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Chapter 5

Toward atom-photon entanglement

The tools that we have developed over the past few years for control and interro-

gation of our atom-cavity system have brought us to the point where we can now

implement complex protocols in the lab. Our current efforts focus on one such proto-

col, which would generate entanglement between the polarization states of a photon

and the Zeeman states of a trapped atom. In Section 5.1, I describe the details of

this entanglement scheme. Section 5.2 discusses the use of Rabi flops to characterize

decoherence in our system; an understanding of decoherence mechanisms is necessary

in order to determine whether we will be able to demonstrate entanglement. Section

5.3 presents our method for mapping superpositions of Zeeman states to hyperfine

states that we have developed in the context of this entanglement project. In order to

quantify the coherence of the mapping, we vary the phase between two arms of this

process and generate a fringe. Section 5.4 centers on the final step in the protocol:

fast pulses from the side of the cavity that excite the atom to the F ′ = 5 manifold.

Here I also discuss the current outlook for the project.

5.1 Atom-photon entanglement scheme

The concept of atom-photon entanglement lies at the heart of cavity-QED-based

schemes for quantum networking. These schemes rely on entanglement in order to

transfer information coherently between long-lived atomic superpositions (quantum

nodes) and photonic states in optical fiber (quantum channels). In Chapter 3 of
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this thesis, I discuss one such mapping, between cesium hyperfine manifolds F = 3

and F = 4 and photon Fock states |0〉 and |1〉. However, a more robust scheme

would entangle the atomic state with photon polarization rather than photon number.

Losses in the optical path will inevitably degrade the entangled state: if the original

composite system is given by

|ψ〉 = |a1〉 ⊗ |p1〉 + |a2〉 ⊗ |p2〉, (5.1)

where a1,2 and p1,2 are atom and photon states, then after propagation, the density

matrix ρ = |ψ〉〈ψ| becomes

ρ′ = (1 − pE)(|a1〉 + |a2〉)(〈a1| + 〈a2|) ⊗ |0〉〈0| + pE|ψ〉〈ψ|, (5.2)

where the entanglement probability pE is determined by path losses and |0〉 represents

the absence of a photon. In the case of the Fock state mapping, if we do not detect

a photon at the cavity output, we cannot distinguish whether this corresponds to p1

(and thus to a1) or to |0〉. For polarization states, however, decoupling photon num-

ber from entanglement means that we can restrict ourselves to a heralded, effective

entangled state |ψ〉〈ψ| with probability pE [103].

Recent work in Gerhard Rempe’s group has shown that it is possible to control

photon polarization based on the Zeeman state of an atom within a cavity [82, 83].

A magnetic field along the cavity axis is used to split out the Zeeman levels of 87Rb,

and the cavity is tuned into resonance with the F = 1 → F ′ = 1 transition between

the 5S1/2 and 5P3/2 manifolds. For an atom prepared in |F = 2,mF = 0〉, an initial

STIRAP process driven by a laser on the F = 2 → F ′ = 1 transition will either

a) transfer the atom to the |1,−1〉 ground state while generating a cavity photon

with σ+ polarization, or b) transfer the atom to |1, 1〉 while generating a σ− photon.

A second STIRAP process on the F = 1 → F ′ = 1 transition is conditional on

the result of the first: a σ− photon is generated if the atom is in |1,−1〉, and a σ+

photon if the atom is in |1, 1〉. Thus, alternating the two classical laser pulses creates
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Figure 5.1: Scheme for generating entanglement between the polarization states of
a photon and the Zeeman states of a trapped atom. We optially pump a cesium
atom to |3, 0〉, then transfer it to |4, 0〉 via a Raman π pulse. A fast pulse from the
side of the cavity excites the atom to |5′, 0〉. Atomic decay into the cavity mode will
generate a circularly polarized photon; a σ+ photon corresponds to the final atomic
state |4,−1〉, and a σ− photon corresponds to |4, 1〉.

sequential pairs of polarization-entangled photons, which can be detected in the cavity

transmission path [83]. While these experiments represent a significant step towards

quantum networking, it is important to note that they were done with atoms falling

through the cavity mode. For information storage in quantum nodes, we require

photon generation using trapped, localized atoms that could then be re-addressed

at later times. In addition, we would like to quantify atom-photon entanglement

directly by reading out the atomic state rather than by generating a second photon.

As our efficient method of state detection [30] only distinguishes between hyperfine

manifolds, we will first have to introduce a mapping between Zeeman and hyperfine

states.

We begin our protocol by preparing a single cesium atom in |4, 0〉. (In practice,

we use the methods of Chapter 4 to prepare the atom in |3, 0〉, then transfer the

population to |4, 0〉 via a Raman π pulse.) As in the Rempe experiment, a magnetic

field splits out the Zeeman states, and we define a quantization direction along the

magnetic field axis. A ∼ 10 ns π-polarized optical pulse from the side of the cavity

resonant with the F = 4 → F ′ = 5 transition excites the atom. Because the pulse is

polarized along the cavity axis, the cavity mode only supports atomic decay to states

|4, 1〉 and |4,−1〉, with σ− and σ+ polarization, respectively. Photon polarization is

straightforward to detect with waveplates and beamsplitters at the cavity output. To
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read out the atomic state, we want to map superpositions of |4, 1〉 and |4,−1〉 onto

F = 3 and F = 4, as we are able to measure superposition states of the hyperfine

manifolds. We apply two simultaneous Raman π pulses tuned to the |4, 1〉 → |3, 0〉
and |4,−1〉 → |3, 0〉 transitions, where the Δm = ±1 transitions rely on a component

of the magnetic field transverse to the cavity axis; we expect the populations to

interfere constructively or destructively depending on the relative phase of the two

initial states, so that as a function of phase, the atom will either be transferred to

F = 3 or remain in F = 4.

