantage of a two-tiered approach relative to stan-
dard ART-2a clustering is that if the first tier classifications are carefully determined,
compositionally distinct particles that yield spectra containing the same dominant ion
signal can be distinguished from one another. For example, the ART-2a algorithm
often confuses positive ion spectra from potassium-rich soil dust with the spectra from
potassium-rich biomass combustion particles, because potassium is efficiently ionized
and therefore tends to dominate the resulting mass spectra. By applying the present
method to the seed vectors listed in Table 4.2, particles of the former type would
fall under Category D1, and the latter type would fall under Category C6. Another
example of atmospheric particle types commonly grouped by the ART-2a algorithm
are iron-rich soil dust (Categories D3, D11, D12) and iron-rich combustion products
(Category C10). The second and third steps of the procedure can be viewed as an ex-
tension of unsupervised categorization algorithms, that will yield reproducible results
in a communicable format.

An important application of an the present method is for categorization of single-
particle emissions source data. If the source characterization data can be expressed
in a format comparable to that shown in Table 4.2, they will provide information
on the compositional heterogeneity among individual particles from the same source,
that can be interpreted with relative ease. Such information can then be used to
construct particulate matter emissions inventories with single-particle level detail, and
subsequently used as inputs to mathematical air quality models. This application is

discussed further in Section 7.2.3.



100
4.6 Conclusions

A method has been described for the efficient categorization of single-particle data
into compositionally distinct categories, based on the dot products between single-
particle data vectors. The methodology is conveyed in a condensed format, as a list
of particle categories along with quantitative criteria that each particle must satisfy,
in order to be placed into one of those categories. The unique feature of the method
is that the categorization of each particle is unambiguous and therefore, reproducible.
After describing the method, it was used to group 82,261 single-particle spectra into 35
compositionally distinct categories and one miscellaneous category. This was the first
presentation of chemically categorized single-particle data along with the complete
details required to reproduce the categorization results. It is important to stress that
the chemical categorizations should not be viewed as a data analysis endpoint, but
rather, as a tool for more extensive analyses of single-particle data. For example in
Chapter 5, ATOFMS data are chemically categorized by the present method and used
to quantitatively reconstruct size-resolved measurements of the atmospheric aerosol

mixing characteristics.
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Chapter 5

Quantitative Evaluation of a
Source-Oriented Air Quality Model
Using ATOFMS Measurements

5.1 Introduction

Mathematical air quality models provide the necessary framework to integrate our
understanding of the complex processes governing air pollutant formation, transport,
and removal. Increased confidence in our understanding of the ensemble of these pro-
cesses can only be achieved through extensive model evaluations against atmospheric
measurements. The evaluation of atmospheric aerosol models is complicated by the
multidimensional nature of particulate matter (PM) data. Table 5.1 contrasts the de-
gree of complexity associated with atmospheric ozone data versus PM data. Whereas
the ozone concentration or that of any gas-phase pollutant at a particular time and
location can be represented by a single number, a multidimensional matrix is required
to accurately describe the PM concentration at any point and time. The sizes of air-
borne particles vary over several orders of magnitude, and to a large extent, determine
the effects of PM on human health, visibility degradation, and climate forcing. Thus,
the particle size distribution must be specified when characterizing atmospheric PM
concentrations. In addition, PM consists of numerous chemical components, which
may be present in a variety of phases, and the PM chemical composition typically

varies with particle size. Finally, atmospheric particles of the same size, present at a
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given time and location, may exhibit differing chemical compositions. In the present
work, distributions of chemical constituents among particles of a given size are re-
ferred to as the aerosol mizing characteristics. These may be viewed as an additional

dimension of PM data.

Table 5.1: Dimensions of ambient air quality data

Dimension O; Data PM Data
Spatial V
Temporal V

Particle Size

Chemical Composition

D USSR N

Mixing Characteristics

The first models to account for the size and composition distribution of atmo-
spheric PM were evaluated against bulk filter-based measurements of inorganic aerosol
components, taken in southern California in August 1982 [16, 140]. The 1987 South-
ern California Air Quality Study (SCAQS) provided a more comprehensive data set
for testing mechanistic air quality models [141]. Several aerosol models were developed
thereafter, and evaluated against filter-based chemical composition measurements of
fine and coarse particulate matter taken during the SCAQS [21, 27, 142]. Other mod-
els were tested more rigorously, by comparison with the SCAQS size-resolved aerosol
chemical composition measurements [20, 24, 25, 28]. More recently, mechanistic air
quality models describing the size and composition distribution of aerosols have been
developed and applied to regions outside of southern California [22, 143-145]. These
model calculations have been evaluated against bulk aerosol and fine particle chemical
composition measurements only, due to the dearth of more detailed aerosol data at
these geographic locations.

To take advantage of real-time aerosol measurement techniques developed after the
SCAQS, a comprehensive field campaign was undertaken in the Los Angeles Basin in
September 1996 (see Section 1.2.3). This campaign included the collection of aerosol

measurements at one offshore and three inland receptor sites, using electronic parti-
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cle size distribution monitors, filter-based samplers, cascade impactors, and aerosol
time-of-flight mass spectrometry (ATOFMS) instruments [54, 85, 89]. Comparisons
of the collocated ATOFMS and impactor data elucidated methods to quantitatively
reconstruct continuous, size-resolved measurements of aerosol mass, nitrate, and am-
monium concentrations, at the Riverside monitoring site (see Chapter 3) [82, 91].
The resulting aerosol data are enriched in three dimensions, relative to the most com-
prehensive data sets used for previous aerosol model evaluations. First, the data are
available with greater temporal resolution than traditional filter or impactor data
alone, owing to the continuous sampling capabilities of the ATOFMS instrument.
Second, the particle size resolution of the reconstructed aerosol data is greater than
that obtained from traditional impactor sampling [82, 91]. Third, the single-particle
measurements can be disaggregated according to the relative abundance of compo-
sitionally distinct single-particle types detected by ATOFMS, to yield quantitative
measurements of the ambient aerosol mixing characteristics.

Investigations of ambient aerosol mixing characteristics have been limited to date,
due to the inability to quantitatively measure the mixing characteristics and due to
the simplifying “internal mixture” assumption made in the vast majority of mech-
anistic aerosol models. In the present study, model results are obtained using a
source-oriented air quality model that simulates the ambient aerosol as an ensem-
ble of discrete particle types, that are transported from different emission sources
to a downwind receptor site (see Section 2.2.1) [28, 55]. Model calculations of the
aerosol size and chemical composition distribution agree favorably with measure-
ments taken during the SCAQS [28, 64], as well as with filter and impactor-based
measurements taken during the 1996 Los Angeles Basin Trajectory Study [55]. In
Chapter 2, the model results were shown to agree favorably with semi-quantitative
aerosol mixing characteristics measurements taken at Long Beach and Riverside in
September 1996 [136]. The primary purpose of this chapter is to illustrate quantita-
tive comparisons that now can be made between air quality model results and aerosol
measurements, given the improved temporal resolution, the improved particle size

resolution, and the new aerosol mixing characteristics information, that have recently
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become available. In addition, this study serves to further evaluate the calculations of
a state-of-the-science atmospheric aerosol model, including the first model evaluation

against quantitative measurements of atmospheric aerosol mixing characteristics.

5.2 Methods

5.2.1 Description of the Air Quality Model

Detailed descriptions of the air quality model appear in the published literature [28,
30, 55, 64, 136] and in Section 2.2.1, so only the aspects most relevant to this chap-
ter are highlighted here. The distinguishing feature of the model is that the ambi-
ent aerosol is represented as an ensemble of compositionally distinct particle classes,
rather than as an internally mixed distribution in which the chemical composition of
all like-sized particles are assumed to be identical. This model formulation permits
detailed calculations of the aerosol mixing characteristics to be made. The chemi-
cal evolutions of primary particles emitted at 15 discrete sizes (spanning the 0.01-10
pum particle diameter range) and from 10 source categories (paved road dust, crustal
material, diesel engine exhaust, food cooking, catalyst-equipped gasoline-powered en-
gine exhaust, non-catalyst gasoline engine exhaust, sulfur-bearing fuel combustion
and industrial sources, sea salt, non-sea salt background particles, and other miscel-
laneous sources) are tracked separately in the model. All particle classes interact with
the same gas-phase conditions, but differences in the size and composition of particles
emitted at different sizes and from different sources are retained. In addition, parti-
cles emitted during different hours are tracked separately, to simulate differences in
the size and composition distributions of freshly emitted particles compared to those
of aged particles originating from the same source category [64].

The model used in the current study is based in a Lagrangian framework, in which
the atmospheric processes within an individual air parcel are followed in a coordinate
system that moves with the average wind velocity. Although a version of this model

has been developed recently within a 3-D Eulerian framework [30], hence capturing
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the effects of vertical wind shear and horizontal turbulent diffusion, the Lagrangian
model formulation is used in the present study for three reasons. First, model results
are to be evaluated at a single receptor site, so calculating the spatial distribution of
pollutants over the entire study region is unnecessary. Second, vertical wind shear
and horizontal turbulent diffusion were found to have a negligible effect on the aerosol
mass distribution during the episode studied here [30], so both versions of the model
yield similar results at the receptor of interest. Third, the computational burden cur-
rently associated with tracking the compositions and concentrations of discrete par-
ticle types virtually prohibits calculations of the physiochemical differences between
freshly emitted and aged particles to be made in an Eulerian framework. Thus, the
Lagrangian formulation yields an accurate set of model results at the target receptor
during the period of interest, with more detailed aerosol mixing characteristics than
are provided by the current formulation of the Eulerian model.

Air parcel trajectories are calculated by backward integration through wind fields
interpolated from wind observations taken at 29 locations in southern California [55].
A time series of model results with hourly temporal resolution is obtained by com-
puting pollutant evolution along 24 trajectories, terminating hourly at the Riverside

monitoring site on September 25, 1996.

5.2.2 Description of the Atmospheric Aerosol Data

The aerosol measurements presented in this study were collected as part of the Los
Angeles Basin Trajectory Study described in Section 1.2.3 [54, 85]. For the entire du-
ration of September 25, individual atmospheric particles were sampled continuously
at Riverside, using an ATOFMS instrument. In addition, size-segregated aerosol
samples were collected from 1500-1900 Pacific Daylight Time (PDT), using two col-
located micro-orifice impactors (MSP Corp., models 100 and 110), and later analyzed

for particulate mass, nitrate, ammonium, and numerous other chemical species.
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5.2.2.1 Reconstruction of Atmospheric Aerosol Concentrations

Methods to quantitatively reconstruct size-resolved particulate mass, nitrate, and
ammonium concentrations, from raw ATOFMS data have been described thoroughly

in Chapter 3 [82, 91], and can be summarized as follows

3
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unit of ion signal intensity
where the subscript 7 represents an arbitrary ensemble of single-particle ATOFMS
measurements, subscript j represents an individual particle measurement, subscript
k represents a chemical species of interest, m is an atmospheric aerosol concentration
(ug m~3) reconstructed from raw ATOFMS data, ¢ is a particle size-dependent,
dimensionless factor by which the ATOFMS instrument undercounted particles during
the field study, p, D, ;® is the estimated mass (pg) of an individual particle detected

by ATOFMS (assuming particles are spherical with density, p, = 1.3 g cm™

, and
physical diameter, D, (um)), V; is the volume of air sampled by ATOFMS (m?)
during the time period when particle ensemble ¢ was encountered (Equation 3.4),
Resp,, is the ATOFMS instrument response to species & in particle j (ion signal area
units), ¢ relates ATOFMS ion signal intensities to the mass of a species of interest
(ug/ion signal area), Dy is a dimensionless aerodynamic particle diameter (measured
D,+ 1 pm), and «, B, v, and 6 are dimensionless parameters whose values and 95%
confidence intervals during the study period are determined to be o = 5040 + 1190,
B =—313£0.64, 1o, = 4.TE0.7x1071, by = 24204, Yyt = 2.5£0.4x 1071,
and dygpy = 2.4 £ 0.4 [91]. Equations 5.1-5.4 are valid in the 0.32-1.8 ym D, range

only, thereby limiting the model evaluations described in the present study to this

range of aerodynamic particle diameters.
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5.2.2.2 Mixing Characteristics Measurements

The present analysis of aerosol mixing characteristics is focused on the 1500-1900
PDT period, on September 25, 1996. During these four hours, the ATOFMS instru-
ment acquired single-particle spectra from 3181 particles in the 0.32-1.8 ym aerody-
namic diameter range. These particles are separated into three compositional classes
(sea salt, dust, and carbonaceous), using the spectral described in Chapter 4. Parti-
cles which fall in categories S1-S3 in Table 4.2 are combined into the sea salt class,
D1-D12 into the dust class, and C1-C20 into the carbonaceous class. Particles which
do not fit into any of these 35 compositional categories are placed into a miscellaneous
particle class.

After compositional classification, the particles in each class are size-segregated
according to their measured aerodynamic diameters. The mass concentrations of
each size and compositionally segregated particle ensemble are then determined using
Equations 5.1 and 5.3. In this manner, a quantitative measure of the atmospheric

aerosol mixing characteristics is obtained.

5.3 Results and Discussion

In this section, air quality model results are compared with aerosol measurements
taken at Riverside, on September 25, 1996. First, model results at each hour of
the day are compared with hourly, size-segregated measurements of aerosol mass, ni-
trate, and ammonium concentrations. Next, model results during 1500-1900 PDT
are aggregated into very narrow particle size intervals, and compared with fine resolu-
tion measurements of aerosol mass, nitrate, and ammonium concentrations. Finally,
model calculations of the absolute contributions of sea salt, dust, and carbonaceous
particles to the size-resolved aerosol mass distribution are compared with correspond-
ing measurements of the aerosol mixing characteristics at 1500-1900 PDT. The lat-
ter two comparisons are restricted to a 4-hour afternoon sampling period, because

the ATOFMS measurements collected during that time period have been validated
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against collocated impactor measurements, and thus, have greater absolute certainty

than the ATOFMS measurements taken during other times of the day.

5.3.1 Temporal Resolution

Time series of size-segregated mass, nitrate, and ammonium concentrations are shown
in Figure 5.1. Model results are compared with measurements in three aerodynamic
particle diameter intervals (D, = 0.32-0.56 pm, 0.56-1.0 pgm, and 1.0-1.8 ym), which
correspond to the size intervals of aerosol samples collected with micro-orifice im-
pactors during the field study. For reference, impactor measurements are plotted
as horizontal gray bars, spanning the 4-hour time period when the size-segregated
samples were collected. Atmospheric concentrations of the size-segregated particle
ensembles analyzed by ATOFMS during each hour are quantitatively reconstructed
using Equations 5.1-5.4, and plotted as solid lines in Figure 5.1, with error bars rep-
resenting 95% confidence intervals. Model calculations of the atmospheric aerosol
concentrations at Riverside are plotted as circles.

