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ABSTRACT

An experimental study of both the weakly non-linear as well as the
three-dimensional nature of boundary layer transition is conducted
using the active surface heating technique of Liepmann et al. In the
present study, this technique is extended to provide a means for con-
trollably and repeatably introducing three-dimensional disturbances
into a laminar boundary layer. A review of the surface heating tech-
nique is presented along with a discussion of some peculiarities
encountered in extending this technique to three-dimensional
geometries. A thorough description of the design and operation of a
programmable 32-element heater array and the supporting instrumentation

are given as well.

The heater array is first used to study the effect of weak non-
linearity on boundary layer transition. By keeping the forced distur-
bances as two-dimensional as possible, it is shown that the effects of
weak non-linearity are relatively benign. The growth rates are seen to
follow the linear theory up to perturbation amplitudes (T'w/?w) of
nearly twelve percent. The only deviation from the linear theory arises
in the form of non-linearly generated harmonics phase-locked to the
fundamental. It is concluded that although these non-linearly gen-
erated harmonics do alter the wave behavior to some extent, they are by
themselves not sufficient to explain the transition from small linear
oscillations to the large amplitude, broad-band, three-dimensional

oscillations characteristic of a fully turbulent boundary layer.

The effect of three-dimensionality on boundary layer transition is
then investigated through an analytical and experimental study of sin-
gle oblique instability waves. This subject has remained largely unex-
plored, as such disturbances were generally thought to be more stable

and therefore less dangerous than their two-dimensional counterparts.
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Through a series of experiments, however, it is shown that certain con-
ditions exist for which oblique waves are observed to be more unstable
than any two-dimensional wave. It is shown that oblique waves exhibit
a non-stationary period-doubling behavior that is not seen in two-
dimensional disturbances. A vortex pairing mechanism is proposed to
explain this behavior, and is shown to occur in a manner consistent

with the Biot-Savart law for the induced velocity field.
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Chapter 1
INTRODUCTION

1.1. Historical Background and Motivation.

The subject of boundary layer transition has been of great
interest for over fifty vears and rémains a very active area of
research. Historically, the most fruitful method by which transition
has been studied is a consideration of the stability of small amplitude
disturbances of the form

u(x,t) = u(y)ellex-wt) 1.1

where o is the streamwise wavenumber, and w is the frequency of the
disturbance. Both o and w are in general complex. Disturbances of the
form 1.1 are most commonly referred to as Tollmien-Schlichting waves
after a series of fundamental papers by Tollmien and Schlichting from
1929 to 1940. When a velocity field of the form 1.1 is substituted
into the linearized equations of motion, a fourth order eigenvalue
problem results and is typically written in terms of the vertical com-

ponent of the disturbance velocity field v(y) as
[0%-202p%+a?1v(y) = 1«Re[(u—g)(nz-a2)—9201v(y) 1.2

where the notation D = 9/0y is used for convenience. U=U(y) is the
mean velocity profile, and Re is the Reynolds number. Equation 1.2 is
the Orr-Sommerfeld equation derived independently by Orr (1907) and
Sommerfeld (1908). Scolutions are easily obtained by numerical methods
and are usually represented in terms of the neutral stability curve, an
example of which is given in figure 1.1. The existence of such travel-
ling wave disturbances was firmly established in the classical experi-

ments of Schubauer and Scramstad (1947) in which two-dimensional



oscillations were artificially introduced into a laminar boundary layer
by means of an electromagnetically excited vibrating metal ribbon.
Aided by the extremely low turbulence level (0.02 %) of the National
Bureau of Standards' wind tunnel, Schubauer and Scramstad were able to

verify the linear theory in virtually every respect.

The existence of the disturbances predicted by the linear theory
has thus been established beyond doubt, yet the connection between
these small amplitude, low frequency, slowly growing osciliations and
the complicated, three-dimensional phenomenon of turbulence still
remains unclear. Two primary directions have been pursued in an
attempt to relate these two phenomena. One approach is a consideration
of non-linearity in the development of finite amplitude oscillations.
This approach has been taken by numerous investigators, and is admir-
ably reviewed in a recent survey by Herbert (1984). Though the results
of the various analyses vary in specific details, the general conclu-
sion reached by this line of investigation is that non-linearity alters
the growth rates and the region of unstable parameter space only
slightly and cannot in and of itself explain the transition from linear

oscillations to fully developed turbulent flow.

Essential to a more complete understanding of the transition pro-
cess is some account of the origin of three-dimensionality in the flow.
As early as 1933, Squire related the stability of three-dimensional
disturbances in the form of oblique waves given by

u(x,t) = u(y)elloxsBz-ot) g _

>
15

1.8

]

to the well understood two-dimensional problem. By a simple scaling
argument, Squire showed that the stability of oblique waves was
governed by an equation of the form 1.2, and thus the eigenvalues and
eigenvectors could be obtained for this type of three-dimensional dis-

turbance just as in the two-dimensional case. The principal result to



come from this analysis was the observation that the minimum critical
Reynolds number for disturbances of the form 1.3 occurs for the purely
two-dimensional case, B = 0. It is at least partly for this reason
that in the 50 years since Squire's analysis, very few experiments
exploring the stability characteristics of obligue waves have been con-
ducted. Such disturbances were generally considered to be more stable

and therefore less dangerous than two-dimensional disturbances.

It was not until the experiments of Klebanoff, Tidstrom, and Sar-
gent (1962) that interest in the three-dimensional nature of boundary
layer transition began to grow. In those experiments, it was noticed
that the boundary layer tended to develop a spanwise modulation in the

disturbance amplitude with a seemingly preferred spanwise wavelength,

Xz. This behavior was enhanced by placing physical disturbances on the

surface of a flat plate at pre-selected spanwise intervals. A very
regular "peak-valley" structure of the disturbance waveform was then
clearly seen. The "peaks" correspond to regions of maximum wave ampli-

tude and the "valleys"” to regions of minimum amplitude.

Recent flow visualization studies by Saric et al. (1984) and
Kachanov and Levchenko (1984) have suggested that this peak-valley cor-
rugation of the boundary layer can occur in two fundamentally different
geometrical patterns. The first pattern, which was observed by Kleban-
off and co-workers, is characterized by an alignment of successive
peaks in the streamwise direction; i.e. peaks follow peaks and valleys
follow valleys. An alternative pattern is one in which a staggered

structure develops; i.e. peaks follow valleys and vise versa.

Numerous mechanisms have been proposed in an attempt to explain
and predict these various three-dimensional wave patterns. Most
mechanisms involve a weakly non-linear resonance phenomenon between a
two-dimensional Tollmien-Schlichting wave and some form of three-
dimensional wave. The following table lists several of the resonance

mechanisms which have been proposed:



Table 1.1 Various Proposed Resonance Mechanisms

Author Model

Benny & Lin (1960)

i(ox-wqt) i(ax-wyt)
e

Benny (1961) +B(cosBz)e

Stuart (1962,1971)

Herbert & Morkovin (1980) same as above, but to Srd order in A,B

Itoh (1980)

o
) i(5XtBz-wt)
Craik (1971) aellox-wt) pgo="2

i(a1x~w1t)* i(a2x+Bz—w2t)+

Raetz (1959,1970) Ae Be

i (GSX+BZ‘w3t )
Ce P ™)
1752783 » ¥17%2™™s

Nayfeh & Bozatli (1979) Aellox-wt) g i(20x-20t) oo i(ax+Bz-2wt)

Herbert & Morkovin (1980) Aellox-ot) g 1Bz

Aei(ax+Bz—wt)

Benny & Gustavson (1981) + Squire Modes

Each model differs in the exact form of the three-dimensional wave
chosen, but all predict growth rates for the assumed disturbances that
are in excess of those predicted by the linear theory alone. The so
called "Squire modes" of the Benny-Gustavson model are solutions of the
linearized equations of motion of the form 1.3 but with zero vertical
component of the disturbance velocity field, i.e. v(y)=0. Such distur-
bances consist of streamwise and spanwise periodic arrays of vertical
vortices and were found by Squire (1933) to be everywhere stable. They
are variously termed "Squire modes" or "vertical vorticity modes” in

the literature.



In addition to the above mentioned resonance mechanisms, several
analyses have been put forth treating the onset of three-dimensionality
as a secondary instability problem. Currently receiving much attention
is the analysis of Herbert (1983,1984) which employs Floquet theory to
study the instability of a streamwise periodic base flow consisting of
a mean flow profile plus a Tollmien-Schlichting wave that is neither
growing nor being damped. This is strictly valid only for Pouiseiulle
flow, but is suggested to provide a plausible mechanism for the boun-
dary layer as well. This analysis is appealing in that it provides
theoretical support for both the corrugated three-dimensional breakdown
seen by Klebanoff et al. as well as the staggered structure of Saric

and Kachanov.

1.2. Objective of present study.

Apart from those studies already mentioned, experimental investi-
gations into the three-dimensional nature of boundary layer transition
remain few and far between. At least partly responsible for the lack
of experimental studies is the fact that there has not existed a good
technique for introducing three-dimensional perturbations into a lam-
inar flow in a controllable and repeatable manner. It is a primary

goal of this research to describe such a technique.

The technique used throughout the experiments is the active sur-
face heating technique introduced by Liepmann, Brown, and Nosenchuck
(1982). A review of the surface heating technique will be presented in
the following section along with a discussion of some peculiarities
introduced by the use of such a technique for forcing in three-
dimensional geometries. Chapter 2 will then describe the design and
operation of the fully programmable 32-element heater array and sup-

porting instrumentation used in the present experiments.



A second goal of this study is to attempt to separate as much as
possible the role of non-linearity from the role of three-
dimensionality in the rapid breakdown of a laminar boundary layer flow.
To that end, chapter 3 will be devoted: entirely to a study of two-
dimensional, non-linearly developing disturbances. It will be shown
that non-linearity manifests itself primarily in the generation of
higher harmonics which are related to the self-interaction of the fun-
damental wave with itself. It will be further shown that rather large
amplitude two-dimensional waves can be easily generated when three-
dimensional effects are kept to a minimum. This chapter will serve the
dual role of demonstrating the phased heater array capabilities on a
relatively well known flow ( 2-D T.S. waves ) while at the same time

establishing a reference for further work on three-dimensional waves.

As three—dimensional disturbances are considerably more compli-
cated and have been theoretically and experimentally studied in much
less detail, we restrict our attention for the present study to one
particular form of three-dimensional disturbance; that of oblique
waves. These disturbances are perhaps the most fundamental type of
three-dimensional disturbance, as they are normal modes of the linear-
ized equations of motion. It is curious to note that although oblique
waves are widely used in theoretical studies (as can be seen in table
1.1), virtually no experimental data exists on this type of distur-
bance. In order to establish a framework for the experimental work,
Chapter 4 will be devoted to a detailed discussion of some of the
unique properties of oblique waves. It will be seen that while many
similarities between oblique waves and two-dimensional waves exist, a

number of stiking differences are to be found as well.

Finally, Chapter 5 will present some experimental results on the
behavior of forced oblique waves. It will be shown by careful analysis
of the fluctuating wall-shear time series and of the disturbance eigen-
functions that oblique waves exhibit inherently non-stationary

behavior. This behavior will be analyzed in light of the geometrical



structure revealed in Chapter 4, and will be shown to be consistent
with a simple mechanism which has been known to play a fundamental role
in shear flow development for many years, that of vortex pairing. The
relation of the present results to ideas prevalent in the current
literature will be discussed, and extensions to other related shear

flows (wakes, shear layers, jets, etc.) will be made.

1.3. Active Surface Heating Technique.

Throughout the present experiments, the active surface heating
technique introduced by Liepmann and Nosenchuck {1981) was used to
excite various three-dimensional normal modes of the boundary layer.
The technique relies upon the viscosity-temperature relation of the
fluid. Using an analysis similar to that of Nosenchuck (1982), we con-
sider the zero pressure gradient, x-momentum, boundary layer equation

with variable viscosity, u=u(T)=u(y)

au ou du _ 187 _ pa-u 1dopdu

3t " Yax T Vay T boy 32+53y3y 1.4
Rearranging,
Ju + ug_q + (V+V ou _ vﬁ.z_).ll.
3t * Yax eff)ay - 2y 1.5

where we have defined an "effective" vertical velocity,

[

{—31} 1.6

1rd
veff(Y) = N”{*H v

1

ploT)

As it is well known that the boundary layer is most suceptable to
disturbances in the vicinity of the critical layer (see for example Lin
(1955) and Meier & Maier (1984) ), we would like to evaluate expres-

sion 1.6 at the critical layer, y We therefore need an expression

cre
for the temperature profile T(y) above the heater.



An approximate expression for the temperature profile under the
conditions of steady, parallel, two-dimensional boundary layer flow can
be derived by a similarity analysis. The full analysis is given in
appendix A, but for the present only the result is needed. We take as

the similarity variable
= 6 - 1/3
n gi » Sp = (Bukk/Ty) 1.7

where ¢ is the streamwise distance measured from the leading edge of
the heater. This is shown schematically in figure A.1. Above the

heater, the temperature profile is then given by

n _33
T(n) = T + 0.776aT [ e " /
0

dn 1.8

where Tw is the temperature at the wall, and AT = (TW~TW) is the tem-

perature difference between wall and freestrean. Combining 1.8 and

1.6, we obtain

Vepr(E:Y) [%9}[0 776AT A
y) = -3 776
eff 1=V ploT { (SnKE/TW)1/3§ 1.9

e

It is desirable to express the temperature difference AT in terms

of quantities easily measurable in the laboratory. We can relate AT to

the total heat flux Q; introduced into the flow by

L
QG =b é d, dt , b = heater span , L = heater length 1.10

Evaluating qw=~k%% from 1.8, equation 1.10 becomes

Q = 0.807kATb(PrRechf)1/3 1.11



It may be noted that this is exactly the same relation that would be
obtained through the use of Lighthill's heat transfer formula.

Qf may be further related to the total power delivered to the
heater, Qt = vz/R. Following the analysis of Tavlor (1986), we take

Q
Q = Qf{‘*ﬁil 1.12

where Qs is the heat transferred to the substrate via conduction. This
conduction loss can be estimated by assuming that the length scale over
which the substrate temperature gradients are maintained will scale
with the frequency of the forcing, w; i.e. the relevant length scale in

the substrate is 08 z (xs/w)l/g. Thus we obtain

- -1/2
Qg % kAT (kg/w) ~/ “bL. 1.13
Combining with 1.11,
1/2
Qs . [Ks) 120 2. -1/3
Q. ~ L 1 (PrRe %Ce) 1.14
£ (®fii¥s ) :

Under the present conditions this quantity is of order 10"1, S0 we may

approximate 1.12 as simply Q,.%.9Q,. Combining this result with 1.9 and
1.11 and simplifying, we obtain the final approximate result that

Qt ~7wy3/9uKE

-1
Vere (£,Y) % 5 5f 1.15

—————
kb(LZE)l/S

This expression gives the effective vertical velocity introduced by the
heating technique. It is in a convenient form for pointing out several
features. First, it is noted that the fluid response depends linearly

on the power input, Qt' This is in agreement with experimental results
as can be seen in figure 3.4 in which the disturbance amplitude
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measured far downstream of the heater is seen to be a very nearly
linear function of the heater power. In this case, there would be
additional multiplicative factors introduced by the integrated distur-
bance growth and the conversion to wall shear, but the linear depen-
dence upon Qt remains the same. This is very convenient to know, for
it means that in order to increase the disturbance amplitude by say a
factor of 2, one simply needs to increase the heater power by a factor

of 2.

