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Chapter 3

A light-matter interface:
quantifying coherence

One of the first experiments conducted in our group with a trapped intracavity atom

was to demonstrate that it could generate single photons on demand by means of

an adiabatic (dark-state) process [16]. After the ground-state cooling experiment, we

turned our attention again to this process, with the idea of mapping cavity-generated

photons back onto the atom. In this way, we could exploit an important feature of

photon generation within a cavity: the fact that the output photon is created in a

well-defined spatial mode. Moreover, the photon generation process is coherent and

thus reversible: by running the same adiabatic process backwards, we can in principle

achieve state transfer from light (photons) to matter (cesium hyperfine levels).

However, as we began to set up the experiment, we realized that using single

photons would restrict our ability to characterize the phase coherence of the process

we hoped to demonstrate. Coherence, meanwhile, is at the heart of the quantum

information schemes for which this mapping could be employed. We decided instead

to explore reversible state transfer by using a pulse of weak coherent light at the

cavity input that had roughly the same temporal profile as a cavity-generated photon.

From a pair of coherent pulses in sequence, we could then extract important phase

information about the transfer process. The results of this experiment are reproduced

in Section 3.1. The following sections are then devoted to a more thorough discussion

of technical details, including the necessary pulse combinations and timing sequences,
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the requirements of phase stability between pairs of laser pulses, and remote serial

programming of electronic devices. I conclude by discussing the outlook for mapping

single photons to and from the cavity in the future.

3.1 Reversible state transfer between light and a

single trapped atom

The following section has been adapted from Ref. [31].

We demonstrate the reversible mapping of a coherent state of light with mean

photon number n̄ � 1.1 to and from the hyperfine states of an atom trapped within

the mode of a high-finesse optical cavity. The coherence of the basic processes is

verified by mapping the atomic state back onto a field state in a way that depends on

the phase of the original coherent state. Our experiment represents an important step

towards the realization of cavity QED-based quantum networks, wherein coherent

transfer of quantum states enables the distribution of quantum information across

the network.

An important goal in quantum information science is the realization of quantum

networks for the distribution and processing of quantum information [1], including for

quantum computation, communication, and metrology [44, 70, 71, 72]. In the initial

proposal for the implementation of quantum networks [2], atomic internal states with

long coherence times serve as “stationary” qubits, stored and locally manipulated at

the nodes of the network. Quantum channels between different nodes are provided by

optical fibers, which transport photons (“flying” qubits) over long distances [73]. A

crucial requirement for such network protocols is the reversible mapping of quantum

states between light and matter. Cavity quantum electrodynamics (QED) provides

a promising avenue for achieving this capability by using strong coupling for the

interaction of single atoms and photons [49].

Within this setting, reversible emission and absorption of one photon can be

achieved by way of a dark-state process involving an atom and the field of a high-
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Figure 3.1: Illustration of the protocol of Ref. [2] for quantum state transfer and
entanglement distribution from system A to system B. By expanding to a larger set
of interconnected cavities, complex quantum networks can be realized.

finesse optical cavity. For classical fields, this “STIRAP” process was first considered

twenty years ago [74, 75], before being adapted to quantum fields [76] and specifically

to the coherent transfer of quantum states between remote locations [2], with many

extensions since then [77]. The basic scheme, illustrated in Figure 3.1, involves a

three level atom with ground states |a〉 and |b〉 and excited state |e〉. An optical

cavity is coherently coupled to the atom on the b ↔ e transition with rate g, and a

classical field Ω(t) drives the atom on the a ↔ e transition. If the Ω field is ramped

adiabatically off → on, then state |a, n〉 evolves into |b, n+1〉, and state |b, n〉 remains

unchanged, where |a, n〉, |b, n〉 denotes a state in which the atom is in ground state a,

b and there are n photons in the cavity. Ramping Ω on → off implements the reverse

transformation.

This process can be used to generate single photons by preparing the atom in

|a〉 and ramping Ω off → on, thereby effecting the transfer |a, 0〉 → |b, 1〉 with the

coherent emission of a single photon pulse from the cavity [2, 76, 78]. Essential aspects

of this process have been confirmed in several experiments [16, 79, 80], including

tailoring of the single-photon pulse shape [79].