During the field study, the ATOFMS instrument was stationed inside an air con-
ditioned laboratory, while drawing ambient air through a ~ 5 m long sampling line at
a 20 cubic centimeter per second flowrate. If at any time during sampling, the tem-
perature and/or relative humidity inside the sampling line differed sufficiently from
outdoor conditions, it would be possible for semivolatile molecules such as water vapor
and ammonium nitrate to condense on or evaporate from the ambient particles before
being analyzed by the ATOFMS instrument. The potential effects of a heated and/or
dried sampling line (relative to ambient conditions) on modeled aerosol concentrations
are depicted by squares in Figure 5.1. These simulations represent an extreme case in
which all water is removed from the particles prior to sampling, and the aerosols are
size-segregated according to their dry aerodynamic diameters. The vertical distances
between the squares and circles plotted in the left column of Figure 5.1 approximately
represent model calculations of the particle-bound water concentration in each size

and time interval. In some cases, the reduction in particle size due to water removal
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Figure 5.1: Model calculations versus ambient measurements of hourly resolved and
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is large enough to shift particles from one size interval to another, thereby influencing
the size-segregated nitrate and ammonium concentrations as well (see second and
third columns of Figure 5.1).

Figure 5.1a-5.1c displays model versus measurement comparisons in the 1.0-1.8
pm D, range. Model calculations of the ambient aerosol mass concentration in this
size interval exhibit a diurnal trend very similar to the ATOFMS measurements, with
peak concentrations in the morning and a concentration minimum in the late after-
noon (see Figure 5.1a). Based on model calculations, this diurnal pattern is driven
largely by the ambient relative humidity, which averaged 90% from 0200-1200 PDT,
before dropping to 56% at 1600 PDT. In the morning hours, model results indicate
that most of the 1.0-1.8 ym aerosol mass was composed of water. In the afternoon,
model calculations show that the aerosol was almost devoid of water, resulting in
reduced mass concentrations. ATOFMS measurements of 1.0-1.8 pym aerosol mass
are in better agreement with the ambient aerosol model results than with the dried
aerosol model calculations, suggesting that particles in the supermicron size interval
were not significantly influenced by evaporation in the sampling line.

Model calculations of the nitrate and ammonium concentrations in 1.0-1.8 pym par-
ticles are in reasonable agreement with observations, falling within the 95% confidence
intervals of the ATOFMS measurements during most of the day (see Figure 5.1b-
5.1c). Notable exceptions are the morning peak in measured nitrate concentrations
at 0400-0900 PDT and the nighttime decline in measured ammonium concentrations
at 1800-2400 PDT, which are not displayed in the model results.

Figure 5.1d-5.1f displays comparisons in the 0.56-1.0 ym D, range. ATOFMS
measurements of aerosol mass are in better agreement with dried aerosol model re-
sults than with the ambient aerosol model calculations, indicating that particles in this
size interval may have been more influenced than the supermicron particles, by drying
in the sampling line. This explanation is supported by the fact that smaller particles
tend to equilibrate more quickly than large particles, when subjected to changing gas-
phase conditions [146]. Model calculations of nitrate and ammonium concentrations

in the 0.56-1.0 pym size range are in excellent agreement with ATOFMS measure-
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ments throughout most of the day, exhibiting high concentrations from 0400-1400
PDT, followed by a sharp decline at 1500-1600 PDT, and a recovery at 1700 PDT.
Model calculations reveal that this afternoon concentration oscillation is primarily
due to changes in ambient meteorology. The maximum temperature and minimum
relative humidity on September 25 (T > 24°C, RH < 57%) were both experienced
during the 1500-1600 PDT period, leading to evaporation of ammonium nitrate, wa-
ter, and other semivolatile species, from the aerosol phase. By 1700 PDT, the ambient
temperature began to decline and the relative humidity increased. These meteoro-
logical changes in conjunction with NoOjs production at sunset followed by hydrolysis
to nitric acid, resulted in the observed increase in ammonium and nitrate concen-
trations at 1700 PDT. It is important to note that absent the continuous ATOFMS
measurements taken during this time period, the afternoon oscillation in ammonium
and nitrate concentrations would not have been observed, due to the 4-hour averaging
period of the impactor measurements (see gray bars in Figure 5.1e-5.1f). After 1800
PDT, model calculations of aerosol mass, nitrate, and ammonium, exceed ATOFMS
measurements by approximately a factor of three. The cause of this difference is still
under investigation.

Figure 5.1g-5.1i displays comparisons in the 0.32-0.56 pym range. Once again,
ATOFMS measurements of aerosol mass are in better agreement with dried aerosol
model results than with the ambient aerosol model calculations, suggesting that a
dried and/or heated sampling line may have biased the measurements. Model re-
sults in this size interval exceed ATOFMS measurements throughout the sampling
period. During the 1996 field study, the ATOFMS instrument detected and ana-
lyzed fewer than ten out of every million ambient particles in the 0.32-0.56 um size
range [82]. Given this extremely low particle detection efficiency (which has been in-
creased in recent years) and the resulting poor counting statistics, it is not surprising
that the ATOFMS measurements in this size interval differ from model results by
a factor of two or three. Ignoring the absolute difference in measured and modeled
concentrations, it is interesting to note that the model calculations show an afternoon

oscillation in 0.32-0.56 pum aerosol concentrations analogous to that observed in the
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0.56-1.0 pym range, and this fluctuation is qualitatively matched by the corresponding
ATOFMS measurements.

5.3.2 Particle Size Resolution

Finely resolved particle size distributions of aerosol mass, nitrate, and ammonium,
during the 1500-1900 PDT intensive sampling period, are shown in Figure 5.2. Model
results and ATOFMS measurements are aggregated into 15 particle size intervals
spanning the 0.32-1.8 pym range. This representation illustrates that the size res-
olution of reconstructed ATOFMS data is roughly five times greater than that of
traditional impactor measurements. If a longer sampling interval is used, the size res-
olution of ATOFMS measurements can be increased even further. As in Figure 5.1,
model results are plotted under both ambient and dried conditions. The difference
between the ambient and dry aerosol mass distributions shown in Figure 5.2a is in-
dicative of the aerosol water content, which was fairly small, due to low relative
humidities during this afternoon sampling period.

Peak concentrations in the aerosol mass, nitrate, and ammonium size distributions
measured by ATOFMS, are all accurately calculated in the air quality model. More-
over, model calculations of the particle size interval that contains peak aerosol con-
centrations are within 0.1 ym of the ATOFMS measurements. Peaks in the ATOFMS
size distributions at 0.7 ym are sharper and more pronounced than in the modeled
distributions. This reflects the fact that the particle size resolution of the aerosol
emissions inventories used as model inputs are coarser than the size resolution of
measurements reconstructed from ATOFMS data. In the future, it may be possible
to generate finer size resolution emissions inputs for model calculations, using quan-
titative measurements reconstructed from ATOFMS source characterization data.

Model results in the particle size range smaller than 0.5 ym exceed the correspond-
ing measurements. The difference in modeled and measured aerosol mass concentra-
tions in this size range is approximately equal to the sum of the excess nitrate and

ammonium concentrations calculated in the model. It is possible that model results
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Figure 5.2: Model calculations versus ambient measurements of finely resolved par-
ticle size distributions of aerosol mass, nitrate, and ammonium concentrations at
Riverside, on September 25, 1996, 1500-1900 PDT. Dark error bars on the ATOFMS
measurements represent 95% confidence intervals of the reconstructed aerosol data.
Gray error bars represent + 2 standard deviations in the impactor measurements.
Model results are plotted as ambient (solid line) and dried (dashed line) mass distri-
butions.
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overestimate the formation of NH;NOj aerosol in the 0.32-0.5 ym range, or that mea-
surements are biased low. As noted above, the quantitative ATOFMS measurements
are obtained by comparing raw ATOFMS data with collocated impactor measure-
ments, however, impactor measurements are subject to certain biases. The warm and
dry atmospheric conditions encountered during the sampling period (T > 24°C, RH
< 57%) favor NH4NOj volatilization from the impaction substrates [123]. Also, the
effects of volatilization on impactor measurements are known to increase with decreas-
ing particle size, because the lower impactor stages operate at reduced pressures [147].
Moreover, volatilization effects are enhanced on substrates with low aerosol load-
ings [124], such as the impaction substrate on which the 0.32-0.56 pm sample was
collected. The data reconstruction procedure ensures that experimental errors which
affected the impactor measurements are translated to the quantified ATOFMS mea-
surements. Therefore, the ATOFMS data plotted in Figure 5.2 may be vicariously
influenced by NH4NO3 volatilization from the impaction substrates. In the future,
it may be possible to quantitatively reconstruct ATOFMS data without relying on
collocated impactor (or other reference) measurements. Such an advancement, or the
development of new instruments capable of quantitatively measuring size-segregated
nitrate and ammonium concentrations without volatilization losses, might permit a
more reliable evaluation of model results in the D, < 0.5 pm range.

The maximum particle size resolution used in previous model evaluations of aerosol
chemical composition was limited by the size-segregation capabilities of cascade im-
pactors. The comparisons in Figure 5.2 exhibit five times greater size resolution than
can be measured by traditional impactors, and this additional detail reveals that
model calculations may not accurately capture the shape of the aerosol size distri-
bution, particularly in the vicinity of the peak aerosol mass concentrations. Mea-
surements taken using more recently developed aerosol mass spectrometers [148, 149
may provide an opportunity to extend the model comparisons shown in Figure 5.2 to

smaller particle sizes in the future.
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5.3.3 Aerosol Mixing State

Figure 5.3 displays a comparison of the modeled and measured aerosol mixing char-
acteristics, during the 1500-1900 PDT intensive sampling period. The thousands of
discrete particle types tracked in the air quality model are grouped into four cate-
gories, permitting a direct comparison with the size and compositionally categorized
ATOFMS data to be made. Particles emitted as paved road dust or other crustal
material are placed in the “dust” category. Particles that originated as sea spray
droplets are placed in the “sea salt” category. Primary particles that were emitted
from motor vehicle exhaust, meat cooking, or the combustion of high-sulfur fuels, are
categorized as “carbonaceous.” In addition, nonsea salt background particles are cat-
egorized as “carbonaceous,” due to their high organic carbon content [55]. Particles
emitted from other miscellaneous sources are placed in the “other types” category.

Figure 5.3b displays quantitatively reconstructed ATOFMS measurements of the
aerosol mixing characteristics, in 15 size intervals spanning the 0.32-1.8 pym range.
The ATOFMS measurements are compositionally segregated as described in Sec-
tion 5.2.2.2. It should be noted that a mixing characteristics representation, such
as that shown in Figure 5.3b, cannot be obtained using conventional bulk sampling
techniques, such as filter or impactor-based measurements, because those techniques
cannot differentiate the chemical compositions of individual particles collected on a
substrate, and therefore cannot identify the relative contributions that different parti-
cle types make to a bulk or size-segregated aerosol sample. An aerosol representation
like that shown in Figure 5.3b can only be obtained using single-particle techniques,
such as ATOFMS. Figure 5.3 represents the first quantitative comparison of modeled
and measured aerosol mixing characteristics.

In general, the agreement between the model results and measurements is very
good. Model calculations accurately reveal that carbonaceous particles dominate the
aerosol mass distribution throughout the .32-1.8 um size range. ATOFMS measure-
ments indicate that the mass concentration of dust particles is distributed evenly

across the size range of interest, and is slightly elevated in the 1.3-1.8 pum range.
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Figure 5.3: Model results versus ambient measurements of size-resolved aerosol mixing
characteristics at Riverside, on September 25, 1996, 1500-1900 PDT.
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Model results also show a fairly even distribution of dust particles, and the magni-
tude of the dust contribution matches the observed concentrations quite well. Finally,
the contribution of sea salt particles to the aerosol mass distribution is observed to
increase nearly monotonically with particle size, over the 0.4-1.8 ym range. Model
calculations contain no sea salt in the D, < 1.3 ym range, but the modeled sea salt
concentration does exhibit a monotonic increase with particle size between 1.3—-1.8
pm. The absence of sea salt particles in the model results below 1.3 pym is due to the
assumed sea spray size distribution used as input to the model [55]. In future modeling
studies, a more accurate, size-resolved representation of the sea spray source function
may yield better agreement with the ATOFMS sea salt concentration measurements.

The bulk of the aerosol mass distribution shown in Figure 5.3 is made up of
carbonaceous particles, which include primary particle emissions from a variety of
combustion sources, as well as background particles advected into the air basin from
over the Pacific Ocean. In the near future, results of single-particle source characteri-
zation studies may provide the information necessary to identify the primary emission
sources of individual, atmospheric carbonaceous particles sampled by ATOFMS. Such
source identifications can then be used to subdivide the carbonaceous particle class
shown in Figure 5.3b, and ultimately evaluate model calculations of the absolute con-
tributions that various emissions sources make to urban aerosols. This is discussed

further in Section 7.2.3.

5.4 Conclusions

Calculations of a source-oriented air quality model have been evaluated against ambi-
ent aerosol measurements taken at Riverside, CA, on September 25, 1996. The aerosol
data set includes continuous, quantitative, size-resolved measurements of particulate
mass, nitrate, and ammonium concentrations, as well as quantitative measurements
of atmospheric aerosol mixing characteristics. These measurements, reconstructed
from collocated ATOFMS and impactor data, provide an opportunity to perform

more detailed and stringent evaluations of aerosol air quality models than were pre-
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viously possible. The hourly time series of size-segregated aerosol mass, nitrate, and
ammonium concentrations, calculated using the model, exhibit diurnal trends compa-
rable to the measurements. Measurements during a 4-hour intensive sampling period
were aggregated into narrow particle size intervals to test model calculations of the
detailed structure of the aerosol mass, nitrate, and ammonium distributions. Model
calculations of the absolute contributions of sea salt, dust, and carbonaceous parti-
cles, to the size-resolved aerosol mass distribution were found to be in good agreement
with the corresponding measurements. These model evaluations were performed at
finer temporal and particle size resolution than in any previous study, and represent
the first quantitative comparison of aerosol mixing characteristics measurements with

source-oriented air quality model results.
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Chapter 6

Source Apportionment of Fine
Particulate Matter by Clustering
Single-Particle Data: Tests of
Receptor Model Accuracy

6.1 Introduction

The model-ATOFMS comparisons presented in Chapters 2 and 5 establish reason-
able confidence that the air quality model calculations yield aerosol descriptions that
are representative of atmospheric particle populations. In this chapter, the air qual-
ity model results are treated as synthetic single-particle data sets, and used to test
methods for determining the sources of atmospheric particles. In order to deliber-
ately control atmospheric fine particle concentrations, the relative influences of the
various contributing sources must be known [150, 151]. Two approaches for identify-
ing source contributions to atmospheric particle concentrations exist: source-oriented
models and receptor-oriented models. While source-oriented models begin with emis-
sion rates and atmospheric transport calculations to estimate the ambient pollutant
concentration increments due to each source, receptor-oriented models begin with am-

bient pollutant concentration data and seek to subdivide the particulate mass among

*This chapter is reproduced with permission from “Source Apportionment of Fine Particulate
Matter by Clustering Single-Particle Data: Tests of Receptor Model Accuracy,” by P. V. Bhave, D.
P. Fergenson, K. A. Prather, and G. R. Cass; Environmental Science and Technology, 35: 2060-2072,
2001. Copyright 2001 American Chemical Society.
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its different sources. Receptor-oriented models developed to date can be grouped into
two basic categories, chemical methods and microscopic methods.