Another feature of equation 1.15 is that the vertical dependence
of the effective velocity is now made explicit. For instance, evaluat-

ing 1.15 at the wall and integrating over ¢, we obtain

Q
ap _t
S WhL 1.16

Vers(v=0) % g
This is easily shown to be identical to the expression for the effec-
tive wall velocity as found in Nosenchuck. Nosenchuck then argued that
the streamwise extent of the heater should be wide compared to the
local boundary layer thickness to allow for penetration of the heat
flux to the critical layer. The nature of this penetration is seen
directly in 1.15. At the wall, the effective velocity perturbation
decreases as 3“1/3 due to the increasing thermal boundary layer thick-
ness and the correspondingly decreasing wall temperature gradient.
Away from the wall, however, the exponential term domimates, and the

effective velocity now increases exponentially with ¢ as

3
~ -y /E
Vepg (E,V) ey 1.37
As we move further away from the wall, this spatial localization of the
effective velocity increases greatly, as the streamwise dependence on §
is multiplied by a cubic term in y. Therefore in the vicinity of the
critical layer, the effective velocity increases exponentially with

streamwise distance along the heater reaching a maximum at the heater
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trailing edge. Though our similarity analysis extends only to the
heater trailing edge, it is easily seen that a further increase in ¢
will result in a decrease in the effective velocity as there is no
longer any heat input at the wall, and all existing thermal gradients

will decay rapidly.

In the present study, the streamwise extent of the heater is 7.6
mm and the displacement thickness 6* is typically on the order of 1 mm.
The heater is therefore rather large compared to the boundary layer
thickness. Also of interest is the wavelength of the disturbance which
in the present experiments is on the order of 25 mm. The heater is
seen to cover a significant fraction of this distance as well. Due to
the exponential dependence on ¢ as seen in eqguation 1.17, however, the
spatial localization of the forcing is maintained, and the resulting
resolution of the forced oscillations in both time and space is excel-

lent.

As the discussion thus far has dealt with a two-dimensional
heater, it is necessary to make a few comments with regard to the span-
wise segmentation of the present heater array. As will be shown in the
next chapter, the present heater array consists of 32 elements which
are separated by a gap of 0.76 mm. This gap is small, but it is not
negligible when compared to the displacement thickness or critical
layer height both of which are of the order of 1 mm. The input distur-
bance cannot then be considered as a single eigenmode, but must rather
be represented as a sum of normal modes over all possible spanwise
wavenumbers with the frequency of oscillation set by the heater forc-
ing. Thus we have as our input disturbance

u(x,t) = g g(y)ei(G(B)XtBZ—wt) 118

Though no measurements were made of this transient disturbance develop-

ment, it is believed that the preferential amplification of the
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boundary layer for disturbances of low spanwise wavenumber will insure
that the dominant mode amplified will indeed be the lowest mode. This
preferential amplification is seen in figure 5.11 which is taken from
the calculations of Mack (1984). Thus the high wavenumber contribu-
tions to the sum in equation 1.18 will be strongly damped, and the
resulting disturbance waveform observed far downstream will be very

close to a single normal mode.

1.4. On Comparisons with Other Experiments.

In the present study, the primary flow diagnostics are hot-film
wall shear sensors, and the results are correspondingly presented in

terms of normalized fluctuating wall shear, 7; / ;w‘ In the current

literature, however, hot-wire anemometry is the most commonly used
method of measurement, and results are typically presented in terms of

velocity fluctuations at the critical layer normalized by the free

stream velocity, u ./ U, . It is therefore necessary to relate these

two quantities in order that reasonable comparisons between experiments

may be made.

Close to the wall, a reasonable approximation to the form of the

disturbance eigenfunction, u(y), can be taken as

u(y) < UpaxSin(kyy) 1.19

As the maximum in the disturbance eigenfunction occurs very nearly at

the critical layer V.p» We can evaluate the vertical wavenumber k. in

y
terms of ycr as
K = 1
y QYCP 1.20

Assuming that this expression for the vertical wavenumber holds at the

wall, we can evaluate the fluctuating wall shear as
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TiUpax

1
Tw B u{%%]y=0 h 2yCr 1.21

Normalizing 7; by the mean wall shear ;w and u by the freestream

max

’

velocity v,

£ -~

T U, %umaxz
7 2ty Ve 1.22
w wicr
or using the Blasius value for the mean wall shear,
= _ 2 -1/2
Tw = 0.3320Um(Rex) 1.28
we obtain
" 1/2
7. Tw ) nvRe, /
Uax/U 0-864U y 1.24
Using the approximation that Yer * 5*, and that Re = 1'721Rei/2' .
8
obtain
| BE—
T /'rw
~ 2.75
umax/uw 1.25

This is, of course, only a rough estimate, but it provides us with an
approximate figure for comparing the magnitudes of wall-shear fluctua-

tions with velocity fluctuations.

This approximate relation can be verified experimentally by simul-
taneously measuring these two quantities. The full details of the
experimental aparatus will be discussed in the next chapter. For the
present, though, it is necessary only to note the result. A cylindri-
cal hot-film velocity probe was positioned at the maximum in the eigen-

function profile. In this case, that corresponds to a distance of 0.3
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mm above the plate surface. The velocity probe was positioned directly
above a hot-film wall-shear probe that was flush mounted on the plate
surface. A two-dimensional Tollmien Schlichting wave was then gen-
erated. Figure 1.2 shows the simultaneously recorded time traces. The
maximum amplitude of the fluctuating velocity, umax/ U,., is seen to be
approximately two percent, while the peak amplitude of the fluctuating
wall-shear signal, 7'/ T, is approximately five percent. Thus, the
experimentally measured ratio of 2.5 compares quite well with the

predicted value of 2.75.
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Chapter 2

Experimental Facility and Instrumentation

2.1. GALCIT High Speed Water Tunnel.

All of the experiments in the present study were conducted in the
GALCIT (Graduate Aeronautical Laboratories, California Institute of
Technology) High Speed Water Tunnel (HSWT). A complete description of
the HSWT can be found in Ward (1976). As shown in figure 2.1, the HSWT
is a closed-circuit facility. The test section was of circular cross
section with an internal diameter of 35.6 cm and an overall streamwise
length of 1.05 m. The test section is preceded on the upstream end by
a 20:1 contraction section that is three meters long, and it is fol-
lowed on the downstream side by a 6:1 diffusor section that is six
meters in length. A stainless steel honeycomb and a 40-mesh screen are
positioned at the beginning of the contraction section. Throughout the
present experiments, the tunnel pressure, which is adjustable over the

range 0.2 to 6 bar, was maintained near atmospheric pressure.

A 35 cm wide lucite flat plate was mounted in the test section,
completely spanning the test section diameter. Throughout the experi-
ments, the freestream velocity was maintained at approximately 120 cm/s
resulting in a Reynolds number of 1.4 x 106 based upon the total plate
length. The flow quality was generally found to be quite acceptable.
Using a cylindrical hot-film probe, the r.m.s. turbulence intensity was

measured to be 0.05 % in the freestream.

2.2. Flat Plate Model.

Figure 2.2 shows the flat plate test model used throughout the
experiments. The plate was machined from lucite and consisted of a
central flat section preceded by a 6:1 elliptical leading edge and fol-
lowed by an adjustable +trailing edge flap. The overall plate
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dimensions (including leading and trailing edges) were 104 cm in length
by 35 c¢cm in width by 2.0 cm in thickness. The leading edge was chosen
to be a 6:1 ellipse, as that geometry provided a reasonable laminar
flow profile over a large portion of the plate center body while main-
taining a small but finite region of adverse pressure gradient close to
the leading edge. The phased heater array was deliberately located in
this region so as to take advantage of the enhanced growth rates
offered by the adverse gradient and thus augment the effectiveness of

the heating technique.

The central flat section of the plate contained most of the forc-
ing and flow diagnostic equipment. The phased heater array was flush
mounted 7.0 cm from the leading edge. At a typical freestream velocity

of 120 cm/s, the heater Reynolds number Re « Was approximately 520.
6

Thus with respect to the neutral stability curve, the heater was
located very close to the minimum critical Reynolds number. When not
in operation, the heater presents a very minimal disturbance to the
flow. For example, non-dimensionalizing by the wall friction velocity
u = (TW/p)l/z, the protrusion of the heater into the flow is seen to

* ~
be a mere y+ =u t/v T 1.5, where t is the thickness of the etched
copper layer.

Hot-film wall-shear sensors were located at various streamwise and
spanwise locations far downstream of the heater array, and provided the
primary flow diagnostics. The plate also contained a static pressure
tap which together with a pitot probe located upstream of the contrac-
tion section was used to obtain the freestream flow conditions and
thereby calibrate the wall-shear sensors. For several experiments, a

dye injector was also located on the plate for flow visualization.

All electrical leads and tubing were connected to the bottonm,
non-active side of the plate and exited through sealed plugs on the

bottom wall of the test section. As the substantial number of
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connections together with the finite thickness of the plate itself pro-
vided a non-negligible flow blockage, the trailing edge flap was used
to position the leading edge stagnation point such as to minimize the

overall plate pressure gradient.

2.3. Flow Documentation.

As mentioned previously, the plate contained a 6:1 elliptical
leading edge. This created a region of adverse pressure gradient
immediately downstream of the leading edge. From static pressure meas-
urements on earlier models with similar leading edge configurations, it
was found that the flow returned to an essentially undisturbed Blasius
flow very quickly. In order to measure the mean velocity profile, a
cylindrical hot-film velocity probe (TSI model 1260-10W) was used. The
supporting structure for the probe was designed with a streamlined
cross-section so as to provide adequate rigidity while minimizing flow
induced vibration due to vortex shedding. The boundary layer thickness
599% at the probe location was approximately 3.0 mm, and the probe
traversed this distance in 32 increments of 0.1 mm per step. The probe
was positioned by a stepper motor which was interfaced to the central
microprocessor. A physical stop was provided which limited the probe

to a minimum vertical position of 0.125 mm (y' I 3.5).

The measured boundary layer profile is shown in figure 2.3 with
the computed Blasius curve included for comparison. As can be seen,
the measured profile at this x-location is very nearly Blasius. Thus,
the local behavior of the forced disturbances as measured at locations
far from the leading edge should agree quite well with the predictions
of the linear theory for a Blasius mean profile. Measurements of
integrated quantities such as the disturbance amplitude, however, will
depend upon the exact pressure gradient history encounterred by the
disturbance as it travels downstream from the heater to the point of
measurement. For this reason, most results in this study will emphasize

measurements of local quantities as opposed to integrated quantities.
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In this way, comparisons with other experiments or numerical calcula-

tions may be made.

2.4. Phased Heater Array.

Figure 2.4(a) shows a planform view of the heater array. The
array consists of 32 individual heater elements, each with one lead
running to the side of the array for connection to the driving elec-
tronics and the other lead connected to a common ground. An enlarged
view of a single heater is shown in figure 2.4(b). The overall dimen-
sions of each individual element are 1.0 cm in width by 0.76 cm in the
streamwise direction. Within each heater the line width is 0.254 mm,
and the total line length is approximately 16.3 cm. This results in a
nominal heater resistance of 0.50 ohms. The low heater resistance was
chosen in order to enable large power input into the flow at rela-
tively low voltages. The advantages of this scheme are twofold.
First, the low heater voltages prevented the occurrence of electrolysis
and the associated bubble formation. Secondly, and of equal impor-
tance, was the fact that very large amounts of power could be easily
supplied at such low voltages by simply using two 12 volt batteries as
the sole power supply. Separating each heater is a gap of 0.76 mm mak-
ing the entire array 34.9 cm in width which spans the GALCIT High Speed
Water Tunnel cross section of 35.5 cm. The array is fabricated from a
commercially available material consisting of a 0.035 mm layer of
copper deposited on an epoxy-glass laminated substrate and was etched
using conventional photolithographic techniques. All design and con-

struction was carried out at GALCIT.

2.5. Instrumentation.

To control and supply power to the heater array, a good deal of
supporting instrumentation was necessary. Figure 2.5 shows a schematic
diagram of the control apparatus. The entire array was under control
of an 8-bit microprocessor {(Intel 8085) which established the fre-

quency, relative phase, and amplitude of the 32 heating elements. A
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programmable frequency generator was emploved to generate sinusoidal
signals covering the range from 0 to 50 Hz. The frequency was pro-
grammable in 256 discrete steps with an incremental step size of less
than 0.2 hz. As the heat flux into the flow Qf is ppopoftjonal to the
square of the applied heater voltage (or current), the available forc-
ing frequency range seen by the flow was actually twice that of the
input or from O to 100 Hz. This completely spanned the range of
unstable Tollmein-Schlichting frequencies at the flow conditions

encountered throughout the experiments.

To produce three-dimensionality in the form of arbitrary spanwise
phase distributions, a bank of 32 individually programmable, unity-gain
phase shift stages was provided. These circuits were again under con-
trol of the central microprocessor and were programmable in 16 discrete
increments. The minimum heater to heater phase shift was 5.6° and the
maximum possible was 90°. The phase control was primarily used for the
forcing of single oblique eigenmodes, and it was thus found convenient
to tie the output of phase shift n-1 to the input of phase shift n

resulting in a linear phase shift across the span of the array.

For example, with each heater programmed for an 11.2° phase shift,
a total phase shift of 360° would result over the 35 cm span of the
array. Thus, a disturbance would be generated with a spanwise
wavelength X of 35 cm. Under the present experimental conditions, a
typical streamwise wavelength A would be on the order of 2 cm, and
the resulting disturbance would therefore be an oblique eigenmode with
wavenumber vector k oriented at an angle 6 = tan"l(kx/xz) % 4% from the

freestream flow direction.