A distinguishing aspect of this protocol is that it should be reversible [2], so that a

photon emitted from one system A can be efficiently transferred to another system B.

Furthermore, it should be possible to map coherent superpositions reversibly between

the atom and the field:

(c0|b〉 + c1|a〉) ⊗ |0〉 ↔ |b〉 ⊗ (c0|0〉 + c1|1〉). (3.1)
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Over the past decade, single photons have been generated in diverse physical

systems [81]; however, most such sources are not reversible in principle, and for those

that are, no experiment has verified the reversibility of either the emission or the

absorption process.

We report an important advance related to the interface of light and matter by

explicitly demonstrating the reversible mapping of a coherent optical field to and

from the hyperfine ground states of a single, trapped Cesium atom.1 Specifically, we

map an incident coherent state with n̄ = 1.1 photons into a coherent superposition

of F = 3 and F = 4 ground states with transfer efficiency ζ = 0.057.2 We then map

the stored atomic state back to a field state. The coherence of the overall process is

confirmed by observations of interference between the final field state and a reference

field that is phase coherent with the original coherent state, resulting in a fringe

visibility va = 0.46 ± 0.03 for the adiabatic absorption and emission processes. We

thereby provide the first verification of the fundamental primitive upon which the

protocol in Ref. [2] is based.

As shown schematically in Figure 3.2(a), our system consists of one Cs atom

coupled to a high-finesse Fabry-Perot cavity. The cavity length is tuned so that a

TEM00 mode is near resonance with the 6S1/2, F = 4 → 6P3/2, F = 3′ transition of Cs

at 852.4 nm. The maximum atom-cavity coupling rate is g0/2π = 16 MHz, while the

cavity field and the atomic excited state decay at rates (κ, γ)/2π = (3.8, 2.6) MHz �
g0. Thus, the system is in the strong coupling regime of cavity QED [49].

Atoms are dropped from a magneto-optical trap into the cavity and cooled into

a far off-resonant trap (FORT) by a blue-detuned optical lattice (see [49, 30]). The

FORT excites another TEM00 cavity mode at the “magic” wavelength 935.6 nm,

creating nearly equal trapping potentials for all states in the 6S1/2, 6P3/2 manifolds

[13].

1This mapping could also be demonstrated by absorbing a single-photon state, but we use a
coherent state instead, because its phase information allows us to verify explicitly the reversibility
of the absorption process.

2Since we use a coherent state rather than a coherent superposition of n = 0, 1 Fock states,
equation (3.1) only approximately describes our system. For a n̄ = 0.68 coherent state (i.e., n̄ = 1.1
at the face of Min), the fraction of the population in the n = 0, 1 subspace is � 0.85.
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Figure 3.2: (a) Schematic of the experiment. The probe λ(t) resonantly drives the
cavity through input mirror Min; the classical field Ω(t) excites the atom transverse
to the cavity axis. Photons emitted from the output mirror Mout are directed to a
pair of avalanche photodiodes. (b) Atomic level diagram. Double arrow g indicates
the coherent atom-cavity coupling, and Ω(t) is the classical field. The cavity and Ω
field are blue-detuned from atomic resonance by Δ.

An atomic level diagram is shown in Figure 3.2(b); the states used in the current

scheme are ground F = 3, 4 and excited F = 3′ manifolds, corresponding to |a〉, |b〉, |e〉
in Figure 3.1. The cavity is tuned to frequency ωC = ω4−3′ + Δ, where ω4−3′ is the

frequency of the 4 − 3′ transition, and Δ/2π = 10 MHz is the cavity-atom detuning.

A linearly polarized probe beam3 drives the cavity at frequency ωC with pumping

strength λ(t). An optical lattice drives the atom transverse to the cavity axis at

frequency ωA = ω3−3′ + Δ to provide a classical field with Rabi frequency Ω(t) [16].

The laser source for the optical lattice is phase-locked in Raman resonance with the

probe laser, so their relative detuning δ = ωA − ωC is phase-stable and equal to the

ground-state hyperfine splitting ΔHF = ω3−3′ − ω4−3′ = (2π)(9.193 GHz).

