
DISSECTION OF GENE REGULATORY NETWORKS UNDERLYING 

PATTERNING AND MORPHOGENESIS IN THE C. ELEGANS VULVA 

 

Thesis by 

Jolene Sabrina Fernandes 

 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 

California Institute of Technology 

Pasadena, California 

2007 

(Defended May 18th, 2007) 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2007 

Jolene Sabrina Fernandes 

All Rights Reserved 



 iii

Acknowledgements 
 

For me, writing this particular section of the thesis has its own challenges. As I 

start listing off all the people who made my graduate experience here at Caltech both 

fulfilling and memorable, I frankly find myself emotionally overwhelmed. I take great 

pride in being a member of such a diverse, intellectually stimulating, and scientifically 

renowned community and am humbled by the many exceptional people I have 

encountered during my tenure here. I recall entering Caltech almost immediately after my 

undergraduate studies. Suffice to say, I was an idealistic 21 year-old with the mentality of 

a naïve teenager and that I had a lot of growing up to do, scientifically, mentally and 

emotionally. I can honestly say that my experience at Caltech has not only made me a 

better scientist but also a stronger, wiser, and more rational individual. These are the 

extraordinary people who have accompanied me on my journey… 

I would like to start by thanking my advisor Paul Sternberg. You are an incredible 

mentor and I have enjoyed every minute of being your student for the last four years. You 

were the one who renewed my love of science at a time when things were dark in my life. 

Although I was a transfer graduate student, never once did you hold that against me nor 

did you ever treat me differently from the rest of the lab. Your initial and continual faith 

in me has removed all traces of self doubt and confusion and has taught me persistence, 

logic and diligence. Thank you so much for putting up with my juvenile bursts of 

glee/excitement for my little successes at the bench (such as the first time we discovered 

nhr-67 was expressed in the vulva or the time we found that nhr-67 negatively 

autoregulates itself in the primary cells). Your training, support and guidance have helped 

me evolve into an independent, enthusiastic, and rigorous scientist and an open-minded, 



 iv

fair, and emotionally mature adult. It is your good nature that draws so many wonderful 

personalities into the lab, many of whom I have benefited from over the years. My 

gratitude, affection, and loyalty are with you always. 

I would also like to convey my gratitude to my thesis committee: Ellen 

Rothenberg, Scott Fraser, and Kai Zinn. I deeply appreciate all the advice, enthusiasm, 

and counsel you have provided over the years. Your scientific insights have been 

tremendously helpful and have ensured my graduation in a timely fashion. Particularly 

Ellen: I have gleaned so much knowledge from your lectures on hematopoietic 

transcriptional networks while TAing for the Bi114 class. Your passion and 

encouragement have been a constant source of motivation for me over the last three 

years.  It has been a true honor having you as a part of my thesis committee.   

Next, I’d like to express my gratitude to the Sternberg lab which has served as my 

surrogate family over the past four years. It’s been an honor and a privilege to interact 

with so many brilliant minds and skillful hands (many of you have inspired me to be a 

better scientist). I would especially like to share a few lines about several ‘labbies’ who 

have helped me in many more ways than one. 

 John ‘Demo’ Demodena… you are THE reason I did not drop out of graduate 

school four years ago. It was you who pointed me towards Paul in the first place. It was 

you who argued that forfeiting my dreams would not only cause me regret but would also 

be a loss to Science. You were the one who convinced me that I had innate talent and that 

all I needed was a change in work environment. (And of course, you were my sensei 

when it came to teaching me molecular biology the right way!)  



 v

Ted Ririe, i.e., my lab husband ‘Teddy’… One of Paul’s best maneuvers was to 

put the two of us in the same room and persuade us to focus on the gene regulatory 

networks in the vulva. I am honored to call you both my steadfast ally and my best friend. 

Together we’ve mastered vulval anatomy, worm genetics, RNAi screens, PCR fusions, 

microinjections, and transcriptional networks. Our intellectual discussions force me to 

think critically and come up with creative ideas. You have to admit we make quite the 

formidable team! Besides being my partner in science, you have tolerated my 

idiosyncrasies and have always prevented me from immersing myself into big trouble. I 

just wanted to say that I cherish our deep friendship and that you are the one of the main 

reasons why I love coming into work everyday. 

 Elissa and Cheryl: Both of you are like my big sisters and my role models when 

it comes to being excellent women of science. Takao, Byung, Jagan (Jaggu Bhaiya), and 

Erich… although I don’t say it enough, your actions and views greatly impact how I 

approach a scientific problem. Barb… you (along with the other technicians) are one of 

the cornerstones that keep the lab (and my project!) running smoothly. You are much 

more to me than a technician/coworker. You have been my confidante, guardian, and my 

most vocal cheering-squad from day one! I am eternally grateful to you and wish nothing 

but the best for you and your family. Steven, Adeline, Mihoko, Yesenia, Rob Oania, 

Weiwei, and the rest of the Sternberg group… With you guys around, the lab/floor can 

never be a boring place! 

 Andrew ‘Cookie’ Udit… I am immensely grateful for the three years we shared 

together. You too have helped me evolve both as a scientist and as a person. You had the 

exceptional quality of converting difficult obstacles into success stories… I just wanted to 



 vi

add that you were definitely one of my champions in science and I am honored to have 

personally known you. I am especially indebted to you when it came to tackling one of 

my worst cloning nightmares. Without your aid, my project would not have come to 

complete fruition. I wish you success and fulfillment in all your future endeavors.  

I would also like to express my gratitude to the Life teen choir and the parish at 

St. Philips. You keep me grounded and are a constant reminder that my values and ethics 

should impact every decision I make, be it professional or personal. 

A special thank you goes to my two favorite undergrad professors for helping me 

get into the Biology division at Caltech: Dr. Peter Burn and Dr. Henry Mulcahy. They 

both took me under their wing when I was a teenager who was still wet behind the ears. 

In spite of their busy schedules, they saw potential in me and were instrumental in 

moving me up to the next level. 

I would also like to acknowledge Howard Tan and the entire Tan family, both 

recent entries in my life. Howard has managed to fill that one particular void, which 

nothing/no one else has managed to fill in such a long time. Since I met him, I no longer 

feel like the orphan living in a foreign land (a feeling I have had to deal with since I was 

seventeen). Making me feel good about myself is not his only singular quality. In fact, he 

has also introduced me to so many wonderful things that I have always taken for granted. 

He motivates me to strive for perfection and brings out the best in me. Howard, I deeply 

appreciate every little thing you have done and continue to do for me. 

Last, but not the least… I would like to acknowledge my parents, Boniface and 

Joanita, as well as the entire Fernandes family. Mom and Dad, my deepest gratitude goes 

out to you. Not only were you loving, faithful and hardworking parents, but also 



 vii

courageous and exemplary human beings. Even though you had your doubts and fears (as 

all concerned parents do), you still had the strength and trust to let me move to a strange, 

foreign land at the age of seventeen…all because of my ambitions of being a scientist one 

day! Mom and Dad … thank you for all your tireless efforts, sacrifices, and prayers. I 

love you and hope that your little girl has made you both proud.  I dedicate this thesis in 

memory of my deceased grandmother Rosa Espiciosa ‘Lucy’ Britto, who (even with her 

last breath) had great aspirations for me.   

Proverbs 6:20-22  
 
“My son, keep your father's commands and do not forsake your mother's teaching. When 
you walk, they will guide you; when you sleep, they will watch over you; when you 
awake, they will speak to you.”  

           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii

Abstract 

During development, in the course of which the single-celled egg generates a 

whole organism, cells become different from each other and form patterns of types of 

cells. It is these spatially defined cell-fate patterns that underlie the generation of complex 

organs. The mechanisms that establish these precise spatial patterning events depend on 

the implementation of diverse ‘gene regulatory networks’ (a consequence of functional 

interconnections between regulatory genes (transcription factors) and their target genes). 

Dissection of gene regulatory networks that control patterning of gene expression and 

differentiation would thus help us understand how cells generate a spatially defined 

pattern of cell fates during organ formation. Resources such as diverse spatial and 

temporal cell-fate markers, reverse genetics (RNAi), trans-genesis, and the ease of 

manipulation at the single-cell level make C. elegans a tractable system for studying the 

execution of cell-type-specific gene expression programs that occur during 

organogenesis. Consider the C. elegans vulva, a postembryonically derived organ that 

invariantly consists of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, 

vulE and vulF), each with its own unique gene expression profile. These features make 

the C. elegans vulva a particularly attractive model for dissecting the postembryonic gene 

regulatory networks involved in patterning and organ morphogenesis. 

This thesis focuses on elucidating the regulatory networks that control gene 

expression in the seven vulval cell types of C. elegans during organogenesis. The 

transcription factors lin-11(LIM), cog-1(Nkx6.1/6.2), and egl-38(Pax2/5/8) have been 

previously implicated as key regulators of gene expression in the vulva. Identification of 

additional regulatory factors is warranted, so as to rigorously dissect the mechanisms that 
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specify the spatial fate patterns of terminally differentiated cell types. To this end, I 

systematically disrupted the gene activity of 508 transcription factors via RNAi and 

assayed the expression of ceh-2, a readout for vulB fate during the L4 stage. From this 

screen, I identified the tailless ortholog nhr-67 as a novel regulator of vulval gene 

expression. nhr-67 acts in combination with cog-1, egl-38, and lin-11 to execute accurate 

patterning of gene expression of their downstream targets. The pair-wise interactions 

between these regulatory genes are complex and vary among the seven cell types.  One of 

the ways in which nhr-67 maintains cell identity is through restriction of inappropriate 

cell fusion events in specific vulval cells (namely vulE and vulF). The cell fusion defects 

observed in an nhr-67 RNAi background can be partially attributed to deregulation of 

fusogens. cog-1 and lin-11 (but not egl-38) mutants also show heterotypic fusion defects 

to different degrees. I also discovered a striking regulatory circuit that affects a subset of 

the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We argue 

that the 1° vulval cells (vulE and vulF) utilize this novel regulatory motif to rapidly 

switch fates in response to transient inputs. We also speculate that the built-in flexibility 

of this circuit acts as a failsafe mechanism (in the event of cell damage) in the vulE and 

vulF cells. We postulate that the differential levels and combinatorial patterns of lin-11, 

cog-1, egl-38, and nhr-67 expression are a part of a regulatory code for the mature vulval 

cell types. 
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Role of Gene Regulatory Networks in Development 
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Introduction 

 
 

Genomic DNA contains the blueprints and necessary information to generate an 

organism of a given species. During the course of development, an organism successively 

progresses through multiple regulatory states. These regulatory states are determined by 

the presence and activities of sequence-specific transcription factors and cell-signaling 

pathways operating at specific times and places. Cis-regulatory sequences (that are 

encoded in the genome) interpret these dynamic regulatory states by interacting with 

transcription factors to produce complex spatial and temporal gene expression patterns 

(Levine and Davidson, 2005). These individual elements are hardwired with the correct 

response to every possible situation the organism will encounter during development. 

Execution of complex developmental processes such as differentiation and 

morphogenesis depend on how cis-regulatory information is processed both at the 

individual gene level and at the gene network (systems) level. Dissecting these hard-

wired genomic regulatory codes would provide useful insights as to how and why precise 

spatial fate patterns are established during organogenesis and what accounts for 

morphological differences observed among related species. 

In general, cis-regulatory elements are organized into promoters, enhancers, and 

repressors. Promoters serve as loading sites for the basal transcriptional machinery (RNA 

polymerases) and are located immediately upstream of the transcription start site. 

Enhancers tend to reside at various distances from the promoter and are found in introns, 

upstream sequences, and 3’ non-coding regions of the genes they regulate. Enhancer 

elements interact with the basal transcription apparatus at the promoter to drive tissue- 
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and stage-specific gene expression. Repressor elements typically inhibit transcriptional 

activity by blocking the interactions between the enhancer elements and the basal 

transcriptional apparatus. Repression is generally used as a strategy to delineate spatial 

boundaries. Cis-regulatory elements or modules are typically several hundred base pairs 

long and contain multiple binding sites for transcription factors (Davidson, 2006; Small 

et al., 1992). These cis-regulatory DNAs act as information processing devices in that 

they integrate diverse inputs (in the form of regulatory factors), process the information 

(e.g., using logic functions such as “and”, “or”, “not”) and output the appropriate 

expression pattern of their target genes (Davidson, 2006). Interaction of several such 

modules can result in expression patterns of greater complexity. Gene regulatory 

networks consist of a multitude of these information processing devices that act in 

concert to specify an information cascade that drives development forward. 

 Gene regulatory networks are logic maps that elaborate all the functional 

connections between the regulatory genes and the associated regulatory modules of their 

target genes. Each cis-regulatory module functions as a unique node in the network and 

several such nodes function together as subcircuits that generate accurate cell fate 

patterns, launch differentiation programs and coordinate morphogenesis (Davidson, 

2006). These regulatory subcircuits provide a causal answer as to why, when, and where 

genes are expressed in a developing organism. Although each of the individual circuits 

contributes to the system, the overall logic of the network can be better appreciated from 

a global perspective. The complete network architecture reveals properties (e.g., feedback 

loops, differentiation batteries) that can never be appreciated at the level of any individual 

gene. 
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Investigating development from the perspective of gene regulatory networks 

illuminates how static information contained within the genomic DNA translates into the 

dynamic regulatory states of a developing organism. Dissection of these networks reveals 

the underlying logic that is used to produce complex morphologies (Levine and 

Davidson, 2005). Gene regulatory networks also uncover differentiation pathways that 

can be fine tuned to generate diverse cell types, which is an area of intense study in the 

field of stem-cell biology (Matthias and Rolink, 2005; Shaywitz and Melton, 2005). 

Lastly, studying evolutionary changes in gene regulatory networks would provide a 

foundation for understanding morphological diversity (Carroll, 1990; Hinman et al., 

2003; Levine and Davidson, 2005). 

        The recent availability of diverse animal genomes has demonstrated that bilaterians 

ranging from nematodes to mammals use the same assortment of transcription factors and 

signaling molecules to transmit spatial and temporal information over the course of 

development (Erwin and Davidson, 2002). Developmental complexity is not 

accomplished with increases in genome or proteome sizes. Rather, complexity is 

achieved by taking a finite repertoire of transcription factors and utilizing them in 

multiple unrelated processes during development. Thus within and among diverse 

species, every regulatory gene responds to diverse regulatory inputs that control its 

expression in different spatial domains at various developmental stages. Cross-species 

comparisons of gene regulatory networks can identify common strategies (Arkin et al., 

1998; Koide et al., 2005; Levine and Davidson, 2005). For example, sea urchins and 

frogs utilize signaling pathways to establish precise spatial gene expression patterns. As 

more gene networks become available for a broad range of developmental processes in 
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diverse species, the common themes that might emerge from these analyses would 

enhance our understanding of organogenesis (especially in experimentally intractable 

systems like humans).  

Differentiation Batteries and “Lock-down” Mechanisms 

Fate specification of different cell populations and territories underlies the 

generation of complex body structures. These specialized populations differentiate from 

other populations by terminally expressing diverse combinations of effector genes. These 

precise sets of effector genes define unique attributes of each cell type. At a systems 

level, differentiation can be viewed as the final output of all gene regulatory networks 

that control development. A differentiation event in development can be fully understood 

by mapping out all the regulatory interactions in the network architecture (from the onset 

of specification to the organized expression of the effector gene set). 

A differentiation battery refers to a set of functionally related effector genes that 

are expressed in a given cell type (Davidson, 2006). These genes are coordinately 

expressed because their cis-regulatory elements respond to similar transcription factor 

inputs. All genomes are hypothesized to employ various “lock-down” mechanisms to 

ensure the maintenance and enhancement of these differentiated regulatory states over 

time. Lock-down mechanisms are also used to restrict any inappropriate transcriptional 

activity in terminally differentiated structures. Furthermore, lock-down mechanisms also 

transmit these differentiated regulatory states to future cell generations, allowing efficient 

proliferation of terminally differentiated tissue structures during organogenesis. Thus 

disruption of lock-down mechanisms results in fatal developmental errors and has 

devastating consequences on the viability of the organism.  
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Understanding the diverse strategies gene networks use to establish and lock-

down regulatory states would advance our knowledge of tissue differentiation and 

organogenesis (Stathopoulos and Levine, 2005). 

 

1. General Circuits and Strategies in Developmental Regulatory Networks       

No individual gene is capable of communicating sufficient spatial information to 

generate complex patterns of cell fates, a prerequisite for organogenesis. Rather, a single 

tissue or organ is the outcome of the expression and activities of a multitude of genes. 

Network logic directs the formation of complex morphologies through consecutive 

rounds of pattern formation. In this way, information from the previous round of 

specification gets locked in and integrated with additional information from concurrent 

specification events. Depicting gene regulatory networks as circuit diagrams is especially 

informative as it documents all the regulatory inputs and outputs from each constituent 

gene and provides a comprehensive view of how diverse cell types acquire their identity 

(Longabaugh et al., 2005). Here I discuss some general strategies that organisms use to 

establish spatially defined patterns of developmental gene expression. 

  

1-1. Gradients   

All developmental control systems function as gene regulatory networks in that 

each regulatory gene has both multiple inputs and outputs. Gradients are one of the 

mechanisms embryos use to produce transient and dynamic expression of downstream 

genes in different spatial domains, as they progress through successive regulatory states. 

The usage of gradients also demonstrates how cis-regulatory elements can be precisely 
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modulated to respond to dynamic conditions (e.g., differential morphogen levels) (Jiang 

and Levine, 1993; Stathopoulos and Levine, 2002). 

Dorsal network 

Dorsal-ventral patterning in Drosophila is mediated by the graded distribution of 

a maternal transcription factor, Dorsal (an ortholog of NF-κB), which ultimately results 

in the differentiation of specialized tissues, including the mesoderm, the neurogenic 

ectoderm and the dorsal ectoderm (Stathopoulos and Levine, 2002).  Roughly half of the 

50 Dorsal target genes encode transcription factors, while the other half encode 

components of the FGF, EGF, and Dpp (TGFβ) signaling pathways (Stathopoulos and 

Levine, 2004). The enhancer regions of these downstream genes consist of target sites 

that have a range of sensitivities to Dorsal (and other inputs), thereby restricting their 

expression in specific spatial domains in the embryo. For example, Twist enhancers 

contain several low-affinity Dorsal binding sites and are only activated by high Dorsal 

levels present in the presumptive mesoderm (Jiang et al., 1991).  In contrast, Rhomboid 

enhancers contain higher-affinity Dorsal and Twist binding sites and are activated by 

intermediate levels of the Dorsal gradient in ventral neurogenic ectoderm. The Snail 

repressor directly competes with Twist for the same binding sites and keeps Rhomboid 

expression off in the mesoderm (Ip et al., 1992). The different threshold readouts of the 

Dorsal gradient are partly dependent on the quality of individual Dorsal binding sites 

(Papatsenko and Levine, 2005). 

The above scenario illustrates how a concentration gradient allows a single gene 

to convey different positional signals to a whole array of targets. The Dorsal gradient also 
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demonstrates that cis-regulatory elements can be sensitive not only to the abundance of 

an activator, but to dynamic cellular conditions as well. 

 

1-2. Boundary Repression 

Boundary repression is one of several architectural motifs that come to light while 

dissecting gene regulatory networks. Morphogen gradients alone cannot account for the 

strict expression patterns of genes that specify cell fates. In general, transcriptional 

repressors are used to generate and maintain boundaries between cells with different fate 

patterns. The mechanisms that enforce boundary repression can be divergent among the 

different species. 

D/V patterning in Drosophila    

For example in Drosophila, transcriptional repression has an extensive role in the 

initial patterning of the syncytial embryo. Since cell boundaries are not yet established, 

intercellular signaling plays a limited role in the early spatial patterning events. In this 

developmental system, boundaries of expression patterns are regulated by multiple tiers 

of transcriptional repression. An excellent example would be the regulatory interactions 

among the five repressors Snail, Vnd, Brk, Ind, and Shn during dorsal-ventral patterning 

(Cowden and Levine, 2003; Kosman et al., 1991; Pyrowolakis et al., 2004; Zhang et al., 

2001). The direct cross inhibition between these repressors results in the formation of 

four distinct tissue territories: mesoderm, ventral neurogenic ectoderm, dorsal neurogenic 

ectoderm, and dorsal ectoderm. Consequently, multipotent nuclei are rapidly transformed 

into specific cell identities. 
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Neural crest specification in vertebrates   

Unlike the Drosophila embryo, intercellular signaling plays a crucial role in 

defining boundaries in organisms like vertebrates. An interesting illustration of this sort 

of boundary repression is found in neural crest formation in vertebrates (Fig. 1) 

(Meulemans and Bronner-Fraser, 2004).  The mesoderm and non-neural ectoderm secrete 

inductive signals such as BMP to specify the neural crest fate (Bonstein et al., 1998; 

Liem et al., 1995; Marchant et al., 1998). Differential levels of BMP signaling are 

required to induce neural plate and neural crest gene expression. Inhibition of BMP 

signaling induces expression of Sox2 in the neural plate, which is required to promote 

expression of neural differentiation genes such as N-CAM and N-tubulin (Mizuseki et al., 

1998). Sox2 also indirectly represses expression of the neural crest specifier Slug in the 

neural plate (Wakamatsu et al., 2004). In the presumptive neural crest (neural plate 

border), intermediate levels of BMP induces high levels of Slug and other neural crest 

specifiers such as Snail, Sox9, etc. (LaBonne and Bronner-Fraser, 1998; Marchant et al., 

1998; Nguyen et al., 1998). In turn, these neural crest specifiers perform two important 

regulatory functions: (a) repression of Sox2 function (LaBonne and Bronner-Fraser, 

2000; Spokony et al., 2002) and (b) regulation of effector genes that control different 

aspects of the neural crest (Aoki et al., 2003; Britsch et al., 2001; Fukata and Kaibuchi, 

2001; Lang and Epstein, 2003; Ng et al., 1997). Neural crest and neural plate fates are 

thus demarcated using a combination of intercellular signaling and cross-regulation. 
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1-3. Stable Feedback Loops  

A key property of all gene regulatory networks is that they strictly enforce 

progression throughout development. Stable feedback loops are a mechanism that is 

typically used to drive development forward (Fig. 2A). In general, signal transduction 

activates expression of regulatory gene A. Gene A promotes expression of gene B (a 

target), which in turn activates a cascade of downstream target genes. However, gene B 

positively feedbacks to gene A, thereby “locking down” the differentiation state 

established by the original signal. Once the feedback loop is activated, the downstream 

genes are no longer dependent on the initial transient inputs. A benefit of this 

developmental strategy is that transient signals are converted into stable circuits. 

