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In the present work, we have characterized in detail the chemical structures of secondary organic aerosol
(SOA) components that were generated in a smog chamber and result from the photooxidation of
isoprene under high-NOx conditions typical for a polluted atmosphere. Isoprene high-NOx SOA contains
2-methylglyceric acid (2-MG) and oligoester derivatives thereof. Trimethylsilylation, in combination with
capillary gas chromatography (GC)/ion trap mass spectrometry (MS) and detailed interpretation of the MS
data, allowed structural characterization the polar oxygenated compounds present in isoprene SOA up to
2-MG trimers. GC separation was achieved between 2-MG linear and branched dimers or trimers, as well as
between the 2-MG linear dimer and isomeric mono-acetate derivatives thereof. The electron ionization (EI)
spectra of the trimethylsilyl derivatives contain a wealth of structural information, including information
about the molecular weight (MW), oligoester linkages, terminal carboxylic and hydroxymethyl groups,
and esterification sites. Only part of this information can be achieved with a soft ionization technique such
as electrospray (ESI) in combination with collision-induced dissociation (CID). The methane chemical
ionization (CI) data were used to obtain supporting MW information. Interesting EI spectral differences
were observed between the trimethylsilyl derivatives of 2-MG linear and branched dimers or trimers and
between 2-MG linear dimer mono-acetate isomers. Copyright  2006 John Wiley & Sons, Ltd.

KEYWORDS: isoprene; 2-methylglyceric acid; oligomers; secondary organic aerosol; trimethylsilylation; gas
chromatography/mass spectrometry; oligoesters

INTRODUCTION

Isoprene (2-methyl-1,3-butadiene, C5H8) is a volatile organic
compound (VOC) that is emitted in large amounts by
terrestrial vegetation, estimated at about 500 Tg/year
worldwide.1 In the past, isoprene was assumed not to
contribute significantly to secondary organic aerosol (SOA)
formation because of the high volatility of its first-generation
oxidation products (i.e. methacrolein, methyl vinyl ketone
and formaldehyde).2 However, during the past 3 years
evidence from both field3 – 7 and laboratory4,8 – 13 studies
has been obtained that isoprene is photooxidized to polar
oxygenated products which are present in the aerosol phase.
The aerosol yields from photooxidation of isoprene are rather

ŁCorrespondence to: Magda Claeys, Department of Pharmaceutical
Sciences, University of Antwerp (Campus Drie Eiken),
Universiteitsplein 1, BE-2610 Antwerp, Belgium.
E-mail: magda.claeys@ua.ac.be

low (maximum about 3%);11,12 a recent modeling study,
however, shows that this aerosol source is quite significant
on a global scale.14 Knowledge of the detailed chemical
structures of isoprene oxidation products is required in order
to gain insights into the underlying photochemical oxidation
mechanisms of isoprene, which so far are only partially
understood.

In a recent work,10 we characterized the chemical struc-
tures of SOA components that were produced in a smog
chamber from photooxidation of isoprene under both high-
and low-NOx conditions. A combination of several mass
spectrometric techniques was used, including electrospray
ionization (ESI), matrix-assisted laser desorption ionization
(MALDI), aerosol mass spectrometry (MS), and derivatiza-
tion gas chromatography (GC). It was shown in that study
that isoprene high-NOx SOA contains 2-methylglyceric acid
(2-MG), formed by further photooxidation of methacrolein, a
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first-generation oxidation product of isoprene, and oligoester
derivatives of 2-MG.

Soft ionization techniques such as ESI and MALDI
are widely used currently in the analysis of oligomers
and polymers, including oligomeric substances formed
by photooxidation of biogenic and anthropogenic hydro-
carbons such as isoprene,13 ˛-pinene,15 – 18 cycloalkenes16

and trimethylbenzene.19 Combination of these techniques
with collision-induced dissociation (CID) and tandem MS
techniques generally only partially provide the structural
information that is needed for elucidation of unknown multi-
functional compounds. In the case of the oligomeric isoprene
SOA compounds studied here, partial structural information
was obtained by (�/C)ESI-ion trap MS and by upfront CID
mode of analysis on a LC/ESI-MS instrument.10 The major
fragmentation observed for 2-MG oligomers was loss of 102
Da 2-MG residue(s), likely corresponding to 2-hydroxy-2-
methylpropiolactone and formed through a nucleophilic
reaction directed by the negative charge on the termi-
nal ionized carboxylic acid function. In the present study,
we demonstrate that additional structural information can
be achieved on oligomeric isoprene SOA compounds by
trimethylsilylation in combination with GC/ion trap MS
and detailed interpretation of the electron ionization (EI)
spectra.

