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Chapter 6

Inverting the Helmholtz Equation

6.1 Introduction

In this chapter, we formalize our idea for using an inverse problem based approach

to photonic device design. We begin in section 6.2 by surveying the field of PBG

design using inverse problem based approaches in the literature, comparing the various

methods with the approach we have adopted. This will frame the results presented

in these final chapters within the greater context of this emerging field of research.

In section 6.3, we derive the inverse Helmholtz equation we need to solve in order to

address the design problems motivated in section 5.3. We provide a simple proof-of-

principle example in section 6.4 to show that the inverse equations are in fact correct,

and also the importance of regularization for solving this problem. We conclude

this chapter with a first look at what happens when we ask for a mode that is not

supported by a physically realizable dielectric function. This problem will be explored

more extensively in chapter 7.

6.2 Inverse Problem Based Design

As we reviewed in chapter 5, there are many applications envisioned for PBG devices.

However, the traditional design paradigm is really based on trial and error, which is

not as suitable for applications. In the existing paradigm, different geometries are pro-

posed and studied (numerically or experimentally), and the effects catalogued. As the
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field progresses, the understanding of the fundamental scientific principles increases,

and we begin to collect together useful effects that can be adapted for useful appli-

cations. Devices are improved by repeatedly varying different parameters to existing

designs. After much trial and error, more intuition regarding the design problem is

developed, so that, with a lot of human ingenuity, one hopes that subsequent ‘trials’

will less frequently turn out to be ‘errors.’ The other problem is that despite the

many excellent devices that have been developed using this approach, one can usually

not be certain how much room for improvement exists for the device. In other words,

we are uncertain how optimally it is designed given the current manufacturing/cost

constraints. Even if we somehow know that we are not optimal, the traditional design

approach also does not give us a systematic or algorithmic way that lead us to the

better/best designs.

An inverse problem based method is the exact reverse of the traditional method.

Rather than systematically varying the causes (dielectric function) to catalogue the

resulting effects (optical properties), we purposefully choose the desired effect and

look for the unknown cause. As explained in chapter 3, the starting point is the

effect, rather than the cause. We will review some methods that claim to be inverse

problem based, but are effectively automated trial and error methods.

In an applications driven design paradigm, we imagine designing a device that will

optimally perform some desired function. The starting point of the design process is

focused on the end application, rather than the best known solution to date. This

paradigm shift thus lends itself readily to the inverse problem formulation. Given

some desired performance criterion suitable for the application, one needs to first

develop a performance metric P(Hi(r), ωi(r), η(r)) that may be a function of multiple

eigenmodes and eigenfrequencies, and even the structure itself. The goal of optimal

PBG device design is to find a structure that maximizes this function. It should

be clear from our use of the term optimal in chapter 4 that we mean the global

rather than the local optimum in this context, though we will see that this is often

not how the term is applied in the literature. We can generally assume that this P
metric is obtainable in that under any design approach, it is required for evaluating
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the performance of various designs. A design method that produces these optimal

devices is considered an optimal design method (and to be clear, in principle this

does not necessarily need to be an inverse problem based approach). An optimal

inverse problem based design method combines both of these features. The underlying

assumption is that if we can somehow find the field that optimizes the objective

function (which can be a difficult problem in itself), an inverse problem method will

allow us to solve for the dielectric that produces the desired properties. This was the

idea behind the work (in the 2D approximation) by Geremia et al. [67], and is in fact

the predecessor to the work in this thesis. It turns out there were some fundamental

errors with the way the inverse problem was formulated, and these are explored and

discussed in appendix D.

A brief survey of the field

Despite increased interest and efforts at developing this inverse problem based design

paradigm in recent years, there are still only a few papers that have been published.

For a more comprehensive review of the inverse problem approach to PBG design,

the reader is referred to an article by Burger et al. [68], but the emphasis there is

on the topology optimization approach, particularly those using the level set method.