Additionally, the regulatory proteins that function in early development are then free to 

be reutilized in later specification and differentiation events without conflict. Most gene 

regulatory networks require the maintenance of stable feedback loops or the 

differentiation state is disrupted.  

Skeletal muscle differentiation in vertebrates 

Regulation of skeletal muscle specification and differentiation in vertebrates is 

dependent on a regulatory network that consists of two families of transcription factors: 

bHLH muscle regulatory factors (MRFs: MyoD, myogenin, MRF4) and the myocyte 

enhancer factor 2 (MEF2) group of MADS-box regulators. Members of this network 

interact with each other genetically and physically, and together they cooperate to 

positively regulate transcription of downstream muscle-specific differentiation genes 

(adapted from Yun and Wold, 1996) (Fig. 2B). MyoD acts as a muscle specification gene 

which activates expression of the differentiation gene myogenin. Myogenin subsequently 
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activates MEF2 and MRF4, which are required for the execution of terminal muscle 

differentiation programs. Additionally, MRF4 and myogenin positively regulate the 

activity of MyoD. In this fashion, skeletal muscle cells are engaged in a self-sustaining 

positive loop that drives the expression of muscle differentiation genes and thus locks 

down the newly established differentiation state. The outcome of such positive feedback 

loops is that the embryo acquires control of its new regulatory state and is relieved from 

its dependence on transiently expressed inputs.      

 

1-4. Autoregulation            

Another variation of stable feedback loops is autoregulation, which is defined as 

the regulation of a gene by its own gene product. Negative autoregulation occurs when a 

transcription factor binds its own promoter to reduce production of its own mRNA. As a 

result, the higher the concentration of a given transcription factor, the lower its 

production rate. By contrast, a regulatory factor positively autoregulates when it activates 

its own transcription. The initial dynamics are slow, but as the transcription factor levels 

rise, its production rate increases due to the positive autoregulation loop. 

 The steady state levels of a protein are typically important for its optimal 

function. Negative autoregulation speeds up the response time of gene circuits (Rosenfeld 

et al., 2002). For example, a strong promoter can provide rapid production of its own 

mRNA and use autorepression to reach the desired steady-state levels. This can be 

compared to a simple regulated gene with a weaker promoter that is set to reach steady- 

state levels at a slower rate. Negative autoregulation also reduces variations of steady- 
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state expression levels due to fluctuations in the production rate (Becskei and Serrano, 

2000).  

A positive autoregulatory circuit has the opposite effect, in that it slows down 

response times. Slow dynamics can be particularly useful in time-consuming 

developmental processes, such as the cell cycle. Such slow processes can benefit from 

extended delays in the production of proteins responsible for different stages of the 

process.  Positive autoregulation (which exceeds the rate of protein turnover) also confers 

the advantage of achieving bistability: positive autoregulation maintains robust 

expression levels of the gene, even after the initial activator inputs are gone (Becskei et 

al., 2001). Many transcription networks utilize this type of circuit to make irreversible 

decisions in development, such as execution of cell fate. 

            

2. Emerging Gene Networks in C. elegans 

Microarray analysis, trans-genesis, systematic gene disruption (via RNAi), and 

invariant cell lineage are features that make C. elegans a tractable model system for 

elucidating  gene regulatory networks that govern fate specification and differentiation of 

complex organs (Lee et al., 2004). The availability of genome sequences for several 

divergent nematodes, C. briggsae (Gupta and Sternberg, 2003) and C. remanei permits 

the rapid identification of conserved non-coding enhancer elements. Here I describe the 

advances made in several emerging gene regulatory networks (GRNs) in C. elegans:     
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2-1. Embryonic GRNs:   

pal-1: Specification of C-lineage 

Embryonic gene regulatory networks are typically set into motion by the graded 

distribution of maternally deposited RNA/protein. Microarray and RNAi experiments in 

C. elegans embryos have been used to describe a provisional network for the 

specification and differentiation of the C-blastomere lineage (Baugh et al., 2005a) (Fig. 

3). The C-lineage blastomeres develop into muscle and some epidermal cell types. PAL-

1, a homeodomain transcription factor, is required for the specification of the C-lineage 

blastomere (Hunter and Kenyon, 1996). Maternal pal-1 RNAs are evenly distributed 

throughout the unfertilized oocyte and eventually become restricted to the C-blastomere 

due to transcriptional and translational regulation. Maternal PAL-1 activates zygotic 

transcription of many target genes in the C-blastomere (including zygotic pal-1 via 

positive autoregulation). Regulatory genes such as tbx-8, tbx-9, and elt-1 may be direct 

targets of PAL-1. ELT-1, a GATA transcription factor is necessary for the differentiation 

of specific epidermal cell types. PAL-1 also promotes expression of hnd-1(Hand-like 

bHLH), which subsequently leads to the activation of unc-120 (MADS) and hlh-

1(MyoD) in developing muscles. Similar to their vertebrate orthologs, HND-1, UNC-120, 

and HLH-1 represent a regulatory module that is dedicated to muscle differentiation 

(Baugh et al., 2005b). Dissection of the cis-regulatory elements of PAL-1 targets would 

further elaborate this provisional network.            

 pha4: Foregut differentiation 

The pharynx is a feeding organ in C. elegans that consists of gut epithelial cells, 

muscles and neurons, and is an excellent system for unraveling genomic networks that 
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control organogenesis. All these cell types are similar in that they all express the organ 

identity gene pha-4, an ortholog of FoxA (Mango et al., 1994). Microarray assays 

identified around 350 pharynx-enriched genes with diverse spatial and temporal 

expression patterns (Gaudet and Mango, 2002). Many of these target genes carry copies 

of the PHA-4 consensus binding sequence TRTTTRY in their cis-regulatory regions. The 

affinities of the individual PHA-4 binding sites influence the temporal specification 

patterns during pharyngeal differentiation. Higher- and lower-affinity PHA-4 sites are 

correlated with earlier and later pharyngeal expression, respectively. Furthermore, 

altering the affinity of these binding sites causes changes in the temporal expression 

pattern of target genes. 

Binding affinity is not the sole determinant of pha-4 dependent gene expression. 

The enhancers of some early activated pha-4 targets contain other shared motifs that are 

necessary for driving expression during early development (Gaudet et al., 2004). 

Additionally, some of the late pha-4 targets contain a repressor element that blocks 

precocious expression at the early stages of pharyngeal differentiation.     

  Approximately, 10% of the PHA-4 targets encode putative transcription factors. 

The genetic interactions between these regulatory genes and their individual roles in the 

diverse pharyngeal cell types are still unknown. Further characterization of these 

regulatory factors would reveal how they coordinate with PHA-4 and each other to 

activate expression downstream effector genes and mediate organogenesis.   
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2-2. ASE Specification: A Postembryonic GRN 

Unlike embryonic GRNs, postembryonic networks are not dependent on maternal 

inputs. The two main gustatory neurons of C. elegans, ASE left (ASEL) and ASE right 

(ASER), are symmetric in many different regards, like cell position, axo-dendritic 

morphology, and synaptic connectivity. However both neurons express a distinct 

assortment of putative chemoreceptors at the adult stage, which is necessary when 

navigating through complex sensory environments (Pierce-Shimomura et al., 2001; Yu et 

al., 1997). These asymmetric molecular profiles correlate with the functional asymmetry 

of the two neurons. Forward genetic screens have been successfully used to define the 

gene regulatory network that diversifies ASEL and ASER (Chang et al., 2004; Chang et 

al., 2003; Johnston and Hobert, 2003; Johnston et al., 2005). The ASEL/R regulatory 

network utilizes feedback loops to progress from an equipotent, hybrid precursor state to 

irreversible terminally differentiated cellular states (Fig. 4). The stable nature of these 

feedback mechanisms allows the system to respond to transient inputs and adopt one of 

two discrete end states (bistable system). Here, ASER is biased to have higher levels of 

cog-1 which turns off ASEL-like features by repression of the activator die-1. 

Additionally, the positive autoregulation of cog-1 decisively locks down the ASER cell 

fate choice. In ASEL, spatially precise gene expression requires the function of die-1 and 

the absence of cog-1 repressor activity. In addition, the homeobox gene lim-6 (a die-1 

target) reinforces the ASEL regulatory state via inhibition of cog-1 activity. As 

mentioned earlier, these stable feedback loops ensure that the system is no longer 

dependent on transient inputs. The identity of the inputs that trigger the differential 

activity of cog-1 vs. die-1 in the ASE neurons is unknown. Cis-regulatory analyses of 
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these network components would unveil the nature of their upstream regulatory inputs 

(possibly other spatially restricted transcription factors or signaling pathways).       

 

3. The Vulva: A Postembryonic Paradigm for Organogenesis  

Recent studies in C. elegans have attempted to build regulatory networks using 

high-throughput global analyses such as microarray data, yeast one hybrid interactions, 

ChIP, and bioinformatics (Ao et al., 2004; Lee et al., 2003; McElwee et al., 2003; 

Murphy et al., 2003; Wook Oh et al., 2006). These are useful and effective in terms of 

identifying relevant targets affected by upstream regulatory factors. However, these 

analyses have limitations in that they do not always reflect normal physiology. Secondly, 

the data acquired are typically at a lower resolution and can provide an oversimplified 

framework not necessarily relevant to diverse cell types and varying developmental 

states. Stage- and tissue-specific regulatory programs (such as stable feedback loops, 

boundary repression, and “lock down” subroutines) would not be detected through these 

high-throughput approaches. An alternative approach to constructing genomic networks 

is through the investigation of multiple pairwise interactions (Johnston et al., 2005; 

Rivera-Pomar and Jackle, 1996; Vallstedt et al., 2001). This more-traditional approach 

can yield data of higher resolution, reflecting precise spatial and temporal gene 

expression in an intact organism. Thus the resulting network would be more refined and 

would unveil the subtle differences that exist in the diverse cell types at specific stages. 

Resources such as diverse spatial and temporal vulval cell-fate markers, reverse genetics 

(RNAi), and the ease of manipulation at the single-cell level provide powerful tools for 

studying the execution of cell-type-specific gene expression programs (Inoue et al., 
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2005). These features make the C. elegans vulva useful for dissecting the gene regulatory 

networks involved in patterning and organ morphogenesis. Comparisons of the vulval 

network with those reported in genome-wide studies in other model systems would 

highlight both differences and similarities in tissue differentiation and organogenesis 

(Stathopoulos and Levine, 2005). 

The C. elegans vulva is postembryonically derived from six multipotent vulval 

precursor cells (VPCs) P3.p–P8.p. The three central VPCs, P5.p–P7.p are induced to 

adopt vulval fates, whereas the remaining precursors fuse with the hypodermal syncytium 

hyp7. The 1° (primary) and 2° (secondary) vulval fates are generated via EGF and Notch 

signaling respectively (Sternberg, 2005). The vulva is an intact organ that invariantly 

consists of seven distinct cell types, each with its own pattern of gene expression and 

morphogenetic migrations (Inoue et al., 2002; Sharma-Kishore et al., 1999; Sulston and 

Horvitz, 1977). The P6.p 1° lineages generate the vulE and vulF cells, while the P5.p and 

P7.p 2° lineages generate the vulA, vulB1, vulB2, vulC, and vulD cells. The diverse cell 

types appear to have different physiological roles that affect the morphology and function 

of the hermaphrodite reproductive organ. For example, EGF signaling in the vulF cells 

induces the formation uv1 uterine cells (Chang et al., 1999). The 1° vulval cells initialize 

the uterine-vulval connection by triggering and directing anchor cell (AC) invasion 

(Sherwood and Sternberg, 2003). The vulE and vulF lineages are also required for the 

proper migration of the sex myoblasts (Burdine et al., 1998) and establishing contacts 

with the HSN and VC neurons (egg-laying motor neurons) (Colavita and Tessier-

Lavigne, 2003; Shen et al., 2004). Vulval muscles that are associated with vulC and vulD 

regulate egg-laying behavior. vulA, the outermost vulval cell-type, forms the attachment 
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with the cuticle. A complete picture that depicts the functional relevance of all the vulval 

cell types is still lacking. Differential gene expression is thought to be the driving force 

behind the specialization of these epithelial cells. The finite number of cell types in this 

complex organ provides us with an elegant model for dissecting cell-specific gene 

regulatory networks. Teasing apart the vulval network would provide us with valuable 

insights into postembryonic organogenesis.  

 The spatially defined pattern of cell fates in the vulva is an outcome of 

transcription factor networks that operate in the individual cell types (Inoue et al., 2005). 

While the signaling network that initiates vulval development and sets the gross pattern 

of cell differentiation is well understood, the gene regulatory network that specifies the 

final seven cell fates is not understood (Sternberg, 2005). Both Ras and Wnt pathways are 

required for the precise spatial patterning of the 1° vulE and vulF cells (Wang and 

Sternberg, 2000), and both Wnt/Ryk and Wnt/Frizzled signaling pathways are necessary 

for patterning the P7.p 2° vulA-vulD cells (Ferguson et al., 1987; Inoue et al., 2004; 

Sawa et al., 1996). Several transcription factors that regulate spatio-temporal gene 

expression in the vulva have been already described (Cui and Han, 2003; Inoue et al., 

2005; Tiensuu et al., 2005). lin-29 encodes a C2H2 Zn-finger transcription factor and 

affects gene expression in vulC, vulD, and vulE cells (Newman et al., 2000). lin-11, a 

LIM homeobox transcription factor, drives gene expression in all seven vulval cell types 

(Freyd et al., 1990; Gupta et al., 2003). The Nkx6.1/Nkx6.2 homeodomain gene, cog-1, 

regulates gene expression in vulB, vulC, vulD, vulE, and vulF cells (Inoue et al., 2005; 

Palmer et al., 2002). By contrast, the PAX2/5/8 protein EGL-38, appears to be the only 

known example of a cell-type specific regulatory factor; it promotes expression of certain 
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target genes and inhibits inappropriate expression of other targets exclusively in vulF 

cells (Chamberlin et al., 1997; Chang et al., 1999; Inoue et al., 2005). Our knowledge 

about the regulatory interactions between these transcription factors and how they go 

about generating the complex expression patterns of their targets is limited. Furthermore, 

an appreciation for the differences in the network architecture for each of the cell types 

requires the identification of novel transcriptional regulators. 

 

Thesis Prelude 

 Comparison of gene networks among a broad spectrum of species is useful in 

deciphering the regulatory logic that ultimately gives rise to complex functional 

morphologies. However, a majority of the most intensively studied gene regulatory 

networks are embryonic networks. To date, the C. elegans vulva is the first excellent 

model for elucidating postembryonic gene regulatory networks that control 

organogenesis. Using a high-resolution reverse genetics approach, I successfully 

identified the tailless ortholog nhr-67 as a new node in the vulval patterning network. In 

addition to isolating and characterizing a novel component of the vulval regulatory 

network, my work illustrates the recurrence of certain network motifs/strategies such as 

autoregulation, stable feedback loops, boundary repression, functional redundancy, and 

combinatorial control of effector gene expression during vulval morphogenesis. I also 

discovered a previously unreported regulatory circuit in a specific subset of vulval cells: 

cross inhibition in conjunction with dual negative autoregulation. The provisional vulval 

network described in this thesis provides a very solid framework for future work. Pushing 

our proposed regulatory network forward would entail identifying other potential factors, 
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integrating all the interactions between the components, and assaying the output 

expression of multiple target genes.  
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Figure Legends: 

 

Fig. 1: Comparison of the gene regulatory interactions that occur during boundary 

repression at the neural plate border (presumptive neural crest) vs. the neural plate 

in vertebrates. Vertebrates utilize intercellular signaling (e.g., BMP) to define 

boundaries during neural crest specification. Arrows represent positive regulatory 

interactions and block arrows represent inhibitory inputs. Regulatory genes that promote 

neural crest specification are in red, whereas genes that regulate patterning and 

differentiation neural plate are in green. 

   

Fig. 2: Stable feedback loops. (A) An initial input activates expression of regulatory 

gene A, which in turn promotes the expression of gene B. Besides acting on downstream 

target genes, gene B positively feedbacks to gene A, thereby “locking down” the 

regulatory state established by the original signal. When the initial input subsides, these 

genes will remain activated. (B) Stable positive feedback loops in skeletal muscle 

specification and differentiation in vertebrates. Arrows represent positive regulatory 
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interactions.  The displayed interactions in this simplified network only include cross 

regulatory loops. (Adapted from Yun K. and Wold B., 1996.)  

    

Fig. 3: Proposed regulatory network specified by pal-1 during C-lineage 

specification. (This figure is taken from Baugh et. al., 2005.) The predicted regulatory 

interactions are based on microarray data, RNAi experiments and bioinformatics. The 

temporal phases are indicated on the left. Lines with arrows represent cell-autonomous 

interactions and lines with dots indicate regulation by intercellular signaling pathways. 

 

Fig. 4: A summary of the feedback mechanisms in the ASE bistable system. Arrows 

represent positive regulatory interactions and block arrows represent inhibitory 

interactions. The gray font indicates inactive components in the network and the black 

font indicates active components in the network. (Adapted from Johnston et. al., 2005.)      
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The vulval development of Caenorhabditis elegans provides an
opportunity to investigate genetic networks that control gene
expression during organogenesis. During the fourth larval stage
(L4), seven vulval cell types are produced, each of which executes
a distinct gene expression program. We analyze how the expres-
sion of cell-type-specific genes is regulated. Ras and Wnt signaling
pathways play major roles in generating the spatial pattern of cell
types and regulate gene expression through a network of tran-
scription factors. One transcription factor (lin-29) primarily controls
the temporal expression pattern. Other transcription factors (lin-
11, cog-1, and egl-38) act in combination to control cell-type-
specific gene expression. The complexity of the network arises in
part because of the dynamic nature of gene expression, in part
because of the presence of seven cell types, and also because there
are multiple regulatory paths for gene expression within each cell
type.

organogenesis � signaling pathways � transcription

Developmental events are driven by spatially and temporally
regulated gene expression. Understanding how complex

patterns of expression are produced is therefore a critical part of
deciphering mechanisms of development. In general, intercel-
lular signaling mechanisms interact with a network of transcrip-
tion factors to generate cell-type-specific patterns of gene ex-
pression. The late stage of Caenorhabditis elegans vulval
development offers a useful model in which to study this process.
During this period of vulval development, seven distinct cell
types are produced that express unique combinations of genes.
Over the last several years, a number of genes were discovered
that are expressed in cell-type and stage-specific patterns in the
vulva, and several transcription factors were found to regulate
these genes. In this paper, we synthesize and extend our current
knowledge of this genetic network.

The C. elegans vulva connects the uterine lumen to the outside,
allowing for passage of sperm and fertilized eggs (1). Vulval cells
are generated postembryonically from precursor cells P3.p P4.p,
P5.p, P6.p, P7.p, and P8.p [also called vulval precursor cells
(VPC)]. During the mid-third larval (L3) stage, EGF and Notch
signaling induces the middle three VPCs (P5.p, P6.p, and P7.p)
to adopt vulval fates, whereas P3.p, P4.p, and P8.p fuse with the
hypodermal syncytium, hyp7 (2–6).

During the late-L3 to the early-L4 stage, P5.p, P6.p, and P7.p
undergo two or three rounds of cell division to produce 22 nuclei
(7) (Fig. 1A). These nuclei are in cells of seven types (vulA,
vulB1, vulB2, vulC, vulD, vulE, and vulF), as evidenced by
subsequent morphogenetic movements and by the pattern of
gene expression (8, 9) (Fig. 1B). The seven cell types that are
present in the adult vulva represent specializations within the
general epithelial cell class. These cells exhibit cell-type general
features; for example, each expresses ajm-1, a component of the
apical junction that connects neighboring cells in epithelial
tissues (8). However, in addition, each cell type exhibits func-
tional specializations: vulF cells, which form the innermost
section of the vulva, connect directly with cells of the uterus. vulE
cells form structural attachments to lateral hypodermal (seam)
cells. vulC and vulD cells attach to vulval muscles that open the

vulva for the passage of eggs. vulA cells form attachment to the
hyp7 syncytium. It is expected that gene expression differences
underlie these specializations.

Here, we are concerned with the execution of cell-type-
specific gene expression programs during the late L3 and L4
stages, mostly after the terminal division of vulval cells. During
this period, each cell type exhibits a cell-type-specific pattern of
gene expression, and several transcription factors are known that
regulate the expression of these cell-type-specific genes. We
bring together our current knowledge of this system to produce
the framework in which to investigate the gene regulatory
network controlling vulval organogenesis.

Materials and Methods
Determination of Gene Expression Patterns. Essentially all gene
expression analyses described in this paper (including data from
other papers) were carried out by using gfp reporter transgenes.
For all results, it is possible that reporter expression does not
accurately reflect the expression pattern of the endogenous
gene. For simplicity, we refer to the reporter by the correspond-
ing gene name.

The expression pattern of C55C3.5 was determined by using
gfp reporter clone pUL#G221N (I. Hope, personal communi-
cation). This plasmid was injected into unc-119(ed4) animals by
using the plasmid pDP#MM016B [unc-119(�)] as a coinjection
marker (10). Of genes listed in Fig. 1B and in the main text, we
have not examined the expression pattern of syg-2, bam-2, and
sqv-4. Because GFP is likely to be stable for many hours, the time
at which expression is turned off is not reliably indicated by
decreased GFP expression. For most genes we analyzed, GFP
fluorescence persists into the adult stage.

