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Abstract

Advances in cavity quantum electrodynamics (QED) have allowed us to trap single

cesium atoms within the field of a small optical resonator and to observe their strongly

coupled interaction. However, in order to take advantage of this interaction as a

resource for quantum information, we need to develop new techniques for control of

the atom-cavity system. This thesis presents a series of experiments with the common

goal of coherent control.

We have demonstrated the cooling of the center-of-mass motion of a trapped atom

to its vibrational ground state along the cavity axis, and we have quantified the re-

versible nature of the process which maps a coherent state at the cavity input onto

an atomic state. A new optical pumping method which exploits incoherent Raman

transitions now allows us to prepare a trapped atom in any desired Zeeman state. I

detail the technical steps which have enabled these results, including a conditional

loading scheme which confirms the presence of at most one atom in the cavity. I out-

line our current efforts to characterize ground state population transfer via Raman

transitions, which we hope will provide the basis for entanglement generation between

atomic Zeeman states and photon polarization states. Two separate projects to con-

struct new cavities and vacuum chamber systems are also discussed in the framework

of future experiment design.
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Chapter 1

Introduction

The interaction between a single atom and the mode of an optical cavity constitutes

a quantum interface between light and matter: through the coupling between the

light field and the atomic dipole, the atom and cavity exchange single energy quanta.

The field of cavity quantum electrodynamics (QED) is thus an exciting platform from

which to explore the dynamics of fundamental quantum processes in the laboratory.

Cavity QED is also an excellent candidate system for the emerging field of quantum

information science [1]. In this context, the light-matter quantum interface could be

harnessed to transfer information between nodes and channels of a quantum network

[2]. Atoms trapped within cavities would function as “quantum nodes” where in-

formation could be processed and stored, then mapped to the output cavity mode

and coupled into the “quantum channel” of an optical fiber for distribution to other

nodes.

Our light-matter interface is of course also a real-world experimental system, and

in order to investigate quantum processes, we need to demonstrate control over the

system’s many degrees of freedom. For example, while the Jaynes-Cummings model

of cavity QED [3] treats the atom as a two-level system, the cesium atoms in our

laboratory have a multiplicity of hyperfine and Zeeman ground states, each of which

couples differently to a cavity; in order to understand our system in terms of a simple

model, we would like to prepare the atom reliably in a single ground state. An atom

also possesses external degrees of freedom, which describe its center-of-mass motion

within the cavity. As the cavity mode has spatial structure, the coupling of an atom
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to the cavity depends upon its precise location; we would like to be able to cool

the atom’s vibrational motion (that is, to localize it at the antinode of a trapping

potential). In the context of quantum information science, we would like to store

information in two ground states of the atom, and so we need the capability to drive

unitary transformations in this state space. Finally, we would like to explore the

process of mapping quantum states between photons and atoms, a building block for

future quantum networks.

This thesis describes recent progress in all of these directions: internal state prepa-

ration, center-of-mass ground state cooling, and a coherent mapping of photonic to

atomic states.

1.1 A single trapped atom

The Jaynes-Cummings interaction Hamiltonian describes the coupling of a two-level

atom to a single cavity mode [3]:

Ĥint = ~g(â†σ̂ + âσ̂†), (1.1)

where â† and â are photon creation and annihilation operators, σ̂† and σ̂ are atomic

raising and lowering operators, and g is the (spatially dependent) coupling strength.

Here we have made the rotating wave approximation, as the cavity field is near-

resonant with the atomic transition. When we include terms for excitations in the

atom and cavity modes as well as for a classical probe field at frequency ωp, then we

have the Jaynes-Cummings Hamiltonian, written here in the reference frame of the

probe:

ĤJC = ~∆aσ̂
†σ̂ + ~∆câ

†â+ ~g(â†σ̂ + âσ̂†) + εâ+ ε∗â†, (1.2)

where ωa and ωc are the atom and cavity frequencies, ∆a = ωa − ωp, ∆c = ωc − ωp,

and ε is the probe field drive strength.

In the absence of a probe (ωp = 0, ε = 0), we can diagonalize this Hamiltonian

to find the exact eigenstates and eigenvalues of the system. We work in the tensor
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g κ

γ

Figure 1.1: Coupling rates for a model cavity QED system. Atom and cavity couple
coherently to one another at rate g. There are two incoherent mechanisms: the cavity
field decays at rate κ, and the atom decays spontaneously at rate γ.

product basis where |g, n〉 and |e, n− 1〉 are n-excitation states with an atom in the

ground (excited) state and n (n − 1) photons in the cavity. The interaction term

couples each pair of n-excitation states, leading to eigenstates and eigenvalues

|±n〉 = (δ ±
√

4g2n+ δ2)|g, n〉+ 2g
√
n|e, n− 1〉,

E±n =
~
2

(2nωc − δ ±
√

4g2n+ δ2),

where δ = ωc − ωa, and |±n〉 is unnormalized. For the on-resonant case δ = 0, |±n〉

form the Jaynes-Cummings ladder of eigenstates, with the anharmonic dressed state

splitting 2~g
√
n between E±n at each rung of the ladder. A more realistic model for

our system adapts the Jaynes-Cummings Hamiltonian to include multiple Zeeman

and hyperfine states of the atom and two polarization modes of the cavity [4, 5].

To complete our cavity QED model, we need to include dissipation, through which

the atom and cavity couple irreversibly to the environment. Dissipation can oc-

cur either through spontaneous emission, at rate γ, or cavity transmission, at rate

κ. Figure 1.1 provides a schematic depiction of the three relevant coupling rates
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Figure 1.2: Steady-state transmission of the atom-cavity system as a function of probe
detuning in the weak driving limit. Parameters are g = 2π× 33.9 MHz, κ = 2π× 3.8
MHz, γ = 2π × 2.6 MHz, ωa = ωc. The cavity transmission is normalized to the
maximum empty cavity transmission; empty cavity transmission as a function of
probe detuning is plotted for comparison.

{g, κ, γ}. Mathematically, we can treat dissipation by incorporating the Jaynes-

Cummings Hamiltonian into a master equation ρ̇ = Lρ for the density matrix of the

system, where L is the Liouvillian superoperator [6]:

L = −i[HJC , ρ] + κ(2âρâ† − â†âρ− ρâ†â) + γ(2σ̂ρσ̂† − σ̂†σ̂ρ− ρσ̂†σ̂). (1.3)

For a restricted basis set, the master equation can be solved numerically to find the

steady state density matrix and expectation values of various operators. In the weak

driving limit, in which the system is restricted to n = {0, 1}, the master equation

can be solved analytically [7].

Figure 1.2 depicts the weak driving solution for the steady-state intracavity photon

number, proportional to the cavity transmission, as a function of probe frequency ωp

(ωa = ωc) for the parameters in our current cavity QED experiment. Note that

the frequencies of the two peaks correspond to the eigenvalues E±1/~ = ±g, while

the linewidth of each peak is approximately κ+γ
2

. When g � κ, γ, the two-peaked

structure — known as the vacuum-Rabi splitting — is well-resolved. Our experiments
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3 mm

Figure 1.3: Photograph of the most recent cavity constructed for use in the lab
1 experiment. The cavity mirrors, fabricated on BK7 substrates, are only 9.2 µm
apart; the mirror faces are 1 mm in diameter, with a 10 cm radius of curvature, and
coned so that they can be brought close together. The substrates are held in BK7
v-blocks glued to shear-mode piezoelectric transducers, with a copper mounting block
beneath.

operate in this strong coupling regime, where coherent coupling dominates dissipative

rates.

We construct the optical cavities that we use in the lab from high-finesse mirrors

[8]; an example cavity is shown in Figure 1.3. In order to meet the strong coupling

criterion, we want to maximize g, the scalar product of the atomic dipole and the

electric field within the cavity:

g = ~µ · ~E = µ

√
~ωa

2ε0Vm
, (1.4)

where Vm, the cavity mode volume, is proportional to the cavity length and to the

square of the mode waist. Thus, we should minimize the mode volume by building

short cavities and using mirrors with a small radius of curvature. However, the full-

width half-maximum (FWHM) linewidth of a cavity is given by the ratio of its free
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spectral range to finesse [9]:

2(κ/2π) = FWHM =
FSR

F
=

c

2dF
, (1.5)

where d is the cavity length. Thus, as we build smaller cavities, the requirements on

the mirror quality become increasingly stringent in order to maintain g � κ.

The cavity sits on a vibration isolation stack inside an ultra-high-vacuum (UHV)

chamber. We collect ∼ 106 cold cesium atoms from background vapor in a magneto-

optical trap (MOT) inside a “source” chamber, then apply an interval of polarization-

gradient cooling to bring atom temperatures to around 10 µK [10]. The atoms are

released, fall under gravity through a differential pumping tube into the “cQED”

chamber, and are collected a few millimeters above the cavity in a second MOT,

where they undergo another stage of polarization-gradient cooling. When the atoms

are released a second time, some of them fall between the cavity mirrors and transit

the standing-wave cavity mode. From Figure 1.2, we see that in the strong coupling

regime, the transmission of a probe laser on resonance with the empty cavity will be

suppressed in the presence of a single atom. These atom signals, first observed via

heterodyne detection in 1996 [11], are known in lab parlance as “downgoers” due to

their shape as a function of time; the width of each dip corresponds to the time it

takes the falling atom to traverse the cavity mode (tens of µs). Conversely, a probe

laser tuned to one of the vacuum-Rabi sidebands at wp = ±g would be transmitted by

the cavity only in the presence of an atom, and these signals are known as “upgoers.”

In order to trap the falling atoms, a standing wave far-off-resonant trap (FORT)

[10] provides a series of conservative potential wells along the cavity axis. As the

atoms fall through the gap between the mirrors, they are cooled into the wells by

a pair of lasers driving cesium transitions from the side of the cavity. After a brief

interval, the suppression of a resonant probe laser is used to confirm the presence of

a trapped atom.

A watershed in the development of cavity QED in our research group was the

successful trapping of atoms initially for τ ∼ 30 ms in 1999 [12], followed by τ =
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2–3 s in the spring of 2003, where these extended lifetimes were enabled by a state-

insensitive FORT at 935.6 nm [13]. In the next few years, single trapped atoms were

then used to create a single-atom laser [14, 15], to generate a deterministic source

of single photons [16], and to map out the vacuum Rabi splitting of a single atom

[17]. Additionally, when multiple atoms were loaded into the FORT, it was possible

to observe them leaving the trap one by one [18]. Meanwhile, the ability to drive

coherent Raman transitions between cesium hyperfine ground states, based on ideas

developed by then-graduate-student David Boozer, offered promising new prospects

[19].

1.2 My history in the group

When I arrived at Caltech in June 2002, I joined Theresa Lynn, Kevin Birnbaum, and

visiting graduate student Dominik Schrader in lab 1. At the time, the two Kimble

group cavity-QED experiments were pursuing different strategies for trapping atoms

within optical cavities. In lab 11, Joe Buck and Jason McKeever were cooling atoms

into a FORT, struggling to improve the short trapping lifetimes demonstrated in 1999

[12]. Meanwhile in lab 1, Christina Hood and Theresa had demonstrated an “atom-

cavity microscope” in which the atom’s strong coupling to the cavity field provided

a trapping force [20, 21]. Theresa and Kevin now hoped to build upon this result by

applying active feedback to the intracavity field in order to control the atom’s motion

within the trap in real time.

Theresa and Kevin had begun a complete rebuild of the lab 1 experiment in

2000, after a series of failures in the previous system. They patiently taught me the

fundamentals of experimental cavity QED as we constructed a new set of diode lasers

and servos, coupled light into the new cavity, and characterized atom transits through

the cavity mode. In order to control the atomic motion in real time, we planned to

feed the detected signal at the cavity output into a field-programmable gate array

(FPGA), which would then determine the strength of probe light at the cavity input.

Unfortunately, numerical simulations carried out in parallel with our work in the
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lab indicated that we would be unlikely to observe significant improvements in the

lifetime of the atom in the cavity under the action of feedback [22, 23]. Moreover, the

experimental system itself presented unforeseen technical challenges. After Theresa’s

graduation in 2003, Kevin and I worked together on the feedback experiment through

the fall of 2004, but at that point it was decided to cancel the project.

Instead, the lab 1 cavity and vacuum chamber would be rebuilt again with three

specific aims: to design an asymmetric, “single-sided” cavity, i.e., with one mirror

more transmissive than the other, in order to improve data collection and explore

new quantum information schemes; to address problems of birefringent stress that had

plagued all previous cavity-building efforts; and to improve the background pressure

in the vacuum chamber in the hope of achieving longer atom storage times. As Kevin

shifted his efforts in his final year to theory for the lab 11 experiment, I took charge

of this new project, focusing in particular on designing and assembling a new vacuum

chamber and obtaining new cavity mirrors. I supervised two Caltech undergraduates,

Yat Shan Au and Travis Bannerman, as they worked on various aspects of this project

during their junior and senior years; Cambridge SURF student Toby Burrows also

joined us for the summer of 2005. New graduate students Andrey Rodionov and

Dalziel Wilson arrived in lab 1 that summer, and Dal assumed responsibility for the

lab the following year.

Meanwhile, during 2004 I also began my transition to lab 11, where Andreea

Boca and Russell Miller had assumed responsibility for the experiment and David

Boozer and Kevin were working on the corresponding theory. Following the work of

Carmichael and Tian [24] and of Parkins et al. [25, 26, 27], Christina Hood had pre-

dicted a “photon blockade” effect due to the anharmonicity of the Jaynes-Cummings

ladder [21], and guided by Kevin’s numerical simulations, we set out to observe this ef-

fect in the lab 11 cavity [28, 4, 29]. Specifically, by probing on the lower vacuum-Rabi

sideband, we were able to demonstrate that once a photon had entered the cavity,

the atom-cavity system blocked the transmission of a second photon. Kevin realized

that by measuring the second-order correlation function g2(τ) along the “dark” axis

of our cavity, that is, orthogonal to the axis of our probe beam, we could observe
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highly sub-Poissonian statistics and photon antibunching.

Kevin, Andreea, and Dave all graduated in the spring of 2005, and Andreea and

Dave continued their work on the cavity QED experiment as postdocs. We turned to

the question of cooling the center-of-mass motion of the intracavity atoms, which we

hoped would both extend the trap storage times and allow us to access the quantum

regime for the atom’s external degrees of freedom. By introducing a new pair of

Raman lasers at 945.6 nm, we were able to demonstrate resolved sideband cooling

to the atom’s vibrational ground state along the cavity axis [30]. This was also an

important application of a new, efficient state-detection scheme, in which we could

identify whether an atom was in the F = 3 or F = 4 hyperfine manifold.

Since the single photon generation experiment a few years earlier [16], we had been

interested in the reverse process: mapping the information in a photonic state into the

cavity, onto the hyperfine ground states of a trapped atom. After all, one advantage

of using a cavity to generate single photons on demand was that the output photons

were created in a well-defined optical mode, and thus were ideal carriers for quantum

information in quantum networking schemes [2]. By using pulses of attenuated laser

light to provide a phase-coherent input of photons, we were able to characterize the

reversible nature of this process in our cavity — that is, the interplay between coherent

and incoherent transfer mechanisms [31].

We have made a number of attempts over the past few years to prepare atoms in a

particular Zeeman level via optical pumping, but these attempts have met with only

limited success. In mid-2007, we implemented a new Raman-based optical pumping

scheme, which has the advantage that we can prepare atoms in any desired Zeeman

state [32]. After Andreea’s departure that summer, Russ and I characterized the

effectiveness of this method in the lab. We also implemented a new conditional

loading process for our experiment, allowing us now to load multiple atoms into the

cavity with every MOT drop, then heat the extra atoms out of the trap until only

one remains. In principle, this will allow us in the future to carry out experiments

with exactly one atom present, with possible extensions to higher atom number.

Most recently, we have been exploring the possibility for generating atom-photon
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entanglement, and specifically, entanglement between the atom’s hyperfine ground

state and the polarization of an output cavity photon. This project has included a

series of Rabi flopping measurements aimed at characterizing the underlying mecha-

nisms for decoherence in our experiment. We have also developed and demonstrated

a technique for mapping superpositions of Zeeman states within a hyperfine manifold

onto superpositions of states between hyperfine manifolds, with the goal of measuring

atom entanglement directly through state detection.

1.3 Overview

Chapter 2 of this thesis focuses on our implementation of ground-state cooling. Our

central result is the nearly complete suppression of the red vibrational sideband of

a Raman spectrum after cooling; I also present more recent results from second-

order sideband cooling at 936 nm. This chapter contains a summary of the current

experimental setup in lab 11, including recent changes to the apparatus.

Chapter 3 presents the results of our reversible state transfer experiment as well

as several technical developments necessary for its implementation.

In Chapter 4, we return to the topic of Raman transitions: first in the context

of our new optical pumping scheme, which relies on incoherent Raman transitions,

and then in a discussion of conditional loading, where Raman transitions allow us to

determine the intracavity atom number in real time.

With these techniques for atom preparation in hand, in Chapter 5 I present our

Rabi flopping and decoherence measurements, and the results of our effort to map

Zeeman to hyperfine states. I discuss the outlook for entanglement generation and

for the use of microwaves in our experiment.

In Chapters 6 and 7, I return to the work of my first three years in lab 1. I discuss

technical insights gleaned from this experience and highlight what in hindsight seem

to be useful lessons for those assembling new cavity QED experiments.
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Chapter 2

Cooling to the ground state of
axial motion

2.1 In situ cooling: motivation and background

While measurements in Ref. [13] established a lifetime of 2–3 seconds for atoms

trapped in the FORT, these were atoms “in the dark,” i.e., only interrogated once

after a variable time t to determine if they were still present. Subsequent experiments

have required the trapped atom to interact repeatedly with fields applied either along

the cavity axis or from the side of the cavity. In this case, lifetimes have in practice

been limited to hundreds of milliseconds due to heating of the atom by the applied

fields.

In order to counterbalance these heating processes, one can imagine some method

for cooling the atom in situ after it has been loaded into the trap: cooling intervals

could then be interleaved as often as necessary between experimental cycles. Inter-

leaved cooling would allow more cycles to occur before the atom was eventually heated

out of the trap; ideally, the interrogation time would be limited only by the intrinsic

FORT lifetime. In addition, cooling would localize the atom’s center-of-mass motion

within a single FORT well. As the atom-cavity coupling g is spatially dependent, an

atom moving within a potential well sees a periodically modulated coupling whose

amplitude is proportional to temperature. Effective cooling would thus restrict the

range of g values that the atom could sample.
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One means of cooling a trapped atom is by driving a series of Raman transitions

that successively lower the atom’s vibrational quantum number n, a process known

as sideband cooling. Resolved sideband cooling — in which the vibrational trap

frequency ωa is much greater than the Raman transition linewidth Ω, so that n-

changing transitions can be independently addressed — was first demonstrated for

trapped ions [33, 34] and subsequently extended to neutral atoms trapped in optical

lattices [35, 36, 37]. Over the past several years, David Boozer has developed a

powerful set of Raman techniques for use in the lab 11 cavity QED experiment. By

introducing a second 935.6 nm laser along the cavity axis, phase-locked and polarized

perpendicular to the FORT but detuned from it by the cesium ground state hyperfine

splitting ∆HF/2π = 9.2 GHz, we can drive Raman transitions between the F = 3 and

F = 4 cesium ground states. Thus, the FORT provides both an optical trap for atoms

and one arm of a Raman pair. The FORT-Raman pair can be used to prepare an

atom in a desired internal state, to measure the magnetic field at the atom’s location,

and finally, to cool its center-of-mass motion [19]. Because the spatial structure of

both beams is defined by the cavity mode, the two standing waves are automatically

superimposed upon one another, and the Rabi frequency (proportional to the product

of the two field intensities) is the same at the bottom of each FORT well. (The second

beam in this configuration will be referred to hereafter as the “Raman beam.”)

The theory of Raman cooling as well as measurements in which cooling is shown

to extend the mean lifetime can be found in Dave’s thesis [19]. This cooling proce-

dure was also successfully incorporated into the vacuum-Rabi splitting experiment

[17], and Fourier-transformed data of g(2)(τ) from this experiment demonstrated a

shift in the distribution of axial vibrational frequencies in the presence of cooling

[29]; the shift was due to the anharmonic character of the FORT well, which means

that the trap frequency depends upon the atom’s kinetic energy. However, the fact

that the Raman and FORT beams are spatially superimposed, though convenient

for other applications, makes it difficult to achieve effective cooling. If the relative

phase between a FORT and a Raman antinode is given by α, then in the harmonic

approximation at the bottom of a FORT well, the Rabi frequencies for transitions
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between vibrational levels n, n± 1, n± 2 are given by

Ωn→n/Ωρ = 1/2 + (1/2− η2(2n+ 1)) cos 2α,

Ωn→n±1/Ωρ = −η
√
n± 1 sin 2α,

Ωn→n±2/Ωρ = −η2
√
n± 1

√
n± 2 cos 2α,

where η is the Lamb-Dicke parameter and Ωρ is the (radially dependent) Rabi fre-

quency at the FORT antinode [38]. As α = 0 for the FORT-Raman configuration,

we cannot drive couplings between vibrational states n and n − 1. Cooling must

take place on n → n − 2 transitions, which are suppressed by η2 ≈ 0.0025 in our

experiments.

In order to access n→ n−1 transitions, we introduced a new Raman configuration

in the cavity in early 2006. The FORT still provided a trapping potential at λF =

936 nm (a standing wave with nF = 90 half-wavelengths inside the cavity) but no

longer contributed to the Raman process; Raman coupling now took place 10 nm

away at λR = 945.6 nm, the next longitudinal mode of the cavity (nR = 89 half-

wavelengths), using a pair of phase-stable lasers tuned ±∆HF/2 above and below the

cavity resonance. As λR 6= λF and nR and nF have no common denominator, α takes

a different (nonzero) value for every well. Transitions from n → n − 1 are possible

in each well, though cooling is more effective in certain wells (i.e., one-quarter and

three-quarters of the way along the cavity, where α ≈ π/4, 3π/4).

2.2 Experimental setup

Phase stability between the FORT and Raman lasers in previous experiments was

provided by an electronic phase lock: an optical beat note between the two lasers

was used to generate an error signal, which was then fed back to the Raman laser

current and the piezoelectric transducer controlling the length of the external laser

cavity [19]. However, ∼ 500 kHz noise observable on the phase lock beat note at ∆HF

presented serious problems, especially as the n±1 vibrational sidebands of the FORT



14

were 530 kHz on either side of the carrier and could not be separated from this noise.

In setting up the pair of 946 nm diode lasers for Raman cooling, we have instead

chosen a master-slave configuration, with one laser injection-locked to a frequency

sideband of the other; frequency sidebands at ∆HF are applied with a fiber-coupled

electro-optic modulator (EOM) from EOSPACE Inc. In his thesis, Russ Miller will

describe the specifics of this injection lock, which has since been transferred to the

FORT-Raman 936 nm pair.

The lab 11 experimental apparatus is described in detail in Jason McKeever’s

thesis [39]; here I summarize the essential components and enumerate recent develop-

ments. At the heart of the experiment is the high-finesse optical cavity, constructed

by Jun Ye and David Vernooy and enclosed in a two-chamber vacuum system [40]. As

we are now two generations of graduate students removed from the original assembly

of this system, we treat the cavity and chamber with a great deal of caution and a

bit of superstition. A valve controls the flow of cesium into the upper chamber and is

opened for a few hours before we attempt to load atoms into the cavity. Surrounding

the vacuum chamber are ion pumps, cameras, assorted optics for coupling light in

and out of the chamber, and coils to generate magnetic gradient and bias fields for

the atoms.

2.2.1 Lasers

We use a collection of home-built diode lasers to cool, trap, and probe cesium atoms

and to transfer population between their internal states. The central laser in this

scheme is the “master laser” on the southwest corner of the optical table. For the

purpose of frequency stabilization, this laser is locked to a ∼ 30 cm transfer cavity

that is subsequently locked to cesium, and specifically, to the crossover between the

F = 4→ F ′ = 4 and F = 4→ F ′ = 5 D2 resonances in a vapor cell via modulation

transfer spectroscopy. (For reference, a diagram of the cesium D2 spectrum can be

found in Figure 4.2.) A pair of acousto-optic modulators (AOMs) is used to shift the

master laser into resonance with either the F = 4 → F ′ = 4 or F = 4 → F ′ = 5
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transition and to shutter the beam on and off. After a series of optical filters, light

from the laser is then coupled into the physics cavity; we often refer to this laser as the

“probe laser” because it is used to interrogate the atom-cavity system. It has never

been necessary to mode-match the probe efficiently into the cavity, and the most

recent measurement (in March 2006) found the probe input coupling to be 12.5%.

Light from the master laser is also sent through optical fiber to injection-lock a

“slave laser,” an 852 nm diode laser without an external grating. This slave laser

provides the red-detuned F = 4→ F ′ = 5 trapping light for MOTs in the upper and

lower chamber, which can be shifted to a different frequency and intensity setting for

polarization-gradient cooling [29]. Along a separate path, the slave laser also provides

blue-detuned F = 4 → F ′ = 4 light that is then circularly polarized and enters the

cavity from the side to generate orthogonal standing waves. In tandem with the

F = 3 light described below, these “lattice beams” are used to cool falling atoms into

the FORT and to prepare the internal states of trapped atoms.

On the north side of the table, a “repump laser” is locked to the F = 3 cesium

resonance. Its primary function is to generate beams for both MOTs on the F =

3 → F ′ = 4 transition that can recycle atoms to the F = 4 manifold. In addition,

it is the source of an F = 3 → F ′ = 3 lattice beam collinear with the one described

above (Ω3 and Ω4 in Figure 2.3(b)). The current-modulated repump laser was locked

to the saturated absorption spectrum of a cesium vapor cell through 2006. At that

time, we replaced the cesium lock with a phase lock to the master laser, for purposes

described in Chapter 3.

For the experiment described in this chapter, we introduced a frequency-shifted

beam from the probe laser path that was resonant with the F = 4 → F ′ = 4

transition. This beam was coupled into optical fiber that carried it to the side of

the cavity (Ω′4, Figure 2.3(b)). Focused into the cavity with a cylindrical lens, it can

now be used in combination with the Ω4 lattice beam to pump a trapped atom into

the F = 3 manifold; in the absence of a magnetic field, alternating the two beams is

necessary to avoid a dark state in the F = 4 manifold [4, 19].

At 836 nm, our one store-bought diode laser (thus referred to as the “New Focus
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Figure 2.1: Measured physics cavity linewidths between the two Raman wavelengths
of 935.6 nm and 945.6 nm

laser”) is resonant with the cavity mode two free spectral ranges away from the

cesium resonance. It is used to provide active feedback to maintain the cavity length

via a Pound-Drever-Hall lock in transmission [41]. The New Focus laser frequency

is stabilized by a reflection lock to the transfer cavity; the physics cavity is then

locked to a frequency sideband of the New Focus laser. The sideband lock allows us

to tune the sideband frequency manually, so that we can adjust the physics cavity

frequency ωc with respect to the cesium resonance ωa. The sidebands, applied with

a highly tunable traveling-wave modulator, are usually between 300 and 800 MHz

in frequency, and the transmission lock is derived from a 4 MHz modulation of this

signal.

The probe laser and New Focus laser are combined at the cavity input with the

FORT laser at 936 nm. While Jason’s thesis mentions that the FORT was frequency-

modulated and locked to the physics cavity, this lock has been since discontinued

and the EOM removed, as it was found to be unnecessary: since the FORT cavity

linewidth is so wide (κF/2π = 0.8 GHz), once the laser is tuned into resonance, its
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slow transmission drifts can be corrected manually on the timescale of hours. In

fact, changes in intracavity power due to amplitude drift at the cavity input can be

more substantial than those due to frequency drift and would not be corrected by

a frequency lock. More recently, we have implemented a feedback loop to directly

stabilize the FORT power in transmission using a liquid-crystal variable oscillator

(LCVO).

At the side of the lab, a second F = 3 diode laser with its own cesium lock sits on

a honeycomb breadboard. In 2005, we rebuilt this laser so that it provided separate

beams on the F = 3→ F ′ = 3 and F = 3→ F ′ = 4 transitions, each with switching

capabilities. The beams were recombined and coupled onto orthogonal axes of a

polarization-maintaining fiber. As with the F = 4→ F ′ = 4 beam above, they were

brought in from the side of the cavity and used in several optical pumping attempts

(Chapter 4). Despite our best efforts to stabilize the diode and isolate the assembly

from air currents, this laser has always been difficult to work with, probably because

it does not benefit from the vibration isolation of an optical table.

The final lasers in our experiment, the 946 nm Raman pair, have already been

discussed above. It was not originally known whether the cavity would support a

mode at the new Raman wavelength, as the coating curve for the cavity mirrors falls

off steeply in this vicinity [42]. In order to measure the cavity linewidth as a function

of wavelength, we increased the wavelength of the old Raman laser in 1 nm steps from

its original value of λF . We used the sidebands of the New Focus locking laser, set to

1 GHz, as a meterstick in order to obtain the cavity linewidth κ from the scope trace

at each wavelength. The linewidth data are plotted in Figure 2.1; at our wavelength

of interest, κR/κF = 6 GHz/0.8 GHz, and the finesse at λR decreases proportionally

from FF = 2200 to FR = 300.1

1The values given here for κR and κF are drawn from Section 2.3 rather than the data in Figure
2.1. In particular, a subsequent measurement determined that κF = 0.8 rather than 0.5 as shown
above.
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2.2.2 Output path and detection

At the cavity output, a half-waveplate at 852 nm and a polarizing beamsplitter cube

(PBS) are used to select output light along one of the cavity’s two birefringent axes.2

At the rejected port of the PBS, a New Focus DC-125 MHz detector monitors the

FORT transmission. Unfortunately, this scheme cuts our detection efficiency in half

for unpolarized photon generation and prevents us from examining orthogonal output

polarizations simultaneously. Because we have some well-founded hesitation about

dismantling the output path of a working experiment, we have left it in place until

now but have plans for a rebuild in the near future.

After the PBS, the cavity output is collimated, and an angle-tuned mirror sepa-

rates the 836 nm light for the cavity lock. A series of four dichroic mirrors and two

interference filters suppresses the remaining 836 nm and 936 nm light in the path be-

fore the light is finally coupled into optical fiber. In December 2005, we measured the

propagation efficiency ptable to be 66% before fiber coupling, with losses attributed to

individual elements listed in Table 2.1. This measurement is roughly consistent with

the values of ppath = pcoupleptable = 32% and 40% given in Refs. [16, 29], where pcouple

includes fiber coupling losses; in November 2006, we improved the fiber alignment,

which boosted ppath from 30% to 50%. The dichroic elements are relatively ineffective

at suppressing FORT light — each dichroic removes less than half of incident light at

936 nm — and should probably be removed from future beam paths, as they are also

not perfect at 852 nm. Each interference filter, on the other hand, has a measured

suppression of 104 at 936 nm. It is interesting to note that given the measured FORT

propagation losses at each step of the path, we would still expect the FORT power to

saturate our detectors, while in fact we see fewer than 5 photon counts/second due to

936 nm light. It must be true that optimizing the probe coupling into fiber at 852 nm

results in very poor FORT fiber coupling. We believe that this is due to refraction

in the PBS cube at the cavity output, which causes light at the two wavelengths to

2The cavity supports two orthogonal linear modes, with a frequency splitting between the modes
roughly equal to κ. The most recent measurements of this frequency splitting can be found in Ref.
[29]. Chapter 6 provides a discussion of birefringence in the context of cavity design.
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Path element(s) Propagation losses, in percent
first mirror 0
angle-tuned splitter 3
second mirror 2
third mirror + lens 1
iris + half-waveplate + lens + dichroic 1 1
dichroics 2 + dichroic 3 10
first interference filter 10
second interference filter 17
dichroic 4 3

Table 2.1: Measured propagation losses at 852 nm in the lab 11 cavity output path.
Some path elements are grouped together because of the practical difficulty of insert-
ing a detector between them.

follow slightly different paths.

Once the cavity light is coupled into single-mode fiber, a fiber beamsplitter carries

it to two single-photon-counting modules (Perkin-Elmer SPCM−AQR). We record

TTL logic pulses from the SPCMs using a P7888 four-channel data acquisition card;

these cards are also currently in use in lab 2 and in the microtoroid experiment. A

heterodyne detection path, while still in place on the optical table, has been used in

recent years only for alignment purposes, in cases where we were concerned about the

possibility of too much incident light on the SPCMs.

2.2.3 Analog and digital control

Analog and digital timing control signals for the experiment are generated by an

ADwin-Gold system (Jäger Computergesteuerte Messtechnik GmbH). The ADwin

has an internal 40 MHz CPU; we map a series of instructions into its RAM from

a PC via USB connection, and it then runs continuously until the next program is

loaded. Dave has written a straightforward user interface that compiles our timing

programs into the (less intuitive) ADbasic language that the system requires. In

Chapter 4, I describe recent modifications to our timing programs that allow us to

condition the experiment on the presence of at most one atom in the cavity.

