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Abstract 

Atmospheric oxidation of volatile organic compounds leads to the formation of 

secondary organic aerosol (SOA). Laboratory chambers provide a controlled environment 

for investigating aerosol formation and evolution. This thesis presents results on aerosol 

formation from a wide range of parent organic compounds under a variety of 

experimental conditions. 

The effect of particle-phase acidity on aerosol formation is explored in a series of 

alkene ozonolysis experiments. Oligomeric species are detected regardless of the particle-

phase acidity, indicating the ubiquitous existence of particle-phase reactions. As acidity 

increases, larger oligomers are formed more abundantly and aerosol yields also increase. 

Volatile organic compounds generally not considered to be SOA precursors, including 

isoprene and glyoxal, have been shown to lead to aerosol formation. Uptake of glyoxal 

into particles is evidence that small molecules can potentially produce aerosol via 

reactive absorption. Although there is strong evidence that heterogeneous reactions play 

an important role in SOA formation, the detailed mechanisms remain poorly understood. 

In a comprehensive study on aerosol formation from biogenic hydrocarbons, it is found 

that data on aerosol growth as a function of the amount of hydrocarbon reacted provide 

important insights into the general aerosol formation mechanisms by identifying rate-

determining steps and whether SOA is formed from first- or second-generation products.  

The mechanism of aerosol formation by isoprene is specifically investigated over 

a range of NOx concentrations. Aerosol yields are found to decrease substantially with 

increasing NOx. The same NOx dependence is observed for monoterpenes (α-pinene), as 

well as aromatic hydrocarbons (m-xylene, toluene, and benzene). It is suggested that 
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peroxy radical chemistry plays the central role in the observed NOx dependence. The NOx 

dependence for larger compounds is, however, different from that of isoprene, 

monoterpenes, and aromatics. For sesquiterpenes such as longifolene and aromadendrene, 

aerosol yields increase with increasing NOx concentration. The reversal of the NOx 

dependence of SOA formation for the sesquiterpenes appears to be the result of formation 

of relatively nonvolatile organic nitrates, and/or the isomerization of large alkoxy radicals 

that leads to less volatile products. 
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Introduction 
 

Aerosols are suspended solid or liquid particles and they affect air quality, human 

health and the earth’s climate. Aerosols can be classified into two main categories 

according to their formation processes. Primary aerosols are emitted directly from 

different sources into the atmosphere, while the oxidation of organic gases leads to the 

formation of low-volatility products that partition into the condensed phase and result in 

the formation of secondary organic aerosol (SOA). Biogenic hydrocarbons emitted by 

vegetation and aromatics from anthropogenic sources are important precursors for SOA 

formation. The main oxidants in the atmosphere are ozone (O3), hydroxyl radical (OH), 

and nitrate radical (NO3). SOA contributes significantly to the total ambient organic 

aerosols in urban areas, as well as regionally and globally.  

Laboratory chambers provide a controlled environment to study the formation and 

evolution of secondary organic aerosol, by isolating specific compounds of interest and 

controlling the oxidation environment. Since identification and quantification of all 

oxidation products from parent hydrocarbons are difficult, aerosol yields have been used 

in the study of secondary precursor organics. Aerosol yields indicate the aerosol-forming 

potential of various precursor organics. Yield is defined as the ratio of the mass 

concentration of aerosol formed from the oxidation of a given parent hydrocarbon to that 

of the hydrocarbon reacted: Y = ΔMo / ΔHC, where ΔMo (μg m-3) is the organic aerosol 

mass produced for a certain reacted amount of hydrocarbon ΔHC (μg m-3). While yield 

curves (Y plotted against ΔMo) have proven to be useful in representing SOA formation, 

the general mechanisms of SOA formation cannot be readily inferred. In chapter 2 it is 

shown that this model can be extended for interpretation of laboratory SOA growth data 
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in terms of underlying chemistry, by plotting experimentally measured aerosol growth, 

ΔMo, as a function of the amount of hydrocarbon reacted, ΔHC (growth curve). The 

growth curve approach is applied in a comprehensive study on aerosol formation from 

biogenic hydrocarbons to study the general aerosol formation mechanisms.  

In chapter 3 the effect of particle-phase acidity on aerosol formation is explored in 

a series of alkene ozonolysis experiments, including α-pinene and 6 cycloalkenes of 

various carbon numbers and substitutions. The aerosol yields from α-pinene ozonolysis 

are systematically studied over a range of initial hydrocarbon concentrations, in the 

presence of seed particles of differing acidity. The composition of the aerosols formed are 

presented.  

Volatile organic compounds previously not considered to be SOA precursors, 

including glyoxal and isoprene, are shown to lead to aerosol formation. In chapter 4 the 

potential for aerosol growth via heterogeneous reactions for a number of small carbonyls 

is examined by measuring changes in particle volume and composition when inorganic 

seed and gas-phase carbonyls are introduced into the chambers. Glyoxal is the only single 

carbonyl that leads to substantial aerosol growth and this reactive uptake is discussed in 

detail. Chapter 5 presents the results on the first study on secondary organic aerosol 

formation from isoprene photooxidation under high-NOx conditions in which HONO is 

used as the OH precursor.  In chapter 6 the mechanism of aerosol formation by isoprene 

photooxidation is comprehensively investigated over a range of experimental conditions, 

namely isoprene and NOx concentrations. The effect of NOx concentration on aerosol 

yields and composition is discussed.  In chapter 7 the effect of NOx levels on SOA 

formation from photooxidation of larger biogenic hydrocarbons such as monoterpenes 
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(α-pinene) and sesquiterpenes (longifolene and aromadendrene) are investigated by 

performing experiments under two limiting NOx conditions, as well as varying the 

amount of NOx present systematically. The SOA yields and composition under different 

NOx conditions is presented.  

Besides biogenic compounds, aerosol formation from aromatic hydrocarbons, 

including m-xylene, toluene, and benzene are investigated under different NOx 

conditions. The results are presented in chapter 8. Additionally, the effect of seed aerosol 

acidity on SOA formation is studied under both high- and low-NOx conditions. The SOA 

yield parameters obtained at the two NOx limits allow one to parameterize the NOx 

dependence of SOA formation for use in atmospheric models. 

Finally, chapter 9 summarizes the findings presented in the previous seven 

chapters. Appendix A presents results from a kinetic model of the behavior of a 

semivolatile compound which may undergo irreversible reactions in both the gas and 

particle phases in addition to partitioning.  The effect of such loss processes on aerosol 

yields is discussed. Appendices B-J present results on studies of SOA composition and 

formation mechanisms with a wide range of instruments and analytical techniques, 

including filter sample analysis (Appendices B-E), Aerosol Mass Spectrometer (AMS, 

Appendices F and G), and Hygroscopicity Tandem Differential Mobility Analyzer 

(HTDMA, Appendix H). The gas-phase composition from the ozonolysis and 

photooxidation of various biogenic hydrocarbons are studied in detail with a Proton 

Transfer Reaction Mass Spectrometer (PTR-MS) and the results are presented in 

Appendices I and J.  

 