Genotypes. For Tables 1–3, gfp reporter transgenes used were
ayIs4[egl-17::gfp], syIs50[cdh-3::gfp], syIs49[zmp-1::gfp], and
syIs54[ceh-2::gfp] (9). The egl-26::gfp transgenic line analyzed
was kuIs36 (11). Mutations used are; cog-1(sy275), cog-1(sy607),
lin-29(sy292), lin-11(n389), and egl-38(n578). Of two cog-1 tran-
scripts, the longer cog-1A transcript contains a corepressor-
binding domain, whereas the shorter cog-1B transcript does not
(12). sy275 is a missense mutation predicted to affect both
transcripts. sy607 is a deletion that eliminates the cog-1A tran-
script. The two alleles exhibit complementary defects in vulval
development (13). Although both alleles are recessive, it is not
known whether the loss of cog-1 function causes observed
phenotypes. lin-29(sy292) and lin-11(n389) are strong loss-of-
function alleles, and egl-38(n578) is a reduction-of-function
allele. Strains were constructed by using standard methods.

Results and Discussion
Vulval Cell-Type-Specific Gene Expression. A number of genes are
expressed in specific subsets of vulval cells (Fig. 1B). Previously
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described genes of this type include cdh-3 (14), egl-17 (15), lin-3
(16), zmp-1 (9, 17), ceh-2 (9), T04B2.6 (9), F47B8.6 (9), B0034.1
(9), unc-53 (18), egl-26 (11), sqv-4 (19), bam-2 (20), and syg-2
(21). egl-26 was previously reported to express in vulE and vulB2

cells (11). We found that a nuclear-localized egl-26::gfp tran-
scriptional fusion expressed in vulB1, vulB2, vulD, and vulE cells
(Materials and Methods). The expression was somewhat variable
and was observed starting from the mid-L4 stage and continuing

Fig. 1. The pattern of gene expression during late stages of vulval development. (A) An overview of vulval development. Lineal origins of 22 vulval nuclei are
indicated. ‘‘ABCDEFFEDCBA’’ refer to vulval cell types vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF. vulB is the only case in which a single VPC granddaughter
gives rise to two cell types (8). Vulval cell nuclei at each stage are positioned as indicated (left, anterior; right, posterior). (B) A summary of cell-type specificity
and timing of expression in the wild type (Materials and Methods) (9, 11, 13–21, 24–26). Boxes indicate stages at which gene expression is activated. The vertical
order of events within each time block is arbitrary. For egl-17, vulE�vulF expression begins in P6.p (early L3) and persists in their descendants (vulE and vulF) until
turned off in the early L4 stage. This inactivation, which is regulated by lin-29 and lin-11, is indicated by the box marked ‘‘egl-17 OFF.’’ ceh-2 is expressed at a
higher level in vulB1 compared with vulB2. (C) Expression pattern of lin-11. The diagrammed pattern is based on the lin-11::gfp transgene syIs80 (26). (D)
Expression pattern of cog-1. The pattern is based on the cog-1::gfp transgene syIs63 (13). (E) The altered pattern of gene expression in lin-29 mutants (9, 23) (Tables
1 and 2). White boxes with the red outlines indicate loss of expression and loss of egl-17 down-regulation in the lin-29 mutant. lin-29 appears to regulate events
that occur during the mid-L4 to the late L4 stage. (F) The altered pattern of gene expression in cog-1 mutants (Table 3 and Fig. 2). Arrows are drawn with the
assumption that both sy607 and sy275 phenotypes are caused by different reduction of function of the cog-1 gene. Filled boxes with red or blue outline indicate
ectopic expression. (G) Altered pattern of gene expression in lin-11 mutants (26). (H) Altered pattern of gene expression in the egl-38 mutant (16) (Tables 1 and
2). egl-17 expression in vulF is observed in the cog-1(sy275); egl-38 double mutant, suggesting a redundant repression mechanism.
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into the adult stage. The C55C3.5 gene encoding a novel protein
was previously found to express in vulval cells (I. Hope, personal
communication). We found that C55C3.5::gfp was expressed in
vulF cells, starting from the late-L4 and continuing into the adult
stage.

Several conclusions can be drawn from Fig. 1B. First, all seven
cell types exhibit distinct programs of gene expression, despite
the fact that these cells are related by cell lineage and function.
[vulB1 and vulB2 differ in the level of ceh-2 expression but
otherwise have similar expression profiles (9)]. Distinct expres-
sion profiles likely underlie distinct functions of vulval cell types.
For example, lin-3, which encodes an EGF-related signaling
protein, is expressed in vulF cells in the mid-L4 stage (16). This
signal is required for a vulva-to-uterus signaling that induces a
specific fate, uv1, in uterine cells adjacent to vulF.

The pattern of marker expression also reveals a strict temporal
regulation of gene expression (Fig. 1B). For example, cdh-3 is
expressed in early L4, F47B8.6 is expressed in late L4, and
T04B2.6 is expressed �1 day after the L4-to-adult molt (9). For
egl-17, ceh-2, zmp-1, and sqv-4, the timing of gene expression is
different for different vulval cells (9, 15, 19). For example, egl-17
is expressed in vulE and vulF cells in the L3 stage and in vulC
and vulD in the L4 stage.

Trans-Regulation of Vulva Gene Expression. The analysis of the
regulatory network controlling the pattern of gene expression in
the vulva has focused primarily on the effect of transcription
factor mutations on gene expression reporter transgenes. In most
cases, a direct transcriptional regulation of the target has not
been demonstrated. Key results are summarized in Fig. 1 E–H.
So far, important regulators are lin-29 (encoding Zn-finger

transcription factor; Fig. 1E) (9, 22, 23), cog-1 (Nkx6 homeodo-
main; Fig. 1 D and F) (13), lin-11 (LIM homeodomain; Fig. 1 C
and G) (24–26), and egl-38 (PAX 2�5�8; Fig. 1H) (16, 27).

A Temporal Regulator of Gene Expression. lin-29 is required for the
expression of egl-17 in vulC and vulD (23), ceh-2 in vulC (9), and
zmp-1 in vulD and vulE (Fig. 1E, Tables 1 and 2, and Fig. 5, which
is published as supporting information on the PNAS web site)
(9). By contrast, lin-29 in not required for the expression of cdh-3
in vulC, vulD, vulE, vulF (9), ceh-2 in vulB (9), egl-17 in vulE and
vulF (23), and zmp-1 in vulA (9). Moreover, the expression of
egl-17 in vulE and vulF is observed during the L4 stage (23),
suggesting that the mechanism that turns off egl-17 expression in
these cells is compromised (Fig. 5). These lin-29 phenotypes are
not easily explained by cell fate changes between vulval cell types
but suggest a temporal regulatory defect: lin-29 mutations cause
loss of events associated with the mid-to-late L4 time points. This
interpretation of these data is particularly attractive, because
lin-29 mutations are known to cause heterochronic defects in
other tissues, specifically in the L4-to-adult transition in the
lateral hypodermis (22, 28, 29). lin-29 is expressed in all vulval
cells, starting in the mid-L3 stage and continuing through the L4
stage (30).

Cell-Type-Specific Regulators of Gene Expression. We analyzed the
effect of two cog-1 (Nkx6.1�6.2 homeodomain) mutations on the
expression of vulval-cell-specific gene expression reporters (Fig.
1F, Table 3, and Materials and Methods). cog-1(sy275) is a
missense mutation in the homeodomain, and cog-1(sy607) is a
small deletion that eliminates one of two cog-1 transcripts (13).
We found that in the mid-L4 stage, cog-1(sy275) caused ectopic
expression of egl-17 in vulE cells (Fig. 2) and ectopic expression
of ceh-2 in vulC, vulD, and vulE cells and loss of zmp-1 expression
in vulE cells. In contrast, cog-1(sy607) caused loss of cdh-3
expression in vulC, vulD, and vulE cells and loss of ceh-2
expression in vulB. These results indicate that egl-17, cdh-3,
ceh-2, and zmp-1 are regulated by the cog-1 gene. Although some
cog-1 expression is observed in all vulval cells, gfp reporters
suggest that cog-1 is most strongly expressed in vulC and vulD
and weakly in vulE and vulF, implying a cell-type-specific
function (13) (Fig. 1D).

A somewhat similar situation is presented with lin-11 (LIM-
homeodomain) (Fig. 1 C and G). During the L4 stage, lin-11 is
expressed strongly in vulB, vulC, and vulD and weakly in other
vulval cells, suggesting that lin-11 is involved in the specification
of these cell types (24, 26). However, unexpectedly, lin-11 is
cell-autonomously required for expression of most vulval genes
tested, including in cells where the lin-11 level is low (26).

egl-38 is a PAX2�5�8 transcription factor required for expres-

Table 3. Expression of egl-17, ceh-2, and cdh-3 in cog-1 mutants

Reporter Mutations vulA
vulB1 and

vulB2 vulC vulD vulE vulF

egl-17 � 0 0 100 100 0 0
egl-17 cog-1 (sy275) 0 0 100 92 92 0
egl-17 cog-1 (sy607) 0 0 93 100 0 0
ceh-2 � 0 100 0 0 0 0
ceh-2 cog-1 (sy275) 20 90 80 80 88 0
ceh-2 cog-1 (sy607) 0 0 0 0 0 0
cdh-3 � 0 0 100 100 100 100
cdh-3 cog-1 (sy275) 0 0 100 100 100 100
cdh-3 cog-1 (sy607) 0 0 14 14 71 94

Percentages of cells in mid-L4 animals that expressed egl-17::gfp, ceh-2::gfp
and cdh-3::gfp. See Table 4, which is published as supporting information on
the PNAS web site, for number of cells scored.

Table 1. Expression of zmp-1 in vulE and vulF cells

Genotype vulE vulF No. of animals

Wild type � � 80
lin-11 � � 55*
lin-29 � � 50†

cog-1 (sy275) � � 52
egl-38 � � 48
lin-11; egl-38 � � 52
lin-29; egl-38 � � 56
cog-1; egl-38 � � 56

*Ref. 26.
†Ref. 9.

Table 2. Expression of egl-17 in vulE and vulF cells (L4)

Genotype vulE vulF
No. of

animals

Wild type � � 59
cog-1 (sy275) ��� � 46
egl-38 � � 38
cog-1; egl-38 ��� ��� 37
lin-11 —* —* 45†

lin-29 —* —* 43‡

lin-11; lin-29 —* —* 38
lin-11; cog-1 —* —* 43
lin-29; cog-1 —* —* 40
lin-11; cog-1; egl-38 —* —* 35
lin-29; cog-1; egl-38 —* —* 36

*These cells express egl-17::gfp at a low level. We interpret these as the
persistence of L3 expression.

†Ref. 26.
‡Ref. 23.
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sion of the lin-3 gene in vulF cells (16, 27). We found that egl-38
represses expression of zmp-1 in vulF cells, indicated by ectopic
zmp-1 expression in egl-38 mutants (Fig. 1G and Table 2). In
addition, in an egl-38; cog-1 double mutant, egl-17 is expressed in
both vulE and vulF cells. Thus, egl-38 is also capable of repressing
egl-17 expression in vulF cells, although in the wild type, this
function is redundant with the cog-1-dependent mechanism that
restricts egl-17 expression to vulC and vulD. egl-38 is currently the
best example of cell-type-specific factors, promoting expression
of some genes (lin-3) and repressing expression of others (zmp-1,
egl-17) in a single cell type, vulF.

Regulators of the Transcription Factor Network. The transcription
factor network that regulates gene expression in individual cell

types must be regulated by the cell-fate-patterning mechanism
that specifies each cell to a specific fate and does so in a spatially
precise pattern. In the vulva, the cell types occur in a specific
ABCD-EFFE-DCBA pattern (Fig. 1A). Although the full mech-
anism that establishes this pattern is not known, Wnt signals,
mediated by lin-17 (Frizzled-type Wnt receptor) and lin-18
(Ryk-type Wnt receptor), control the anterior�posterior order of
cell types among P7.p descendants (31, 32) (Fig. 3). Analysis of
cog-1 (31) and lin-11 (25) expression in lin-17 and lin-18 mutants
indicates that Wnt signaling establishes the correct spatial pat-
tern of transcription factor expression. As described above
(Tables 1 and 3 and Fig. 1 F and G) (26), cog-1 and lin-11, in turn,
control the expression pattern of egl-17 and cdh-3. Patterns of
egl-17 and cdh-3 expression observed in lin-17 and lin-18 mutants
are consistent with high levels of cog-1 and lin-11 turning on the
expression of these genes (31, 32). Another set of cell-fate-
patterning mechanisms controlling gene expression was revealed
by the analysis of vulE vs. vulF fate specification using the zmp-1
reporter. A dominant-negative Ras or the ablation of the anchor
cell disrupts the pattern of zmp-1 expression in presumptive vulE
and vulF cells, indicating that a Ras-mediated signal, probably
from the anchor cell, establishes the spatial pattern of cell
fates (17).

These results confirm that cell–cell communication is impor-
tant in patterning cell fates, and that signaling pathways operate
through the transcription factor network to control the pattern
of gene expression. Expression patterns of various genes (Fig. 1
B–D) suggest that transcription factors are expressed in all vulval
cells at different levels, whereas genes regulated by them have
relatively simple on�off patterns of expression. This difference
suggests that the spatial pattern becomes progressively more
refined as the information is passed through the regulatory
network. This progressive refinement of pattern is likely a
consequence of integration of information from multiple regu-
latory mechanisms, such as intercellular communication and
feedback regulation. Many of these disparate data inputs are
likely processed at the level of cis-regulatory modules. Thus, the

Fig. 2. Regulation of egl-17 by cog-1. (A and B) Nomarski and epifluores-
cence images of wild-type mid-L4 animal carrying the egl-17::gfp transgene.
Arrows point to vulE nuclei. vulE cells are not fluorescent. (C and D) cog-
1(sy275) animals at the same stage carrying the egl-17::gfp transgene. vulE
cells are fluorescent.

Fig. 3. Link between cell fate patterning mechanisms and gene expression. In general, inductive signals regulate transcription factor networks to regulate gene
expression. In the P7.p (but not P5.p) lineage, Wnt signals transduced by lin-17 and lin-18 control the pattern of cog-1 and lin-11 expression (25, 31). cog-1 and
lin-11 in turn regulate egl-17 and cdh-3 expression (Table 3) (26). It has not been determined whether cog-1 and lin-11 regulate each other. In the P6.p lineage,
an anchor cell signal and a let-60 Ras signal transduction pathway are required to establish the correct pattern of zmp-1 expression pattern (17). zmp-1 expression
is also repressed in vulF by egl-38 PAX2�5�8 (Table 1). It is not known whether the patterning mechanism acts through egl-38. The expression pattern of egl-38
is also not known.
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spatial pattern of transcription factor effects becomes more
restricted than the spatial pattern of transcription factor expres-
sion. This hypothesis is consistent with the observation that cells
affected by lin-11 and cog-1 mutations do not correspond directly
to cells that express high levels of lin-11 and cog-1.

cis-Regulation of Vulva Gene Expression. cis-regulatory elements
(e.g., enhancers) have been analyzed in detail for several genes
expressed in the vulva, most notably egl-17, cdh-3, and zmp-1,
using transgenic assays (33, 34). A comparative genomics anal-
ysis of the regulatory region of orthologs from C. elegans and
Caenorhabditis briggsae has also proved useful.

Here, we focus on the analysis of the egl-17 gene. As shown in
Fig. 1B, this gene is expressed in vulE and vulF cells during the
L3 stage and in vulC and vulD cells during the L4 stage.
Dissection of the 5� regulatory region revealed that there are
three separable enhancer elements, two driving expression in
vulE and vulF and one driving expression in vulC and vulD (33,
34) (Fig. 4A). Notably, each of these elements drives expression
at different times. The distal vulE�vulF element drives expres-
sion in the mid-L3 to early-L4 and the proximal vulE�vulF
element drives expression in the early to mid-L3 stage (34). The
vulDC element drives expression in the mid-L4 stage. Thus, the
expression of egl-17 is produced by the composite activity of

three discrete enhancers, each of which drives both spatially and
temporally restricted pattern of expression. We propose two
models for how the information that operates on these enhancers
is integrated. In one model (Fig. 4B), temporal (blue) and spatial
(red) regulators both bind directly to the egl-17 promoter, and
information integration is achieved directly on the cis-regulatory
element. Alternatively, transcription factors that bind to each of
these promoters may already combine temporal and spatial
information (Fig. 4C). Our results indicate that the vulDC
element regulating mid-L4 expression is likely regulated by
lin-29, lin-11, cog-1, and egl-38. Additional experiments are
necessary to determine the molecular mechanism of information
integration.

Conclusion
The late vulval development of C. elegans offers an excellent
system in which to investigate cell fate determination and
regulation of cell-type-specific gene expression. In particular,
this system combines single-cell resolution with a high degree
of temporal resolution in an easily manipulated model organ-
ism. In many respects, vulval development is reminiscent of
other systems in that transcription factors are expressed in
overlapping domains, and the identity of each domain is
established combinatorially by the presence or absence of
specific subsets of these transcription factors. One interesting
example with possible parallels to the vulva is the fate-
specification mechanism in the vertebrate ventral neural tube
(35). In this system, Nkx6.1 and Nkx6.2 homeodomain proteins
(homologs of cog-1) interact with transcription factors Dbx1
and Dbx2 in a mutually repressive network, and different
activities of repressor proteins help establish the spatial pat-
tern of cell fates (36, 37). It is possible that C. elegans cog-1
functions in a similar manner in the vulva.

Analysis of vulval development also highlights several features
that are not necessarily evident in other systems. First, analysis
of vulval development has revealed a highly complex pattern of
temporal regulation, which is undoubtedly a feature of most
organogenetic processes (for example, see refs. 38 and 39). The
involvement of lin-29, a known regulator of stage-specific de-
velopment in C. elegans, suggests that the global mechanism of
temporal regulation feeds into the development of this particular
organ. Additional mechanisms probably exist that control ex-
pression at other time points. Whether these other time points
are regulated by a global mechanism or in an organ-autonomous
manner is not yet clear.

One concept that has been invoked in analyses of cell or organ
fate specification is that of ground state and selector genes. For
example, in Drosophila appendage development, it has been
proposed that a default ‘‘ground state’’ exists and is modified by
‘‘selector’’ genes to produce an antenna or a leg (40). The
concept can be applied to the level of individual cell types as well
(for example, ref. 41). From this point of view, the cell-type-
specific transcription factors cog-1, lin-11, and egl-38 can be
thought of as selector genes for subsets of vulval cell types. What
is the ground state of vulval cells in the absence of selector genes?
A cell in such a state presumably will not express the cell-type-
specific genes described in Fig. 1 but will retain the epithelial
identity common to all vulval cells. It is unclear whether such a
state has been observed in any of the mutants. Vulval cells in
lin-11 mutants lack most cell-type-specific expression but retain
the ability to undergo some morphogenetic movements charac-
teristic of vulval cells and thus may most closely resemble the
ground state.

In other systems, analyses of coregulated genes have suc-
cessfully identified ‘‘gene batteries’’ (42), sets of genes with
common cis-regulatory elements that are coexpressed (for
example, ref. 43). However, our understanding of vulval
development is still limited, relative to the number of cell types

Fig. 4. cis-regulatory elements of egl-17. (A) A map of the egl-17 5� regula-
tory region. Boxes indicate enhancer elements defined by Cui and Han (34)
and Kirouac and Sternberg (33). ‘‘AND’’ and ‘‘OR’’ logic gate symbols indicate
sites and logic of information integration. Temporal (blue) and spatial (red)
information is integrated as indicated by the logic circuit diagram to produce
the complete egl-17 expression pattern. In one model (B), spatially and
temporally regulated transcription factors each bind directly to the egl-17
cis-regulatory region. The integration of information takes place on enhancer
elements. In the alternative model (C), spatial and temporal cues are inte-
grated at the transcription factor level. These transcription factors (purple)
with both spatially and temporally restricted activity regulate each enhancer
element.
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and the number of distinct stages that require different gene
expression patterns. Consequently, within the relatively small
number of functionally unrelated genes analyzed so far, genes
are more likely to be regulated by distinct mechanisms. Thus,
although gene batteries with multiple genes probably exist in
this system, their analysis requires knowledge of more genes
and a detailed understanding of which transcription factors
regulate their expression.
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The tailless Ortholog nhr-67 Regulates
Patterning of Gene Expression
and Morphogenesis in the C. elegans Vulva
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Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development.
Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell
types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), each with its own unique gene expression profile. The
mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of
the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells
generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription
factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we
identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that
one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells,
namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other
transcriptional regulators cog-1 (Nkx6.1/6.2), lin-11 (LIM), and egl-38 (Pax2/5/8) to generate the composite expression
patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD,
vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex
and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval
lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and
combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell
types.

Citation: Fernandes JS, Sternberg PW (2007) The tailless ortholog nhr-67 regulates patterning of gene expression and morphogenesis in the C. elegans vulva. PLoS Genet 3(4):
e69. doi:10.1371/journal.pgen.0030069

Introduction

Complex gene regulatory networks operating in diverse
cell types and tissues are crucial for development. Diverse
intercellular signals and transcription factor networks con-
trol gene expression within individual cell types, acting on cis-
regulatory modules of target genes [1]. Understanding such
regulation first requires documenting all the regulatory
inputs and outputs from each gene [2]. This information
allows circuit diagrams to be constructed that provide a
global perspective on how diverse cell types acquire their
identity. Gene regulatory networks have been well studied in
a wide range of biological model systems such as endomeso-
derm specification in the sea urchin embryo [3], dorso-ventral
patterning in the Drosophila embryo [4], and mesoderm
specification in Xenopus [5]. The common themes that might
emerge from these studies would advance our understanding
of organogenesis in vertebrates.