The journal Inverse Problems has many electromagnetic type inverse problems, but

few directly applicable to photonic crystals or PBG devices in particular. An early

treatment by Popov et al. [69] in this journal of a 1D photonic crystal (i.e. alternating

layers of dielectric) scattering problem shows that given the reflection coefficient,

the index of refraction can be determined assuming ‘practically sensible conditions’,

which is of course a regularization condition. The 2D scattering problem is treated

by Ammari et al. [70], and both of these are quite heavy on the mathematics, and are

more concerned with parameter estimation than design. The interest there is much

more heavily biased towards the mathematics of the inverse problem rather than the

physics, and this is typical of the papers one finds in that journal to date. The

first direct application of inverse problem methods to the PBG community was by
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Dobson and Cox, whose work focused on finding unit cell geometries that maximized

the bandgap in the TM [71] and TE [72] polarizations. Their technique uses a

gradient-based algorithm, and they found that their final ‘optimal’ designs were quite

sensitive to the targeted mid-frequency of the bandgap (which of course indicates that

they have only reached local optima). The method in the TM polarization required

a structure with an existing bandgap, but the later work removed this restriction.

6.2.1 Genetic algorithms

Sanchez-Dehesa’s group has recently published some results based on an inverse prob-

lem method for designing high efficiency waveguide couplers [73] and waveguide de-

multiplexers [74]. The demultiplexer design for an incoming signal with wavelengths

1.5 µm and 1.55 µm gives > 45dB crosstalk suppression and > 75% coupling effi-

ciency. However, the method they use is a genetic algorithm, where the geometry is

parameterized and the only variable is whether the cylindrical rods of fixed size and

location remain or are removed. Of course, using a genetic algorithm (GA) does not

solve an inverse problem as we have defined the term in this thesis. It is systematic

trial and error, with the errors generally discarded. The other comment is that GA’s

generally do give good results for globally optimizing arbitrary functions with many

local maxima and minima, as long as the design space is kept small. Therefore, this

method cannot guarantee the optimality of the design over all possible structures

since the design space must be heavily parameterized.

The technique by Gheorma et al. expands on their approach by allowing ‘aperiodic’

structures, so the location of these cylindrical rods are not fixed [66]. They found

that a straight-forward application of the GA did not converge well given the extra

degrees of freedom, so they used an adaptive algorithm, but it is of course still not

an inverse problem method as we define it. The key idea here that is consistent with

our work is that they give up the notion of an overall lattice periodicity to achieve

improved performance. This is a bit of a break from the traditional view of PBG

devices, where the bandgap effect plays a vital role in the design. Our results on the
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enlarged defect region cavity design have similar philosophical underpinnings. The

other relevant result here is that they allude to the idea of not actually obtaining

the mode they had designed for, but attribute this effect to numerical (i.e. series

truncation) errors and other constraints rather than as a fundamental limitation. To

our knowledge, this is the only other paper that makes this observation explicitly,

although the importance of this property was not fully appreciated.

6.2.2 Topology optimization methods

Topology optimization methods have also been used for minimizing losses in a waveg-

uide bend [75], T-junction [76], and to improve the directional transmission properties

of a waveguide termination [77]. In contrast to the GA methods, the dielectric func-

tion is not parameterized, but discretized into finite elements, where each element

can take on any value. Therefore any design within the discretization bandwidth is

within the design space. This aspect is similar to the domain of our design space.

The optimization routine uses the iterative Method of Moving Asymptotes (MMA)

optimizer which is a local gradient based algorithm, and requires the determination

of the sensitivities of the objective function to the design variables at each iteration.

However, computing the various sensitivities directly is not feasible, so linear approxi-

mations to the model are used. Linearization is necessary even though the Helmholtz

equation is linear in the dielectric function because the objective function is not lin-

ear in each of the discretized elements. Based on the perturbation theory of linear

operators [78], we expect this function can be highly non-linear. The validity and

consequences of the approximations made are not discussed, but given the accuracy

issues with just solving the forward problem, more caution should be exercised here.

In addition, there are some known problems associated with the method. It has

been observed that the design algorithm stops converging as the resolution of the grid

is increased [79]. This effect is attributed to the numerical instability of calculating the

gradient as the ill-conditioning increases. This is consistent with what we discussed in

chapter 4 regarding gradient descent methods for ill-conditioned problems. Finally,
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since this is a gradient based method, it is also limited to finding locally optimal

designs.