Section 5.3 presents our efforts to characterize this interference process. First,

however, we note that our scheme relies on carefully tuned Raman pulses at three

different frequencies, two of which are sensitive to the magnetic field. In the follow-

ing section, then, we investigate the decoherence mechanisms underlying our Raman

technique to understand whether this is feasible.

5.2 Rabi flops

5.2.1 Theory

The Bloch equations describe the evolution of a spin system in an applied field [104];

while these equations were first introduced to describe magnetic resonance phenom-

ena, they also apply to a two-level atom driven by an optical field, or to our current

situation, in which two atomic ground states are coupled via Raman transitions. The

Rabi solution of the Bloch equations for a resonant driving field shows that popu-

lation initially prepared in one spin state will be driven coherently back and forth

between the two states, a process known as “Rabi flopping.” The rate of population

transfer is given by the Rabi frequency Ω, which is proportional to the square root

of the intensity of the driving field. Specifically, the duration of a “π pulse,” that is,

the time required to transfer population from one state to the other, is given by

tπ =
π

Ω
. (5.3)
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For a driving field detuned from resonance by Δ, the population transfer as a function

of time is given by the equation

P (t) =
Ω2

Ω2 + Δ2
sin2

√
Ω2 + Δ2t/2 (5.4)

where P (t) corresponds to the fraction of the population transferred from the initial

to the final spin state. Thus in the off-resonant case, the oscillation frequency is

faster, but complete inversion between the two states is never achieved.

A more realistic model incorporates phenomenological decay processes into the

Bloch equations [104]. The result is that Rabi oscillations are exponentially damped

according to a set of characteristic decay times. Conversely, in order to study the

decoherence mechanisms within an experiment, one simple technique is to measure

Rabi flopping amplitudes and damping rates. In particular, Rabi flops have become

an important benchmark for the quantum computing community, as the number of

sequential gates that a quantum computer could perform is limited by the ratio of

the decay time to tπ.

Several processes contribute to spin decoherence. In the notation used by the

nuclear magnetic resonance (NMR) community, the longitudinal decay time T1 de-

scribes population relaxation to thermal equilibrium; T1 decay is due to spin-lattice

coupling in NMR, but in our experiments it is negligible. Meanwhile, the transverse

decay time T2 can be decomposed into two components,

1

T2

=
1

T ′
2

+
1

T ∗
2

. (5.5)

Here T ′
2 describes homogeneous, incoherent processes, and T ∗

2 describes inhomoge-

neous effects. Note that often when we think of homogeneous and inhomogeneous

processes, we imagine a macroscopic ensemble, such as a collection of spins in a crystal

or an atom cloud. Homogeneous effects such as collisions would effect all spins iden-

tically, while inhomogeneous effects would assign a different value of some property

to each spin, such as velocity in the case of Doppler broadening. Here we are dealing
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with one atom at a time within a cavity, but the ensemble picture is valid because

we collect data over a series of hundreds or thousands of atoms, and we repeat a

measurement hundreds of times for each atom. In this case, inhomogeneous T ∗
2 mech-

anisms may result from changes over time: for example, variation in the intensity of

the Raman beams, or gradual heating of the atoms throughout the Raman process,

both of which would effectively assign a different Raman frequency to each flopping

measurement. Another potential T ∗
2 mechanism is the finite temperature of each atom

within the FORT, resulting in a periodic modulation of the Rabi frequency. (Because

the intensities of both FORT and Raman beams have a Gaussian profile, the Rabi

frequency seen by the atoms is spatially dependent.) For field-sensitive transitions,

drifts in the magnetic field over time would result in a range of possible detunings

from Raman resonance. Meanwhile, T ′
2 mechanisms could include phase noise on the

injection lock between the FORT and Raman lasers, or scattering due to stray light.

The exponential decay that damps Rabi oscillations is given by T2. In order to

separate out the components of T2, we must turn to other techniques, such as Ramsey

interferometry. Here one prepares the sample in an initial spin state, then applies

a π/2 pulse with detuning Δ in order to rotate the spins into the x-y plane of the

Bloch sphere picture (in a frame rotating at the frequency difference between the two

spins). The spins precess in the plane with frequency Δ, so that if we apply a second

π/2 pulse after a variable time t, we will observe Ramsey oscillations at frequency

Δ. However, as the spins precess in the plane, they also drift out of phase with one

another, so the oscillations that we measure will be exponentially damped at some

rate. The point is that every measurement consists of two π/2 pulses separated by

a time t, which is varied while the system is “in the dark” to applied fields. Thus,

decoherence mechanisms that accumulate in Rabi oscillations as a function of pulse

length (for example, scattering due to the applied fields) will be constant over the

Ramsey data set and will only affect the amplitude of oscillations, not their rate of

decay. Also, note that inhomogeneous mechanisms that cause a variation in Ω will

not contribute, as long as the effective pulse lengths are reasonable approximations of

π/2. Ramsey decoherence is the result of inhomogeneities in detuning from Raman
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resonance, which cause different precession frequencies for each measurement.