The fundamental principles of various chemical methods for receptor modeling,
including chemical mass balance (CMB) and multivariate methods, have been re-
viewed in detail [152-157]. The first receptor modeling technique applied to ambient
aerosol samples reported in the literature is a multivariate method using factor anal-
ysis [158] in which correlations between the concentration fluctuations of observed
chemical species are used to determine groups of chemical elements that are trans-
ported together in nearly fixed proportions, indicating a common source. Factor
analysis offers the advantage of not requiring prior knowledge of the chemical com-
position and size distribution of emissions from specific sources (i.e., source profiles)
but has the drawback of being mathematically indeterminate, allowing a wide range
of possible solutions even when applied to relatively simple simulated data sets [159].
It is uncommon to resolve contributions from more than six sources by factor analy-
sis [156] and resolution of four primary sources is a more typical result. CMB models
infer source contributions by determining the best-fit linear combination of measured
source profiles needed to reconstruct the measured chemical composition of an atmo-
spheric sample [160]. The number of resolvable sources using CMB models is strictly
bound by the number of measurable chemical species in the ambient and emission
source samples, although the number of sources actually resolved by CMB methods
usually falls far short of that limit. Trace element-based CMB analyses seldom resolve
more than six or seven sources [156] whereas organic compound-based CMB analyses
have been shown to resolve up to nine or ten primary particle source types [161, 162].

Microscopic methods use the properties of individual particles and therefore have
the potential to obtain a more thorough separation of the dozens of sources actu-
ally present in an urban atmosphere [156]. Initially, development of these methods
was limited by the highly-skilled labor required to analyze each sample [156] and
methods were difficult to standardize because source identification relied on the abil-
ity of the microscopist to recognize the source of each particle by comparison to

libraries of standard particles from many sources [153]. Development of automated
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single-particle analysis methods such as computer-controlled scanning electron mi-
croscopy (CCSEM) with X-ray detection have alleviated the need for highly skilled
microscopists in some cases [31] and the application of neural network analyses to
spectroscopy data has provided an automated method by which individual particles
can be clustered into groups of similar particles [163]. Microscopic methods are still
viewed as difficult and costly because many thousands of separate particles typically
need to be processed following the actual field experiment, in order to characterize a
single source or atmospheric sample.

Aerosol time-of-flight mass spectrometry (ATOFMS) and other on-line single-
particle techniques provide a breakthrough in the level of particle description and
speed of analysis which may make it possible to distinguish particles from differ-
ent sources at the same time that they are measured in the atmosphere. Initially,
ATOFMS presented the problem that data were acquired at a rate far exceeding
the rate of data analysis by conventional methods [83]. More recently, the applica-
tion of an adaptive resonance theory-based neural network algorithm (ART-2a) to
ATOFMS data has been developed to rapidly cluster particles on the basis of their
chemical content and apparent origin [127].

The purpose of this chapter is to determine the level of accuracy by which the
ART-2a neural network algorithm can distinguish particles in the atmosphere from
different sources. Source apportionment accuracy is determined by applying the neu-
ral network algorithm to a set of test cases consisting of synthetically created single-
particle descriptions where each particle has a known source. These test cases range
from the most realistic description of the ensemble of fine particles in an urban atmo-
sphere that can be created given recent source test data and air quality models for the
evolution of particles in the atmosphere, to test cases that mimic the way that these
particles would be described if they had been sampled by an ATOFMS instrument.
This method of receptor model evaluation is conceptually similar to that employed in
the U.S. Environmental Protection Agency’s Mathematical and Empirical Receptor
Models Workshop (Quail Roost II) [164], with an added ability to create test cases

consisting of single-particle descriptions that represent the effect of particle aging in
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the atmosphere on particle size and composition.

6.2 Methods

6.2.1 Generation of Synthetic Single-Particle Data

A source-oriented Lagrangian trajectory model is used to generate synthetic data sets
of source-segregated individual particles. The model formulation has been described
in Section 2.2.1 and in the published literature [28, 30, 55, 64, 136]. The inputs to
this model include discrete primary particle emissions at 15 different sizes spanning
the 0.01-10 pm particle diameter range, with chemical composition that varies by
particle size according to cascade impactor measurements of the most important
emission sources. All like-sized particles emitted from the same source type during
the same hour are tracked separately from all other particles in the model. In this
manner, an external mixture of particles in the atmosphere is created in which all
particles interact with the same gas-phase conditions, but differences in the size and
composition of particles emitted from different sources are retained. In addition,
the size and composition of aged particles differs from freshly emitted particles even
though they may have been emitted from the same source [64]. Each particle tracked
in the model is labeled according to the source type from which the particle core was
initially emitted, thus tracking the original source of the particle at all times. The
source categories tracked separately in the model include paved road dust, other
crustal material, diesel engines, food cooking, catalyst-equipped gasoline-powered
engines, non-catalyst gasoline engines, sulfur-bearing fuel and industrial sources, sea
salt, non-sea salt background particles, and other miscellaneous sources. The model
calculation yields a highly heterogeneous mixture of particle types that approximates
the population of real particles encountered when an ATOFMS instrument extracts
particles one at a time from the atmosphere [28].

The emission source profiles that describe particle chemical composition within the

air quality model were expanded for use in the present study. Previous formulations
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of the source-oriented externally mixed aerosol processes trajectory model tracked the
chemical composition of individual particles in terms of the following chemical com-
ponents: elemental carbon, organic compounds, sodium, chloride, ammonium, sulfite,
sulfate, nitrate, iron (oxidation states II and III), manganese (oxidation states II and
IIT), copper (oxidation states I and IT), all remaining metals as a single group, and
all other non-metallic species as a single group [28]. For the purposes of the present
study, the model was extended to track the chemical composition of twenty-seven
trace elements present to varying degrees in individual particles in addition to the
chemical components mentioned above. All of the 110 source profiles used as inputs
to the trajectory model were extended to include minor species measured in quanti-
ties greater than two analytical standard errors above zero during the original source
tests [65, 66, 92, 165-168]. Iron, copper, and manganese remain in the model, but
the lumped metallic and non-metallic species categories in previous formulations of
the model are replaced by separate entries for aluminum, antimony, arsenic, barium,
bromine, cadmium, calcium, chromium, cobalt, cesium, gallium, lead, magnesium,
molybdenum, nickel, phosphorus, potassium, rubidium, selenium, strontium, tin, ti-
tanium, vanadium, silicon, silver, zinc, and zirconium. In previous model applications,
the lumped metallic and non-metallic species were assumed to be nonreactive and this
assumption is not modified in the current model extension. Figure 6.1 displays the
detailed chemical composition, averaged over all fine particle sizes (D, < 2.5um), of
the particles emitted from a few selected sources. The “other” material shown in
Figure 6.1 is often oxygen associated with mineral elements such as aluminum and
silicon.

In late September and early October, 1996, the Los Angeles Basin Trajectory
Study was conducted to help evaluate results of the air quality model just described
(see Section 1.2.3) [54, 85]. Instruments were stationed at Long Beach, Fullerton, and
Riverside. The aerosol processes trajectory model was used to calculate the evolution
of the ambient fine particle mixture along an air parcel trajectory path that passed
just north of the Long Beach monitoring site at 1300 PST on September 24, 1996 and

over the Fullerton monitoring site at approximately 1600 PST on September 24, 1996,
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before terminating in Riverside on September 25, 1996 at 1600 PST (see Figure 2.2).
Comparison of air quality model results to both filter-based and cascade impactor-
based measurements of particle size distribution and bulk chemical composition show
good agreement at all three air monitoring sites [55]. Furthermore, the studies de-
scribed in Chapters 2 and 5 established some confidence in model calculations at the
single-particle level.

Synthetic mixtures of chemically complex particles from known sources generated
by the air quality model form an ideal test data set for determining the ability of
neural network algorithms to identify and group particles that were originally emitted
from the same source even after they have been altered by atmospheric processes. By
simulating the accumulation of gas-to-particle conversion products including sulfates,
nitrates, and organics, one can determine whether neural network algorithms are able
to resolve the sources of the primary particle cores as the particles become coated with
secondary aerosol conversion products over time. The air quality model calculations
at Long Beach, Fullerton, and Riverside, provide three synthetic single-particle data
sets. Each record within a data set contains the physical diameter of the particle,
the mass concentrations of up to thirty-seven chemical components present in the
particle, the source category from which the particle core was emitted, the age of the
particle since the time of emission or entry into the study region, and the number
concentration of atmospheric particles of the given size emitted during the same hour
from the given emission source category. The data sets themselves are not included
in this article because of their length (1791 particle descriptions at the Long Beach
site, 2076 in Fullerton, and 3808 in Riverside).

6.2.2 Simulation of ATOFMS Data

The primary goal of the present study is to estimate the ability of the ART-2a neural
network algorithm to group particles according to their original source using ATOFMS
measurements of single-particle mass spectra. With the ART-2a neural network al-

gorithm capable of chemically grouping particles at a rate that approaches the rate
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of ATOFMS data acquisition [127], applying the algorithm as a receptor modeling
tool potentially allows source attribution of particles in real-time as the particles are
sampled from the atmosphere.

To estimate the ability of the ART-2a neural network algorithm to perform recep-
tor modeling-based calculations using ATOFMS measurements, we first simulate how
the three sets of synthetic data representing the Long Beach, Fullerton, and Riverside
aerosol, would be described (both quantitatively and qualitatively) if they had been
sampled by an ATOFMS instrument. ATOFMS instruments possess the ability to
acquire either positive or negative ion mass spectra, as well as the ability to simultane-
ously analyze both positive and negative ions (dual ion mass spectra) from individual
particles [75]. Depending on the instrument operating mode, certain chemical species
are currently almost impossible to detect (e.g., sulfate in positive ion mode). Table 6.1
contains the intersection of the set of chemical components detectable by ATOFMS
with the set of chemical components tracked in the aerosol processes trajectory model.
To simulate ATOFMS measurements when operating in either unipolar or dual ion
mode, the synthetic airborne particle data sets generated by the trajectory model
are degraded such that they contain only the concentrations of species which are de-
tectable in the mode of interest (designated by a non-zero entry in Table 6.1). In this
manner, each of the synthetic single-particle data sets, representing the Long Beach,
Fullerton, and Riverside aerosol at the indicated times of interest, are postprocessed
to generate three separate receptor modeling test cases containing the molar concen-
trations of 22 (positive ion mode), 6 (negative ion mode), and 26 (dual ion mode)
chemical components, respectively. Because the appropriate ion markers that allow
one to distinguish between organic carbon and elemental carbon were not yet estab-
lished at the time of this study, these separately tracked components are combined
to simulate the carbonaceous peaks detected by ATOFMS. Currently, the smallest
particle that is detectable by ATOFMS has a 0.2 pm aerodynamic diameter [75] and
particles larger than 3.5 pum are typically lost in the instrument’s inlet. Therefore,
to further refine our simulation of ATOFMS measurements, synthetic particles with

aerodynamic diameters smaller than 0.2 ym and greater than 3.5 ym are deleted from
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the test cases.

6.2.2.1 Quantitative ATOFMS Particle Descriptions

The sensitivity of ATOFMS instruments for detecting individual chemical compo-
nents present in the mixed ambient aerosol varies dramatically from one chemical
component to another. For example, recent laboratory work has demonstrated that
ATOFMS instruments detect Na™ in individual particles with 70 times greater sensi-
tivity than NHJ [87]. To simulate the effect of this variation in instrument sensitivity
to different substances, one must rescale the mass concentrations of chemical compo-
nents within each particle in the test cases to reflect the fact that some substances
stand out clearly even when present at small concentrations within a single parti-
cle. Sensitivity factors for NH; and the Group I cations (Lit, KT, Rb*, Cs*) have
been determined relative to Na™ in the laboratory [87]. Sensitivity factors of NO*
(an indicator ion for NOj during positive ion mode ATOFMS instrument operation)
and NH; relative to Na' were estimated based on the comparison of side-by-side
ATOFMS and cascade impactor measurements similar to that described in Chap-
ter 3 [120]. Sensitivity factors for the remaining species listed in Table 6.1 relative
to Na' are estimated based on the ionization potential and lattice energies of the
species, along with practical laboratory experience [88]. For chemical species that
are detectable in both positive and negative ion operating modes (e.g., nitrate, car-
bon), the greater of the two sensitivity factors is applied to the dual ion mode test
cases. Converting the mass concentrations produced by the aerosol processes trajec-
tory model to molar concentrations per particle, and then applying sensitivity factors
to a test case results in a list of particles with increased apparent concentrations
of chemical species whose sensitivity factors are greater than unity and decreased
apparent concentrations of species whose sensitivity factors are less than unity.
After applying the estimated and experimentally determined sensitivity factors in
the above manner, the synthetic particle data sets are further degraded to simulate
the inability to detect species present at very low levels in particles due to interference

from spectral noise. Instrument noise is simulated by discarding data for chemical
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Table 6.1: Relative sensitivity factor estimates for species detected by ATOFMS

instruments.
Positive Ion Mode* Negative Ion Mode® Dual Ion Mode®
Aluminum 0.5¢ 0.5
Ammonium 0.014¢ 0.014
Barium 4.0° 4.0
Calcium 3.0¢ 3.0
Carbon 0.05¢ 0.02¢ 0.05
Cesium 7.9¢ 7.9
Chloride 0.1¢ 0.1
Copper 0.3° 0.3
Iron 3.5¢ 3.9
Lead 0.5° 0.5
Magnesium 0.8¢ 0.8
Manganese 0.5¢ 0.5
Molybdenum 0.5¢ 0.5
Nitrate 0.0184 1.0° 1.0
Phosphorus 0.2¢ 0.2
Potassium 5.1¢ 5.1
Rubidium 6.0° 6.0
Silicon 0.2¢ 0.2
Silver 0.09¢ 0.09
Sodium 1.0° 1.0
Strontium 20.0° 20.0
Sulfate 0.35° 0.35
Tin 0.5° 0.5
Titanium 0.35° 0.35
Vanadium 0.13¢ 0.13
Zinc 0.05° 0.05

2Non-zero entry indicates chemical species is commonly detected in the given single ion mode
bGreater of the single ion mode sensitivity factors is applied to dual ion mode test cases

“Determined from laboratory experiments [87]
4Determined from field experiments based on comparison with impactor measurements [89]
¢Estimates based on ionization potential and laboratory experience [88]
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species whose sensitivity-adjusted apparent molar concentrations are less than 2.0% of
the sum of the apparent molar concentrations of all detectable species in the individual
particle [90]. Discarded data which fall below the 2.0% noise level are replaced with
zeros in the test cases.

