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Chapter 3

Inverse Problems

Mathematicians often cannot help but cringe when physicists are doing math, and

even more so whenever physicists claim to be ‘rigorous’ with their math. This chapter

is not written to satisfy the mathematicians for two reasons. First, I am not a

mathematician, so I am quite certain that they will cringe despite my best efforts.

More importantly though, this is meant to be accessible for engineers and physicists,

and often what mathematicians consider ‘special cases’ are the only ones we happen

to care about. So with apologies to any mathematicians reading this, the goals of

this chapter are threefold: First, we want to help the reader develop an appreciation

for what inverse problems are and what makes them difficult. Second, we want to

introduce the specialized tools that are used to solve these inverse problems. Finally,

we bring the focus back to our particular application, and fine tune the ideas developed

for the purpose of photonic device design.

There are many excellent references on inverse problems. A standard reference is

the textbook by Engl [21] which gives a thorough overview of the subject, but the

mathematics is quite formal. A very nice introduction to the subject for physicists

can be found in a series of lecture notes by Sze Tan and Colin Fox at the University

of Auckland [22]. The work by Per Christian Hansen is more focused on discrete

and finite dimensional problems, and hence particularly suitable to our application.

He has also written a package of matlab functions for inverse problems available for

download as well [23]. The ideas presented in this chapter are mostly taken from his

work, although the discussion of the role of noise in distinguishing between a forward
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and inverse problem has to our knowledge not been articulated elsewhere. Arnold

Neumaier also provides a concise treatment similar to Hansen’s, but bridges the gap

to the infinite dimensional treatment of inverse problems with more mathematical

rigor [24].

We begin the chapter by attempting to define what an inverse problem is through

some examples of simple physical problems. We introduce the concept of an ill-posed

problem to distinguish between the forward or direct problem vs. the inverse problem.

In section 3.2, we restrict our discussion to finite dimensional linear operators, allow-

ing us to illustrate the pathologies of inverse problems in the linear algebra formalism.

A numerical example is provided to help illustrate the effects of ill-conditioning. We

make use of the singular value decomposition (SVD) to explain why standard tech-

niques will fail to solve inverse problems. The SVD also allows us to utilize the

condition number as a quantifying metric for how ill-posed a particular problem is.

In section 3.3 we introduce regularization as a tool for solving inverse problems. We

conclude with a glimpse of the difficulties we expect to encounter for the purpose of

PBG device design.

3.1 Introduction

At first glance, the meaning of the term ‘inverse problem’ seems obvious. It is the

complement of some other problem, one that presumably preceded the inverse prob-

lem, and is more well known. To a physicist though, such a ‘definition’ is rather

unsavory, for if that were the case, then the distinction between a forward problem

and an inverse problem seems rather arbitrary. Our obsession with symmetries in

natural laws lead us naturally to wonder why one problem formulation is more ‘priv-

ileged’ than the other. A good example of this that we have already encountered

in this thesis is the Fourier transform and the inverse Fourier transform. The two

operations are simply labeled that way by convention, and nothing would have been

lost had we reversed the labels. It becomes a question of semantics, rather than a

matter of any fundamental significance. By the end of this chapter, we will see that
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the inverse Fourier transform in fact does not fit our definition of an inverse problem.

The distinction is in reality more than just semantics or there would not be an

entire journal devoted to inverse problems. One’s first exposure to inverse problems is

typically accompanied by some claim that inverse problems are difficult to solve, with

the implication being that it is more difficult than the associated forward problem.

We give a more formal definition in the next section, but first, we review a few

well-known examples of inverse problems to develop some intuition.

3.1.1 Examples

Our first example is found in medical imaging, such as computerized tomography

(CT) scans. The forward problem is a form of scattering or diffraction problem, such

that for some radiation incident upon a given material distribution, we determine

the scattered radiation in the far field. For medical applications, the goal is to non-

invasively determine the internal structure of a patient’s body. This is accomplished

by measuring the scattered field at various angles given some incident radiation, and

solving the inverse scattering problem for the scatterer distribution. A related inverse

problem is found in geophysics, where the internal structure of the earth is determined

based on surface measurements of seismic waves.