Most of the experiment timing is digital, but the analog outputs of the ADwin are
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Figure 2.2: Probability to drive Raman transitions as a function of control voltage for
the magnetic bias field along the “fed from above” axis, where the conversion factor
is 0.97 Gauss/V. The peak indicates a local field minimum.

used to provide control voltages for the bias coil current supplies, which determine

the magnetic fields at the cavity. In order to have control over the magnetic field

that an atom experiences during an experiment, we first need to adjust the bias coil

currents in order to null the ambient fields seen by the atom. Here we rely on the

fact that when the fields are nulled, the Raman transition frequencies between all

Zeeman sublevels are degenerate. Thus, for a given atom in an unknown Zeeman

state, the probability to drive a Raman transition is greatest in a nulled field [19]. If

we record the Raman transition probability as a function of bias coil current (that is,

as a function of ADwin control voltage) along each axis, we can then associate the

maximum transition probability with a local field minimum.

An example of a Raman field nulling scan along one axis is shown in Figure 2.2.

During the measurement, fields along the other two axes are fixed at their nominal

null values. As these initial values may not be accurate, it is sometimes necessary to

iterate the nulling procedure a few times in order to find the field minimum along all
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three axes. This was at first a rather time-consuming process, as we would increment

the bias coil current by hand. Once we switched to an ADwin control program that

automatically scanned the current and stamped the data records accordingly, the

situation improved greatly, and we are now able to null the magnetic fields within

approximately half an hour. We find that for experiments requiring sensitive control of

magnetic fields, it is best to null the fields within a few days of data collection to avoid

any surprising drifts. The axial bias field value seems to be the most stable, while

the current through the “fed from below” coil is the most likely to need adjustment.

2.3 Demonstration of ground-state cooling

The following section has been adapted from Ref. [30].

Localization to the ground state of axial motion is demonstrated for a single,

trapped atom strongly coupled to the field of a high-finesse optical resonator. The

axial atomic motion is cooled by way of coherent Raman transitions on the red vi-

brational sideband. An efficient state detection scheme enabled by strong coupling in

cavity QED is used to record the Raman spectrum, from which the state of atomic

motion is inferred. We find that the lowest vibrational level of the axial potential

with zero-point energy ~ωa/2kB = 13 µK is occupied with probability P0 ' 0.95.

Single atoms strongly coupled to the fields of high-quality optical resonators are

of fundamental importance in Quantum Optics and, more generally, can be used for

many tasks in quantum information science, including the implementation of scalable

quantum computation [43, 44] and the realization of distributed quantum networks

[2, 45]. In recent years, significant experimental progress to develop tools suitable for

these tasks has been made by employing optical forces to localize individual atoms

within optical cavities in a regime of strong coupling [12, 13, 17, 46, 47, 48, 49], as well

as by combining trapped ions with optical cavities [50, 51]. Scientific advances thereby

enabled include the observation of the vacuum-Rabi spectrum for an individual atom

[17] and vacuum-stimulated cooling [48].

Although great strides are being made with atoms localized and strongly coupled
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to the fields of optical cavities, it has not previously been possible to access the

quantum regime for the atomic center-of-mass motion in cavity QED. Qualitatively

new phenomena have been predicted in this regime for which a quantized treatment

is required for both the internal (i.e., the atomic dipole and cavity field) and external

(i.e., atomic motion) degrees of freedom, as was first recognized in the seminal work

of Refs. [52, 53, 54] and in the years since [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66].

Examples include the transfer of quantized states of atomic motion to quantum states

of light, and conversely [64, 65, 66], as well as for measurements that surpass the

standard quantum limit for sensing atomic position [55, 56].

Our effort towards quantum control of atomic motion in cavity QED follows the

remarkable set of achievements for trapped ions [34] and atoms in optical lattices

[35, 36, 37], for which such control has led to the creation of manifestly quantum

states of motion and to the manipulation of quantum information. A first step in

many of these investigations has been the capability to cool to the ground state of

motion for single trapped atoms or ions.

Here we report localization to the ground state of motion for one atom trapped

in an optical cavity in a regime of strong coupling [49]. Resolved sideband cooling

to the ground state is accomplished with a coherent pair of intracavity Raman fields.

To deduce the resulting state of atomic motion, we introduce a scheme for recording

Raman spectra by way of the interaction of the atom with a resonant cavity probe.

Our scheme is the cavity QED equivalent of state detection in free space by quantum-

jump spectroscopy [34] and achieves a confidence level for state discrimination > 98%

in 100 µs. From the Raman spectra, we infer that the lowest vibrational level n = 0

of the axial potential is occupied with probability P0 ' 0.95 for one trapped atom.

A schematic of the experiment is given in Figure 2.3. At the heart of the system

is the Fabry-Perot cavity formed by mirrors (M1,M2). The cavity length is stabilized

to l0 = 42.2 µm using an independent locking laser, such that a TEM00 mode is

resonant with the 6S1/2, F = 4 → 6P3/2, F
′ = 5 transition of the D2 line in Cs.

The resulting atom-cavity coupling gives a maximum single-photon Rabi frequency

of 2g0/2π = 68 MHz for (F = 4,mF = ±4) → (F ′ = 5,m′F = ±5). The decay
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Figure 2.3: Schematic of the experiment. The cavity is represented (a) from the side
and (b) along its axis, with a trapped atom indicated as a dot at the cavity center.
Shown are the various beams used in the experiment: linearly polarized probe Ep,
FORT EF , pumping Ω′4, and Raman beams ΩR1,R2, as well as the circularly polarized
lattice beams Ω3,4.

rates are γ/2π = 2.6 MHz for the 6P3/2 excited states, and κ/2π = 4.1 MHz for the

cavity field.3 Because g0 � (γ, κ), our system is in the strong coupling regime of

cavity QED [49], with critical photon and atom numbers n0 ≡ γ2/(2g2
0) ≈ 0.0029 and

N0 ≡ 2κγ/g2
0 ≈ 0.018.

Atoms are trapped by an intracavity far-off-resonant trap (FORT) at λF = 935.6

nm, which is driven by a linearly polarized input field EF and is resonant with a

TEM00 mode of the cavity with linewidth κF/2π = 0.8 GHz. At λF , states in the

ground F = 3, 4 and excited state F ′ = 5 manifolds experience nearly equal trapping

potentials. For states in the F = 3, 4 manifolds, this potential is independent of

mF and has a peak value of UF/h = −41 MHz, while for states in the F ′ = 5

3This value for κ/2π differs from the 3.8 MHz rate found elsewhere in this thesis, which is based
on a more recent measurement. As discussed in detail in Ref. [29], we have seen as much as 20%
variation in measured cavity linewidths using different techniques. Some of this variation may be
due to input light which is not polarized along one of the cavity’s birefringent axes and thus couples
to both cavity modes.
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manifold it has a weak dependence on m′F [13, 17]. The standing-wave structure of the

FORT forms independent wells where atoms may be trapped. Near the bottom of a

FORT well the potential is approximately harmonic, with axial and radial vibrational

frequencies ωa/2π = 530 kHz, ωr/2π = 4.5 kHz.

To load atoms into the FORT, we release a cloud of cold atoms located ∼ 3 mm

above the cavity [13]. As the atoms fall through the cavity, we apply 5 ms of Ω3,

Ω4 light by way of two pairs of counterpropagating σ+ − σ− polarized beams; see

Figure 4.1(b). These beams are blue detuned by +10 MHz from the F = 3 →

F ′ = 3 and F = 4 → F ′ = 4 transitions respectively, and cool the falling atoms via

polarization gradient cooling [67]. We adjust the powers4 of these beams so that the

probability of loading at least one atom is ∼ 0.3 per cloud drop.

Raman coupling between the F = 3 and F = 4 manifolds is generated by driving

a cavity mode at λR = 945.6 nm with a pair of beams ΩR1,R2 that are phase-locked,

lin ⊥ lin polarized, and have a relative detuning ωR1 − ωR2 = ∆′HF + δR, where

∆′HF/2π = 9.19261 GHz is the Cs hyperfine splitting5 and δR is the Raman detuning.

This cavity mode has a linewidth κR/2π = 6 GHz , and the Raman beams are tuned

such that ΩR1(R2) lies ∆′HF/2 above (below) cavity resonance. Since ΩR1,R2 drive

a different mode of the cavity than EF , atoms trapped in different FORT wells see

different Raman powers. If the relative spatial phase along the cavity axis between

the FORT and the Raman pair at the bottom of a given well is α, then an atom at

this potential minimum sees a Raman power proportional to cos2 α.

We set the optical power transmitted on resonance through the cavity for ΩR1,R2

to PR1 = PR2 = 140 µW, which gives a Rabi frequency6 Ω0/2π = 200 kHz for atoms

with α = 0. The ac-Stark shift due to these beams adds a correction to the FORT

potential of UR/2π = 0.84 MHz. To avoid heating the atom by switching UR, we

4 For loading, the total power in the four lattice beams is 50Isat
4 for Ω3 and Ω4, where Isat

4 ∼
3.8 mW/cm2. For detection, the Ω3 intensity is 5Isat

4 .
5∆′HF for a trapped atom is slightly reduced compared to its free space value ∆HF , because the

FORT potential for the F = 3 manifold is slightly weaker than for F = 4. For our FORT, the
correction is ∆′HF −∆HF = −21 kHz.

6Here Ω0 is the Rabi frequency for the transition F = 3,m = 0, n = 0 → F = 4,m = 0, n = 0,
where the quantization axis is along the cavity axis.
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Figure 2.4: Histogram of counts recorded during 100 µs probing intervals for Ne = 30.
The left (right) curve is the probability P of detecting a number of counts N for an
atom prepared in the F = 4 (F = 3) state. The dashed lines indicate detection
thresholds at N = 0.25Ne and N = 0.75Ne.

leave ΩR1,R2 on all the time, but usually keep them far-detuned (δR/2π = 85 MHz)

from Raman resonance. To drive Raman transitions, we change ωR2 to bring the pair

into Raman resonance, whereas to fine-tune δR we vary ωR1.

Because the intensity of the Raman pair is spatially varying, the Raman coupling

can connect states with different vibrational quantum numbers. The form of this

motional coupling is simple for atoms near the bottom of a FORT well where the

axial and radial motions decouple, allowing us to consider the effect of the Raman

coupling on the axial motion alone. In this harmonic limit, we can define a set of Fock

states {|n〉} for the axial motion. For transitions from F = 3,m = 0 to F = 4,m = 0

and to first order in η, the Rabi frequency for an n → n transition is Ωn→n =

(1/2)(1 + cos 2α) Ω0, while for an n → n − 1 transition, Ωn→n−1 = η
√
n sin 2αΩ0,

where η = (2π/λR)
√

~/2mωa = 0.056 is the Lamb-Dicke parameter for axial motion.

Note that the n→ n− 1 transition is strongest for atoms with α = π/4.

The spatial dependence of the Raman coupling, together with the fact that the

the axial motion of the atom is in the Lamb-Dicke limit, allows us to implement

Raman sideband cooling [34]. We tune the Raman pair to the red axial sideband
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(δR = −525 kHz ' −ωa) and apply the Ω4 lattice beams. An atom that starts in

F = 3 is coherently transferred by ΩR1,R2 to F = 4, where it is incoherently repumped

to F = 3 by Ω4. The coherent transfer lowers the axial vibrational quantum number n

by one, while the incoherent repumping usually leaves n unchanged since n-changing

transitions are Lamb-Dicke suppressed. Thus, the beams continually lower n, cooling

the atom to the axial ground state. Also, the Ω4 light provides Sisyphus cooling [67]

in the radial direction.

Strong atom-cavity coupling enables a versatile detection scheme for determining

if an atom is present in the cavity, and if so, if it is in the F = 3 or F = 4 manifold. In

100 µs we measure the atomic hyperfine state with a confidence level of > 98%. The

scheme involves driving the cavity with a 100 µs pulse of resonant F = 4 → F ′ = 5

probe light EP . If an F = 3 atom is present (or if the cavity is empty), then the light

is transmitted, while if an F = 4 atom is present, then the light is blocked because

of strong coupling [17]. We set the EP intensity such that on average Ne photons

are detected7 per probing interval with no atom in the cavity. As shown in Figure

2.4, if the number N of detected photons is such that N < 0.25Ne, we assume an

F = 4 atom is present; if N > 0.75Ne, we assume an F = 4 atom is not present;

otherwise, the measurement is inconclusive (< 2% of the time) and we ignore the

result. Whenever we detect the atomic state, we perform two such measurements:

the first with EP to find out if an F = 4 atom is present, the second with EP together

with Ω3 as a repumper, to detect an atom, regardless of its internal state.

We measure the Raman transfer probability P4 for a given δR by preparing an

atom in F = 3, applying a Raman pulse, and then detecting the atomic state using

the above scheme (with Ne ∼ 22). For each measurement cycle (or trial), we first

Raman-sideband cool the atom for an interval ∆tc. Next, we pump it into F = 3 by

alternating 1 µs pulses of Ω4 lattice light with 1 µs pulses of Ω′4 linearly polarized

resonant F = 4 → F ′ = 4 light from the side of the cavity (10 pulses of each).

After the atom is pumped to F = 3, we apply a ∆tR = 500 µs Raman pulse, which

7The probability for a photon starting out within the cavity to be recorded by our detectors is
e ∼ 0.06.
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Figure 2.5: Population P4 in the F = 4 state vs. Raman detuning δR/2π. The data
in (a) are taken with ∆tc = 250 µs of cooling, and an Ω4 total 4-beam intensity
I4 = 5Isat

4 ; those in (b) with ∆tc = 5 ms of cooling, and I4 = 0.5Isat
4 (on average, ∼ 33

atoms per data point). The arrow marks the detuning used for sideband cooling. (c)
Zoom-in on the two sideband regions for the data in (b), with detuning axis folded
around δR = 0. The red (�) and blue (�) sidebands, and their ratio r (+), are shown
after subtracting a Lorentzian fit to the carrier [superimposed in (b)].

sometimes transfers it to F = 4. Finally, we measure the atomic state and check

if the atom is still present. For each atom we fix the absolute value of the Raman
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detuning |δR|, and alternate trials at +|δR| with trials at −|δR| (299 trials each).

By combining data from atoms with different values of |δR|, we map out a Raman

spectrum. Note that because the initial Zeeman state of the atom is random, all

allowed F = 3→ F = 4 Zeeman transitions contribute to these spectra.

Two example Raman spectra are plotted in Figure 2.5. For the curve in Figure

2.5(a), we cool for ∆tc = 250 µs; for the curve in Figure 2.5(b), for ∆tc = 5 ms. These

scans are performed after nulling the magnetic field to within ∼ 40 mG; the widths

of the peaks are set by the splitting of different Zeeman levels due to the residual

magnetic field. For the curve in panel (a), we see peaks at the carrier (δR = 0), as

well as at the blue/red sidebands (δR/2π ' ±530 kHz = ±ωa). Already we note a

sideband asymmetry, indicating that a significant fraction of the population is in the

n = 0 vibrational state. For the (b) data, the red sideband at δR/2π ' −530 kHz is

suppressed such that it cannot be distinguished from the background and contribution

from off-resonant excitation of the carrier.

The ratio r of transfer probabilities for the red and blue sideband gives information

about the temperature of the atom. For a two-state atom in a thermal state, this ratio

r0 at |δR| = ωa is related to the mean vibrational quantum number n̄ by r0 = n̄/(n̄+1)

[34]. In Figure 2.5c, we plot r as a function of |δR| for the ∆tc = 5 ms data. As shown

in Figure 2.5b, we fit a Lorentzian curve to the carrier, then subtract its contribution

from both the red and the blue sideband data, as shown in Figure 2.5(c). We find

r0 ' n̄ = 0.01± 0.05, and the ground state population P0 = 1/(n̄+ 1) = 0.99± 0.05,

where the error bars reflect fluctuations in the data around |δR| = ωa. If instead we

subtract the constant background of PB
4 = 0.024 but not the carrier’s Lorentzian tail,

we find r0 ' n̄ = 0.05 ± 0.04, and P0 = 0.95 ± 0.04. Finally, if we use the raw data

from Figure 2.5b with no subtractions, we obtain r0 = 0.10 ± 0.03, n̄ = 0.12 ± 0.04

and P0 = 0.89± 0.03. Because the atom is not a two-state system and the motional

state is not known to be thermal, these estimates are approximate.

The axial cooling rate and asymptotic value of n̄ depend on δR, on the ΩR1,R2

Rabi frequencies, and on the power and detuning of Ω4. We have performed computer

simulations to help us choose optimal values for these parameters. A common feature
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Figure 2.6: Varying cooling parameters. The sideband ratio r0 is shown as a function
of (a) the Raman detuning δR employed for cooling and (b) the 4 → 3 repumping
intensity I4 . Insets show the results from a simple calculation for a 2-state atom
trapped in a FORT well with α = π/4.

of both our theoretical and experimental investigations is the robustness of n̄ under

variations of the cooling parameters. As an example8 , in Figure 2.6 we plot the

measured sideband ratio r0 at δR/2π = −500 kHz ' −ωa as a function of (a)

the detuning δR used for sideband cooling, and (b) the recycling intensity I4. The

sideband asymmetry is maintained over a range of at least 200 kHz in detuning, and

of two orders of magnitude in the intensity I4 of the Ω4 beams. The insets give results

from a 2-state calculation of r0, displaying similar insensitivity to the exact values of

δR and I4.

We use two methods for estimating the mean energy Er for radial motion. The

8Unless otherwise noted, the settings for this measurement are: I4 = 0.3Isat
4 , ∆tc = 5 ms,

δR = −500 kHz, ∆tR = 50 µs; PB4 = 0.065 was subtracted before computing r0.
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first method involves adiabatically lowering the FORT depth to zero, so that only the

UR trapping potential remains, and measuring the probability that the atom survives

the process [68]. If we assume a thermal state for the radial motion, this method

limits Er . 200 µK. The second method relies on the fact that radial motion would

shift and/or broaden the axial sidebands in our Raman spectra. By applying a small

axial bias field, we can resolve motional sidebands of transitions between specific

Zeeman levels; the positions and widths of these sidebands also limit Er . 200µK.

However, the Sisyphus cooling we use radially has been previously shown to reach

temperatures of ∼ 1 µK [67], which corresponds to nrad ' 4 for an atom in our FORT.

A possibility for improved determination of the radial “temperature” is to monitor

the transmission of the cavity probe field, as in Ref. [17]. Note that the ratio of

radial to axial trapping frequencies (' 0.01) is such that any modulation of the axial

frequency due to radial motion would be adiabatic. As a result, we expect that an

atom cooled to the axial ground state does not change its state due to radial motion.

In conclusion, we have demonstrated cooling to the ground state of axial motion

for single cesium atoms strongly coupled to the field of a small optical resonator.

Together with existing capabilities for strong coupling of the internal degrees of free-

dom, control over the external center-of-mass motion in cavity QED enables a new

set of phenomena to be explored at the light-matter interface. For example, arbitrary

states of atomic motion can be prepared from the ground state by coherent Raman

transitions [34], then mapped to the electromagnetic field by way of the strong atom-

field coupling [64, 65, 66]. Investigations of sensing atomic motion at the standard

quantum limit and feedback control now become feasible [55, 56, 69].

2.4 Resolved second-order sideband cooling

As discussed in Section 2.1, it is possible to cool trapped atoms on the second-order

red sideband using the FORT-Raman pair. Although this method is less efficient,

there are many experiments in which we rely on the FORT-Raman pair to drive Ra-

man transitions whose Rabi frequency is well-independent, such as the Rabi flopping
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Figure 2.7: Population P4 in the F = 4 state vs. Raman detuning δR/2π, after
second-order sideband cooling. Cooling intervals of (a) 0 ms, (b) 1 ms, and (c) 5 ms
are applied using the FORT-Raman pair.

measurements in Chapter 5. It is useful in these situations to be able to cool the

atoms, even if we cannot achieve the ground-state cooling described in Section 2.3.

(Ideally, our lab would have a pair of Raman lasers at 946 nm for ground-state cooling

and a separate FORT-Raman pair for well-independent transitions. At the moment,

however, we have only three lasers: dedicated FORT and Raman lasers, and a third

injection-locked laser whose wavelength must be adjusted manually in order to move

between the two configurations.)

In the past, we were unable to observe resolved-sideband cooling using the FORT-

Raman pair because of ∼ 500 kHz noise inherent to the phase lock between the lasers.

With the replacement of the phase lock by an injection lock during the ground state

cooling experiment, this noise was no longer an issue. In the spring of 2007, we

measured Raman spectra similar to those presented in Figure 2.5, but in this case

with cooling at 936 nm; these data are shown in Figure 2.7. After initial preparation
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in F = 3, atoms are cooled with an applied pulse of the FORT-Raman pair, tuned

1.150 MHz red of resonance to the n → n − 2 vibrational sideband, in conjunction

with a F = 4→ F ′ = 4 repump. In order to measure the Raman transfer probability

for a given detuning, we use the same technique as in the previous section; that

is, for each atom at detuning δ, we apply a 500 µs Raman pulse, followed by state

detection to determine whether that pulse has transferred an atom to F = 4. For

these measurements, the bias fields have been nulled, so all |3,m〉 → |4,m〉 transitions

are degenerate.

We emphasize two features of the data in Figure 2.7. First, while in the absence

of cooling, the red and blue sidebands are roughly symmetric, there is a clear relative

suppression of the red sideband after 5 ms of cooling (although the red sideband can

still be discerned from the carrier). Second, the widths of both sidebands become

narrower, and the center frequencies of the sidebands shift toward higher detunings.

This also provides strong evidence for cooling: recall that the FORT potential is

sinusoidal and only harmonic in the low-temperature limit. The vibrational frequency

spacing at the top of each well is about half the spacing at the bottom, and so the

sideband narrowing reflects the fact that we are driving n → n ± 2 transitions for

increasingly smaller n.

Second-order sideband cooling is a promising technique that we hope to incorpo-

rate in future experiments, both to localize atoms in the FORT wells and to extend

their lifetimes in the trap. However, one caveat is that bias fields must be nulled

in order for the cooling to address all Zeeman sublevels, while many of our recent

experiments use an axial bias field to split out these sublevels. In principle, one could

use an array of RF frequency generators to address the second-order sidebands of

all seven |3,m〉 → |4,m〉 transitions independently, but that would constitute a new

level of complexity for our experiment.
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Chapter 3

A light-matter interface:
quantifying coherence

One of the first experiments conducted in our group with a trapped intracavity atom

was to demonstrate that it could generate single photons on demand by means of

an adiabatic (dark-state) process [16]. After the ground-state cooling experiment, we

turned our attention again to this process, with the idea of mapping cavity-generated

photons back onto the atom. In this way, we could exploit an important feature of

photon generation within a cavity: the fact that the output photon is created in a

well-defined spatial mode. Moreover, the photon generation process is coherent and

thus reversible: by running the same adiabatic process backwards, we can in principle

achieve state transfer from light (photons) to matter (cesium hyperfine levels).

However, as we began to set up the experiment, we realized that using single

photons would restrict our ability to characterize the phase coherence of the process

we hoped to demonstrate. Coherence, meanwhile, is at the heart of the quantum

information schemes for which this mapping could be employed. We decided instead

to explore reversible state transfer by using a pulse of weak coherent light at the

cavity input that had roughly the same temporal profile as a cavity-generated photon.

From a pair of coherent pulses in sequence, we could then extract important phase

information about the transfer process. The results of this experiment are reproduced

in Section 3.1. The following sections are then devoted to a more thorough discussion

of technical details, including the necessary pulse combinations and timing sequences,
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the requirements of phase stability between pairs of laser pulses, and remote serial

programming of electronic devices. I conclude by discussing the outlook for mapping

single photons to and from the cavity in the future.

3.1 Reversible state transfer between light and a

single trapped atom

The following section has been adapted from Ref. [31].

We demonstrate the reversible mapping of a coherent state of light with mean

photon number n̄ ' 1.1 to and from the hyperfine states of an atom trapped within

the mode of a high-finesse optical cavity. The coherence of the basic processes is

verified by mapping the atomic state back onto a field state in a way that depends on

the phase of the original coherent state. Our experiment represents an important step

towards the realization of cavity QED-based quantum networks, wherein coherent

transfer of quantum states enables the distribution of quantum information across

the network.

An important goal in quantum information science is the realization of quantum

networks for the distribution and processing of quantum information [1], including for

quantum computation, communication, and metrology [44, 70, 71, 72]. In the initial

proposal for the implementation of quantum networks [2], atomic internal states with

long coherence times serve as “stationary” qubits, stored and locally manipulated at

the nodes of the network. Quantum channels between different nodes are provided by

optical fibers, which transport photons (“flying” qubits) over long distances [73]. A

crucial requirement for such network protocols is the reversible mapping of quantum

states between light and matter. Cavity quantum electrodynamics (QED) provides

a promising avenue for achieving this capability by using strong coupling for the

interaction of single atoms and photons [49].

Within this setting, reversible emission and absorption of one photon can be

achieved by way of a dark-state process involving an atom and the field of a high-
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Figure 3.1: Illustration of the protocol of Ref. [2] for quantum state transfer and
entanglement distribution from system A to system B. By expanding to a larger set
of interconnected cavities, complex quantum networks can be realized.

finesse optical cavity. For classical fields, this “STIRAP” process was first considered

twenty years ago [74, 75], before being adapted to quantum fields [76] and specifically

to the coherent transfer of quantum states between remote locations [2], with many

extensions since then [77]. The basic scheme, illustrated in Figure 3.1, involves a

three level atom with ground states |a〉 and |b〉 and excited state |e〉. An optical

cavity is coherently coupled to the atom on the b ↔ e transition with rate g, and a

classical field Ω(t) drives the atom on the a ↔ e transition. If the Ω field is ramped

adiabatically off→ on, then state |a, n〉 evolves into |b, n+1〉, and state |b, n〉 remains

unchanged, where |a, n〉, |b, n〉 denotes a state in which the atom is in ground state a,

b and there are n photons in the cavity. Ramping Ω on→ off implements the reverse

transformation.

This process can be used to generate single photons by preparing the atom in

|a〉 and ramping Ω off → on, thereby effecting the transfer |a, 0〉 → |b, 1〉 with the

coherent emission of a single photon pulse from the cavity [2, 76, 78]. Essential aspects

of this process have been confirmed in several experiments [16, 79, 80], including

tailoring of the single-photon pulse shape [79].

A distinguishing aspect of this protocol is that it should be reversible [2], so that a

photon emitted from one system A can be efficiently transferred to another system B.

Furthermore, it should be possible to map coherent superpositions reversibly between

the atom and the field:

(c0|b〉+ c1|a〉)⊗ |0〉 ↔ |b〉 ⊗ (c0|0〉+ c1|1〉). (3.1)



36

Over the past decade, single photons have been generated in diverse physical

systems [81]; however, most such sources are not reversible in principle, and for those

that are, no experiment has verified the reversibility of either the emission or the

absorption process.

We report an important advance related to the interface of light and matter by

explicitly demonstrating the reversible mapping of a coherent optical field to and

from the hyperfine ground states of a single, trapped Cesium atom.1 Specifically, we

map an incident coherent state with n̄ = 1.1 photons into a coherent superposition

of F = 3 and F = 4 ground states with transfer efficiency ζ = 0.057.2 We then map

the stored atomic state back to a field state. The coherence of the overall process is

confirmed by observations of interference between the final field state and a reference

field that is phase coherent with the original coherent state, resulting in a fringe

visibility va = 0.46 ± 0.03 for the adiabatic absorption and emission processes. We

thereby provide the first verification of the fundamental primitive upon which the

protocol in Ref. [2] is based.

As shown schematically in Figure 3.2(a), our system consists of one Cs atom

coupled to a high-finesse Fabry-Perot cavity. The cavity length is tuned so that a

TEM00 mode is near resonance with the 6S1/2, F = 4→ 6P3/2, F = 3′ transition of Cs

at 852.4 nm. The maximum atom-cavity coupling rate is g0/2π = 16 MHz, while the

cavity field and the atomic excited state decay at rates (κ, γ)/2π = (3.8, 2.6) MHz�

g0. Thus, the system is in the strong coupling regime of cavity QED [49].

Atoms are dropped from a magneto-optical trap into the cavity and cooled into

a far off-resonant trap (FORT) by a blue-detuned optical lattice (see [49, 30]). The

FORT excites another TEM00 cavity mode at the “magic” wavelength 935.6 nm,

creating nearly equal trapping potentials for all states in the 6S1/2, 6P3/2 manifolds

[13].

1This mapping could also be demonstrated by absorbing a single-photon state, but we use a
coherent state instead, because its phase information allows us to verify explicitly the reversibility
of the absorption process.

2Since we use a coherent state rather than a coherent superposition of n = 0, 1 Fock states,
equation (3.1) only approximately describes our system. For a n̄ = 0.68 coherent state (i.e., n̄ = 1.1
at the face of Min), the fraction of the population in the n = 0, 1 subspace is ' 0.85.
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Figure 3.2: (a) Schematic of the experiment. The probe λ(t) resonantly drives the
cavity through input mirror Min; the classical field Ω(t) excites the atom transverse
to the cavity axis. Photons emitted from the output mirror Mout are directed to a
pair of avalanche photodiodes. (b) Atomic level diagram. Double arrow g indicates
the coherent atom-cavity coupling, and Ω(t) is the classical field. The cavity and Ω
field are blue-detuned from atomic resonance by ∆.

An atomic level diagram is shown in Figure 3.2(b); the states used in the current

scheme are ground F = 3, 4 and excited F = 3′ manifolds, corresponding to |a〉, |b〉, |e〉

in Figure 3.1. The cavity is tuned to frequency ωC = ω4−3′ + ∆, where ω4−3′ is the

frequency of the 4− 3′ transition, and ∆/2π = 10 MHz is the cavity-atom detuning.

A linearly polarized probe beam3 drives the cavity at frequency ωC with pumping

strength λ(t). An optical lattice drives the atom transverse to the cavity axis at

frequency ωA = ω3−3′ + ∆ to provide a classical field with Rabi frequency Ω(t) [16].

The laser source for the optical lattice is phase-locked in Raman resonance with the

probe laser, so their relative detuning δ = ωA − ωC is phase-stable and equal to the

ground-state hyperfine splitting ∆HF = ω3−3′ − ω4−3′ = (2π)(9.193 GHz).

Our experimental procedure is as follows: after loading an atom into the FORT,

we subject it to 2, 000 trials lasting a total of 360 ms, where each trial consists of

3Our cavity supports two nearly degenerate modes with orthogonal linear polarizations along the
x̂ and ŷ axes, where ẑ denotes the cavity axis. The cavity probe drives either the x̂ or the ŷ mode;
a polarizer at the cavity output only allows the x̂ component to reach the detectors.
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a series of discrete measurements performed on the atom. These measurements are

used to quantify the coherence of the absorption process, as well as for calibrations

and background monitoring. After these trials, we check that the atom has survived

in the trap by attempting to generate 10, 000 single photons, which are detected by

monitoring the cavity output with two single-photon-counting avalanche photodiodes.

We keep only the data from atoms that have survived all the trials. For most of the

data that we keep, only a single atom is present in the trap, but occasionally two or

more atoms may be loaded. From measurements performed during the 2, 000 trials,

we determine that at least 80% of the data presented here involve a single atom.

For each trial, we prepare the atom in F = 4 and then drive the system with a

series of light pulses, as shown in Figure 3.3. The classical field Ω(t) generates pulses

Ω1,2, and the cavity probe λ(t) generates pulses λ1,2. For any given measurement

within a trial, some of these pulses are on and the others are off. Pulse λ1 is the

coherent state that is to be mapped into the atom. The strength of this pulse is

set so that there are n̄ = 1.1 mode-matched photons at the face of the input mirror

Min. Because of mirror losses [42], if no atom were present, this would give rise to a

pulse inside the cavity with n̄ = 0.68 photons. The falling edge of pulse Ω1 is used

to perform the adiabatic absorption of λ1. The intensity of the lattice light is such

that when Ω1 is fully on, its Rabi frequency is ∼ 8γ, a value found to maximize the

adiabatic absorption probability. When λ1 is absorbed, some of the atomic population

is transferred from F = 4 to F = 3. With λ2 off, Ω2 allows us to determine the fraction

of the population that has been transferred: if the atom is in F = 4, then Ω2 does

nothing, while if the atom is in F = 3, then the rising edge of Ω2 transfers it back

to F = 4 and generates a single photon. Finally, with both pulses Ω2 and λ2 on, we

verify that λ1 was absorbed coherently. The Ω2, λ2 pulses act together to generate a

field inside the cavity; if λ1 was absorbed coherently, then the amplitude of this field

will depend on the relative phase θ between λ1, λ2.

This dependence can be understood by considering a simple model in which Ω2

and λ2 act independently. With λ2 off and Ω2 on, the Ω2 pulse transfers the atom

from a superposition of F = 3, 4 into F = 4 by generating a field α in the cavity
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Figure 3.3: Timing diagram: the upper curve shows the Ω1 and Ω2 pulses; the lower
curve shows the λ1 and λ2 pulses. Each of these pulses can be turned on/off indepen-
dently. Here ∆t is the delay between the falling edge of Ω1 and the rising edge of Ω2.
By enabling various combinations of these pulses, and/or varying the relative phase
θ between λ1 and λ2, we perform different measurements on the atom. The phase θ
is set by the phase difference of RF pulses driving an acousto-optic modulator in the
probe beam.

whose phase depends on the phase of the atomic superposition. In turn, the phase of

the original atomic superposition is set by the phase of λ1. With λ2 on and Ω2 off,

the λ2 pulse generates a field β inside the cavity whose phase is set by λ2. If Ω2 and

λ2 acted independently, then when both Ω2 and λ2 were on, the fields α and β would

combine to give a total field α+ β, whose amplitude depends on the phase difference

θ between λ1 and λ2. Because Ω2 and λ2 do not act independently, this model is only

approximately correct. Nevertheless, the phase of the final field still depends on θ for

the coherent processes associated with λ1,2, Ω1,2.