6.2.3 Level set method

Closely related to topology optimization is the level set method [80]. The level set

function is a way to define an interface between distinct media, so it is a more ideal

way of describing the dielectric function. Briefly, the zero crossings of the level set

function define the boundaries between ε1 and ε2. The optimization is done by iter-

atively updating the level set function by solving a Hamilton-Jacobi equation where

the velocity term is chosen to climb the gradient to the objective function. Similar

approximation issues found with the topology optimization methods are encountered

here. This technique was recently applied to maximizing the bandgap for a 2D square

lattice with great success for the TM polarization, and to a lesser degree for the TE

polarization [81].

6.2.4 Analytical inversion of waveguide modes

Of the various papers in the literature, the work by Englund et al. [64] is probably the

most similar to ours in spirit, and received positive review from the community [82].

They designed high-Q small-mode volume cavities by analytical solution of the inverse

problem. By restricting the set of target modes to an expansion of the waveguide

modes with a slowly varying envelope, they reduce the inverse problem to a 1D

problem and analytically solve for the dielectric function along the waveguiding axis.

The off-axis structure along the line defect region is reconstructed from the solution

of the dielectric function along the line by assuming cylindrical defects. They solved

for both a Gaussian and a sinc function envelope modulated defect mode with Q’s of

1.6×106 and 4.3×106, and mode volume (in (λ
n
)3) of 0.85 and 1.43 respectively. The

results while promising have some limitations that were not addressed. Particularly

for the sinc function design, the output mode actually did not resemble the target

mode. In fact, comparing their figures 6(c) and 6(f), the sinc function mode looks
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more like the Gaussian mode. This is actually consistent with our finding, as we

believe this general inability to reach an arbitrary target is a ubiquitous problem.

6.2.5 Our approach

The first distinctive feature is that we derive the inverse problem from first principles,

i.e. ab initio. We make no additional approximations or linearizations beyond a

reduction of the problem from 3D to 2D. In contrast to the topology optimization

methods, we solve the full inverse problem exactly, rather than restricting ourselves to

local improvements to existing designs using approximate methods. The philosophy

behind the approach is that if you can specify what you want, our method will tell you

how to get it. Approximate methods limit the set of functionalities you can specify,

because they must be of the correct form.

The other distinctive feature of our approach is that we do not parameterize the

dielectric function at all in our design space. Any geometry commensurate with our

chosen bandwidth is within the design space. Using the convex optimization regu-

larization tool, we remove non-physically realizable values of the dielectric only. We

can include additional fabrication constraints without increasing the computational

domain if we so desire. Thus, we are not limited as in the GA approaches or the

waveguide expansion approach. On this point, it is more akin to the topology op-

timization method. A criticism of our approach might be that our designs are not

binary valued (as with level set methods), so they are not compatible with current

fabrication technology. As discussed in appendix C, any discretized dielectric function

should really be interpreted via its underlying continuous function. In many cases,

we would argue that these should not actually be considered binary valued anyway.

Secondly, even without this limitation, this is somewhat intentional. Consider a de-

vice requiring continuous valued dielectric functions that can improve performance

by several orders of magnitude. Existence of such a design would still be impor-

tant information to have. This may provide the right incentive to push fabrication

technology improvements in that direction. Of course graded index fibers are a sim-
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ple example of such a dielectric function, so they are not fundamentally impossible

designs. Conversely, if existing designs already yield close to optimal performance,

then it is not worth spending more effort into looking for improvements. Either way,

there is value to our formulation. In that sense, it was our goal to construct a design

method that simply gives you the best device possible without particular regard for

current fabrication limitations, because those can improve with time and ingenuity.

It is possible to derive new insight into the problem, which is another contribution

of this method to the field. Furthermore, some forms of fabrication constraints can

still be modeled into the design problem as well, and we demonstrate that with our

enlarged defect cavity problem. We now derive the inverse equations for the design

problem.

6.3 Inverse Helmholtz Equation

Using the plane wave basis, the derivation of the inverse Helmholtz equation uses

the same mathematical principles that we used in obtaining the matrix form of the

forward problem (explicitly derived in section 2.2 and applied to defects using the

supercell method in section 2.3). Our restriction to TE polarized modes within a 2D

analysis described in chapter 2 is still in effect here. We make use of the completeness

and orthogonality of the plane waves here as well, but rather than solving for the hk

coefficients given an η(r), we solve for the ηk coefficients given some desired or target

field distribution Hm(r) instead.