Another example is in image processing, or image restoration, where the ideal

image must pass through non-ideal optics, leading to blurring and other distortion

to the captured image. The forward problem of blurring is typically modeled as

a convolution of the original image io(x) with a point spread function h(x). Sharp

features are smeared out, leading to a loss of resolution. Formally, our captured image

ic(x) becomes:

ic(x) =

∫
io(ξ)h(x− ξ)dξ, or (3.1)

Ic(k) = Io(k)H(k) (3.2)

The inverse problem becomes a deconvolution, which can be performed as a simple di-

vision of the captured image with the point spread function in their respective Fourier
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representations. One can determine h(x) by characterizing the optical elements care-

fully. It turns out that the image cannot be reconstructed with a straightforward

application of the deconvolution theorem. Section 1.6 in [22] provides a nice pictorial

example of this problem.

A final example is the heat conduction problem. The forward problem is of course

a standard undergraduate-level problem, and can be described by some variant of the

following:

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, x ∈ [0, π], t ≥ 0, (3.3)

where u(x, 0) = f(x), (3.4)

u(0, t) = u(π, t) = 0. (3.5)

This is solved in the usual way by separation of variables and then an eigenfunc-

tion expansion for the spatial dependence, with the set of normalized sine functions

{φn(x)} forming a complete orthonormal set. Expressing the initial distribution in

terms of a superposition of the eigenfunctions f(x) =
∑

n cnφn(x), we obtain the heat

distribution u(x, t) as

u(x, t) =
∑

n

cne−n2tφn(x). (3.6)

There is often some remark about our inability to solve the backwards heat conduc-

tion problem, namely given some final distribution u(x, tf ), we generally cannot go

backwards in time and deduce an initial distribution. Typically this is attributed to

the exponential factor, and we see that it blows up if we go backwards in time.

Based on these examples, we can make some observations that will prove to be

helpful. First, the heat conduction example makes explicit a common theme among

the examples provided: that of cause and effect. Whereas forward problems in physics

tend to study the unknown effects of known causes (in order to derive a model for pre-

dicting the effects), inverse problems seek the unknown cause of measured effects. The

backwards heat conduction equation makes this transparent because of the explicit

time dependence, but the rest of the examples all seek an explanation of some final
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observed phenomenon, given some well-characterized, presumably accurate model of

the forward problem.

The other observation is that at least in some of these forward problems, there ap-

pears to be a ‘smoothing’ process. For example, in the heat conduction and the blur-

ring examples, features present in the initial condition seems to get lost or smoothed

out as the state evolves forward. Often, we arrive at steady state solutions of dy-

namical systems, therefore independent of initial conditions: The system forgets or

loses information about the initial state. In such a case, we can certainly see just by

physical principles alone why an inverse problem would be ‘difficult.’ A more precise

way to look at this might be how ‘solvable’ a given problem is, which leads to the

notion of well-posed and ill-posed problems proposed by Hadamard.

3.1.2 Well-posedness

Hadamard proposed three properties that a problem must possess in order to be

classified as well-posed [21]:

1. For all admissible data, a solution exists.

2. For all admissible data, the solution is unique.

3. The solution depends continuously on the data.

What constitutes ‘admissible data,’ ‘solution’ and ‘continuous’ will of course depend

on the nature of a specific problem. For our purposes, considering only finite dimen-

sional linear operators, we can think of data and solution as the input and output

vectors of some linear transformation. The first two properties seem rather obvi-

ous, as it is not much of a linear mapping if we, for some given input, cannot get

an output, or get multiple or non-unique outputs. The third property is a question

of stability, requiring that small changes to the input does not produce arbitrarily

large changes to the output. A problem that lacks any one of these properties is by

definition ill-posed.
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We can apply our intuition to the heat conduction example and readily see that

indeed a solution to the inverse problem does not always exist. A simple example

is if our final field distribution corresponds to a state with minimal entropy. Since

entropy must increase with time, we know that there is no way to go backwards in

time, since we are ‘starting’ in a minimum entropy state. As for the uniqueness of the

solution to the inverse problem, we already addressed the problem of the steady state

fields, which means any initial state would reach the same steady state. The final

property of stability relates to the smoothing behavior of the forward problem. If we

perturb the initial conditions by a small amount, the perturbations will be smoothed

out over time to yield similar output fields. By extension then, small perturbations

at the final time must have corresponded to large changes in the initial condition.

We observed this effect quantified by the exponential term in the heat conduction

equation. We now express these ideas in a more formal mathematical footing in the

context of finite dimensional linear operators which can be represented by matrices.

