
118

Appendices

119

Appendix A

Sample Matlab Code to Illustrate
Ill-Conditioning

%Simple Matlab code to illustrate ill-conditioning

%with a numerical example

%-------------------

%

%Set Parameters

dim = 5; %sets dimension of the matrix

numiter = 10000; %number of iterations to run through

noiselevel =1e-3; %scales the magnitude of the random noise vector

%

%--------------------

%

%Define the matrix and input vector

A=1./([1:dim]’*ones(1,dim)+ones(dim,1)*[0:1:dim-1]);

%This defines the Hilbert matrix of size dimXdim

xin = ones(dim,1);

xout = A*xin;

%

%-----------------

%

120

%Statistics for the ’forward problem’

for kk = 1:numiter

noisein = noiselevel*randn(dim,1);

ein = norm(noisein)./norm(xin);

eout = norm(A*(xin+noisein)-xout)./norm(xout);

S(kk) = eout./ein;

end

figure(1);hist(S,50);

%histogram of the stability of the forward problem

%

%Statistics for the ’inverse problem’

%----------------

%Inverse problem is : Solve xin = inv(A)*xout

%

invA = inv(A);

for kk = 1:numiter

noisein = noiselevel*randn(dim,1);

ein = norm(noisein)./norm(xout);

%Note that the input and output are reversed...

eout = norm(invA*(xout+noisein)-xin)./norm(xin);

S(kk) = eout./ein;

end

figure(2);hist(S,50);

%histogram of the stability of the inverse problem

xout_round = round(1e3*xout)./1e3;

xin_bad = invA*xout_round %Shows instability to rounding

121

Appendix B

Barrier Functions of Complex
Variables

Consider the following barrier function φ(ξ) : Cn →R

φ(ξ) = −log(−f(ξ)) (B.1)

= − log

(
−ξ†η + η†ξ

2

)
(B.2)

where f : Cn → R, ξ ∈ Cn, η ∈ Cn. We use our Cn → R2n transformation (eqn.

(4.37)) and re-express in terms of the new variables.

[ξ] →

 <(ξ)

=(ξ)


 ≡ x (B.3)

[η] →

 <(η)

=(η)


 ≡ y (B.4)

122

where (x, y) ∈ R2n. Transforming to R2n and using eqn. (4.60) and (4.61), we find

φ(x) = − log(−g(x)) = − log(−xT y) (B.5)

∇g(x) = y (B.6)

∇φ(x) =
1

xT y
y (B.7)

∇2φ(x) =
1

(xT y)2
∇g(x)∇g(x)T (B.8)

=
1

(xT y)2
yyT (B.9)

Let (xT y)−2 ≡ α ∈ R, since it is just a scalar. The Hessian can be expressed as:

∇2φ = αyyT (B.10)

= α


 ηr

ηi


 [ηT

r ηT
i] (B.11)

= α


 ηrη

T
r ηrη

T
i

ηiη
T
r ηiη

T
i


 (B.12)

6= α


 <(H) −=(H)

=(H) <(H)


 (B.13)

In the final step, we show that this Hessian matrix is not equivalent to any H ∈ Cn×n

based on the Cn → R2n transformation rules for matrices (eqn. (4.47)). Therefore,

regardless of how we define the generalized complex gradient or Hessians, we cannot

include this form of barrier function in the complex domain using normal matrix

manipulation rules. We are forced to perform the cumbersome transformation to real

variables, despite suggestions found elsewhere [83, 25].

123

Appendix C

Fourier Transforms

In chapter 2, we examined the Helmholtz equation in the plane wave basis, and found

that transforming into the Fourier domain played a central role. We also alluded to

some problems associated with the truncation to finite bandwidth. In this chapter, we

look more closely at Fourier transforms, and in particular numerical implementations

of the Fourier transform as it applies to physics applications.

Fourier analysis is included in most undergraduate level curriculum, so it may seem

strange to have it included in the body of the thesis. The use of Fourier transforms,

both the continuous and discrete forms are ubiquitous in physics and engineering.