In addition to the phase-shift capability, the array control elec-
tronics also allowed for amplitude modulation of each individual heater
voltage. As with the phase shift circuitry, these were again under
control of the microprocessor with outputs ranging from 0.5 volts to

8.0 volts in increments of 0.5 volts. These were used to create
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arbitrary amplitude distributions across the span of the array. As an
example, the array could be programmed for a sinusoidal spanwise ampli-
tude distribution producing a disturbance waveform very similar to that

produced by the vibrating ribbon technique.

Finally, before reaching the heater array, each signal went
through a power amplification stage. There were 32 such circuits, one
to supply power to each heating element. The circuit as seen in figure
2.6 was a simple push-pull emitter follower with Darlington power
transistors to supply the necessary current amplification (hFE:4ooo)_
The push-pull configuration was used in order to allow for symmetrical
forcing about ground and thus minimize the unnecessary D.C. heating.
During the experiments, the output voltage was limited to 5.0 volts
resulting in a maximum r.m.s. power output of 'approximately 25

watts/heater or over 700 watts for the entire array.

In order to obtain a physical picture of the types of disturbances
which can be produced with the array, three separate cases are con-
sidered. Figure 2.7 shows a three-dimensional perspective view of the
resulting Tollmein-Schlichting wave surfaces for each case. In each

plot the axes are time, spanwise distance, and the normalized wall-

' —
shear amplitude, 7 w T, To obtain these plots, the programmability

of the array was employed. Rather than move the sensor relative to a
fixed disturbance as is customarily done, the disturbance in this case
was moved relative to a fixed sensor located on the plate centerline at
a Reynold's number of 1240. 1In this way, the measurement apparatus is

greatly simplified.

Figure 2.7(a) shows a two-dimensional Tollmein-Schlichting wave
surface. In this case, each heater was forced with the same phase and
amplitude across the span of the array. The two-dimensionality of the
waves has been measured at several spanwise locations and is seen to be
excellent. Using this type of two-dimensional forcing, wave amplitudes

of 15% have been obtained. Figure 2.7(b) shows a single oblique
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eigenmode. The array in this case was programmed for a constant phase
shift from heater to heater while maintaining a constant amplitude
across the span of the array. Though such oblique waves have been
known to be unstable for over 50 years, they have never been systemati-

cally studied due to lack of an appropriate experimental technique.

Finally, figure 2.7(c) shows a wave packet; i.e. a disturbance
localized in both space and time. The forcing in this case consisted
of 4 cycles of a sinewave forced by a single heater element with all
other elements turned off. The single active element was then swept
across the array creating the spanwise disturbance seen in the figure.
These plots are shown at the present time merely to give a qualitative
picture of the possible types of disturbances that can be generated by
the phased heater array. A much more detailed look at the experimen-
tally generated wave patterns will be given in chapters 3 (two-

dimensional waves) and 5 (oblique waves).

2.6. Flow Diagnostics and Data Acquisition.

This section describes the flow diagnostic equipment wused
throughout the experiments. The primary means of measurement was pro-
vided by hot-film wall-shear sensors (TSI model 1240) that were flush
mounted on the plate at various streamwise and spanwise locations. The
sensor dimensions were 1.0 mm by 0.125 mm (aspect ratio 8:1) and were
oriented such as to measure the streamwise component of the wall shear.
These probes were used to obtain measurements of growth rates, phase
velocities, spanwise phase relationships, etc. Measurements could be
made at streamwise locations separated by as little as 3 mm, a distance
corresponding to roughly 0.1 A, where Ay 1s a typical streamwise
Tollmien-Schlichting wavelength. 1In this way, measurements of instan-
taneous growth rates could be obtained even when the disturbances exhi-
bited non-linear or non-stationary behavior. It is important to
emphasize the non-stationary aspect at this point. If the wave growth

were purely stationary, then a single probe could be traversed in the
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streamwise direction to obtain the disturbance growth rates. As soon as
the problem becomes non-stationary, however, measurements at different
locations must necessarily be made simultaneously in order to capture

the relevant phenomena.

Both the wall-shear sensors and the velocity sensor were operated
in the constant temperature mode. The probe resistance (and therefore
temperature) was maintained at a constant value by the bridge circuit
of figure 2.8. The circuit is a simple voltage feedback loop with an
emitter-follower (2N2270) to supply the necessary current. A 200 ohm
potentiometer was used to adjust the probe overheat,
AT/T = (Rhot"Rcold)/Rcold’ which was typically on the order of 6%. The
bridge circuit also contained a current limiting resistor which main-
tained the probe current at a safe operating level. The output from
the top of the bridge was then buffered and low-pass filtered at 200 Hz
to prevent aliasing in data acquisition. Power was supplied by two
12-volt marine batteries which eliminated the 60 Hz line noise usually
introduced by rectifying power supplies. The noise level was thus kept

to a quite acceptable low level of 5 millivolts peak-to peak.
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Chapter 3
TWO DIMENSIONAL WAVE EXCITATION

3.1. Introduction.

In this chapter, we will examine the results from several experi-
ments on the forcing of two-dimensional Tollmien-Schlichting waves.
Emphasis will be put on understanding the nature of the non-linear
effects arising as the disturbance amplitude is increased. As indi-
cated earlier, numerous studies have been undertaken to explore the
non-linear aspects of boundary layer transition. The question thus
arises as to why the need for another study on this same subject. The

reason for the present investigation is two-fold.

First, the present state of knowledge on the subject is far from
complete. As a specific example, consider the following question: at
what disturbance amplitude does the linear theory cease to hold? That
is, we seek the threshold amplitude beyond which either non-linearity
or three-dimensionality or both must be taken into account in order to
explain the disturbance behavior. This specific point provides a con-
venient benchmark by which experiments and theory may be compared, as
the threshold amplitude is a frequently quoted figure in the current
literature. Furthermore, from a practical standpoint, the threshold
amplitude is significant in that it is a measure of the point at which
large dynamical growth rates take over from the much smaller viscous
growth rates predicted by the linear theory. It therefore gives an
approximate measure of the point at which transition to turbulence may

be said to occur.

A significant number of investigators report a threshold amplitude

on the order of one percent; i.e. at u'max/ U, * 1%, a strong departure

from the linear theory is observed. This figure is reported in the
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experiments of Saric, Kozlov, & Levchenko (1984) and Kachanov &
Levchenko (1984), the theoretical analyses of Craik (1971) and Herbert
(1983), and the numerical simulations of Spalart (1984).

In contrast to these investigations are several experimental stu-
dies which report no aparent threshold amplitude for disturbances of 5
to 6 percent. Strykowski & Sreenivasan (1985), for example, using a
purely two dimensional mechanical suction and blowing device report
wave amplitudes of close to 6 percent. The agreement between experi-
mental data and the linear eigenfunction are good. Williams, Fasel, &
Hama (1984) likewise report waves of 5.5 percent, again with excellent
agreement to the linear theory. The forcing mechanism in this case was
a small wire located at the critical layer oscillated by a mechanical

lever-cam arrangement.

Clearly there is some disagreement on this issue. It is to be
noted that in all of the studies reporting a threshold amplitude near
one percent, the departure from linearity is coincident with the onset
of three-dimensionality. This is evident in the flow visualization of
Saric et al. and Kachanov et al. as well as the numerical particle
tracing of Spalart. On the other hand, the experiments of Williams et
al. clearly document the fact that the observed waves in their experi-
ment are two-dimensional. This discrepancy is most likely due to the
different types of forcing mechanisms used in these experiments. Both
the investigations of Strykowski & Sreenivasan and of Williams et al.
employ forcing mechanisms which were very two-dimensional in nature.
The vibrating ribbon, however, necessarily has a spanwise variation in
forcing amplitude of 100 percent from the maximum in the center to zero
at the fixed ends. This causes no problem, of course, if the resulting
disturbances are observed very close to the ribbon and thus far from
the region of influence of the clamped ends. This was precisely the
case in the experiments of Schubauer and Scramstad. If the distur-
bances are observed far from the ribbon, however, the influence of the

finite ends cannot be ignored.



- 25 -

A second and equally important reason for looking at the non-
linear development of two-dimensional waves is that it provides a point
of departure for the results of the next few chapters on oblique waves.
As will be seen, obligue waves of sufficiently large amplitude show
interesting behavior arising from both the non-linear nature of the
problem as well as the three dimensional geometry of the waves. Having
first studied the non-linear effects in the two dimensional case, it
will be much easier to recognize and identify the role of these two

distinct mechanisms in the oblique wave development.

3.2. Experimental Conditions.

In the present experiments, much care was taken to insure that the
forced disturbances were as two-dimensional as possible. Two sources
of three-dimensionality were inherent in the forcing mechanism employed
in these experiments. As pointed out previously, the finite segmenta-
tion of the heater array introduces higher spanwise wavenumber com-
ponents into the initial disturbance waveform. These are expected to
be strongly damped in accordance with the linear theory, and the depar-
ture from two-dimensionality due to this effect should therefore be

small far downstream of the heater.

A second source of three-dimensionality is the variation in the
resistance of the heaters themselves. Though great care was taken in
the array fabrication, the individual heater resistances can vary by as
much as ten percent from the mean. The heat flux delivered to the
flow, however, can be made constant across the span of the array by
adjusting the forcing voltage via a variable resistor (one per heater)
in the control electronics. In this way, the power delivered to the
flow could be maintained at a very nearly constant level across the 35

cm span of the tunnel.
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3.3. Experimental Results for Single Mode Excitation.

3.3.1. Disturbance Growth Rates.

Figure 3.1 shows a typical wall shear time series of the naturally
occurring T. S. waves. In the upper plot, the fluctuating wall-shear
7' is plotted normalized by the mean wall shear T and has an rms value
of less than one percent. Plotted below is the amplitude spectrum.
Nearly all of the energy is found between 20 and 30 hz (non-dimensional
frequency, F = 0.78 to 1.18). Virtually no energy is seen outside of
this narrow frequency band. With the forcing turned on, the observed
wall shear is as shown in figure 3.2. In this particular case the
forcing frequency is 22 hz (F = 0.86), and the power supplied to the 32
element heater array is approximately 460 watts (18 watts per square
cm). The forced waves are seen to be quite regular, with the variation
in amplitude due almost entirely to the naturally occurring background

waves.

In order to verify the two-dimensionality of the forced oscilla-
tions, two hot-film wall-shear sensors at spanwise locations z=%2.0 cm
were used. As seen in figure 3.3, the waves are indeed quite two-
dimensional. There is a slight difference in disturbance amplitude at
the two probes, but it is generally less than a few percent of the mean
value. One possible reason for this difference would be a variation in
the amplitude of the naturally occurring waves at each sensor location.
Also, a slight mismatch in the trimming resistors in the control elec-

tronics could account for this difference.

In order to assess the extent of non-linearity in the disturbance
development, it is instructive to look at the wave amplitude as a func-
tion of the power input to the heater array. Figure 3.4 shows the nor-
malized disturbance amplitude at two sensor locations as a function of
the input power. It is noted that the disturbance amplitude is a very

nearly linear function of the heat input up to forcing levels of about



- 27 -

300 W. Beyond this forcing level, a departure from linearity is
observed. The linearity of the fluid response is in agreement with
equation 1.16 provided that the quantity du/9T remains constant. At
the higher forcing levels, however, the temperature difference AT as
obtained from equation 1.11 becomes quite large (aT=20°C for Qt=500 W),
and the change in 9u/8T over this temperature range can no longer be
neglected. For a temperature increase of 20°C, au/dT decreases by
nearly fifty percent. This change in the fluid properties with tem-
perature therefore accounts for the change in the magnitude of the

velocity perturbation introduced into the fluid.

It is important at this point to differentiate between the mechan-
ism by which the disturbances are introduced into the fluid and the
mechanism of wviscous instability which governs their subsequent
development. As has just been seen, the velocity perturbation is
introduced into the fluid by a non-linear mechanism. Even at the larg-
est forcing amplitudes, however, the velocity perturbation which is
introduced into the fluid is very small. The downstream development of
the disturbance, then, is governed by the linear theory. It is the
effect of weak non-linearity in this region which is of primary

interest.

In the absence of non-linear effects, the disturbance amplitude

measured at a given location, x, would be given by

X -C(ix
A(x) = A(xo) [ e dx

x0 3.1

where ai is the spatial growth rate given by the linear theory, and

A(XO) is a reference amplitude measured at Xq- Thus, if we examine the

amplitudes at two different sensors located at streamwise positions x0

and Xy, the amplitude ratio A(xl)/A(xo) should be a constant value.
Any departure from this value would indicate a departure from the

linear theory. Figure 3.5 shows a plot of such an amplitude ratio
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evaluated at Reynolds numbers Reaf 1178 and 1240. The amplitude ratio

AI/AO is plotted as a function of the amplitude Ay evaluated at

Reé*=1240. As can be seen in figure 3.5, the amplitude ratio is quite

constant up to disturbance amplitudes of nearly 12 percent. Substan-
tial variation is seen at the lower disturbance amplitudes since the
forced oscillations are on the order of those naturally ocurring, and
the resulting growth rate depends on the exact phase relation between
these two. As the amplitude of the forced oscillations increases, how-
ever, the contribution of the background waves becomes unimportant. It
is thus concluded that the growth rates as predicted by the linear

theory remain valid for disturbance amplitudes of at least 12 percent.

3.3.2. Generation of Higher Harmonics.

Returning to the spectrum of figure 3.2, one further feature is
observed. A small but clearly evident peak exists at 44 hz (F=1.72),
exactly twice the forcing frequency. This peak was not apparent in the
unforced case (figure 3.1). The nature of this component of the dis-
turbance can be seen by narrowly band-pass filtering the time series
data around the two dominant spectral peaks at 22 Hz and 44 Hz and
superposing these two filtered time series traces as shown in figure
3.6. The smaller amplitude 44 Hz trace can now be identified as a
non-linearly generated first harmonic of the fundamental T. S. wave at
22 Hz. This is evident by noting that the two time series traces are
perfectly phase-locked. If the wave at 44 Hz were a linear wave
itself, the wavespeed would be different from that of the 22 Hz wave

and phase-locking would not occur.

Further insight into the nature of the first harmonic is obtained
by examinating its amplitude. This is shown in figure 3.7 as a func-
tion of the forcing level. The amplitude is generally seen to increase
with the forcing level, but the important point to notice here is that

the amplitude is increasing with the Reynolds number as well.
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According to the linear theory, a disturbance at this frequency and
Reynolds number should be strongly damped, i.e. decreasing with
increasing Reynolds number. This is clearly shown in the neutral curve

of figure 1.1.

The behavior of the first harmonic wave is therefore not described
by the linear theory. This is not suprising since this is in fact a
non-linear phenomenon. It arises due to the self-interaction of the
fundamental wave with itself. The amplitude of the first harmonic is
directly related to that of the fundamental as seen in figure 3.8. The
dependence is quadratic as expected. Higher harmonics are also gen-
erated but are only seen in this investigation when the fundamental
amplitude becomes very large. Figure 3.9 shows one example of the
appearance of higher harmonics. The fundamental, first harmonic, and
second harmonic are clearly visible, and a very small peak at the third

harmonic is also seen.