3.2 Matrices as Linear Operators

3.2.1 A numerical example

We first provide a numerical example to give a concrete illustration of the ideas

presented in the previous section. The matlab code used to generate this example is

included in appendix A. Consider the N ×N Hilbert matrix.

A(i, j) =
1

i + j − 1
(3.7)

with Axin = xout (3.8)
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For this example, we will choose N = 5, and choose a relatively simple xin.

A =




1 1
2

1
3

1
4

1
5

1
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1
3

1
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1
5

1
6

1
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1
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1
5

1
6

1
7

1
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1
5

1
6

1
7

1
8

1
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1
6

1
7

1
8

1
9




, xin =




1

1

1

1

1




(3.9)

Evaluating xout gives:

xout =



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





1

1

1

1

1




=




2.2833

1.4500

1.0929

0.8845

0.7456




. (3.10)

Clearly, for any xin, we can evaluate a unique xout. Therefore the first two Hadamard

conditions are satisfied. To test the stability condition, we can define an additive

noise vector n that is sufficiently small to form x′in. Evaluating x′out gives:

x′out =



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




0.9982

0.9992

0.9997

1.0003

1.0010




=




2.2813

1.4490

1.0922

0.8840

0.7452




. (3.11)

We see that x′out is close to the nominal solution xout. Formally we can define the

relative magnitude of the input and output error to provide a measure of the stability



27

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400

450

Stability

Figure 3.1: Distribution of stability values for the Hilbert matrix operator

S:

ein =
|x′in − xin|
|xin| (3.12)

eout =
|x′out − xout|

|xout| (3.13)

S ≡ eout

ein

= 0.7846 (3.14)

where | · | denotes the 2-norm (i.e., |x| = (
∑

i x
2
i )

1/2). We repeat this with 10, 000

different noise vectors and show the distribution of S in figure 3.1. Most of the values

fall between 0 and 1, with the maximum value of about 1.1. Therefore, we see that

this problem is stable against perturbations to the input vector, i.e., errors remain

small.

We now look at the ‘reverse’ problem of finding xin given xout. We will look at

the stability again, but this time, we add the noise to the nominal xout. We solve for
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x′in = A−1xout. We use matlab to find the inverse of A.

A−1 =




25 −300 1050 −1400 630

−300 4800 −18900 26880 −12600

1050 −18900 79380 −117600 56700

−1400 26880 −117600 179200 −88200

630 −12600 56700 −88200 44100




(3.15)

Again, using 10, 000 different noise vectors, we obtain the distribution of S for this

reverse problem (as shown in 3.2). Notice the x-axis is scaled by 105, meaning the

relative error is greatly amplified. To illustrate, suppose we rounded xout to 3 decimal

places and then evaluated x′in.

x′out =
[

2.283 1.450 1.093 0.885 0.746
]T

(3.16)

x′in = A−1x′out =
[

2.105 −20.28 94.29 −141.4 71.19
]T

(3.17)

In the reverse problem, we cannot even tolerate rounding errors as x′in bears no

resemblance to xin at all. Therefore, this problem fails to satisfy Hadamard’s third

condition and is therefore ill-posed. Because of the ill-posedness, this reverse problem

is the one that is defined to be the inverse problem. Therefore, it is not simply a

question of semantics, but there are fundamental distinctions between a forward and

its inverse problem. Even if we had first defined an operator B = A−1 and went

through this same analysis, we would still conclude that B is the ‘inverse problem,’

and B−1 is the ‘forward problem,’ objectively based on the stability criterion.

In chapter 6, when we derive the inverse Helmholtz equation, we will encounter a

more severe manifestation of this problem, where we cannot (even without the additive

noise) recover the input with the computed output. However, if we understand the

analysis in this chapter, it will no longer be surprising when we get to chapter 6. To

understand the origins of this ill-conditioning, we need to take a closer look at the

properties of a general linear operator A in terms of the singular value decomposition.
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Figure 3.2: Distribution of stability values for the inverse Hilbert matrix operator.
Notice the scale on the x-axis is in increments of 105.

3.2.2 Singular value decomposition

Consider a general linear transformation (or linear mapping) A : Cn → Cm, such that

Ax = b (3.18)

with A an m× n matrix, x ∈ Cn and b ∈ Cm.