A derivatization protocol based on methylation of car-
boxylic acid functions prior to trimethylsilylation of neutral
hydroxyl groups has been successfully applied in a previ-
ous work20 to the analysis of polar oxygenated compounds
present in organic aerosol. In the present work, preference
was given to a one-step trimethylsilylation procedure that
converts neutral and acidic hydroxyl functions to trimethylsi-
lyl (TMS) ether or ester functions and allows the analysis of
polar multifunctional compounds in the EI and/or chemical
ionization (CI) mode. The EI mass spectra of trimethylsily-
lated compounds generally contain a wealth of structural
information but often provide insufficient molecular weight
(MW) information.6,20,21 The latter shortcoming can however
be overcome by recording spectra in the CI mode. In the EI
mode, information can be obtained on functional groups and
their locations owing to the fragmentation-directing effect of
ionized trimethylsilylated hydroxyl groups. Rearrangement
reactions of the trimethylsilyl group may occur, rendering
EI mass spectra quite complex and difficult to interpret, but
have the merit that they can yield structurally characteristic
ions.

The isoprene high-NOx SOA examined in the present
study contains 2-MG, 2-MG dimers, 2-MG dimer mono-
acetate derivatives, and 2-MG trimers. We will first discuss
the EI fragmentation behaviors of the 2-MG monomer and
its oligomeric derivatives. In addition, we will examine the
fragmentation behaviors of the ethyl ester derivatives that
are formed by subjecting isoprene high-NOx SOA to acidic
hydrolysis in ethanol. Part of this work has been briefly
presented in our previous study dealing with the overall
chemical composition and mechanism of SOA formed from
the photooxidation of isoprene under low- and high-NOx

conditions.10

EXPERIMENTAL

Aerosol samples and workup
SOA was generated from isoprene (500 ppb) in Caltech’s
indoor 28 m3 Teflon chambers using hydrogen peroxide as
the OH radical precursor and 800 ppb NO; the oxidation
reaction was initiated by UV irradiation,11,12 and the SOA was
collected on Teflon filters. Full details about SOA generation
from isoprene are given in our previous study.10 The SOA
sample used in the present study was from a high-NOx

isoprene nucleation (seed-free) experiment (Experiment 5). 2-
MG and a branched and linear dimer thereof were prepared
by reacting methacrylic acid (250 µl; purity, 99%; Sigma,
St. Louis, MI, USA) with hydrogen peroxide (250 µl; 50%
aqueous solution) in the presence of formic acid (125 µl)
for ten days at room temperature, following a procedure
adapted from a previously reported one.4 The yield of 2-
MG, as determined by trimethylsilylation GC with flame
ionization detection and using glyceric acid (Sigma) as an
internal recovery standard, was 222 mg; the 2-MG linear and
branched dimer were produced in small yield (combined
yield estimated at about 3.3 mg assuming a similar EI
response as 2-MG), and the ratio branched/linear 2-MG
dimer was 1 : 10.

The sample workup of the isoprene SOA sample
consisted of extraction of the filter with methanol
under ultrasonic agitation and derivatization. The
extract was divided into two parts; one part was
trimethylsilylated, while the other part was subjected to
a hydrolysis/ethylation procedure. For analysis of the
methacrylic acid reaction products, 2 µl of the 30 times
diluted reaction mixture (with methanol) was dried and
trimethylsilylated. Trimethylsilylation was performed by
reacting the extract residue with 40 µl of a mixture containing
1 ml N-methyl-N-trimethylsilyltrifluoroacetamide (C1%
trimethylchlorosilane) (Pierce, Rockford, IL, USA) and 500 µl
of dry pyridine (Merck) for an hour at 70 °C. The reagent
employed for deuterium labeling of the TMS methyl groups,
N,O-bis(trimethyl-2H9-silyl)acetamide, was obtained from
Cambridge Isotope Laboratories (Andover, MA, USA). The
hydrolysis/ethylation procedure involved reaction of the
extract residue with 40 µl of analytical-grade ethanol and 8 µl
of trimethylchlorosilane (Supelco, Bellafonte, PA, USA) for
1 h at 60 °C. Aliquots of 1 µl were used for GC/MS analysis
and were injected in the splitless mode.