The data transformation procedure just described in identical to the one used
in Chapter 2 to perform the initial round of model-ATOFMS comparisons. In this
manner, an approximation of how the synthetic atmospheric particles would be quan-
titatively described if they had been measured by an ATOFMS instrument in a format
analogous to the peak lists described above. The application of relative sensitivity
factors in the method described above does not account for so-called matriz effects.
The detectability of certain chemical components is known to be dependent on the
chemical composition of the given particle [106]. These matrix effects are not well
quantified at this time so for the present study, sensitivity factors are applied uni-
formly to all particles regardless of the presence or absence of other chemical compo-
nents which may affect the sensitivity of the ATOFMS instruments to the component

of interest.

6.2.2.2 Qualitative ATOFMS Particle Descriptions

In the absence of a current capability to quantify the exact amount of each chemi-
cal substance in individual particles, ATOFMS data often are reduced to the point
where only the presence or absence of each chemical component in the particles is
disclosed [85, 90, 138]. To simulate the ability of the ART-2a algorithm to cluster
particles from sources when the particle contents are known only to the extent that
an element is present or absent, selected test cases are produced by further degrading
the quantitative approximations of ATOFMS data described above. In these selected
test cases, chemical components with non-zero apparent molar concentrations are re-
placed with a value of “1” and the remaining components are given a value of “0.”
Therefore, for each of the three synthetic single-particle data sets (representing the
Long Beach, Fullerton, and Riverside aerosol), a total of six test cases simulating

ATOFMS measurements are created (3 operating modes: dual ion, positive ion, and
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negative ion, each presented in two data formats: quantitative and qualitative).

6.2.3 Adaptive Resonance Theory-Based Neural Network

Adaptive resonance theory-based (ART) neural network algorithms were introduced
as theoretical models describing selected aspects of the brain’s classification behav-
ior [169, 170]. They attempt to unite two contradictory behavioral features of the
human brain: robust against outliers, but adaptive to slight changes and new knowl-
edge. ART-based neural network algorithms are capable of solving complicated pat-
tern recognition tasks by finding clusters of similar members among large popula-
tions with many variables. Most importantly, they have the ability to generate a new
class in the event that a data point falls outside a preset proximity to all existing
classes. ART-based neural networks have been used in a variety of practical appli-
cations [171] ranging from Chinese character classification [172] to chemical pattern
recognition [173]. The most recent incarnation of the ART-based neural network is
a particularly efficient algorithm called ART-2a [139]. The ART-2a neural network
algorithm was previously used to identify particle classes on the basis of off-line CC-
SEM single-particle shape and elemental composition measurements [163, 174] as well
as ATOFMS measurements of ambient aerosols sampled in real-time [127]. Recently,
the ART-2a algorithm received use as a source apportionment tool for distinguish-
ing particles from 2-3 different sources [175, 176]. The question posed by the present
study is, “How accurate is the ART-2a algorithm in achieving source separation when
supplied with ATOFMS measurements of ambient aerosols?”

General descriptions of the ART-2a algorithm appear elsewhere [139, 163, 174—
176] so only a description focusing on its application to the synthetic single-particle
data sets will be presented here. For the purposes of the present study, the ART-
2a algorithm is used to identify various classes of particles based on their chemical
composition. Ideally, each class of particles should represent particles from a dif-
ferent source or meaningfully related group of sources. To visualize a class, it is

convenient to generate a “quintessential” particle which represents the class. The
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set of quintessential particles is called the weight matriz and members of that set
are referred to as weight vectors. Particle vectors are generated by normalizing the
compositional description of each particle to unit length, using the Euclidean norm.
Particles are selected in a random order and compared to each weight vector (by
evaluating the dot product of the particle vector and the weight vector) until the
weight vector with minimum Euclidean distance to the particle vector is found. If the
dot product of the particle vector and the “winning” weight vector is greater than
or equal to a predefined wigilance parameter, the particle is said to be in resonance
with the weight vector and is assigned to the class which the winning weight vector
represents. The winning weight vector is then shifted in the direction of the particle
vector by a fixed amount called the learning rate. In this manner, the weight ma-
trix is allowed to adapt in response to small changes in particle composition. If the
dot product of the particle vector with the winning weight vector is less than the
vigilance parameter, the neural network has discovered a novelty and that particle
is considered to be representative of a previously unidentified class. When a novelty
is encountered, the new particle vector is appended to the weight matrix. Particles
are selected, one at a time, until all are classified. Maintaining the weight matrix
between iterations, this process is repeated, allowing the weight vectors to nucleate
classes of increasingly similar particles from one iteration to the next. After a given
number of iterations or training cycles, the particle classification is complete.

The ART-2a algorithm can be adjusted to yield many or few particle classes, de-
pending on the predetermined value of the vigilance parameter. A vigilance parame-
ter of 1.0 will yield a separate class for each individual particle, whereas a vigilance
parameter of 0.0 will place all particles into a single class. In a previous study, a
vigilance parameter of 0.70 was found to be appropriate in classifying particles of
marine origin [127] and hence is used as the baseline for this study. A perturbation
analysis of the value of the vigilance parameter is conducted, as will be discussed in
Section 6.3.2. All ART-2a runs in this study used 40 training cycles with a learning
rate of 0.05. The ART-2a algorithm is coded in Matlab (The MathWorks, Natick,

MA) and executed on an IBM-compatible microcomputer.



132
6.2.4 Receptor Modeling Procedure

To determine the utility of the ART-2a algorithm as a receptor modeling tool, the
analyst applied the neural network classification algorithm to each of the test cases
described. During the tests that follow, the operator of the ART-2a computer program
(D. P. Fergenson) was not given any information on how the test cases were generated.
He was completely blind to the knowledge of which time and geographic location
was represented by a particular test case so that he could not use this knowledge
to judge the quality of his answers. Further, the chemical species in the particles
were concealed and presented in an unknown order that varied from data set to data
set. The source of each particle core and the age of each particle since the time of
emission or entry into the study region were not disclosed to the analyst. Particle
size information also was omitted from the test cases provided to the analyst, because
it was unclear how much weight the particle size data should be given relative to
the chemical composition information in the neural network algorithm. Finally, the
test cases themselves were shuffled and renamed so that the analyst could neither
distinguish which monitoring site (Long Beach, Fullerton, or Riverside) a particular
set of particles represented, nor whether the test case contained direct unaltered
trajectory model descriptions of atmospheric particles or a simulation of ATOFMS
data, nor in the latter case, which ATOFMS operating mode (positive, negative or
dual ion) was being simulated. The only test case feature apparent to the analyst
was whether the chemical composition information contained therein was qualitative
or quantitative. At the end of the ART-2a classification process, the ART-2a class
assigned to each particle was reported to the operator of the air quality trajectory
model (P. V. Bhave) who then compared the ART-2a classification of each particle
to the known source of the particle as documented by the trajectory model.
Preliminary testing of the ART-2a algorithm revealed that species which are
present at trace quantities in the particles have minimal influence on the classifi-
cation results. This feature of the algorithm hinders its ability to classify particles

based on their source because many of the conservative trace elements, when present
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in particles, make up a very small fraction of the particle mass (see Figure 6.1). In
order to give all chemical species roughly equal weight in the classification algorithm,
each chemical component concentration in a given test case was transformed to have
zero mean and unit variance (z-transformation), and range scaled such that all values
of the given chemical component lay between 0 and 1. This pretreatment method is
applied to all test cases containing quantitative particle descriptions before present-
ing them to the analyst and has been used in previous applications of the ART-2a
algorithm for the classes of individual particles [175]. Test cases containing qualita-
tive particle descriptions are unaffected by this transformation. Application of this
pretreatment method to real ATOFMS data presents the potential risk of magnifying
spectral noise in the case where an occasional noise peak extends above the noise

rejection threshold and therefore should be exercised with caution.

6.3 Results and Discussion

6.3.1 Source-Oriented Air Quality Model Results

The upper row of Figure 6.2 summarizes the bulk properties of the aerosol trajectory
model results from which the synthetic atmospheric particle data sets were generated.
The subplots of Figure 6.2 are positioned in columns, from left to right, in the order of
increasing time that the air parcel spent traveling over the urban area before reaching
the given monitoring site. Based on trajectory calculations using interpolated wind
fields [68, 74], the air parcel studied here spent 20 hours above the urban area before
reaching the Long Beach monitoring site from the west, 23 hours before reaching the
Fullerton site, and 45 hours before reaching Riverside. Particle mass concentrations
increase during transport across the air basin, with the highest particle concentrations
present at Riverside, the furthest inland monitoring site. Changes in particle origin
and mass concentration are modest between Long Beach and Fullerton, and much
larger between Fullerton and Riverside. The sharp increase in mass concentration

between the latter pair of monitoring sites reflects the accumulation of both primary
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and secondary particulate matter in the Lagrangian air parcel during its 23 hour
travel time from Fullerton to Riverside. PMsy 5 concentrations calculated using the
model are 42.2 ug/m® in Long Beach, 52.2 pg/m? in Fullerton, and 131.4 ug/m3
in Riverside. These values are slightly larger than the model results tabulated in
reference [55, Table 2| because these are modeled concentrations at a single time in
the afternoon rather than 24-hour average concentrations. Note that the vertical axis
scale in the Riverside subplots is significantly larger than that used in the Long Beach
and Fullerton subplots, for the purpose of readability.

Each bar in the upper panels of Figure 6.2 represents the ambient PMj 5 concen-
tration increment contributed by particles whose initial core originated from a given
emission source category, as calculated using the aerosol processes trajectory model.
Non-sea salt background particles, largely sulfate particles advected into the air basin
from over the Pacific Ocean and transformed by gas-to-particle conversion processes
occurring in the urban atmosphere, are calculated to make the largest contribution
to PMsy 5 concentrations at all three sampling sites during the indicated times of in-
terest. Much of the increase in mass associated with background sulfate particles is
due to ammonium nitrate accumulation over time on these hygroscopic particle cores.
Sea salt particles, which are injected into each trajectory air mass when crossing the
surf zone at the coastline, once transformed by atmospheric reactions constitute the
second largest source contribution to PMsy 5 concentrations at each site during the
times of interest. The relative importance of particles having primary cores from
other source categories to the PM; 5 mass concentrations depends on the location of
the sampling site within the air basin. Particles emitted from diesel engines and from
the combustion of sulfur-bearing fuel are prominent in Long Beach and Fullerton at
the indicated times. The contribution from crustal material other than paved road
dust is shown to increase substantially between Fullerton and Riverside, becoming
the single largest non-background source of fine particle mass in Riverside; whereas
crustal material is shown as one of the smallest contributors to PM, 5 concentrations
in the Long Beach subplot. This reflects the drier and dustier soil conditions as well

as the lower proportion of paved road surface in the agricultural Riverside area com-
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Figure 6.2: ART-2a classification when complete chemical composition data for each
particle are supplied directly from the air quality trajectory model. The top panels
show the mass concentration of particles within the trajectory model that have pri-
mary particle cores emitted from the specific sources shown (the “correct answer”).
The lower panels show how the ART-2a algorithm assigns the same particles to sep-
arate source classes.
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pared to the conditions of the near coastal plain. Particles whose cores were emitted
from food cooking and catalyst-equipped gasoline-powered motor vehicles, on the
other hand, make relatively small contributions to the total PMs 5 concentration at

all three monitoring sites during the times of interest.

6.3.2 Source Apportionment Accuracy Given Maximum Com-

positional Detail

The first test of the ART-2a algorithm attempts to simulate how well this source
apportionment procedure could work if given essentially complete information on
each atmospheric particle. The air quality trajectory model is exercised with particle
emissions from 10 separate source types. The fully quantified chemical description of
every particle tracked by the air quality trajectory model then is supplied to the ART-
2a analyst with no rescaling or other attempt to simulate how ATOFMS instruments
would measure each particle. The lower panels of Figure 6.2 display the classification
results of the ART-2a algorithm based on this most complete and realistic description
of the ensemble of fine particles that can be calculated using air quality models given
recent source test data. Each bar within the lower panels of Figure 6.2 represents a
particle class (“source”) isolated by the ART-2a algorithm. The masses of individual
particles in each particle class are added together such that the height of each bar
corresponds to the PMy 5 concentration in the ART-2a class. The number of bars
in each subplot (11 in Long Beach, 13 in Fullerton, and 9 in Riverside) reflects the
number of ART-2a classes containing at least 0.5% of the total PMs 5 concentration
at the given site. To facilitate the present discussion, the bars of each subplot will be
referred to as Class 1, Class 2, Class 3, etc., in the order of decreasing PM; 5 mass
concentration. The source of the primary particle cores of those particles falling into
each class are represented by different shading patterns in Figure 6.2, to illustrate
how the neural network algorithm classifies particles originating from each of the 10
real source categories present. A bar shaded with more than one pattern indicates

that the ART-2a algorithm is unable to distinguish particles originating from multiple
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emission source categories. Appearance of the same shading pattern in more than
one bar indicates that particles from a single source are being mistakenly placed into
multiple classes. If the neural network algorithm were able to correctly differentiate
all ambient particles according to the emission source of their primary particle cores,
the lower set of subplots would appear identical to the upper row of subplots in
Figure 6.2.

ART-2a classification results in Figure 6.2 illustrate that identification of the
source of the primary core of individual particles becomes increasingly difficult as
one moves downwind of an urban area, even when given essentially complete infor-
mation on each atmospheric particle. Near the coastline, the ART-2a algorithm is
able to isolate particles from the majority of the different source categories actually
present. Of course, an analyst will know only the chemical composition of the par-
ticle clusters created but not the names of the source categories represented by each
cluster, and therefore must be careful to interpret the source identities correctly by
reference to source profile data available in the scientific literature and appropriate
ion marker combinations obtained from single-particle source characterization stud-
ies. At the far inland Riverside site, particles from different sources become virtually
indistinguishable from one another because they have reacted with a common gas
phase over a period of 30-40 hours, thereby becoming coated with gas-to-particle
conversion products that disguise the initial differences between the particles at their
source. Figure 6.3 provides a detailed description of the chemical features of the par-
ticles that are grouped into each ART-2a class, along with information on the sources
that contributed the primary cores of the particles in each group. The vertical axis of
each subplot in Figure 6.3 is linearly scaled, ranging from zero to one, indicating the
relative mass concentrations of selected chemical components present in each ART-
2a particle class. The mass concentrations of trace species are summed together and
represented by the bar labeled “trc.”

When applied to the Long Beach data set, the ART-2a algorithm performs as a
fairly accurate receptor-oriented model. The algorithm successfully isolates particles

originating from sea salt (Class 2), paved road dust (Class 6), crustal material (Class
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Figure 6.3: Chemical composition of ART-2a particle classes generated from source-
oriented model results with maximum speciation.