Any matrix A can be decomposed by the singular value decomposition (SVD)

such that

A = UΣV †, (3.19)

where the m×m matrix U and the n× n matrix V are unitary, and Σ is an m× n

matrix whose only non-zero elements are along the diagonal with {σi ≥ σi+1 ≥ 0}
called the singular values. The columns of U and V are known as the left {ui} and

right {vi} singular vectors. This is a generalization of the eigenvalue decomposition.

In fact (although one would not actually do so in practice), one can get the SVD by

performing an eigenvalue decomposition of AA† and A†A. The eigenvectors of AA†

and A†A are the left and right singular vectors of A respectively, and the eigenvalues

are the singular values squared. Since both AA† and A†A are Hermitian and positive

semi-definite, we are guaranteed real non-negative eigenvalues, thus ensuring σ ≥ 0.



30

v
2

v
1

u
2

u
1

σ
2
α

2

σ
1
α

1

α
2

α
1

α
2α

1

x
Ax

Figure 3.3: The vector x to be transformed is decomposed into v1 and v2 and then
mapped onto corresponding u1 and u2, with each component stretched or compressed
by the respective σ. In this example, σ2 < 1.

Having obtained the SVD of A, we can write down the linear mapping in a more

suggestive form:

Ax = UΣ(V †x) (3.20)

Ax =

min(m,n)∑
i=1

(
v†ix

)
σiui, (3.21)

where for clarity we have written the vectors in boldface. Looking at eqn. (3.21), we

see that any linear mapping can be viewed as a transformation of the input vector x

into the right singular vector basis, then stretching each component by the associated

singular value, and finally mapping these components to the corresponding left singu-

lar vectors. A pictorial representation for a simple 2D mapping is shown in figure 3.3.

For special cases of A that has an eigenvalue decomposition (i.e. diagonalizable), the

left singular vectors are the same as the right singular vectors, so in the diagonalized

basis, the linear transformation is particularly simple (just stretch each component

by the eigenvalues; this is, of course, why we prefer to work in a diagonalized basis).

The singular values of A play an important role since they determine how much gain

is in a particular component of the linear map. For the time being, let us consider the

problem of finding b (given A and x) to be the forward problem, while the problem

of finding x (given that Ax produces b) is the inverse problem.
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Revisiting Hadamard’s conditions then, in the forward problem, the first two

conditions are automatically satisfied if we can express the problem in this form. As

for the third condition, we can think of it as requiring reasonable gains (i.e. not too

large) for the system. Stability can also be achieved if random perturbations are

spectrally decomposed to singular vectors that have relatively small singular values.

In other words, singular vectors associated with small singular values should look like

noise. For physical systems the relevant physics are embodied by the linear operator

A.

If we now attempt to solve the inverse problem, we need to do the following:

Ax = b (3.22)

x = A−1b (3.23)

= V Σ−1U †b (3.24)

=

min(m,n)∑
i

(
1

σi

u†ib
)

vi. (3.25)

In eqn. (3.25) above, we have expressed the inverse of A using the SVD expansion.

Even when A is singular (i.e. not strictly invertible), the expression can be used and

interpreted as a generalized inverse or ‘pseudo-inverse,’ although there are of course

limitations associated with a singular A. Now A is obviously singular when m 6= n,

but even when A is square it can still be singular if σi = 0. Singularity of A implies

that A does not have full rank, i.e. A is rank deficient, or A has a non-trivial nullspace:

For σi = 0, (3.26)

Avi = 0 (3.27)

∴ A(x + αvi) = b, and furthermore, (3.28)

@ y | Ay = βui (3.29)

Eqn. (3.28) shows that we fail the uniqueness test, and eqn. (3.29) shows that we

fail the existence test for Hadamard’s condition for well-posedness. In most physical
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problems, the singular values may not be identically zero, as it would be impractical

to numerically evaluate them to that level of precision. Based on the importance of

the singular value spectrum though, we can define a condition number :

C ≡ max σ

min σ
(3.30)

As C becomes larger, the problem becomes more ill-conditioned, and for a strictly

singular matrix, C → ∞. Even though we now have this quantity defined, the

boundary between what is considered well-conditioned and poor-conditioned is not a

sharp one. A generally acceptable figure is C ≤ 103.