GC/ion trap MS
GC/MS analyses were performed with a system comprising
a TRACE GC2000 gas chromatograph, which was coupled
to a Polaris Q ion trap mass spectrometer equipped with
an external ionization source (ThermoElectron, San Jose,
CA, USA). A Heliflex AT-5MS fused-silica capillary column
(5% phenyl, 95% methylpolysiloxane, 0.25 µm film thickness,
30 m ð 0.25 mm i.d.) preceded by a deactivated fused-silica
precolumn (2 m ð 0.25 mm i.d.) (Alltech, Deerfield, IL, USA)
was used to separate the derivatized extracts. Helium was
used as the carrier gas at a flow rate of 1.2 ml/min. The
temperature program was as follows: isothermal hold at
50 °C for 5 min, temperature ramp of 3 °C/min up to 200 °C,
isothermal hold at 200 °C for 2 min, temperature ramp of
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30 °C/min up to 310 °C; and isothermal hold at 310 °C for
2 min. The analyses were performed in the full-scan mode
(mass range: m/z 50–800), and were first carried out in the EI
mode and subsequently in the CI mode. The ion source was
operated at an electron energy of 70 eV and temperatures of
200 °C and 140 °C in the EI and CI modes, respectively. The
temperatures of the GC injector and the GC/MS transfer line
were 250 °C and 280 °C, respectively. For CI, methane was
introduced as the reagent gas at a flow rate of 1.8 ml/min.
We present here mainly data collected in the EI mode; data
collected in the CI mode was used to obtain supporting MW
information.

For CID experiments, the ions of interest were activated
by applying a percentage of a 5-V supplementary a.c.
potential to the end-caps of the ion trap at the resonance
frequency of the selected ion [referred to as collision
energy level (CEL)]. The CEL was 16%, while the excitation
time was 15 ms. Helium was introduced as damping
and collision gas at a flow rate of 1.1 ml/min. In some
cases, MS/MS experiments were performed on several
mass-selected precursor ions sequentially during the same
chromatographic run. For this purpose, the width of the
isolation waveform at which the ion trap separation of the
precursor ions turned out to be the best was determined;
the optimized value ranged between 3.5 and 5 a.m.u. For
each precursor ion, the excitation time was 12 ms.

RESULTS AND DISCUSSION

Figure 1 shows a GC/MS total ion current chromatogram
(TIC) obtained for SOA produced from the photooxida-
tion of isoprene under high-NOx conditions. Compound 1
was identified as the dihydroxymonocarboxylic acid, 2-MG
(where 2-methylglyceric acid is its common name), which has
retained part of the isoprene skeleton. This compound was
reported for the first time in rural PM2.5 aerosol collected at
K-puszta, Hungary, during a 2003 summer field campaign,4

and has since been reported in several field studies.5,7,8 In
addition, it was shown in smog chamber studies that 2-
MG is formed by photooxidation of isoprene8 and, more
specifically, by further oxidation of methacrolein, which is a
first-generation photooxidation product of isoprene.10 Com-
pound 2a was characterized in our previous laboratory study
as a linear oligoester dimer of 2-MG (denoted as 2-MG lin-
ear dimer), using a combination of several MS techniques,
including ESI-MS, MALDI-MS, aerosol-MS, and trimethylsi-
lylation GC/MS.10 In the present work, we discuss the EI
behavior of the TMS derivative of the 2-MG linear dimer
in more detail and compare it with that of the branched
dimer (2b), which is not formed during photooxidation of
isoprene under high-NOx conditions (and therefore is not
shown in Fig. 1) but which together with the 2-MG linear
dimer is produced as a minor reaction product during the
acid-catalyzed oxidation of methacrylic acid with hydrogen
peroxide. The 2-MG branched dimer was found to elute at
an earlier retention time (RT D 50.37 min) compared to the
linear dimer (RT D 51.59 min) (GC/MS TIC not shown). No
conclusions can be drawn about the relative amounts of 2-MG
and its oligoester derivatives in the samples since it is pos-
sible that 2-MG oligoester derivatives are partially degraded
owing to hydrolysis during the trimethylsilylation procedure
which uses an acidic catalyst (i.e. trimethylchlorosilane).
Figure 2 shows the m/z 219 mass chromatogram obtained
after subjecting the isoprene high-NOx SOA extract to acidic
hydrolysis in ethanol, an experiment that was performed to
obtain evidence for ester linkages in the 2-MG oligomers.
Compounds identified are the ethyl ester derivatives of 2-
MG (1-Et), a branched (2b-Et) and linear 2-MG dimer (2a-Et),
and a branched (3b-Et) and linear 2-MG trimer (3a-Et). In a
following section, we will first discuss in detail the rather
complex fragmentation behavior of the TMS derivatives of
2-MG (1) and its ethyl derivative (1-Et) and will limit the
discussion to diagnostic ions with m/z values >140. In sub-
sequent sections, we will then use this information to derive