Our experimental procedure is as follows: after loading an atom into the FORT,

we subject it to 2, 000 trials lasting a total of 360 ms, where each trial consists of

3Our cavity supports two nearly degenerate modes with orthogonal linear polarizations along the
x̂ and ŷ axes, where ẑ denotes the cavity axis. The cavity probe drives either the x̂ or the ŷ mode;
a polarizer at the cavity output only allows the x̂ component to reach the detectors.
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a series of discrete measurements performed on the atom. These measurements are

used to quantify the coherence of the absorption process, as well as for calibrations

and background monitoring. After these trials, we check that the atom has survived

in the trap by attempting to generate 10, 000 single photons, which are detected by

monitoring the cavity output with two single-photon-counting avalanche photodiodes.

We keep only the data from atoms that have survived all the trials. For most of the

data that we keep, only a single atom is present in the trap, but occasionally two or

more atoms may be loaded. From measurements performed during the 2, 000 trials,

we determine that at least 80% of the data presented here involve a single atom.

For each trial, we prepare the atom in F = 4 and then drive the system with a

series of light pulses, as shown in Figure 3.3. The classical field Ω(t) generates pulses

Ω1,2, and the cavity probe λ(t) generates pulses λ1,2. For any given measurement

within a trial, some of these pulses are on and the others are off. Pulse λ1 is the

coherent state that is to be mapped into the atom. The strength of this pulse is

set so that there are n̄ = 1.1 mode-matched photons at the face of the input mirror

Min. Because of mirror losses [42], if no atom were present, this would give rise to a

pulse inside the cavity with n̄ = 0.68 photons. The falling edge of pulse Ω1 is used

to perform the adiabatic absorption of λ1. The intensity of the lattice light is such

that when Ω1 is fully on, its Rabi frequency is ∼ 8γ, a value found to maximize the

adiabatic absorption probability. When λ1 is absorbed, some of the atomic population

is transferred from F = 4 to F = 3. With λ2 off, Ω2 allows us to determine the fraction

of the population that has been transferred: if the atom is in F = 4, then Ω2 does

nothing, while if the atom is in F = 3, then the rising edge of Ω2 transfers it back

to F = 4 and generates a single photon. Finally, with both pulses Ω2 and λ2 on, we

verify that λ1 was absorbed coherently. The Ω2, λ2 pulses act together to generate a

field inside the cavity; if λ1 was absorbed coherently, then the amplitude of this field

will depend on the relative phase θ between λ1, λ2.

This dependence can be understood by considering a simple model in which Ω2

and λ2 act independently. With λ2 off and Ω2 on, the Ω2 pulse transfers the atom

from a superposition of F = 3, 4 into F = 4 by generating a field α in the cavity
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Figure 3.3: Timing diagram: the upper curve shows the Ω1 and Ω2 pulses; the lower
curve shows the λ1 and λ2 pulses. Each of these pulses can be turned on/off indepen-
dently. Here Δt is the delay between the falling edge of Ω1 and the rising edge of Ω2.
By enabling various combinations of these pulses, and/or varying the relative phase
θ between λ1 and λ2, we perform different measurements on the atom. The phase θ
is set by the phase difference of RF pulses driving an acousto-optic modulator in the
probe beam.

whose phase depends on the phase of the atomic superposition. In turn, the phase of

the original atomic superposition is set by the phase of λ1. With λ2 on and Ω2 off,

the λ2 pulse generates a field β inside the cavity whose phase is set by λ2. If Ω2 and

λ2 acted independently, then when both Ω2 and λ2 were on, the fields α and β would

combine to give a total field α + β, whose amplitude depends on the phase difference

θ between λ1 and λ2. Because Ω2 and λ2 do not act independently, this model is only

approximately correct. Nevertheless, the phase of the final field still depends on θ for

the coherent processes associated with λ1,2, Ω1,2.

We first consider a series of measurements which demonstrate that the λ1 pulse

transfers more population from F = 4 to F = 3 in the presence of the Ω1 pulse than

in its absence. We start with the atom in F = 4 and apply the λ1 pulse, either with

the Ω1 pulse (adiabatic absorption, which consists of both coherent and incoherent

components) or without it (only incoherent absorption 4 → 3′, with spontaneous

decay to F = 3). In either case, λ1 transfers some population from F = 4 to F = 3.



