Bistable [2]Rotaxane Based Molecular Electronics: Fundamentals and Applications

Thesis by

Jang Wook Choi

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended May 17, 2007)

© 2007

Jang Wook Choi

All Rights Reserved

Dedicated with Love and Gratitude

To Dami, Justin and Alexis

And to my dearest parents, Kyungwon Choi and Kisoon Lee

Acknowledgement

I would not be able to stand at this point without advice and helps from many people nearby. Here, I like to leave my sincere gratitude toward all who have been in my scientific journey in the past five years.

In my native land of Korea, there is an old saying - the wisest mother is the one who finds home near a school where her children can be educated by the smartest teacher. In such a sense, I found home here in Southern California exactly on time when the best teacher just moved in the school crossby. The period with my primary mentor, Professor Jim Heath, can hardly be described by words of gratitude. Locally, his insightful guidance in all the projects I have been involved in as well as his sharp advice on finding breakthroughs have been always primary driving forces in moving the projects forward and eventually, completing the decent scientific stories. Globally, his endless passion for every single piece of science has been constantly inspiring a number of people in the society including many young scientists as myself and even the general public. I believe that he will maintain his prestige as a true leader in the field for good.

I was even luckier to have another great mentor in a neighboring school. The marvelous fortune to meet Professor Fraser Stoddart is also beyond a simple description. Having such a supportive and experienced scientist directly in all of my molecular electronics projects must have been very rare privilege. Fraser has also shown that one scientist's passion throughout his entire life could flourish the society by sharing scientific visions and joys with younger generations over the years. On other collaboration sides, I would appreciate Professor Bill Goddard for molecular dynamic studies on rotaxane molecules, and Professor Bob Grubbs for the supports of polymers in the nanofluidic project.

Also, I can not forget all of my group members for sharing pleasure and frustration on real job spots: Especially, Dr. Yi Luo and Dr. Amar Flood were great mentors in teaching detailed experimental and problem-solving skills in the very beginning of research. I thank Jonathan Green for the perfect teamwork in the 160 kbit memory project and Ehud Vermesh for thorough help in the nanofluidic project. I also appreciate John Nagarah for numerous joyful discussions at many nights. Conversation with John was always a fun and was very helpful in forgetting research problems during the day. Many Korean friends will be in my memory forever as well. I feel very grateful and indebted for their sharing in scientific visions and general life. Finally, and most importantly, I would give my best heart to my lovely family, Dami, Justin and Alexis. I am literally a lucky person to have Dami as a companion for my lifetime journey. Thank you very much for all of your love, support and tolerance. All the wonderful moments with my adorable kids, Justin and Alexis, will also remain as a great happiness forever. Above all, I thank God, my Lord, with my true sincerity for being in my mind all the time and giving confidence at every hard moment.

All of the works in this thesis were funded from the Defense Advanced Research Projects Agency (DARPA), Samsung Lee Kun Hee Scholarship Foundation (SLSF) and Caltech.

Chapter 1 is taken in part from "Recent advances in molecular electronics," in CRC Handbook of Nanotechnology, in press, 2006.

Chapter 2 is taken in part from "Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices," *Chem. Eur. J.*, 2006, 12, 261-279. Copyright 2006 Wiley-VCH Verlag GmbH.

Chapter 3 is taken in part from "A 160 kilobit molecular electronic crossbar memory circuit patterned at 10¹¹ Bits per square centimeter," *Nature*, 2007, 445, 414-417. Copyright 2007 Nature Publishing Group.

Abstract

Bistable [2]rotaxanes are a unique class of supramolecules that have two constitutional isomers. Upon sandwiched between two electrodes, these two isomeric states show different conducting states, thus behaving as molecular switches. In this thesis, I describe how the bistable [2]rotaxanes have been investigated to ensure that the switching characteristics in solid-state devices are those of the bistable [2]rotaxanes and not those of extraneous elements. In addition, integration of these molecules onto ultradense nanowire arrays to constitute a memory circuit is presented.