Figure 1. GC/MS TIC obtained for a trimethylsilylated extract of isoprene high-NOx SOA. Peak identifications: 1, 2-MG; 2a, 2-MG
linear dimer; 2a-Ac1 and 2a-Ac2, 2-MG linear dimer mono-acetates; 3a, 2-MG linear trimer; 3b, 2-MG branched trimer. The peak
eluting at 36.10 min is not discussed in the present work; it was found to correspond to an oxidation product of isoprene but not to
be related to 2-MG, and was tentatively identified as 2-hydroxymethyl-3-ketopropanoic acid. Other peaks not marked were also
found in a control filter and were identified as fatty acids and monoglycerides thereof. Reprinted from J. Phys. Chem. A, 110, Surratt
JD et al., Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene, 9665, Copyright (2006),
with permission from American Chemical Society.
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Figure 2. GC/MS extracted ion chromatogram (m/z 219) obtained for an extract of isoprene high-NOx SOA subjected to a
hydrolysis/ethylation procedure prior to trimethylsilylation. Reprinted from J. Phys. Chem. A, 110, Surratt JD et al., Chemical
composition of secondary organic aerosol formed from the photooxidation of isoprene, 9665, Copyright (2006), with permission
from American Chemical Society.

Figure 3. EI mass spectra for the TMS derivatives of (a) 2-MG (1) and (b) its ethyl ester derivative (1-Et). Part (a) reprinted from J.
Phys. Chem. A, 110, Surratt JD et al., Chemical composition of secondary organic aerosol formed from the photooxidation of
isoprene, 9665, Copyright (2006), with permission from American Chemical Society.

structural information for 2-MG dimers (2a,b), 2-MG trimers
(3a,b), the ethyl derivatives of 2-MG dimers (2a,b-Et), as
well as mono-acetate derivatives of the 2-MG linear dimer
(2a-Ac1,2). In order to support fragmentation pathways, ion
trap MS/MS experiments were used; only in the case of the
2-MG monomer was deuterium labeling of the TMS groups
carried out.

Fragmentation behavior of 2-methylglyceric acid
and its ethyl ester derivative
Figure 3 shows the EI mass spectra of the TMS derivatives
of (a) 2-MG (1) and (b) its ethyl ester derivative (1-Et).
The fragmentation pathways of the TMS derivative of 2-
MG are summarized in Schemes 1 and 2; all pathways
supported by an MS2 ion trap experiment are indicated

Copyright  2006 John Wiley & Sons, Ltd. J. Mass Spectrom. 2007; 42: 101–116
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Isoprene oligomers in smog chamber aerosol 105

Figure 4. MS2 ion trap spectra for selected ions of the TMS derivative of 2-MG: (a) m/z 321, (b) m/z 219 and (c) m/z 293.

with an asterisk, while mass shifts obtained by introducing a
deuterium labeled TMS group are given in parentheses. The
molecular ion (MCž; m/z 336) of the TMS derivative of 2-MG
is very weak, as is generally the case for TMS derivatives
of compounds containing multiple hydroxyl groups.6,21 The
molecular ion region has a signature that is characteristic
of a trimethylsilylated carboxylic acid, i.e. the [M � CH3]C

ion (m/z 321) and the [M � �CH3 C CO�]C ion (m/z 293).
Proof that m/z 321 is the precursor of m/z 293 was obtained
through an MS2 ion trap experiment on m/z 321 (Fig. 4(a)).
Besides the MCž ion, other useful ions for inferring the MW

(336) are the [M � CH3]C ion (m/z 321) and the [M C TMS]C

ion (m/z 409). In addition, the molecular ion region contains
a [M � CH2O]Cž ion (m/z 306), which is indicative of a
terminal trimethylsilylated hydroxymethyl function and can
be explained via a rearrangement reaction of a TMS group
to the ionized ester function as outlined in Scheme 3.

The ion at m/z 219 is the base peak in the mass
spectrum and can be explained by a homolytic ˛-cleavage
(Scheme 2). Fragmentation of m/z 219 (Fig. 4(b)) yields
the specific signature that was previously reported for
the m/z 219 ion of trimethylsilylated 2-methyltetrols,21

Copyright  2006 John Wiley & Sons, Ltd. J. Mass Spectrom. 2007; 42: 101–116
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Scheme 1. Main fragmentation pathways for the TMS derivative of 2-methylglyceric acid. All pathways supported by an MS2 ion trap
experiment are indicated with an asterisk.

Scheme 2. Proposed pathways for m/z 233 and 219 formed from the TMS derivative of 2-MG and pathways for formation of m/z 219.