6.3.1 Point defects

Working out the derivation for the point defect design, we expand the field in the

Fourier basis:

Hm(r) =
∑
κ

a
(m)
κ eiκ · rẑ (6.1)
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Starting from the Helmholtz equation again, we left multiply with a plane wave and

integrate. ∫
e−iγ · r

{
ω2

m

c2
Hm(r) = ∇× (η(r)∇×Hm(r))

}
d2r

ω2
m

c2
a

(m)
γ =

∫
e−iγ · r


∇×

∑

k

ηkeik · r∇×
∑
κ

a
(m)
κ eiκ · r


 d2r

ω2
m

c2
a

(m)
γ =

∑

k, κ

a
(m)
κ ηk κ · (k + κ)

∫
ei(k + κ − γ) · rd2r

≡ b
(m)
γ

Choosing to collapse the delta function with κ = γ − k

b
(m)
γ =

∑

k

[
a

(m)

γ − k
γ · (γ − k)

]
ηk (6.2)

≡
∑

k

A
(m)

γk
ηk (6.3)

In anticipation of using Tikhonov regularization for solving the inverse problem, we

split up the dielectric function into two parts: an ‘initial’ geometry and a small

corrective part:

∑

k

A
(m)

γk
δηk =

ω2
m

c2
a

(m)
γ −

∑

k′
A

(m)
γk′ η

(0)

k′ (6.4)

∑

k

A
(m)

γk
δηk ≡ β

(m)
γ (6.5)

We use β and b to distinguish between the two cases. Just as we did with the

Helmholtz operator Θ(η) in equation (2.24), we have explicitly included a superscript

m on A, a, b, and β to emphasize their dependence on the desired mode Hm(r).

The importance of A’s dependence on the desired mode will be explored in section

7.2. The procedure for solving the inverse problem given some desired mode is to first
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express it in the Fourier basis, and then forming the A matrix using eqn. (6.2) and

(6.3), and finally solve either eqn. (6.3) or (6.5) depending on which regularization

scheme we choose to utilize.

6.3.2 Line defects

For the waveguide dispersion, recall that there is a separate eigenvalue problem for

each wavevector qi along the propagation direction of interest. For each qi, we must

perform the same steps as above on the waveguide form of the Helmholtz equation

(eqn. (2.29)) to obtain the following inverse problem:

b
(qi,m)

γ =
∑

k

[
a

(qi,m)

γ − k
γ + qi · (γ − k + qi)

]
ηk (6.6)

A
(qi,m)

k, k′ ≡ a
(qi,m)

k − k′(k − k′ + qi) · (k + qi) (6.7)

The solution ηk will have to simultaneously satisfy all Nq of these inverse equations,

where Nq is the number of wavevectors we will include in the dispersion curve. This

can be formally expressed by a vertical concatenation of the A(q) matrices and b(q)

vectors.

Ã ≡




A(q1)

A(q2)

...

A(qn)




, b̃ ≡




b(q1)

b(q2)

...

b(qn)




, and β̃ ≡




β(q1)

β(q2)

...

β(qn)




(6.8)

For the remainder of this chapter, unless required for clarity, we will omit many of

the cumbersome subscripts and superscripts on A, b, and β with the understanding

that, with a truncated basis, they can be treated like matrices and vectors.
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6.4 Proof of Principle

In this section, we will work through a contrived problem as a proof of principle

demonstration, but also demonstrate the steps one would take in performing such

a design procedure. We first define our computational domain. We will choose a

hexagonal lattice of cylindrical air holes1 of radius r = 0.3a in dielectric using a

7a × 7a supercell, and include 19 reciprocal lattice vectors before truncating the

Fourier series. The total number of plane waves is 931 in this example, and a is the

lattice constant. As our illustration, we will ‘design’ a point defect cavity geometry

where the central air hole is refilled with a dielectric material. This is referred to

as the h1 defect. Using the set of 931 plane waves, we would normally construct an

Hm(r) with some suitably desired properties. In this case, we obtain the ‘desired

mode’ Hm(r) by explicitly solving the forward problem.