3.3.3. Frequency Dependence.

In the previous section, it was shown that the integrated amplification
A1/AD was independent of the disturbance amplitude at least up to
amplitudes of five percent. This is a local result in that we have
examined the wave behavior over a very narrow range of Reynolds
numbers. Furthermore, we have so far studied disturbances at only one

frequency.

In order to obtain a more global view, the freguency dependence of
the forced oscillations was studied by performing the following experi-
ment. The phased heater array was initially programmed to force two-
dimensional waves of small amplitude. The frequency of the forced dis-
turbance was then increased in increments of 2 Hz, completely covering

the range of unstable frequencies seen by a sensor at Re « ~ 1240. 1In
)

this way, the integrated disturbance amplitude is obtained as a func-

tion of freqguency. The output voltage of the heater array was then
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increased, and the experiment was repeated. Figure 8.10 shows the
result of this experiment, where the normalized fluctuating wall-shear
7'/ 7T is plotted as a function of both the frequency and the forcing
level. At each forcing level, a Gaussian least squares fit is shown as
well. There is no a priori reason for choosing a Gaussian other than

that it seems to fit the data reasonably well.

The important point to be noticed from figure 3.10 is that the
region of unstable frequencies as seen by the wall-shear sensor is vir-
tually independent of the amplitude of the forced waves. At each forc-
ing level, the most amplified frequency is 25 hz, and the range of
unstable frequencies extends from 12 hz to 40 hz. Since figure 3.10
gives the integrated amplification from the heater to the sensor, it
seems reasonable to conclude that the growth rates, ai, are independent
of the disturbance amplitude for a very wide range of frequencies and
Reynolds numbers. Thus if one were to inquire as to the shape of the
neutral curve for finite amplitude waves, the present results suggest

that it is essentially unchanged up to disturbance amplitudes of 12

percent.

1 3.3.4. Summary of Observed Non-linear Effects.

The effect of weak non-linearity in boundary layer transition is thus
seen to be relatively benign. The growth rates were seen to follow the
linear theory up to perturbation amplitudes of nearly five percent.
This was seen by analyzing both the local growth rates as well as the
integrated amplification over a wide range of frequencies and Reynolds
numbers. The only deviation from the linear theory arose in the form
of a non-linearly generated first harmonic wave phase-locked to the
fundamental, whose amplitude depended gquadratically upon that of the
fundamental. Higher harmonics were also observed, but as their ampli-
tudes scale with higher powers of the fundamental amplitude, they are
only seen at very large forcing levels. The appearance of these non-

linear harmonics will certainly alter the wave behavior somewhat, but
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as will be seen in the next few chapters, +the onset of three-
dimensionality has a much more profound impact on the transition pro-

cess.
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Chapter 4
GEOMETRICAL NATURE OF OBLIQUE INSTABILITY WAVES

4.1. Introduction.

Before we begin to examine the behavior of oblique instability
waves in a boundary layer flow, it is necessary that we first define
the type of disturbance that is to be studied. Throughout the next
several chapters, the disturbance velocity field will be assumed to be
of the form

u(x,t) = u(y)el(ox+hz-wt) 4.1

The velocity components u(x,t) are complex; all experimental data will
of course correspond to only the real part, however. The angular fre-
quency o = 2nf will be taken as a purely real quantity corresponding to
the physically realistic spatial growth problem. Most analytical stu-
dies, on the other hand, consider the temporal growth problem where o
is complex. The streamwise wavenumber « is complex with o giving the
rate of growth (Gi<0) or decay («;>0) of the disturbance amplitude. The

real part dr=2n/xx is the streamwise wavenumber of the disturbance.

The spanwise wavenumber B is in general also complex, but under the

present experimental conditions it can be shown to be purely real; i.e.

3‘3r52ﬂ/k2. This will be shown in the next section.

Equation 4.1 is the most commonly used form for oblique waves, but
other notations are frequently also found in the literature. For exam-
ple, equation 4.1 could equally well be written as
ik- (x-ct)

u(x,t) = u(y)e

where k = ai+fk is the total wavenumber vector, and c = cx§+czﬁ is the
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phase velocity vector of the disturbance. Written in this form, one
must ask the question: In what direction does the disturbance travel?

~
That is, we seek the components of the phase velocity vector,

Cx and C,. For that matter, one would also like to know the magnitude
and direction of the group velocity vector Cj = aw/axj as well, as this
quantity gives the direction in which energy is propagated. These
quantities are of little importance in theoretical studies, since the
disturbances are usually assumed infinitely periodic in the x and z
directions and are thus prevented from "propagating" out of the compu-
tational domain. In an experiment, however, the direction of propaga-
tion must be known in order to correctly position sensors for measure-
ment. Determination of the group and phase velocities is thus an
important practical matter, and it will be shown in section 4.3 that an
understanding of these quantities adds a good deal of physical insight

into the nature of oblique instability waves as well.

Finally, section 4.4 will take a look at the vorticity field of a
single obligque mode. It will be shown that whereas the vorticity field
of a two-dimensional disturbance is purely one-dimensional (i.e. a

scalar, wz), the vorticity field for an oblique normal mode is fully

three-dimensional with @y, wy, and w, each being non-vanishing quanti-

z
ties. The implications of this revealed three-dimensional structure on

the stability of the disturbances will be discussed as well.

4.2. Spatial Growth Rates.

In the words of Mack (1984), "It is also possible to conceive of
wavemakers that excite single oblique normal modes in boundary layers
that are independent of z. Such normal modes will have an initial ﬁr
which matches that of the wavemaker, and, because the wave can grow

only in x, the initial B; must be zero." The phased heater array used

in the present study is precisely such a wavemaker.
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It is easy to see why ﬁi must be identically zero by performing

the following thought experiment. Imagine a heater array such as the
one described in Chapter 2 but with a span extending to infinity in
both directions. Assume now that the elements of such an array are
excited with the same amplitude and phased so as to produce a single
oblique normal mode. A sensor located some distance downstream of this
heater would measure the same r.m.s. disturbance amplitude everywhere
across the span as there is no preferred spanwise direction and no
definable spanwise origin for the disturbance. The present heater
array completely spans the test facility very nearly approximating such
a hypothetical array. Thus for the present experimental conditions, we

may justifiably assume that Bi = 0.

4.3. On the Direction of Propagation.

The group and phase velocities are important quantities in any
wave-like phenomenon. An examination of the current literature shows
that there is some confusion regarding these quantities. For example,
Craik (1971) considers a disturbance of the form 4.1, with @ complex
and o real, and assumes that

w
L3 4.3
o

Q:
That is, the phase velocity is assumed to be parallel to the freestream

direction. Mack (1984), on the other hand, considers the very same

disturbance and assumes that

i.e. the phase velocity is assumed to be parallel to the wavenumber

vector k. Similarly, Kachanov and Levchenko (1983) take ¢ parallel k

in the analysis of their experimental results.
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In an attempt to resolve this issue, the following experiment was
conducted. A single oblique wave of finite span was generated by the
phased heater array. The span of the disturbance was 35 cm, i.e. the
full span of the test section. To study the effects of finite span as
well as the direction of propagation, the disturbance was then
"shifted" across the span of the array. The finite disturbance was
"shifted" by turning heater elements off in a sequential manner begin-
ning at one end of the array and proceeding across the array to the
other end. As far as the sensor on the plate centerline is concerned,
this procedure is the same as shifting the disturbance through the tun-
nel side wall, since disturbances near the side walls have no effect on
the flow at the plate centerline. In this way a single probe located on
the plate centerline was used to record the entire spanwise extent of
the disturbance. This procedure was then repeated, "shifting" the dis-
turbance in the oposite direction; i.e. "through" the‘other tunnel side

wall.

The spanwise amplitude distribution obtained in this manner gives
results which are comparable to those that would be obtained by moving
a sensor relative to a fixed disturbance of essentially twice the span.
Thus, we have effectively doubled the width of the tunnel. The advan-
tages of this scheme are twofold. First, the edge contamination region
near the tunnel side walls is completely avoided. Similarly, the fin-
ite end effects of the disturbance itself are kept to a minimum by mak-
ing the disturbance width as large as possible. This leaves a substan-
tial segment in the center of the disturbance which is not affected by
the finite ends. It is the disturbance in this region that is of most
interest, as it corresponds very nearly to a single oblique normal

mode .

Figure 4.1a shows the amplitude distribution obtained in this
manner. Several observations can be made from this plot. The distur-
bance is seen to extend approximately 20 cm to either side of the plate

centerline with a relatively constant amplitude section from -10 cm to
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10 cm. A significant amount of scatter exists in the amplitude and is
accounted for by the naturally occurring background oscillations. If
we assume a spreading angle of 16 degrees for the finite end effects as
suggested by Mack (1984), then spanwise locations where |z| > 20 should
be free of the influence of the forced oscillations. The scatter in
this region of the flow thus represents the scatter in the naturally

occurring oscillations.

The angle of the obligque wave in this experiment was approximately
15 degrees. The streamwise distance that the disturbance has travelled
from its origin at the heater to the point of measurement is over 30
cm. From figure 4.l1la, it is seen that the energy of the disturbance
has travelled very nearly in the stream direction, spreading perhaps a
few centimeters further to values of positive z than to values of nega-
tive z. This slight asymmetry will be discussed later, but for the
present, it seems reasonable to conclude that the group velocity of
this disturbance, or the velocity with which energy is propagated, is
very nearly oriented in the freestream direction. It is certainly not
parallel to the wavenumber vector k, as propagation in that direction
would have displaced the energy distribution nearly 9 cm from the plate
centerline. Furthermore, since the center region of the disturbance
consists of a single normal mode, the phase velocity in this region
must be equal to the group velocity. This must be the case, since there
can be no possible dispersion for a single mode. We therefore conclude
that the phase velocity is oriented in the freestream direction as

well.

An interesting comparison with the preceding experiment is pro-
vided by the point source calculations of Mack (1984). Figure 4.1b
shows a plot of the normalized disturbance amplitude of a single
oblique normal mode of finite span. The origin of the disturbance in
this case was physically oblique; i.e. one end of the disturbance was
located at a higher Reynolds number than the other end. As in figure

4.1a, a region in the center exists which is free of the effects of the
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finite ends. In this case, however, the amplitude is not constant but
rather increases monotonically across the span. This is due to the
physically obligque nature of the disturbance origin. The disturbance
has simply travelled diferrent distances and therefore undergone a dif-
ferent integrated amplification at each spanwise location. It is also
to be noted that the disturbance amplitude falls off rather more
smoothly on the left side of each figure and is seen to fluctuate some-
what more on the right side. Suprisingly, this is a very repeatable

feature of the experimental data.

A plausible explanation for this feature is offered by noting that
a sum over oblique normal modes as in equation 1.18 would have to be
constructed in these regions in order to properly represent the finite
nature of the disturbance span. As will be seen later in this chapter,
the vortex filaments of such a disturbance are oriented very nearly
perpendicular to the wavenumber vector and thus lay at an oblique angle
to the flow direction. By analogy with the starting vortex of a finite
span airfoil, these vortices must also connect to some form of starting
vortex system at the heater. The more downstream end of the oblique
vortices must therefore turn through a greater angle in order to con-
nect with a starting vortex system than the more upstream end. Thus
the sum of equation 1.18 would consist of different combinations of
spanwise modes for the two finite ends of the disturbance. The more
downstream end would require more energy at higher spanwise wavenumbers
in order to turn the corner and could thereby account for the observed
short wavelength oscillation on the right side of both figure 4.1(a)
and 4.1(b) as well as the slight difference in lateral spreading of the
disturbance. It must be remembered, however, that this argument is
strictly valid only for an inviscid fluid, whereas the present flow is
viscous. It is nevertheless believed to provide a useful explanation

for the finite span vorticity field in the present experiments.
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4.3.1. The Nature of Viscous Instability.

In the previous section, the direction of propagation of an oblique
wave was studied. It is also of interest to examine the magnitude of
this propagation velocity. In particular, it is interesting to see how
this quantity varies with the angle of the wave. Consider the follow-
ing experiment. The phased heater array was initially programmed to
force two-dimensional waves. Two hot-film wall-shear sensors separated
by 3 mm in the streamwise direction were used to obtain the phase velo-
city. The time of flight of individual wave crests was measured and
averaged over 50 cycles of the disturbance. Dividing the sensor
separation distance by the time of flight gives the phase speed of the
disturbance. The heater array was then programmed to output succes-

sively more oblique waves, and each time the phase speed was measured.

The result of this experiment is shown in figure 4.2. The normal-
ized phase velocity c,/U, is plotted as a function of the spanwise
wavenumber B. Suprisingly, the phase velocity is seen to remain con-
stant. That is, the propagation velocity cx is independent of the
angle of the disturbance. In order to see why this should be the case,

let us examine the physical mechanism governing viscous instability.

The physical mechanism governing these instability waves can be
viewed as follows. Sinusoidal oscillations in the velocity profile
cause vorticity to be generated at the wall. This vorticity then dif-
fuses away from the wall and is convected by the mean velocity field in
the streamwise direction. Convection by the disturbance velocity field
can be neglected, as it is zero in the mean. When the vorticity from
the wall has diffused to the critical layer, it adds to the vortigity
which is already present in the disturbance. If the frequency of
oscillation and critical layer height ycr(Re) are such that the vorti-
city shed from the wall arrives at ycr in phase with that already
present, then the vorticity of the disturbance increases. If, on the

other hand, the shed vorticity is out of phase upon reaching the
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critical layer, then the vorticity of the disturbance decreases.
Viewed in this way, it is seen that viscous instability waves are in a
sense not waves at all. It was seen earlier that these waves do not
propagate in the direction normal to their phase fronts as normal waves
do, but rather travel in the freestream flow direction. It is perhaps

not even correct to speak of wave "propagation" at all, since the prob-

lem is really one of diffusion and convection of periodic vorticity

rather than propagation of a wave.

When the vortices are oblique, the situation is basically the
same. Now, oscillations of the velocity profile cause both x-vorticity
and z-vorticity to be created at the wall. This vorticity again dif-
fuses away from the wall and is convected by the mean flow in the x-
direction. Therefore, it is not really suprising that the phase speed
of the waves is seen to be independent of the wave angle as in figure
4.2, for the same mechanisms of diffusion and convection of vorticity
govern the disturbance development regardless of the orientation of the

lines of constant phase.