They are used extensively in signal processing, image processing and compression,

pattern recognition, and solutions of PDEs using spectral methods (as we use them

here). Most computational software such as Matlab, Mathematica, and Maple all have

built-in functions to compute these transforms. However, perhaps because it is so

commonplace, there is greater risk that one does not first think more carefully about

the underlying physics and will just let the machine grind through the calculation.

The only warning I remember as an undergrad in learning about Fourier analysis

was ‘aliasing’, and we were simply told to make sure we sample above the Nyquist

frequency. However, that is not a viable option with photonic crystals, because the

discontinuities imply an infinite Nyquist frequency. What exactly happens to this

‘aliasing’ behavior then? It turns out that there are other issues with numerical

implementations of the Fourier transform, particularly for those who wish to use

discrete Fourier transforms in computational physics. The goal of this chapter is

124

to bring awareness to some of these issues exacerbated by these discontinuities, and

justify interpreting our results in the smooth function limit which we presented in

Part II.

Organization

We will begin in section C.1 with some general bookkeeping by introducing the no-

tation we will follow in this chapter for Fourier transforms, and then revisiting the

Born von-Karman boundary conditions by paying closer attention to the topology of

the direct space and Fourier space. In section C.2 we introduce formally the discrete

Fourier transform, and in particular examine the fast Fourier transform (FFT) and

some of its properties. There are some aspects of the FFT that are unnatural to

physics applications (where the origin is usually at the center of the spectrum). This

will lead to a discussion of symmetries in section C.3, where we see real discrepancies

between what we näıvely think we are modeling, as opposed to what the mathemat-

ics is actually modeling. We also find a fundamental conflict in the symmetry of

the physics and the symmetry as a result of the discretization. In light of the issues

revealed in these sections, we emphasize the fundamental importance of considering

the continuous function limit and explore the behavior for various transform schemes.

As mentioned in section 2.4, we describe Li’s insight into the convergence issues in

the plane wave Helmholtz equation with Fourier factorization rules in section C.4,

followed by concluding remarks in section C.5.

C.1 Boundary Conditions and Fourier Space

Consider a continuous function f(r). We define the Fourier transform of the function

as

F (k) =
1

V

∫

V

f(r)e−ik·rdr (C.1)

125

where V denotes the relevant integration volume. We can similarly define an inverse

Fourier transform as

f(r) =

∫

Vk

F (k)e+ik·rdk (C.2)

There are many conventions for where to place the normalization factor 1
V

, and physi-

cists tend to prefer the symmetrized form, but we have chosen to follow the convention

[3] used in the treatment of the photonic bands problem. In the absence of any period-

icity that extends to infinity, the Fourier transform of an arbitrary real-space function

will be a continuous function in Fourier space. When we impose the Born von-Karman

periodic boundary conditions, as we saw in section 2.2, we are left with a discrete set

of allowed k-vectors {k}. More precisely, we have F (k′) ≡ 0 for any k′ /∈ {k}. We

mentioned that imposing periodic boundary conditions is a standard approximation,

and is considered valid in the tight-binding approximation. We explicitly examine

the difference with the following example in 1D. Consider the rectangular function

f1(x) =





A if |x| ≤ a,

0 if |x| > a.

(C.3)

The Fourier transform of f1(x) is:

F1(k) =

∫ +∞

−∞
f1(x)e−ikxdx (C.4)

= 2A
sin(ak)

k
(C.5)

where we have ignored the normalization in eqn. (C.1) to facilitate comparison with

the periodic case.

If we now introduce an artificial periodicity by defining a supercell of length 10×2a,

126

-30 -20 -10 0 10 20 30
-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-1.5 -1 -0.5 0 0.5 1 1.5
-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure C.1: In (a) we show f1(x) in black, and f2(x) with the artificial periodic
boundary conditions in red. The dashed line helps visualize the periodicity of f2. In
(b), we plot the Fourier transform of f1 and f2. F1 is plotted in green and the allowed
k values of F2 are shown as red circles. We plot in the blue curve the underlying
continuous form of F2 in k space. The ‘delta function train’ as a result of the real-
space periodicity is shown explicitly this way.

we can define

f2(x) =





A if |x| ≤ a,

0 if a < |x| < 5a.