The Caenorhabditis elegans vulva is postembryonically derived
from six vulval precursor cells P3.p–P8.p. The central three
vulval precursor cells P5.p–P7.p are induced to adopt 18

(primary) and 28 (secondary) vulval fates via epidermal growth
factor (EGF) and Notch signaling, whereas the remaining
precursors fuse with the hypodermal syncytium hyp7 [6]. The
vulva is composed of seven distinct cell types, each with its
own set of expressed genes and morphogenetic migrations
[7–9]. The P6.p 18 lineages generate the vulE and vulF cells,

while the P5.p and P7.p 28 lineages generate the vulA, vulB1,
vulB2, vulC, and vulD cells. The signals that induce 18 versus
28 fates in the primordial vulval precursor cells are known.
However, the processes that govern patterning and differ-
entiation of the mature vulval cell types are largely unknown
[6]. Both Ras and Wnt pathways are required for the precise
spatial patterning of the 18 vulE and vulF cells [10], and both
Wnt/Ryk and Wnt/Frizzled signaling pathways are necessary
for patterning the P7.p 28 vulA–vulD cells [11–13].
Genes expressed in the mature vulval cell types include

some with known functions and many others without known
physiological roles. lin-3 (EGF) is expressed in vulF and is
required to signal from vulF to uterine uv1 cells [14,15]. egl-17
encodes a fibroblast growth factor (FGF)-like protein that is
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required for migration of the sex myoblasts to their precise
final positions [16,17]. egl-17 is initially expressed in the 18

vulval lineages and is shut off during the L4 stage. Expression
in vulC and vulD is observed during early L4 and persists
throughout adulthood. The vulval expression correlates with
the sites of muscle attachment. egl-26 encodes a novel protein
that contains an H box/NC domain and is expressed in vulB1,
vulB2, vulD, and vulE cells [18,19]. zmp-1 encodes a zinc
metalloprotease and is expressed in vulD and vulE during the
L4 stage and in vulA in adults [9]. ceh-2 encodes a
homeodomain protein that is related to Drosophila empty
spiracles and is expressed in vulB1 and vulB2 cells during the
L4 stage and in vulC upon entry into L4 lethargus [9,20]. pax-2
is a recent gene duplication of the PAX2/5/8 protein EGL-38
[21] and is expressed exclusively in the vulD cells. zmp-1, ceh-2,
egl-26, and pax-2 have no known function in the vulva.

Transcription factor networks in individual vulval cell
types somehow generate a spatially precise pattern of cell
fates [19]. Several transcription factors that regulate gene
expression in the diverse vulval cell types have already been
described [19,22–24]. lin-11, a LIM homeobox transcription
factor, regulates gene expression in all seven vulval cell types
[25,26]. The Nkx6.1/Nkx6.2 homeodomain gene, cog-1, regu-
lates gene expression in vulB, vulC, vulD, vulE, and vulF cells
[19,27]. In contrast, egl-38 encodes a PAX2/5/8 protein that
appears to be the only known example of a vulval cell type–
specific regulatory factor; it promotes expression of certain
target genes and restricts expression of other targets
exclusively in vulF cells [14,19,28]. Additional regulatory
factors need to be identified to elucidate the precise spatial
patterning of the mature vulval cell types.

Here, we identify nhr-67 as a component of the gene
regulatory networks underlying vulval patterning and differ-
entiation. nhr-67 is required for the accurate patterning of
gene expression and regulation of cell fusion in several vulval
cell types and is dynamically expressed in the vulva. nhr-67
interacts genetically with cog-1, egl-38, and lin-11 to produce

the complex expression patterns of their downstream targets.
We demonstrate that the pairwise interactions between these
four regulatory genes vary among the diverse vulval cell types.
These results indicate that nhr-67, cog-1, lin-11, and egl-38 form
a part of a genetic network that generates different patterns
of gene expression in each of the seven cell types.

Results

nhr-67 Regulates Gene Expression in Multiple Vulval Cell
Types
An RNA interference (RNAi) screen of 508 known and

putative transcription factors encoded in the C. elegans
genome (see Table S1) was conducted in a ceh-2::YFP reporter
background. At the time we performed the screen, this was
the best available set. ceh-2 encodes a homeodomain protein
orthologous to Drosophila Empty Spiracles (EMS) and verte-
brate EMX1 and EMX2 and serves as a readout for vulB fate
during the L4 stage [20]. Modifiers of ceh-2 expression are
good candidates for genes involved in patterning and/or
differentiation of 28 vulval descendents. From this screen, we
identified nhr-67 as a gene necessary for negative regulation
of ceh-2 expression in the 18 vulE and vulF cells (Figure 1A–
1B). Reciprocal BLAST searches indicate that nhr-67 encodes
an ortholog of the tailless hormone receptor, which consists of
an N-terminal transactivation domain, a centrally positioned
DNA-binding domain, and a C-terminal ligand-binding
domain. The only other positive was the GATA-type tran-
scription factor egl-18, which was previously shown to be
involved in vulval development [29–31]. Other genes that
should have been positive in the screen (lin-11 and cog-1) were
not isolated from the RNAi screen, thus indicating a high
false-negative rate. Analysis of the nhr-67 deletion allele ok631
revealed severe defects in early larval development (L1
lethality and/or arrest). In order to bypass this early larval
arrest phenotype, we resorted to feeding young L1 larvae with
nhr-67 RNAi and assayed for defects in vulval gene expression.
nhr-67 was also found to be required for negative regulation
of two additional L4-specific markers: egl-26 (wild-type
expression in vulB, vulD, and vulE cells) (Figure 1C–1D) and
egl-17 (wild-type expression in vulC and vulD cells) in the vulF
cells. Thus, nhr-67 activity is necessary for the negative
regulation of expression of several 28 lineage-specific genes
in the 18-derived vulval cells during the L4 stage. Consistent
with previous reports, nhr-67 RNAi results in a highly
penetrant protruding vulva (Pvl) and egg-laying (Egl) defec-
tive phenotype [32] (Figure S1). However, other transcription
factors exhibiting a Pvl RNAi phenotype, such as fos-1, egl-43,
and unc-62, have normal vulval gene expression (unpublished
data).
In addition to its negative regulatory role, we also found

that nhr-67 is necessary for promoting expression of specific
genes. For example, nhr-67 is necessary for zmp-1 expression
in vulA during the adult stage (Figure 1E–1F). nhr-67 is also
required for vulD-specific expression of pax-2 and egl-17
during the L4 stage (Figure 1G–1J). These examples show that
nhr-67 positively regulates gene expression in the secondary
vulA and vulD cells. nhr-67 is also required for positively
regulating gene expression in the 18 vulval cells, namely vulF-
specific expression of lin-3, an EGF-like protein (Figure 1K
and 1L). Therefore, nhr-67 regulates gene expression in at
least four of the seven vulval cell types.

PLoS Genetics | www.plosgenetics.org April 2007 | Volume 3 | Issue 4 | e690604

Genetic Network in the C. elegans Vulva

Author Summary

During development, in which the single-celled egg generates a
whole organism, cells become different from each other and form
patterns of types of cells. It is these spatially defined fate patterns
that underlie the formation of complex organs. Regulatory
molecules called transcription factors influence the fate patterns
that cells adopt. Understanding the role of these transcription
factors and their interactions with other genes could tell us how
cells establish a certain pattern of cell fates. This study focuses on
studying how the seven cell types of the Caenorhabditis elegans
vulva arise. This organ is one of the most intensively studied, and
while the signaling network that initiates vulval development and
sets the gross pattern of cell differentiation is well understood, the
network of transcription factors that specifies the final cell fates is
not understood. Here, we identify nhr-67, a new transcription factor
that regulates patterning of cell fates in this organ. Transcription
factors do not necessarily act alone, and we explore how NHR-67
works with three other regulatory factors (each with human
homologs) to specify the different properties of the vulval cells.
We also demonstrate that the interconnections of these tran-
scription factors differ between these seven diverse cell types, which
may partially account for how these cells acquire a certain pattern of
cell fates.
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In the L3 stage, the early 18 and 28 vulval cell fates can be
distinguished by the patterns of cell division of their
descendents. The 18 fated cell typically gives rise to four
granddaughters that divide transversely (left-right axes);
whereas a subset of the granddaughters derived from a 28

cell divide longitudinally (anterior-posterior axes). To deter-
mine if nhr-67-dependent alterations in gene expression are a
consequence of fate transformations in the early 18 and 28

vulval lineages, we monitored the pattern of the vulval cell
divisions in an nhr-67 RNAi background. In the absence of
nhr-67, the vulval cell lineages appear wild-type in terms of
both cell number and orientation of cell division (unpub-
lished data). Thus, the perturbations in gene expression
caused by reduced nhr-67 function are not the result of gross
abnormalities in the early vulval cell lineages.

nhr-67 Prevents Inappropriate Fusion Events between the
18 Vulval Cells
During the L4 stage, the seven vulval cell types invaginate

cooperatively to assume a characteristic morphology. The
similar cell types subsequently fuse, generating toroid rings
that line the vulval cavity [8]. We wanted to ascertain if the
observed cell fate transformations in nhr-67(RNAi) animals
were possibly due to improper fusion events between the
wrong cell types. Cell fusion defects can be assayed using ajm-
1::GFP (an adherens junction marker) to visualize the cell
number and architecture of the vulval toroids. When
observing the mid-sagittal plane of wild-type animals, ajm-
1::GFP appears as dots between cells. The eight dots on either
side correspond to the seven distinct vulval cell types (Figure
2A). Most nhr-67 RNAi–treated animals do not exhibit
dramatic defects in cell fusion (Figure 2B). The 28 vulval
lineage–derived cells (vulA, vulB1, vulB2, vulC, and vulD)
consistently generate mature toroids. However, inappropri-
ate fusion often occurs (65%, n ¼ 17) between the
presumptive vulE and vulF cells (indicated by the missing
dots at the top of the vulval invagination) (Figure 2C). Since
nhr-67 regulates gene expression in vulval cells other than
vulE and vulF, improper cell fusion events cannot fully
account for all its altered gene expression patterns.
We then wanted to determine if the altered gene

expression occurring in the 18 vulval cells was dependent
on these improper fusion events. We attempted to address
this question using two approaches: (a) by analyzing the effect
of nhr-67 RNAi on the expression of egl-17 and ceh-2
transgenes in an eff-1(hy21) background, and (b) by monitor-
ing the vulval expression levels of eff-1 in animals with
reduced nhr-67 activity. eff-1 is a type I membrane protein
necessary for cell fusion [33]. Disruption of nhr-67 function in
an eff-1-deficient background is still sufficient to cause
upregulation of both egl-17 (Figure 2D and 2E) and ceh-2
(Figure 2F and 2G) in the 18 vulval cells. Thus, the nhr-67-
dependent alterations in gene expression are not dependent
on eff-1-mediated cell fusion. We also observed that eff-1 levels
(strong expression in vulA and vulC cells, weak expression in
vulF cells) are highly elevated in vulD and vulF cells when nhr-
67 gene activity is compromised (Figure 2H and 2I). However,
we also note that eff-1 is not sufficient to rescue the vulE-vulF
fusion defects observed in nhr-67 (RNAi) background (un-
published data). One possibility is that eff-1(hy27) is a
temperature-sensitive allele that fails to completely eliminate
cell fusion. Another possibility is that in addition to eff-1, nhr-

Figure 1. nhr-67 Is Required for Proper Gene Expression in Multiple

Vulval Cell Types

Lateral images of the developing vulva during the L4 (A–D and G–L) and
the adult stage (E and F). (A–L) Nomarski (left), fluorescence (center), and
overlaid (right). Expression of vulval cell fate markers in wild-type (A, C, E,
G, I, and K) and nhr-67 RNAi–treated animals (B, D, F, H, J, and L). In nhr-67
RNAi–treated animals, the vulval morphology is abnormal compared to
wild-type; namely, the migration of vulF cells is defective. (A) In wild-type
animals, syIs55 [ceh-2::YFP] expression is off in the 18 vulF cells (arrows).
(B) syIs55 animals treated with nhr-67 RNAi show ectopic ceh-2
expression in the 18 vulF cells (arrow).
(C) kuIs36 [egl-26::GFP] expression is completely absent in the vulF cells
(arrows).
(D) nhr-67 RNAi results in misexpression of egl-26 in the vulF lineages
(arrowheads).
(E) Wild-type zmp-1::GFP (syIs49) expression is observed in the vulA cells
(arrows).
(F) In contrast, nhr-67 RNAi abolishes the vulA-specific expression
(arrows) of zmp-1.
(G) guEx64 [pax-2::GFP] is expressed exclusively in vulD cells (arrows) in
wild-type animals.
(H) pax-2 expression in vulD is abolished in an nhr-67 (RNAi) background
(arrows).
(I) Wild-type egl-17::GFP (syIs59) expression is observed in the vulD cells
(arrows).
(J) nhr-67 RNAi results in the loss of egl-17 expression in the vulD cells
(arrows).
(K) In wild-type animals, lin-3::GFP (syIs107) is expressed solely in vulF
cells (arrows).
(L) lin-3 expression in vulF cells is eliminated when treated with nhr-67
RNAi (arrows).
doi:10.1371/journal.pgen.0030069.g001
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67 negatively regulates other target genes that mediate cell
fusion.

nhr-67 Is Dynamically Expressed in Multiple Vulval Cells
Previous work reported that an nhr-67 construct containing

6 kb of the promoter region directs expression in several
head neurons [34]. We generated several additional tran-
scriptional reporter constructs that tested the entire nhr-67
coding region, introns and the 39 noncoding region for
enhancer activity using the Dpes-10 basal promoter [35]. An 8-

kb fragment that consisted of 1-kb 59 sequence, the entire
coding region and introns, and 2 kb of the 39 noncoding
region yielded expression in the vulva, the hyp7 epidermal
syncytium, late stage embryos, and the male tail (Figures 3
and 4A). This nhr-67 construct exhibits a dynamic expression
pattern in the vulval cells. During the late L4 stage, nhr-67 is
first observed in vulA cells (Figure 3A) (and occasionally in
vulB1), and this expression is maintained throughout adult-
hood. Expression in vulC is only seen upon entry into L4
lethargus and persists in adults (Figure 3B). Strong vulB1 and
vulB2 expression (and occasional vulD expression) is ob-
served only in young adults (Figure 3C). A 4.5-kb reporter
construct that spans from the fourth intron to the 39

noncoding region is sufficient to drive expression in the
same tissues as seen with the 8-kb fragment (Figure 4B). No
expression is seen in the vulC, vulD, vulE, and vulF cells
during the L4 stage unless nhr-67 or cog-1 activity is eliminated
(see below). Thus, the cis-elements driving the vulval
expression of nhr-67 appear to be located in the region
spanning the fourth intron to the 39 noncoding region. We
then wanted to confirm if these regulatory elements were
capable of interacting with the endogenous promoter of nhr-
67 in order to promote its transcription in the vulva. To test
this, we generated an nhr-67 transcriptional reporter driven
by 1 kb of its native promoter and containing regulatory
sequences downstream of the fourth exon in their normal
context. The nhr-67 transcriptional construct containing the
endogenous promoter recapitulated the vulval and embry-
onic expression pattern observed with the nhr-67::Dpes-10
constructs (Figure 4C). We also examined whether the
upstream regulatory sequences of nhr-67 interact with the
downstream regulatory elements to influence its vulval
expression. This test was accomplished by coinjecting a
transcriptional green fluorescent protein (GFP) construct
that contains a 6-kb upstream sequence of nhr-67 (Figure 4D)
with the 8-kb nhr-67::Dpes-10 construct (Figure 4A) described
above. We find that in the presence of the 6-kb promoter
region, the vulval expression is identical to that of the 8-kb
nhr-67::Dpes-10 constructs. Besides the previously reported
expression in head neurons, we observed expression in the

Figure 2. nhr-67 Prevents Inappropriate Fusion Events between the 18

Vulval Cells

(A–I) Nomarski (left), fluorescence (center), and overlaid (right). The
adherens junction marker ajm-1::GFP is used to visualize the cell number
and architecture of the vulval toroids in wild-type (A) and nhr-67 RNAi–
treated animals (B and C). When observing a mid-sagittal optical section
of L4 hermaphrodites, ajm-1::GFP appears as dots between the vulval
cells. Loss of adherens junction expression signifies a reduction in the cell
number due to a cell fusion defect. (A) In wild-type animals, the eight
dots on either side correspond to the seven distinct vulval cell types
(arrows). The overall vulval morphology of nhr-67 RNAi–treated animals
appears abnormal compared to wild-type.
(B) In some cases, the number of adherens junctions is normal in nhr-67
RNAi–treated animals (arrows).
(C) Reduction of nhr-67 sometimes results in the loss of dots at the top of
the vulval invagination (which indicates an inappropriate fusion event
between the vulE and vulF cells) (arrows). However, the altered gene
expression observed in an nhr-67 RNAi background does not appear to
be dependent on cell fusion defects.
(D) In the absence of eff-1-mediated fusion, ayIs4 [egl-17::GFP] expression
is completely absent in the vulF cells (arrows).
(E) In contrast, depletion of nhr-67 activity in an eff-1 mutant background
is sufficient to cause derepression of egl-17 in the 18 vulF cells (arrows).
(F) In eff-1 mutants, ceh-2 expression is absent in vulF cells (arrows).
(G) Reduction of nhr-67 activity in an eff-1 mutant background results in
ectopic ceh-2 expression in vulF cells (arrow).
(H) In wild-type animals, eff-1::GFP is not expressed in vulF cells (arrows).
(I) eff-1 levels are elevated in vulF cells when nhr-67 activity is
compromised (arrow).
doi:10.1371/journal.pgen.0030069.g002

Figure 3. nhr-67 Is Dynamically Expressed in Multiple Vulval Cell Types

(A–C) Nomarski (left), fluorescence (center), and overlaid (right). All
animals displayed carry the syEx716 transgene in their background. (A)
nhr-67 is robustly expressed in the vulA cells (arrows) during the L4
stage.
(B) vulC expression (arrowheads) is visible upon entry into L4 lethargus.
(C) High levels of nhr-67 expression in vulB1 and vulB2 cells (arrowhead
and arrow) are detectable in young adults.
doi:10.1371/journal.pgen.0030069.g003

PLoS Genetics | www.plosgenetics.org April 2007 | Volume 3 | Issue 4 | e690606

Genetic Network in the C. elegans VulvaII-5



anchor cell (AC) (during mid–late L3 stage) in hermaphro-
dites and the linker cell in males (Figure S2A and S2B).

Regulation of egl-17 and ceh-2 Expression in the 18 Vulval
Cells

We attempted to understand the trans-regulation of vulval
expression in the diverse cell types by analyzing the
regulation of two target genes in detail: egl-17 and ceh-2. To
dissect the trans-regulation of these target genes, we con-
structed various double and triple mutant/RNAi combina-
tions and assayed for alterations in gene expression in the 18

vulval cells.
During the L4 stage, the egl-17 transcriptional reporter is

expressed solely in vulC and vulD, being absent in both vulE
and vulF (Figure 5 and Table 1). nhr-67 RNAi in an otherwise
wild-type background results in an increase of egl-17
expression in the vulF cells (Figure 5 and Table 1). In those
nhr-67 RNAi animals, only one of the four vulF cells exhibits
this ectopic egl-17 expression during the L4 stage. egl-17
expression is consistently absent in the vulF cells of cog-1 and
egl-38 hypomorphic alleles (Figure 5 and Table 1). In
comparison, cog-1 animals treated with nhr-67 RNAi are
qualitatively enhanced (i.e., several vulF cells misexpress egl-
17), whereas egl-38 animals treated with nhr-67 RNAi
displayed a qualitatively and quantitatively higher egl-17
expression in the vulF cells (Figure 5 and Table 1). cog-1 is
necessary for negatively regulating egl-17 expression in the
vulE cells and acts redundantly with egl-38 to negatively
regulate egl-17 in the vulF cells [19] (Figure 5 and Table 1). We

also observed frequent egl-17 upregulation in the vulE cells of
egl-38; nhr-67 (RNAi) doubly perturbed hermaphrodites
(Table 1), which is invariably absent in either singly perturbed
background. Our study provides the first example of egl-38
modulating gene expression in the vulE cell type. Hence, egl-
38, nhr-67, and cog-1 act together to negatively regulate egl-17
expression in the 18 vulval lineages during the L4 stage. Loss
of lin-11 function leads to complete abolition of egl-17 gene
expression in all vulval cells [26] (Figure 5 and Table 1). Lastly,
the ectopic egl-17 expression visualized in the 18 descendents
of cog-1-, egl-38-, and nhr-67-depleted backgrounds is depend-
ent on lin-11 activity (Figure 5 and Table 1). Loss of nhr-67 in
combination with lin-11 yields rare egl-17 expression in
apparently random vulval cell types (;4% of animals).
In wild-type L4 hermaphrodites, ceh-2::YFP expression is

only observed in the vulB cells and is invariably absent in
both vulE and vulF cells. nhr-67 RNAi results in a moderate
frequency of ectopic ceh-2 expression in the vulE and vulF
cells (Table 2). Eliminating lin-11 function leads to complete
loss of ectopic ceh-2 expression in the 18 vulval lineages of nhr-
67 RNAi animals (Table 2). ceh-2 expression is consistently
absent in the 18 vulF cells of cog-1 and egl-38 single mutants
(Table 2). cog-1 mutants exhibit a moderate increase of ceh-2
expression in the vulE cells [19] (Table 2). We also found that
90% of cog-1; egl-38 doubles show increased ceh-2 expression
in vulE cells compared to cog-1 (32%) or egl-38 (0%) single
mutants (Table 2). Thus, analysis of these double mutants
provides us with a second example of egl-38 regulating gene
expression in the vulE cells. As with the egl-17 reporter,

Figure 4. The Regulatory Element(s) Driving the Vulval Expression of nhr-67 Is Present in the Region That Spans from the Fourth Intron to the 39

Noncoding Region

Several transcriptional reporter constructs containing the nhr-67 coding exons (blue rectangles), introns (black lines), and the 39 noncoding region
(yellow hatched rectangle) were generated. The red arrow indicates the presumptive promoter of nhr-67 and the black arrow is proximal to the minimal
Dpes-10 promoter. The yellow rectangle includes 2 kb of the 39 noncoding region. The orange vertical bar indicates the junction between the fourth
exon and fourth intron. Construct (A) consists of 1 kb upstream promoter sequence (red rectangle), the entire coding region (blue rectangles) and
introns (black lines), and 2 kb of the 39 noncoding region (yellow hatched rectangle) attached to minimal Dpes-10::GFP.
Construct (B) spans from the fourth intron (gene sequence downstream of the orange vertical bar) to the 39 noncoding region (yellow rectangle) fused
to minimal Dpes-10::GFP.
Construct (C) is an nhr-67::GFP transcriptional reporter driven by 1 kb of the native promoter region (red rectangle) and contains regulatory sequences
39 of the fourth exon (sequences downstream of the orange vertical bar) and the native 39 noncoding region (yellow rectangle).
Construct (D) contains 6-kb sequence upstream of the predicted first ATG of nhr-67 (purple and red rectangles) appended to minimal Dpes-10::GFP.
doi:10.1371/journal.pgen.0030069.g004
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simultaneous depletion of cog-1 and egl-38 activities results in
a high frequency of ceh-2 misexpression in the vulF cells
(Table 2). Both cog-1 and egl-38 are thus required for negative
regulation of ceh-2 expression in the vulF cells.