4.4. A Look at the Vorticity Field.

A great deal of insight can be gained by looking at the vorticity
field of the perturbation. For example, in the two dimensional case,
the vorticity field is seen to consist of a streamwise periodic array
of vortices with the only non-vanishing vorticity component being thLat
in the spanwise direction,

-8U _ (jqy-pu)ellox-wt) 4.5

In the case of oblique disturbances of the form 4.1, it is natural
to expect that the vorticity field would be very similar to that of a
two-dimensional disturbance, with the only difference being that the
vortex filaments are rotated by an angle 6 = tan"l(B/a). Thus, we

would expect two vorticity components, w, and Wy - This picture of the
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vorticity

field of an oblique wave is, however, not entirely correct. To see why
this physical picture is incorrect, it is necessary to look at the
mathematical form of the disturbance velocity field as given in equa-

tion 4.1. Taking the curl of 4.1, the vorticity field is obtained as

w, = %g—%% = (Dw-ipv)el(oax+Bz-wt) 4.6(a)
oy = %%_%2 _ (iBu—iaw)ei(QX+BZ“Wt) 4.6(Db)
0, = 39-38 - (1av-pu)et (X7hz-0T) 4.6(c)

The difference between the two-dimensional and three-dimensional vorti-
city fields now becomes apparent. In our previous picture of the
three-dimensional vorticity field, the vortex filaments were straight
and everywhere perpendicular to the wavenumber vector 5=af+8ﬁ. More
importantly though, this picture of the vorticity field contained no

vertical vorticity wy, whereas from 4.6(b), it is seen that wy is not

identically zero.

To prove that wy is in fact a non-vanishing quantity for an

oblique wave, consider the linearized equations of motion:
V-u =0 4.7(a)
0 a T oo - 192
(3{+U3§)g + vDU1 Vp + peViu 4.7(b)

Substituting the assumed form of the disturbance from 4.1 and

correspondingly taking the pressure perturbation as

p(x,t) = p(y)ellax+Bz-wt) 4.8

we obtain
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iocu+Dv+ifw = O 4.9(a)
[—iw+iuU—§%(Dz—a2—32)]u+vDU = -iap 4.9(b)
[—iw+ia0—§%(02—a2_82)]v = -Dp 4.9(c)
{-im+iau—§%(nz-a2—32)]w = -ifp 4.9(d)

Multiplying 4.9(b) by iB, 4.9(d) by ia, and subtracting, we obtain
{iw~iaU+§%(D2—aa—Bz)](iBu—iaw) = iBvDU 4.10

The fact that Wy is not identically zero then follows by contradiction,
for assuming that w =0 implies that the left hand side of 4.10 van-
ishes. Since DU#0 and B#0, this implies that v must be zero every-

where. This problem was considered in 1933 by Squire, where he showed
that such a disturbance (an oblique wave with v(y)=0) is always stable.
Therefore if ©,=0, no instability exists for oblique waves at all.

Since it is known from experiments that this is not the case, it must

be concluded that Wy is not identically zero and is in fact given by

the expression 4.6(b).

4.5. Three-Dimensional Stability Theory Revisited.

Having determined that the vorticity field of an obligque wave is
indeed fully three-dimensional, let us now examine the possible impact
that this might have on the stability of the disturbance. It is con-
venient to begin with the full (non-linearized) equations of motion

expressed in terms of the vorticity:

+ (u'Vjw = (w'V)u + vvzg 4.11

QD
rrl%S

Here w represents the total vorticity of the flow, i.e. the mean vorti-

city plus that of the disturbance. The velocity vector u is likewise
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that of the mean flow plus that of the disturbance. Each term in 4.11
is easily interpreted as follows: dw/dot is the rate of change of vor-
ticity, (u'vV)w is the convection of vorticity by the velocity field,
{(w:V)u corresponds to the rotation and stretching of vorticity by the
strain field, and the final term is of course the dissipation due to
viscosity. It is the first term on the right-hand side that is of par-
ticular interest here, as it was identically 2zero in the two-
dimensional case. For oblique waves, however, it provides an alternate
means of vorticity production that was not available for two-

dimensional disturbances.

It is easily shown that equation 4.11 can be rewritten as

— . = @ 2
3t * (WV)w = we + ¥Wo 4.12

where the strain rate tensor € is given by

ou; au ;)
S e R)

ij T 2 19X X,

iJ 4.13

If we now linearize 4.12, making the usual parallel flow assumption,

U=U(y), we obtain

e 18 v, et 1
ot T Uax M 2 ¢ €+ Rl v ¥V 4.14
ay
where e=¢+e' and w=Q+w'. The vorticity production term, (w'V)u = w-e€,

has thus been separated into the two linear components shown on the
right-hand side of 4.14. The first of these corresponds to the distor-
tion of the disturbance vorticity field by the mean strain field, and
the second term gives the distortion of the mean vorticity field by the

disturbance strain field.
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In order to explore the nature of these vorticity production
terms, let us look at the simplest possible problem, that of Couette
flow. Couette flow is known to be stable to small two-dimensional dis-
turbances, but the three-dimensional problem remains relatively unex-
plored. The mean flow profile is linear, and the third term on the
left-hand side of 4.14 therefore vanishes. If we confine our attention
for the moment to only the first of the vorticity production terms and
take Q-€' to be zero, we arrive at the equation (dropping primes on the

disturbance quantities):
Dw - 2
Dt - @€ T W 4.15

where g% = {g%+U§%}. The mean strain rate tensor E is given by

_ { o U o ‘
€ = u! 0 0
Lo o o] 4.16
The eigenvalues of € are found to be U', -U', and 0. The corresponding

principal directions are (§x+§ (éx‘éy)' and éz. Rewriting equation

),
v
4.15 in terms of the vorticity components in the principal coordinate

system, Wi wg, and wg, wWe obtain the following set of uncoupled egua-

tions for the vorticity components:

Dwy 2
Pt " U‘w1 + vV, 4.17(a)
Dw
2
bt = U'w, + vv2w2 4.17(b)
Dw
3
Pt = szwS 4.17(c)

If the wall to wall separation distance is taken to be d, and the velo-
city difference is AU, U' becomes simply AU/d. If we normalize all
quantities using d and d/AU as the appropriate length and time scales,

we obtain
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2
BE 9t R 1 4.18(a)
Dw
2 1.2
Pt = -wz + ﬁ‘é‘v wz 4.18(b)
Dw
8 _ 142
Dt ~ Re’® “3 4.18(c)

From 4.18, it can be seen that following the fluid, @, will increase
without bound if either its amplitude or the Reynolds number becomes
sufficiently large. For sufficiently low amplitudes or at low enough
Reynolds numbers, viscosity will dominate and all disturbances will be
damped. In the two-dimensional case, only equation 4.18(c) remains,
and all disturbances are damped following the fluid. This is in agree-
ment with the known result that Couette flow is stable to two-

dimensional disturbances.

The exact conditions for instability would of course require that
the full linearized equation4.14 be solved with all terms included. It
is believed, however, that the present brief examination of the distur-
bance vorticity indicates that instability may indeed occur for three-
dimensional disturbances even when two-dimensional disturbances are
stable. This is due to the additional wvorticity production terms
inherent in the three-dimensional problem. 1In the next chapter, exper-
imental evidence will be presented that indicates that under identical
forcing conditions, oblique waves can in fact be much more unstable

than any two-dimensional disturbance.
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Chapter 5
THREE-DIMENSIONAL, OBLIQUE WAVE EXCITATION

5.1. Introduction and Preliminary Observations.

In this chapter, we will examine the results of several experi-
ments designed to explore the behavior of single oblique instability
waves. Such disturbances have been discussed in the 1literature for
over 50 years and are currently employed as an integral part of several
proposed resonance mechanisms as seen in Chapter 1. Virtually no
experiments exist, however, which either confirm or deny the predic-
tions of the linear theory with regard to the behavior of oblique
waves. It is the goal of this section to shed some light on this sub-
ject. 1In particular, attention will be focused on the following issue.
It is the general consensus in the literature that oblique waves are
less dangerous, that is, less unstable than their two-dimensional coun-
terparts. The simple analysis of the preceding chapter, however, sug-
gests that the additional vorticity production terms inherent in the
three-dimensional problem may indeed result in much higher growth rates
than those given by the linear theory. If this were to be the case,
then oblique waves should be seen to be more unstable than two-
dimensional waves. As will be shown, certain regimes of the parameter

space exist for which this is indeed the case.

In order to get a feel for the behavior of oblique waves, consider
the following experiment. The phased heater array was programmed to
force oblique waves at increasing angles to the mean flow direction.
The amplitude of the forcing was held constant throughout as were the
freestream flow conditions. At each angle, the frequency was varied,
completely spanning the range of unstable freguencies. Figure 5.1

shows a plot of the normalized disturbance amplitude as recorded at

Rea* = 1240. In order to obtain the points in figure 5.1, the spectra
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were locally band-pass filtered at the forcing frequency. The response
shown is thus the integrated flow response at the forcing frequency
alone. A flow response at frequencies other than the forcing frequency
(the subharmonic, for example) would not appear in figure 5.1. As will
be seen, the flow response does indeed contain energy at frequencies
other than the forcing frequency. This behavior constitutes a major
departure from the anticipated results and is discussed in great detail

in the next few sections.

Several observations can be made from figure 5.1. First, it is
noted that the integrated flow response at the forcing frequency
decreases with increasing wave angle. Thus it appears that oblique
waves become less unstable as the wave angle is increased. That this
is not a correct statment will be shown in detail in the section 5.3.2.
The reason is, as mentioned above, that we have not taken into account
the possible flow response at frequencies other than the forcing fre-
quency. For the present, then, it can only be stated that the flow

response at the forcing frequency decreases with increasing wave angle.

A second observation from figure 5.1 is that approximately the
same frequency range is seen to be unstable regardless of the wave
angle. This suggests that the region of unstable frequency-Reynolds
number space (i.e. the neutral surface) is essentially the same for all
wave angles. It should be recalled that in Chapter 4, it was seen that
the phase speed of oblique disturbances was independent of the wave
angle as well. These two observations are consistent with the physical
description of viscous instability as a balance between convection and
diffusion of vorticity. Thus it is seen that the behavior of oblique
waves is quite similar to that of two-dimensional waves. The only
difference seen thus far has been that the integrated amplification at
the forcing frequency decreases with increasing wave angle. This is
not the only difference, however. As will be seen, certain regions of
the parameter space exist in which a different mechanism dominates the

oblique wave development. This results in a radical departure from the
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type of behavior seen in two-dimensional waves, and is therefore the

subject of the remainder of the chapter.

5.2. The Onset of Non-stationary Behavior.
The remainder of this chapter breaks down into two separate parts.
The first half is concerned with a simple observation from the experi-

mental data. That observation is the following: certain regions of the

parameter space exist for which oblique waves exhibit inherently non-

stationary behavior. By non-stationary we mean that the spectral con-

tent of the signal changes with time. This behavior occurs under well
controlled forcing conditions to be described and is an entirely
repeatable feature of the disturbance. Section 5.2.1 will explore the
time series behavior in an attempt to characterize the nature of this
non-stationary behavior. Section 5.2.2 will then discuss the subject
of spectral analysis for non-stationary signals, as the usual methods
such as the Fast Fourier Transform are no longer applicable. The
Wigner distribution will be introduced as a means of non-stationary
frequency analysis and will be used to support the direct observations
made from the time series data. Finally, the implication of this sim-
ple observation on several of the currently proposed resonance mechan-

isms will be discussed.

The second half of the chapter will present a simple mechanism
which is again suggested by direct observation of the time series data.

This mechanism is simply that the non-stationary behavior is due to the

intermittent roll-up or pairing of adjacent vortices of the distur-

bance. This mechanism has long been known to play a major role in the
development of unbounded shear flows such as the mixing layer and wake.
The results from a thorough experimental examination of the parameter
space will then be discussed and will be shown to be consistent with
this simple model. Finally, the entire picture of the role of oblique
waves in boundary layer transition will be summarized by relating the
geometrical properties revealed in chapter 4 to the experimental obser-

vations and proposed mechanism of the present chapter.
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5.2.1. Time Series Behavior.

Figure 5.2 shows a typical wall-shear time signal. The heater array in
this case was programmed to force a single oblique wave at approxi-
mately 15 degrees. The forcing frequency was 11 Hz, producing a 22 Hz
disturbance due to the squaring of the forcing voltage. The signal
shown in figure 5.2 was recorded by a hot-film wall-shear probe at a
Reynolds number of approximately 1300. Several observations can be

made from this plot.

The first point to be noticed is that the signal is quite non-
stationary. This is easily seen by noting that in the interval 0.3 < t
< 0.6 a single dominant frequency exists in the wall-shear fluctua-
tions. This is the frequency corresponding to the forcing, i.e. 22 hz.
The r.m.s. fluctuation is typically on the order of five percent of the
mean wall-shear. Moving to the interval 0.6 < t < 0.8 a curious
behavior is observed. Adjacent peaks in the time trace corresponding
to local maxima in the wall-shear fluctuations are seen to merge yield-
ing a signal which now contains considerable energy at twice the funda-
mental period of oscillation. The result of this pairing is further
demonstrated in the initial portion of the time trace, 0.0 < t < 0.3,
where very large magnitude fluctuations are observed with a primary
period twice that of the fundamental period of oscillation. The fluc-
tuations are seen to approach 50 percent of the mean wall-shear level
and are much larger in the positive direction than in the negative.
This asymmetry with respect to the sign of the fluctuations is a very
consistent feature of the observed experimental data. These observa-
tions will be shown in section 5.2.4 to be consistent with a simple

physical mechanism, that of vortex pairing.

5.2.2. Frequency Analysis of Non-stationary Signals.

In analyzing the spectral content of a time signal such as that in fig-

ure 5.2, the usual methods such as the Fast Fourier Transform can no
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longer be used, as Fourier analysis relies on the basic assumption that
the time series is stationary. An alternative procedure would be to
take the FFT of a short segment of the data with the assumption that
the frequency content of the signal is nearly constant over that por-
tion of the data. This method has a serious drawback, though. Taking
a short segment of the data implies a multiplication in the time domain
with a suitably chosen windowing function. In the frequency domain,
this is then a convolution of the spectrum with the convolution of the
windowing function. As the length of the window is decreased to pro-
vide a closer approximation to a stationary signal, the effect of the
convolution in the frequency domain is to smear out the spectral con-

tent and thus resolution in frequency is lost.

An alternative method is provided by the use of the Wigner
transform. For the present purposes, the Wigner transform will merely
be defined and then used to corroborate some of the observations from
the time series data. Appendix B will contain a more thorough descrip-
tion of the transform properties and the particular implementation used
in this study. Additional detailed analyses of the Wigner transform
are also to be found in the recent work of Imberger & Boashash (1985)

and Claasen & Mecklenbrauker (1980).