Scheme 3. Postulated gas-phase rearrangement process for the TMS derivative of 2-MG resulting in a resonance-stabilized m/z
306 ion.

Copyright  2006 John Wiley & Sons, Ltd. J. Mass Spectrom. 2007; 42: 101–116
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Scheme 4. Hydrogenation reaction of m/z 147 occurring in the ion trap resulting in m/z 149 and 133.

Figure 5. EI mass spectra of the TMS derivatives (a) 2-MG linear dimer (2a), (b) 2-MG branched dimer (2b), and (c) 2-MG linear dimer
ethyl ester (2a-Et). Part (a) reprinted from J. Phys. Chem. A, 110, Surratt JD et al., Chemical composition of secondary organic
aerosol formed from the photooxidation of isoprene, 9665, Copyright (2006), with permission from American Chemical Society.
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and is therefore consistent with a trimethylsilylated 1,2-
dihydroxy-2-methylethyl group in the molecule. The m/z
203 ion can be explained by loss of TMSOH from m/z 293
(Scheme 1; Fig. 4(c)), while the m/z 147 ion corresponding
to �CH3�2Si D OC � TMS is due to interaction between two
TMSO groups22 and indicates that the molecule contains at
least two TMSO groups. The m/z 147 ion is accompanied
by a m/z 149 ion which was shown to be formed from the
m/z 147 ion, and is explained by addition of hydrogen in the
ion trap, and fragments to m/z 133 through loss of methane
(Scheme 4).

Comparison of the spectra of the TMS derivatives of
2-MG (Fig. 3(a)) and its ethyl ester (Fig. 3(b)) shows that
ethylation results in the expected mass shifts but has little
effect on the fragmentation pathways. MW information is
provided by the MCž ion (m/z 292), the [M � CH3]C ion (m/z
277), and the [M C TMS]C ion (m/z 365). It is worth noting
that the higher m/z region contains additional adduct ions at
m/z 439 [M C 147]C and m/z 469 [M C 177]C. Of these ions,
m/z 439 can be explained by adduct formation of the 2-MG
ethyl ester molecule with m/z 147, which is an abundant ion
in the spectrum. The formation of m/z 177 likely involves the
further addition of formaldehyde (30 Da), which is generated
in the formation of m/z 262 [M � CH2O]C. The latter
ion supports a terminal trimethylsilylated hydroxymethyl
function, while the base peak at m/z 219 is consistent with a
trimethylsilylated 1,2-dihydroxy-2-methylethyl group.21

Fragmentation behavior of 2-MG dimers and their
ethyl ester derivatives
Figure 5 shows the EI mass spectra of the TMS derivatives of
(a) the linear (2a) and (b) branched dimer of 2-MG (2b) and

(c) the ethyl ester derivative of the 2-MG linear dimer (2a-Et).
Examination of the m/z range 450–600 provides information
about the MW. In the case of the 2-MG linear dimer (Fig. 5(a);
MW 510), these ions include m/z 583 [M C TMS]C, m/z 495
[M � CH3]C, and m/z 467 [M � �CH3 C CO�]C. The latter ion
supports the presence of a terminal COOTMS group in the
molecule as has been discussed above for 2-MG (Scheme 1).
In the case of the 2-MG linear dimer ethyl ester (Fig. 5(c)),
the MW (466) is supported by m/z 539 [M C TMS]C and m/z
451 [M � CH3]C. The ion at m/z 393 detected for both of the
2-MG linear and branched dimers and their ethyl esters can
be readily explained by a homolytic ˛-cleavage reaction as
depicted in Scheme 5.

The mass spectra of the TMS derivatives of the 2-MG
linear dimer as well as of its ethyl ester display an abundant
[M � CH2O]Cž ion (m/z 480 and m/z 436, respectively),
which is consistent with a terminal trimethylsilylated
hydroxymethyl function as has been discussed above for
the 2-MG monomer (Scheme 2). Subsequent elimination of a
neutral (130 Da) through a rearrangement of a TMS group
leads to m/z 306, an ion that is also observed for the 2-
MG monomer (Fig. 3(a)) and is stabilized by resonance
(Scheme 6).

Comparison of the EI spectrum of the TMS derivative of
the 2-MG linear dimer (Fig. 5(a)) with that of the branched
dimer (Fig. 5(b)) reveals some interesting differences. It can
be seen that the [M � CH2O]Cž ion (m/z 480) is absent
in the case of the 2-MG branched dimer. However, it is
noted that a m/z 306 ion is also present in the 2-MG
branched dimer, suggesting that the internal TMS group
rearrangement (shown for 2a in Scheme 6) occurs prior to

Scheme 5. Formation of the m/z 393 characteristic of the 2-MG linear and branched dimers and their ethyl esters via a homolytic
˛-cleavage reaction.