139

8), and food cooking emissions (Class 11), into distinct particle classes. Particles
emitted from the combustion of sulfur-bearing fuel and other industrial sources are
also correctly isolated from all other source categories, but the ART-2a algorithm
separates these particles into two classes (Classes 3 and 7). The left-hand column
of Figure 6.3 reveals the reason for this separation. Class 7 particles at Long Beach
primarily consist of sulfate, organic compounds, calcium, and other trace species.
In addition to these chemical components, Class 3 particles at Long Beach contain
significant mass contributions from ammonium and nitrate, indicating that the Class
3 particles have undergone further transformation by gas-to-particle conversion pro-
cesses than the Class 7 particles. The ART-2a algorithm also separates particles
emitted from diesel engines at Long Beach into two classes (Classes 1 and 5). The
source-oriented air quality trajectory model results reveal that diesel particles in Class
5 at Long Beach have an average atmospheric age of 7.4 hours since emission to the
atmosphere, whereas Class 1 diesel particles at that site on average have been trans-
ported through the urban atmosphere for 12.2 hours. Figure 6.3 illustrates that Class
5 diesel particles are primarily composed of organic compounds and elemental car-
bon. The aged diesel particles in Class 1 on the other hand, contain substantial
quantities of secondary reaction products including ammonium, sulfate, and nitrate.
Because particles emitted from catalyst-equipped gasoline engines and non-catalyst
gasoline engines have similar chemical source profiles (see Figure 6.1), the particles
emitted from all gasoline-powered motor vehicles at Long Beach are lumped together
by the ART-2a algorithm. Gasoline-powered motor vehicle emissions at Long Beach
are found primarily in Class 4, and contribute a small fraction of the Class 1 par-
ticle mass as well. Particles from other sources that are not separately tracked by
the air quality model are found primarily in Classes 4, 9, and 10 at Long Beach.
The ART-2a algorithm groups all of the non-sea salt background particles at Long
Beach into Class 1. This class also contains reacted diesel particles as well as minor
contributions from aged particles that were originally emitted from gasoline-powered
vehicles, paved road dust, and the combustion of sulfur-bearing fuel.

When operating on the particle descriptions generated by the source-oriented air
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quality trajectory model results at Fullerton, the ART-2a algorithm once again suc-
cessfully separates particles originating from sea salt (Class 2), paved road dust (Class
3), crustal material (Class 5), and food cooking (Class 12). Class 1 at Fullerton
contains those particles which have accumulated the largest quantities of secondary
aerosol reaction products. This class includes all of the non-sea salt background par-
ticles as well as heavily transformed particles from various other sources. Particles
emitted from diesel engines are found in Classes 1, 7, and 8, and have average ages
since emission to the atmosphere of 12.9, 6.9, and 4.9 hours, respectively. Particles
emitted from the combustion of sulfur-bearing fuel and other industrial sources also
are assigned to three distinctly different particle classes (Classes 4, 9, and 13) at
Fullerton. Particles emitted from gasoline-powered motor vehicle engines are primar-
ily assigned to two classes in the Fullerton data set (Classes 6 and 8). The separation
of diesel exhaust particles and sulfur-bearing fuel combustion emissions into three sep-
arate classes in the Fullerton data set (as opposed to two classes in Long Beach) and
the separation of gasoline-powered motor vehicle emissions into two particle classes
in the Fullerton data set (as opposed to a single class in Long Beach) illustrates an
important effect of atmospheric aging on particle composition. Particles that were
originally emitted from a single source category at different points along the air parcel
trajectory evolve to have chemical compositions that are sufficiently different from one
another such that multiple particle classes are created by the ART-2a algorithm. The
effects of atmospheric aging on particle size and chemical composition are described
in detail by Kleeman and Cass [64].

When supplied with the most complete particle descriptions produced by the
source-oriented air quality trajectory model at Riverside, the source apportionment
accuracy of the ART-2a algorithm is greatly reduced relative to the success encoun-
tered when operating on the Long Beach and Fullerton data sets (see Figure 6.2).
When applied to the Riverside data set, the ART-2a algorithm places 65.5% of the
PM, 5 mass concentration into one particle class. As shown in Figure 6.3, Class 1 par-
ticles at Riverside primarily consist of ammonium and nitrate, with small amounts

of sulfates and organics. The largest contributors to the Class 1 particle mass at
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Riverside began as non-sea salt background particles, which originally consisted of
ammonium, sulfate, and organic compounds, and which accumulated secondary or-
ganics and ammonium nitrate while being transported across the polluted air basin.
In addition, Class 1 at Riverside contains 42% of the fine particle mass originating
from aged sea salt particles. The remainder of the aged sea salt particles are found
in Class 3, as the ART-2a algorithm easily identifies most sea salt particles based
on their large sodium content (see Figure 6.3). The ART-2a algorithm is unable to
identify the source of Class 1 sea salt particles because they have submicron diame-
ters, such that their relatively low sodium content is overwhelmed by accumulation
of secondary ammonium nitrate on their relatively large surfaces. Aside from the
aged sea salt particles and non-sea salt background particles advected into the study
region from over the Pacific Ocean, Class 1 at Riverside contains particles originating
from vehicle emissions, crustal material, paved road dust, food cooking emissions,
the combustion of sulfur-bearing fuel, and other sources which are not separately
tracked by the model. Class 1 particles originating from these continental sources
all have undergone significant chemical transformations as a result of gas-to-particle
conversion processes. Among the continental particle sources, paved road dust and
crustal material are the least readily transformed by gas-to-particle conversion pro-
cesses because their initial particle cores are relatively large and hydrophobic (see
Figure 6.1). As a result, the ART-2a algorithm correctly isolates most particles that
were originally emitted from sources of crustal material (Class 2) and paved road
dust (Class 4). Smaller particles such as diesel and gasoline engine exhaust particles,
which dominate the aerosol surface area distribution and which in some cases (e.g.,
sub-micron sea salt and non-sea salt marine background particles) have hygroscopic
cores, are readily transformed by gas-to-particle conversion processes and can become
virtually indistinguishable from one another by the time that they reach Riverside.
A perturbation analysis of the vigilance parameter (0.7 + 0.2) provided some
insight regarding the impact of vigilance parameter selection on ART-2a source ap-
portionment accuracy. Reducing the vigilance parameter to 0.5 combined the crustal

material and paved road dust particles into a single class at all three sites and resulted
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in poorer classification of the particles arriving at Riverside. Increasing the vigilance
parameter to 0.9 split classes of particles that originated from a single source into
multiple classes, without noticeably improving the source separation obtained during

the baseline experiments.

6.3.3 Source Apportionment Accuracy Based on Simulated

ATOFMS Data

Figure 6.4 shows the ART-2a algorithm classification results obtained when operat-
ing on test cases that simulate qualitative ATOFMS data in which the particles are
described by the presence or absence of a particular chemical substance without any
information on the relative amount of each substance. The top panel of Figure 6.4 dis-
plays the mass concentration associated with particles having a primary core emitted
from the indicated sources (the “correct” source identification) and the lower three
panels display the ART-2a classification results based on the positive, negative, and
dual ion mode test cases. The source-oriented trajectory model results shown in the
upper panel include all particles with physical diameter less than 2.5 um. Certain
high density particles with physical diameters of circa 2.0-2.5 um and larger are ex-
cluded from the ATOFMS data simulations if their aerodynamic diameters exceed the
3.5 pm aerodynamic diameter detection limit of the ATOFMS instruments. For this
reason, summations of the fine particle mass concentrations displayed in the lower
panels of Figure 6.4 are slightly smaller than the total PMs 5 mass concentrations
displayed in the top row of subplots for the corresponding locations and times.
When supplied with qualitative particle descriptions from simulated ATOFMS
dual ion mode measurements, the ART-2a algorithm is fairly successful at classifying
particles into the correct number of source categories at Long Beach (see lower left
panel of Figure 6.4). With dual ion mode capability, diesel emissions are classified
separately from the sulfur-bearing fuel combustion particles in both Long Beach and
Fullerton. This separation occurs because sulfates are detectable in the dual ion

mode and the sulfate content of most diesel exhaust particles falls below the 2%



143

Long Beach Fullerton Riverside
1300PST, Sept 24 1996 1600PST, Sept 24 1996 1600PST, Sept 25 1996
- 30 30 100
S
§ 25
g % 20
S 3
g
=1 ~N
3 Z 10
5
S IWH
(@] 0 ,_\mW/'\r"-\ rara T
Particle Sources Particle Sources Particle Sources
30 30 100
. 25 25 80
ko) — 5 —
2 "’g 20 £ 20 "’«\E
c 2 £ 2
S =15 =15 =
1 [t} [t} [t}
2 =) =" =
= 210 Z 10 =
o
0 —ozA— 0 A e 0
ART-2a Classes ART-2a Classes ART-2a Classes
30 30 100
25 aanaammas 25
g; _ B _ 80
s “’g 20 “’g 20 ”g
§ = g g %
T = 15 =15 =
¢z | = b = 4ol
g Z 10 Z 10 %, Z
2 5 5 i 20
e
o Bz 0 AARAA 0 [
ART-2a Classes ART-2a Classes ART-2a Classes
30 30 100
25 80
3 50 &
o
= ?E,, %, 60
5 =15 g
L N 40
[
E z10 z
20
5 o
Il =
0 T : _ 0 [ e
ART-2a Classes ART-2a Classes ART-2a Classes
Crustal material Catalyst gasoline engines
Paved road dust (MM S—bearing fuel & ind. sources
Il Diesel engines [_] Other sources
EZ3 Food cooking E= Non-sea salt background
Non-cat gasoline engines B Aged sea salt

Figure 6.4: ART-2a particle classification based on test cases that simulate qualitative
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identification of the sources from which the primary core of each particle was emitted
and the lower three rows show how the same particles are sorted into source categories
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noise threshold, whereas the sulfur-bearing fuel combustion particles contain a large
quantity of sulfates. The dual ion mode capability also permits the ART-2a algorithm
to separate paved road dust and crustal material particles from other particle sources
at all three monitoring sites. This separation is possible because silicon is detectable
in the dual ion mode, and silicon is present above the noise threshold only in paved
road dust and crustal material particles. The source apportionment accuracy of the
ART-2a algorithm grows progressively worse between Long Beach and Riverside for all
three ATOFMS operating modes, due to the effects of aging on particle composition
discussed above. Among the three ATOFMS operating modes, negative ion mode
test cases yield the least amount of particle composition information (6 chemical
components) and hence result in the poorest source apportionment. Operating on
the qualitative negative ion mode test cases, the ART-2a algorithm is unable to
isolate particles from any source category into a single class. The qualitative positive
ion mode test cases yield better results. In the Long Beach and Fullerton positive
ion mode data simulations, the ART-2a algorithm successfully isolates non-sea salt
background particles, aged sea salt particles, particles from gasoline-powered vehicles,
and food cooking particles, into separate classes.

Figure 6.5 illustrates the level of source apportionment accuracy that might be
attainable if the ART-2a algorithm were applied to ATOFMS data that quantitatively
conveyed the varying heights and areas of the peaks in the mass spectra of each
particle rather than reducing the particle compositions to a qualitative statement of
the simple presence or absence of each detectable chemical substance. Overall, these
results appear to be quite similar to the results shown in Figure 6.4 when processing
purely qualitative particle descriptions although a few key differences exist. For all
three ATOFMS operating mode test case results shown in Figure 6.5, the ART-
2a algorithm is able to consistently differentiate the grouped combination of paved
road dust and crustal material from particles emitted from all other sources when
given quantitative information on peak areas. Operating on the qualitative particle
descriptions, this separation is only possible given dual ion mode data (see Figure 6.4).

In two cases shown in Figure 6.5 (Fullerton positive ion mode and Long Beach dual ion



145
mode), the ART-2a algorithm is further able to distinguish paved road dust particles
separately from other crustal material.

Applying the ART-2a algorithm to quantitative ATOFMS data also has drawbacks
however. When the ART-2a algorithm is applied to quantitative ATOFMS data, non-
sea salt background particles are no longer classified separately from sulfur-bearing
fuel combustion particles (compare Figures 6.4 and 6.5). Similarly, classification of
particles based on simulated ATOFMS data in which peak areas are quantified results
in particles from gasoline-powered engines being lumped together with diesel engine
particles, whereas the ART-2a algorithm is able to distinguish particles from these
sources when provided with qualitative data. This effect results from the fact that
creation of qualitative data in which only the presence or absence of each chemical
substance is noted greatly increases the relative importance of trace elements while
suppressing differences between particles that occur as particles of different ages accu-
mulate differing amounts of gas-to-particle conversion products. In the future, it may
be possible to combine the strengths of both qualitative and quantitative descriptions

of the ATOFMS data.

6.4 Conclusions

The source apportionment accuracy of a neural network algorithm (ART-2a) was
tested based upon its application to synthetic single-particle data generated by a
source-oriented aerosol processes trajectory model that simulates particle emission,
transport, and chemical reactions in the atmosphere. The ART-2a algorithm suc-
cessfully groups particles from the majority of sources actually present when given
complete data on ambient particle composition at monitoring sites located near the
emission sources. As particles age in the atmosphere, accumulation of gas-to-particle
conversion products can act to disguise the source of the primary core of the par-
ticles. When single-particle data are modified to simulate the biases in ATOFMS
measurements, the source apportionment accuracy of the method is reduced. This

result demonstrates a general necessity of understanding the impacts of measure-
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ment methods on data analysis. When simulated ATOFMS data are classified by
the ART-2a algorithm, the best source apportionment results are obtained for dual
ion mode data. In the future, it may be possible to devise an algorithm that places
greater importance on the presence or absence of specific trace species which are
unique to certain emission sources or an algorithm with a built-in bias against sec-
ondary aerosol components (e.g., sulfates, nitrates) that otherwise may disguise the
primary source of the particles. If properly executed, such algorithms may overcome
the difficulty of identifying the original sources of individual particles that have un-
dergone significant accumulation of gas-to-particle conversion products. In general,
this study presents a novel method for testing the source apportionment accuracy of
receptor-oriented methods. This procedure may be applied to test the accuracy of

other receptor-oriented models in the future.
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Chapter 7

Conclusions

7.1 Summary

Methods have been developed for comparing atmospheric single-particle measure-
ments with mathematical air quality model results. These comparisons demonstrate
very good agreement, indicating that a source-oriented, externally mixed aerosol rep-
resentation does capture many of the particle-to-particle differences within a polluted
urban aerosol. The air quality model results were compared with ATOFMS mea-
surements collected at Long Beach and Riverside, during the 1996 Los Angeles Basin
Trajectory Study.