We now return to our numerical example of the Hilbert matrix. The singular val-

ues are {1.567, 0.2085, 0.0114, 0.0003, 0.000003}. The condition number is 4.766×105,

so as suspected, the problem is ill-conditioned. Specifically, let us examine eqn. (3.25),

especially the factor σ−1
i . In the forward problem, the small singular values damp

out the contributions from the additive noise. In the inverse problem, however, they

become an amplification for the noise components, drowning out the original sig-

nal xin. This amplification picture is consistent with our result above, as we found

|A−1x′out = x′in| >> |xin|. If a problem is ill-conditioned, any standard matrix inver-

sion algorithm will fail to recover the desired solution xin. Having understood the

origins of the difficulties, we can now discuss strategies for overcoming these difficul-

ties.

3.3 Regularization and the L-curve

The specialized technique that is used to solve inverse problems is called regulariza-

tion. There are many regularization schemes that have been developed, and Engl’s

text is a good starting point. Here, we will only discuss the most common regulariza-

tion scheme, known as Tikhonov regularization, that works well in many situations.

First, we must address the three properties of ill-posedness. In a way, they are

related, because any time we have a singular (or near-singular as defined by C)
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matrix, any of the three can occur. The lack of an existence theorem is overcome

by minimizing the residual |Ax′in− x′out| in usual inverse problem applications, and is

not considered too serious. One must give up on the notion of an exact solution to

inverse problems. Rather, we just try to reconstruct a ‘sensible’ solution that satisfies

our given equation ‘well enough.’ We will comment further on this issue in the final

section of this chapter.

Non-uniqueness is considered much more serious. In our numerical example, hav-

ing given up the notion of an exact solution, we know that |Axin − x′out| would have

been nonzero but small. In fact, it is exactly the norm of the small noise term added

to xout. The problem becomes how to pick out the nice solution among all the many

that would still give reasonably small residual norms. We observed at the end of the

last section that the small singular values lead to large noise amplification. We note

also that these bad solutions do tend to blow up and have large norms, much larger

than the desired solution. Therefore, one strategy would be to restrict the size of

the solution. This additional constraint allows us to choose systematically a unique

solution that at least allows a ‘sufficiently small’ residual. Rather than minimizing

only the residual, we can include the solution norm as well to formulate the following

regularized inverse problem:

x
(λ)
out = min

xout

{|Axout − x′in|2 − λ|xout|2
}

(3.31)

The scalar λ is known as the regularization parameter, and determines the relative

weight between minimizing the residual norm versus the solution norm. The standard

graphical tool that assists in choosing the regularization parameter is the L-curve. The

L-curve plots the solution norm on the y-axis and the solution norm on the x-axis for

a series of λ’s. The L-curve for our numerical example is shown in figure 3.4, and it

takes on its name because of the characteristic L shape. The corner is usually taken as

the appropriate regularization parameter that indicates optimal compromise between

the two norms. In practice however, the corner rarely gives the optimal solution, so

it is best to use it as a rough guide. Constructing the L-curve for our problem, we
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find a value of λ = 6.7× 10−5 at the corner. The solution then is:

x′λ=6.7×10−5 =
[

0.9298 1.5388 0.2284 0.8474 1.4818
]T

(3.32)

x′λ=1.6×10−3 =
[

0.9800 1.0661 1.0103 0.9773 0.9474
]T

(3.33)

∼= xin. (3.34)

By looking at some more values near the corner, we find that the solution closer to

our ‘true’ solution actually has λ = 1.6× 10−3. So we see that we can in fact recover

sensible results even for badly conditioned problems.

3.3.1 An alternate interpretation

There is an alternative picture to justify the Tikhonov regularization scheme. Recog-

nizing that it is the small singular values that cause the difficulties, we can imagine
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applying a filter on the singular values when we construct the inverse in eqn. (3.25).

Applying a Lorentzian filter to the reciprocal singular values, we get:

1

σi

→
(

σ2
i

σ2
i + λ2

)
σ−1

i (3.35)

For σi >> λ, the filter has little effect, whereas if σi << λ, then σ−1
i → λ−1, limiting

the unstable spectrum. We see that the two views are equivalent since we can ana-

lytically solve the Tikhonov minimization (eqn. (3.31)). For a given λ, the function

is minimized if x′out is constructed using filtered coefficients of eqn. (3.35) instead of

the reciprocal singular values σ−1
i . Different regularization schemes effectively change

how we evaluate the filtering coefficients. For example, if we take our Hilbert operator

and increase N to 100, we find the spectrum of singular values as shown in figure