40

To quantify the population transfer, we apply Ω2 and measure the probability that

a single photon is detected within 1 μs of the rising edge of Ω2.
4 We thereby infer

the fraction of the atomic population that was in F = 3.5 For adiabatic absorption

(Ω1 on), we find that the probability pa for the atom to be transferred from F = 4

to F = 3 by λ1 is pa = 0.063 ± 0.002, whereas for incoherent absorption (Ω1 off ),

the probability is pi = 0.046 ± 0.001. The ratio of the adiabatic to the incoherent

absorption probability is r = pa/pi = 1.38 ± 0.04.

As shown in Figure 3.4, we vary the arrival time t1 of the λ1 pulse and study the

effect on the adiabatic-to-incoherent ratio r.6 This ratio is maximized when λ1 is well

aligned with the falling edge of Ω1 at t = 0. If λ1 arrives too early (t1 � 0), then any

population that it transfers from F = 4 to F = 3 is pumped back to F = 4 by Ω1.

If λ1 arrives too late (t1 	 0), then Ω1 is already off, resulting in incoherent transfer

with r = 1.

Figure 3.4 also shows the results of a computer simulation of the absorption pro-

cess. The simulation predicts values for pa and pi and therefore the ratio r = pa/pi.

The correspondence between our simulation and the actual measurements of r vs. t1

in Figure 3.4 is qualitatively reasonable (the only free parameter in the simulation is

the atom-cavity coupling g, which we set to g/g0 = 0.44). The simulation can also

be used to partition pa into a coherent component pc
a and an incoherent component

pi
a. We define the coherent component of r by rc = pc

a/pi, the incoherent component

of r by ri = pi
a/pi, and plot rc, ri vs. t1 in Figure 3.4. The simulation indicates that

the value of t1 for which the adiabatic absorption process is maximally coherent is

roughly the value of t1 that maximizes the adiabatic transfer probability, and suggests

that for this value of t1 the adiabatic absorption process has appreciable coherence,

with rc/ri � 1.

4For these measurements and those of Figure 3.5, Δt = 290 ns. The probe is polarized along ŷ;
for the case when λ2 is on, this ensures that the emerging signal is not dominated by the component
of λ2 that is transmitted by the cavity.

5This involves subtracting a background probability of 0.0025, which we determine by pumping
the atom to F = 4 and applying Ω2, and dividing by the single photon generation efficiency of 0.036,
which we determine by pumping the atom into F = 3 and applying Ω2.

6For these measurements, Δt = 2 μs, and the probe is polarized along x̂.
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Figure 3.4: Ratio r of adiabatic transfer probability to incoherent transfer probability
vs. arrival time t1 for the incident coherent pulse λ1. Red data points (◦): r vs. t1
(experiment). Red solid curve: r vs. t1 (computer simulation). Black dotted curve:
coherent component rc vs. t1 (simulation). Blue dashed curve: incoherent component
ri vs. t1 (simulation)

In Figure 3.5, we present measurements that demonstrate that the adiabatic ab-

sorption process is indeed coherent. As before, we prepare the atom in F = 4 and

apply λ1, either with or without Ω1, followed by Ω2. But now we add the λ2 pulse,

which overlaps with the rising edge of Ω2. If the λ1 pulse is absorbed coherently, then

the amplitude of the field generated by the combined action of Ω2 and λ2 will depend

on the relative phase θ of λ1 and λ2. By recording the cavity output from Mout as

a function of θ and observing this dependence, we can verify that the λ1 pulse was

absorbed coherently. To accomplish this, we repeat the above sequence for different

values of θ, where for each relative phase, we measure the mean number of photons

n(θ) emitted from the cavity within a fixed detection window. We take data both

with Ω1 on and off, so as to obtain results na(θ) and ni(θ) both for adiabatic and in-

coherent absorption. Figure 3.5 plots Ra(θ) = na(θ)/na(θ0) and Ri(θ) = ni(θ)/ni(θ0),

where θ0 is a fixed phase. Note that these ratios, rather than the photon numbers

themselves, are employed in order to cancel small, slow drifts in the intensity of the

light beams. Significantly, we observe an appreciable phase-dependence with visibility
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Figure 3.5: Ratios Ra(θ), Ri(θ) for photon generation as a function of the relative
phase θ between the λ1,2 fields. Red data points for adiabatic state transfer with Ω1

on. Blue points for the incoherent process with Ω1 off. The full curve is a fit to obtain
the fringe visibility va � 0.46 ± 0.03. On average, each point represents about 130
atoms. The error bars represent statistical fluctuations from atom to atom.

va = 0.46 ± 0.03 for the adiabatic absorption curve Ra(θ), while no such variation is

recorded for the incoherent absorption curve Ri(θ).