Thus, Ramsey interferometry can give us information about a smaller subset of de-

coherence mechanisms on our experiment: those effects dependent on either magnetic

field or temperature. Temperature-dependent decoherence may come as a surprise,

given the statement above that finite atom temperature results in a spread of Rabi

frequencies, to which Ramsey interferometry should be insensitive. However, atom

temperature also produces a spread in detunings, given the FORT-induced differen-

tial AC-Stark shift in our experiment. Consider that the free-space hyperfine splitting

ΔHF between cesium ground states F = 3 and F = 4 is modified by 20 kHz at the

bottom of each FORT well; halfway up the FORT well, the differential shift is only

10 kHz. Thus, as an atom moves within this potential, it experiences frequency shifts

on the order of 10 kHz with respect to the frequency of the Raman pair. Depending

on the Raman linewidth — that is, the Rabi frequency — this may be a significant

effect.

Spin echo is a second diagnostic technique that we can apply to the problem of

decoherence. Known as “photon echo” in the optical case, it allows us to recover

some of the coherence lost to dephasing in Ramsey interferometry. Here we follow

the Ramsey scheme above, using a fixed precession time t in the x-y plane, except

that now we insert a π pulse at time t/2. This flips each precessing spin with respect

to the x axis, so that the “fast” spins now lag behind the “slow” ones. After another

t/2 interval, all the spins are back in phase, and the second π/2 pulse should rotate

them to the Bloch sphere pole opposite where they began. However, rephasing only

occurs for coherent decay mechanisms that are constant over t, so that the second

t/2 interval “undoes” the first. Thus, any damping of photon echo amplitude as a

function of time allows us to characterize T ′
2 as well as rapidly varying T ∗

2 mechanisms,

such as fast magnetic field fluctuations.



98

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pulse duration (μs)

pr
ob

ab
ili

ty
 fo

r 
tr

an
sf

er
 to

 F
=

4

Ω = 138 kHz

τfit = 13 μs

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pulse duration (μs)

pr
ob

ab
ili

ty
 fo

r 
tr

an
sf

er
 to

 F
=

4

Ω = 12.3 kHz

τfit = 211 μs

Figure 5.2: Rabi flops on the |3, 0〉 ↔ |4, 0〉 resonance at Ω = 138 kHz and Ω = 12.3
kHz. For each measurement, atoms are prepared with roughly 60% efficiency in |3, 0〉,
then driven with a Raman pulse of varying duration, followed by state detection.

5.2.2 Rabi flopping measurements

Given the that our FORT and Raman beams are linearly polarized, mutually orthog-

onal, and propagate along the cavity axis, we can drive Raman transitions between

pairs of Zeeman states with Rabi frequency ΩE:

〈4,m|Ω̂E|3,m〉 =
√

1 −m2/16 Ω0 cos θ (5.6)

〈4,m+ 1|Ω̂E|3,m〉 = −1

8

√
(4 +m)(5 +m) Ω0 sin θ (5.7)

where Ω0 is the Rabi frequency for the m = 0 pair and θ is the angle between the

cavity axis and the quantization axis, which we define along the applied magnetic field

[19]. We see that ΩE is m-dependent, so that in order to observe single-frequency

oscillations, we will need to apply a magnetic bias field so that we can address only

one pair at a time. A quantization axis along the cavity axis (θ = 0) will allow

Δm = 0 transitions while suppressing Δm = ±1. For high-contrast oscillations, we

must be able to prepare atoms in a given initial Zeeman state; atoms prepared in the

wrong state will not be addressed by the Raman frequency, so they will not contribute

to decoherence, but they will result in a reduced amplitude.

The first demonstrations of Rabi flopping in our lab used conventional optical
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Figure 5.3: Ramsey interferometry at Ω = 150 kHz, with detuning Δ = −25 kHz from
the |3, 0〉 ↔ |4, 0〉 transition. Atoms are prepared in |3, 0〉, then driven with a pair of
π/2 pulses separated by a variable time t, followed by state detection. The number of
coherent oscillations is roughly the same as for Rabi flopping measurements (Figure
5.2).

pumping techniques to prepare atoms in |F = 3,mF = 0〉 [19], but we now rely on

the method presented in Section 4.1; one advantage is that this allows us to compare

the field-insensitive |3, 0〉 ↔ |4, 0〉 transition with the other six field-dependent tran-

sitions. After conditional loading and optical pumping, we are left with a single atom

in a given F = 3 sublevel. We drive Raman transitions at a fixed Rabi frequency

for a variable time t, then perform state detection to determine the probability of

transfer to F = 4 [30]. Sample Rabi flopping traces on |3, 0〉 ↔ |4, 0〉, accumulated

over a series of atoms, are shown in Figure 5.2.