Regulatory Interactions between Known Components of
the Vulval Patterning Network during L4
cog-1, lin-11, and nhr-67, all of which regulate different

aspects of vulval gene expression, exhibit dynamic spatial and
temporal expression patterns in the developing vulva [26,27].
egl-38 expression has been observed in the vulF cells [15]. As
mentioned previously, nhr-67 expression is primarily re-
stricted to vulA (and occasionally vulB1) cells during L4 stage.
Yet numerous perturbations in gene expression are observed
in nhr-67 RNAi–treated animals, suggesting that nhr-67 is
indeed functional during the L4 stage in other mature vulval
cell types besides vulA (Figure 1). A similar observation can be
made about cog-1. Wild-type animals occasionally exhibit
weak cog-1 expression in vulE cells but none in vulF cells
(Table 3). However, cog-1 synergistically interacts with egl-38
and nhr-67 to regulate egl-17 expression in the vulF cells
(Figure 5 and Table 1). One attractive hypothesis is that levels
of both these transcription factors are maintained under
strict spatio-temporal control. We thus set out to investigate
the interactions among these regulatory factors by assaying
for alterations in the reporter gene expression in various
mutant backgrounds.
During the L4 stage, lin-11 is consistently expressed in the

28 vulB, vulC, and vulD lineages, and occasionally in the vulA
and vulF cells. Neither cog-1 nor egl-38 mutations alter lin-11
vulval expression [36]. Similarly, reduction of nhr-67 gene
activity also does not impact lin-11 expression in the vulva
(Table 3).
The cog-1 translational reporter is strongly expressed in

vulC and vulD, weakly expressed in vulE, and undetectable in
vulF cells during L4 (Figure 6 and Table 3). We found that cog-
1 levels are increased in the 18 vulF cells of nhr-67 RNAi–
treated hermaphrodites as well as in lin-11 and egl-38 mutants
(Figure 6 and Table 3). nhr-67 RNAi–treated animals also
showed elevated cog-1 expression in the vulE cells (Table 3). In
lin-11mutants, cog-1 levels in vulD are completely abolished as
opposed to the vulC-specific expression, which is only
partially affected (;57% of animals) (Table 3). Overall cog-1
expression levels in lin-11 loss-of-function mutants are
noticeably reduced when compared to the wild-type reporter
background. The frequency of vulD-specific cog-1 expression
is significantly increased in egl-38 mutants (Table 3). cog-1
negatively autoregulates in vulA, vulB1, and vulB2 cells (Table
3).
nhr-67::GFP expression is consistently observed in vulA

during the L4 stage (Table 3). lin-11 mutants only partially
eliminate the vulA-specific expression of nhr-67 (Figure 7 and

Figure 5. Regulation of egl-17 Expression in the 18 Vulval Cells

(A–L) Nomarski (left), fluorescence (center), and overlaid (right). Display
animals from Table 1. Arrows indicate the position of the visible vulF cells
during the mid L4 stage. All animals displayed carry the ayIs4 transgene
in their background. (A) In wild-type animals egl-17 expression is absent
in the vulE and vulF cells.
(B) nhr-67 RNAi typically results in ectopic egl-17 expression in one out of
four vulF cells. In contrast, egl-17 remains off in the vulE cells.
(C) In cog-1(sy275) mutants, egl-17 is misexpressed in vulE cells and is
absent in vulF cells.
(D) cog-1(sy275); nhr-67 RNAi doubles show a markedly stronger
derepression phenotype in both 18 vulE and vulF lineages.
(E) In egl-38(n578) mutants, egl-17 expression is invariably off in both vulE
and vulF cells.
(F) egl-38(n578); nhr-67 RNAi doubles show robust expression of egl-17 in
both vulE and vulF cells.
(G) In lin-11(n389) animals, egl-17 expression is absent.
(H) In lin-11(n389); nhr-67 RNAi doubles, the ectopic egl-17 expression in
vulF is eliminated.

(I) cog-1(sy275); egl-38(n578) mutants misexpress egl-17 in vulE and vulF
cells.
(J) The cog-1 (sy275); egl-38(n578); nhr-67 RNAi triple shows complete egl-
17 derepression in all the vulE and vulF descendants.
(K) In cog-1(sy275); egl-38(n578); lin-11(n389) mutants, egl-17 is com-
pletely absent.
(L) In cog-1(sy275); egl-38(n578); lin-11(n389); nhr-67 RNAi quadruples, egl-
17 expression in the vulva is abolished.
doi:10.1371/journal.pgen.0030069.g005
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Table 3). nhr-67 expression in vulA is completely abolished
only in the absence of both lin-11 and its positive autor-
egulatory activity (Table 3). Overall, nhr-67 expression levels
in lin-11 loss-of-function mutants are noticeably reduced
when compared to a lin-11(þ) background. lin-11 activity is
also required for directing the ectopic nhr-67 expression in

the 18 lineages when the autoregulatory loop is compromised
(Table 3, see below). Also, loss of lin-11 sometimes caused
premature vulC expression of nhr-67 during L4 stage, which
can be interpreted either as a cell type or a temporal
regulatory defect (Figure 7 and Table 3). Reduction of cog-1
function results in increased expression of nhr-67 in vulC and

Table 1. Regulation of egl-17 Expression in the 18 Vulval Lineages

Genotype Phenotype p-Value vulE p-Value vulF

nhr-67 cog-1 egl-38 lin-11 % vulE on (n)a % vulF on (n)b

þ þ þ þ 0 (18) 0 (18) NA NA

RNAic þ þ þ 0 (28) 14 (28) 1.000e 0.018e

þ sy275 þ þ 83 (12) 0 (12) 0.001e 1.000e

þ þ n578 þ 0 (25) 0 (25) 1.000e 1.000e

þ þ þ n389 0 (30) 0 (30) 1.000e 1.000e

RNAid sy275 þ þ 75 (32) 9 (32) 1.000f 0.701f

RNAi þ n578 þ 54 (28) 68 (28) 0.000g 0.011g

RNAi þ þ n389 0 (76) 0 (76) 1.000h .001h

þ sy275 n578 þ 58 (55) 56 (55) 0.472i 0.009i

RNAi sy275 n578 þ 74 (39) 79 (39) 1.000j 0.849j

þ sy275 n578 n389 0 (44) 0 (44) 0.000k 0.000k

RNAi sy275 n578 n389 0 (44) 0 (44) 0.000l 0.000l

All animals carry the ayIs4 transgene in their background. Boldface indicates that p-values are significant.
lin-11(n389) is a strong loss-of-function allele. Both cog-1 and egl-38 are reduction of function alleles:
cog-1(sy275) is a missense mutation in the homeodomain and egl-38(n578) is a missense mutation in the paired domain.
aThis column refers to the % of animals that displayed ectopic egl-17 expression in any of the four vulE cells.
bThis column refers to the % of animals that displayed ectopic egl-17 expression in any of the four vulF cells.
cIn nhr-67 RNAi–treated animals, only one out of four vulF cells exhibit the derepression phenotype.
dIn cog-1(sy275); nhr-67 (RNAi) doubles the derepression phenotype is qualitatively enhanced, i.e., several vulF cells misexpress egl-17.
p-Values were evaluated using Fisher’s exact test:
eSingle mutant/RNAi background compared to wild-type controls.
fnhr-67 (RNAi)–treated cog-1 mutants compared to cog-1 single mutants and nhr-67 RNAi background.
gnhr-67 (RNAi)–treated egl-38 mutants compared to nhr-67 RNAi–treated animals and egl-38 single mutants.
hnhr-67 (RNAi)–treated lin-11 mutants compared to nhr-67 RNAi background.
icog-1; egl-38 double mutants compared to cog-1 and egl-38 single mutants.
jcog-1; egl-38; nhr-67 (RNAi) triply perturbed background compared to nhr-67(RNAi)–treated egl-38 animals.
klin-11; cog-1; egl-38 triple mutants compared to cog-1; egl-38 double mutants.
lnhr-67(RNAi)–treated cog-1; egl-38; lin-11 mutants compared to cog-1; egl-38; nhr-67 (RNAi) triply perturbed background.
doi:10.1371/journal.pgen.0030069.t001

Table 2. Regulation of ceh-2 Expression in the 18 Vulval Lineages

Genotype Phenotype p-Value vulE p-Value vulF

nhr-67 cog-1 egl-38 lin-11 % vulE on (n)a % vulF on (n)b

þ þ þ þ 0 (40) 0 (40) NA NA

RNAi þ þ þ 15 (40) 28 (40) 0.028c 0.002c

þ sy275 þ þ 32 (41) 0 (41) 0.001c 1.000 c

þ þ n578 þ 0 (41) 0 (41) 1.000 c 1.000 c

þ þ þ n389 0 (40) 0 (40) 1.000 c 1.000 c

RNAi sy275 þ þ 44 (48) 19 (48) 0.543d 0.467d

RNAi þ n578 þ 34 (38) 29 (38) 0.135e 1.000e

RNAi þ þ n389 0 (50) 0 (50) 0.010f 0.001f

þ sy275 n578 þ 90 (21) 86 (21) 0.027g 0.000g

All animals carry the syIs54 transgene in their background. Boldface indicates that p-values are significant.
aThis column refers to the % of animals that displayed ectopic ceh-2 expression in any of the four vulE cells.
bThis column refers to the % of animals that displayed ectopic ceh-2 expression in any of the four vulF cells.
p-Values were evaluated using Fisher’s exact test:
cSingle mutant/RNAi background compared to wild-type controls.
dnhr-67 RNAi–treated cog-1 mutants compared to cog-1 single mutant and nhr-67 RNAi background.
enhr-67 RNAi–treated egl-38 mutants compared to egl-38 single mutant and nhr-67 RNAi background.
fnhr-67 RNAi–treated lin-11 mutants compared to nhr-67 RNAi–treated animals.
gcog-1;egl-38 double mutants compared to cog-1 and egl-38 single mutants.
doi:10.1371/journal.pgen.0030069.t002
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vulD during the L4 stage and vulE and vulF during L4
lethargus (Figure 7 and Table 3). Depletion of both cog-1 and
nhr-67 activities leads to a more robust increase in nhr-67
levels in the vulF cells (Table 3). egl-38 mutants sometimes
showed ectopic nhr-67 expression in vulC and vulD cells
during the L4 stage (Figure 7 and Table 3) and significantly
increased its frequency of expression in vulB1 cells (Table 3).

Negative Autoregulation of nhr-67 and cog-1 in 18 Vulval

Lineages
In addition to the cross-inhibitory interactions between

cog-1 and nhr-67 in both the 18 vulE and vulF cells, we also
discovered that they both negatively autoregulate in the same
cell types. Inhibition of nhr-67 by RNAi feeding results in the
robust increase of nhr-67::GFP expression levels in both vulE
and vulF cells (Figure 7 and Table 3). Elevation of nhr-67
transcriptional levels is also visible in the vulC and vulD
lineages of nhr-67 (RNAi) animals during L4 stage. Upregu-
lation of nhr-67 expression in vulC, vulD, vulE, and vulF cells
is also visible with the 4.5-kb nhr-67 transcriptional reporter
construct (Figure 4B) in an nhr-67(RNAi) background
(unpublished data). We used fos-1 RNAi feeding as a control
to exclude the possibility that the observed negative
autoregulation was a nonspecific effect of inducing RNAi.
fos-1 RNAi–treated animals exhibited a strong Pvl phenotype
(at least in part due to its AC invasion phenotype) [37] and
did not alter nhr-67 levels in the 18 lineages (Figure 7 and
Table 3). Similarly, ectopic expression of cog-1::GFP in all 18

vulval descendents is consistently observed when cog-1 activity
is compromised (Figure 6 and Table 3). Thus, nhr-67 and cog-1
appear to be activated in all the mature vulval cell types but

Table 3. Regulatory Interactions between Known Components of the Vulval Patterning Network during L4

Genotype GFP

Reportera
vulA vulB1 vulB2

% on (n) p-Value Intensity % on (n) p-Value Intensity % on (n) p-Value Intensity

þ lin-11::GFP 7 (42) NA þþ 98 (42) NA þþ 98 (42) NA þþ
nhr-67 RNAid lin-11::GFP 10 (30) 0.694 þþ 90 (30) 0.864 þþ 97 (30) 1.000 þþ
þ cog-1::GFP 0 (43) NA � 0 (43) NA � 0 (43) NA �
lin-11(n389)d cog-1::GFP 0 (30) 1.000 � 0 (30) 1.000 � 0 (30) 1.000 �
nhr-67 RNAid cog-1::GFP 0 (28) 1.000 � 0 (28) 1.000 � 0 (28) 1.000 �
cog-1(sy275)d cog-1::GFP 16 (31) 0.017 þ 42 (31) 0.000 þ 32 (31) 0.000 þ
þ cog-1::GFP 0 (45) NA � 0 (45) NA � 0 (45) NA �
egl-38(n578)d cog-1::GFP 0 (43) 1.000 � 0 (43) 1.000 � 0 (43) 1.000 �
þ nhr-67::GFP 86 (95) NA þþ 20 (95) NA þþ 0 (95) NA �
lin-11(n389)d nhr-67::GFP 29 (24) 0.017 þ/�b 0 (24) 0.040 � 0 (24) 1.000 �
cog-1(sy275)d nhr-67::GFP 88 (52) 1.000 þþ 13 (52) 0.503 þþ 0 (52) 1.000 �
egl-38(n578)d nhr-67::GFP 92 (39) 0.890 þþ 46 (39) 0.031 þþ 0 (39) 1.000 �
nhr-67 RNAid nhr-67::GFP 91 (89) 0.830 þþ 21 (89) 0.861 þþ 0 (89) 1.000 �
lin-11(n389); nhr-67 RNAie nhr-67::GFP 0 (58) 0.000 � 0 (58) 0.000 � 0 (58) 1.000 �
cog-1(sy275); nhr-67 RNAif nhr-67::GFP 88 (24) 1.000 þþ 17 (24) 0.784 þþ 0 (24) 1.000 �

Intensity key:þþ¼ very bright GFP expression,þ¼ low GFP expression,þ/�¼ weak GFP expression,�¼ no detectable GFP expression.
In the p-value columns, boldface indicates that p-values are significant.
In the intensity columns, any alterations in signal intensity are indicated by boldface.
aTransgenes used were lin-11::GFP(syIs80), cog-1 ::GFP(syIs63 and syIs64), and nhr-67::GFP (syEx716 and syEx749).
bOverall cog-1 and nhr-67 expression levels in the vulval cells are significantly decreased compared to their respective wild-type controls.
cvulC expression scored prior to L4 lethargus.
p-Values are calculated using Fisher’s exact test:
dCompared to the respective wild-type GFP reporter controls.
elin-11;nhr-67(RNAi) doubly perturbed animals compared to nhr-67 RNAi–treated animals,
fcog-1;nhr-67(RNAi) doubly perturbed animals compared to single cog-1 mutant or nhr-67 RNAi background.
doi:10.1371/journal.pgen.0030069.t003

Figure 6. cog-1 Levels in the 18 VulF Cells Are Antagonized by Multiple

Genes

(A–E) Nomarski (left), fluorescence (center), and overlaid (right). Display
animals from Table 3. All animals displayed carry either the syIs63 (A–D)
or syIs64 (E) transgene in their background. (A) In wild-type animals, cog-
1 expression is absent in the vulF cells (arrows).
(B) nhr-67 RNAi results in the derepression of cog-1 levels in the vulF cells
(arrows).
(C) lin-11(n389) mutants show ectopic cog-1 expression in vulF (arrow).
(D) cog-1(sy275) mutants lose the ability to negatively autoregulate their
expression levels in both vulE and vulF (arrows).
(E) cog-1 is ectopically expressed in vulF in an egl-38 mutant background
(arrow).
doi:10.1371/journal.pgen.0030069.g006
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are then restricted by both autoregulatory and trans-
regulatory mechanisms.

Discussion

nhr-67: A Novel Regulator of Vulval Patterning in C.
elegans

nhr-67 encodes a C. elegans ortholog of tailless, a crucial
regulator of blastoderm patterning in the terminal pathway
of Drosophila embryogenesis as well as neuronal development.
We find that nhr-67 activity is required for the regulation of
gene expression in several mature vulval cell types and is
dynamically expressed in the vulva. For technical reasons, we
have been unable to determine whether nhr-67 acts in the
vulval cells for these functions. However, the expression of
nhr-67 in the vulva and the complexity of the interactions are
most consistent with a primarily autonomous action of nhr-
67. However, given the expression of nhr-67 in the AC, it is
possible that the effects (particularly on the 18 lineage) are
nonautonomous. For example, the AC generates EGF and
Wnt signals and is required to differentiate vulE and vulF
cells, presumably via these signals [10]. Loss of vulF-specific
lin-3 expression in an nhr-67 RNAi background is certainly
consistent with this model. The AC also promotes 18 over 28

fate [38]. The ectopic expression of 28 lineage-specific genes
ceh-2 and egl-17 in the 18 vulval cells is also consistent with this
model. However, lineage analysis of nhr-67 (RNAi) hermaph-
rodites argues that these alterations are not full 18 to 28 cell
fate transformations in the early vulval lineages. In addition,
the observed effects on pax-2 and zmp-1 expression are
inconsistent with this model. It remains a formal possibility
that some of nhr-67 effects in the vulva are due to a role in the
AC.

Our data are consistent with the function of Drosophila
tailless, which facilitates proper gap gene expression at the
posterior end of the blastoderm embryo via its dual activator/
repressor activity [39–41]. Specifically, tailless blocks segmen-
tation and maintains the identity of the terminal boundaries
via repression of Kruppel and knirps activity and promotes
hunchback expression, which is necessary for the establishment

of terminal-specific structures [42,43]. tailless is also necessary
for regulating gene expression during the generation of head
segments as well as anterior brain development [44]. We also
find that nhr-67 prohibits improper fusion events between
related cell lineages, at least partly due to strict spatial
regulation of the fusogen eff-1 in certain vulval cell types.
As discussed below, nhr-67 interacts genetically with three

other transcriptional regulators, cog-1, egl-38, and lin-11, to
produce complex patterns of gene expression, probably
through trans-regulation of cell type–specific enhancers
(Figure 8).