3.5. Because of the distinctive corner in the spectrum, we might use an aggressive

strategy here and simply truncate beyond the 20th singular value. This is known as

the truncated singular value decomposition (TSVD) regularization scheme. (Note:

this scheme alone would not work for the Hilbert problem because the remaining σ’s

would still give a condition number of 1017.) Most physical inverse problems do not

have these obvious clusters, making hard truncation more difficult, so Tikhonov is re-

ally a good general strategy to use. In figure 3.6 we show the spectrum for the inverse

photonic problem (see chapter 6) using a Guassian output mode. This spectrum is

more representative of real world inverse problems.

3.4 Conclusion

In this chapter, we explored the reasons why there is a real fundamental distinction

between a forward problem and an inverse problem. In particular, the notion of

stability against random perturbations is what sets the two apart, and we gave the

condition number as a quantity that helps us identify ill-conditioning. For complete-

ness, we now elaborate on a subtle point that we commented on earlier in passing.

We motivated the need to find a fundamental distinction between forward and inverse
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Figure 3.5: The spectrum of singular values for the 100× 100 Hilbert operator. Note
the distinct corner, showing an obvious point where we can perform a truncation.

problems due to the inherent symmetry of the two problems, i.e. one is the inverse of

the other. It should now be clear that neither the Fourier transform nor its inverse

can be considered an inverse problem, because they are both unitary, so C = 1. For

an inverse or ill-posed problem, C >> 1.

Of course, the condition number of the forward and inverse problem are the same

as we have defined it (since it is just the ratio of the largest to smallest singular

values), so the spectrum of singular values does not break the symmetry between the

two problems. So what actually breaks the symmetry? It turns out to be the special

status given to the random fluctuation or noise. The forward problem is defined

as the one that is stable against changes caused by random fluctuations. However,

given a large condition number, stability against noise necessarily implies it will be

‘unstable’ to a different form of perturbation. Of course, we usually do not use the

term ‘instability,’ but instead we use the term ‘sensitivity’ in this context. Historically,

this makes sense in how one studies physics. To model a physical system, we vary its

parameters and measure its effects. A model is good if it makes good predictions about
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Figure 3.6: The spectrum of singular values for the inverse photonic problem using
a Gaussian shaped desired mode. In contrast to figure 3.5, we find no obvious place
for a hard truncation.

the effects. Given a new physical system we are trying to model, if any small noise

(i.e. a perturbation to the system the experimentalist cannot control) will create a

large disturbance in the effect we can measure, it will be very difficult to come up with

a model. What we need is a system that is sensitive to controllable and systematic

variations to the input, so the effects can be readily observed with adequate signal-to-

noise ratio. By its very nature, most problems studied are stable (in the sense given

here) against most forms of noise. Any physical model derived based on experimental

results will necessarily reflect this process. Therefore, we do expect ‘noise’ vectors to

have large projections onto the ‘bad’ singular vectors in physical problems, using our

linear algebra language.

3.4.1 Parameter estimation vs. design

We conclude this chapter by making an observation about the difficulties in transfer-

ring over from standard inverse problems to PBG device design. First, most standard

inverse problems can assume implicitly the existence of a solution even if the prob-
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lem formally does not guarantee you a solution [21]. Going back to the cause and

effect picture, you are measuring a real effect from a cause that necessarily exists.

The problem as we saw is that noisy measurements hide the underlying cause. If

you really cannot reconstruct the cause from the measured effect, it is probably an

indication that the model is wrong. As applied to a design paradigm, that is not the

case. The ‘desired effect’ has not been observed or measured. It is a mere figment of

our imagination, so to speak. We will see that this is a much more serious problem for

design purposes. If we encounter a design problem where we encounter a non-existent

solution situation, we would like to make strong claims to that effect, but we cannot

do so because the Tikhonov regularization scheme is not really the most appropriate

for the PBG problem. This brings us to our second observation. The solution we

seek in the PBG inverse problem is the dielectric function, and their norms are not

necessarily small, particularly if there are discontinuities. Physically, η cannot take

on negative values, but Tikhonov would be happy accommodating negative values as

long as they are small. Fortunately, we can use the insight developed in this chapter

to implement a much more appropriate regularization scheme for the PBG problem.

We expand on these ideas and develop the necessary tools in the next chapter.