The Wigner transform of a function g(t) is given by

W(t,f) = ;ﬂ g(t«%)g*(t*g)e—znf'r ar

—H

where g* is the complex conjugate of g. In practice some form of win-
dowing function is also wused, so g(t) would be replaced by
gl(t) = w{t)g(t), where w(t) is the chosen windowing function. Figure
5.3 shows an example of the use of the Wigner transform on a typical
data sample. The time series is shown on the left hand side of the fig-
ure for comparison. The standard FFT of the entire record is given at

the bottom of the figure. From the full FFT, one can see that the
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signal contains most of its energy at the two dominant frequencies,
12.5 Hz and 25 Hz. All information regarding the phase, however, is
lost. That is, we have no idea if these two frequency components were
present throughout the record or occurred in some non-stationary
manner. The Wigner transform provides precisely this information. For
this particular record, the Wigner transform was evaluated at intervals
of 0.1 sec. The entire spectral content of the signal at each of these
points in time is thus obtained. A Hanning window was chosen to minim-
ize the effects of the finite record length of the signal. This is
especially important near the ends of the record. The question regard-
ing the phase is thus resolved by examination of the time-frequency
plot of the Wigner transform. As can be seen in figure 5.3, the energy
at the subharmonic is not present at all times. In fact, substantial
periods are observed in which no subharmonic exists at all. These
observations are of course equally well verified by direct examination

of the time series data.

5.2.83. Comparison with Proposed Resonance Mechanisms.

The observations of the preceding sections have a direct bearing on
some of the current ideas in the literature regarding resonance mechan-
isms. As indicated in the introduction, a wide variety of resonance
mechanisms between a two-dimensional wave and some form of three-
dimensional wave have been proposed to explain the onset of three-
dimensionality in boundary layer transition. They are summarized in
table 1.1. Many of these mechanisms involve a subharmonic wave; i.e. a
wave with frequency one half that of the fundamental wave. As has been
indicated, the present data show the appearance in the spectrum of
energy at the subharmonic of the forcing frequency. It is natural to
ask whether this behavior can be explained by some form of resonance.
From direct observation of the time series behavior as well as the com-
bined time-frequency analysis afforded by the Wigner transform, it
seems that this is not the case, since the temporal behavior of the

subharmonic does not seem to correlate well with that of the
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fundamental. As is seen in figure 5.3, the subharmonic content of the
signal increases and decays without regard to the magnitude of the fun-

damental which remains relatively constant throughout.

On the other hand, it could be argued that what is observed in
figure 5.3 is a non-stationary resonance between the forced oblique
wave and the randomly occurring background oscillations. That 1is,
resonance only occurs when the naturally occurring oscillations attain
a certain amplitude and thus is seen to be non-stationary. This argu-
ment implies that there should exist a strong correlation between the
amplitude of the naturally occurring waves and the appearance of non-
stationary behavior in the resulting time series data. That this is
not the case will be seen in section 5.3.1 when the frequency depen-
dence of the non-stationary behavior is examined. It will be shown
that the non-stationary behavior increases with increasing frequency of
the forced oscillations, and that there is little correlation between
the amplitude of the background waves (which are limitted to a band of
relatively low frequencies) and the appearance of the non-stationary

behavior (which is seen primarily at higher frequencies).

5.2.4. An Alternative Mechanism: Vortex Pairing.

An alternative mechanism that can be offerred as an explanation for the
observed behavior is the simple phenomenon of vortex pairing. If one
were to move at the speed of the disturbance, the streamlines of the
flow would appear as shown in figure 5.4(a). This "cat's eye" stream-
line pattern shows clearly that the disturbance consists of a periodic
arraﬁ\of co-rotating vortices. In general, the relatively slow growth
rates of the instability waves implies that the strength of adjacent
vortices will vary little over a few wavelengths. Thus, the induced
velocity on any given vortex will be very nearly zero, as contributions
from those vortices immediately preceding and those immediately follow-
ing that vortex will tend to cancel. Any imbalance in the induced

velocity field, however, will cause adjacent vortices to pair together
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forming one large vortex. This is shown schematically in figure
5.4(b). This type of vortex pairing is widely observed in free shear
flows such as the wake and mixing layer, but has never been clearly

observed in the boundary layer.

In the following section, it will be shown that there exist condi-
tions for which the induced velocity field due to neighboring vortices
cannot be neglected in the disturbance development. The induced velo-

city field at any point X, is given by the Biot-Savart relation

( 1 (x-X5) @
_U_ § 3 t) = - f dv
° TV 1xxg 5.2

From this expression, it can be seen that the induced velocity
field increases linearly with an increase in the amplitude of the dis-
turbance (i.e. an increase in |w]). Thus, any imbalance in the induced
velocity field will be magnified by an increase in the disturbance
amplitude. In addition, it can be seen that the induced velocity field
increases with a decrease in the vortex-to-vortex spacing. Therefore,
any conditions which cause a decrease in the vortex spacing will

further increase the tendency for vortices to pair.

Several experiments can be performed which lend support for this
proposed mechanism of vortex roll-up. Specifically, the frequency
dependence, wave angle dependence, and amplitude dependence of the
forced instability waves will be examined and will be shown to be con-
sistent with this mechanism. Furthermore, the behavior of the eigen-
function will be studied to gain insight into the vertical nature of
the flow during the periods of non-stationary oscillation. Finally,
the mechanism of vortex pairing will be discussed in light of the
geometrical structure of the vortex filaments which was revealed in

chapter 4.
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5.3. Results for Oblique Wave Excitation.

5.83.1. Frequency Dependence.

In order to examine the frequency dependence of the instability waves,
the following experiment was conducted. The phased heater array was
initially programmed to force purely two-dimensional waves. The forc-
ing amplitude was kept constant throughout the experiment as were the
freestream flow conditions. Figure 5.5 shows the resulting wall-shear
time series as a function of the frequency of the forcing. This is a
visual cut through the stability surface at a single Reynolds number.
As expected, the oscillations are highly damped at the low and high
ends of the forcing spectrum, and in the center there is a region in
which the oscillations are most strongly amplified. Figure 5.6 shows
the resulting amplitude spectra corresponding directly to the time
series traces of figure 5.5. The spectra are seen to be quite clean;
i.e. there is little observed response at frequencies other than the
forcing frequency. This behavior is in qualitative agreement with the

predictions of the linear theory.

Consider next the very same experiment, but with the phased heater
array now programmed to generate a single oblique normal mode at an
angle of approximately ten degrees. The time series traces and ampli-
tude spectra are shown in figures 5.7 and 5.8 as a function of the
forcing frequency. A very striking difference is noted. At the lower
forcing frequencies, the observed flow response is gquite similar to
that observed previously in the two-dimensional case. At the higher
end, however, the response is gquite different. The time series
behavior is seen to be non-stationary with large amplitude fluctua-
tions. This type of behavior is observed to occur over a substantial
range of frequencies. At frequencies greater than 40 hz, however, the
observed flow response returns to the type of behavior seen in the

two-dimensional case.
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A look at the spectra of figure 5.8 provides further insight into
this behavior. Appfopriate caution must be taken, however, when dis-
cussing these spectra as the signals were observed to be non-
stationary. At the lower frequencies, a very clean response is seen at
the forcing frequency. The response in this frequency range is thus
quite similar to that of the two-dimensional case. At the higher end,
however, the flow response at the forcing frequency decreases in accor-
dance with the linear theory, but the level of activity throughout the
rest of the spectrum has greatly increased. This corresponds to the
observed non-stationarity observed in figure 5.7. Beyond a forcing
frequency of approximately 40 hz, a return to the essentially undis-

turbed flow conditions is observed.

In the previous section, it was suggested that the observed non-
stationary behavior could be explained in terms of a roll-up of adja-
cent vortices of the disturbance. The frequency behavior observed in
figures 5.5-5.8 can now be discussed in terms of this mechanism.
Specifically, we must ask why the non-stationary behavior is seen to
occur primarily at the higher end of the unstable frequency range.
From equation 5.2, it is seen that the induced velocity at any point in
the boundary layer, Xy, due to neighboring vortices varies inversely
with the square of the distance to the adjacent vortices. Since it is
known that the phase speed ¢ of the waves varies little from ¢ 2 .35U_,
it can be seen that an increase in the frequency of the disturbance
corresponds to a decrease in the disturbance wavelength. Thus, the
effect of increasing the frequency is to decrease the separation dis-
tance between adjacent vortices. This then increases the induced velo-
city quadratically according to equation 5.2. A mismatch in the induced
velocity from vortices immediately preceding and those immediately fol-
lowing a given vortex will therefore have a much greater effect upon
the tendency for vortices to roll-up. This mismatch could be the
result of random disturbances in the flow or perhaps even the differ-
ence in amplitude due to the spatial growth of the disturbance. The

observed increase in the non-stationary nature of the oscillations with
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increasing frequency is thus consistent with the mechanism of vortex

roll-up.

5.3.2. Wave Angle Dependence.

A second parameter that can be explored is the ‘angle 8 = tan_l(B/a) of
an oblique wave. To study the effect of this parameter, consider the
following experiment. The forcing amplitude and freestream flow condi-
tions were again held constant as in the previous experiment. The
forcing frequency in this case, however, was fixed at 28 Hz and the
angle 6 of the disturbance was varied. Figures 5.9 and 5.10 show the
resulting time series and spectra as a function of the wave angle. Two
observations can be made from these figures. First, the response at
the forcing frequency is seen to decrease with increasing wave angle.
This is in agreement with the theorem of Squire (1933) which stated
that the minimum critical Reynolds number increased with increasing
wave angle, and thus the integrated amplification as recorded in fig-
ures 5.9 and 5.10 decreases with increasing wave angle. This theorenm
is strictly valid only for temporally growing waves, however. A more
direct explanation is afforded by the calculations of Mack in which it
is shown that the growth rates for oblique waves generally decrease
with increasing wave angle. This is shown in figure 5.11 in which the

integrated amplification 1n(A/A;) is shown as a function of the wave

angle y.

The second feature observed from figures 5.9 and 5.10 is that the
occurrence of non-stationary behavior in the time series waveforms is
seen to increase with increasing angle just as was the case with
increasing frequency. This is not suprising when we consider the
geometry of the situation as sketched in figure 5.12. It must first be
recalled from section 4.3 that the phase speed vector was found to be
parallel to the freestream flow direction and furthermore was seen to

be independent of wave angle #. Thus an increase in wave angle (at

constant frequency) leaves Ay = ¢/f unchanged while M\, decreases.
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Therefore as seen in figure 5.12, the separation distance, S, between
adjacent vortices in the oblique wave decreases with increasing wave
angle. The induced velocity as given by equation 5.2 therefore
increases with increasing wave angle just as was the case with increas-
ing frequency. This observed behavior is again consistent with our

proposed mechanism of vortex roll-up.

5.3.3. Amplitude Dependence.

Returning to the spectra of figure 5.8 (forcing frequency dependence)
or figure 5.10 (wave angle dependence), an additional observation can
be made. It is clearly seen that the occurrence of the non-stationary
behavior is a much stronger function of the forcing frequency or wave
angle than it is a function of the disturbance amplitude. This is seen
by noting that at the most amplified frequency of approximately 24 Hz,
the disturbance waveform is seen to be quite stationary. At higher
frequencies, however, where the direct response at the forcing fre-
quency is smaller, a much greater non-stationarity is observed. This
observation is again in agreement with the mechanism of vortex roll-up,
for equation 5.2 shows that the induced velocity field depends linearly
on the disturbance amplitude, whereas the dependence on frequency or
wave angle (via vortex separation distance) is quadratic. Thus, the
dependence on the disturbance amplitude should not be expected to be as

great as the dependence on frequency or angle of the disturbance.

In order to directly examine the impact of disturbance amplitude
on the occurrence of non-stationarity, the following experiment was
conducted. The array was programmed to force a single oblique wave at
an angle 6 = 15° and at a frequency of 25 Hz. The power input to the
array was then continually increased. Figure 5.13 shows the time
series behavior for this experiment. As can be seen, the response to
the forcing is initially in accordance with the linear theory; i.e. a
nice stationary response is observed. At a forcing level of approxi-

mately 200 W, though, significant portions of the time series are seen
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to exhibit the typical period doubling non-stationary behavior that we
have been observing. As the power is increased further, this type of
behavior becomes more and more prevalent. Though no scale is shown,
the fluctuations in the final trace at times exceed 50 percent of the
mean shear level. The dependence on amplitude shown here is not as
strong as was previously seen in the frequency or wave angle depen-

dence, but it is clearly a factor.

5.3.4. Eigenfunction Behavior.

Further evidence for this proposed mechanism of vortex roll-up is
obtained by studying the vertical nature of the disturbance; i.e. the
eigenfunction profile. If vortex roll-up is occurring, then the eigen-
function should clearly show evidence of velocity fluctuations further
from the plate surface than would normally occur. It should first be
pointed out that the occurrence of vortex pairing or roll-up is almost
certainly a three-dimensional phenomenon. Thus the wvelocity sensor
will see all three components of the disturbance velocity field. Due
to the high aspect ratio (8:1), though, the sensor is much more sensi-
tive to velocity fluctuations perpendicular to its long axis, u(y) and
v(y), than it is to those that are parallel, i.e. w(y). Furthermore,
fluctuations in the vertical direction are much smaller than those in
the stream direction. The fluctuations seen by the probe, then, are

essentially from the single component, u(y).

In order to explore the nature of the eigenfunction, the following
experiment was conducted. The phased heater array was initially pro-
grammed to force an oblique wave at 15 degrees. The frequency of the
forcing was set at 22 Hz. As can be seen in figure 5.5, the response
of oblique waves at such low frequencies is very clean. Thus, a very
stationary oblique wave was generated. The hot-film velocity sensor
then traversed the boundary layer in steps of 0.1 mm beginning at a
vertical position 0.1 mm from the surface of the plate. Figure 5.14

shows the resulting flow response as a function of the vertical
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distance, y. The shape of the eigenfunction profile is quite typical.
The maximum fluctuation level of U ax/Us ° 2% is seen to occur at y =

0.3 mm from the plate.

The experiment was then repeated with one small change in the
forcing conditions. The forcing amplitude was kept at the same level
as before, and the array was again programmed to output obligue waves
of 15 degrees. The only change was in the frequency of the forcing.
The forcing frequency was set to 30 Hz. Reference to figure 5.5 shows
that at this frequency, highly non-stationary behavior is observed.
Measurment of the eigenfunction just as before results in the second
profile plotted in figure 5.14. The magnitude of the fluctuations is
seen to be much larger than in the previous case. This is not in
accordance with the linear theory, as waves at 22 Hz should be more
strongly amplified than those at 30 Hz. This is accounted for by the
very large amplitude fluctuations typically observed when the distur-

bance becomes non-stationary.