Comparison of the Vulval Network with Other Genomic
Networks
We have uncovered a novel set of genetic interactions

between nhr-67, several transcription factors, and many target
genes that contribute to the identity of distinct vulval cell
types. For example, nhr-67 appears to be particularly
important in the execution of vulF fate and maintaining its
cellular identity via regulation of gene expression and fusion
events between distinct cell types. Not only does nhr-67
inhibit inappropriate gene expression that is associated with
the 28 vulval lineages (Figure 1), but it also promotes gene
expression of the EGF protein LIN-3, which is necessary for
uv1 fate specification and facilitates proper vulval-uterine
connection during development [14]. The functional data
obtained from numerous RNAi experiments demonstrates
that nhr-67 (like its Drosophila ortholog) is a versatile
regulatory gene that operates on at least four of the seven
vulval cell types (vulA, vulD, vulE, and vulF). However, we
have not tested whether any of these approximately ten
interactions are direct.
An interesting feature of the network is our suggestion that

both nhr-67 and cog-1 might negatively autoregulate in the
same vulE and vulF cells. Drosophila melanogaster tailless does
not regulate itself [45], suggesting that nhr-67 autoregulation
is a developmental phenomenon unique to nematodes (C.
elegans). This apparent divergence in tailless regulation
between phyla suggests that a more precise fine-tuning of
tailless levels is required for the execution of accurate

Table 3. Extended.

vulC vulD vulE vulF

% on (n) p-Value Intensity % on (n) p-Value Intensity % on (n) p-Value Intensity % on (n) p-Value Intensity

95 (42) NA þþ 100 (42) NA þþ 7(42) NA þ/� 14 (42) NA þ/�
87 (30) 0.863 þþ 93 (30) 0.866 þþ 0(30) 0.270 � 7 (30) 0.466 þ/�

100 (43) NA þþ 63 (43) NA þþ 49(43) NA þ/� 0 (43) NA �
57 (30) 0.147 þb 0 (30) 0.000 � 73 (30) 0.337 þ/� 50 (30) 0.000 þb

96 (28) 1.000 þþ 86 (28) 0.460 þþ 43 (28) 0.831 þþ 29 (28) 0.001 þþ
90 (31) 0.866 þþ 100 (31) 0.22 þþ 97 (31) 0.071 þþ 71 (31) 0.000 þ

100 (45) NA þþ 44 (45) NA þþ 11 (45) NA þ/� 0 (45) NA �
100 (43) 1.000 þþ 100 (43) 0.020 þþ 12 (43) 1.000 þ/� 9 (43) 0.117 þ

0 (95)c NA � 0 (95) NA � 0 (95) NA � 0 (95) NA �
21 (24)c 0.001 þb 0 (24) 1.000 � 0(24) 1.000 � 0 (24) 1.000 �
10 (52)c 0.007 þþ 40 (52) 0.000 þþ 23(52) 0.000 þþ 4 (52) 0.130 þ

8 (39)c 0.027 þþ 41 (39) 0.000 þþ 0(39) 1.000 � 0 (39) 1.000 �
11 (89)c 0.002 þþ 11 (89) 0.002 þþ 10 (89) 0.003 þþ 11 (89) 0.002 þþ
22 (58)c 0.172 þ 0 (58) 0.014 � 0(58) 0.027 � 0 (58) 0.014 �
54 (24)c 0.003 þþ 63 (24) 0.396 þþ 46 (24) 0.213 þþ 42 (24) 0.011 þþ
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patterning in the C. elegans vulva. In contrast to their different
autoregulatory properties, we find that certain genetic
interactions are indeed conserved between the D. melanogaster
tailless and C. elegans nhr-67; namely tailless restricts the
expression domain of ems in the head segments [44], which
is comparable to nhr-67 repressing the worm ems ortholog ceh-
2 in the inappropriate vulval cells. Additional tailless targets
from other organisms [40,46,47] may also have an impact on
vulval patterning. Predictions can also be made in the
reciprocal direction and used to elucidate vertebrate devel-
opment. For example, FGF signaling is required for both
vertebrate and inverterbrate heart development [48,49]. The
LIM domain protein ISL1 promotes differentiation in a
subset of cardiac progenitor cells and transcriptionally
activates several FGF genes in mice [50]. Our trans-regulation
experiments reveal that both egl-17 and ceh-2 contain cis-

regulatory elements that are directly or indirectly dependent
on cog-1 (Nkx6.1/6.2), egl-38 (Pax2/5/8), nhr-67 (tll), and lin-11
(LIM) activity. These data may provide further insights into
the elaborate regulation of classic developmental genes such
as FGF and EMS, both of which have multiple roles in
metazoan development.

Patterning in vulE versus vulF Lineages
Previous work demonstrated that patterning of the E and F

descendents of the 18 vulval lineage involves both a short-
range AC-dependent signal using the Ras pathway as well as
lin-17 (Wnt) signaling [10]. In the context of egl-17 gene
expression, cog-1 single mutants exhibit increased levels in the
vulE cells only. In contrast, nhr-67 RNAi appears to
exclusively affect egl-17 expression in the vulF cells. The
negative regulatory activities of cog-1 in vulF and nhr-67 in
vulE only become apparent in an egl-38 mutant background
(which shows no phenotype on its own). This difference
suggests that cog-1-mediated negative regulation plays a
greater role in vulE cells whereas nhr-67-mediated negative
regulation functions primarily in vulF cells. One hypothesis is
that vulF cells are biased by proximity to the AC to have
higher levels of nhr-67 compared to cog-1 (Figure 9). The
genetic regulatory interactions within the vulval network

Figure 8. A Summary of the Gene Regulatory Network That Functions

during Vulval Patterning and Differentiation in C. elegans

nhr-67 activity is included along with the other vulval patterning genes:
lin-11, cog-1, and egl-38. Colored arrows represent positive inputs and
colored block arrows represent repressor inputs for target gene
expression in the distinct vulval cell types. The role of egl-38 regulating
egl-17 and ceh-2 gene expression in vulE is revealed by analysis of egl-
38(n578) animals treated with nhr-67 RNAi and cog-1(sy275); egl-38(n578)
double mutants.
doi:10.1371/journal.pgen.0030069.g008

Figure 7. nhr-67 Is Differentially Regulated in the 18 and 28 Vulval

Lineages

(A–G) Nomarski (left), fluorescence (center), and overlaid (right). Display
animals from Table 3. All animals displayed carry either syEx716 (A, D, E,
and F) or syEx749 (B and C) [nhr-67::GFP] transgene in their background.
(A) Wild-type animals treated with control fos-1 RNAi show no alteration
of nhr-67 vulval expression compared to non-RNAi–treated animals. fos-1
RNAi animals exhibit abnormal vulval morphology, yet show wild-type
nhr-67 expression in vulA cells (arrows).
(B) lin-11(n389) mutants partially eliminate the vulA-specific expression of
nhr-67 (arrow).
(C) In a lin-11(n389) background, premature vulC expression (arrows) is
observed sometimes during L4 stage.
(D) cog-1(sy275) mutants misexpress nhr-67 in the 28 vulD cells (arrows).
(E) In a cog-1(sy275) background, nhr-67 levels are highly elevated in the
18 vulE lineages (arrows).
(F) egl-38(n578) mutants show ectopic nhr-67 expression in vulD cells
(arrows).
(G) nhr-67 RNAi feeding results in the robust increase in its own
expression levels in vulF cells (arrow).
doi:10.1371/journal.pgen.0030069.g007
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demonstrate that cog-1 levels are negatively regulated in vulF
cells via four inputs: lin-11, egl-38, nhr-67, and cog-1. In
comparison, nhr-67 expression in vulF cells is modulated by
two antagonistic inputs (cog-1 and nhr-67) and one positive
input (lin-11), thus possibly resulting in its higher levels. These
observations are consistent with a model where nhr-67 acts as
the major negative regulator in vulF cells.

nhr-67 and cog-1 cross-inhibit each other’s transcriptional
activities, specifically in the vulE and vulF cells, implying that
a mutually antagonistic feedback loop exists that exclusively
affects the cells of the 18 vulval lineages. Both cog-1 and its
mammalian ortholog Nkx6.1 have been previously implicated
in bistable loops that reinforce one of two possible stable end
states [51,52]. The cross-inhibitory interactions between nhr-
67 and cog-1 might be relevant in the specification of vulE
versus vulF cell fates. The nature of the bistable loop between
cog-1 and nhr-67, however, is unknown. In particular, the
bistable loop may be a consequence of either direct tran-
scriptional regulation (as implied in Figure 9) or indirect
regulation through an unknown intermediate regulatory
factor.

However, the above observation does not rule out the
possibility that additional regulatory factors might also
contribute to proper patterning of 18 lineages. These other
inputs could presumably operate via several potential
mechanisms such as modulating the balance between cog-1
versus nhr-67 levels, being exclusively active in one 18 cell

type, and interacting at distinct cis-regulatory elements of the
downstream targets.

Patterning Differences between 18 and 28 Vulval Lineages
Given the complexity of the observed vulval regulatory

interactions, we propose that the network operating on each
vulval cell type is unique (Figure 9). A single regulatory factor
may have differential functions in terms of executing
accurate spatio-temporal gene expression in diverse cells.
For instance, lin-11 may upregulate cog-1 levels in the 28 vulC
and vulD cells while antagonizing them in the 18 vulF cells. A
similar argument can be made about the lin-11-dependent
regulation of nhr-67. lin-11 may temporally regulate nhr-67 by
inhibiting its vulC-specific expression during the L4 stage. In
contrast, lin-11 is clearly critical for the positive regulation of
nhr-67 expression in both vulE and vulF cells.
Both cog-1 and nhr-67 are present at high levels in a subset

of the 28 vulval cells, yet are barely detectable in the 18 vulval
cells. Nevertheless, the disruption of either factor yields
obvious defects in 18 vulval cell–specific gene expression. A
cross inhibition circuit, such as we propose for cog-1 and nhr-
67, can be bistable, with stable states that tolerate inherent
fluxes in gene expression (i.e., it would not randomly oscillate
between states) [53–55]. Negative autoregulatory circuits have
been shown to reduce cell–cell fluctuations in the steady-state
level of transcription factors [56] and can speed up the
response times of transcription networks without incurring
the cost of constant protein production and turnover [57].

Figure 9. A Summary of the Identified Genetic Regulatory Interactions That Affect Some of the Distinct Vulval Cell Types

In (A–F and E9 and F9), black arrows represent positive inputs and black block arrows represent repressor inputs for target gene expression that are
functional within a given cell type: vulA (A), vulB (B), vulC (C), vulD (D), vulE (E and E9), and vulF (F and F9).
In (A–D), the larger font size depicts high levels of expression of the represented patterning gene within the specified cell type.
(E and F) This model assumes that the interactions mediated by nhr-67 occur within the vulE and vulF cells. Red block arrows (E and F) indicate that a
specific regulatory factor (nhr-67 in vulF and cog-1 in vulE) acts as a major repressor within the specified cell type. (E9 and F9) This alternate model
presumes that nhr-67 acts in the AC to differentiate between vulE and vulF cells. Signal X could be Ras, Wnt, or some other signaling pathway. Red block
arrows (E9 and F9) indicate that the activity associated with a specific regulatory factor (nhr-67 in vulF and cog-1 in vulE) plays a major role in patterning
gene expression with in the specified cell type.
(G) A color-coded summary of the distinct expression patterns of lin-11 (red), cog-1 (blue), and nhr-67 (green). Each box represents one of the seven
vulval cell types. The colored boxes with the graded pattern represent rare weak expression of the transcriptional reporter, whereas boxes with solid
colors represent robust expression. Colored arrows and block arrows are used to document all the identified regulatory interactions that occur during
L4 patterning in the diverse vulval cell types: lin-11 (red), cog-1(blue), egl-38 (brown), and nhr-67 (green). This model illustrates multiple patterning
differences between the seven mature vulval cell types.
doi:10.1371/journal.pgen.0030069.g009
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These two distinct circuits might enable cells to reach a
developmental state with built-in flexibility, allowing rapid
switching of their fate upon transient inputs (as opposed to
sustained inductive inputs that are metabolically costly). In
this model, dynamic levels of cog-1 and/or nhr-67 expression
could correlate with particular aspects of 18 vulval cell fate
execution. This might account for the elaborate autoregula-
tory and trans-regulatory interactions specifically seen in 18

vulval descendents, as opposed to their 28-derived counter-
parts. We postulate that although all the vulval cells appear to
use the same regulatory factors, their differential effects on
the diverse cell types is what results in accurate gene
expression.

Regulatory Code for the Seven Vulval Cell Types?
During the L4 stage, the gradient of nhr-67 expression is

opposite to that of either cog-1 or lin-11. This difference in
gene expression domain raises the question of whether the
levels of these factors are critical for vulval development. For
example, high levels of lin-11 result in misexpression of egl-17
in vulA and abnormal vulval invagination [26]. Different
concentrations and combinatorial expression patterns of lin-
11, cog-1, and nhr-67 might thus encode mature vulval cell
types (Figure 9). For example, differentiation to the 18 vulF
cell type may entail low levels of LIN-11 and NHR-67 along
with lower levels of COG-1. In contrast, the 18 vulE cells
require medium levels of COG-1 along with low doses of LIN-
11 and NHR-67. vulA and vulB are similar to each other with
respect to maintaining low COG-1 levels. However, vulA cells
are characterized by their high NHR-67 levels and medium
LIN-11 levels as opposed to the reverse situation in vulB1 and
vulB2 cells (medium-low NHR-67, high LIN-11). Lastly, both
vulC and vulD have indistinguishably high levels of LIN-11
and COG-1, and we are unable to precisely define what
distinguishes these two cell types from each other. One
hypothesis is the differential regulation of NHR-67 and COG-
1 in both cell types: COG-1 levels are impacted by egl-38 in
vulD (but not vulC), whereas NHR-67 levels are negatively
regulated by lin-11 in vulC (but not vulD). An obvious
limitation of this proposed regulatory code is that it does not
take into account other transcription factors that may
potentially mediate vulval patterning.

The intricacies of vulval organogenesis can be decon-
structed by rigorously elucidating the genomic networks that
operate within the seven mature vulval cell types. Decipher-
ing this regulatory code will provide valuable information on
network connections and might provide insights into other
examples of organogenesis.

Materials and Methods

Microscopy. Transgenic worms were anesthetized using 3 mM
levamisole and observed using Nomarski optics (http://www.nomarski.
com). Photographs were taken with a monochrome Hamamatsu
digital camera (http://www.hamamatsu.com) and Improvision Open-
lab 4.0.4 software (http://www.improvision.com). The fluorescent
images were overlaid with their respective DIC images using Adobe
photoshop 7.0.1 (http://www.adobe.com). The vulval expression
patterns for all strains except syIs49 were visualized during the late
L4 stage. In the case of syEx716, the vulval expression was also
examined during L4 lethargus and adult stage. In syIs49 animals, vulA-
specific zmp-1::GFP expression was scored in adults only.

Genetics and RNAi. C. elegans strains were cultured at 20 8C using
standard protocols (Brenner, 1974). Transgenes used in this study are
as follows: syIs54 [ceh-2::GFP], syIs55 [ceh-2::YFP], syIs51 [cdh-3::CFP],

syIs49 [zmp-1::GFP], syIs77 [zmp-1::YFP], syIs59 [egl-17::CFP] [9], syIs78
[ajm-1::GFP] [26], syIs107 [lin-3::GFP] [58], ayIs4 [egl-17::GFP] [16], guEx64
[pax-2::GFP] (gift from Chamberlin lab), kuIs36 [egl-26::GFP] [18], syIs63
and syIs64 [cog-1::GFP] [27], syIs80 [lin-11::GFP] [59], syEx716 [8-kb nhr-
67Dpes-10::GFP], syEx749 [8-kb nhr-67Dpes-10::GFP], syEx744 [nhr-67
intron4 Dpes-10::GFP], syEx925 [6 kb upstream nhr-67::GFPþ 8 kb nhr-
67Dpes-10::GFP], syEx865 [nhr-67p::GFP::nhr-67 int4–39end], and
syEx756 [unc-53::GFP]. Alleles used in this study: LGI, lin-11(n389);
LGII, cog-1(sy275), eff-1(hy21); LGIII, unc-119(ed4); LGIV, unc-31(e169),
egl-38(n578), dpy-4(e1166sd), dpy-20(e1282); LGV, him-5(e1490). A com-
plete list of strains is included in Table S2.

Transgenic lines were generated using standard microinjection
protocol that produces high-copy number extrachromosomal arrays
[60]. syEx756 was generated by injecting the pNP10 construct [61] into
unc-119(ed4); him-5 background using unc-119(þ) [62] and pBSKþ
(Stratagene, http://www.stratagene.com) as coinjection markers.

A reverse genetics screen was conducted against 508 transcription
factors (Table S1) from the Ahringer library (Medical Research
Council Geneservice) to assay for alterations in vulval expression
patterns for the ceh-2::YFP transgene. RNAi feeding protocol is similar
to that previously described [32]. Embryos were harvested by
bleaching gravid adults and were placed on a lawn of Escherichia coli
strain expressing double-stranded RNA at 20 8C. Animals were scored
after 36 h (during the L4 stage) using Nomarski microscopy. We
resorted to nhr-67 RNAi feeding for the rest of this study since the
nhr-67 deletion allele (ok631) results in L1 lethality and/or arrest
(International C. elegans Knockout Consortium). All subsequent nhr-67
RNAi feeding experiments were done as described above. nhr-67
RNAi feeding experiments that entailed the restriction of cell fusion
(via a temperature-sensitive allele of eff-1) were conducted at 25 8C.

Generation of nhr-67 reporter transgenes. nhr-67::Dpes-10::GFP
reporter gene constructs: The pPD97–78 vector, which includes the
Dpes-10 basal promoter driving GFP and the unc-54 39 UTR (gift from
Fire lab), was used as a template to generate 2-kb Dpes-10::GFP
products. The primers used for amplification are 5 9-
GCTTGCATGCCTGCAGGCCTTG-39 and 59-AAGGGCCCG-
TACGGCCGACTAGTAGG-39. All nhr-67 gene fragments were am-
plified from the C08F8 cosmid and were stitched together with the
Dpes-10::GFP fragment via PCR fusion [63] and were designated as
‘‘pdd-1 constructs.’’ Construct (1) consists of 1-kb promoter
sequence, the entire coding region, and introns and 2 kb of the 39
noncoding region attached to minimal Dpes-10::GFP. The primers
used to amplify this template are 59-CTGCTCAAAACTTTTGCTCC-
39 (forward) and 59-CAAGGCCTGCAGGCATGCAAGCTTAAA-
GAACTACTGTAGTTTTTG-39 (reverse). Construct (2) spans from
the fourth intron to the 39 noncoding region fused to minimal Dpes-
10::GFP. This product was generated using the forward primer 59-
GTTCGATCATGGATCCTCTCC-39 and the same reverse primer as
construct (1). Construct (3) is an nhr-67p::GFP reporter that contains 1
kb of the native promoter stitched in-frame with a 700-bp coding
fragment of GFP (amplified from the pPD95–69 vector, a gift from
Fire lab). The resulting 1.7-kb gene product was subsequently fused to
4.5 kb of nhr-67 regulatory sequences (that span from the fourth
intron to the 39 noncoding region) via PCR. Construct (4) contains 6-
kb sequence upstream of the predicted first ATG of nhr-67, appended
to minimal Dpes-10::GFP. The following primers were used to amplify
this product: 59-GAACCCGGCGACGTTACGGGGCTTC-39 and 59-
CAAGGCCTGCAGGCATGCAAGCCATCTGTGAAACCGCAGTCAT-
CAT-39.

Reporter constructs were injected into unc-119(ed4); him-5 worms
using unc-119(þ) [62] and pBSKþ (Stratagene) as coinjection markers.
lin-11(n389); syEx749 doubles were constructed by injecting the 8-kb
nhr-67::Dpes-10::GFP construct into lin-11(n389); unc-119(ed4); him-5
background using unc-119(þ) as a rescue marker.

Supporting Information

Figure S1. nhr-67 RNAi Results in a Highly Penetrant Pvl and Egl
Phenotype

A mid-sagittal optical view of an adult nhr-67 RNAi–treated
hermaphrodite.

Found at doi:10.1371/journal.pgen.0030069.sg001 (5.3 MB TIF).

Figure S2. The Upstream Regulatory Sequence Drives nhr-67
Expression in the Gonad

(A and B) Nomarski (left), fluorescence (center), and overlaid (right).
(A) nhr-67 is expressed in the AC in hermaphrodites and (B) in the
linker cell in males.
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Found at doi:10.1371/journal.pgen.0030069.sg002 (3.8 MB TIF).

Table S1. List of Screened Transcription Factor RNAi Clones

Found at doi:10.1371/journal.pgen.0030069.st001 (51 KB XLS).

Table S2. Strain List

Found at doi:10.1371/journal.pgen.0030069.st002 (22 KB XLS).

Accession Numbers

The WormBase Gene IDs (www.wormbase.org) as well as the Refseq
accession numbers (www.ncbi .nlm.nih.gov/entrez /query.
fcgi?db¼Nucleotide) for the genes described in this study are ajm-
1:WBGene00000100 (NM_077135; NM_077137; NM_077136;
NM_171966); cdh-3:WBGene00000395 (NM_066286); ceh-
2:WBGene00000429 (NM_059345); cog-1:WBGene00000584
(NM_182115); eff-1:WBGene00001159 (NM_001026819); egl-
17:WBGene00001185( NM_075706); egl-26:WBGene00001193
(NM_061251); egl-38:WBGene00001204 (NM_069435); lin-
3:WBGene00002992 (NM_171418;NM_171919;NM_171918); lin-
11:WBGene00003000 (NM_060295); nhr-67: WBGene00003657
(NM_069693); pax-2:WBGene00003938 (NM_068112); unc-53:

WBGene00006788 (NM_001027000;NM_001026999); and zmp-
1:WBGene00006987 (NM_171138).
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Summary 

Regulation of gene expression (pattern formation) is responsible for the spatial 

organization of specialized structures (e.g., organs) in the overall body plan. Spatially 

defined gene expression patterns are the product of transcription factor networks 

operating within specific boundaries. It is thus necessary to evaluate the different roles of 

these transcription factors so as to deconstruct the patterning events that lead up to 

organogenesis. In this chapter, we extend our knowledge of the gene regulatory network 

that controls vulval patterning and morphogenesis. Several key transcription factors (lin-

11, nhr-67, and cog-1) maintain cell identity by regulating target gene expression and 

restricting inappropriate fusion between the distinct vulval cell types. We uncover 

additional regulatory interactions with egl-38, further illustrating recurrent network 

themes such as boundary repression, lockdown mechanisms and, cell-type specific 

differentiation programs. Here I highlight the similarities and differences of the vulval 

network strategies (compared to other well-characterized networks) and speculate on the 

causality behind the network architecture in a specific subset of the vulval cells (vulE and 

vulF). We argue that the collaboration of these general network motifs with the novel 

regulatory motif (cross inhibition in conjunction with dual negative autoregulation, 

described in Chapter II) is what rapidly differentiates the 1° vulE and vulF lineages from 

each other. 

Introduction 

Complex morphologies are the product of spatially defined fate patterns in diverse 

cell- and tissue-types. Establishment of these precise fate patterns is dependent on the 

accurate execution of spatio-temporal gene expression. Understanding how complex gene 
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expression patterns are generated is crucial in deciphering events that lead up to 

organogenesis. Typically, intercellular signals and transcription factor networks act on 

cis-regulatory modules to regulate target gene expression within individual cell types 

(Levine and Davidson, 2005). Gene regulatory networks orchestrate diverse processes 

such as fate specification, patterning of gene expression, differentiation, and 

morphogenesis. These networks also provide direct visualization of all the elaborate 

interconnections between regulatory genes, signaling components, and their downstream 

effectors. Dorsal-ventral patterning and segmentation in Drosophila, endomesoderm 

specification in Strongylocentrotus purpuratus, and mesoderm specification in Xenopus 

represent a few of the contemporary regulatory networks that have been well 

characterized (Koide et al., 2005; Ochoa-Espinosa et al., 2005; Oliveri and Davidson, 

2004; Stathopoulos and Levine, 2004). However, the vast majority of these intensively 

studied examples feature embryonic networks. Comparison of gene regulatory networks 

in diverse species at distinct developmental stages is necessary so as to broaden our 

general views on organ morphogenesis. 