We first consider a series of measurements which demonstrate that the λ1 pulse

transfers more population from F = 4 to F = 3 in the presence of the Ω1 pulse than

in its absence. We start with the atom in F = 4 and apply the λ1 pulse, either with

the Ω1 pulse (adiabatic absorption, which consists of both coherent and incoherent

components) or without it (only incoherent absorption 4 → 3′, with spontaneous

decay to F = 3). In either case, λ1 transfers some population from F = 4 to F = 3.
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To quantify the population transfer, we apply Ω2 and measure the probability that

a single photon is detected within 1 µs of the rising edge of Ω2.4 We thereby infer

the fraction of the atomic population that was in F = 3.5 For adiabatic absorption

(Ω1 on), we find that the probability pa for the atom to be transferred from F = 4

to F = 3 by λ1 is pa = 0.063 ± 0.002, whereas for incoherent absorption (Ω1 off ),

the probability is pi = 0.046 ± 0.001. The ratio of the adiabatic to the incoherent

absorption probability is r = pa/pi = 1.38± 0.04.

As shown in Figure 3.4, we vary the arrival time t1 of the λ1 pulse and study the

effect on the adiabatic-to-incoherent ratio r.6 This ratio is maximized when λ1 is well

aligned with the falling edge of Ω1 at t = 0. If λ1 arrives too early (t1 � 0), then any

population that it transfers from F = 4 to F = 3 is pumped back to F = 4 by Ω1.

If λ1 arrives too late (t1 � 0), then Ω1 is already off, resulting in incoherent transfer

with r = 1.

Figure 3.4 also shows the results of a computer simulation of the absorption pro-

cess. The simulation predicts values for pa and pi and therefore the ratio r = pa/pi.

The correspondence between our simulation and the actual measurements of r vs. t1

in Figure 3.4 is qualitatively reasonable (the only free parameter in the simulation is

the atom-cavity coupling g, which we set to g/g0 = 0.44). The simulation can also

be used to partition pa into a coherent component pca and an incoherent component

pia. We define the coherent component of r by rc = pca/pi, the incoherent component

of r by ri = pia/pi, and plot rc, ri vs. t1 in Figure 3.4. The simulation indicates that

the value of t1 for which the adiabatic absorption process is maximally coherent is

roughly the value of t1 that maximizes the adiabatic transfer probability, and suggests

that for this value of t1 the adiabatic absorption process has appreciable coherence,

with rc/ri ' 1.

4For these measurements and those of Figure 3.5, ∆t = 290 ns. The probe is polarized along ŷ;
for the case when λ2 is on, this ensures that the emerging signal is not dominated by the component
of λ2 that is transmitted by the cavity.

5This involves subtracting a background probability of 0.0025, which we determine by pumping
the atom to F = 4 and applying Ω2, and dividing by the single photon generation efficiency of 0.036,
which we determine by pumping the atom into F = 3 and applying Ω2.

6For these measurements, ∆t = 2 µs, and the probe is polarized along x̂.
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Figure 3.4: Ratio r of adiabatic transfer probability to incoherent transfer probability
vs. arrival time t1 for the incident coherent pulse λ1. Red data points (◦): r vs. t1
(experiment). Red solid curve: r vs. t1 (computer simulation). Black dotted curve:
coherent component rc vs. t1 (simulation). Blue dashed curve: incoherent component
ri vs. t1 (simulation)

In Figure 3.5, we present measurements that demonstrate that the adiabatic ab-

sorption process is indeed coherent. As before, we prepare the atom in F = 4 and

apply λ1, either with or without Ω1, followed by Ω2. But now we add the λ2 pulse,

which overlaps with the rising edge of Ω2. If the λ1 pulse is absorbed coherently, then

the amplitude of the field generated by the combined action of Ω2 and λ2 will depend

on the relative phase θ of λ1 and λ2. By recording the cavity output from Mout as

a function of θ and observing this dependence, we can verify that the λ1 pulse was

absorbed coherently. To accomplish this, we repeat the above sequence for different

values of θ, where for each relative phase, we measure the mean number of photons

n(θ) emitted from the cavity within a fixed detection window. We take data both

with Ω1 on and off, so as to obtain results na(θ) and ni(θ) both for adiabatic and in-

coherent absorption. Figure 3.5 plots Ra(θ) = na(θ)/na(θ0) and Ri(θ) = ni(θ)/ni(θ0),

where θ0 is a fixed phase. Note that these ratios, rather than the photon numbers

themselves, are employed in order to cancel small, slow drifts in the intensity of the

light beams. Significantly, we observe an appreciable phase-dependence with visibility
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Figure 3.5: Ratios Ra(θ), Ri(θ) for photon generation as a function of the relative
phase θ between the λ1,2 fields. Red data points for adiabatic state transfer with Ω1

on. Blue points for the incoherent process with Ω1 off. The full curve is a fit to obtain
the fringe visibility va ' 0.46 ± 0.03. On average, each point represents about 130
atoms. The error bars represent statistical fluctuations from atom to atom.

va = 0.46± 0.03 for the adiabatic absorption curve Ra(θ), while no such variation is

recorded for the incoherent absorption curve Ri(θ).

The fringe visibility is limited by the intrinsic incoherent component of the ab-

sorption process, as well as by the mismatch in amplitudes and pulse shapes for the

α, β fields. For the results shown in Figure 3.5, a 200 ns detection window is used

around the peak of the emission process. If we increase the detection window to 1 µs,

thus degrading the pulse shape overlap, the visibility drops to va = 0.18± 0.01.

In conclusion, we have demonstrated the reversible transfer of a coherent pulse

of light to and from the internal state of a single trapped atom, which represents a

significant step towards the realization of quantum networks based upon interactions

in cavity QED. Explicitly, we have presented a detailed investigation of the adiabatic

absorption of an incident coherent state with n̄ = 1.1 photons. A fraction pa = 0.063

of the atomic population has been transferred from F = 4 to F = 3, with the efficiency

of the transfer being ζ ≡ pa/n̄ = 0.057. Here ζ provides an estimate of the efficiency

that could be obtained if we adiabatically absorbed a single photon state instead of
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a coherent state, and should be compared to the much lower efficiencies possible in

free space.

The factors that limit the transfer efficiency include the passive mirror losses

[42], the fact that our cavity mirrors Min,Mout have equal transmission coefficients

Tin = Tout (as opposed to Tin � Tout for a single-sided cavity), and the coupling of

the atom to both polarization modes of the cavity. Even in the ideal case without

scatter and absorption losses in the mirrors, for a three-level atom coupled to a two-

sided cavity (Tin = Tout) with two modes, the maximum possible adiabatic transfer

probability would be ζ = 0.25. By implementing a single-sided cavity with losses as

achieved in Ref. [8], we estimate that ζ could be improved to ζ ∼ 0.9 for coupling

schemes with a single polarization.

3.2 Pulse combinations

The measurements described above consisted of trapping an atom and preparing it in

one of two hyperfine manifolds, followed by combinations of the four pulses Ω1, Ω2, λ1,

and λ2 shown in Figure 3.3. Specifically, we employed eight configurations in which

Ω2 was always on, the other three pulses were either on or off, and the phase between

λ1 and λ2 was either fixed or varied (or not applicable, in the case of only one λ

pulse). These possibilities are enumerated in Table 3.1. Note that during a single 360

ms trapping interval, an atom would be subject to all eight pulse combinations 2000

times, with appropriate preparation of the atomic state preceding each combination.

This section focuses on the information that we are able to extract from each set of

pulses.

Cases 1 and 2 in Table 3.1 correspond to times t1 � 0 and t1 = 0 in Figure 3.4. In

case 1, the atom is prepared in F = 4; since the cavity is tuned to F = 4→ F ′ = 3, we

expect the vacuum Rabi splitting to shift the incoming pulse λ1 out of resonance with

the system. In the absence of Ω1, λ1 will only transfer population to F = 3 through

incoherent, off-resonant excitation of the atom. The probability of this population

transfer is measured by attempting to generate a single photon using Ω2, which will
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# Fstart Ω1 λ1 λ2 θ measured probability
1 4 off on off n/a incoherent absorption
2 4 on on off n/a coherent and incoherent absorption
3 4 on on on θ0 adiabatic fringe, fixed phase
4 4 on on on θ adiabatic fringe, variable phase
5 3 off off off n/a single photon generation
6 4 off off off n/a background
7 4 off on on θ0 incoherent fringe, fixed phase
8 4 off on on θ incoherent fringe, variable phase

Table 3.1: The series of eight pulse combinations applied to each atom in the re-
versible state transfer experiment. Fstart is the hyperfine manifold in which the atom
is prepared before the pulses are applied.

succeed only if the atom is in F = 3. In case 2, the inclusion of a classical pulse

Ω1 means that now we expect the coherent Raman process to transfer population

from F = 4 to F = 3, though of course incoherent excitation will still be possible.

The relative probability to generate photons in these two cases reflects the extent to

which our mapping process is coherent. While our system is in the strong coupling

regime, we are limited by the fact that g is not larger, which means that some off-

resonant light from λ1 can enter the cavity. The maximum atom-cavity coupling for

our system on the F = 4 → F ′ = 5 transition is gmax = 33.9 MHz, but the single-

photon generation scheme constrains us to the F = 4 → F ′ = 3 transition (g0 = 16

MHz), and the variation of g over the range of FORT wells and atomic motion result

in an inferred coupling g0 = 7 MHz, only a factor of two greater than the cavity

linewidth.

Cases 3 and 4 are the basis for the data presented in Figure 3.5. We map the

coherent pulse λ1 onto the atom by means of Ω1; then, while attempting to generate

a single photon with Ω2, we introduce the pulse λ2. λ2 interferes either constructively

or destructively with the photon generation process as a function of θ, which in case

4 is varied over 2π. In case 3, θ is held fixed at an arbitrary value θ0, so the photon

generation probability should in principle be constant. We compensate for small

drifts in the probe power over the course of the experiment by expressing the phase

variation as the ratio of the case 4 to case 3 data for each atom.
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Case 5, in which we simply use Ω2 to generate single photons on demand, provides

us with a calibration of the photon generation efficiency. In case 6, we again attempt

to generate single photons, but with the atom in the wrong hyperfine manifold, so

that we expect nothing to happen. We then subtract this measured background value

from the data obtained in all other cases.

Finally, cases 7 and 8 provide a baseline for comparison with cases 3 and 4.

Because Ω1 is omitted, we expect that the process that transfers population to F = 3

is strictly incoherent; that is, it should have no phase dependence. We confirm this by

varying the relative phase of λ1 and λ2 and observing no change in photon generation

probability. These data are also plotted for comparison in Figure 3.5; as in cases 3 and

4, we divide the probability with variable phase by the probability with fixed phase for

each atom to remove the effects of probe drift. This reflects a more general strategy

of cycling repeatedly through the full range of experimental parameters rather than

performing various measurements sequentially in the course of a data run. As a result,

we are less sensitive to long-term drift and can obtain real-time information about the

progress of the experiment. Another example of this strategy, increasing the phase θ

in 20 ◦ steps between each atom loading event, is discussed in Section 3.5.

3.3 Timing

Reversible state transfer was the first lab 11 experiment that required more compli-

cated timing than the ADwin alone could provide. The ADwin can produce pulses

as short as 100 ns; however, the length of any pulse shorter than a few µs should be

confirmed on an oscilloscope, as it may be up to 1 µs shorter or longer than specified

by the control program. In the present case, we had two requirements: (a) we needed

to generate a pair of adiabatic pulses Ω1,2 from the side of the cavity that would turn

on and off over hundreds of ns, and (b) we needed the timing of these pulses to be

stable with respect to λ1,2, the pair of coherent state pulses along the cavity axis.

(We did not take special care to generate λ1,2 adiabatically, as we found that the

temporal pulse shape that resulted from switching the probe AOM with TTL logic
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Figure 3.6: Instrumentation diagram for the generation of Ω1,2 and λ1,2 pulses

was a reasonable approximation to the shape of photons generated in Ref. [16].)

As shown in Figure 3.6, timing was controlled by four digital logic output channels

on the ADwin. Channel c_srs_trig triggered a single sweep of a Stanford Research

Systems (SRS) DS345 function generator. The DS345 can be programmed to generate

arbitrary waveforms; in this case, we set the output to shape the two Ω pulses shown

in Figure 3.3. The pulse pair then provided the control input for a voltage-controlled

attenuator (VCA). A second channel, c_33_pump, controlled the RF input to the

VCA and thus regulated whether one or both of the pulses would drive the F = 3→

F = 3′ AOM. Meanwhile, the λ1,2 pulse pair was generated by a pre-programmed

SRS DG535 pulse generator using the logical AND of its two pulse outputs. A single

sweep of the DG535 was triggered by the DS345 rather than directly by the ADwin

in order to avoid ∼ 25 ns jitter between the pulse pairs due to the DS345 clock
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rate. Two other ADwin channels controlled RF switches in the λ1,2 path: the first,

c_which_phase, determined which of two signal generators would provide the RF

source; both signal generators were set to the same frequency, but one (IFR 2023A)

had a fixed phase, while the phase of the other (Agilent E4422A) was variable. A

second switch, c_veto_on, performed the same function as c_33_pump, determining

whether none, one, or both of the pulses would be able to pass to the F = 3→ F = 4′

AOM.

3.4 Phase stability

Our first attempts to generate a fringe using both Ω1,2 and λ1,2 were not successful,

though the data suggested some underlying phase-dependent periodicity. We realized

that the Raman process underlying photon absorption and generation relied on the

relative phase of Ω(t), the F = 3 → F ′ = 3 lattice, and λ(t), the source of F =

3 → F ′ = 4 pulses along the cavity axis. While λ(t) was derived from the master

(probe) laser, Ω(t) was generated by the repump laser, which at the time had a

separate lock to the cesium saturated-absorption spectrum. Luckily, the electronic

phase lock that we had formerly used to synchronize the FORT and Raman lasers

had been decommissioned during the ground state cooling experiment in favor of a

quieter injection lock (Section 2.2.1). We resurrected it in order to set up a phase

lock between the master laser and the repump: auxiliary beams from both lasers

were combined on a fiber beamsplitter whose output was focused onto a 25 GHz

photodetector (New Focus 1417). In the same configuration used previously for the

Raman lock, the optical beat note from these two lasers was mixed down at ∆HF and

provided feedback signals for the repump laser’s diode current and piezo voltage.

The fringe measurement also depended on a stable, programmable phase relation-

ship θ between λ1 and λ2. The two signal generators for λ1 and λ2 (Figure 3.6) were

set to provide the same output frequency and were phase-referenced to one another

using a 10 MHz input/output. In order to confirm relative phase stability, we mon-

itored the outputs of the two sources (set to a fixed relative phase) over the course
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of two days on a fast oscilloscope and found the long-term phase drift to be between

0.02 and 0.05 radians/hour. The data shown in Figure 3.5 were acquired over the

course of about three hours, so we would expect drifts of < 0.15 rad ≈ 2 degrees

during this time frame.

A second verification of the phase stability was provided by an optical interfer-

ometer formed by the shifted (first-order) and unshifted (zeroth-order) beams at the

output of the F = 4 → F ′ = 3 AOM, driven by one of the two RF sources. We

generally use an iris to block all but the first-order beam, but with the iris opened,

the two beams could beat against one another when they were recombined after being

double-passed through the AOM. The beat note, at twice the RF input frequency,

was then observed to be phase-stable on an oscilloscope with respect to the second

RF source.

3.5 Remote programming capabilities

One important technical development for this experiment was the ability to program

electronic equipment remotely via serial commands sent from the ADwin. During the

ground-state cooling experiment, we had adjusted the Raman frequency detuning by

hand on an IFR (Aeroflex) 2023A signal generator. That process grew increasingly

time consuming, however, as our experiments became more complicated.

We now include ASCII strings as text in the code that controls our experiment.

For example, the instructions

0.0 ‘text = ":PHASe "’

0.0 inline ‘serial_partial_out (9)’

0.0 inline ‘lngtostr (10*(i-1), text)’

0.0 inline ‘serial_partial_out (9)’

0.0 inline ‘text = ‘" DEg"’

0.0 inline ‘serial_out (9)’
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tell the Agilent E4422B signal generator at time 0.0 to set the phase of its output

frequency to 10 ∗ (i − 1) degrees, where i is an integer between 1 and 18. (As the

RF signal drives a double-passed AOM, an RF phase shift of 180 ◦ is equivalent to an

optical phase shift of 360 ◦.) The subroutines serial_partial_out and serial_out

send the ASCII characters as TTL pulses on a specified ADwin channel (in this case,

channel 9), followed by either a carriage return or a line feed to signal the end of the

command. A home-built circuit based on a Texas Instruments MAX232N chip then

converts the TTL pulses to signals on an RS-232 serial cable. The serial cable can

be used either to drive devices directly (for example, the Aeroflex and Agilent signal

generators) or to drive GPIB-controlled devices such as the DG535. In the latter

case, we use an RS232-to-GPIB converter manufactured by National Instruments.

In the process of data acquisition, we run a loop which increments i on an atom-

by-atom basis. In addition to writing time-stamped photon counts to two channels

of the P7888 card, we write the value of i to a third channel. The data analysis

programs that David Boozer has written then separate the atoms into bins indexed

by the value of i.

Our first remote programming applications in the lab were automated frequency

sweeps (in order to record Raman spectra) and phase shifts (to observe the coherence

fringe in the current experiment). More recently, we have generated pulse trains of

variable lengths and delays in order to measure, for example, Rabi flops and Ramsey

fringes. We have also extended our frequency sweeps to the microwave domain, where

they enable us to search for narrow resonance features (Chapter 5).

3.6 Mapping single photons

We return now to consider the original plan to map cavity-generated photons back

onto a trapped atom. Figure 3.7 outlines a scheme that would allow us to realize this

in the laboratory. A photon exiting the cavity passes (with probability 1/2) through

a nonpolarizing beamsplitter cube (NPBS), a Faraday rotator, and a PBS into an

optical delay line, which would provide a necessary buffer for the experiment timing.
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Figure 3.7: Possible output path configuration in order to generate single photons on
demand, then map them back into the cavity

At the fiber output a few microseconds later, a half-waveplate rotates the photon

so that it reflects off the PBS and retraces its earlier path. A second pass through

the Faraday rotator corrects for the waveplate rotation, and the photon re-enters the

cavity in its original polarization state.

Half of all photons at the cavity output reflect off the NPBS, where they can be

detected by one or more SPCMs; this includes both photons generated within the

cavity and returning photons that are not absorbed. The initial step to characterize

photon reabsorption into the cavity would be to monitor returning reflected photons

at this port. As the timing of the adiabatic classical field Ω1 is adjusted so that it is

synchronous with the returning photons, we would expect to see a reflection dip. One

could then attempt to confirm photon reabsorption directly by generating a second

photon in the cavity, which would only occur if the first photon had transferred the

atom back to its initial hyperfine state.

It is important to acknowledge the inefficiency of this scheme, which is nevertheless

the most promising one we have found. Table 3.2 enumerates losses at each stage of

the proposed experiment after generation of an initial photon within the cavity mode,

which we assume occurs on every attempt. We see that detection of a second photon
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Propagation step Efficiency
cavity escape (mirror losses) 0.6
symmetric cavity 0.5
NPBS 0.5
Faraday rotator 0.93
free space propagation (filters) 0.66
single-mode fiber coupling 0.7
propagation through 250 m single-mode fiber 0.75
polarization drift in fiber 0.98
Faraday rotator, second pass 0.89
(includes polarization error)
NPBS 0.5
after reflection from cavity, NPBS 0.5
free space propagation (filters) 0.66
single-mode fiber coupling 0.7
SPCM quantum efficiency 0.5
probability to detect reflected photons 0.0024

cavity entrance (mirror losses) 0.6
symmetric cavity 0.5
cavity escape (mirror losses) 0.6
probability to detect a second photon 0.0004

Table 3.2: Path efficiencies in mapping a photon back into the cavity. We consider
detection via both reflection from the cavity (in the absence of a synchronous classical
mapping field) and generation of a second photon upon successful mapping.

would be roughly 100 times less efficient than single photon generation. It would

thus be a challenge to optimize various parameters of the experiment (for example,

timing of Ω1) based on detection efficiency. In future cavity systems, of course, the

possible changes mentioned in Section 3.1 — namely, the use of a single-sided cavity

with reduced scattering and absorption losses — would improve the efficiency with

every pass in or out of the cavity.

Other prospects include mapping cavity-generated photons onto the ensemble of

cesium atoms in the lab 2 experiment, thus generating entanglement between the hy-

perfine states of our trapped atom and the atomic ensemble. In this case, however, we

would prefer to have the atom’s hyperfine states entangled with photon polarization

states rather than the Fock states (|0〉, |1〉), as polarization states are more robust

to path losses. Schemes for cavity-QED generation of polarization-entangled photons
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[4, 82, 83] require the ability to prepare the atom in a specific Zeeman sublevel, some-

thing that has been a challenge for us in the past. Chapter 4 describes our recent

progress in Zeeman state preparation of single atoms, while Chapter 5 discusses our

subsequent characterization of Raman transitions between Zeeman levels, including

steps toward polarization entanglement.
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Chapter 4

Atom preparation: optical
pumping and conditional loading

This chapter presents two significant advances in our ability to prepare trapped atoms

within an optical cavity. First, we demonstrate that we can use Raman transitions to

pump a trapped atom into any desired Zeeman state. Second, we introduce a feedback

scheme for conditioning our experiment on the presence of at most one atom in the

cavity. When combined with a new Raman-based cavity loading method which allows

us to trap multiple atoms consistently, this scheme allows us to perform single-atom

experiments after almost every MOT drop.

While there exist well-known methods for optically pumping atoms in free space,

we have struggled to implement them in our lab. These conventional methods rely

on classical fields which address both hyperfine manifolds of the atom, and we have

used the lattice beams as well as linearly polarized light from the side of the cavity for

this purpose. One source of our difficulties may be the Zeeman-dependent AC Stark

shift which the FORT induces in the excited states of the atom [39]; this potentially

leads to mixing of the excited-state Zeeman populations during the optical pumping

process. In addition, recent calculations suggest that diffraction of beams focused

into the cavity from the side results in significant intensity variation along the cavity

axis.

After a series of frustrating optical pumping attempts in the cavity, we realized

that it might be better to study our techniques first in the simpler setting of a MOT.
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We rehabilitated the old lab 1 upper vacuum chamber for this purpose, and under-

graduate Eric Tai is currently working with Dal in lab 9 to explore free-space optical

pumping. In the meantime, we have found an alternative method of preparing atoms

in a specific Zeeman state, presented in Sections 4.1 and 4.2: by driving incoherent

Raman transitions across a specifically chosen frequency range, we can create a tun-

able dark state for population trapping. Not only does our new scheme avoid the

problems associated with side beams and excited-state mixing, but also it no longer

restricts us to the Zeeman levels mF = 0,+F,−F as in conventional optical pumping.

Variation in intracavity atom number is another bugbear of the experiment which

in the past has been only indirectly confronted. The number of atoms loaded into the

FORT after each MOT drop is believed to obey Poissonian statistics over the course of

a data run. Therefore, if we can establish a maximum acceptable level of events with

two or more atoms present, we can simply turn down the loading rate (and thus, the

average atom number N̄ in the Poissonian distribution) until this threshold is met.

(In practice, this is accomplished by attenuating the power in the lattice beams which

cool atoms into the FORT, so that cooling is less effective.) However, we must rely

on an unfortunate trade-off between two-atom contamination and data acquisition

time. For example, 90.8% of all trials in the single photon generation experiment

were discarded because they had no atoms, and the experiment thus required almost

a day of continuous data acquisition; nevertheless, the effects of two-atom events

could still be seen in the photon statistics [16, 39]. In order to decouple these two

parameters, we introduce a real-time measurement of atom number which allows us

to enforce the condition N < 2 before the experiment begins (Sections 4.3 and 4.4).

4.1 Optical pumping via incoherent Raman tran-

sitions

The following section has been adapted from Ref. [32].

A new optical pumping scheme is presented that uses incoherent Raman tran-
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sitions to prepare a trapped cesium atom in a specific Zeeman state within the

6S1/2, F = 3 hyperfine manifold. An important advantage of this scheme over ex-

isting optical pumping schemes is that the atom can be prepared in any of the F = 3

Zeeman states. We describe an experimental implementation of the scheme and show

that a fraction 0.57 ± 0.02 of the total population can be prepared in the desired

state, with the remaining population distributed fairly uniformly among the six other

states. We demonstrate the scheme in the context of cavity quantum electrodynam-

ics, but the technique is equally applicable to a wide variety of atomic systems with

hyperfine ground-state structure.

4.1.1 Introduction

Many experiments in atomic physics rely on the ability to prepare atoms in specific

internal states. For example, spin-polarized alkali atoms can be used to polarize the

nuclei of noble gases [84], to act as sensitive magnetometers [85], and to provide

frequency standards that exploit magnetic-field-insensitive clock transitions [86]. In

the field of quantum information science, internal atomic states can be used to store

and process quantum bits [1, 2, 34, 87, 88] with extended coherence times.

A standard method for preparing an atom in a specific internal state is optical

pumping [89, 90, 91], which involves driving the atom with light fields that couple to

all but one of its internal states; these light fields randomly scatter the atom from one

internal state to another until it falls into the uncoupled “dark” state. Various optical

pumping schemes have been analyzed and demonstrated for alkali atoms [92, 86, 93]

and today are well-established techniques. These schemes rely on dark states that

are set by the polarization of the driving field, and this imposes restrictions on the

possible Zeeman states in which the atom can be prepared. Specifically, one can

prepare the atom in the mF = 0 state by using light that is linearly polarized along

the quantization axis, or in one of the edge states (mF = ±F ) by using light that is

circularly σ±-polarized along the quantization axis.

In contrast, the scheme presented here allows the atom to be prepared in any
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of the Zeeman states within the lowest ground state hyperfine manifold of an alkali

atom, which in our case is the 6S1/2, F = 3 manifold of cesium. The key component

of the scheme is a pair of optical fields that drive Raman transitions between pairs

of Zeeman states |3,m〉 ↔ |4,m〉. We apply a magnetic bias field to split out the

individual Zeeman transitions and add broadband noise to one of the optical fields,

where the spectrum of the noise is tailored such that all but one of the transitions

are driven. The two Zeeman states corresponding to the undriven transition are

the dark states of the system, and we exploit these dark states to perform optical

pumping. We verify the optical pumping by using coherent Raman transitions to

map out a Raman spectrum, which allows us to determine how the atomic population

is distributed among the different Zeeman states; these measurements show that a

fraction 0.57 ± 0.02 of the total population is prepared in the desired state, with

the remaining population distributed fairly uniformly among the six other states.

The capability of driving Raman transitions between hyperfine ground states has

many additional applications, such as state manipulation [94], ground-state cooling

[30, 33, 35, 37], precision measurements [95, 96], and Raman spectroscopy [97]. The

scheme described here shows that this versatile tool can also be used for atomic state

preparation.

We have demonstrated this scheme in the context of cavity quantum electrody-

namics (QED), specifically in a system in which a single atom is strongly coupled to

a high-finesse optical cavity. Cavity QED offers a powerful resource for quantum in-

formation science, and the ability to prepare the atom in a well-defined initial state is

a key requirement for many of the protocols that have been proposed for this system,

such as the generation of polarized single photons [4, 82] and the transfer of Zeeman

coherence to photons within the cavity mode [76]. Conventional optical pumping

to a single Zeeman sublevel has been previously demonstrated within a cavity [83],

but we find our new method to be particularly effective given the constraints of our

system, in which optical access to the atom is limited and we must address the large

multiplicity of cesium sublevels. However, optical pumping via incoherent Raman

transitions has much broader applications beyond the cavity QED setting and can be
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Figure 4.1: Schematic of experiment. (a) View from the side of the cavity. Shown
are the linearly polarized FORT, Raman, and probe beams that drive the cavity, and
the circularly polarized 4 − 4′ lattice beams and linearly polarized 4 − 4′ side beam
that drive the atom. (b) View along the cavity axis. Shown are the 4 − 4′ lattice
beams and the 4− 4′ side beam.

used in a wide variety of atomic systems with hyperfine ground-state structure.

4.1.2 Experimental apparatus

Our system consists of a single cesium atom that is strongly coupled to a high-finesse

optical cavity, as shown in Figure 4.1. The cavity supports a set of discrete modes,

and its length is tuned so that one pair of modes 1 is nearly resonant with the atomic

transition 6S1/2, F = 4 → 6P3/2, F = 5′ at λD2 = 852 nm (see the level diagram

shown in Figure 4.2). The atomic dipole associated with this transition couples to

the electric field of the resonant mode, allowing the atom and cavity to exchange

excitation at a characteristic rate g = (2π)(34 MHz) for the 6S1/2, F = 4,mF = 4→

6P3/2, F = 5′,mF ′ = 5 transition, a rate that is much larger than either the cavity

decay rate κ = (2π)(3.8 MHz) or the atomic decay rate γ = (2π)(2.6 MHz); thus, the

system is in the strong-coupling regime [49].

We hold the atom inside the cavity via a state-insensitive far off-resonance trap

(FORT) [13]. The FORT is produced by resonantly driving a cavity mode at λF =

936 nm with a linearly polarized beam, which creates a red-detuned standing wave

inside the cavity. Each antinode of this standing wave forms a potential well in which

an atom can be trapped; for the experiments described here, the optical power of the

1 Since there are two polarization degrees of freedom, the cavity modes occur in nearly degenerate
pairs.
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Figure 4.2: Level diagram for the D2 line in cesium

FORT beam is chosen such that the depth of these wells is UF = (2π)(45 MHz).

We drive Raman transitions between the F = 3 and F = 4 hyperfine ground-

state manifolds of the atom by adding a second beam, referred to here as the Raman

beam, which drives the same cavity mode as the FORT beam but is detuned from the

FORT by the atomic hyperfine splitting ∆HF = (2π)(9.2 GHz) (this scheme was first

proposed in [19] and was used to perform Raman sideband cooling in [17]). The FORT

and Raman beams are combined on a polarizing beam splitter (PBS) before entering

the cavity, so the Raman beam is linearly polarized in a direction orthogonal to the

polarization of the FORT beam. To stabilize the frequency difference between the

FORT and Raman beams, the external-cavity diode laser that generates the Raman

beam is injection-locked to the red sideband of light that has been picked off from

the FORT beam and passed through an electro-optical modulator (EOM), which is

driven at ∆HF . The FORT and Raman beams form the two legs of a Raman pair and

drive Raman transitions between pairs of Zeeman states |3,m〉 ↔ |4,m〉, where the

quantization axis ẑ is chosen to lie along the cavity axis 2. Typically we use a strong

FORT beam and a weak Raman beam, so the Raman beam does not significantly

alter the FORT trapping potential 3.

2 The FORT-Raman pair generates a Raman coupling between the hyperfine ground states that
is proportional to ~J · (ε̂F × ε̂R), where ~J is the electron angular momentum operator and ε̂F ,ε̂R are
the polarization vectors for the FORT and Raman beams, so in general ∆m = ±1, 0 transitions are
possible [19]. For our system ε̂F × ε̂R = ẑ, so only the ∆m = 0 transitions are driven.

3 The FORT and Raman beams give level shifts UF ∼ Ω2
F /∆ and UR ∼ Ω2

R/∆, and the effective
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Figure 4.3: Ground state spectrum of cesium in the presence of an axial bias field.
The Raman coupling drives transitions between pairs of Zeeman states |3,m〉 ↔
|4,m〉, as indicated by the arrows.

In order to address individual Zeeman transitions, we apply a magnetic bias field

Ba along the cavity axis. As shown in Figure 4.3, this axial field shifts the |3,m〉 ↔

|4,m〉 transition by

δ(|3,m〉 ↔ |4,m〉) = ωBm, (4.1)

where

ωB ≡ (g4 − g3)µBBa = (2π)(700 kHz/G)Ba, (4.2)

and g4 = 1/4, g3 = −1/4 are the Lande g-factors for the F = 4 and F = 3 ground-

state hyperfine manifolds. For the experiments described here, we typically set the

axial bias field such that ωB ' (2π)(910 kHz).

The strong atom-cavity coupling allows us to to determine whether the atom is

in the F = 3 or F = 4 hyperfine manifold by driving the cavity with a 100µs pulse

of resonant 4− 5′ probe light, as described in [30]. If the atom is in F = 4, it couples

to the cavity and blocks the transmission of the probe beam, while if the atom is in

F = 3, it decouples from the cavity, and the probe beam is transmitted. Using this

technique, we can determine the hyperfine ground state of the atom with an accuracy

Rabi frequency for the Raman transitions driven by the FORT-Raman pair is ΩE ∼ ΩFΩR/∆,
where ΩF,R are the Rabi frequencies of the FORT and Raman beams and ∆ is the detuning from
atomic resonance. Thus, the ratio of the level shifts is UR/UF ∼ (ΩE/UF )2 ∼ 10−5 for the typical
values UF = (2π)(45 MHz), ΩE = (2π)(120 kHz).
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of ∼ 98% for a single 100µs measurement interval.