We emphasize two observed features of field-insensitive Rabi flops in our experi-

ment that provide insight into the decoherence mechanisms at work. First, we find

that T2 decay times are inversely proportional to Rabi frequency Ω. Thus, indepen-

dent of Ω, an atom driven on resonance undergoes the same number of coherent flops

(about three) before decoherence takes over. This effect can be seen in Figure 5.2,

where the traces shown appear qualitatively similar despite the order of magnitude
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Figure 5.4: Two Rabi flopping measurements at similar Rabi frequencies, one on
resonance and the other red-detuned by Δ = −10 kHz. The on-resonance data is
reproduced from Figure 5.2 for comparison; note that detuning to the red increases
the damping time constant by almost a factor of three.

difference in Ω. Furthermore, Ramsey interferometry (Figure 5.3) does not extend

the number of coherent oscillations, so we can rule out mechanisms to which Ramsey

methods are insensitive, such as variation in Raman intensity and phase noise on

the injection lock. We conclude that temperature effects are probably the cause of

dephasing. Atoms with a finite temperature are not localized at the FORT minima;

because of the spatial dependence of Ω, our flopping measurement occurs over an

ensemble of atoms with a range of Rabi frequencies, and the measured ratio of T2 to

tπ tells us about this range.

A second, more perplexing finding is that by detuning the Raman pair to the red

of resonance (negative Δ), we are able to improve coherence times. This is shown in

Figure 5.4 for the case Δ = −25 kHz at a Rabi frequency of 150 kHz, parameters

for which we have observed the most significant improvement. In contrast, detuning

the Raman pair to the blue side of resonance (positive Δ) somewhat degrades the

coherence, though this is not as strong an effect. We now believe that this detun-

ing dependence is due to the FORT-induced differential AC-Stark shift described in

Section 5.2.1. Depending on an atom’s temperature and thus location in the FORT

potential, it may be in or out of resonance with the Rabi frequency of the Raman pair;

due to the AC-Stark shift, the detuning Δ is spatially dependent. By detuning to the
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red, we shift the Raman pair out of resonance with all atoms, so that only the coldest

atoms will see an appreciable field; in this way, we are narrowing the distribution of

Rabi frequencies in our experiment. David Boozer has written computer simulations

that include this AC-Stark shift effect, and we find that they are in good agreement

with our data.

Finally, one may ask if there are additional limits placed on T2 in the case of

field-sensitive (m 	= 0) transitions. Preliminary evidence suggests that this may be

the case. However, with Rabi flopping measurements, it is difficult to distinguish

between fast magnetic field drifts (on the timescale of decoherence for each atom)

and slow drifts (on the timescale of the measurement over the ensemble). Based on

sequential Raman spectrum measurements of the |3, 1〉 ↔ |4, 1〉 transition, we have

evidence for drifts of ∼ 10 kHz in the course of an hour. We have demonstrated

spin echo for the m = 0 transition (Figure 5.5), but it would be interesting to apply

this technique in the field-sensitive case: as photon echo should be insensitive to slow

field drifts, a measurement of pulse amplitude as a function of precession time would

provide information about fast fluctuations.

While Rabi flopping measurements have helped us to understand the limitations

of our experiment, they also provide more direct insight on the prospects for atom-

photon entanglement. We have seen that there is minimal decoherence over the course

of a single π pulse, which is encouraging. However, in the case of π pulses on the

|3, 0〉 ↔ |4,±1〉 transitions, magnetic field drifts are a cause for concern. We should

expect to use Rabi frequencies much faster than the ∼ 10 kHz drift range so that

the transitions do not shift out of resonance in the course of the experiment. As we

will see in the following sections, this imposes a severe restriction if we would like

to replace optical Raman processes by driving ground state transitions directly with

microwaves.
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Figure 5.5: Spin echo measurement at Ω = 150 kHz, with detuning Δ = 25 kHz from
the |3, 0〉 ↔ |4, 0〉 transition. Atoms are prepared in |3, 0〉, then driven with a π/2
pulse at time t = 0, a π pulse at t = 200 μs, and a second π/2 pulse at variable time
t between 300 and 500 μs. The pulse sequence is followed by state detection. Note
the revival of the Ramsey oscillations of Figure 5.3, with no observed reduction in
amplitude.

5.3 Zeeman to hyperfine mapping

A significant challenge in demonstrating the proposed mapping from Zeeman to hy-

perfine states has been to implement Δm = ±1 transitions in our experiment. We

have attempted this using various methods, each of which has presented its own set

of drawbacks. We have been most successful in driving Raman transitions in the

presence of a magnetic field transverse to the cavity axis, as well as in preliminary

efforts with microwaves. I begin, however, with a discussion of our earlier attempts,

which may provide some insight into the technical limitations of our experiment.

5.3.1 936 nm Raman transitions from the side of the cavity

In the presence of a bias field along the cavity axis, our current FORT-Raman configu-

ration only drives Δm = 0 transitions. One means of accessing Δm = ±1 transitions

is to replace the Raman beam with a beam from the side of the cavity at the same fre-
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Figure 5.6: We replace the on-axis Raman beam with a 936 nm beam from the side
of the cavity in order to drive Δm = ±1 transitions. We apply a magnetic field along
the cavity axis and prepare atoms in F = 3, then measure the probability to transfer
population to F = 4 after 150 μs Raman pulses, as a function of Raman detuning.
The Raman spectrum now consists of eight possible m-changing frequencies: six
degenerate pairs and two edge transitions.

quency, but polarized along the cavity axis; in this case, the vector orthogonal to the

FORT-Raman polarization is also orthogonal to the quantization axis, and θ = π/2 in

equations (5.6) and (5.7). We have successfully demonstrated Raman transitions in

this configuration (Figure 5.6). Note that a Raman spectrum consists of eight possible

m-changing frequencies, interleaved between the seven Δm = 0 transition frequen-

cies. Six of the frequencies correspond to pairs of transitions: |3,m〉 → |4,m+1〉 and

|3,m+1〉 → |4,m〉 are degenerate for m = {−3,−2, ...1, 2}. The two edge transitions

|3, 3〉 → |4, 4〉 and |3,−3〉 → |4,−4〉 are nondegenerate.