The postembryonic C. elegans vulva is an elegant model to dissect the genomic 

networks that regulate gene expression and organogenesis. High-resolution experimental 

approaches are plausible in the nematode because of features like reverse genetics, trans-

genesis and invariant cell lineage  (Lee et al., 2004). The C. elegans vulva is the organ 

that serves as a channel for transport of fertilized eggs and sperm and connects the uterine 

lumen to the external environment. The vulval cells arise from a group of precursor cells 

(P3.p–P8.p) generally referred to as vulval precursor cells (VPCs). During the mid- third 

larval stage, the central three VPCs P5.p–P7.p are induced to adopt vulval fates via EGF 
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and Notch signaling, whereas the remaining three VPCs adopt non-vulval fates 

(Sternberg, 2005). During the L4 (fourth larval) stage, seven terminally differentiated 

vulval cell types arise, each with its own unique gene expression profile and 

morphogenetic migration patterns (Inoue et al., 2002; Sharma-Kishore et al., 1999). The 

P6.p descendents constitute the 1° vulE and vulF cells, whereas the P5.p and P7.p 

descendents constitute the 2° vulA, vulB1, vulB2, vulC, and vulD cells. While the 

signaling network that initiates vulval development and sets the gross pattern of cell 

differentiation is well characterized, the network of transcription factors that specifies the 

final seven cell fates is not understood (Sternberg, 2005).  

Each vulval cell type can be described as a specialized epithelial cell with its own 

set of properties. For example, the vulA cells which form the base of the reproductive 

organ, attach to the hypodermal syncytium. In contrast, the vulF cells which comprise the 

innermost portion of the vulva directly connect to the uterus. The differential gene 

expression programs in these discrete cell types might explain their underlying 

specialized functions. In this chapter, we broaden our knowledge of the vulval regulatory 

network that differentiates the mature cell types and directs organogenesis. The intricate 

connections between the different transcription factors and their targets demonstrate that 

the network architecture for each of the vulval cell types is distinct.  

     

Materials and Methods 

Microscopy 

Transgenic worms were anesthetized using 3 mM levamisole and observed using 

Nomarski optics (http://www.nomarski.com). Photographs were taken with a 
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monochrome Hamamatsu digital camera (http://www.hamamatsu.com) and Improvision 

Openlab 4.0.4 software (http://www.improvision.com). The fluorescent images were 

overlaid with their respective DIC images using Adobe Photoshop 7.0.1 

(http://www.adobe.com). 

 

Genetics and RNAi 

C. elegans strains were cultured at 20°C using standard protocols (Brenner, 

1974). Transgenes used in this study are as follows: syIs54 [ceh-2::GFP], syIs51 [cdh-

3::CFP], syIs101[dhs-31/T04B2.6::yfp], syIs61[F47B8.6::gfp] (Inoue et al., 2002), 

syIs78 [ajm-1::GFP] (Gupta et al., 2003), syIs107 [lin-3::GFP] (Hwang and Sternberg, 

2004), guEx64 [pax-2::GFP] (gift from Chamberlin lab), guEx877 [egl-38::GFP] (gift 

from Chamberlin lab), kuIs36 [egl-26::GFP] (Hanna-Rose and Han, 2002), syEx724 

[bam-2::GFP], syEx756 [unc-53::GFP]. Alleles used in this study: LGI, lin-11(n389); 

LGII, cog-1(sy275), lin-29(n333), lin-29 (sy292); LGIII, unc-119(ed4); LGIV, egl-

38(n578); LGV, him-5(e1490). 

Transgenic lines were generated using standard microinjection protocol that 

produces high-copy-number extrachromosomal arrays (Mello et al., 1991).  syEx756, 

syEx724, and syEx[TRB202] were generated by reinjecting the constructs pNP10 

(Stringham et al., 2002) and pAC13 (Colavita and Tessier-Lavigne, 2003)   respectively 

into unc-119(ed4); him-5 background using unc-119(+) (Maduro and Pilgrim, 1995) and 

pBSK+ (Stratagene, http://www.stratagene.com) as coinjection markers. 

We resorted to nhr-67 RNAi feeding for this study since the nhr-67 deletion allele 

(ok631) results in L1 lethality and/or arrest (International C. elegans Knockout 
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Consortium). The nhr-67 RNAi feeding protocol is similar to that previously described 

(Simmer et al., 2003). Briefly, embryos were harvested by bleaching gravid adults and 

were placed on a lawn of Escherichia coli strain expressing double-stranded RNA at 

20°C. Animals were scored using Nomarski microscopy after 36 h (during the L4 stage). 

 

Results 

lin-11, lin-29, cog-1, egl-38, and nhr-67 form a transcriptional network that regulate 

vulval patterning of gene expression 

There are currently around 32 reporter genes that are expressed during different 

temporal windows in the diverse subsets of the vulval cells (Table 1). A quarter of these 

transgenic reporters encode sequence-specific transcription factors and the rest encode an 

assortment of catalytic proteases, structural proteins, signaling molecules and guidance 

cues. Although the physiological relevance for some of these vulval genes is not entirely 

understood, it is presumed that they all contribute in some way to the specialization of the 

discrete vulval cell types. lin-11 (Freyd et al., 1990; Gupta et al., 2003), lin-29 (Newman 

et al., 2000), cog-1 (Inoue et al., 2005; Palmer et al., 2002), egl-38 (Chamberlin et al., 

1997; Chang et al., 1999; Inoue et al., 2005) were previously shown to regulate 

expression of a small subset of these vulval genes. nhr-67, the tailless hormone receptor 

was initially identified in a reverse genetics screen as a regulator of ceh-2 expression 

(described in Chapter II). In collaboration with Ted Ririe, we sought to expand the vulval 

network by genetically perturbing the above four transcription factors in various 

transgenic reporter backgrounds. Our collective findings are all summarized in Fig. 1. 

The current trend of the network depicts lin-11 as the major positive regulator of vulval 
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gene expression whereas cog-1, nhr-67 and egl-38 function as boundary repressors, 

particularly in the 1° vulE and vulF lineages. 

   

Components of the vulval network regulate cell fusion 

During the L4 stage, the specialized vulval cell types invaginate to assume a 

characteristic morphology. The similar cell-types fuse together and generate seven 

sequential toroid rings that line the vulval lumen. One of the general features all the 

vulval cell-types share is the expression of ajm-1, a component of the apical junction that 

connects to adjacent cells in epithelial tissues. We wanted to ascertain whether the 

components of the transcription factor network also play a role in maintaining the general 

attributes of the vulval epithelial cells in addition to cell-type specific gene expression. 

The cell number and architecture of the vulval toroids can be assessed using the ajm-

1::GFP reporter, which localizes to adherens junctions (Fig. 2). We previously found that 

nhr-67 RNAi-treated animals sometimes display cell-fusion defects that are restricted to 

the vulE and vulF cell types (Chapter II). egl-38 mutants lack any fusion defects, 

although the vulF cells are mispositioned (Rajakumar and Chamberlin, 2006). cog-

1(sy275) mutants were frequently missing 1–2 toroid rings as opposed to wild-type 

hermaphrodites (Fig. 2). Unlike nhr-67, cell fusion is defective in a broader range of cell 

types (vulA, vulB, vulC, vulD, and vulE). lin-11(n389) mutants consistently displayed 

the most dramatic fusion defects in that the majority of the toroid rings were missing (as 

many as 5 toroid rings) (Fig. 2) (Gupta et al., 2003). Fusion defects in lin-29 mutants 

have not been assessed. We thus demonstrate that several components of the vulval 
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transcription factor network maintain the general identity of the vulval cells by regulating 

cell fusion, albeit to different degrees. 

 

Regulatory interactions with egl-38  

As described above and in Chapter II, a network of mutually interacting 

transcription factors regulates patterning of gene expression in the diverse vulval cell 

types. lin-11, cog-1, egl-38, and nhr-67 are immersed in a complex network of mutual 

and autoregulatory interactions (Chapter II). This elaborate network establishes cell 

identity and ensures the execution of cell-type-specific gene expression programs. The 

recent availability of an egl-38::GFP transcriptional reporter allows us to investigate the 

effects of the different transcription factors on its vulval expression (Rajakumar and 

Chamberlin, 2006). During the L4 stage, egl-38 expression has been detected exclusively 

in the vulF cells (Fig. 3). Disruption of nhr-67 gene activity via RNAi results in the 

abolition of vulF-specific egl-38 expression (Fig. 3). cog-1(sy275) mutants did not alter 

egl-38 vulval expression. egl-38 levels in the vulva are downregulated when egl-38 

function is compromised, indicating that it positively autoregulates in vulF cells (Fig. 3). 

The effects of lin-11 on egl-38 transcriptional activity have not been evaluated.  

 

Discussion      

Network strategies employed during vulval patterning and morphogenesis 

The vulval network encompasses a broad spectrum of network strategies such as 

boundary repression, stable feedback loops, combinatorial control, and negative 

autoregulation. For example, the expression boundary of cog-1 is reinforced by an 
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assembly of mutual and autoregulatory interactions, thereby preventing any inappropriate 

transcriptional activity in the terminally differentiated vulA, vulB, vulE, and vulF cell 

types. An illustration of a stable feedback loop in the vulval network would be the “and” 

logic circuit observed in the vulA cells. lin-11 activity is necessary to drive vulA-specific 

expression of nhr-67, which is subsequently required to turn on zmp-1 (an effector gene). 

In addition to the lin-11 input, nhr-67 positively autoregulates in vulA, thus creating a 

stable feedback loop that maintains its differentiated regulatory state over time. 

Combinatorial control circuits are also a prominent feature of the vulval patterning 

network. For instance, both cog-1 and egl-38 single mutants lack vulF specific defects in 

egl-17 expression. Their regulatory roles in the vulF cells become unmasked only when 

both of their activities are compromised. The advantage of having such built-in 

redundancy is that it ensures the accurate execution of gene expression programs. Lastly, 

negative autoregulation appears to be a prevalent network motif in several vulval cell 

types, especially vulE and vulF cells. This regulatory motif speeds up the response time 

of gene circuits and is particularly useful when making rapid decisions about cell fates 

(Rosenfeld et al., 2002).  

Thus the vulval network appears to utilize many of the differentiation strategies 

employed by other model systems. We also note that the combination and architecture of 

the various network strategies is divergent within the seven cell types. We postulate that 

these differences in the network architecture will partly account for how and why the 

diverse vulval cell types execute their final fates.                 
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Plausible links between cell fusion and cell fate transformation? 

Three of the four tested transcriptional regulators (lin-11, nhr-67, and cog-1) have 

demonstrable function when it comes to restricting inappropriate heterotypic cell fusion 

events. One plausible explanation for cell fate transformation is the occurrence of 

improper fusion events between the wrong cell types. In the case of reduced nhr-67 

function, the cell fusion defects are specific to the 1° vulval lineages and cannot account 

for the altered gene expression patterns observed in the 2° vulval lineages (vulA and 

vulD). The role of nhr-67 in cell fusion is partially attributable to deregulation of the 

fusogen eff-1 (Chapter II). Loss of eff-1 however is not sufficient to rescue fusion defects 

in nhr-67 RNAi animals, which in turn suggests that nhr-67 negatively regulates 

additional targets that mediate fusion (data not shown). In contrast, egl-38 impacts gene 

expression in vulB, vulC, vulD, vulE and vulF (Chapter II). The alteration of these vulval 

expression patterns in egl-38 mutants is not the consequence of fusion defects since the 

cell number and overall architecture of the toroid rings is wild-type (Rajakumar and 

Chamberlin, 2006). At present, we lack any conclusive evidence that shows a correlation 

between cell fusion defects and perturbed gene expression patterns in cog-1 and lin-11 

mutants.  One possibility is that cog-1 and lin-11 impede cell fusion events so as to 

forestall any cell fate transformations. Alternatively, the two regulatory factors might 

function in two discrete processes during vulval organogenesis: regulation of cell fusion 

and patterning of gene expression. 

eff-1 encodes a type I membrane protein that is essential for developmental cell 

fusion. Homotypic cell fusion events between the seven vulval cell types are completely 

blocked in an eff-1 mutant background (Mohler et al., 2002), and overexpression of eff-1 
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via heat shock is sufficient to fuse vulval cells that do not normally fuse (Shemer et al., 

2004). Strict spatial control of such a fusogen is thus essential to maintain the structural 

integrity of the vulva. We have shown that eff-1 is one of the two physiologically relevant 

targets of nhr-67 during vulval morphogenesis (Chapter II). Monitoring eff-1 levels in 

cog-1 and lin-11 mutants would address whether these transcription factors also regulate 

the activity of the fusogen by spatially restricting its expression. 

   

Flexibility between vulE and vulF fates  

Our group previously demonstrated that patterning between the E and F lineages 

requires both a short-range anchor cell (AC) dependent signal, as well as Wnt signaling 

(Wang, 2000). However, the downstream transcription factor network that specifies the 

properties of the 1° vulval cells was unknown. The regulatory functions of nhr-67, cog-l, 

and egl-38 in the 1° vulval cells are similar in that they inhibit the expression of several 

L4-specific genes (ceh-2 and egl-17), that are hallmarks of 2° fate (Chapter 2). However, 

our understanding as to how these regulatory genes differentiate between the two possible 

1° vulval cell fates was limited. As described in Chapter II, cog-1 and nhr-67 inhibit both 

one another and themselves exclusively in the 1° vulE and vulF cells. We speculated that 

these two distinct circuits might enable cells to reach a regulatory state with built-in 

flexibility, allowing rapid switching of their fates upon transient inputs. Our recent 

interaction data with egl-38 provides us with some insight into the possible relevance of 

this striking biological circuit (Fig. 4).  

We previously hypothesized that the vulF cells are biased by proximity to the AC 

to have higher levels of nhr-67 compared to cog-1. Conversely, we argued that elevated 
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levels of cog-1 compared to nhr-67 correlate with vulE fate. We have now shown that 

nhr-67 activates egl-38 expression in the vulF cells, which is subsequently necessary for 

uv1 fate specification (Chang et al., 1999). Establishment of a proper vulval-uterine 

connection is a key property that is associated with execution of vulF fate. egl-38 is also 

required for the repression of certain ‘vulE characteristics’ in the vulF cells, namely 

inhibition of zmp-1 expression. Furthermore, egl-38 positively autoregulates in vulF cells, 

thereby locking down its differentiation state and eliminating any dependence on initial 

transient inputs. These data are thus consistent with our previous model where elevated 

nhr-67 levels promote the execution of vulF fate in the 1° vulval cells. In light of these 

new findings, it is even more conceivable that the mutual and auto-inhibitory circuits of 

nhr-67 and cog-1 promote rapid fate switching in response to altered intra/intercellular 

inputs. The observation of E lineages compensating for uv1 fate specification (a vulF 

specific property) when F lineages are disrupted, is consistent with this model (Chang et 

al., 1999).  A rapid fate switching mechanism in the 1° vulval cells would ensure the 

establishment of a proper vulval-uterine connection especially in the event where the 

vulF cells are damaged. This feature of built-in flexibility serves as a failsafe mechanism 

to guard against environmental damage or internal errors that occur during 

organogenesis. 
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Figure Legends: 
 
 
Fig. 1: Summary of network that functions during vulval patterning and 

differentiation in C. elegans. Diagram includes the activities of cog-1, nhr-67, egl-38, 

lin-11, and lin-29. Colored arrows represent positive inputs and colored block arrows 

represent repressor inputs for target gene expression in the distinct vulval cell types. 

 

Fig. 2: Components of the vulval patterning network regulate cell fusion. (A–C) 

Nomarski (left), fluorescence (center), and overlaid (right). The adherens junction marker 

ajm-1::GFP is used to visualize the cell number and architecture of the vulval toroids in 

wild-type (A), cog-1(sy275) (B), and lin-11(n389) (C) mutants. When observing a mid-

sagittal optical section of L4 hermaphrodites, ajm-1::GFP appears as dots between the 

vulval cells. Loss of adherens junction expression signifies a reduction in the cell number 

due to a cell fusion defect. (A) In wild-type animals, the eight dots on either side 

correspond to the seven distinct vulval cell types (arrows). The overall vulval 

morphology of cog-1 and lin-11 mutants appears abnormal compared to wild-type. (B) 

http://www.wormbook.org)/
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Disruption of cog-1 activity often results in the loss of a single toroid ring. The arrow 

indicates an inappropriate fusion event between the vulC and vulD cells. (C) lin-11 

mutants exhibit the most dramatic fusion defects as they lack most of the vulval toroid 

rings (arrows). 

 

Fig. 3: egl-38 expression in the vulF cells is dependent on several regulatory inputs. 

(A–C) Nomarski (left), fluorescence (center), and overlaid (right). All animals displayed 

carry the guEx877 [egl-38::GFP] transgene in their background. (A) In wild-type 

animals, egl-38 expression is detected exclusively in the vulF cells (arrows). (B) nhr-67 

RNAi results in the abolition of egl-38 expression in the vulF cells (arrows). (C) egl-38 

(n578) mutants lose the ability to positively autoregulate their expression levels in vulF 

(arrows).  

 

Fig. 4: Differentiation of vulE vs. vulF. Arrows represent positive inputs and block 

arrows represent repressor inputs for target gene expression. Gray font indicates no 

detectable expression within the cell type whereas black font indicates detectable 

expression levels. Red circle indicates that the activity associated with a specific 

regulatory factor (nhr-67 in vulF and cog-1 in vulE) plays a major role in patterning gene 

expression within the specified cell type. (A and B) This model assumes that the 

interactions mediated by nhr-67 occur autonomously in the vulE and vulF cells. (C and 

D) This alternate model presumes that nhr-67 acts in the AC to differentiate between 

vulE and vulF cells. Signal X could be Ras, Wnt, or some other signaling pathway.  
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Table 1: 
 

Gene Expression (L4, adult)
bam-2 B,D,E, F 

C55C3.5 F 
unc-53 C, D 

lin-3 F 
egl-38 F 
nhr-67 A, B, C 
lin-39 A 
lin-29 all vulval cells 

nas-37 B 
cog-1 C, D, E 
col-7 A 

dhs-31 B1, B2, D 
daf-6 E, F 
pax-2 D 

B0034.1 E, F 
egl-26 B, D, E 
zmp-1 A, D, E 
ceh-2 B1, B2, C 
cdh-3 C, D, E, F 
col-48 B1, B2, C, D 

F48B9.5 C, D 
grd-5 B1, B2 
grl-1 B2 
sqv-4 C, D, E, F 
syg-2 E, F 
grl-4 A, B1, B2, D 

grl-10 A, B1 
grl-12 C 
grl-15 A, B1, B2, C, D 
egl-17 C, D (E, F in late L3) 

F47B8.6 C, D, E, F 
lin-11 all vulval cells 
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Appendix: 
 

Cis-regulatory analysis of ceh-2 

Preliminary cis-regulatory analysis of ceh-2 demonstrates how different tissue-specific 

regulatory elements integrate diverse trans-acting inputs and generate a specific output, a 

crucial determinant of pattern formation.  

 
Generation of ceh-2 reporter transgenes 

ceh-2::Δpes-10::GFP reporter gene constructs: The pPD97-78 vector, which 

includes the Δpes-10 basal promoter driving GFP and the unc-54 3′ UTR (gift from Fire 

lab), was used as a template to generate 2-kb Δpes-10::GFP products. The primers used 

for amplification are 5′ GCTTGCATGCCTGCAGGCCTTG 3′ and 5′ 

AAGGGCCCGTACGGCCGACTAGTAGG 3′. All ceh-2 gene fragments were amplified 

from the C27A12 cosmid and were stitched together with the Δpes-10::GFP fragment via 

PCR fusion (Hobert, 2002). The syIs54 reporter contains ~ 10 kb genomic sequence that 

lies immediately upstream of the ceh-2 translational start site (Inoue et al., 2005). The 5.3 

kb promoter sequence that is proximal to the translational start site was amplified with 

the following primers: (forward) 5’ GACAAAACTGGCATGAGCC 3’ and (reverse)   

5’CAAGGCCTGCAGGCATGCAAGCATGTTGCCATACAGATCCGC 3’. 

 The remaining 4.7 kb distal upstream fragment was generated using the following 

primers 5’ CTAAAAATGCTCGGGATGCTC 3’ (forward) and 5’  

CAAGGCCTGCAGGCATGCAAGCCATGCCAGTTTTGTCCACAAG  3’ (reverse). 

The pTRB202 plasmid was a gift from the Burglin lab (Aspöck et al., 2003). Reporter 
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constructs were injected into unc-119(ed4); him-5 worms using unc-119(+) (Maduro and 

Pilgrim, 1995) and pBSK+ (Stratagene) as coinjection markers. 

Results: 

Cis-regulatory analysis of L4 specific ceh-2 expression: 

Genotype (n) Transgene vulA vulB vulC vulD vulE vulF

+  (41) syExTRB202 - + - - - - 

nhr-67 (RNAi)  (44) syExTRB202 - + - - - + 

+  (40) syIs54 - ++ - - - - 

nhr-67(RNAi) (40) syIs54 - ++ - - ++ ++ 

cog-1 (sy275) (41) syIs54 - ++ ++ ++ ++ - 

lin-11(n389 )(40) syIs54 - - - - - - 

+  (24) syEx 5.3k ceh-2 - ++ ++ ++ - - 

nhr-67 (RNAi)  (22) syEx 5.3k ceh-2 - ++ ++ ++ ++ ++ 

+  (21) syEx 4.7k ceh-2 - - - - - - 

 

Key: 

++ : Robust expression 

+: Faint expression 
 
- : No expression 
 

 

The TRB202 ceh-2 translational fusion, which includes 5 kb of the upstream region up to 

the third intron, drives vulB expression at very low frequencies. However disruption of 

nhr-67 activity in this transgenic background occasionally results in the derepression of 
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ceh-2 levels in vulF. The transcriptional reporter syIs54 contains 10 kb sequence 

upstream of the translational start site. This particular reporter (as opposed to TRB202) 

displays frequent vulB expression during L4 stage. As described in Chapter II, this 

transgene contains elements that are responsive to lin-11, cog-1, and nhr-67 function.  