In the first set of comparisons, model results were transformed in a manner compa-
rable to the ATOFMS measurements, and ATOFMS data were adjusted according to
the instrumental particle detection efficiencies. Both sets of aerosol information were
reduced using a single-component analysis technique that determines the presence
or absence of selected chemical species within individual atmospheric particles. Five
chemical species were chosen for this analysis: sodium, nitrate, ammonium, carbon,
and mineral dust. ATOFMS measurements of the fractions of size-segregated parti-
cle populations containing each of these components were then compared with model
results. Very good agreement was found across the entire particle range measured at
Long Beach for all five chemical species considered. Also, good agreement was found
in the coarse particle size range (D, > 1.8 um) at the Riverside site. Next, results

of the single-component analyses for different chemical species were combined to as-
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sess air quality model calculations of the combinations of multiple chemical species
within individual particles. For example, model-ATOFMS comparisons of the fraction
of a particle population containing ammonium, nitrate, and carbon, were conducted.
These multi-component comparisons also revealed good agreement, suggesting further
that the model calculations accurately account for the compositional heterogeneity
among like-sized atmospheric particles.

After conducting the first set of model comparisons, a method was developed
for quantitatively determining the ATOFMS instrument sensitivities to NH; and
NOj; under atmospheric sampling conditions. The method involves comparing ambi-
ent aerosol measurements collected simultaneously by an ATOFMS instrument and a
cascade impactor stationed at the same location. These ATOFMS-impactor compar-
isons revealed that the ATOFMS instrument sensitivities to both NHJ and NOj are
strongly dependent on the size of the particle being sampled. The ATOFMS sen-
sitivity to both species was found to increase at decreasing particle sizes, and this
size-dependence was parameterized using statistical regression analyses. The result-
ing parameterizations were then used to quantitatively reconstruct size-resolved mass
distributions of NH; and NOj collected by the ATOFMS instrument at Riverside.

Next, a method was developed to segregate the ATOFMS single-particle spec-
tra into compositionally distinct particle categories. This categorization method is a
substantial improvement over the single-component analysis technique used for the
initial set of model-ATOFMS comparisons. Rather than focusing on the presence or
absence of individual chemical species in particles, the new method categorizes spec-
tra based on multivariate spectral patterns. The unique feature of this method is that
the categorization procedure can be succinctly communicated in a manner such that
the particle categorizations can be reproduced, quantitatively assessed, and further
improved, by other investigators. In addition, the method is very computationally
efficient, requiring only ten minutes to categorize 82,261 spectra on a 700 MHz per-
sonal computer. The method was used to categorize particle spectra collected at
Riverside as either sea salt, dust, carbonaceous, or miscellaneous. Then, the sea salt,

dust, and carbonaceous classes were further subdivided to generate 35 categories of
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compositionally distinct atmospheric particles.

The ATOFMS sensitivities to NHf and NOj3 and the spectral categorization method
described in Chapters 3 and 4, were used to conduct a second set of model-ATOFMS
comparisons. ATOFMS data collected at Riverside were quantitatively reconstructed
to yield continuous, size-resolved measurements of particulate mass, nitrate, and am-
monium concentrations, as well as quantitative measurements of the atmospheric
aerosol mixing characteristics. These data provide an opportunity to perform more
detailed and stringent evaluations of air quality model calculations than were previ-
ously possible. Using these data, model-ATOFMS comparisons were performed at
finer temporal and particle size resolution than in any previous study. The hourly
time series of size-segregated aerosol mass, nitrate, and ammonium concentrations,
calculated using the model, exhibits diurnal trends comparable to the measurements.
Measurements during a 4-hour intensive sampling period, aggregated into narrow par-
ticle size intervals, revealed certain details of the aerosol size distribution that are not
captured in the model calculations. Finally, model calculations of the absolute con-
tributions of sea salt, mineral dust, and carbonaceous particles, to the size-resolved
aerosol mass distribution, were found to be in good agreement with the correspond-
ing ATOFMS measurements. This was the first quantitative comparison of aerosol
mixing characteristics measurements with source-oriented air quality model calcula-
tions, and further increased confidence in model calculations of the compositional
heterogeneity among like-sized atmospheric particles.

In the process of establishing confidence in model calculations of the size and
chemical composition of individual particle classes, we have increased confidence in
the emissions inventories used as inputs to the model, as well as the source identifi-
cations of individual particle classes tracked within the model. Having reliable infor-
mation on the size, chemical composition, and source of individual particles within
an atmospheric aerosol opens up numerous opportunities for studying the source-
receptor relationships that are very important for air pollution control. For example,
the source-oriented model results can be used to test the ability of receptor-oriented

models for calculating contributions that various emission sources make to atmo-
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spheric particulate matter concentrations. In Chapter 6, the source apportionment
accuracy of a neural network algorithm (ART-2a) was tested. The algorithm was
found to successfully group particles from the majority of sources actually present,
when given complete data on ambient particle composition at monitoring sites located
near the emission sources. But as particles aged in the atmosphere, accumulation of
gas-to-particle conversion products acted to disguise the source of the primary parti-
cle cores. The results suggest that the use of continuous single-particle measurements
coupled with neural network algorithms can potentially improve the temporal reso-

lution of particulate matter source apportionment.

7.2 Recommendations for Future Research

7.2.1 Model Evaluations

The 1996 Los Angeles Basin Trajectory Study was the first major field experiment
where single-particle aerodynamic size and chemical composition measurements were
collected in real time. Research in the past seven years has led to improvements
in the detectable particle size range (ultra-fine mode), the level of compositional
detail (dual-ion mass spectra and wide dynamic range), and the acquisition rate of
single-particle measurements. During this time, single-particle instruments have been
operated at various locations around the world. The model-ATOFMS comparison
methods derived in this work should be applied to other air pollution episodes and
locations where single-particle measurements have been collected. Such comparisons
will further our confidence in the model calculations, elucidate shortcomings in our
understanding of atmospheric aerosols, and help to identify instrumental biases which
can direct the further development of single-particle measurement technology.

As part of the 1997 Southern California Ozone Study, ATOFMS instruments were
stationed at selected locations in the Los Angeles basin, specifically to examine the
influence of motor vehicle emissions and large local ammonia sources on the atmo-

spheric aerosol [56, 79, 111]. The results of these studies should be used to further
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evaluate mathematical model calculations, in the same manner as described in the
present work. Currently, the source-oriented air quality model is being adapted for
application to the Central California region. Model calculations of the single-particle
characteristics in this region should be compared with ATOFMS measurements col-
lected at Bakersfield in January 1999 [78], and at Fresno and Angiola in December
2000 through February 2001. Such comparisons will provide unique insights in the
Central California region, where less is known about the relative contributions of

various air pollution sources to ambient aerosol concentrations.

7.2.2 ATOFMS Sampling Biases

The comparisons of collocated ATOFMS and impactor measurements taken during
the 1996 Los Angeles Basin Trajectory Study were the first attempts at understanding
the particle detection efficiencies and chemical sensitivities of the ATOFMS instru-
ments under ambient sampling conditions. These analyses should be repeated using
the newly available atmospheric aerosol data sets, and the chemical sensitivity anal-
yses described in Chapter 3 should be extended to species other than NH; and NO; .

In the ATOFMS-impactor comparisons conducted to date, it was assumed that
single-particle composition and shape did not affect the ATOFMS particle detection
efficiencies [82], and very little evidence was found to indicate that single-particle com-
position affected the ATOFMS sensitivities to NH; and NOj3 (see Section 3.4.3) [91].
However, recent laboratory experiments have shown strong compositional effects on
the particle detection efficiencies [108] and chemical sensitivities [106] of different laser
ablation /ionization instruments. The magnitude of these sampling biases should be
assessed using atmospheric ATOFMS data, such that the mixing characteristics of
atmospheric aerosols can be determined with accuracy.

A detailed reanalysis of the ATOFMS data collected during various field stud-
ies can be used to determine the effects of single-particle chemical composition on
ATOFMS particle detection efficiencies, under a variety of atmospheric sampling con-

ditions. One approach for making this assessment would be to calculate the detection
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probabilities, P;7, for particles in each size interval, 7, and compositional category, 7,
as follows:
Si=) 5 vk (7.1)

jci Y

where S is the number of particles aerodynamically sized by ATOFMS, H is the num-
ber of “hit” particles from which a mass spectrum was acquired, and k represents
an individual sampling period when the atmospheric conditions were relatively sta-
ble (k = 1,2,...K). The compositional categories (j = 1,2,...J) can be defined
using the spectral categorization method described in Chapter 4. The only unknown
in Equation 7.1 is P;;, which can be calculated by linear regression, provided that
K > J. Given the quantity of ATOFMS data collected during recent years, this
constraint can be satisfied with ease. Knowing the values of P;; for the most common
atmospheric particle types will permit more accurate reconstructions of the aerosol
mixing characteristics data.

The atmospheric ATOFMS measurements collected during recent years can also
be used to elucidate effects of single-particle composition on the ATOFMS sensi-
tivities to different aerosol chemical components. (i.e., matrix effects). During the
sampling events studied in Chapter 3, the bulk composition of atmospheric aerosols
at Riverside did not change significantly from one period to the next. As a result, the
matrix effects on ATOFMS sensitivity to NHf and NOj appeared to be negligible.
In contrast, the field experiment conducted at Bakersfield in January 1999 spanned
periods of diverse meteorological conditions, which resulted in significant changes in
the aerosol chemical composition [78]. Preliminary assessments of those data indicate
that ATOFMS sensitivities to both NO3 and SO;~ were enhanced during periods of
high dust loadings and suppressed during periods of high sea salt loadings, relative
to the periods with heavy ammonium, nitrate, and organic carbon loadings [177].
Further analyses should be conducted on sets of collocated ATOFMS-impactor data,
when aerosol compositions varied significantly between sampling periods. In the
event that impactor measurements do not provide sufficient particle size and tem-

poral resolution to quantitatively assess the matrix effects, collocated, size-resolved



154
measurements collected using an Aerodyne aerosol mass spectrometer [148] may be
used for comparison.

Laboratory-based ATOFMS experiments should be conducted to quantitatively
assess the effects of particle morphology on ATOFMS transmission efficiencies. Stud-
ies have shown that non-spherical particles diverge from the aerosol beam centerline,
so they are less likely to be detected by the ATOFMS lasers, which are aligned
orthogonally to the aerosol beam. The effects of particle morphology on ATOFMS
detection efficiencies is evidenced by the diurnal variation in sea salt particles counted
by ATOFMS at Riverside. The frequency of sea salt particle detection is highest at
night, when the particles are spherical droplets, and lowest in the afternoon, when
they are in crystalline form. These shape effects need to be studied in more detail so
that ATOFMS measurements of non-spherical particles can be appropriately scaled
to yield accurate measurements of the atmospheric aerosol mixing characteristics.
Future instrumental developments should include a measurement of single-particle
shape [178], in series with the size and chemical composition measurements, such
that the shape-specific scaling coefficients can be used to quantitatively reconstruct

atmospheric aerosol data.

7.2.3 Single-Particle Source Apportionment

Recently, single-particle size and chemical composition of aerosols emitted from differ-
ent sources have been measured using ATOFMS [86, 94-97]. These emissions source
measurements are being compared with atmospheric single-particle measurements,
to identify the sources of individual particles in ambient aerosols. Currently, these
source apportionment calculations rely entirely on the ART-2a algorithm, for clus-
tering particles of similar composition. Future source apportionment efforts should
apply supervised spectral categorization algorithms in addition to ART-2a, such that
the results of source apportionment calculations can be reproduced, quantitatively
assessed, and further improved. In addition, a simple format for conveying source-

specific seed vectors, such as that shown in Table 4.2, will facilitate communication
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between the numerous investigators who are addressing the problem of particulate
matter source apportionment.

In the existing air quality model, all like-sized particles emitted from the same
emissions source category are assumed to have identical chemical compositions. In
other words, the present model formulation treats the emitted particles from each
source as internal mixtures. However, the ATOFMS source characterization studies
discussed above reveal substantial compositional heterogeneity among like-sized par-
ticles emitted from individual emissions sources. Once the single-particle emissions
measurements are compositionally segregated, it should be possible to quantitatively
construct source-specific, externally mixed emissions inputs to the mathematical air
quality model. The resulting air quality model calculations would more accurately
simulate the particle-to-particle differences in atmospheric aerosols, than is possible
with the currently available emissions data.

With the level of detail provided in the current air quality model calculations, it
is possible to test the source apportionment accuracy of receptor-oriented methods,
as demonstrated in Chapter 6. A logical extension of this work would be to use
the synthetic aerosol information generated by the source-oriented air quality model
to test and further improve the accuracy of receptor-oriented source apportionment

techniques.

7.2.4 Model Developments

The air quality model evaluations presented in this thesis have demonstrated the
ability to accurately calculate the compositional heterogeneity among atmospheric
particles, using a source-oriented, externally mixed aerosol representation. To date,
all applications of this model have been restricted to urban or valleywide geographical
regions. This spatial restriction is imposed by the enormous computational burden as-
sociated with performing the model calculations. In order to successfully implement
this very realistic aerosol representation in continental and global-scale air quality

simulations, research efforts must be directed at improving the computational effi-
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ciency of the mathematical formulation. One potential solution is to approximate
the particle population of each compositionally distinct particle category as a log-
normally distributed aerosol mixture, rather than as a set of discrete particle classes
interacting with a common gas phase. Mathematical models using lognormal aerosol
representations are extremely computationally efficient, and yield relatively accurate
aerosol size distributions when simulating both condensation and coagulation pro-
cesses [179, 180]. These representations have already been employed to simulate
internally mixed aerosol dynamics on continental-scales over North America [58] and
Europe [26]. A logical future step would be to implement an externally mixed aerosol

representation in such large-scale air quality model simulations.
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Appendix A

Cass Research Group

A.1 Introduction

This dissertation is dedicated to the memory of Dr. Glen Cass, who had the vision and
provided the motivation for conducting the research work described in the preceding
chapters. Glen served as my doctoral advisor for nearly three years before his death
on July 30, 2001. Since that time, several articles have been written about his pro-
fessional accomplishments, scientific contributions, personal integrity, and inspiring
personality [181-184]. In one article, it was noted that Glen’s greatest contribution
may be found in the generation of researchers to whom he transmitted his enthusiasm
for air pollution studies [185]. This appendix provides an account of the Cass research
group members, all of whom have benefitted from Glen’s supervision and leadership

in one form or another.

A.2 Group Members

A.2.1 Ph.D. Students

A substantial fraction of the research conducted in the Cass group can be found in
the Ph.D. dissertations written by Glen’s former students. Table A.1 lists all of the
doctoral theses published in the group. Students are listed chronologically in the
order they began graduate studies at Caltech.
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Table A.1: Ph.D. dissertations published under the supervision of Dr. Glen Cass.

Name Title Dept?