Unfortunately, we encountered two problems driving transitions in this configura-

tion: first, we were limited by the power available in our Raman diode laser. With

2.2 mW of power focused from the side of the cavity, we found that it took about

150 μs to transfer population between the hyperfine ground states. Second and more

problematic was the fact that we were unable to observe Rabi flops between F = 3

and F = 4 after preparation in mF = 0; the population as a function of time simply
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began in one state and ended in the other, just as for the incoherent Raman transfer

of Figure 4.7. We now believe that this is likely due to diffraction of the Raman

side beam by the cavity mirrors, which results in significant intensity variation over

the possible FORT wells. This means that each well has a different rate for popu-

lation transfer, and we would not be able to set a well-defined π pulse time in our

experiments.

5.3.2 852 nm Raman transitions from the side of the cavity

At the time, we did not yet appreciate the role of diffraction in driving transitions

from the side of the cavity. We believed that our failure to observe Rabi flops was

due to the slow time for population transfer between ground states, during which

decoherence mechanisms might play a significant role. In search of less stringent

power requirements and faster Raman transitions, we switched to a pair of Raman

lasers at 852 nm, detuned 3 GHz to the red of the cesium D2 resonances. The new

lasers were set up in an adjoining lab (the former lab 1 cavity QED experiment,

now relocated to lab 9); as in our 936 nm Raman pair, a 9.2 GHz frequency sideband

applied to one laser was used to injection-lock the second. We monitored this injection

lock by combining light from both lasers on a fiber beamsplitter with a laser locked to

the cesium resonance and monitoring the optical beat note on a spectrum analyzer.

The light from the Raman pair was brought to the cavity via optical fiber and focused

in through the side.

We were again unable to observe Rabi flopping on individual Zeeman transitions.

In retrospect, of course, this method suffers from the same side-beam diffraction

problems as the previous 936 nm Raman attempt. However, we were able to observe

incoherent Δm = ±1 Raman spectra using 10 μs pulses, an order of magnitude faster

than with the 936 nm Raman pair.



105

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Transverse Field (Gauss)

R
am

an
 P

ro
ba

bi
lit

y

Figure 5.7: We measure the probability to optically pump into the state |3, 0〉 as a
function of a transverse magnetic field applied in addition to a constant axial field
of 1.21 Gauss. The transfer probability to F = 4 after optical pumping is measured
using incoherent Raman transitions, with a maximum possible value of 0.5.

5.3.3 Raman transitions using a transverse field

A third scheme for driving Δm = ±1 transitions relies on our original FORT-Raman

pair, but requires us to apply a small transverse magnetic field on top of the axial

field already present. We see from equation (5.7) that for small θ, the Rabi frequency

for Δm = ±1 transitions is small, but as we increase θ, we will be able to drive

m-changing transitions more rapidly. On the other hand, a nonzero θ means that

the quantization axis and the cavity axis are no longer the same; specifically, the

polarization modes supported by the cavity do not correspond exactly to decay from

|5′, 0〉 to |4,±1〉 as in Figure 5.1, and there is now some |4, 0〉 component. By keeping

the transverse field small with respect to the axial field, we hope to minimize this

effect.

Our initial concern was that with the addition of the transverse field, the effec-

tiveness of our optical pumping to |3, 0〉 would be reduced because of mixing between

states. However, measurements of population prepared in |3, 0〉 as a function of field

strength showed that this was a small effect, significant only for strong transverse fields



106

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Raman frequency detuning in MHz

P
ro

ba
bi

lit
y 

fo
r 

tr
an

sf
er

 to
 F

=
4

Figure 5.8: We prepare atoms in |3, 0〉 and measure a Raman spectrum as in Figure
4.6, but in the presence of an 0.52 Gauss transverse field on top of a 1.21 Gauss axial
field. Spaced between the Δm = 0 transitions indicated by dashed vertical lines,
we see Δm = ±1 transitions, most prominently from |3, 0〉 to |4,±1〉. As the Rabi
frequencies are lower for these transitions (equation (5.7)), the Raman pulse time is
not long enough for decoherence to occur, so the measured transition probabilities
have not yet reached their asymptotic values.

(Figure 5.7). We then measured Raman spectra in the presence of a 0.5 Gauss trans-

verse field after optical pumping to identify transition frequencies for |3, 0〉 → |4,±1〉
(Figure 5.8).1 We have confirmed that we can drive Rabi flops on these frequencies,

both individually and jointly (Figure 5.9). In the case where both |3, 0〉 → |4, 1〉 and

|3, 0〉 → |4,−1〉 transitions are driven simultaneously, we expect the effective Rabi

frequency to increase by a factor of
√

2.