We then split the 10 kb upstream sequence into two fragments: syEx 5.3k and syEx 4.7k. 

The syEx 5.3k construct contains the 5.3 kb sequence proximal to the translational start 

site. syEx4.7kb contains the 4.7 kb distal upstream sequence that immediately flanks the 

syEx5.3k sequence. syEx4.7kb transgene did not display any vulval expression. syEx5.3k 

displayed robust vulval expression in vulB and additional expression in vulC and vulD.  

Reduction of nhr-67 activity in the syEx5.3k transgenic background resulted in ectopic 

expression of vulE and vulF. These data indicate that the 5.3 kb immediately upstream of 

the ceh-2 translational site contains the nhr-67 responsive elements, and that the third 

intron of ceh-2 contains vulval repressor elements that are separable from those in the 

upstream promoter region. Further dissection of the ceh-2 upstream regulatory sequences 

and isolating promoter fragments that respond to the activities of lin-11, nhr-67, cog-1, 

and egl-38 is the next step to further characterizing the mechanism by which these 

transcription factors regulate ceh-2 expression. 

 
Vulval genes that were not perturbed by loss of lin-11, lin-29,  nhr-67, and cog-1   

nhr-67 RNAi failed to affect the expression of the following vulval genes: cdh-3 (wild-

type expression in vulC, vulD, vulE, and vulF), unc-53 (wild-type expression in vulC and 

vulD), bam-2 (variable expression in vulB, vulD, vulE, and vulF)  and dhs-31 (vulB and 

vulD). cog-1(sy275) mutants did not impact the expression of  pax-2 (wild-type 

expression in vulD). lin-29 did not impact expression of F47B8.6, egl-26, lin-3, and unc-
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53.  Thus nhr-67, cog-1, and lin-29 do not appear to be master regulators of spatial gene 

expression in any particular subset of vulval cells.  

 

nhr-67 translational GFP reporter 

A 3’GFP tagged nhr-67 translational reporter was constructed via PCR stitching. Briefly, 

the pPD95-69 vector (gift from the Fire lab) was used as a template to amplify an 870 bp 

GFP fragment. The primers used for this amplification were 

5’GAGAGTGTTAATGTTGAAGAGGTTATGAGTAAAGGAGAAGAAC 3’ (forward) 

and 5’ GAATTTACTATCTAAACCTCTTATTTGTATAGTTCATCCATGCCATG 3’ 

(reverse). All nhr-67 gene fragments were amplified from the C08F8 cosmid. A 2 kb 

PCR fragment that includes the 3’ non-coding region of nhr-67 was generated with the 

following primers: 5’ GAGGTTTAGATAGTAAATTC 3’ (forward) and 5’ 

CAAGGCCTGCAGGCATGCAAGCTTAAAGAACTACTGTAGTTTTTG 3’ (reverse). 

The 870 bp GFP fragment was fused to the 2 kb 3’ non coding region of nhr-67 via PCR.  

The resulting 2.9 kb gene product was subsequently stitched in frame with a 6 kb nhr-67 

gene fragment that contained 1 kb of the endogenous promoter and all the exons and 

introns. The forward and reverse primers used to generate the 6 kb nhr-67 product were 

5’CTGCTCAAAACTTTTGCTCC 3’ and 5’ AACCTCTTCAACATTAACACTCTC 3’, 

respectively.  The nhr-67 translational reporter was injected into unc-119(ed4); him-

5(e1490) at several concentrations along with unc-119(+) [40 ng/μl] and pBSK+ [7.5 ng/ 

μl] as co-injection markers. We were unable to generate stable transgenic lines due to the 

toxicity of this reporter construct. However, about a 1/3 of the F1 adult transformants 
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(that were rescued for the unc-119 phenotype) displayed vulval expression that was 

identical to the nhr-67 transcriptional reporters. 

    

Overexpression studies with nhr-67 
 
We find that misexpression of nhr-67 cDNA in the vulva using a lin-11 promoter had 

no/little alteration on the expression of two tested vulval markers lin-3::GFP (n = 43) and 

zmp-1::GFP (n = 40). Only 2/43 animals showed ectopic lin-3 expression in vulD. 

 
nhr-67 site of action studies 
 
We attempted to determine the site of action for nhr-67 by resorting to multiple 

approaches: 

A. Mosaic analysis 

Homozygotes of the nhr-67(ok631) deletion allele (obtained from the CGC) exhibit an 

early larval lethality/arrest phenotype. The ok631 allele was rebalanced with the double 

recessive marker LGIV, unc-30(e191) dpy4(e1166). (Rebalancing was necessary since 

the original GFP linked nT1 dominant balancer predominantly gave rise to aneuploid 

progeny, rendering the strain unsuitable for routine germline rescue). The 33 kb C08F8 

cosmid sequence includes the upstream sequence, the open reading frame and the 3’ non-

coding region of nhr-67 along with many other surrounding genes. The C08F8 cosmid 

was injected into the nhr-67(ok631)/unc-30(e191) dpy-4(e1166) heterozygotes at 10 

ng/μl using sur-5::GFP (pTG96 at 80 ng/ μl), myo-2::GFP (10 ng/μl), and pBSK+ (7.5 

ng/ μl) as coinjection markers. sur-5::GFP is an ubiquitously expressed nuclear marker 

and myo-2::GFP is a cytoplasmically expressed pharyngeal marker. The strategy was to 

isolate transformants that were homozygous for the nhr-67(ok631) allele but were 
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rescued by the C08F8 cosmid. Germline transformants were selected by picking myo-

2::GFP (+), sur-5::GFP (+) non Dpy-Unc hermaphrodites, and were cultured 

individually on NGM plates.  However, analysis of our transgenic stable lines revealed 

that the C08F8 cosmid failed to rescue the larval lethality that is associated with ok631 

allele. The failure to rescue might be due to a background mutation in the deletion allele 

or rearrangements within the cosmid.  

B. Tissue specific RNAi in the vulva 

We attempted to address the site of action of nhr-67 by resorting to tissue-specific RNAi. 

The general strategy was to produce constructs containing an nhr-67 inverted repeat with 

a 500 bp intervening sequence, driven by different vulval promoters. Non-proofreading 

Taq polymerase (Roche) was used during PCR amplification of the nhr-67 insert so as to 

retain the 3’ A overhangs for subsequent TOPO TA cloning. An nhr-67 cDNA construct 

(OpenBiosystems) was used as a template for amplifying a 700 bp gene product with a 

flanking AvrII site at the 3’ end. A 500 bp GST fragment (the spacer sequence) with 

flanking 5’ and 3’ NheI restriction sites was PCR amplified from the pGEX2T plasmid. 

The nhr-67 and the GST products were mixed together in a 2:1 ratio, digested with AvrII 

and NheI, and ligated in the presence of dATP.  The resulting 1.9 kb hairpin fragment 

was then cloned into the TOPO vector pCR2.1 (Invitrogen) via standard TOPO TA 

cloning. The nhr-67 hairpin in the TOPO vector was subsequently cloned into the 

pJFBR69 vector (pBR322 backbone) via SpeI and XhoI restriction digests to generate 

and pJFBR67pin, respectively. The daf-6 promoter (vulE and vulF specific) from pCK1 

(gift from Felix lab) was subcloned into the pJFBR67pin vector using SphI and NcoI 

restriction sites to generate daf-6p::67pin construct. The lin-11p::67pin construct was 
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generated by subcloning the lin-11 promoter (pan-vulval) from pPGF11-13 into the 

pJFBR67pin vector via SphI and XhoI restriction digests.  

The daf-6p::67pin construct was injected into unc-119(ed4);him-5(e1490) along 

with unc-119(+) [40 ng/μl] and pBSK(+) [7.5 ng/μl] as coinjection markers. Stable lines 

were crossed into hermaphrodites carrying 8 kb nhr-67Δpes-10::GFP transgenes and 

were assayed for changes in nhr-67 expression in the 1° lineages. Only 2/27 

hermaphrodites displayed weak expression in vulE (not as reliable as the results seen 

with nhr-67 RNAi feeding). The lin-11p::67pin construct was injected into unc-

119(ed4);him-5(e1490) along with unc-119(+) [40 ng/μl], nhr-67 intron4Δ pes-10::GFP 

[33ng/μl], and pBSK(+) [7.5 ng/μl] as coinjection markers. Stable transgenic lines were 

assessed for the effect of vulval specific RNAi on the expression of nhr-67 intron4Δ pes-

10::GFP. nhr-67 expression in the lin-11::67pin strains was identical to their respective 

wild-type controls. Unlike nhr-67 RNAi feeding, the vulval cell type specific nhr-67 

hairpin experiments proved to be ineffective, possibly due to inefficacy of the tested 

promoters. Thus these data cannot be conclusively used to rule out site of action in the 

vulva.  

C.   Gonad ablations in lin-15(n309) hermaphrodites 

 Lastly, we tried to exclude the gonad as a possible site for action for nhr-67. We resorted 

to ablating the gonad (Z1, Z2, Z3, and Z4) in L1 larvae in an nhr-67(RNAi); lin-15(n309) 

background, and assayed for ceh-2 expression levels in the 1° vulval lineages. Gonad- 

independent vulval induction occurs in lin-15 mutants due to ectopic lin-3  levels 

generated in the hypodermal syncytium (Cui et al., 2006). Gonad ablations in lin-15 

mutants did not affect ceh-2 expression in the vulval cells and looked identical to the 
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unablated lin-15 controls. Unlike our nhr-67 RNAi controls (wild-type animals treated 

with nhr-67 RNAi), the lin-15; nhr-67 RNAi-treated unablated controls fail to cause any 

derepression of ceh-2 levels in the vulE and vulF cells. nhr-67 RNAi feeding is 

ineffective in a lin-15 mutant background and thus cannot be used to exclude the gonad 

as the site of action. We note that ceh-2 levels in the vulvae are completely abolished 

when the gonad is ablated in nhr-67(RNAi); lin-15(n309)   hermaphrodites.   

Due to the various technical reasons listed above, we have been unable to conclusively 

determine the site of action for nhr-67. 

 
Figure legend: Cis-regulatory analysis of ceh-2 

Several ceh-2 reporter constructs containing the upstream regulatory sequences were 

generated (purple and red rectangles). The ceh-2 coding exons are represented by blue 

rectangles and introns are represented by black lines. The red arrow indicates the 

presumptive promoter of ceh-2 and the black arrow is proximal to the minimal Δpes-10 

promoter. Construct (A) is a translational reporter that consists of 5.3 kb upstream 

promoter sequence (red rectangle), the entire coding region (blue rectangles), and introns 

(black lines) attached in frame with GFP.  Construct (B) contains 10 kb sequence that is 

upstream of the predicted translational start site (purple and red rectangles) of ceh-2 fused 

to GFP. Construct (C) contains 5.3 kb sequence upstream of the predicted first ATG of 

nhr-67 (red rectangle) appended to minimal Δpes-10::GFP. Construct (D) contains the 

4.7 kb distal upstream sequence that immediately flanks the 5.3 kb sequence in construct 

(C) (purple rectangle) fused to minimal Δpes-10::GFP.  

 



ceh-2

5.3 kb upstream

  pTRB202  

10 kb
upstream

A.

B.

D.

C.

GFP

 syIs54

GFP

GFP

 5.3 k ceh-2

pes-10::

GFP

 4.7 k ceh-2

pes-10::

III-32



 IV - 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER IV: 
 

Summary 
 

 



 IV - 2

As an organism traverses through multiple developmental states, cells 

differentiate from each other, generating diverse cell and tissue types. Such spatially 

defined fate patterns form the basis of specialized structures (e.g., organs) and are the 

product of gene networks operating in a variety of cell types. Gene regulatory networks 

are logic maps that illustrate all the functional interconnections between the regulatory 

genes and the cis-regulatory modules of their target genes. Dissection of these regulatory 

networks would help us comprehend how cells generate precise cell-fate patterns during 

organogenesis. Although gene regulatory networks have been described in a fair number 

of biological systems, the majority of these represent embryonic networks. My thesis 

work is the first example of a postembryonic gene regulatory network that controls 

organogenesis. 

The seven C. elegans vulval cell types are an excellent system to elucidate the 

genomic networks that regulate patterning of gene expression and morphogenesis. While 

the signaling networks that establish the early fate patterns have been well characterized, 

little is known about the gene regulatory network that specifies the properties of 

terminally differentiated seven cell fates. In Chapter I we review the preliminary 

regulatory network that drives gene expression programs in the specific vulval cell types. 

We describe several transcription factors that are known to regulate spatio-temporal gene 

expression in the mature vulval cell types. Information on the regulatory interactions 

between these transcription factors and their combined activities to regulate downstream 

targets was limited prior to this thesis work. Chapter II reports on the isolation of nhr-67, 

a novel component of the vulval regulatory network. nhr-67 was recovered during a high- 

resolution reverse-genetics screen and was found to regulate patterning of gene 
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expression and morphogenesis in the vulva. The pairwise interactions between nhr-67 

and the known components of the vulval network are complex and vary among the seven 

cell types. Integration of this new regulatory factor into the network helps visualize the 

differences in the network architecture for each of the cell types. In Chapter III, we 

investigate the different roles of these transcription factors in an attempt in deconstruct 

the patterning events that lead up to organogenesis. We find that several transcription 

factors (lin-11, nhr-67, and cog-1) maintain cell identity by regulating gene expression 

and restricting inappropriate fusion between the distinct vulval cell types. This 

postembryonic network shows a recurrence of certain network motifs/strategies that are 

also observed in embryonic networks. These network motifs include autoregulation, 

stable feedback loops, boundary repression, functional redundancy, and combinatorial 

control of effector gene expression.  I also describe a striking regulatory circuit that has 

not been previously reported in the regulatory networks of other biological systems. Both 

nhr-67 and cog-1 engage in cross inhibition as well as negative autoregulation in the 1° 

vulval cells. We argue that the network architecture in the vulE and vulF cells confers 

several advantages, such as built-in flexibility, as well as rapid fate switching in response 

to ephemeral inputs. The provisional circuit diagrams (generated by this thesis work) 

provide a very solid foundation for future refinements to the vulval network. We 

postulate that the differential levels and combinatorial patterns of lin-11, cog-1, egl-38, 

and nhr-67 expression are a part of a regulatory code for the terminally differentiated 

vulval cell types. Pushing our proposed regulatory network forward necessitates the 

identification of other potential factors, dissection of their regulatory mechanisms, and 

cis-regulatory analysis of various targets and regulatory genes. 
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Future Directions 

Role of the AC on the expression of regulatory components of the vulval network  

One of the most interesting problems is to further tease apart the role of the 

anchor cell (AC) in the patterning of the 1° vulval cell types. The patterning of E and F 

descendents of the 1ο vulval lineage involves both a short-range anchor cell-dependent 

signal using the RAS pathway, as well as lin-17 (Wnt) signaling (Wang and Sternberg, 

2000). An attractive hypothesis is that vulF cells are biased by proximity to the AC to 

have higher levels of nhr-67 compared to cog-1. The most informative approach would 

be to conduct AC ablations and evaluate the expression levels of nhr-67, cog-1, and egl-

38, all of which specify the properties of the vulE and vulF. Alterations in the expression 

pattern of any these regulatory factors would argue that the AC impacts the patterning of 

the vulE and vulF lineages by regulating the activities of some of the transcription factors 

that function in these vulval cells. Alternatively, the absence of an effect suggests that 

patterning mechanism of the AC may be distinct from that regulated by the current vulval 

transcription factor network. However, given the expression of nhr-67 in the AC, it is 

possible that its effects (particularly on the 1ο lineage) are a non-autonomous upstream 

event. Namely, nhr-67 activates EGF, Wnt, or some other signal in the AC, which in turn 

differentiates between vulE and vulF cells (Chapters II and III). 

Dissecting the role of the AC can be supplemented by identifying the pivotal 

signal(s) that differentiates between the two 1° vulval cell types. The two likely 

candidates for this process would be signaling via RAS and Wnt pathways (Wang and 

Sternberg, 2000). It would be useful to evaluate the vulval expression levels of both the 

regulatory genes and their targets in genetically perturbed RAS and Wnt backgrounds. 



 IV - 5

These experiments may reveal additional insights into the later signaling events that 

impact the patterning of differentiated 1° and 2° vulval cell types. For example, both 

Wnt/Ryk and Wnt/Frizzled signaling pathways are necessary for patterning of target gene 

expression (ceh-2 and cdh-3) in the P7.p 2ο vulA-vulD cells (Inoue et al., 2004). The 

expression pattern of the regulatory factor lin-11  is also perturbed in the P7.p 2° lineages 

in a lin-17 (Frizzled) mutant background (Gupta and Sternberg, 2002). Disruption of both 

Wnt pathways in a lin-17; lin-18 double-mutant background also alters the expression of 

the differentiation gene zmp-1 in the 1° vulval cells (Wang and Sternberg, 2000). An 

interesting hypothesis would be that Wnt patterns vulE and vulF cells by modulating the 

activities of different components of the transcription factor network. Deciphering the 

nature of these signals and linking them to our network of transcription factors would 

provide us with a more comprehensive view of the regulatory network architecture for 

each of the terminally differentiated vulval cell types. 

Future dissection of the vulval patterning network 

Our provisional network provides us with opportunity to deconstruct the 

intricacies of vulval patterning and organogenesis. Deciphering the vulval regulatory 

code will provide valuable information on network connections and might also provide 

insights into other examples of genomic networks. For example, a lot of interesting 

parallels may be drawn by comparing the vulval patterning network to the ASE 

specification network in C. elegans. In the ASE bistable system, the Nkx6.1/6.2 

homeodomain gene cog-1 specifies the ASER fate over the ASEL fate. The cross-

inhibitory interactions between nhr-67 and cog-1 in the 1° vulval cells might be relevant 

in the specification of vulE versus vulF cell fates. A key distinction is that cog-1 
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positively autoregulates in the ASER neuron, whereas it displays autoinhibitory activity 

in vulA, vulB, vulE, and vulF.  It would be interesting to evaluate the role of nhr-67 in 

ASE specification since it is also expressed in several head neurons (Gissendanner et al., 

2004). Likewise, the transcription factors that affect the ASE fate decision (die-1 and lim-

6) may also play a role in vulval patterning. 

An investigation of the role of pax-2 in the vulval patterning network may be 

informative in terms of evolutionary comparison of organogenesis between nematodes. 

Unlike C. elegans, the closely related species C. briggsae has a single PAX2/5/8 

ortholog. pax-2  (a recent gene duplication of egl-38) is expressed in the 2° vulD cells 

(Wang et al., 2004), whereas egl-38 expression is detected only in the 1° vulF cells. In 

terms of network regulatory interactions, both genes are positively regulated by nhr-67 

and are unaffected by cog-1 activity (Chapters II and III). It would be interesting to test if 

pax-2 (like its relative) engages in positive autoregulation and impacts gene expression in 

a particular subset of the vulval cells (e.g., vulD). Another open question is whether the 

two PAX proteins overlap with each other in terms of certain functions. For example, 

both pax-2 and egl-38 have been implicated in the regulation of apoptosis in somatic and 

germline cells (Park et al., 2006). Elucidating the role of pax-2 in vulval gene expression 

would be interesting not only in terms of identifying a novel component of the vulval 

network, but also in illustrating the evolutionary diversification of gene regulatory 

networks controlling the generation of the same organ.  

Another interesting direction to pursue is the investigation of the actual regulatory 

mechanism of these vulval transcription factors. We demonstrate that nhr-67, cog-1, lin-

11, and egl-38 form a part of a genetic network that generates different patterns of gene 
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expression in each of the seven vulval cell types. The directness between the regulatory 

genes and their numerous targets needs to be assessed. Firstly, the consensus binding 

sites of these regulatory factors need to be determined through methods like SELEX-

SAGE. The vulval elements of the different targets can be dissected via cis-regulatory 

analysis and be computationally screened for these consensus sites and tested by site-

directed mutagenesis, gel shift assays (EMSAs), as well as ChIP (chromatin IP). Certain 

genetic interactions in the vulval network which have been demonstrated to be direct in 

other biological systems would be prioritized. For example, tailless directly binds the 

head segment enhancer element of ems and restricts its expression domain in Drosophila  

(Hartmann et al., 2001). This is analogous to nhr-67 repressing the worm ems ortholog 

ceh-2 in the inappropriate vulval cells. Continual dissection of the vulval element of ceh-

2 (Chapter III Appendix) would facilitate these mechanistic studies. 

nhr-67 and cog-1 both maintain a critical status in the vulval network as their 

activities confer specific properties in the diverse cell types. Yet not much is known 

about the inputs that initially establish their spatial domains. Cis-regulatory analyses of 

both these regulatory genes would unveil the conserved vulval elements that can 

subsequently be assessed for conserved motifs. The upstream trans-acting factors can 

then be identified via yeast-one hybrid studies (Deplancke et al., 2004). The relevance of 

these physical interactions can be confirmed using biochemical and genetic approaches.   

Characterization of these novel regulatory factors would fill in the gaps of the 

provisional network and thus extend our knowledge on vulval patterning and 

organogenesis. Comparison of the vulval network to gene regulatory networks in other 
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biological systems may be useful in dissecting the regulatory logic used to generate 

complex morphological diversities in the animal kingdom.      
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