(C.6)

f2(x + Nxp) = f2(x) (C.7)

where N is an integer, and xp ≡ 10a is the periodicity introduced. The Fourier

transform of this function has the same form as F1(k) with the exception that it is

modulated with a delta function ‘comb’ corresponding to the allowed k values. In

figure C.1, we plot the two functions in real space and Fourier space.

The ratio of the two normalization factors we omitted accounts for the extra fea-

tures in f2(x) that are absent in the original function f1(x). However, for applications

such as spectral analysis, this is unimportant since it is the relative magnitude of the

different frequency components that matter. Quantities involving continuous k-space

integrals are well approximated by Riemann sums. We see in figure C.1 that we do

not lose information by incorporating the artificial boundary condition. Particularly

for functions like f1(x) that are negligible outside of the supercell (in our case the

function is identically zero), we see that this is a very good approximation. One of

127

our Fourier transform pair becomes a discrete sum rather than an integral:

F (k) =
1

Vsc

∫

Vsc

f(r)e−ik·rdr (C.8)

f(r) =
∑

k

F (k)e+ik·r∆k (C.9)

where Vsc indicates the volume of the supercell.

C.2 Numerical Implementation

With arbitrary functions, we often cannot perform the integration analytically. Nu-

merical implementation of the Fourier transform takes the form of a discrete Fourier

transform (DFT), and one of the most common algorithms for its implementation

is the fast Fourier transform (FFT). In a FFT, the real space function is sampled

at regular intervals, and the number of plane waves is truncated to allow numerical

evaluation of the transform. The number of points used in the real-space sampling

N matches the number of plane waves.

With the identification from f(x) to fx, the FFT relations are defined to be:

Fk =
N−1∑
x=0

fx exp

(−2πi

N
kx

)
, Forward FFT

fx =
1

N

N−1∑

k=0

Fk exp

(
2πi

N
kx

)
, Inverse FFT

(C.10)

where k and x are now integer values from 0 to N − 1 in units of their respective

basis vectors. In general 3D form, let {ŝ1, ŝ2, ŝ3} define the periodicity of the lattice.

The unit vectors in real-space becomes {x̂1, x̂2, x̂3} ≡ {ŝ1/N1, ŝ2/N2, ŝ3/N3} where

N1, N2, N3 are the number of sampling points along each direction. The basis vectors

128

in k-space become:

b1 = 2π
s2 × s3

s1 · (s2 × s3)
(C.11)

b2 = 2π
s3 × s1

s2 · (s3 × s1)
(C.12)

b3 = 2π
s1 × s2

s3 · (s1 × s2)
(C.13)

Observe as the real-space periodicity grows (|si| → ∞), the resolution increases in

k-space (i.e. |bi| → 0). The high frequency cutoff is precisely at Nyquist when we use

the same number of points in both k-space and real-space.

One reason for its popularity is that the computational complexity for the FFT

scales as O(N log N) due to the Cooley-Tukey algorithm [84], compared to O(N2)

for a direct evaluation of the sum. In creating the MPB package, Steven Johnson et

al. have also put out a free package [85] for the FFT called FFTW (Fastest Fourier

Transform in the West).

There are some notable properties about the FFT we should highlight. First, the

normalization factor is absorbed in the inverse transform, which is different than the

convention we have adopted in the continuous case. This unfortunate discrepancy

means we have to be more careful with our bookkeeping of the normalization factors,

but otherwise poses no problems. The other property which usually affects physicists

is that the FFT convention defines the domain of x and k such that the 0 value is

the first element rather than at the center of the spectrum (see eqn. (C.10)).