The important point to be observed in figure 5.14 is that in the
neighborhood of the wall, the entire character of the eigenfunction
profile has changed. There is no longer a clearly observed maximum.
Approximately the same fluctuation level is seen fromy = 0.1 mm to y =
0.6 mm. The large increase in the magnitude of the fluctuations occurs
as a result of the stretching of vortex filaments which occurs in the
pairing process. It is the displacement of the vortex centers, how-
ever, that accounts for the distorted profile shape as seen in figure

5.14.

It is to be noted that the maximum fluctuation level in the case
of vortex pairing is found roughly twice as far from the wall (y=0.6
mm) as was found in the non-pairing case (y=0.3 mm). This is in agree-
ment with the simplest intuitive notion of vortex pairing, where one
vortex simply rolls over another and thus doubles the height. It is

interesting to note also that this increase in activity away from the
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wall has been observed in other experiments. For example, in the clas-
sic paper of Klebanoff, Tidstrom, and Sargent (1962), the following
statement is made: "The position of the maximum in the intensity dis-
tribution as given by the linear theory is at 0.26, but in the non-
linear range the position of the maximum at a spanwise position
corresponding to a peak moves away from the surface as breakdown is
approached, and at breakdown has moved out to about 0.448." This is
clearly demonstrated in figure 5 of their paper. The flow in that
experiment was highly three-dimensional and non-linear having been dis-
turbed by a physical obstruction (celophane tape) placed at regular
intervals on the plate surface. It is believed that the driving
mechanism in that experiment was precisely the same as in the present

study, namely vortex pairing.

5.4. Summary of Three-Dimensional Effects.

In the preceding two chapters, the nature of oblique instability
waves has been explored analytically as well as experimentally. It has
been shown that a great number of similarities exist between oblique
waves and their two-dimensional counterparts. Some of these similari-
ties are indeed quite suprising. For instance, a series of experiments
involving forced oblique waves has shown that several of the properties
are independent of the angle of an oblique wave. It was indicated that
the direction of propagation is essentially the same for all types of
disturbances, two-dimensional as well as oblique. Specifically, the
direction of propagation is parallel to the freestream flow direction
in all cases. In addition, the magnitude of the phase velocity was
measured and was found to be independent of wave angle as well.
Finally, it was found that the region of unstable frequency-Reynolds
number space (i.e. the stability surface) was also seen to be indepen-
dent of wave angle. Combining these observations with our knowledge of
the dominant forces in a boundary layer, a mechanism describing the
physical nature of viscous instability is offered. Namely, it has been

suggested that viscous instability waves are caused by convection and
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diffusion of periodic vorticity generated at the wall. This explains
why several of the observed disturbance properties are independent of
the wave angle, as the mechanisms of diffusion and convection occur

without regard to the orientation of the lines of constant phase.

In addition, it has been shown that several differences exist
which set oblique waves apart from two-dimensional waves. In Chapter
4, the vorticity fields of these two types of disturbances was exam-
ined, and it was found that a very important fundamental difference
exists. In the two-dimensional case, the vorticity field was purely
one-dimensional (i.e. a scalar, w,). In the three-dimensional case,

however, the vorticity field is fully three-dimensional with each com-

ponent Weo Wy and @, being a non-vanishing quantity. It was then
shown that the existence of a three-dimensional vorticity field gives
rise to an additional source of vorticity production that was unavail-
able in the two-dimensional case. It was further suggested that this
additional source of vorticity production could cause instability to
oblique disturbances even when two-dimensional disturbances were com-
pletely stable. The example used to illustrate this possibility was

the as yet unresolved stability problem of Couette flow.

Finally, it was shown that certain regions of the parameter space
exist for which oblique waves are indeed observed to be more unstable
than any two-dimensional wave. This behavior is believed to originate
from the additional vorticity production mechanism outlined above, and
is seen to manifest itself in a roll-up of adjacent vortices of the
disturbance waveform. It was further shown that the occurrence of this
vortex pairing behavior was seen to increase with increasing frequency
of oscillation, increasing oblique wave angle, and increasing ampli-
tude. All of these factors occur in a manner consistent with the usual

Biot-Savart law for the induced velocity field.
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Chapter 6
CONCLUSIONS

An experimental study of the weakly non-linear as well as the
three-dimensional nature of boundary layer transition has been con-
ducted using a new technique. The active surface heating technique of
Liepmann, Brown, and Nosenchuck was employed and in this study was
extended to provide a means for controllably and repeatably introducing
three-dimensional disturbances into a laminar boundary laver. A simple
analysis of the heating technique was offered in an effort to clarify
the mechanism by which the fluctuations in the wall heat flux are
translated into localized velocity fluctuations in the vicinity of the
critical layer. It was shown that the effective velocity perturbation
introduced by the heating technique increases exponentially with the
streamwise distance along the heater reaching its maximum value at the
heater trailing edge. In this way, the spatial resolution of the dis-
turbance is maintained even when heaters of large streamwise extent are

used.

The details of the present experimental configuration have been
described. The particular heater geometry used in this study consisted
of a 32-element heater array spanning the test facility at a single
streamwise location. Each element of the array is independently pro-
grammable in both amplitude and relative phase making possible a wide
range of three-dimensional disturbances. The design and construction
of the heater array are detailed along with a description of the con-

trol and power electronics necessary to drive the array.

The effect of weak non-linearity on boundary layer transition was
then examined by an experimental study of two-dimensional instability
waves of increasing amplitude. It has been shown that the effect of
weak non-linearity is relatively benign. The growth rates were seen to

follow the linear theory up to perturbation amplitudes of nearly twelve
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percent. This was seen by analyzing the local growth rates as well as
the integrated amplification over a wide range of frequencies. The
only deviation from the linear theory arose in the form of a non-
linearly generated first harmonic wave phase-locked to the fundamental,
whose amplitude depended quadratically upon that of the fundamental.
Higher harmonics were also observed, and their amplitudes correspond-
ingly scaled with higher powers of the fundamental amplitude. It was
concluded that even though these non-linearly generated harmonics do
indeed alter the wave behavior to some extent, they are by themselves
not sufficient to explain the transition from small linear oscillations
to the large amplitude, broad-band, three-dimensional oscillations

characteristic of a fully turbulent boundary layer.

Furthermore, the relation of the present study to some of the
ideas prevalent in the current literature was discussed. It was shown
that the results of the present study are not consistent with those
experimental and theoretical investigations which report a rather low
(u/Uw:l%) threshold amplitude for the spontaneous onset of three-
dimensionality and the consequent departure from the predictions of the
linear theory. Rather, it is believed that with sufficient care, very
large amplitude two-dimensional disturbances can be generated with lit-
tle observed departure from the relatively slow growth rates as

predicted by the linear theory.

The effect of three-dimensionality on boundary layer transition
was then investigated through an analytical and experimental study of
single oblique instability waves. Single obligque waves were chosen (as
opposed to oblique wave pairs or some other more elaborate combination
of waves) since they are normal modes of the boundary layer. They are
thus the fundamental three-dimensional structure in a transitional
boundary layer. They have the additional advantage of having a rela-
tively simple analytic description which is amenable to some elementary

analysis.
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1t has been shown that a great number of similarities exist
between oblique waves and their two-dimensional counterparts. Some of
these similarities are indeed quite suprising. For instance, a series
of experiments involving forced oblique waves has shown that several of
the properties are independent of the angle of an oblique wave. It was
shown that the direction of propagation is essentially the same for all
types of disturbances, two-dimensional as well as oblique. Specifi~
cally, the direction of propagation is parallel to the freestream flow
direction in all cases. In addition, the magnitude of the phase velo-
city was measured and was found to be independent of wave angle as
well. Finally, it was found that the region of unstable frequency-
Reynolds number space (i.e. the stability surface) was also independent

of wave angle.

Combining these observations with our knowledge of the dominant
forces in a boundary layer, a mechanism describing the physical nature
of viscous instability has been offered. Namely, it has been suggested
that viscous instability waves are caused by diffusion and convection
of periodic vorticity generated at the wall. The diffusion is directed
normal to the wall, as the largest gradients occur in this direction,
and the convection is in the freestream direction, since convection due
to the disturbance velocity field is zero in the mean. This explains
why several of the observed disturbance properties are independent of
the wave angle, as the mechanisms of diffusion and convection occur

without regard to the orientation of the lines of constant phase.

In addition, it has been shown that several differences exist
which set obligque waves apart from two-dimensional waves. The vorticity
fields of these two types of disturbances was examined, and it was
found that a very important fundamental difference exists. In the
two-dimensional case, the vorticity field was purely one-dimensional
(i.e. a scalar, @,). In the three-dimensional case, however, the vor-

ticity field is always fully three-dimensional with each component

Wes Wy and w, being a non-vanishing quantity. It was then shown that
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the existence of a three-dimensional vorticity field gave rise to an
additional source of vorticity production that was unavailable in the
two-dimensional case. It was further suggested that this additional
source of vorticity production could cause instability to oblique dis-
turbances even when two-dimensional disturbances were completely
stable. The example used to illustrate this possibility was the as yet

unresolved stability problem of Couette flow.

Experimentally, it was shown that certain conditions exist for
which obligque waves are observed to be more unstable than any two-
dimensional wave. This behavior is believed to originate from the
additional vorticity production mechanism outlined above, and is seen
to manifest itself in a roll-up of adjacent vortices of the disturbance
waveform. It was further shown that the occurrence of this vortex
pairing behavior was seen to increase with increasing frequency of
oscillation, increasing oblique wave angle, and increasing wave ampli-
tude. All of these factors occur in a manner consistent with the usual
Biot-Savart law for the induced velocity field. In addition the eigen-
function was measured and was also found to be consistent with the

mechanism of vortex pairing.

Finally, it is concluded that the behavior of oblique waves is
much more complicated than was previously believed. The widely held
belief that oblique waves are more stable and therefore less dangerous
than two-dimensional waves is seen to be unfounded. Furthermore, it is
concluded that obligque waves undoubtedly play a major role in the tran-
sition to turbulence. It is to be noted, however, that the results of
this study deal only with the early stages of transition, and the
resulting high frequency oscillations characteristic of fully developed
turbulent flow were not seen. It is believed, though, that additional
study on the further development of oblique waves will indeed reveal

this behavior.
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Appendix A
SIMILARITY ANALYSIS OF THE SURFACE HEATING TECHNIQUE

In order to obtain an approximate expression for the temperature
profile above the heater element, consider the situation as sketched in

figure A.1. Beginning with the energy equation,

2
v-[ pu(b+-) - 70+ g ] =0 A.l

If we now consider two-dimensional, parallel, low speed flow, we can

make the following approximations:

2

%?<<h , T'u<<qg , u=(u,0,0) A.2

Substituting into A.1, we obtain

The thermal boundary layer should be well within the linear region of

the viscous boundary layer, and we can therefore take

ue 2y A4

If it is further assumed that the streamwise extent of the heater is
small compared to the distance from the leading edge, we may take T, to

be constant over the heater. Substituting A.4 into A.3 we obtain

wgor_ T | x
K ok 2’ pc A.5
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If we now choose for the similarity variable 5 = ——¥___  and substi-

(GE)I/S

tute into equation A.5, we obtain

2%T , ¥w 2 a7 _

n
2 3uk an A.6
on
3 T-T

Taking « = ?#5 and §(n) = 7, we arrive at the simple ordinary dif-

w o ‘W
ferential equation

2
278 | 230 _ g g(0)=0 , 6(w)=1

8n2 on A7
This is easily integrated once to obtain
3
%% = const e " /3 A.8
and once more, giving
1 _.3/3
= -n
8(n) = const | e dn A.Q

0
The constant in A.9 is evaluated by making the subsitiutions,

7 = (3’(:)1/3 and dg = (3t)”2/3dt and evaluating at g=«. Thus,

6(>~) = const 372/3 I t72/3¢7t gt = const 372/3 rdy =1
0 3 A.10

The final result is obtained as
] 3
7 /3

1
6(n) = 0.776 ¢
0

dn A.11

From this expression the temperature profile and the heat transfer

rates above the heater are easily obtained.
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Appendix B

PRESENT IMPLEMENTATION OF THE WIGNER DISTRIBUTION

As indicated in Chapter 5, several excellent references are avail-
able which contain detailed discussions of the general properties of
the Wigner distribution. The present discussion, however, will be con-
cerned primarily with the particular implementation of the Wigner dis-
tribution as used in the analysis of the weakly non-stationary signals
encountered throughout this investigation. The Wigner distribution
will be shown to provide a viable alternative to spectral methods such
as the Fourier transform and will therefore be frequently referred to
as the Wigner transform. A brief introduction to the Wigner transform
will be given followed by several instructive examples which point out

several of the advantages as well as the disadvantages of this method.

The Wigner transform of a real function x(t) is defined as fol-

lows:

W(t,f) = g z(t+%)z*(t_%)e—2nf7 ar

00

where z(t) is an analytic signal whose real part is identical to the
original function x(t), and z*(t) is its complex conjugate. The ana-

lytic signal z(t) is defined as

z(t) = x(t) + 1 1 Gy ar B 2

It can be seen to be formed by a convolution of the original real time

series x(t) with a function v(t) given by
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y(t) = 8(t) + L B.3

The Fourier transform of y(t) is easily shown to be twice the unit step

function, i.e.

{ 2 £>0
Y(f) = { 1 f=0
i o f£<0 B.4

Thus, the spectrum of z(t) is equal to twice that of x(t) for positive
frequencies and is zero for all negative frequencies. In the present
implementation, this forms an operational definition of the analytic
signal. The Fourier transform of x(t) is calculated. It is then multi-
plied by a factor of two for all positive frequencies and set equal to
zero for all negative frequencies. The DC component remains unchanged.
Taking the inverse transform yields the analytic signal, z(t). As a
simple example, consider the signal, x(t)=cos(2nft). Substituting into

B.2 gives
z(t) = el2™Mt _ (os(2nft) + i sin(2nft) B.5

In order to accommodate signals with finite record length, a win-
dowing function is also used. In the examples to follow a Hanning win-

dow was chosen. It is defined as follows:

% ’ g"r"} 8.6

where Tw is the width of the window. This has the usual effect of
broadening the spectral peaks but is very useful in minimizing leakage
effects inherent in a signal of finite duration. Thus the transform

becomes
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W(t,f) = ;) w(v)z(t+%)z*(t_%)e-i2nf7 a7

-0

B.7

In practice this transform is evaluated by first evaluating the kernel,
w(v)z(t+7/2)z*(t—7/2). In order to evaluate this signal at times t/2,
either interpolation or over-sampling is used. If over-sampling is
employed, the original sampled signal x(t) must be sampled at a rate of
at least twice the Nyquist frequency. Standard fast Fourier transform
methods are then used to evaluate B.7 with the time t specifiéd as a

parameter.