H. Andrew Gray Control of Atmospheric Fine Primary Carbon Parti- ENV
cle Concentrations

Armistead G. Russell Formation and Control of Atmospheric Aerosol Ni- ME
trate and Nitric Acid

Susan E. Fuhs Studies of Inertial Deposition of Particles onto Heat ME
Exchanger Elements

Susan M. Larson A Study of Summer Midday Low-Visibility Events in ~ ENV
the Los Angeles Area

Lynn M. Hildemann A Study of the Origin of Atmospheric Organic ENV
Aerosols

William W. Nazaroff = Mathematical Modeling and Control of Pollutant Dy- ENV
namics in Indoor Air

Robert A. Harley Mathematical Modeling of Gas-Phase Organic Air ENV
Pollutants

Wolfgang F. Rogge Molecular Tracers for Sources of Atmospheric Carbon  ENV
Particles: Measurements and Model Predictions

Annmarie Eldering Alternative Models for Air Pollutant Effects on Visi- ENV
bility

Christos Christoforou Control of Air Exchange and Particle Deposition @ ME
within the Buddhist Cave Temples of Yungang, China

Darrell A. Winner Long-term Modeling of Regional Ozone Concentra- ENV
tions and Control Strategies

Michael P. Hannigan =~ Mutagenic Particulate Matter in Air Pollutant Source =~ ENV
Emissions and in Ambient Air

Matthew P. Fraser Measuring and Modeling the Concentrations of Indi- ENV
vidual Organic Compounds in the Urban Atmosphere

Christopher G. Nolte  Polar Organic Compounds in Fine Particulate Matter =~ ENV
Sources and in the Urban Atmosphere

James J. Schauer Source Contributions to Atmospheric Organic Com- ENV
pound Concentrations: Emissions Measurements and
Model Predictions

Michael J. Kleeman Source Contributions to the Size and Composition ENV
Distribution of Urban Particulate Air Pollution

Lara S. Hughes Evolution of Atmospheric Aerosols Along Trajectories ENV
Crossing the Los Angeles Basin

Phil M. Fine The Contribution of Biomass Combustion to Ambient ENV
Fine Particle Concentrations in the United States

Zohir Chowdhury Fine Particle Characterization in South AsiaP EAS

Prakash V. Bhave Air Pollution at the Single-Particle Level: Integrating ENV

Atmospheric Measurements with Mathematical Models

®Department where degree was completed. ENV = Environmental Engineering and science,
Caltech. ME = Mechanical Engineering, Caltech. EAS = Earth and Atmospheric Sciences, Georgia

Tech.
bTentative thesis title
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H. Andrew Gray joined the Cass group in the summer of 1979 after receiving an
undergraduate degree from Carnegie Mellon University. His thesis work involved the
development of an inventory of primary particulate carbon emissions in the Los An-
geles basin, the measurement of carbonaceous aerosol concentrations at ten southern
California sites throughout the 1982 calendar year, and the quantitative evaluation
of various control strategies for reducing fine primary carbon particle concentrations
in Los Angeles. After completing his thesis in November 1985, Dr. Gray worked at
the South Coast Air Quality Management District where he served as the program
manager for PMy, and visibility. He later worked at Systems Applications, Inc. for
eight years before starting his own consulting company in San Rafael, California.
He currently manages Gray Sky Solutions, an air pollution research consulting firm
specializing in particulate matter and visibility issues.

Armistead (Ted) G. Russell came to the Cass group in the fall of 1979 with
a bachelors degree in mechanical engineering from Washington State University. His
thesis work included the development of a mathematical model for the formation and
transport of ammonium nitrate aerosol, the measurement of aerosol nitrate, sulfate,
ammonium, and their precursors during an intensive 1982 southern California field
study, and the evaluation of his model for predicting atmospheric ammonium nitrate
concentrations. In January 1985, Dr. Russell became the first Ph.D. student to fin-
ish under Glen’s supervision. He was appointed to an assistant professor position at
Carnegie Mellon University, where he worked until 1996. Currently, he is a distin-
guished professor of environmental engineering at Georgia Tech. His research group
studies numerous aspects of ambient air pollution, with a focus on air quality model
development. To date, nine students have received Ph.D. degrees under Dr. Russell’s
supervision.

Susan E. Fuhs joined the Cass group after receiving a bachelors degree in me-
chanical engineering from Caltech in 1980. As a graduate student, she examined the
mechanisms of particle deposition on the gas-side external surface of compact heat
exchanger elements. This type of fouling is commonly found in combustion systems

such as coal or oil fired boilers, gas turbines, and diesel enginers. Dr. Fuhs completed
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her thesis in October 1987, and has worked for several private corporations in the
southern California area. Recently, she served as the manager of new business de-
velopment in the Engines and Systems group of Allied Signal, and she is currently
the general manager of the Hybrid Power Generation Systems group in the General
Electric Company.

Susan M. Larson received bachelors degrees in physics and German at Wash-
ington University before joining the Cass group in 1981. Her Ph.D. thesis involved
the study of image processing based visibility models, the measurement of aerosol
concentrations at five southern California sites throughout the 1984 summer, and the
development and application of a modeling approach that allows the causes of regional
visibility problems to be characterized quantitatively. After finishing her thesis in Oc-
tober 1987, Dr. Larson became an assistant professor at the University of Illinois at
Urbana-Champaign (UIUC) and is a recipient of the Presidential Young Investigator
award. She is currently an associate professor of environmental engineering and the
director of the Women in Engineering program at UTUC. Her research group conducts
laboratory-based experiments, air pollution field studies, and develops and evaluates
the performance of air pollution control devices. To date, four students have received
Ph.D. degrees under Dr. Larson’s supervision.

Lynn M. Hildemann joined the Cass group in 1982, after earning a bachelors
degree in biology from Caltech. Her thesis involved measuring the size distribution,
inorganic chemical composition, and speciated organic composition of particulate
matter emitted from seventeen different source categories. In order to simulate real-
world combustion conditions, she designed a dilution stack sampler which has been
replicated and used by numerous researchers around the world. Dr. Hildemann com-
pleted her thesis in September 1989, and was appointed to an assistant professor
position at Stanford University. She is currently an associate professor of environ-
mental engineering and science and an associate editor of Environmental Science &
Technology. Dr. Hildemann is a recipient of the Presidential Young Investigator award
and the American Association of Aerosol Research’s Kenneth T. Whitby award. Her

research group studies the sources and size distributions of indoor particulate matter
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as well as the hygroscopic properties of organic aerosols. To date, six students have
received Ph.D. degrees under Dr. Hildemann’s supervision.

William W. Nazaroff had received a bachelors degree in physics and a masters
degree in electrical engineering from UC Berkeley before joining the Cass group in
1984. His thesis research focused on mathematically modeling the reactivity and
transport of indoor air pollutants. He also assisted in the measurement of aerosol
concentrations at five southern California museums during 1987-1988, in an effort to
study and control the deposition of aerosols on works of art. Dr. Nazaroff was the
fastest Ph.D. student in Cass group history, finishing his thesis in four years. He
became an assistant professor at UC Berkeley in 1988, and is now a distinguished
professor. Dr. Nazaroff is a recipient of the Presidential Young Investigator award
and an elected member of the International Academy of Indoor Air Sciences. He is
an associate editor of the Journal of Air € Waste Management Association and a
past associate editor of Health Physics. He recently coauthored a textbook entitled,
Environmental Engineering and Science, with Lisa Alvarez-Cohen. Dr. Nazaroff’s
research group focuses on indoor air quality and exposure analysis. To date, ten
students have received Ph.D. degrees under his supervision.

Robert A. Harley joined the Cass group in 1987 with a bachelors degree in
engineering science from the University of Toronto. At Caltech, his research focused
on mathematically modeling the concentrations of ozone, volatile organic compounds,
and toxic organic air pollutants. He also developed a speciated organic gas emissions
inventory for the Los Angeles area which was used for several subsequent air quality
modeling studies. After completing his thesis in December 1992, Dr. Harley became
an assistant professor at UC Berkeley and is now a full professor. He is a recipient of
the National Science Foundation’s CAREER development award and on the editorial
advisory board of Atmospheric Environment. His research group researches mobile
sources of air pollutant emissions and conducts air quality modeling studies. To date,
four students have received Ph.D. degrees under Dr. Harley’s supervision.

Wolfgang F. Rogge also came to the Cass group in 1987, after receiving an

engineering degree from Technische Universitat Berlin. As a graduate student, he
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conducted a detailed analysis of particle-phase individual organic compounds emit-
ted from all major sources of fine organic aerosols in the urban environment. The
results of these studies are reported in a series of nine papers published in Enuviron-
mental Science & Technology between 1991 and 1998. Dr. Rogge was appointed to
an assistant professor position at Florida International University after completing
his thesis in May 1993. His research group studies numerous aspects of atmospheric
pollutants, with an emphasis on the measurement and source apportionment of in-
dividual organic compounds in atmospheric aerosols. He is currently an associate
professor.

Annmarie Eldering joined the Cass group in 1988 after earning a bachelors
degree in chemical engineering from Cooper Union. Her thesis describes the develop-
ment and application of four mathematical models for determining the effects of air
pollution on visibility. The models include a Lagrangian source-oriented air quality
model, an image processing based model, and a model based on satellite-generated
landscape data. After completing her thesis in March 1994, Dr. Eldering became
an assistant professor at the University of lowa, where she supervised seven masters
degree students. In 1997, she moved back to southern California to work at the Uni-
versity of California, Los Angeles (UCLA). Currently, Dr. Eldering conducts research
at the Jet Propulsion Laboratory and holds an adjunct assistant professor position at
UCLA. Her current research focuses on the radiative impacts of aerosols and clouds.

Christos S. Christoforou also joined the Cass group in 1988, after obtaining an
undergraduate degree in mechanical engineering from Rice University. His graduate
research was focused on the air pollutants inside Buddhist cave temples at the Yun-
gang Grottoes in China. He conducted air pollution measurement campaigns at the
Grottoes in the spring of 1991, and used mathematical models to develop strategies
for controlling the air exchange and reducing particle deposition to the cave walls.
After finishing his thesis in May 1995, Dr. Christoforou did two years of service in his
home country of Cyprus before joining the faculty at Clemson University in South
Carolina. He is currently an assistant professor of environmental engineering and sci-

ence at Clemson. His research group studies various aspects of air pollution control.
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Darrell A. Winner joined the Cass group in 1989 after earning a bachelors degree
in chemical engineering from Carnegie Mellon University. His thesis describes efficient
methods for mathematically modeling regional ozone concentrations over periods of a
year or longer. He applied these methods to determine the effect of emission control
strategies on long-term ozone concentration distributions. He left Caltech in February
1996 to fulfill service obligations in the United States Air Force and finished his thesis
in June 1998. Dr. Winner currently serves as a science advisor to regulatory staff at
the EPA. He is a project officer in the EPA Center for Global Change, where he plans
and implements solicitations for future research in atmospheric science, air quality
engineering, and global change. In addition, Dr. Winner is the program manager of
the Experimental Program to Stimulate Competitive Research (EPSCoR) within the
EPA’s National Center for Environmental Research.

Michael P. Hannigan joined the group in 1990 after obtaining a bachelors
degree in mechanical engineering from Southern Methodist University. As a gradu-
ate student, he determined the bacterial and human cell mutagenicity of aerosols in
emissions source and atmospheric samples. He also assisted in the measurement of
atmospheric aerosols at five southern California sites throughout the 1993 calendar
year. After completing his thesis in May 1997, Dr. Hannigan did postdoctoral re-
search at MIT and Colorado State University, Fort Collins. He was a member of the
University of Denver faculty for a couple of years before moving to the University of
Colorado, Boulder. He is currently a research associate in the mechanical engineering
department at Boulder. He focuses on urban and remote air pollutant characteriza-
tion and recently has begun studying air pollution sampler development and current
trends in energy use.

Matthew P. Fraser came to the Cass group in 1991 with a bachelors degree
from Carnegie Mellon University. His thesis work involved the measurement of in-
dividual atmospheric organic compounds at five southern California sites during the
1993 summer. By sampling air in the Van Nuys tunnel, he determined the motor
vehicle emission rates of 221 vapor-phase, semivolatile, and particle-phase organic

compounds. He used these data to evaluate a mathematical model for calculating
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the concentrations of individual organic compounds in the Los Angeles atmosphere.
Dr. Fraser completed his thesis in January 1998 and joined the faculty at Rice Univer-
sity. He is currently an assistant professor at Rice, where his research group studies
organic air pollutants in source and ambient samples, as well as air pollution problems
specific to the Houston metropolitan area.

Christopher G. Nolte joined the Cass group in 1992 after earning a bachelors
degree in physics at Stanford University. His thesis research elucidated the concen-
trations of polar organic aerosol compounds in source and atmospheric samples. He
also determined the atmospheric concentrations of numerous carboxylic acids in the
Los Angeles atmosphere and helped collect samples during several field studies. After
completing his thesis in February 2001, Dr. Nolte began working at Silicon Age, a
small software company in San Francisco.

James (Jamie) J. Schauer held a bachelors degree from the Colorado School of
Mines and a masters degree from UC Berkeley before joining the Cass group in 1993.
At Caltech, he measured the concentrations of individual gas-phase and aerosol-phase
organic compounds emitted from eight major air pollutant emission source categories.
To date, the results of these studies constitute a five-paper series published in En-
vironmental Science & Technology between 1999 and 2002. He also measured the
atmospheric concentrations of individual organic compounds at three sites in cen-
tral California during the 1995 Integrated Monitoring Study and used these data in
combination with his source characterization data for receptor-oriented source appor-
tionment calculations. Dr. Schauer joined the faculty at the University of Wisconsin,
Madison after finishing his thesis in March 1998. Dr. Schauer is currently an assis-
tant professor at Wisconsin and a recent recipient of the Health Effects Institute’s
Rosenblith Young Investigator Award. His research group investigates the origin of
air pollutants as well as their impact on human health and the ecosystem.

Michael J. Kleeman also joined the group in 1993, after receiving a bachelors
degree in mechanical engineering from the University of Waterloo. His thesis research
involved the development and application of an air quality model in which the at-

mospheric aerosol is represented as a source-oriented external mixture. He measured
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the size-resolved chemical composition of aerosols emitted from six major combustion
source categories and used those data as input to the air quality model. After com-
pletion of his thesis in October 1998, Dr. Kleeman joined the faculty at UC Davis.
His research group studies urban and regional air quality problems with an emphasis
on the size and composition of atmospheric particles and gas-to-particle conversion
processes.

Lara S. Hughes earned a bachelors degree from Washington University before
joining the Cass group in 1994. As a graduate student, she conducted two major field
sampling experiments in the Los Angeles area, and helped conduct an experiment in
the Indian Ocean. Her southern California experiments were conducted in 1996 and
1997, and involved measurements of the pollutant mixture within single air parcels at
multiple ground-based locations as the parcels were advected across the Los Angeles
basin. In addition to these trajectory studies, Lara reported the first comprehensive
data set on the chemical composition of ultrafine (D, < 0.1 um) particles. She got
married soon after completing her thesis in September 2000 and is now Dr. Lara
Gertler. She was a postdoctoral fellow at UC Riverside, and currently works for
the Ashworth Leininger Group, an environmental consulting firm in Thousand Oaks,
California.