In physics however, the origin is usually defined at the center of most problems

that we analyze to more easily exploit symmetries. Computing the FFT with any

standard software package using discretized data in ‘physics order’ will give incorrect

results. In figure C.2 we show graphically what is effectively the conventional FFT

ordering. The correct function f(x) one needs to use in order to get what physicists

think they should get has the ‘negative’ half of the data translated by the periodicity

imposed. This translation of the spectrum in both k-space and real space is simply

a substitution of x → x + N and k → k + N respectively. In eqn. (C.10), this term

129

-15 -10 -5 0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

-5 0 5 10
-0.5

0

0.5

1

1.5
Negative part of the spectrum trNegative part of the spectrum translated by 10 to the rightanslated by anslated by Negative part of the spectrum tr

(a) (b)

Figure C.2: In (a) we again show f1(x) in black, and f2(x) in red. The blue dash-
dotted line defines the new domain (shaded in turquoise) of x under the FFT conven-
tion. To use a standard FFT routine, we need to use the green curve rather than the
black curve to get the right results. On the right, (b) shows the equivalent k-space
domain for the Fourier transform. The k < 0 part of the spectrum is translated over
as shown. The turquoise region shows k-space domain under the FFT convention.

appears in the exponential and is evaluated to 1, so we see that the resulting FFT

is left unchanged by this translation. To be completely transparent, this means that

for a given discretized fx, if we attempt to compute the FFT coefficient Fk+N , we get

identically Fk. The generalization to 2D is illustrated graphically in figure C.3.

By defining the computational grid in FFT order rather than in physics order,

we can take advantage of the FFT algorithm without shifting the indices around. In

matlab, there are built-in functions that do this called fftshift, which go from FFT

order to physics order, and ifftshift, which go from physics order to FFT order. If the

FFT is used extensively, it is more convenient to simply define the grid in the FFT

order, and shift only when plotting the results.

This shift property is reminiscent of the concept of the reduced zone scheme

of k-space representation in solid state physics (see Chapter 9 in [12]) for periodic

potentials. However, we will see in the following section that the FFT symmetry is

artificial and one needs to be very careful how one treats these terms in the context

of computational physics.

130

5 0 5 10
6

4

2

0

2

4

6

8

10

Figure C.3: The four quadrants of a 2D FFT are shifted from physics ordering to FFT
ordering as shown. The black dash-dotted line indicates the usual physics domain,
while the magenta dash-dotted line indicates the nominal FFT domain.

C.3 The Symmetry Problem

Suppose we define a 1D computational grid with N = 2n + 1 points such that

{k} = {−n,−n + 1,−n + 2, . . . , n − 2, n − 1, n}, and position {x} = {−n,−n +

1,−n + 2, . . . , n− 2, n− 1, n}. For simplicity, consider the Helmholtz operator (eqn.

(2.28)) in 1D, and notice the terms of the form ηk−k′ . This has the form of a Toeplitz

matrix (i.e. matrices of the form Am,n = Am−n), which has a natural connection

mathematically with the FFT [86]. The Toeplitz matrix has elements like ηκ, where

n < |κ| ≤ 2n, exceeding our defined k-point domain. For simple geometries, one

could use the expression for the analytical Fourier transform. For more complicated

geometries, we might be tempted to use the FFT symmetry and equate ηκ = ηκ±n

(depending on the sign of κ), since, as we saw earlier, they are formally equivalent

mathematically. This would give us the circulant form of the Toeplitz matrix. How-

131

ever, we presumably have truncated the grid at the chosen size because the omitted

high frequency components are ‘small enough’, whereas these ηκ terms can be quite

large. So how do we resolve the discrepancy on how to handle these Fourier coefficients

that lie outside our computational domain?

C.3.1 The underlying real-space function

The key is in recognizing that the real-space function is fundamental because it is

the one that corresponds to a physical quantity. With regards to the FFT symmetry,

recall that the valid but artificial periodicity in the real-space function gave rise to

the delta-function lattice in k-space. We justified the approximation by invoking

the tight-binding approximation. If we now insist on an artificial periodicity in k-

space, then necessarily (by the symmetric nature of the Fourier transform) we enforce

a convolution of any real-space function with a delta-function lattice as well. This

means that our model of the continuous function is identically zero everywhere except

the points we happen to be sampling (see figure C.4a).