Scheme 6. Plausible mechanisms for the formation of m/z 436 and 306 from the TMS derivative of 2-MG linear dimer ethyl ester.
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Isoprene oligomers in smog chamber aerosol 109

CH2O loss. Furthermore, it can be seen that there is an
additional ion at m/z 377 in the latter case, which corresponds
to [M � �CH3 C CO C TMSOH�]C. An MS/MS experiment
confirmed that m/z 467 is the precursor for m/z 377; a possible
explanation is a favorable 1,3-elimination of TMSOH in the
branched carboxylic acid-containing 2-MG residue.

Figure 6 shows the m/z 393 product ion spectra for the
two isomeric 2-MG dimers. Interesting differences can be
noted, with m/z 247 being most abundant in the branched
case; this information will be used in the following section
to establish an esterification site in the 2-MG branched

trimer. In the case of the 2-MG branched dimer, m/z 247
can be readily formulated through a charge-directed loss of
trimethylsilylated hydroxyacetone (Scheme 5).

Other structurally informative ions in the EI spectra of
the TMS derivatives of the 2-MG linear and branched dimers
worth discussing are m/z 247 and 321. The m/z 247 ion is
explained by an ˛-cleavage relative to the ester C D O bond
(Scheme 7) but can also be formed by other pathways (e.g.
from m/z 393; Scheme 5) and is characteristic for the presence
of an ester linkage in the molecule. The ion at m/z 247
fragments further to m/z 231, 219, 203, and 157, as confirmed

Figure 6. MS2 ion trap spectra for m/z 393 of the TMS derivative of (a) the 2-MG linear dimer, (b) the 2-MG branched dimer and
(c) the 2-MG branched trimer.

Copyright  2006 John Wiley & Sons, Ltd. J. Mass Spectrom. 2007; 42: 101–116
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Figure 7. MS2 ion trap spectra for selected ions of the TMS derivative of the 2-MG linear dimer: (a) m/z 247 and (b) m/z 219.

Scheme 7. A plausible formation mechanism for m/z 247 and its further fragmentation as confirmed by MS2 ion trap experiments.

by MS2 experiments (Fig. 7(a); Scheme 7). The MS2 ion trap
spectrum of m/z 219 (Fig. 7(b)) unambiguously proves that
its structure is consistent with a trimethylsilylated 1,2-
dihydroxy-2-methylethyl group,21 which has already been
discussed above in the case of 2-MG and its ethyl ester
derivative.

Fragmentation behavior of 2-MG trimers and their
ethyl esters
Figure 8(a) and (b) shows the EI mass spectra of the TMS
derivatives of the two isomeric trimers of 2-MG that were
detected in the GC/MS TIC of high-NOx isoprene SOA
(Fig. 1). Since both spectra display the same set of ions

Copyright  2006 John Wiley & Sons, Ltd. J. Mass Spectrom. 2007; 42: 101–116
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Figure 8. EI mass spectra of the TMS derivatives of 2-MG (a) linear (3a) and (b) branched trimer (3b).

differing only in terms of their relative abundances, one can
conclude that they represent isomeric compounds. The most
abundant compound which elutes at the latest retention
time (RT D 60.31 min) is attributed to the linear trimer (3a),
while the other one (RT D 60.01 min) is attributed to a
branched trimer (3b), given that under the GC conditions
employing a nonpolar stationary phase, branched isomers,
which have a more compact structure than their linear forms,
elute at an earlier retention time. As will be discussed below,
evidence for a branched internal 2-MG residue was obtained.
However, we have no evidence for the esterification site in
the terminal carboxylic acid-containing 2-MG residue and
assume that after dimer formation, esterification proceeds
by reaction with a terminal hydroxymethyl group of a 2-MG
molecule, thus resulting in a linear form, since the formation
of linear forms is sterically less hindered.