We have investigated our ability to map a superposition state of |4,±1〉 onto the

hyperfine manifolds F = 3 and F = 4 in the following manner: we prepare an atom

in |3, 0〉, then drive it with two simultaneous π pulses on the |3, 0〉 → |4, 1〉 and

|3, 0〉 → |4,−1〉 transitions. (We thus prepare a superposition state analogous to the

1This transverse field is almost half the size of the axial field and thus larger than we would use
for entanglement purposes. However, it allows us to drive Rabi flops quickly, and the superposition
state mapping described below is not sensitive to the angle between the quantization and cavity
axes.
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Figure 5.9: Individual and paired Rabi flops on the |3, 0〉 → |4,±1〉 transitions. We
drive atoms prepared in |3, 0〉 at the Δm = +1 and −1 transition frequencies for
a variable time t, followed by state detection (�, blue and black). We then apply
both frequencies simultaneously (◦, green and red), where for testing purposes, the
two pairs use different signal generators for the |3, 0〉 → |4, 1〉 transition. Note the
increase in Rabi frequency by approximately

√
2 for the paired flops.

one we intend to create via decay from |5′, 0〉.) A second pair of π pulses attempts to

map the superposition back to |3, 0〉. Here we vary the phase of the |3, 0〉 → |4, 1〉 arm

while holding the phase of the other arm constant; we expect the mapping processes

in the two arms to interfere constructively or destructively as a function of phase.

The result, shown in Figure 5.10, is a fringe with ∼ 75% visibility. For comparison,

we have also plotted the data from the same measurement sequence, but with the

relative phase held constant.

The fringe visibility in Figure 5.10 is limited by our ability to prepare atoms in

|3, 0〉 and to drive coherent Raman π pulses between Zeeman pairs. We have some

evidence that the off-axis magnetic field (and subsequent mixing between Zeeman

states) interferes with these processes; namely, repeating the experiment above in

the presence of a pure transverse field produces a fringe with significantly improved

contrast. However, the presence of an axial field is necessary for the correspondence

between photon polarization and Zeeman state that is the basis for our entanglement
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Figure 5.10: We prepare a superposition of Zeeman states |4, 1〉 and |4,−1〉, then
demonstrate a coherent mapping of this superposition to the hyperfine manifolds
F = 3 and F = 4. We apply simultaneous π pulses on the |3, 0〉 → |4, 1〉 and
|3, 0〉 → |4,−1〉 transitions in order to transfer population to the F = 3 manifold,
followed by state detection. Shown is the probability to detect an atom in F = 4 as a
function of the relative phase between the two arms; for the red data, the experiment
is repeated with the phase fixed at a random value. The data are plotted twice side
by side to demonstrate the 2π periodicity.

scheme.

5.3.4 Microwave transitions

A final possibility is to forego optical Raman processes and drive Δm = ±1 transitions

directly with microwaves at 9.2 GHz. By using microwaves, we avoid the problems

resulting from spatial variation in Rabi frequency within each FORT well: the power

from a microwave horn is constant across the μm-scale dimensions of the cavity, and

every atom experiences the same Rabi frequency. (Atoms may still be shifted out

of resonance with the microwaves as they move within the FORT, a result of the

differential AC-Stark shift discussed in Section 5.2.)

While microwave horns are standard equipment in many atomic physics labs, they

have not been used in our group prior to this experiment. An Agilent E8247C signal
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Figure 5.11: We drive microwave transitions directly between hyperfine ground states
of cesium. Shown are Rabi flops on the |3, 0〉 → |4, 0〉 and |3, 0〉 → |4, 1〉 transitions.

generator provides us with a stable, RS-232-controlled microwave source. At the

signal generator output is a microwave switch, followed by an amplifier. Between the

amplifier and the microwave horn facing our cavity, we use a three-port circulator

and a stub tuner in order to impedance-match the signal: we monitor the power in

the reflected port of the circulator and adjust the stub tuner length to mimimize

this value. The stub tuner was a helpful recommendation from Sabrina Leslie in the

Stamper-Kurn group at Berkeley, who also suggested the use of Huber-Suhner cables

to minimize signal loss.

Using the microwave horn, we have observed Rabi flops on the |3, 0〉 → |4, 0〉 and

|3, 0〉 → |4, 1〉 transitions (Figure 5.11). We now have a new means to drive coherent

transitions between hyperfine ground states, allowing us to access both Δm = 0 and

Δm = ±1 transitions while avoiding the problems of a bias field at an angle to the

quantization axis (Section 5.3.3). The challenge of driving microwave transitions in

our experiment stems from the available power. The Rabi frequencies in Figure 5.11

are only 7 kHz, limited at present by the 3 W amplifier in the signal path. We do

have a second, 20 W amplifier, but we would like to test cavity heating effects at this

power before putting it to use. However, since the Rabi frequency only scales as the

square root of power, we expect less than a factor of three improvement from this

amplifier.
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A narrow Rabi frequency means that the experiment is highly sensitive to shifts in

detuning, whether as a result of motion in the FORT potential or changing magnetic

fields. Moreover, the corresponding long π pulse times (∼ 100μs) place strict limits

on acceptable decoherence rates. We have only recently begun to explore microwaves

in a cavity QED setting, and there are certainly exciting applications ahead, but there

are important issues that we will need to address in the process.