This illustrates that we must not use the FFT symmetry to determine the correct

coefficients for terms outside of our computational domain. We could (as we might

with the analytical Fourier coefficients) do an oversampled transform with N × 2nD ,

where nD is the number of dimensions in real-space to evaluate those coefficients. The

problem with this approach is that it is no longer self-consistent with our truncation

condition. When we chose the computational domain, for better or for worse, we

effectively set a priori any Fourier component exceeding kmax equal to zero. Since

other quantities have the same bandwidth limitation, self-consistent treatment implies

setting those εk equal to zero as well.

Given the analysis here, it is now obvious that the underlying real-space function

for some set of FFT coefficients can be quite different than what we think they repre-

sent. Given our strict truncation approximation, we now examine the 1D rectangular

function again. This time, we take an N point FFT of the rectangular function, then

transform back to real-space with a 2N point FFT by explicitly zero padding the

132

-1.5 -1 -0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

(a)

(b)

Figure C.4: (a) The underlying continuous function of a nominal rectangular function
allowing the FFT symmetry. (b) The underlying continuous function of a nominal
rectangular function reconstructed from the N FFT coefficients with hard truncation.

k-components outside the original bandwidth. Figure C.4b shows the true represen-

tation of an FFT. Even though the FFT/IFFT pair seems to perfectly reconstruct

a discontinuous jump, an examination of the underlying continuous function shows

the misrepresentative sampling that actually happens. Note also that after the hard

truncation we no longer have a Toeplitz matrix because of our FFT preferred order-

ing, which is different from the other works that use the PWE method and keep ηk−k′

(or the equivalent 1
ε

term) as a Toeplitz matrix[11, 14, 87, 88, 20].

C.3.2 Even vs. odd

A final problem with the FFT symmetry that is quite subtle shows up in how we

choose to discretize the grid in k-space. As before, the spacing is strictly determined

by the real-space periodic BCs, while kmax is chosen according to some truncation

133

condition. The final detail addresses the boundary of the k-space grid, meaning a

determination of whether an even or an odd number of k-points are used along each

k direction. It is known that the FFT algorithm is most efficient when N is a power

of 2 or a product of small prime numbers [85]. Usual implementations choose N to

be a power of 2, which is clearly even. Here, I argue that an odd-numbered grid is

the correct choice for self-consistency considerations, particularly when we have high

frequency components we have had to truncate out.

Consider now in 1D an No point transform where No = 2n+1 and an Ne transform

where Ne = 2n of the same periodic continuous function in real-space. Shifting back

into a physics preferred coordinate system, our k-space will have in the odd case

{ko} = {−n,−n + 1, . . . , n − 1, n}. In the even case, we have a choice of either

{ke} = {−n,−n + 1, . . . , n − 2, n − 1} or {ke} = {−n + 1,−n + 2, . . . , n − 1, n},
and the two are equivalent because of the FFT symmetry, i.e. any F−n = FN−n.

Consider further a real-valued real-space function (such as a dielectric function). The

continuous Fourier transform symmetry in k-space is:

Fk = F ∗
−k (C.14)

This illustrates that the physical symmetry conflicts with the FFT symmetry which

arises as a result of discretizing. We do not have this conflict when we choose an odd

numbered FFT, since Fn and F−n are independent. With an even-numbered FFT of

a real-valued function, this constrains the boundary k elements to take on only real

values. In 1D, this may not be significant, since there is only one element. In 2D,

the number of boundary elements increase, and we show in figure C.5 the conflict in

symmetry.

For well-behaved functions where our sampling rate is well above Nyquist, this

conflict is not significant, simply because Fn is near zero. If we do not sample at a

sufficient rate (e.g. when we have discontinuities), the conflict becomes much more

significant. In figure C.6 we show an arbitrary discontinuous function in 2D that

can be a possible PBG dielectric function. We take the 2D FFT using an N × N

134

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

FFT symmetry

Physics symmetry

Figure C.5: 2D k-space diagram showing the effect of the FFT symmetry on Fourier
coefficients at the boundaries

grid for N even and N odd. We show the resulting spectra of coefficients in figure

C.7. Our discretization choice affects not only the boundary values, but as shown

in the plot, there is a significant discrepancy between the two schemes in even the

largest of the coefficients (i.e. where the k-vector is close to the origin, far away from

the truncation limit). Since the odd numbered grid preserves the proper number

of degrees of freedom and symmetries, we consider it the discretization scheme that

is actually more appropriate for computational physics, especially when modeling

discontinuities.