The bistable [2]rotaxanes have been examined in various environments to study kinetics and ground-state thermodynamics between both isomeric states. In the kinetic study, as molecules are embedded in more viscous environments (solution \rightarrow polymer gel \rightarrow solid-state device), a key step in switching cycle slows down significantly, thus reflecting the environments where the molecules are surrounded. In thermodynamic study, one of the major units in the molecular structure was modified and then equilibrium population ratio between both isomeric states was monitored at various temperatures. In both solution and solid-state devices, the population ratio of the modified [2]rotaxane was more sensitive to temperature. This result is very critical in that the properties of devices can be tailored by manipulating the structure of molecular components.

The bistable [2]rotaxanes were integrated into crossbar nanowire arrays to constitute a memory circuit. Ultra-dense nanowire arrays used as electrodes are generated by superlattice nanowire pattern transfer (SNAP) method. Due to extremely narrow pitch (~33 nm) of the SNAP nanowire arrays, the device sets a remarkable record in memory density (~ 10^{11} Bits/cm²). Although the circuits were found to have large

numbers of defects, those defects were identified through electronic testing and the working bits were configured to form a fully functional random access memory for storing and retrieving information.

Finally, nanofluidic devices have been developed by utilizing the SNAP method. Due to small channel dimensions (< Debye screening length), passage of ions was modulated by electrostatic interactions between the ions and the nanochannel walls. Devices are being developed to quantify isoelectric points of peptides so that ultimately, the device could function as a protein identifier at a single molecule level.

Table of Contents

Acknowledgement	iv
Abstract	vii
Table of Contents	ix
List of Figures and Tables	xi

Chapter 1	Overview: Molecular electronics and nanofluidics	1
1.1	Introductions: Recent Advances in Molecular Electronics	1
1.2	The Molecule/Electrode Interfaces	3
1.3	Spectroscopy of Molecular Electronic Devices	5
1.4	Electrode Materials	
1.5	Molecular Rectifiers	10
1.6	Surface Immobilized Molecular Switches	12
1.7	Heath/Stoddart Switching Molecules: Basics and Directions	15
1.8	Scale-down: 160 kbit Molecular Electronic Memory Circuits	20
1.9	Nanofluidics	21
1.10	Structure and Scope of the Thesis	22
1.11	References	22
Chapter 2	Ground State Equilibrium Thermodynamics and Switching Kinet	ics of
	Bistable [2]Rotaxane Switched in Solution, Polymer Gels, and	
	Molecular Electronic Devices	31
2.1	Introduction	31
2.2	Molecular Design	39
2.3	Kinetics and Thermodynamics of Switching in Solution and in	
	Polymer Electrolytes	44
2.4	Kinetics and Thermodynamics of Molecular Switch Tunnel Junct	tions53
2.5	A Summary of Kinetic and Thermodynamic Studies in All of Th	ree
	Environments	65
2.6	Conclusion	70

	Х
2.7	References
Charter 2	Malagular Electronic Creasher Memory Circuita
Chapter 3	Molecular Electronic Crossbar Memory Circuits
3.1	Introduction79
3.2	Superlattice Nanowire Pattern Transfer (SNAP) Method
3.3	160 kbit Molecular Electronic Memory Circuits: Overview
3.4	160 kbit Molecular Electronic Memory Circuits: Fabrication Flow 93
3.5	160 kbit Molecular Electronic Memory Circuits: Device Testing 106
3.6	Limitations of the SNAP Process for Crossbar Memory Formation. 117
3.7	Conclusion
3.8	References
Chapter 4	Nanofluidics
4.1	Introduction
4.2	Device Fabrication
4.3	Toward Single-Molecule chemical filters
4.4	Conclusion and Future Work: Toward Quantification of
	Isoelectric Point via Gating Bias144
4.5	References
Appendix A	Syntheses of the [2]Rotaxanes RBPTTF•4PF ₆ and
	RBLOCK•4PF6
Appendix B	LabWindow Code for Memory Measurement