The fringe visibility is limited by the intrinsic incoherent component of the ab-

sorption process, as well as by the mismatch in amplitudes and pulse shapes for the

α, β fields. For the results shown in Figure 3.5, a 200 ns detection window is used

around the peak of the emission process. If we increase the detection window to 1 μs,

thus degrading the pulse shape overlap, the visibility drops to va = 0.18 ± 0.01.

In conclusion, we have demonstrated the reversible transfer of a coherent pulse

of light to and from the internal state of a single trapped atom, which represents a

significant step towards the realization of quantum networks based upon interactions

in cavity QED. Explicitly, we have presented a detailed investigation of the adiabatic

absorption of an incident coherent state with n̄ = 1.1 photons. A fraction pa = 0.063

of the atomic population has been transferred from F = 4 to F = 3, with the efficiency

of the transfer being ζ ≡ pa/n̄ = 0.057. Here ζ provides an estimate of the efficiency

that could be obtained if we adiabatically absorbed a single photon state instead of
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a coherent state, and should be compared to the much lower efficiencies possible in

free space.

The factors that limit the transfer efficiency include the passive mirror losses

[42], the fact that our cavity mirrors Min, Mout have equal transmission coefficients

Tin = Tout (as opposed to Tin 	 Tout for a single-sided cavity), and the coupling of

the atom to both polarization modes of the cavity. Even in the ideal case without

scatter and absorption losses in the mirrors, for a three-level atom coupled to a two-

sided cavity (Tin = Tout) with two modes, the maximum possible adiabatic transfer

probability would be ζ = 0.25. By implementing a single-sided cavity with losses as

achieved in Ref. [8], we estimate that ζ could be improved to ζ ∼ 0.9 for coupling

schemes with a single polarization.

3.2 Pulse combinations

The measurements described above consisted of trapping an atom and preparing it in

one of two hyperfine manifolds, followed by combinations of the four pulses Ω1, Ω2, λ1,

and λ2 shown in Figure 3.3. Specifically, we employed eight configurations in which

Ω2 was always on, the other three pulses were either on or off, and the phase between

λ1 and λ2 was either fixed or varied (or not applicable, in the case of only one λ

pulse). These possibilities are enumerated in Table 3.1. Note that during a single 360

ms trapping interval, an atom would be subject to all eight pulse combinations 2000

times, with appropriate preparation of the atomic state preceding each combination.

This section focuses on the information that we are able to extract from each set of

pulses.

Cases 1 and 2 in Table 3.1 correspond to times t1 	 0 and t1 = 0 in Figure 3.4. In

case 1, the atom is prepared in F = 4; since the cavity is tuned to F = 4 → F ′ = 3, we

expect the vacuum Rabi splitting to shift the incoming pulse λ1 out of resonance with

the system. In the absence of Ω1, λ1 will only transfer population to F = 3 through

incoherent, off-resonant excitation of the atom. The probability of this population

transfer is measured by attempting to generate a single photon using Ω2, which will
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# Fstart Ω1 λ1 λ2 θ measured probability
1 4 off on off n/a incoherent absorption
2 4 on on off n/a coherent and incoherent absorption
3 4 on on on θ0 adiabatic fringe, fixed phase
4 4 on on on θ adiabatic fringe, variable phase
5 3 off off off n/a single photon generation
6 4 off off off n/a background
7 4 off on on θ0 incoherent fringe, fixed phase
8 4 off on on θ incoherent fringe, variable phase

Table 3.1: The series of eight pulse combinations applied to each atom in the re-
versible state transfer experiment. Fstart is the hyperfine manifold in which the atom
is prepared before the pulses are applied.

succeed only if the atom is in F = 3. In case 2, the inclusion of a classical pulse

Ω1 means that now we expect the coherent Raman process to transfer population

from F = 4 to F = 3, though of course incoherent excitation will still be possible.