C.4 Fourier Factorization

A final remark we will make about Fourier transforms as it applies to the PBG

problem deals with the Fourier coefficients of a product of two functions. Consider a

135

Figure C.6: A 2D real-space function with discontinuities that is representative of an
arbitrary PBG dielectric function.

function f(x) = g(x) · h(x). The problem is to find the Fourier coefficients Fk, given

Gk and Hk, the Fourier coefficients of g(x) and h(x) respectively. This can be done

using Laurent’s Rule such that:

Fn =
kmax∑

m=kmin

Gn−mHm (C.15)

where Gn−m is the familiar Toeplitz matrix. However, suppose g(x) and h(x) are

functions with concurrent discontinuities at xd, and suppose further that the discon-

tinuities at xd are complementary such that f(x) is continuous at xd, i.e.

lim
x→x+

d

f(x) = lim
x→x−d

f(x) = f(xd) (C.16)

We encounter this situation with our source free non-magnetic geometry. The mag-

netic fields are continuous everywhere, which implies (by eqn. (2.3)) that D is contin-

uous. Since ε(r) has discontinuities, E(r) must have complementary and concurrent

discontinuities such that their product is continuous.

Li proved [18] that even as we take the set {k} to infinity, Laurent’s rule will never

136

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Figure C.7: The value of the Fourier coefficients for an even numbered FFT vs. an
odd numbered FFT are plotted on the complex plane, i.e. the axes are the real and
imaginary parts of Fk of the function shown in figure C.6. Notice the discrepancy
in most of the points. We have plotted the 81 k-points with the largest magnitude.
Note that the bandwidth for both geometries are the except for the boundary point,
showing the two schemes are not self-consistent.

converge. Instead, he applied what is now known as the Inverse Rule:

Fn =
kmax∑

m=kmin

[Γn−m]−1 Hm (C.17)

where Γk is the Fourier expansion of γ(x) = 1
g(x)

. The superscript −1 denotes matrix

inversion. The difference in convergence is shown in figure C.8.

Given Li’s analysis, it is no longer surprising why the convergence of the PWE

method depends on the polarization of the field and how we treat the dielectric

Toeplitz matrix. Rigorous application of his factorization rules to 2D and 3D has

spawned the fast Fourier factorization methods (cf. [87, 20]), but the physics is ulti-

mately embodied by the effective medium approach [17, 4].

137

(a) (b)

(c) (d)

Figure C.8: Illustration of Laurent’s rule and the inverse rule. (a) Given the Fourier
coefficients of two functions g(x) in blue and h(x) in green, we want to find the product
f(x) in red. Notice a single concurrent and complementary discontinuity at x = 0,
and a concurrent but non-complimentary discontinuity at x = −1. (b)Result using
Laurent’s rule. Notice the non-concurrent discontinuity had no trouble converging.
(c) Magnification of problem area (d)Good convergence of result using Li’s inverse
rule.

C.5 Conclusion

In this appendix, we explored some of the intricacies of the numerical implementation

of Fourier transforms. For functions with discontinuities, our inherent inability to

satisfy the Nyquist criterion exacerbates the issues discussed in this chapter. For these

reasons, we cautioned against blind acceptance of the FFT/IFFT output, but instead

return to a continuous function limit interpretation. Given the accuracy limitations

revealed in chapter 2 and this appendix, self-consistency in modeling should be the

primary focus. We therefore give up on the notion of accurately modeling dielectric

slabs with etched air holes. In chapters 5–8 where we describe geometries of structures,

we use language such as a nominal geometry consisting of a lattice of air holes of

radius 0.3a and so forth. It is to be understood that we are really talking about the

real-space continuous function representation of the truncated Fourier series.