List of Figures and Tables

Chapter 1	
Figure 1-1	Raman spectrum of NAB with varying Ti thicknesses7
Figure 1-2	Molecular rectification from Au-S-(CH ₂) ₃ $ A^+-\pi$ -D structures12
Figure 1-3	Molecular switching of pseudo-rotaxanes driven by biological
	reactions15
Figure 1-4	Bistable molecular mechanical switching molecules, each with similar
	recognition groups
Figure 1-5	Molecular switching of bistable [2]rotaxanes
Chapter 2	
Figure 2-1	Molecular structure and potential energy surface of bistable
	[2]rotaxane
Figure 2-2	Structural formulas of the translational isomers of the bistable
	rotaxanes
Figure 2-3	Control studies for designing stations in bistable [2]rotaxanes 40
Table 2-1	Thermodynamic binding data corresponding to the complexation
	between CBPQT ⁴⁺ and the individual components of the bistable
	rotaxane41
Figure 2-4	CV data of RBPTTF ⁴⁺ recorded in acetonitrile and polymer gel46
Figure 2-5	The first CV cycles of $RBPTTF^{4+}$, $RATTF^{4+}$ and $RBLOCK^{4+}$
	recorded at various temperatures
Figure 2-6	Normalized CV data in the second cycles
Figure 2-7	MSCC \rightarrow equilbrium kinetics of RBPTTF ⁴⁺ in solution and polymer
	phases
Figure 2-8	Switching responses of three rotaxanes within MSTJs56
Figure 2-9	Decay curves of $RTTF^{4+}$ and $RBPTTF^{4+}$ MSTJs recorded as
	a function of temperature
Figure 2-10	Schematic representation of a volatility curve defining I_{CLOSED} and
	I _{OPEN}

Table 2-2	Kinetics data for the relaxation from the MSCC to the GSCC for
	RBPTTF ⁴⁺ and the free energy barriers for RATTF ⁴⁺ and RTTF ⁴⁺ . 66
Figure 2-11	The temperature-dependent GSCC/MSCC equilibria and Eyring
	plots of the MSCC \rightarrow GSCC relaxation process

Chapter 3	
Figure 3-1	A nanoscale molecular computational platform
Figure 3-2	A series of crossbar molecular electronic memory circuits
Figure 3-3	SEM images of Si nanowire arrays of 15 nm pitch and 1400 wires. 88
Figure 3-4	SNAP process flow
Figure 3-5	The process flow for preparing the 160 kbit molecular electronic
	memory circuit at 10 ¹¹ bits/cm294
Figure 3-6	Scanning electron micrographs of the nanowire crossbar memory
	fabrication process
Figure 3-7	Conductance monitoring during the Ti layer etching102
Figure 3-8	Scanning electron micrographs (SEMs) of the NW crossbar memory
Figure 3-9	Writing and reading procedures in crossbar memory
	measurements
Figure 3-10	Data from evaluating the performance of the 128 ebits within the
	crossbar memory circuit110
Figure 3-11	A map of the defective and useable ebits, along with a pie chart
	giving the testing statistics
Figure 3-12	A demonstration of point-addressability within the crossbar 114
Figure 3-13	A histogram representing the 1/e decay time of the '1' state to
	the '0' state

Chapter 4		
Figure 4-1	Scanning electron micrograph (SEM) images of nanofluidic	
	devices	129
Figure 4-2	Nanofluidic device and characterization set up	130

xii

Figure 4-3	Nanochannel wetting progress	133
Figure 4-4	Diffusion of a cationic dye	
Figure 4-5	Diffusion of an anionic dye	
Figure 4-6	Diffusion of a zwitterionic dye	
Figure 4-7	Bias measurements for the charge determination of the	
	zwitterionic dye	

xiii