The relative probability to generate photons in these two cases reflects the extent to

which our mapping process is coherent. While our system is in the strong coupling

regime, we are limited by the fact that g is not larger, which means that some off-

resonant light from λ1 can enter the cavity. The maximum atom-cavity coupling for

our system on the F = 4 → F ′ = 5 transition is gmax = 33.9 MHz, but the single-

photon generation scheme constrains us to the F = 4 → F ′ = 3 transition (g0 = 16

MHz), and the variation of g over the range of FORT wells and atomic motion result

in an inferred coupling g0 = 7 MHz, only a factor of two greater than the cavity

linewidth.

Cases 3 and 4 are the basis for the data presented in Figure 3.5. We map the

coherent pulse λ1 onto the atom by means of Ω1; then, while attempting to generate

a single photon with Ω2, we introduce the pulse λ2. λ2 interferes either constructively

or destructively with the photon generation process as a function of θ, which in case

4 is varied over 2π. In case 3, θ is held fixed at an arbitrary value θ0, so the photon

generation probability should in principle be constant. We compensate for small

drifts in the probe power over the course of the experiment by expressing the phase

variation as the ratio of the case 4 to case 3 data for each atom.
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Case 5, in which we simply use Ω2 to generate single photons on demand, provides

us with a calibration of the photon generation efficiency. In case 6, we again attempt

to generate single photons, but with the atom in the wrong hyperfine manifold, so

that we expect nothing to happen. We then subtract this measured background value

from the data obtained in all other cases.

Finally, cases 7 and 8 provide a baseline for comparison with cases 3 and 4.

Because Ω1 is omitted, we expect that the process that transfers population to F = 3

is strictly incoherent; that is, it should have no phase dependence. We confirm this by

varying the relative phase of λ1 and λ2 and observing no change in photon generation

probability. These data are also plotted for comparison in Figure 3.5; as in cases 3 and

4, we divide the probability with variable phase by the probability with fixed phase for

each atom to remove the effects of probe drift. This reflects a more general strategy

of cycling repeatedly through the full range of experimental parameters rather than

performing various measurements sequentially in the course of a data run. As a result,

we are less sensitive to long-term drift and can obtain real-time information about the

progress of the experiment. Another example of this strategy, increasing the phase θ

in 20 ◦ steps between each atom loading event, is discussed in Section 3.5.

3.3 Timing

Reversible state transfer was the first lab 11 experiment that required more compli-

cated timing than the ADwin alone could provide. The ADwin can produce pulses

as short as 100 ns; however, the length of any pulse shorter than a few μs should be

confirmed on an oscilloscope, as it may be up to 1 μs shorter or longer than specified

by the control program. In the present case, we had two requirements: (a) we needed

to generate a pair of adiabatic pulses Ω1,2 from the side of the cavity that would turn

on and off over hundreds of ns, and (b) we needed the timing of these pulses to be

stable with respect to λ1,2, the pair of coherent state pulses along the cavity axis.

(We did not take special care to generate λ1,2 adiabatically, as we found that the

temporal pulse shape that resulted from switching the probe AOM with TTL logic
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Figure 3.6: Instrumentation diagram for the generation of Ω1,2 and λ1,2 pulses

was a reasonable approximation to the shape of photons generated in Ref. [16].)

As shown in Figure 3.6, timing was controlled by four digital logic output channels

on the ADwin. Channel c_srs_trig triggered a single sweep of a Stanford Research

Systems (SRS) DS345 function generator. The DS345 can be programmed to generate

arbitrary waveforms; in this case, we set the output to shape the two Ω pulses shown

in Figure 3.3. The pulse pair then provided the control input for a voltage-controlled

attenuator (VCA). A second channel, c_33_pump, controlled the RF input to the

VCA and thus regulated whether one or both of the pulses would drive the F = 3 →
F = 3′ AOM. Meanwhile, the λ1,2 pulse pair was generated by a pre-programmed

SRS DG535 pulse generator using the logical AND of its two pulse outputs. A single

sweep of the DG535 was triggered by the DS345 rather than directly by the ADwin

in order to avoid ∼ 25 ns jitter between the pulse pairs due to the DS345 clock
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rate. Two other ADwin channels controlled RF switches in the λ1,2 path: the first,

c_which_phase, determined which of two signal generators would provide the RF

source; both signal generators were set to the same frequency, but one (IFR 2023A)

had a fixed phase, while the phase of the other (Agilent E4422A) was variable. A

second switch, c_veto_on, performed the same function as c_33_pump, determining

whether none, one, or both of the pulses would be able to pass to the F = 3 → F = 4′

AOM.