5.4 Fast pulses from the side of the cavity

We now have the means to map a Zeeman superposition onto a hyperfine superpo-

sition that we can measure. Here we return to the initial step in our entanglement

protocol: using fast optical pulses from the side of the cavity to generate the Zeeman

superposition along with a polarization-entangled photon. We discuss the implemen-

tation of these pulses in the lab and present correlation measurements between photon

polarization and Zeeman state.

As in Figure 5.1, we would like to excite each atom from |4, 0〉 to |5′, 0〉. We need

to drive this transition with linearly polarized light along the cavity axis, so the pulse

must come from the side of the cavity. From |5′, 0〉, the atom will decay into the cavity

mode via a σ+ or σ− photon, and the photon polarization will be entangled with the

atom’s final ground state. Ideally, to prepare the atom in F ′ = 5 after each pulse, the

pulse length should be short with respect to (2γ)−1 = 31 ns and 2π(2g)−1 = 14.7 ns.

In practice, we are able to make pulses as short as 10 ns. Here we use F = 4 → F ′ = 5

light from our master (probe) laser that is fiber-coupled into an amplitude modulator

from EOSPACE Inc., a two-port Mach-Zehnder interferometer with a nominal 10

GHz bandwidth. We drive pulses with TTL signals to the modulator; additionally,

we provide the modulator with a stable DC voltage Vπ, which we adjust so as to

maximize transmission when the TTL value is high. The measured suppression of

the modulator is only 20 dB, so we enclose the fast modulator pulse within a slower

AOM pulse applied to the light before the fiber input. Both pulses are driven from

an SRS DG535 pulse generator triggered by the ADwin system. We use a Thorlabs
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PDA10A 150 MHz detector to characterize the pulse shape at the cavity input.

We can make an estimate of the efficiency with which we expect these fast pulses

to generate photons in the cavity mode. We first prepare atoms in |3, 0〉 with optical

pumping efficiency ppump, where we have measured ppump ≈ 0.6. We then drive a π

pulse from |3, 0〉 → |4, 0〉, where we estimate pπ ≈ 0.8 based on Rabi flopping data.

After attempting to prepare the atom in |4, 0〉, we apply a single pulse from the side

of the cavity on the |4, 0〉 → |5′, 0〉 transition. The pulse cycles population rapidly

between the ground and excited states of the atom, so that the probability for the

atom to be in |5′, 0〉 at the end of the pulse is pexcite = 0.5. Meanwhile, an atom in

|5′, 0〉 will decay with probability pdecay = 0.59 into the cavity mode and the rest of

the time into free space.2 We thus expect

pphoton = ppump × pπ × pexcite × pdecay (5.8)

= 0.6 × 0.8 × 0.5 × 0.59 (5.9)

= 0.14. (5.10)

In order to estimate the rate of photon detection at our SPCMs, we need to include

the measured path efficiency ppath = 0.024 [16]; pphoton × ppath = 0.0034. This is in

reasonable agreement with the photon detection rate of 0.0046 that we have measured

in the lab.

Our next step was to measure correlations between the detection of a cavity photon

and the final Zeeman state of an atom. After the sequence above (state preparation,

π pulse from |3, 0〉 → |4, 0〉, fast pulse from the side), we introduced a state-detection

measurement, preceded by either zero, one, or two Zeeman-specific π pulses. In

the absence of any π pulses, state detection conditioned on the detection of a cavity

2A simple way to understand this is to remember that the atomic excited state is a superposition
of the two atom-cavity eigenstates. The system will thus oscillate at rate 2g between having one
excitation in the atom and one excitation in the cavity. When the excitation is in the atom, decay is
possible at rate γ into free space (as the cavity mode subtends only a small fraction of the 4π solid
angle); when the excitation is in the cavity, decay takes place at rate κ into the cavity output mode.
Assuming that g � κ, γ, the atom spends about half the time in each state, and the probabilities
for decay via the atom and cavity channels are γ

κ+γ and κ
κ+γ , respectively.
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output photon should confirm that the atom is in F = 4, since the only decay channel

from F ′ = 5 is to F = 4. Of course, we expect atoms not only to be in F = 4, but

more specifically, to be in one of the two Zeeman levels |4, 1〉 and |4,−1〉. We can

evaluate the population in a given Zeeman level by selectively depopulating that level

with a π pulse before the state detection process. For example, if we insert a π pulse

from |4, 0〉 → |3, 0〉 before state detection, we still expect to find all atoms in F = 4

afterwards (conditioned on a photon), since we do not expect decay into the cavity

mode from F ′ = 5 to |4, 0〉. In contrast, we expect that a π pulse from |4, 1〉 → |3, 1〉
or |4,−1〉 → |3,−1〉 would reduce the probability to detect population in F = 4 by

half.