In order to further explore the properties of the Wigner
transform, we will now take a look at several specific examples. 1In
each example, the Wigner transform will be evaluated analytically
according to B.1 and numerically by the above mentioned method using a

sampled version of the input signal, x(t).
Example 1
Consider first the stationary signal,
x(t) = sin(2nf0t) B.8

The corresponding analytic signal is easily obtained as

i2nf0t
z(t) = e B.9

Substituting into B.1,

T . T
o i2nfa(t+s) -i2nf.(t-5) .
W(t,f) = f e 0tre, 0°" 27 -12nfT 4 B.10

Simplifying, this gives
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00 —i2ﬂ(f—f0)7
W(t,f) = e dr = 6(f—fo)

—0CH

B.11

Thus the Wigner transform consists of a single peak in the spectrum at

f=f, and is independent of time. Figure B.1 shows a plot of W(t,f) for
a sampled version of x(t) where f = 50hz. The time series x(t) is
shown on the left hand side of the plot, and the standard FFT is
included on the bottom of the figure. W(t,f) is evaluated at intervals
of 0.1 sec using a Hanning window of width 0.4 sec. The window is
rather wide, but temporal resolution is maintained due to the nature of
the kernel used in the Wigner transform. A slight ringing is noted
near the ends of the record because of the width of the window chosen,
but otherwise the spectral content of the signal is seen to be rela-

tively unchanged throughout the length of the signal.

Example 2

Consider now a non-stationary signal of the fornm,

x(t) = Sin2ﬂf1t = sinen[fy+(f  ~fo)tlt B.12

max

The frequency, f1=f0+(fmax—f0)t, is a linearly increasing function of

time. The corresponding analytic signal is

12nf1t
z(t) = e B.13

The Wigner transform is calculated exactly as in the previous example

and is given as

Wit f) = 8[f-f (t)] B.14

That is, the spectral content of the signal at any time t consists of a

single peak at fzfl(t). This is seen graphically in figure B.2. The

time series shown increases linearly in frequency from fo = 30 Hz to
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fmax = 70 Hz. As can be seen, the standard FFT shows only that the

entire signal contains energy from f=30 Hz to £f=70 Hz. All temporal or
phase information, however, is lost in this representation. The Wigner
transform, on the other hand, shows that at any time t, the signal con-
tains essentially one frequency component that increases linearly with
time. This shows clearly the advantage of the Wigner transform, as

both frequency and phase information are retained.

Example 3

In the previous two examples, we considered signals which con-
tained only one frequency at any given time. As a third example, con-

sider a signal consisting of two stationary contributions:

x(t) = sinznflt + sin2nf,t B.15

The analytic signal is correspondingly,

12nf1t 12nf2t
z(t) = e + e B.16

Substituting into B.1 and simplifying, we obtain

W(t,f) = 8(f-f [ fa*fe]
(t,f) = 8(f- 1)+ 8(f-fy) + 2cosZﬂ(f2~f1)t-6{f- >

B.17

The first two terms correspond to the two peaks in the spectra at
fl and f2 as expected. The third term, however, is an unfortunate
byproduct of the non-linear nature of the Wigner transform. It con-
sists of a peak located at the average of the two frequencies,
fl and f2. Unlike the other two peaks, though, it is modulated in time
by the factor COS?ﬂ(fz—fl)t. Figure B.3 shows a computed Wigner

transform for a signal consisting of two sine waves at 30 Hz and 70 Hz.
The cross term at 50 Hz appears stationary, but upon closer inspection

as shown in figure B.4, it is seen to oscillate in time.
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Under certain conditions, this cross term can be avoided, however.
For example, if the time series is only weakly non-stationary (i.e. the
spectral content of the signal changes slowly with time), the cross
term can be removed by low-pass filtering W(t,f) in time at each fre-
quency. That is, for each frequency component fi’ we have a time
series W(t,fi) which can be low-pass filtered to remove the cross term.
The result of this operation is shown in figure B.5 in which the Wigner
transform of figure B.4 has been filtered with a cutoff frequency of 10
Hz. In this way, non-stationary oscillations slower than 10 Hz are
allowed to remain. Higher freguency non-stationary oscillations, how-
ever, are eliminated. 1In this case, only the two stationary components

at 30 Hz and 70 Hz remain.

We have therefore identified two types of time series for which
the Wigner transform provides a viable means of spectral analysis. The
first type is a time series which contains energy at only one fre-
quency. The second type is a time series which may contain several
frequency components, but whose spectral content changes slowly with
time. Both of these types of signals are frequently encounterred in
transition studies such as the present investigation. The observed
oscillations are typically quite band limitted, and changes in spectral
content (i.e. due to Re variation, vortex pairing, etc.) occur rather

slowly compared to the frequency of oscillation of the disturbance.
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Appendix C

MICROPROCESSOR CONTROL AND DATA ACQUISITION SYSTEM

As indicated earlier, a small microprocessor system was used for
control of various aspects of the experiments as well as for data
acquisition. Figure C.1 shows a block diagram of the electronic por-
tion of the experimental apparatus. As can be seen, the microprocessor
is central to virtual every aspect of the experiment. Several of the
components shown in figure C.1 have already been discussed such as the
sensors, anemometers, and the phased heater array control electronics.
In this section, we will be concerned primarily with the central
microprocessor and the way in which it is interfaced to the other vari-

ous components of the system.

The entire system was designed and constructed in-house, and it is
the purpose of this section to describe the principal features that
pertain to the present experiments. The system is based on an 8-bit
central processing unit (CPU), the Intel 8085-AH. The 8085 has an 8-
bit data bus and a 16-bit address bus enabling the direct access of 64
kbytes of memory. Though capable of running at 5 Mhz, the present sys-
tem configuration uses a 2 Mhz clock resulting in a basic clock cycle
of 0.5 us. The 8085 operates in conjunction with an Intel 8155 which
provides 256 bytes of local "scratch pad" RAM (Random Access Memory),
three 1/0 (Input/Output) ports, and a timer/counter. In addition, 4
kbytes of ROM (Read Only Memory) are provided on the CPU board, the

lower 2 kbytes of which contain the system monitor program.

In order for the CPU to communicate with the various peripheral
devices involved in the experiments, a 72-bit system bus was organized
containing the 16 address lines, 8 data lines, and a host of control

signals established by the CPU and the various periphals to be
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described. An 8-bit I/0 port (Intel 8212) was used to drive the
address and control signals onto the bus, and a bidirectional bus
buffer/driver (8216) was employed to assert and/or receive data on the
data bus. Figure C.2 shows a functional block diagram of the above

mentioned portion of the system.

The remainder of the system can be organized into five logical

sub-systems as follows:

Humam Interface
Memory / Data Processing
Data Acquisition / Mass Storage (DMA)

Phased Heater Array Interface

O Rk W N e

Stepper Motor Interface

These five units communicate with the CPU via the system bus and are

schematically shown in relation to the CPU in figure C.3

Human Interface

To provide for direct access to the CPU, the human interface consisting
of a keyboard/display unit and an optional speech synthesizer were made
available. The keyboard contains 24 keys (16 hexadecimal numbers and 8
command keys). It is continually scanned by an Intel 8279 Programmable
Keyboard/Display Interface which upon key closure interrupts the CPU.
The CPU then executes an appropriate interrupt service routine which is
contained within the system monitor. In this way, data and/or any of
the instructions contained in the 8085 instruction set may be directed

to the CPU.

Data are displayed by the CPU by means of a 6-bit hexadecimal
display. The display elements are 7-segment LED's (Light Emitting
Diodes) which are organized into a 4-digit (hexadecimal) address field

(0000-FFFF) and a 2-digit data field (00-FF). Thus, the contents of
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the 216 possible addresses may be examined. An additional means of
communication with the system is provided by a speech synthesizer. A
Votrax SC-01 containing 64 possible phonemes is programmed by the CPU
and interfaced via a 2-watt audio amplifier to an 8-ohm front panel
speaker. This provides the capability for vocal verification of stored
programs and verbal prompts when data entry is requested by the CPU.
In addition, the vocal output is quite useful in alerting the operator
of any portions of the experimental apparatus which might be malfunc-

tioning or inadvertently left off-line.

Memory / Data Processing

The second section of the system contains that portion of the circuitry
in which data and/or instructions are stored and manipulated by the
CPU. 16 kbytes of RAM are provided for temporary storage of data and
instructions, and 8 kbytes of ROM are available for permanent storage
of program instructions. In addition, several RAM locations were
reserved and were decoded to provide access to several peripheral dev-
ices on the system bus. This technique, known as memory mapping of
periphals, was used in conjunction with I/0 mapping in order to provide
for the large number of devices controlled by the CPU. The phased
heater array, for instance, was seen by the CPU as 32 separate address

locations, one corresponding to each of the 32 heaters.

An arithmetic processing unit (Intel 8231) with an additional 4K
RAM and 4K EPROM was also provided to augment the data manipulation
capabilities of the CPU. Data were written into the APU storage regis-
ters by the CPU along with the appropriate instruction codes. A very
extensive 1list of possible functions (multiplication, division,
exponentiation, sin, cos, etc.) could be performed by the APU in either
16 or 32-bit fixed formats or a 32-bit floating point data format. As
an example of the capability of the APU, an FFT algorithm was written
which performed a 1024-point FFT in approximately 10 sec. The various

capabilities of the APU were used for a wide range of data
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manipulations, making the system as a whole extremely versatile for

general laboratory use.

Data Acquisition / Mass Storage (DMA)

The third portion of the system contained the necessary hardware for
acquisition and mass storage of data from the various transducers
involved in the expefiments. The data acquisition circuitry was fairly
extensive and was physically housed in a separate enclosure. The sys-
tem was built around the Analog Devices DAS1128, a 16-channel, 12-bit,
50 Khz A/D converter. The 16-channels are time multiplexed into a sin-
gle converter, thus the maximum sampling rate of 50 Khz is achieved if
only one channel is sampled. With all 16 channels in operation, the
maximum sampling rate is approximately 3 Khz. The 12 bits of data
together with the 4-bit channel identification number are latched into
two 8-bit parallel ports (Intel 8255) which are then transferred to
system RAM under DMA (Direct Memory Access) control. Upon receipt of a
request for a DMA transfer from the DAS (Data Acquisition System), the
DMA controller issues a hold to the CPU. The CPU then relinquishes
control of the bus and allows the DMA controller to transfer data from
the DAS to system RAM. The time for data transfer is therefore much
less than the time required for the CPU to execute the necessary I1/0

instructions for data transfer.

Continuous data acquisition was achieved by using a double buffer-
ing scheme. Data were continuously read into system RAM which was
divided into two 2K buffers. When one 2K buffer was filled, data were
then routed to the altcrnate buffer. At this point, a second DMA chan-
nel would begin transfering the contents of the filled buffer to the
AED-62000 floppy disk. These two processes of data acquisition and
data storage were conducted simultaneously by separate DMA channels at
independently programmable transfer rates. Transfer to the floppy,
however, was always faster than the sampling thus enabling continuous

throughput. Double density, double sided, eight inch floppy disks were
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used for data storage and had a maximum capacity of 1 Mbyte. These
were subsequently stored on magnetic tape for further processing and

data reduction.

Phased Heater Array Interface

A general overview of the organization of the phased heater array con-
trol electronics was given in Chapter 2. It was shown in block diagram
form that signals from a programmable frequency generator were fed to a
block of 32 programmable phase and gain circuits, to the power amplifi-
cation circuitry, and finally to the heaters. The programmable fre-
quency generator consisted primarily of an 8-bit D/A converter (Analog
Devices DAC-0831) and a waveform generator {(Intersil ICL-8038). An 8-
bit data word written from the CPU was latched by the D/A converter and
converted to an analog voltage. This voltage level then determined the
frequency to be output by the waveform generator which was hardwired to

output a 50 percent duty cycle sinewave from 1 Hz to 50 Hz.

Following this stage were the 32 phase and gain control stages for
each of the 32 heater elements of the array. The circuitry for each
heater is identical with the exception of the location at which each is
memory-mapped by the CPU. As indicated earlier, the CPU recognizes the
heater array as 32 separate memory locations. A single 8-bit word
written to one of these addresses is used to program both the phase and
gain of the heater voltage. The 8-bit word is latched by an 8-bit
parallel latch (741s373). The upper 4-bits then are level shifted by a
gquad op-amp (TLO0O74) making the levels compatible with a quad CMOS ana-
log switch (4046). This switch is used to selectively bypass any of
the 4 resistor values (10K,20K,40K,or 80K) which form part of a con-
stant amplitude phase-shift stage. This provides 16 discrete phase
shifts. The output of this stage is then directed to the next neigh-
boring phase-shift stage (i.e. the next heater) and to the gain stage

as well.
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The lower 4-bits follow a similar path through a level shift to an
additional analog switch. 1In this stage, the switch selectively con-
nects the output of the previous phase-shift stage to any or all of the
4 resistor values (20K,40K,80K,160K) which form part of a summing
amplifier. If for example the signal was connected to all of the
resistors, the equivalent impedence of this parallel configuration
would be 10K (the same value as the feedback resistor), and this stage
would therefore function simply as a unity gain amplifier. If on the
other hand, the signal from the phase-shift stage was connected only to
the 160K resistor, then the output voltage would be 1/16 of its origi-
nal value. In this way, 16 discrete voltage levels are possible. The
final stage provides a trimming amplifier which is used to compensate

for non-uniformities in the heaters.

Stepper Motor Interface

The final section of the digital hardware which is important in the
present study is the connection to the mechanical world, namely the
interface to the boundary layer traversing mechanism via a feedback
controlled stepper motor. A 4-pole stepper motor with a resolution of
200 steps/revolution was used. The motor was driven by a set of 4
appropriately phased pulse trains which were generated by a programm-
able interval timer (Intel 8254). The pulses were converted to a com-
patible analog signal by 4 D/A converters (MC-3410). An optical
encoder (Datametrics K15 series) was mounted on the shaft of the
stepper motor and provided feedback information on the exact position
of the traverse. The output of the encoder was connected to the CPU by
way of 2 of 4 available A/D converters (Analog Devices AD570). Both
the A/D and the D/A converters were interfaced to the CPU through

several Programmable Peripheral Interfaces (Intel 8255).

The stepper motor was then connected to a traversing gear through
a flexible shaft coupler. The traverse converted one revolution of the

shaft into a 1.0 mm displacement normal to the plate surface. During
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boundary 1layer profile measurements, the increment in the vertical
direction was 0.1 mm or one tenth of a revolution. The hot-film velo-
city probe was connected to the traverse by the supporting structure
discussed in Chapter 2 which enterred the tunnel through a sealed open-

ing.
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