Atoms are delivered to the cavity by releasing a magneto-optical trap located a

few millimeters above the cavity, and the falling atoms are loaded into the FORT

by cooling them with 4 − 4′ lattice light. This lattice light consists of two pairs of

counter-propagating beams in the σ+− σ− configuration, which are applied from the

sides of the cavity. We ensure that only one atom is trapped in the FORT by applying

the Raman beam and driving the cavity with a resonant 4−5′ probe; this combination

gives an effect analogous to that in [18], which allows us to determine the number of

atoms in the cavity based on the amount of 4− 5′ light that is transmitted.

4.1.3 Coherent and incoherent Raman transitions

If the FORT and Raman beams are both monochromatic, then they drive coherent

Raman transitions between pairs of Zeeman states |3,m〉 ↔ |4,m〉, and the atomic

populations oscillate between the two states in each pair. The effective Rabi frequency

for the |3,m〉 ↔ |4,m〉 transition is

ΩE(|3,m〉 ↔ |4,m〉) = Ω0 (1−m2/16)1/2, (4.3)

where Ω0 is set by the power in the FORT and Raman beams [19]. For the ex-

periments described here, the powers in these beams are chosen such that that

Ω0 ' (2π)(120 kHz). The Raman detuning for the FORT-Raman pair is given by

δR = ωF − ωR − ∆HF , where ωF and ωR are the optical frequencies of the FORT

and Raman beams, which means that the effective detuning for the |3,m〉 ↔ |4,m〉

transition is

δE(|3,m〉 ↔ |4,m〉) = δR − ωBm. (4.4)

We can also drive incoherent Raman transitions by using a monochromatic FORT

beam and a spectrally broad Raman beam, where the spectral width is typically

∼ 10 MHz. In contrast to coherent Raman transitions, in which the atom undergoes



61

coherent Rabi oscillations, for incoherent Raman transitions the atomic population

decays at a constant rate from |3,m〉 → |4,m〉 and from |4,m〉 → |3,m〉. In Section

4.1.7, we show that these decay rates are proportional to S(∆HF +ωBm), where S(ω)

is the power spectrum of a beat note formed between the FORT and Raman beams.

4.1.4 Measuring the population distribution

Given an initial state of the atom in which the entire population lies in the F = 3

manifold, we can use coherent Raman transitions to determine how the population

is distributed among the various Zeeman states. To perform this measurement we

prepare the atom in the desired initial state, apply a coherent Raman pulse of fixed

duration, Rabi frequency, and Raman detuning, and then drive the cavity with a

resonant F = 4 → F = 5′ probe beam to determine if the atom was transferred to

F = 4. By iterating this process, we determine the probability p4 for the atom to

be transferred by the Raman pulse, and by repeating the probability measurement

for different Raman detunings δR we can map out a Raman spectrum p4(δR). For

the Raman spectra presented here, the Raman pulses have Rabi frequency Ω0 =

(2π)(120 kHz) and duration 25µs. This is long enough that the Rabi oscillations

decohere, and the Raman spectrum just records the Lorentzian envelope for each

Zeeman transition.4 Thus, when the |3,m〉 ↔ |4,m〉 Zeeman transition is resonantly

driven by the Raman pulse, roughly half the population that was initially in |3,m〉 is

transfered to |4,m〉.

As a demonstration of this technique, Figure 4.4 shows a Raman spectrum for

an initial state with comparable populations in all of the F = 3 Zeeman states. To

prepare this state, we optically pump the atom to F = 3 by alternating 7 pulses of

resonant F = 4→ F = 4′ lattice light with 7 pulses of resonant F = 4→ F = 4′ side

light, where each pulse is 300 ns long. The beams that deliver the lattice and side

light are shown in Figure 4.1.

4Subsequent measurements (Section 5.2.2) have shown that decoherence times are longer over a
certain frequency range on the red side of each transition. Pulses of 25µs are in fact not quite long
enough for decoherence at these special detunings, but the Lorentzian assumption still holds in the
context of a broad scan.
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Figure 4.4: Raman spectrum for a random initial state. Shown is the transfer
probability p4 vs. Raman detuning δR: the points are the experimental data, the
curve is a fit of p4(δR), as given by equation (4.5), and the vertical green lines indicate
the predicted frequencies δ(|3,m〉 ↔ |4,m〉) for individual Zeeman transitions.

To determine the population p3,m in the Zeeman state |3,m〉, we fit a sum of

Lorentzians, one for each Zeeman transition, to the experimental data:

p4(δR) = pb + (1/2)
∑
m

(1 + (δR − ωBm)2/(1−m2/16) Ω2
0)−1 p3,m, (4.5)

where pb is a constant background. We fit the Zeeman state populations, the Rabi

frequency Ω0, and the frequency ωB that characterizes the strength of the axial bias

field, and perform an independent measurement to determine the background prob-

ability pb = 0.006. The fitted value of Ω0 agrees to within 14 % with the value we

would expect based on the measured optical powers in the FORT and Raman beams,

and the fitted value of ωB agrees to within 5 % with the value we would expect based

on the known axial coil current and geometry. As a consistency check, we sum the

fitted populations and obtain the result 1.10±0.03, in reasonable agreement with the

expected value of 1.

4.1.5 Optical pumping scheme

We can prepare the atom in a specific Zeeman state by using a Raman beam whose

spectrum is tailored to drive incoherently all but one of the Zeeman transitions. As



63

-80

-70

-60

-50

-40

P
i (

ν)
 [d

B
m

]

-6 -4 -2 0 2 4 6

ν [MHz]

(a)

-80

-70

-60

-50

-40

P
c 
(ν

) 
[d

B
m

]

-8 -6 -4 -2 0 2 4 6 8

ν [MHz]

(b)

Figure 4.5: (a) Power spectrum of noise used for pumping into |3, 0〉. (b) Power
spectrum of coherent signal used for driving coherent Raman transitions with Ω0 =
(2π)(120 kHz). Both curves are obtained by combining the FORT and Raman beams
on a photodetector and measuring the spectrum of the photocurrent, mixed down
from ∆HF = 9.2 GHz; shown is the RF power in a 3 kHz bandwidth vs. detuning
from ∆HF .

an example, Figure 4.5a shows the power spectrum of the noise used for pumping

into |3, 0〉. This graph was obtained by measuring the power spectrum of a beat note

formed between the FORT and Raman beams by mixing them on a photodetector

with a non-polarizing beam splitter. For comparison, Figure 4.5b shows the power

spectrum for a monochromatic Raman beam tuned to Raman resonance, as would be

used for driving coherent Raman transitions.

Comparing the noise spectrum shown in Figure 4.5a to the Raman spectrum

shown in Figure 4.4, we see that the noise drives incoherent Raman transitions from

|3,m〉 ↔ |4,m〉 for m 6= 0, but because of the notch around zero detuning, the

|3, 0〉 ↔ |4, 0〉 transition is not driven. We optically pump the atom into |3, 0〉 by first

driving incoherent Raman transitions for 10µs, then pumping the atom to F = 3

using the method discussed in Section 4.1.4, and iterating this sequence 40 times. It

is straightforward to modify this procedure so as to pump into the |3,m〉 Zeeman

state for any m; we simply shift the notch in the noise so that it overlaps with the

|3,m〉 ↔ |4,m〉 transition.

To characterize the optical pumping, we first pump the atom into a specific Zeeman

state and then measure the Raman spectrum as described in the preceding section.
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Figure 4.6: (a) Raman spectrum for optical pumping into |3, 0〉. (b) Raman spectrum
for optical pumping into |3, 1〉. Raman spectrum for a random initial state. Shown is
the transfer probability p4 vs. Raman detuning δR: the points are the experimental
data, the curve is a fit of p4(δR), as given by equation (4.5), and the vertical green
lines indicate the predicted frequencies δ(|3,m〉 ↔ |4,m〉) for individual Zeeman
transitions.

Figure 4.6 shows Raman spectra measured after pumping into (a) |3, 0〉 and (b)

|3, 1〉. We find that the fraction of the atomic population in the desired state is

0.57± 0.02 for pumping into |3, 0〉 and 0.57± 0.02 for pumping into |3, 1〉, where the

remaining population is roughly equally distributed among the other Zeeman states

(these numbers are obtained by fitting equation (4.5) to the data, as described in

Section 4.1.4). Summing the fitted populations in all the Zeeman states, we obtain

the value 1.02± 0.04 for (a) and 1.08± 0.04 for (b), in reasonable agreement with the

expected value of 1.

To generate the Raman beam used in Figure 4.5a, we start with an RF noise

source, which produces broadband noise that is spectrally flat from DC to ∼ 10 MHz.

The noise is passed through a high-pass filter at 500 kHz and a low-pass filter at 5 MHz,

where both filters roll off at 60 dB per octave. The filtered noise is then mixed against

an 85 MHz local oscillator, and the resulting RF signal is used to drive an acousto-

optical modulator (AOM) that modulates a coherent beam from the injection-locked

Raman laser. The first-order diffracted beam from the AOM forms a Raman beam

with the desired optical spectrum. Note that previous work has demonstrated the use

of both synthesized incoherent laser fields [98, 99], such as that used here, as well as
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the noise intrinsic to free-running diode lasers [100, 101] to resonantly probe atomic

spectra.

Although the scheme presented here relies on incoherent Raman transitions, it is

also possible to perform optical pumping with coherent Raman transitions. The basic

principle is the same: we simultaneously drive all but one of the Zeeman transitions,

only instead of using a spectrally broad Raman beam, we use six monochromatic

Raman beams, where each beam is tuned so as to resonantly drive a different tran-

sition. We have implemented such a scheme, and found that it gives comparable

results to the incoherent scheme described above, but there are two advantages to the

incoherent scheme. First, it is simpler to generate a Raman beam with the necessary

spectral properties for the incoherent scheme. Second, when coherent Raman tran-

sitions are used, the six frequency components for the Raman beam must be tuned

to resonance with their respective transitions, and hence are sensitive to the value of

the axial magnetic field. When incoherent Raman transitions are used, however, the

same Raman beam can be used for a broad range of axial field values.

4.1.6 Conclusion

We have proposed a new scheme for optically pumping atoms into a specific Zeeman

state and have experimentally implemented the scheme with cesium atoms in a cavity

QED setting. An important advantage over existing schemes is that atoms can be

prepared in any of the Zeeman states in the lower hyperfine ground state manifold.

We have measured the effectiveness of the optical pumping, and have shown that a

fraction ∼ 0.57 of the atomic population can be prepared in the desired Zeeman state.

Some possible factors that could be limiting the effectiveness of the optical pumping

include fluctuating magnetic fields transverse to the cavity axis, misalignment of the

cavity axis with the axial bias field, and slow leaking out of the dark state due to

scattering from background light. We are currently investigating these factors.

The scheme presented here operates on a fundamentally different principle from

existing optical pumping schemes, in that it relies on incoherent Raman transitions
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to create an atomic dark state. Raman transitions have many different applications

in atomic physics, so there are often independent reasons for incorporating a system

for driving Raman transitions into an atomic physics laboratory; our scheme shows

that such a system can also be applied to the problem of atomic state preparation.

The scheme should serve as a useful tool for experiments in atomic physics, both in

a cavity QED setting and beyond.

4.1.7 Transition rate for incoherent Raman transitions

As described in Section 4.1.3, we drive incoherent Raman transitions between pairs

of Zeeman states |3,m〉 ↔ |4,m〉 by using a monochromatic FORT beam and a spec-

trally broad Raman beam. For incoherent Raman transitions the atomic population

decays at a constant rate from |3,m〉 → |4,m〉 and from |4,m〉 → |3,m〉, and in this

section we calculate these decay rates.

We will consider a single Zeeman transition |3,m〉 ↔ |4,m〉, so we can treat the

system as an effective two-level atom with ground state g ≡ |3,m〉 and excited state

e ≡ |4,m〉, where the energy splitting between g and e is ωA ≡ ∆HF + ωBm. The

FORT-Raman pair drives this effective two-level atom with broadband noise, which

we can approximate as a comb of classical fields with optical frequencies ωk and Rabi

frequencies Ωk. Let us assume that we start in the ground state g. If we only consider

the coupling of the atom to field k, then the equation of motion for the excited state

amplitude ce is

iċe =
Ωk

2
e−iδkt cg, (4.6)

where δk ≡ ωk − ωA is the detuning of the field from the atom. At small times the

population is almost entirely in the ground state, so we can make the approximation

cg = 1 and integrate equation (4.6) to obtain

ce(t) =
Ωk

2δk
(e−iδkt − 1). (4.7)
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Thus, the transition rate from g to e for a single frequency ωk is

γk =
|ce(t)|2

t
=
π

4
tΩ2

kD(δkt/2), (4.8)

where

D(x) ≡ sin2 x

πx2
. (4.9)

The total decay rate is obtained by summing the decay rates for all the fields in the

comb:

γ =
∑
k

γk =
π

4
t
∑
k

Ω2
kD(δkt/2). (4.10)

To evaluate this expression we need to know the distribution of Rabi frequencies Ωk.

This information can be obtained by forming a beat note between the FORT and

Raman beams on a photodetector, and measuring the power spectrum S(ω) of the

photocurrent using a spectrum analyzer. Let us first consider this measurement for a

monochromatic Raman beam, and then generalize to a spectrally broad Raman beam.

If both the FORT and Raman beams are monochromatic, with optical frequencies

ωF and ωR, then the resulting photocurrent i(t) is given by

i(t) = iF + iR + 2η cos((ωF − ωR)t)
√
iF iR, (4.11)

where iF and iR are the cycle-averaged photocurrents for the FORT and Raman beams

taken individually and η is the heterodyne efficiency. Thus, the power spectrum of

the photocurrent has a spike at the difference frequency ∆ ≡ ωF − ωR:

Sc(ω) = Pc δ(ω −∆), (4.12)

where the integrated power Pc of the spike is proportional to iF iR. If the difference

frequency ∆ is tuned to Raman resonance (∆ = ωA), then the FORT-Raman pair
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drives coherent Raman transitions with a Rabi frequency Ωc that is proportional to
√
iF iR, so

Ω2
c = αPc, (4.13)

where α is a constant that depends on various calibration factors.

Now consider the case of a spectrally broad Raman beam, which results in a pho-

tocurrent with power spectrum Si(ω). The effective Rabi frequency Ωk corresponding

to comb line k is given by

Ω2
k = αSi(ωk) δω, (4.14)

where δω is the frequency spacing between adjacent comb lines. Substituting this

result into equation (4.10), and replacing the sum with an integral, we obtain

γ =
π

4
αt

∫
Si(ω)D((ω − ωA)t/2) dω. (4.15)

If the power spectrum near ωA is flat over a bandwidth ∼ 1/t, then we can approxi-

mate D as a delta function and perform the integral:

γ =
π

2
αSi(ωA). (4.16)

It is convenient to use equation (4.13) to eliminate the calibration factor α:

γ =
π

2

Si(ωA)

Pc
Ω2
c . (4.17)

The spectrum analyzer trace given in Figure 4.5a displays the power spectrum in

terms of the power Pi(ν) ' 2πB Si(ω) in a bandwidth B = 3 kHz, so we can also

write this as

γ =
1

4

Pi(ωA/2π)

Pc

Ω2
c

B
=

1

4
(1−m2/16)

Ω2
0

B

Pi((∆HF + ωBm)/2π)

Pc
, (4.18)
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where we have substituted Ωc = (1−m2/16)1/2 Ω0 and ωA = ∆HF + ωBm.

We can calculate the time evolution of the atomic populations using rate equations.

It is straightforward to show that the decay rate e → g is also given by γ, and from

the rate equations one can show that the excited state population is

pe(t) =
1

2
(1− exp(−2γt)). (4.19)

We can calculate the decay rates for the noise spectrum shown in Figure 4.5. For

this noise spectrum the power Pi(ν) has roughly the same value P̄i at the frequencies of

all the m 6= 0 Zeeman transitions, so we can write the decay rates for these transitions

as

γ(|3,m〉 → |4,m〉) = γ(|4,m〉 → |3,m〉) = (1−m2/16) Γ, (4.20)

where

Γ ≡ (1/4)(Ω2
0/B)(P̄i/Pc). (4.21)

From the power spectrum for the noise shown in Figure 4.5a we have that P̄i =

−63 dBm, and from the power spectrum for the coherent signal shown in Figure

4.5b we have that Pc = −36 dBm, where the corresponding Rabi frequency is Ω0 =

(2π)(120 kHz). Substituting these values into equation (4.21), we obtain Γ = 0.084µs−1.

4.2 Optimizing optical pumping

The discussion in the previous section centers on an example in which a magnetic

field is applied along the cavity axis, so that only ∆m = 0 Raman transitions are

permitted. It is important to stress, however, that Raman-based optical pumping also

works for an arbitrary applied field, in which ∆m = ±1 transitions are also possible.

The point is that given an applied field of any direction and magnitude, it will have

an associated Raman spectrum which reflects transitions between different pairs of
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Figure 4.7: Rate of population transfer for incoherent Raman transitions: atoms are
prepared in F = 3 and then driven with the notched incoherent Raman spectrum of
Figure 4.5(a), in the presence (blue) or absence (red) of a magnetic bias field. The
probability to transfer an atom to F = 4 is shown as a function of pumping time.

Zeeman levels. Based on this Raman spectrum, one can tailor a noise spectrum such

as 4.5(a) which will address transitions between all but one Zeeman level.

In implementing our optical pumping scheme, we took several steps to optimize

the relevant parameters. First, we characterized the preparation of atoms in F = 3

via lattice light and linearly polarized side light; we found that by using short (300 ns)

interleaved pulses and resonant light, we could transfer 99.9% of the population to

the F = 3 manifold in 10 µs.5 We next measured the rate at which the incoherent

Raman spectrum transferred population from F = 3 to F = 4. This is shown in

Figure 4.7, where atoms are prepared in the F = 3 manifold and then subjected to

incoherent Raman pulses of varying duration, either in the presence or absence of a

5Switching between two fields with different polarizations is necessary to avoid creating a perma-
nent dark state in the F = 4 manifold. An alternate but slightly less efficient scheme is to drive both
lasers continuously but with a small relative detuning; the detuning then sets a precession rate for
the dark state. In the case of an applied magnetic field, only one F = 4→ F ′ = 4 laser is necessary,
since now the atom’s dark state changes as it travels through the field.
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bias field. With the magnetic fields nulled, we expect that the the notched Raman

spectrum will be unable to drive any resonant transitions between Zeeman states, and

the slow leakage we observe into F = 4 is probably due to off-resonant driving from

the edges of the notch. In the presence of a bias field, the Raman pulses should be

able to address atoms in every Zeeman level but |3, 0〉 and to transfer population until

an equilibrium is reached. We see that this population transfer takes place with time

constant τ = 20 µs and that it asymptotes to a state in which approximately 45% of

the population is in F = 4; presumably, another 45% resides in |3,mF 6= 0〉 and the

final 10% remains in |3, 0〉. The measured value of τ is in reasonable agreement with

the calculated value Γ = 0.084µs−1 in Section 4.1.7, which should be weighted by the

initial distribution of atoms among Zeeman manifolds as in equation (4.20).

The time constants for these two processes — repumping to F = 3 and incoherent

Raman transfer to |4,mF 6= 0〉 — allowed us to design a series of pulses in which

population is shuttled back and forth between the two hyperfine manifolds while

gradually accumulating in |3, 0〉. In order to optimize both the pulse durations and

the number of iterations, we measured the final population transferred to |3, 0〉 as a

function of these parameters; we settled on 10 µs of incoherent Raman light followed

by 4.2 µs of F = 4→ F ′ = 4 repump fields (7 cycles of paired 300 ns pulses), repeated

40 times. Thus, the time required for optical pumping of each atom is roughly 600

µs.

We also investigated the fraction of population that we could prepare in |3, 0〉

as a function of the applied axial magnetic field. Recall that our incoherent Raman

spectrum has a low-frequency cutoff at (2π)(500 kHz) and a high-frequency cutoff at

(2π)(5 MHz). In the limit of very small axial fields, all of the ∆m = 0 transitions are

contained within the low-frequency notch; we expect that the Raman spectrum will

be unable to transfer population to F = 4, and optical pumping will be ineffective.

However, also for small applied fields, the |3, 0〉 → |4, 0〉 Raman pulse that we use

to measure population should in fact address all Zeeman states. Thus, as we see

in Figure 4.8, the measured population transfer is very high at the smallest field

values. As the ∆m = 0 transitions with m 6= 0 are pushed out of resonance with the
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Figure 4.8: We measure the success of our Raman optical pumping protocol as a
function of axial magnetic bias field. After optical pumping, we apply a Raman pulse
to transfer population from |3, 0〉 to |4, 0〉, followed by state detection. For small
fields, the pulse addresses all Zeeman levels, while at larger values, the number of
Zeeman transitions inside the Raman envelope is field-dependent.

|3, 0〉 → |4, 0〉 detection pulse, this value declines steeply. It then rises again for field

splittings greater than (2π)(0.5 MHz), as one by one, Raman transition frequencies

are pushed outside the notch and can now be driven by the incoherent Raman fields.

Finally, at roughly (2π)(1
3
× 5 MHz), the |3,±3〉 → |4,±3〉 transitions are pushed

past the high-frequency cutoff and again out of range of the incoherent Raman; here

the transfer probability begins again to decline. Based on this measurement, we set

our axial field to generate a splitting of (2π)(910 kHz) between neighboring Zeeman

levels. However, it is clear that optical pumping should be effective over ∼ 1 MHz

of field values, and we could of course use different filters in order to access a wider

range.

Despite our efforts at optimization, we are able to transfer at best 60% of atoms

into a target Zeeman state. We remain unsure as to what limits our pumping effi-
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ciency, although we have narrowed the list of possible suspects. We have ruled out

scattered light from stray fields, as we have seen that atoms pumped into F = 3 only

leak into F = 4 very slowly (Figure 4.7). The small peak at 85 MHz in the power

spectrum shown in Figure 4.5(a), due to carrier frequency leakage through our RF

mixer, is also not a cause for concern; we have confirmed that the optical pumping

efficiency does not change when we shift the center frequency of the spectrum out of

resonance with the |3, 0〉 → |4, 0〉 transition. We also have replaced the 500 kHz low-

frequency notch with one at 100 kHz with no observed change in pumping efficiency,

suggesting that off-resonant excitation of |3, 0〉 → |4, 0〉 due to the finite notch width

is not the problem. Remaining candidates include fluctuating magnetic fields and the

finite suppression (∼ 20 dB) of Raman power which the notch provides.

A final unresolved question concerns the timing of our optical pumping scheme.

We would expect that atoms would be pumped to the dark state |3, 0〉 by applying

the incoherent Raman pair and the F = 4→ F ′ = 4 repumping light simultaneously.

However, in practice we have found that this is much less successful than the pulsed

scheme and that any overlap between the Raman and repump pulses degrades the

scheme’s effectiveness.

4.3 Trapping and detecting multiple atoms

4.3.1 Cavity loading

Through mid-2007, we relied on optical lattice Sisyphus cooling to load atoms into

the FORT after their release above the cavity [13]. The details of this method are as

follows: 30 ms after the end of polarization-gradient cooling in the lower MOT, when

we expect the atoms to be falling through the cavity mode, we turn on F = 3→ F =

3′ and F = 4 → F = 4′ lattice beams for 5 ms, where both beams are blue-detuned

by 10 MHz. The best observed loading probabilities for ≥ 1 atoms are ∼ 60% with

this technique, in which case (assuming Poissonian loading statistics) ∼ 30% of all

loading attempts would consist of single atoms. We hypothesize that one of the two
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lattice beams provides Sisyphus cooling [67], while the other acts as a repump (and

thus in principle does not need to be in the standing-wave lattice configuration). In

experiments where the cavity is tuned to the F = 4 → F = 4′ transition, we have

found that we cannot load efficiently using F = 4 → F = 4′ lattice light; we believe

that this is due to resonant scattering into the cavity mode. Instead, in this case we

employ the F = 3→ F = 3′ lattice beam in conjunction with a resonant probe beam

along the cavity axis, which presumably repumps the atoms with less scatter-induced

heating.

We have recently found that by instead using the FORT-Raman pair during the

5 ms loading window in conjunction with the F = 4 → F = 4′ lattice beam, over

99% of all MOT drops result in cavity loading. (Note that as the intracavity FORT

is always present, the beams we turn on for loading are the Raman beam and the

F = 4 → F = 4′ lattice.) In contrast with the previous method, which required a

dense, bright lower MOT, here we observe excellent loading even when the lower MOT

quality is visibly poor. Furthermore, the measurements described below confirm that

we are loading multiple atoms almost every time.

We hypothesize that by replacing the F = 3→ F = 3′ beam with Raman transi-

tions, we are still able to recycle the atom to F = 4 while avoiding the spontaneous

emission inherent to a F = 3 → F = 3′ repump; the F = 4 → F = 4′ lattice

beam then provides the necessary Sisyphus cooling. Repumping via Raman transi-

tions thus results in more efficient atom cooling, because spontaneous emission was

previously heating the atom throughout the cooling process. Loading efficiency is

found to increase as a function of Raman beam intensity, presumably because it al-

lows faster recycling, and we currently use a Rabi frequency of 2.2 MHz for atom

loading. We have explored loading efficiency of the Raman scheme as a function of

various parameters, as discussed in Section 4.3.4.

Despite the significant improvement in loading efficiency, we do not observe direct

loading from the upper MOT (with the timing sequence adjusted appropriately, so

that the cooling beams address the atoms while they are within the cavity). In the

process of setting up the lab 11 experiment, Joe Buck and Jason McKeever observed
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transits from atoms dropped from both the upper and lower MOTs, with narrower

transits corresponding to the faster velocities of the upper MOT atoms [102], but we

no longer see upper MOT transits. Presumably this effect is highly sensitive to the

position of the upper MOT with respect to the gap between the cavity mirrors, as

well as to the forces which the falling atoms experience as the magnetic fields are

ramped off.

4.3.2 Raman-based determination of atom number

The “Raman repump” technique outlined above can be used not only to load atoms

into the cavity but also to determine the number of atoms present in real time. In

order to explain this measurement, we first consider the “by the numbers” effect

originally demonstrated in Ref. [18]. In that experiment, the cavity was tuned to the

F = 4 → F = 4′ transition and probed continuously with a resonant on-axis beam

in tandem with a F = 3 → F = 3′ lattice beam. While the vacuum-Rabi splitting

tells us that the presence of a single two-level atom in our strongly coupled cavity will

completely suppress the transmission of a resonant probe beam, the two-level model

is insufficient for a non-cycling transition such as F = 4→ F = 4′. An atom may be

in the F = 4 manifold, in which case it participates in the cavity-QED interaction,

or it may be in F = 3, in which case the probe laser sees an empty cavity. With the

introduction of a lattice beam as a repump, the atom moves back and forth rapidly

between these two possibilities, and over timescales & 1 ms, the cavity transmission

represents a time-average of high (F = 3) and low (F = 4) values. When N > 1

atoms are present, there is a greater probability that at least one atom will be in

F = 4 and that transmission will be suppressed. Thus, as atoms leave the cavity

one by one, we observe a climbing “stair-step” transmission with distinct plateaus

corresponding to atom number.

In addition to the initial F = 4→ F = 4′ measurements [18], we have subsequently

observed this “by the numbers” effect with the cavity and probe tuned to the F =

4→ F = 3′ transition (though with worse signal-to-noise and shorter atom lifetimes
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in the cavity). Jason suggested in his thesis [39] that this technique could be used to

prepare one atom deterministically in the cavity, either by actively discarding cases

where N > 1 or by heating out the additional atoms. Unfortunately, most of our

experiments to date have taken place with the cavity tuned to the F = 4 → F ′ = 5

resonance in order to exploit the physics of the cycling transition, whereas “by the

numbers” relies on a non-cycling transition for atom detection.

Raman transitions between the cesium ground states allow us to have our cake

and eat it too, or in this case, to implement atom number determination on a cycling

transition. The key concept here is that while the trapped atoms would ordinarily

remain in the F = 4 manifold, we can use the FORT-Raman combination to cycle

each atom between F = 4 and F = 3 at the Rabi frequency of the Raman pair.

As in the original experiment, the probability to have at least one atom in F = 4

increases with atom number. The result is the same “telegraph signal” of high (all

atoms in F = 3) and low (one or more atoms in F = 4) values, which we observe as

an averaged stair-step pattern. One might imagine that the atom-number plateaus

would be noisy due to this averaging; in Ref. [18], their smoothness is due to the

fact that the timescale of decay to F = 3 and recycling to F = 4 (∼ γ−1, ten of

nanoseconds), is much shorter than the lifetime of atoms in the cavity (hundreds of

milliseconds), and that the data are filtered by the heterodyne detection bandwidth

of 1 kHz. For Raman-based atom number determination, cycling between atomic

levels also needs to be fast with respect to the number determination time window.

In practice, as for atom loading, we operate with a Rabi frequency of 2.2 MHz. As we

have replaced heterodyne detection with photon counting, we bin the photon counts

on a time frame that is short compared with atom lifetimes in the cavity.

Figure 4.9 shows typical traces from a data set of 1,200 MOT drops in which the

FORT-Raman pair and a blue-detuned F = 4 → F = 4′ lattice were used to load

atoms into a cavity tuned to the F = 4→ F ′ = 5 transition, followed by 280 ms of the

Raman pair in conjunction with a probe resonant with the cavity. Photon counts are

binned in 1 ms intervals for the data presented. Here we observe the expected stair-

step pattern and well-defined plateaus for single atoms, suggesting that tdetect = 1 ms
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Figure 4.9: Two sample traces from a data set of 1,200 MOT drops: the FORT-
Raman pair and F = 4→ F = 4′ lattice are used to load multiple atoms into a cavity
on the F = 4 → F = 5′ transition, followed by 280 ms of Raman and a resonant
probe beam on the cavity axis. Photon counts are binned in 1 ms intervals.

should be sufficient in order to determine N ≤ 1.

Figure 4.10 shows a histogram of counts per 1 ms bin for the entire data set.

Because the histogram is dominated by multi-atom (highly suppressed) events, the

second plot shows a closer view of the y-axis near the origin in order to resolve zero-,

one-, and two-atom peaks clearly. We observe that the one-atom peak is easy to

distinguish from the zero-atom and two-atom cases, and that it is also plausible that

we could separate out two-atom events. More quantitatively, we can fit the data to a

sum of Gaussians corresponding to photon count distributions for each atom number,

as shown in Figure 4.11; the center of each Gaussian is then the mean number of

counts for a given atom number plateau. (We initially attempted to fit the data as

a sum of Poissonians, but it was clear that the distribution widths were greater than
√
N fluctuations alone could explain. Other contributions to the spread may include

noise on the cavity lock and variation in the probe intensity over time.)

Note that the mechanism which determines the level spacing between N -atom

plateaus is different in the lattice (non-cycling) and Raman (cycling) cases. For the

lattice, the intensity of an N -atom plateau is given by I0∑
(k!)2yk , where the sum is from

k = 0 to N and I0 is the intensity of the zero-atom plateau. Here y is the ratio γ3→4

γ4→3
,
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Figure 4.10: Histogram of photon counts per 1 ms time bin for the data set of Figure
4.9, with 280 ms of continuous Raman and probe beams. The data are shown twice,
with a smaller range in the second plot.

where γn→m is the rate at which one atom is transferred from level n to level m. In

Ref. [18], these two rates could in principle be controlled independently by adjusting

the intensities of the lattice and probe beams. In the current experiment, however,

the probability that we will measure an atom driven by Raman transitions to be in

F = 3 is simply 1
2
, and the probability to find N atoms in F = 3 is (1

2
)N . Thus we

expect I1 = I0
2

, I2 = I0
4

and in general,

IN =
I0

2N
. (4.22)

The fits in Figure 4.11 are roughly consistent with this expectation, although we have

observed day-to-day variation of ∼ 20% in the peak ratios. For the purposes of atom

discrimination, we are only concerned with setting a strict enough lower bound so

that the case N ≥ 2 is always excluded.

In Figure 4.12, the histogram data of Figure 4.10 are separated out by time bin.

This plot displays the same basic features as Figure 3 of Ref. [18], namely (a) cluster-

ing of data in well-defined atom-number plateaus, and (b) time-dependent evolution

of the plateaus from N ≥ 3 to N = 0 as atoms leave the trap. In Ref. [18], we

observe a clear departure of atoms from one plateau to the next, and by the end

of the probing interval, the trap population resides entirely in the N = 0 plateau.
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f(x) = Σ a*exp(-((x-b)/c)2)

a1 = 3480
b1 =335
c1 = 32

a2 = 361
b2 = 184
c2 = 25

a3 = 257
b3 = 81
c3 = 21

a4 = 238
b4 = 38
c4 = 15

Figure 4.11: Fit of the data in Figure 4.10 to a sum of four Gaussians. The data have
been truncated for small count rates in order to consider atom number N ≤ 3.

Here, in contrast, while some traces show the expected progression through N = 1

to N = 0, there are many cases for which N ≥ 3 even at the end of the probing

interval. The distribution of counts around these high-atom-number events narrows

as a function of time, which might suggest that poorly coupled atoms leave the trap

quickly while well-coupled ones remain. Furthermore, the data at late time intervals

(t > 150 ms) indicate a direct progression from the multi-atom case to N = 0; that is,

atoms may sometimes leave in rapid succession due to a “catastrophic event” rather

than independently.