Phil M. Fine completed a bachelors degree in mechanical engineering from UC
Berkeley and worked as an environmental consultant before joining the Cass group
in 1995. His doctoral work involved determining the emission rates of over 250 in-
dividual organic compounds generated from the combustion of 22 species of North
American wood. He used these data to quantify the contributions of biomass com-
bustion particles to the atmospheric aerosol in various regions of the United States.
After completing his thesis in January 2002, Dr. Fine conducted postdoctoral research
at the University of Southern California (USC). He is currently a research assistant
professor of environmental engineering at USC.

Zohir Chowdhury joined the Cass group in 1997 after earning a bachelors de-
gree from Montana Tech. As a graduate student, he measured atmospheric aerosol

properties in Maldives during the 1999 intensive field phase of the Indian Ocean
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Experiment and characterized aerosols emitted from a variety of combustion source
categories unique to the Indian subcontinent. After receiving a masters degree from
Caltech, Zohir transferred to Georgia Tech with Dr. Cass in 2000. He conducted an
aerosol characterization study at four megacities in the Indian subcontinent during
each season of the 2001 calendar year, with the goal of apportioning the sources of
fine particles at each site. Zohir will complete his thesis under the supervision of Ted
Russell at Georgia Tech by the end of 2003, and plans to pursue a career at the World
Bank.

Prakash V. Bhave was the last graduate student to join the Cass research group,
after receiving a bachelors degree in environmental engineering from UC Berkeley in
1998. His thesis compares the properties of individual atmospheric particles with the
single-particle properties calculated using a source-oriented externally mixed aerosol
air quality model. After completing his thesis in March 2003, Dr. Bhave was appointed
as a physical scientist in the Atmospheric Modeling division of the National Oceanic
and Atmospheric Administration’s Air Resources Laboratory in Research Triangle

Park, North Carolina. He is responsible for developing the aerosol components of

EPA’s CMAQ model.

A.2.2 Postdoctoral Researchers

During his career, Dr. Cass hired eight postdoctoral researchers who each brought
unique skills to the group. These individuals propelled the group into new areas of
research, such as artwork degradation, organic compound speciation, and heteroge-
nous atmospheric chemistry. Postdoctoral researchers also played instrumental roles
in a number of field experiments.

Paul M. Whitmore worked in the Cass research group from 1984-1986 af-
ter completing a Ph.D. in chemistry from UC Berkeley and a postdoctoral research
fellowship in Caltech’s chemistry department. In the Cass group, Dr. Whitmore me-
thodically studied the fading of a variety of artwork colorants due to reactions with

ozone and nitrogen dioxide. After leaving Caltech, Dr. Whitmore worked in the con-
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servation department of the Harvard University art museums. Since 1988, he has
directed the Research Center on the Materials of the Artist and Conservator at the
Carnegie Mellon Research Institute in Pittsburgh, Pennsylvania.

Paul A. Solomon joined the Cass group in December 1984 after finishing a
Ph.D. in analytical and environmental chemistry at the University of Arizona. Dur-
ing the 1986 calendar year, he conducted a major field sampling program at nine
southern California sites. This data set has been used by several investigators to
map out the spatial and temporal distributions of PM;y, organic acid, and inorganic
acid concentrations in the Los Angeles atmosphere. After leaving Caltech in 1988,
Dr. Solomon worked for ten years as an environmental scientist at Pacific Gas and
Electric company in San Ramon, California, before joining the U.S. EPA’s National
Exposure Research Laboratory. He is currently a senior research scientist at the EPA
office in Las Vegas, Nevada, where he plans and implements regional field measure-
ment and modeling programs aimed at developing cost effective control strategies for
PMs 5, PMy, ozone, and related pollutants.

Monica A. Mazurek joined the Cass research group in February 1986 after
completing her Ph.D. in geochemistry at UCLA. Her research at Caltech focused on
interpreting gas chromatography/mass spectrometry (GC/MS) data acquired from
atmospheric aerosols and emissions source samples. These studies laid much of the
groundwork for future efforts aimed at quantifying the concentrations of individual
organic compounds in source and ambient aerosol samples. Dr. Mazurek worked
at the environmental chemistry division at Brookhaven National Laboratory from
1989 to 1995, before moving to Rutgers University. She is currently an associate
research professor and the director of academic initiatives at Rutgers. Her research
activities include studying the sources, distributions, and fates of carbonaceous aerosol
particles. Dr. Mazurek is currently a member of the National Science Foundation
advisory board, and was previously serving on the Aerosol Science € Technology
editorial advisory board.

Mary P. Ligocki worked in the Cass group from March 1987 to July 1989.

She coordinated sampling campaigns at five southern California museums during the
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summer of 1987 and winter of 1988. She passed away in 1996.

Jonathan O. Allen received a Ph.D. degree in chemical engineering from MIT
before joining the Cass group in 1997. During his three years at Caltech, Dr. Allen
helped manage the 1997 trajectory experiments and analyzed single-particle data
collected using ATOFMS instruments. As a postdoc, he developed the YAADA
software toolkit for ATOFMS data analysis and continues to maintain and update
it. Dr. Allen worked briefly at Aerodyne Research, Inc. before joining the faculty
of Arizona State University in 2001. His research group studies the formation and
evolution of atmospheric aerosols with an emphasis on organic constituents. He is
currently an assistant professor.

William S. Barney did postdoctoral work in the Cass group from 1999-2001
after receiving a Ph.D. degree in chemistry from UC Irvine. While in the group,
Dr. Barney spent most of his time conducting experiments at Aerodyne Research,
Inc., in Massachusetts. His research focused on heterogenous reactions between ozone
and organic aerosols. He currently works at the TTAX corporation in Cambridge,
Massachusetts.

Ann M. Dillner joined the Cass group at Georgia Tech after completing her
Ph.D. in environmental engineering at UIUC in 2000. As a postdoc, she conducted
field measurement campaigns in Houston, Beijing, and southern California, aimed at
characterizing the chemical composition of atmospheric ultrafine particles. In 2001,
Dr. Dillner joined the faculty of Arizona State University, where she is currently an
assistant professor. Her research group studies various aspects of air pollution aerosols
with a focus on ambient field measurements.

Mei Zheng received her Ph.D. degree in oceanography from the University of
Rhode Island before joining the Cass group in 2000. She spent the first part of her
postdoctoral appointment working at the University of Wisconsin with Jamie Schauer
and the latter portion at Georgia Tech. As a postdoc, Dr. Zheng conducted applied
receptor-oriented models to determine the contributions of different emissions sources
to PMy 5 concentrations in the southeastern United States and Beijing, China. She

is currently a research scientist at Georgia Tech.
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A.2.3 Research Staff

Dr. Cass employed a considerable number of staff scientists to ensure long-term con-
tinuity of the group’s efforts. This continuity and constant staff support enabled his
graduate students and postdoctoral researchers to conduct world-class research while
maintaining a high rate of productivity.

Kenneth F. McCue joined the Cass group in 1983 with a Ph.D. degree in social
sciences from Caltech. He brought a strong statistics background to the group, and
helped analyze data from the 1982 and 1984 field studies. Primarily, he was respon-
sible for administering the group’s computer hardware and extensive air pollution
data bases. While working for Glen, Dr. McCue founded Pactech Data and Research
Incorporated, and split his time between both responsibilities until July 2002. He is
currently a staff scientist in the applied and computational mathematics department
at Caltech.

Shohreh Gharib volunteered her time in the Cass group in the early 1980’s and
worked as a staff scientist in the early 1990’s. She developed an ammonia emission
inventory for the southern California area and assisted with the 1982 and 1993 field
studies. She has retired from her professional career.

Theresa Fall joined the Cass research group in 1984, after working as a draftsper-
son in Caltech’s Environmental Quality Laboratory. She played significant roles dur-
ing the 1986 basinwide field study and the southern California museum studies in
1987-1988. Theresa left the group in 1988 and is currently working in the Energy
and Geoscience Institute at the University of Utah, Salt Lake City.

Lynn G. Salmon joined the Cass group in September 1986 after earning a bach-
elors degree from MIT and a masters degree from UCLA. Lynn either participated
in or analyzed samples from nearly every atmospheric field campaign, source charac-
terization study, and indoor air quality experiment conducted by the research group
between 1986-2002. She coordinated the global ozone passive monitoring project in
March and August 1999, in which ozone concentrations were determined at more than

400 locations worldwide. In addition, Lynn was primarily responsible for operation
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and maintenance of all laboratory equipment in the Cass research group. She contin-
ues to collect air pollution samples and conduct chemical analyses as a staff scientist
in the Hoffman research group at Caltech.

Ann G. Miguel received a Ph.D. degree in biophysics from the Federal University
of Rio de Janeiro in 1981. She was an associate professor at the University of Rio
de Janeiro and the University of Sao Paulo before joining the Cass group in April
1994. From 1994-2002, Dr. Miguel characterized the allergens in airborne particulate
matter and investigated their relationship with asthma incidences. She continues to
study these subjects as a staff scientist in the Flagan research group at Caltech.

Paul R. Mayo worked in the Cass group from 1997-2002. During that time,
he participated in several field studies and helped prepare and analyze air pollution
samples. Paul is currently a scientist at UCLA in the Southern California Particle
Center and Supersite.

Julie Saxton worked on the global ozone passive monitoring project while in the

Cass group from 1999-2000. She is currently pursuing graduate studies in England.

A.2.4 Other Contributors

In addition to the investigators mentioned above, a very large number of under-
graduate students contributed to research efforts in the Cass group. An exhaustive
record of these individuals is not readily available, so only those who authored or
were acknowledged in published work are listed here. Mari Peterson and Barbara
Turpin assisted with the 1982 field study. Philip Lin, Barbara Turpin, and Frank
Vasquez, helped with the 1984 summer visibility studies. Cynthia Shaver Atherton,
C. Pamela De Moor, Kaitlin Drisko, Nathan Frei, Heather Mason, Cynthia Whitman,
and Christine Tiller, contributed to the research on artwork deterioration. Betsy An-
drews, Sandra Blumhorst, David Cole, Nancy Drehwing, Doug Gray, Michael Jones,
Philip Lin, Harvey Liu, and Frank Vasquez helped with the 1986 field study. Christo-
pher Hance analyzed data from the 1986 field study. Michael Jones helped with

source characterization experiments in the 1980’s. Mark Adams, Michael Jones, Har-
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vey Liu, and Timothy Ma, assisted with museum sampling campaigns. Heather and
Michael Masonjones (previously, Heather Mason and Michael Jones) collected mea-
surements in August 1989 at the Grand Canyon and managed the high resolution
gas chromatography data base. Nathan Frei and Timothy Gerk helped with the 1991
Yungang Grottoes experiments. Chen Yuan, John King, and Nathan Frei made sig-
nificant contributions to aerosol sampler construction. Claudine Butcher prepared
samples for the 1993 southern California field experiment. Robert Johnson helped
with the 1996 trajectory study and conducted extensive analyses of the allergens
found in ambient aerosols. Megha Deshpande assisted with an Atlanta field study in
2001.

Martha Conklin, Susan Hunts, Luiz Palma, Yun Ye, Steve Dutton, Brian King,
and Kimberly Mertz, were graduate research assistants in the group, but did not com-
plete doctoral degrees under Glen’s supervision for a variety of reasons. Leon Bellan
authored an artwork deterioration study as a high school student at the Polytechnic
School.

Although not contributing directly to scientific research, several administrative
assistants provided invaluable support for the Cass group. These include Pat House-
worth, Christina Conti, Dixie Fiedler, Shirley Anderson, and Laurel Martin at Cal-
tech, and Rita Bryan and Susan Ryan at Georgia Tech. Pat Rankin, Fran Matzen,

and Laura Cederquist helped manage Glen’s research accounts.

A.3 Miscellaneous Notes

Figure A.1 shows the number of Cass group researchers between 1979-2003, excluding
the contributors listed in section A.2.4. The number of staff scientists grew steadily
from 1982-2000, while the number of Ph.D. students fluctuated between four and
eight, with an average of 5.75. Postdoctoral researchers were in the group during
only two isolated time periods.

Dr. Cass expected his group members to conduct high quality research and en-

couraged his students to pursue fairly ambitious projects. Under these conditions
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Figure A.1: Temporal distribution of the size of the Cass research group.

Glen’s students, on average, managed to finish their graduate work in less time than
the Caltech average. The frequency distribution of the time required to complete
a Ph.D. degree in the Cass research group is shown in Figure A.2. The mean and
median of this distribution are 6.1 years. On average, students whose research work
was primarily computational (Russell, Nazaroff, Harley, Eldering, Winner, Kleeman,
and Bhave) finished in 5.5 years (0 = 1.5), whereas the remaining students, whose
research work included a substantial experimental component, required 6.4 years on
average (o = 0.9).

Dr. Cass supported his students unconditionally in their search for employment as
they neared completion of their doctoral work. This support helped launch all of his
Ph.D. students into successful careers in either academic, governmental, or industrial
sectors. Figure A.3 displays the distribution of careers that Glen’s Ph.D. students
pursued after graduating from Caltech. The numbers in parentheses indicate the

number of students who pursued a career in the indicated sector. Dr. Gray did
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Figure A.2: Frequency distribution of time required to complete a Ph.D. degree in
the Cass research group.
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Figure A.3: Careers pursued by former Ph.D. students in the Cass research group.

substantial work in governmental and industrial sectors, so a half unit is attributed
to both categories. The career path of Zohir Chowdhury is uncertain and, therefore,
is excluded from Figure A.3.

The majority of Ph.D. students from the Cass group are pursuing careers in
academia. Among them, ten are currently advising graduate students in universi-
ties across the United States. Five of Glen’s former doctoral students have already
supervised graduate-level researchers to the completion of Ph.D. degrees. A number
of these “second generation Cass students” are now professors at reputed universi-
ties including Arizona State University (Ann Dillner), Clarkson University (Andrea
Ferro), the National University of Singapore (Liya Yu), California State University at
Hayward (Karina Garbesi), National Cheng-Kung University in Taiwan (Tsair-Fuh
Lin), the University of Colorado at Boulder (Shelly Miller), University of Missouri-
Rolla (Glenn Morrison), and Virginia Tech (Linsey Marr). Figure A.4 depicts the
first and second generation doctoral “descendants” of Professor Cass. Several aspects
of Glen’s very successful method of advising as well as his style of scientific writing

have undoubtedly been passed on to these individuals, and will likely be carried on
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for generations to come.

A.4 Conclusion

During his twenty-two year academic career at Caltech and Georgia Tech, Dr. Cass
shaped the careers of many students and scientists. His good nature and significant
contributions to this world will have long-lasting effects.

Lynn Salmon, Ken McCue, and Linda Scott are acknowledged for their help in

piecing together historical information contained in this appendix.
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