For this simple geometry, we can use the analytical expression for ηk. We follow

the method found in [3] to evaluate the transform. The reference gives the defect-free

coefficients:

ηG = ηdδ(|G|) + (ηa − ηd)
2πr2

√
3

(
2J1(|G|r)
|G|r

)

where ηd = 1
11.56

is the reciprocal dielectric constant of the dielectric (value is typical

of a semiconductor like AlGaAs), ηa = 1 represents air, and J1 is the Bessel function.

Evaluating only when k = G gives us the bulk symmetry. Adding the defect means we

need the expansion for δη(r) corresponding to filling in the air hole. A straightforward

modification of the above gives the required coefficients.

ηk = (ηd − ηa)
2πr2

N1 ×N2

√
3

(
2J1(|k|r)
|k|r

)

This is now evaluated for all k’s, and the factor N1 × N2 in the denominator is

due to integrating over the size of the entire supercell. We show in figure 6.1 the

underlying dielectric function. Using these coefficients, we construct the Helmholtz

1Recall the discussion in section 2.4 about the convergence issues of the plane wave method. Thus
we are actually considering the underlying continuous function of the nominal geometry. Refer to
appendix C for additional details.
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Figure 6.1: Underlying continuous dielectric function of the nominal h1 defect geom-
etry.

operator using eqn. (2.28) and solve the eigenvalue problem. The localized mode is

located at the 50th band. Figure 6.2 shows the magnetic field of the localized mode.

We now take this H(r) and using only information about this field, attempt to get

back the original dielectric function. We form the inversion matrix A following eqn.

(6.2). Of course, after the discussion in chapter 3, it should not be surprising that

this problem is ill-posed. Nevertheless, just to illustrate, we can try to perform a QR

factorization to invert the A matrix and solve for ηk. The result is shown in figure 6.3,

and as we expect, it looks like noise that has been amplified, bearing no resemblance

to the actual dielectric function that produced this mode.

6.4.1 Tikhonov solution

We now use Tikhonov regularization to solve the inverse problem. As a demonstra-

tion, we imagine that we are only given this localized mode, and assume we have no

knowledge of what photonic crystals or bandgaps are at all. Solving the regularized

problem gives a solution shown in figure 6.4. The structure is a marked improvement

over the QR solution, and definitely suggests creating a periodic lattice of air holes
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Figure 6.2: Real part of the magnetic field intensity for localized defect mode for the
h1 defect geometry.

with a central defect, although there are still some areas near the edges that do not

quite resemble the exact solution. This can be partly attributed to the fact that the

solution norm is sizeable |ηk| = 0.37. To improve on the result, we now invoke the

perturbative form of the inverse equation (eqn. (6.5), and use the defect-free bulk

lattice as an initial geometry. This finally gives us the same geometry that we had

started out with, demonstrating that we have indeed solved the inverse problem. This

solution is shown in figure 6.5.

6.5 Simulating Design Errors

In the previous section, the entire scenario is, of course, rather artificial, since we

knew (by explicit construction) that some geometry must exist that will produce the

target mode. In an actual design problem, we would not be certain of that a priori.

We model this uncertainty by adding a small noise term to the target (h1) field. From

the discussion in chapter 3, we know that we are not guaranteed the existence of a

solution in an inverse problem, which means that some desired modes just simply
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Figure 6.3: Solution to h1 inverse problem using a QR factorization to invert A.
Notice the values of the dielectric function far exceed the original function.

cannot be supported. In this example, even if the perturbed field is not supported,

we would still like to recover the h1 geometry, because we know that the h1 geometry

reproduces the target field minus the small noise term. In the following example, the

noise corresponds to a 1% perturbation.

Using the perturbed field as the target field, we proceed to form the inverse prob-

lem as before with a bulk lattice starting point and solve using Tikhonov regulariza-

tion again. Using the same regularization parameter of λ = 3×10−3 as before yielded

a noisy solution similar to the QR factorized solution. Clearly, much more regulariza-

tion is required in this case. In figure 6.6, we show the solution δη(r) using λ = 3.73.

The residual norm in this case was 0.3143. We show both the real and imaginary

parts of δη(r), since there are some fairly significant contributions to the imaginary

part of the dielectric. Looking at the real part of δη(r), we find the dominant feature

is as we expected, which is to make the central air hole more dielectric-like. Notice

also in the dielectric function some fluctuations in the area surrounding the defect,

which we see is an attempt to accommodate the added noise term in the target field.