As in the case of the 2-MG dimers, examination of the high
m/z range enables us to infer the MW (684). Both isomers
reveal a very weak [M C TMS]C adduct ion (m/z 757) as
well as [M � CH3]C ion (m/z 669) and [M � �CH3 C CO�]C

ions (m/z 641). The latter ion also supports a terminal
carboxyl group in the underivatized molecules. It can be
seen that the abundance of the [M � CH2O]Cž ion (m/z 654)
is strikingly different and is more abundant for the linear

system compared to the branched one. The same observation
was made for the [M � CH2O]Cž ion (m/z 610) in the mass
spectra of the 2-MG dimers and the ethyl derivatives of
2-MG trimers (results not shown). A possible explanation
for this phenomenon is given in Scheme 8. A TMS group
transfer may not only proceed from the terminal TMSOCH2

group but also from an internal TMSOCH2 group, involve
different geometries of the transition state, and take place
at a different rate. The interaction between the terminal
TMSOCH2 group and a neighboring ester function involves
a 6-centered transition state, while that between the internal
TMSOCH2 group of the branched isomer and a neighboring
ester function involves a 7-centered state which is less
favorable but may be formed faster.

The m/z 393 ion can be explained by an ˛-cleavage
directed by the ionized internal TMSO group of the inner
2-MG residue. Figure 6(c) shows that the m/z 393 product
ion profile of the branched trimer is very similar to that of
the branched dimer (Fig. 6(b)), suggesting that the branched
2-MG trimer contains an inner branched 2-MG residue. In the
following discussion, attention will be given to structurally
informative ions, which were not present in the case of
the 2-MG dimers. Both the linear and branched 2-MG
trimer reveal an ion at m/z 495 which can be explained
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Scheme 8. Differences in the geometry of the transition state providing a rational explanation for the more favorable loss of
formaldehyde from the MCž ion of the TMS derivative of the 2-MG linear trimer compared to that of the branched form.

Scheme 9. Formation of m/z 495 in the case of the TMS derivative of the 2-MG linear trimer. The same mechanism can be proposed
for the 2-MG branched trimer.

Scheme 10. Pathway leading to m/z 409 in the TMS derivative of the 2-MG linear trimer.

from the [M � CH3]C ion by loss of a neutral (174 Da)
from the terminal 2-MG residue through a rearrangement
of a TMS group (Scheme 9). In addition, ions are present,
which are isomer-specific. In the case of the 2-MG linear
trimer, an ion can be seen at m/z 409, while the 2-MG
branched trimer reveals an ion at m/z 596. The m/z 409
ion can be generated from the [M C TMS]C adduct ion by
an internal rearrangement of a TMS group resulting in the
[2-MG C TMS]C adduct ion (Scheme 10). The m/z 596 ion
characteristic of the 2-MG branched trimer is believed to
result from a favorable interaction in the MCž ion between
the trimethylsilylated hydroxymethyl group of the branched
unit and a trimethylsilylated hydroxyl group, leading to loss
of �CH3�4Si (88 Da).

Fragmentation behavior of 2-MG linear dimer
mono-acetate derivatives
The two small peaks in the GC/MS TIC of high-NOx isoprene
SOA (Fig. 1) eluting just after the 2-MG linear dimer (2a) were

identified as isomeric 2-MG linear dimer mono-acetates (2a-
Ac1,2). These products were already partially characterized
in our previous study using (�) ESI-MS, and are formed by
esterification between the 2-MG linear dimer and acetic acid,
which is also generated from isoprene in the smog chamber
under high-NOx conditions.10 As will be discussed below, a
more complete characterization of the isomeric 2-MG linear
dimer mono-acetates was possible by detailed interpretation
of the EI mass spectral data. The EI spectra of the TMS deriva-
tives of the isomeric 2-MG linear dimer mono-acetates are
shown in Fig. 9. The peak eluting at a RT of 52.3 min was char-
acterized as the isomer containing an internal acetate group
(2a-Ac1), while the peak at a RT of 52.6 min was attributed to
the isomer containing a terminal acetate group (2a-Ac2). The
partial splitting noted in the latter chromatographic peak can
be explained by diastereoisomerism.

Examination of the high m/z range enables us to infer
the MW (480); the EI spectra of the TMS derivatives of both
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Figure 9. EI mass spectra of the TMS derivatives of 2-MG linear dimer mono-acetates bearing the acetate group at (a) the terminal
hydroxymethyl group (2a-Ac1) and (b) an internal hydroxyl group (2a-Ac2). Insets: CI (methane) data.

Scheme 11. Mechanisms proposed for the formation of m/z 450, 408, and 291 present in the EI spectrum of the TMS derivative of
the 2-MG dimer mono-acetate isomer eluting at RT 52.3 min (2a-Ac1).

2-MG linear dimer mono-acetates show [M � CH3]C (m/z
465) and [M � �CH3 C CO�]C ions (m/z 437). Supporting
MW information was derived from the CI (methane)

spectra (insets in Fig. 9), which reveal [M C H]C (m/z
481), [M C C2H5]C (m/z 509), and [M C C3H7]C (m/z 523)
ions as well as [MH � CH4]C ions (m/z 465). It can be
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Scheme 12. Possible formation pathways for m/z 291 in the TMS derivatives of both 2-MG dimer mono-acetate isomers through
charge-remote fragmentation reactions.