We can further explore the time dependence of atom populations by assigning

approximate atom-number boundaries to the histogram data. We have seen that the

N = 0 plateau (Figure 4.11) is centered at 335 counts per ms bin and that we expect

this plateau value to scale as 2−N . We define four regions as follows:
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Figure 4.12: Photon count rate histograms (y axis) as a function of time bin (x axis)
for the data set of Figure 4.9

Atom number Min. counts per bin Max. counts per bin

0 3
4
∗ 335

1 3
8
∗ 335 3

4
∗ 335

2 3
16
∗ 335 3

8
∗ 335

≥ 3 3
16
∗ 335

By summing the number of counts within each region for every time bin, we can then

plot atom populations as a function of time, as shown in Figure 4.13. Again, we find

a point of comparison in the equivalent plot (Figure 4) of Ref. [18]. For that data

set, the N ≥ 3 population exhibited a steady decay from its initial value at t = 0.

The N = 2 and N = 1 populations first peaked, then decayed, with the N = 2 peak

occurring prior to that of N = 1. The N = 0 population grew steadily over time,

while the other three populations had almost reached zero by the end of the interval.

In our current Raman data set, we begin almost every interval with N ≥ 3 atoms and

rarely with only two. After 250 ms, the most likely case is that we have no atoms,
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Figure 4.13: Time evolution of the N -atom populations for for the data set of Figure
4.9

but the second most likely case is that we still have N ≥ 3 atoms. Furthermore,

despite the continual departure of atoms from the N ≥ 3 region, there is no growth

in the N = 1 and N = 2 populations after early times. Only the N = 0 population is

increasing, and its growth can not be accounted for solely by the departure of atoms

from N = 1.

4.3.3 Simulations

Russ has written a Matlab simulation in which N atoms (on average, with Poissonian

statistics) are loaded into the trap, and at any time after loading, there is a fixed

probability for an atom to leave. Transmission is given by equation (4.22), with

Poissonian noise added. While the time dependence found in these simulations mirrors

the observations of Ref. [18], we are not able to adjust the simulation parameters

to account for the long multi-atom dwell times we observe in Figures 4.12 and 4.13.

However, we do observe qualitative agreement with a second simulation, in which

the likelihood for atoms to leave the cavity is described by a simple “catastrophic
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event” model; that is, a model in which the initial departure of one atom increases

the probability for all other atoms to leave.

A physical basis for such catastrophic events may be the variation in g over the

range of possible FORT wells. Atoms in the best wells couple strongly to the cavity

and completely suppress a resonant probe beam, while atoms in poorly coupled wells

allow some resonant light from the probe to enter the cavity, and this intracavity

field can now heat the atoms out of the trap. We can imagine a scenario in which

multiple atoms are trapped in the FORT over a distribution of wells: if only one atom

is well-coupled, then it functions as a gatekeeper. Once it leaves, however, probe light

enters the cavity, initiating a cascade in which the remaining atoms leave rapidly.

4.3.4 Optimizing atom loading

Atom loading takes place within a 5 ms window during which we apply both lattice

light from the side of the cavity and Raman beams along the cavity axis. Loading

parameters thus include which lattice beams are used (F = 3 → F ′ = 3, F = 4 →

F ′ = 4, or both), and the frequency detuning and intensity of these beams. Assuming

that our goal is to load as many atoms as possible, we would like to have a means to

quantify the number of atoms loaded as a function of these parameters. Unfortunately,

because by-the-numbers plateaus scale as 2−N , they provide good discrimination for

the N = 1 case but do not allow us to distinguish easily between, for example, 5 and

6 atoms in the cavity.

We introduce the following measurement to compare loading parameters: after

loading multiple atoms, we first apply F = 4 → F ′ = 4 lattice light to pump all

atoms into the F = 3 manifold. We then drive a short Raman pulse which we

expect to transfer the population of each atom to F = 4 about 10–20% of the time;

for example, for the data presented in Figure 4.15, we use a Rabi frequency of 140

kHz corresponding to a π pulse time of 3.5 µs, and we drive a 700 ns pulse, where

sin2(π
2
∗ 0.7

3.5
) ≈ 0.1. Finally, we apply the state detection scheme of Ref. [30] in order

to read out with a probe beam whether any atom is in F = 4. The idea is that the
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probability for one or more atoms to be in F = 4 will scale linearly with the number

of atoms in the cavity.

Each state detection measurement has a binary result: the atom is either in F = 3

(zero) or F = 4 (one). We perform a series of 1500 measurements per atom, where

each measurement lasts about 110 µs, including 5 µs of pumping to F = 3, one 700 ns

Raman pulse, and 100 µs of state detection. After accumulating data over hundreds

of MOT drops, we average the number of 0 and 1 counts in each of the 1500 trials

to find the probability for Raman transfer. From the early data (i.e., trial number

< 25), we can infer how many atoms were initally loaded. The decay of transfer

probability over time provides a gauge of how quickly the atoms leave the trap during

the measurement process.

Figure 4.14 shows atom loading data for various combinations of loading beams.

The most significant finding is that loading with Raman and F = 4 → F ′ = 4 is

about a factor of 5 more effective than our previous method of loading with the two

lattice beams alone. Loading with Raman and both lattice beams is worse than the

loading with the lattice alone; presumably the heating effects of the lattice repump

are still present, but now the Raman may slow its efficiency. Loading with Raman

and F = 3 → F ′ = 3 works about half as well as Raman and F = 4 → F ′ = 4,

which may be due to the relative power in the two lattice beams. Additionally, the

F = 4 → F ′ = 4 lattice is not very sensitive to detunings between 10 MHz and 20

MHz, but the loading probability drops significantly when the detuning is reduced to

5 MHz. When the lattice beam is resonant with the cavity, we found that loading

almost never occurs, and so we were unable to acquire data at that setting. (In these

measurements, both F = 3 → F ′ = 3 and F = 4 → F ′ = 4 beams are assumed

to be 10 MHz blue-detuned unless otherwise specified.) For this data, the single

atom transfer probability is about 20%. However, we did not calibrate the data with

respect to a single-atom π pulse and so cannot extract information about overall

loading efficiencies.

A second set of atom loading data is shown in Figure 4.15. In this case, the yellow

curve (no Raman pulse) establishes a background transfer probability of Pbkgd = 0.01,
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Figure 4.14: Probability for transfer of one or more atoms to F = 4 following a short
(t < tπ) Raman pulse, as a function of trial number, where each trial lasts about 110
µs. The measurement is repeated for various loading beam combinations in order to
optimize the number of atoms loaded into the FORT.

and the pink curve (conditional loading of only one atom, discussed in Section 4.4)

provides a single-atom reference of P − Pbkgd = 0.06 − 0.01 = 0.05. We see that

increasing the Raman power from -12 dBm to -2 dBm only improves the loading rate;

-2 dBm represents an upper limit on the amount of RF power we can safely use to

drive the amplifier for the Raman AOM. Detuning changes to both beams had no

appreciable affect. Under the best loading conditions, we find a transfer probability

of P − Pbkgd = 0.37 − 0.01 = 0.36, corresponding to an average of 0.36
0.05
≈ 7 atoms

loaded per drop. After 165 µs of interrogation, about 4 atoms remain.
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Figure 4.15: Probability for transfer of one or more atoms to F = 4 following a short
(t < tπ) Raman pulse, as a function of trial number, where each trial lasts about 110
µs. The measurement is repeated for various loading beam intensities and detunings
in order to optimize the number of atoms loaded into the FORT. A conditional loading
measurement provides a single-atom reference probability P = 0.05.

4.3.5 Atom detection with Raman and lattice light

The data in Figure 4.10 suggest that we can use a Raman/probe scheme to identify

zero, one, and (less efficiently) two atoms. We have also explored the possibility of

introducing F = 4 → F ′ = 4 lattice light in conjunction with the Raman and the

probe, in order to shift the histogram features to resolve higher atom numbers. To

understand this shift, consider a three-level atom as in Figure 4.16 with ground states

|a〉 and |b〉 and excited state |e〉, where we can drive transitions between |a〉 and |b〉 at

rate α and between |b〉 and |e〉 at rate β. (In our system, |a〉 → F = 3, |b〉 → F = 4,

|e〉 → F ′ = 4, and α and β are determined by the Rabi frequency of the Raman pair

and the intensity of the lattice light, respectively.) We also include decay from the
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Figure 4.16: Diagram of three-level atom with transition rates α, β and decay rates
γa, γb. Histogram of photon counts per 1 ms time bin, with 250 ms of continuous
Raman, probe, and F = 4→ F ′ = 4 lattice beams.

excited state to the two ground states at rates γa and γb. Then the coupled equations

which describe the populations of the three levels are given by
−α α γa

α −α− β β + γb

0 β −β − γa − γb



Pa

Pb

Pe

 = 0. (4.23)

In order to shift the histogram towards higher count rates, we want to minimize the

population in F = 4, that is, Pb. Solving equation (4.23) for Pb, we find

Pb =
1 + γa+γb

β

3 + 2(γa+γb)
β

+ γa

α

. (4.24)

If β > γa, γb and γ � α, then Pb can become very small. Thus, we should reduce the

Rabi frequency of the Raman pair and use a high-intensity lattice beam.

Unfortunately, both of these steps tend to increase the noise of the signal. An

intense F = 4 → F ′ = 4 beam will heat the atoms, and as we saw in Section 4.3.2,

we need a high Rabi frequency to smooth out the atom plateaus. Figure 4.16 shows

a histogram from an attempt to use both Raman and lattice beams continuously;
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while the N ≥ 1 peaks have clearly shifted toward higher count rates, the peak

widths prevent effective discrimination. After unsuccessful attempts to find optimal

intensity settings for both beams, we have concluded that this is probably not a useful

technique for atom number determination.

4.4 Conditional feedback to the experiment timing

In the previous sections, we have demonstrated that based on the number of photon

counts in a 1 ms window, we can make an accurate determination about the presence

of a single atom in the cavity. Here we outline how this information can be used to

run the experiment conditioned on real-time atom detection.

The ADwin-Gold system which controls the experiment timing has input and

output channels, but until the current application it had only been used to generate

output signals (both analog and digital). In the past, we wrote down a sequence of

timing commands as a single control program, timing.in, using a syntax designed

by Dave Boozer. Dave’s compiler hirez.exe then translated these commands into

a text file foo.txt written in the ADbasic language. This text was embedded in

a larger ADbasic program pulses.bas and compiled by the ADwin system. The

commands in timing.in collected and released the upper and lower MOTs, loaded

atoms into the FORT, and then initiated the series of pulses necessary for a particular

experiment. Once compiled, a series of commands will loop continuously until a new

program is loaded to the ADwin.

To implement conditional loading of the experiment pulses, it was useful to parti-

tion the timing.in commands into three smaller programs: timing_load_atom.in,

timing_one_atom.in, and timing_experiment.in. These programs are then sepa-

rately compiled to the three text files foo_load_atom.txt, foo_one_atom.txt, and

foo_experiment.txt and embedded in pulses_ten.bas, which replaces pulses.bas.

The command sequence in timing_load_atom.in begins with the formation of the

upper MOT and ends with loading atoms into the FORT using the Raman and lattice

beams. The next step in pulses_ten.bas is to initiate a do-until sequence which
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calls the timing_one_atom.in pulses. These consist simply of 1 ms of continuous

Raman and probe fields and a trigger pulse sent to an SR400 Dual-Channel Gated

Photon Counter (Stanford Research Systems). After the three pulses, the for-loop

then instructs the ADwin to read in the value on the first of its analog channels,

which is connected to the analog output from the SR400 and scales linearly with the

number of photon counts during the previous ms. Based on histograms such as Figure

4.10, we establish in advance a lower bound of counts corresponding to N ≤ 1 atom.

The timing program repeats the pulse/read combination until the count threshold is

exceeded, that is, until there is at most one atom in the cavity. (For redundancy, the

do-until sequence is embedded in a for-loop which requires the count rate to exceed

the lower threshold over three 1 ms intervals.) Note that the probe and Raman

intervals serve two purposes: they measure the atom number, but they also provide a

heating mechanism which induces extra atoms to leave the cavity; this usually occurs

within about 50 ms.

Once we have eliminated multi-atom events, we introduce the experiment-specific

pulse sequence. However, it is possible that all atoms left the trap during the test-

ing interval. For the sake of efficiency, we only want to run the experiment pulse

sequence if we think there is an atom present, though no-atom events will also be

detected and eliminated in data processing afterwards. We set an upper thresh-

old for counts corresponding to N ≥ 1 atom; only if the number of photon counts

per 1 ms interval exceeds this threshold do we load the final sequence of pulses in

timing_experiment.in. Otherwise, the experimental cycle is skipped and we begin

the process again with timing_load_atom.

Figure 4.17 shows an histogram for atom-number determination with data ac-

quired as in Figure 4.10, except that here we have implemented the conditional load-

ing scheme described above. We see that peaks associated with N ≥ 2 atoms have

been eliminated, and only zero- and one-atom peaks remain. There are also a small

number of bins with very low count rates, which we have traced to 3 multi-atom events

in this data set of 1200 MOT drops. We are unsure as to how these events survived

the screening process but are satisfied for the time being with this low contamination
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Figure 4.17: Histogram of photon counts per 1 ms time bin, with 280 ms of continuous
Raman and probe beams. In contrast to the data presented in Figure 4.10, here we
have implemented conditional loading of N ≤ 1 atom before the experiment begins,
with lower and upper count thresholds indicated.

rate.

Having outlined the conditional loading scheme, I now discuss further details of

the SR400 photon counter implementation. We continue to send TTL pulses from

our two Perkin-Elmer SPCMs to the P7888 photon counting card for computer-based

data acquisition. However, we tee off these signals before the card and send them also

to the two channels of the SR400. (Before the SR400, each channel passes through a

NOT logic gate which serves as a buffer, to prevent potential damage to the P7888

card.) During each 1 ms gate pulse sent from the ADwin, the SR400 sums the counts

on its two inputs. At the end of the gate pulse, it sends out an analog signal between

0 and 10 V which is linear with respect to total counts between 0 and 999; that is, 1

count = 10 mV. This signal returns to the ADwin, which provides 16-bit analog-to-

digital conversion of inputs between -10 and 10 V, that is, according to the formula

value = 32767.5(1 +
volts

10
) = 32767.5(1 +

counts

1000
). (4.25)
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We have currently set a lower threshold for conditional detection at 160 counts/ms

(value = 38010) and an upper threshold at 220 counts/ms (value = 39976).

We have sometimes found it useful to incorporate a second ADwin analog chan-

nel input for real-time feedback to the timing. The second channel is needed when

we want to generate a sequence of pulse lengths that vary from atom to atom; for

example, the data in Figure 4.7 was obtained with Raman pulse lengths between 0.1

and 100 µs. As discussed in Section 3.5, we generate these pulses by using serial

commands to program a DG535 pulse generator, then triggering each pulse sequence

with a TTL signal from the ADwin. However, the ADwin timing program also needs

to know when the pulses are finished; for pulse lengths which vary from atom to

atom, a simple way to do this is to have the DG535 put out a signal for the ADwin

at the end of its pulse cycle. After the ADwin sends its initial trigger to the DG535,

it then polls its second analog channel input until the value crosses a TTL threshold,

at which point it continues with the experiment.

We first put conditional feedback into practice for the Raman optical pumping

results presented in Section 4.1 and in [32]. We were pleased to see a number of

immediate results: not only did it speed up the process of data acquisition, but also

we found that our single-atom Raman scans had reduced background levels, and

that the measured Zeeman populations summed to the expected value. (Both of

these effects can be understood in the context of multi-atom contamination: when

more than one atom is trapped in the cavity, there is a greater probability that an off-

resonant Raman pulse will transfer population to F = 4, increasing background levels,

and we also expect an increased probability to find one atom in any given Zeeman

level.) Implementing conditional feedback into our field-nulling protocol (e.g., Figure

2.2) has also improved the contrast of these scans and allowed us to set magnetic field

values more reliably. Further applications for this scheme include improved generation

of single photons; we would expect a stronger suppression of two-photon events than

observed in Ref. [16]. Meanwhile, single photon generation combined with optical

pumping might allow us to produce photons with narrower temporal pulse shapes, as

the long tail observed in Ref. [16] was attributed to atoms trapped in dark states.
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Chapter 5

Toward atom-photon entanglement

The tools that we have developed over the past few years for control and interro-

gation of our atom-cavity system have brought us to the point where we can now

implement complex protocols in the lab. Our current efforts focus on one such proto-

col, which would generate entanglement between the polarization states of a photon

and the Zeeman states of a trapped atom. In Section 5.1, I describe the details of

this entanglement scheme. Section 5.2 discusses the use of Rabi flops to characterize

decoherence in our system; an understanding of decoherence mechanisms is necessary

in order to determine whether we will be able to demonstrate entanglement. Section

5.3 presents our method for mapping superpositions of Zeeman states to hyperfine

states that we have developed in the context of this entanglement project. In order to

quantify the coherence of the mapping, we vary the phase between two arms of this

process and generate a fringe. Section 5.4 centers on the final step in the protocol:

fast pulses from the side of the cavity that excite the atom to the F ′ = 5 manifold.

Here I also discuss the current outlook for the project.

5.1 Atom-photon entanglement scheme

The concept of atom-photon entanglement lies at the heart of cavity-QED-based

schemes for quantum networking. These schemes rely on entanglement in order to

transfer information coherently between long-lived atomic superpositions (quantum

nodes) and photonic states in optical fiber (quantum channels). In Chapter 3 of



92

this thesis, I discuss one such mapping, between cesium hyperfine manifolds F = 3

and F = 4 and photon Fock states |0〉 and |1〉. However, a more robust scheme

would entangle the atomic state with photon polarization rather than photon number.

Losses in the optical path will inevitably degrade the entangled state: if the original

composite system is given by

|ψ〉 = |a1〉 ⊗ |p1〉+ |a2〉 ⊗ |p2〉, (5.1)

where a1,2 and p1,2 are atom and photon states, then after propagation, the density

matrix ρ = |ψ〉〈ψ| becomes

ρ′ = (1− pE)(|a1〉+ |a2〉)(〈a1|+ 〈a2|)⊗ |0〉〈0|+ pE|ψ〉〈ψ|, (5.2)

where the entanglement probability pE is determined by path losses and |0〉 represents

the absence of a photon. In the case of the Fock state mapping, if we do not detect

a photon at the cavity output, we cannot distinguish whether this corresponds to p1

(and thus to a1) or to |0〉. For polarization states, however, decoupling photon num-

ber from entanglement means that we can restrict ourselves to a heralded, effective

entangled state |ψ〉〈ψ| with probability pE [103].

Recent work in Gerhard Rempe’s group has shown that it is possible to control

photon polarization based on the Zeeman state of an atom within a cavity [82, 83].

A magnetic field along the cavity axis is used to split out the Zeeman levels of 87Rb,

and the cavity is tuned into resonance with the F = 1 → F ′ = 1 transition between

the 5S1/2 and 5P3/2 manifolds. For an atom prepared in |F = 2,mF = 0〉, an initial

STIRAP process driven by a laser on the F = 2 → F ′ = 1 transition will either

a) transfer the atom to the |1,−1〉 ground state while generating a cavity photon

with σ+ polarization, or b) transfer the atom to |1, 1〉 while generating a σ− photon.

A second STIRAP process on the F = 1 → F ′ = 1 transition is conditional on

the result of the first: a σ− photon is generated if the atom is in |1,−1〉, and a σ+

photon if the atom is in |1, 1〉. Thus, alternating the two classical laser pulses creates
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Figure 5.1: Scheme for generating entanglement between the polarization states of
a photon and the Zeeman states of a trapped atom. We optially pump a cesium
atom to |3, 0〉, then transfer it to |4, 0〉 via a Raman π pulse. A fast pulse from the
side of the cavity excites the atom to |5′, 0〉. Atomic decay into the cavity mode will
generate a circularly polarized photon; a σ+ photon corresponds to the final atomic
state |4,−1〉, and a σ− photon corresponds to |4, 1〉.

sequential pairs of polarization-entangled photons, which can be detected in the cavity

transmission path [83]. While these experiments represent a significant step towards

quantum networking, it is important to note that they were done with atoms falling

through the cavity mode. For information storage in quantum nodes, we require

photon generation using trapped, localized atoms that could then be re-addressed

at later times. In addition, we would like to quantify atom-photon entanglement

directly by reading out the atomic state rather than by generating a second photon.

As our efficient method of state detection [30] only distinguishes between hyperfine

manifolds, we will first have to introduce a mapping between Zeeman and hyperfine

states.

We begin our protocol by preparing a single cesium atom in |4, 0〉. (In practice,

we use the methods of Chapter 4 to prepare the atom in |3, 0〉, then transfer the

population to |4, 0〉 via a Raman π pulse.) As in the Rempe experiment, a magnetic

field splits out the Zeeman states, and we define a quantization direction along the

magnetic field axis. A ∼ 10 ns π-polarized optical pulse from the side of the cavity

resonant with the F = 4→ F ′ = 5 transition excites the atom. Because the pulse is

polarized along the cavity axis, the cavity mode only supports atomic decay to states

|4, 1〉 and |4,−1〉, with σ− and σ+ polarization, respectively. Photon polarization is

straightforward to detect with waveplates and beamsplitters at the cavity output. To
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read out the atomic state, we want to map superpositions of |4, 1〉 and |4,−1〉 onto

F = 3 and F = 4, as we are able to measure superposition states of the hyperfine

manifolds. We apply two simultaneous Raman π pulses tuned to the |4, 1〉 → |3, 0〉

and |4,−1〉 → |3, 0〉 transitions, where the ∆m = ±1 transitions rely on a component

of the magnetic field transverse to the cavity axis; we expect the populations to

interfere constructively or destructively depending on the relative phase of the two

initial states, so that as a function of phase, the atom will either be transferred to

F = 3 or remain in F = 4.

Section 5.3 presents our efforts to characterize this interference process. First,

however, we note that our scheme relies on carefully tuned Raman pulses at three

different frequencies, two of which are sensitive to the magnetic field. In the follow-

ing section, then, we investigate the decoherence mechanisms underlying our Raman

technique to understand whether this is feasible.

5.2 Rabi flops

5.2.1 Theory

The Bloch equations describe the evolution of a spin system in an applied field [104];

while these equations were first introduced to describe magnetic resonance phenom-

ena, they also apply to a two-level atom driven by an optical field, or to our current

situation, in which two atomic ground states are coupled via Raman transitions. The

Rabi solution of the Bloch equations for a resonant driving field shows that popu-

lation initially prepared in one spin state will be driven coherently back and forth

between the two states, a process known as “Rabi flopping.” The rate of population

transfer is given by the Rabi frequency Ω, which is proportional to the square root

of the intensity of the driving field. Specifically, the duration of a “π pulse,” that is,

the time required to transfer population from one state to the other, is given by

tπ =
π

Ω
. (5.3)
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For a driving field detuned from resonance by ∆, the population transfer as a function

of time is given by the equation

P (t) =
Ω2

Ω2 + ∆2
sin2
√

Ω2 + ∆2t/2 (5.4)

where P (t) corresponds to the fraction of the population transferred from the initial

to the final spin state. Thus in the off-resonant case, the oscillation frequency is

faster, but complete inversion between the two states is never achieved.

A more realistic model incorporates phenomenological decay processes into the

Bloch equations [104]. The result is that Rabi oscillations are exponentially damped

according to a set of characteristic decay times. Conversely, in order to study the

decoherence mechanisms within an experiment, one simple technique is to measure

Rabi flopping amplitudes and damping rates. In particular, Rabi flops have become

an important benchmark for the quantum computing community, as the number of

sequential gates that a quantum computer could perform is limited by the ratio of

the decay time to tπ.

Several processes contribute to spin decoherence. In the notation used by the

nuclear magnetic resonance (NMR) community, the longitudinal decay time T1 de-

scribes population relaxation to thermal equilibrium; T1 decay is due to spin-lattice

coupling in NMR, but in our experiments it is negligible. Meanwhile, the transverse

decay time T2 can be decomposed into two components,

1

T2

=
1

T ′2
+

1

T ∗2
. (5.5)

Here T ′2 describes homogeneous, incoherent processes, and T ∗2 describes inhomoge-

neous effects. Note that often when we think of homogeneous and inhomogeneous

processes, we imagine a macroscopic ensemble, such as a collection of spins in a crystal

or an atom cloud. Homogeneous effects such as collisions would effect all spins iden-

tically, while inhomogeneous effects would assign a different value of some property

to each spin, such as velocity in the case of Doppler broadening. Here we are dealing
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with one atom at a time within a cavity, but the ensemble picture is valid because

we collect data over a series of hundreds or thousands of atoms, and we repeat a

measurement hundreds of times for each atom. In this case, inhomogeneous T ∗2 mech-

anisms may result from changes over time: for example, variation in the intensity of

the Raman beams, or gradual heating of the atoms throughout the Raman process,

both of which would effectively assign a different Raman frequency to each flopping

measurement. Another potential T ∗2 mechanism is the finite temperature of each atom

within the FORT, resulting in a periodic modulation of the Rabi frequency. (Because

the intensities of both FORT and Raman beams have a Gaussian profile, the Rabi

frequency seen by the atoms is spatially dependent.) For field-sensitive transitions,

drifts in the magnetic field over time would result in a range of possible detunings

from Raman resonance. Meanwhile, T ′2 mechanisms could include phase noise on the

injection lock between the FORT and Raman lasers, or scattering due to stray light.

The exponential decay that damps Rabi oscillations is given by T2. In order to

separate out the components of T2, we must turn to other techniques, such as Ramsey

interferometry. Here one prepares the sample in an initial spin state, then applies

a π/2 pulse with detuning ∆ in order to rotate the spins into the x-y plane of the

Bloch sphere picture (in a frame rotating at the frequency difference between the two

spins). The spins precess in the plane with frequency ∆, so that if we apply a second

π/2 pulse after a variable time t, we will observe Ramsey oscillations at frequency

∆. However, as the spins precess in the plane, they also drift out of phase with one

another, so the oscillations that we measure will be exponentially damped at some

rate. The point is that every measurement consists of two π/2 pulses separated by

a time t, which is varied while the system is “in the dark” to applied fields. Thus,

decoherence mechanisms that accumulate in Rabi oscillations as a function of pulse

length (for example, scattering due to the applied fields) will be constant over the

Ramsey data set and will only affect the amplitude of oscillations, not their rate of

decay. Also, note that inhomogeneous mechanisms that cause a variation in Ω will

not contribute, as long as the effective pulse lengths are reasonable approximations of

π/2. Ramsey decoherence is the result of inhomogeneities in detuning from Raman
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resonance, which cause different precession frequencies for each measurement.

Thus, Ramsey interferometry can give us information about a smaller subset of de-

coherence mechanisms on our experiment: those effects dependent on either magnetic

field or temperature. Temperature-dependent decoherence may come as a surprise,

given the statement above that finite atom temperature results in a spread of Rabi

frequencies, to which Ramsey interferometry should be insensitive. However, atom

temperature also produces a spread in detunings, given the FORT-induced differen-

tial AC-Stark shift in our experiment. Consider that the free-space hyperfine splitting

∆HF between cesium ground states F = 3 and F = 4 is modified by 20 kHz at the

bottom of each FORT well; halfway up the FORT well, the differential shift is only

10 kHz. Thus, as an atom moves within this potential, it experiences frequency shifts

on the order of 10 kHz with respect to the frequency of the Raman pair. Depending

on the Raman linewidth — that is, the Rabi frequency — this may be a significant

effect.

Spin echo is a second diagnostic technique that we can apply to the problem of

decoherence. Known as “photon echo” in the optical case, it allows us to recover

some of the coherence lost to dephasing in Ramsey interferometry. Here we follow

the Ramsey scheme above, using a fixed precession time t in the x-y plane, except

that now we insert a π pulse at time t/2. This flips each precessing spin with respect

to the x axis, so that the “fast” spins now lag behind the “slow” ones. After another

t/2 interval, all the spins are back in phase, and the second π/2 pulse should rotate

them to the Bloch sphere pole opposite where they began. However, rephasing only

occurs for coherent decay mechanisms that are constant over t, so that the second

t/2 interval “undoes” the first. Thus, any damping of photon echo amplitude as a

function of time allows us to characterize T ′2 as well as rapidly varying T ∗2 mechanisms,

such as fast magnetic field fluctuations.
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Figure 5.2: Rabi flops on the |3, 0〉 ↔ |4, 0〉 resonance at Ω = 138 kHz and Ω = 12.3
kHz. For each measurement, atoms are prepared with roughly 60% efficiency in |3, 0〉,
then driven with a Raman pulse of varying duration, followed by state detection.

5.2.2 Rabi flopping measurements

Given the that our FORT and Raman beams are linearly polarized, mutually orthog-

onal, and propagate along the cavity axis, we can drive Raman transitions between

pairs of Zeeman states with Rabi frequency ΩE:

〈4,m|Ω̂E|3,m〉 =
√

1−m2/16 Ω0 cos θ (5.6)

〈4,m+ 1|Ω̂E|3,m〉 = −1

8

√
(4 +m)(5 +m) Ω0 sin θ (5.7)

where Ω0 is the Rabi frequency for the m = 0 pair and θ is the angle between the

cavity axis and the quantization axis, which we define along the applied magnetic field

[19]. We see that ΩE is m-dependent, so that in order to observe single-frequency

oscillations, we will need to apply a magnetic bias field so that we can address only

one pair at a time. A quantization axis along the cavity axis (θ = 0) will allow

∆m = 0 transitions while suppressing ∆m = ±1. For high-contrast oscillations, we

must be able to prepare atoms in a given initial Zeeman state; atoms prepared in the

wrong state will not be addressed by the Raman frequency, so they will not contribute

to decoherence, but they will result in a reduced amplitude.

The first demonstrations of Rabi flopping in our lab used conventional optical
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Figure 5.3: Ramsey interferometry at Ω = 150 kHz, with detuning ∆ = −25 kHz from
the |3, 0〉 ↔ |4, 0〉 transition. Atoms are prepared in |3, 0〉, then driven with a pair of
π/2 pulses separated by a variable time t, followed by state detection. The number of
coherent oscillations is roughly the same as for Rabi flopping measurements (Figure
5.2).

pumping techniques to prepare atoms in |F = 3,mF = 0〉 [19], but we now rely on

the method presented in Section 4.1; one advantage is that this allows us to compare

the field-insensitive |3, 0〉 ↔ |4, 0〉 transition with the other six field-dependent tran-

sitions. After conditional loading and optical pumping, we are left with a single atom

in a given F = 3 sublevel. We drive Raman transitions at a fixed Rabi frequency

for a variable time t, then perform state detection to determine the probability of

transfer to F = 4 [30]. Sample Rabi flopping traces on |3, 0〉 ↔ |4, 0〉, accumulated

over a series of atoms, are shown in Figure 5.2.

We emphasize two observed features of field-insensitive Rabi flops in our experi-

ment that provide insight into the decoherence mechanisms at work. First, we find

that T2 decay times are inversely proportional to Rabi frequency Ω. Thus, indepen-

dent of Ω, an atom driven on resonance undergoes the same number of coherent flops

(about three) before decoherence takes over. This effect can be seen in Figure 5.2,

where the traces shown appear qualitatively similar despite the order of magnitude
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Figure 5.4: Two Rabi flopping measurements at similar Rabi frequencies, one on
resonance and the other red-detuned by ∆ = −10 kHz. The on-resonance data is
reproduced from Figure 5.2 for comparison; note that detuning to the red increases
the damping time constant by almost a factor of three.

difference in Ω. Furthermore, Ramsey interferometry (Figure 5.3) does not extend

the number of coherent oscillations, so we can rule out mechanisms to which Ramsey

methods are insensitive, such as variation in Raman intensity and phase noise on

the injection lock. We conclude that temperature effects are probably the cause of

dephasing. Atoms with a finite temperature are not localized at the FORT minima;

because of the spatial dependence of Ω, our flopping measurement occurs over an

ensemble of atoms with a range of Rabi frequencies, and the measured ratio of T2 to

tπ tells us about this range.

A second, more perplexing finding is that by detuning the Raman pair to the red

of resonance (negative ∆), we are able to improve coherence times. This is shown in

Figure 5.4 for the case ∆ = −25 kHz at a Rabi frequency of 150 kHz, parameters

for which we have observed the most significant improvement. In contrast, detuning

the Raman pair to the blue side of resonance (positive ∆) somewhat degrades the

coherence, though this is not as strong an effect. We now believe that this detun-

ing dependence is due to the FORT-induced differential AC-Stark shift described in

Section 5.2.1. Depending on an atom’s temperature and thus location in the FORT

potential, it may be in or out of resonance with the Rabi frequency of the Raman pair;

due to the AC-Stark shift, the detuning ∆ is spatially dependent. By detuning to the
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red, we shift the Raman pair out of resonance with all atoms, so that only the coldest

atoms will see an appreciable field; in this way, we are narrowing the distribution of

Rabi frequencies in our experiment. David Boozer has written computer simulations

that include this AC-Stark shift effect, and we find that they are in good agreement

with our data.

Finally, one may ask if there are additional limits placed on T2 in the case of

field-sensitive (m 6= 0) transitions. Preliminary evidence suggests that this may be

the case. However, with Rabi flopping measurements, it is difficult to distinguish

between fast magnetic field drifts (on the timescale of decoherence for each atom)

and slow drifts (on the timescale of the measurement over the ensemble). Based on

sequential Raman spectrum measurements of the |3, 1〉 ↔ |4, 1〉 transition, we have

evidence for drifts of ∼ 10 kHz in the course of an hour. We have demonstrated

spin echo for the m = 0 transition (Figure 5.5), but it would be interesting to apply

this technique in the field-sensitive case: as photon echo should be insensitive to slow

field drifts, a measurement of pulse amplitude as a function of precession time would

provide information about fast fluctuations.