3.4 Phase stability

Our first attempts to generate a fringe using both Ω1,2 and λ1,2 were not successful,

though the data suggested some underlying phase-dependent periodicity. We realized

that the Raman process underlying photon absorption and generation relied on the

relative phase of Ω(t), the F = 3 → F ′ = 3 lattice, and λ(t), the source of F =

3 → F ′ = 4 pulses along the cavity axis. While λ(t) was derived from the master

(probe) laser, Ω(t) was generated by the repump laser, which at the time had a

separate lock to the cesium saturated-absorption spectrum. Luckily, the electronic

phase lock that we had formerly used to synchronize the FORT and Raman lasers

had been decommissioned during the ground state cooling experiment in favor of a

quieter injection lock (Section 2.2.1). We resurrected it in order to set up a phase

lock between the master laser and the repump: auxiliary beams from both lasers

were combined on a fiber beamsplitter whose output was focused onto a 25 GHz

photodetector (New Focus 1417). In the same configuration used previously for the

Raman lock, the optical beat note from these two lasers was mixed down at ΔHF and

provided feedback signals for the repump laser’s diode current and piezo voltage.

The fringe measurement also depended on a stable, programmable phase relation-

ship θ between λ1 and λ2. The two signal generators for λ1 and λ2 (Figure 3.6) were

set to provide the same output frequency and were phase-referenced to one another

using a 10 MHz input/output. In order to confirm relative phase stability, we mon-

itored the outputs of the two sources (set to a fixed relative phase) over the course
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of two days on a fast oscilloscope and found the long-term phase drift to be between

0.02 and 0.05 radians/hour. The data shown in Figure 3.5 were acquired over the

course of about three hours, so we would expect drifts of < 0.15 rad ≈ 2 degrees

during this time frame.

A second verification of the phase stability was provided by an optical interfer-

ometer formed by the shifted (first-order) and unshifted (zeroth-order) beams at the

output of the F = 4 → F ′ = 3 AOM, driven by one of the two RF sources. We

generally use an iris to block all but the first-order beam, but with the iris opened,

the two beams could beat against one another when they were recombined after being

double-passed through the AOM. The beat note, at twice the RF input frequency,

was then observed to be phase-stable on an oscilloscope with respect to the second

RF source.

3.5 Remote programming capabilities

One important technical development for this experiment was the ability to program

electronic equipment remotely via serial commands sent from the ADwin. During the

ground-state cooling experiment, we had adjusted the Raman frequency detuning by

hand on an IFR (Aeroflex) 2023A signal generator. That process grew increasingly

time consuming, however, as our experiments became more complicated.

We now include ASCII strings as text in the code that controls our experiment.

For example, the instructions

0.0 ‘text = ":PHASe "’

0.0 inline ‘serial_partial_out (9)’

0.0 inline ‘lngtostr (10*(i-1), text)’

0.0 inline ‘serial_partial_out (9)’

0.0 inline ‘text = ‘" DEg"’

0.0 inline ‘serial_out (9)’
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tell the Agilent E4422B signal generator at time 0.0 to set the phase of its output

frequency to 10 ∗ (i − 1) degrees, where i is an integer between 1 and 18. (As the

RF signal drives a double-passed AOM, an RF phase shift of 180 ◦ is equivalent to an

optical phase shift of 360 ◦.) The subroutines serial_partial_out and serial_out

send the ASCII characters as TTL pulses on a specified ADwin channel (in this case,

channel 9), followed by either a carriage return or a line feed to signal the end of the

command. A home-built circuit based on a Texas Instruments MAX232N chip then

converts the TTL pulses to signals on an RS-232 serial cable. The serial cable can

be used either to drive devices directly (for example, the Aeroflex and Agilent signal

generators) or to drive GPIB-controlled devices such as the DG535. In the latter

case, we use an RS232-to-GPIB converter manufactured by National Instruments.

In the process of data acquisition, we run a loop which increments i on an atom-

by-atom basis. In addition to writing time-stamped photon counts to two channels

of the P7888 card, we write the value of i to a third channel. The data analysis

programs that David Boozer has written then separate the atoms into bins indexed

by the value of i.