Scheme 13. Mechanism proposed for the formation of m/z 420, an ion characteristic of the TMS derivative of the 2-MG dimer
mono-acetate bearing an acetyl group at the terminal hydroxymethyl group of the non-carboxylic acid-containing 2-MG residue
(2a-Ac2). Parts of the molecule engaged in the elimination process are circled.

Scheme 14. Mechanisms proposed for formation of m/z 363, 217, 189, 157, and 131 in the TMS derivative of an 2-MG linear dimer
mono-acetate (2a-Ac2). The same mechanisms hold for the isomer 2a-Ac1.

seen that the spectrum of the first-eluting isomer (2a-
Ac1) contains an ion at m/z 450, corresponding to the
[M � CH2O]Cž ion formed through a rearrangement of a TMS
group (Scheme 11). This ion firmly supports the presence
of a terminal trimethylsilylated hydroxymethyl group in
the non-carboxylic acid-containing 2-MG residue and is
consistent with a nonbranched carboxylic acid-containing

2-MG residue. Following the loss of formaldehyde, m/z
450 fragments by loss of ketene (42 Da) from the acetate
group, resulting in m/z 408. Further fragmentation of m/z
408 through loss of a TMSO(CO)ž radical leads to m/z 291.
It can be seen that m/z 291 is also present in the case of
the 2-MG dimer mono-acetate isomer eluting at a RT of
52.6 min (2a-Ac2); an alternative explanation for m/z 291
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in both 2-MG dimer mono-acetate isomers through charge-
remote rearrangement reactions involving neutral loss of
both ketene (42 Da) and formaldehyde (30 Da) is outlined in
Scheme 12.

The EI spectrum of the compound corresponding to
the 2-MG dimer mono-acetate isomer eluting at a RT of
52.6 min (2a-Ac2) (Fig. 9(b)) shows a unique ion at m/z 420,
which is explained by loss of acetic acid from the MCž

ion (Scheme 13). This favorable elimination of acetic acid
involves a hydrogen at a 3-position relative to the acetate
group23 and does not occur in the other isomer (RT 52.3 min)
in which only hydrogen atoms at the 2-position are available.

Ions present in the spectra of the TMS derivatives
of both isomeric 2-MG linear dimer mono-acetates worth
discussing are m/z 363, 217, 189, 157, and 131. Their formation
mechanisms are given in Scheme 14. The formation of m/z
217 and 189 in both isomers is consistent with the presence
of an acetate group in the non-carboxylic acid-containing
2-MG residue. As expected, m/z 157 is more prominent in
the case of the 2-MG dimer mono-acetate bearing an acetyl
group at the terminal hydroxymethyl group because of the
favorable 1,3-elimination of acetic acid. On the other hand,
the formation of m/z 131 due to loss of acetone from m/z 189
seems to be a favored pathway in the case of the 2-MG dimer
mono-acetate bearing an internal acetyl group.

CONCLUSIONS

Detailed interpretation of the EI mass spectral data of
the TMS derivatives of 2-MG and oligoester derivatives
thereof allows one to obtain key structural features of
the molecules and as such to elucidate their chemical
structures and differentiate isomeric compounds. The m/z
219 ion containing the trimethylsilylated 1,2-dihydroxy-2-
methylethyl group is a characteristic ion of 2-MG and its
oligomers. Evidence for an ester function in the 2-MG dimers
and trimers is indicated by the m/z 247 ion formed by an
˛-cleavage in the ester group linking the non-carboxylic
acid-containing 2-MG residue to the remaining part of the
molecules. In addition, evidence for an inner branched 2-
MG residue in the case of the 2-MG branched trimer was
obtained, while the 2-MG linear and branched dimers could
be readily differentiated. Characteristic ions of the terminal
carboxyl group are the [M � CH3]C and [M � �CH3 C CO�]C

ions, while the terminal hydroxymethyl group was found to
give rise to a [M � CH2O]Cž ion in linear 2-MG oligomers.
Furthermore, it was possible to differentiate isomeric mono-
acetates of the 2-MG linear dimer containing an acetyl group
in the non-carboxylic acid-containing 2-MG residue and
locate the position of the acetyl group. We can conclude
that the EI spectra of the TMS derivatives contain a wealth
of structural information, including information about the
MW, ester linkages, terminal carboxylic and hydroxymethyl
groups, and esterification sites.
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