Of course, our model assumes that the dielectric is real-valued, so the imaginary parts
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Figure 6.4: Solution to h1 inverse problem using Tikhonov regularization with no
assumptions about the dielectric geometry. Solution suggests creating a periodic
lattice of air holes with a central defect.

are particularly problematic. Again, because we knew a priori the ‘correct’ solution,

we can safely disregard the ripples in the real part and focus only on refilling the

central hole.

A general limitation of the Tikhonov scheme is that the solution will need to

be ‘interpreted’ to look for the most reasonable or feasible solution. In this case, if

we did not know what the correct geometry should have been, we would first have

dropped the imaginary parts, since we cannot do anything about those anyway, and

then started the next iteration by filling in the central hole (since it is the most

prominent feature). We would then redo the forward problem with the central hole

refilled, and compare with our target mode. If we were still not satisfied, we could

solve for the inverse problem again, but using the solution from the last iterate as

the ‘initial geometry’. This is the strategy we will use for the PCW dispersion design

problem. We would still not be guaranteed the solution, and we may well find the

desired field is not supported. To rigorously confirm this, we make use of the convex

optimization scheme developed in chapter 4.
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(a) (b)

Figure 6.5: Solution to h1 inverse problem using Tikhonov regularization with an
initial defect-free lattice geometry. (a) Actual solution δη(r) to the inverse equation.
(b) Full reconstructed solution η(r) = η0(r) + δη(r), which look identical to figure
6.1. The regularization parameter used was λ = 3× 10−3, and the residual norm was
below 10−9.

6.5.1 Convex optimization regularization (COR)

The problem we need to solve, first shown without explanation in eqn. (4.1) becomes

the following:

min
η
|Aη − b|2

subject to ηmin ¹ F−1η ¹ ηmax

(6.9)

where F−1 is the inverse fourier transform operator. The symbol¹means component-

wise less than or equal to, so each discretized value of the real-spaced dielectric

function2 must lie between ηmin and ηmax. We explicitly set the imaginary part of

the dielectric function to zero by enforcing η∗k = η−k and using the transformation

in section 4.2.1. Notice that we are using b instead of β in the objective function,

which means we assume no knowledge of the defect-free lattice. We use the convex

optimization algorithm as described in chapter 4 to solve the constrained minimization

2The dielectric function used to generate this forward problem does not use the analytical ex-
pression for ηk because truncation leads to overshoot. As shown in figure 6.1, ηmax > 1, which is
strictly unfeasible. Therefore, the actual values of η can exceed the bounds here. Refer to section
8.2 for how this is handled.
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Figure 6.6: Solution to the noisy h1 inverse problem using Tikhonov regularization.
(a) Real part of δη(r). (b) Imaginary part of δη(r). The regularization parameter
used was λ = 3.73, and the residual norm was below 0.314.

problem. The solution is shown in figure 6.7 with a residual norm of 0.2489. There

is a slight discrepancy between our solution and the original geometry within the

region where the target mode has very little intensity. Intuitively, this is sensible

if we think of the inverse problem in terms of its signal to noise ratio. Where the

mode has little to no intensity, there is insufficient signal to overcome the added

noise to reconstruct the desired dielectric completely. Without the added noise to

the target field, the COR reconstructs the dielectric function perfectly, as with the

Tikhonov regularization scheme with a residual norm at the machine precision level.

The difference is that we did not require prior knowledge of the defect-free lattice

using COR. We defer a more thorough comparison of the two schemes until section

7.4.1. With the added noise, both schemes gave reasonably close approximations to

the original geometry. The interpretation we ought to make here is that the noisy

mode is not supported by any physically realizable geometry. We can claim this

rigorously because the globally minimized residual norm to the solution of eqn. (6.9)

is non-zero. Therefore, no other geometry exists that can reduce the norm further (or

exactly solves the inverse problem). This means that we cannot track the noise that

has been introduced, and we will explore the role of the residual norm more closely

in the next chapter.
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Figure 6.7: Solution to the noisy h1 inverse problem using CO regularization.