Our first remote programming applications in the lab were automated frequency

sweeps (in order to record Raman spectra) and phase shifts (to observe the coherence

fringe in the current experiment). More recently, we have generated pulse trains of

variable lengths and delays in order to measure, for example, Rabi flops and Ramsey

fringes. We have also extended our frequency sweeps to the microwave domain, where

they enable us to search for narrow resonance features (Chapter 5).

3.6 Mapping single photons

We return now to consider the original plan to map cavity-generated photons back

onto a trapped atom. Figure 3.7 outlines a scheme that would allow us to realize this

in the laboratory. A photon exiting the cavity passes (with probability 1/2) through

a nonpolarizing beamsplitter cube (NPBS), a Faraday rotator, and a PBS into an

optical delay line, which would provide a necessary buffer for the experiment timing.
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cavity NPBS PBS

250m optical fiber

Faraday rotator

to SPCMs

Figure 3.7: Possible output path configuration in order to generate single photons on
demand, then map them back into the cavity

At the fiber output a few microseconds later, a half-waveplate rotates the photon

so that it reflects off the PBS and retraces its earlier path. A second pass through

the Faraday rotator corrects for the waveplate rotation, and the photon re-enters the

cavity in its original polarization state.

Half of all photons at the cavity output reflect off the NPBS, where they can be

detected by one or more SPCMs; this includes both photons generated within the

cavity and returning photons that are not absorbed. The initial step to characterize

photon reabsorption into the cavity would be to monitor returning reflected photons

at this port. As the timing of the adiabatic classical field Ω1 is adjusted so that it is

synchronous with the returning photons, we would expect to see a reflection dip. One

could then attempt to confirm photon reabsorption directly by generating a second

photon in the cavity, which would only occur if the first photon had transferred the

atom back to its initial hyperfine state.

It is important to acknowledge the inefficiency of this scheme, which is nevertheless

the most promising one we have found. Table 3.2 enumerates losses at each stage of

the proposed experiment after generation of an initial photon within the cavity mode,

which we assume occurs on every attempt. We see that detection of a second photon
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Propagation step Efficiency
cavity escape (mirror losses) 0.6
symmetric cavity 0.5
NPBS 0.5
Faraday rotator 0.93
free space propagation (filters) 0.66
single-mode fiber coupling 0.7
propagation through 250 m single-mode fiber 0.75
polarization drift in fiber 0.98
Faraday rotator, second pass 0.89
(includes polarization error)
NPBS 0.5
after reflection from cavity, NPBS 0.5
free space propagation (filters) 0.66
single-mode fiber coupling 0.7
SPCM quantum efficiency 0.5
probability to detect reflected photons 0.0024

cavity entrance (mirror losses) 0.6
symmetric cavity 0.5
cavity escape (mirror losses) 0.6
probability to detect a second photon 0.0004

Table 3.2: Path efficiencies in mapping a photon back into the cavity. We consider
detection via both reflection from the cavity (in the absence of a synchronous classical
mapping field) and generation of a second photon upon successful mapping.

would be roughly 100 times less efficient than single photon generation. It would

thus be a challenge to optimize various parameters of the experiment (for example,

timing of Ω1) based on detection efficiency. In future cavity systems, of course, the

possible changes mentioned in Section 3.1 — namely, the use of a single-sided cavity

with reduced scattering and absorption losses — would improve the efficiency with

every pass in or out of the cavity.

Other prospects include mapping cavity-generated photons onto the ensemble of

cesium atoms in the lab 2 experiment, thus generating entanglement between the hy-

perfine states of our trapped atom and the atomic ensemble. In this case, however, we

would prefer to have the atom’s hyperfine states entangled with photon polarization

states rather than the Fock states (|0〉, |1〉), as polarization states are more robust

to path losses. Schemes for cavity-QED generation of polarization-entangled photons
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[4, 82, 83] require the ability to prepare the atom in a specific Zeeman sublevel, some-

thing that has been a challenge for us in the past. Chapter 4 describes our recent

progress in Zeeman state preparation of single atoms, while Chapter 5 discusses our

subsequent characterization of Raman transitions between Zeeman levels, including

steps toward polarization entanglement.