While Rabi flopping measurements have helped us to understand the limitations

of our experiment, they also provide more direct insight on the prospects for atom-

photon entanglement. We have seen that there is minimal decoherence over the course

of a single π pulse, which is encouraging. However, in the case of π pulses on the

|3, 0〉 ↔ |4,±1〉 transitions, magnetic field drifts are a cause for concern. We should

expect to use Rabi frequencies much faster than the ∼ 10 kHz drift range so that

the transitions do not shift out of resonance in the course of the experiment. As we

will see in the following sections, this imposes a severe restriction if we would like

to replace optical Raman processes by driving ground state transitions directly with

microwaves.
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Figure 5.5: Spin echo measurement at Ω = 150 kHz, with detuning ∆ = 25 kHz from
the |3, 0〉 ↔ |4, 0〉 transition. Atoms are prepared in |3, 0〉, then driven with a π/2
pulse at time t = 0, a π pulse at t = 200 µs, and a second π/2 pulse at variable time
t between 300 and 500 µs. The pulse sequence is followed by state detection. Note
the revival of the Ramsey oscillations of Figure 5.3, with no observed reduction in
amplitude.

5.3 Zeeman to hyperfine mapping

A significant challenge in demonstrating the proposed mapping from Zeeman to hy-

perfine states has been to implement ∆m = ±1 transitions in our experiment. We

have attempted this using various methods, each of which has presented its own set

of drawbacks. We have been most successful in driving Raman transitions in the

presence of a magnetic field transverse to the cavity axis, as well as in preliminary

efforts with microwaves. I begin, however, with a discussion of our earlier attempts,

which may provide some insight into the technical limitations of our experiment.

5.3.1 936 nm Raman transitions from the side of the cavity

In the presence of a bias field along the cavity axis, our current FORT-Raman configu-

ration only drives ∆m = 0 transitions. One means of accessing ∆m = ±1 transitions

is to replace the Raman beam with a beam from the side of the cavity at the same fre-
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Figure 5.6: We replace the on-axis Raman beam with a 936 nm beam from the side
of the cavity in order to drive ∆m = ±1 transitions. We apply a magnetic field along
the cavity axis and prepare atoms in F = 3, then measure the probability to transfer
population to F = 4 after 150 µs Raman pulses, as a function of Raman detuning.
The Raman spectrum now consists of eight possible m-changing frequencies: six
degenerate pairs and two edge transitions.

quency, but polarized along the cavity axis; in this case, the vector orthogonal to the

FORT-Raman polarization is also orthogonal to the quantization axis, and θ = π/2 in

equations (5.6) and (5.7). We have successfully demonstrated Raman transitions in

this configuration (Figure 5.6). Note that a Raman spectrum consists of eight possible

m-changing frequencies, interleaved between the seven ∆m = 0 transition frequen-

cies. Six of the frequencies correspond to pairs of transitions: |3,m〉 → |4,m+ 1〉 and

|3,m+1〉 → |4,m〉 are degenerate for m = {−3,−2, ...1, 2}. The two edge transitions

|3, 3〉 → |4, 4〉 and |3,−3〉 → |4,−4〉 are nondegenerate.

Unfortunately, we encountered two problems driving transitions in this configura-

tion: first, we were limited by the power available in our Raman diode laser. With

2.2 mW of power focused from the side of the cavity, we found that it took about

150 µs to transfer population between the hyperfine ground states. Second and more

problematic was the fact that we were unable to observe Rabi flops between F = 3

and F = 4 after preparation in mF = 0; the population as a function of time simply
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began in one state and ended in the other, just as for the incoherent Raman transfer

of Figure 4.7. We now believe that this is likely due to diffraction of the Raman

side beam by the cavity mirrors, which results in significant intensity variation over

the possible FORT wells. This means that each well has a different rate for popu-

lation transfer, and we would not be able to set a well-defined π pulse time in our

experiments.

5.3.2 852 nm Raman transitions from the side of the cavity

At the time, we did not yet appreciate the role of diffraction in driving transitions

from the side of the cavity. We believed that our failure to observe Rabi flops was

due to the slow time for population transfer between ground states, during which

decoherence mechanisms might play a significant role. In search of less stringent

power requirements and faster Raman transitions, we switched to a pair of Raman

lasers at 852 nm, detuned 3 GHz to the red of the cesium D2 resonances. The new

lasers were set up in an adjoining lab (the former lab 1 cavity QED experiment,

now relocated to lab 9); as in our 936 nm Raman pair, a 9.2 GHz frequency sideband

applied to one laser was used to injection-lock the second. We monitored this injection

lock by combining light from both lasers on a fiber beamsplitter with a laser locked to

the cesium resonance and monitoring the optical beat note on a spectrum analyzer.

The light from the Raman pair was brought to the cavity via optical fiber and focused

in through the side.

We were again unable to observe Rabi flopping on individual Zeeman transitions.

In retrospect, of course, this method suffers from the same side-beam diffraction

problems as the previous 936 nm Raman attempt. However, we were able to observe

incoherent ∆m = ±1 Raman spectra using 10 µs pulses, an order of magnitude faster

than with the 936 nm Raman pair.
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Figure 5.7: We measure the probability to optically pump into the state |3, 0〉 as a
function of a transverse magnetic field applied in addition to a constant axial field
of 1.21 Gauss. The transfer probability to F = 4 after optical pumping is measured
using incoherent Raman transitions, with a maximum possible value of 0.5.

5.3.3 Raman transitions using a transverse field

A third scheme for driving ∆m = ±1 transitions relies on our original FORT-Raman

pair, but requires us to apply a small transverse magnetic field on top of the axial

field already present. We see from equation (5.7) that for small θ, the Rabi frequency

for ∆m = ±1 transitions is small, but as we increase θ, we will be able to drive

m-changing transitions more rapidly. On the other hand, a nonzero θ means that

the quantization axis and the cavity axis are no longer the same; specifically, the

polarization modes supported by the cavity do not correspond exactly to decay from

|5′, 0〉 to |4,±1〉 as in Figure 5.1, and there is now some |4, 0〉 component. By keeping

the transverse field small with respect to the axial field, we hope to minimize this

effect.

Our initial concern was that with the addition of the transverse field, the effec-

tiveness of our optical pumping to |3, 0〉 would be reduced because of mixing between

states. However, measurements of population prepared in |3, 0〉 as a function of field

strength showed that this was a small effect, significant only for strong transverse fields
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Figure 5.8: We prepare atoms in |3, 0〉 and measure a Raman spectrum as in Figure
4.6, but in the presence of an 0.52 Gauss transverse field on top of a 1.21 Gauss axial
field. Spaced between the ∆m = 0 transitions indicated by dashed vertical lines,
we see ∆m = ±1 transitions, most prominently from |3, 0〉 to |4,±1〉. As the Rabi
frequencies are lower for these transitions (equation (5.7)), the Raman pulse time is
not long enough for decoherence to occur, so the measured transition probabilities
have not yet reached their asymptotic values.

(Figure 5.7). We then measured Raman spectra in the presence of a 0.5 Gauss trans-

verse field after optical pumping to identify transition frequencies for |3, 0〉 → |4,±1〉

(Figure 5.8).1 We have confirmed that we can drive Rabi flops on these frequencies,

both individually and jointly (Figure 5.9). In the case where both |3, 0〉 → |4, 1〉 and

|3, 0〉 → |4,−1〉 transitions are driven simultaneously, we expect the effective Rabi

frequency to increase by a factor of
√

2.

We have investigated our ability to map a superposition state of |4,±1〉 onto the

hyperfine manifolds F = 3 and F = 4 in the following manner: we prepare an atom

in |3, 0〉, then drive it with two simultaneous π pulses on the |3, 0〉 → |4, 1〉 and

|3, 0〉 → |4,−1〉 transitions. (We thus prepare a superposition state analogous to the

1This transverse field is almost half the size of the axial field and thus larger than we would use
for entanglement purposes. However, it allows us to drive Rabi flops quickly, and the superposition
state mapping described below is not sensitive to the angle between the quantization and cavity
axes.
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Figure 5.9: Individual and paired Rabi flops on the |3, 0〉 → |4,±1〉 transitions. We
drive atoms prepared in |3, 0〉 at the ∆m = +1 and −1 transition frequencies for
a variable time t, followed by state detection (�, blue and black). We then apply
both frequencies simultaneously (◦, green and red), where for testing purposes, the
two pairs use different signal generators for the |3, 0〉 → |4, 1〉 transition. Note the
increase in Rabi frequency by approximately

√
2 for the paired flops.

one we intend to create via decay from |5′, 0〉.) A second pair of π pulses attempts to

map the superposition back to |3, 0〉. Here we vary the phase of the |3, 0〉 → |4, 1〉 arm

while holding the phase of the other arm constant; we expect the mapping processes

in the two arms to interfere constructively or destructively as a function of phase.

The result, shown in Figure 5.10, is a fringe with ∼ 75% visibility. For comparison,

we have also plotted the data from the same measurement sequence, but with the

relative phase held constant.

The fringe visibility in Figure 5.10 is limited by our ability to prepare atoms in

|3, 0〉 and to drive coherent Raman π pulses between Zeeman pairs. We have some

evidence that the off-axis magnetic field (and subsequent mixing between Zeeman

states) interferes with these processes; namely, repeating the experiment above in

the presence of a pure transverse field produces a fringe with significantly improved

contrast. However, the presence of an axial field is necessary for the correspondence

between photon polarization and Zeeman state that is the basis for our entanglement
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Figure 5.10: We prepare a superposition of Zeeman states |4, 1〉 and |4,−1〉, then
demonstrate a coherent mapping of this superposition to the hyperfine manifolds
F = 3 and F = 4. We apply simultaneous π pulses on the |3, 0〉 → |4, 1〉 and
|3, 0〉 → |4,−1〉 transitions in order to transfer population to the F = 3 manifold,
followed by state detection. Shown is the probability to detect an atom in F = 4 as a
function of the relative phase between the two arms; for the red data, the experiment
is repeated with the phase fixed at a random value. The data are plotted twice side
by side to demonstrate the 2π periodicity.

scheme.

5.3.4 Microwave transitions

A final possibility is to forego optical Raman processes and drive ∆m = ±1 transitions

directly with microwaves at 9.2 GHz. By using microwaves, we avoid the problems

resulting from spatial variation in Rabi frequency within each FORT well: the power

from a microwave horn is constant across the µm-scale dimensions of the cavity, and

every atom experiences the same Rabi frequency. (Atoms may still be shifted out

of resonance with the microwaves as they move within the FORT, a result of the

differential AC-Stark shift discussed in Section 5.2.)

While microwave horns are standard equipment in many atomic physics labs, they

have not been used in our group prior to this experiment. An Agilent E8247C signal
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Figure 5.11: We drive microwave transitions directly between hyperfine ground states
of cesium. Shown are Rabi flops on the |3, 0〉 → |4, 0〉 and |3, 0〉 → |4, 1〉 transitions.

generator provides us with a stable, RS-232-controlled microwave source. At the

signal generator output is a microwave switch, followed by an amplifier. Between the

amplifier and the microwave horn facing our cavity, we use a three-port circulator

and a stub tuner in order to impedance-match the signal: we monitor the power in

the reflected port of the circulator and adjust the stub tuner length to mimimize

this value. The stub tuner was a helpful recommendation from Sabrina Leslie in the

Stamper-Kurn group at Berkeley, who also suggested the use of Huber-Suhner cables

to minimize signal loss.

Using the microwave horn, we have observed Rabi flops on the |3, 0〉 → |4, 0〉 and

|3, 0〉 → |4, 1〉 transitions (Figure 5.11). We now have a new means to drive coherent

transitions between hyperfine ground states, allowing us to access both ∆m = 0 and

∆m = ±1 transitions while avoiding the problems of a bias field at an angle to the

quantization axis (Section 5.3.3). The challenge of driving microwave transitions in

our experiment stems from the available power. The Rabi frequencies in Figure 5.11

are only 7 kHz, limited at present by the 3 W amplifier in the signal path. We do

have a second, 20 W amplifier, but we would like to test cavity heating effects at this

power before putting it to use. However, since the Rabi frequency only scales as the

square root of power, we expect less than a factor of three improvement from this

amplifier.
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A narrow Rabi frequency means that the experiment is highly sensitive to shifts in

detuning, whether as a result of motion in the FORT potential or changing magnetic

fields. Moreover, the corresponding long π pulse times (∼ 100µs) place strict limits

on acceptable decoherence rates. We have only recently begun to explore microwaves

in a cavity QED setting, and there are certainly exciting applications ahead, but there

are important issues that we will need to address in the process.

5.4 Fast pulses from the side of the cavity

We now have the means to map a Zeeman superposition onto a hyperfine superpo-

sition that we can measure. Here we return to the initial step in our entanglement

protocol: using fast optical pulses from the side of the cavity to generate the Zeeman

superposition along with a polarization-entangled photon. We discuss the implemen-

tation of these pulses in the lab and present correlation measurements between photon

polarization and Zeeman state.

As in Figure 5.1, we would like to excite each atom from |4, 0〉 to |5′, 0〉. We need

to drive this transition with linearly polarized light along the cavity axis, so the pulse

must come from the side of the cavity. From |5′, 0〉, the atom will decay into the cavity

mode via a σ+ or σ− photon, and the photon polarization will be entangled with the

atom’s final ground state. Ideally, to prepare the atom in F ′ = 5 after each pulse, the

pulse length should be short with respect to (2γ)−1 = 31 ns and 2π(2g)−1 = 14.7 ns.

In practice, we are able to make pulses as short as 10 ns. Here we use F = 4→ F ′ = 5

light from our master (probe) laser that is fiber-coupled into an amplitude modulator

from EOSPACE Inc., a two-port Mach-Zehnder interferometer with a nominal 10

GHz bandwidth. We drive pulses with TTL signals to the modulator; additionally,

we provide the modulator with a stable DC voltage Vπ, which we adjust so as to

maximize transmission when the TTL value is high. The measured suppression of

the modulator is only 20 dB, so we enclose the fast modulator pulse within a slower

AOM pulse applied to the light before the fiber input. Both pulses are driven from

an SRS DG535 pulse generator triggered by the ADwin system. We use a Thorlabs
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PDA10A 150 MHz detector to characterize the pulse shape at the cavity input.

We can make an estimate of the efficiency with which we expect these fast pulses

to generate photons in the cavity mode. We first prepare atoms in |3, 0〉 with optical

pumping efficiency ppump, where we have measured ppump ≈ 0.6. We then drive a π

pulse from |3, 0〉 → |4, 0〉, where we estimate pπ ≈ 0.8 based on Rabi flopping data.

After attempting to prepare the atom in |4, 0〉, we apply a single pulse from the side

of the cavity on the |4, 0〉 → |5′, 0〉 transition. The pulse cycles population rapidly

between the ground and excited states of the atom, so that the probability for the

atom to be in |5′, 0〉 at the end of the pulse is pexcite = 0.5. Meanwhile, an atom in

|5′, 0〉 will decay with probability pdecay = 0.59 into the cavity mode and the rest of

the time into free space.2 We thus expect

pphoton = ppump × pπ × pexcite × pdecay (5.8)

= 0.6× 0.8× 0.5× 0.59 (5.9)

= 0.14. (5.10)

In order to estimate the rate of photon detection at our SPCMs, we need to include

the measured path efficiency ppath = 0.024 [16]; pphoton × ppath = 0.0034. This is in

reasonable agreement with the photon detection rate of 0.0046 that we have measured

in the lab.

Our next step was to measure correlations between the detection of a cavity photon

and the final Zeeman state of an atom. After the sequence above (state preparation,

π pulse from |3, 0〉 → |4, 0〉, fast pulse from the side), we introduced a state-detection

measurement, preceded by either zero, one, or two Zeeman-specific π pulses. In

the absence of any π pulses, state detection conditioned on the detection of a cavity

2A simple way to understand this is to remember that the atomic excited state is a superposition
of the two atom-cavity eigenstates. The system will thus oscillate at rate 2g between having one
excitation in the atom and one excitation in the cavity. When the excitation is in the atom, decay is
possible at rate γ into free space (as the cavity mode subtends only a small fraction of the 4π solid
angle); when the excitation is in the cavity, decay takes place at rate κ into the cavity output mode.
Assuming that g � κ, γ, the atom spends about half the time in each state, and the probabilities
for decay via the atom and cavity channels are γ

κ+γ and κ
κ+γ , respectively.
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output photon should confirm that the atom is in F = 4, since the only decay channel

from F ′ = 5 is to F = 4. Of course, we expect atoms not only to be in F = 4, but

more specifically, to be in one of the two Zeeman levels |4, 1〉 and |4,−1〉. We can

evaluate the population in a given Zeeman level by selectively depopulating that level

with a π pulse before the state detection process. For example, if we insert a π pulse

from |4, 0〉 → |3, 0〉 before state detection, we still expect to find all atoms in F = 4

afterwards (conditioned on a photon), since we do not expect decay into the cavity

mode from F ′ = 5 to |4, 0〉. In contrast, we expect that a π pulse from |4, 1〉 → |3, 1〉

or |4,−1〉 → |3,−1〉 would reduce the probability to detect population in F = 4 by

half.

Note that the uncorrelated data in this experiment is also a source of interesting

information. In the absence of π pulses, the unconditional probability to detect a

photon in F = 4 reflects our ability to prepare an atom in |4, 0〉. (Here we assume

that every atom not optically pumped to |3, 0〉 is prepared in another Zeeman state of

the F = 3 manifold, and that our π pulse only addresses the |3, 0〉 state.) Moreover,

the unconditional π pulse data tells us about the atomic decay into both the cavity

mode and free space. Recall that while we expect the atom to decay via the cavity

mode 59% of the time (into |4, 1〉 and |4,−1〉, with equal probability), it also decays

41% of the time into free space, where the branching ratios of the cesium transitions

determine the final Zeeman states. Specifically, in the case of free space decay, we

expect the atom to decay to |4, 0〉 with probability pfs0 = 0.55 and to |4, 1〉 and

|4,−1〉 with probabilities pfs1 = pfs−1 = 0.22. In the uncorrelated case, we also need

to remember that the atom is left unexcited in |4, 0〉 after half of all pulses. When we

include this fact and weight the Zeeman state probabilities of the two decay channels,

we find the expected probabilities

p1 = p−1 = 0.5(0.41× 0.22 + 0.59× 0.5) = 0.19; (5.11)

p0 = 0.5 + 0.5(0.41× 0.55) = 0.61. (5.12)

A more thorough calculation also takes into account the imperfect nature of our state
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π pulse(s) P4, unconditional P4, conditional

none 0.62 0.92
|4, 0〉 → |3, 0〉 0.33 0.84
|4, 1〉 → |3, 1〉 0.57 0.70
|4,−1〉 → |3,−1〉 0.56 0.62
|4, 1〉 → |3, 1〉 0.53 0.35

and |4,−1〉 → |3,−1〉

Table 5.1: Measured correlations between a detected cavity photon and the Zeeman
state of a trapped atom. We attempt to prepare each atom in |4, 0〉 and excite it to
|5′, 0〉 with a short pulse from the side of the cavity. We then measure the probability
P4 that the atom is in F = 4 following zero, one, or two Zeeman-specific π pulses; this
is expressed both as an unconditional probability and conditioned on the detection
of a photon in the cavity output path.

preparation and π pulses; in this case, we have

p′1 = p′−1 = ppump × pπ × 0.5(0.41× 0.22 + 0.59× 0.5)− 0.1× pπ = 0.01, (5.13)

p′0 = 0.8× (0.5 + 0.5(0.41× 0.55))− 0.1× pπ = 0.21, (5.14)

where the additional term reflects the fact that atomic population left in F = 3

after the initial π pulse (roughly 10% for each of the three Zeeman manifolds) can be

brought into the F = 4 manifold by the second, diagnostic pulse.

The results of our measurements are summarized in Table 5.1. After state prepa-

ration and excitation to |5′, 0〉, the unconditional probability to find an atom in the

F = 4 manifold is 0.62, somewhat better than our optical pumping and π pulse esti-

mates, and the conditional probability is 0.92. The fact that this value is not 1 can

be interpreted as the result of background photon counts that occur during the 38%

of all trials when the atom is not successfully prepared in F = 4.

Following a π pulse from |4, 0〉 → |3, 0〉, the unconditional probability to detect

an atom drops to 0.33 and the conditional probability to 0.84. From p′0 and the prob-

ability to find an atom in F = 4, we would anticipate the unconditional probability

to be 0.62 − 0.21 = 0.41. The conditional probability can again be understood in

terms of background photon counts: as the unconditional probability to find an atom

in F = 3 is two times greater than without the π pulse, the chance that background
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counts (interpreted as cavity photons) will coincide with an atom in F = 3 is also

two times greater, and the conditional F = 3 probability doubles from 0.08 to 0.16.

The unconditional probabilities following π pulses from |4, 1〉 → |3, 1〉 and |4,−1〉 →

|3,−1〉 are 0.57 and 0.56, respectively. In comparison, we would expect values of

0.62 − p′1 = 0.61 in both cases. (Again, the discrepancy suggests that for this data

run, our optical pumping efficiency was better than usual.) The conditional proba-

bilities measured are 0.62 and 0.70. We would expect to measure roughly

pc1 = pc−1 = 0.90× (1− 0.5× 0.8 + 0.1× 0.8) = 0.61, (5.15)

where the second term expresses the depopulation of the Zeeman level (to which the

atom has decayed with probability 0.5) by an imperfect π pulse, the third term is

the probability that population in |3, 1〉 or |3,−1〉 will be excited to F = 4 by this

π pulse, and the overall scaling reflects background photon counts as above. Thus,

we find good agreement between the data and our model; we do not yet have a good

explanation for the asymmetry in the two conditional probabilities, but it may be

connected with the cavity birefringence.

Finally, we apply a pair of π pulses on both |4,±1〉 → |3,±1〉 in sequence before

state detection; in this case, we find unconditional and conditional probabilities of

0.53 and 0.35. Here we expect an unconditional value of 0.62 − 2 × p′1 = 0.60 and a

conditional value of

pc±1 = 0.90× (1− 2(0.5× 0.8 + 0.1× 0.8)) = 0.32, (5.16)

again consistent with the data.

We have thus observed correlations between between photons generated via fast

pulses from the side of the cavity and atoms prepared in |4,±1〉. In the near future,

we hope to combine these correlation measurements with the hyperfine mapping of

Section 5.3. After applying a fast pulse from the side of the cavity at t = 0, we would

attempt to transfer the Zeeman populations in |4,±1〉 to F = 3, followed by state
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detection. Conditioned on the detection of a photon at the cavity output, we expect

that the hyperfine population measurement would result in a fringe as a function of

t, due to precession of the Zeeman superposition state. We could then consider the

long-anticipated rebuild of our cavity output path: while we are now only able to

detect one photon output polarization, the ability to detect orthogonal polarizations

in parallel would permit a Bell measurement of atom and photon states.
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Chapter 6

A new generation of cavities

For several years, the workhorse of cavity QED experiments in our research group

has been the optical cavity in lab 11. This cavity was built in 1999 and since then

has remained in an unbroken ultra-high vacuum (UHV) environment, an exceptional

stroke of good luck and a testament to the remarkable experimental skill of David

Vernooy and Jun Ye. More recent cavity-building efforts in our group have had

multiple goals: to construct cavities with different characteristics than those of the

lab 11 resonator, e.g. shorter or asymmetric; to improve upon the design and assembly

procedure for the cavity and vacuum chamber system; and to keep knowledge about

the process of cavity building — something of a black art — alive in our group.

In this chapter, I discuss our group’s two most recent cavity projects. While the lab

1 feedback project never produced any publishable experimental results, we learned

a great deal in our effort to get it running; this information has not been detailed

elsewhere and should be of use in the design of new experiments. Meanwhile, the

future of the asymmetric cavity project is still an open question. In the second part

of the chapter, I summarize progress to date in this most recent endeavor and attempt

to highlight outstanding questions and challenges.

6.1 Active feedback to atomic motion

Chapter 6 of Theresa Lynn’s thesis provides thorough documentation about the design

of the feedback experiment [22], so I will only touch on this briefly before discussing
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Figure 6.1: The lab 1 cavity inside the lower vacuum chamber

its implementation. In 2000, Theresa and Kevin Birnbaum began to assemble a two-

chamber UHV system similar to the one already in place in lab 11. The Ti:sapphire

laser previously used both for probing and locking the cavity was replaced with diode

lasers at 852 nm (probe) and 815 nm (lock), both stabilized to the cesium D2 line

via an external reference cavity. The physics cavity inside the new vacuum chamber

was the first one ever built to a specifically chosen length (in this case, 9.2 µm),

and special care was taken to select the cavity mount materials in order to minimize

birefringence. Another important reference for experiment design is Appendix B of

Kevin Birnbaum’s thesis, a collection of information about vacuum systems compiled

during the construction of the new chamber [4]. A separate, unpublished set of notes

by Kevin describes the cavity-building procedure used in December 2001. (Yat Shan

Au’s undergraduate thesis includes the most recent updates to this procedure [105].)

6.1.1 Characterizing the active-feedback cavity

In June 2002, when I joined Kevin, Theresa, and Dominik Schrader in lab 1, the

new cavity had already been placed inside the lower vacuum chamber, which had just

been pumped down to 10−10 torr. We worked through the summer on optimizing the
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Figure 6.2: The lower and upper vacuum chamber of the lab 1 experiment, surrounded
by associated optics

MOTs in the upper and lower chambers and on positioning the lower MOT above

the mirrors so that atoms would fall through the cavity. As we began to implement

active stabilization of the cavity length, we discovered that the cavity mount had been

inadvertently plated with nickel, a ferromagnet, when it had been sent out for gold

plating. Each time we switched on or off the magnetic fields used for trapping atoms,

the cavity length jumped by roughly 4 Å. In order to compensate for these jumps, we

built a feed-forward input to our cavity length servo which anticipated the magnetic

field switching. With the new servo in place, locking the cavity in transmission to

the probe laser field, we observed our first atom transits in October 2002.
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Figure 6.3: A sample “upgoer” atom transit observed in lab 1 via heterodyne detec-
tion. Here the probe laser is tuned red of the atom and cavity resonance such that
ωp = g = −130 MHz. The transit is observed about 23 ms after release of the atom
cloud and has width ∼ 50 µs.

Much of the following year was spent assembling the frequency metrology setup,

analogous to the one used in lab 11. This rather complicated stabilization chain

required us to lock our probe laser to a reference cavity, then lock the reference cavity

to the cesium D2 line, lock our locking laser to the reference cavity, and finally lock

our physics cavity to a frequency sideband of the locking laser. It was June of 2003

before we could accomplish all of these steps simultaneously and several more months

before we could do this reliably.

Once we had observed transits, both “downgoers” and “upgoers,” while locking

to the 815 nm sideband, our next projects were to improve their frequency and to

characterize them. Kevin and I were not particularly successful in this first task,

despite our repeated efforts to optimize the size, position, and temperature of the

MOT, and even to tilt the optical table. Subsequently, Kevin wrote a simulation to

estimate the number of atom transits per MOT drop as a function of cavity angle,

included as section 7.9 of Ref. [4]. He found that the angular dependence of transit

probability was fairly weak: a tilt of 4 ◦ from horizontal was necessary to reduce the

number of observed transits by half. (It is interesting to note that in another cavity
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Figure 6.4: Histogram of 442 recorded transit arrival times. The trigger at time t = 0
occurs 25 ms after the atoms are released from polarization-gradient cooling.

QED experiment, tilting the optical table has in fact been used to optimize the atom

count rate through the cavity [106].)

One step in characterizing the transits was to assemble a histogram of transit ar-

rival times, based on 442 transit files recorded over 7 hours in November 2003. This

data is shown in Figure 6.4, where the transit arrival times are referenced to an ex-

ternal trigger from the LabView control program, 25 ms after the end of polarization-

gradient cooling. A Gaussian fit to the data gives a mean arrival time of -0.8 ms and

a distribution half-width at half-maximum (HWHM) of 4.6 ms. Note, however, that

the Gaussian fit is not entirely satisfactory: it overestimates the number of atoms

arriving early and underestimates those arriving late.

To investigate the observed distribution — both its asymmetry and its implications

for the temperature of the atom cloud — we returned to Kevin’s transit simulation

program. The program takes input variables which include the standard deviations

of initial x and y positions (σx, σy) and velocities (vx, vy) of atoms in the MOT as

well as the height of the MOT above the cavity (〈y〉). It then samples atoms from

this distribution and records the arrival time of each atom within the cavity. (This is
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Figure 6.5: Simulated distribution of transit arrival times. Atoms are released at
t = 0 from a cloud above the cavity. The height and size of the cloud are determined
from images of the MOT, while the initial velocities of the atoms are adjusted for
good agreement with the data.

simply a calculation of moving particles under gravity, constrained by the mirror ge-

ometry, and does not take into account any light forces on the atoms.) We determined

σx, σy, and 〈y〉 independently from calibrated frame-grabber images of our MOT. We

then adjusted input parameters vx and vy, assuming them to be equal, in order to

obtain good agreement with the measured distribution width. Figure 6.5 shows a

simulated histogram with σx = σy = 0.174 mm, 〈y〉 = 2.9 mm above the center of

the cavity, and vx = vy = 3.13 cm/s, for a distribution HWHM of 4.7 ms. From these

velocities, we were able to infer a lower MOT temperature of 16 µK, consistent with

effective polarization gradient cooling. Moreover, it is interesting that the simulation

reproduces our experimental asymmetry, with more atoms piled up at the slow tail.

We also wanted to understand the observed time for an atom to transit the cavity,

which was faster than we had initially expected. For example, in November 2003, we

measured transits with full-width at half-maximum (FWHM) between 20 and 36 µs,

corresponding to a velocity of 0.6 – 1 m/s across the cavity mode. However, an

atom falling from rest 3 mm above the cavity (the measured location of the MOT)
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would only have v = 0.25 m/s. The answer was that this classical picture neglects

the trapping force provided by the atom-cavity coupling g, which in fact accelerates

the atoms as they approach the center of the mode. A calculation using the cavity

parameters ωatom = 0, ωcavity = 0, ωprobe = −130 MHz, g0 = 130 MHz, κ = 17 MHz,

and empty cavity photon number 〈a〉 = 1 found that an atom falling 3 mm would

cross an antinode of the cavity mode with tFWHM = 29 µs. As it turns out, there

is only a very weak relationship between the initial height of an atom and its transit

time, which is almost entirely determined by g. For example, an atom falling from

2 cm would have a transit time tFWHM = 22 µs; for an atom with no initial fall

velocity, tFWHM = 31 µs. An apparent discrepancy with the 74 µs average transit

time reported in Ref. [20] was resolved when Theresa explained that their criterion

had been the amount of time that atoms were within one mode waist of the cavity

center, rather than the FWHM.

A third transit measurement looked at the difference between peak and empty

cavity transmission for “upgoers” as a function of probe intensity (Figure 6.6). The

results were roughly consistent with a Matlab calculation using the quantum optics

toolbox and thus confirmed that our heterodyne calibration (which we used to scale

cavity transmission to photon number) was about right.

Finally, we were concerned about the polarization of the intracavity light in con-

nection with observations that a repump beam from F = 3 to F ′ = 4 improved the

frequency of transits. (We intended to drive the cavity with circularly polarized light

on the closed F = 4 → F ′ = 5 transition. The fact that atoms were present in the

F = 3 manifold seemed to suggest the presence of linearly polarized light, though we

later concluded that the repump beam probably just helped us see atoms that were

in F = 3 as they entered the cavity.) After reworking the cavity input path so that

the last optical elements were a polarizing beamsplitter cube (PBS) optimized for 850

nm and a zero-order quarter waveplate at 850 nm, we determined that only 0.003% of

the input light had the wrong circular polarization. In December 2003, we measured

κ1 = 14.4 ± 0.6 MHz along one birefringent axis of the cavity and κ2 = 17.0 ± 0.8

MHz along the other, where the difference in the center frequency between the two
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Figure 6.6: Upgoer height as a function of probe intensity, expressed in units of |〈a〉|
(proportional to the square root of the heterodyne detection signal) for comparison
with a Matlab quantum optics toolbox calculation (red). As the empty cavity value
of |〈a〉| also increases with probe intensity, this is subtracted from each data point.

resonances (i.e., the birefringent splitting) was ∆ν = 4 MHz. Thus ∆ν
κ
≈ 0.25, in con-

trast with ∆ν
κ
≈ 1 for the lab 11 cavity [29]. As ∆ν

κ
is proportional to the birefringent

phase shift per round trip, we can conclude that the efforts made by Theresa and

Kevin in constructing the new cavity had succeeded in reducing birefringence effects

by a factor of four.

In the spring of 2004, we assembled a diode laser at 936.8 nm, two cavity free

spectral ranges red of the cesium resonance, with the intention of trapping atoms

within an intracavity FORT. Because of the narrow gap between the cavity mirrors,

we would not be able to focus lattice beams through the cavity from the side in order

to cool and load atoms into the trap. However, with an EOM providing frequency

sidebands for locking the laser to the physics cavity and an AOM for switching the

trap, we planned to trigger the FORT on in the presence of an atom, as had been done

in the early days of lab 11 [40]. The FORT linewidth and other cavity parameters

are listed in Table 6.1.
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lab 1 cavity parameter value

effective length l 9.2 µm
mode waist w0 13.3 µm
κ1, κ2 2π×(14.4 MHz, 17 MHz)
finesse 570,000 (along axis 1)
g0 2π × 130 MHz
κ815nm 31.2 MHz
κ936nm 4.9 GHz

Table 6.1: Parameters for the lab 1 active-feedback cavity. All parameters are for 852
nm unless otherwise stated.