Note that the uncorrelated data in this experiment is also a source of interesting

information. In the absence of π pulses, the unconditional probability to detect a

photon in F = 4 reflects our ability to prepare an atom in |4, 0〉. (Here we assume

that every atom not optically pumped to |3, 0〉 is prepared in another Zeeman state of

the F = 3 manifold, and that our π pulse only addresses the |3, 0〉 state.) Moreover,

the unconditional π pulse data tells us about the atomic decay into both the cavity

mode and free space. Recall that while we expect the atom to decay via the cavity

mode 59% of the time (into |4, 1〉 and |4,−1〉, with equal probability), it also decays

41% of the time into free space, where the branching ratios of the cesium transitions

determine the final Zeeman states. Specifically, in the case of free space decay, we

expect the atom to decay to |4, 0〉 with probability pfs0 = 0.55 and to |4, 1〉 and

|4,−1〉 with probabilities pfs1 = pfs−1 = 0.22. In the uncorrelated case, we also need

to remember that the atom is left unexcited in |4, 0〉 after half of all pulses. When we

include this fact and weight the Zeeman state probabilities of the two decay channels,

we find the expected probabilities

p1 = p−1 = 0.5(0.41 × 0.22 + 0.59 × 0.5) = 0.19; (5.11)

p0 = 0.5 + 0.5(0.41 × 0.55) = 0.61. (5.12)

A more thorough calculation also takes into account the imperfect nature of our state
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π pulse(s) P4, unconditional P4, conditional

none 0.62 0.92
|4, 0〉 → |3, 0〉 0.33 0.84
|4, 1〉 → |3, 1〉 0.57 0.70

|4,−1〉 → |3,−1〉 0.56 0.62
|4, 1〉 → |3, 1〉 0.53 0.35

and |4,−1〉 → |3,−1〉
Table 5.1: Measured correlations between a detected cavity photon and the Zeeman
state of a trapped atom. We attempt to prepare each atom in |4, 0〉 and excite it to
|5′, 0〉 with a short pulse from the side of the cavity. We then measure the probability
P4 that the atom is in F = 4 following zero, one, or two Zeeman-specific π pulses; this
is expressed both as an unconditional probability and conditioned on the detection
of a photon in the cavity output path.

preparation and π pulses; in this case, we have

p′1 = p′−1 = ppump × pπ × 0.5(0.41 × 0.22 + 0.59 × 0.5) − 0.1 × pπ = 0.01, (5.13)

p′0 = 0.8 × (0.5 + 0.5(0.41 × 0.55)) − 0.1 × pπ = 0.21, (5.14)

where the additional term reflects the fact that atomic population left in F = 3

after the initial π pulse (roughly 10% for each of the three Zeeman manifolds) can be

brought into the F = 4 manifold by the second, diagnostic pulse.

The results of our measurements are summarized in Table 5.1. After state prepa-

ration and excitation to |5′, 0〉, the unconditional probability to find an atom in the

F = 4 manifold is 0.62, somewhat better than our optical pumping and π pulse esti-

mates, and the conditional probability is 0.92. The fact that this value is not 1 can

be interpreted as the result of background photon counts that occur during the 38%

of all trials when the atom is not successfully prepared in F = 4.

Following a π pulse from |4, 0〉 → |3, 0〉, the unconditional probability to detect

an atom drops to 0.33 and the conditional probability to 0.84. From p′0 and the prob-

ability to find an atom in F = 4, we would anticipate the unconditional probability

to be 0.62 − 0.21 = 0.41. The conditional probability can again be understood in

terms of background photon counts: as the unconditional probability to find an atom

in F = 3 is two times greater than without the π pulse, the chance that background
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counts (interpreted as cavity photons) will coincide with an atom in F = 3 is also

two times greater, and the conditional F = 3 probability doubles from 0.08 to 0.16.

The unconditional probabilities following π pulses from |4, 1〉 → |3, 1〉 and |4,−1〉 →
|3,−1〉 are 0.57 and 0.56, respectively. In comparison, we would expect values of

0.62 − p′1 = 0.61 in both cases. (Again, the discrepancy suggests that for this data

run, our optical pumping efficiency was better than usual.) The conditional proba-

bilities measured are 0.62 and 0.70. We would expect to measure roughly

pc1 = pc−1 = 0.90 × (1 − 0.5 × 0.8 + 0.1 × 0.8) = 0.61, (5.15)

where the second term expresses the depopulation of the Zeeman level (to which the

atom has decayed with probability 0.5) by an imperfect π pulse, the third term is

the probability that population in |3, 1〉 or |3,−1〉 will be excited to F = 4 by this

π pulse, and the overall scaling reflects background photon counts as above. Thus,

we find good agreement between the data and our model; we do not yet have a good

explanation for the asymmetry in the two conditional probabilities, but it may be

connected with the cavity birefringence.

Finally, we apply a pair of π pulses on both |4,±1〉 → |3,±1〉 in sequence before

state detection; in this case, we find unconditional and conditional probabilities of

0.53 and 0.35. Here we expect an unconditional value of 0.62 − 2 × p′1 = 0.60 and a

conditional value of

pc±1 = 0.90 × (1 − 2(0.5 × 0.8 + 0.1 × 0.8)) = 0.32, (5.16)

again consistent with the data.

We have thus observed correlations between between photons generated via fast

pulses from the side of the cavity and atoms prepared in |4,±1〉. In the near future,

we hope to combine these correlation measurements with the hyperfine mapping of

Section 5.3. After applying a fast pulse from the side of the cavity at t = 0, we would

attempt to transfer the Zeeman populations in |4,±1〉 to F = 3, followed by state
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detection. Conditioned on the detection of a photon at the cavity output, we expect

that the hyperfine population measurement would result in a fringe as a function of

t, due to precession of the Zeeman superposition state. We could then consider the

long-anticipated rebuild of our cavity output path: while we are now only able to

detect one photon output polarization, the ability to detect orthogonal polarizations

in parallel would permit a Bell measurement of atom and photon states.