6.1.2 Difficulties in implementation

We encountered a number of difficulties which slowed our progress on the active-

feedback experiment and would have made data acquisition a challenge. Here I high-

light what seem in retrospect to have been the most significant of these problems and

suggest how they might be avoided in future experiments.

6.1.2.1 A nickel-plated cavity mount

The nickel-plated cavity mount described in Section 6.1.1 has received a great deal

of blame. The copper mount was gold-plated through the machine shop in order to

prevent oxidation during cavity assembly, after which it could no longer be baked.

Unknown to us, nickel is generally used as an underplate in this process to avoid

gold diffusion into the copper, and we should have specifically requested its omission.

While it was frustrating to learn that magnetic material had found its way into the

vacuum chamber, in practice we were able fairly quickly to devise a feed-forward

locking circuit that compensated for the cavity stabilization difficulties caused by

induced fields. Although the cavity length jumped each time the current in the MOT

coils switched, a signal sent to the locking circuit provided a synchronous offset voltage

to the cavity piezo.

However, this adaptation made the locking circuit inherently less stable. In addi-

tion, the induced magnetization in the nickel would make it challenging to implement

controlled transverse and axial bias fields in future experiments. This sort of con-
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trol over the magnetic field seen by atoms trapped in the cavity has emerged as an

important tool in lab 11.

6.1.2.2 Complexity of the stabilization network

The network of lasers and servos required for the experiment to run was fairly complex.

The MOT trapping and repump lasers had to be locked separately to cesium lines.

The cavity probe laser and 815 nm locking laser were each locked to a 30 cm, 50

kHz reference cavity, and the reference cavity was then locked to cesium. A traveling

wave modulator was used to put frequency sidebands (tunable up to 1 GHz) on the

locking laser, and the physics cavity length was then stabilized by locking to one

of these sidebands. Later, the 936 nm FORT laser was also locked to the physics

cavity. All of these locks used the Pound-Drever-Hall technique, and all five lasers

were home-built external-cavity diode lasers.

This complexity was to some extent inevitable, but it meant that we spent a great

deal of time just trying to keep everything locked simultaneously, and the instability

of the cavity lock due to the feed-forward circuit described above only made things

worse. We learned to avoid unwanted amplitude modulation (which causes DC offset

drift in an error signal) by using EOMs to put frequency sidebands on the laser light

instead of modulating the laser current; in addition, it was helpful to put a PBS cube

before each EOM for a clean input polarization. At first, we locked the physics cavity

in reflection but then switched to locking in transmission, which allowed us to avoid

noise on the reflected signal.

In this situation, we could have learned from lab 11, where Andreea Boca imple-

mented a robust injection-locked laser setup for the MOT trapping laser [29]. By

replacing the grating-stabilized F = 4 → F = 5 laser with a slave laser seeded by

injection light from the cavity probe, we could have eliminated one cesium lock from

our system. We could also then have bypassed our SDL tapered amplifier, which

came with its own alignment headaches, since an injection-locked laser can provide a

few hundred mW of power. (Using a grating to form an external cavity reduces the

laser output power by roughly half, since the rest of the power is fed back into the
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diode.) More recently in lab 11, we replaced the cesium lock for the F = 3 repump

laser with a phase lock to the probe laser, as described in Chapter 3. This was done

for the purposes of having phase-stable F = 3 and F = 4 lasers for the coherent state

transfer experiment; however, we have found as a side benefit that the lock has been

much more robust.

6.1.2.3 A dearth of transits

This final problem is perhaps the most fundamental: we simply never saw very many

atoms in our cavity. During successful data runs, it was more likely to see no transits

than one transit in a four-second experimental cycle, and it was uncommon to see

more than one transit per cycle. When lasers drifted out of alignment, or the MOTs

were not well positioned, it was difficult to see any transits at all.

Perhaps this should have been more cause for concern beforehand, given the short

length of the cavity: Theresa notes in her thesis that on average 40 transits per

cycle were observed in lab 11, and that the flux of atoms through the lab 1 cavity

was expected to be 60 times smaller than in lab 11. This had not been an issue

in the previous atom-cavity microscope experiment, also based upon a ∼ 10 µm

cavity, because that experiment had used only one MOT, formed directly from cesium

background vapor above the cavity. The cost of switching to a double-MOT design

is a reduced atom number in the final MOT, by roughly a factor of 100.

The current focus in our group has been on cavities with enough space to admit

lattice beams from the side as in lab 11, that is, at least 30 µm in length. However,

if there is future interest in a very short cavity with large g, I would recommend

developing a new strategy for obtaining a large lower MOT. For example, one might

incorporate a “pusher beam” into the upper MOT in order to create an “atom faucet”

[107] that would load the lower MOT with a high-flux, low-divergence atomic beam.
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6.1.3 Technical improvements

There are also some positive lessons to be drawn from the lab 1 experiment. The

design of the two-chamber vacuum system offers much more physical and optical

access than is available in lab 11. The technique of coupling both the trapping and

repump beams for the MOT into polarization-maintaining optical fiber, then bringing

them out of fiber in a compact setup close to the chamber, proved very successful. I

would like to emphasize the usefulness of having a systematic procedure in place for

MOT alignment, that is, the ability to center all three transmitted MOT beams by

eye on their output windows and the use of irises for retro-reflection alignment.

Two optimization procedures for the MOT are worth mentioning. The first con-

cerns the positioning of both the upper and lower MOTs, in the first case above the

differential pumping tube, and in the second case above the cavity. The main MOT

coils provide a gradient trapping field for the MOT, while three pairs of bias coils

ensure that the magnetic field is nulled at the MOT location. If this condition is

not met, then when the main coils are turned off for polarization-gradient cooling,

the atoms will be pulled away from the center of the trapping beams by the residual

fields and will not fall correctly into the second chamber or through the cavity mode.

In order to optimize the currents through the bias coils, we used a Labview control

program which, after forming a MOT, gradually stepped down the current through

the main coils over the course of a few seconds. This allowed us enough time to

observe the trajectory of the atom cloud on a camera as the MOT dissipated. We

could then adjust the bias coil currents until the cloud expansion appeared uniform

and symmetric.

The second procedure measured the temperature of the cesium cloud after cooling.

In January 2004, as part of an effort to improve the frequency of transits, we decided

to quantify the polarization-gradient cooling, which consisted of 35 ms of illumination

from the trapping beams, at a lower intensity and increased detuning from their MOT

settings and with the MOT coils off. We used the following method: after waiting a

variable time delay t after the fields were turned off, we applied a detuned pulse of light
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a few ms in length in order to illuminate the atom cloud. For each time t, we took a

pair of pictures of the illuminated cloud with our camera frame-grabber. One picture

of each pair was taken with the MOT coils always turned off (i.e., in the absence of

atoms) and then subtracted from the other in order to remove background light from

the chamber. After obtaining image pairs at a series of delay times, we analyzed the

data in IgorPro: following the image subtraction, we took a line profile through the

center of the remaining cloud, which we fit to a Gaussian. Plotting the Gaussian

widths as a function of t, we fit the data to determine both the initial radius of the

cloud and the expansion time constant τ , from which we could extract a temperature.

In practice, once we had improved the cooling by adjusting the intensity and detuning

settings of the beams, it was no longer possible to measure a temperature accurately

because the cloud fell under gravity out of the range of the camera before it had much

chance to expand. In this case, we could make further improvements to the upper

MOT settings by instead observing the number of atoms collected in the resulting

lower MOT.

One interesting consequence of our difficulties in observing transits was that Kevin

began to wonder if there was some underlying physics at work that we hadn’t con-

sidered. He realized that in the case of such a small cavity, the atom-cavity coupling

of 2π × 130 MHz was on the order of the cesium hyperfine excited state splittings.

This brought into question the assumption that we could model our system as a

two-level atom interacting with a single cavity mode (the Jaynes-Cummings model

[3]); even though our circularly polarized probe beam addressed a two-level cycling

transition between F = 4 and F = 5, the cavity could now couple to other hyperfine

levels. Working with Scott Parkins, who was visiting from the University of Auck-

land, Kevin calculated the transmission as a function of probe and cavity detunings

for a cavity coupled to multiple excited state levels, as well as to the entire D2 tran-

sition [28, 5]. While our optical cavity was just on the border where these couplings

become relevant, it may be possible to observe some of the phenomena predicted by

his calculations in the microtoroid experiments currently underway in our group.
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6.2 An asymmetric cavity system

In the fall of 2004, we abandoned work on the active feedback experiment and began

instead to construct a new cavity. This next-generation cavity would address several

shortcomings of the current lab 11 system. While we hoped that it could someday

run in parallel with the lab 11 experiment, the system also had a practical function

as a backup cavity for lab 11, which at that point had been running continuously for

six years (now nine).

In particular, the new cavity would be “single-sided,” that is, built with one

“open” mirror more transmissive than the other (“closed”) one, so that light escaping

from the cavity would exit primarily through this open mirror. At a minimum, this

design would allow us to collect roughly twice the intracavity photons as in lab 11,

where photons exit from both cavity mirrors but are only collected at one port. We

could also hope to realize protocols for quantum computation, such as a quantum

nondemolition (QND) measurement of photon number [44]. (This protocol relies on

a single-sided cavity because it requires a photon either to reflect off the cavity —

acquiring a phase shift in the process — or to enter the cavity and then exit through

the same mirror it entered.) The most ambitious vision was that with a second

functioning optical cavity in our group, we might entangle the states of two atoms

trapped simultaneously in both cavities [78].

Previous cavity-building efforts had attempted to minimize birefringent splitting

in the cavity modes by avoiding any nonuniform stress to the mirrors. Techniques for

achieving this included minimizing the use of epoxy which bonds the mirrors to their

v-blocks, keeping the epoxy as far as possible from the mirror surfaces, selecting an

epoxy with optimal thermal expansion properties, machining the v-blocks out of BK7

in order to match the thermal expansion coefficient of the mirror substrates, and not

baking the vacuum chamber once the cavity was inside [21, 22]. As we have seen, in

the active-feedback cavity, the result was a reduced but still measurable birefringence.

We hoped in this case to explore stressing the cavity mirrors on purpose in order to

induce a birefringent splitting. Ideally, we could then tune this stress, perhaps with a
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piezoelectric transducer, either to (a) null it entirely, or (b) make it large enough (i.e.,

∆ν � g) so that our intracavity atom would only interact with one cavity mode.

Finally, we were not sure what was limiting the recently demonstrated 2–3 s trap

lifetimes in the lab 11 cavity, but a prime candidate was background collisions [102].

In the new vacuum chamber, we would aim for a background pressure of 10−12 torr,

two orders of magnitude lower than in previous experiments, in the hope that this

would permit longer intracavity storage times. However, this new target pressure

suggested that we would have to bake the vacuum chamber more aggressively than

in the past. It would be necessary to reconsider how well the chamber components

could withstand baking.

Kevin had meanwhile joined Andreea, David Boozer, and Russ Miller on the

vacuum Rabi splitting experiment in lab 11. I took on the project of collaborating

with mirror manufacturers to develop low-loss mirrors for our cavity, the subject

of Chapter 7. Meanwhile, I worked with undergraduates Yat Shan Au and Travis

Bannerman on vacuum chamber and cavity redesign; the project later grew to include

Toby Burrows, Andrey Rodionov, and Dal Wilson.

6.2.1 Cavity redesign

At the heart of our cavity-QED experiments is a high-finesse Fabry-Perot resonator

consisting of two mirrors fabricated on BK7 substrates. As described in more detail

in Refs. [21, 22], in the most recent generation of cavities, the mirrors are attached

with epoxy to BK7 v-blocks which have been glued on top of shear-mode piezoelectric

transducers. Another layer of electrically conductive epoxy bonds the piezos to the

cavity mount, a copper block.

This cavity design presented two problems in light of our plan to bake the vacuum

chamber: the low Curie temperature (190 ◦C) of the piezo material, EBL3, and the

temperature ranges of Torr-Seal and Master Bond EP30LTE-ND, the epoxies used for

bonding the v-blocks to the piezos and the mirrors to the v-blocks. After extensive

research, Yat was able to suggest replacement materials. Pz23 and Pz27 from Ferrop-
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erm Piezoceramics (Kvistgaard, Denmark) have relatively high Curie temperatures

of 350 ◦C and a recommended maximum working temperature of 250–300 ◦C. For

a UHV epoxy, Caburn MDC (West Sussex, U.K.) sells a product called H27DUHV

which it claims is vacuum-compatible to 10−11 torr and can be baked to 270 ◦C. Dal

returned to the question of epoxy last year in the process of building several test

cavities, where in addition to UHV compatibility and the coefficient of thermal ex-

pansion, he considered the importance of a good consistency and reasonable curing

time for cavity-building. He has settled on Epotek H21D as a cheaper alternative

to the Caburn product; in addition, its volatile organic outgassing specifications are

well-documented. (After a cavity baking experiment in which the finesse dropped

by a factor of two, we are now concerned about outgassing not only because of its

effects on background pressure but also because it may deposit material on the mirror

faces.) It is interesting to note that he has also successfully used thermo-compression

to achieve a glue-free bond between two flat surfaces, for example, by clamping to-

gether a silver-evaporated piezo and a copper cavity mount for an hour at 150 ◦C.

Would the new high-temperature piezos allow us to tune the cavity length over

a full free spectral range (426 nm of travel)? This is a difficult question to answer,

as the shear mode piezos in both the previous lab 1 cavity and the current lab 11

cavity exhibit two to three times as much travel as one would expect [40, 22]. Here

the relevant quantity is the shear displacement d15 of one piezo surface relative to

the other, which is 335 pm/V for Pz23 and 500 pm/V for Pz27. In comparison,

the nominal value of d15 for EBL3 is 730 pm/V, but measurements in lab 1 indicate

d15 = 1.7 nm/V; one free spectral range corresponds to an applied potential of about

250 V. Initial interferometer measurements in the lab were consistent with specified

d15 values; a test cavity which Dal later built with Pz27 in October 2006 was found

to travel 425 nm over 400 V, or d15 ≈ 1 nm/V. It remains to be seen whether the

Ferroperm products will display a similar behavior in a cavity under vacuum. As for

the response of the piezos to temperature stress, Yat tested Pz23 after baking for 48

hours at 198 ◦C and observed no change in maximum travel. Now that we have an

oven capable of higher temperatures, it would be interesting to revisit this question.
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Given the uncertainty about the range of the piezos, for several months we dis-

cussed a more significant redesign of the cavity mount. The impressive passive drift of

< 10 fm/s reported by Michael Chapman’s group at Georgia Tech [47, 108] prompted

us to consider a single expansion-mode piezo design, which they believed was the

source of their stability [109]. Here as well we were confronted by the short travel

range of the piezo for our small cavity as well as questions about stress induced by

gluing the mirrors directly to the piezo. Yat then designed a mount in which an

expansion-mode piezo drove a spring system formed by electrical discharge machin-

ing of an aluminum piece; the cavity mirrors were glued directly to the metal on

either side of the spring. The design had several appealing features, including a large

range of travel, mechanical stability because the mirrors shared a common mount,

and the possibility of avoiding glue altogether. However, in initial tests, piezo ex-

pansion was found to tilt the mirror alignment along with changing the length of

the cavity, probably due to nonuniform spring compression [105]. Finally, we have

considered the option of giving up long-range piezo tuning altogether and instead re-

lying on slow temperature tuning, either with a laser or a heating element inside the

vacuum chamber. But as we have not yet demonstrated a satisfactory replacement,

we have decided for the time being to rely on the previous cavity mount design, with

the simpler substitution of high-temperature-compatible components.

6.2.2 Controlling birefringence

The challenge of controlling the cavity birefringence is of course connected to cavity

redesign, since any mechanism to actively induce stress in the mirrors would have to

be incorporated into the cavity mount, along with the usual considerations of UHV

compatibility and optical access for the MOT and cavity beams. Toby spent the

summer of 2005 engaged in two projects: using finite element analysis to model how

stress on the mirror substrates leads to strain and a change in the mirror’s index of

refraction, and trying to induce and quantify birefringence with test cavities in the

lab using jigs that I had designed. Unfortunately, due to the short length of his stay,
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neither project was conclusive.

Yat and Dal then took on this project in the following year and spent some time

characterizing the birefringence of test cavities. By first securing a mirror with a wire

in order to pre-load it, then applying a voltage to a piezo wedged between the mirror

and the wire, they successfully observed an induced birefringence. More sophisticated

mounts for inducing stress were then employed, one in which a mirror was pre-loaded

with set screws against two piezos which applied pressure from orthogonal directions,

and a second (a possible candidate for use in UHV) in which the usual cavity mount

design was adapted by placing an expansion-mode piezo inside one of the v-blocks. In

all cases, the observed change in the birefringent splitting between the two orthogonal

cavity modes was on the order of ∆ν
FHWM

= ∆ν
2κ

= 1. This is in rough agreement with

what we would expect from a finite element analysis model that Yat developed [105].

While these results are encouraging, at this time we still have no reliable means of

controlling the birefringent splitting of our cavities. Moreover, the magnitude of the

induced birefringence suggests that while we might (with a clever design) be able to

eliminate the intrinsic birefringence of a cavity, we would have to increase the stress on

the mirror coatings by at least two orders of magnitude in order to observe splittings

large compared to g. One interesting prospect is the use of cylindrical piezoelectric

transducers which could be custom-ordered with the same diameter as the mirror

substrates. Under an applied voltage, the piezos would then squeeze the substrates,

and a slit in the piezos could perhaps break the cylindrical symmetry, providing a

preferred birefringent axis.

6.2.3 Cavity length

The lab 11 cavity, 42.2 µm long, supports 99 half-wavelengths at λCs = 852 nm and 90

half-wavelengths at λFORT = 936 nm. A cavity which is resonant at both wavelengths

must therefore have a length which is an integer multiple of 11λCs

2
= 10λFORT

2
. In order

to maximize g, we would like to build the smallest such cavity that will still allow us

to focus lattice beams through the cavity side gap, as in lab 11.
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Imagine a Gaussian beam focused through a gap which is tens of microns wide

and 1 mm long. Let the x-axis lie along the path of the beam with its origin at the

center of the gap. If z is the beam waist at the focus (at x = 0), then the beam waist

as a function of x, z, and the wavelength λ is given by

w(x, z, λ) = z

√
1 + (

xλ

πz2
)2. (6.1)

We want to minimize w at xgap = 0.5 mm, the edge of the gap. We thus solve

dw(xgap, z, λCs)

dz
= 0 (6.2)

to find zmin = 11.6 µm. The minimum gap between the mirrors is then given by

2w(xgap, zmin, λCs) = 32.9µm. (6.3)

The smallest co-resonant cavity that can accommodate this gap supports 88 half-

wavelengths at λCs, 80 half-wavelengths at λFORT , and is 37.5 µm long. This is then

the target length for our cavity.

The preceding discussion has not addressed the problem of diffraction. Siegman

notes that an aperture criterion of 4.6w is necessary to reduce spatial intensity vari-

ation to 1% [9]. In practice, we need to compromise between the demands of strong

coupling and the desire for a uniform intensity along the cavity axis. What we have

seen in lab 11 is that a 42.2 µm gap allows us to perform effective lattice-based cool-

ing, but that diffraction may be at the root of our difficulties in using side beams for

optical pumping.

6.2.4 Rethinking passive stabilization

In past cavity systems, passive vibration isolation from the chamber and optical table

has been provided by a series of heavy copper pieces separated by rubber bumpers

of Viton and RTV. [21] We had two concerns regarding this design. First, it seemed
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likely that outgassing from the Viton and RTV would limit the background pressure

we could attain in our new system. Second, Viton can only be baked to 200 ◦C, and

we hoped to bake out the system at higher temperatures.

On the recommendation of Ching-Tzu Chen, a graduate student in the Yeh group,

we used an accelerometer to analyze the sensitivity of the cavity system. By measuring

acceleration as a function of driving frequency at the location of the cavity mount,

we established a baseline for the current system which we could then use to evaluate

the efficacy of new designs. An alternate method to analyze the passive stability of

the cavity is to lock it to a laser and then monitor the error signal from the lock; we

also explored this option, using both the 852 nm probe and 936 nm FORT lasers.

The simplest redesign consisted of replacing both the Viton and RTV with Kalrez,

a material which Travis discovered in his research. Viton and Kalrez are both manu-

factured by Dupont Dow; Viton is a fluoroelastomer, while Kalrez is a perfluoroelas-

tomer, about ten times more expensive, has superior outgassing properties, and can

be baked to 316 ◦C. (RTV stands for “room temperature vulcanization” and may

refer to a number of silicone products.) In addition, the bumpers cut from Kalrez

O-rings were loaded radially rather than axially, a technique known as streamline

loading which produces a more uniform compression and improved damping. The

measured sensitivity of the new system was found to be as good as the old one, with

some improvements at low frequencies [110].

A more ambitious redesign came out of our discussions with LIGO staff scientist

Riccardo DeSalvo. He suggested that we suspend our cavity mount from the walls

of the vacuum chamber by employing the mini Geometric Anti-Spring (mini-GAS)

system currently in use at the TAMA gravitational wave antenna in Japan [111].

In collaboration with Travis and Riccardo, Italian engineers who had produced the

TAMA suspension designed a four-spring system made of beryllium copper that was

compatible with our vacuum chamber. Its all-metal construction ensured that it

would not be the limiting factor in determining bake-out temperature, and the anti-

spring design avoids the long-term creep that ordinary spring systems experience.

Although the design would provide effective passive suppression of high-frequency
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blade spring

wires

wires

Figure 6.7: The mini-GAS suspension mount supports a cavity inside the lab 1 test
vacuum chamber in June 2006. Note the four thin BeCu wires which are secured to
blade springs beneath the mount.

noise, it would have a ∼ 2 Hz pendulum mode and a ∼ 8 Hz leaf spring resonance

which would both require an active servo for compensation; we hoped to achieve this

initially by using magnetic fields from the MOT coils to induce eddy-current damping

in the mount.1 The system arrived from Italy shortly before Travis’s graduation. It

was assembled within a test chamber (Figure 6.7) and and characterized with both

the accelerometer (Figure 6.8) and cavity lock techniques, which confirmed that the

low frequency resonances were substantial; an attempt to observe damping from the

MOT coils was unsuccessful. One possibility which might circumvent this difficulty

1The slow damping time of pendulum modes and daily creep are two reasons why the Chapman
group, for example, has moved away from their earlier cavity suspension, despite its demonstrated
excellent passive stability [109].
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Figure 6.8: Accelerometer measurements of the mini-GAS suspension. The suspen-
sion mount is displaced and its ringdown as a function of time is recorded (inset). A
Fourier transform of this data reveals expected resonances at around 2 Hz and 8 Hz,
corresponding to the pendulum mode and the leaf spring resonance. Vibrations at
higher frequencies are quickly damped by the spring system.

would be to use the suspension to support future microtoroid experiments. As light

is coupled in and out of the microtoroids via optical fiber rather than in free space,

the motion of the cavity with respect to the vacuum chamber is no longer a cause for

concern, and perhaps low-frequency active damping could be avoided entirely.

6.2.5 Vacuum chamber

We decided to purchase new vacuum chamber components rather than attempt to

reuse the old cavity chamber. This allowed us not to worry about damaged knife

edges from old components that might compromise vacuum, and it provided us with

a backup chamber in which we could test vibration isolation.

I attempted to stay as close to the previous chamber design as possible, for sim-

plicity and ease in reusing input and output optics. The lower chamber had been
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Figure 6.9: Vacuum chamber design for a new asymmetric cavity. Much of the
earlier lab 1 design remains intact, with an upper and lower chamber connected by
a differential pumping tube and brought to UHV with two Varian ion pumps. New
components include a residual gas analyzer (RGA), a titanium sublimation pump,
and a multiplexer port on the upper chamber in order to incorporate getters.

custom-built by NorCal and was replaced with a Kimball Physics 6” spherical oc-

tagon of similar dimensions. The upper chamber was again a 2.75” Kimball Physics

spherical hexagon. The 55 l/s and 20 l/s Varian VacIon Plus Starcell ion pumps that

had been used for the lower and upper chambers were also replicated. The new dif-

ferential pumping tube was identical to the older one, as it was a backup version that

had been machined at the same time. Both chambers now had nude Bayert-Alpert

ionization gauges from Varian, model UHV-24 for the upper chamber and UHV-24p

(lower pressure limits 2 × 10−11 torr and 5 × 10−12 torr, respectively) for the lower

chamber. All-metal gate valves from VAT could be used to pump down the upper

and lower chambers simultaneously.
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From his experience building vacuum chambers at Michigan, Russ Miller suggested

that we include a residual gas analyzer (RGA200, SRS) in order to diagnose any leaks

we encountered and a titanium sublimation pump (Lesker) to reduce the final system

pressure by an order of magnitude. As we were concerned about the possibility of

titanium sputtering near our mirrors, there is no line of sight between this pump and

the cavity.

The previous chamber had used a cesium ampoule to load the upper chamber

MOT from a reservoir of background gas. We decided instead to implement the

newer technique of “getters,” alkali metal dispensers which emit a vapor when they

are resistively heated [112, 113]. Using getters is simpler, more compact and avoids

problems associated with successfully breaking the glass ampoule under vacuum. It

also permits a lower background pressure in the chamber, especially if the getters are

operated in a pulsed configuration. However, the metal in each dispenser eventually

becomes depleted; how long this takes depends on the current at which the dispenser

is operated, as well as whether it has been subjected to short bursts of high current.

We have seen getters in use in the atomic ensembles experiment (lab 2) last only

several months. In comparison, the amount of cesium provided by the lab 1 ampoule

has been sufficient for the past ten years. Cindy Regal reports that at JILA, getters

are used for glass chambers, but in stainless steel chambers (where alkali atoms are

absorbed by the walls), ampoules are still used. Our getter design replaced a 2.75”

window on the upper chamber with a five-port 2.75” multiplexer (Kimball Physics);

the center port was for a MOT beam, while the others could be used for getters. With

two getters per port, we could in principle stock our chamber with eight getters and

hope for several years of operation before they were all depleted. One encouraging

factor is our chamber geometry, which allows us to place the getters ∼ 2 cm from

the upper MOT. Thus, we are able to form a bright MOT with lower currents than

have been necessary in lab 2 and, more recently, in the microtoroid experiment: Dal

and summer student Jie Wu measured Natoms ∼ 108 with 3.25 A through the getters,

well below the threshold current of ∼ 4 A where the response becomes nonlinear

[114]; labs 2 and 11a operate at or above this threshold. (It is, however, necessary to
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Vacuum Components ◦C
Stainless steel chambers, upper and lower 450
Stainless nipples and flanges 450
Stainless tees, crosses, multiplexers 450
Differential pumping tube 450
Getter feedthroughs 450
PZT feedthrough 450
Valves for roughing pumps 450 open

350 closed
Viewports, without AR coating 400
Ion pumps without magnets 350
Titanium sublimation pump cartridge 350
Residual gas analyzer (RGA) 300

Table 6.2: Maximum baking temperatures for vacuum chamber components

operate the getters briefly above threshold during bake-out as part of an “outgassing”

process to remove impurities from the surface. This process should be repeated after

each instance in which the getters are exposed to air [115].)

In Table 6.2, I list the maximum baking temperatures for our vacuum chamber

components, also reproduced in Yat’s thesis. In the past, we have obtained UHV

viewports from Larsen with anti-reflection (AR) coatings applied by Guernsey. The

uncoated viewports have a baking temperature of 400 ◦C limited by the glass-to-

metal transition, but according to Guernsey engineers, the coatings could not be

baked above 250 ◦C. As this would potentially limit our bake-out temperature, we

arranged for a coating run by Advanced Thin Films (Longmont, Colorado) on bare

Larsen viewports. These coatings reflect less than 0.5% of light between 800 and 950

nm and no longer limit the viewport baking temperature.

In order to determine our target bake-out temperature, Yat was able to find

measured thermal desorption spectra for 316LN stainless steel. [116] These indicated

a desorption peak for water molecules at around 300 ◦C. Thus, even if our cavity

mount assembly required lower temperatures, we would at least plan to pre-bake the

chamber itself above 300 ◦C for several days. We purchased a large custom oven from

Milmetco which could reach temperatures of 600 ◦F (316 ◦C). We threaded a 48 inch

braided bellows through a hole in the side of the oven so that we could bake the
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chamber under vacuum. Inside the oven, one end of the bellows attached to a tee

from which two smaller bellows connected to the upper and lower all-metal valves

of the chamber. Outside the oven, the other end of the bellows allowed us to pump

either with a turbo pumping station (Pfeiffer TSU071) or, at lower pressures, with an

ion pump (VacIon Plus 40 Starcell). The chamber, of course, has its own ion pumps

attached, but as their magnets have to be removed temporarily for baking, we are

not able to use them inside the oven.

6.2.6 Current project status

We assembled the two-chamber vacuum system, absent the cavity or the cavity mount

apparatus, in the fall and winter of 2005. We successfully demonstrated a pressure of

≤ 5 × 10−12 torr in the empty chamber (the resolution limit of the nude ion gauge)

one month after firing the titanium sublimation pump, with blanks substituted for

the viewports during this initial test. Dal has also explored the option of placing an

unbaked cavity (with the cavity mount components baked separately before assembly)

inside of a pre-baked chamber and vibration isolation system, venting it to nitrogen

during the ∼ 15 minute transfer process, and he has confirmed that the chamber

with cavity returns to its initial pressure after several months. (In this instance, the

pressure was ∼ 10−10 torr in order to expedite the process. As the use of the titanium

sublimation pump should improve the pressure by an order of magnitude, this result

suggests that we may not need in-situ baking of the cavity mirrors.)

At the moment, the chamber is simply waiting for a cavity. As I have discussed in

this chapter, some questions about how to improve the cavity design, such as incorpo-

rating control over birefringence, have not yet been resolved. The primary cause for

delay, however, has been our quest for better cavity mirrors. In the following chapter,

I describe our goals in improving mirror losses, the process of mirror characterization,

and the results of this effort to date.



142

Chapter 7

In search of the perfect mirror

7.1 New mirrors for a new cavity

In October 2004, the decision was made to replace the lab 1 cavity built by Kevin

Birnbaum and Theresa Lynn with a new, single-sided cavity. Central to the cav-

ity project was the need to re-establish connections with the manufacturers of our

high-finesse mirrors. Collaborations between our group and Ramin Lalezari of PMS

Electro-Optics in Boulder, Colorado (later Research Electro-Optics) had produced

record-low mirror losses in 1991 [8]. These “supermirrors” had total losses (trans-

mission plus scatter and absorption) of just 1.6 parts per million, corresponding to a

cavity finesse of 1.9× 106. A few years later, Quentin Turchette and postdoc Michael

Chapman worked with Research Electro-Optics (REO) to develop the tapered 3 mm

/ 1 mm mirrors which are now used in several labs worldwide. Christina Hood then

traveled to REO in order to develop improved mirror cleaning and handling techniques

[21].

The state-of-the-art mirrors which our lab relies on for strong-coupling cavity

QED were thus a product of extensive back-and-forth dialogue with industry, but by

2004, this dialogue had lapsed for several years. Meanwhile, Ramin had left REO to

start his own company, Advanced Thin Films (ATF), in Longmont, Colorado. We

hoped that by placing orders with both REO and ATF for new mirror coating runs,

we could encourage the two companies to push the scatter and absorption of their

mirrors to new lows.
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In March 2005, I drove to Colorado with a breadboard of mirror-testing equip-

ment, since neither company had the ability to characterize such low-loss mirrors at

850 nm. I spent several weeks there that spring and summer and have made two sub-

sequent trips to measure more recent ATF coating runs. In this chapter, I summarize

that experience, focusing both on techniques to characterize mirrors efficiently and

on what we’ve learned about the present limits of mirror coating technology. Fur-

thermore, I discuss the implications of current mirror technology for proposed cavity

QED experiments in our lab.

7.2 The nuts and bolts of mirror testing

We can define a mirror at a given wavelength by its reflection, R, its transmission,

T , and its scatter and absorption losses, S + A = l, where

R + T + l = 1. (7.1)

In theory, one could determine the values of R, T , and l by placing the mirror

in a laser path, measuring the fractions of the beam transmitted and reflected, and

attributing the rest to losses. In practice, when we need to discern transmissions and

losses on the order of 10−6 or 10−7, detector nonlinearity and scattered light into the

detectors present serious problems for this method. A more reliable approach is to

construct an optical cavity from two identical mirrors and then to characterize the

cavity.

Christina Hood and Jun Ye outline their procedure for characterization of cavity

mirrors in Refs. [21] and [42]; specifically, this procedure is based on their 1999 inves-

tigation of mirrors from REO coating run no. T95, the source for the current lab 11

cavity and past lab 1 cavities. First, a measurement of cavity finesse F determines

total losses L = T + l, since F = FSR
FWHM

= FSR
2(κ/2π)

= 2π
L in the low-loss cavity limit

[9]. Here FSR is the cavity’s free spectral range, the spacing between longitudinal

modes, which can be determined from cavity length or (for a very short cavity) with
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a wavemeter; κ is the HWHM linewidth of the cavity’s TEM00 mode. If the mirrors’

losses are low enough and the cavity is long enough, κ can be measured directly via

cavity ringdown in order to determine finesse. Alternatively, frequency sidebands ap-

plied to a probe laser can provide a meterstick for κ as the cavity length is scanned

with a piezo. (More sophisticated methods of measuring κ for short cavities are avail-

able when the cavity length can be actively locked; Section 4.3 of Ref. [29] provides

details.) Next, in order to partition total losses into T and l, cavity transmission and

reflection on resonance are measured simultaneously and compared with the input

power to the cavity.

This technique presupposes the cavity mirrors to be identical, a reasonable as-

sumption if they are from the same coating run and appear defect-free under micro-

scope inspection. It is also possible to characterize the two mirrors independently by

repeating the transmission/reflection partitioning described above with light incident

from the opposite side of the cavity [117].

7.2.1 A portable testing apparatus

When we discussed a new coating run with REO in the winter of 2004–5, they had

recently completed a mirror coating/coning process for Dieter Meschede’s group at the

University of Bonn. REO had initially been unable to meet the specifications of F ∼

500, 000 until a student arrived from Bonn with equipment to quantify mirror losses at

the company. The advantage of having feedback within a few hours about the results

of a coating run is that the same ion beam sputtering (IBS) machine can be used

again right away for a second coating, without any changes to the machine’s settings

except a few tweaks indicated by the measurement, thus insuring repeatability. It

was decided that I would travel to Boulder to measure the results of an initial test

run and all subsequent attempts until the mirrors were found to be consistent with

our target values of T and l. I would also be able to re-measure the mirrors after they

were coned by REO opticians in order to document any new losses. (From the Bonn

run, about 50% of the mirrors that entered the coning process were “catastrophically
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damaged” and another 20% had their finesse reduced by the process [118]).

In order to replicate Christina’s and Jun’s measurements in Colorado, I assembled

a breadboard of optics equipment which could be transported by car. An external-

cavity diode laser (ECDL) at 852 nm would be used to characterize the mirrors. The

laser passed through a prism pair, an isolator, and an acousto-optic modulator (AOM)

to switch off the beam for cavity ringdown. Coupling through optical fiber provided

spatial cleaning and allowed for easy replacement of the 852 laser with another fiber-

coupled laser. A HeNe laser, for example, was often used to align the cavity mirrors,

since the mirrors have much higher transmission at visible wavelengths. At the fiber

output, the beam was telescoped and then mode-matched to the TEM00 cavity waist

with a lens on a translation stage. Before entering the cavity, the beam passed through

a polarizing beam splitter (PBS) cube and a quarter waveplate. Reflected light from

the cavity, after a second pass through the quarter waveplate, was then reflected by the

PBS and focused onto a New Focus 1801 125 MHz detector; transmitted cavity light

was collimated and then focused onto an identical detector. Before the breadboard

left for Boulder, undergraduate Yat Shan Au replicated it in the lab 1 “clean hood”

so that we would have our own testing and cavity construction setup available [105].

In order to mount the cavity mirrors for measurement purposes, I used two minia-

ture v-groove setups (for 7.75 mm and for 3 mm diameter mirrors), both with nylon-

tipped set-screw clamps from above, as shown in Figure 7.1. Each v-groove was

originally machined from a single aluminum piece; the groove was then cut in half,

with one half mounted in a fixed position while the other was attached to a miniature

piezo-driven translation stage from Physik Instrumente (Karlsruhe, Germany). This

allowed the cavity length to be adjusted over several millimeters (with the transla-

tion stage micrometer) and to be scanned over much smaller distances with a voltage

input to the piezo from either a function generator or a battery box.
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Figure 7.1: Mirror mount assembly for test cavities. Two 7.75 mm mirrors sit in a
v-groove (which was later cut in half) and are clamped from above with nylon-tipped
set screws. The right half of the v-groove was mounted on a piezo-driven translation
stage from Physik Instrumente (not pictured), attached with screws to the base plate.
This v-groove block could be quickly exchanged for a smaller one, machined for 3 mm
mirrors.

7.2.2 Cavity construction and alignment

When two mirrors were ready to be tested, they were placed into the grooves of

the mirror holder blocks using Teflon-tipped tweezers. The rear face of each mirror

substrate was gently placed in contact with a shallow notch the end of the groove to

ensure reproducible cavity length, and the mirrors were then secured by set screws.

Initial alignment was done with all coupling lenses removed and with a HeNe input to

the fiber coupler; the mirrors in the beam path before the cavity were then adjusted

so that (a) the beam intersected both mirrors near their centers, (b) the reflections

from the back of the first mirror and the front of the second mirror overlapped the

incoming beam, and (c) the reflected and transmitted beams were incident on their

respective detectors. The coupling lenses were then replaced and positioned so as to

preserve the beam path. At this point, scanning the applied voltage on the cavity
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piezo should produce HeNe fringes, visible either on a white card (for slow scan rates,

∼ a few Hz) or at the detectors. Simply by switching the fiber-coupled input back to

the ECDL laser source, transmission peaks and reflection dips at 852 nm should be

visible on the detectors and can then be improved by mirror alignment. Triggering the

AOM to switch off once a transmission threshold is crossed provides the sought-after

ringdown signal.

There is a rather steep learning curve associated with cavity construction and

measurement, as I discovered before traveling to Boulder (and as Dal Wilson has

discovered since). Here Christina Hood’s alignment procedure outlined in 5.2.2 of

Ref. [21] proved invaluable. I would like to add a few points of my own in the hope

that they may be helpful to future cavity-builders.

7.2.2.1 Reflected spots

It is worth noting that the rear face of a mirror substrate (either unconed or coned)

is not perpendicular to its cylindrical surface. The rear face has been cut at an angle

(wedge) in order to prevent problems associated with secondary reflection. (Addi-

tionally, the rear face is anti-reflection coated.) This is certainly true for the most

recent coating runs, though I am unsure about earlier runs. As a result, when po-

sitioning cavity mirrors by aligning their reflected spots, one should expect that the

spots reflected from the two faces of a single substrate will not be in alignment, and

that their relative position is just a function of the rotation angle of the mirror. Only

the spots reflected from the mirror faces themselves need to be aligned.

7.2.2.2 Mirror cleaning

From the REO technician who was most successful at cleaning the coned mirrors, I

learned that she used lint-free cotton swabs (Huby-340, distributed by Sanborn Co.)

which have a fairly dense tip. After dark-field microscope inspection, she applied

a small amount of spectrophotometric-grade solvent to a swab tip. She then made

a gentle, quick contact with the mirror surface, rotating her wrist outwards as she

brought the swab towards her in order to avoid dragging particles across the surface.
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Mirrors are now stored and transported in Gel-Pak containers, mirror face up; the

rear surface is attached to the sticky Gel-Pak surface and can be cleaned with solvent

upon removal if necessary.

For cleaning the 7.75 mm mirrors, technicians at both REO and ATF used a wafer

spin cleaner (PM80, Headway Research). The mirror is set in a chuck, held in place

with suction, and then spun via a foot pedal. A solvent is first applied directly to

the mirror from a squirt bottle in order to wet it. (Again, the solvent should be

spectrophotometric grade. When an empty bottle is filled, it should be first cleaned

with compressed nitrogen to remove water vapor and should be filled on the same

day as the cleaning.) A glue-free cotton swab is then also wet with solvent. While

the squirt bottle is used to keep the mirror continuously wet, the swab is touched to

the center of the optic. About ten seconds of gentle pressure is applied as the swab

is gradually moved to the mirror edge. The piece is then spun for another 10 to 20

seconds without swab or solvent until it is dry. The appropriate sequence of solvents

to use when removing varnish is a) water, b) acetone, and c) isopropyl alcohol. When

just removing dust from a mirror, isopropyl alcohol alone is sufficient. Methanol is

not well-suited for spin cleaning because it dries too fast. We have subsequently used

a LIGO spin cleaner in the East Bridge sub-basement to clean 7.75 mm mirrors and

have found this to be a faster, more consistent process than cleaning by hand.

7.2.2.3 Measurement laser

Most previous cavity measurements in our lab by Christina, Theresa, and others

were carried out using a Ti:sapphire laser. The large power from the Ti:sapphire was

not helpful for these measurements and in fact had to be heavily filtered (see Section

7.2.2.4), but the tunable range of the laser made it possible to map out mirror coating

curves [42] and to measure the free spectral range of a small cavity [4]. Only after

a series of cavity measurements using ECDLs did I appreciate a secondary benefit

of the Ti:sapphire: its narrow linewidth. The supermirror cavities we construct for

physics experiments have short lengths (∼ 40 µm) and thus relatively broad linewidths

(κ ∼ 2π × 4 MHz). But for testing purposes, it is convenient to build longer cavities
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whose ringdown time τ = 1
2κ

is much longer than the detector response time or the

time to turn off the cavity input field (∼ 25 ns for a good AOM). For example, a

ringdown time of 1 µs might correspond to a 5 mm, 80 kHz cavity, still broader than

our Ti:sapphire linewidth, but narrower than our ECDLs, which have linewidths of

roughly 500 kHz. So even a lossless test cavity on resonance with an input ECDL

would only be able to accept and transmit a small percentage of its input power.

For mirrors where T � l, the transmission efficiency is of course much worse, and a

signal may be hard to discern from noise. One solution to this difficulty is presented

in Section 7.2.3.

7.2.2.4 Cavity input power

Since the cavity input power is multiplied by a factor of F to generate the intracavity

power, and since the waist of the intracavity field is quite small, the power per unit

area incident on the cavity mirrors can be quite astonishing, even for small input

powers. In lab 11, “lab lore” in the past has been that the cavity input power at 852

nm should never be greater than a few µW to avoid damage to the cavity coatings.

However, when searching for a transmission signal while aligning test cavity mirrors,

one would like to use as much input light as possible. When I discussed the question

of a damage threshold with Sam Richman, the metrology lab manager at REO, he

estimated that “continuous wave damage of these IBS coatings is governed by a

thermal process that is directly related to the absorption... We don’t make any

measurements of this continuous wave damage threshold, but it is probably in the

neighborhood of 108 W/cm2” [119].

Assuming a radius of ∼ 20 µm for the beam spot size on the mirrors, a finesse

of 106, and perfect mode-matching of a narrow-linewidth laser, this would suggest

that a damage threshold might correspond to ∼ 1 mW of input power. Since our

mode-matching is in practice far from perfect, it seems safe in the future to limit

cavity input powers to ≤ 100µm.
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7.2.2.5 Loss partitioning

In the measurements of the cavity described in Ref. [42] (the same one still under

vacuum in the lab 11 experiment), the cavity length was locked on resonance and

resonant powers in transmission and reflection Pt and Pr were recorded. With the

additional knowledge of the cavity input power Pi, one can solve equations (2.1) and

(2.4) of [42] to find

T =
2r(π/F)

1 + r
, (7.2)

where r = Pt

Pi−Pr
. Scattering and absorption losses are then given by

l =
π

F
− T. (7.3)

Instead of locking the cavity, one can also compare the relative heights of the

transmission peak (Pt) and the reflection dip (Pi − Pr) on identical detectors while

scanning the cavity. Theresa Lynn and I used this technique in early 2003 to char-

acterize some initial coating runs that Ramin had done at his new company. For

the technique to be accurate, it is important that the scan time across the peaks be

much greater than the cavity ringdown time, so cavity lengths should be relatively

short. (A symptom of this problem is a visible asymmetry in the appearance of the

cavity scans when the ringdown time is nonnegligible.) If a voltage scan of the cavity

piezo is too noisy, one solution is to turn off the applied voltage and let the cavity

drift passively across the resonance, capturing images of the transmission peak and

reflection dip with a digital scope.

Note that when mode-matching to the cavity is bad, Pr � Pt, Pi ≈ Pr, and

r depends very sensitively on an accurate measurement of Pr. This difficulty is

compounded for a low-transmission coating in which Pr would be greater than Pt even

with perfect mode-matching. At REO in Boulder, because of diode laser inefficiencies

(7.2.2.4), I was only able to do a very rough partitioning of low-transmission mirror

losses.



151

7.2.2.6 Design of cavity mounts

I had hoped that the machining of the mirror grooves (Figure 7.1) would be accurate

enough to define a cavity without adjustment, and that this geometry would be re-

producible when one mirror was exchanged for another. Neither of these assumptions

held in practice, due in part to centration error on the mirrors from the machining

process; that is, after a mirror substrate has been coned down, the angle at which

light reflects off the mirror will change as the mirror is rotated around its cylindrical

axis. In order to form a cavity, I had to resort to sliding pieces of tape under the

second mirror block in order to compensate for the tilt angle, tapping the mirror to

rotate it within the v-block, and loosening the screws attaching it to the piezo stage

for left/right adjustment.

For the future, I would recommend a design in which the second mirror holder is

replaced with a small Lees mirror mount attached to the piezo stage, modified with

adapters so that it can accept either mirror diameter.

7.2.3 A simpler solution: self-locking cavity ringdown

After characterizing unconed and coned mirrors at REO in April 2005, I drove the

breadboard apparatus 15 miles north to the ATF facilities in Longmont. In August

2005, I returned to ATF to provide quick feedback as they attempted a series of

coating runs. During this visit, Ramin suggested a simpler measurement method for

cavity ringdown based on optical feedback to the laser from the test cavity.

In ordinary circumstances, optical feedback is the bane of the experimentalist. We

use current, temperature, and grating position to carefully select the frequency of our

semiconductor laser diodes, and unwanted reflections back into the diode can seriously

disrupt that frequency. However, if we instead set up our test cavity to feed back into

the laser diode on purpose, the result will be that a) the diode frequency attempts

to lock to a cavity mode, with a subsequent line-narrowing [120], and b) because of

the resonant frequency and narrowed linewidth, there is a substantial power buildup

within the test cavity [121].
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Note that for most lab applications, we require a very specific laser frequency

(referenced to cesium) that can only be achieved by tuning an external grating. In

this case, however, we only need to know about the mirrors’ behavior to within a few

nm, since that is the scale on which the coating curve varies. We can start with a

diode which lases at approximately at 852 nm and then allow the test cavity to do

the rest of the work. In doing so, we have discarded the need for isolators, piezos to

scan the length of the test cavity in order to match it to the laser wavelength, and

the construction of a temperature-stabilized external cavity around the diode.

This approach is particularly appealing for testing low-transmission mirrors, where

T ∼ 0.1–0.5 ppm � l ∼ 2 ppm. The small ratio of T/l means that on-resonance

cavity transmission may be reduced by a factor of 100. When coupled with already

low efficiencies because of the narrow cavity linewidth with respect to the diode

laser’s linewidth, the result is a ringdown signal that can be difficult to measure.

Here the fact that optical feedback allows the laser to adapt to the cavity becomes a

tremendous advantage; Dahmani reports feedback-induced linewidth narrowing by a

factor of 1000 [120].

7.2.3.1 A breadboard setup for cavity-locked lasers

At ATF, Ramin had already set up a prototype system consisting of a HeNe laser, a

lens, two test mirrors, and a fast detector built by Mark Notcutt of JILA. The detector

had a Schmitt trigger that would send a signal to turn off the laser whenever the cavity

output exceeded an adjustable threshold, thus triggering a cavity ringdown. When

the HeNe was locked to the cavity, the cavity buildup field (or rather, its scatter from

air particles) was visible to the naked eye. At the end of my August stay, we adapted

the 852 nm ECDL as the basis for a similar setup, with satisfying results: despite the

external grating which mitigated the cavity feedback effect, we observed much more

substantial cavity buildup than I had previously achieved. As a result, I could fit

cavity ringdowns with higher confidence and with greatly reduced preparation time.

Upon returning to Caltech, I constructed and tested a similar arrangement, which

Dal and I later set up at ATF in January 2007. As depicted in Figure 7.2, a bare
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Figure 7.2: A simple breadboard setup for self-locking cavity ringdown, implemented
both at Advanced Thin Films and in our lab for testing mirror coatings

SDL-5102 diode is driven by a commercial diode laser current supply (TMD-219 from

Power Technology) which can be switched off via a TTL signal. Again, the testing

components are simply the diode, a prism pair, two lenses, a detector (Thorlabs

PDA10A), and the cavity mirrors. The cavity mirrors are mounted in Newport mirror

mounts with a 7.75 mm to 1 inch adapter machined at ATF. The detector signal

goes to a variable gain amplifier which sets the turn-off threshold, followed by a

monostable multivibrator circuit (adapted from one built by former graduate student

James Chou) which provides the TTL signal for the current supply.

Alignment of the system can be done very quickly and reliably. The diode output

is first attenuated and then aligned into the detector. The second cavity mirror is

placed in the center of the beam path and adjusted so as to align its reflection with

the incoming light. (Using an IR viewer, one can sometimes see the diode output

light “flash” when feedback is achieved. Alternatively, the very small amount of

transmitted light visible on the output detector — with the attenuation now removed

— becomes suddenly noisier.) Finally, the first cavity mirror is placed in the beam

path, and its retroreflection is also aligned into the diode. Once the retroreflection is
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nearly aligned, transmission peaks become visible on the output detector, and both

cavity mirrors can then be adjusted so as to maximize transmission. Sometimes it is

necessary to tap the optical table or the mirror mounts in order for the cavity to find

a laser mode to which it can lock; at ATF, this source of vibration was conveniently

provided by the somewhat noisy HEPA filter on the optical table.

For low transmission mirrors, an iris after the second cavity mirror can eliminate

scattered light into the detector. It is also useful to pick off some cavity output

light with a beam splitter and focus it onto a camera (in our case, a USB-connected

webcam from which we removed the lens) in order to image the cavity mode. The

cavity mirrors can then be tweaked so as to maximize the TEM00 mode rather than

higher-order modes, which may have different ringdown times as they sample larger

areas of the mirror surface. The mirror adapters can be rotated within their mounts

in order to sample the mirror coating in different locations and thus characterize its

uniformity. It may also be useful to place one of the mounts on a translation stage

for this purpose.

One note about reflected light from the cavity: this method relies on that reflec-

tion as feedback to lock the diode laser, but as the laser comes into resonance with

the cavity, the reflected power and thus the feedback signal drops, creating an unsta-

ble situation. Researchers concerned with stable locking have employed techniques

including multiple cavity modes [120], waveplates and polarizers [121], and spatial

filtering [122] in order to address this issue. For our purposes, we only require the

laser to lock to the cavity for long enough to trigger the cavity ringdown, so this level

of sophistication is unnecessary. However, in the future, one might consider using a

beam splitter to bring some of the reflected cavity light to a second detector and then

implementing a loss partitioning scheme similar to that in Section 7.2.2.5.

7.2.3.2 Scattering losses in air

Finally, the test cavities we have built using this self-locking scheme have been several

cm long, convenient for accurately measuring cavity length with calipers. In this sit-

uation, however, air loss becomes a small but non-negligible issue. Here I am grateful
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for the help of David Robichaud, a graduate student in Caltech’s Okimura group who

uses cavity ringdown spectroscopy to study atmospheric free radical chemistry. In

Robichaud’s air loss calculations, he considers only Rayleigh scattering in the atmo-

sphere, i.e., by N2 and O2 (other less significant sources of atmospheric attenuation

could be due to Mie scattering of aerosols and to absorption). Rayleigh scattering

is the limit of Mie theory in the case where particle size is much smaller than the

optical wavelength. The Rayleigh extinction coefficient due to scattering is given by

as(λ) = (
2π

λ
)4 (n2(λ)− 1)2

6πN
, (7.4)

where λ is the wavelength of light, n(λ) is the index of refraction, and N is the

density of scatterers [123]. Note that as(λ) = Nσ(λ), where σ(λ) is the scattering

cross-section.

We can calculate N in units of m−3 from the ideal gas law: if T = 296 K and P

= 1 atm, then N = 2.48 × 1025/m3. The refractive index of air at 852 nm is about

1.000269 [124]. Using equation (7.4), we find as = 1.83 × 10−8. The attenuation

due to Rayleigh scattering is then given by I(x) = I(0)e−asx, where I(x) is the

intensity of light at distance x from the source. So for each mirror bounce, i.e., each

trip of distance d within a cavity of length d, the light is attenuated by a factor

of e−asd ' (1 − asd) = (1 − lRayleigh). If d is 10 cm, then lRayleigh = 0.18 ppm,

and lRayleigh + l + T = Ltotal, where Ltotal is the per-mirror loss inferred from cavity

ringdown.

7.3 Results of the coating runs

7.3.1 REO

Our agreement with REO was for “best effort” fabrication, coating, and coning of

two sets of mirrors. Each set consisted of ten mirrors with 5 cm radius of curvature

(ROC) and five mirrors with 10 cm ROC. In both cases, the target S+A losses were

< 2 ppm; for the first (high transmission) set, the target transmission was 15 ± 2.5
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ppm at 852 nm, while for the second (low transmission) set, the goal was T = 0.1−0.5

ppm. An additional specification was for R > 99.9% at 936 nm, so that the cavity

mirrors could support a magic-wavelength FORT as in lab 11. (In order to achieve

this for the high transmission mirrors, the center wavelength of the coating would in

fact be higher than 852 nm, though the transmission at 852 nm would still meet our

target.)

Once I had arrived in Boulder, REO did a test run of high and low transmission

mirrors. The initial high transmission mirrors were found to have T = 8–10 ppm at

852 nm, so the coating engineers shifted the design parameters to aim for a higher

transmission in a second test run, which then met specifications. Sam Richman

was perplexed by a ∼ 25% discrepancy between my ringdown data and transmission

measurements done on the REO spectrophotometer, but after the same discrepancy

was found to hold for some 15 ppm mirrors which he characterized at 633 nm, we

concluded that the spectrophotometer calibration was at fault, further evidence for

the necessity of on-site ringdown measurements. Meanwhile, the test run for low

transmission mirrors was consistent with our targets for T and l, and so the final

coating run replicated this design.

After the completion of the final coating runs, I characterized the mirrors before

they were coned. One unfortunate fact of the final high transmission coating was

an unusual number of large defects at 200x magnification, noticed by the technicians

who first inspected the mirrors. The result was that while my best measurements

indicated T = 15.5–16 ppm and l = 1.5-2 ppm, I also observed l as high as 5 ppm.

On two different pairs of mirrors, I did a series of four or five different ringdown

measurements, each time adjusting the beam position on the mirrors. Variation of

loss across a single mirror pair was consistent with the 17–21 ppm variation I observed

across different pairs, indicating that mirrors weren’t wholly “good” or “bad”; rather,

all mirrors had defects that needed to be avoided. REO technicians planned to use

microscope inspection in order to cull the mirrors with the fewest number of defects for

coning. In contrast, measured losses of the low transmission run were very consistent,

in agreement with their defect-free appearance under the microscope. Measured total
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coating run superpolishing run measured T , l
RN# L3-2029,L3-2030 5 cm: LT# IK838 T = 15.5− 16 ppm

10 cm: LT# IK716 l = 1.4− 1.7 ppm
RN# L3-2034,L3-2039 5 cm: LT# IK839 T = 0.1− 0.2 ppm

10 cm: LT# IK840 l = 1.4− 1.7 ppm

Table 7.1: Measured transmission and losses for coating and superpolishing runs at
REO, April 2005

losses of 1.6–1.8 ppm along with inferred transmission T = 0.1–0.2 ppm (consistent

with spectrophotometer data) suggested that S + A = 1.4–1.7 ppm.

The REO machinist struggled with the coning process, and only about a third

of the mirrors weren’t visibly damaged afterwards. In her thesis, Christina Hood

speculated about possible damage to the mirror coatings from the machining process

[21], but I found that the surviving mirrors had not experienced any measurable

degradation in finesse. Moreover, for the high transmission set, the large number of

mirrors initially coated allowed enough coned ones to be produced with no major

defects in the central millimeter. I was able to select ten high- and low-transmission

5 cm ROC mirrors which met our ringdown standards, and the 10 cm mirrors were

then chosen by microscope inspection. Table 7.1 lists the coating and superpolishing

run numbers for these mirrors.

During my 2005 visits, I emphasized our hope to push the scattering and ab-

sorption losses to new lows. There was certainly interest in this project among the

metrology staff and coating engineers, who were curious to understand whether min-

imum losses were dominated by scattering or by absorption. In their opinion, the

primary suspect was absorption: while scattering decreases with better superpolish-

ing of the substrates, they doubted that there was further room for improvement in

that direction. Absorption, on the other hand, may be due to impurities in the metal

targets inside the ion beam sputtering chamber, or sputtering of the chamber surfaces

at the edges of the ion beam target.

In the following months, Sam Richman undertook a series of experiments at REO

to explore the possibility of loss reduction. Test parameters included the use of dif-

ferent coating materials, sputtering chambers, and deposition settings. Mirrors were
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coated at both 1064 nm and 633 nm, two wavelengths at which in-house characteriza-

tion is straightforward. If the results of these experiments were promising, he hoped

to proceed with an 852 nm coating run which we could then characterize ourselves.

However, Sam was unfortunately not able to see any significant improvements in

mirror losses.

7.3.2 ATF

In addition to our order for mirror coating and coning, we were also able to purchase

superpolished substrates from REO which we could provide to Ramin Lalezari at

ATF. The 5 cm and 10 cm ROC substrates were from the same batches (IK716,

IK838, IK839, IK840) as those coated at REO. Ramin would then undertake a series

of five coating runs using these substrates, again hoping to minimize scattering and

absorption. This project included constructing new tooling for holding the substrates,

which he hoped would minimize point defects during coating.

In early August of 2005, I returned to Colorado for ringdown measurements at

ATF. The first test run had been completed just before my arrival and had a target

transmission of 5 ppm, though in fact total losses were found to be only 5–5.5 ppm and

rough partitioning of transmission and reflection suggested T ∼ 2.9 ppm, S + A ∼

2.3 ppm. The second coating run took place while I was there and had a target

transmission of 0.6 ppm, but total losses per mirror were 2.9–3.2 ppm, and partitioning

suggested T ∼ 0.3 ppm, S +A ∼ 2.6 ppm. (The measured transmissions for the two

runs were self-consistent; that is, if T were in fact 3 ppm instead of 5 for the first run,

then we would expect the transmission for the second run also to be around half of

its target value.)

A third coating run in September 2005 included superpolished substrates pur-

chased from General Optics to compare with those from REO. However, both sub-

strate types from this run had total losses of approximately 3 ppm, no better than

the mirrors from the second run.

As Ramin and his colleagues had exhausted their ideas for reducing losses, the
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project remained on hold until late 2006. At that time, ATF had made recent progress

on mirror losses at other wavelengths by reducing contaminants in the coating film

due to parts of the chamber being sputtered. Ramin hoped that they could apply

what they had learned to a new coating run, which took place in January 2007. Dal

and I both traveled to Longmont, where we set up the new test apparatus (Section

7.2.3) and discussed possible approaches to mirror coning with Ramin and Jeff. The

mirrors from this run were found to have L ≈ 2.7 ppm, or l = 2.2 ppm incorporating

estimated transmission and air losses. These mirrors were later re-annealed at 500 C,

but with no measurable improvements.

Finally, a fifth run in March 2007 used a higher purity SiO2 target within the

coating chamber. This batch was noticeably cleaner than past runs under micro-

scope inspection, and both Ramin’s initial measurements and subsequent tests here

at Caltech confirmed that l = 1.7–1.9 ppm. For the first time, the ATF coatings

demonstrated losses as low as those measured at REO. However, spectrophotome-

ter data indicates that the mirrors from this run are not as reflective at 936 nm as

we would need to support a FORT, so in order to obtain suitable cavity mirrors,

a new low-transmission coating run would be required, as well as a corresponding

high-transmission run.

ATF does not have the capabilities to cone these mirrors down to the tapered 3

mm / 1 mm dimensions which we have used in the past. With assistance from Ramin,

Dal has been pursuing some promising options for having this machining done by a

third party.

7.4 Single-sided cavity calculations

Given the effort put into mirror development, it is worth considering quantitatively

what impact these new mirrors could have on our experiments. One important bench-

mark is the probability that a photon generated within a cavity will be transmitted
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by the “open” (high-transmission) mirror. This is given by

Ptrans =
To

Tc + To + 2l
, (7.5)

where To and Tc are transmission through the “open” and “closed” mirrors, re-

spectively. For the current lab 11 cavity, To = Tc = 4.3 ppm, l = 2.9 ppm, and

Ptrans = 0.30 [42]. This constitutes the most significant loss in our output detection

path. If, instead, To = 15.5 ppm, Tc = 0.1 ppm, and l = 1.5 ppm, based on the

REO coating run measurements, then Ptrans = 0.83, a nearly threefold improvement.

This transmission probability also governs the reverse process, that is, the acceptance

of a resonant photon into the cavity by a STIRAP process [31].1 Thus, in order to

improve the efficiency of the coherent state transfer process described in Chapter 3,

and especially for future experiments in which a photon extracted from one cavity

is mapped into another (or the same) cavity, a single-sided cavity using currently

available mirrors would be very useful.

More problematic is the question of experiments which rely on reflecting a photon

back from the cavity input. For example, Ref. [44] describes a reflection-based

scheme for QND measurement of photon number: an atom with ground states |a〉, |b〉

and excited state |e〉 within an optical cavity is prepared in a superposition of the

two ground states, and the cavity is tuned to the |b〉 → |e〉 transition. If a photon

resonant with this transition is sent to the cavity, then it can be detected afterwards

by a rotation on the atom followed by measurement in the basis {|a〉, |b〉}. This can

be seen by considering the two ground state cases separately; the photon causes a

phase flip only if the atom is in |a〉:

|a〉 → −|a〉 (7.6)

|b〉 → |b〉, (7.7)

1One might imagine that only the ratio of T to l at the photon input port need be considered.
However, by a time-reversal symmetry argument, both ports must be taken into account, since the
cavity can emit photons through either mirror. Thus, in order to map photons efficiently into a
symmetric cavity, both mirrors would ideally be used as inputs. A single-sided cavity allows us
instead to use just one mirror.
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Figure 7.3: Fraction of incident intensity that is reflected from the transmissive mirror
of an asymmetric cavity. Here both mirrors are assigned scattering and absorption
losses l = 1.5 ppm, and To is plotted from 0 to 100 ppm for three values of Tc: 0.1
ppm, 0.5 ppm, and 1.0 ppm.

so that |b〉+|a〉 is mapped to |b〉−|a〉 only in the presence of a photon. A π/2 rotation

subsequently maps

|b〉+ |a〉 → |b〉 (7.8)

|b〉 − |a〉 → |a〉, (7.9)

two orthogonal states which can be distinguished quickly and efficiently via state

detection with a probe laser. [30]

For lossy mirrors, however, the probability that a resonant photon is reflected

from an empty cavity (that is, when the atom is in |0〉, dark to the cavity transition)

is given by

Prefl = (
Tc − To + 2l

Tc + To + 2l
)2. (7.10)

This function has a minimum at zero when the impedance-matching condition To =

Tc+2l is satisfied. It is plotted in Figure 7.4 as a function of open mirror transmission

for l = 1.5 ppm, Tc = {0.1, 0.5, 1} ppm. We see that for our target transmission,
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To = 15 ppm, only about 40% of the incident light is reflected. In the QND scheme,

a photon would always reflect when the atom was in |b〉, but would be lost more than

half the time when the atom was in |a〉.

We could, of course, increase the transmission of the open mirror to improve

the reflection efficiency. The problem is the corresponding decline in cavity finesse

and increase in κ; we gradually move out of the strong coupling regime. The QND

protocol requires strong coupling so that photons coupled to the |b〉 → |e〉 transition

are completely off-resonant when an atom in |b〉 is present in the cavity. In this case,

the loss of strong coupling would mean a state-dependent phase shift less than π and

nonorthogonal final atomic states.

7.5 Outlook

Unfortunately, neither REO nor ATF have been able to produce mirrors with losses

smaller than those of the 1991 supermirror run [8]. However, at this point, both

companies have the capability to produce mirrors with l < 2 ppm and a more thor-

ough understanding of what contributes to loss in their facilities. When the coning

process is successful, it seems to have no measurable effect on cavity finesse, and by

outsourcing the coning to a skilled glass machinist, we may be able to avoid losing

mirrors in the process. Using a simple new technique for cavity ringdown, we are

now able to characterize mirrors quickly and reliably, with possible extensions to loss

partitioning.
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[27] S. Rebić, A. S. Parkins, and S. M. Tan, Phys. Rev. A 65, 063804 (2002).



165

[28] K. M. Birnbaum et al., Nature 436, 87 (2005).

[29] A. Boca, Experiments in cavity QED: Exploring the interaction of quantized

light with a single trapped atom, PhD thesis, California Institute of Technology,

Pasadena, CA, 2005.

[30] A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, Phys. Rev.

Lett. 97, 083602 (2006).

[31] A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, Phys. Rev.

Lett. 98, 193601 (2007).

[32] A. D. Boozer, R. Miller, T. E. Northup, A. Boca, and H. J. Kimble, Phys. Rev.

A 76, 063401 (2007).

[33] C. Monroe et al., Phys. Rev. Lett. 75, 4011 (1995).

[34] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281

(2003).

[35] S. E. Hamann et al., Phys. Rev. Lett. 80, 4149 (1998).

[36] H. Perrin, A. Kuhn, I. Bouchoule, and C. Salomon, Europhys. Lett. 42, 395

(1998).
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